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Abstract

The consequences of current conservation for vector meson models are examined.
As an example of this, the p—w mixing model for the isospin violation seen in the pion
electromagnetic form factor is studied in detail. Assuming current conservation, we predict
a strong momentum dependence for vector mixing. As this result also applies to photon—
vector meson mixing, in contradiction to traditional photon-hadron models, we describe
an equivalent model which includes a momentum dependent coupling of the photon to
vector mesons. To ensure that the information obtained previously from the pion form-
factor is consistent with conserved current picture, we redo the fit to data and find a
considerable model dependence to the quantities of interest that is not a consequence of

momentum dependence.
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Chapter 1

Introduction

Before proceeding with our discussion of p—w mixing, it will be helpful to introduce
the concept of Vector Meson Dominance (VMD), the model within which p—w mixing
is usually described. To motivate this, it is useful to provide the historical development
of the subject, which will then lead naturally into the consideration of p—w mixing and
its theoretical description. Where possible, the connection between the original hadronic
models and our present understanding will be discussed.

The physics of hadrons was a topic of intense study long before the gauge field the-
ory Quantum Chromodynamics (QCD), now believed to describe it completely, was in-
vented [1]. Hadronic physics was described using a variety of models and incorporating
approximate symmetries. It is a testimony to the insight behind these models (and the
inherent difficulties in solving non-perturbative QCD) that they still play an important
role in our understanding.

One particularly important aspect of hadronic physics which concerns us here i1s the
interaction between the photon and hadronic matter [2]. This has to date been remarkably
well described using the vector meson dominance (VMD) model. This assumes that the
hadronic components of the vacuum polarisation of the photon consist exclusively of the
known vector mesons. This is certainly an approximation, but in the resonance region
around the vector meson masses, it appears to be a particularly good one. As vector
mesons are believed to be bound states of quark-antiquark pairs, it is tempting to try to
establish a connection between the old language of VMD and the Standard Model. In the
Standard Model, quarks, being charged, couple to the photon and so the strong sector
contribution to the photon propagator arises, in a manner analogous to the electron-
positron loops in QED, as shown in Fig. 1.1.

The diagram contains dressed quark propagators and the proper (i.e., one-particle
irreducible) photon-quark vertex (the shaded circles include one-particle-reducible parts,

while the empty circles are one-particle-irreducible [3]). This diagram contains all strong

i



2 CHAPTER 1. INTRODUCTION

interaction contributions to the photon self-energy. In QED, because the fine structure
constant (a ~ 1/137) is small, we can approximate the photon self-energy reasonably
well using bare propagators and vertices without worrying about higher-order dressing.
However, in QCD, the dressing of these quark propagators and the quark-photon proper
vertex cannot be so readily dismissed as being of higher order in a perturbative expan-
sion (although for the heavier quarks, higher order effects can be ignored as a conse-
quence of asymptotic freedom [4]). Recent work [5], using numerical solutions to the
non-perturbative Dyson-Schwinger equations of QCD [3], has succeeded in producing a
spectrum of quark-antiquark bound states, but the mass distribution does not yet corre-

spond to the observed spectrum.

q

Figure 1.1: One-particle-irreducible QCD contribution to the photon

propagator. This is the complete QCD contribution to the photon self-

energy.

1.1 Historical development of VMD

The seeds of VMD were sown by Nambu [6] in 1957 when he suggested that the charge
distribution of the proton and neutron, as determined by electron scattering [7], could be
accounted for by a heavy neutral vector meson contributing to the nucleon form factor.
This isospin-zero field is now called the w.

The anomalous magnetic moment of the nucleon was believed to be dominated by a
two-pion state [8]. The pion form-factor, Fir(¢?), (to be discussed later in some detail) was
taken to be unity in these initial calculations —i.e., the pions were treated as point-like
objects. In 1959 Frazer and Fulco [9] attempted to show that the both the magnetic
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explained by the inclusion of a strong pion-pion interaction. After an investigation of
analytic structure (following studies of the electromagnetic properties of the nucleon using
the dispersion relation method [8,10]), it was seen that the pion form-factor had to satisfy
: Im F.(r

Fo(dH) =1+ e dr (r)

Vs

amz - (r —q* —i€)’

(1.1)

and that to be consistent with data a suitable peak in the pion form-factor was required.
They believed that this could result from a strong pion-pion interaction. The analytic
structure of the partial wave amplitude in the physical region could be approximated
as a pole of appropriate position and residue (a successful approximation in nucleon-
nucleon scattering). An analysis determined that the residue should be positive, raising
the possibility of a resonance, which we now know as the p°.

It was Sakurai who proposed a theory of the strong interaction mediated by vector
mesons [11] based on the non-Abelian field theory of Yang and Mills [12]. He was deeply
troubled by the problem of the masses of the mesons in such a theory, as they would
destroy the local (flavour) gauge invariance. He published his work with this matter
unresolved in the hope that it would stimulate further interest in the field.

Kroll, Lee and Zumino did pursue the idea of reproducing VMD from field theory [13].
Within the simplest VMD model the hadronic contribution to the polarisation of the
photon takes the form of a propagating vector meson (see Fig. 1.2). This is now a model

for the QCD contribution to the polarisation process depicted in Fig. 1.1 and arises

i Y
ANNN——"N\
Figure 1.2: A simple VMD-picture representation of the hadronic contri-

bution to the photon propagator. The heavier vector mesons are included
in generalised VMD models.

from the assumption that the hadronic electromagnetic (EM) current operator, jE’M, is
proportional to the field operators of the vector mesons (multiplied by their mass squared).
This is referred to as the the field-current identity (FCI). One can then incorporate this

idea into an effective Lagrangian, giving a precise formulation of VMD in terms of a local,
Lagrangian field theory. One starts with the FCI for the neutral p-meson

2
mPO

(@)1=t = 2@, (1.2)



4 CHAPTER 1. INTRODUCTION

and then generalises [14] to an isovector field, 5(z), of which p°(z) is the third component
[i.e., p°(z) = p*()]. Eq. (1.2) implies that the field 5(z) is divergenceless under the strong
interaction, which is just the usual Proca condition (this, however, need not be true for

all effective Lagrangians)

8,7 =0, (1.3)

for a massive vector field coupling to a conserved current. The resulting Lagrangian for
the hadronic sector is the same as the (flavour) Yang-Mills Lagrangian [12], but also has a
mass term which destroys local gauge invariance. Although gauge invariance is necessary
for renormalisability!, Kroll et al. were unconcerned by this; stating that the non-zero
value for the mass made it possible to connect the field conservation equation, Eq. (1.3),
with the equation of motion of the field. The case of a global SU(2) massive vector field
(the p-field), interacting with a triplet pion field and coupled to a conserved current, is
treated in detail by Lurie [16].

1.2 Gauge invariance and VMD

Sakurai’s analysis of VMD [17] takes place in the context of a local gauge theory. Al-
though a mass term in the Lagrangian breaks (flavour) gauge symmetry, Sakurai viewed
the generation of interactions by minimal substitution in the Lagrangian to be interest-
ing enough to ignore this problem. Lurie [16] has discussed the p, 7, N system using
coupling to conserved currents which reproduces Sakurai’s results. As it only assumes
that the Lagrangian is invariant under global SU(2), the appearance of mass terms causes
no difficulty. One can then examine how to include the photon in this system. Lurie’s
primary concern was to have the p couple to a conserved current, and he did this by
constructing a Lagrangian whose equation of motion had the Noether current associated
with the global SU(2) symmetry appearing on the right hand side. In doing this, he
arrived at the standard non-Abelian Lagrangian (given on p- 700 of Ref. [18]), which is
where we begin our discussion.

We begin with the Lagrangian (while Sakurai and Lurie worked in a Euclidean metric,
we follow the conventions of Bjorken and Drell [19])

| . 1. L 1 L.
»Cfqu:_ZPuu'Pu +§m§p“-ﬁ"‘+§Du7r-D”7r—§m12r7r-7r,

In general there are only two cases in which a massive vector field is renormalisable, see Ref. [15],
p. 61:
a) a gauge theory with mass generated by spontaneous symmetry breaking;

b) a theory with a massive vector boson coupled to a conserved current and without additional self-
interactions.

(1.4)
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where
ﬁ;w == uﬁu - auﬁu - gﬁu X ﬁl/’ (15)
and where?
DF = (9, —igh D)7, (16)
= Q,7—gpx 7. (1.7)

This Lagrangian is symmetric under the transformation

-

¢ S+IxE (1.8)

where J; represents the isovector fields of the g and #. The generation of interactions
from minimal substitution is used by Sakurai and Lurie to motivate universality (i.e., the
coupling constant of the p introduced via the covariant derivative, D,, is the same for
all particles). However, as a slight violation to this rule is seen experimentally, we shall
distinguish between g and the constant g, appearing in Eq. (1.2), which Sakurai equates
in order to satisfy a constraint on the pion form-factor (to be discussed later).
From Eq. (1.7) it follows that
IS SRS EPUI
§Dﬂ7r - D*Rt = §8u7r CO*T — gpy - (R x OMT) + 59 (F. x @) (1.9)

After some algebra we obtain the equation of motion for the p field

05" + mp" = 9T oether (1.10)
where the Noether current is
- oL oL
TNocther = ~ =< X Py — = X T 1.11
Noeter = “5105) P T 8(6,7) -
giving
jl‘\lioether . ﬁ’l“/ X ﬁl/ + 7 x o' + g(ﬁ“ X 7_'(") X 7. (112)

As the Noether current is necessarily conserved, Eq. (1.10) tells us that the field is diver-
genceless, as in Eq. (1.3), i.e., acting with 3, on each side of Eq. (1.10) and noting that
P = —p" and 3,‘jﬁoether = 0 implies that J,p" = 0. Transferring the non-Abelian part
of the field strength tensor (the cross product in Eq. (1.5)) to the RHS of Eq. (1.10) gives

us,

0, (0” " — 0*5”) + m2p* = g(Tpemer + 0u(F¥ x 7). (1.13)

>We use hermitian T’s given by the algebra [T*, T% = —ic®**T*° and normalised by TY(T°T?) = 64, /2.

Thus, in the adjoint representation, (1), = —ic®®®. For SU(2), ¢t = €ijk-
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Again using the fact that the p field is divergenceless, we can rewrite the equation of

motion in the inverse propagator form
(0% + m2)p* = gJ*, (1.14)

where J, is also a divergenceless current given by

—

JH = j#oether + aV(ﬁu X 15'#)
= jﬁoether i p—'V X al/ﬁu' (115)

That J* is also conserved can be seen by taking the divergence of Eq. (1.15); the RHS
vanishes due to the Proca condition, Eq. (1.3). and the fact that 9,57 x 8,5* = 0 from
symmetry under g « v. As Lurie notes, the presence of the p field itself in JNOether
prevents us from writing the interaction part of the Lagrangian in the simple Py - J#
fashion (which is possible for the fermion-vector interaction). A similar situation for
scalar electrodynamics is discussed by Itzykson and Zuber [18] (p. 31-33).

Our task now is to include electromagnetism in this model, and to do this we shall allow
Eq. (1.2) to guide us. Using the FCI, Eq. (1.2), we replace the electromagnetic current
by the p meson term. We then invert Eq. (1.14) to replace the p by the hadronic current,
using 9, — 4q,, to obtain a corresponding matrix element relation for the electromagnetic

interaction®

] m
(BlejM|A) = 6(B|—g”ﬂfi |A)
D

m2 _gJ3
= e—L2(B|—%~_|A 1.16
i (1.16)

_ (—i;mi) (q2 :im%) (Bl gJ® |A). (1.17)

Thus the photon appears to couple to the hadronic field via a p meson, to which it couples
with strength em?/g,. (This model is illustrated in Fig. 4.2b, below.)

Before proceeding, we shall make, as Sakurai does, the simplilying assumption that
one can neglect the p self-interaction (from now on we shall refer only to the p° = p?).
As the p° decays almost entirely via the two-pion channel, this is a physically reasonable
approximation. Therefore we ignore the parts of the current given by Eq. (1.15) involving

p terms, and concern ourselves only with the piece of the current that looks like

JE = (7 x 0"7)o, (1.18)

3We take e to be positive, e = |e|.
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to which, for notational brevity, we shall refer from now on simply as J#. Changing from

a Cartesian to a charge basis, we can re-write Eq. (1.18) as
J,=i(r 9t —xtd, 7). (1.19)

We can then write the simple linear coupling term in the Lagrangian, and from now on

we shall write g as gprr

Lon = —Gprapudt. (1.20)

1.3 The electromagnetic form-factor of the pion

One problem in which VMD found particular success was the description of the elec-
tromagnetic form-factor of the pion [20]. As this has played such a crucial role in our
understanding of p—w mixing it is useful to outline what is means by it and how the
theoretical predictions are compared with experimental data.

We are concerned with the s-channel process depicted in Fig. 1.3, in which an electron-

positron pair annihilate, forming a photon which then decays to two pions. We define

- at
€ ’
’
,
’
v ’
’
’
,
\
N
N
N
N
N
N
et .
T

Figure 1.3: Electron-positron pair annihilating to form a photon which
then decays to a pion pair.

the form-factor, Fr(s), by Eq. (4.44). The form-factor represents all possible strong
interactions occurring within the circle in Fig. 1.3, which we model using VMD.

In the time-like region, Fr(¢?®) is measured experimentally in the reaction ete~ —
m¥x~, which, to lowest order in €%, is given by the process shown in Fig. 1.3. The
momenta of the electron and positron are p; and p; respectively, and ps and p, are the
momenta of the 7+ and 7~. The differential cross-section is given by [21]

do _ ps i Zpols| M i
d 1Ps|(p8 + P2) ~ 3Bz (Pr + F2) 642 [(py - po)2 — md

(1.21)
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where p is the unit vector in the direction of 5. We are thus interested in calculating the
Feynman amplitude, My, for this process. The lepton and photon parts of the diagram
are completely standard. The interesting part of the diagram concerns the coupling of
the photon to the pion pair represented by Fig. 1.3. The form of this part of the diagram,
My —rtx-, shall be discussed in detail later (see Eq. (4.44)). In full, the amplitude is

My = 5(2)ier*u(1)iDy (q)eFa(q®) (s — ps)" (1.22)
with the photon propagator being given by

Duute) = S o+ (6 - )22 (123)

Particular choices of £ correspond to particular covariant gauge choices. The second term
in Eq. (1.23) vanishes because the photon couples to conserved currents and so the result
Is gauge invariant as expected.

In the centre of mass frame (in which we shall define [§] = p) we have E? — p2 = m2,

E? —p? =mk and p-F' = —pp'cosd. Using \/s = 2E the differential cross-section
becomes
dd e’ | s—4m2 (E'— E*m? — ((E* — E*(m? + m?) + m2m?) cos )| Fr(s))?
o " s\ s = 4sm? /s 642 '
(1.24)

Since m? << m?2 and we are considering the energy region E > m,, we can simplify the
above formula to
do  e'(s—4m2)V/? |

= S—ZT@(E4 — E*m2)(1 — cos® 0)|Fr(s)|?.

From this we obtain the total cross-section

o (s — 4m?2)3/?
0= 72 ) |Fr(s)?, (1.25)

where o = e? /47 ~ 1/137.

While VMD is a successful low energy model for the photon hadron interaction, certain
elements of it seem somewhat naive. For instance, no attention is paid to the momen-
tum dependence of the real part of the mass, but (as the propagator must be real below
threshold, when the particle cannot decay) momentum dependence must be present and
can be introduced for the width. One simple possibility for the momentum dependent
width being m,I',0(¢* — 4m?2). The neglect of momentum dependence is especially rele-
vant for the use of vector mesons as mediators of the VNV interaction. This application

traditionally uses simple perturbative propagators (with no width) in the spacelike ¢
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region. The fact that the vector resonance contribution is suppressed away from the mass
pole, allowing one to use simple Breit—Wigner propagators very effectively, means we have
little experimental information about the momentum dependence of these contributions.
As we are using vector mesons in an approximation to non-perturbative QCD these issues
deserve much deeper study.

As p—w mixing is based upon VMD, these underlying factors will be germane to this

study and one must keep this in mind.

1.4 Summary

We have seen how a p — 7 Lagrangian, with a global isospin symmetry, in which the p
couples to a conserved current and satisfies the Proca condition, can be constructed. This
required the use of minimal substitution to create a covariant derivative which introduces
universality (¢ = ¢,,p = g,nr ), €xtending this system to other hadrons, such as nucleons,
will similarly give g,yn = ¢g. Electromagnetism was then included through the use of the
field current identity for on-shell matrix elements, leading to the vector meson dominance

model.
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Chapter 2

Standard treatment of p—w mixing

To make sense of the present work and the purpose behind it, it is necessary to have an
understanding of the treatment of p—w mixing through the previous twenty years. This
chapter begins by providing a very brief description of the first theoretical prediction of
p—w mixing in the early sixties. We then move forward ten years to what we shall refer
to as the “Standard Picture” (SP) of p—w mixing which was essentially unquestioned
from the mid-seventies to the end of the eighties. My own work (covered in Chapters 4,
5 and 6) has largely been a careful re-examination and refinement of this SP. I briefly
discuss the earlier work done in p—w mixing, in the period from the mid-sixties to the
mid seventies in Appendix C, where we will see some intersting parallels with my own

research.

2.1 The theoretical beginning of p—w mixing

We have seen in the previous chapter that the pion EM form-factor could be modelled
using vector meson dominance (VMD), in which the photon couples to a p meson which
then decays to the two pion final state, enhancing the interaction in the p resonance
region, ete™ — 7t71~ . A similar model can be used for ete™ — 7tx%r~ . The vector
meson we associate with this process is the isospin zero w meson, which has a similar
mass to the p, but a much smaller width. The strong interaction was believed to preserve
G parity and hence would not allow the w (I = 0) to decay to a pion pair (I = 1). Thus
one should only see the p resonance in the pion form-factor. In 1961, though, Glashow
suggested [22] that EM effects could mix the two states of pure isospin, p; and w;z, on the
grounds that they were very close in mass and differed only by isospin (a quantum number
broken by electromagnetism). This would result in the mass (or “physical”) eigenstates, p

and w, being superpositions of the two initial fields. The most obvious possibility for the

11



12 CHAPTER 2. STANDARD TREATMENT OF p—w MIXING

mixing, although it is only a very small effect, would be via the process shown in Fig. 2.1.
Glashow commented that other EM mixing processes such as p; — v+ 7 = w; would
also be possible. At the time, however, there was no experimental evidence to support

the mixing of the two isospin states.

€ T
Figure 2.1: Electromagnetic contribution to the w-resonance of ete~ —

tr—.

Symmetry breaking, though, was then a new and active field of research. In 1964
Coleman and Glashow [23] produced a model for the breaking of unitary symmetry (the
symmetry scheme of Gell-Mann and Ne’eman based on SU(3) for the hadronic octet [24]).
They postulated the existence of a unitary octet of scalar mesons, composed of an isotopic
singlet (7'), triplet (7’) and two doublets (K, K'). This octet would allow the possibility
of scalar tadpoles, a class of diagrams that vanish for all other (non-scalar) particles. These
tadpoles would vanish in the limit of exact unitary symmetry. The diagrams can be broken
into two parts connected only by a scalar meson line ~ the tadpole part and the SU(3)
invariant part. Coleman and Glashow assumed that symmetry violating processes are
dominated by these tadpoles, but claimed that their explanation for symmetry breaking
did not necessarily depend on the existence of the scalar octet. As a concluding remark
they described a calculation of p—w mixing assuming tadpole dominance. The vector
mesons are assumed to comprise a unitary singlet and octet which mix. The p°® is then
connected to both the unitary singlet and unitary octet part of the physical w via 7%
tadpole diagrams. This allows one to express the mixing amplitude in terms of vector

meson multiplet mass differences, an idea pursued recently [25].
2.2 The experimental discovery of p—w mixing

As more data was collected (for the reaction ete~™ — 7+7~ and other related reactions
such as 7% + p — 7¥r~ + A**) and the resolution of the resonance curve improved, it
became clear that there was a kink around the mass of the w-meson in the otherwise

smooth curve observed [26]. As an illustration, Fig. 2.2 shows a graph of the modern
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somewhat sparser, the theoretical techniques for modelling it are essentially the same.

2.0 [T
w ]
£ I
3 1.5} I -
5 | i
i 110 ]
~—’ - I i g
c 1.0 T =
s I g :
8 : I ]II 4
n L I T .
(InO.5“:[I IT _
0 F 7
= - i
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Figure 2.2: The cross-section for the reaction ete™ — w*x~ from the
data of Ref. [27] in the p—w resonance region.

2.3 p—w mixing and F,(¢?)

The standard way to include p—w mixing in the VMD description of F(q?) is by using
a matrix propagator for the vector meson. From this we obtain the parametrisation for
isospin breaking discussed in Ref. [28]. Using a matrix notation, the Feynman amplitude

for the process v — 7w, proceeding via vector mesons, can be written in the form

iME e = (M MY, )iD,, ( zﬁ:*‘” ) . (2.1)
—wy

The propagator matrix for the isospin pure p; and w; (which will become mixed to form
the physical states, which are not eignestates of isospin) is D,, and is discussed in detail
in the section surrounding Eq. (4.22). The other Feynman amplitudes are derived from
either the VMD1 or VMD2 Lagrangian (Egs. (4.31) and (4.32)). Since we will here
always couple the vector mesons to conserved currents, the terms proportional to q.q, In
the propagator (Eq. (4.22)) can be neglected. It should be carefully noted that models
which do not have coupling to conserved currents will need to explicitly retain these terms.

If we assume that the pure isospin state w; does not couple to two pions (MY =0

wr—mwmw ~ )
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this point is addressed below in Sec. 2.4) then to lowest order in the mixing, Eq. (2.1) is

1/5,, pr/spsw M"/—’PI
b e , 2.2
M’Y—””" ( Mm_ﬂm ! ) ( pr/SpSw 1/3w M’Y—*wl ( )

where sy = ¢*> —m} and m} (for V = p,w) are the complex pole locations with real part

just

m{, and imaginary part —hy['y. Expanding this just gives

i 1 I
Ms—.mr == Mgl——vmrs_M’Y—'PI + Mﬁ]-—nr‘rr S_prs M’Y—‘wl (23)
P P w

which we recognise as the sum of the two diagrams shown in Fig. 2.3.

4 n+
/\/\/\f\_/ L ¢
Y
=
+
T
(,01 N\ P 7
/\/\f\/\/ / R
U Hpm
~ n_

Figure 2.3: The contribution of p—w mixing to the pion form-factor.

The couplings that enter this expression, through M ey My, and M., always
involve the unphysical pure isospin states p; and wy. However, we can re-express Eq. (2.3)
in terms of the physical states by first diagonalising the vector meson propagator. To do

this we introduce an orthogonal diagonalising matrix

C = ( _16 : ) (2.4)

Sp — Sw

We now insert identities into Eq. (2.2) and obtain

1/s pw/sps M
My = h cc! P pwl SpSw - R
5 ( Mp1—>7r1r 0 ) ( pr/SpSw l/SW ) CC ( )

Towr
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/s, 0 M-,
= B 2.6
(M MM,)( 0 1/%)( MM) (2:6)

where we have identified the physical amplitudes as (to first order in isospin violation)

Mg—nr?r = Ml;:;—wmr? (27)
My e = MLt eME (2.8)
Moy = Moy — Moo, (2.9)
Mycw = Moy, +eM ). (2.10)
Expanding Eq. (2.6), we find
MHE = M} ! M ME L./\/1

y—T p—orw; y—p T w—TT Su y—ow

| II 1
= b M., N Mo 2.11
Mp—»‘mrSpM’Y P + Mp—wr‘lr Sp — Su Sw M’Y ( )

At first glance there might appear to be a slight discrepancy between Eqs. (2.3) and (2.11).
The source of this is the definition used for the coupling of the vector meson to the photon.
The first, Eq. (2.3), uses couplings to pure isospin states, the second, Eq. (2.11) uses
“physical” couplings (i.e., couplings to the mass eigenstates) which introduce a leptonic
contribution to the Orsay phase [26] between the w contribution and the p contribution.
We assume M., _,,, ~ 3M,_,,, which is exact in the limit of exact SU(6) spin-flavour
symmetry, and define the leptonic phase 6 by

Moo 1 4
== —m—ck 2.12
M, " 3° (2.12)
then, to order e,
. 1011
tanf = ——2&~, .
o 3m,T, (2.13)

This gives 8 = 5.7° for I, = —4520, as obtained by Coon et al. [28]. This small so-called

“leptonic” contribution to the Orsay phase is the principal manifestation of diagonalising
the p—w propagator.

2.4 Intrinsic w; decay in ete™ — 7wtn~

We present here the argument introduced by Gourdin, Stodolsky and Renard [29] that
the isospin violation of the intrinsic decay w; — 27, though of the same order in isospin

violation as that due to p—w mixing, gives no contribution to the pion form-factor. The



16 CHAPTER 2. STANDARD TREATMENT OF p—w MIXING

original suggestion was rather terse, but it was elaborated on later by Renard [30] and we
thus refer to it here as the “Renard argument”.
The coupling of the physical w to the two pion state can be expressed as (from
LEq. (2.11))
Jurr = Guirr + €Gprmmy (214)

where ¢ is given by Eq. (2.5). Neglecting the small mass difference of the two mesons and

the decay width of the w allows us to approximate e, given in Eq. (2.5), by

g=—i (Re My + ddm H”“’) . (2.15)

m,l',

We shall return in Chapter 6 to re-examine the implications of the approximations leading
to Eq. (2.15). If My,;xr # 0, then we would have a contribution to p—w mixing shown

in Fig. 2.4. We can determine the contribution to II,, from p — 77 — w. To do this,

T[+
® P
i
1
_—— _————
] ’
\‘ ’
=
T[+
® p
i" L)
— - - —_—
i) 0 1
l“ n 1
i

Figure 2.4: Physical intermediate states contributing to p—w mixing.

however, it is first useful to consider the analogous case for the simpler pr system. The
self energy of the p, I1,,, has a contribution from a virtual pion loop as in Fig. 2.5.

Because the p decays predominantly (the quoted branching ratio is ~ 100% [31]) to the

Figure 2.5: Contribution of a pion loop to the p self-energy.

two pion state it is assumed that this loop will dominate the dressing of the propagator.
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9 ! (2.17)

. )
¢ —m? +im,l,

where myg is the bare mass, m, the renormalised mass and I', the width of the p-meson.
The width of the p, T,, is defined by the imaginary part of the polarisation function,
11,,(¢%), at the p mass point, ¢* = m?,

Im I1,,(m?) = —m,T,. (2.18)

Similarly we can determine the imaginary part of the one-loop diagram shown in Fig. 2.4,
which contributes to Im II,,. One now assumes that the contribution to p—w mixing

from a pion loop and the p polarisation are related by (comparing Figs. 2.4 and 2.5)

T Gurn
s = =——1II,,. (2.19)

prmm

Due to the strength of the p — 77 decay, the pion loop contribution can also be assumed

to dominate the imaginary part of the total p—w mixing, and we then have

I, = 2™ Imi,,

Gprmm

= durr T, (2.20)

Gprmm

Substituting Eq. (2.20) into Eq. (2.15) and then substituting the result into Eq. (2.14) we

have

.Rell,, ImII,,
wrr — Jupre — T Ty 21
Gurr = Guren = 1L Gprme + G (2.21)
giving us
Rell,,
Jurr = Guirr — zmgl)ﬂm — Guirr- (222)

As can be seen the contributions from the isospin violating g.,~» coupling cancel each
other.

So, in summary: We allowed G-parity violation through w; — 7 (in the same form as
pr — =), which contributed to the mixing parameter, ¢, through the process depicted in
Fig. 2.4. We then found that the imaginary part of the single pion loop actually cancelled

the decay of the wy in the process w — w7. Hence the decay of the the wy can be ignored.

We shall critically re-examine this argument in Chapter 6.

2.5 The use of p—w mixing in nuclear physics

Isospin violation in nuclear interactions has certain obvious contributions arising from

the unequal masses and charges of the proton and neutron. We can make allowances for
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2.5 The use of p—w mixing in nuclear physics

Isospin violation in nuclear interactions has certain obvious contributions arising from
the unequal masses and charges of the proton and neutron. We can make allowances for
these. However, on top of these there remains, at the 1% level, an isospin violation from
the strong interaction itself. The reader might notice the similarity of this situation to the
previous statement that EM effects alone cannot account for the p—w mixing seen in the
pion form-factor. Following Henley and Miller [32] it is usual to consider the individual

classes of this isospin violation.

Class Contribution Name
I 1 and (1) - £(2) charge-independent
I1 t.(1)t.(2) — f(l) . t_'(2) charge dependent
11 t.(1) + t.(2) CSvV
v [1{1) x t(2)]s CSV

Table 2.1: The classification scheme of Henley and Miller [32] for isospin
dependent forces in nuclear interaction. Class III and IV forces violate

charge symmetry.

It is the Class I1I force that is of interest to us here. Charge symmetry is the rotation
of hadrons in isospin space by 7 radians about the [, axis. Thus, for the nucleons this

corresponds to the transformation

p = n

n - —p.

Experimental results suggest a strong interaction contribution to Charge Symmetry Vi-
olation (CSV). The two most commonly quoted examples of this are the nn, (Coulomb
corrected) pp and np scattering lengths [33] and the mass difference of mirror nuclei, the
Okamoto Nolen Schiffer (ONS) anomaly [34]. Making the EM and n — p mass difference
allowances one finds a remaining ~ 70 keV *He-3H binding energy difference which is
compatible with the -1.5 fm difference between the scattering lengths an, and a,,.

The standard explanation for this small strong interaction CSV has relied on p—
w mixing. One of the more modern expressions of this is that due to Coon and Barrett (35],
which provides fresh experimental input to the earlier analysis [28]. I shall now provide an
outline of the standard use of p—w mixing in nuclear physics (we shall call this standard

use, p—w CSV). This leads naturally into a discussion of work questioning the validity of
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N1 N 2
Figure 2.6: p—w mixing contribution to the CSV NN interaction.

CSV amplitude [35] (where g, is the momentum four vector of the exchanged meson)

HM(LUNINl)Hu(pNgNQ)pr

pw
Tiw = = (@ —md)(@ —m2)

+ (1 « 2). (2.23)
The meson-nucleon vertices are given by

1 . 0,0
H,(pNN) = =g,N7a(7, + rvi=)N

2 2My
1 = 0,,q"
H,(@NN) = ZguN(y, +rsi Q‘M‘fvw (2.24)

the factor of 1/2 being a result of using the vector meson universality couplings g, and g,
(see the section surrounding Eq. (4.60)). From this one can construct a CSV contribution
to a potential for use in nuclear models. It is easily seen that Eq. (2.24) on the whole uses
the well-known quantities of the more familiar charge symmetry conserving (CSC) NN
interaction. However, there is one quantity lacking in the CSC interaction, the mixing
amplitude II,,. This is obtained from the pion form-factor data, and typically takes a
value of ~ —4000 MeV? (e.g., Ref. [35] quotes an extracted value of II,, = —4520 + 600
MeV?). Using this in Eq. (2.23) produces a substantial fraction of the CSV observed
in the nucleon scattering length and the mirror nuclei binding energies (at least for the
lightest nuclei).

In 1991 Goldman, Henderson and Thomas (GHT) [36] raised an interesting point in
connection with p—w CSV. The value for II,, obtained from the pion form-factor is
extracted for timelike ¢ in the vector meson resonance region, while the four-momentum
of the vector mesons exchanged between on-shell nucleons is necessarily spacelike. Thus
if II,,, were to have any momentum dependence it could significantly affect the nuclear
potential described above. A quark loop model for p—w mixing performed by GHT (to
be described in greater detail later) gave a strongly momentum-dependent mixing, which
would drastically alter the potential, and ruin the fit to data.
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of the vector mesons exchanged between on-shell nucleons is necessarily spacelike. Thus
if II,, were to have any momentum dependence it could significantly affect the nuclear
potential described above. A quark loop model for p—w mixing performed by GHT (to
be described in greater detail later) gave a strongly momentum-dependent mixing, which
would drastically alter the potential, and ruin the fit to data.

The GHT paper initiated a great deal of work in the study both of isospin violation
and meson mixing, which had largely accepted the standard p—w CSV approach up until
then. The finding of significant momentum-dependence in most models for p—w mixing

has stimulated investigations into other possible mechanisms for CSV [37-40].



Chapter 3
Behaviour of p—w mixing

The GHT paper [36] proposed a simple quark model to generate p—w mixing in
order to investigate the momentum dependence of such a process. Since then, other
authors have conducted further studies using various approaches to examine momentum
dependence. Unfortunately, it is very difficult to make model-independent statements
about such a process. This is not helped by the freedom associated with the vector
mesons themselves, which one can take as being convenient parametrisations of medium-
energy strong processes. In principle, one is always allowed to make a field redefinition,
which if done appropriately, will not change the overall calculation of a given physical
process, but can lead to an altered form of the interaction.

Experimentally, one sees these vector mesons as resonances in strong interaction
processes whose complex S-matrix poles can be usefully represented by Breit-Wigner
propagators for the vector particle. For the case of ete™ — wtx~ which is relevant
to p—w mixing, we have the pion form-factor with the dominant p pole, P,, and the

suppressed w pole, P,

FrxP,+ Ae®P, + background, (3.1)

where

1
Fr = ¢ —m + imyly
and v, I'v, A and ¢ are real. The complex prefactor Ae' is, like the pole positions,
a purely experimental quantity. Any acceptable model, therefore, must reproduce the
experimentally extracted values of A and ¢. The matrix formalism, discussed in Chapter
2, allows for a surprisingly good prediction for the Orsay phase, ¢, from the “extracted”
(its meaning is dependent on the use of the mixed matrix propagator analysis) parameter
H,,. The assumptions inherent in this meson-mixing model are critically examined in
Chapter 6. What is presently lacking is a detailed prediction for Ae’® from some higher

principle such as a suitably detailed effective hadronic model. This would, naturally, be

21
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of considerable interest.

3.1 Models for p—w mixing

The GHT model attempted to bring together quark and meson degrees of freedom [36].
Let us briefly review this model. Essentially, the isospin violating mixing between the p
and w mesons takes place via a quark loop and arises from the CSV mass difference
between the up and down quarks. In this calculation the quarks were taken to couple to
the vector mesons in the same way as nucleons (see Eq. (2.24)), through isospin matrices.
The quark propagator in the u — d sector with four-momentum Pu, can then be written
as a 2 X 2 isospin matrix with the rows and columns labelled by u or d. We may then

introduce the mass difference via

1

5p) = #$— (m+ émr3)’

(3.2)

where m = (m, + mgq)/2 and ém = (my — m,). The reader will notice that the use of
these free Dirac propagators for the quarks will produce an unphysical quark-production
threshold in the quark loop. This is a shortcoming of such a simple treatment. While
GHT considered this to be an unsatisfactory feature, it was still sufficient for an initial
investigation. One can argue that a judicious choice of quark masses can simulate the
physical production thresholds (in this instance the two pion threshold). This reasoning
was used to justify Dirac propagators in a calculation of the pion self-energy from a
quark loop, which, handled carefully, could reproduce a physical cut beginning at ¢* =
(my +my)? [41]. We shall see shortly how the matter of production thresholds from loop
diagrams was handled by subsequent authors. The propagator in Eq. (3.2) was expanded
to first order in the small parameter, §m. This introduces a factor of T3 to the numerator
which, together with the 73 at the p — ¢ — ¢ vertex yields a non-vanishing trace over quark
flavours (when ém is zero, isospin is conserved and, hence, there is no p—w mixing).
The other feature of the calculation is the use of a form-factor at the quark-meson

vertex. Their particular choice was dependent only on the loop momentum, &,

M?
M2 _ k2
where M “describes the vector meson (quark) structure” and was given a value of about
1500 MeV which minimises its direct effect. The independence of the form-factor on the
meson four-momentum (g,) was chosen purely for simplicity. This is justified by saying

that since one wishes to investigate the ¢ dependence of the mixing it is better to avoid

any ad-hoc introduction of ¢*> dependence into the vertex.
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The result of this calculation was to show that I, is strongly momentum dependent
in this model. In addition, this brings into question the CSV potential generated by
the Standard Picture diagram given in Fig. 2.6. This was a radical departure from the
standard thinking. GHT suggest two things following this. Firstly, further investigation
of the momentum-dependence of p—w mixing should be done and, secondly, some inclusion
of the quark structure of the nucleons might be warranted (as this model has examined
the quark structure of the mesons). With respect to this second point a contemporary
paper is mentioned [42] which examined nuclear CSV through QCD-induced corrections
to QED processes (such as one photon exchange and one photon loop graphs). The point
of GHT was that while it was a simple and somewhat flawed calculation it did highlight

the importance of examining the question of the momentum dependence of p—w mixing.

In time both suggestions were taken up by other authors. The first of the subsequent
calculations to examine the momentum dependence of p—w mixing was carried out by
Piekarewicz and Williams (PW) [43]. It was an adaptation of the GHT model, in which
the isospin violating mixing is generated not by quark loops, but by nucleon loops. This
has the advantage of only requiring parameters that are relatively well known, such as

nucleon masses and meson-nucleon couplings.

Technically, the PW approach was simpler than the GHT calculation which had in-
cluded the effect of isospin violation by writing the quark masses as mg, = m + ém, and
then expanding in the isospin violating ém. They find the total amplitude is the difference
between a proton loop and a neutron loop. The nucleon mass difference plays the same
role as the u — d mass difference. The divergences of the individual graphs (treated using
dimensional regularisation) cancel allowing PW to use pointlike meson-nucleon vertices,
as opposed to the form-factors of the quark-meson vertices used by GHT. This avoided
introducing violations of current conservation, which we will see later is an important
consideration. The GHT node is not at ¢* = 0. This calculation, with virtually no free
parameters, yields a prediction for II,, in the resonance region of roughly the same sign
and magnitude as that obtained by Coon and Barrett [35] from the pion form factor
data [27]. Whether this fortuitous agreement has any deep origins is as yet unclear. Like

GHT, PW find significant momentum dependence, but with a node exactly at ¢> = 0,
ie., [1,,(0) =0.

The quark loop calculation of Krein, Thomas and Williams (KTW) [44] sought to
address the problem of quark confinement. Following studies of non-perturbative QCD
[45], KTW use propagators with no poles on the complex plane (entire functions), and as
such, the quarks are never on mass-shell (real or complex). This is one means to implement
confinement. Like GHT they assume that the quark-meson vertex is independent of the

meson four momentum squared. For an assumed quark mass difference of 4 MeV the
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calculation was able to fit the lone data point reasonably well, though this fit turns out
to be sensitive to the mass difference. Once again a large momentum dependence with a
node near g> = 0 is seen.

More complicated still is the calculation of Mitchell, Tandy, Roberts and Cahill (MTRC)
[46]. This uses a QCD based model in which the vector mesons appear as composite gq
bound states. The propagator for the quarks is obtained from a model Dyson-Schwinger
equation, and like the KTW model, is confining. The p—w mixing once again takes
place through a quark loop. The paper largely involves itself with a detailed technical
description of the model and its use in the isospin breaking calculation. They conclude
that the quark loop mechanism, by itself, generates an insufficient CSV potential for the
NN system and suggest an additional pion loop contribution could be examined. This
could easily be accommodated into the model.

Friedrich and Reinhardt [47] utilise the bosonised Nambu-Jona-Lasinio (NJL) model
in their study of p—@u mixing. They reproduce a strong momentum dependence, with a
node in the mixing at ¢> = 0. Gao, Shakin and Sun (SGS) [48] examine p—w mixing
using an extension to the NJL model that includes quark confinement (which is not an
issue for the bosonised NJL model). SGS make use of the current correlator (see below)
in their work.

In summary, all models predicted a strong momentum dependence in 11,,, with a node

near or at ¢* = 0.

3.2 QCD Sum Rules

QCD is not yet understood well enough to directly assist us in studying p—w mixing
because of its non-perturbative nature in the medium energy world. However, its non-
Abelian structure means that the coupling constant, gg, decreases with rising ¢* until
perturbative calculations can be done -— this property is known as asymptotic freedom [4].
How might we obtain some insight into p—w mixing from this perturbative region? A
technique, QCD Sum Rules (SR), has been developed that utilises what is known from
high energy calculations and combines this with hadron phenomenology in an attempt to
describe low energy physics. We shall now discuss the use of this technique in p—w mixing.
Unfortunately, as we shall see, it is not a simple matter [49]. We therefore do not give
a detailed exposition of this technique, or its use, but will instead concentrate on the
conclusions that have been drawn from it for p—w mixing.

What one seeks to do with the SR is to start at the short distance physics, where
quark-gluon interactions can be treated reliably and to extrapolate to larger distances

such that the non-perturbative effects appear as corrections (though there is currently
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some discussion as to how reliable perturbative QCD is, even at high energies [50]).

Consider a two point correlation function of various currents, J;; and J 3,

Cr(d®) = i/d“w ¢ (0|7 (J5(2)J5(0))[0)- (3.3)

This can be expressed by general dispersion relations in terms of observable cross-sections.
Alternatively this correlator is given at large, spacelike ¢? (i.e., large Q?, where Q% = —¢?)
by a Wilson operator expansion in terms of vacuum to vacuum matrix elements. Equating
these two expressions for the correlator (one in terms of dispersion relations and the other
involving a Wilson expansion) gives the sum rule. As Q% — oo the only non-vanishing
operator is the identity, (as QCD is non-interacting due to asymptotic freedom). However,
as Q2 drops, we probe larger and larger distances. The fundamental assumption of the
SR technique is that terms of the form (1/Q?)" with increasing integer n come into play
as we go to lower Q2.

Interestingly, the original papers on SR by Shifman, Vainshtein and Zakharov (SVZ)
[49] used p—w mixing as an example. The correlator (see Eq. (3.3)) of the electromagnetic

isospin zero and isospin one currents (which they identified as J2 and J, £ respectively)

was considered. This was rewritten as

w q 14 W
Cole®) = (—gu+ ;Z )C*(q?) (3.4)
where
1, -
= L dna (35)
1 -
e == g(ﬁ’7,u+d'y,,d). (3.6)

Note that in the limit of exact isospin symmetry in which u and d are equal, this correlator
vanishes.

SVZ identified two places for isospin breaking — the operator expansion coefficients
and the matrix elements between the vacuum. The relevance of this is that the expan-
sion coefficients can be found explicitly, whereas the matrix elements require additional
assumptions or independent experimental data. The expansion in powers of 1/Q? is then
associated with various diagrams. The first term, for instance, corresponds to single
photon exchange (as shown in Fig. 2.1).

The use of SR is particularly reliant on techniques to ensure that the sum converges
quickly and that we only need to add up the first few terms to obtain a good approximation
to the exact result (otherwise this technique would be unreliable). To do this, one often

looks not at the actual quantity of interest (in our present case the correlator in Eq. (3.4)),
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but at a transform of the quantity. These transforms ensure that the series converges more

quickly. The Borel transform of the correlator is given by,

1207(M?) = 5+ (m“A;4md)(0|au + ddlo) (1 - ——(m“QZmd))
224w (0]gq|0)* [ (ma —my,) o
B TR Gy ( AT 8a5(M)) , (3.7)

where A is a parameter later determined to be approximately 200 MeV. The electromag-
netic (O(a)) and strong (O(m, —mg)) contributions to isospin violation are quite distinct.
SVZ conclude that the first electromagnetic (EM) term is small, despite its leading po-
sition in the 1/Q? power series. They also discuss a cancellation between the p and w
contributions to this correlator, which we shall discuss further below.

This first SR analysis of p—w mixing concentrated on its prediction for the quark
mass difference (comparing it to previous extractions of this difference). In their analysis
they thus concentrated on the region around ¢* = mi which was assumed to be saturated
by the nearby p and w poles. Hatsuda et al. [51] used the correlator to investigate the
q*-dependence of the mixing, following GHT [36]. To do this they equated the correlator
of Eq. (3.4) with the vector meson propagator D% = 1(0|T(p,w,)|0) to arrive at

I,

(¢ = mi)(¢? — m?)

= C"(g?). (3.8)

This calculation ignored the vector meson widths, which for the p is rather significant.
From their analysis they concluded that there is a significant momentum dependence to
IL,u, in support of GHT. They also found a node in the mixing amplitude near q* = 0.
Maltman [52] argued that this analysis was slightly flawed. Firstly, the identification in
Eq. (3.8) of the current correlator with the meson propagator 1s only valid if the hadronic
currents themselves are used as the interpolating fields for the vector mesons. This is due
to an argument that is becoming increasingly familiar in this field, i.e. quantities such
as propagators, when off-shell, are dependent on the choice of interpolating field (unlike
the current correlator) and that only the total S-matrix elements are physical quantities
(and hence are not dependent on inferpolating field choice). As such, this analysis can
say little that is interpolation field field independent about the off-shell behaviour of I1,..
Secondly, they assume that all isospin violation in this vector meson system is due to
p—w mixing. Maltman allows for the possibility that the isospin pure interpolating fields
p1 and wy can themselves couple to the J* and J? hadronic currents respectively. This
would allow for the intrinsic decay of the w; to two pions (which would be ignored in
the Hatsuda et al. analysis where (0|J%|w;) = 0) to contribute to e*e~ — 7+7— . The

resulting calculation indicates that the intrinsic decay of the wy is non-negligible in the
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p—w interference region because the correlator result underpredicts the isospin violation
seen in experiment. Thirdly, the possible contribution of the ¢ and higher resonance poles
is ignored. Naively, this is not expected to be as strong as the p and w contributions, but
as noted by SVZ [49], the stronger p and w terms partially cancel, so the higher resonances
cannot be ignored. The ¢ contribution turns out to be important in Maltman’s analysis.

The SR technique was again used to study p—w mixing by Igbal et al. [53,54]. Their
first paper [53] concentrated on extending the Hatsuda et al. analysis by including the
meson widths, which had been neglected in the propagator of Eq. (3.8). This has a
significant effect on the ¢? behaviour of II,,(¢?) in their analysis. A more elaborate
calculation followed [54]. It is shown here that the difference between the p and w widths
is of importance, as they obtain the “no width” results of Hatsuda et al. in the artificial

case where the widths are set equal.

3.3 Chiral Perturbation Theory

Chiral Perturbation Theory (ChPT), which seeks to reproduce the symmetries of QCD
in a model independent, low—energy, effective meson theory should provide a useful tool in
examining isospin violating systems. Unfortunately, it is unreliable at energies around the
lowest vector meson masses. Despite this, its low energy predictions for isospin violation
should be of interest.

ChPT will be discussed in greater detail in Chapter 6, but I shall present a brief
outline of it here to facilitate the discussion of its application to p—w mixing. It provides
an effective theory for the pseudoscalar octet organised as a perturbative series in ¢% and
chiral symmetry violation (which allows for a convenient use of Feynman diagrams, with
the familiar loop structure). As such it relies upon small ¢?, thus making it unsuitable for
the vector meson pole region. This is further complicated by higher order terms sometimes
giving very large contributions and thus truncation at a given order should be taken with
great care.

The construction of the ChPT Lagrangian, however, allows for an easy extraction of
the hadronic currents. Maltman therefore used this [52] to compare his QCD SR analysis
of the current correlator (Eq. (3.3)) to the ChPT prediction. Initially, he went to order
¢* (the one-loop result). This gave a markedly different result near q* = 0, from which
he concluded that the series must be very slowly convergent, and so the next order would
need to be considered. The two-loop result [55] provides large corrections to both the
magnitude and ¢* dependence of the former calculation but it is likely that even the two-

loop expression for the correlator is not well converged — an example of the limitations

of ChPT.
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Urech also used ChPT to approach p—w mixing [56] though in a very different way
to Maltman. As mentioned, vector mesons are generally too heavy to be accommodated
in ChPT. The standard line of reasoning is that their effects are felt through the low
energy constants of the O(q*) Lagrangian (see Chapter 5). This idea was examined
by constructing a chiral model that included the vector mesons, which could then be
compared with ChPT [57]. It was found that the vector meson contributions did indeed
seem to saturate the low energy constants. Following the techniques of this paper, Urech
derived an expression for the off-diagonal element of the matrix propagator. As in the
QCD SR result (Eq. (3.7), the result consists of a strong piece proportional to the quark
mass difference and an EM piece from one-photon exchange. Urech makes no comment

on any momentum dependence though.

3.4 Discussion

We have seen that it is very difficult to draw unambiguous conclusions from the various
calculations for p—w mixing. This difficulty stems from the fact that there is no definitive
way to treat vector mesons. What is common to all of the calculations done for p—
w mixing, though, is a strong momentum dependence of the mixing amplitude with a
node at or near the point ¢> = 0. In the next chapter this behaviour is shown to be

unavoidable for a large class of models on general grounds.



Chapter 4

Effective models and momentum

dependence

The various calculations for p—w mixing of the previous chapter all predicted a
considerable momentum dependence. Furthermore, they all gave rise to a mixing which
decreased as g% decreased until it vanished at or near ¢ = 0. This prompted a study by our
group at Adelaide into the general behaviour one could expect from the process [58]. Our
alm was to make as general a statement as possible about p—w mixing. The conclusion
(the analysis is presented in the next section) was that for a wide class of models the
mixing should indeed vanish at ¢* = 0 (the node theorem). This observation in turn
prompted questions about vector meson dominance (VMD), where one would expect the
p—~ coupling to also obey this theorem for the same class of models. This then led to a
revisiting of the formulation of VMD, since this naively appeared to be in contradiction

to the standard formulation of VMD where the coupling is constant.

4.1 The node theorem

We begin by considering an effective Lagrangian model (e.g., £(p,w,,,%, ),
where there are no explicit mass mixing terms in the bare Lagrangian. Examples of mass
mixing terms are m? pSw* or oplw* with o some scalar field; the second is of the type
described by Coleman and Glashow in their tadpole mixing scheme (see Section 2.1).
We also assume the vector mesons have a local coupling to conserved currents which
satisfy the usual vector current commutation relations and that the effective Lagrangian
is renormalised in a way which preserves these features. As the p and w couple to the EM
current, which is necessarily conserved, this does not seem like an unrealistic assumption.

The boson-exchange model of Ref. [43] where, e.g., J = g, Nv*N, is one simple example
of such a model.

29
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Consider the dressing of the bare vector propagator, D% , which is given by

nr?
Dy, = 1D, +1D5,:C**Dj, (4.1)

where Dy, 1s the dressed propagator. It follows that the mixing tensor (analogous to the

full self-energy function for a single vector boson such as the p [59])
C#(q) = i [ d' e (0] T(J(2)12(0)) |0) (4.2)

is transverse (we shall prove this below). We recognise Eq. (4.2) as being the current
correlator of Eq. (3.3) and note that this was taken to have a transverse form in the sum
rules treatment with little comment. Here, the operator J* is the operator appearing
in the equation of motion for the field operator w given in Eq. (1.14). Note that when
Ji 1s a conserved current (i.e. 9,J% = 0), the Proca condition d,w* = 0 follows from
taking the divergence of Eq. (1.14) (sce, e.g., Lurie, pp. 186-190 [16], or other field theory
texts [19,60]). The operator J* is similarly defined.

Having defined C*” through Egs. (4.1) and (4.2) we wish to study the one-particle-
irreducible self-energy or polarisation, 11**(q) (defined through Eq. (4.3) below),

1Dy, =Dy, 4 iD0,iT1*%i Dy, . (4.3)

The starting point for our argument is that C*(q) is transverse, so let us briefly recall the
proof of this. As shown, for example, by Itzykson and Zuber (pp. 217-224) [18], provided
we use covariant time-ordering the divergence of C** leads to a naive commutator of the

appropriate currents

0wC*(@) = — [0, {9(°) (0] J2(x) J2(0) 0)
+0(-2 0)( 1J20)J7 =) 0) (1.4)
= — [ @2 0] (720, 2), JH(0)] [0} e (4.5)

Covariant time-ordering follows from the use of a suitable renormalisation scheme, which
preserves current conservation. That is, there is a cancellation between the seagull and
Schwinger terms. Thus, for any model in which the isovector- and isoscalar- vector cur-

rents satisfy the same commutation relations as QCD we find
9.C"(q) = 0. (4.6)

Thus, by Lorentz invariance, as there is only one available four-vector, the tensor must
be of the form given in Eq. (4.7)

14

) = (o - 1 )@ (.7)
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Having established that C'*”(q) is transverse, we now turn our attention to II,,. For
simplicity consider first the case of a single vector meson (e.g. a p or w) without coupling
to other channels. For such a system one can readily see (by comparing Eqgs. (4.1) and

(4.3) that C*” and the one-particle irreducible self-energy, I1#V, are related via
"Dy, = C*D°, (4.8)

(where D and D° are defined below). As the bare and dressed vector meson propagators
(D° amd D) are not, in general, transverse, then C*" being transverse implies II* is also

transverse. Hence )
v 9
*(q) = (9“ - 7) I1(q?). (4.9)

We are now in a position to establish the behaviour of the scalar function, II(¢?).
In a general theory of massive vector bosons coupled to a conserved current, the bare

propagator has the form (compared to Eq. (1.23) for the photon)

: o _ quqv 1

DMV - (_guu + e ) q2 — TTL2 (410)
whence

(D%);0 = (m* — ¢*)guw + quqo- (4.11)

Multiplying Eq. (4.3) by D! on the right and (D°)~! on the left we have
D;: = (DO);: + I,

= (m*— ¢ +1(¢))gu + (1 —~ H{(qz)) quqv- (4.12)

Thus the full propagator has the form

_ —9w + (1 —1I(¢*)/¢?) (qug./m?)
Duu(q) - q2 —m?2— H(q"’) .

(4.13)

Having established this form for the propagator, we wish to compare it with the spectral

representation [16] of the vector field (V,,) propagator which we obtain by first re-writing
it as

Dulg?) = [ iz O[TV, @)V
o 52, 2

where o(r) is the spectral density of the vector states. Defining

D(¢?) = / 0 drq‘;(_’")r (4.15)
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we can rewrite Eq. (4.14) in Renard form [30)
il
D, (¢*) = D(¢*)gu + 200 = D(@))g.q.. (4.16)

By comparing the coefficients of g,, in Egs. (4.13) and (4.16) we deduce

-1
)= 4.17
while from the coefficients of ¢,q, we have
1 _(1—-1K(q*)/q*) ! 2
— —(D(0) - D
g (q2 e = H(q2)) q2( (0) (q ))
2 I _ 2

¢* (m? + 11(0))(¢* — m? — I1(¢%))

Cancelling (¢ — m* — I1(¢%)) from each side of Eq. (4.18) we obtain after a few lines of
algebra
11(0)
7

(¢° —m* ~1I(¢*) = 0, V¢’ (4.19)
Since Eq. (4.19) is true for arbitrary ¢? it then immediately follows that
I1(0) = 0. (4.20)

This is an important constraint on the self-energy function, namely that I(4*) should
vanish as ¢* — 0 at least as fast as ¢%. Note that for the p self energy there will in general
be counterterms for the mass (which are currently included in m). The physical mass is
given by the pole location, i.e. m2, - = m? + (m mlpe)-

While the preceding discussion dealt with the single channel case, for p — w mixing
we are concerned with two coupled channels. Our calculations therefore involve matrices.
As we now demonstrate, this does not change our conclusion.

The matrix analogue of Eq. (4.12) is

Dt = (miguu (II E;gf)f) )T o (0*) T ) (4.21)

T mf;guu + (wa(q2) - q2)Tuu

where we have defined T, = g,, — (9.9v/¢*) for brevity. By obtaining the inverse of this
we have the two-channel propagator

2
1.).uv = '1‘ ( S + a(p,W)q”qV pr(q )TMV ) (422)

pr(QQ)Tuu SpGuv + a(‘*";P)‘]u‘]u



4.2. THE CONSEQUENCES OF MOMENTUM DEPENDENCE FOR VMD 33

where
so = ¢ —Tu(g*) —m? (4.23)
sp = ¢*—T,(¢") —m; (4.24)
(o) = a(Ie) = (6 = Tulg"u) (1.25)
a = I2,(¢%) — spsu. (4.26)

In the uncoupled case [I1,.(¢?) = 0] Eq. (4.22) clearly reverts to the appropriate form of
the one particle propagator, Eq. (4.13), as desired.

We can now make the comparison between Eq. (4.22) and the Renard form [30] of the
propagator, as given by Eq. (4.16). The transversality of the off-diagonal terms of the
propagator, requires that II,,(0) = 0. Note that the physical p° and w masses, which arise
from locating the poles in the diagonalised propagator matrix D*”, no longer correspond
to exact isospin eigenstates (as predicted by Glashow [22]).

In conclusion, it is important to review what has and has not been established. There
is as yet no unique way to derive an effective field theory including vector mesons from
QCD. Our result, that II,,(0) should vanish, applies to those effective theories in which:
(1) the vector mesons have local couplings to conserved currents which satisfy the same
commutation relations as QCD [i.e., Eq. (4.5) is zero] and (i) there is no explicit mass-
mixing term in the bare Lagrangian. This includes a broad range of commonly used,
phenomenological theories. It does not include the model treatment of Ref. [46] for ex-
ample, where the mesons are bi-local objects in a truncated effective action. However,
it is interesting to note that a node near ¢> = 0 was found in this model in any case.
The presence of an explicit mass-mixing term in the bare Lagrangian will shift the mixing

amplitude by a constant (i.e., by m2, for a Lagrangian term like M2 puwt).

4.2 The consequences of momentum dependence for
VMD

Following this, and the preceding examinations of p—w mixing, it would appear that
a rather convincing case has been made for its momentum dependence in general and we
have shown that it is unavoidable in a large class of theories. This might, it was argued,
seriously damage the standard picture of nuclear CSV described in Section 2.5. Leaving
aside, for one moment, any questions that one might have about the use of vector mesons
as mediators of the strong interaction in nuclear physics (CSV or no), this prompted a
considerable amount of activity. Alternative mechanisms for CSV have been proposed

(37-39]. Indeed, as the vector mesons are off-shell, the individual mechanisms should not
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be examined in isolation, because they are dependent on the choice of interpolating fields
for the vector mesons and are not physical quantities. It has been argued that one could
find a set of interpolating fields for the rho and omega such that all nuclear CSV occurs
through a constant p—w mixing with the CSV vertex contributions vanishing [61]. However
this possibility has been questioned on the grounds of unitarity and analyticity [62]. This
entire argument is symptomatic of the lack of a methodic field theory treatment of the
strong interaction in this energy range for the NN interaction in particular, despite the
somewhat hopeful descriptions of it being “well understood.” It is clear that much work

1s still required in this area.

The appeal of the Standard Picture (see Section 2.5), though, provided a consider-
able incentive to demonstrate that there must be something “wrong” with momentum
dependent p—w mixing. So, what has actually been said about p—w mixing? The mixing
of vector particles (which couple to conserved currents and without explicit mass mixing
terms) should vanish at ¢ = 0. But then this should also apply to the mixing between
the photon and the p for such models. The same models which have been used to ex-
amine the question of p—w mixing should then also be able to be applied to studies of
p—7 mixing. They can then be compared with the successful phenomenology of vector
meson dominance (VMD, see Chapter 1). However, VMD has traditionally assumed the
coupling of the photon to the p was independent of ¢2. Thus, a momentum dependence
for the p—~ coupling (a direct consequence of the node theorem of the previous section)
would naively appear to ruin photon-hadron phenomenology, and therefore there must be
something wrong with it. The first person to raise this question was Miller [63] and it has

been discussed subsequently [25,64].

What is the resolution of this apparent contradiction? Consider the well known con-
straint on the pion form-factor, F,(0) = 1. In the infinite wavelength limit, the photon
sees only the charge of the pion. Essentially, at ¢> = 0 the photon interacts with a point-
like pion, there is no need to involve coupling through the p meson. In simple physical
terms the photon decouples from the vector meson ezactly as the node theorem would pre-
dict. In the traditional VMD picture the parameters must be carefully constrained so as
to maintain the condition F,(0) = 1. Surely then, one could build a VMD based model
of the photon-hadron interaction by adding the non-resonant photon-pion contact piece

to a ¢* dependent vector meson contribution.

The more deeply one considers the traditional VMD treatment with its constant cou-
pling of the photon to the vector meson, the more physically troublesome it seems. For
instance, in dressing the photon propagator, such a contribution would shift the pole away
from ¢* = 0, giving the photon a mass, which must then be returned to zero by the choice

of an appropriate counterterm in the Lagrangian [65]. It is now appropriate to return to
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Sakurai’s original work on VMD [11,17].

4.3 Sakurai and the two representations of VMD

Sakurai was troubled by this photon mass problem. His concern was to ensure that
adding electromagnetism to a strong interaction model based on vector mesons gave a

(flavour) gauge invariant theory. The naive vy —p vertex prescription usually seen in

discussions of VMD, i.e.,

2
emp

1

9o

as motivated by Eq. (1.17), suggests a coupling term in the effective Lagrangian of the
form

em2

Log = ——2p A%, (4.27)
9y

This is suggested by the substitution of the field current identity (Eq. (1.2)) into the
interaction piece of the electromagnetic Lagrangian, —ejE‘MA“. However electromag-
netism cannot be incorporated into the rho-pion Lagrangian, Eq. (1.4), simply by adding
Eq. (4.27) and a kinetic term for the photon. This would result in the photon acquiring
an imaginary mass [11] when its propagator is dressed in the manner of Fig. 4.1 using
p — 7 vertices determined by Eq. (4.27). In the traditional VMD treatment a mass coun-
terterm must then be introduced for the photon to ensure that it remains massless in the

renormalised theory.

AAVAVAV" aVAVAVAVIRE VAV VAV
NN +
AN NN N\=——-"\\, +

Figure 4.1: VMD dressing of the photon propagator by a series of inter-
mediate p propagators.

We can find a term, though, that emulates Eq. (4.27) while ensuring that the photon
remains massless in a more natural way. Such a term is

[
£ = — — ;w‘
Yo 2gp pv P (428)

It is helpful to re-express this in momentum space which can be done using integration
by parts to transform 9,A4,8%p" to —0,0*A,p" and then using 9, — iq, giving

Fo.p* — 2¢*A,p". (4.29)
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The other term in F,, p* can be discarded because it contains a piece that can be written
as qup" and thus vanishes as the p field is divergenceless when coupling to conserved
currents. However, the interaction Lagrangian of Eq. (4.28) is not sufficient as it would
decouple the photon from the p (and hence then from hadronic matter) at ¢> = 0. What
is needed is another term which directly couples the photon to hadronic matter. This is

the usual QED type of photon-matter interaction
—eA, J*, (4.30)

where J, is the hadronic current to which the p couples. The pion component (for
example) of this current is given in Eq. (1.18). Thus the interaction between the photon
and hadronic matter is of exactly the same form as that between the p and hadronic
matter (though suppressed by a factor of e/g,rr). This term is all that is present at
¢* = 0 where the influence of the p-meson in the photon-pion interaction vanishes.

To summarise, the photon and vector meson part of the Lagrangian discussed imme-

diately above is

| L | e y
Lympr = = Fu B = 2y p* +—gniﬂmf-—gmmpuJ“—-eAuJ“—-gg-;wp“- (4.31)
p

We shall refer to this as the first representation of VMD, and denote this as VMD1. We
note that this representation has a direct photon—matter coupling as well as a photon—p
coupling which vanishes at ¢ = 0.

The alternative formulation of VMD, has survived to become the standard represen-

tation. Its Lagrangian is given by

1 ] 1 e'm? 1 /e’
Lvmps = = (FL,)" = Z(PLU)Q + 5ma(0L)" = Gornppud " — #PLA'” =0 % my(AL)*
(4.32)
Note the last term which is a photon mass counterterm to restore the masslessness of

the photon. In the limit of exact universality (g, =g, ) the two representations become

equivalent and one can transform between them using

, e
Pu = Put —Ay (4.33)
9p
e 2
A = Anll-|—
i . (g) : (4.34)
. 2
!
= 1-[—].
e e (g,,) (4.35)

Substituting for p),, A), and €’ in Eq. (4.32) gives Eq. (4.31) +0((e/g,)®). We shall refer
to Eq. (4.32) as the second representation of VMD, which we will denote as VMD2. The
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appearance of a photon mass term at first seems slightly troublesome. However, when
dressing the photon in the manner of Fig. 4.1, we see that the propagator has the correct

form as g2 — 0. The dressed propagator is given by

. —3 —z —em —7  —iem —3
zD(qZ) = S+ — P - p — 4. (4.36)
i S S

1 1 1 1 1 .1 1
=_—4+—-B-+4+—B-B—+4--- 4.37
A-B A + A A + A A A + ( )
we obtain (m = m,)
2,2 2.4 -1
Dia?) = —ila2— e'm® e’m }
(¢") [q 2 gi¢*—m?)
) 2,2 -1
. e'm e*m
- _ 4.38
; [‘1 d Rl qzxmﬂ)} (138)

M T .

as ¢° — 0. This therefore results in a redefinition of the coupling constant
e’ = e*(1-€*/g2), (4.40)

and interestingly the photon propagator is significantly modified away from ¢? = 0. Both
forms of VMD were discussed by Sakurai [17]. |

The use of the two models can be compared by describing the process v — n#+n~. The
relevant terms in the Lagrangian can be identified for each case. From Lymp; (Eq. (4.31))

and Lymp2 (Eq. (4.32)) we have, respectively,

€

Ly = ——F,p" —eJ A" — gornp”J,, (4.41)
29,
em?

L, = — p PuA* — Gprrpud”. (4.42)
P

If the photon coupled to the pions directly, then to lowest order the Feynman amplitude
for this process would be (as in scalar electrodynamics [18])

fmtne = (1717 eJ*|0) = —e(p* — p7)¥, (4.43)

where J, is given in Eq. (1.19). However, in the presence of the vector meson interactions
of Eqgs. (4.41) and (4.42), the total amplitude is modified. The pion form factor, Fr(q%),
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which represents the contribution from the intermediate steps connecting the photon to

the pions, is defined by the relation

Nemtne = —e(pt — pT)Y Fr(q?), (4.44)

I
y—rtr

factor is the multiplicative deviation from a pointlike behaviour of the coupling of the
photon to the pion field. We discuss F,(¢?) in detail later.
To lowest order, we have for £, (see Eq. (4.29))

where now M - is the full amplitude including all possible processes. The form-

2
Fo(q?) = [1 =, —q—f’ﬂ] , 4.45
() F—mlg (4.45)
and for £,
2
m g T
Fe(¢®) = 5257 (4.46)

q2 - mp gp
In the limit of zero momentum transfer, the photon can resolve none of the structure and

“sees” only the charge of the pions, and hence we must have
F,(0) =1. (4.47)

The reader may notice that Eq. (4.47) is automatically satisfied by the dispersion relation
of Frazer and Fulco, Eq. (1.1) and by VMDI1 (Eq. (4.45)) but must be imposed on the
VMD2 result (Eq. (4.46)) by appropriately choosing parameters, (i.e., at the simplest level
we can set g,rr = g,). This is the basis of Sakurai’s argument for universality mentioned
earlier, i.e., that the photon couples to the p as in Eq. (4.42) and that therefore g,,,
must equal g,. This is a direct consequence of assuming complete p dominance of the

form-factor (i.e., VMD2). The other implications of exact universality, namely that

Gprnm = gpNN = ... = 9o (448)

result from the assumption that the interactions are all generated from the gauge principle
(i.e., by minimal substitution for the covariant derivative given in Eq. (1.6)).

As Sakurai pointed out, the two representations of VMD are equivalent in the limit of
exact universality (as we would expect from Egs. (4.33-4.35)). Without universality only
VMD1 automatically maintains the condition Fr(0) = 1. In the VMD2 approach in the
absence of exact universality to maintain this condition the fine tuning of parameters is
required. Due to the popularity of the second interpretation, though, F,.(0) =1 is simply
viewed as a constraint on various introduced parameters [70]. We illustrate the difference

between the two representations in Fig. 4.2.
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Figure 4.2: Contributions to the pion form-factor in the two representa-
tions of vector meson dominance a) VMD1 b) VMD2.

4.4 The use of VMD1

So, interestingly, the question raised by Miller [63] had already been answered thirty
years ago. VMD can be reformulated so that the p—+ coupling is momentum dependent
and vanishes at ¢> = 0. However, this fact was not commonly known, so we gave an
example of its use [66], which was then extended to the incorporation of a typical model
used for p—w mixing into a p—- mixing model [67]. The purpose of this first section is to
show that one can fit the measured pion form-factor with a 4 — p coupling that vanishes
at ¢ = 0, i.e. using VMDI1 (see Ref. [66]).

In the process of fitting the data, we extracted a revised value of the p—w mixing
amplitude at the w pole, IT,,(m?). At the time the widely quoted value of for II,, [35],

had been obtained from the branching ratio formula for the w,

B(w — 77) = 'w — 77)/T'(w)

)

derived from a p—w mixing analysis where
[(w — 7r) = |W,0/im,T, T(p — =r).

Using the branching ratio determined in 1985 by the Novosibirsk group [27], B(w —
ww) = (2.34£0.4£0.2)%, Coon and Barrett obtained I1,, = —4520 4+ 600MeV?. A better,
more direct method would be to extract II,, from a fit to the cross-section of the reaction
ete”™ — wt7~ using
2. (2 213/2
o) = ST oy (1.49)
and the form-factor determined by VMDL1 (Eq. (4.45)).

So far, we have not introduced any effects of isospin violation into our VMDI system,

and hence the w (which cannot otherwise couple to a 7+ state) does not appear. To
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do this, we introduce the isospin violation in the standard way and combine the VMDI1
form-factor of Eq. (4.45) and the mixed state contribution of Eq. (2.11),

q*gprn B q*€Gprr

F¢®)=1- _ S—
(@) 9olg® —mZ+1m,I(¢%)]  gulg? — m2 4+ 1m L]

(4.50)

where, N
€= pr = et (451)

Sp—Sw M —m?— i(muly —m,I,(¢%))

The w decay formula of Coon and Barrett can now be seen to follow from Eq. (4.50) with
an approximation for € (namely that T',, is very small and that mi = m?). Because the
width of the w is very small we can safely neglect any momentum dependence in it, and
simply use T,(m?2) [68,69].

All parameters except Il,, are fixed by various data as discussed below. The results
of fitting this remaining parameter to the data are shown in Fig. 4.3 with the resonance
region shown in close-up in Fig. 4.4. The mass and width of the w are as given by the
Particle Data Group (PDG) [31], m, = 781.94 £ 0.12 MeV and T, = 8.43 + 0.10 MeV.
There has recently been considerable interest in the value of the p parameters, m, and [,
with studies showing that the optimal values [69,70] may differ slightly from those given
by the PDG. The value of II,,, is not sensitive to the masses and widths, and we obtained
a good fit with m, = 772 MeV and I',=149 MeV, which are close to the PDG values.

The values of the coupling constants are, however, quite important for an extraction
of Il,,. We obtained g, and gyrr from I'(p — efe™) ~ 6.8 MeV and I'(p — wr) ~ 149
MeV, namely g2 /4w ~ 2.9, g%/4r ~ 2.0. This shows, for example, that universality is
not strictly obeyed (as mentioned previously). VMD1 and VMD2 naively differ at order
9orr /9o = 1.2 before any separate fine tuning of parameters is carried out.

Historically the ratio g¢,/g, was believed to be around 3 [71], a figure supported in
a recent QCD-based analysis [72]. Empirically though, the ratio can be determined [70]
from leptonic partial decay rates [31] giving

9o | mJL(p — ete)
9% \m,(w— eter)

=3.540.18. (4.52)

Using these parameters we obtained a best fit around the resonance region shown in Fig. 4
(x?/d.o.f. = 14.1/25) with II,, = —3800 MeV?2. In this analysis there are two principle
sources of error in the value of Il .. The first is a statistical uncertainty of 310 MeV? for
the fit to data, and the second, of approximately 200 MeV?, is due to the error quoted
in Eq. (4.52). Adding these in quadrature gives us a final value for the total mixing
amplitude, to be compared with the value —4520 4 600 MeV? obtained by Coon and
Barrett [35]. We find

,, = —3800 + 370 MeV?. (4.53)
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Figure 4.3: Cross-section of ete™ — 7+x~ plotted as a function of the
energy in the centre of mass. The experimental data is from Refs. [17,21].

It is now clear that a momentum dependent p—+ coupling, together with a direct
coupling of the photon to hadronic matter, yields an entirely adequate model of the pion
form-factor. In fact, this picture is basically suggested by attempts to examine the p—-~
coupling via a quark loop. Model calculations typically find that the loop is momentum-
dependent, and vanishes at ¢ = 0 (unless gauge invariance is spoiled by form-factors, or
something of this nature). However, coupling the photon to quarks in the loop implies
that the photon must also couple to the quarks in hadronic matter. Thus, in general
we might expect a direct photon-hadron coupling (independent of the p-meson), and this
leads us to consider VMD1 as the more natural representation of vector meson dominance.
It should now be clear that the appropriate representation of vector meson dominance to
be used in combination with mixing amplitudes that vanish at ¢2 = 0 is VMD1. To use
VMD2 in conjunction with such vector mixing amplitudes is clearly inconsistent. As long

as one is clear on this point, there are no dire consequences for momentum dependence
In p—w mixing.



42 CHAPTER 4. EFFECTIVE MODELS AND MOMENTUM DEPENDENCE

2.0 ‘ -

o

& |

S 15k -

8 -

R T e l

5 [

c 10 B

.0 b

©

q) o

0 L

n 0.5F .

0 L

o

(@) A
0.0 ! A |

740 760 780 800

Invarioant Mass (MeV)

Figure 4.4: Cross-section for ete™ — 777~ in the region around the

resonance where p—w mixing is most noticeable. The experimental data

is from Refs. [17,21].
4.5 A VMDI1-like model

One can now expand upon the previous section, by examining models for the photon-
hadron interaction. We shall define a “VMD1-like” model to be one in which the photon
couples to the hadronic field both directly and via a ¢>-dependent coupling (with a node
at ¢*> = 0) to vector mesons. A VMDI1-like model may differ from pure VMD1 as the
coupling of the photon to the p (generated by some microscopic process) will not generally
be linear in ¢* for ¢* sufficiently far from zero. Hence 9o, Which is a constant in VMD1
(and VMD2 as they share the same g, up to universality [11, 68]), may acquire some
momentum dependence in a VMD1-like model; the test for the phenomenological validity
of the model is then that this momentum dependence for g, 1s not too strong. For example,
we can easily determine the coupling of the photon to the pion field via the p meson for a
VMD1-like model to establish the connection between the p—y mixing amplitude, II,,(q?),
of the model with g, of VMD1. We note the appearance in Eq. (4.54) of the p—~v mixing
term, I16¥(¢?), which can be determined from Feynman rules, and which will, in general,
be ¢>-dependent. Such an analysis gives for any VMD1-like model

—iMH (") = —ie(pT — p7)o[D,(¢%)]* Fa(g®)
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= i[D'v(‘I?)]Mi[Fw(qz)]a + i[D'v(q2)]Mi[H'vp(q2)]ori[Dp(q2)]wi[rmr(q2)]u

. H (q2) g iy
it Zy|me . -
= ze(p P )aZ[D"/(q )] 1+ q% — m% +:m,l', e

, (4.54)

where D, II and T denote propagators, one-particle irreducible mixing amplitudes and
proper vertices respectively. Here pt and p~ are the outgoing momenta of the 7+ and 7~
respectively. For this model to reproduce the phenomenologically successful VMD, and
hence provide a good fit to the data (assuming exact universality), II,,(¢*) and g, must
be related by (comparing Eqs. (4.45) and (4.54))

vMp1, 2y _9°¢€
I (¢) = (D (4.55)

Thus Eq. (4.55) is the central equation of this examination, since vector-meson mixing

models (e.g., p—w mixing) can also be used to calculate p—v mixing and then confronted

with traditional VMD phenomenology.

The results quoted in the review by Bauer et al. [73] for p meson parameters are
summarised in Tables I and XXXII of that reference. They list a range of values which
vary depending on the details of the fit to the p mass (m,) and width (I',). Within the
context of the traditional VMD (i.e., VMD2) framework they extract g%(¢> = 0)/47 from

p° photoproduction (yp — p°p) and g2(¢> = m?2)/4x from p° — ete™. The three sets of
results quoted are (in an obvious shorthand notation):

I, = 135, 145, 155MeV, (
m, = 767, 774, 776 MeV, (

g (¢* = 0)/4r = 2.43+0.10, 2.27 +0.23, 2.18 + 0.22, (4.58
93¢ =m?)/4r = 2.21+0.017, 2.20 +0.06, 2.11 % 0.06 (

respectively. We see that g, is a free parameter of the traditional VMD model (VMD2)
which is adjusted to fit the available cross section data. The central feature of the VMD?2

model is that it presumes a constant value for its coupling constant g,. We note in passing
that the universality condition is

gp it gpﬂ"lr -~ glpu]\xfl]v\[ s gppp (460)

and where experimentally we find [73,74] for each of these g%/4r ~ 2. For example, the

values of g,rr corresponding to the above three sets of results are
9onn(@® = m2)/dm = 2.61,2.77,2.95 (4.61)

and are extracted from p° — x*x~. It should be noted that the pNN interaction La-
grangian is here defined as in Refs. [43,75] with no factor of two [11, 74] and hence



44 CHAPTER 4. EFFECTIVE MODELS AND MOMENTUM DEPENDENCE

goNN = gonin/2. As a typically used value is g%y n/(47) = 0.41 we see that universality is
not accurate to better than 40% in ¢?, which corresponds to ~ 20% in g,.
The results of the VMD2 analysis [73] are approximately consistent with ¢, being a

constant and so Eq. (4.55) tells us II,, in VMD1-like models should be roughly linear in

q°.

We shall now present our calculation [67] of the process within the context of the
model used by Piekarawicz and Williams (PW) discussed earlier [43]. They considered
p—w mixing as being generated by a nucleon loop within the Walecka model. The p

coupling is not a simple, vector coupling, but rather [76]

prN
2M

Lonn = gonny* + 504", (4.62)
where C, = f,nn/gonn = 6.1 and M is the nucleon mass. With the introduction of tensor
coupling the model is no longer renormalisable, but to one loop order we can introduce
some appropriate renormalisation prescription. As the mixings are transverse, we write
1,,(¢*) = (9w — 9u9./¢*)T1(g?) (see Eq. (4.9). The photon couples to charge, like a vector
and so, unlike the PW calculation, we have only a proton loop to consider. Here we can
safely neglect the coupling of the photon to the nucleon magnetic moment and so there
is no neutron loop contribution nor any tensor-tensor contribution to the proton loop.
This sets up two kinds of mixing, vector-vector [I* and vector-tensor 1%, where (using

dimensional regularisation with the associated scale, ©)

1 1 M? — z(1 — z)q?
Mo(e?) = —pf9enn [1 v |
(¢°) 53 Tk A zz(l—z)ln . (4.63)
1 1 M? — 2(1 — z)q¢?
M (¢?) = —g2S8el (2 . _ _ .
W(q%) g |77 ) deln p (4.64)

Note that these functions vanish at ¢* = 0, as expected from the node theorem since we
have coupling to conserved currents. To remove the divergence and scale-dependence we

add a counter-term

gonnCr y
Lot = G‘J‘?TPWF“

to the Lagrangian in a minimal way so as to renormalise the model to one loop. This
will contribute —iCrg,nveq?/n? to the p—y vertex, which will add to the contribution ¢II
generated by the nucleon loop. The counter-term will contain pieces proportional to 1/,
7 and In g to cancel the similar terms in Eqgs. (4.63) and (4.64), and a constant piece, 3,

which will be chosen to fit the extracted value for 9,(0). The counter-term can be written

as
1 /1 C
or=-t(11 %),

1, AN
6 B 7(12+8>_<E+?)ln”+ﬁ’ (4.65)
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which gives us the renormalised mixing,

2.2 4 2
oy 26gNN |1 [ 5 2M2_8M4+2Mq —q q
Un(e) = a5 lz (18 T3 T Tsevai—¢ S ore g
In M*? C, }4M2 — q? q? s
- S = = I ———+InM*) - 8}.
e ) . A ( 242 7 arctan 4]\42_(]24— n B

We find that the choice 8 = 8.32 in our counter-term approximately reproduces the
extracted value of ¢,(0) at ¢ = 0.
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Figure 4.5: The PW model prediction for the mixing amplitude is re-
lated to the traditional VMD coupling g,(¢?) using the central result of
Eq. (4.55). The resulting behaviour of g2/4x versus ¢ = /¢? is then
plotted in the timelike region for this model. Shown for comparison are
a typical pair of results (2.27 3 0.23 at ¢ = 0 and 2.20 + 0.06 at ¢ = m,,
see text) taken from a traditional VMD based analysis of cross section

data in Ref. [73].

The results for g,(¢?) for the PW model are shown in Fig. 4.5. Despite this model
having a node in the p—v mixing at ¢*> = 0 the resulting ¢*> dependence of g, 1s small. As
can be seen from this plot, we obtain values of ¢5(0)/(47) = 2.14 and g2(m?)/(4r) = 2.6
compared to the experimental averages 2.3 and 2.17 respectively.

It should be remembered that Eq. (4.55) is only as reliable as universality, which is itself
violated at a level of 30-40% . Based on this important observation, we can conclude then
that the PW model provides a result consistent with the spread of extracted results given

in Ref. [73]. It should be noted that any VMD1-like model which predicts a significantly
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in Ref. [73]. It should be noted that any VMDI-like model which predicts a significantly
greater deviation from linearity with ¢* over this momentum region will fail to reproduce

phenomenology because of Eq. (4.55).

4.6 Discussion

In summary, we have provided a general proof that in a wide class of models, those
in which the vector mesons couple to conserved currents and there is no explicit mass
mixing, the mixing amplitude vanishes at ¢* = 0. As p—y mixing would also be subject to
this theorem in such models, we have explicitly shown in Eq. (4.55) that the vanishing of
vector-vector mixing at ¢* = 0 is completely consistent with the standard phenomenology
of vector meson dominance provided one uses the appropriate formulation, namely VMDI1.
We have, in addition, applied the same type of model used in a study of p—w mixing
to extract the momentum dependence of p—+v mixing and have compared the result to
the VMD2 based analysis of the experimental data. We see that the phenomenological
constraints of VMD can provide a useful independent test of VMD-like models of vector

mixing.



Chapter 5

Isospin violation in Fr(¢?) with

ChPT

As mentioned earlier, Chiral Perturbation Theory (ChPT) seeks to produce, in a
model independent way, a low energy meson theory from the symmetries of the initial
QCD Lagrangian. The principle symmetry used in this construction is chiral symmetry
(ChS). ChS is the simultaneous requirement of isospin symmetry and helicity conservation,
i.e. SU(2),®SU(2)r. Having m, = my # 0 violates helicity conservation but not isospin
symmetry. In the real world we have m, # my; # 0 and both symmetries are broken
by quark masses. Since m, and my are small on the hadronic scale the violation of
chiral symmetry is small. Isospin is also explicitly violated by electromagnetic and weak
interactions. The systematic nature of ChPT is then able to give us a model independent
method for examining isospin breaking in its regime of applicability. Despite the potential

usefulness of this there is still relatively little in the literature on this matter [52, 55, 56,
77,78].

The pion form-factor, F;(¢?), was one of the first quantities calculated using ChPT
[79]. It has recently been generalised to off-shell pions [80]. However, these one-loop
treatments assume m, = mq. In this chapter, we extend this to the case with m, # my,
following the work of Maltman [52,55,77]. The previous calculations of F,(q?) are briefly
reviewed and the isospin-violating calculation is then discussed in detail. It should be
noted that the calculation is quite complicated, as it simultaneously involves three small

parameters, ¢°, a and m, — my. We shall work to first order in each of these, which is

sufficient for a starting point.

47



48 CHAPTER 5. ISOSPIN VIOLATION IN F,(Q*) WITH CHPT

5.1 An introduction to ChPT

Although there are many excellent reviews of ChPT [81], to keep this chapter relatively
self contained, I present a short summary of the theory. This will also be useful in showing
how we set up the calculation. The basic idea is to take the known symmetries of QCD and
reproduce them in a low-energy meson theory. Thus we start with the QCD Lagrangian

given by!

L9 = 5 G(@)6 B — mg(z) — JEF. (51)
f

In the chiral limit the quark masses are zero and the fermion fields, 3, can be split into

left and right handed helicity components,

Yr,r = (14 75). (5.2)

These transform independently under the chiral transformation,

Yr,r — €™y R, (5.3)

leaving Eq. (5.1) unchanged. Massless QCD is then said to be chirally symmetric. These
transformations can then be generaliscd to separate left and right handed transformations

rather than just the single ¢ transforming both fields. In this case we have

br.r — UrRp g (5.4)

where U and U are unitary N/ x N/ matrices, N/ being the number of flavours. One
normally only considers the up, down and strange quarks, for reasons that will become
apparent later. The heavier quark flavours play no dynamical role in the region of interest
and do not need to be explicitly included. If strange quarks are included the flavour
symmetry changes from SU(2)gavour 10 SU(3)gavour and the chiral symmetry group is then
SU(3)L®5U(3)r.

Now, of course, the quarks do have mass, but it is only small and so we can say
that chiral symmetry is an approzimate symmetry of QCD, and we expect it to have
some relevance to the way the theory works, and provide a guide in our construction

of a meson theory. To construct this meson theory, we consider the QCD generating

functional,

exp[iW[l,, ., s,p]] = /[Dl/)][Dz/;][DGZ]exp [i/d‘lwﬁQCD(lu,ru,s,p) : (5.5)

'To work with this, one needs to remove the unphysical gauge degree of freedom which is usually

accomplished by adding a gauge fixing term to Eq. (6.1), however this is not important for our discussion
and will be omitted.
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The sources for the left and right handed vector currents are given by
=122, r,=1r3)/2, (5.6)

where the \* are the Gell-Mann matrices that make up the generators of SU(3). The

sources for the scalar and pseudoscalar “currents” are given by
s =89+ s*\*/2, p=po+p*r/2 (5.7)

If we define Lop to be the massless QCD Lagrangian (Eq. (5.1) with m; = 0) the full

QCD Lagrangian, now with sources, can be written,

»CQCD(luarmsap) = L%CD - ‘jL'V#lu‘IL — qrY'TuqR — (j(s - i'YSP)Q- (5'8)
Defining vector and axial vector current sources through
a __ ,0a a a __ .2 a
[, =v,—a}, r,=v,+a}, (5.9)
we can rewrite Eq. (5.8) in terms of these vector and axial vector sources

Lqep (Vu, @, 5,P) = Loop — A(F+ ds)g — @(s — ivsp)g- (5.10)

The role of the sources is an important one and any low energy theory attempting to
emulate QCD must be expressible in a form involving such sources. We will want as
many symmetries as possible of the QCD Lagrangian to be manifest in the effective

theory (by construction).

As it happens, if v, and a, transform as gauge fields, and the scalar and pseudoscalar
fields transform like

(s +ip)(e) — R(@)(s + ip)L}(z) (5.11)
(s —ip)(z) — L(z)(s — ip)Rf(x) (5.12)

then Lqcp has a larger local SU(3)r, ® SU(3)r (or SU(3)y ® SU(3)4) symmetry as opposed
to the global SU(3)r ® SU(3)g chiral symmetry for 3 flavours. Thus we would insist that
the effective theory also be invariant under such a transformation. This point is crucial.
We have demonstrated that a low energy theory based on QCD should at zeroth order
be invariant under local SU(3)y ® SU(3)4 if Eqgs. (5.11) and (5.12) hold. We know,

though, that chiral symmetry is broken in QCD by the quark masses, and this is done by
identifying s with the quark mass matrix,

s=m=| 0 my 0 |, (5.13)
0 0 my
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which, being a constant, does not transform in the manner of Eqgs. (5.11) and (5.12), thus
breaking the SU(3)y ® SU(3)4 symmetry. Setting s to be the quark mass matrix in our
low energy theory will therefore break chiral symmetry in exactly the same way as it is
broken in QCD.
Importantly for our work, the mass matrix in Eq. (5.13) breaks more than just chiral
symmetry, it also breaks isospin symmetry (in the strong interaction itself) if m,, # mg.
Knowing the symmetry structure, we can now construct the meson theory with these

features. The Lagrangian is written as a series in powers of ¢2,
L= Lo, (5.14)
n=1

where the L,, are the pieces of the Lagrangian at order n in the chiral series. At each
order one writes down all the terms allowable by the symmetry, with coeflicients that are
then fixed by comparison to experiment. Thus, as it has an infinite number of terms,
the theory is non-renormalisable (one cannot change a finite number of parameters and
remove all divergences), but to a given order in the chiral series, it produces finite answers
(as the next order in the series contains the necessary counter-terms).

The lowest order term in the chiral Lagrangian (Eq. (5.14)) is,

F2

ﬁQZT

(D UTD*U 4+ Uty + x'U), (5.15)
where,

U = ei'/r/F,
7 4+ 78/\/3 Vort V2K
T=7%\ = NS -4+ 78/V/3  V2K° : (5.16)
\/51{_ \/5]_{0 —27T8/\/§

F'is a constant with dimensions of mass and (A) denotes the trace of matrix A. The

covariant derivative is
DU = 0,U +i[v,, U] —i{a,, U}, (5.17)
and the field, yx is given by,
X = 2By(s —ip). (5.18)

The lowest order part of the Lagrangian, Eq. (5.15), is what we need to give the kinetic
and mass terms for (say) the pion field, when we set s in Eq. (5.18) to the quark mass
matrix of Eq. (5.13). We simply expand the exponential of U in terms of the pion field
to give

B g B (Ut + U) = Bo (—(mn?) +
1 2Bo = 0( m7r)+6F2<m7r)+---). (5.19)
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Making the appropriate identifications gives us the following relations between the quark

masses and the meson masses [81]

m2y = (my + ma)Bo, mie = (mu +ma)Bo— 6+ 0(6)

) (5.20)
m%{:&: = (my, + m,)Bo, Mo = (Mg + my)Bo
where the second-order CSV parameter, 6, is given by
- 2
5= Bo_(mu—ma) (5.21)

4 (ms—mu—md).

One can easily see from this, that if the quark masses vanish, then so do the meson masses.

Our calculation will be to one loop order. In ChPT the number of loops corresponds
to a particular chiral order, in this case ¢* which can be seen from a consideration of
momentum contributions arising from vertices, propagators and loop integration. This
means that we only require £, and Ly4; the former will provide the interaction pieces to
make up the loop (and possible lowest order tree in reactions) and the latter will provide
the tree-level counterterms required to cancel any divergences arising from the loop.

The next order piece of the Lagrangian is given by,

Ls = L{(DUD*UY? + Ly(D,UD,UND*UD*UY + Ly(D, UD*U'D,UD*U")
+Ly(D,UD*UN(xUT + UxY + Ls(D,UD U (xU' + Ux1))
+Le{xU' + Ux")? + Lo(xU' — Ux")?* + Ls(xUxU' + Ux'Ux")
+iLg(L, , UR*UYY + Hy(R,, R* + L, L") + Hy(xx). (5.22)

This constitutes the complete set of terms allowed by the symmetry of order ¢* in mo-

mentum (remembering x as defined in Eq. (5.18) contributes as order ¢?.)

5.2 The standard ChPT treatment of F,(q?)

To obtain F,(q*) we need some way to incorporate the photon into ChPT. To do this,
the covariant derivative of Eq. (5.17) is rewritten as

DU = 8,U +ie[A,, U], (5.23)

where we have constructed the matrix A, from the four-vector function, A,(z), multiplied
by the charge matrix, Q)

2/3 0 0 J X
Q= 0 -1/3 0 == (As + —/\'s> =Q°+ Q"% (5.24)
0 0 -—1/3 ® v3
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In this way we can make the identification

Ay = A+ A
= Au(2)(@ + Q%) (5.25)
where A, (z) is a four vector, and the other quantities are matrices. This is merely a
simplification, we have removed the axial current sources and all but, the third and eighth
components of the vector current sources. The isospin conserving (m, = my) treatment
was first performed by Gasser and Leutwyler [79] and then extended to the case where

the pions are off-shell by Rudy et al. [80]. I shall not present the details of the calculation

(as this will be done for the m,, # my case) but merely quote the result

2L 1
u=d _ 2
E) =140 [ + i) (5:26)

where

A = 2ln(ml/m2) +In(m?/m}) - B,
B = 14201 —4m;/q")H(q*[m?) + (1 — 4m}/q*) H (¢*[mk).

L is the finite part of the low energy constant (sce Eq. (5.22)
L = Lg(m,) = (6.94+0.7) x 1072, (5.27)

F = fr is the pion decay constant, 92.4 MeV and

2
T -1, 0<¢® <4m?

e
4m?
4m? \#1__11_}_1 _
= —244f1-= ﬂg’r In +ir |, ¢* > 4m?2.
1 V-5 -1

5.3 The (m, —m,) contribution

H(qQ/mfr) —242

2" — 1 arccot

We are now in a position to examine contributions o the F,(q?*) resulting from the
quark mass difference. The basic procedure will be to look at the A8 coupling to the two
pion final state. No attempt has been made to examine the Al — 7r+7r for the case of
unequal quark masses, and although any such contribution will be small compared with
the isospin conserving contribution, it could be of comparable size to that for AS — mtn.
Thus, our procedure now is to search the Lagrangian for terms linear in A,, and then
choose the special case that only A% is nonzero. Now by looking at the effect of the
covariant derivative, Eq. (5.23), in the Lagrangian Eqs. (5.15) and (5.22) we can deduce
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the interaction piece, A,J*. This will, of course, appear inside a trace where the property
Tr(A*X%) = §°°/2 will ensure that we find A% J%.

Before obtaining J from the Lagrangian, it is useful to have in mind a picture of the
terms in the Lagrangian that will be relevant to us. The possible graphs are shown in
Fig. 5.1. We see can see from this that the pieces of J} we are looking for are firstly
the tree-level piece from Lo, 77~ (corresponding to Fig 5.1.a). For M any meson in
Eq. (5.16) we need terms of the form MM from J¢, to give the vertex (i) in Fig 5.1.b, and
MMztr~ (ii) from the kinetic and mass pieces of £2. Fig 5.1.c is generated by a term
in JE of the form MM=tx=. Our final piece comes from L4, which (as this is already

O(q*)) can only be a tree level term of the form discussed above for Fig 5.1(a).

CHENAVAVAVAVY

SEAVAVAVAVES

Figure 5.1: The chiral contributions to v — ¥ 7 ™.

We can now begin to calculate ij by making a few helpful simplificationsin £. Keeping
in mind that 9,(UtU) = 0, this allows us to send

F? '
- (DLUTDAU) — %F?((&,UUT — U'8,U)A"). (5.28)

We can now expand U (an exponential) in powers of 7, to give
1 1
o,UUt — U U = ﬁ(aumr — 0,m) + 6—F7(7r38“7r — ,77°)

1 1
+4—F—4(8#7l'27r2 - 7T26,ﬂl'2) + 6—F-4(7fau7r3 - a;ﬂraﬂ')a (5-29)

where 7 is the matrix given in Eq. (5.16). Setting A3 to zero and keeping only A% allows

us to obtain from Eq. (5.28) the terms we want from the current. The current, J3, is given
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in full in the appendix, Eq. (B.1). However, only a few terms in the current are relevant

to our calculation. These terms contributing to the photon-hadron vertex in Fig. 5.1 are

g(aﬂr—’lﬂ'ﬁh}'h_

—Ourt T KYK™ + 9, K" K¥ntn™ — 0,K* K~ ntn~ 4+ 9,n n  K°K°
-0t K°K° 4+ 0,K°K°n n~ — 0,K°K°r+ 7). (5.30)

m

JB = i?(aﬂf(%“ — 0, K°K° + 8,K* K~ — 9,K~K+) +

We notice in Eq. (5.30) that there is no tree-level contribution (Fig. 5.1(a)) coming from
L. To calculate the vertices in Fig. 5.1(b) we require the ©* parts of the kinetic and mass
terms of £,. This is given by (we assume here summation over the Lorentz indices of the
partial derivative)
il
Loy = m(zayrm-af(ﬂr — O OKYK™ — ntn 0KYOK™ — 9rton Kt K~
—Ontn " KYOK™ 4 2710~ Kt0K™ 4 20rtn~ K°OK® — Ontr—9K° KO
—m " OK9K® — onton " K°K° + 217 0n~ 0K K°® — r+9n~ K°0K®)

B =,
12122.345) = GT()?[(Qmu +my+ ms)7r+7r_K+K_ + (my, + 2mg + ms)7r+7r—f(0]& 0].

This takes care of the contributions from £,. We must now go to L4, given in
Eq. (5.22). As it turns out, this has no coupling of A% to the two pion final state.
We might have expected a contribution from £, to Fig. 5.1(a). Usually in ChPT this
is responsible for removing the divergences (as well as the unphysical dependence on the
scale, i) associated with the loops of Fig. 5.1(b) and (c). Thus, the loop graphs themselves
must combine to give a finite answer.

We are now in a position to construct the Feynman amplitudes associated with the
graphs of Fig. 5.1, remembering that ¢ = —i8. The problem is now completely standard
(a good discussion of the relevant loop integrals can be found in, for example Ref. [82]).

We obtain the amplitude for A® — 77—, M, defining the associated form-factor by
M= (ps = p-)uF3(q"). (5.31)

The calculation of the amplitude is described in detail in the appendix, so we merely
present the result for the form-factor here
V3T m2. i 1 1
F3(¢%) = ?ln K= _ : ~ : 5.32
w(9) 4F2 967r2q m3. 9607r2q mies m2. ( )
Using Eq. (5.20) we can rewrite this form-factor in terms of the quark masses,

V3 2 my +m t mg —m
F8 2 . 21 u s 4 d u
") = 17 (5677 ™ vy v~ 96077° (Bo(mu Tmmatmy) | 83

It is then easily seen that the contribution to the pion form-factor from Ai vanishes when

My = my and hence the contribution examined previously (Eq. (5.26)) is that due to 43
only.
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5.4 Discussion

Setting ¢*> = 4m? in Eq. (5.32) reveals a very small (O(107*)) correction to the leading
order expression F>(¢?) as given in Eq.(5.26). The first response to this might be to assume
that A% contributes little to the pion form-factor in the low q? region relevant to ChPT.
While this is possibly quite true, that is not to say that the higher order contributions
might not be larger than those of Eq. (5.32). Indeed, there is evidence to suggest that
this could be the case [55]. Basically, the low energy constants of Eq. (5.22) are the result
of “integrating out” the heavy resonances in an extended Lagrangian that includes the
vector mesons as well as the pseudoscalar octet. Thus, in any calculation where the low
energy constants are absent, such as this one, the effects of the vector resonances are
not included. As the isospin violation in F,(q?) is largely due to the w we would expect
these constants to play a leading role. We can compare this with the case of the decay
n — w%yv where the one loop ChPT prediction [83] is approximately 170 times smaller
than the experimental result. The O(¢®) contributions then bring the ChPT result into
satisfactory accord with experiment. Maltman finds a similar situation in his calculation
for the mixed current correlator (0[V2V;}|0). Isospin violation is most visible in the pion
form-factor data around the w pole where we determine that the w contributes with a
strength ~ 3% that of the p. Although one cannot probe the resonance pole region
using ChPT, it would thus be very interesting to see a similar two loop study of the pion

form-factor including isospin violating effects.
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Chapter 6

New analysis of the pion form-factor

There are a number of features of the standard extraction of the value for II,, (dis-
cussed in Chapter 2) that deserve closer scrutiny. Foremost of these is that this value is
traditionally calculated [35] by comparing a formula for the decay w — ntx~ with the
branching ratio quoted for this decay [27]. We believe that a fit to the pion form-factor
data is a much more direct method and as such should produce a more reliable result.
An initial attempt has been made at this (see Section 4.4). However, the purpose of
that previous exercise was mainly to illustrate the use of VMD]1, rather than to carefully
extract the value of II,,. In this chapter we shall take an existing, and very precise, fit to
the pion form-factor and match the results from that to our model to obtain information
about p—w mixing.

Upon establishing this procedure, there are two further issues to address. Firstly,
we should develop a general scheme where momentum dependence in II,, can be acco-
modated. The second point of contention is the accuracy of the Renard argument (see
Section 2.4). Although the basic mechanism is physically reasonable, the cancellation is
clearly not exact (this will be fully explained in Section 6.3), and so our aim is to see if
there is any residual competition between w; — #+t7~ and II,,. This study, published
recently [84], is presented below.

6.1 An S-matrix approach

The cross-section for ete™ — wtr~ in the p—w resonance region displays a narrow
interference shoulder resulting from the superposition of narrow, resonant w and broad,
resonant p exchange amplitudes [27]. The strength of the w “interference” amplitude has
generally been taken to provide a measurement of p—w mixing [35, 66].

To obtain properties of unstable particles which are process-independent and physi-

cally meaningful, one determines the locations of the resonance poles in the amplitude

ST
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under consideration, and makes expansions about these pole locations [85]. The (com-
plex) pole locations are properties of the S-matrix and hence independent of the choice
of interpolating fields, and the separate terms in the Laurent expansion about the pole
position have well-defined physical meaning [85]. The importance of such an “S-matrix”
formalism for characterising resonance properties has been stressed recently by a number
of authors in the context of providing gauge- and process-independent definitions of the
Z° mass and width in the Standard Model [86,87].

For our purposes this means that: (1) the “physical” {p, w} fields are to be identified
as those combinations of the {pr, wr} fields containing the corresponding S-matrix poles
and (2) to analyse efe™ — 777~ one should include both resonant terms involving the
complex p and w pole locations and “background” (i.e. non-resonant) terms. In quoting
experimental results we will, therefore, restrict ourselves to analyses which satisfy these
requirements (as closely as possible). To our knowledge, only one such exists: the fifth fit
of Ref. [70] which is performed explicitly in the S-matrix formalism, though without an
s-dependent background. As stressed in Ref. [70], using the S-matrix formalism, one finds
a somewhat lower real part for the (complex) p pole position (7, = 757.00 = 0.59, I =
143.41 £1.27 MeV) than is obtained in conventional, non-S-matrix formalism treatments.
Therefore, for comparison we will also employ the results of the second fit of the more
conventional (but non-S-matrix) formalism of Ref. [69], which employs an s-dependent
background, an s-dependent p width, and imposes the (likely too large) Particle Data
Group value for the p mass by hand.

6.2 Mixing Formalism

Let us turn to the question of p—w mixing in the presence of a q*-dependent off-
diagonal element of the self-energy matrix. We shall work consistently to first order in
isospin breaking (generically, O(¢)), which will mean to first order in I1,..

As we consider only vector mesons coupled to conserved currents, we can replace
D, (%) by —g,,D(¢?). We will refer to D(q*) as the “scalar propagator”. We assume
that the isospin-pure fields, p; and wy, have already been renormalised — i.e., that the
relevant counterterms have been absorbed into the complex mass and wavefunction renor-

malisations. Taking the full expression for the dressed propagator and keeping terms to

O(e), one finds

1oy [ Dsy Do Y (¢ —m? TR () D!, (¢%)
owr=( of o )= (T e L),
(6.1)
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where the renormalised self-energies are defined here such that
N (¢*) = 0 as ¢* = m}. (6.2)

We then have IIE(¢2) = Ol[(¢?> — m})?], not to be confused with the unrenormalised
Ik (q?) of Section 4.1, subject to the node condition. From the complex pole positions,

m?, we define the (real) mass (k) and width (I'y) via,
m? = 2 — il (6.3)
To O(e), DI, (%) is then (see Eq. (4.22)
w(2*)
)(¢? —m? — 17, (¢%))
0%, (6.4)

which contains both a broad p resonance and narrow w resonance piece.

I 2 . 11
Dold) = (¢2—m (q
= D,',p(q )pr( )

)

As explained above, the physical p and w fields are defined to be those combinations of
the p; and wy for which only the diagonal elements of the propagator matrix contain poles,
in the p,w basis. This definition is, in fact, implicit in the standard interpretation of the
ete~ — 717~ experiment, which associates the broad resonant part of the full amplitude
with the p and the narrow resonant part with the w. Using different linear combinations
of p1, wr, (call them p’, w') than those given above (p, w), one would find also narrow
resonant structure in the off-diagonal element of the vector meson propagator in the {p’,
w'} basis, preventing, for example, the association of the narrow resonant behaviour with
the w' pole term alone. Despite this, the Bernicha et al. paper [70] on whose data fit we
rely do not use this physical basis. For most of their paper, they use the isospin pure
basis, which contains the propagator in Eq. (6.4). Their analysis would therefore be of
little use to us were it not for their “freezing” the ¢° in the D{, p(q2) propagator in one of
a number of fits, which gives an expression of our desired form (given in Eq. (6.26)). It
is therefore of note to point out that the more standard Ref. [69] does use the physical
basis, in which only two poles occur (but includes momentum dependent widths).

We define the transformation between the physical and isospin pure bases by (to O(e))
p=pr—€aw, w=wr+tepr (6.5)

where we have allowed for two distinct mixing parameters, ¢; and €,. With

Dpi(z —y) = —i(0|T (p*(z)w"(y))]0), (6.6)

one then has for the scalar propagator, to O(e),

Dpw(q2) . Dgw(q2) - elDz{Jw(q2) + €2D;I;p(q2)' (67)
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The condition that Dpw(qQ) contains no p or w pole then fixes ¢; » by demanding that the

numerator of Eq. (6.7) vanish at these poles. Hence we find

e = My (my) o= () . (6.8)
m2 —m?2 — IR (m?2)’ m? —m? + Hﬁw(mi) :

To O(e) the diagonal propagator elements are unchanged, D,, = D! (and similarly for

pp
the w). We now have an expression for the physical vector meson propagator in terms of
the isospin pure propagator elements.

There are a number of points to note about Eqs. (6.5) and (6.8). When I17(¢?) is ¢2-
dependent, we thus see explicitly that €; # €,; the relation between the isospin-pure and
physical bases is not a simple rotation as usually assumed. This is a universal feature of
¢*-dependent mixing in field theory. However, as the p and w poles are nearby, the single
parameter, € which is usually used to describe the transformation in Eq. (6.5) reducing it
to a simple rotation, is a good approximation.

As an illustration, let us consider the case where this momentum dependence is purely

linear (which is, admittedly a rather restrictive assumption) so that
MLu(¢*) =115, + ¢°11,,, (6.9)

then to first order in isospin breaking, I}, is just the off-diagonal element of the wave-
function renormalisation matrix, Z. The results in Fqgs. (6.5) and (6.8) then reproduce
those that follow from the more familiar formalism of first defining renormalised fields,
¢, (a = p,w), via

o= (27 )y (6.10)

(where ¢1 = p; and ¢; = w;) and then identifying the physical, renormalised fields by
rotating of the {¢}} basis to diagonalise the (symmetric) meson mass-squared matrix
and hence also the propagator. Put simply, in the special case that the mixing is linear,
the physical propagator is diagonal and the effect of the mixing survives only through
the wave-function renormalisation of the physical fields. We shall, however, keep our
discussion completely general.

Recall that 112 (¢%) and I1#_(¢?) vanish by definition as ¢ = m?2 and m? (respectively)
at least as fast as (¢> — m? ) where m?2 and m2 are complex (see Eq. (6.3)). The usual
assumption is that these two quantities are zero in the vicinity of the resonance region,
which leads to the standard Breit-Wigner form for the vector meson propagators. IT% (¢2)
and 1% (¢?) are, of course, momentum-dependent in general since the vector propagators
must be real below the 77 and 7+ thresholds. Note that, from Egs. (6. 7) and (6.8), any
deviation from the Breit-Wigner form and/or any non-linearity in the ¢2 -dependence of

11,.,(¢*) will produce a non-zero off- diagonal element of the vector propagator even in the



6.3. CONTRIBUTIONS TO THE PION FORM-FACTOR 61

physical basis. This means that a background (non-resonant) term is completely unavoid-
able even in the traditional VMD framework, where all contributions are associated with
vector meson exchange. In general this background will be ¢*-dependent. Finally, even

in the vicinity of the p and w poles, where it should be reasonable to set pr(q2) and

2
w

TR (¢?) to zero, the p; admixture into the physical w is governed, not by I1?“(m?2) as
usually assumed, but by II**(m?).

We will see that these findings related to the momentum dependence of self-energies,
while important in principle, do relatively little to change the quantitative analysis of the
data. Isospin violation is such a small effect that it is only observable at the w pole, and
so the non-resonant off-diagonal piece is unlikely to play much of a role in any fit, other
than as part of a general background. Our lack of knowledge of the momentum dependent
behaviour of II,, and the fact that the real parts of the complex meson poles are quite
close together means that determining that the mixing is extracted at one pole rather
than the other will have little practical significance. Despite this, an understanding of the
principle of defining the physical fields in terms of the poles in the matrix propagator is
useful and provides a relatively transparent framework for understanding what is seen in
the data.

6.3 Contributions to the pion form-factor

The time-like EM pion form-factor is given, in the interference region, by

Fﬂ'(q2) - gwerww% + gpvr7r-Dpp"f;)—’Y + gpmerw% + baCkground, (611)

where guxr is the coupling of the physical w to the two pion final state and f,, and Sy are
the electromagnetic p and w couplings. The third piece of Eq. (6.11), Gorr D ps fury, results
from the non-vanishing of the off-diagonal element of the physical meson propagator and,
being non-resonant, can be absorbed into the background, as can any deviations from
the Breit-Wigner form for the p and w propagators. Since the variation of q? over the
interference region is tiny, we can presumably also safely neglect any q*-dependence of f,,,
Jus Gonr and guxr (this is a standard assumption in VMD). The photon-meson coupling,
fva, is related to the “universality coupling”, gy, of traditional VMD treatments by
fvy = —emi /gy (see the discussion surrounding Eq. (4.48) on page 38). As we have
assumed a renormalisation at complez points on the ¢? plane, one might need to carefully
examine the use of real coupling constants as we might expect this scheme to deliver

complex renormalisation constants [88]. We shall not address this jssue here, but note it

for future consideration.
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We now focus on the resonant w exchange contribution, whose magnitude and phase,

relative to the resonant p exchange, are extracted experimentally. We have

Jurr = <7T7I'IU.)[ + 62,01) = Gurrr + €29prmms (612)

where ¢z 1s given in Eq. (6.8) which we shall rewrite as

. zl_[pw(mi)
€ = — ———

, (6.13)

m,l,

to introduce a new quantity

= A2 a2 -1
- [1 _ by (u)] (6.14)

m,l", m,l,

that will be helpful in our analysis. Note that z & 1 but equals 1 only if we neglect the w
width and p — w mass difference. This brings us to the Renard argument [30], mentioned
in Section 2.4. Since, in general, gu,»r # 0, I1,,(¢?) could contain a contribution from
the intermediate 77 state which, because essentially the entire p width is due to the nx

mode, is given by

T Guirr o
o(my) = =107 (m?)
Gprrm
= G(Rell’7(m?2) — ik, T,), (6.15)
where
G = Jum (6.16)
ormm

is the ratio of the p; and w; couplings to 77. In arriving at Eq. (6.15) we have used
the facts that (1) the imaginary part of the p self-energy at resonance (¢ = m?2) is, by
definition, —1,I',, and (2) gyrr = gp;nr to O(e). Defining II,., through

I, =10,, — iGml,, (6.17)
we rewrite ¢; as '
€ = z%[ﬁpw(mﬁ) — G, T, (6.18)
pLp
and define a new quantity,
&2 = (—iz/m, I, (m?). (6.19)

This allows us to rewrite Eq. (6.12) as

Gorr = Guinr (1 == Z) + €2,gp17r7r- (620)
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We shall also define, for convenience,

u(my) (6.21)

m,l,

T

The standard Renard analysis (see Section 2.4) approximates z by 1 (see Eq. (6.14)). The
contribution to w — 77 from the intrinsic w; decay is then exactly cancelled in Eq. (6.20).

Using the (preferred) experimental analysis of Ref. [70], however, we find
z=10.9324 +0.3511 ¢ . (6.22)

(For comparison, the analysis of Ref. [69] gives 1.0234+0.2038¢). Because of the substantial
imaginary part, the intrinsic decay cannot be neglected in ete™ — 77~ .
Substituting the results above into Eq. (6.11), we find

Fr(¢%) _ hgplﬂ [|rcx|ei¢e+e‘ ((1 —2)G — zzT) P, + Pp] + background, (6.23)
e

where we have expanded the propagators D,, . of Eq. (6.11) in Laurent series about the

simple Breit-Wigner poles P, ., = 1/(p* —m? ). The ratio of the physical couplings to

the photon is given by
_ Jun

Tex =
for

with ¢+.- the “leptonic phase” (to be discussed in more detail below, see also Eq. (2.13)).

= |rex|e!®eter, (6.24)

This analysis essentially follows that in Section 2.3. We emphasise that the present work
represents a logical refinement of the standard analysis. As such, our conclusions are really
implicit in the earlier work, but have not been realised due to various approximations.

Experimentally,

m3T(w — ete™) el
ex| = Aw = U. .01 2
|7ex] [mgf(p——)e‘*e‘)] 0.30 £ 0.0 (6.25)
using the values found in Ref. [70]. The form of F;(¢?) in Eq. (6.23) is what is required
g

for comparison with experimental data, for which one has [70]
F. < P, + Ae**P,; A= —0.0109 +0.0011; ¢ = (116.7 + 5.8)°. (6.26)

As will be demonstrated, the uncertainty in the Orsay phase, ¢, makes a precise extraction
of ﬁpw(mﬁ) impossible. Indeed, the two contributions to the w exchange amplitude (i.e.,
multiplying F,) either have nearly the same phase or they differ in phase by close to 7
(depending on the relative signs of G and T'). In either case, a large range of combinations
of G and T, all producing nearly the same overall phase, will produce the same value of
A. The experimental data can thus place only rather weak constraints on the relative size

of the two contributions, as we will see more quantitatively below.
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Let us write rey, the ratio of electromagnetic couplings given in Eq. (6.24), in terms of
the corresponding isospin-pure ratio, 71 = fi,,4/ fo;~- In the limit of ezact isospin, in which
G would be zero and p—w mixing not observed, this ratio would be 1/3 [72]. However,
as isospin is slightly broken we expect r; to be slightly different from 1/3, the way G is
not exactly zero. However, for simplicity we demand that r; be real ' and this will place

constraints on ¢.+.- (given in Eq. (6.24)). In analogy to Eq. (6.15), we have

fw‘y e fwry + 62fp]'y, (627)
fp’y = fPM’ - elfwryv (628)

and one finds
Tex = (r1+ €2)/(1 — erry). (6.29)

To O(e) the constraint that r; be real now means that we can determine the leptonic
phase. Rearranging Eq. (6.29) to obtain an expression for r;, and then demanding that

the imaginary part of this vanish, we obtain

Im(es) + fresTin(es)

[ex]

(6.30)

sin ¢e+ e~ —

Tgnoring the small difference in ¢; and €, (since rZ, is small, see Eq. (6.8)) we obtain

(1 4 |rex]*)Ime,y

[Tex]

sin ¢e+ e~ —

(6.31)

In order to simplify the discussion of our main point, which is the effect of including
the intrinsic decay on the experimental analysis, let us now make the usual assumption
that the imaginary part of II,, is dominated by n7 intermediate states. (Note, however,
that, because the argument is complex, there may also be a small imaginary part of II,,
even in the absence of real intermediate states; to illustrate this consider the model of
Ref. [46], with confined quark propagators, where the phase of the quark loop contribu-
tion to Il,.(m2) at complex ¢* = m? is about —13° [89], despite the model having, for
this contribution, no available intermediate states.) Making this 77 dominance assump-
tion, Il,, (and thus T') becomes pure real and the imaginary part of II,,(m?) reduces to
—Grn,l,. Using Eqgs. (6.18) and (6.31) the leptonic phase becomes

SID Pt g = — (—) (T Re z + G Im z) (6.32)
which is completely fixed by G and ﬁpw. We see then that in the small angle limit where
tan & = sind, Eq. (6.32) reduces to the standard lepton phase given in Eq. (2.13), upon

1As we have renormalised at complez pole positions, however, this assumption deserves further inves-
tigation [88].
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substituting for T’ (see Eq. (6.21)) and setting rex = 1/3. For each possible 11,.,, only one
solution for G gives both the correct experimental magnitude for the w pole pre-factor
(A) and has a phase lying in the second quadrant, as required by experiment. Knowing
I1,, and G, Eq. (6.32) allows us to compute the total phase, ¢. Those pairs (I, G)
producing the experimentally allowed (A, ¢) constitute our full solution set. This is
shown, explicitly, below.

So the problem now reduces to that of two unknowns, ﬁpw(mz) and G which combine
in a non-linear way to give a theoretical prediction for the experimentally determined A

and the Orsay phase, ¢. Comparing Eq. (6.23) with (6.26)
[rexle®ere (1~ 2)G — i2T) = Ae™. (6.33)

We now wish to find G in terms of II,,,. To do this we take the modulus squared of both
sides (to eliminate phases). This sets up a quadratic equation aG? + bG + ¢ = 0, where

a = (1—-Re 2)2 + (Im z)2 (6.34)
b = 2[(1—-Rez)lmzT+ImzRezT] (6.35)
¢ = [(Imz2)?+ (Rez)T? — A%/|res| (6.36)

We can therefore solve for G in terms of 7. Our other constraint is that of the Orsay
phase in terms of the leptonic and hadronic phases, ¢ = ¢+~ + Phaa. The hadronic phase
is obtained from Eq. (6.33) giving

ImzG+RezT
(1-Rez)G+Imz T

tan ¢pag = — (6.37)

The Orsay phase is now obtained by inverting Egs. (6.32) and (6.37). This then gives us

¢ as a function of T, which we can now compare to the experimental value for the Orsay
phase.

6.4 Numerical results

The results of the above analysis are presented in Fig. 6.1, where we have used as
input the results of Ref. [70]. The spread in G values reflects the experimental error in
A. We see that, barring theoretical input on the precise size of G, experimental data is
incapable of providing even reasonably precise constraints on the individual magnitudes
of G and ﬂpw(mz). The reason for this situation has been explained above. If we fix
A at its central value, the experimental phase alone would restrict ﬁpw(mf,) to the range

(—1090 MeV?, —5980 MeV?). Including the experimental error on A extends, for example,
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the phase constraint range to (—840 MeV?, —6240 MeV?). For comparison, artificially
setting G = 0 produces flpw(mf,) = —3960 MeV?. One may repeat the above analysis
using the input parameters of Ref. [69] (where, however, the p pole position is presumably
too high by about 10 MeV [70]). For the central A value, the experimentally allowed
range of ﬂ,,w(mf,) is (—3720 MeV?, ~5080 MeV?). The large uncertainty in the extracted
values of II,,(m?) and G is thus not an artefact of the particular fit of Ref. [70]. The small
(4600 MeV?) error usually quoted for flpw(mf,) [35], and associated with the experimental
error in the determination of A, thus represents a highly inaccurate statement of the true
uncertainty in the extraction of this quantity from the experimental data. It is important
to stress that no further information on ﬁpw(mi) is obtainable from the ete™ — 77~ data
without additional theoretical input.

Note, for example, that, in the model of Ref. [46], as currently parametrised, the sign
of GG is determined to be positive, and the magnitude to be ~ 0.02. Such a value of
G, however, coupled with the phase correction mentioned above, would fail to satisfy
the experimental phase constraint. This shows that, despite the weakness of the exper-
imental constraints for the magnitudes of G and ﬁpw(mﬁ), the experimental results are,

nonetheless, still capable of providing non-trivial constraints for models of the mixing.
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Figure 6.1: The allowed values of G = gu,xr/g,,xr and fI(mf,) (in MeV?)
are plotted as a function of the Orsay phase, ¢. The vertical (dotted)
lines indicate the experimental uncertainty in ¢ (= 116.7 4 5.8)° and the
uncertainty in the amplitude A (0.0109 £ 0.0011) (see text) gives rise to

the spread of possible values of G at each value of ¢.
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6.5 A word on transformations between bases

It is now useful to generalise the procedure in quantum field theory for a transformation
between bases, such as the one we have used here to arrive at our final form for the pion
form-factor. In this analysis, an important point becomes clear.

Consider a two-channel vector boson system in the isospin-pure (/) basis, which we

shall denote (suppressing all Lorentz indices) by the column vector

Vz’
V= o 6.38

The propagator for this two channel system is a 2 x 2 matrix given by (see Eq. (6.6))
I _ I
Dy; = (0]T(Vi'V;)l0) (6.39)
which we can write in matrix from as
D" = (oir(v!(v)h)lo) (6.40)

where the row vector (V!)7T is the transpose of Eq. (6.38).

We now wish to consider the process A — B which is mediated by the vector bosons
V1. To do this, we need to determine the vertex functions between the V7 and the initial
and final states A and B. Once again we have column vectors (we give the V A vertex as

an example)

rhy = (O|T(V'4)0) (6.41)
WA
= (0|T ( i ) 10). (6.42)

2

If we assume, as we did for the pion form-factor calculation, that these vertices are
pointlike, the vertex functions are given simply by coupling constants. Using the notation
f to denote the coupling of the vector boson to the initial state, and ¢ to the final state,

we would have

i)' = U f) (6.43)
T, = (-"{). (6.44)

I
9

We now have all the pieces to construct the amplitude for the one boson exchange process.

This is given by
T! = (1, )DL . (6.45)
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Suppose now that we wish to make a linear transformation to a different basis, as we
did for the pion form-factor (see Eq. (6.5)). In that case we wanted a basis, the “physical
basis”, in which the propagator would have poles only on its diagonal. We can express

this in a matrix equation

viav=cvi (6.46)

Here C is a 2 x 2 matrix and hence the transpose of V will be given by
vT = (vHT T, (6.47)

As the propagator and the vertex functions are constructed from V! these will also be
subject to a transformation when we change to the new basis. For the propagator we

have
D' - D = (o|r(cvi(vhTcTo)
=: CDIC7. (6.48)

Similarly the vertex functions transform like (see the transformation for the w— 7 vertex,

Eq. (6.12))

F{/A —Tya = (0|T(CVIA)|0) = CF{/A
Ty = Tev = (0|T(B(V))TCT)|0) = Tg, CT (6.49)

Therefore, recalling Eq. (6.45), the amplitude transforms like

T - T = (I,)TcTepicTeri,
= T,vDlyp. (6.50)

We easily see from this that the amplitudes as determined in the two bases are only
equal if the transformation between them is orthogonal, i.e., CTC = I. However, the
transformation between the {p;,ws} and {p,w} that we have used (see Eqs. (6.5) and
(6.8)) bases is not orthogonal in the general case (i.e., when ¢; # €, as occurs when

there was momentum dependence present). Thus the choice of physical basis is one of

significance, rather than mere convenience.

6.6 Conclusion

In general, there is a contribution to the p—w interference in ete™ — 7+7~ from the
intrinsic w;y — 7 coupling. Given the current level of accuracy of the experimentally
extracted Orsay phase, we cannot extract any value for p—w mixing which is even rea-

sonably precise in the absence of additional theoretical input. It is important to stress
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that this conclusion, and the central result of Eq. (6.23), do not depend in the least on
the possible ¢?-dependence of I1,.(¢*) nor on the use of the S-matrix formalism: even for
constant II,, and a more traditional Breit-Wigner analysis where quantities are defined at
real mass points (rather than complex poles) one would still have a significant imaginary
part of z (Eq. (6.14)) and hence a residual contribution from the direct coupling which,
being nearly parallel to that assoclated with p—w mixing, would lead also to the conclu-
sion stated above. It is an entirely straightforward matter for the reader to reproduce the
steps leading to Eq. (6.23) when there is no momentum dependence and the traditional
Breit-Wigner form for the resonances is used. We see that the central result is that z is
not exactly 1 (i.e., when we do not neglect the p—w mass difference and the w width) and
that this leads to significant quantitative uncertainties in the extraction of the p—w mixing
amplitude.

A significant improvement in the determination of the experimental phase would allow
one to simultaneously extract the mixing and the isospin-breaking ratio, G (Eq. (6.16)).
However, both these quantities are constructs of the matrix model we have used (i.e.,
that traditionally used) and this must be considered when discussing them. They are not
model independent like the w pole prefactor, Ae'? (see Eq. (6.26).

We note that (1) even if G' were zero, the data would provide the value of the mixing
amplitude at m? and not m?2, (2) since it is the complex S-matrix pole positions of the
p and w which govern the mixing parameters €1,2, only an analysis utilising the S-matrix
formalism can provide reliable input for these pole positions, and hence for the analysis
of the isospin-breaking interference in ete— —» 7=, (3) the simultaneous use of the
experimental magnitude and phase can provide non-trivial constraints on models of the
vector meson mixing process and (4) for ¢* dependent mixing, the transformation between
the isospin pure and physical bases is no longer a simple rotation.

Due to the similarities of the vector propagator structure and dependence on the up
down mass difference one might expect that p—w mixing and y— Z° mixing studies could
draw upon each other. The diagonalisation to mass eigenstates used for the p—w system
would possibly be able to be used in the v —Z° system (though the node condition,
I1,z(0) = 0, ensures there is no off-diagonal photon term [90]), although the two poles
for this system are very far apart (unlike the p—w case). The momentum dependent
behaviour of IL,20(¢*) can be calculated perturbatively and therefore we can examine the

behaviour of the non-resonant off-diagonal pieces of the physical propagator, which we
cannot in the p—w case.
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Chapter 7

Conclusion

QCD is almost universally accepted as the theory for the strong interaction. However,
in the low to medium energy region it leads to strong interactions and we cannot use
perturbation theory for calculations in the same way that we can for the Electro-Weak
theory. For this reason we still need effective models for hadronic systems, many of
which predate the invention of QCD. If QCD is the correct theory, then the profound
achievement of a solution to it, far from making such models obsolete, will enable us to
improve them as we calculate the parameters of appropriate effective Lagrangians from
first principles. As quarks and gluons are not the degrees of freedom we observe directly
in Nature, effective hadronic models of the strong interaction will remain with us in much
the same way as Dirac’s equation for the electron did not replace Chemistry. It is the
importance of being able to develop a clear and systematic understanding of these models
that has motivated the present work.

In the Standard Model (which combines QCD with the Electro-Weak sector) the pho-
ton couples to conserved quark currents. In effective Lagrangian models of the photon-—
hadron interaction, the photon couples to vector mesons and may or may not also couple
direptly to the matter fields. We saw that there were two versions of the Vector Me-
son Domjnance (VMD) model, one with direct photon-matter coupling (VMD1) and one
without (VMD2). With QCD in mind, we concentrated on models in which the vector
mesons couple to conserved currents. Qur initial study was of the p—w system. We found
that for this class of models, p—w mixing would necessarily vanish at ¢ = (the node
theorem) and hence conclude that in general ¢* dependence can be expected although it
may be small in some models.

Naturally, this constraint would also apply to the mixing between the photon and
vector mesons in these “conserved current” models. VMD, though, had traditio,n;z,lly

been used with a constant coupling of the photon to vector mesons (we referred to.this
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as VMD2), not one that vanished at ¢* = 0. It was thus wrongly argued by some that
this would decouple the photon from hadronic matter at ¢* = 0, thereby ruining the
phenomenology. To clarify this confusion, we discussed a representation of VMD in which
the coupling of the photon to the vector meson does satisly the node theorem (VMD1) and
discussed the field transformations from one effective Lagrangian to the other. In changing
from the traditional VMD?2 to VMDI1 a direct coupling of the photon to hadronic matter
is generated thereby ensuring the photon does not decouple from matter at ¢* = 0. This
raises a central point of this thesis — when performing phenomenological calculations
using effective models it is crucial to apply the one effective Lagrangian to the entire
calculation of the physical observable. Mixing inconsistent models can lead to meaningless
results as the above example clearly shows.

In building a model with couplings to conserved currents, we predicted a momentum
dependence for p—w mixing. However, the experimental determination of this quantity
had assumed that it was a constant. We therefore performed a fit to the data for the pion
form-factor, with a parametrisation that would take account of momentum dependence.
Although we found that the implications of a momentum dependence was a small effect,
we discovered through our careful re-analysis that the value obtained for the mixing is very
model-dependent (i.e., very dependent on the size of the intrinsic w; — 7w decay). This
highlights the importance of discussing the “extraction” of 1I,, in terms of the particular
model used, and its inherent assumptions. We feel that this point has perhaps been
overlooked 1n the past.

We now come to prediction and avenues for further work. It has recently been sug-
gested that p—w mixing could provide an enhancement of CP violation processes in B
meson decays. Considering the model dependent nature of the various parameters rele-
vant to p—w mixing, one would need to take care in applying the information obtained
from the pion form-factor data to B decay. Turning to a more familiar application, the
implications for CSV in the NN interaction of a node in the mixing of the p and w are
very profound indeed. However, keeping in mind our own admonition, a comprehensive
treatment of the NV interaction within a single effective Lagrangian framework remains
to be done.
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Appendix A

Field current identity

The following is an analysis by Hatsuda [91] of the Field Current Identity (FCI)
introduced in Eq. (1.2), that proves it can only be strictly realised on mass-shell. Consider
the action for the NJL model [92,93] with covariant derivative D,=0,-14,

S = /d“:cv])(i D—- M)y - g%(iiwb)2 + 7 4 ¥+ Ky, (A.1)

where K, is the current source, ¢ is a coupling constant with dimensions of mass and
Ay here is some external four vector electromagnetic field. From this we construct the

generating functional
20,7, Aw K] = [[DYDF]expis. (A.2)
To make this relevant to a meson theory, we need to bosonise the fermion field. This can

be done by introducing a new field, p,, with the gaussian weighting

J1Ddexvi [ daop, — /o)

This gives us

2= [IDUDIDpTexpi (Bt A4 K —2 o Myp 4 g% 4 70+ n). (A3

Integrating over the fermion fields leads us to

Z = [IDpdet(ip+ f+ K —2 j— M)expi (6% =26+ A+ ) ~2 f— My1y).
(A.4)

Now if we only want p in the determinant we make the change of variables

A+ Ky —2p, — “Pu (A.5)

to give
Z= [[Dp,Jdet(ip- 4~ M)expi (%A + K + o) = ii(ip— f— M)‘ln) (A.6)
N/[Dpu] expi (—i(Fu»(p)Y + %Q(A + K +p)? —i(ig— f— M)‘ln)- (A7)
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The first term is the kinetic piece for the p field (which comes from an expansion of the
determinant [93,94] and neglecting terms higher order in derivatives), the second generates
the mass and mixing terms and the third is the interaction piece for the p and quarks.
We can easily see that this corresponds to VMD2 — the photon-p mixing is independent of
momentum, and all coupling of the photon to the quark field is mediated by the p-meson.
Making a field redefinition gives us

7= [1Dp,Jexpi (—}(Fuu(p S A K+ Lt g Ak K - M)'1n>- (A8)

We recognise this as akin to VMDI, with a ¢* dependent mixing between the photon and
the p and a direct coupling of the photon to the quark field.

We can consider, however, a second bosonisation procedure using the §-function
J D850, = b3) = [(DpDAexvi [ d'e(gp, — dya) ¥~ (A.9)

This é function strictly imposes the field current identity by demanding that Py X JEM
at the operator level. So, inserting the é function in Z (see Eqs. (A.1) and (A.2))

Z = / [DpDEDpDA expii (Y(id+ A+ K= X = M) + g*\-p — g% + i + 9in),
(A.10)
where we have replaced the fermion four-point term of Eq. (A.1) by a quadratic p term,
using the é function of Eq. (A.9). We can now once again integrate over the fermion fields

and expand the determinant to obtain

o FA(A+K-) .
ZN/[DPDA] expi (— w i ) +9* (Ap—p?) =@+ A+ K - X—M)‘ln)-
(A.11)
So now making the change of variables
A+ K —X— A (A.12)
we have
1 .
Z = /[DPD/\] exp (—ZFL(A) +o A+ K+ p—g*p* —q(ip— X~ M)‘ln)-
(A.13)

It is now not possible to perform the A functional integral to leave a sensible form for
the functional integral over the p field. i.e., the resulting field theory for p would not
correspond to any acceptable field theory describing a massive vector particle. To see this

we recall the discrete result

/quﬁiexp( Z ¢] Jk¢k+z¢] ) (2m)"2\/det A- —lexp (Z J; A]k'Jk) .
) " (A.14)
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We extend this to the continuous case to obtain

[109) exp [ dtadty — L4,V (a,)6,00) + 6,(5)4(2)
~ Vdet M1 exp/d‘la:d“yqﬁ”(:v)M—l “(y). (A.15)

%

For Eq. (A.13) the operator M is obtained from the gauge field kinetic term for the A,

[ dte [ dyr(@)m= (@, )n () = [dta - iFuu(A)F“”(A)(y) (A.16)
to give us .
M, (z,y) = _E(guuaz — 0,0,)8%(z — y). (A.17)

This operator M,, has zero modes, namely gradient fields. As such it has zero eigen-
values and hence its determinant does not exist. Therefore we cannot use Eq. (A.15).
Furthermore, the inverse of M would definitely not have the form to produce a kinetic
term for the p, field. We conclude from this that it is not possible to strictly impose the
field current identity in a massive vector meson theory. This is our main conclusion.

As an aside, integration of Eq. (A.13) over pu brings us back to Eq. (A.7) but now
with A = p. Note however, that this does not impose the é function condition of Eq. (A.9)
and so we have gained nothing.

Having established that the FCI cannot be strictly imposed, we turn our attention
to the two-point functions for the current, J, = 9+,1 and the p. To construct the first
quantity, we consider

o6 4

A (SI(‘L 6-[{11 K=0,A=0,n=0

The Lagrangian for a massive vector field is given by [18]

1 1

So we now consider the action in Eq. (A.7). Comparing the coefficient, of the quadratic p

term with the vector meson mass term in Eq. (A.19), we replace the parameter ¢ (which
has dimensions of mass) by v/2m to give

1 il
S = /d“:c [—ZF(W +om A+ K +p)? —j(ip— X - M)‘ln} : (A.20)
Using this action in Eq. (A.18) we obtain

(Jud)

(m? [1Dp)(igu, — m2p,p,)e’5) 2
= m(igu —m*(pup,)). (A.21)
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The second term in Eq. (A.21) is simply the massive vector meson propagator

: 9o 1
(PuPV) =1 <_g;w + :12 ) 7 (A.22)

¢ —m

We therefore have

2 _
<JuJu) = im2 (guu —+ —m S qqu)

q2 _ m2
2 -
_ im? (q_g;__njq_) | (A.23)

As expected, this is transverse. We also note that as ¢° — 0 the piece proportional
to g, vanishes (the ¢,q, does not figure in any interactions as we assume coupling to
conserved currents). As stated the p field two-point function is just the massive vector
meson propagator (Eq. (A.22)) and does not vanish at ¢> = 0. However, at ¢> = m?, both
functions in Eqgs. (A.22) and (A.23) become singular and differ only by an irrelevant finite
piece. It is interesting to note that for a particle with a finite width (that is, an unstable
particle such as the p meson) even this equality breaks down since the vector propagator
is no longer singular on the real axis. We can conclude from this that although the FCI

cannot be strictly imposed in general, it can be realised on-mass-shell for stable particles



Appendix B

Appendix

B.1 Chiral Perturbation Theory expressions

The full expression for the current, J, is given by

Jp = (i/2V3OK°K° +i/2v/30K*T K~ — i/2v/30 K~ K+
—(10K°K°K~K*)/(V3F?) - (i0K*K~2K*)/(+/3F?)
+(OK ™K~ K**)/(V3F?) — i/20/30 K0 K°
—(i0K K K°)/(v/3F?) ~ (I0K*K°K~K°)/(V3F?)
+H(EOKT KK K°)/(V3F?) + (10K°K~ K+ K°) /(V3F?)
+(i0K KK ) /(v/3F?)
+(i/2\/3/20ms KO K+ 7= ) F? — (i i/4V/30nt K~ K+n~) ) 2
+(1/4V30r T KOKx™)/F? + (i /aN/30n~ K- K trt) F?
—(8/4V/30m~ KOKn*) | F? — (1/2,/3/20m, )~ KO )/ b2
—(i/40K°K°r~n %) /(V3F?) — (i/40K* K1 H)/(V3F?)
/40K K n=n) [(VBE?) 4 (i/40KO K r=n4) /(\/3 3F?)
—(i/2\/3/207 ROK *r3) | I + (i/2,/3/207% K~ K°ry) | F?
—(i/80K°K°n2)/(V3F?) — (i/80K* K~ 3)/(V3F?
+(i/80K~K*x2)/(\/3F?)
+(i/80K°K n2) /(V3F?) — (i/20K* K°r~mg) /(V2F?)
+(1/20K°K *n=mg) /(V2F?) — (t/20K°K~n*mg) (V2 F?)
H(i/20K7 K ¥ 15) [ (V2F?) + (i /40K KOmymg) ) F? —
(2/40K* K ~mamg) [ F? 4 (i 140K~ K¥mamg) | F? — (1/40K°K nymg) ) F?
~(1/8vV30K° Kor2)/ F?
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—(1/8V3OKY K~ n2)/F? + (i/8V/30K ~K*r2)/F*
+(i/8V30K K x2)/ F'?) (B.1)

B.2 Useful Integrals

The following integrals are treated in some detail in Refs. [82,95]. However, Golowich
and Kambor expand the expressions in powers of ¢% as required for ChPT.
Let us define the one-point integral, in D = 4 — ¢ dimensions
] D
I D4 > d”k 1
Y A = / , B.2
672" (m) (27)P k2 — m? (B.2)

where i is an arbitrary mass scale required to to keep the action ([ d?zL;,,) dimensionless.

Evaluating A(m?) gives us

2 m?
A=m (A—lnﬁ+l) + O(e) (B.3)
where ;
A =— —~+In4nr. (B.4)
€

For convenience we define the quantity
?
o= .
1672

The higher-point functions are, of course, more complicated, but are related in such a

(B.5)

way that one can simplify expressions before calculating them explicitly.

ouP~*B(¢*,m?) = / cll o (B.6)
Y O 7 LN ey gy |
dPk k
D-4p (2 m?) = / e .
7P =] o = (1 0 =) .
dPk k.k
D-4 2 2 _ uivy
B..(q% = ; .
T BT = = (kg = ) 69
From simple Lorentz covariance, we can rewrite these as,
Bu(qz)m2) = tul(q27m2) (BQ)
B;w(q27 mQ) . ‘JuQule(QQ, m2) + g,uuBZZ(qQ, m2) (B.10)
The functions Byy and By, can be written in terms of A(m?) and B(q2 m?2) [82]
Ba( 2 2) _ 1 A 2 1 p 2, ¢
21{g”,m = ﬁ +(q —m) —m +E (B.ll)
2 2 1 : ¢ q°
By (¢*,m*) = 6 A+ (2m* — E)B +2m? — ?} ) (B.12)
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A(m?) is given in Eq. (B.3) and B(¢? m?) is given by

z—1)¢* + m?

2 2 ! z(
B(q,m):A—/deln %

(B.13)
We see from Eq. (B.4) that B(q?* m?) is divergent. Not only that but, as Golowich and

Kambor [95] point out, it should be expanded in powers of ¢% or otherwise our use of it
in ChPT will not be consistent. To do this they define

B(¢*,m*) = B(¢*,m?) — B(0,m?) (B.14)
N —/01 dzln <l—x(1—m)i—22) (B.15)
— %i—z+%i—i+... (B.16)
We note now that
B(0,m?) = aanA(m% - Af:;?) 1 (B.17)

We therefore rewrite Eqs. (B.11) and (B.12) using

B(g*,m?) = B(¢%,m?) + L (B.18)
We arrive at [95]
1 m*\—~ A 5

B21(q2,m2) = § [(1 - q—Q) B+ m — gjl (Blg)

2 2 I -

9 9 q dm*\ - A 6m 1
= == —— B+ —|1- - —=1. B.20
Baa(q”,m?) 12 [(1 p ) + - (l - ) 3 ( )

B.3 Calculation for A% — 7tn—

Now equipped with various ways to handle the integrals appearing in our calculation,
we present the relevant details, which would be a distraction in the main body of the text.
We begin by considering Fig. 5.1. We split the contributions to the amplitude into ay,
b, and ¢, (in an obvious way). The outgoing pions are assigned momenta pT and p~ and
we let k be the loop momentum in amplitudes b, and c,. From Eq. (5.30) we know that
a, = 0 to this order in the chiral series. So we turn to the O(r*) pieces of J? to determine

¢, which is given by,

V3

- 1
%=1z k((P+ =P )u — 2k,)

m — [[X’+ — (0], (B21)
e
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where we have used an obvious notation for the integral over d”k/(27)”. In dimen-
sional regularisation, the pieces proportional to k, form an odd function and vanish upon

integration leaving,

V3 + - __1 + 0 ’
Cy = —4]112 (P =P )1:[‘ k2 — ﬂ'ﬂ?\.-,,_ — [f{ — K ] (BZQ)

The contribution b, is slightly more complicated, as we have to consider two ChPT vertices

which we shall call V, (a four-vector) and S (a scalar). The loop integral now has two

propagators,

1
= s - 0 } 3,98
by, /i: V“(k" — i (k+ OF —miy) (KT & K9 (B.23)

From Eq. (5.30)
/3
V, = %(21; +q). (B.24)

This deserves a moment’s consideration. If S had no k dependence then b, would be
proportional to q,(2B8, + B) which vanishes as By = —B/2 [82]. Therefore the only parts
of Eq. (B.23) that will survive are those for which S contains k. We find that these terms

are

__ L e S Y i
S = 6[’12( 3pT-k+3p k4 gk + k7). (B.25)

We can now write,

V3 [ 2k + ) B(pT — p7)-k — (g-k + k?))
TR (Romi(kt e m gy o K (B.26)
Before attempting to evaluate this, it helps to first consider that, because B, = —B/2,

we can add terms independent of k£ to the numerator of Eq. (B.26), hence

[ (23'"# + QF)(Q‘;‘: g LJ) _ / 2LJ1 + ‘?n)(kz — m? + (f{ + ’c‘)‘! — )
k (k2 —m?)((k+q)2 —m?2) (k% — m2)((k + ¢)* — m2?)

= _f 2k + g + 2k, + g,
c\(g+k)?2—m?  k2—m?

_ / ( l,ﬂ =z ‘-?.u Gu
.3 Tn..

= 0.

So the only surviving piece of Eq. (B.26) is (recalling the factor o defined in Eq. (B.5))

V3 3k (p* — p7),(2k, + q,) . -0
bp = 12F2/(k2—mK+)((k+q) _miﬁ)—[]x"'e-» "]
- %ff(pJr - p—)u(QBuu(](+) + Q#BU(I‘,+)) [ o K ]
- 2_\1/50(1’+ P7)"Ba(KT) — [K* o KO, (B.27)
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as ¢-(p* —p~) = 0.
We now have the expression for the amplitude,

M, = by, + ¢,
V3
472’

We now turn to Eqs. (B.3) and (B.20) to find expressions for A(m?) and Byy(q?, m?)
respectively. Substituting, we find

(p* — P )u(2B2a(K*) — A(KT) — [Kt o K. (B.28)

2Ban(K*+) — A(KY) — [K+ o K9 = L1 ke _ ' (1 ! B.29
22 T8 Tmi, 60 \mZ, mi)  (B29)

Egs. (B.28) and (B.29) can then be combined to give us an expression for the form-factor
F3(q%), Eq. (5.32).
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Appendix C

Historical perspective on p—w mixing

This appendix is devoted to the early studies of p—w mixing from 1964 to 1972,
the period before the Standard Picture (outlined in Chapter 2) had been established.
Ironically, the papers quoted here contain detailed investigations of many of the topics
that have been discussed in the recent literature (which never referred to any of these

early papers) and I will draw attention to this.

C.1 Historical perspective

Here we shall present the initial theoretical investigations of p—w mixing and explain
how this was then used in nuclear CSV. This turns out to shed an interesting light on the

current literature about momentum dependence.

C.1.1 The earliest work on p—w mixing

In chapter 2 we have discussed the earliest work on p—w mixing, which amounts to
two papers. I shall mention these here again. The first proposal of p—w mixing was by
Glashow. Because of the closeness of the p and w masses he proposed that one could
expect mixing due to an electromagnetic process (as EM does not respect isospin) [22].
At the time QCD was unknown and the isospin violation due to m, # my could not have
been appreciated. This was then used as an example for the tadpole mixing scheme of
Coleman and Glashow [23] following a suggestion by Julian Schwinger.

Tadpole mixing is independent of momentum and as such would be classed as “mass”
(or “particle”) mixing. Coleman and Schnitzer (CS) argued that this is actually unsuitable
for the mixing of spin 1 particles [96]. Previous studies had discussed mass mixing within

the framework of a Schrédinger equation acting on a space of one particle states. CS
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sought to discuss the mixing within a field-theoretic context. We shall briefly describe
their method below as it 1s important to subsequent treatments of p—w mixing.
They defined the n channel propagator by
dk

(OIT (Aulw) Ay(0))10) = =i [ o= re =) [D(k?)

@r)’ i (C-1)

In the case of p—w mixing we are considering only a 2 channel propagator (see, for example,
Eq. (6.1)). Eq. (C.1) can then be compared with an alternative matrix definition of the

n channel propagator,

w1
Dle) = g% — H(q*)

The (matrix) dressing function, H(g?), could then be approximated by M2 4 ém? + ¢26,

(C.2)

where M¢ is diagonal, and the other pieces (§m? and ), with their off-diagonal terms
generate the mixing between the states. CS noted that for processes occurring in a limited
energy range, for example, pion production around the p and w pole region, mass mixing
(H(g*) = M?* where M? is a constant) would be a reasonable approximation. However,
mass mixing violates the conservation of the current to which the mesons couple. As vector
mesons play an important role in models for hadronic EM form-factors, this would have
disastrous consequences (such as altering the proton charge). This problem is removed
and current conservation maintained if the correction to the propagator vanishes at zero
momentum transfer, in agreement with the node theorem discussed in Chapter 4.

A similar study was undertaken by Harte and Sachs (HS) [97]. Like CS, they set up
a propagator matrix with off-diagonal pieces, paying particular attention to the role of
the complex nature of the poles for unstable particles such as the p and w. HS describe
how to obtain the “physical” meson fields from the pure states of definite G-parity, by
“diagonalising” the matrix propagator (though we know from Chapter 6 that in general,
the propagator matrix cannot be strictly diagonalised). From this one sees that the trans-
formation between bases is not a simple rotation (as in the first paper by Glashow [22]),
though due to the closeness of the masses, one can safely make such an approximation.
The procedure used by us for analysing the pion form-factor (see Chapter 6) is the same
as used by HS and naturally we also find that the transformation between bases is not
the simple rotation usually assumed. Sachs and Willemsen [98] also consider the mo-
mentum dependence of p—w mixing in an analysis of various data (ete™ — 7t7~ and
7r+-+—p—)7r+—f—7r_+A++).

Because of this the reader may thus wonder why recent “suggestions” of momentum
dependence have attracted such strong resistance. Surely Coleman and Schnitzer had
produced a definitive statement on this in 19647 The answer lies in the the fact that with
the end of the 1960’s p—w mixing ceased to be a topic in particle physics and was brought
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in, in a rather pragmatic spirit, to nuclear and intermediate energy physics. Study was
thus devoted not so much to the mixing itself, but rather the role it could play in building
CSV potentials within the one boson exchange model of the NN interaction. However, if
momentum dependence was discussed in such detail in the early papers on p—w mixing
it would seem strange for it to have been neglected when the CSV models were built.
It is thus interesting to note that the Coon and Barrett [35] paper mentions that II,, is
extracted at its mass-shell value, although merely as an aside. Going back to the earlier

paper [28], however, we find the words,

The mixing ... will vary with meson momenta if the mixing is “current”
rather than “mass” mixing. Since we will employ (the mixing amplitude) only
at ¢* = m2 or m?, however, the difference between the two mixing schemes is
negligible. In any case we use the standard mass mixing scheme, since there

1s no evidence that the more complicated current mixing scheme is necessary.

This certainly demonstrates a familiarity with the theoretical studies mentioned above.
The second sentence, though, is never explained, why would the mixing amplitude be set
at the mass-shell points? Clearly this would be kinematically unfeasible. To understand

this, we have to study the first papers on the use of p—w mixing in nuclear physics.

C.1.2 CSV and p—w mixing

The original paper is that of Downs and Nogami (DN) who considered CSV generated
by p—w mixing [99]. Although DN quoted the paper by Coleman and Schnitzer [96],
they did not mention anything about possible consequences of momentum dependence
in the mixing. But they did discuss the amplitude for the NN interaction in terms of
the physical vector meson states as compared with the isospin pure states. Henley and
Keliher (HK) elaborated on this treatment and included a full discussion of momentum
dependence [100]. It is this paper that provided the basis for the Standard Picture.

HK began with physical states, defined in the normal, diagonalised manner. They
then, following Sachs and Willemsen [98], gave the mixing parameter, ¢, a q* dependent
piece. This represents a slight misunderstanding, as the parameters of the mixing between
bases are invariably chosen to be constants (see, for example, Eq. (6.8)) and it is rather
I1,.(¢*) that is momentum dependent. This, however, does not affect the rest of the HK

analysis, which is presented below. Let (in general we can consider this to be a truncated
Taylor series expansion)

2
q
I,,(¢%) =110 + mH<1> (C.3)

pwI
o
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and note that the node theorem would imply that Hf,?u) = 0 (though this was not considered
by HK and is immaterial to their argument). Now, ignoring the widths of the vector
meson propagators (I shall use m to denote a real valued mass), the isospin pure state

contribution to nuclear CSV has an amplitude proportional to

1 . 1
Agsv = — (")

— g tiew
q* —m?

(C.4)

2 _ 2
q* —m?2
which can be rewritten

,.(q%) 1 1
Acsv = m; = — = |x (C.5)

2\ 2 __ 22
—ms \qg°—m; ¢

They then made the standard assumption (static limit) ¢° = 0 and took the Fourier
transform of Eq. (C.5) to obtain the potential, V,, = [r3(1) + 73(2)]Av, where

d’q q-r I,.(—9%) 1 1

B _ i C.6
Av(r) 47rgpgw/'—(27r)3e M2 — 12 [q2 +mZ2  q° +ﬁ13,] e

The other crucial part of their argument comes in rewriting Eq. (C.3)
Mpu(—¢?) = () + T1§)) — ) (g? /i + 1) (C.7)

the second term on the right hand side of Eq. (C.7) then gives rise to a §*(r) function
potential. As this term was expected to be ineffective due to the strong repulsion which
acts at short distance between nucleons they concluded that it can be ignored and that

the first term is the only one that needs to be considered (which from Eq. (C.3) gives us)
Q)+ 18) = 0, (10?). (C.8)

Hence they argued that it is the value of the mixing amplitude at the timelike mass-shell
that is required for a process occurring at spacelike ¢®. Clearly the argument is sustained
for a mixing obeying the node theorem, in which case Hfﬁ} = 0. This explains the quote
on page 91 and shows how, with time, the mixing came to be (falsely) assumed to be
independent of momentum. Eq. (C.6) can then be used to construct the CSV potential of
the standard picture [28] (for simplicity consider only the vector part of the meson-nucleon

coupling, though there is also a contribution from the tensor coupling)

N )

47 ﬁza—rhz T 7

(C.9)

(p|H|w) is used because this is how it appears in Ref. [28], where it is assumed to be
a constant. The analogous expression in HK showed that the arguments of this mixing
function would be fixed at the p and w mass points for the e=™#" and e~mw" pleces respec-

tively. The above argument ignores the effects due to the pNN and wNN form factors
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and which are always included in actual NN calculations. The above approximations
should be contrasted with a more correct treatment discussed elsewhere 36, 44].

To summarise the HK treatment, they argued that the appropriate value to use in
nuclear CSV models is II,,(m?) extracted in the pion form factor and the momentum
dependence is lost in the short distance nucleon interaction. This conclusion is not sup-

ported by a more careful analysis.
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Below is a list of my published papers. Following this I have included reprints (where
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Abstract

Within a broad class of models we show that the amplitude for p° — w mixing must vanish at the transition from time-like
to space-like four-momentum. Hence in such models the mixing is either zero everywhere or is necessarily momentum-
dependent. This lends support to the conclusions of other studies of rho-omega mixing and calls into question standard
assumptions about the role of rho-omega mixing in the theoretical understanding of charge-symmetry breaking in nuclear
systems.

Charge symmetry violation (CSV) is a small but well established feature of the strong nucleon-nucleon
(NN) force [1-3]. The class III force which differentiates the nn and pp systems is best established through
the Okamoto-Nolen-Schiffer anomaly in the binding energies of mirror nuclei [4,5]. In the np system the
class IV CSV interaction mixes spin-singlet and spin-triplet states. Despite presenting a difficult experimental
challenge this has been seen in high precision measurements at TRIUMF and IUCF [6,7]

Although there is still no universally accepted theoretical description of the short and intermediate range
NN force, the one-boson-exchange model provides a conceptually simple, yet quantitatively reliable framework
[8]. Within that approach p — w mixing is a major component of both class III and class IV CSV forces
[1,3,9-12]. For on-mass-shell vector mesons, p — @ mixing is observed directly in the measurement of the pion
form-factor in the time-like region (that is, in the reaction ee™ — #¥7~ [13]). The best value of the strong
interaction contribution to this amplitude at present is <p°|H5u|w> = —(5130 £ 600)MeV? (on mass shell)
from Hatsuda et al. [14]. (A small, calculable, electromagnetic contribution of = 610MeV? from poY O
has been subtracted from the data (—4520 4 600MeV?) to leave the strong mixing amplitude.) Within QCD
this provides an important constraint on the mass differences of the u and d quarks [15].

Of course, with respect to the CSV component of the NN force a significant extension is required. In
particular, the exchanged vector meson has a space-like momentum, far from the on-shell point. For roughly
twenty years it was customary to assume that the p —  mixing amplitude was a constant over this range of
four-momentum. Only a few years ago Goldman, Henderson, and Thomas (GHT) questioned this assumption
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[16]. Within a simple model they showed that the mixing amplitude had a node near g* = 0 so that neither
the sign nor magnitude in the space-like region was determined by the on-shell value. Since the initial work by
GHT a qualitatively similar result has been obtained using many theoretical approaches including mixing via an
NN loop using the p — n mass difference [17], several g calculations [18,19], and an approach using QCD
sum-rules [14,20]. All of these calculations revealed a node at or near q* = 0, with a consequent change in the
sign of the mixing amplitude. The presence of this node in the corresponding coordinate space CSV potential
has been stressed in Refs. [14,16,19,21]. Related studies of the 7% — 7 mixing have also been recently made
including NN [22] and g7 [23] loops, and chiral perturbation theory [24]. Significant momentum dependence
was also observed in these studies.

It is important to note that the only calculation which found a node at exactly ¢ = 0 was that of Piekarewicz
and Williams [17]. In this work alone was local current conservation guaranteed exactly. We have been led
to examine the general constraint on the mixing amplitude at g* = 0 by this observation as well as by several
inquiries from K. Yazaki [25]. Our findings can be summarised very easily. We argue that the mixing amplitude
vanishes at g% = 0 in any effective Lagrangian model [e.g., L(p, @, T, &, i, -+ )1, where there are no explicit
mass mixing terms [e.g., Mprow or op’w with o some scalar field] in the bare Lagrangian and where the
vector mesons have a local coupling to conserved currents which satisfy the usual vector current commutation
relations. The boson-exchange model of Ref. [17] where, e.g., J5 = g,Ny*N, is one particular example. It
follows that the mixing tensor (analogous to the full self-energy function for a single vector boson such as the
p [26])

cm(q) =i [ atx e QITUE TN [0). (1)

is transverse. Here, the operator J4 is the operator appearing in the equation of motion for the field opcrator
w, i.e., the Proca equation given by 4, F* — M2o* = Ji. Note that when Ji is a conserved current then
6#Jf,f =0, which ensures that the Proca equation leads to the same subsidiary condition as the free field case,
du* =0 (see, e.g., Lurie, pp. 186-190, [301). The operator J% is similarly defined. We see then that C#* can
be written in the form,

C*(q) = (g"” - q:—g) C(q). &

From this it follows that the one-particle-irreducible self-energy or polarisation, II#”(q) (defined through
Eq. (6) below), must alsc be transverse [26]. The essence of the argument below is that since there are
no massless, strongly interacting vector particles TI#” cannot be singular at g* = 0 and therefore IT( q*) (see
Eq. (7) below) must vanish at ¢* =0, as suggested for the pure p case [27]. As we have already noted this
is something that was approximately true in all models, but guaranteed only in Ref. [17].

Let us briefly recall the proof of the transversality of C#(q). As shown, for example, by Itzykson and
Zuber (pp. 217-224) [28], provided we use covariant time-ordering the divergence of C** leads to a naive
commutator of the appropriate currents

quC* (q) = — / d*x €973, [0(x°) (0] J#(x) J5(0) [0) + 8(—x") (0] J5,(0) J5 (x) [0)] 3)
== [ xem 0 L0201 O @

That is, there is a cancellation between the seagull and Schwinger terms. Thus, for any model in which the
isovector- and isoscalar-vector currents satisfy the same commutation relations as QCD we find

qu.C* (q) =0. (3)
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Thus, by Lorentz invariance, the tensor must be of the form given in Eq. (2).

For simplicity we consider first the case of a single vector meson (e.g. a p or @) without channel coupling.
For such a system one can readily see that since C# is transverse the one-particle irreducible self-energy, I1#*,
defined through [26]

11#*D,, = C**DY, (6)
(where D and DO are defined below) is also transverse. Hence

yrips 4
m* (q) = (¢ - L ) (g . (7
q

We are now in a position to establish the behaviour of the scalar function, I1(g%). In a general theory of
massive vector bosons coupled to a conserved current, the bare propagator has the form

o _ qudv 1
D}, = (—g,w + 0 ) R (8)
whence
(D)) = (M* = ") guv + qudv- 9

The polarisation is incorporated in the standard way to give the dressed propagator

= N (%)
D) =(D% ) + 1 = (M — ¢ +TI()) g + <1 — q‘j )q,,,q,,. (10)
Thus the full propagator has the form

—8uv t+ (1 - [H(qz)/qz]) (q#q,,/Mz)
q* — M? —TI(q?) '

D, (q) = (11)

Having established this form for the propagator, we wish to compare it with the spectral representation of the
propagator [28-30],

0

D@ = =i [ ar BT (g — 2222, (12)

ro

Since no massless states exist in the strong-interaction sector we must have ro > 0. Hence it is a straightforward
exercise to show that we can write for some function F(g%) [29]

1
D, (q) =F<qz>gﬂy+q—2<F<0> — F(¢*)qug- (13)

By comparing the coefficients of g,, in Egs. (11) and (13) we deduce

-1
2y =
F(q)—q2—‘M2_H(q2)’ (14)
while from the coefficients of q,g, we have
(1-n@A/g) 1 o L g* +11(0) —TI(¢*) )
(g% — M? —Ti(g?))M? ~ —CF(F(O) e g* (M? +11(0))(¢* — M? —T1(g%))’ e
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from which we obtain

IO (2 a2~y =0, vg? (16)
and thus
I1(0) =0. (17)

This embodies the principal result of the investigation, namely that T1(g%) should vanish as q* — 0 at least as
fast as g

While the preceding discussion dealt with the single channel case, for p — @ mixing we are concerned
with two coupled channels. Our calculations therefore involve matrices. As we now demonstrate, this does not
change our conclusion.

The matrix analogue of Eq. (10) is

Dl = (Mig;w + (pr(!f) - qZ)T;w pr(qz)T;w >
uy '

18
pr(q2)T,uv Mf,g,w + (wa(qz) - qz)T/.w (18)

where we have defined Ty = guv — (qug» /q*) for brevity. By obtaining the inverse of this we have the
two-channel propagator

D = l (swg,uv +a(p, w)qugy Hpm(qz)T,uu ) (19)
¥ a pr(qz)T;w Sp8uv + a(w, p)quqy ’
where
S0 = ¢ —Muo(d?) — M, (20)
sp=q* — (g% — M (21)
1
a(p, @) = 55 {I,(4") = 14" ~ () 150} (22)
My
a=1,(q%) — 5p50. (23)

In the uncoupled case [Hp,,,(qZ) = 0] Eq. (19) clearly reverts to the appropriate form of the one-particle
propagator, Eq. (11), as desired.

We can now make the comparison between Eq. (19) and the Renard form [29] of the propagator, as given
by Eq. (13). The transversality of the off-diagonal terms of the propagator demands that IT,,,(0) = 0. A similar
analysis leads one to conclude the same for II ,,,,(qz) and I,,(g%). Note that the physical p° and @ masses
which arise from locating the poles in the diagonalised propagator matrix D** no longer correspond to exact
isospin eigenstates. To lowest order in CSV the physical p-mass is given by ME™S = [M2+11,,( (MEY*)2))1/2,
i.e., the pole in D4,. The physical w-mass is similarly defined.

In conclusion, it is important to review what has and has not been established. There is no unique way
to derive an effective field theory including vector mesons from QCD. Our result that I1,,(0) (as well as
1,,(0) and .. (0)) should vanish applies to those effective theories in which: (i) the vector mesons have
local couplings to conserved currents which satisfy the same commutation relations as QCD [i.e., Eq. (4) is
zero] and (ii) there is no explicit mass-mixing term in the bare Lagrangian. This includes a broad range of
commonly used, phenomenological theories. It does not include the model treatment of Ref. [18] for example,
where the mesons are bi-local objects in a truncated effective action. However, it is interesting to note that a
node near g* = 0 was found in this model in any case. The presence of an explicit mass-mixing term in the
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bare Lagrangian will shift the mixing amplitude by a constant (i.e., by Mf,w). We believe that such a term will
lead to difficulties in matching the effective model onto the known behaviour of QCD in the high-momentum
limit, [33].

Finally the fact that IT(g%) is momentum-dependent or vanishes everywhere in this class of models implies
that the conventional assumption of a non-zero, constant p — w mixing amplitude remains questionable. This
study then lends support to those earlier calculations, which we briefly discussed, where it was concluded that
the mixing may play a minor role in the explanation of CSV in nuclear physics. It remains an interesting
challenge to find possible alternate mechanisms to describe charge-symmetry violation in the NN-interaction
[31,32].

One of us (AWT) would like to thank Prof. K. Yazaki for several stimulating discussions. This work was
supported by the Australian Research Council.
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We reexamine a recent calculation of the effect of dressing on the pion propagator in the one-
pion-exchange potential. Our results confirm the qualitative features of the earlier work, namely
that the correction can be represented as the exchange of an effective 7' meson. However, at a
quantitative level this approximation does not work well over a wide range of momentum transfer
unless the mass of the 7' is made too large to be of significance in nucleon nucleon scattering.

PACS number(s): 21.30.+y, 13.75.Cs, 14.40.Aq

There is now considerable evidence that the form factor
for the emission of an off-mass-shell pion by a free nucleon
is relatively soft [1-3]. In a dipole parametrization a
mass less than 1 GeV is typical. On the other hand, con-
ventional one-boson-exchange potentials (OBEP) typi-
cally require a much harder t NN form factor in order
to reproduce the experimental phase shifts and deuteron
properties [4,5]. Recently it has been proven possible
to obtain equally good fits with a soft form factor pro-
vided an additional, heavy pion (7') exchange is included
[6]. (An interesting alternative has been proposed by the
Bochum group [7].)

Clearly it is of considerable interest to establish the
physical mechanism behind the additional short-distance
pseudoscalar exchange. It need not be a real 7' meson,
but could be a convenient representation of a more com-
plicated short-distance physics involving quark-gluon or
quark-meson exchange [8—10]. Saito’s novel suggestion
was that the radiative corrections associated with the in-
ternal structure of the pion itself might lead to a pion
propagator that could be simulated by the exchange of
an elementary pion and a heavier ' [11]. His suggestion
echoed earlier work by Goldman et al. on the off-shell
variation of the p-w mixing amplitude [12]; see also Ref.
[13].

In Saito’s work the pion proagator was modeled as the
propagator of an elementary m meson coupled to a ¢-¢

were taken to be free Dirac propagators (with quark mass
m). While this introduces an unphysical threshold at 2m,
it is not necessarily a fatal flaw in the spacelike region,
where we need the propagator for NN scattering. Indeed
there is a physical cut which begins at (m, + m,) and
by choosing m to be a typical constituent quark mass (~
400 MeV) one might expect to simulate the effect of this
cut.
In the model of Saito the renormalized pion propagator
is written in the form
G(d?) = i , 1)
q% — %(q?) — ml0)?

where $(¢?) is

dPk —k? + 3¢° + m?

2m)P {(k+ )% = m2][(k = )7 = m2k]
(2)

and the factor of 6 arises from color and isospin. For
D = 4 the integral in Eq. (2) is highly singular. In Ref.
[11] it was rewritten as a sum of three terms:

(%) = iegZD/ (

2:2a+2b+26’ (3)

pair. As in Refs. [12,13], the propagators of the ¢-§ pair ~ where
|
3 1
.Ea — 2_vY 4
’ e (k+2)2—m? +ic’ )
} 3 1
Yy =g — [ d*k
biesd 47r4/ (k—2)2 —m2 +ic’ (5)
3 1
Y. = —g2¢*— [ d*k s .
) I yma | [(k+ £)2 —m? +ie][(k — )? —m? + ic] (6)
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Under an appropriate change of variables it appears that
3. and B are both independent of g% and can be incor-
porated into the bare mass term. This argument is not
correct for a subtle reason. Both of the integrals in Fgs.
(4) and (5) are quadratically divergent and it is known
from the study of the axial anomaly that linear shifts in
the integration variable are not permitted in this case
[14]. There is in fact a surface term proportional to q.
Fortunately for the analysis of Saito, this would affect
only 3; and ¥, (the second and third terms in a Tay-
lor expansion about ¢ = 0), and it is £, alone which
determines Y r(q?); see Eq. (12) below.

We have chosen to evaluate Eq. (2) directly using di-
mensional regularization [15], rather than relying on the
expansion (3). Our result for X(g?) is:

N(¢?) = :%z A dx 2p(q2)1"(§ — 1)+ 7¢%z(1 —z) —m?
+2p(q2)ln[qzm(1 —z)— m2] (7)

where p(q?) = 3¢®z(1 — ) — m?, m being the fermion

mass. We can remove the divergences in this expression
by adding counter terms to the Lagrangian, and bearing
in mind the conditions we wish to impose on the renor-
malized self-energy, £%(¢?), in order that the pion prop-
|
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agator reproduces the physical properties of the pion in
free space, namely

St (m3)

_0,

(8)

To ensure this we add the following counterterms to the
Lagrangian,

(9)

1 1
Lor = —gam (04 m2)mw + gﬂ‘rrz,

where
1s]
@ = 53 E(md), B = E(md). (10)
This gives us ’
SR(¢*) = £(¢*) - B— (¢° —mi)e, (11)
and
GR(g?) = : (12)

- ¢*—mi - 3R(¢?)’

where 2% (¢?) vanishes as (¢> —m2)? at the physical pion
mass.
After some algebra we find that 2% (q?) takes the form

6g% ! ?z(1 — z) —m? 1 2m?z(l — x)
SR 2) — / d 2y (2 —m) [ = 13
(a) a2 [, @ |p(g")in m2x(l — ) —m? (g7 = my) 2 m2a(l —a)—m2 /|’ (13)
T "
which becomes
6g° m?  m? 1
ER 2 2 ! 9 247 " = i A2 = 2
(¢°) 47r2{ 7° | — z 5 (a" = mz)
2 1\} 1 2 3
m 1 1
+44° m2 — — ] arctan = (2 -2) arctan [ —
q 4 am? _ 4 mZ 4 am?
P m2
: \
2 1 1 2
+(3¢% — 4m?) m_2 — —arctan B —arctan !
@ 4 am? _ m3 dm? _ |
72 m2
m?2 m? 1 1
_2(q2 — mw)42 1—-4 <2> ————arctan | —F—— ) (14)
al m2 dm? 4 fam=._ 4
for 0 < ¢% < 4m?. For ¢% < 0 we have
692 m?  m? 1, .,
ZR 2y . 7 _92 27" oy - - _
(¢*) 47r2{ (I W 5 my)
3 4m?2 , r 2
|1 (m? 1)? \/|q2|+1“1 m? _1\* L __
+4q% | = T In = | arctan = =
2\|¢? 4 el m2 4 Vo -1
{ 4m?
1 m2 1 =7 + 1-1 m2 1
+(3q2 _ 4m2) 7 — Zln _lqi___ + =5 = Zarctan o
I 11 v mg 1
2 2 1 1
~2( 2 iy l1-4 L arctan ) (15)
q 2 2 2 2
T mﬂ' J‘inmé - 1 (tn"; - ]-
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FIG. 1. The ratio of the free to renormalized pion propa-
gators as a function of ¢?. The solid curve is our exact result,
the dashed curve is a simple parametrization [with mass pa-
rameter A = 1.295 GeV; see Eq. (18)], and the dash-dotted
curve is the result assuming 7 plus 7’ exchange [Eq. (19) with
M = AJ.

An appropriate value for g,, can be determined from

the pion-nucleon coupling constant gz'frv = 14.6 [16]. An
analysis within the consituent quark model yields the fol-

lowing relation

3m
9rq = ___qng- (16)

5 my
In Fig. 1 we show the ratio (represented by the solid
line) of the free to the renormalized pion propagator as
a function of ¢2. (The quark mass is set at 400 MeV
for the reasons explained earlier.) In order to clarify its
similarity to the phenomenological introduction of a '
meson we recall that $f(g?) is proportional to (¢*—m2)2.
One might then approximate ¥7(q?) as
c(g* —mz)?®

R( 2y
E(Q) (q2—A2)’

(17)
with ¢ a dimensionless constant and A a mass parameter.
In this approximation the ratio R = G(¢?)/G®(q?) is

o(q® —m3)
WA e

The dashed line in Fig. 1 which is almost identical to the
solid curve shows the fit obtained for A = 1.29 GeV (with
c=1.63).

R=1-
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If the renormalized pion propagator were to be approx-
imated by the sum of elementary 7 and 7’ exchanges
(with 7’ mass M) we should instead find

qz_mz -1

where C = g2, /g2y To first order we would identify
A = M and ¢ = C and the result of this choice is shown
as the dot-dashed line in Fig. 1. It clearly is not a good
representation of the renormalized propagator. In fact,
in order to fit even moderately well over the range of
g? shown the 7' mass must be made considerably larger.
Our best fit using Eq. (19) is shown in Fig. 2 where we
used a 7' mass M = 2.0 GeV and C = 5.73. (The other
two curves are as in Fig. 1.) While the corresponding
7' N coupling constant is in the range quoted in Ref. [6]
the mass is far too large for this ' to play any role in
NN scattering.

In conclusion, while the very interesting suggestion of
Saito has been confirmed qualitatively, we are forced to
conclude that this is not the source of the n' meson
needed in NN scattering.
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amplitude at the @ pole, I7,,,(m2). The present work
improves significantly on an initial analysis reported
by us elsewhere [9].

VMD assumes that the dominant role in the inter-
action of the phot(‘)"n with hadronic matter is played by
vector mesons [15,16]. It is an attempt to model non-
perturbative interactions determined by QCD, which
cannot yel be evaluated in this low-energy regime.
The traditional representation of VMD, which we shall
refer to as VMD?2, is described by a Lagrangian in
which the photon couples to hadronic matter exclu-
sively through a vector meson, to which it couples
with a fixed strength proportional to the mass squared
of the meson.

For the photon-rho-pion system, the relevant part
of the VMD?2 Lagrangian is

Lympz = _%F/.WF'MV . %P,u,vplw + %m,ZJ(P,u)z

2 2
em 1/ e
— JH— — P AP L | — 24, A*
8prmPuly 2 puA” + ) (gp) m,Au
(1)

where J4 is the pion current, (7 X d,7r)3, and F,
and p,,,, are the EM and p field strength tensors (here
e = |e|). From Eq. (1) one arrives at a pion form-
factor of the form

m2

8pmw
Frlq’) = — = , (2)
] qz—m%+lmp1"p(qz) g

where conventionally one takes [ 17-19]

q2—4mzr (e my,
ml — dm? /¢

This VMD?2 Lagrangian, rederived by Bando et al.
[20] from a model based on hidden local gauge sym-
metry, has some unappealing features. Firstly, the p-
v interaction is supposed to be modelling the quark-
polarisation of the photon, which necessarily vanishes
at ¢> = 0 to preserve EM gauge invariance [21],
whereas the coupling determined by Eq. (1) is fixed.
Hence the VMD?2 dressing of the photon propagator
shifts the pole away from zero, and a bare photon mass
must be introduced into the Lagrangian to counterbal-
ance this and ensure that the dressed photon is mass-
less. Secondly, recent studies [ 19,22] have used a non-
resonant term (i.e., a contribution in which the p does

'y (g =r,,< (3)

not appear), which VMD?2 lacks, in fits to ete™ —
7T~ Thirdly, the constraint F,(0) = 1, which re-
flects the fact that the photon sees only the charge of
the pion at zero momentum transfer, is only realised
by Eq. (2) in the limit of universality (g, = gpmr),
which is seen to be only approximate in nature [23].

For these reasons we prefer the alternative formula-
tion [16] which we shall call VMD1 [9] and which
is apparently less widely known. It has the following
Lagrangian

Lvmpr = —3FuF* — 3pup™ + %mf,p,up“

— Gpmrpullt = Al = SFup. (&)
8p

The key features of this representation are the absence
of a photon mass term and the presence of a term
F,, p*, which produces a momentum-dependent y-
p coupling of the form [9], Ly, = —e/2g,F,, p** —
—e/g,q*A,p*. This, of course, decouples the photon
from the p at > = 0, hence keeping the photon mass-
less in a natural way. However, the photon is still able
to couple to the hadronic current through the direct
coupling —eA, Ji7, giving us a non-resonant term. We
now have a form-factor of the form

4’ 8prn .
gp[q2 . m%; + impr(KIZ)]

Fr(q’) =1~ (5)
Note that Eq. (5) automatically satisfies F(0) = 1.
We emphasise that a simple field redefinition maps
these two forms of VMD into one another if univer-
sality is taken to be exact and if we work to all orders
in perturbation theory. Of course, the predictions will
differ somewhat if universality is violated and if the
perturbation expansion for the models is truncated in
an inconsistent way. We illustrate the difference be-
tween the two representations in Fig. 1.

At present the widely quoted value of for II,, =
pr(mi) [10], is obtained from the branching ra-

tio formula for the w, B(w — 7w) = I'(w —
arr) /T (w), derived from a p-o mixing analy-
sis where I'(w — @m) = |,y /im,I,|* T(p —

7rr). Using the branching ratio determined in 1985
by the Novosibirsk group [17], B(w — 7m) =
(2.3 &+ 04 £+ 0.2)%, Coon and Barrett obtained
1I,, = —4520 £ 600 MeV2. We aim to extract IT pw
from a fit to the cross-section of the reaction ete™ —
7T using
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Fig. 1. Contributions to the pion form-factor in the two representations of vector meson dominance a) VMD1 b) VMD2.

a’m (¢ — 4mk)*?
TqTWW(qQ)V, (6)

and the form-factor determined by VMD1 (Eq. (5)).

So far, we have not introduced any effects of charge
symmetry violation (CSV) into our system, and hence
the w (which cannot otherwise couple to a 77~
state) does not appear. In their recent examination of
the EM pion and nucleon form-factors using VMDI,
Dénges et al. [ 18] introduced the w through a covari-
ant derivative in the pion kinetic term. This produces
a direct contribution from @ — 27 without any p-w
mixing, but does not provide a good representation of
data in the resonance region. We shall use the mixed
propagator [7], where the mixing is introduced by
an off-diagonal piece, /1, in the vector meson self-
energy. To first order in CSV [i.e., to O(I,,) ], the
propagator is given by (we ignore pieces proportional
to g, as we couple to conserved currents)

- 1/s, pr/spsw)
D= (Hpa,/spsw 1/s4 “ve 7

o(g®) =

where s, = ¢* — l,p(¢*) —m: = ¢* — m +
im,I",(g*), and similarly for the w.

In a matrix notation, the Feynman amplitude for the
process v — 1, proceeding via vector mesons, can
be written in the form

AAYDTT _ 2 AAV CAAY
lM# = (lMp,_,mr t./\/la,l_,,m)

iy (7Y (8)
14 Yy

where the matrix D,, is given by Eq. (7) and the

other Feynman amplitudes are derived from Lymp;.

We will now make the standard simplification [24]

which is that the direct decay of the isospin pure w to
two pions cancels the imaginary piece of the two pion
loop contribution to the mixing self-energy. This is
based on some reasonable assumptions, but is a point
worthy of further study in its own right. Since it is
beyond the scope of the present work we do not pursue
this further here. Accepting these arguments means
that we can neglect the pure isospin state w; coupling
to two pions (M}, , = 0) with the understanding
that it is the real part of the mixing amplitude that is
being extracted. To lowest order in the mixing, Eq. (8)
becomes

1
Méf—»mr = Mﬁ,—vlr’ir—S_M“/_'ﬂl
P
1 1
+M/;,_.7T7T_Hp1u_My—>w,r (9)
5o Se

which we recognise as the sum of the two diagrams
shown in Fig. 2.

The couplings that enter this expression, through
MG —am My, and M,_,,,, always involve the
unphysical pure isospin states p; and w;. However, we
can re-express Eq. (9) in terms of the physical states
by first diagonalising the vector meson propagator.
This leads to the result

1 1
Mé’f__,mr = Ml;—’ﬂ"”'s_My_’p + M’Z_,,,WS—MY_W
P w

1
= Mg—wﬂr_M’Y“’P
So
O, 1
+Mlpt—>7r7r Sp s, ;My—mn (10)

which is the form usually seen in older works. Al-
though at first glance there seems to be a slight dis-
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Fig. 2. The contribution of p-w mixing to the pion form-factor from the states of pure isospin. These diagrams are present in addition to

those in Fig. la).

crepancy between Egs. (9) and (10) they are equiv-
alent — e.g., see Ref. [9] and the discussion of the
Orsay phase by Coon et al. [8].

We are now in a position to write down the CSV
form-factor based on the VMD1 form-factor of
Eq. (5) and the mixed state contribution of Eq. (10),

9 ngpmr
Fr(g) =1- .
w4 8p[612—mf,+lmprp(qz)]
. qzegpmr (11)
golg* —mi 4+ im,l,]’
where
€= Moo = Hpo .
Sp — Sw mi——m%—i(mwfﬂ,—mpl‘p(cﬁ))
(12)

The w decay formula of Coon and Barrett can now be
seen to follow from Eq. (11) with an approximation
for € (namely that I',, is very small and that mf, =
m?2)). Because the width of the w is very small we can
safely neglect any momentum dependence in it, and
simply use Fa,(mz,) [9,19].

All parameters except 11, are fixed by various data
as discussed below. The results of fitting this remain-
ing parameter to the data are shown in Fig. 3 with
the resonance region shown in close-up in Fig. 4. The
mass and width of the w are as given by the Particle
Data Group (PDG) [26], m, = 781.94 £0.12 MeV

2.0

Cross—section (microbarns)

400 500 600 700 800 900
Invariont Mass (MeV)

Fig. 3. Cross-section of eTe¢~ — 77~ plotted as a function of
the energy in the centre of mass. The experimental data is from
Refs. [17,25].

and I', = 8.43 £ 0.10 MeV. There has recently been
considerable interest in the value of the p parameters,
m, and I', with studies showing that the optimal val-
ues {19,221 may differ slightly from those given by
the PDG. The value of II,, is not sensitive to the
masses and widths, and we have obtained a good fit
with m, = 772 MeV and I', = 149 MeV, which are
close to the PDG values.

The values of the coupling constants are however
quite important for an extraction of I1,,. We obtain
gy and gynr from I'(p — ete™) ~ 6.8 MeV and
I(p — ) ~ 149 MeV: g2, /4 ~ 2.9, g2 /47 ~
2.0 which show, for example, that universality is not
strictly obeyed (as mentioned previously). VMD1 and
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Fig. 4. Cross-section for e¥e™ — 7727~ in the region around the
resonance where p-w mixing is most noticeable. The experimental
data is from Refs. [17,25].

VMD2 differ at order g,rr/g, ~ 1.2.

Historically the ratio g,/g, was believed to be
around 3 [27], a figure supported in a recent QCD-
based analysis [28]. Empirically though, the ratio
can be determined [22] from leptonic partial rates
[26] giving

g—{”=\/m‘"r(p_)e+e_)=35i018 (13)

& myl'(w —ete™)

Using these parameters we obtain a best fit around
the resonance region shown in Fig. 4 (¥%/d.o.f. =
14.1/25) with I1,, = —3800 MeV?. In this analysis
there are two principle sources of error in the value of
II,,. The first is a statistical uncertainty of 310 MeV?
for the fit to data, and the second, of approximately
200 MeV?, is due to the error quoted in Eq. (13).
Adding these in quadrature gives us a final value for
the total mixing amplitude, to be compared with the
value —4520 4 600 MeV? obtained by Coon and Bar-
rett [10]. We find

I, = —3800 £ 370 MeV2. (14)

It is now clear that a momentum dependent y*—p
coupling, together with a direct coupling of the photon
to hadronic matter, yields an entirely adequate model
of the pion form-factor. In fact, this picture is basi-
cally suggested by attempts to examine the y*-p cou-
pling via a quark loop. Model calculations typically
find that the loop is momentum-dependent, and van-
ishes at g> = 0 (unless gauge invariance is spoiled by
form-factors, or something of this nature). However,
coupling the photon to quarks in the loop implies that

the photon must also couple to the quarks in hadronic
matter, thus introducing a direct photon-hadron cou-
pling (independent of the p-meson), and leads us to
take VMD1 as the preferred representation of vector
meson dominance. It should now be clear that the ap-
propriate representation of vector meson dominance
to be used in combination with mixing amplitudes that
vanish at ¢? = 0 is VMDI. To use VMD2 in conjunc-
tion with such vector mixing amplitudes is inconsis-
tent. As long as one is clear on this point, there are no
dire consequences for momentum dependence in p-w
mixing.
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Abstract

We discuss the consistency of the traditional vector meson dominance (VMD) model for photons coupling to matter, with
the vanishing of vector meson-meson and meson-photon mixing self-energies at ¢* = 0. This vanishing of vector mixing
has been demonstrated in the context of rho-omega mixing for a large class of effective theories. As a further constraint on
such models, we here apply them to a study of photon-meson mixing and VMD. As an example we compare the predicted
momentum dependence of one such model with a momentum-dependent version of VMD discussed by Sakurai in the
1960’s. We find that it produces a result which is consistent with the traditional VMD phenomenology. We conclude that
comparison with VMD phenomenology can provide a useful constraint on such models.
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The experimental extraction of I1 ,,, (in the pion EM
form-factor [1]) is in the timelike g? region around
the p-w mass, yet it is used to generate charge sym-
metry violation (CSV) in boson exchange models of
the NN interaction in the spacelike region [2,3]. The
traditional assumption was that the mixing amplitude
was independent of g2.

This assumption was first questioned by Goldman
et al. [4] who constructed a model in which the p and
w mixed via a quark loop contribution which is non-
vanishing if and only if m, # my. Their conclusion of
a significant momentum dependence was subsequently
supported by other studies, which included an analo-
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gous NN-loop calculation [ 5] using the n—p mass dif-
ference and more elaborate quark-loop model calcula-
tions [6]. All of these predicted a similar momentum-
dependence for I1,,(g?) with a node near the origin
(g* = 0). At a more formal level, it was subsequently
shown that the vector-vector mixings must identically
vanish at ¢ = 0 in a large class of effective theories
[ 7] where the mixing occurs exclusively through cou-
pling of the vector mesons to conserved currents and
where the vector currents commute in the usual way.
Recent work in chiral perturbation theory and QCD
sum rules has also suggested that such mixing matrix
elements must, in general, be expected to be momen-
tom dependent [8].

In response to this, alternative mechanisms involv-
ing CSV have been proposed [9]. Indeed, as the vec-
tor mesons are off shell, the individual mechanisms
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should not be examined in isolation, because they are
dependent on the choice of interpolating fields for the
vector mesons and are not physical quantities. It has
been argued that one could find a set of interpolat-
ing fields for the rho and omega such that all nuclear
CSV occurs through a constant p-w mixing with the
CSV vertex contributions vanishing [10]. However
this possibility has been questioned on the grounds of
unitarity and analyticity [11].

The same models which have been used to examine
the question of p-w mixing can also be applied to stud-
ies of p~y mixing. They can then be compared to phe-
nomenology and vector meson dominance (VMD)
models, which have traditionally assumed the cou-
pling of the photon to the rho was independent of g°.
The first person to raise this question was Miller [ 12].
The purpose of this letter is to carefully explore the
issues raised and compare numerical predictions for
such a mixing model with experimental data. As dis-
cussed recently [13], the appropriate representation
of VMD to use with a momentum dependent photon-
rho coupling is VMDY, given by the Lagrangian [ 14]

Ly = —3FuF* — 1pupt” + gmypup®

— Zpmmpud® — eA P — Zi w4, (1)
8p
where J,, is the hadronic current and F,,, and p,,, are
the EM and p field strength tensors respectively (the
dots refer to the hadronic part of the Lagrangian).
From this we obtain the VMDI1 expression for the
form-factor for the pion [13]
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Note that in the limit of exact universality g,7r = g,
and we recover the usual VMD2 model prediction for
the pion form-factor [13,14]. Recall that in this tra-
ditional VMD (i.e., VMD2) model the photon cou-
ples to hadrons only through first coupling to vector
mesons with a constant coupling strength, e.g., for the
p~y coupling we have ITYMP2(g%) = —m2e/g,.

We shall define a VMDI-like model to be one in
which the photon couples to the hadronic field both
directly and via a g%>-dependent coupling (with a node
at ¢> = 0) to vector mesons. A VMDI1-like model may
differ from pure VMD1 as the coupling of the photon
to the rho (generated by some microscopic process)

will not generally be linear in ¢%. Hence &p» Which
is a constant in VMD1 (and VMD2 as they share
the same g, [13,14]), may acquire some momentum
dependence in a VMDI1-like model; the test for the
phenomenological validity of the model is then that
this momentum dependence for g, is not too strong.
For example, we can easily determine the coupling of
the photon to the pion field via the rho meson for a for
a VMD1-like model. We note the appearance in Eq.
(3) of the photon-rho mixing term, 15y (g*), which
can be determined from Feynman rules, and which
will, in general, be g*-dependent. Such an analysis
gives for any VMDI1-like model

—iMH(g*) = —ie(p* — pT) o[ Dy (g 1* Fr(q?)
=i[Dy(g*) 1*i[Tya(q") 1o + i[ Dy (g*) 14
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where D, II and T denote propagators, one-particle
irreducible mixing amplitudes and proper vertices, re-
spectively. Here p™ and p~ are the outgoing momenta
of the =+ and 7, respectively. For this model to
reproduce the phenomenologically successful VMD,
and hence provide a good fit to the data (assuming
exact universality), pr(qz) and g, must be related
by (comparing Egs. (2) and (3))

. 2
MRl () = ‘gf(;z) : (4)

Note that this result then implies that ITY}'?! (¢?) =
(qz/mlz,)H),’ym(qz). Eq. (4) arises from the simple
VMDI1 picture when universality is assumed and is
also consistent with the usual VMD?2 picture as ex-
plained elsewhere [13,14].

Thus Eq. (4) is the central equation of this work,
since vector-meson mixing models (e.g., p-w mix-
ing) can also be used to calculate p—y mixing and
then confronted with traditional VMD phenomenol-
ogy. The results quoted in the review by Bauer et al.
[15] are summarized in Tables I and XXXII of that
reference. They list a range of values which vary de-
pending on the details of the fit to the p mass (m,,) and
width (", ). Within the context of the traditional VMD
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(i.e., VMD2) framework they extract g5(g* = 0) /4
from p® photoproduction (yp — p°p) and gf,(q2 e
m2) /4 from p° — ete™. The three sets of results
quoted are (in an obvious shorthand notation): I', =
135,145,155 MeV, m, = 767,774,776 MeV, g3(q* =
0) /47 =2.43+0.10,2.27+0.23,2.18+0.22,£3(¢* =
mf,) /4w =2.2140.017,2.20+0.06,2.11 £ 0.06, re-
spectively. We see that g, is a free parameter of the
traditional VMD model (VMD2) which is adjusted
to fit the available cross section data. The central fea-
ture of the VMD2 model is that it presumes a constant
value for its coupling constant g,. We note in passing
that the universality condition is g, ~ gpmr ~ gy ~
8ppp and where experimentally we find [15,16] for
cach of these g?/4m ~ 2. For example, the values
of gorr corresponding to the above three sets of re-
sults are g2, (q* = m3)/4m = 2.61,2.77,2.95 and
are extracted from p® — 77~ It should be noted
that the pNN interaction Lagrangian is here defined
as in Refs. [3,5] with no factor of two [14,16] and
hence gony = guw/2. As a typically used value is
gf,NN /(47) = 0.41 we see that universality is not ac-
curate to better than 40% in gf,, which corresponds to
~20% in g,.

The results of the VMD?2 analysis [15] are approx-
imately consistent with g, being a constant and so
we see from Eq. (4) that I1,, in VMD]-like models
should not deviate too strongly from behaviour linear
with 4.

We shall now examine the process within the con-
text of the model used by Piekarewicz and Williams
(PW) who considered p-w mixing as being generated
by a nucleon loop [5] within the Walecka model. Us-
ing nucleon loops as the intermediate states removes
the formation of unphysical thresholds in the low g*
region and allows us to use well-known parameters.
The rho-coupling is not a simple, vector coupling, but
rather [17]

prN
2M

Iﬂl’;]\/l\/ = gpNN'}"u + i O';W(IV , (3)
where C, = fonn/8pnn = 6.1 and M is the nucleon
mass. With the introduction of tensor coupling the
model! is no longer renormalizable, but to one loop or-
der we can introduce some appropriate renormaliza-
tion prescription. As the mixings are transverse, we

write T, (¢%) = (8uv — qudv/q*)T1(g*) [7]. The

photon couples to charge, like a vector and so, unlike
the PW calculation, we have only a proton loop to con-
sider. Here we can safely neglect the coupling of the
photon to the nucleon magnetic moment and so there
is no neutron loop contribution nor any tensor-tensor
contribution to the proton loop. This sets up two kinds
of mixing, vector-vector I14; and vector-tensor I1%,
where (using dimensional regularization with the as-
sociated scale, u)

|
va(q2) = _q2e§ﬂ%[§ - %
! TS I T
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Note that these functions vanish at > = 0, as expected
from the node theorem since we have coupling to con-
served currents [7]. To remove the divergence and
scale-dependence we add a counter-term

8onnCr
‘CCT =e p27r2 Puv i

to the Lagrangian in a minimal way so as to renor-
malize the model to one loop. This wiil contribute
~iCrgpnneq®/m* to the photon-rho vertex, which will
add to the contribution {IT generated by the nucleon
loop. The counter-term will contain pieces propor-
tional to 1/€, ¥ and In w2 to cancel the similar terms
in Egs. (6) and (7), and a constant piece, 8, which
will be chosen to fit the extracted value for g,(0). The
counter-term is

1/1 C, 1. G
CT‘_E(€+?>+7(12+8)

RIS P
- (12+ S)In/u + B, (8)

which gives us the renormalized mixing,
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Fig. 1. The PW mode! prediction for the mixing amplitude is
related to the traditional VMD coupling g,(g%) using the cen-
tral result of Eq. (4). The resulting behaviour of g%,/47'r Versus
g = +/q? is then plotted in the timelike region for this model.
Shown for comparison are a typical pair of results (2.27 £0.23 at
q=0and 2.202-0.06 at g = m,, see text) taken from a traditional
VMD based analysis of cross section data in Ref. [15].

1/5 2M?
I 2y — 2 €8pNN gt
(@) =4 2 18 34°

2

8M4+2M2q2—q4 q2
- arctan 4 [ ————
3¢3\/4M? — g2 4M? — g2

In M2
6

—ﬂ] . (9)

We find that the choice 8 = 8.32 in our counter-term
approximately reproduces the extracted value of g,(0)
at ¢> = 0.

The results for g,(q*) for the PW model are shown
in Fig. 1. We see that despite this model having a
node in the photon-rho mixing at ¢* = 0 the resulting
g* dependence of 8, is small. As can be seen from
this plot, we obtain values of gf,(O)/(47r) =2.14 and
gf,(mf,) /(4m) = 2.6 compared to the experimental
averages 2.3 and 2.17, respectively.

It should be remembered that Eq. (4) is only as re-
liable as universality, which is itself violated at a level
of (30-40)% . Based on this important observation,

we can conclude then that the PW model provides a
result consistent with the spread of extracted results
given in Ref. [15]. It should be noted that any VMD1-
like model which predicts a significantly greater de-
viation from linearity with g will fail to reproduce
phenomenology because of Eq. (4).

In summary, we have explicitly shown in Eq. (4)
that the vanishing of vector-vector mixing at g> = 0 is
completely consistent with the standard phenomenol-
ogy of vector meson dominance (VMD). We have,
in addition, applied the same type of model used in
a study of p- mixing to extract the momentum de-
pendence of p~y mixing and have compared the re-
sult to the VMD2 based analysis of the experimental
data. We see that the phenomenological constraints of
VMD can provide a useful independent test of VMD-
like models of vector mixing and future studies should
take adequate account of this. It would, of course, be
preferable to reanalyze the data used in Ref, [15] from
the outset using VMDI rather than VMD?2, but this
more difficult task is left for future investigation.
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The cross-section for ete™ — 7#¥7~ in the p—w resonance region displays a narrow
interference shoulder resulting from the superposition of narrow resonant w and broad
resonant p exchange amplitudes [1]. The strength of the w “interference” amplitude has
generally been taken to provide a measurement of p;-w; mixing (where py, wy are the pure
isovector p and isoscalar w states) [2,3]. The extracted mixing has then been used to gen-
erate pr-wy mixing contributions to various few-body observables [4-6], a program which,
combined with estimates for other sources of isospin-breaking, produces predictions for
few-body isospin breaking in satisfactory accord with experiment [3]. The phenomenolog-
ical success. for those observables for which pr-wr contributions are significant, rests, in-
extricably. on two assumptions, (1) that the interference amplitude is dominated by pj-w;
mixing (i.e.. negligible “direct” w; — 7 contribution to the physical w decay amplitude)
and (2) that the resulting mixing amplitude is independent of momentum-squared, so the
extracted value can be used unchanged in meson-exchange forces in few-body systems,
where ¢2 < 0.

The neglect of “direct” w; — 7 coupling (i.e., coupling which does not go via mixing
with the p;) can actually be re-interpreted physically, this re-interpretation simultaneously
providing the conventional justification for taking the p;-wy self-energy, II?“, to be real in
modern analyses of ete™ — 77~ [7,8]. As will become clear below, however, corrections
to the underlying argument, usually thought to be small, have unexpectedly large effects
on the extraction of the p—w mixing contribution from experimental data.

The assumption of the g*-independence of [17#(¢?) is more problematic [9,10]. In gen-
eral, one knows that a system of, e.g., nucleons, vector mesons and pseudoscalar mesons,
can be described by an effective low-energy Lagrangian, constructed so as to be compati-
ble with QCD (e.g., one might think of the effective chiral Lagrangian, L.g, obtainable via
the Coleman-Callan-Wess-Zumino construction [11]). Such a Lagrangian, involving terms
of arbitrarily high order in derivatives, will produce momentum-dependence in all observ-
ables which can in principle become momentum-dependent. This has been seen explicitly
for the off-diagonal (mixing) elements of meson propagators by a number of authors, em-
ploying various models [12,13], as well as QCD sum rule and Chiral Perturbation Theory
(ChPT) techniques [14]. Such ¢*-dependence has also been shown to be consistent with
the usual vector meson dominance (VMD) framework [15]. The possibility [16] that an
alternative choice of interpolating fields might, nonetheless, correspond to the standard
assumption of ¢*-independence has been shown to be incompatible with the constraints
of unitarity and analyticity [17]. It is thus appropriate to revisit and generalize the usual
analysis.

As has been known for some time, to obtain properties of unstable particles which
are process-independent and physically meaningful, one determines the locations of the
resonance poles in the amplitude under consideration, and makes expansions about these
pole locations {18]. The (complex) pole locations are properties of the S-matrix and
hence independent of the choice of interpolating fields, and the separate terms in the
Laurent expansion about the pole position have well-defined physical meaning [18]. The
importance of such an “S-matrix” formalism for characterizing resonance properties has
been stressed recently by a number of authors in the context of providing gauge- and
process-independent definitions of the Z° mass and width in the Standard Model [19,20].
For our purposes this means that: (1) the “physical” {p, w} fields are to be identified
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as those combinations of the {ps, wr} fields containing the corresponding S-matrix poles
and (2) to analyze e¥e™ — 777~ one should include both resonant terms involving the
complex p and w pole locations (and hence constant widths) and “background” (i.e. non-
resonant) terms. In quoting experimental results we will, therefore, restrict ourselves to
analyses which, as closely as possible, satisfy these requirements. To our knowledge, only
one such exists: the fifth fit of Ref. [21] (performed explicitly in the S-matrix formalism,
though without an s-dependence to the background). As stressed in Ref. [21], using the
S-matrix formalism, one finds a somewhat lower real part for the (complex) p pole position
(thy, = 757.00 £0.59, T, = 143.41 + 1.27 MeV) than is obtained in conventional, non-
S-matrix formalism treatments. For comparison below we will also employ the results of
the second fit of the more conventional (but non-S-matrix) formalism of Ref. [22], which
employs an s-dependent background, an s-dependent p width, and imposes the (likely too
large) Particle Data Group value for the p mass by hand.

Let us turn to the question of p—w mixing in the presence of a ¢*-dependent off-
diagonal element of the self-energy matrix. We shall work consistently to first order in
isospin breaking (generically, O(¢)), which will mean to first order in II,,. The dressing
of the bare, two-channel meson propagator has been treated in Ref. [10].

As we consider vector mesons coupled to conserved currents, we can replace D,,(q?)
by —g,, D(q%). We refer to D(q*) as the “scalar propagator”. We assume that the isospin-
pure fields pr and w; have already been renormalized, i.e., that the relevant counterterms
have been absorbed into the mass and wavefunction renormalizations. Taking then the
full expression for the dressed propagator and keeping terms to O(e), one finds

12 _( Dl DL > _ ( (¢* = Mpu(®) ! D] (¢%) )
D(¢*) = ( D;I:w I = D/{w(qz) (q2 _ wa(q2))—1 ) (0.1)

where the renormalized self-energies IIyi(¢?) — m? as ¢* — mj. Defining H,(:,)c)(qz) =

kk(g?) — m?, we then have Hff,?(q2) = O[(¢* — m{)?]. From the complex pole positions,
my, we define the (real) mass (rix) and width (T') via, m? = mi — ik To O(e),
DI, (q%), is then [10]

ww

I 2 pr(q2) . I 2 2 I 2
D, (¢°) @~ 1)) (¢ — i~ D, (¢ u(¢*) DL (%), (0.2)
which contains both a broad p resonance and narrow w resonance piece.

As explained above, the physical p and w fields are defined to be those combinations of
the pr and wy for which only the diagonal elements of the propagator matrix contain poles,
in the p,w basis. This definition is, in fact, implicit in the standard interpretation of the
ete”™ — m¥r~ experiment, which associates the broad resonant part of the full amplitude
with the p and the narrow resonant part with the w. Using different linear combinations
of pr, wr, (call them p’, w’) than those given above (p, w), one would find also narrow
resonant structure in the off-diagonal element of the vector meson propagator in the {p’,
w'} basis, preventing, for example, the association of the narrow resonant behaviour with
the w’ pole term alone.

We define the transformation between the physical and isospin pure bases by (to O(¢))

P=PI— €W, wW=wr+ep; (0.3)



where, in general, ¢; # ¢ when the mixing is ¢*-dependent. With D%(z — y) =
—2(0|T(p*(z)w"(y))|0), one then has for the scalar propagator, to O(e),

Dp(d®) = D (¢") — 1D (a) + 2Dy, (¢7). (0.4)
The condition that D,,(¢?) contain no p or w pole then fixes € to be
_ pr(mi) _ pr(m?)) 0.5
A= 2 © 5\ 2T 2 0,2y (0.5)
mw—mP—pr(mw) mw—mp-i-Hw(mp)

When I1?¥(¢?) is ¢*>-dependent, we thus see explicitly that ¢; # €;; the relation between
the isospin-pure and physical bases is not a simple rotation. This is a universal feature of
g*-dependent mixing in field theory. Recall that I1®)(¢?) and II{%)(¢*) vanish by definition
as ¢> — m?2 , at least as fast as (¢* — m?,)?. The usual assumption is that these two
quantities are zero in the vicinity of the resonance region, which leads to the standard
Breit-Wigner form for the vector meson propagators. II{%)(¢?) and TI{®)(¢?) are, of course,
momentum-dependent in general since the vector propagators must be real below the =r
and 7 thresholds. Note that, from Egs. (0.4) and (0.5), any deviation from the Breit-
Wigner form and/or any non-linearity in the ¢*-dependence of II,,(¢?) will produce a
non-zero off-diagonal element of the vector propagator even in the physical basis. This
means that a background (non-resonant) term is completely unavoidable even in the
traditional VMD framework, where all contributions are associated with vector meson
exchange. Moreover, in general, this background will be s- (i.e., ¢*)-dependent. Finally,
even in the vicinity of the p and w poles, where it should be reasonable to set Hf)?,)(qZ)
and I1{%(¢?) to zero, the p; admixture into the physical w is governed, not by II*“(m?2)
as usually assumed, but by II*“(m2).

The time-like EM pion form-factor is given, in the interference region, by

Fﬂ(q'b’) - g(‘,,r,,D‘,,u,f—:i + gp,,,rD,,,,f—?- + gp,,,erw% + background, (0.6)

where gurr is the coupling of the physical omega to the two pion final state and f,, and
fury are the electromagnetic p and w couplings. The third piece of Eq. (0.6), gprr Dpw firys
results from the non-vanishing of the off-diagonal element of the physical meson propagator
and, being non-resonant, can be absorbed into the background, for the purposes of our
discussion, as can any deviations from the Breit-Wigner form for the p and w propagators.
Since the variation of ¢* over the interference region is tiny, we can presumably also safely
neglect any q-dependence of f,y, fuy, gorr and gurr. fv is related to the “universality
coupling” [15], gv, of traditional VMD treatments by fv., = —ern?/gy.

We now focus on the resonant w exchange contribution, whose magnitude and phase,
relative to the resonant p exchange, are extracted experimentally. We have

Jurr = <7T7F|LUI =+ 62,01) = Gurrr + €29pr7m, (07)
where €, is given in Eq. (0.5) or, equivalently, by e; = —i zIl,(m?2)/m,[',, where
by (hE ! .
z={1- — . .S
m,T, '\ T, )
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Note that z =~ 1 but equals 1 only if we neglect the w width and p — w mass difference.
This brings us to the Renard argument (7]. Since, in general, gu,rr # 0, I, (¢2) must
contain a contribution from the intermediate 7 state which, because essentially the entire
p width is due to the 7= mode, is given by

1127 (m?) = Z‘”"ngg(mg) = G(Rell?f(m?) — ir,T,), (0.9)

prmm
where G = gy rr/gpynr is the ratio of the p; and wy couplings to 7. In arriving at Eq. 0.9
we have used the facts that (1) the imaginary part of the p self-energy at resonance
(¢* = m2) is, by definition, —%,T,, and (2) gprr = gpyrr to O(€). We have then, defining

II,, by M,y = I,, — iGl,,

I, (m?) — iGm,T,] (0.10)

€2 = 22—

mprp[
and hence
Junr = Guinr (1 - 2:) + é2gp11r1r, (011)

where &, = (—iz/rhpfp)f[pw(mﬁ). We shall also define, for convenience,

T = M,u(m?)/m,T,. (0.12)

The standard Renard analysis [7] involves approximating z by 1. The contribution to
w — 77 from the intrinsic wy decay is then exactly cancelled in Eq. (0.11). Using the
(preferred) experimental analysis of Ref. [21], however, we find

z=0.9324 4 0.3511 ¢ . (0.13)

(For comparison, the analysis of Ref. [22] gives 1.023+0.2038z2). Because of the substantial
imaginary part, the intrinsic decay cannot be neglected in ete™ — ntx~
Substituting the results above into Eq. (0.6), we find

Fr(¢®) = f?’ygmn [|rex|eid’=+=‘ ((l - 2)G - izT) P, + P,,] + background, (0.14)

where we have replaced the propagators D,, .., of Eq. (0.6) with the simple Breit-Wigner
pole terms P, = 1/(p* — m2 ), and where

T = = |rex|ei®ete= (0.15)
Py
with ¢.+.- the “leptonic phase” (to be discussed in more detail below). Experimentally,
rhil‘(w — ete”) 172
rell = [rh%l’(p S eve) = 0.30 £ 0.01 (0.16)

using the values found in Ref. [21]. The form of Fr(¢*) in Eq. (0.14) is what is required
for comparison with experimental data [21], for which one has

Froc P+ Ae®Py; A= —0.0109 £0.0011; ¢ = (116.7 + 5.8)°. (0.17)

S



One can now see that the uncertainty in the Orsay phase, ¢, makes a precise extraction
of ﬂpw(mﬁ) impossible. Indeed, the two contributions to the w exchange amplitude (i.e.,
multiplying P, ) have either nearly the same phase or differ in phase by close to 7 (de-
pending on the relative signs of G and T'). In either case, a large range of combinations of
G and T, all producing nearly the same overall phase, will produce the same value of A.
The experimental data can thus place only rather weak constraints on the relative size of
the two contributions, as we will see more quantitatively below.

Let us write rex, the ratio of electromagnetic couplings, in terms of the corresponding
isospin-pure ratio, 17 = fu,y/ fory- USINg fuy = furr + €2fory and foy = fory — €1fu;4, one
finds rex = (r7 + €2)/(1 — e17r), where 71 is real. To O(¢) one then has

SIN Pote- = Im(es) + Irexlzlm(el)' (0.18)

ITeX|

2

[gnoring the small difference in €; and ¢, (since rZ,

is small) we obtain

(1 + |rex|®)Ime,

ITEXI

SIN Pete- = (0.19)

In order to simplify the discussion of our main point, which is the effect of including
the direct coupling on the experimental analysis, let us now make the usual assumption
that the imaginary part of II,, is dominated by 77 intermediate states. (Note, however,
that, because the argument is complex, there may be an imaginary part of II,, even in the
absence of real intermediate states; for example, in the model of Ref. [13], with confined
quark propagators, the phase of the quark loop contribution to Hpu(mﬁ) is about —13° (23],
despite the model having, for this contribution, no available intermediate states.) Making
this assumption, II,, (and thus T) becomes pure real and the imaginary part of IT,.(m?2)
reduces to —Gm,I',. Using Egs. (0.10) and (0.19) the leptonic phase becomes

L+ |rex|®
|7ex] /

which is completely fixed by G and prw. For each possible II,,, only one solution for G
both gives the correct experimental magnitude for the w exchange amplitude (A) and has
a phase lying in the second quadrant, as required by experiment. Knowing fI,,w and G,
Eqn. (0.20) allows us to compute the total phase, ¢. Those pairs (II,.,, G) producing the
experimentally allowed (A, @) constitute our full solution set.

The results of the above analysis are presented in Fig. 1, where we have used as input
the results of the analysis of Ref. [21], for the reasons explained above. The spread in
G values reflects the experimental error in A. We will supplement the experimental con-
straints by imposing the theoretical prejudice —0.05 < G < 0.05. We see that, barring
theoretical input on the precise size of (, experimental data is incapable of providing
even reasonably precise constraints on the individual magnitudes of G and ﬁpw(mf,). The
reason for this situation has been explained above. If we fix A at its central value, the ex-
perimental phase alone would restrict I:I,,w(mf,) to the range (—1090 MeV?, —5980 MeV?),
the G constraint to the range (—2290 MeV?, —6180 MeV?). Including the experimental er-
ror on A extends, for example, the phase constraint range to (—840 MeV?, —6240 MeV?).

SN Peto- = — ( (T'Rez+ G Im=z) (0.20)
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For comparison, artificially setting G = 0 produces I:I,,w(mi) = —3960 MeV*. One may
repeat the above analysis using the input parameters of Ref. [22] (where, however, the
p pole position is presumably high by about 10 MeV [21]). For the central A value, the
experimentally allowed range of ﬁpw(mﬁ) is (—3720 MeV?, —5080 MeV?). The large un-
certainty in the extracted values of ﬁpw(mﬁ) and G is thus not an artifact of the particular

fit of Ref. [21]. The small (£600 MeV?) error usually quoted for flpw(mﬁ), and associated
with the experimental error in the determination of A, thus represents a highly inaccurate
statement of the true uncertainty in the extraction of this quantity from the experimental
data. It is important to stress that no further information on II,, (m?) is obtainable from
the ete™ — 77~ data without additional theoretical input.

Note that, in the model of Ref. [13], as currently parametrized, the sign of GG is
determined to be positive, and the magnitude to be ~ 0.02. Such a value of G, however,
coupled with the phase correction mentioned above, would fail to satisfy the experimental
phase constraint. This shows that, despite the weakness of the experimental constraints
for the magnitudes of G and I:Ipw(mf,), the experimental results are, nonetheless, still
capable of providing non-trivial constraints for models of the mixing.

In conclusion, we have shown that, in general, there is a contribution to the p—w
interference in ete™ — xt7~ which arises from the intrinsic w; — 77 coupling, and
that this contribution, given the current level of accuracy of the experimentally extracted
Orsay phase, precludes any even reasonably precise extraction of the p—w mixing in the
absence of additional theoretical input. It is important to stress that this conclusion and
the central result of Eq. (0.14) do not depend in the least on the possible ¢*-dependence
of I1,,(¢*) nor on the use of the S-matrix formalism: even for constant I, and a more
traditional Breit-Wigner analysis one would still have a significant imaginary part of z
and hence a residual contribution from the direct coupling which, being nearly parallel to
that associated with p—w mixing, would lead also to the conclusion stated above. Note,
however, that a significant improvement in the determination of the experimental phase
would allow one to simultaneously extract the self-energy and the isospin-breaking ratio,
G. In addition to the main point, just discussed, we also note that (1) even if G were,
for some reason, to be zero, the data would provide the value of the mixing amplitude at
m? and not m?, (2) since it is the complex S-matrix pole positions of the p and w which
govern the mixing parameters €; 2, only an analysis utilizing the S-matrix formalism can
provide reliable input for these pole positions, and hence for the analysis of the isospin-
breaking interference in e*e™ — 7*7~ and (3) the simultaneous use of the experimental
magnitude and phase can provide non-trivial constraints on models of the vector meson
mixing process.
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Figure 0.1: The allowed values of ¢ = Yy /9o, == and ﬁ(mﬁ) (in MeV?)
are plotted as a function of the Orsay phase, . The vertical lines indicate
the experimental uncertainty in ¢ (= 116.7 + 3.8)° and the uncertainty
in the amplitude A (0.0109 + 0.0011) (see text) gives rise to the spread
of possible values of G at each value of .
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