
rf
"{

Object-Oriented Simulation of Chemi
and Biochemical Processes

Damien Hocking

Department of Chemical Engineering
University of Adelaide

Thesis submitted for the Degree of
Doctor of Philosophy

in
The Universþ of Adelaide

Facuþ of Engineering

February 1997

25"r. cta

111

ACxNO\ilLEDGMENTS
I would like to thank my supervisors, Dr. Brian O'Neill and Dr. John Roach for their support

and guidance throughout this project. Their contribution has been invaluable. I would also

like to thank the staff and postgraduate students of the Chemical Engineering Department at

the University of Adelaide for many interesting discussions and assistance. I would also like

to thank my family and friends for their support.

I gratefully acknowledge the financial support of the Co-operative Research Centre for Tissue

Growth and Repair without which I could not have commenced this project.

ll

CONTENTS

Chapter 1: Introduction and literature review

1.1 Simulation Techniques

1.1.1 Sequential-Modular

1.1.2 Equation-Oriented

1.1.3 Parallel-Modular

1.2 Object-Oriented Process Simulation

1.2.1 Object-Oriented Simulation

1.2.2 Languages

| .2.3 Obiect-Oriented S imulation Environments

1.2.4 Summary of Object-Oriented Simulation

1.3 Biochemical Process Simulation

1.3.1 Summary of Biochemical Process Simulation

1.4 Physical Property Calculation

1.5 Numerical AnalYsis Methods

1.5.1 Nonlinear Algebraic Equations

1.5.2 Integration Methods

1.6 Conclusions and Project ScoPe

Chapter 2: Simulator I)evelopment and I)ata Structure

2.1 Development Language

2.2 Data Structure

2.2.1 Phy sical Information

2.2.2 Simulator Executive

2.2.3 Mathematical Information

2.3 Functionality and Behaviour

2.3.1 Structural AnalYsis

2.3 .2 Equation Evaluation

2.3.3 Model Evaluation

2.3.4 Behavioural Changes

2.3.5 Numerical Methods

2.3 .6 Interchangeable Simulation Techniques

I

1

1

2

4

4

6

6

T4

18

T9

2t

22

24

24

27

29

3l

31

35

36

39

40

48

48

51

52

54

56

60

IV

2.4 Chemical Components and Property Calculation

2.5 Summary

Chapter 3: C++ Implementation

3.1 C++ Constructors and Destructors

3.2 Vectors and Matrices

3.3 Process Class Structure

3.3.1 System Class and Descendants

3.3.2 Port Class and Descendants

3.3.3 Stream Class and Descendants

3.4 Mathematical Class Structure

3.4.1 Yariable Class and Descendants

3.4.2 Equation-Set and Dynamic-Set classes

3.5 Component, General-Component-Mixture

and Properties Classes

3.5.1 Component class and Descendants

3.5.2 General-Component-Mixture Class

3.5.3 Properties Class and Descendants

3.6 Numerical Method Classes

3.7 Summary

Chapter 4: Modelling and Simulation

4.1 Decomposition Techniques

4.1.1 Medium and Machine Decomposition

4.I.2 Primitive Behaviour Decomposition

4. 1.3 Mathematical Decomposition

4.2 Modelling Examples

4.2.1 Mixing Tank

4.2.2 Bi-Directional Information Flow

4.2.3 Connected-System Modelling

4.2.4 Mútiple-Inheritance Modelling

4.2.5 Modelling with Physical Properties

4.3 Simulation

62

66

68

68

69

t3

73

77

80

81

81

83

88

89

90

90

9t

92

93

93

93

94

9s

97

98

105

TT2

t20

t26

130

4.3.1 Instruction Sequence

4.3.2 Steady-state example

4.4 Summary

Chapter 5: Major Test Problems

5.1 Cavett Problem

5.2 Tennessee Eastman Process

5.2.1 Control Systems

5.2.2 Simulation Results

5.3 Recombinant Fermentation Model

5.3.1 Model Description

5.3.2 Control System

5.3.3 Simulation Results

5.4 Discussion

5.5 Summary

Chapter 6: Summary, Conclusions and Recommendations

6.1 Summary

6.2 Class Description

6.3 Modelling

6.4 Simulation

6.5 Recommendations

Bibliography

Nomenclature

Appendices

Appendix A: General member function descriptions

4.1 System-based classes

130

131

135

136

t36

t4t
r43

150

157

158

161

r62

165

r67

168

168

168

r69

t70

t7I

173

180

t82

183

183

vl

4.1.1 System Connectivity and

Mathematical interface functions

A.1.2 System Analysis

4.1.3 Convergence-Block class interfaces

4.2 Port-based classes

4.2.1 Port, Input_Port and Output-Port

class interface functions

A.2.2 Process-Output-Port and

Process Input-Port class interface functions

A.2.3 Signal-Input-Port and

Signal_Output-Port class interface functions

A.2.4 Energy Input-Port and

E ne rgy_Output-P o rt cl ass interface functions

A..3 Stream classes

4.3.1 Stream class interface functions

4.4 Variable-based classes

A.4.1 Variable class interface functions

A.4.2 Derivative class interface functions

A.4.3 Equation class interface functions

A.4.4 Equation_Set and Dynamic-Set

class interface functions

4.5 Physical Property Classes

A.5.1 Component class interface functions

A.5.2 User_Component class interface functions

A. 5. 3 Component-Set class interface functions

4.5.4 General_Component_Mixture class

interface functions

4.5.5 Ideal_VLE class interface functions

4.6 Mathtool class interface functions

Appendix B: Flash Class Member Functions

B.l Constructor

8.2 Port Setup

183

185

185

186

186

t87

189

190

190

190

190

190

t92

t92

t93

195

195

t96

196

r97

200

200

202

202

205

vll

8.3 Connection Functions

Appendix C: Tennessee Eastman Unit Models

C.l Mixer Model

C.2 Reactor Model

C.3 Separator Model

C.4 Stripper Model

C.5 Nomenclature

205

207

207

208

2t0

2tt
2t2

Appendix I): Tennessee Eastman Flowsheet Definition 214

Äppendix E: Fermentation Model Parameters 221

vlll

INUEx TO FTCURES

Figure 2.1: Simple layout of Tennessee Eastman Process. 36

Figure 2.2: Basic connection example. 37

Figure 2.3: Stream class hierarchy. 38

Figure 2.4: Portclass hierarchy. 38

Figure 2.5: Simple draining tank. 4l

Figure 2.6: Yariable and Equation-Set class hierarchies. 43

Figure 2.7: Flow restriction valve between two tanks. 44

Figure 2.8: System class hierarchy. 47

Figure 2.9: A flowsheet and its connected System-based tree. 49

Figure 2.10: Connected mathematical tree of flowsheet in Figure2.9. 50

Figure 2.1 1: Virtual and polymorphic model functions. 53

Figure 2.12:Mútiple inheritance numerical method class structure example.58

Figure 2.I3: Mathematical inheritance tree. 59

Figure 2.14: Combined System/Mathtool class hierarchy. 60

Figure 2.15: Physical property class hierarchies. 65

Figure 3.1: Multiple access of Vector objects. 7l

Figure 3.2: System-class steady-state analysis algorithm. 14

Figure3.3: System-classsteady-statecollection/buildingalgorithm. 75

Figure 3.4: Combined System/Mathtool class hierarchy. 77

Figure 3.5: Port class hierarchy. 80

Figure 3.6: Stream class hierarchy. 81

Figure 3.7: Yariable class hierarchy. 83

Figure 3.8: Equation-Set building algorithm. 85

Figure 3.9: Dynamic_Set building algorithm. 86

Figure 3.10: Tank volume balance equation tree. 88

Figure 3.1 1: Physical property class hierarchies. 89

Figure 3.12: Mathematical inheritance tree. 91

Figure 4.1: Cylindrical liquid mixing tank. 96

Figure 4.2: Flash vessel. 126

Figure 4.3 Simulation instruction sequence. 131

IX

Figure 5.1 : Cavett Process.

Figure 5.2: Tennessee Eastman Process.

Figure 5.3: Reactor pressure response.

Reactor pressure setpoint change from

2806 to 2746k'Pa absolute.

Figure 5.4: Separator level response.

Reactor pressure setpoi change from

2806 to 2746kPa absolute.

Figure 5.5: Modified Luyben Control Scheme for Tennessee

Eastman Problem.

Figure 5.6: Tennessee Eastman responseto l5Yo

decrease in production rate.

Figure 5.7: Tennessee Eastman response to product G:H mass ratio

setpoint change from 50:50 to 40:60.

Figure 5.8: Tennessee Eastman response to reactor pressure setpoint

change from 2806 kPa. abs. to2746 kPa. abs.

Figure 5.9: Tennessee Eastman response to purge composition setpoint

change from 13.82 moleoto B to 15.82 mole 0/o B.

Figure 5.10: Fermenter control system diagram.

Figure 5.11: On-off glucose control simulation.

Figure 5.12: Full glucose control simulation. Setpoint 0.01 g /L.

Figure 5.13: Full glucose control simulation. Setpoint 0.001 g iL.

136

t42

747

t47

149

1s3

rs4

155

156

t62

163

r64

165

X

INUnX TO T¿.NIES

Table 4.1:

Table 5.1:

Table 5.2:

Table 5.3:

Composition and duty for vapour-liquid flash calculation.

Cavett feed and product stream compositions.

Cavett fl ash specifications.

Iterations and solution time to convergence

for the Cavett rating problem.

Iterations and solution time to convergence

for the Cavett design problem.

Table 5.4:

134

138

r39

140

140

XI

Crr¿.prEn 1

Introduction and Literature Review

Simulation may be defined as reproducing the behøviour of a physicøl process by artiJicíal

meøns. In a chemical engineering context it can be considered as the use of a computer to

mathematically model and solve steady-state and dynamic process flowsheets. Chemical

process simulation commenced in the late fifties when computer technology had advanced to

the point where moderately complex programs were possible. Traditionally, process

simulations and simulators have been coded in procedure-oriented languages such as Fortran'

Simulations were originally limited to simple process systems or unit operations. These were

coded on a problem-specific basis. The focus was on simulation of a chemical process from

the corresponding unit model equations. This approach was still employed in the eighties

(Shacham l9S5) and can be a fast, useful tool for small problems. As computing power and

languages developed through the sixties, simulation packages were designed that provided a

variety of unit operations that could be linked together to simulate different process

flowsheets. This is the type of simulation environment we are familiar with today.

1.1 Simulation Techniques

For a process flowsheet three basic methods can be used to find a solution. These are the

sequential-modular, equation-oriented (simultaneous) and the parallel-modular methods' All

are applicable to both dynamic and steady-state simulation, although the definition of parallel-

modular as applied to dynamic simulation is unclear (Hillestad and Hertzberg 1986) and will

not be discussed further. The methods are summarised below.

1.1.1 Sequential-Modular

This was the initial method used for simulation of processes with recycle streams. The

computational demands of the method were reasonably low. This was a significant factor

for early simulations because a powerful digital computer in the early seventies only

possessed 32kB of RAM and a 1 MB disk drive. Steady-state sequential-modular

simulations proceed on a unit-by-unit basis around the flowsheet and convergence blocks

adjust stream variables until convergence is achieved. Design problems can be difficult to

specify, although this is dependent on the unit model form. However, if units are modelled

with simultaneous equations, design calculations are simple. Different locations and

number of convergence blocks can dramatically affect simulation efficiency for a given

flowsheet. Initial estimates are required for convergence block output streams to

commence calculations.

Dynamic sequential-modular simulations have unit input variables approximated by

polynomial interpolation for each time interval, with separate integrators applied to each

unit module (Hillestad and Hertzberg 1988). This dynamic method sometimes copes

poorly with strongly coupled systems (Fletcher and Ogbonda 1988). Steady-state

sequential-modular simulation requires relatively few computing resources. DYFLO

(Franks 1972) and DYNSYL (Patterson and Rozsa 1980) are examples of dynamic

sequential-modular simulators. DYNSYL was originally developed for simulation of

nuclear fuel processing systems and was coded in Fortran. DYNSYL included an option

for fully equation-oriented simulation.

Sequential-modular methodology in its various forms has dominated commercially

available process simulators until recently. Two notable steady-state simulators of this

type are ASPEN (Evans et al. 1979) and PROCESS. ASPEN was originally developed at

Massachusetts Institute of Technology and is programmed in Fortran. It employs a

separate input file language for flowsheet description. In recent years a graphical interface

(called ModelMaker) has been developed that translates a visual description of flowsheets

into the input file language. ASPEN can also simulate multi-phase streams and solids

processing. The simulator incorporates a large physical properties database.

| .l .2 Equation-Oriented

The equation-oriented approach considers the flowsheet as a whole and solves the set of

flowsheet equations simultaneously using a Newton or quasi-Newton algorithm. This

method is mathematically superior to other flowsheeting methods because the numerical

solution is independent of the problem formulation. Equation-oriented dynamic simulation

generally requires the solution of a set of algebraic equations with a set of differential

equations. The two sets can be solved separately at each time step, or using polynomial

2

interpolation with the state or derivative values the differential equations can be solved

simultaneously with the algebraic equations.

The computing resources required significantly exceed those for an equivalent sequential-

modular simulation. The versatility of a system where the problem formulation is

independent of the solution is offset by the effort required to provide a non-singular

problem specification. Steady-state simulation requires a reasonable initial estimate for all

solution variables to start the calculations. Convergence problems can occur with poor

initial estimates or if the solution method encounters a 'difficult' solution region.

Equation-analysis tools can assist with ensuring a non-singular problem. Variable

estimates can be provided by a sequential-modular initialisation although this facility is

extremely rare in equation-oriented simulators. Dynamic simulation requires consistent

initial conditions for state and algebraic variables. These are often provided by the steady-

state solution of the dynamic flowsheet.

SPEEDUP (Perkins and Sargent 1982; Pantiledes 1988) and QUASILIN (Hutchiscsn et al.

l986a,b; Smith and Morton lgSS) are equation-oriented simulators capable of stead)¡-state

and dynamic simulation. SPEEDUP has an input language for model definition and a

symbolic manipulation tool for determining partial derivatives. The simulator executive is

implemented in Pascal and the numerical routines are in Fortran. From the flowsheet

definition the executive program translates the input file into Fortran code. SPEEDUP also

has a database for file management. Physical properties are calculated as separate

procedures to the simulation and not generally included in the equation set.

QUASILIN is similar to SPEEDUP in many respects, although the package is

implemented completely in Fortran. Some thermodynamic properties can be included in

the equation set although the majority are implemented as utility procedures through the

physical property interface of the simulator. DIVA (Holl e/ ql. 1988; Kröner et al. I990a)

is another equation-oriented dynamic simulator with similar features. The numerical

methods and basic executive in DIVA are implemented in Fortran and the model building

facility and user interface are developed in an expert system tool called KEE (Ifuowledge

Engineering Environment). Physical properties are included in the flowsheet equation set.

J

1.1.3 Parallel-Modular

Steady-state parallel-modular simulation has three dehnitions. Firstly, there is a two-tier

approach in which sequential-modular unit models are converged in turn with a linearised

flowsheet equation set. The linearised set is obtained from perturbations of the sequential

models. This method was developed to try and take advantage of the versatility of

equation-oriented flowsheeting while utilising sequential-modular models. The simulator

MASTEP (Timár et al. 1984) employs this method. MASTEP is coded in Fortran.

Secondly, sequential-modular outputs can be compared with equation-oriented outputs.

This is known as a "tear every stream" approach and requires considerable computing

resources. A third approach is a condensed version ofthe previous one and can equally be

interpreted as sequential-modular. The tear stream sets for a sequential-modular simulation

are considered as simultaneous equations. Each loop around a flowsheet becomes an

extended set of nonlinear equations. The main advantage of this particular method is that

interaction between tear variables is accounted for and the simultaneous solver can provide

a betler soluticrn direction. The ASPEN simulator has this method as an opti,:n. Biegler

(1983) presents a comprehensive review of parallel-modular flowsheet solution

1.2 Obiect-Oriented Process Simulation

Over the past few years, object-oriented programming techniques have been adopted for

developing a variety of computer software. Object-orientation originated with the SIMULA

language developed in the sixties (Dahl et al. 1968). The graphical interfaces of operating

systems and computer-aided-drafting packages were among the first applications programmed

using object-orientation. The basic philosophy of object-orientation matched well with the

types of geometric objects encountered.

In object-oriented programming, the focus is on the data of the system under consideration.

The data have directly associated behaviours or functions, i.e. the data can do things. This is

in contrast to procedural programming languages where the emphasis is on functions that own

and manipulate data. Object-oriented languages retain the manipulative capabilities of non-

object-oriented languages with the additional capability to represent structure in a logical way.

An object has been described as "...a chunk of structured knowledge." (Stephanopoulos e/ a/.

1987, p656).

4

The main principle behind object-orientation is the creation of user-defined types. These are

often referred to as classes. An object is a specific instance of a class. A class can contain

any data type that the programming language supports in addition to objects from classes

defined by the programmer. The member objects contained in a class are called attributes of a

class. A class can have its own behaviours, called member functions. A class is a definition

of a data structure. An object contains the values or states of the data.

There are three basic concepts associated with classes and objects. They are inheritance,

polymorphism and encapsulation. Inheritance means that a class can inherit attributes from

another class. A derived class automatically contains the data structure and functionality of

the class it inherits from. The inherited class is called aparent class. A derived class is called

a chitd of the inherited class. Considering a computer-aided-drafting package, there could be

a basic class of Shape. Specific shape classes, such as Square, Triangle and Straight-Line

could inherit a set of general shape attributes and behaviours from the Shape class. In some

object-oriented languages (such as C++;, a class can also be derived from several parents at

orie level. This is called multiple inheritance

Polymorphism means that the same basic behaviour can be implemented in different ways.

The Square, Triangle and Straight_Line classes all need to know how to draw themselves

on the screen. This may be accomplished by having a basic draw) function in each class.

The name of the function or behaviour is the same for each class, but the method used to draw

them would be different.

Encapsulation means that an object's data may be protected by permitting modihcation of the

data only through operations (member functions) owned by that object. For data manipulation

the class definition must provide the necessary operations and functionality. A sub-set of

operations provides a controlled interface to the outside world. As well, they define how the

data can be viewed extemally. Encapsulation promotes data hiding by ensuring that data is

accessed in a formally defined way. There are clearly varying levels of encapsulation that

may be enforced in the class design, from completely loose, unprotected access to very strict

control.

5

These concepts are readily extended to process simulation. The familiar entities such as

streams, process units and components can be considered as basic classes. More specific

classes can be derived from these. Member functions can be used for polymorphic unit

models, solution methods and data transfer, etc.

1.2.1 Obiect-Oriented Simulation

The potential advantages of object-orientation for engineering application are well-

documented (Lee and Arora 1991; Motard 1989). Westerberg and Benjamin (1985) have

described the desirable characteristics of object-orientation as applied to process simulation.

The authors expressed a desire for a building-block approach to process simulation. Process

models should be constructed on a part-whole basis, with simple, tested constructions forming

the basis of larger blocks or model parts which in turn form parts of the larger system and so

on. The authors state:- "...the method of communication for building a model is through the

use of a specially designed nonprocedural language...". Several other object-oriented

language characteristics are discussed. Complete interaction with the simulation environment

down to the individual unit model equations and variables is suggeste<i to enhance debugging.

A comprehensive database and expert-system based commurrication are also reeommerrded.

Object-oriented simulation has followed two main paths of evolution. The first is the

development of object-oriented simulation languages. The other is the development of object-

oriented simulators and simulation environments.

1.2.2 Lansuages

Object-oriented simulation languages generally describe a process in terms of node and

connector objects. The process can be interpreted in two ways (Bischak and Roberts 1991).

The first interpretation is queue-based. The process is a network of queues and activities.

Transactions pass through the network, where they wait in queues or are serviced by

activities. The network is an object containing node and connector objects. Transaction

objects are temporary because they enter and leave the various nodes. The relationship

between objects and the process means that the objects flow through the process. Network

simulation languages such as GPSS (Schriber l99l), SLAM (Pritsker 1986) and SIMAN

(Pegden et al. 1990) employ this approach. This method of simulation is well suited to

production line and schedule modelling, where discrete entities such as cars or television sets

6

move through a factory and are gradually constructed. The approach is not suited to chemical

process simulation, primarily because flow of material through a pipe takes place

continuously, rather than as discrete "lumps". The use of network languages to simulate

chemical plant operation and scheduling has been discussed in the literature (Monis 1992;

Habchi and Deloule 1992).

The second interpretation is that process is an action and is a property ofthe node object, such

as a member function. This is the normal implementation in most object-oriented

programming languages. Languages such as MODEL.LA (Stephanopoulos et al. 1990a,

1990b), OMOLA (Nilsson 1993), gPROMS (Pantiledes and Barton 1992) and the modelling

language in the ASCEND environment (Piela et al. 1990), have been developed and follow

this interpretation. These languages and their major features will now be discussed with

respect to chemical process modelling.

MODEL.LA

The focus of MODEL.LA is on the automatic definition of a model from knowledge about

the system. Model construction from system knowledge is recomr¡ended to accelerate the

rnodel-building process, reduce errors and separate model definitioii from model solution

methods. The system knowledge includes modelling assumptions, simplifications and

model pu{pose, which are unclear from a purely mathematical description. The language

supports object-oriented principles and process representation through six modelling

elements and eleven semantic relationships. These are described briefly below.

The modelling elements are

o Generic-Unit :- A bounded system. The system can be a single unit, a group of

connected units or a whole plant flowsheet.

o Port :- The interface between Generic-Units and the outside world. A Port is used

to transfer information between Generic-Units.

o Streams :- These are connectors between Ports that enable Generic-Units to be

connected together.

o Modeling-Scope :- A set of declarative relationships that apply to all the aspects of

the model. It encapsulates the assumptions and relationships in a given model.

7

o Constraint :- Each relationship inside a Modeling-Scope is declaratively described

by a Constraint. A Constraint is an unsolved relation among quantities, for

example an equation.

o Generic-Variable :- A more complex version of a solution variable. It is used as a

building block for describing modelling relationships.

Each modelling element is derived into more specific classes.

The semantic relationships are:

l. Is-a :- Denotes inheritance from a parent class.

2. Is-a-member-of :- Denotes an instance (object) of a class. The "member"

terminology here refers to an instance declaration, as opposed to an attribute of a

class in the earlier discussion.

3. Is-composed-of :- Describes the relationship between an object and the objects it

contains. (Objects of a different type in the same context. See below, "Is-

disaggregated-in").

4. Is-part-of :- Reverse of the above. Describes the relationship bett'een an object

and the object that contains it.

5. Is-attached-to :- Defines connection from a Port to a Stream, or a Port to a

Generic-Unit.

6. Is-connected-by :- Reverse of the above. Defines connection from a Generic-Unit

to a Port, or a Stream to a Port.

7. Is-described-by :- Defines a link from a Generic-Unit or Port to a Generic-

Variable or Constraint.

8. Is-describing :- Reverse of the above. Dehnes a link from a Generic-Variable or

Constraint to a Generic-Unit or Port.

9. Is-disaggregated-in :- Breaks down groups of objects of the same type into more

manageable pieces. (Objects of the same type in different contexts. See above, "Is-

composed-of').

1Q.Is-abstracting :- Reverse of the above. Groups objects of the same type together.

l1.Is-characterized-as :- Establishes a relationship between a modelling object and

an attribute of its description.

8

The relationships (3,4), (5,6), (7,8) and (9,10) are symmetric in that invoking one member

of a pair implies the other.

A process model is represented graphically. The graphical description is generated by

algorithms that operate on the context (description and assumptions) of the model. The

model is developed in applications that run on top of the expert-system tool KEE. This is

in contrast to the majority of languages where models are developed in the language itself.

MODEL.LA employs phenomena-based descriptions to generate the mathematical model.

For example, by defining part of a model as "MASS-LUMPED-BALANCE", the

mathematical relations are automatically generated in MODEL.LA's mathematical

language. MODEL.LA supports equation-oriented modelling but incorporates no

numerical methods, it is a model development and definition platform. The language is

incorporated into the simulation environment DESIGN-KIT (Stephanopoulos 1987 op.cit.).

DESIGN-KIT is discussed in section 2.2.2, Object-Oriented Simulation Environments.

OMOLA

CìMOLA is a general object-oriented data representation language. It'is designed for

general modelling purposes. It has four predefined classes, three of which are parents for

other predefined classes. They are described below:

o Model :- The base parent class for all user-defined models.

o Terminal :- The base parent class for all model interaction classes. Similar to the

Port class in MODEL.LA.

o Parameter :- A user-specified constant value, for example a tank surface area.

o Variable :- The base parent class for mathematical variables.

The general syntax for a user-defined class is :

{name} rsl {name of parent class} wrTH

{cIase body}

9

END;

The class body contains the attributes of the class. The attributes can include class

definitions, variables and equations. OMOLA does not support member functions or

operations in the conventional object-oriented sense. The language employs equations

which perform the same function. OMOLA employs only two semantic relationships but

each works in two ways. The relationships are:

1. ISA :- Denotes inheritance from a parent class, as indicated above. It also denotes

an instance ofa class.

2. WITH...END :- Used to define the set of attributes in a class definition. It is also

used to initialise some attributes of the objects that a class owns.

OMOLA class definitions include sections for various modelling entities, for example

Terminals, Submodels, Parameters, Variables, Equations and Connections. There is no

structure for the definition of connecting streams, connections are made directly via

Terminal-hierarchy objects with an
((AT') relationship. An example of the def,rnition of a

simple tank is given below. The 'after the mass variable denotes a time derivative.

TANIçIVTOdEI ISÀ MOdEI WITH

terminals:
In ISÀ PipelnTerminal;

Out ISA PipeOutTermína1;

Level ISA SimpleTerminal;

parameters:

Density ISA Parameteri

TankÀrea ISA Parameteri

variable:
masg ISA Varíab1e;

equations:
mass, = Density* (In.Flow-Out.Flow) t

mass = Density*TanlcÀrea*Leveli

END;

l0

OMOLA does not offer some programming language features such as ¿urays and looping.

OMOLA is part of the OMOLA Simulation Environment, called OMSIM (Mattsson et al.

1993). Like MODEL.LA, equation-oriented models are supported and numerical methods

are provided by a companion simulation environment, called OMSIM. OMSIM is

discussed in section 2.2.2, Obj ect-Oriented Simulation Environments.

ASCEND modelling language

The modelling language in the ASCEND environment focuses on the representation of

nonlinear algebraic systems. The primary goal of ASCEND is to provide an equation-

oriented modelling environment. The environment consists of the modelling language and

a set of tools for manipulating the structures created in ASCEND. A variety of

simultaneous equation solvers are included. ASCEND is similar to OMOLA in many

respects. The language contains three predefined classes for model building:

o Model :- The base parent class for user-defined models.

o Atom :- Denotes aphysical quantity, e.g. length.

. Type :- Elernentary language data type, e.g. int.

Object-oriented semantic relationships are provided with the following statements:

1. REFINES :- Denotes inheritance from a parent class.

2. IS_A :- Denotes an instance (object) of a class.

3. IS_REFINED_TO :- Changes the type associated with a previously defined

object.

4. ARE_ALIKE :- Operates on a group of objects and forces them to be of the same

type. The type is the most derived class of the group of objects.

5. ARE_THE_SAME :- Takes 4) a stage further and merges the group of objects

into one instance or object.

A specific instance (object) can be fuither declared as IINIVERSAL. This creates a single

instance that can be referenced throughout a model. It operates the same way as the

ARE_THE_SAME relationship. The ASCEND modelling language does not contain a

Port/Stream data structure for connectivity. Connections are def,rned with the

l1

ARE_THE_SAME relationship. Dynamic simulation is not directly supported.

Integration methods can be programmed in as Model-hierarchy classes. The tank example

given below assumes the Atoms for vol_f lowrate, Iength, density, mass

and mass f l-owrate are already defined and that an integration method has been

programmed.

MODEL TANIçITÍOdE1 REFINES

no of states :=

in_flow, out_flow
level
rho

m

dm dt
area

area. fixed

model;

L¡

IS À vol flowrate;

IS A length;

IS A density;

IS À ma€tsi

IS À mass flowrate;

IS_A generic_reaI;

: = truei

y_prinre [1J , dm_dt

y[1], m

t

dm dt
m

ARE THE SA}ÍE;

ARE THE| S]AÌVTE;

IS REFINED TO time;

= rho* (in flow - out flow);

area*rho*1eve1;

END Tanklvlodel;

In this example the integrator has a number of states which must be set prior to solution.

This is done with the assignment no_of_states : = r; . The tank model merges the

time derivative object dm_dt with the y_prime [1] object of the integrator, and the state

variable y [1] is merged with the mass m.

One interesting aspect of ASCEND is that it promotes open data structures, to the point

where the philosophy is almost anti-encapsulation. In traditional software engineering and

object-orientation, the principle of encapsulation or information hiding is standard for

12

protecting the internal data of an object or software module. The ASCEND group contend

that information hiding impedes the development and debugging process by preventing

direct access to structure and attributes. They suggest that in an extendable system the user

should be able to work at whatever level of abstraction they consider appropriate and as

such all elements of the system should be accessible.

gPROMS

gPROMS is an object-oriented extension of the modelling language present in the

SPEEDUP simulator. The language is designed to model combined discrete and

continuous processes. The syntax of gPROMS is very similar to the preceding languages.

A variety of classes is available for constructing unit models. Predefined class hierarchies

exist for streams, physical quantities and elementary datatypes etc. Object-orientation is

derived from the following two relationships:

1. INHERITS :- Denotes inheritance from a parent class

2. AS :- Denotes an instance of a class.

Connectivity is defined with an "IS': relationship. The tank example is given in gPROMS

below. The $ symbol denotes a time derivative.

MODEL TankModel

PARÀIUETER

TankÀrea AS REAL

VÀRIÀBLE

FIow_In, Flow_Out

mAS

rho AS

hAs

STREAII{

InIet

AS Volume Flowrate

Mase

Density
Length

:F1ow In AS Mainstream

l3

OuLIet, :Flow Out AS Mainstream

EQUATTON

$m = rho* (Flow_In - Fl-ow_Out) ì

m = h*TankÀrea*rho ì

END

gPROMS is being further developed to model distributed parameter processes (Oh and

Pantiledes 1994) and has a facility for translating its models into other languages, such as

ANSI C

1.2.3 Obiect-Oriented Simulation Environments

Three broad classifications are possible for simulation environments. The f,rrst includes the

familiar simulators that provide a library of existing process models that the user can connect

together to create flo'wsheets. Their capacity for user-defined model construction is limited.

The second is complete modelling and simulation environments that incorporate a libraly of.

process models ancl in addition have a facility and/or a language for user-defined models. The

third classification covers interfaces to existing software that are designed to bring together

different useful aspects of several packages. Object-oriented approaches to the three

classif,rcations have been developed. Some of these developments are discussed below.

IOWA STATE UNIVERSITY

A prototype steady-state object-oriented simulator was developed at Iowa State University

(Gadijaru l992,Lau 1992). The project aim was to investigate process simulation and its

application to object-oriented process integration. The simulator is coded in C++. The

simulator can employ sequential-modular simulation to initialise an equation-oriented

simulation. Several sequential and equation-oriented solution methods are available. It is

not capable of dynamic simulation. Flowsheet definition is based on text input with C++.

Object-orientation is employed at many levels in this work; almost everything that the user

manipulates is an object. The equations in a model are represented as sets of binary tree

objects. The elementary data structures are also implemented as class hierarchies, for

14

example, matrices. Mathematical operations on matrices are accomplished by overloaded

operators, which enables matrix addition, say, to be written in the C++ code as C : A +

B. Tools are provided for sequential-modular tear set selection, equation analysis and

partitioning.

Model extension is considered a desirable and necessary feature, although a model

construction facility is not described. The authors stress that extension should be at the

object level whenever possible. Thus, some objects should be user-modifiable and the

system still includes extension at the class level for more experienced users/progr¿ülmers.

Dynamic simulation facilities are not provided.

DESIGN-KIT

DESIGN-KIT is a knowledge-based support environment for process engineering. The

emphasis is on knowledge-based analysis rather than pure simulation. It incorporates

MODEL.LA as the associated modelling facility. The objective was to create a

homogeneous package for all aspects of process engineering - flowsheet synthesis, eontrol

synthesis, scheduling, planning, simulation and equipment costing and design. L)ESIGN- ,

KIT is developed in CommonLISP and KEE. CommonLISP is employed for the uset

interface and KEE is employed for process knowledge and model description. The

package supports steady-state equation-oriented simulation and has a variety of tools,

including equation analysis, order-of-magnitude reasoning and a rule interpreter. The

environment incorporates a graphical interface for the various activities. Dynamic

simulation facilities are not provided.

OMSIM

OMSIM is the simulation environment for OMOLA. OMSIM is implemented in C++ but

user-defined model classes must be written in OMOLA. OMSIM contains facilities for

model development either as direct OMOLA text or a graphical interface and class browser

for mouse-based model construction. It also provides the software for simulating the

developed models and a database for model storage. Simulation of a model is a two-step

process. First, the model is checked to see if it is lexically and syntactically correct and

that all types and connections are valid. This is similar to compilation in a normal

programming language. Second, the resulting mathematical structure is analysed. The

l5

analysis checks for singularity, attempts to resolve high-index problems in the dynamic

equations and performs partitioning and symbolic manipulation. Simulation and modelling

are at the class level. A model forms part of the definition of a new class, as opposed to

dynamically connecting everything at the object or instance level.

A wide variety of numerical methods are provided for integration of ordinary-differential-

and differential-algebraic-equations. OMSIM does not have steady-state numerical

methods. The interface can be interactive during a simulation and results are available

graphically on-the-run.

MODELER

MODELER is an object-oriented environment for the modelling of physico-chemical-

biological systems (Lee 1991b). The environment is implemented in MODULA-2. The

building-blocks of MODELER are structures based on Newtonian physics and axiomatic

thermodynamics. The structures are used to form conservation relations in mass, energy

and momentum. Five primitives are def,rned : ,:

o Phase :- A region within a system with homogeneous properties. l

o Physical Lumped System :- A region of space, enclosed by a boundary and

specified by a given set of state variables.

o Chemical System :- A system containing stoichiometric and kinetic information

about a chemical system associated with a physical lumped system.

o Physical Property System :- A system containing numerical values of andlor

calculation methods for physical properties.

o Information System :- A system that contains a mechanism for transforming

information (e.g. a controller).

A system model is built from the primitives and connection streams with a graphical

interface. The system is represented as a block diagram. Mass and energy balances are

constructed automatically from the primitives and connectivity in a model. MODELER

does not provide numerical methods.

16

npna

ÉpÉE (Ballinger et al. 1994) is an object-oriented interface system for process engineering.

The goal of the project is to share data amongst process engineering software packages. It

provides a set of common process-engineering objects that are user-extensible, for example

process, stream or component. The software packages are considered to be methods of

ÉpÉ8. The packages available are the steady-state ASPEN simulator, the PPDS physical

property system (N.E.L. 1982) and a heat integration package called CHiPS (Fraga et al.

reel).

VeDa

VeDa is an object-oriented process modelling paradigm (Marquardt 1993). It is based on

'substantial Modelling Obiects'. The main objects are described as:

o Devices :- These are the things in a process, similar to the Generic-Unit or Models

described earlier.

o Elementary-Devices :- A device that is non-decomposable. Similar iri some ways

to the Type class in ASCEND.

o Connections :- Objects that connect Elernentary-Devices together. i i

o Composite-Devices :- An aggregation of Elementary-Devices joined together with

Connections. Composite-Devices can be joined together to form more complex

Composite-Devices.

The object-oriented data model is similar to the principles of other object-oriented

simulation languages. It employs user-defined types with multiple inheritance, attributes

and methods to define systems. Knowledge-based descriptions are implemented and a

database is required for system management. A translator to turn VeDa descriptions into

code compatible with the DIVA simulator is under development.

KBMoSS

KBMoSS is a recent development (Vázquez-Román et al. 1996). It is a knowledge-based

modelling support system. Models can be generated automatically from knowledge-based

descriptions and the user can modify the generated models or develop one from hrst

17

principles without the knowledge-base. The environment and modelling procedure are

based on five characteristics:

o A modelling procedure is a knowledge-based exploration task. Therefore, tools for

exploration of alternatives, rehnement and reasoning are necessary.

o Model development is evolutionary. Evolution represents the progressive

improvement of a model.

o Cooperation (within the system) enhances the sharing of data and knowledge.

o The support system should integrate all the tools and information required for

modelling.

o Automation facilitates analysis and promotes consistency.

KBMoSS is implemented in CommonLISP and can write final unit models in gPROMS. It

does not provide numerical techniques for simulation.

1.2.4 Summary of Object-oriented Simulation

The languages and their associated examples follow a similar apprcach. Thsy are all part of a

iarger simulation environment but are,implemented differently. ASCEi"{'D and OMOLA

support only single inheritance. MODEL.LA and the VeDa data model support multiple

inheritance. Single inheritance can achieve the same structural and functional goals as

multiple inheritance, but it produces a longer class hierarchy. ASCEND promotes open

access to all the elements of a data structure with no encapsulation.

MODEL.LA, MODELER and to a certain extent VeDa employ process knowledge to

construct models from a set of relationships and assumptions. The other languages require a

textual description of the class structure and modelling equations. KBMoSS supports both

knowledge and textual description. The objective of knowledge-based synthesis is to provide

complete documentation of the modelling process, increase consistency and reduce effors.

The use of database facilities for maintenance and model development is common. The level

of sophistication varies, from basic file saving in MODELER to the knowledge-based

applications in MODEL.LA and DESIGN-KIT.

l8

Some of the languages provide standard looping and conditional structures similar to those in

procedural languages (e.g. FoR and rrfiur,SE constructs) and arrays. In addition gPROMS

includes a library of commands for discrete-event processing and distributed-parameter

processes.

The development of object-oriented interfaces to other software is interesting. It can exploit

the large programming effort expended on existing packages and present the user with a

single consistent simulation platform. A potential major disadvantage of such an interface is

that it could require many different interpreters and translators to provide user-extension to the

software it drives.

1.3 Biochemical Process Simulation

Biochemical process simulation is a relatively immature freld when compared to process

simulation in conventional chemical processing (Villadsen 1989; Petrides and Cooney 1993).

The main reasons are summarised below.

., The primary reason is system complexity. Biological systems are ccmplex by nature and

therefore are difficult to describe qualitatively and mathematicall;-. Some aspects of the

system under consideration could be irrelevant. In addition, biochemical researchers often do

not have a process-engineering background and have been reluctant to apply mathematical

modelling principles to biochemical processes until recently.

The products from biochemical processes are often difficult to characterise because of their

complicated chemical structure. This makes the calculation of physical properties difficult.

Many bioprocess unit operations are poorly understood and models are hard to develop. Most

bioprocesses are batch or semi-continuous. These require dynamic models and simulation

facilities.

Another reason is not stated in the above articles. It concerns the financial difference between

the high-volume commodity products of the traditional process industries as opposed to the

low-volume specialised products of biochemical plants. A great proportion of the world's

economy has been dependent on petroleum products for many years. The corresponding

competition provides enormous financial incentive for development of highly efficient

t9

processes, in which process simulation plays a significant role. Low-volume, high-added-

value bioproducts are not exposed to the same levels of competition and corresponding

incentive for optimisation with process simulation. For state-of-the-art bioproducts, patent

protection further reduces the hnancial incentive for modelling. In those bioprocesses where

process scale and competition has significant economic effect, the level of understanding of

the bioprocess is considerably greater and simulation has had much wider application. Two

good examples are ethanol production from yeast and the production of penicillin.

A number of software packages have been developed for bioprocess simulation. Several

different approaches have been taken and are discussed below.

ASPEN BioProcess Simulator (BPS)

BPS is an extension of the ASPEN process simulator (Evans 1988; Petrides et al. 1989).

A large variety of biochemical unit operations have been added to the existing simulator.

It is not capable of dynamic simulation. Instead, a time-average is applied to batch

operation modules. This produces a pseudo-continucrus operation that can then be solved

with the steady-state simulator. BPS does not provide a modelling facility.

BioPro Designer

BioPro Designer is an interactive synthesis/analysis program (Petrides 1994). The

synthesis tools are knowledge-based and are used to create flowsheet topologies. The user

inputs details such as product properties and micro-organism type. The resultant flowsheet

can then be simulated with the analysis component of the program. The analysis

component can perform material and energy balances and economic evaluation. The

knowledge-based tools are implemented with an object-oriented environment named

Nexpert and the analysis tools are programmed in ANSI C. The program incorporates a

graphical interface. BioPro Designer does not provide a modelling facility.

CAMBIO

CAMBIO is a knowledge-based environment for modelling and simulation of bioprocesses

(Farza and Chéruy 1991). It exploits prior knowledge to aid in flowsheet synthesis and

model construction. Models can be taken from the supplied library or modif,red by the

user. The material balances are generated automatically. Models are constructed from

20

basic elements such as substrates, biomass, enzymes and reactions, etc. with a graphical

interface. The final system is modelled as a set of differential-algebraic equations (DAEs).

The DAEs are then compiled as a subroutine and solved with the DCO3AD integration

package in the HARWELL code library. CAMBIO is written in the Pascal language.

SIMBIOS

SIMBIOS is a steady-state simultaneous-modular bioprocess simulator (Simon et al.

1994). The simultaneous-modular technique employed is the two-tier method where unit

outputs are calculated and then used to linearise a flowsheet model. The simulator contains

an interface to a large physical property system. Dynamic simulation facilities are not

provided.

BioSep Designer

BioSep Designer is a knowledge-based flowsheet synthesiser focussing on protein

separation systems (Siletti 1990). It determines an optimum flowsheet from a set of input

data. A database is provided for protein properties. BioSep Designer is programmed in

CommonLISP. , '

gPROMS

The language gPROMS, discussed earlier, has been employed for bioprocess simulation

(Lu et at. 1994). The production of alcohol dehydrogenase from yeast cells was examined.

Five unit operations were considered in the flowsheet: fermentation, centrifugation,

homogenisation, debris removal and product precipitation. The main advantage cited for

gPROMS was that it is capable of simulating dynamic discrete events and could therefore

be used for each batch process in the flowsheet.

1.3.1 Summary of Bioprocess Simulation

There are few bioprocess simulation packages compared to traditional process simulators.

The extension of existing simulators to bioprocesses (e.g. ASPEN BPS) provides a robust

platform for simulation but restricts the application to simulation methods supported by the

base system. ASPEN is restricted to steady-state sequential-modular simulation. Of the

biochemical simulators discussed, only BioPro Designer and CAMBIO can perform dynamic

simulation. CAMBIO supports model extension. BioSep Designer and BioPro Designer

2l

employ process knowledge for flowsheet synthesis. BioSep Designer is purely a synthesis

program and has no simulation facility.

1.4. Phvsical Prooertv Calculation

Physical property calculation is an area of study comparable in size to that of process

simulation. The combination of the enorrnous variety of calculation methods and the number

of chemical components likely to be required by a process simulator makes the development

of a comprehensive physical property package a daunting task. Specific property calculation

packages or methods are not reviewed but a general discussion of the requirements for process

simulation is presented. Calculation of properties for gases and liquids is discussed in Reid

(1e88).

It has been estimated that up to 80% of the computer time required for a simulation is

consumed by physical property calculation (W'esterberg 1979). Four principal capabilities

were identified:

l. Supply estimates for several physical properties [or several different components

during the course of a simulation.

2. Provide the user with values for properties of interest during the simulation and

after completion.

3. Allow user-defined property data.

4. Supply estimates where data is poor or unavailable.

The representation of a mixture of components and corresponding physical properties interact

strongly in a simulator. Britt (1980) provides a detailed discussion in the context of steady-

state simulation and process streams. Salient points include:

1. A stream can consist of many phases: solid, liquid and vapour. The source unit of

the stream establishes the phase condition. Any combination and number of phases

can occur, with the restriction of a single vapour phase.

2. Liquid and vapour phases can be assumed to be at equilibrium. Solid phases might

or might not be at equilibrium.

22

3. The level of information associated with a stream can vary. If a stream consists of

several phases, is a composition for each phase required, or just an average

composition for the whole stream?

4. Some solid phase properties can be characterised in terms of pure component data

similar to vapour-liquid equilibrium. Other solid properties could require further

characterisation.

5. Some solid phases cannot be characterised in terms of pure component data. The

material must be otherwise characterised. The process stream must cater for this

alternative characterisation. Property calculation for the characterisation will be

different.

6. The necessary characterisation is dictated by the requirements of the unit model.

Complications arise when unconventional components are considered. Bioprocesses are

sources of unconventional components. How is a cell characterised? Generally a molecular

formula for a cell species can be experimentally determined in terms of carbon, nitrogen,

oxygen and hydrogen, but this indicates nothing else about the physico-chemical properties.

One option is the definition of properties on a micro or macro level. Conventional

components can often be characterisedr in terms of their structure and interactions on a

molecular or micro level. Unconventional components could be characterised in terms of

other attributes, for example size or bulk density which are properties that can be determined

at the macro level. This is applicable to solids and slurry processing and bioprocesses.

The implementation of physical property methods can be approached in two ways. Physical

property data can be calculated as a utility to the unit models. This is the case for the majority

of process simulators. The assumption of vapour-liquid equilibrium in steady-state simulation

is usually justified and means that property data can be calculated explicitly from process

conditions

23

1.5 Numerical Analvsis Methods

Considerable research effort has been expended in the development and testing of numerical

methods for process simulation. Comprehensive reviews are available (Seider and Brengel

l99l; Shacham 1985; Sargent 1931). Numerical methods applicable to steady-state and

dynamic simulation are discussed below. The reader is referred to the review articles above

for further information. Methods for the solution of distributed-parameter systems are not

discussed.

1.5.1 Nonlinear Algebraic Equations

Solution algorithms for nonlinear algebraic equations fall into two categories, explicit and

implicit. Explicit solution methods require the variables of interest (output variables) in each

equation to be available explicitly as a function of the other variables (x) and parameters (u)

in the equation set, i.e.

x = f(x,u) (1.1)

Usually the explicit output variables are functions of themselves and an iterative substitution

is required to converge the equations. This method was employed in early simulators and is

the reason sequential-modular simulators were criticised for coping poorly with some problem

specifications. If a problem specification required solution for a variable not in the explicit

output set, a further iterative loop was required to solve for the variable.

Implicit methods solve a system of simultaneous equations by forcing a set of residual values

to below a specified error tolerance. The model formulation is:

f(x) 0 (r.2)

An explicit equation formulation can be made implicit by the transformation

r(x) g(x) - x 0 (1.3)

Solution of the system of equations follows an iterative procedure

24

J(x,)

J(x,)A x
x

dr
ôx

- f(x,)
x, +Ax

(1.4)

(1.s)

(1.6)
n+l

The Jacobian J(x) can either be the true partial derivatives of f(x) as in the exact Newton's

method or an approximation, such as the update formula in Broyden's method (Broyden

1965). The partial derivatives can be calculated either by analytical differentiation of the

equations, or by a numerical finite difference approximation.

Hybrid algorithms exist where the Ax term is calculated as a weighted combination of the

Newton direction given above and the direction of steepest descent. Powell's dogleg (Acton

1990) and Marquardt's method (Marquardt 1963) are examples.

Systems of equations in flcr,l'sheeting generally do not have every variable occurring in every

equation. Often the systems are spa(se and have only a few percent non-zero entries in the

Jacobian matrix. Considerable savings in execution time are possible if numerical methods

are employed that take advantage of sparsity in the solution for the Ax term above. Reviews

of sparse numerical techniques are available in Bogle and Perkins (1988) and Stadtherr and

Wood (1984 a, b).

Another more recent development in n¡rmerical methods for nonlinear equations is the use of

homotopy paths (V/aybum and Seader 1987). Homotopy methods are designed to promote

convergence of a nonlinear system of equations from a poor initial estimate:

The objective of a homotopy method is to obtain the solution of the set of equations

f(x) (r.2)0

by the solving the homotopy

25

The homotopy h(x,/) defines a path x(r), where / is a mathematical parameter. Assume that

h(x,0) : 0 has a known solution. Also assume that h(x,l) : f(x). If x* : x(1), then x* is a

solution of f(x), Therefore if a homotopy function h(x,/) exists and the path x(/) can be

followed from an initial estimate x(0) to x(1), the solution to f(x) : 0 can be found.

One method of solution for a homotopy is to transform the problem into a set of ordinary

differential equations. Consider the function h(x,/), with x : x(/). Taking the derivative of

h(x,/) with respect to /, we obtain:

h(x, f) 0

dh(x(t),t) _
dt

âh dx dh
1

âx dt dt -0

(r.7)

0

(1.8)

A variety of choices exist for the homotopy. Consider the Newton homotopy, given by:

h(x, t) f(x) - (1- l)f(xo)

where xo is the initial estimate for the system. The transformation to ordinary differential

equations becomes:

dh(x(t),t)

(1.e)

õf dx

6* dt
+ f(xo) (1.10)

dt

This is an initial-value-problem to be integrated on /: [0,1] with initial condition x(0) : xo.

The coeffrcient matrix of the derivatives is the Jacobian of the nonlinear system. Paloschi

(1996) discusses the application of spane methods to homotopy solution.

26

I.5.2 lntegration Methods

Dynamic process simulation normally requires the integration of a set of ordinary differential

equations (ODEs). A large number of ODE integration algorithms exist, such as explicit and

impticit Runge-Kutta, Backward-Difference, Adams-Moulton, Burlisch-Stöer etc. Often with

the set of ODEs there is an associated set of algebraic equations (AEs). The AEs are often

nonlinear. The combined set of ODEs and AEs is referred to as a differential-algebraic-

equation (DAE) set.

DAE sets can be solved in two ways

. Solve the AEs with a simultaneous solver and then the ODEs with an integration

algorithm.

. Solve the DAE set as a whole, converging AEs and ODEs at the same time.

It has been found that it is generally more eff,rcient to solve the DAE set as a whole rather than

AEs and ODEs separately (Marquardt 1991). The most widely-used DAE algorithm is Gear's

Backward-Difference-Formulae (BDF) method (Gear l97I). The BDF method approximates

the vector of derivatives in the system with polynomial baokward differences of various

orders. The simplest is the first-order backward difference formula, where Euler's

approximation is applied to the derivatives as below:

(1.1 r)

The DAE system can then be solved as a set of algebraic equations driven by att integration

algorithm as:

x'(*,,*1rxr*rrln*,ru)= o (1.12)

where x denotes the vector of state variables and u denotes the vector of inputs or design

specifications for the problem. This formulation has many advantages. The equation

structure is preserved, which means that sparse matrix techniques can be readily applied. The

solution method is applicable to DAE and ODE problems, systems with implicit derivatives

and stiff systems of equations. Stiff equation systems arise frequently in chemical reaction

,i. -dxr*l -Xr*l-XnÀ¿+l - ú tr*t-tn

21

kinetics. Stiffness arises in systems with time constants differing by several orders of

magnitude. This is not a strict mathematical definition of stiffness. Lambert (1991) presents

a discussion on stiffness of linear and nonlinear DAE systems.

The solvability of a system of ODEs or DAEs can be characterised by a parameter called the

index. There are a few definitions of the system index (Unger et al. 1995). Generally the

differential index of a system is referred to. The differential index is defined as the minimum

number of times the DAE system F(*, x, u) = 0 must be differentiated with respect to time

in order to determine i as a continuous function of x and u. Systems with indexes of zero or

one aïe easy to solve with standard ODE or DAE methods. A system of ODEs that are

solvable has an index of zero. The addition of one or more algebraic equations raises the

index to one. Higher index problems result when a state variable response is specified as a

function of time and the required system input must be determined. The concept of system

index is best illustrated with examples.

Cbnsider a simple lumped-parameter mass balance of liquid inside a cylindrical tarJ<. The

tank has one input and one output stream. The mathematicai model is :

(1. l 3)

where M is the total mass of liquid in the tank and F,o and Fou, are the mass flows in and out

respectively. For specified F,,(t) and Fou,ft), the integration of the differential equation in M is

an index zero problem, solvable by any ODE integration algorithm. Now consider calculating

the height h0) of Íquid in the tank with an algebraic equation. The equation set becomes:

#=F*-Fo*

- FoutF,,
dM
dt

0

(1.14)

pAh(t)- M(t) (1.1s)

where p is the density of the liquid and A is the tank area. The addition of the algebraic

equation raises the index to one. Any DAE algorithm, given valid initial conditions can solve

the system. The index is raised to two if the height profile of the tank with time is specified

28

and the required input flow prof,rle d,(l) is required. The mass profile M(t) calutlated from

tbe h(t) function must be differentiated in order to determine F,,(t).

Index reduction can be accomplished by careful modelling (Lefkopoulos and Stadtherr 1993),

symbolic manipulation of the equations in the system (Chung and 'Westerberg 1990; Gear

1988) and structural analysis of the equations (Unger et al. 1995; Pantiledes 1988).

1.6 Conclusions and Proi ect Scope

The areas discussed offer considerable scope for research. The following conclusions are

drawn from the discussion:-

. Systems that have a facility for model construction are more versatile than the

traditional black-box process library in older simulators. In leading-edge

technology, particularly biotechnology, process information remains proprietary.

Off-the-shelf simulators are unlikely to contain models for novel unit operations. A

mo<lelling facility is practically a necessity in a modern simulation eirr'ironment.

o Object-orientation assists model development, but object-orientatioi il itself is not

sufficient to define a modelling methodology. Models require a logical and

consistent structure. The concept of systems containing ports that can be connected

to other systems is prominent. Complex systems should be modelled through

decomposition into smaller component systems. This is often referred to as

hierarchical decomposition and further promotes the object-oriented principles of

software re-use and extension.

o Systems that can apply knowledge to the model development process have

advantages, but modelling should not be exclusively a knowledge-based activity.

. Steady-state and dynamic simulation should be supported. Dynamic methods are

required for control systems and biochemical process simulation'

o Equation-oriented unit models should be preferred, but not necessarily exclusively.

o In steady-state simulation, equation-oriented, sequential-modular and parallel-

modular flowsheet calculations all have advantages. Ideally all three should be

available in an integrated form. The equation-oriented approach is superior for

dynamic simulation.

29

o There are many requirements for physical property calculation, depending on the

process and simulation type. The physical property structure should be simple to

allow the integration of different property methods into the system.

. Equation analysis and numerical tools are required in a complete simulation

environment.

From the conclusions, the primary project objective was defined:

To develop a basic object-oriented data structure and tools for the modelling and

simulation of chemical and biochemical processes.

The sub-objectives were defined as follows:

,lj :Ì

1. Provide steady-state and dynamic capabilities, with the ability to transition from

steady-state to dynamic simulation.

2. Provide a variety of steady-state and dynamic solution methods.

3. ProviCe interchangeable steady-state simulation methods.

4. Provide a basic physical property and component data structurc ald methods.

5. Provide a reasonably simple structure and methodology for the definition of model

classes and associated equations.

Some implementations and topics discussed in this chapter are considered outside the scope of

the primary objective. A knowledge-based implementation cannot be developed until a

validated mathematical structure exists. The numerical methods are based on the "traditional"

Newton-based methods and Gear's Backward Difference method. Homotopy methods and

index analyses are unnecessary at this stage of the project's development.

The design of a class structure based on the attributes of a process flowsheet and the project

objectives is discussed in the next chapter.

30

Crr¡.prEn2

Simulator Development and Data Structure

In this chapter the development language is discussed briefly using a simple example. This is

followed by the design of the basic class structure for the simulator. The design of the class

structure results from an examination of the various characteristics of a process flowsheet and

an analysis of the requirements for simulation of a flowsheet. Class names are printed in bold

type.

2.1 Development Language

Several languages specifically developed for process modelling have been discussed. In this

work, it was decided to exploit a highly refined and commercially available object-oriented

language (namely C++) instead of developing another special-pi.rrpcse modelling/simulation

language. The use of an existing numerically-orienteci commercial language provides a

nurr¡ber of benefits: '

1. Language structure. A programming language must be subject to rigorous testing

and development for successful commercial application. This is extremely

important for an object-oriented language that naturally encourages language

extension. In a commercialised object-oriented language, debugging is restricted to

the programmer's language extensions rather than the language itself, which would

be the case if a new language was developed.

2. Consistent software platform. The final purpose of simulation and modelling

languages is to define a numerical problem from a process structure. A simulation

environment must support flexible and realistic modelling of processes while

promoting efficient numerical analysis. Simulators have been described which

employ different languages for modelling, numerical methods and the interface.

This increases complexity. A more versatile simulation environment can be

developed if all the facilities are coded in the same language.

3l

3. Versatile development environment. Powerful compilation and debugging

environments are available for commercial programming languages. The

development of such environments is not a trivial task (consider the

MODEL.LAIDESIGN-KIT system, (Stephanopoulos et. al. 1987, 1990 a,b)).

4. High portability. A language in common use offers high portability between

different operating systems and computers.

5. Pre-defined data types, operators, looping and utility function libraries. Process

simulation calculations require repetitive numerical calculations and logical

decisions. Facilities for input, output and hle manipulation are also required.

These are provided by existing commercial languages.

6. Potential interfaces to existing software. Employing an existing commercial

language enables access to a vast library of potential software, depending on the

application. The development of libraries of numerical software is very common.

Such libraries generally have simple functional interfaces to the developed code,

enabling easy incorporation into a simulator's numerical library. Many language

development environments have a facllily for incorporating compiled and linked

code from another programming language. Physical property calculation provides

a good example, where existing, well-refined libraries could be incorporated into a

simulator via the development environment.

Ct* offers all of the facilities described above. It was developed in the early eighties as an

object-oriented superset of the C language (Ellis and Stroustrup 1994). A class in C++ is a

generalisation of the ANSI C structure type. It has been comprehensively tested for a variety

of programming applications and an international standard, ANSI C++. Several powerful

development environments are available, most of which contain facilities for file
management, debugging and class/object browsing. Through its subset, ANSI C, several

numerical software libraries are available. C++ is considered a hybrid language because

object-orientation is optional. Employing a combined object-oriented/procedural approach

can incorporate existing C software libraries. A "pure" object-oriented language (Eiffel, for

example (Meyer 1992)) requires the programmer to consider every entity in a program as an

object. As the object-oriented paradigm has become dominant in the software industry, C*+

has taken over as the most commonly employed object-oriented programming language.

32

#include (math.h) //include header fil-e for math functions

class Cornplex_Nr¡mber{ / /start cl-ass definition
public:

double rerim; //declare reaT and imaqinary parts
dor¡ble mod(void),' //decl-are member function to

/ /calcuTate modul-us

dor¡ble arg(void); //decl-are member function to
/ /caLcul-ate argument

//other member functions woul-d be bel-ow for
//addition, muTtiplication etc

) //end cLass definition

dor¡b1e Compiex Nuinber::mod(void) { //start definition of memb'lr'.

/ / f unction 'mod (void) '
return sqrt,(re*re + im*im);

I //end definition of member function 'mod(void)'

dor¡b].e Complex_Nr¡mber::arg(void) I //start definition of member

//function 'arg (void) '
return arctan(in/re l;

I //end definition of member function 'arg(void)'

Many other member functions could be defined for the class, for example a function to print

out the real and imaginary parts. C# also permits the various operators (*,*, :,(etc.) in C to

be redefined. This is known as operator overloading. Overloaded operators for the

Complex_Number class would permit simple arithmetic such as z: x*y to be performed

directly. An obvious application of classes and overloaded operators is the use of vectors and

matrices for numerical computation. The Complex_Number class can be used in the

following way:

.))

Complex_Number class would permit simple arithmetic such as z: x*y to be performed

directly. An obvious application of classes and overloaded operators is the use of vectors and

matrices for numerical computation. The Complex_Number class can be used in the

following way:

#include <iostream.h> //incJ-ude header f ife fot standard C++

/ / input/output
voíd main(void) { //start C/C++ program

Complex_Nurnber xi

x.re = L.2¡ //set reaf part
x.im = 2.0¡ //set imaginary part

//cout beLow is the standard C++ output device

cout<<" \n Mod x is " <<x.mod0;

cor¡t<<" arg x ís " <<x"arg(|<<" radians" ì

j //end C/C++ program

Some features of C++ code should be emphasised. (A full description of C/C++ syntax is

available in any of the common CIC++ textbooks, such as Ellis and Stroustrup (1994)).

Attributes or members of objects are accessed with the '.' operatot, for example, x. re and

x.mod O above. The ';' operator denotes the end of a code statement. C++ provides three

levels of access to attributes of an object. The broadest is public access or scope, where

any member of an object can be accessed through the '.' operator. This is the same as the

ASCEND language described in the previous chapter and is used at the start of the class

declaration above. The next level is called protected access. Any attribute declared

protected may only be accessed by objects of the same class or classes lower in that

hierarchy. The most restricted access is private. Members declared private cannot be

accessed with the '.' operator at all and are only available within the class or object structure.

34

2.2 Data Structure

Object-oriented programming is an information modelling process. It embraces three

significant aspects of good software engineering , viz. abstraction, modularity and information

hiding.

o Abstraction: Identifying and applying the broad structure and functionality of the

components in terms of user-level concepts, details of which need not be specified

until actually required.

o Modularity: Dividing the problem and solution into structured components with

formal interfaces for communication between components.

o Information Hiding: Making the internal details of components accessible through

the formal interfaces.

Historically chemical engineers have adopted a highly modular approach to process systems

analysis. Physical plant modules and their associated unit operations can be well-represented

by object-oriented principles as can their aggregated behaviour in the form of a process

flowsheet. These concepts are not as conveniently implemented in traditional procedure-

oriented languages.

Simulation of a chemical process requires the modelling of two broad categories of

information; physical and mathematical. Physical information is essentially the "things in the

process", such as process units, streams, chemical components, etc. Mathematical

information includes the equations for the models, the model type (steady-state, dynamic,

lumped-parameter, etc.) and the numerical analysis tools. It is not possible to develop the data

structures for these two categories of information completely independently because at

various points within a simulator they must interact. A simple example is the use of

convergence blocks in a sequential-modular simulation. A convergence block becomes part

of the process layout via stream variables, but it is really part of the solution tools and not the

process structure. If the interaction between the process and mathematical data structures can

be restricted to well-defined interfaces then a versatile, user-extendable simulation

environment should be more easily realised.

The design of the data structures of this project is described below by applying the principles

of qbstraction and modularity hrstly to the physical and mathematical information of a

35

process flowsheet and secondly to functional considerations. The application of the principle

of information hiding is discussed in Chapter 3. The physical information of the process

flowsheet structure is considered first followed by the mathematical information.

2.2. I Phy sical Information

Consider the flowsheet drawn below in Figure 2.I,the Tennessee Eastman Challenge Problem

(Downs and Vogel, 1993).

purge

compressor

feeds
separator

stripper

feed

mtxer reat:tor

product

Figure 2.1: Simple layout of Tennessee Eastman Process.

Many of the basic parent classes required to represent the physical structures in typical

chemical processes can be determined by examining the key attributes of this flowsheet. The

flowsheet can be decomposed into units. These units could possibly be further decomposed

(internally) into sub-units. For example the stripping column could be subdivided into a set of

trays. The units receive inputs and produce outputs through streams. The flowsheet's

primary function of synthesising a product from feeds is the result of specific functions of its

constituent units. The various units mix, react and separate various chemical components. A

detailed understanding of each unit's functionality is not apparent from the flowsheet (for

example, reaction kinetics or order) but it is sufhcient at this stage to identiff a general

functionality as a key property of a unit.

36

Four physical attributes common to most process flowsheets can be identif,red and used to

define three basic parent classes that may contribute to object-oriented simulation. The first

class is a group of processors that produce an output response from an input. In this work, the

resulting C++ class is named System. The second class is for the connectors, named Stream.

The third class is for the set of chemical components that a flowsheet manipulates. The

relevant Cfi class is named Component. The attribute of functionality will be discussed

later in this chapter.

The System class is in principle similar to the Generic-Unit or Model classes of other work

reviewed in Chapter l. Given the varying levels of complexity contained in a flowsheet it is

clear that a System-based object must be able to contain other System-based obiects. A

flowsheet contains unit operations and may be considered a single complex unit operation.

Connections between System-based objects are made with Stream-based objects. However,

this is not sufficient in an environment designed for user-extension of process models. A

point of connection for each Stream-type object is required. While it is possible to manually

code in the connections between the output variables of one unit and the input variables of

another, it is simpler and more effioient to create classes of System-to-Stream interfaces that

can perform the connection automatically. In a similar manner to othel work reviewed in

Chapter I, a generic parent class named Port is introduced to provide the interface between

System objects and their connecting Streams. The set of Ports for a System object defines

the boundaries of that System. A System-based object would own a set of Port-based

objects, with the connections made through Stream-based objects, as in Figure 2.2below:

Stream-type
objects

Stream-type
object

Port-type
objects

-type

Figure 2.2t Basic connection example.

3t

There are many different kinds of stream in a flowsheet. The most obvious are the process

streams carrying material from unit to unit. Other kinds of streams include signals to and

from controllers, or work streams where energy is transferred in and out of systems. The

corresponding classes could logically be titled Process-Stream, Signal-Stream and

Energy_Stream. The Stream hierarchy dehnes a group of classes of simple connectors,

illustrated in Figure 2.3.

Figure 2.3: Stream class hierarchy.

There is a one-to-two correspondeñce between Stream classes and Port classes. For each

Stream type, an input and output Port class must be defined. While separate input and output

Port classes are not absolutely necessary to model a connected system, in a chemical

engineering context there is usually a direction associated with connections and the Port class

is divided to reflect this. The inheritance tree for the Port class is illustrated in Figure 2.4.

Port

Signal_Output_Port

StreamStream

Figure 2.42 Port class hierarchy.

38

Other advantages of a Port data structure will be discussed in section 2.2.3, Mathematical

Information.

A complete object-oriented component and physical property system was considered outside

the scope of the project given the time available. The other data structures have been made as

simple and as flexible as possible to permit incorporation of more sophisticated data structures

for components and physical properties. The Component class hierarchy provides part of the

interface for physical property calculation. The design of the physical and chemical property

class structures is presented atthe end of this chapter in section 2.4, because it is more easily

developed if the physical and functional aspects are considered together.

2.2.2 Simulator Executive

In order for object-based model classes to be created and used within the simulator by the

modeller, a high-level simulator executive is required to process and manage the low-level

model structures and behaviour. In most of the simulation projects discussed, the simulator

executive is coded in a separate language from the model def,rnitions, for example the OMSIM

environment for the fJMOLA language. The executive then translates the low-level model'

code into an equivalent liigh-level representation.

In this project, the executive is coded in the same language as the modelling classes.

Therefore the equivalent high-level representation must exist in advance of any low-level

structure. The high-level representation must be capable of connecting whatever low-level

structure is created while maintaining its integrity and consistency. This is a stringent

requirement. The equivalent high-level representation effectively becomes the executive

itself.

While appearing complex, this multi-level structure is readily implemented with the class

structure discussed. The examination of the basic classes in section2.2.l provides part of the

solution. A System class was described that may contain other System-based objects.

System-based objects must also connect to other System-based objects. This containment

and connection may be implemented at the executive level and at the modelling level quite

simply. At the executive level, the System class may contain a set of pointers to other

System-type objects. A pointer in C or C++ is a type that contains the memory address of an

39

object (i.e. it points to where the object resides in memory). Through the memory address the

object can be accessed. Object pointers are preferred because they require considerably less

memory storage than extra sets of complete objects. A specif,rc System-based object does not

need to know in advance how many pointers there are or what type of System-descendant

object they will attach to. In a similar fashion, the System class may also contain sets of

pointers to Input_Port and Output_Port objects. Again, a System-based object does not

require advance knowledge of the number or specific type of each connection. The low-level

model descriptions may then assign the generic high-level data structure to their specific low-

level object structures. The low-level structure is then available to the executive for analysis

and manipulation. The high-level structure describes a System-based object potentially

containing other System-based objects and sets of input and output connections. The actual

connection objects are specifically described in the low-level structures. The code

mechanisms for this are described in Chapter 3 and examples are presented in Chapter 4.

2.2.3 Mathematical Information

The mathematical information is part of the internal or invisible attributes of a process

flowsheet. Tra<Jitional !'black-box" simulators completely hide the mathematical inlonrration

associated with a flowsheet and present the user with a set of predefined unit operation

models. A simulator with a modelling facility must provide access to the mathematical

information, preferably with a consistent set of building blocks for model development. In a

similar fashion to the physical structure of a flowsheet, examination of the physical structure

of a set of equations provides potential class structures for mathematical modelling. This is

best illustrated with a simple example.

A vertical, cylindrical liquid mixing tank and valve are presented in Figure 2.5. Consider

modelling the dynamic liquid holdups M, of the tank with z components. It is assumed that

the tank is open, is fed through stream ,F (with compositions z), drains through the valve and

the flow out I (with compositions x) follows a square-root dependence on the pressure P at

the bottom of the tank. The total mass in the tankis Mr.

40

F, Z¡

L, X¡

Figure 2.5: Simple draining tank.

The equations and variables for the dynamic mass balance are given below:

Fz, - Lx,

X,M,

I

h

psh
C P-Po
x,(n), z,(n), M,(o), M Þ L, F, h, P, Po

The attributes of the equations are in some ways similar to the attributes of a flowsheet. A

flowsheet equation set consists of the equation sets of the units within the flowsheet. The

equations constitute a set of mixed differential and algebraic equations (a DAE set). The

individual equations are connected by variables, for example x, appears in equations (2.1),

(2.2) and (2.3). There are different kinds of variables in the equation set: state (dynamic),

algebraic and derivative.

If the set above was to be used for steady-state and dynamic simulation, different equations

and variables could take part in the solution. At steady-state, equations (2.1) and (2.3) could

be solved, giving nr7 equations with the time derivatives set to zero. The corresponding

variables arc x,(n), z¡(n), F and L, of which z-r1 must be consistently specified for the set to

Ln
1n

(2.1)

(2.2)

(2.3)

(2.4')

(2.s)

(2.6)

xì

M¡

t
i=1

M1-
'Ap

P
F

Variables

4t

be solvable. If the steady-state height is .specified, it is possible to solve for the component

holdups and the valve constant also. This would be useful for specifying consistent initial

conditions for dynamic simulation. The dynamic system requires all the equations, with the

variables x¡(n), z¡(n), M,(n), F, L and Mr, of which n-rl variables must be consistently

specified for solution.

A class structure can be developed from considering the equation set's attributes. At the

highest level we introduce a parent Equation_Set class. This class represents sets of

equations within System-based objects. If System-based objects can contain other System-

based objects, logically Equation_Set objects should be able to contain other Equation_Set

objects. The concept of System-based objects containing System-based objects combined

with Equation_Set objects containing Equation_Set objects is a powerful tool for process

simulation. The major advantages will be discussed in detail in section 2.3.L The flowsheet

equation set above would be constructed from two separate equation sets, one from the tank

and the other from the valve. Equation_Set is further refined into a Dynamic_Set class for

DAE sets. A Dynamic_Set object can contain other Equation_Set or Dynanric_Set objects.

The otljective of steady-state and dynamic simulation requires Dynarnic SeÉ objects to be

capable of steadl,-state and dynamic analysis.

A class Variable is defined for basic solution variables (state or algebraic). Two child classes

are refined from this class, Derivative and Equation. Derivative is the class for representing

derivatives in equations. It is not restricted to time derivatives, although this form represents

the most common usage in chemical process simulation. Equation is the class for

representing individual mathematical equations. It is capable of representing state or

algebraic equations. The Equation, Equation_Set and Dynamic_Set classes have similar

executive-level data structures to System. The Equation class owns a set of pointers to

Variable-based objects that affect it. The Equation_Set and Dynamic_Set classes contain

sets of pointers to the Equation objects that affect them, to create a pseudo-executive for

analysing mathematical structures. 'l'he inheritance trees for the Variable and Equation_Set

hierarchies are drawn in Figure 2.6.

42

Figure 2.62 Yaríable and Equation_Set class hierarchies.

In very strict object-oriented philosophy, an equation might not be considered a more refined

version of a variable. It is important to realise that object-orientation is a tool as opposed to

an end in itself. It is reasonable in some cases to deviate from a strict object-oriented structure

if there are advantages to be gained. The advantages in the case of the Variable and

Equation classes are primarily functional and relate to the analysis and solution of equation

sets. These aspects are discussed in the next chapter.

, .Th. form of the equations must be considered. Are differential equations to be coded

. gxplicitly, such as /: "f (y,t) or implicitly as f (y,y,t)= 0 ? Are they iikely to be combined

if different models coded by different users are used together? T'he sar::e applies to algebraic

equations. A user might wish to code an explicit iterative equation in the form x = f (x).

Ideally, the class structure for variables and equations should have the capacity to cope with

all of these in a mixed form.

As stated earlier, the mathematical and physical structures of a simulator must interact at

clearly-defined points. Identifying the interactions helps to determine the interfaces and

further refine the simulator class structure.

o Unit Inputs and Outputs

A unit will have sets of input and output variables, such as the (,F, z), and (I, x) sets

of the tank example. Where do the variables reside? Are they an attribute of the

connecting stream or are they part of the unit that they enter or leave? The variables in

a stream are really defined by the unit that is the stream's source; even a feed stream

must come from somewhere. Unit input and output variables in the current work are

therefore considered to be an attribute of the process unit, not the stream. The stream-

43

variable approach probably originated from a desire to keep memory storage to a

minimum in procedurally-programmed simulators. In the early stages of this project, a

prototype stream-variable structure was developed and tested. However, the potential

storage efficiency gains conflicted with the requirement of simple model development.

In addition, a stream-variable structure blurs the boundary of the System class.

If a unit is to own its input and output variables, some sort of connection is required

between the inputs of any unit and the outputs of its source. The logical connection

mechanisms are the Port classes. In a process-unit sense, the variables or contents of

a stream appear at the connecting flanges of the input pipes and disappear at the

flanges of the output pipes. The input port of the tank model would access the (F, z)

variables and the output ports would access bhe (L, x) variables. Other process stream

variables, such as temperature and pressure could be included in the sets also. The

connection mechanism between the variables, ports and streams can be provided by

member functions of the respective Port and Stream classes.

Another aspect of unit inputs and outputs must be coqisiclered. The direction of

mathematical information does rrot necessarily foliow the assurned direction of

connection between systems. An illustration of this point is a simple flow-restriction

valve between two vessels, as drawn below in Figure 2.7.

FV

P,>Pt

Figure 2.7:ßlow restriction valve between tanks.

44

A reasonable flow equation (ignoring density effects) is:

Fr: F, - Fv = C^IPI- P, (2.7)

where ,F, denotes flow, C is the valve constant and P, and P, are the vessel pressures.

The valve determines the flow in and out of the two vessels, but within the valve

model the vessels define the upstream and downstream pressures. The material flows

along the direction of the connections but the information flows in the opposite

direction to the connection into the second vessel. The data structure must therefore

permit bi-directional information flow. If the connections between input and output

variables can be made directly with the variables themselves the data structure should

become simpler. This could be achieved with Port and Stream class member

functions. The Stream hierarchy then becomes a group of very simple connector

classes with minimal structure. Ideally, the Variable class should contain the

structure and functionality required to be invisibly either an input or an output variable.

The advantages of input-output connections between Variable objects are further

demonstrated by examining stream compositions in the tank example above. The

composition of the two streams will not change as the process material travels from

the first tank, through the valve and into the second tank. In a simulation environment

where general unit models are likely to be employed for a variety of purposes, the tank

and valve models are likely to contain their own sets of composition Variables.

Assuming that compositions are modelled as a composition vector, at least three

vectors of Variable objects will be present in the tank example; one for each tank and

one for the valve. The principle of flow direction suggests that the outlet of the first

tank dehnes the composition. Therefore the second tank's composition Variables

could connect to the valve's composition Variables which in turn could connect to the

outlet composition of the first tank. This connection scheme is logical and provides

two very important advantages. Firstly, it can provide consistent evaluation of the

value of a particular Variable object. The Variable class may be easily coded to

evaluate connections if required. The number of connections is irrelevant because

several connections may simply evaluate further down a connected chain until the end

45

is reached, for example from the second tank, to the valve, to the first tank. This

ensures consistent numerical evaluation and facilitates model coding, if the evaluation

is invisible to the model developer.

Secondly, connections promote simple and consistent analysis of Equations and

Variables for problem specification. Consider the analysis of the tanks and the valve

in an equation-oriented simulation. If the first tank is analysed, the outlet composition

Variables will be analysed as part of the tank. If the valve is then analysed, the inlet

composition Variables will have already been examined with the first tank. A

connected Variable structure enables the simulator executive to immediately trace the

connections back to the tank and note that the Variables have already been analysed

and may be ignored. A similar procedure would occur in the analysis of the second

tank.

o Flowsheet and Complex Unit Equation Sets

A flowsheet equation set or an equation set in a complex unit will be made up of many

subsets of equations. The subsets will be o'wned by the subsystems of the flowsheet or

units. A flowsheet has the ownership of the other System objects it contains and the

equation set associated with a flowsheet therefore owns the equation sets of the other

subsystems. This implies an interaction between the System and Equation_Set

classes at the executive level. This interaction must be consistent irrespective of the

model type or structure in order for the simulator to provide a modelling facility. The

interaction is most easily provided by an extension to the executive-level structure

described in the previous section. The System class can contain pointers to

Equation_Set and Dynamic_Set objects. Low-level models will contain a specific

Equation_Set and/or Dynamic_Set object which the executive structure may be

assigned to. The low-level mathematical structure is then available to the System

executive via the mathematical pseudo-executive described earlier.

System-based objects containing other System-based objects forms a nested tree

structure (for example, a flowsheet containing unit operations). By extension a

System-based tree may contain other System-based trees. The structure of a System-

based tree is suff,rciently complex to justify a more refined class to specifically manage

46

the tree structure. The class is named Sys_Man_Block, an abbreviation for System

Management Block. It inherits directly from System. The majority of the System

class' functionality must be redefined to operate on the branches of the tree. The

Sys_Man_Block class is designed for modelling with and managing trees of System-

type objects in an arbitrary fashion, without necessarily adhering to flowsheet-type

layouts such as input and output streams. Sys_Man Block is refined into a

Flowsheet class. A class for modelling with a single System-based object is also

introduced, named Unit. The Unit class is designed for modelling basic unit

operations and inherits from System. The class inheritance tree for the System

hierarchy is drawn in Figure 2.8.

Figure 2.8: System class hierarchy

o Physical Structures

An undehned area of interaction exists when the basic physical building block classes

are not sufhcient to describe what the user-developer wishes to model. An example is

the characterisation of a biochemical process mixture. The nature of many

biochemical systems may be so diverse that there are likely to be circumstances where

some aspect of a biochemical mixture is not catered for within a simulator. In a

system that provides user-extension, the user-developer should be able to modifu

existing physical modelling classes, create new ones or use existing class structures in

a different way. The creation of a new type of mixture might require custom physical

47

property calculation and new Port-Stream-based classes. Within the data structure

proposed this is relatively simple. Custom calculation methods can be incorporated by

writing and compiling C functions or new Cf* classes that operate on the existing

structures. With the mixture and stream variables owned by the units, the user-

developer only has to develop new Port and Stream classes that map input and output

Variable objects to each other. It could also be possible to use existing Port and

Stream classes for an unconventional purpose because Variable objects only interact

mathematically within a System boundary. If a Port-Stream type is used in an

unconventional way, it cannot be connected to conventional applications of the type,

because the Variable connections in the conventional and unconventional applications

will be different.

2.3 Fun and Behaviour

To this point the structural aspects of the simulator and the information in a flowsheet have

been considered. Some functional aspects have been considered briefly. In this section, the

major functional requirements of the physicai and mathematical structures will be examined.

In some cases, functional requirements ,, or beha'¿ioural changes dictate additions 0l

modifications to the data structures.

2.3.1 Structural Analysis

The use of System- and Equation_Set-hierarchy objects to model a flowsheet of unit

operations creates a multi-level tree of objects. System-based objects own Equation_Set

objects. Equation_Set objects own Equation objects which in turn own Variable-based

objects. This creates a connected tree from a top-level Flowsheet object down to individual

Variable objects. Initially, only the physical structure tree will be fully connected as a result

of the flowsheet connectivity. The mathematical structure tree will be composed of smaller

trees within units or plant sections. In this project the mathematical tree is constructed after

the flowsheet connectivity is defined and the unit parameters are set.

An example flowsheet and its tree are drawn below in Figure 2.9. The symbols $ denote

objects from the System hierarchy and D, and E, denote Dynamic_Set and Equation_Set

objects respectively. Note that the S, are not directly objects of the System class, they are

objects of classes derived from System. The flowsheet is .Sr, a mixer, a flash and a splitter are

48

units ^S2, ,S, *d S, respectively. The heavy lines on the tree indicate the physical structure

connections of the flowsheet. S, contains Sr,,S, and Sr. Each System-type object owns one or

more Equation_Set-based objects. The ownership is indicated by the light lines linking the S,

to the D, and 8,. S, (the flowsheet) owns a Dynamic_Set object because some of its

subsystems contain Dynamic_Set objects. ,S, has a composite Dynamic_Set object (Dr) with

a sub-set of algebraic equations (E).

Figure 2.9: A flowsheet and its connected System-based tree.

The mathematical tree is not yet connected. The hrst step towards a fully connected

mathematical tree is to connect the input and output variables to each other through the Port-

based objects. This can be achieved with a setup function in each System-type object. After

this, D, still does not know about the existence of the other sets of equations in the subsystems

of ^Sr. The physical structure for ^S, contains Sr, S, and,Sr, so connection should start with the

physical structure. The optimal way to connect the tree structure above is with a depth-first

traversal. Both the physical and mathematical trees must be traversed. The end of a physical

branch must be reached before a mathematical branch may be analysed and connected. The

traversal order is Sr, Sr, Er, S j, Ds, Er, So, Eo, D,. Even if a node on the tree is visited, it

will not be analysed until all nodes below it are visited and analysed. The analys¡s order is

therefore Er, Sr, Ej, Ds, Sr, Eo,54, Dþ St. This analysis automatically supports any level of

model decomposition. The connected mathematical tree that results is illustrated below in

Figure 2.10. The heavy lines now indicate the mathematical tree connections.

^s1

+

49

Figure 2.10: Connected mathematical tree of flowsheet in Figure2.9.

Sets ^E, , D, and Eo have effectively become "extra" sub-sets of Dr. A distinction is made

between an "extra" sub-set and a plain sub-set. An "extra" sub-set is appended during a

problem analysis whereas a plain sub-set is explicitly attached prior to the problem analysis as

part of a unit model definition, for example Erattached to Dr.

Once the mathematical tree is connected, it can be traversed on its own to collect the

Equations and Variables for the,,flowsheei. The physical and mathematical,structure could

be traversed in a similar manner to the previous connection step, however, traversing only the

mathematical tree requires less nodes to be visited. The Equation_Set objects are collected

in the order Er, Er, Dr, Ea, Dt.

, In line with the objective of providing both steady-state and dynamic solution methods, the

analysis and collection steps should create sets of Equation, Variable and Derivative objects

or object pointers that can be manipulated by various solving routines. Dynamic_Set objects

should be capable of both steady-state and dynamic analysis and collection.

Depth-first analysis and collection ensures that any Equation_Set object at any level in the

tree automatically contains or owns the Equation_Set objects below it on a physical and

mathematical branch (a node-branch). For example, in order for set D, to be collected into the

set Dr, set D, must have already collected set -Er. In addition, every Equation_Set object

contains its own set of Variable and Equation object pointers after analysis. Therefore these

Equation_Sets may be used to solve solitary units, as in a sequential-modular simulation. At

50

the same time, the Flowsheet object contains its own Equation_Set object which has its own

set of Variable and Equation object pointers. The Flowsheet's Equation_Set object may be

used independently of the Equation_Set objects in the process units to solve the whole

system. The implementation of interchangeable simulation techniques is discussed further in

section 2.3.6.

Individual units can be solved within a flowsheet or the plant may be divided into plant

sections. Units could then be optimised individually (say, adjustment of a design

specification) and then solved again within the overall flowsheet structure. The set of

variables and equations for the parent flowsheet can remain static while individual node-

branches arc reanalysed and simulated separately. Small plant sections can be constructed out

of units, simulated and used as building blocks of a larger flowsheet. A complete description

of the depth-first algorithms with flow diagrams is presented in Chapter 3.

2.3 .2 Equation Evaluation

Numerical expressions rnust be evaluated in a simulator. The structure and functionality

present in the objects del.ermine how object-oriented numerical expressions are evaluated.

Three options are considered here. The first has been explored in other work (for example,

Lau 1992). Equations can be represented and evaluated as binary trees of mathematical

expressions. Parsing textual mathematical expressions with an interpreter can create the trees.

This offers the potential advantage of symbolic manipulation of equations and automatic

access to the mathematical structure of the problem. A simple interpreter and parser was

developed early in the work but was found to be several orders of magnitude slower than

normal floating-point arithmetic when evaluating equations. There was also a considerable

storage overhead. Hence, the development was not carried further although a very

sophisticated implementation might have proved more effective. A possibility would be an

interpreter that translated textual expressions into Cff code instead of connected tree objects.

The second option is the definition of overloaded operators (described in Chapter 1, section

L2.3) for the Variable types. The numerical, logical and assignment operators (+,-,1,* ,: etc.)

could be overloaded to act on objects of the Variable hierarchy. The main disadvantage of

this approach is the enormous size of the code required to cater for every possible interaction

51

between Variable-type objects, conventional numerical types and the library of numerical

utility functions supplied in C++.

The third option retains an object-oriented structure such as the Variable hierarchy but

evaluates numerical expressions in conventional floating-point arithmetic as standard C++

arithmetic statements. This offers the structural information of the mathematical tree (but

without symbolic manipulation) with the convenience of floating-point arithmetic. There is

obviously an associated storage overhead with the structural information. No redefinition of

operators or utility functions is required, which removes a portion of software maintenance.

This option was adopted for the project. Other advantages of floating-point evaluation are

described in section 2.3.4.

2.3.3 Model Evaluation

Mixed equation forms (explicit/implicit) have been discussed previously. If mixed equations

are supported, the evaluation of unit models must be "intelligent" so that equations are

evaluated correctiy. The evaluation could be at two levels, one that the user deltnes and al

invisible higher-le',rel evaluation to cater for the different equation types in the equation sets;,

The user-dehned level is sinrilar to the traditional u-nit model subroutine or procedure, where'

the model could be in explicit or implicit form and steady-state or dynamic. The higher-level

evaluation could examine the structural information of the equations and act accordingly. As

discussed in Chapter 1, explicit equations are easily transformed to implicit form in the

following marìner:

x
0

= "f (x, y)
: x-f(x,Y)

explicít

implìcit

(2.8)

(2.e)

This information is readily incorporated into the Equation class and is applicable to dynamic

and steady-state equations.

The principles of object-oriented polymorphism and C++ virtual functions are well-suited to

evaluation of model equations at the lower level. The System class can own a member

function with a particular name, such as dynamic model- O , that does nothing at the

System level. At the more ref,rned level of a particular model, such as a flash, the

52

dynamic_model- () function can be redefined to evaluate the equations of the flash. The

model is evaluated by a virtual function that changes its behaviour as the inheritance tree

becomes more refined. Different types of unit model then have polymorphic

dynamic_model O functions across the System hierarchy, such as the different models for

a flash, a mixer and a valve. These would be the low-level evaluations.

The C++ keyword virtual when applied to a member function means that the most refined

implementation of the function can be run by calling the function at any level in the

inheritance tree. For example, in a Flash class that is refined from System, by calling the

function dynamic_model O at the System level, the dynamic_model O function of the

Flash class is run. Hence, a System-type that contains other System-types (for example, a

Flowsheet object) does not need to know in advance what the contained types are in order to

run their models correctly. These concepts are illustrated with some example classes in

Figure 2.11:

ynamic_model O (does

nothing)

Unit i Sys_Man Block::dynami-c_model ()

virtual
¡

c modef ()

(evaluates flow
equation)

(evaluates

subsystem
models),

Flash::dynamic_modef () Flow_Valve::dvnami'1
(evaluates flash
equations)

Figure 2.llz Yirtual and polymorphic model functions.

The bold type and affows indicate inheritance up through the System class hierarchy. The

straight dashed arrows indicate the refinement of the virtual dynamic_model O function

down the System hierarchy and the curved dashed ¿urows indicate the polymorphism of the

dynamic_model () function.

virtual

virtual

polymorphic

polymorphic

53

The higher-level evaluations could be performed by the numerical methods. Different

numerical methods require different evaluations, therefore the numerical methods should own

the evaluation methods. This also separates the user's model definition from the model

solution. The user should only need to specifu the equation type, which is a trivial task.

2.3.4 Behavioural C¡q499!

This concept is generally restricted to dynamic simulation, where over the course of a

simulation, unit operations might operate outside their "normal" mode. Such a change in

behaviour may affect the progress of a simulation. A simple example is the saturation of a

controller output. In the physical plant, the output may simply hold at the saturated value. In

a process simulator, some mechanism is required that will enable the simulation to progress in

spite of the saturation. The difhculty is numerical. The controller output will be a state or

algebraic variable in the solution set. The sudden (discontinuous) freezing of a value could

effectively remove a solution variable from the equation set.

The corutected Variable structure described earlier may be modified slightly to'provide an

elegant sclution. A process unit is a transformation mechanism. In traditional pi'coess control

terminology it has a transfer funition that produces a response to an input. The inputs to a

unit are often outputs (or responses) from another but from the unit's frame of reference the

inputs are only a forcing function. Consider a valve connected to a controller. The forcing

function for the valve is the controller output. The controller output Variable object will be

part of a Flowsheet object's Dynamic_Set. The valve position input Variable object only

connects to the controller output. This means that in the event of saturation it is possible to

sever the connection between the valve input and controller output Variable objects without

affecting the numerical solution. The controller output Variable object remains a solution

Variable, and the valve position may be frozen at the saturated value. In the future, the

controller output might return to a normal range, in which case the valve may be reconnected.

Further functional requirements are apparent from the discussion. Generic virtual

functionality must be provided that enables Systems to check for potential discontinuities or

events and take appropriate action. The responsibility for the check must be on the System

that owns the output Variable, because there might be many input Variables connected to

one output Variable. The analysis of Equation_Set objects must also trace connected

Variables back to their source Variable, to ensure that if connections are broken, the correct

54

Variable is frozen and the solution set is not affected. The numerical methods are also

affected by discontinuities. They contribute a virtual function named disc check o

which may be redefined in unit models to test for and flag discontinuities. The discontinuity

checks and functionality are described in more detail in Chapter 3.

A more complicated example is a flash drum employed to roughly separate a process stream.

During normal plant operation, the drum would contain a liquid and a vapour phase.

However, if shutdown or upset conditions are simulated, unusual process conditions might

create a single phase. The disconnection principle above is applicable to the output stream

that "disappears", but the model form might change also. Different model equations and

variables may apply. Alternatively, careful modelling may yield a set of equations applicable

to different phases in a flash calculation.

Some changes to equations may be accommodated relatively simply. If the numerical

dimension of the system and the solution Variables and Equations do not change, a different

evaluation: form may be substituted without adversely afÏecting the sinrulatiori. If the

numerical solution methods act solely on the values of sets of Equation and. VariaÌ¡le objects,

the l'orm or method of evaluation of the vaiue of an Equation is irrelevant. This is

automatically catered for by designing Equation and Variable object evaluations to be based

on floating-point arithmetic as described in section 2.3.2. Traditional if . . . then coding

within the disc check O function can assign different evaluations for the unit model.

Variables may be effectively rendered constant by substituting a simple linear evaluation for

an Equation, for example e (1) x () - 6 . O to hold the value of Variable x at 6.0

during the simulation.

Such a substitution is applicable to the controller saturation example above. If a different

evaluation was substituted for the controller output signal equation at saturation, the

disc check O function is required to evaluate the "true" controller output to determine if
the controller is to be reconnected.

55

2.3.5 Numerical Methods

The numerical methods available in a simulator should be as independent as possible of the

process and mathematical structures to permit simple addition of new methods or

modifications to the data structures. The requirement of operating on floating point values is

dictated above. An obvious question is:- Should these values be conventional floating-point

arrays, or accessed through arrays of Variable-hierarchy objects? Floating-point arrays

permit the simplest interfaces to existing third-party numerical code, especially with

precompiled libraries where the code cannot be modified. Most of this type of software

requires at least one interface function to be defined that evaluates the equation system,

derivative values, Jacobian etc. Arrays of Variable-hierarchy objects permit the use of the

structure and functionality of the objects. Examples include partitioning of equations or

reordering prior to solution. The information about the problem's mathematical structure is

contained within the Equation objects. The input-output connectivity between Variable-type

objects could be employed to connect a set of Variable-type objects in the numerical methods

to the sets of pointers provided by the Equation_Set analysis methods. This would increase

, the amount of memory required. Third-party numerical code could still be incorporated

, ' thror"gh interface functions. The set of object pointers provide<! by the Equation_Set

methods could be manipulated directly. Minimal extra storage is required and the structure

and functionality of the objects is accessible. This approach was adopted for the project.

Broadly, there are two types of solution method employed in this project: AE and ODE/DAE

solvers. Pure ODE systems are rare in flowsheet simulation and are considered a simpler

subset of DAE solution. DAE solvers employ AE solvers as part of their algorithm. AE

solvers in turn employ linear algebraic equation solvers. The solvers require methods of

evaluating the Jacobian matrix. Related to pure numerical solution methods are methods that

can partition or reassign equations.

The various classes could be employed as parents or as building blocks of new classes.

Nonlinear equation solvers often require linear equation solvers. A linear equation solver

class could be a parent class of a nonlinear solver. In this case inheritance is used to

propagate functionality rather than structure down the inheritance tree. Alternatively, the

linear solver may be an object within the nonlinear solver class. Either approach would be

effective. A strict object-oriented philosophy dictates the use of objects instead of parent

56

classes. However, object-orientation is a programming tool and not an end in itself. If a

numerical method may be considered to be simply a repetitive procedure or algorithm, an

inherited functional approach is valid. It is a diffrcult issue to resolve. For this project, the

inherited functionality approach was adopted.

The interaction between the solvers and the flowsheet structure must also be determined. A

numerical method object could act on a System-type object. This concept is similar to older

Fortran-based simulators, where a flowsheet function, equations and variables are passed to a

numerical method function for solution. Conversely a System-type object could own

numerical tool objects that it employs for solution. This is more in line with the concept of a

flowsheet owning methods to solve itself. Is the solution method then a separate entity with

its own structure (i.e. an object) or is it only a service or method of the flowsheet? If the

solution method is an object, it requires access to System-type functionality (the unit model

functions) in order to solve the equations. This is easily achieved with a System-type pointer

within the numerical method. If the solution methods are a parent of a class then the

functionality is automatically available.

In this project, the numerical methods are implemented as a corribineci parent with the System

class. The numerical method classes are designed to contain virtual function "mirrors" of

some System-hierarchy model functions. The high-level structure permits independent

development of the System hierarchy and the numerical methods. At the low-level, the

virtual functions merge to provide a System-type model function for the numerical methods.

The lower levels of the System hierarchy control the actual mathematical models because the

models must be independent of the solution method. The numerical methods may contain

whatever high-level functionality is required to drive the low-level model in order to solve the

numerical problem.

To achieve independence, the numerical method classes and System class could become joint

parents (multiple inheritance) of the Unit and Sys_Man_Block classes, because from these

levels down specific functionality and hence solution requirements are identifiable. It can be

argued that if the numerical methods are considered to have absolutely no structure, then

object-orientation of them is not necessary and they could be implemented as pure C

functions. However, on further examination there are some behavioural aspects that object-

orientation can neatly organise.

57

The discussion above of various solver types implies a set of classes, for example linear

equation solvers, algebraic equation solvers and differential-algebraic equation solvers.

Multiple inheritance may be employed to produce, say, a class of nonlinear solver that inherits

from a specific linear solver (e.g. LU factorisation) and a numerical utilities class.

Alternatively, a single-inheritance structure, commencing with the numerical utilities and

inheriting down into linear, then nonlinear and then differential-algebraic solvers is also

possible. A numerical method class named Mathtool was implemented as a collector of all

the parent numerical methods, analogous to a numerical methods library. A multiple-

inheritance structure based on four parent classes was initially investigated. The four parent

classes were Linear_Solver, Nonlinear_Solver, DE Integrator and Math_Util. An

example of a backward-difference differential-algebraic class (BDF) is provided below in

Figure2.l2.

linear
solver classes

ofher methods other methods

Figure 2.122 Multiple inheritance numerical method class structure example.

From Figure 2.I2 it is clear that there will be several methods inheriting one or more of the

four basic parent classes, such as Linear_Solver. C++ provides a mechanism so that only

one copy of a parent class actually exists in a complex multiple inheritance structure, if
desired. This mechanism is called a virtual base class and is explained in detail in Ellis and

Stroustrup (1994). The advantage of a virtual base class is that it resolves ambiguities with

multiple parent classes and avoids duplication of class data. The four basic parent classes

58

become virtual base classes of the rest of the numerical structure. The class structure is

reasonably complex for the BDF class. In spite of the virtual base class capability, the

multiple-inheritance approach proved to be difhcult to implement and manage and was

abandoned.

A single-inheritance approach was finally adopted for the numerical classes in the project. A

top-level base-class was designed to contain basic structure and the virtual function "minors"

discussed earlier. The class is called Math Top. Math_Util inherits from Math_Top and

Linear_solver inherits from Math_Util. Nonlinear Solver then inherits from

Linear_Solver. Nonlinear_Solver is the parent of the DAE Solver class. Mathtool then

inherits from the DAE Solver class. The class hierarchy is illustrated in Figure 2.13.

Figure 2.13: Mathematical inheritance tree.

The various methods for solving linear algebraic equations are in the Linear_Solver class, all

the methods for nonlinear algebraic equations are in the Nonlinear Solver class and so on.

Mathtool then provides a separate interface class. The Nonlinear Solver class methods have

access to a large variety of linear algebraic equation solvers from one parent class. The

DAE Solver class has similar access to a variety of nonlinear equation methods, although

generally a derivation of Newton's method is applied in most cases. In spite of the diverse

functionality presented at the Mathtool level, the extra structure is minimal and restricted to

59

the data in the Math_Top class. The lower child classes provide functionality only. The

functionality is more versatile than that provided by the multiple-inheritance approach and has

a much simpler class structure. The combined System/lVlathtool inheritance tree is drawn

below in Figure 2.14. The System and Mathtool classes are multiple parents of the Unit and

Sys_Man_Block classes. They each contain virtual functions with the same name, so that in

lower-level classes there is a functional connection between the System and Mathtool

parents. A new Convergence_Block class, described in the next section, is also illustrated.

Figure 2.14: Combined System/Ilathtool class hierarchy.

2.3 .6 Interchangeable Simulation Techniques

One of the objectives of the project was to provide interchangeable steady-state simulation

techniques. An Equation_Set object can analyse itself and any Equation_Set objects it

contains. The interchangeable application of sequential-modular and equation-oriented

simulation requires some additions to the simulator class structure. The dominant feature of

sequential-modular solution is that it interferes with the flowsheet layout by tearing streams,

although the interference is usually invisible to the user. Convergence blocks then manipulate

the variables in the torn streams to converge the flowsheet.

If the functional aspects of a convergence block are examined, a very simple way of providing

interchangeable solution methods is revealed. A convergence block requires a unit-by-unit

iteration of the loop it is inside to perform its calculations: the unit model for a convergence

60

block is really a flowsheet or section of flowsheet. For the purposes of sequential-modular

simulation, the flowsheet can be considered a subsystem of a convergence block. This

suggests a more refined version of the Sys_Man_Block class, which is named

Convergence_Block. The class carì own Variable objects, Equation objects and an

Equation_Set object. A Flowsheet object is a predefined System-type that can be set up and

analysed for equation-oriented simulation. If the Flowsheet object is made a subsystem of a

Convergence_Block object, the methods to drive the unit model functions already exist. The

Convergence_Block object can then tear streams by reassigning the input and output variable

connections of the relevant units. A convergence block in a simulator only acts on process

stream variables. The simulator class structure provides a Port hierarchy that acts as the

interface between Stream-types and Variables, so by interrogating the Port-type that the

process stream attaches to, the input-output connections are accessible. Some sequential-

modular simulators also attach convergence blocks to unit variables for design problems.

This is only necessary if the unit models are explicit and the numerical methods based on

iterative substitution. If explicit unit models can be converted to implicit models for equation-

oriented solution then unit convergence biócks are not necessary.

A convergence block can employ the nurnerical methods for nonlinear equations available

from the Mathtool class. Other methods can be provided in the Convergence_Block class

for finding tear sets and determining computation order of the Flowsheet object it owns (e.g.

Roach 1996). An equation-oriented Flowsheet object is unaffected by changes in unit

computation order. The Convergence_Block solution methods could then apply either

sequential calculations or equation-oriented solution, depending on convergence progress.

An interesting aspect of flowsheet solution should be considered here. It is clear that a

Convergence_Block could be employed purely for equation-oriented simulation by

"switching off' the sequential-modular capabilities. The concept of a "super" convergence

block is suggested, capable of driving all types of flowsheet simulation, including dynamic.

The Flowsheet object within the Convergence_Block could set itself up for dynamic

simulation. The Convergence_Block could then contain functionality to drive the

Flowsheet's integration methods. An altemative structure would be to place all of the

Convergence_Block functionality and structure into the Flowsheet class, in which case a

61

Flowsheet then has the capacity to initialise an equation-oriented simulation with sequential-

modular iterations, converge the steady-state and then switch to a dynamic simulation.

Dynamic-modular analysis and solution could be performed in a similar fashion and

implemented inside the Convergence_Block or Flowsheet classes. This would provide a

large variety of potential solution methods for steady-state and dynamic simulation.

Implementation of dynamic-modular simulation is not explored in this project.

The actual Convergence_Block implementation is less sophisticated. Sequential-modular

and parallel-modular simulation are provided through the Equation_Set object of the

Convergence_Block class. Equation-oriented simulation is provided by the Flowsheet object

that the Convergence_Block class owns. The user must supply the appropriate tear streams.

The Convergence_Block class is explained in more detail in Chapter 3.

2.4 Chemical Componen ts and Property Calculation

The class for representing chemicai components in the simulator is named Component.

Chemical components usually occur as part of a mixture. Different types of mixture occur in

a flowsheet, implying some sort of basic mixture class. in this project the class is named

General_C omponent_Mixture.

The data structure and functionality for Component and General_Component_Mixture is

based on attributes and methods for property calculation reviewed in Reid (1988). The

discussion here covers conventional chemical components and is extended to unconventional

(e.g. biochemical) components. Only systems where equilibrium between phases can be

assumed are considered.

A conventional chemical component has several attributes. The most important is the

component's name, andlor the molecular formula, through which the simulator's physical

property service accesses the basic component data. Basic (invariant) pure component data

includes the molecular weight, critical temperature, pressure and volume, boiling point,

freezing point and enthalpies of formation at a standard reference condition, acentric factor,

dipole moment e/c. Other attributes possibly dependent on system or mixture conditions

include ideal liquid and vapour heat capacity, enthalpy at system temperature and pressure,

62

enthalpy of vaporisation and liquid and vapour density. All of these attributes are required in

a Component class for general physical property calculation. Methods for assigning values

to the attributes are required, with the values extracted from a database or file. A user-defined

component class would be useful for components not in the simulator database.

A component mixture is simple to represent physically as a General_Component_Mixture

class: it contains a set of Component objects and a measure of their relative amounts (mass or

mole fractions). Functionality is more complex. Which properties are likely to be required

for process simulation? A very obvious one is mixture molecular weight. Likewise,

thermodynamic properties are required. Mixture specihc heat, enthalpy, entropy, Helmholtz

and Gibbs energy and fugacity are examples. Vapour-liquid equilibrium calculations are also

required in multi-phase mixtures, for example the K¡ values in a flash calculation. Vapour-

liquid equilibrium is related to the thermodynamics of the mixture through the fugacities. A

basic parent class named Properties is introduced to provide the link to the set of relevant

Component objects in the mixture. Separate classes named Thermo and VLE are dehned

for thermodynamics and vapour-liquid equilibrium because for simple approximations, the

two calculations can be separated. The simple approximations are calculation of mixture

properties from pure component properties and the assumption of Raoult's Law for vapou-

liquid equilibrium where Antoine constants can be applied. The Thermo and VLE classes

contain the virtual function declarations for the various thermodynamic and equilibrium

calculations and inherit from the Properties class. Two child classes, Simple_Thermo and

Simple_VLE are introduced for the simple approximations.

More sophisticated methods can be incorporated. Cubic equations of state (cubic EOS),

which combine thermodynamics and vapour-liquid equilibrium can inherit from both the

Thermo and VLE classes. The basic form of many cubic EOS is given by :

RTan-_'-v-b v2+ubv+wb2
(2.r0)

The parameters a,b,u and w vary depending on which particular equation is employed, e.g.

van der 'Waals, Peng-Robinson etc. A further class structure is suggested here: a basic

Equation_Of_State class containing the form of equation (2.10) with, say, a specific

63

Peng_Robinson class (and others) that initialise a,b,u and w, appropriately. The enthalpy

calculations and other properties discussed above would be member functions of the

Equation_Of_State class.

In the early stages of the project, the modelling of separate phases was investigated. The

General_Component_Mixture class could be extended to separate classes for different

phases, Liquid_Mixture and Vapour_Mixture. These two classes could then be employed

to define a Vapour_Liquid_Mixture class. Implementation of this class would be similar to

the classes for numerical methods. The class could either inherit from both the

Liquid_Mixture and Vapour_Mixture classes, or contain Liquid_Mixture and

Vapour_Mixture objects. Objects would be preferable because a phase is physically

identifiable.

The General_Component_Mixture class would contain a pointer to a Thermo object. This

would enable different mixtures in different process units to access different thermodynamic

methods if desired. The tr iquid_Mixture and Vapour_Mixture classes would then have

specific n:ethods for liquid and vapour properties. The Vapour_Liquid_Mixture class

would contain a pointer'to a VLE object. The Thermo and VLE ciass hierarchies should

have polymorphic functions for calculation methods so that the user-developer is presented

with the same functional interface for the same property regardless of how it is calculated.

For a cubic EOS, the Thermo and VLE pointers would access the same Equation_of_State-

type object.

While this multi-level mixture class structure is logical, sophisticated phase modelling is

unnecessary at this stage of development. A General_Component_Mixture class may provide

similar phase calculation services with liquid and vapour calculation methods. The main

physical property emphasis was therefore placed on the General_Component_Mixture class,

without major development of the separate phase classes. The

General_Component_Mixture class also contains pointer to a VLE object. The

incorporation of a Vapour_Liquid_Mixture class into a physical property structure raises the

question of whether a flash calculation is a member function of the class or a System-based

unit operation model. In this project a flash is a System-based model. The physical property

class hierarchies are illustrated in Figure 2.15.

64

Ideal VLE

Component

User_Component

Figure 2.15: Physical property class hierarchies.

Unconventional components, such as biochemical components retain some of the attributes

above and add or delete others. Components common to "normal" chemical processing ancr,

bioprocessing coukJ requir-e completely different characterisations for each process type, f'oi

example ethanol. Attt'ibutes or" bacterial cells, substrates and cell products or metabolites can

be specified from an examination of the kinetics and thermodynamics of biochemical

reactions (Roels 1983). The attributes include cell and product specific yields, specific heat

dissipation, and degrees of reduction based on electron transfer. However, these are not

physical properties, they are stoichiometric coefficients. Molecular weights and formulae are

a common attribute, already catered for with the Component class. The meaning of the

molecular formula of a bacterial cell type is different from a conventional component: you

cannot isolate a molecule of cell, but you can isolate a whole cell. A macro-level approach

was discussed in Chapter 1. It is similar to considering the cells as a semi-inert solid phase.

For bacteria, cell strength, size and bulk density are useful properties. Cell size and strength

are useful for homogenisation and centrifugation, and bulk density could be a useful

parameter for calculating broth level in a fermentor.

A class for cell types could inherit from the basic Component class. Many of the basic

attributes of the Component class are reusable, for example the density, specific heat and

molecular weight. The General_Component_Mixture class could be a parent of a

65

biochemical mixture class. The mole or mass fractions of the class could become the

fractions in a size or strength range for a cell type. Some of the thermodynamic methods

would still be applicable. Vapour-liquid equilibrium calculations could also have applications

to a biochemical mixture. A vacuum flash operation might be applied to separate volatile

organics from an aqueous cell suspension, containing a General_Component_Mixture

object and an inert biochemical mixture. A full biochemical class structure on this basis is not

designed for the simulator. The development of physical and chemical property structures

was restricted in order to keep the project to a manageable size and permit the inclusion of

more comprehensive property facilities at a later date.

2.5 Summary

The design of the data structures for the simulator has been discussed in terms of the physical

and functional characteristics of a process flowsheet and the objectives outlined in Chapter 1.

These characteristics have been used to define class structures for three physical modelling

areas and numerical methods which are reviewed below:

o Structural. Based on a System class hierarchy for representing unit operatinns anC

'
flowsheets. System-type objects are connected to other System-type objeots with

objects of a Stream class. The boundaries and interface between System-type

objects and Stream-type objects is provided by a Port class hierarchy. A System-

type can contain other System-type objects to create a tree. A class, named

Sys_Man_Block is described for managing System-trees.

o Mathematical. Based on a Variable class hierarchy for representing equations,

variables and derivatives, and an Equation_Set class hierarchy for representing

algebraic and differential equation sets. Equation_Set-type objects can contain

other Equation_Set-type objects, similarly to System.

o Chemical Components, Mixtures and Properties Calculation Based on three class

hierarchies: Component, General_Component_Mixture and Properties.

Component is the parent class for chemical components.

General_Component_Mixture is a class for representing mixtures and Properties

is the parent class for various chemical and physical property calculation types.

o Numerical Methods. A multiple-inheritance approach to the numerical methods

proved to be unwieldy and a single-inheritance design was implemented. The

66

numerical methods are supplied as part of a collective Mathtool class that inherits

from a variety ofdifferent solver classes.

The simulator executive has been designed to be a generic data structure that may be mapped

to the low-level models. The main functional aspects of the three physical areas have also

been considered. The functional aspects discussed were the analysis of physical/mathematical

structures, evaluation of equations, evaluation of models, behavioural changes, numerical

methods, and interchangeable solution techniques and property calculation. The C++

implementation of the class structures is discussed in the next chapter.

67

Crr,tprnn 3

C++ Implementation

This chapter describes the implementation (in C++; of the class hierarchies designed in

Chapter 2. Structure and functionality are described concurrently. Complete class definitions

are not presented in this chapter. Emphasis is placed on the attributes and functionality

required for a user-developer to model unit operations and construct flowsheets. Examples of

the application of the classes to modelling will be provided in Chapter 4. Class n¿ì.mes are

printed in bold type.

3.1 C++ Constructors and Destructors

Object-oriented programming is based on the creation of user-defined types. A C*-| class

definition describes a data structure and tells the compiler what is in an erirjèot of a particular

class. Iri order for a user and the language compiler to create an object sorre further

infcrrmation is required. The user and compiler need to know the states of the dafa arc when a

new object is to be created (i.e. how to put it together). This information is contained within

member functions named constructors in C++. The number of different constructor functions

depends on how many different ways the class developer decides an object can be created. A

constructor function has the same name as the class that owns it. Different constructors take

different function arguments. If a constructor function is not dehned for a class, the compiler

attempts to define one itself. It is poor programming practice to fail to define at least a default

constructor for a class. Complex classes nearly always require constructors to be defined.

Similarly, the compiler needs to know how to dismantle an object when it is no longer

required. The function that dismantles the object and frees the associated raw memory is

called a destructor. Only one destructor function may be defined for a class. A destructor

function has the same name as the class that owns it but is preceded by a tilde (-). A

destructor function may be non-trivial. The use of pointers to manipulate data structures and

objects is common in C++. There are potential execution problems if an object is destroyed

and other objects or data still contain references to the destroyed object. The data structure of

68

this simulator is designed so that interconnected objects are not destroyed until a simulation is

complete and the entire program exits to the operating system. This significantly simplifies

destructor coding, although a more sophisticated implementation would be required for more

advanced development. The role of constructors and destructors will become clearer in the

next chapter.

3.2 Vectors and Matrices

In practically all areas of programming, continuous collections and sets (anays) of data types

are required. Matrix and vector computation is standard in numerical work. A criticism of

traditional implementations of arrays in computing languages is that a basic array in memory

does not know anything about its size, starting index or finishing index. The application of

object-orientation to address these deficiencies is obvious. A Vector class has been created

for this project that contains all the necessary information about an array of values: the

starting index, f,rnishing index, memory location and functionality to inform the user when an

attempt is made to access memory out of the array bounds.

,:. ' ' Qff offers a further enhancement, which is the concept of a templal¿ class. A template class

is basically a class for classes. Template classes are explained in Eliis and Stroustrup (1994).

A template permits the Vector class to construct a vector of any type of object, so that a

Vector class is defined for every other C++ class. Vectors of System-types, Variable-types,

integer-types etc. can be created with a single, consistent declaration. Another advantage of

C++ is dynamic memory allocation. This means that a Vector-type object can be declared

without necessarily defining its size. The memory for the array of objects can be allocated in

the future. In ANSI C and C++ this is called dynamic memory allocation. C++ has built-in

error handlers in case sufficient memory is not available. The Vector class is a template class.

A similar Matrix template class has also been def,rned.

Another feature of dynamic memory allocation is that it enables anays to be lengthened or

shortened. Only lengthening is implemented in this project. One application is the analysis of

the SystemÆquation_Set structure of a Flowsheet object where extra sets of equations are

added to the Flowsheet object's set during the depth-first analysis. The lengthening

functionality incurs no penalty for access time in the lengthened Vector. Another feature

incorporated into the Vector class is the capacity for one Vector object to access another

69

Vector object's aÍray, provided they are of the same type. This is useful for passing arrays of

Variable and Equation object pointers to numerical methods. Objects from the Vector class

will be employed in unit operation examples later in the thesis. Examples of the use of

Vector and Matrix objects serve as a useful demonstration of some important aspects of C++.

A Vector object, called x, containing ten double precision elements, starting at index one and

finishing at index ten is declared by:

Vector<double> x(1, 10) ;

Elements are accessed by an integer argument in round parentheses, thus:

x(3) = 4.0¡

Simple arrays in C or C** are normally accessed with square brackets (e.g. xt3l). The

anay operator [] could be overloaded in the Vector template ciass to mimic the simple array

. operator, however the O operator is overloaded instead to indicate to users that they are

'working with a Vector-type object and not a simple array. Vector objects do not have to start

at index one, they can start at any index greater than or equal to zero. The end index must be

greater than or equal to the start index. A similar Vector object called f, containing ten

Flowsheet objects is created by the code statement:

Vector<Flowsheet> f (1,10) ;

An unallocated Vector object x, containing double precision elements, is created by the code

statement:

Vector<double> x;

The Vector object's size can be allocated later in the code by the statement:

x.build(1,10);

70

The x object above may be increased in size by the statement:

x.grow(1,5);

This adds five elements to the end of x, giving it an index range of x (r) fix (15) . Accessing

another Vector object's array is demonstrated by the code:

Vector<double> x(1,15), y¡

x. sub_acceEg (y,5,15) ;

Two Vector objects x and y are declared. Only x is allocated storage. The Vector x then

assigns the unallocated anay pointer in Vector y to elements x (s) ftx (15) . An important

point is that the elements of y default to y (1) Hy (10) and not y (s) Hy (15) . The principle

is illustrated in Figure 3.1 . The Vector x owns the allocated memory and y has access to part

ofx's memory.

Figure 3.1: Multiple access of Vector objects.

This also illustrates the use of different constructors in a C++ class. Any type may be

allocated into a Vector object, provided the type has a default constructor. A default

constructor takes no arguments and generally puts an object together in the simplest way

7l

possible. Inside the Vector class there is a constructor taking two integer arguments that

define the start and end indices of the afiay. The constructor then allocates the required

memory for the number of elements of the type passed to the Vector. This constructor runs

when the declaration Vector<doubl-e> x(1,15) is made. The Vector's default

constructor (with no arguments) is run when the object y is created. This default constructor

sets the start and end indices to zero and ensures that the anay inside the object is null. The

constructors and their arguments dictate how an object may be declared. It is not possible to

declare a Vector object x with the statement Vector<doubl-e> x (1, ro ,4) ; because no

constructor function exists that takes three arguments. The corresponding destructor function

for the Vector class deallocates the array's memory.

The Matrix class is similar. A Matrix object called x, with three rows and five columns of

double precision elements is declared by the code statement:

Matrix<double> x (1, 3,L, 5) ¡

The element in row three, column four is accesseci. and asslgned by the code:

x (3,4) = 5.234¡

The indices are placed within a single pair of parentheses to decrease execution time for the

accessoperation. Tooverloadthe O operatortoenablecodesuchasx(3) (5) requiresa

matrix to be stored as a Vector of Vectors, which greatly increases the access time for an

element by several factors. Slow access time is unacceptable, particularly for numerical

computation.

The arrays in both Matrix and Vector objects can be erased with a member function named

cl-ear () . The object can be reallocated with the build (i, j) function described earlier.

Unit operation classes are created in the next chapter, which further demonstrates the

complexity and importance of constructors.

12

3.3 Process Class Structure

This section describes the implementation of the System, Stream and Port class hierarchies

in C++. Detailed descriptions of each class' functionality are provided in Appendix A.

3.3.1 System Class and Descendants

The System-based data structure is implemented at an executive and a modelling level as

outlined in Chapter 2. The executive structure is the basic framework for process

representation and may not be modified. This structure relies on the basic attributes of a

connected physical system being similar. The majority of the executive structure is contained

inside the System class definition. The low-level structure is user-defined and deals

predominantly with object-based modelling. The low-level structure is implemented in

classes derived from System and is demonstrated in the next chapter with examples.

At the high level, a System owns inputs, outputs, other Systems, Streams, steady-state and

dynamic equation sets and a transformation model. These attributes are generic at this level.

The physical attributes are implemented as Vector objects containing pointers to objects of

the basic System, Input_Port and Outprit Port classes. The mathematical attributes are

pointers to objects of the Equation_Set hierarohy.

The specific attributes must be invisible to the user and inaccessible except through a limited

set of interface functions. This is an application of the software engineering principle of

informøtion hiding. These attributes are therefore private or protected in the System class

declaration. Without an insulated high-level structure it would be difhcult to provide

consistent, user-extendable modelling facilities. In other simulation systems (e.g. OMOLA),

the high-level structure is protected by separating the modelling and development languages.

The executive interface functions are solely defined at the System level and are not virtual.

This prevents a user-developer from redefining the functions at a lower level and comrpting

the integrity of the data structure. The functions are designed to assign the executive-level

pointers to specific objects at lower levels. The member interface functions are described in

section A.1.1 of Appendix A.

t5

Two pairs of virtual functions are defined for analysing the main steady-state and dynamic

Equation_Set objects in a System. One function in each pair performs the depth-first

connection and analysis of the main Equation_Set objects in each System and the second

function performs the depth-first collection and building of Vectors of Variable and

Equation pointers. The algorithms are shown below for steady-state analysis and

collection/building in Figures 3.2 and 3.3. The dynamic algorithms are similar.

Y

First sub,-System

already analysed?
Is th¡s System

Analyse this System's
trquation_Set

this
own sub-Systems?

Next sub-System

Änalyse sub-System

Append sub-System's
Equâtion_Set to this

System's Equation_Set

there any
sub-Systems?

Figure 3.2: System-class steady-state analysis algorithm.

During the analysis the appended Equation_Set objects become "extra" Equation_Set

objects that will be built as part of the Equation_Set object that they are appended to (see

section 3.4).

74

Is this System
already built?

Build this System's
Equation_Set

Y

Figure 3.3: System-class steady-state collection/building algorithm.

The algorithms for analysis and building of Equation_Set-types are described in section 3.4.

The corresponding functionality is described in section A.1.2 of Appendix A.

The System class also contains virtual functionality for unit models and associated ancillary

functions. One steady-state and.one dynarnic function are provided for model definition. The

functions are named stst_mocìei O and dynamic_model- O respectively. The default

operation is to run the dynamic_model O function for steady-state solution. This is based

on the assumption that a steady-state model is a dynamic model with time derivatives set to

zero. The model developer is required to ensure that separate steady-state models can

initialise a dynamic model correctly.

At the System level the dynamic_model O function does nothing and must be redefined

for specific model types. These functions take no arguments because it is assumed that all the

relevant model values are part of the class definition. If this is not the case then the two

model functions can drive other functions that take arguments. Both the model functions

return an integer value. This value is zero for a failed model evaluation and nonzero for a

successful evaluation.

Three ancillary virtual functions are provided that take no arguments. The first is named

ss_output O and is designed to be redefined for each unit class to output relevant solution

Variable values at the conclusion of a steady-state simulation. The second function is named

75

update O and is automatically run for each unit after each time step in a dynamic

simulation. It can be employed for updating past array values, model switches and variable

output files, etc. The third function is supplied by both System and the Mathtool classes,

named disc check O . In lower level classes that inherit from System and Mathtool, the

two functions simply merge. The function disc check O is used for checking ahead for

discontinuities in dynamic simulation. The function returns zero if no discontinuity exists

over the next integration step and one if there is a discontinuity. The user is required to

specify how a discontinuity is detected within individual unit models. An associated

discontinuity variable is also available for the user to set or solve for the time at which the

discontinuity occurred. The default behaviour is to return with no discontinuity.

The two main child classes of System (excluding specific unit operation classes) are Unit and

Sys_Man_Block. Flowsheet and Convergence_Block then inherit from the

Sys_Man_Block class. Specific unit operation classes may inherit from any of Unit,

Flowsheet or Sys_Man_Block as required. The Mathtool class is a joint parent of the Unit

and Sys_Man_Block classes. The Mathtool class does not contribute to the process structure

or unit models. It provideb direct functionality to the Unit and Sys_Man Block classes. 'Ihe

numerical methods are discussed in'section 3.6. Unit is a pure interface class and contains no

fuither structure or functionality from System. Sys_Man Block contains no extra structure

but has refined functionality for modelling, setting up and solving groups of connected

System-types. The functionality drives the System-types it contains, for example the model

and discontinuity functions. Flowsheet inherits directly from Sys_Man_Block and contains

no extra structure or functionality. Note that the public functionality of the System class is

available also. The inheritance tree is illustrated in Figure 3.4.

76

X'igure 3.4 : Combined System/lVlathtool class hierarchy.

The Sys_Man_Block and Flowsheet classes contain a public virtual function named

initialise O which sets initial estimates for solution Variables of each unit.

Redefinition of the function in lower-level classes is optional.

The Convergence Block class is designed to reassign the input and output Variables

associated with Process Streams. It contains its own Variables, Equations, an

Equation_Set and a Vector of torn Process_Streams. There are public interface functions

for tearing process streams, speciffing solution methods and reassigning the input and output

Variables of process units prior to solution. The interface functions are described in section

4.1.3 of Appendix A:

3.3.2 Part Class and Descendants

The Port class hierarchy provides objects for connecting System-types together with Stream-

types. The Port class contains a pointer to the System-type that owns it. This pointer is a

protected class member. The Port class also contains generic virtual functionality for

connecting input and output Variables. These functions arc public because low-level

System-types must be able to drive the connection functions.

77

A high-level interrogation function for accessing the Variable pointers in a low-level Port-

type is provided. This function is public. This does not contravene the information hiding

requirement of the high-level structure. The Variable pointers do not exist at the Port level;

they only exist in lower level classes derived from Port (e.g. the Process Input_Port class).

The specific Variable objects assigned to the pointers in a low-level Port class are user-

dehned and therefore already accessible. The virtual interrogation function is designed to

provide an interface for model debugging.

The Port class is divided into Input_Port and Output_Port classes. These two classes

contain protected pointers to source and sink Stream-types. The high-level structure ends

with the Input_Port and Output_Port classes. There is a direction associated with most

connections in a flowsheet. The Port hierarchy caters for this with automatic functionality

that instructs the Variables associated with an Input_Port-type to remove themselves from

an equation analysis. This is done because the inputs to a unit are usually outputs from

somewhere else. For the purpose of constructing a solvable set of equations it is reasonable to

assunìe that unit inputs are constant. If the inputs are actually solution variabies they will be

analysed as outputs of the preceding units. This automatic "switching off is user-reve.',¡;ible.

The interface functions for the Port, Input_Port and Output Port classes are described in

section A.2.I of Appendix A.

The executive-level Port classes are not employed as modelling objects. At the lower level

six child classes are defined for process streams, signal streams and work streams with an

input and an output class for each.

The Process Input_Port and Process_Output_Port classes are for representing the entry

and exit of process mixtures from a System-type. Both classes o\¡/n a mixture composition, a

total flowrate, and the temperature and pressure of the System-type that owns them. In

addition the Process Input_Port class knows the temperature and pressure of the System-

type that feeds it and the Process_Output_Port class knows the temperature and pressure of

the System-type that it is feeding. This structure provides bi-directional information flow.

The application of this facility is demonstrated in Chapter 4. The flow, temperature and

78

pressure attributes are implemented as pointers to Variables. The mixture-composition

attribute is a pointer to a Vector.

The Variable pointer attributes arc private to the class, although member functions are

provided to access them. Ideally the attributes should be completely inaccessible but this

makes it difficult for user-developers to exploit the bi-directional information flow. The

attributes are therefore private to ensure that access and modification is only possible through

a deliberate member function call.

Each class has its own implementation of the map O and

get_vars (Vector<Variable*> &v)functions of the Port class (see section A.2.1,

Appendix A). The bi-directional temperature and pressure attributes are set automatically by

the map O function. Interface functions are described in section A.2.2 of Appendix A.

The Signal-Input_Port and Signal_Output_Port classes are for representing the entry and

'exit of process signals from System-types, such as controller or measuring element signals.

The ctra-sses only have one attribute, which is the signal. The class structure+;-are exa:tly

analogous to the Process Input_Port and Process_Output_Port classes, exccpt that Lii-

directional information flow is essentially automatic because there is no gradient associated

with a signal. The interface functions for each class are described in section A.2.3 of

Appendix A.

The Energy Input_Port and Energy_Output_Port are classes for the transfer of energy to

and from System-types. The type of work is not specific; it can be heat, shaft power or

electrical etc. The class structure is the same as the Signal-Input_Port and

Signal_Output_Port classes above. Connections with this Port-type have a nominal

direction but do not affect the numerical analysis. The interface functions are described in

section A.2.4 of Appendix A

It should be emphasised that a Port-type provides an optional connection point that is

independent of any equation structure. It is not necessary to connect Streams (see 3.3.3

below) to all of the Ports in a System. For example, the Pl_Controller class owns a

Signal-Input_Port for the setpoint. This enables cascaded control loops to be constructed.

79

Port

Output_PortInput_Port

Signal_Output_Port

Signal_Input_Port

Energr_Input_Port

However, a Pl_Controller may be used as a stand-alone controller without a connection to

the setpoint Variable object. The complete Port class hierarchy is illustrated in Figure 3.5.

Figure 3.5: Port class hierarchy.

3.3.3 Stream class and Descendants

îhe, basiô Stream class is implemented as a pure connector with no func'risnelit5,. 11 contains

two private attributes for the source and sink Ports of the stream. It has three friend classes:

Port, Input_Port and Output_Port. A class declared as afriend of another class in C++ is

permitted to access the private andprotected attributes of the class. This is reasonable in the

case of the Port hierarchy, the connectivity is controlled by the Ports so a Stream object

requires access to the physical mechanism of connection. The class has two interface

functions, get_source () and get_sink () , described in section A.3.1 of Appendix A:

These two functions are used for obtaining access to the Variable objects associated with a

particular Stream, for example with the Convergence_Block class. There are three low-level

child classes of Stream that correspond to the three low-level Port-types: Process_Stream,

Signal_Stream and Energy_Stream. None of these classes contain further structure or

functionality. The three classes are derived to simplify coding of connections. The class

hierarchy is illustrated in Figure 3.6.

80

Stream

Figure 3.6: Stream class hierarchy.

3.4 Mathematical Class Structure

This section describes the implementation of the Variable and Equation_Set hierarchies

3.4.1 Variable Class and Descendants

The Variable class is used for representing possible solution variables in the simulator. It is

the parent class for the Derivative and Equation classes. The Variable class contains a

number of attributes. It contains a value and a pointer to another Variable for input-output

coirnections, upper and lower bounds, a switch to deterinine i[it ls a solution variable or

pa;,ameter and a switch to determine if it is to be analysed as pafr of an Equation. There are

also attributes that determine if the Variable has been analysed an<Í collected as part of an

Equation_Set. These attributes are protected and member functions are provided to assign or

access the values of the attributes. The list of public member functions is reasonably large for

this class (other member functions arc protected for use by the Equation_Set hierarchy which

is a friend of this class). The public member functions are described in section 4.4.1 of

Appendix A. The most important member functions are named operator O , which retums

the double precision value of the Variable object and :, for assigning values. Use of these

functions is demonstrated later in this section.

The Derivative class also contains a connection to its state Variable object. This is a

protected attribute and the Dynamic_Set class is a friend of the class. The member functions

are described in section A.4.2 of Appendix A.

The Equation class contains a list of the Variable objects that affect it. The list is modeller-

defined. The Equation class is descended from the Variable class because the status

functions, analysis and collection attributes and the value operator O are directly applicable.

8l

The = operator is again overloaded for the class. The connection attribute of the Variable

class is potentially useful for assigning a solution Variable to an Equation. The Equation

class also contains two other protected attributes. One is a potential connection to a

Derivative if the Equation is dynamic and the other is a connection to a Variable-based

object if the Equation is to be written in explicit form. The public member functions of the

class are explained below for convenience in examining the C++ example that follows.

set no x (int n) assigns the number of Variables that affect the Equation

include (Variablet v) includes a Variable in the list.

set derivative (Derivative& d)

Equation.

assigns the Derivative object of the

set_exp_var (Variable& v) assigns the explicit Variable for the Equation.

The principles of explicit and implicit Equation objects are best illustrated by example.

Consider an equation written implicitly and explicitly below:

0

x
= x_xy
=xy

(3.1)

(3.2)

In the class structure described, they would require an Equation object and two Variable

objects (say, e, x and y respectively). Evaluation of the implicit form is straightforward. The

C++ code would be:

e = xO - xO*yO;

The terms x O and y O demonstrate the use of the operator O function described earlier

The explicit form is slightly more complex. V/riting the code as

x = xO*yO;

82

does not include the Equation object e. It also overwrites the value of the Variable x which

is undesirable for interchangeable numerical methods. The solution is to use the Equation

object itself as the left-hand-side of the expression, thus:

e = xO*yO;

The code required to setup this equation is simple

Equation e¡ //decfare Equation object

Variable x,yi //decl-are Variabl-e objects

e.set no x(2) ¡//øquation is affected by 2 Variabl-es

e.include(x); //lncl-ude the f irst Variabl-e

e.include(y) ; //tncl-ude the second Variabl-e

e.set exp var (x) ¡ //Set explicit Variabl-e for the Equation

The Equation object then contains the result of thr: p>:plicit calculation e x O *y () and it

also knows which Variable the explicit expressiol: refers tc. Therefore the implicit equation

form is immediately available from the Equation object and the original value of x is

preserved. The implicit equation residual can be calculated by the numerical methods without

user intervention. The same principle is applicable to explicit and implicit dynamic

Equations. The Variable hierarchy is drawn in Figure 3.7 below.

Figure 3.7: Variable class hierarchy.

83

3.4.2 Equation_Set and Dynamic_Set classes

The Equation_Set and Dynamic_Set class structures are complex although the inheritance is

simple. The Dynamic_Set class inherits from Equation_Set. An Equation_Set owns a

pointer to a Vector containing Equation objects. A single Equation object may only be

incorporated as a single-element Vector. An Equation_Set may only connect to one Vector

of Equations. This one-to-one correspondence is enforced to encourage the isolation of

specific sets of Equations within a System-type. A Vector of Equations may be connected

to several Equation_Sets. This permits the definition of different mathematical structures

within a model. This is demonstrated in the next chapter. The design of the Equation_Set

hierarchy encourages the connection of Equation_Set types so the one-to-one correspondence

does not restrict mathematical modelling. The Dynamic_Set class can further connect to

other Dynamic_Set or Equation_Set objects. Mixed dynamic and steady-state Equations

are not permitted within the Vector of Equations for a Dynamic_Set. The Vectors are

protected in the Equation_Set class (to allow the Dynamic_Set class to use them) and

private in the Dynamic_Set class. If a purely algebraic Equation_Set is required for a

dynamic simulation, it must be made a subset of an ençty Dynamic_Set.

, ;'í

' The Equation_Set class owns two VectorS of pointers to Equations and Variables. The

Dynamic_Set class owns five additional Vectors of pointers: one each for the set of

I)erivatives, algebraic Variables and Equations and the dynamic Variables and Equations.

These Vectors are passed to the numerical methods for solution. The I)ynamic_Set class also

contains a pointer to an independent Variable. The Equation_Set class owns two Vectors of

pointers to other Equation_Set types. One Vector is for user-defined subsets of equations

and the other is for extra subsets connected during the depth-first analysis. An example is a

Flowsheet object: it has no user-defined subsets but collects the Equation_Sets of the

System-types it contains. A similar pair of Vectors is defined in the Dynamic_Set class for

dynamic subsets. The Vectors of pointers are protected in the Equation_Set class and

private in the Dynamic_Set class. The interface functions for the classes are described in

section A.4.4 of Appendix A.

The classes contain other functionality to ensure that Equation_Set objects are not repeated

in another Equation_Set-type (i.e. structurally singular) and for analysing and building the

Vectors of Derivatives, Variables and Equations. The owner System-type drives this

84

functionality. The building algorithms are illustrated for both classes in Figures 3.8 and 3.9.

The analysis algorithms are similar, except that the "build" steps are replaced with "analysis"

steps and the "extra" sub-sets do not exist. The "extra" sub-sets only exist after an analysis

step, as described in section 3.3.1 and Chapter 2, section 2.3.I.

N

Y

N

start

own sub-sets?
this

already built?
this

First sub-set

sub-set
own extra sub-sefs?

this

Build sub-set

First extra sub-set

Next extra
sub-set

sub-sets?
fhere

Build extra sub-sef

own Equations?
this

extra sub-sets?
Are there anymore

Build this
Equation_Set's

Equåtions

Y

N

Y

N

N

Y

N

Figure 3.8: Equation_Set building algorithm.

The analysis and collection functions are not virtual, so if a Dynamic_Set is incorporated as

the main steady-state set for a System-type; the Derivatives in the Equations are ignored.

The state Variables become potential solution Variables of the steady-state set. This applies

at all levels in a connected set of Systems and Equation_Sets and so Dynamic_Sets and

Equation_Sets can be mixed together in a steady-state analysis.

85

Y

N

N

N

N

stârt

Dynamic_Set own

already built?
this

Dynamic_Set's
dynamic Equations

Y

sub-sets?

Dynamic_Set
own extra dynamic

sub-sets?
own extra algebraic

Dynamic_Set

F¡rst extra
dynamic sub-sel

dynamic sub-set
extra

F¡rst extra
algebrâic aub-set

Build extra
dynamic sub-set

Next extrâ

Build extra
algebraic sub-set

YAre there

sub-sets?
extra

Ythere
extra algebraic

sub-sets?

own dynamic sub-sets?
Dynâmic_Set

this

sub-sets?

Dynamic_Set
own algebraic

F¡rst dynam¡c sub-set

Next dynamic
sub-set First algebraic sub-set

Build dynam¡c aub-
set sub-set

Bu¡ld âlgebraic
sub-set

YAre there atrymore
dynamic sub-sets?

N YAre there
âlgebraic sub-sets?

Figure 3.9: Dynamic_Set building algorithm.

86

To illustrate the application of the mathematical structure classes, consider a simple model of

balancing liquid height and volumetric flow in and out of a cylindrical tank. Two

simultaneous equations can describe the system:

dh
A dt-F^-F*, 0

0

(3.3)

(3.4)Fo,,, - CJh

Representation of these equations is simple

Variable Fin, Fout,h,C ¡ //decl,are VariabTes etc.
Derivative dhdt;
Vector<Equation> de (1,1) , ae (1,1) ¡ //Singl-e el-ements

Dynamíc_Set d;

Equation_Set ei

de(1).set ¡:o x(3) ¡//3 Variabl-es affect this Equation

de (l-) . inelude (h) ;

de (1) . ínclude (Fin) ;
de (1) . include (Fout) ;

de(1).set derívaÈive(dhdt) ¡//set the Derivative object
dhdt.set state(h);

ae(1).set no x(3); //3 VariabTes affect this Equation

ae (1) . include (h) ;

ae (1) . include (Fout) ;

ae (1) . include (C) ;

d.incorp_eqns(de); //incTude the de Vector
d.set no ae sets(L)¡//has 7 aLgebraic set...
d. incorp_ae_set (ae,1) ¡ // . . . which is the ae object

//tne set is now ready for anal-ysis

/ /or Variabl-e specif ication, e . g . constant O , var o

87

The code creates a connected tree of Equation_Set, Equation and Variable objects, as

illustrated in Figure 3.10.

Figure 3.10: Tank volume balance equation tree.

The tree may be traversed and analysed for solution either as a dynamic or steady-state

system. There is a redundant branch associated with the Derivative dhdt and Variable h

The redundant branch is compulsory in mathernatical structure definition to ensure that th"

model developer caters for steady-state and dynamic analysis explicitly. The flow coefficient

C is included as a Variable because in steady-state solution, a specified liquid height h

permits exact calculation of the flow coeffrcient. Alternatively, specihcation of the coefficient

permits calculation of the steady-state height. An example of a multi-component liquid

mixing tank model is provided in the next chapter.

3.5 Component, General_Component Mixture and Properties classes

This section describes the Component, General_Component_Mixture and Properties

hierarchies. The calculations are based on S.I. units in all cases. The classes contain

comparatively little structure and the discussion emphasises the interface functions for various

calculations. The physical property class hierarchies are illustrated in Figure 3.1 1 .

88

Figure 3.11: Physical property class hierarchies.

3.5.1 Component class and Descendants

The attributes of a conventional chemical component were discussed in Chapter 2. The

attributes of the Component class are: name, molecular weight, critical temperature. critical

pressure, critiial voluine, boiling point at standard conditions, freezing point at standard

conditions, u"åtrt i" factor, dipole moment, liquid and vapour specific heat, liquid and vapour

density and enthalpy of vapourisation at standard conditions. The class also contains a pointer

to text file which stores these attributes based on the name of the Component. These are all

private attributes. The attributes are defined in S.L units where applicable. There are public

member functions to access the values of the attributes, set the datafile and retrieve the

Component information. The functions are described in section 4.5.1 in Appendix A.

The class is refined into a User_Component class. The class contains extra functionality to

permit the user to define the properties, described in section A.5.2 of Appendix A.

A Component_Set class is also defined. It provides a container for groups of Components

to be attached to the General_Component_Mixture and Properties classes. The

functionality is simple and is described in section 4.5.3 of Appendix A.

89

3.5.2 General Component_Mixture class

The General_ço-nonent_Mixture class contains a pointer to a Component_Set and a

corresponding double-precision Vector of mole fractions. It also contains pointers to

Thermo and VLE objects and reference values for temperature and pressure. These attributes

are private. The Thermo class is part of the Properties hierarchy and is discussed in the next

section. The class contains public interface functions to calculate general properties of

interest. Properties are calculated with respect to the reference values and state of the mixture.

The member functions are described in section A5.4 of Appendix A.

Most of the functionality reflects the capabilities of an equation of state, discussed in the next

section. Some functionality will be invalid for simple approximate calculations. All vapour

pressure calculations are based on the Antoine equation. While departure functions of the

Equation_Of_State hierarchy were implemented, only the methods for enthalpy and specific

heat are currently available.

3.5.3 class and Descendants

The Properties class is a very simple parent for specific types of property calcuJation. The

main attribute is a Vector of Components, which it accesses 'from the

General_Component_Mixture it is attached to. Properties is the parent class for two types

of property calculation: thermodynamics and vapour-liquid equilibrium. The classes are

named Thermo and VLE respectively. These classes are high-level parents and cannot be

employed as modelling objects. They contain virtual functionality for the calculation of

thermodynamic and vapour-liquid equilibrium properties. Property calculation with lower-

level Properties-types is accessed through the interfaces of the

General_Component_Mixture class and not through the Properties descendants

themselves.

The Simple_Thermo class inherits from the Thermo class. The class employs extremely

simple calculation methods, based on mole fraction averages of each Component's

properties. The Ideal_VLE class provides simple vapour-liquid equilibrium calculations,

based on Antoine constants. The user must supply the values of the constants, through the

interface functions. The interface functions are described in section 4.5.5 of Appendix A.

Property calculation must be performed with the General_Component_Mixture class.

90

The Equation_O{_State class inherits from the Thermo and VLE classes. It is designed for

cubic equations of state of the form:

(3.s)

The class contains functionality for the calculation of fugacity coefficients for vapour-liquid

equilibrium and departure functions for enthalpy, entropy, Helmholtz energy and Gibbs

energy. The class inherits into a more specific Peng_Robinson class that automatically

specifies the values of ø,b,u and w above. Reid (1988) discusses equations of state and

calculation methods in detail.

3.6 Numerical Method Classes

Development of new algorithms was not an objective of the project. The basic numerical

method classes were described in the previous chapter. The inheritance 'tree is presented

betrci/r in Figure 3.12. . ì, i"

RTaD__'-v-b v2+ubv+wb2

Figure 3.12: Mathematical inheritance tree.

9l

The numerical methods are part of the high-level structure of the simulator and are not

intended for modification. The Broyden and Newton methods are object-oriented

modilrcations of code presented in Press et. aL (1992), designed to exploit the Variable and

Equation structure. The Direct Substitution, Vy'egstein and Marquadt methods were coded

from algorithms presented in Henley and Rosen (1969). The Backward Difference integrator

was coded from an algorithm presented in Hall and'Watt (1976). The backward differences

are computed with a Vandermonde matrix (Press et. al. 1992).

The Mathtool class interface functions are described in section 4.6 of Appendix A.

3.7 Summary

The C++ class structure has been developed from the design requirements determined in

Chapter 2. The class structure has been discussed in terms of the attributes and functionality

available for a user to model and simulate unit operations and flowsheets. The process

structure is modelled with refined classes from the System, Port and Stream hierarchies.

Various connection types and multi-level System-based models can be'rcreated. The

mathematical structure is modelled with classes from the Varinhle ancl,''Equation_Set

hierarchies. Multi-level mathematical structures are possible through a connection philosophy

similar to the System hierarchy. Equations can be implicit or explicit. Model evaluation is

based on steady-state and dynamic System-based model functions. Physical and

mathematical representation is achieved with a relatively small set of attributes and

functionality. The class hierarchies for Component, General_Component_Mixture and

Properties were described with reference to the property methods available. Examples of the

application of the Cf* classes are provided in the next chapter.

92

Crr¿'.prEn 4

Modelling and Simulation

This chapter discusses some decomposition techniques applicable to process modelling,

followed by examples demonstrating the M.O.P.S. C** classes for modelling and simulation.

4.L Decomposition Techniques

The final goal of a simulation model is a valid mathematical description of the process. The

mathematical description can be developed in many different ways, depending on the frame of

reference that is applied to the system under consideration. The most basic model

development process is to code the complete set of equations for a model as one block within

the framework of the modelling environment. For small process models, with say, less than

ten equations this is reasonably fast and easy. There are drawbacks to this approach.

Modification of the model is a complex process because a srnall change alters the entire

nrodel. This partially negates the advantages of object-oriented modelling. For large models

single equation blocks are time-consuming and unwieldy. Likewise, model validation is also

more diff,rcult with large equation sets.

Usually a model is decomposed to reduce it to components that can be modelled and tested

individually. Nilsson (1993) provides a detailed discussion of two model decomposition

techniques, called Medium and Machine Decomposition and Primitive Behaviour

Decomposition.

4.1.1 Medium and Machine Decomposition

This technique divides the model into two systems, one for the machine-based model and one

for the medium. The machine is the vessel or physical container of the unit operation. The

medium is the mixture within the vessel. The model characteristics in each system depend on

the frame of reference. The machine could be considered as owning the dynamic behaviour

(holdups etc.) of the system and the medium could own the static behaviour of the system, for

example chemical equilibrium. This is known as a static medium model. Alternatively the

93

machine and medium division can be based on intensive and extensive properties. Extensive

properties such as total mass are part of the machine model and the intensive properties such

as component concentration are part of the medium model. This is known as a dynamic

medium model.

In both cases the two systems communicate via a connection interface. The interface for a

mixture of components would be similar to the Process Port class described earlier. A

consistent interface offers the potential for different machine models to be connected to

different medium models. Machine and medium classes could be implemented with the

System class structure.

Medium and machine decomposition can be provided in two ways in an object-oriented

environment. A model could be constructed from medium and machine objects, or by

inheriting the desired medium and machine classes into a new model class. Both methods

require some sort of connection between common variables, for example the total input flow

which affects the total mass balance in a machine model and the cornponent concentrations in

a rnedium model.

The emphasis of this project is to model complex systems as connected objects. However,

C++ offers the facility to access the attributes of the individual parent classes and so

decomposition by multiple inheritance is available. The General_Component_Mixture

hierarchy provides some of the facilities of the static medium model.

4.1.2 Primitive Behaviour Decomposition

A primitive behaviour of a model is behaviour that results from a particular modelling

principle or assumption, such as conservation of mass. Primitive behaviour decomposition

involves breaking a model up into compartments that define the model from the underlying

modelling assumptions. If the compartments can be defined as modelling entities themselves

with their own inputs, outputs and behaviour, modelling becomes a knowledge-based

procedure. Model equation sets are constructed by selecting an appropriate modelling

assumption, such as an object from a hypothetical Mass_Balance class. Several primitive

objects could be connected together to create a general model, with more specific details (e.9.

reaction rates) coded in on an as-needed basis.

94

As stated previously, a knowledge-based implementation was considered outside the scope of

the project. However, the existing class structure can accommodate aspects of a knowledge-

based environment. Consider the definition of primitive behaviour classes for mass,

component and energy balances. The mass and component balances could be incorporated

into a System-based class that owned Equation, Variable and Port-type objects. The energy

balance could be part of another System-based class with the same attributes plus an

Energy_Output_Port and a General_Component_Mixture-type for thermodynamic

calculations. In a specific reactor class these two primitives could be declared as objects of

type MassBal and EnergyBal, say, with the reaction kinetics coded by the developer.

Connections between the primitives and the rest of the model could be accomplished via the

Variable class' connectivity or with Stream- and Port-types. The number of inputs and

outputs would be parameters of the constructor functions for MassBal and EnergyBal. The

basic equation structure for the model is defined from pre-validated modelling objects. A

knowledge-based implementation is a very basic building-block approach to process

modelling and simulation. The declaration of a flash-type for example is only a collection of

modelling assumptions about mass, energy and phase equilibrium.

4.1.3 Mathematical Decomposition

Methods have been described for the decomposition of a process model by various modelling

principles and assumptions. A further decomposition is based on the mathematical structure

of the modelling equations. This decomposition is applicable independently or as an

extension to the decompositions above. It is partially derived from the Equation_Set

structure. The requirements and attributes of mathematical modelling with the Equation_Set

hierarchy are reviewed below:

o An Equation_Set may connect to (or contain) any number of other Equation_Sets

as subsets.

o A Dynamic_Set may connect to (or contain) any number of Dynamic_Sets andlor

Equation_Sets as subsets.

o An Equation_Set-type may contain only one Vector of Equations.

o A Vector of Equations in an Equation_Set type may only contain either steady-

state or dynamic equations, not a mixture.

95

. An algebraic set of Equations for a dynamic simulation must be part of an

Equation_Set. This Equation_Set must then be a subset of a Dynamic_Set. A

Dynamic_Set may contain subsets only and no dynamic Equations of its own.

The one-to-one corespondence between an Equation_Set-type and a Vector of Equations

suggests decomposing the mathematical model into groups related to a particular model

aspect. This is best demonstrated with an example. Consider an open liquid mixing tank

similar to the one discussed in Chapter 2, redrawn in Figure 4.1. The system equations are

derived from a mole balance.

F, Z¡

L, X¡

Figure 4.1: Cylindrical liquid mixing tank.

The equations and variables for the dynamic mole balance are given below:

dNt

dt
N,

,t

I*,
i=1

Nf
APron,
P
Pou,

Fz, - Lx,

X,N,

I

P^orrgh

P+P*^
x,(n), z,(n), N,(n), N,, L, F, h, P, Po,t

1n (4.1)

(4.2)

(4.3)

(4.4)

(4.s)

(4.6)

n1

h

Vøriøbles:

96

The tank is adequately modelled by equations (4.1 - 4.6). A mole balance is performed

because this is compatible with the rest of the simulator structure. The minimum number of

Vectors of Equations is two, one for the dynamic equation (4.1) and one for the algebraic

equations (4.2 - 4.6). This requires a coffesponding Dynamic_Set with an Equation_Set

connected as a subset to represent the DAE system. The decomposition could be extended

fuither. Equation (4.2) relates component holdups to total holdup and could form their own

Equation_Set object. Equations (4.3), (4.4) , (4.5) and (4.6) could be part of a second

Equation_Set object.

Depending on the simulation requirements, the system could be decomposed by separating the

equations according to the requirements of steady-state and dynamic simulation. The full set

could be solved in steady-state to initialise a dynamic simulation with the correct holdups.

Equations (4.1) and (4.3) are adequate for a purely steady-state analysis where holdups are

irrelevant.

The Equation_Set hierarchy can accommodate a variety of equation structures within one

model. Four Equation_Sets and one Dynamic_Set can cater for the options discussed so far.

To do this, one Equation_Set is attached to each of equations (4.2), (4.3) and the triplet

(4.4),(4.5),(4.6). One Dynamic_Set and one Equation_Set is attached to equations (a.1).

This is permitted within the data structure; a Vector of Equations may have a one-to-many

connection with Equation_Sets (the Vector does not "know" if it is attached to anything).

The three Equation_Sets for equations (4.2), (4.3), (4.4), (4.5) and (4.6) are then made

algebraic subsets of the Dynamic_Set. This provides the full steady-state and dynamic

holdup model. The smaller steady-state model is created by connecting the Equation_Set

that owns equations (4.1) to the Equation_Set for (4.3). The simulated model is selected by

assigning the appropriate set through the incorp_main_ss_set (Equation_Set& e)

and incorp_main_dyn_set (Dynamic_Setc d) functions of the System-class.

4.2 Modelling Examples

The mixing tank will be used as an initial example of modelling with the C++ classes. The

model will be in a basic form without physical properties or an energy balance. The

mathematical structure will be the full steady-state and dynamic model discussed above.

Other models will be developed in this section to demonstrate bi-directional information flow,

97

connected system modelling, multiple inheritance of characteristics and complex physical

property, energy and mass balance modelling. The modelling process employed is similar to

the development of the simulator class structure; the physical attributes are determined

followed by the mathematical structure. Variable and Equation_Set types and most member

functions are generally public attributes. This follows from a similar philosophy to the

ASCEND (Piela et al. 1990) modelling language where the user can manipulate whatever

element of the structure they desire. This facilitates model debugging and the initialisation

and assignment of values. Unless specified, measurement units are in the S.I. system.

4.2.1 Mixing Tank

The mixing tank drawn in Figure 4.1 has one input and one output stream. These connections

are represented by a Process Input_Port and a Process_Output_Port. Associated with each

Port-type is a Vector of compositions, a temperature and a pressure. It is assumed for this

simple example that the liquid level is not an interface Variable and that the vessel cannot

overflow. The set of equations (4.1) - (4.6) contains the compositions, holdups, holdup

derivatives, the tank level, area, fluid density and outlet pressure. The equations are assigneci

to two Equation_Sets and oue Dynamric_Set., The Dynamic_Set owns equation (4.1). One

Equation_Set owns equatioir (4.2) and equations (4,3) - (4.6) are allocated to the other

Equation_Set. The class declaration describes what the attributes of the Tank class will be

and any functionality that the class owns. The class must inherit the high-level System

attributes from the Unit class. The C++ class declaration is given below. Comment

statements are indicated by italic text that follows a double forward slash (//). C++ code is in

bold type.

#ifndef MIXTAI{K HPP

#define MIXTAIIK HPP

//standard C/C++ practice for header fi7es, avoids muTtipTe
//inclusion of f il-es. Fil-e name is t'mjxtank.hpp'
#ínclude " unit.hpp" //tncludes the Unit cl-ass header f il-e.
//fhe unit.hpp header f il-e contains al-l- the basic header f il-es
//required for modelTing units, such as mathematical-
//operations, screert output, Equation Sets, VariabLes etc.

class Mixing_Tank:public unit{ //Commence cl-ass decl-aration.
//rnherits from the unit cl-ass.

publicz//attributes at this model-l-ing TeveJ are pubTic.

98

Vector<Variable> z t*tN¡ //Decl-are inl-et and outl-et
//composition and hol-dup vectors.

Vector<Derivatíve> dNdt ¡ / /Oecl-are hoTdup derivative
/ /vector.

VectorcEquation> de,ael,ae2¡ //Decl-are dynamic and
/ /al-gebraic equation vectors.

Variable Pin, Pout, Tin, Tout ¡ / /DecLare inl-et and
//outl-et pressure and temperature.

Varíab1e F,L,Ntot,h,P,Patmi //DecTare inl-et and
//outl-et f 7ow, totaL moJ-ar hoTdup,
//liquid height, height pressure
//and atmospheric pressure.

Equation_Set eqnsetl, eqnset2 ¡ / /Decl-are
/ /øquation_Sets .

Dynamic_Set, dyneetl ; / /decLare Dynamic_Set
double rhomass, rhomolar, Area, gi

//necl-are mass density,
//molar density, tank area and
/ / gravitational- acceLeration.
//Not sofution variabTes. Must be set
/ /bV the user.

int nc ¡ / /Decl-are variabl-e to hol-d number of
, //components in the tank.

Process_.Input_Port ín¡ //Decl-are input port.
ProceeiE . Output_Pc.rt outi / / necJare output port.

int dynamic_rirodelO; //necTare the dynamic modef .

void setupO¡//necLare function to connect ports.
Mixing Tank(int n, int no comps) ¡//Declare

//constructor function. Both arguments
//are integer tyç>es. Argument n is an
//index number for the System-type,
//no_comps is the number of components
//in a stream.

-Mixing_Tank () { }; / /necl-are des tructor function.
//tt does nothing but it is good
//programming practice to incTude a
//nul-L definition

j¡//nna of cTass decLaration

#endif.//gnd of #ifndef above

It should be noted that no assignments are permitted within a class declaration in C++; hence

the Vector objects are declared with no dimension. A molar and mass density are required.

Normally these are available directly from the physical property classes but this model has no

physical property calculation objects. The Vector dimensions are allocated within the class

constructor. The three member functions dynamic model O , setup O and

99

Mixing_Tank (int n, int no_comps) must be defined for the class. The definitions

are given below. The constructor function is the most complex.

Mixing_Tank: :Mixíng_Tank(int n, Ínt no_comps) :Unit (n) {//Start
/ / cons tructor def ini tion.

//fhe constructor is where an object of the cLass is put
//together. Note that the 'n' argument is passed directTy to
//the Unit constructor function, Unit(n) .

int í¡ //DecTare counter variable i

nc=no_comps; //essign value in no_comps to nc.

//e77ocate Vector objects.
z.buíId(1,nc);
x.buíld(1,nc);
N.build(1,nc);
dNdt.build (1, nc) ;
de.build(1,nc);
ae1 .build (1, nc) ;
ae2 .build (1,4) ¡

//rinished al-l-ocating Vector objects.

/ /Start physical structure def inition
in.set___toL_flow(F\, i/Assign the totaf fl-ow VariabLe foz'

/ / *e inl-et .

ín.set_fracs(z)¡//Assign the composition Vector for the
/ / inlet .

in. set_press_inleÈ (Pin) ¡ / /Assign the pressure Variabl-e
//for the inl-et.

in.set_temp_inlet (Tin) ¡ //Assign the temperature Variabl-e
//for the inl-et.

in. set presn owrrer (Patm) ¡ / /essign the owner' s pressure
//for the inl-et. ÀIecessary for
/ /bi - directionaf inf ormation
//f7ow. Open tank wiLl- aLways be
/ /at atmospheric pressure.

in. set_temp_owner (Tout) ; //Assign the owner' s temperature
//tor the inl-et. Necessary for
/ /bi-directional- inf ormation
//fl-ow.

out.set tot flow(¡,) ¡//Assign the totaL fTow Variable for
/ /tne outJ-et.

out.set fracs(x)¡//Assign the composition Vector for the
/ /outLet .

100

.i ll,-'.-.,

,,i;

{

out.set_press_outlet(Pout) ¡ //essign the pressuTe Variabl-e ,' ,

//for the outl-et. r" '
',;:i.ta,

out. set_temp_outlet (Tout) ¡ //essign the temperature
/ /Variabl-e f or the outLet -

//fnis unit has no energy baLance and is an open tank.
/ /fheref ore the temperature inl-et and outl-et VariabTes
//shouTd be connected for continuity from one unit to the
/ /next.

Tout.connect to(Tin) ¡//Connect outLet temperature to the
//inlet temPerature.

set no inpstrms(]-)¡//set the number of input streams.
set no outstrms(1); //Set the number of output streams'

own-input-port (in, 1) ¡ / /rhe tank owns the inl'et '

own_output_port (out ,L) ¡ / /fhe tank owns the outl-et.
/ /nna physicaT structure definition-

/ /Start mathematical- structute definit.ion.
for(Í=1i i<=ûc; i++l {/ /toop over dynamic Equations'

//Corresponds to equations (4.7) in the
/ /text.

de(i).set no x(5) ¡//Each differential- Equation has 5

/ /variabLes.
cie (i.i :'íriciude (Ê'') ¡ / /Include inTet f f ow F. i

de (i) . include (z (i)) ; //rncl-ude inl-et composition
//efement z (i) .

de (i) . include $') ¡ / /IncJ-ude outlet f l-ow L '
de (i) . ínclude (x (i)) ¡ //tncl-ude outl-et composition

//element x(i).
de (i) . include (N (i)) ¡ / /al-so incLude the state

/ /Variabl-e (hoLdup element N (i)) .

de (i) . set derivative (dNdt (i)) ; / /set the derivative
//for this Equation.

de(í) .set exp var(dndt,(i)) ; //rne Equation stores
//the Derivative dNdt (i)as
//its explicit Variabl-e
// (see Chapter 3, section 3.4.7) .

j//gnd dynamic equation TooP-

for(i=l; í<=rrC; i++) {/ /t'oop over Derivatives -

dNdt (i) .set state (N(Í)) ¡ //assign the state variabLe
//for each Detivative-

\//nna Toop over Detivatives-

for(i=1;i<=rtc;i++) {//Loop over first et of algebraic
/ /øquations . Corcesponds to equations (4 ' 2)

//in the text

101

ae1(i).set no x(g) ¡ //Each aTgebraic Equation in this
//Vector has 3 Variabl-es.

ae1 (i) . include (N(i)) ¡ //tncl-ude hol-dup N (i) .

aeL(i) .ínclude(x(i)); //tncLude composition eLement
//x(i).

ae1 (i) . include (Ntot) ¡ / /Incl-ude total- holdup Nüot.
//wote that no explicit variabl-e is assigned for
//these Equations. They must be written in the
//nodel- in fu77y equation-oriented form.

\//nnd Toop over first set of aTgebraic Equations.

ae2(1).set no x(nc); //corresponds to equation (4.3) in the
//text. Has the nc el-ements of the x
//composition Vector.

for(í=1ii<=rrC;i++) {//f'oop over the x composition
/ /eTements .

ae2 (1) . ínclude (x (i)) ;
//¡to expTicit Variabl-e is assigned.

)

ae2(2).set, no x(2)¡//Corcesponds to equation (4.4) in
//text. Has 2 VariabTes.

ae2(2) .include (Ntot) ¡ //Incl-ude the total- holdup Ntot.
ae2 (2) .include (h) ; //tncTude Tiquid height h.
" //t:¡o expLicit variabl-e is assigned.

the

ae2 (3) . set 'rro' * (Z) ¡ //Correspon,Ts to equation (4.5) in the
//text. Has 2 Variables.

ae2 (3) .include(P) ¡ //Incl-ude the height pressure P.
ae2 (3) . include (h) ¡ //Incl-ude the Tiquid height h.

//wo expTicit variabl-e is assigned.

ae2(4).set, no x(2) ¡//Corresponds to equation (4.6) in the
//text. Has 2 Variabl-es. À/ote that
//patm is not incl-uded in this Equation
//because it is never a solution
/ /variabl-e.

ae2(4) .include(Pout) ¡ //Incl-ude the outl-et pressure Pout.
ae2(4) .inctude(P); //Include the height pressure P.

//No explicit Variable is assigned.

dynsetl.incorp_eçFts(de); //ettach the de Vector to the
//Dynanic Set object dynsetT.

eqnsetl.ineorp_eçFrs(ael) ¡//Attach the ae7 Vector to the
//nquation Set eqnsetT.

eqnset2.íncorp_eç[ns (ae2) ¡ //Attach the ae2 Vector to the
//Equation Set eqnset2.

102

dynsetl. set_no_ae_setg (Z) ¡ //dynsetT has two aTgebraic
//subsets.

dynsetl.incorp_ae_set(eqnsetl) ¡ //eqnsetT is a subset.
dynsetl.íncorp_ae_set (eqnset2) ¡ //so is eqnset2.

íncorp_main_ss_set (dyneetl) ¡ //dynsetT is the main
//steady state set for this
//nodel-. Dynamic_Sets can be
/ /analysed for steady-state
//solution (see Chapter 3,
//section 3 .4.2) .

incorp_main_dyn_set (dynsetl) ; //dynsetl is the main
//dynamic set for this modef.

/ /End mathematical, structure definition.

Patm = 1013 .O¡ //Set atmospheric pressure in kPa.
g = 9.81¡//set gravitationaL acceLeration in m/s/s.

I / /sna constructor def inition.

The constructor describes an equation-oriented model. A very important aspect of equation-

ori'-nted sirnulation and modelling must be emphasised here. If the unit conrputati¡n ordei'is

ari"trary. any interface Variable (i.e. a Variable associated with a FtiliÉ-typei'tliat is a

potential solution Variable must be part of a simultaneous Equation. Consider equations

(4.4), (4.5) and (4.6). These are very simple equations with obvious explicit solutions. If the

equations were in explicit form and a unit downstream of the tank is calculated before the

tank, the value of the pressure in the connecting stream will be incorrect. The stream pressure

will still be at the value from the previous iteration until the tank is calculated. The

convergence of a steady-state system could be retarded or destabilised and a dynamic

integration would contain a constant error. At this stage the project has no algorithm available

to determine computation order. An ordering algorithm would be a great advantage because

the requirement of including all interface Variables in simultaneous Equations increases the

dimensions of a problem. Alternatively a sparse solution method could be provided to reduce

the solution time of the fully equation-oriented system.

The code for evaluation of the model is placed inside the virtual dynamic model- o
function:

103

int Mixing_Tank: :dynamic_model O {//Start mathematical- model-
/ /definition

int í¡ / /oecl-are counter.
double xsum; / /necl-are mol-e f raction suÍtmation.
//zvaluate DEs.
for (i=l; i<=ttc; i++) {

de(i) = FO*z(í) O - LO*x(í) O;
//wote that the derivative does not appear
//in the evaLuation. This is because the
//Derivative has been set as the expJicit
//Variabl-e for the Equation. See constructor
//above and Chapter 3, section 3.4.7.

I / /ena DE eval-uation.

xsrJrr=O .0¡ //tnitial-ise mol-e f raction sunmation.
//EvaTuate first set of AEs.
for (i=1i í<=ric; i++) {

ae1 (i) = x(i) O*N(i) O - NtotO;
//rhese Equations have no expTicit Variabl-e
xsum = x¡¡um + x(í) O; //Calcul-ate sunrmation.

j//nna first AE evafuation.

//nvaTuate other AEs.
ae2(1) = xsttrn - 1.0;
ae2(2) = hO - NtotO/(rhomolar*A);iãe2(3) = rhomass*g*hO - Pg*1000.0; //yOAC.O converts Lo

/ /kpa .

ae2(4) = Pouto - (PO + Patmo);
/ /gnd other AE eval-uation.

return OX¡//Uodel- evaLuation compTete. Return OK signaT.

j/ /ana mathematical- modeL def inition

The dynamic_model- O function above is run for both steady-state and dynamic

simulation. The final member function dehnition is trivial and drives the map O functions of

the Port-types within the tank:

void Mixing_Tank: : setup O {/ /Start setup/connection function
/ /def inition.

in.map O ¡ //connect inl-et.
out.map O ¡ //Connect outl-et.

j //nnd setup/connection function definition.

104

The class declaration and function definitions are straightforward and the purpose of the code

statements is reasonably clear. For many models, a class def,rnition and these three member

functions are sufficient to describe a model that is compatible and solvable within the

simulator structure. The tank area, mass and molar density must be set before the model can

be simulated. In this example, no member functions have been defined to set these

parameters, so the parameters must be accessed directly from an object of the Mixing_Tank

class. The tank only has one input and one output stream. The System class provides basic

connectivity functions (Chapter 3, section 3.3.1), which enable Process_Streams to be

connected to a Mixing_Tank object. An example is provided below that demonstrates

ionnectivity and specification of the class' parameters:

Míxing_Tank tankl(99,1) ¡//index number 99, 7 component
Process Stream strml,sErm2,

. . . //etc
tankl.rhomass = 1000.0¡ //e.g. water, 7000 kg/m^S
tankl. rhomolar = 55 .55 ¡ / /kgnol-/^^ 3

tankl.area = 0.785¡//about 7 metre diameter

...//etc
tankl. inp stream(strml, 1) ;
tankl. ouE stream (strm2, l-) ;

Non-descriptive connectivity is acceptable for System-types with few connections. For

models with several connections, it is usually necessary to def,rne specihc functions within the

model class that connect Stream objects appropriately. This is demonstrated in the examples

later in this chapter.

4.2.2 Bi-Directional Information Flow

Bi-directional information flow will be demonstrated with a Control Valve class. As

discussed in Chapter 2, flow through a valve can be modelled with a square-root dependence

on the pressure drop. For a control valve, flow ,F is given by equation @.7) below. The

dependence of flow on mixture density is ignored in this example. P,, and Po,, ate the inlet

and outlet pressures of the valve, x is the stem position and C is the valve constant.

(4.7)Four: xC P¡,, - Pout

l0s

The inlet and outlet pressures of the valve are defined by the vessels that are upstream and

downstream of the valve. The inlet pressure is automatically available from the inlet Port-

type but the outlet pressure must be obtained from the downstream vessel. In addition, the

flow through the valve dictates the flow out of the upstream vessel for an incompressible

fluid. The upstream vessel's outlet flow should therefore be reassigned to the valve's outlet

flow. A valid connection structure is still created without the flow Variable reassignment. In

this case the upstream vessel and not the valve will own the solution Variable for flow. The

operations required to reassign connections are moderately complicated but are explained in

detail below. The flow will be reassigned in this example.

The Control Valve class has three connection points: a Signal-Input_Port, a

Process Input_Port and a Process_Output_Port. It also has flow, stem position, valve

constant, temperature and pressure Variables, an Equation_Set and a Dynamic_Set. A

composition Vector is also required. The class declaration is given below.

#ifndef CON\IALVE HPP
#define COIiIVALVE HPP

//Standard C/C++ practice for header f iLes, avoi.d.s muJtipTe
//inclusion of fiLes. FiLe name is " conwaive.hpp"
#include " unít.hpp" //Includes the Unit cl-ass header f iLe.
//fhe unit.hpp header f iLe contains aLL the basic header f il-es
//required for model-l-ing units, such as mathematical-
//operations, screerT output, Equation Sets, VariabTes etc.

class Control Va1ve:public Unit{ //Commence cl-ass decl-aration
//tnherits from the Unit cl-ass.

publicz//ettributes at this modeLTing LeveL are pubTic.

Vector<Variable> z¡ //Declare composition vector.
Vector<Equation> ae¡ //Oecl-are algebraic equation

/ /vector.
Varíable Pín, Pout ,t ¡ / /necl-are inlet and

//outl-et pressure and a temperature.
Variable Fout, Fin, C,><i //OecTare f l-ows, vaTve

//constant and position variabLe.
Equation_Set eqnsetl ¡ / /Decl-are Equation_Set.
Dynamíc_Set emptydyn ; / /necl-are Dynamic_Set. Wil-L

//not have any dynamic Equations.
int nc¡//oecl-are variabl-e to hoJ-d number of

//components in composition Vector.
Process_Input_Port in¡ //Decl-are input port.
Process_Output_Port out; / /necl-are output port.

106

Signal_Input_Port síg_in; //Declare signaT port

/ /necl,are 3 connection functions .

void flow in(Stream& str);
void flow out(Stream& str);
void signal_in(Streame etr) ;

int dynamic_model O ; //DecTare the dynamic model-.
voíd setupO¡//DecLare function to connect ports.
Control Va1ve(int n, int no comps) ¡//Decl-are

//constructor function. Both arguments
//are integer tpes. Argument n is an
//index number for the System-t1pe,
//no_comps is the number of components
//in a stream.

-Control_Valve O {}; //necl-are destructor function.
//ooes nothing but it is good
//programming practice to incLude a
/ /nul-l- def inition

\¡//nna of cl-ass decLaration

#endif//End of #ifndef above

The class' constructor is

Cc¡n.U,rol Val-ve::Control Va1ve(iat ¡r, , \

int no_comps) :Unit (n) {//start
/7 constructor def inition.

//fne constructor is where an object of the cfass is put
//together. Note that the 'n' argument is passed directTy
//the Unit constructor function, [Jnit(n) .

nc=no_comps; //essign val-ue in no_comps to nc.

//a7Locate Vector objects.
z.build(1,nc);
ae.build(1,1) ¡//Vector onTy has one Equation.
//rinisned al-l-ocating Vector objects.

/ /Start physicaT structure def inition.
in.set_tot_flow(Fin) ¡ //essign the total- fTow Variabfe for

/ /the inl-et.
in.set_fracs (z) ¡ //Assign the composition Vector for the

/ / inl-et .

in. set_press_ínlet (Pin) ¡ //Assign the pressure Variable
//for the inl-et.

in.set_temp_inlet(T) ; //essign the temperaEure VariabLe
//for the inl-et.

out.set tot flow(Fout) ¡ //Assign the tota] fl-ow Variabl-e

to

101

/ / f or the outl-et .

out. set_fracs (z) ¡ / /essign the composition Vector for the
/ /outfet.

out. set_press_outlet (Pout) ¡ //essign the pressure VariabLe
//for the outl-et.

out.set_temp_outlet (t) ¡ //Assign the temperature
//VariabTe for the outTet.

//wote that the composition Vector x and
//tenperature T are contmon to both the inTet and outLet
//process ports. There is no holdup or energy bal-ance in
//tne val-ve, so coÍtmon Variabl-es provide direct inl-et
/ /outl-et connections .

sig_in. set_signal_var (x) ¡ / /Assign the signal Variabl-e
//for the signaT inl-et

set no inpst,rms (2) ¡//Set the number of input streams.
//One process input and one signaT input.
set no outstrms (1) ; //Set the number of output streams

own_input_port(in,1) ¡ //fhe val-ve owns the process inLet.
//See def inition of " fl-ow in(StreamE¿ str) " befow.

own_input_port(sig i-tt,2\ z¡|/fhe val-ve owrls the signal
. //ili.i.et,

//See definition of " signaT in(Stream& st!) " beLow.

own_output_port(out,,L) ¡ //rhe tank owrls the process
/ /outl-et.

//See def inition of " f-Low out(Stream& stT) " bel-ow.

/ /End physicaT structure def inition.

/ /Start mathematical- structure definition

ae (1) . set, no x Ø) ¡ //Corresponds to equation (4.7) in the
/ /text.

(1) .include(Fout) ¡ //lncfude the outl-et f l-ow Fout.
(1) .include(C) ¡ //tncl-ude the val-ve constant C.
(1) .include(x) ¡ //Incl-ude the stem position x.
(1) .include(Pin) ¡ //Incl-ude the infet pressure Pin.
(1) .include(Pout) ¡ //Incl-ude the outfet pressure Pout.

eqnsetl.incorp eqns(ae); //ettach the ae Vector to the
/ /nquation-Set eqnsetT .

emptydyn. set_no_ae_sets (t) ¡ / /emptydyn has one algebraic
/ / subset .

ae
ae
ae
ae
ae

108

emptydyn. íncorp_ae_set (eqnsetl-) ¡ / /eqnsetT js a subset
//¡Vote that emptydyn owrls no Equations itseLf .

incorp_main_ss_set (emptydyn) ¡ / /enptydyn is the main
//steady state set for this
//nodeL. Dynamic_Sets can be
/ /analysed for steady-state
//solution (see Chapter 3,
//section 3.4.2). Coul-d al-so
//have assigned eqnsetT here.

incorp_main_dyn_set (emptydyn) ¡ / /enptydyn is the main
//dynanic set for this mode7.

//zna mathematicaf structure definition.

j //znd constructor definition.

The model function is trivial

int Control_Valve : :dynamíc_modeI O {/ /Start mathematical- model-
/definition

ae(1) = r'outO - xO*CO*sqrt(Pino
return OK;

j//nnd ntathematicaf model- def inition

Three connection functions were declared in the class. These functions call the System-level

connection functions. Application-specific connection functions should be defined in classes

with complex connectivity to clarifu the purpose of each input and output Stream-type. The

index n in the call to the out stream (Streama strm, int n) should correspond to

the index n in the call to own_output_port (Output_Port& p, int n) . The same

applies to the input functions. This is demonstrated as follows:

void Control- Valve::flow in(Stream& str) { //ettaches inl-et
//erocess Stream

inp_stream(sÈr,L) ¡ //fhe Process_Input Port 't irt" is the
//tirst " owried" Input_Port-tpe in the
/ / constructor function.

PoutO);

)

109

)

void Control Va1ve::signal_in(SEream&, str) { //ettaches inl-et
//Signal Stream

inp_stream(str,2) ¡ //fhe SignaT_Input_Port ' sig_inu is
the

//second " owned" Input_Port-type in
/ /the constructor function.

)

voíd Control Valve: : flow out (Stream& str) { //ettaches outTet
//erocess Stream

out stream(str, L) ¡ //fhe Process_Output_ Port " out" is the
//f irst " owned" Output_Port-tpe in
/ /tne constructor function.

The setup O function is where the bi-directional information flow is exploited. The

downstream pressure is obtained and connected to by interrogating the Process_Output_Port

out. The upstream vessel's flow is reassigned to the valve's outlet flow Fout. The

set.up O function is :

voíd Control_Valve i : seu'rip O t7 /Start setup/connection function
/ /def inition.

in.map O ¡ //connect process inl-et Variabl-es.
sig_in.map O ¡ / /Connect signal inl-et Variabl-e .

out.map () ¡ //Connect process outl-et Variabl-e.
//fhe connections have been made. Now the Variabl-es
//can be reassigned.

//Reassign pressure.
Pout.connect_to (out.get_pre¡ sure sink O) ;
//fhe statement above is a dual- function cafl-. The
//caLL " out.getjressure_sinkO " obtains the address
//of the pressure Variabl-e of the downstream vessel-.
//fne val-ve's output pressure Variable, Pout, is then
//innediateTy connected to the pressure VariabLe
/ /returned by the getjressure sink () function.
Pout.check(OFF) ¡ //pout is a sol-ution Variabl-e
//of the downstream vessel- and shoufd not be anaTysed
//as part of the val"ve's Equation Set.

//neassign f7ow. (Jses another dual- function caLL.
(fin.get connectionO) ->connect to(Fout);
//rnis is more compTicated. The cafl-
//" fin.get_connection() " obtains the address of the
//outTet fl-ow Variabl-e of the upstream vessel-. The \\ ->//

110

//operator dereferences the address (obtains the actual-
//VariabTe object)and connects the outLet ffow Variabl-e
//of the upstream vessel- to the outl-et fLow VariabLe of
/ /the val-ve.
(fin.get connectionO) ->check(OFF) ¡ //fhe upstream ffow is
//now a soJ-ution Variabl-e of the val-ve and shoul-d not be
//anafysed as part of the upstream vesse-7.'s Equation Set

j //nna setup/connection function d.efinition.

The reassignments above cannot be made until the Port-types and their Variables have been

connected by the map O functions. The Variable Fin is a dummy that takes no part in

solution or equation analysis. The purpose of Fin is to enable a connection to be made

between the Process Input_Port in and the Process_Output_Port of the upstream vessel

prior to the connection reassignment. If the flows were not to be reassigned, Fin would not

be required at all. The Ports in and out would both be attached to Fout in a similar

fashion to the Variable r.

The reassignment would affect sequential-modular simulation. Without the reassignment, the

flow solution Variable is ol,räed by the upstream vessel. Therefore in a sequential-modular

sirnulation, the valve could nct be solved for the flow because the flow l.¿ouid be specified by

the solution of the upstream vessel. V/ith the reassignment, the upstream vessel could not be

solved for the flow because the flow is a solution Variable of the valve. The ownership of the

flow solution Variable affects the problem specihcations that may be made. Similar

problems occur with the pressure reassignment. The simulator data structure permits these

problems to be overcome easily with the Sys_Man_Block class. The upstream vessel, valve

and downstream vessel could be incorporated into a Sys_Man_Block object. Then the

Sys_Man_Block object can be incorporated into a Flowsheet object instead of the three

separate units. A Convergence_Block object can then drive the Flowsheet object. The

three-unit system can then be analysed and solved as one equation-oriented System-type,

removing the restrictions on problem specification. The reassignment of Variable

connections becomes irrelevant. The code for grouping the vessels together and incorporating

them into a Flowsheet object is simple:

lll

Process Stream strml,strm2¡//Other Streams wouLd be
/ /required
//in a Targe fl-owsheet

Vessel upstream(1, 6),downstream(2, 6) ¡

Control Valve vL(2,6) ¡

Sys_Man_Block smbl (999) ;
Flowsheet flwsht(111) ;

;;;;r""*. out-stream (strm1, 1) ;
vl.flow in(Etrml);
vl.flow out(strm2);
downstream. inp stream (strm2, 1)

smb1. set_sys (3) ;
snlc1. incorp_sys (upstream,l) i
smbl . incorp_sye (vL,2) i
smb1. incorp_sys (downstream,3) i

flwsht, incorp sys (smbl, 1) ;

4.2.3 Conrtected System Modelling

X'lowsheet-level modelling with connected Systems is briefly introduced above. Connected

System objects can also be created within a class definition. This is illustrated with the

definition of a Ratio Controller class. The Ratio_Controller class will be developed from

simplified Pl_Controller and Ratio_Block classes. The final model is an aggregation of an

object from each class. The advantage of this approach is that the model is constructed

completely from tested, validated objects in the same way as a flowsheet definition.

The mathematical model for the PI Controller class is

dI(t)
(4.8)

(4.e)

(4.10)

dt
e(t)

= e(t)

= y"p(t) - y^(t)

= *"("rr.tru). csc(t)

tt2

K" is the controller gain, q is the integral time, e(t) is the error, I(t) is the integral of the etror,

y,p(t) is the setpoint , y.(t) is the measured variable, c(t) is the controller output signal and c" is

the steady-state controller output or bias signal.

The mathematical model for the Ratio Block class is:

!t
Rou, (4.11)

V.

R,,, is the output ratio and y, and y2 are the input signals. .ã1,,, becomes the measured variable

y^(t) in the Ratio_Controller class and y", (t) becomes the specified signal ratio.

The PI Controller class declaration for this example is :

#ífndef PICONT HPP
#defíne PICONT HPP

//Standard C/C++ practice for header fil-es, avoids multipTe
//incl-usion of f ifes. FiLe name is " picont.hpp'
#include 'o r¡r¿it.t;;1pp" //incLud.e Unit cLass header f il-e.

class PI_Coni:rol1er : :public Unit{
public:

double Kc,Ti¡//eain and integraT time.
Variable c, cs, ê¡1r€iprym,I ¡ //VariabTes in equations
//q.a - 4.ro above.
Derivative dldt;
Vector<Equation> de,ae¡//de is for equation 4.8,
//ae is for equations 4.9 and 4.70.
Dynamic Set de set,ae seti //por de and ae above.
Signal Input Port meas_in,sp_in; //t4easured val-ue
//and setpoint signaT input ports.
Signal_Output_Port síg_out ¡ / /ControTl-er signaT
//output port.
void set Kc (doubl-e k) {xc = k; };
voíd set Ti(double t){Ti = U;};

//Connection functions be7ow.
voíd measured in(Stream¿ str);
void setpoint_in(Stream&, str) ;
void signal_out (Stream8c str) ;

woid setupO;
ínt dynamic model O ;

113

Pf Controller (int n) ¡ // " NormaL" constructor.
//ergument n is set to the System parent's
//index number. Used for a stand-aLone
//controTl-er object.

Pf ControllerO; //C++ default constructor.
//Sane as above, with no index number set.
//nequired for declaring objects within
/ /cl-ass structures, e. g. Ratio ControLTer
//mode7 with objects.
PI Controller(int n, int m);
/ /Used for mul-tip7e- inheritance modeLLing.
//Only creates mathematicaL structures and attaches
//VariabLes to Port-tpes. Does not manipuTate
//System-Level- data structure. See section 4.2.4
/ /bel,ow.

); //End class decl-aration

#endif

This class is a simplification of the class actually implemented in the simulator and inherits

directly flom Unit. The dynamic model O function for the PI Controller class is:

int PI Ccr¿trcller: 3dynaníc_modeI O {//start model-

de (1-) = e O ; //de (t) is the LHS of equation 4.8.
ae(1) = ysp0 - ym0 ¡ //ae(7) is the LHS of
//equation 4.9.
ae(2) = xc*(eO +1.0/Ti*IO) + csO;
//ae(2) is the LHS of equation 4.70.
return OK;

j / /nnd model- .

The set.up () function for the PI Controller class is

voíd PI Controller: :setup O {//Start setup.

meas_in.map O ;
sp_in.map O ;
sig_out.map O ;

j//nna setup.

114

The Ratio Block class declaration is

#ifndef RiATBLOCK HPP
#define RÂTBLOCK HPP

//Standard C/C++ practice for header fiLes, avoids multipJe
//incJusion of f iLes. FiLe name is " ratb-l.ock.hpp"
#include " unit.hpp" //incTude Unit cl-ass header f il-e.
elass Ratio Block::public Unit{

public:
Variable Rout ,y]-,y2 ¡ / /Variabl-es in equation 4 . 77
/ /above.
Vector<Equation> ae¡//ae is for equation 4.77.
Dynamic Set de set,ae set; //For ae above.
Signal_Input_Port sig_A, sig_B ¡ / /tuteasured
/ /values .

Signal_Output_Port ratio ¡ //Ratio output port.

/ /Connection functions befow.
void signal_A_in(Streame str) ;
void signal-_B_in(Streamg str) ;
void ratío out(Stream& str);
//fhese connection functions are onTy val-id
//for a stand-al-one Ratio_BLock object.
//rhey must be redefined in the chil-d
/ /natio Control-l-er cl-ass because the
//conneZ|l-çity i-s partTy based on the
/ /System-LeveJ- data structure.

void setupO;
int dynamíc model O ;
Ratio Block(inÈ n) ¡ //" Normal-" constructor.
//ergunent n is set to the System parent's
//index number. tlsed for a stand-a7one
/ /obj ect .

Ratio Block O ¡ //C++ defaul-t constructor.
//sane as above, with no index number set.
//nequired for decl-aring objects within
/ /cl-ass structures, e. g. Ratio Control-l-er
//nodel- with objects.

Ratio Block(ínt n, int m);
//Used for mul-tip7e-inheritance modeTTing.
//Only creates mathematicaL structures and attaches
//VariabTes to Port-types. Does not manipulate
/ /System-7eve7 data structure.

j¡ //End cl-ass decTaration

#endif

ll5

The dynamic_model () function for the Ratio Block class is:

int Ratio_Bloek: :dynamic_model O {/ /"tart model-

ae(1) = RoutO - y1 1)/y2Ot
return OK;

\ / /nna model- .

The set.up O function for the Ratio Block class is:

void Ratio Block: :setup O {//Start setup.

sig_A.map O ;
sig_B.map O ;
ratio.map O ;

j//øna setup.

The connection functions of the PI Controller class are

measured in (Streame str) connects the Stream that supplies tlie measured

variable.

setpoint_in (Stream& str) connects the Stream that supplies the setpoint in

cascade control systems. This is an optional connection.

signal_out (Stream& str) connects the Stream that carries the output signal.

The connection functions of the Ratio Block class are:

signal_A_in (Streamc str) connects the Stream that supplies the hrst signal.

signal_B_in (Stream& str) connects the Stream that supplies the second

signal.

ratio_out (Signalc str) connects the Stream that carries the output ratio.

116

The Sys_Man_Block class is a suitable parent because it is designed for managing sets of

connected Systems. No extra Variables are required for the model definition. A

Dynamic_Set is required for the main steady-state and dynamic set of the class. The class

definition is below:

#ifndef RiATIOCON HPP

#define RiA,TIOCON HPP

//Standard C/C++ practice for header fi7es, avoids muTtipTe
//inclusion of f il-es. Fil-e name is " raEiocon.hpp"
#include " smblock.hpp" //tncludes the Sys Man Bl-ock cfass
//header fi7e.

#include " pícont.hpp" //Also incl-ude PI Controller
#include " ratblock.hpp" //and Ratio BTock cl-ass headers

class Ratio Controller:public Sys_Man_B1ock{ //Commence cl-ass
//decl-aration. Inherits from the
/ / Sys _Man_Bl-ock cl-as s .

public¿//attributes at this modeJ-7ing Tevel are pubTic.

PI Controller ctrllr¡ //Decl-are PI Ccntroiler
/ /obj ect

Ratio Block ratio¡ //Decl-are Ratio_Bl-ock object
Sígna1_Stream internal_conn; / /Decl-are a

//Signal_stream for an internal-
/ /connection.

Dynamic_Set dynseÈl ; / /necl-are Dynamic_Set.

//Declare 3 connection functions
void sígnal_A_in (Streame str) ;
void signal_B_in(St,ream& str) ;
void signal out(Stream& str);

Ratio Controller(int n) ¡ //Decl-are constructor
/ /function.

-Ratio ControllerO {} ; //Oeclare destructor
/ /function.
//noes nothing but it is good
/ /programming practice to incl-ude a
//nu77 definition

j¡//ena of cl-ass decl-aration

#endíf//nnd of #ifndef above

tt7

In the class def,rnition, no setup O or dynamic model- O functions are declared. The

Sys_Man_Block class runs the setup and model functions of any subsystems it contains. The

user is required to explicitly indicate the subsystems. This is part of the constructor function

below:

Ratio ConÈrol1er3 :Ratío Controller (int n) :Unit (n) {//Start
/ / constructor def inition.

//rne constructor is where an object of the cLass is put
//together. Note that the 'Ì?' argument is passed directTy to
//the flnit constructor function, tJnit(n) .

set_sys (2) ¡ //Initial-ise number of subsystems
incorp sys (ratÍo,t) ¡ //Incorporate subsystems
incorp_sys (ctr11î, 2) ¡

//Start internaL connections. Creates
/ /fTowsheet.
ratío.ratio out(internal conn) i
cErllr.mea¡ured in(internal conn) ;
//nna internaT connections

a pseudo-

íncorp_main_ss_set (dynsetl) ; //dynsecT is t!¡e main
//steady-state set for this
/ /model- .

incorp_main_dyn_set (dynsetl-) ; //dynsetL is the main
//dynanic set for this modeL.

I / /nna constructor def inition.

The simulator executive automatically attaches the Dynamic_Sets of the ratio and

ctrl-Ir objects to dynsetl in the equation analysis step. The two objects do not have to

be connected with a Signal_Stream. They may be connected directly with their respective

Variable objects for measured variable and output ratio because these attributes are public.

This breaks the boundaries defined by the Port-types within the objects. However, there

might be circumstances where a Port-type is not available for the Variable objects of interest

and direct connection between Variable objects is the only option.

If a class contains its own Equations and its own Ports in addition to other Systems, new

setup O and dynamic model O functions are required. The functions must operate on

the Equations and Ports of the class and the subsystems are operated on by the functionality

in the ancestor Sys_Man_Block class.

118

)

)

The three connection functions declared in the class definition drive the connection functions

of the ratio and ctrl-1r objects:

void Ratio Controller: :signal_A_in(Streame str) {

ratío.sígnaJ- A in(str) ¡ //Connect directJy to ratio
/ /obj ect

void Ratio Controller::signal B in(Stream& str) {

ratio.sígnal B in(str) ¡//Connect directJy to ratio
/ /obj eet .

void Ratio Controller: :setpoint in(Stream& etr) {

ctrllr. setpoinÈ_in (str) ¡ / /Connect directTy to ctrl-l-r
/ /obj ect.

)

void Ratío Controller: : signal_out (Stl:eam& s b,r) {

ctrllr.signal out(str); //Connect directTy to ctrl-l-r
/ /obj ect.

An example of a Ratio_Controller object is provided below:

Ratio Controller RC(t)¡//index number 7.

Signal_Stream signal_B, signal_À, con_sig;

/ /etc .

RC.signal A ín(sígna1 A);
RC. signal_B_in (signal_B) ;

RC . signal_out (con_sig) ;

//wote no setpoint signaT.

)

ll9

4.2.4 Mulriple Inheritance Modelling

Multiple inheritance modelling is performed at the class level as opposed to the aggregation

approach with objects in the previous section. Multiple inheritance modelling does not

provide the same level of automatic consistency as aggregation. The developer models with

inherited attributes that do not necessarily provide an encapsulated object with specific

interfaces. Depending on the application this can be considered an advantage or a

disadvantage.

The System data structure supports permit multiple inheritance of characteristics as described

in section 4.1.1. However, the successful implementation of multiple-inheritance modelling is

dependent on the constructor functions of the parent classes. In the modelling examples

above, the constructors drive a number of System-level functions to define System

boundaries with Ports and incorporate Equation_Sets. The System class is a virtual base

c/ass (Ellis and Stroustrup, 1994) of Unit and Sys_Man_Block and consequently only one

copy of the System data structure exists for each model class. This is necessary for the

principle of incorporated subsystems to work effêctively. The virtual base class also restricts

the operations that may be carried out on the SSzstæm data structure. A class with multiple

parents (or multiple levels of refinement, e.g. System-Unit-Controller-Pl_Controller) will

have several ancestor constructor functions that are run prior to the constructor function of the

new class. If all the low-level constructors of a class with multiple parents try to manipulate

the same System-level data structure in turn, an object of the new class will not initialise

correctly (if at all). The solution is straightforwardi aîy model class capable of being a

parent of another class must contain at least two constructor functions. The constructor

functions require different arguments in order for the correct constructor to be identifiable and

run. One of the constructor functions will be similar to those already presented, with

mathematical and physical connection structures fully described. The other constructor will

still describe the mathematical structures and associate Variables with Port-types, but will

not declare ownership of Port-types or incorporate Equation_Set-types into the System-level

structure. This constructor only operates on modelling objects at each class' level and ignores

the System-level data structure. The reason for this is because it is only at the most refined

level (i.e. the new model class) that the final structure is known. Therefore the most refined

constructor is the only one that may operate on the System-level structure. This constructor

will be quite complex as a result. All the ancestor Equation_Sets, connection Variables and

120

Ports must be known and available to the constructor (public or protecte@ in order for it to

build the model correctly. The low-level connection functions (e.g.

signal_out (Stream& str) above) must be redefined for each parent class, because

part of each connection is made at the System level. This is more complicated than

aggregating a model with objects because it requires a great deal more knowledge of the

ancestor modelling classes.

The Ratio Controller class will now be redehned as a class with multiple parents. The

multiple-inheritance constructors of the parent classes must first be examined:

PI Controller::PI Controller(int n, ínt m) :Unit(n) {

L

1
1d
1d

bu
bu

de
ae

l_

l_

,t)¡//onfy 7 eTement, equation 4.8.
,Z) ¡ //Equations 4.9 and 4.70.

de(1).set no x(L) ¡//One variabfe affects equation 77
de (1) . include (e) ;
de (1) . set_outputvar (dldÈ) ¡ / /Expl-icit output variabLe
//for this equation is the derivative dIdt. See
//' dynamic_modef O " function. in section 4.2.3 .

dIdt. set state (I) ;

de set.incorp eqns (de) ;

ae (1) . set no x G) ¡ //Four variabl-es af f ect equation 4.9 .

ae (1) . include (e) ;
ae (1) . include (I) ;
ae (1) . include (c) ;
ae (1) . include (cs) ;
ae (1) . set_outputvar (c) ¡ / /Expl-icit output variabJ-e
//for this equation is the controTl-er output c. See
//' dynamic modefO" function in section 4.2.3.

ae(2) . set no x (3) ¡ //Three variabl-es af f ect equation 4.70.
ae(2) . incLude (e) ;
ae(2) . ínclude (yep) ;
ae (2) . include (ym) ;
ae(2) .set_outputvar (e) ; //nxpTicit output variabJ-e
//for this equation is the control-l-er error e. See
//' dynamic modeTO" function in section 4.2.3.

ae_set. incorp_eçFrs (ae) ;

de set.set no ae sets(1);

t2t

de_set. incorp_ae_set (ae_set) ;

meas_in. set_signal_var (ym) ;
sp_in. set_signal_var (ysp) ;
sig_out . set_signal_var (c) ;

j//end constructor

In this constructor, the argument int m is not used. The extra argument is designed to be

used for conditional construction (e.g if (m==1) etc.) in complex multiple-inheritance

models where different structures may be necessary depending on the modelling

requirements.

The multiple-inheritance constructor for the Ratio Block class is:

Ratío Block: :Ratio Block(int n, int m) :Unit(n) {

ae.build(1,1) ¡ //Only 7 eJ-ement, equation 4.77.

ae (1) . set no x (3) ¡ //3, variabTes affect equation 4.77.
ae (1) . include (Rout) ;,. ' .,'

ae (1) . include (yl) ;
ae (1) . include (y2) ;
//rully impTicit equation, no expTicit variabLe
//See dynamic_model-O function in section 4.2.3
ae_set. incorp_eqns (ae) ;

de set.set no ae sets(1);
de_set. incorp_ae_set (ae_set) ;

sig_A. set_signal_var (yl) ;
sig_B. set_signal_var (y2) t
ratio. set_signal_var (Rout) ;

j//øna constructor

The class declaration for the multiple-parent Ratio_Controller class is similar to the

aggregated object class declaration:

#ífndef RÀTIOCON HPP

#define RiA,TIOCON HPP

//Standard C/C++ practice for header fi7es, avoids multipTe
//incl-usion of f il-es. Fil-e name is " ratiocon.hpp"

122

#include " picont.trpp" //elso incl-ude PI Control-Ler
#include " ratblock.hpp" //and Ratio Bl-ock cLass headers

class RaÈio Controller:public PI_Contro1ler, public
Ratio Block{ //Commence cl-ass
//decTaration. Inherits from the
/ /Sys_Aan_Bl-ock cl-ass .

publ-ic¿//attributes at this model-Ling TeveJ are pubJic.

Dynamic_Set dynsetl ; / /necl-are Dynamic_Set

//DecTare 4 connection functions.
void signal_A_ín(Stream6. str) ;
void sígna1 B in(Stream8e str);
voíd sígnaI_out(Stream& str) ;
void setpoint_in(Stream&, str) ;
//On7y A Ports used out of 6.
void setupO;
int dynamic_model O;

Ratio Controller(int n) ¡ //Decl-are constructor
/ / function.

-Ratio Contro1lerO {}¡ //Decl-are destructor
/ /function.
//Ooes nothing but it is good

. //prtgranmi.ng practice to incfude a

/ /null- def inition
j¡//zna of cLass decLaration

#endíf.//End of #ifndef above

Some of the connection functions must be redehned to reflect the different System-level

structure. There are now six Ports in the Ratio_Controller class. Only four of these are

required for external connections. The constructor for the Ratio Controller class must run

(specifically) the multiple-inheritance constructors of the two parent classes. It must also

explicitly combine the Equation_Sets of the two parent classes together, allocate the various

Ports to the System structure, connect Variable ysp to Rout and remove ysp from the

mathematical structure, as follows :

Ratio Controller::Ratio Controller(int n) :

PI Controller (n, 0),Ratio_Block (n, 0) {/ /Start
/ / constructor def ini tion.

//fhe constructor is where an object of the cfass is put
//together. The Unit and System cl-ass structures are
//provided by the parent classes. Note the argument '0'
//in the cal-l- to the parent multipTe-inheritance constructors.

123

//rnis argument is not used in either of the parents'
//constructors, it could be set to any vaTid integer vafue.

incorp_main_ee_eet (dyneetl) ; / /dynsetl is the main
//steady-state set for this
/ /nodel- .

incorp maÍn dyn set(dynsetl)¡//dynsetT is the main
//dynanic set for this model-.

ysp. connect_to (Rout) ¡ / / Connect variabl-es .

ysp.check(oFF) ¡//ysp is rea7Ly Rout and not
//a separate Variabl-e angore. It wiLl- be examined
//for analysis and coLl-ection as Rout.

set_no_inpstrms (3) ¡ //3 potential input connections.
own_ínput_port (sig_À, 1) ;
owrl input port(síg 8,2) ¡

own input port(sp in,3);

set no outstrms (L) ¡ //l output connection.
own output port (sig out) ;

dynsetl. eet_no_dyn_subsets (2) ¡ //Has no Equations
//of its owrt, just the Dynamic Sets of the parent
/ / cl-asses .

dynsetl . incorp.dyn_.set (PI_Conl-rol.ler : : de_seÈ) ;
dynsetl. incorp_dyn_set (Ratio Block: :de set) ;
//fhe \\.-.-// is the scope resol-ution operator. It
//identifies a function or piece of data as an
//attribute of a particufar cl-ass.
//i.e. PI ControJ-J-er.'.'de _set means the object
//de_set that is owned by the PI Control-l-er cfass.

j //nnd constructor definition.

The redefined connection functions are:

void RaÈio Controller::signal A in(Streamg str) {

inp strm(str, t) ¡ //System-7evel.

void Ratio ConÈro11er: :sígnal_B_ín(Stream6. etr) {

)

)
inp_strm (str, Z) ¡ / / Sys tem- l-evel- .

124

)

void Ratio Controller: :setpoint_in(Stream& str) {

inp strm(str,3) ; //System-l-evel.
)

void Ratio Controller: :signal_out(Stream& str) {

out_strm (etr, t) ¡ / / System- l"eveL .

New setup O and dynamic model O functions must be defined to run the parent

functions:

int Ratio Controller: :dynamic model O {//start modef

Pl_Controll-er: : dynamic model O ¡ / /nun parent modeTs .

Ratio_Block: :dynamic model O;
return OK;

j / /znd model-

The setup O functior¡ for the Ratio Block class is:

void Ratío Controller: 3setup O {//Start setup.

PI_Controller::setup O ¡ //nun parent setups.
Ratio_Block: : setup () ;

j//nnd setup

In the setup () function above, all six Ports of the two parent classes will be mapped. This

is acceptable because connection to Ports is optional and so the two Ports without

connections (meas_in from Pl_Controller and rat.io from Ratio_Block) will

automatically ignore any connection commands. The setup O function could also have

been redefined to map only the four Ports with potential connections.

The construction of the Ratio Controller class with multiple inheritance does not require

much more code than the aggregated object example, but more detailed knowledge about the

underlying class structures is required. Objects of the new class may also be comrpted easily.

125

All the connection functions of the parent classes are public and therefore available from the

child class through the scope resolution operator or directly (e.g.

Rat.io_Block: : signal_A_in (Streamt str) and measured in (Streama

str)). These connection functions still operate on the System structure at the parents' level

and will corrupt the structure created by the Ratio_Controller constructor unless they are

redefined to do nothing. The connection functions of the internal objects in the aggregated

Ratio_Controller class are also available, but invoking them requires the identifrcation of a

specific internal object, i.e. ctrll-r or ratio. The use of the multiple-inheritance based

Ratio_Controller class is exactly the same as the aggregated class.

In further examples all models are created by aggregation or a completely new class definition

without multiple inheritance.

4.2.5 Modelling with Physical Properties

As a final modelling example, a dynamic, molar holdup flash model will be developed with a

two-phase component mixture, equation-of-state physical property calculations anci an energy:

balance. The r¡essel is illustrated in Figure 4.2.

V, !¡, hv

F, Z¡, hr

h

a L, xr, h1

Figure 4.2: Flash vessel.

The equations for the dynamic molar holdup model of an equilibrium flash vessel with z

components are given below. N, N, and N* denote the total, liquid and vapour molar

holdups respectively for each component. l[, and À[, denote the total molar holdups in the

liquid and vapour phases respectively. Vru V, and V, denote the total vessel, vapour and

126

liquid volumes. The model is directly applicable to steady-state simulation if the liquid level

å is specified.

dN,

dt

(N ¡C p + NyC or)
0

0

Variables:

F,V,L,T,P,Q,,
NL,Nv,VL,h,h,
z,(n), x,(n), !,(n),
N ,(n), N ,,(n), N, ,(n)

Fz, - Lx, -Vy,

Q + Fho - Lh, -Wv
!¡ - K¡x¡

n

I", -t
i=l
n

Lv, -t
i=l
N,-Nr,-Nr¡
Nrx,-Nt¡
Nr!, - Nr,
vbt -vL -vy
vr-N'

Pt

v, -N'
n,

h-vt
A

dT
dt

1..n

n

(4.12)

(4.13)

(4.t4)

(4.1s)

(4.16)

(4.r7)
(4.18)

(4.1e)

(4.20)

(4.2r)

(4.22)

(4.23)

I
I
I

I
1..n

l..n
1..n

1

I

I

I

0

0

0

0

0

0

0

0

Tolal Equations: 5n +7

Total Vøriables: 6n+ ll

In Figure 4.2 there are four obvious Ports: feed, liquid, vapour and heat duty. Three more

Ports are required, for transmitting level, temperature and pressure signals. The constructor

allocates equations (4.12) - (4.23) to separate Equation_Sets according to their purpose.

Equations (4.12) and (4.13) are dynamic equations (de and de_set below), (4.14) are

equilibrium relations (eqbm and eqbm_set), (4.15) and (4.16) are mole fraction

summations (mf s and mf s_set), (4.17) are total component mole balances (cmb and

cmb_set), (4.18) are liquid phase mole balances (1mb and lmb_set), (4.19) are vapour

phase mole balances (vmb and vmb_set) and (4.20) - (4.22) are volume balances (vb and

vb_set). The vessel is assumed to be cylindrical. The vessel area and volume are also set

127

through the constructor. The constructor function for the Flash class is listed in Appendix B

The class declaration and dynamic model are listed below:

#ifndef FLASH HPP

#define FLASH HPP

//Standard C/C++ practice for header fil-es, avoids muLtiple
//inclusion of f il-es. Fil-e name is " ratiocon.hpp"
#include " unit.hpp" //incl-ude unit cl-ass header f il-e.
#include " physprop.hpp" //tncTudes the physical- properties
//header f il-es.

class F1ash: :public Unit{
public:

double VoI, Area, ltmaxi
ínt nc ¡ / /l¡umber of components .

Vector<double> x¡ / /Equil-ibrium constants .

Vector<Variable> *,y, Z,N,Nv,NI ¡ //t'iquid, vapour
//and feed compositions, totaf moLar, vapour and
//liquid hoTdups.
VectorcDerivative> dNdt ¡ //Aol-ar hoTdup derivatives.
Derivative dTdt ¡ //femperature derivative.
Variable Tin, Pin, T,P ,Q,,E,Y,L,VL, \fV,NL,lilv, h¡ / /Other
/ /variab-7.es.
Vector<EquatÍon> de, eqbm, mf s, cmb, Imb,'.r¡nb, vbi
Dynamic_Set de_seti
Equation_Set eqbm_set,mfs set,cnb set,

lmb set,vnb set,vb seti
//de dynamic equations (eqns I e 9).
//eqbm = equiTibrium equations (eqn 10).
//nf s = Ítol,e fraction suntmation (eqns 77 E, 72).
//cnb = component mol-e bafance (eqt 73) .

//Lnb = Tiquid mol-e bal-ance (eqn 74) .

//\/nb = wapour mol-e bal-ance (eqn 75) .

//vb = voTume bal-ances (eqn 76,f7,18 e 79).
Peng_Robinson pengt_rob ; / / Phys ical- properties.
General Component Mixture VL mix; //Z phase mixture.

Process_Input_Port feed; //erocess inl-et.
Process_Output_Port vapour, liquid; / /erocess outl-ets
Signal_Output_Port level_sig, press_sigf, temp_sig;
//signaf " tTansmitters" .

Energy_Input_Port heat ¡ / /Heat duty.

void
void
void
void

feed in(Stream& str) ; //Connection
heat in(Streame str);
liqui¡_out (Stream& str) ;
vapour_out (Stream& sÈr) ;

functions.

128

void leveI out(Stream& str);
void temp out (SEream& str) ;
void presg_out(Stream& str) ;

voíd eetup O ¡ //rnput-output connection
ínt, dynamic_model O ; / /uoael
void attach_compset (Component_Set& cs) {

VL_Mix. incorp_compset (cs) ;
Vl_mix . incorp_Thermo (peng_rob) ;
Vl_mix. incorp_VlE (peng_rob) ;

);
//attach set of Components to VL_mix object
//can define functions inside cl-ass header
//if desired
void ínitialiseO; //set initial- estimates
void ss_outputO; //prints out steady-state
/ / sol-ution.
Flash(int n, int no_comps, double vol,

double diam) ¡ //Constructor.
//Creates equation structure and connects
//variables to port interfaces etc.

-FlashO {}; / /t¡ull destructor.

I ¡ / /nna cl-ass decl-aration

int Flash: :dynamíc_model O {//Start model-

í¡
Ie CpL, CpV, hF, hL, hV, xsrm, ysum, rhol,, rhoVi

//Start physicaT properties
CpL = VL_mix.CpL(TO,PO) ;
CpV = VL mix.CpV(TO,PO);

int
doub

hF=VL
hL=VL
hV=VL

mix.H míx(TínO,PinO);
_mix.H_1iq(TO,PO);
mix.H vap(TO,PO);

VL mix.calc Ki (K,TO,PO) ;
rhoL = VL mix.rhol molar(TO,PO);
rhoV = VL míx.rhoV molar(TO,PO);
//nnd physical properties.

/ /Start equation eval-uation.
for (i=1; i<=nc; i++) {

de(i) = dNdtO - FO*z(i)O +

LO*x(i)O + vO*y(í)O; //Equation 4.72
)

129

de (nc+1) = (NL O *CpL + IrIl/ O *CpV) *dTdt o
aO - FO*hr + LO*hL + vO*hV; //Equation 4.73

xsum = 0.0;
YSüîl = 0 .0;

for (i=l; i<=¡1c; i++) {
eqbm(i) = y(i) O - K(i) *x(i) O; //Equation 4.74
xsum = xsum + x(i) O;
ysluri = 1rÉilllh + y(i) O;

)

mfs(1) = x¡ium
mfs(2) = ysrrm

//Equation 4.75
//nquation 4.76

1.0;
1.0;

for(i=1;i<=nc;i++) {
cmb(i) = N(i)O - Nv(i)O - NI (i)O¡ //nquation 4.77
lrrìb(i) = NI(i)O - x(i)O*NLg; //nquation 4.78
vrnb(i) = Nv(í) O - y(i) O *l{\¡O ; //zquation 4. 79

)

vb (1)
vb (2)
vb (3)
vb (4)

= VoI - VLO - \ ¡O; //nqltation 4.20
= vLO - NLO/rhoL¡ //nquation 4.2I
= \rVO - litr/O/rhov; //EquaLian 4.22
= hO - vLO /Area¡ //nquation 4.23

//nna equation eval-uation

return OK;

I / /end model- .

4.3 Simulation

Although this thesis is not intended to be a user's manual, a small example that performs a

steady-state simulation of a Flash object serves as a useful introduction to simulation with the

M.O.P.S. C*+ classes.

4.3. 1 Instruction Sequence

A specific sequence of C++ instructions must be supplied in order to generate simulation code

that will compile and run correctly. The objects and member functions of the M.O.P.S. C++

classes should not be manipulated in an ad hoc manner. The sequence of instructions for

130

describing a problem with the simulation classes is simple and logical. A flowchart of the

steps required is presented in Figure 4.3. The flowchart is applicable to steady-state and

dynamic simulation. If a steady-state simulation is employed to initialise a dynamic

simulation, two instruction sequences are required. The steady-state sequence would be

exactly as in Figure 4.3 but the dynamic sequence that follows would commence at the "setup

problem specif,rcation" block. An example of a combined steady-state and dynamic

simulation file is provided in Appendix D.

Figure 4.3 Simulation instruction sequence.

The "setup problem specification" and "assign process values" steps may be mixed together

because it is more convenient in complex processes to assign specifications and values on a

unit-by-unit basis.

4.3.2 Steady-state example

A three-component steady-state flash example is demonstrated using the Flash class described

earlier. The components are arbitrarily selected to be ethane, propylene and heptane. The

flash conditions are 400.0 Kelvin and 5.0 bar absolute. The feed conditions are 450.0 Kelvin

and 8.0 bar absolute. The reference conditions for the enthalpy calculations are 1.0 bar

start assign
process
values

setup
process

connectivity

simulatedeclare
simulation

objects setup
process
units

analyse
and build

equation sets output
resultssetup

physical
properties setup

ar¡d
estimates

setup
problem

specification finish

l3l

absolute pressure and 298.15 Kelvin. Physical properties are calculated with the Peng-

Robinson equation of state with binary interaction parameters set to zero.

The simulation input file for the example is presented below. The steps illustrated in Figure

4.3 are clearly indicated in the code. The file must be compiled and linked as part of the rest

of the simulator structure.

#include " simstuff.hpp" //" simstuff.hpp' contains
//the generaT header fiTes for various cLasses for
//fl-owsheet simuTation, such as the Fl-owsheet and
//erocess Stream cLasses
#include <fstream.h>//incl-ude standard C++ header
//for f il-e stream types
#ínclude " flash.hpp" //include Fl-ash cTass header f ile

void main(void) {//"tart C++ program
int i¡// Counter.
/ /ozcnanE STMULATTIN IB,JECTS
FlowsheeÈ flwsht (999) ¡ //pecl-are a Fl-owsheet object.
Flash fleh(L,3,10.0,1.5) ¡//index no. 7,
//S components, 70 m^3 volumè, 7.5 m diameter

Procees Stream feed sLr,vapour^ str, liquÍd-str;
Energy_S tream heat_str ;

Component ethane(* C2H6"),propylene(* C3H8") i
Component heptane(" NC7HL6") ¡

Component_Set comp_set (3) ¡ //Has 3 components.

ifstream hcs ("hydrocar.dat,,) ¡ //C++ if stream object
//containing hydrocarbon property data
/ /rtxtsnøn DECLARTNG STMULATTzN zBJECTS

//snrup PHYST:AL PRIPERTTES
comp_set. incorp comp (ethane,1) ;
comp_eet . incorp_comp (propylene, 2) ì
comp_set . incorp_comp (heptane, 3) ;

comp set.set datafile(hce) ;
comp_set . get_propertíes () ;

f 1sh. attach_compset (comp_set) ;
//rtNtsnno SETTTNG up ptysrcAL pRopERTTES

132

/ /srARr pRocESS LAyour/coNNEcTrvrry
flsh.feed in(feed str) ;
f lsh.vapour_out (vapour_str) ;
f lsh. Iiquid_out (Iiquí¿r_str) ;
f lsh.heat in(heat str);

flwsht.set_sys (L) ¡ //only has one unit. . ..
flwsht.íncorp_sys (fIsh, t) ¡ //. . .which is the
/ /FINTSHED PRICESS LAYIUT/CzNNECTTvTTY

fl-ash drum.

//snrup PRI:ESS uNrrs
flwsht.setupO¡//Set up the units in the fLowsheeL.
//ptNtsuno PRI:ESS uNrr :ETUP

/ / srARr PRIBLEM sPECrFrcATroNS
flsh.Tin.constant O ; //feed and process conditions
flsh.Pin.constant O ; //are specified parameters.
for (i=1; í<=3; i++) flsh.z(i) .constant O ;
flsh. F. constant O ;

flsh. T. conEtant () ;
flsh. P . constant O ;
f lsh.h.constant O ;
/ /FINTSHED PRIBLEM SPECIFICATIINS

/ /esstex PRI:ESS vALUES
f lsh .z (L)
f Ish .z (2)
f l-sh .z (3)

=0
=0
=0

.2¡ //øthane feed moLe fraction.

.3¡ //propyTene feed moTe fraction.

.5¡//Aeptane feed mol-e fraction.
f1sh.F = 0.05 ¡ //kno7/s. EquivaTent to
//about 3.4 kg/s feed.

flsh.Tin = 450. 0¡ //Feed temperature.
flsh.Pín = 8.0E5¡//feed pressure.
flsh.T = 400. 0¡ //fl-ash temperature.
f1sh.P = 5.0E5¡//fl-ash pressure.
flsh.h = 2.5¡//tiquid height in metres.
/ /rtwtsqgD ASSTGNTNG pRocESS vALUES

//srenr ANALysrs AND BUTLDTNG oF EeuATroN SETS
flwsht. ss_analyse (l ¡ //anaLyse and buil-d
flwsht. ss_buiId O ; / /equation structure.
//gINISnsn ANALYSIS AND BUTLDTNG oF EQUATIIN SETS

//snrup soLvER AND rNrrrAL ESTTMATES
flwsht.setup_solve O ¡ //Send to soTver.
flwsht.ínitial-ise () ¡ //Sets up initiaL estimates
//for units in fLowsheet

133

//SIMULATE THE PROBLEM
flwsht. solve NEt'ff () ¡ / /SoLve fl_owsheet

//ourpur RESULTS
flsh.ss outputO¡//print out the answer.

//et this point the fJ-owsheet's equation
//structure couLd be reset and re-analysed for
//dynamic simul-ation. Val-ves wouJ-d be required
//on the vapour and Tiquid streams with specified
//pressure drop to create a ful-l- dynamic simul-ation.
//fhese woul-d normaTTy be sol-ved for vafve coeff icients
//as part of the steady-state simufation to provide
/ /a consistent initial-isation.

I//øna of C++ program

Process_Stream, Energy_Stream and Flowsheet objects are employed for completeness

although they are not actually necessary in this example because the Flash class owns all of

the relevant Variables. In general, single-unit steady-state and dynamic simulations may be

run with only an object of the class and correct problem specifications. Stancl-alone numerical

models without any conneciiviþ ma;r ¿l5s be created and solved.

The results for the simulation are in Table 4.1. Compositions are in mole fractions.

Feed Vapour Liquid

Temperature (K) 450.0 400.0 400.0

Pressure (bar) 8.0 5.0 5.0

ethane

propylene

heptane

0.2000

0.3000

0.5000

0.2194

0.3268

0.4538

0.0133

0.0416

0.94sr

Total Flow (kmoUs) 0.05 0.0453 0.0047

Cooling Duty (kW) 724

Table 4.1: Composition and duty for vapour-liquid flash calculation.

134

4.4 Summary

Several model decomposition techniques were presented in this chapter. Medium and

Machine Decomposition divides the model into the physical object (machine) and vessel

mixture (medium). Primitive Behaviour Decomposition creates composite models from sub-

objects that are in turn based on modelling principles and assumptions (e.g. conservation of

mass). Mathematical Decomposition is based on organising the equations in a model into sets

according to the equations' purpose in the model (e.g. mass balance, equilibrium, steady-state

or dynamic e/c.).

Modelling examples were provided to demonstrate various characteristics of the simulator

data structure and modelling approaches. The basic data structure was demonstrated with a

Mixing_Tank class. Aggregation of model characteristics with connected objects and

multiple inheritance of characteristics were contrasted using a Ratio_Controller class.

Physical property modelling was demonstrated with a Flash class.

Finally, simulation with the M.O.P.S. data structure was introduced with a smali steady-state

example.
\ !

135

Crr¿.prEn 5

or Test Problems

The simulator has been tested with three major plant process models, viz. the four-flash

Cavett problem (Cavett 1963), the Tennessee Eastman Process (Downs and Vogel 1993) and

a recombinant fermentation model, developed from various model elements in the literature.

5.1 Cavett Problem

The well-known Cavett problem contains four flash vessels with three recycle streams, as

illustrated below in Figure 5.1. The mathematical model for the flash calculations is different

from the model described in the previous example.

mixer 2

mixer I

light

fiash I
flash 2 R3

feed flash 4

R¿ flash3 heavy

Figure 5.1: Cavett Process.

The process is basically a stripping operation with four ideal stages. There are sixteen

components in the process: nitrogen, carbon monoxide, hydrogen sulphide, methane, ethane,

propane, n- and i-butane, n- and i-pentane, hexane, heptane, octane, nonane, decane and

undecane.

136

The problem was originally proposed as a small but stringent test for sequential-modular

simulators. While trivial compared to the Tennessee Eastman test problem (see section 5.2),

the Cavett process was appropriate as a steady-state development problem for this project.

The Cavett process was employed to refine the Equation_of_State physical property classes

(specif,rcally the Peng_Robinson class) and to develop interchangeable solution methods

within the Convergence_Block class.

It was not an objective to thoroughly investigate the convergence behaviour of the Cavett

problem with different tear sets as many researchers have already accomplished this (Lau

1992 and Chen and Stadthen 1985 are two good examples). The tear set chosen was streams

Zl and 22, given by a synthetic tearing algorithm (Roach et al. 1996). The principal

objectives were:

o to investigate sequential-modular initialisation and assistance of equation-oriented

simulation.

o to demonstrate the variety of simulation techniques available with the simulator

data struc.ture. : ''

A secondary objective was to investigate sequential- and parallel-modular simulation of the

Cavett problem while employing an equation-oriented unit solution. Equation-oriented unit

solution was chosen to facilitate the specification of design and rating simulations.

The rating calculations were based on a mass balance around the process. The design

calculations were based on a mass balance with specification of i-butane recovery into the

vapour stream from the second flash unit (see Figure 5.1). The specification was 50oá

recovery of the i-butane in stream Zl. Energy balances were not performed. Physical

property calculation was based on the Peng-Robinson equation of state with binary interaction

parameters set to zero.

\37

The feed and product stream compositions for the rating and design simulations are

summarised in Table 5.1.

Component

Rating Design

T¡^nz:365.0 K

Feed
(kmol/s)

Light
(kmoUs)

Heavy
(kmoVs)

Light
(kmoVs)

Heavy
(kmoUs)

N2 0.04523 0.04348 0.00175 0.04327 0.00196

CO 0.62697 0.62694 0.00003 0.62692 0.00005

HrS 0.04285 0.03s62 0.00723 0.03s62 0.00'723

CHn 0.37822 0.37792 0.00030 0.37783 0.00039

CtHu 0.30246 0.28303 0.01943 0.28155 0.02091

C.Ht 0.28927 0.1 535 I 0.13577 0.16278 0.12649

i-c4Hro 0.07628 0.01832 0.05796 0.02044 0.05584

0.19443 0.03357 0. I 6086 0.0371I 0.15732

0.09980 0.00685 0.0929s

0.1 350 I

0.00682 0.c!)2.98

n-CrIJ' 0.14266 0.0072s 0.00702 0.13524

CuH,n 0.22282 0.00301 0.21981 0.002s7 0.22025

CtHtu 0.32913 0.00104 0.32809 0.00087 0.32826

CrH* 0.23289 0.00016 0.23273 0.00014 0.23275

CrHro 0.21073 0.00003 0.21070 0.00003 0.21070

CroH, 0.10501 0.00000 0.1 0s0 l 0.00000 0.1050 I

CrrHro 0.1 533s 0.00000 0. I 5335 0.00000 0. l 5335

Temperature (K) 322 311 303 3ll 303

Pressure

(kPa abs.)

439 5620 l9l 5620 19t

n-CnlJro

i-csH12

Table 5.1: Cavett feed and product stream compositions.

138

The rating specifications for each flash vessel are in TabIe 5.2. The design simulation

calculated the temperature of the second flash unit to be 365.0 K.

Unit Temperature

(K)

Pressure

(kPa abs.)

flash I 3ll 5620

flash 2 322 1960

flash 3 309 439

flash 4 303 l9l

Table 5.22 Cavett flash specifications.

The number of iterations and time in seconds to convergence are presented in Table 5.3 for

rating simulations and in Table 5.4 for design simulations. The results are presented as

iterations (ime) in each cell. Each simulation was run from three initial tear estimates of xo,

O.lxo and 10x0. The estimate xo corresponds to a tear strearn estjuate cf equimolar

'cómposiiicn and a flov¡ of 0.5 kmol/s. Parallel-modular and equatio:r:-+:ientecl:si,mr;lafions

were initialised with one sequential-modular iteration around the flowsheet. Each Flash

object contained 16 equations and each Mixer object contained 8 equations, to yield atotal of

160 equations in the equation-oriented system. The unit models for each simulation run were

identical. Jacobian matrices were calculated with central differences. Each tear stream

contained 16 variables. The simulations were performed on an IBM 486 DX33 with 16MB

RAM under the OS/2 operating system.

139

Initial

estimate

Simulation Method

Sequential-modular Parallel-modular Equation-oriented

Dir Subst Wegs Newt Broy Marq Newt Broy Marq

0.1x0 4e (130) 50

(1 40)

6 (127)

seq. 2*

t3 (47) t6 (331) 7 (188) 12 (s3) 3 (144)

xo st (134) 50

(1 35)

6 (r28)

seq. 2*

t3 (44) fail s (136) 23 (66) 4 (185)

1Oxo 74 (2e6) t-t 6 (160)

seq. 2*

t3 (76) fail 2e (1285)

seq. 2, 4*

3s (84) 12 (1 500)

;;

it

Table 5.3: Iterations and solution time to convergence for the Cavett rating problem.
* seq. n indicates where an equation-oriented method encountered convergence difficulties on iteration n. At

this point the Convergence_Block object switched to a sequential-modular simulation for one iteration and then

switched back to the equation-oriented method.

Table 5.4: Iterations and solution time to convergence for the Cavett design problem.
* seq. n indicates where an equation-oriented method encountered convergence difficulties on iteration ¡1. At

this point the Convergence_Block object switched to a sequential-modular simulation for one iteration and then

switched back to the equation-oriented method.

The majority of equation-oriented simulations did not require sequential-modular assistance

for convergence. However, for this problem it was considerably easier to commence an

equation-oriented simulation with a sequential-modular iteration because only 32 tear stream

variables had to be estimated out of the 160 variables in the complete flowsheet, because the

trnitial

estimate

Simulation Method

Sequential-modular Parallel-modular Equation-oriented

Dir Subst Wegs Newt Broy Marq Nervt ,,Br,Oy Maro

0.lxo 4e (234) 48

(1 7e)

6 (7s6)

seq. 2*

ts (161) fail 7 (182) 14 (s7) 3 (1e4)

xo s3 (208) 53

(210)

fail

Þtot¡

ts (t 62) foil 2s (716) 86 (r42) 4 (18e)

1Oxo 16 (4e7) 80

(4s5)

7 (1 148)

seq. 2*

t6 (1 8s) foil 44 (728)

seq. 2*

36 (202)

seq. 2*

22 (180e)

140

flash vessels contain their own initialisation routines. Marquardt's method was the most

efhcient numerically and Broyden's method the fastest to solve in the equation-oriented

simulations.

The iterations for sequential- and parallel-modular simulations are similar for the successful

design and rating calculations. This result is reasonable; there was only a single design

specihcation, hence the iterations to convergence should not be affected greatly. A similar

result could probably be expected with a traditional "design convergence loop" around a

Flash unit. The main advantage of equation-oriented unit solution is that design and rating

calculations are considerably easier to manage at the flowsheet executive level. The design

calculation times were longer because generally a design flash calculation required 30 - 50%

more iterations to converge compared to a similar rating calculation. Marquardt's method

performed extremely poorly on parallel-modular simulations due to problems with calculation

of the feed:vapour ratio in the third flash vessel. Newton's method was terminated on one of

the parallel-modular simulations because 5 iterations required over 10000 seconds to complete

with little convergence progress.

None of the numerical methods or simulation techniques demonstrated themselves to be

superior. While testing one process does not provide conclusions about steady-state

simulation in general, it is clear that there are potential advantages in having a variety of

interchangeable numerical and flowsheet solution methods available. In particular,

sequential-modular initialisation of equation-oriented flowsheet solution is a very useful

feature. Equation-oriented unit solution within a sequential-modular simulation provides the

advantage of simple design specification (provided the unit models are written conectly) with

the lower resource requirements of sequential-modular simulation.

5.2 Tennessee Eastman Process

The Tennessee Eastman Process was proposed several years ago as a dynamic process-control

test problem. The basic process layout is drawn in Figure 5.2. The layout is slightly different

from that provided in the original paper.

t4t

splitter
purge

compressor

feeds

stripper

E
feed

mixer reactor C G&H

Figure 5.2: Tennessee Eastman Process.

There are eight chemical species in the process: A,B,C,D,JI,F,G and H. The process produces

two products (G and H) and a by-product (F) fronr A,C,Ð and Ë from the following

exothermic reactions (B is an inert component):

A<rt*Ctr¡* D<¡s

Arr¡*C<r¡tE<s)

4r¡+ E<rt

3Drr,

-------)

-------)

-------)

-------)

G<,>

Hu¡

Fu,

2Fu,

Three vapour-phase reactants and two recycle streams are mixed in a vapour-phase mixing

section. The reactor is two-phase with a vapour product. The reactor product enters a

separation vessel. The vapour stream of the separator contains primarily unreacted feed

components. A small fraction of the stream is purged and the remainder is compressed and

recycled. The separator liquid enters a stripping column where the major products are

removed in the bottoms stream and the overhead stream is recycled. The plant contains dead-

time and discontinuities from the concentration analysers on the reactor feed stream, purge

stream and product stream. The reactor feed-stream and purge-stream analysers sample every

0.1 hours and have a 0.1 hour dead-time, the product analyser samples every 0.25 hours and

has a0.25 hour dead-time. The plant dynamics are slightly stiff.

142

The original problem was distributed as a complex piece of Fortran code. Mathematical

models (such as reaction kinetics) were not provided explicitly. The code contained various

affays through which the major process variables could be accessed. Incorporation of Fortran

code into C*+ code is feasible. If the code was incorporated into this simulator project, it

would produce one System-type object with very complex internals. However, by attaching

Variable and Derivative objects to the relevant arrays in the Fortran model and dehning a

Vector of Equation objects, the code could become the dynamic_modeI O of a large

Tennessee Eastman class, with appropriate Signal-Input_Ports and Signal_Output_Ports

for controller connections.

Incorporation of the Fortran code does not really test the modelling capabilities of the data

structure. 'With a view to modelling the unit operations separately, the Fortran code was

reverse-engineered to determine the reaction kinetics and basic unit operation principles. The

deconstruction was time-consuming but successful. The separator was modelled as a simple

flash drum with three incondensable components and the stripper was modelled with a

temperature-dependent vapour recovery as in the oiiginal code. The heat duty of the stripper

published in the original Tennessee Eastman papffi e:<ceecls that calculated by the Fortran code

by factor of 10. The reactor product condenser of the original process was incorporated into

the separator drum. The dead-time and discontinuities in the analysers are incorporated.

While the Fortran code contained physical property methods based on temperature-dependent

specif,rc heat, the basic pure component data provided in the original paper was sufficient to

permit the use of the ideal physical property classes described in earlier chapters. The

complete models for the major unit operations are provided in Appendix C.

5.2.1 Control Systems

Many papers have been published on various control strategies for the Tennessee Eastman

problem. Nonlinear Model Predictive Control (NMPC) was investigated by Ricker and Lee

(I995a). The process model employed was theoretically based with adjustable model

parameters (Ricker and Lee 1995b). ANMPC scheme was outside the scope of the project.

NMPC could be implemented with the existing class structure however; it is a matter of

defining the appropriate controller algorithms in System-based classes. Various SISO

formulations are described in Lyman and Georgakis (1995), Ye and McAvoy (1995), Banerjee

and Arkun (1995) and McAvoy and Ye (1994). A very simple and effective SISO scheme is

143

proposed by Luyben (1996). The production rate out of the plant is controlled by the valve on

the stripper bottoms, giving almost instantaneous production rate control. The liquid level

control loops operate opposite to the direction of flow.

Initially some of the cascaded SISO schemes suggested by McAvoy and Ye (1994) were

simulated but the reactor pressure control was poor and the results of McAvoy and Ye could

not be duplicated. The reverse-engineered plant model of this project is slightly different

from the original Fortran model and this may account for the control behaviour. The reactor

pressure was controlled by manipulating the flow control setpoint of component A (stream 1)

to the mixer. Normally, this has a positive gain: a higher concentration of component A

increases the reaction rate and the pressure decreases as a result of product condensation.

However, the gain of the reactor pressure relative to component A changes sign when the

partial pressure of A is high in the reactor (Ricker and Lee 1995a). At high concentrations of

A, the reaction rate decreases due to the low concentrations of the other reactants and

consequently the pressure increases. A scheme of Banerjee and Arkun (1995) with reactor

pressure controlled by manipulating the reactor cooling water flow was also tested. This

provided exceptionally tight control of reac.lar. pressure.

Based on the excellent results obtained with the Banerjee and Arkun scheme it was decided to

investigate whether a pressure-temperature reactor control system could be combined with the

Luyben production-rate scheme. The complete Luyben scheme controls the production rate

with liquid flow valve from the stripper. This provides the fastest control on production rate.

The separator drum liquid flow valve then controls the level in the stripper. Manipulating the

cooling duty of the separator controls the separator level. Reactor pressure is controlled with

the C feed stream. Reactor level is controlled by manipulating the D and E feed valves.

In the combined scheme, the reactor pressure was controlled by manipulating the reactor

temperature. The reactor liquid level was controlled with the E feed stream. The D feed

stream flow was regulated by a composition controller on the product stream to control the

mass ratio of the products G and H. The purge composition of component B was controlled

by the purge flow valve.

144

Initially, the reactor pressure controller manipulated the reactor cooling water valve directly.

This system was unstable unless tuned for an unacceptably slow response. The addition of a

cascaded PI reactor temperature controller made the pressure more rapidly controllable, but

produced an oscillatory response. The cascaded controller was not required in the Banerjee

and Arkun scheme. It was also found that the level in the separator could not be controlled by

manipulating the separator temperature. To reduce reactor pressure, the reactor temperature is

increased. This increases the rate of production of heavy components F,G and H, which in

turn increases the level in the separator. If the separator level is controlled by temperature, the

level controller will decrease the separator cooling to vaporise the heavier components and

reduce the level. The heavier components then traverse the recycle loop and dilute the pure

reactant concentrations, thereby reducing the reaction rate. In addition, the extra heavy

components in the separator vapour increase the amount of gas in the volume of the recycle

system, which also increases pressure. This control system contains a significant amount of

positive feedback.

Stabilising effects are provided by the reactor level controller, product ratio controller and the

stripper product flowrate. With more',heavy components in the recycle, the reactor level will

increase. Thetefore the level controlier will decrease the E feeci and the ratio controller will

eventually reduce the D feed. The reduced reactant concentrations would reduce the reaction

rate further. The stripper product flowrate would then deplete the separator level. However,

in practice, the system saturated or reached shutdown limits before it could stabilise, typically

in five hours or less. This indicates that the effect of temperature on reaction rate greatly

exceeds the combined effects of the reduced reactant feeds and concentrations. The separator

temperature continued to increase to the point where the liquid feed to the stripper was

suff,rciently hot to close the stripper reboiler steam valve, thus decoupling the stripper

temperature control loop. The increasing stripper temperature then forced more heavy

products back up into the recycle loop, increasing the pressure further. Depending on

controller tuning, the reactor pressure reached the shutdown limit or the separator would

overfill without stabilising. Pure proportional control of the plant was also unstable with this

scheme.

145

Examination of the unstable responses revealed a possible solution. The production rate in

the reactor should obviously balance the flowrate of products from the stripper base. The rate

of change of level in the separator indicates the balance between the reactor production rate

and stripper flowrate. If they are out of balance the separator will either run dry or overfill.

The control objectives for the problem state that reactor pressure should be independently

controllable. If the reactor pressure is controlled by manipulating reactor temperature, two

variables for directly manipulating the reaction rate are unavailable. The remaining

possibilities for reaction rate control are the various feed streams. Four streams are available

(A feed, C feed, D feed and E feed). Only components A and C affect all reactions. The A

feed stream was considered too small to provide effective control and was instead tied to a

purge composition controller to maintain the component A concentration in the reaction loop.

The C feed stream is the largest feed stream to the process and should provide the best

control, provided that there are no adverse effects on other process variables. The separator

level was therefore controlled with the C feed stream. The A composition control loop

ensured that only the concentration of component C affected the reaction rate. The separator

temperature was controlled by manipulating the separator cooling water flowrate. This also

helped to reduce temperature disturbances into the stripper. The stripper temperature \¡r'as

controlled by regulating the stedrn flow into the reboiler.

Simulations of this control system gave, at best, erratic pressure control of the reactor. The

adjustments to the C feed rate by the separator level control seriously affected the behaviour

of the reactor pressure control loop. Although some pressure effects were expected, it was

hoped that the pressure/temperature cascade would be suffrciently robust and fast enough to

override the disturbances. This proved not to be the case. Simulation results for the reactor

pressure setpoint change are provided in Figure 5.3.

146

Reactor pressure vs. time

234
time (hours)

28

2800

2790

2780

2770

2760

2750

2740

2730

1 0

tt¡¡
G
GÈx
6)

5
U'
v,o
CL

o
o
(É

E

60 1 5

Figure 5.3: Reactor pressure response.

Reactor pressure setpoint change from 2806 to 2746 kPa absolute.

The corresponding separator level response is in Figure 5.4

$eparator level vs. time

(9

E

õ
-9

o
tú
(É
CL
G'g,

5.9

5.7

5.5

5.3

5.1

4.9

47

4.5
0 1 3

time (hours)

5 62 4

Figure 5.4: Separator level response.

Reactor pressure setpoint change from 2806 to2746 kPa absolute.

Obviously the effect of the C feed stream on the reactor pressure exceeds the capability of the

pressure control loop. Following the setpoint change, the reactor temperature increases to

decrease the reactor pressure. This increases the reaction rate and hence the flow of heavy

products into the separator increases, which increases the separator level, in spite of the lower

147

pressure. Therefore the separator level controller reduces the C feed, which slows the reaction

rate. Again the reactor pressure to rises. As the separator level decreases and undershoots,

the C feed is increased, which increases the reaction rate and the system settles down.

The pressure control loop could not be tuned more aggressively because the reactor

temperature controller could not cope with faster setpoint changes. The spikes in the reactor

pressure response in Figure 5.3 are due to the reactor temperature controller overshooting

slightly. The response time of the temperature loop could possibly have been decreased with

derivative action but the original problem statement declared that the process measurements in

the Fortran code were noisy and so derivative action was not considered. An alternative,

much slower pressure control loop was tested, but the effects of the C feed stream changes

caused the reactor pressure to oscillate for many hours before stabilising. A slower separator

level control loop assisted the reactor pressure control, but caused the separator to overfill.

Further fine-tuning of the system could have provided improved performance but the basic

system is strongly coupled and only marginally stable for separator level control. The scheme

was abandoned with no further testing. Good control of product composition was maintaine<i

in all the tests.

The most successful control system simulated was a modification of that proposed by Luyben

(1996). There are three major deviations from the original Luyben scheme:

1. The reactor level is controlled with only the E feed stream and the product

composition is controlled by a ratio controller manipulating the D feed stream.

2. In the Luyben scheme, a separator temperature controller manipulates the reactor

temperature controller setpoint. This loop was deleted.

3. Proportional-integral controllers are incorporated, whereas the Luyben scheme

employs only proportional controllers.

The major control loops are not cascaded to flow control loops. While cascaded flow control

loops are good control practice, they produced no difference to the final simulation results and

were omitted in the interests of computational speed. The Luyben reactor pressure control

loop is very effective. The reactor pressure is controlled by regulation of the C feed stream.

The C feed stream simply adjusts the amount of gas circulating through the compression

148

recycle loop. Integral action is applied to vessel temperatures and to controlled variables with

specihc objectives in the problem statement. The product flow and composition, purge

composition, separator, stripper and reactor temperature and reactor pressure controllers are

proportional-integral. Vessel level controllers are proportional only. The hnal scheme is

illustrated below in Figure 5.5.

Figure 5.5: Modified Luyben Control Scheme for Tennessee Eastman Process.

The original paper specifies four main process changes to evaluate performance:

1. Production rate change: Make a step change to the production rate control

variables to reduce the production rate by 15% on a mass basis.

2. Product mix change: Make a step change to the product composition control

variables to adjust the production rates ofproducts G and H from 7038 kg/h each to

5630 kg/h G and 8446kglhH. This is a 50:50 to 40:60 change.

3. Reactor operating pressure change: Make a step change to the reactor operating

pressure setpoint from2705 kPa (gauge) to 2645 kPa (gauge).

4. Purge gas composition change: Make a step change so that the composition of

component B in the purge changes from 13.82 moleo/o to 15.82 mole o/o.

separator

mmprssof
8c 8b 8a

9b

l0b l0c

Isplitter

9a

røctof

mtxef

5

é

2

)@

D

st¡ pper

Õ

O.

ó

mng

l0å

g
i

@4
>@c

l¿ lb

ó

G,H

149

These changes were simulated with the Luyben-based scheme described previously. The

results are presented in the next section(5.2.2). The process conditions prior to the setpoint

changes were determined by performing an equation-oriented, steady-state simulation with the

dynamic plant models. (Time derivatives were set to zero). The steady-state simulation

calculated process conditions, all holdups, cascade setpoints and controller bias signals. This

ensured consistent initialisation of the dynamic system. The full dynamic plant model

contained between 190 - 220 equations, depending on the control system being simulated.

About 50 - 70 equations were dynamic and the remainder algebraic. Physical properties were

not part of the flowsheet equation set. The initial estimate for the steady-state simulation was

provided by the process conditions outlined in Downs and Vogel (1993). As stated earlier,

the plant model differed slightly from the original Fortran model and about five iterations

were required to converge the steady-state.

The dynamic simulations were solved with the variable-step, variable-order BDF integration

method from the Mathtool class. The stiffness of the original problem is increased by the

many difièrent tirne constants of the control system. A complete definition file foi Lhe reactor

pressure setpoint change simulation is provided in Appendix D. The code in ttie definition

file is reasonabiy self-explanatory and follows a similar specification fonnat, to oiher

simulators employing a text-based input. Each time the hle is modified it must be recompiled

for the new simulation to run. The analysis and construction steps for the equation sets

indicate the number of variables and equations participating from each unit to assist problem

specif,rcation.

5.2.2 Simulation Results

The time responses for the major process variables are presented on the following pages.

Results for the original control scheme using the Fortran model are presented in Luyben

(1996). The original Fortran model contained built-in plant noise. The absence of noise in

the C++ model makes controlling the process easier. Controller tuning constants are provided

in the flowsheet specification in Appendix D.

Referring to Figure 5.6, the production rate control is almost instantaneous. The problem

specif,rcation states that variations in product flow of greater than + 5% with a frequency

between 8 - 16 hr are harmful to downstream processes. The mole fraction of component G

150

in the product stream should not vary by more than * 5%o with a frequency of 6 - 10 h-'. The

product flow exhibits no variation after it reaches the new setpoint. The product composition

exhibits one oscillation between2 - 6 hours but the variation is within the specification. The

oscillation is caused by the reactor level controller.

The stripper temperature plot requires fuither explanation. The controller setpoint was 338.8

K. The decreased production rate raises the level in the separator. The separator level is

controlled by regulating the separator cooling water flow. With a higher separator level, the

level controller will increase the temperature to reduce the level. Although not shown on the

plots, the separator temperature increased by about 10 degrees. The higher separator liquid

temperature meant that the stripper steam was no longer required and the temperature

controller output saturated at zero. After about six hours the stripper temperature stabilised.

The simulator data structure permits connections between Variable objects to be broken and

remade without affecting the equation structure. The Controller classes exploit this feature.

The principle is very simple. The stripper steam valve's position Variable is connected to the

controller's output Variable. The controller's Variable is thus the "ciriver" and is the

Va.riable that the numerical method manipulates. At saturation, the controiier finds the stearn

valve Variable by interrogating the appropriate Signal_Output_Port., Informaliy, the

controller looks down the Signal_Stream to get the Variable at the other end. The steam

valve's Variable is then disconnected from the output Variable and frozen at the saturated

value. The valve position is no longer a process input. The controller's output Variable

remains in the solution set and its value changes with time as it did prior to the disconnection.

In addition, at disconnection a controller switches off the integral action, resets the integrated

error term to zero and flags a discontinuity for the integration to restart. If the stripper

temperature had decreased below the controller setpoint, the controller would have

reconnected the valve and resumed control action. The reconnection behaviour is the opposite

to disconnection. The decoupling could possibly be prevented by incorporating the separator

temperature control loop of the original Luyben scheme.

Figure 5.7 contains the responses to the product ratio setpoint change. The product ratio is

changed and stable in about three hours. The product molar flowrate decreases because of the

composition change. The stream is controlled based on the volume flow. The mass flowrates

l5l

of the products are within one percent of the specification. The other process variables remain

well-controlled.

The responses for the reactor setpoint change are in Figure 5.8. The reactor pressure responds

rapidly, overshooting very slightly by about three kPa before stabilising at the new setpoint.

In spite of the large change, the rest of the process remains relatively undisturbed.

The purge setpoint responses are in Figure 5.9. The process has a large vapour volume and

component B is a very minor part of the A and C feeds, so the setpoint change requires some

time to propagate through the system. The new setpoint is reached after about 1l hours with

little effect on the rest of the process.

The control system and plant model contained 203 equations. The four simulations were

completed in about 2 hours each on a Pentium 100 MHz with 16 MB RAM. The BDF solver

employed a non-sparse matrix technique and solved the dynamic and algebraic equations

simul,taneously. !'

The complete Tennessee Eastman problem statement describes a number of piant upsets and

disturbances. The paper by Luyben describes the (few) deficiencies of this control system and

suitable overrides for coping with the upsets. The overrides were not incorporated into the

control system described here and were not simulated. Overrides are generally event-driven,

and the override controllers would need to be objects of a class that can take appropriate

event-based action. The main diffrculty would be providing sufficient functionality for the

many different events a user will require. A similar approach to user-dehned unit models

with the System hierarchy may be taken. The existing Port hierarchy is sufficient for

connecting to process variables. The dynamic_model O , disc_check O and

update () functions could perform the event actions as required. The main difficulty would

be the potential changes to the equation structure of the problem.

152

Stripper level vs. time

55

E

õ
g

5

45

4

0 lo 15

tlme (hours)

20 25

Product mole fractions vs. time

0.6

0.55

0.5

0.45

0.4

E
o
o
0

o
E

-G
-H

5 25

Stripper product flow vs. time

215

210

3 zos
o
! zoo

I rss

Ë 190t
E ras
è

180

175

0 't0 15

tlme (houE)

20 25

Stripper temperature vs, time

Y

I
g
oe
Eo

u3

u2

u1

uo

338

0 5 10 15

tlme (houE)

20 25

Rei: f.:' level vç time

E

o
g
o
d

20

195

19

185

18

175

17

165

16

0 10 15

time (hours)

25

Reactor pressure vs. time

I

ÀI
o

ø

e
o

2830

2825

2820

2415

2410

2805

2800

0 10 15

t¡me (houß)

Separator level vs. time

75

65

<6
E

õ 55
9

45

4
n l0 15 20

t¡me (hourÊ)

B mole fraction in purge vs. tinre

016

0 155

015

o't45

o.14

0 135

0 '13

f0

o

g
o
E

n 5 10 15

tlme (houß)

20 25

Figure 5.6: Tennessee Eastman response to 15 "/" decrease in production rate.

153

Stripper level vs. tirne

E

I

5

4.9

4.8

4.7

4.6

4.5
4.4
4.3

4.2

4.'l

4
0 10 15

tlme (houF)

20

Product mole fractions vs. time

o
o

g
o
o
ts

0.6

0.55

0.5

0.45

o.4

-G
-H

5 10 15

tlme (hou6)

tñ 25

Stripper product flow vs. time

E
o
I

'o
a
Þo
À

220

218

2't6

214

212

210

208

204

202

200
0 5 10 15

t¡me (houF)

20

Reactor pressure vs. time

!à¡
L!

øo
ê
o
I

E

2445
2440

2835
2830

2425
2A20

2415
2810
2805
2800

2795
0 5 '10 15

t¡me (houF)

20

Stripper temperature vs. time

v
a
g
oe
E

343

342

u1

340

0 10 15

t¡me (hou6)

20

' ,, Reactq,i lavel vs. time

E

õ
g
o

17

'16 5

16

155

145

14

135

13

5 10 15

time (houF)

20 25

Separator level vs. time

5

49

48

47

46

45

44

o
o

0 5 10 15

time (houF)

20

B mole fraction in purge vs. tirne

016

0.155

! ors
o

3 0.145

f; o.ra
E

0 '135

013
0 10 15

tlme (houF)

20 25

Figure 5.7: Tennessee Eastman response to product G:H mass ratio setpoint change

from 50:50 to 40:60.

154

!çl

Stripper level vs. tirne

49
4A
47

1¿o
5 ¿s
9¿t
9 t"

42
41

4

0 10 15

tlmê (houß)

20 25

Product mole fractions vs. time

T
o-

o
u

g
o
E

0.6

0.55

0.5

0.45

0.4

-G
-H

5 10 15 20 25

tlme (houF)

Stripper product f,ow vs. tirne

216

215

€zt
o
! zrt

f,, ztz

Ë 2't1
J

! zro
e

209

204

0 10 t5

tlme (houre)

20 25

Stripper temperature vs. time

v
o
a
g
q
Eo

343

u2

u1

340

339

338
n '10 15

t¡me (houF)

20 25

Reactor pressure vs. time

2420

2810

2800

2790

2780

2770

2760

2750

2740

¡
d
ñÀI
o
a

o
Ê
o
o
E

o 5 10 t5

tlme (houG)

20 25

Reactor level vs. time

o
o

o
o
o

16.75

16.5

16 25

'16

5 10 15

tlme (hours)

20 25

Separator level vs, time

5

49

1¿a
E

947o

46

45
0 5 10 15

tlme (houE)

20 25

B mole fraction in purge vs. time

o'16

0

6
.9

g

o
0
E

015

0 145

o't4

0 135

013
0 5 10 l5

tlme (houß)

20 25

tr'igure 5.8: Tennessee Eastman response to reactor pressure setpoint change from 2806

kPa abs. to2746 kPa abs

155

Stripper level vs. tirne

5

49
4A
47

1¿o
E ¿s
9t+942

42
41

4
0 10 15

tlme (houre)

20 25

Product mole fractions vs. time

I
o-
c
o

,r
I
o
E

0.6

0.55

0.5

0.45

o.4

-G
-H

0 10 l5 20

t¡me (houE)

Stripper product flow vs. tirne

216

215

E 214
0
E c¡z

É ,.,o _'_

Ë 211
a
E zto
ô

209

204

10 15

llme (houß)

20 25

Stripper têmporature vs. time

343

u2

u1

340

338

v
E

g
oè
Eo

0 5 20 25

Reactor pressure vs, time

2820

2815

2810

2805

2800

1
ø¡
G
dÀ
I

E
J

g
ê
o
oß
E

0 10 15

t¡me (houF)

20 25

Reactor level vs. time

17

$ ru.s

o

$ ru.rs

16

5 l0 15

time (hours)

20

Separator level vs, tinp

49

485

4A

475

47

465

46

E

E
o

0 5 10 15

tlme (houE)

20 25

B mole fraction in purge vs. t¡me

016

0.155

I o.rs
.9

! oras

Ë 0.14
E

0.135

013
n 10 15

t¡me (houF)

20 25

Figure 5.9: Tennessee Eastman response to purge composition setpoint change from 13.8

mole o/o B to 15.8 mole 7o B.

156

5.3 Recombinant Fermentation Model

For the duration of this project, the Chemical Engineering Department at Adelaide University

has been a partner in a biochemical engineering research group. The Department's laboratory

facilities include a plant for fermenting and purifying protein products from recombinant

Escherichia Coli bacteria. The principal products from the plant are insulin-like growth

factors (IGFs) for medical research. These growth factors are grown as inclusion bodies

within cells that have been genetically modified by insertion of a plasmid into the cell's DNA.

The plasmid is a piece of DNA that instructs the cell to produce the recombinant protein

product. At the completion of the fermentation, cells are homogenised to release the inclusion

bodies and are then centrifuged to recover the pure inclusion body protein.

As part of the project, it was decided to develop and simulate a complete recombinant

fermentation model. The f,rnal model is based on first principles and is derived from various

characteristics of recombinant E. Coli fermentation identified in the literature. No

experimental work was undertaken. The model is not intended to be an exact representation

of the departmental facilities, it was developed purely as a modelling and simulation exercise.

The model is not specific to a particular recombinant protein product.

The general model form is based on Monod growth kinetics, substrate and product inhibition

and assumption of an ideal stirred tank reactor as described in Nielsen and Villadsen (1991).

An example of Monod kinetics is given below for growth of biomass X at a specihc growth

rate p on a substrate,S with inhibition by a product P. The model describes growth, substrate

consumption and product formation in a batch system of constant volume.

pXdX
dt

p u l--q-ll'--Lì' '"-\.S+ ff"/\ 1",)
tdx tdP

--
fr*rXy*. dt Yo dt

rr(u)X

(s.r)

(s.2)

(s.3)

(s.4)

dS

dt
dP

dt

X, S, KS, P and P.u* have units of glL. Equation (5.1) is the dynamic biomass balance.

Equation (5.2) describes the actual growth rate of the cells. K, is a saturation constant for the

dependence of growth rate on substrate concentration; the growth rate decreases rapidly when

157

S is less than 1(r. P.u* is the concentration of product at which growth ceases. ¡4u* is the

maximum specific growthrate of the cells withunits of h-r. Equation (5.3) is the dynamic

substrate balance. Yo and Yrrare yields of biomass and product, respectively. Their units are

(g biomass)/(g substrate) and (g product)/(g substrate). m*, is the cells' maintenance

requirement for metabolic activity, in (g substrate)/(g biomass)/h. Equation (5.4) is the

dynamic product balance. The function rJþçr) determines the rate of product formation. The

units are (g product)/(g biomass)lh.

5.3.1 Model Description

The fermenters in the department normally operate in an aerobic, fed-batch mode. Therefore

an overall volume (mass) balance must be incorporated into the basic model form above.

Recombinant fermentations generally proceed without significant protein product formation

until there is suffrcient cell mass to produce a reasonable amount of product. Product

formation is then initiated by an inducer, isopropylthiogalactoside (IPTG). The complete

model is below:

ft;

/h

lt = r;".
[r - -".)(' +J (+.

"J ê-ìn " r k,R.)

=' * (' *J (--"" .
"J G -

"-")n
"

+ *' n')

t d(vA) t d(vP)
Yn, dt YÆ dl

gbm/h

gbm/h

gacet /h

--^(w. *vx-) ggluc /h

gprot/h

(s.6)

(s.7)

(s.8)

(s.e)

(s.10)

(s.11)

(s.12)

mmolO,/å (5.13)

Llh (s.14)

(s.1s)

(s.16)

H

a(vs)
dt

d(vP)
dt

+ = F-p,)p.(v*.)
¿(vx-\
T = o.a.(vx.)* p (vx)

= r,.(a-)(vx-) +,,.ta)(vx.)

D r (a(vx') ,(^)l- ¡s-14*l d, - d,)
.t(ffi@.)

¿(vo,)
dt

dV
dt
dk"

dt
dk,

dt

= rro(p

0,= v*,o(oi , ;;(+.un--*'(w.*vx-)
F,

Ps

= -krk"

= *,(t- *,)

158

cn
R

3600ku."

NrpN'd"
Po,

94.51
o.2ogs(P" - p,,,)

plasmid-free biomass

plasmid-carrying biomass

acetate concentration

glucose feed rate

plasmid concentration in biomass

IPTG concentration

volumetric mass transfer coefficient

IPTG recovery rate variable

satuiation constanl for glucose

IPTG shock rate variable

specific growth rate

agitator rotational speed

oxygen concentration

saturated oxygen concentration

protein product concentration

fermentor absolute pressure

mixing power

oxygen partial pressure

probabilþ of plasmid loss

rate of formation of acetate

rate of formation of protein product

IPTG recovery ratio

glucose concentration

superficial gas velocity

broth volume

biomass concentration

(s.17)

(s.18)

(s.1e)

(s.20)

(s.21)

(s.22)

(s.23)

(s.24)

(s.2s)

(gacetate) lL
(g glucose) / h

(mg plasmid) /(g biomass)

(e IPTG) /L
h-r

(g glucose) I-

h-1

rev /s

(mmol Or) lL
(mmol Or) lL
(g protein) /L

kPa

V/

kPa

(g acetate) /(g biomass) /h

(g protein) /(g biomass) /h

(g glucose) /L
m/s

L
(g biomass) /L

p

Cn+I

^(r-*
o.z(p - o.s) g acet lg bm / h

x,e(È +0.036)c,(p.) g prot tgbm /h

9+ o.r mg prasmid / g bm
It*

rr,(a)
rro(lt'\ =

Gr(F') =

k,a

PM

Po,

P.l
V)

p

o,

/h

W

mmol lL

kPu

)
Itrs

GP(p)

I
kp
h,

l(s

k"

p
N
o2

o2.

P
PF

PM

Po,

P,

r¡"(lt)

r¡obf)
R,

^S

us

V

X

The model parameters are in Appendix E.

159

The effects of different factors are evident in several equations. Equations (5.6) and (5.7)

describe the actual growth rates of the plasmid-harbouring and plasmid-free cells. Both

equations include terms for substrate and product inhibition. The values for glucose and

oxygen saturation constants were calculated for E. Coli as recommended in Roels (1983).

The inhibiting acetate concentrationA^u* is extracted from Konstantinov et al. (1990). The

term (k, + kß) determines the effect of IPTG inducer on cell growth rate. E. Coli cell growth

and product formation rate are both affected by the concentration of the inducing agent. The

addition of IPTG "shocks" the bacteria and their growth rate slows. This effect has been

modelled as a combination of time-differential shock and recovery terms by Lee and Ramirez

(1992). It is assumed that the addition of IPTG affects cells with and without plasmids.

These workers also modelled the IPTG concentration's contribution to the protein production

rate with a saturation expression similar to those for substrate saturation. To account for this

tn" (#) expression is included in equation (5.12). The termf, accounts for the fact that the

recombinant cells produce small amounts of protein without any inducer present.

Equations (5.8) and (5.9) are the dynamic balances for plasmid-containing and plasmid-free

cells, respectively. Plasmid-containing cells have a tendency to lose the plasmid as they

replicate (Lee et al.,1988), thereby reducing product yields. In very small-scale experiments,

it is possible to incorporate a gene into the cells that renders the plasmid-containing cells

immune to certain antibiotics, such as ampicillin or tetracycline. The antibiotic is then fed

into the cell culture. Plasmid-free cells are not resistant to the antibiotic and die without

replicating, thus ensuring a pure cell culture. This is known as selection pressure. On large-

scale equipment it is prohibitively expensive to apply such selection pressure and hence the

fermentation broth may contain a significant number of useless cells.

The probability of plasmid loss from E Colihas been modelled by Mosrati et al. (1992). The

probability term is p,(/f) in the equations and is calculated in equation (5.18). It is generally

less than a few percent, however over the course of a fermentation the fraction of plasmid-free

cells can increase significantly. This is demonstrated in the model simulations.

Equation (5.10) provides an acetate balance. Acetic acid production is also related to the cell

growth rate. This has been modelled by Majewski and Domach (1990). The acetate

160

production rate r¡o(lt) is calculated in equation (5.19). Equation (5.11) is the glucose substrate

balance, similar to the earlier equation (5.3). The yield and maintenance coefftcients are

calculated as per Roels (1983), except YpS. YpS is approximately calculated from data

presented in Cockshott and Bogle (1992).

Equation (5.12) summarises the protein product balance. The dependency of protein product

formation on the inducer concentration has been described above. Product formation is also

dependent on the cell growth rate and the concentration of plasmid in the cell (Lee et.al.

l98S). The rate of product formation ,,e@) is calculated in equations (5.20) and (5.21).

Equation (5. 13) is the oxygen substrate balance. The oxygen yield and maintenance terms are

calculated as per Roels (1933). It is assumed that protein product formation is part of the

general cell oxygen yield and maintenance. The correlation for the volumetric mass transfer

coefficient (equation (5.22) and impeller power requirement (equation (5.23)) is from Nielsen

and Villadsen (1991). Equations (5.24) and (5.25) calculate the saturated oxygen

concentration from Henry's Law.

The volume balance for the fermenter is presented in equation (5.14). V is pure broth volume

because the bubble phase is not included in the balance.

Finally, equations (5.15), (5.16) and (5.17) calculate the shock and recovery parameters for

the IPTG growth effects.

Some further comments are in order. The literature cited above covers a variety of different

E. Coli genetic strains, plasmid types and protein products. Therefore the model will not be

an accurate description of any particular process. However, the model should reasonably

simulate the general features of a recombinant fermentation.

5.3.2 Control System

A desirable goal of any fermentation of this type is to maximise the yield of recombinant

protein product. An examination of the model indicates potential controlled variables in a

process control scheme. The obvious controlled variables for this model are the substrate

concentrations (i.e. glucose and oxygen). With one of these held in excess, control of the

161

other should regulate the cell growth rate, which in turn affects the rate of product and non-

viable cell formation. Oxygen was selected to be the excess substrate, with glucose

concentration as the major controlled variable. The final control scheme is illustrated below

in Figure 5.10.

glucose aÍ out

alr ln

@
@
@
@
o
c

glucose indicator

glucose controller

oxygen indicator

oxygen controller

pressure indicator

pressure controller

Fermenter

Figure 5.L0: Fermenter control system diagram

The oxygen concentration is controlled by the regulation of air flow into the fermenter broth.

The air flow determines the oxygen transfer rcte kp in equation (5.13). The agitation speed is

held constant. The pressure in the fermenter is controlled by regulating the outlet air flow.

The glucose concentration is controlled by regulating the flow of a glucose solution to the

fermenter.

5.3.3 Simulation Results

The objective of the simulations was to investigate the differences between various glucose

feed flows and controller setpoints. The simulations were run from a consistent basis:

o Initial inoculation of 250 pg of plasmid-harbouring cells into the fermenter.

. Dissolved oxygen concentration controlled to 40Yo of saturation, referenced to

atmospheric pressure and 37'C.

162

o IPTG was added at a total biomass concentration of 10.0 gil. At induction 1.1 g of

IPTG was added in a 0.1 L solution to the broth.

o Fermenter pressure was controlled to 200 kPa absolute.

o Initial glucose concentration was 36.0 g lL in an initial broth volume of 15.0 L.

o A total of 4.5 L of glucose feed solution at a concentration of 300 g /L glucose was

available for fed-batch operation.

As a comparison to a fully-controlled glucose feed, a simple on-off control system was also

investigated. The on-off system was set up to add glucose to the broth at a constant 325 glh

(approximately 1.08 L/h feed solution) once the broth glucose concentration had decreased to

0 .I g lL. The results for the on-off control simulation are presented in Figure 5 . I 1 .

Figure 5.11: On-off glucose control simulation.

After about 15 hours the broth glucose concentration decreased rapidly as the cells entered an

exponential growth phase. At approximately t: 18 hours the broth was induced with IPTG.

At t : 19.5 hours the constant-rate glucose feed commenced and the glucose concentration

briefly rose before the increasing biomass rapidly consumed the extra glucose. Just after 23

hours the glucose feed was exhausted and the simulation ceased. The hnal protein

Recombinant Fermentation

10 15

time (hours)

2

1.8

1.6 I
E)1.4;
o

''t g
,c,t0) oc
0.8 8
o.o 3

Þo
0.4 ä
02

0

40

35

30e^FJE Et .rUt-.r¡1 trfO
JË20
nun
BErs
Èqoo
ãt10

5

0

20 250 5

\
I ¡

I

¡

¡t I t6

fi

I

¡
¡

163

concentration was 0.61 (g protein) /L. The specific protein yield was 0.0197 (g protein) /g

plasmid-harbouring cells. The final acetate concentration was 1.38 g lL,not enough to have

significantly inhibited growth because the acetate inhibition constant is 15.0 g /L.

The response for a simulation with full glucose control, with the glucose controlled to a

setpoint of 0.01 g iL is presented below in Figure 5.12. The glucose substrate saturation

constant K" is 0.004 g lL. 0.01 g /L glucose would therefore retard the growth rate by

approximately 29Yo over an excess glucose system.

Recombinant Fermentation

40

35

30

25

20

15

l0

5

0

2

c
o
g
C,oo
oogt^
FJE ct)o-¡a
U'

oð
Ø
ø,o
E
o
¡¡

1.8

1.6
Ĵ

t.q I
c
o

1.2 E
.cl0)

IJc
0.8 I

o
0.6 €o
0.4 0

0.2

0

0 5 10 15

time (hours)

20 25

¡r r tl
ì

D

I
¡
I

I

a

t
I

Figure 5.12: Full glucose control simulation. Setpoint 0.01 g /L.

No glucose hump is present in this run. The broth was induced at about 18 hours. The

growth rate decreased very slightly at t: 19.5 hours. The average glucose feed rate was

slightly lower and so the run continued for 24 simulated hours before stopping. The extra

production time resulted in a final protein concentration of 0.73 g lL. The specific protein

yield was 0.0244 g / g. The final acetate concentration was 1.33 g lL.

A further run was undertaken to investigate the effects of a very low controlled glucose

concentration of 0.001 g /L. A glucose concentration of 0.001 g/L would retard the growth

164

rate by about 80olo over an excess glucose system. The simulation results are presented in

Figure 5.13.

Figure 5.13: Full glucose control simulation. Setpoint 0.001 g /L.

At an equivalent 24 hours, the protein concentration is only around 0.4 g lL because of the

restricted growth rate. However, the final protein yield was 0.81 g /L. Equation (5.21)

indicates that at lower growth rates, the plasmid concentration in the biomass is greatly

increased. The specific protein yield was 0.0403 g /g, considerably higher than the previous

runs. The comparatively low glucose feed rate meant that protein production could continue

for 12 hours longer than the other runs, providing a higher production efficiency in spite of the

retarded growth rate.

5.4 Discussion

The advantages of integrated steady-state and dynamic process simulation become apparent

when applied to complex test problems. V/ith a sufficiently accurate model and a suitable

simulator, the performance of a plant may be determined without disturbing the physical

process. This is particularly well demonstrated by the Tennessee Eastman model. Well over

100 simulation runs were undertaken while evaluating and tuning the various control schemes

Recombinant Fermentation

o
(ú

oo
oo
0)
o
tt¡¡
=tt,
cð
v,
U'
(E

E
o
¡¡

J
ctt

40

35

30

25

20

15

10

5

0

2

1.8

f
l.o Et

Z
1.4 e

tÉ

1.2 Ëo
1o o

o.e 3tt
o

o.o ä

04€
CI

0.2

-{p
-Xnp
rrS

-P
-A

0 5 10 15 20 25 30 35 40

time (hours)

. a ¡rtt

I
¡

ì
I
I
¡
I

I

165

discussed. This would be prohibitively expensive in production costs, safety risk and time on

the physical plant.

A process model can provide information about process variables that are not physically

measured, simply by intenogating the appropriate unit operation model. The degree of

confidence in the simulated information is of course dependent on the accuracy of the model.

Dynamic simulation provides a great deal more information about plant operation than steady-

state simulation alone. The Cavett problem was originally designed as a sequential-modular

convergence test problem but a dynamic analysis is still applicable. The simulated steady-

state design specification on i-butane recovery provides an accurate operating point for the

temperature of the second flash unit only when the compositions of the feed streams and the

other unit conditions are exactly as simulated. Changes in process conditions must be re-

simulated to determine a valid operating range. Altematively, dynamic simulation offers the

ability to implement and test control system designed to maintain the i-butane recovery over a

wide range of process conditions. Hydrocarbon systems are well-understood and the results

may be expected to be quite accurate. Steady-state design tools for control systems cannot

provide the same informâtiôn. 'óné -ã¡or benefit of steady-state simulation is its

effectiveness for initialising a dynamic simulation. Even the fermentation model was

initialised with steady-state simulation, to obtain controller outputs and setpoints.

The Tennessee Eastman problem statement specihes a wider range of process operating

conditions than those explored here. The steady-state plant model may be simulated to

provide any of the desired plant conditions at a wide variety of individual unit conditions. For

example, the unsuccessful pressure-temperature control system may be solved for all of the

operating conditions in the original paper. This does not provide any information about the

dynamic performance however.

Finally, integrated steady-state and dynamic simulation aids process understanding. The

descriptions of the behaviour of the unsuccessful control schemes were determined from sets

of simulation results. The Tennessee Eastman plant model is quite complex and as such is

effectively useless without some form of simulation to describe the model's behaviour.

166

5.5 Summary

Three processes were employed to evaluate the simulator performance and applicability. The

different steady-state capabilities of the simulator were examined with the four-flash Cavett

problem. The unit models were the same in all simulations. No simulation technique was

found to be completely superior. Sequential-modular process simulation is a useful technique

for initialising equation-oriented simulations and can be readily applied to design problems if
the unit models are solved in an equation-oriented form.

The dynamic capabilities of the simulator were investigated with the Tennessee Eastman

Challenge Problem. The dynamic system was initialised with equation-oriented steady-state

solution of the dynamic unit models. Several control systems were evaluated with varying

degrees of success. The capability to break connections between Variable objects was

demonstrated to be useful for simulating saturated controllers. Complete results for the very

simple and effective control scheme proposed by Luyben (1996) were presented. The process

remained under stable control for the process changes initiated.

Finally a recombinani fermentation model was developed and simulated. The model does not,,

represent a specific process and may not be generally applicable. Different controlled glucose

feeding strategies were demonstrated to increase product yield by approximately 50 Yo over

simple uncontrolled systems.

The next chapter is the final chapter of the thesis and summarises the project's conclusions

and suggests directions for future work.

167

Cnnprnn 6

Summary, Conclusions and Recommendations

6.1 Summary

The preceding chapters have discussed the requirements, design, implementation and testing

of a C++ class structure for simulation of biochemical and chemical processes. The simulator

is capable of steady-state and dynamic simulation, employing the same unit models.

Multiple, interchangeable steady-state simulation techniques are supported. The data

structure is designed to promote user-defined process models. The project has met the

objectives outlined in Chapter l.

6.2 Class Description

An examination of the physical attributes of a process flowsheet provided the basis for the

design of a cla.ss st,'uctule to represent general flowsheet objects and their connectioirs. 'T1,.':

design of the r::'::"'åemati¡al structure followed from the reqr-rirement of rnultiple sol'*iictt,

methods, both steady-state and dynamic. A versatile class structure has been developed,

summarised below into four main areas:

1. Process representation classes for modelling the physical attributes of a chemical

process. There are three main parent classes in this group: System, for modelling

entities that transform information or material, Port, for defining connection

interfaces to Systems, and Streams, for connecting Systems through their Ports.

2. Mathematical representation classes for modelling the mathematical structures

contained within System-types. There are two main parent classes in this group:

Equation_Set for collecting sets of model equations and Variable for modelling

the individual components of an equation.

3. Physical property classes for modelling the behaviour of chemical components and

mixtures manipulated by System-types. There are three main parent classes in this

group: Component, for modelling individual chemical components,

168

General_Component_Mixture, for modelling mixture phases and Properties, for

calculating the properties associated with a mixture or phase.

4. Numerical method classes to provide solution methods for sets of equations. This

group of classes has comparatively little structure and is designed to provide

solution functionality. The class structure is based on single inheritance,

commencing with a Math_Top class, through Math-Util, Linear-Solver,

Nonlinear_Solver, DAE_Solver and Mathtool classes.

The capability for Systems to contain other Systems and Equation_Sets to contain other

Equation_Sets facilitates model description because the executive-level structure of a

complex flowsheet has the same basis as the executive-level structure of a simple valve. The

containment principle creates a readily-analysed, connected tree of System objects and

Equation_Set objects which in turn permits a variety of solution techniques to be applied.

The Sys_Man_Block class exploits this capability to cater for connected multi-System

models as complex unit operations or as flowsheets. Different sections of a Flowsheet may

be examined and solved independently of the rest by allocating the sectiotrs to a
¡ - ' !iil.

Sys_Mam_,8Ècck olrject. The sections may overlap. The management of Systeui*-iypes i.;
: ;l:jliiJ!:' - i :

demonstrated by tlie solution method controls built in to the Convergence_Block ciass.

6.3 Modelling

The classes provide a consistent framework for model definition and solution. Various model

decomposition techniques have been described: Medium and Machine Decomposition,

Primitive Behaviour Decomposition and Mathematical Decomposition. The application of

the techniques with the class structure was discussed.

The class structure supports bi-directional information flow. This was demonstrated with a

Control_Valve class. Models may acquire attributes through aggregation and connection of

sub-objects or through multiple inheritance of characteristics. These were demonstrated with

two separate definitions of a Ratio_Controller class. Aggregation provided a stricter

modelling methodology that did not break the encapsulation of the sub-objects and in

particular left the final class with a single set of accessible interface functions. Multiple

inheritance of characteristics left some ancestor interfaces still functional. This can corrupt

the System-level structure that the rest of the simulator interacts with unless suitable

169

precautions are taken. With this class structure, multiple inheritance modelling requires more

knowledge about the parent classes and more effort to ensure consistent object construction.

The physical property classes were demonstrated with a multicomponent Flash model class.

A three-component flash was simulated in steady-state to introduce Flowsheet-level

simulation.

The permitted level of access to internal attributes of an object is an interesting issue in

software engineering. As stated in previous chapters, the majority of the System-level

structure must be inaccessible from specific unit-operation objects. This preserves the

consistency of the structure at an operational level. However, a system in which unit model

definition is in the same language as the important high-level data structure and functionality

is potentially easier to comrpt, especially in a system operated through a compiler. The low-

level model attributes are nearly always accessible; this could be considered a necessity in an

environment that encourages user-defined models and versatility. A system for widespread

use could perhaps supply the high-level code as a precompiled set of libraries that are

automatically attached to the user's low-level code. This would seem to be a simple cption,

the ørilr,oept oßDynamic-Linked-Libraries (DLLs) is popular in C++. Comple{e.resolul"ion of

the iss'ce is not required at this stage of the project's development. i '

6.4 Simulation

Three test processes were simulated; the four-flash Cavett problem, a recombinant

fermentation model and the Tennessee Eastman control challenge problem. The simulator

provides interchangeable sequential-modular, parallel-modular and equation-oriented

simulation techniques with the same unit models. This was demonstrated with the Cavett

problem. Sequential-modular simulation was especially effective for initialising equation-

oriented simulations, although no single flowsheeting or numerical method proved to be

completely superior. Sequential- and parallel-modular design problems were easily specified

and solved with equation-oriented unit model solution.

A biochemical application was demonstrated with the development of a moderately complex

recombinant fermentation model for protein production in E. Coli bacteria. The model was

used to investigate potential advantages of process control applied to glucose feed flow.

170

The major test process for the dynamic capabilities of the simulator was the Tennessee

Eastman problem. The original Fortran code was reverse-engineered into a set of unit

operation classes. The physical properties were calculated with the ideal property and

User_Component classes in the simulator. Equation-oriented steady-state simulation

initialised the dynamic system. The same unit models were employed for both steady-state

and dynamic simulation. The control system was capable of adjusting the process operation

rapidly to suit the four standard setpoint changes for the plant. The real-time-to-simulated-

time ratio of the control system tests was about 1:10. There were 203 equations and variables.

6.5 Recommendations

Further development of the simulator is justified if emphasis is placed on modelling and

simulation capabilities for small, unconventional processing systems. There are many

packages available for large-scale simulation of conventional systems. The recommendations

below reflect this special-purpose focus.

A better ,interface is required to facilitate the modelling process, especialil if the emphasis is

,.placed on special-purpose modelling. At this stage, model developmarrt'is resti'icted tc,the

text-baseci compiler environment with C+* code. The simulator output is text-based, either to

the screen or to a file. Dynamic simulation results must be read into a spreadsheet program

for plotting. The addition of real-time graphing facilities would greatly enhance the

simulator.

The physical property package is quite basic. Only ideal and Peng-Robinson methods are

available. An object-oriented physical property package is probably a thesis in itself.

Physical property calculation is generally a service function to a simulation package. A

comprehensive interface to an existing property package would be a more sensible and much

simpler extension project than a complete object-oriented property database.

The data structure should be extended to handle other material types, for example solids or

slurry processing. The basic Process_Port class could be a starting point, because the

contained Variables are not of a specif,rc type. The composition Vector in a Process_Port

could be employed as fractions within a size range. A slurry characterisation would greatly

171

expand the capabilities for bioprocess modelling simulation, such as centrifugation or

homogenisation operations.

The multiple steady-state solution techniques add complexity to the simulator. While the

mathematical superiority of the equation-oriented approach is recognised, the diffrculty

associated with commencing the solution of larger problems (specifically the provision of

reasonable initial estimates) requires a simple, robust initialisation technique. The basic

sequential-modular capability should be retained for the initialisation.

Finally, a robust, sparse-matrix solver is recommended for equation-oriented simulation. The

Tennessee Eastman Jacobian matrix is almost 98olo sparse, for example. The sparse solver is

probably better provided by an interface to existing third-party numerical software, because

the interface coding is likely to be simpler than the coding of another numerical method.

172

BTnTTOGRAPHY

Acton, F.S. 1990. Numerical Methods That \4/ork. 454-458. Mathematical Association of
America, Washington.

Ballinger, G.H., Bãnares-Alcántara, R., Costello, D., Fraga, E.S., Krabbe, J., Lababidi, H.,

Laing, D.M., McKinnel, R.C., Ponton, J.W., Skilling, N., and Spenceley, M.V/. 1994.

épée: a Process Engineering Software Environment. ln Proceedings of European

Symposium on Computer-Aided Process Engineering- 3 (ESCAPE-3). Suppl.

Computers qnd Chemical Engineering, 18, 5283-5287.

Banerjee, A. and Arkun, Y. 1995. Control Configuration Design Applied to the Tennessee

Eastman Plant-Wide Control Problem. Computers and Chemical Engineering,19 (4),

4s3-480.

Biegler, L.T. 1983. Simultaneous Modular Simulation and Optimisation. ln Proceedings of
the 2nd International Conference on Foundations of Computer-Aided Process Design,
'Westerberg,A.Vy'. and Chien, H.H., (eds.), 369-408. Cache, Ann Arbor, Michigan.

Bischak, D.P., and Roberts, S.D. 199I. Object-oriented Simulation. In Proceedings of the

l99l llinter Simulation Conference,B.L. Nelson, V/.D. Kelton and G.M. Clark (eds.),

194-203. Institute of Electrical and Electronic Engineers, San Francisco, California.

Bogle, I.D.L., and Perkins, J.D. 1988. Sparse Nev¡ton-Likr-: lt4ethcCs in Eqr.1¿1ion Oriented

Flowsheeti ng. C omput er s and Chemical Engine ering, 12 (8), 79 1 -805.

Britt, H.I. 1980. Multiphase Stream Structures in the ASPEN Process Simulator. In
Proceedings of the ISt International Conference on Foundations of Computer-Aided
Process Design, Mah, R.H., (ed.), 47I-510. Engineering Foundation, New York.

Broyden, C.G. 1965 . Mathematics of Computation,19,577-593

Chung, Y., and Westerberg, A.Vy'. 1990. A Proposed Numerical Algorithm for Solving
Nonlinear Index Problems. Industrial Engineering Chemistry Research,29 (7), 1234-

1239.

Cockshott, A.R. and Bogle, I.D.L. 1992. Modelling a Recombinant E.Coli Fermentation

Producing Bovine Somatotropin. In Modeling and Control of Biotechnical Processes

1992 and Computer applications in fermentation technologt (5th International
Conference) : selected papers from the IFAC and ICCAFT 5 meetings, Keystone,

Colorado, USA, 29 March - 2 April 1992. Kamin, M.Z. and Stephanopoulos, G.,

(eds.), Pergamon Press, New York,2I9 - 222.

Dahl, O.J., Myhrbaug, 8., and Nygaard, K. 1968. SIMULA-67 Common Base Language

Norwegian Computing Centre, report no. S-2.

173

Downs, J.J., and Vogel, E.F. 1993. A Plant-Wide Industrial Control Problem. Computers

and Chemical Engineering, 17 (3), 245 -255.

Ellis, M.4., and Stroustrup, B. 1994. The Annotated C++ Reference Manual. Addison-
'Wesley, Massachusetts.

Evans, L.B. 1988. Bioprocess Simulation: A New Tool for Process Development.

Bio/Te chnol o gy, 6 (2), 200-203 .

Evans, L.B., Boston, J.F., Britt, H.I., Gallier, P.W., Gupta, P.K., Joseph, 8., Mahalec, V., Ng,
E., Seider, W.D., and Yagi, H. t979. ASPEN: An Advanced System for Process

Engineerin g. C omput er s and Chemi c ql Engine ering, 3, 319 -327 .

Farza, M., and Chéruy, A. 1991. CAMBIO: software for modelling and simulation of
bioprocesses. CABIOS, 7 (3), 327 -336.

Fletcher, J.P., and Ogbonda, J.E. 1988. A Modular Equation-Oriented Approach to Dynamic

Simulation of Chemical Processes. Computers and Chemical Engineering, 12 (5),

40r-405.

Fraga, E.S., McKinnon, K.I.M., and Johns, W.R. 1991. Process Synthesis using a Parallel

Computer. In Computer-Oriented Process Engineering, L. Puigjaner and A. Espuña

(eds.), 235 -240. Elsevier, Amsterdam.

Franks, R.G.E. 1972. Modelling and Simulatiov: in Chewicql Engineering. Wiley
Interscience, New York.

Gadijaru, V.V. 1992. Development of a Process Simulator using Obiect-Oriented
Programming; Information Modeling and Program Structure. PhD Thesis, Chemical

Engineering Department, Iowa State University.

Gear, C.W. 1971. Simultaneous Numerical Solution of Differential-Algebraic Equations

IEEE Transactions on Circuit Theory, CT-18 (1), 89-95.

Gear, C.'W. 1988. Differential-Algebraic Equation Index Transformations. SIAM Journal of
Sc ientifi c and Stati s tical C omputing, 9 (l), 39 -47 .

Habchi, G., and Deloule, F. 1992. Study of modelling and simulation for a chemical
production system. Simulation, 58 (6), 366-374.

Hall, G. and Watt, J.M. 1976. Modern Numerical Methods for Ordinary Dffirential
Equations. Clarendon Press, Oxford, London.

Henley, E.J and Rosen. 1969. Material and Energy Balance Computations. Wiley and Sons.

Hillestad, M., and Hertzberg, T. 1986. Dynamic Simulation of Chemical Engineering

Systems by the Sequential Modular Approach. Computers and Chemical

Engineering, L0 (4), 377-388.

174

Hillestad, M., and Hertzberg, T. 1988. Convergence and Stability of the Sequential Modular
Approach to Dynamic Process Simulation. Computers and Chemical Engineering,12
(5),407-4r4.

Holl, P., Marquardt, W., and Gilles, E.D. 1988. DIVA - A Powerful Tool for Dynamic
Process Simulation . C omput er s and Chemic al Engineer ing, 12 (5), 42I -426.

Hutchison, H.P., Jackson, D.J., and Mortoû, W. 1986a. The Development of an Equation-

Oriented Flowsheet Simulation Package - I. The Quasilin Program. Computers and
Chemicql Engineering, 10 (1), 19-29.

Hutchison, H.P., Jackson, D.J., and Mortoî, W. 1986a. The Development of an Equation-
Oriented Flowsheet Simulation Package - IL Examples and Results. Computers and
Chemical Engineering, 10 (1), 3I-47.

Konstantinov, K., Kishimoto, M., Seki, T. and Yoshida, T. 1990. A Balanced DO-Stat and

Its Application to the Control of Acetic Acid Excretion by Recombinant Escherichia
Coli. Biotechnology and Bioengineering, 36, 7 50-7 58.

Kröner, 4., Holl, P., Marquardt,'W., and Gilles, E.D. 1990. DIVA - An Open Architechture
for Process Simulation. Computers and Chemical Engineering,14 (II),1289-1295.

Lambert, J.D. I99L Numerical Methods for Ordinary Dffirential Systems:

Value Problem. Ch. 6, pp.213-260, Ch-. 7, pp.26I-284. John Wiley
Chichester ,: :; i

The Initial
and Sons,

Lau, K.H. 1992. Development of a Process Sin¡uiutar usi:ig Object-Orie¡tted Programming:
Numerical Procedures and Convergence Studies. PhD Thesis, Chemical Engineering
Department, Iowa State University.

Lee, H.H., and Arora, J.S. 7991a. Object-oriented Programming for Engineering
Applications. Engine er ing with Computer s, (7), 225 -23 5 .

Lee, J. and Ramirez, W. 1992. Mathematical Modeling of Induced Foreign Protein
Production by Recombinant Bacteria. Biotechnology and Bioengineering, 39, 635-

646.

Lee, S.8., Ryu, D.D.Y., Seigel, R. and Park, S.H. 1988. Performance of Recombinant
Fermentation and Evaluation of Gene Expression Efficiency for Gene Product in Two-
Stage Continuous Culture System. Biotechnologt and Bioengineering,3l, S05-820.

Lee, T.Y. 1991b. The Development of an Object-Oriented Environment þr the Modeling of
Physical, Chemical and Biological Systems. PhD Thesis, Chemical Engineering
Department, Texas A&M University.

Lefkopoulos, 4., and Stadtherr, M.A. 1993. Index Analysis of Unsteady-State Chemical
Process Systems - I. An Algorithm for Problem Formulation. Computers and
Chemical Engineering, 17 (4), 399 -413.

175

Lu, Y., Clarkson, 4., Titchener-Hookner, N., Pantiledes, C., and Bogle, D. 1994. Simulation
as a Tool in Process Design and Management for Production of Intracellular Enzymes.

Transactions of the IChemE,72,Part A, May, 371-375.
Luyben, W.L. 1996. Simple Regulatory Control of the Eastman Process. Industrial

Engine ering Chemistry Re s ear ch, 35, 3280-3289 .

Lyman, P.R. and Georgakis, C. 1995. Plant-Wide Control of the Tennessee Eastman

Problem. Computers and Chemical Engineering,lg (3), 32I-331.

Majewski, R.A. and Domach, M.M. 1990. Simple Constrained-Optimisation View of
Acetate Overflow in E. Coli. Biotechnologt and Bioengineering,35,732-738.

Marquardt, D.W. 1963. Journal of the Society for Industrial and Applied Mathematics,ll,
43t-44r.

Marquardt, W. 1991. Dynamic Process Simulation - Recent Progress and Future Challenges.

In Proceedings of the 4th International Conference on Chemical Process Control,Y.
Arkun and V/.H. Ray (eds.), 131-180. AIChE publication 67.

Marquardt, 'W. 1993. An Object-oriented Representation of Structured Process Models. In
Proceedings of the European Symposium on Computer-Aided Process Engineering - I
(ESCAP E-1). Suppl. Computers and Chemical Engineering, 16, 5329-5336.

Mattsson, S.E., Andersson, M., and ,{ströin. K.J. 1993. Object-Oriented Modelling and

Simulation. In D.A. Linkens (edJ¡, CAD fcr Control Systems, pp. 31-69, Marcel
Dekker, Inc, Ne-w York. :"! ¡. ':

McAvoy, T.J. and Ye, N. 1994. Base Control for the Tennessee Eastman Problem.

Computers and Chemical Engineering,lS (5), 383-413.

Meyer, B. 1992. Eiffel' The Language. Prentice-Hall.

Morris, R.C. 1992. Process Simulation: Successes andFailures. In Proceedings of the 1992

[Vinter Simulation Conference, J.J. Swain, D. Goldsman, R.C. Crain and J.R. Wilson
(eds.), 1249-1255. Institute of Electrical and Electronic Engineers, San Francisco,

California.

Motard, R.L. 1989. Integrated Computer-Aided Process Engineering. Computers and
Chemical Engineering, 13 (1 | I l2), lI99 -1206.

N.E.L. 1982. PPDS (Physical Property Data System) User Manual. National Engineering

Laboratory, United Kingdom.

Nielsen, J. and Villadsen, J. I99L Bioreactors: Description and Modelling. In
Biotechnologt,Yol.3, Ch 2. Rehm, H.J., Reed, G., Puhler, A. and Stadler, P., (eds.).

VCH, New York,79 - 102.

Nilsson, B. 1993. Object-Oriented Modeling of Chemical Processes. PhD Thesis,

Department of Automatic Control, Lund Institute of Technology.

176

Oh, M., and Pantiledes, C.C. 1994. A Modeling System for Lumped and Distributed
Parameter Processes. ln Proceedings of the 1994 IChemE Research Event, P.A.

Shamfou, A.R.H. Cornish, L.S. Hershenbaum, S. Moore, N. Titchener-Hooker (eds.),

v2, 791-193. IChemE, United Kingdom.

Paloschi, J.R. 1996. Using Sparse Bounded Homotopies in Steady-State Simulation
Packages. ln Proceedings of the European Symposium on Computer-Aided Process

Engineering - 6 (ESCAPE-6). Suppl. Computers and Chemical Engineering, 20,
s285-S290.

Pantiledes, C.C. 1988. SPEEDUP: Recent Advances in Process Simulation. Computers and

Chemical Engine ering, 12 (7), 7 45 -7 55.

Pantiledes, C.C. 1988. The Consistent Initialization of Diferential-Algebraic Systems. SIAM
Journal of Scientific and Statistical Computing,9 (2),213-231.

Pantiledes, C.C. and Barton, P.I. Equation-Oriented Dynamic Simulation: Current Status and

Future Perspectives. In Proceedings of the European Symposium on Computer-Aided
Process Engineering- 2 (ESCAPE-2). Suppl. Computers and Chemical Engineering,
17, s263-5285.

Patterson, G.K., and Rozsa, R.B. 1980. DYNSYL: A General-Purpose Dynamic Simulator
for Chemical Processe s. C omput e.r,s and Chemical Engine er ing, 4, l -20.

Pegderì, C.D., Shannon, R.E., anci Saeicrvski, [jl.P 1990. Init'aduction to Simulation using

SIMAN. McGraw-Hill, New York.

Perkins, J.D., and Sargent, R.V/.H. 1982. SPEEDUP: A Conputer Program for Steady-State

and Dynamic Simulation and Design of Chemical Processes. AIChE Symposium

Series No. 214, 78, 1-11.

Petrides, D. 1994. BioPro Designer: An Advanced Computing Environment for Modeling
and Design of Integrated Biochemical Processes. In Proceedings of the European

Symposium on Computer-Aided Process Engineering - 3 (ESCAPE-3). Suppl:

Computers and Chemical Engineering, 18, 5621-5625.

Petrides, D., Cooney, C.L., Evans, L.8., Field, R.P., and Snoswell, M. Bioprocess

Simulation: An Integrated Approach to Process Development. Computers and

Chemical Engineering, 13 (41 5), 553-561.

Petrides, P.P., and Cooney, C.L. 1993. Trends in Biotechnology,ll.

Piela, P.C., Epperly, T.G., 'Westerberg, K.M., and Westerberg, A.W. 1991. ASCEND: An
Object-oriented Computer Environment for Modeling and Analysis: The Modeling
Language. Computers and Chemical Engineering,15 (1), 53-72.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. Numerical Recipes in C
2'd edition. Cambridge University Press, Aust.

177

Pritsker, A.A.B. 1986. Introduction to Simulation qnd SLAM II,3'd ed. Halsted Press, New
York.

Reid, R.C., Prausnitz, J.M. and Poling, B.E. 1987. The Properties of Gases and Liquids.

McGraw-Hill, New York.

Ricker, N.L. and Lee, J.H. I995a. Nonlinear Model Predictive Control of the Tennessee

Eastman Challenge Process. Computers and Chemical Engineering,lg (9), 961-981 .

Ricker, N.L. and Lee, J.H. 1995b. Nonlinear Modeling and State Estimation for the

Tennessee Eastman Challenge Process. Computers and Chemical Engineering,19 (9),

983-1005.

Roels, J.A. 1983. Energetics and Kinetics in Biotechnologt. Elsevier Biomedical Press,

Amsterdam.

Sargent, R.W.H. 1981. A Review of Methods for Solving Nonlinear Algebraic Equations.

Foundations of Computer-Aided Chemical Process Design, R.H. Mah, W.D. Seider

(eds.), v1,27 - 76. Engineering Foundation, New York'

Schriber, T.J. I99l
New York.

An Introduction to Simulation using GPSS/H. John V/iley and Sons,

Seider, W.D., and Brengel, DÐ. , 1991. Nonlinear Analysis in Process Design. AICbE
Jaurnal,3T (1), 1-38.

i ._,jitt. :i ,¿ ' i.

Shacham, M. 1985. Comparing Software for the Solution of Systems of Nonlinear Equations

Arising in Chemical Engineering. Computers and Chemical Engineering,9 (2),103-
T12.

Siletti, C.A. 1990. Design of Protein Purification Recovery Processes. ln Artificial
Intelligence in Process Engineering,M.L. Mavrovouniotis (ed.), 295-310, Academic

Press.

Simon, F., Narosdoslawsky, M., Csermely,2., and Altenburger, J. 1994. Physical Property

Data Management in a Bioprocess Simulation System. In Proceedings of the

European Symposium on Computer-Aided Process Engineering - 3 (ESCAPE-3).

Suppl. Computers and Chemical Engineering, 18, 5675-5680.

Smith, G.J., and Morton, 'W. 1988. Dynamic Simulation Using an Equation-Oriented

Flowsheeting Package . Computers and Chemical Engineering, 12 (5), 469-473.

Stadtherr, M.4., and V/ood, E.S. I984a.
Chemical Process Flowsheeting - I
Engineering, 8 (1), 9-1 8.

Stadtherr, M.4., and 'Wood, E.S. 1984b.

Chemical Process Flowsheeting - II
Engineering, 8 (1), 19-33.

Sparse Matrix Methods for Equation-Based
Reordering Phase. Computers and Chemical

Sparse Matrix Methods for Equation-Based
Numerical Phase. Computers and Chemicql

178

Stephanopoulos, G., Henning, G., and Leone, H. 1990a. MODEL.LA. A Modeling

Language for Process Engineering-I. The Formal Framework. Computers and

Chemical Engineering, 14 (8), 813-846.

Stephanopoulos, G., Henning, G., and Leone, H. 1990b. MODEL.LA. A Modeling

Language for Process Engineering-Il. Multifaceted Modeling of Processing Systems.

Computers and Chemical Engineering,14 (8), 847-869.

Stephanopoulos, G., Johnston, J., Kriticos, T., Lakshmanan, R., Mavrovouniotis, M., and

Siletti, C. DESIGN-KIT: An Object-oriented Environment for Process Engineering.

Computers and Chemical Engineering,ll (6), 655-674.

Timar, L., Simon, F., Csermely, 2., Siklós, J., Bácksai, S., and Édes, J. 1984. Useful

Combination of the Sequential and Simultaneous Modular Strategy in a Flowsheeting

Programm e. Computers and Chemicql Engineering, 8 (3 I 4), I 85- 1 94.

Unger, J., Kröner, A., and Marquardt, W. 1995. Structural Analysis of Differential-Algebraic
Equation Systems - Theory and Applications. Computers and Chemical Engineering,

19 (8), 867-882.

Vazquez-Román, R., King, J.M.P., and Bãnares-Alcántara, R. 1996. KBMoSS: A Process

Engineering Modelling Support System. In Proceedings of the European Symposium

on Computer-Aided:.Process. Engineering - 6 (ESCAPE-6). Suppl. Computers and

Chemical Engine erinç, 20, 53 09-53 1 4.

Villadsen, J. 1989. Simulation of Biochemical Reactions. Computers and Chemical

Engineering, 13 (41 5), 3 85-395.

Wayburn, T.L., and Seader, J.D. 1987. Homotopy Continuation Methods for Computer-

Aided Process Design. Computers and Chemical Engineering,ll (l),7-25'

Westerberg, A.'W. 1979. Process Flowsheeting. Ch.4,p105. Cambridge University Press.

Westerberg, A.W., and Benjamin, D.R. 1985. Thoughts on a Future Equation-Oriented
Flowsheeting System . Computer s and Chemic al Engine ering, 9 (5), 5 l1 -526.

'Williams, T.J. and Otto, R.E. 1960. A Generalized Chemical Processing Model for the

Investigation of Computer Control. A.I.E.E. Transactions, 79, Part 1

(Communications and Electronics), 458-467 .

Ye, N. and McAvoy, T.J. 1995. Optimal Averaging Level Control for the Tenessee Eastman

Problem. C anadi an Journal of Chemical Engine ering, 7 3 (April), 23 4-240.

179

NOvTENCLATURE

Due to the complexity of the biochemical process model (ref. Chapter 5, p155-156), the

general nomenclature for the thesis and the biochemical process are presented separately.

General

A

C

c(t)

CtL

Cpv

cs

e(t)

F
h

4t)
K"

K¡

L
M¡

MT

N,

NL

Nü
NV

Nn
P
R

T
V

VL

v,o,

VV

x
X¡¡!¡Ã¡

y^(t)

y"p(t)

p

PL

Pv
,TI

Area

Valve flow coefficient

Controller signal

Liquid molar specific heat

Vapour molar specific heat

Controller steady-state signal

Controller error signal

Feed stream flowrate or process flowrate

Liquid height

Integral of controller error signal

Controller gain

Equilibrium constant for component I
Liquid stream flowrate

Mass holdup of.carnponent i
Totai mass hoirlup

Total molar holdup of component i
Total molar holdup of liquid phase

Molar holdup in liquid phase of component I
Total molar holdup of vapour phase

Molar holdup in vapour phase of component I

Pressure

Ratio

Temperature

Vapour stream flowrate

Liquid phase volume

Total volume

Vapour phase volume

Valve position

Mass or mole fraction

Controller measured value

Controller setpoint

Mass density

Molar densþ of liquid phase

Molar density of vapour phase

Integral time

m'
kmoVs/Pao s

kJ/kmol/K

kJ/kmol/K

kmoVs

m

kmoVs

kg

kg

kmol

kmol

kmol

Pa

K
kmoVs

m'

m'

m3

kd-'
kmoVm3

kmoVm3

S

I

180

Biochemical Model

plasmid-free biomass

plasmid-carrying biomass

acetate concentration

glucose feed rate

plasmid concentration in biomass

IPTG concentration

volumetric mass transfer coefficient

IPTG recovery rate variable

saturation constant for glucose

IPTG shock rate variable

specif,rc growth rate

agitator rotational speed

oxygen concentration

saturated oxygen concentration

protein product concentration

fermentor absolute pressure

mixing power

oxygen partial pressure

probability of plasmid loss

rate of fomation of acetate

rate of fcnnation ol'protein product

IPTG reocvery ralic

glucose concentration

superficial gas velocity

broth volume

biomass concentration

(g acetate) /L
(g glucose) / h

(mg plasmid) /(g biomass)

(g IPrG) /L
h-r

(g glucose) /L

h-r

rev /s

(mmol Or) L
(mmol Or) lL
(g protein) /L

kPa

w
kPa

(g acetate) /(g biomass) /h

(g protein) /(g biomass) /h

(g glucose) /L
m/s
L

(g biomass) /L

+

A

,FS

e o@)
I

kp
k,

Ifs

k"

p
N
o2

or*
P
PF

PM

Po,

P,

r¡"(tt)

rrr0r*)

.R,

,s

us

V

X

l8l

AppnNDICES

Appendix A: General member function descriptions

Appendix B: Flash class member functions

Appendix C: Tennessee Eastman Unit Operation Models

Appendix I): Tennessee Eastman Flowsheet Definition File

Appendix E: Recombinant fermentation model parameters

182

Appendix A: General Member Function Descrintions

4.1 System-based classes

A.l.l System Connectivity and Mathematical interface functions

incorp_main_ss_set (Equation_Set.& e) attaches aî executive-level

Equation-Set pointer to the low-level Equation-Set object e. The

Equation_Set object is then available to System for analysis. A

Dynamic_Set object can also be passed as an argument for steady-state

analysis of a dynamic system. The & symbol denotes a reference type in C*+,

which is similar to a pointer (Ellis and Stroustrup 1994), so e is then a

reference to an Equation_Set object. The function permits different

Equation_Set objects to be employed within a System.

incorp_main_dyn_set (Dynamic_Set& d) has the same function as above,

except for dynamic analysis within System.

set_sys (int n) sets the number of System-type objects that the System contains

or attaches to.

incorp_sys (Systemt sys, int n) attaches a System-type object to the nth

System pointer in a Vector object named subsys. This function and the

function above are employed directly in the Flowsheet class and for

constructing multi-System models.

set_no_inpstrms (int n) sets the number of Stream-type objects entering the

System object and hence the number of Input_Port-type objects. The

function could equally be named set-no-inp-ports (int n) but it is

more natural to perform connections with Stream-type objects.

own_input_port (Input Port& p, int n)attaches an Input-Port-type

object to the nth Input-Port pointer.

183

inp_stream(Streamç strm, int n)attaches a Stream-type object to the

Input-Port-type pointed to by the n'h Input-Port pointer.

set no outstrms (int n)sets the number of Stream-type objects leaving the

System object and hence the number of Output-Port-type objects.

own_output_port (Output_Port& P, int n) attaches an Output-Port-

type object to the n'h Output-Port pointer.

out stream (Stream& strm, int n)attaches a Stream-type object to the

Output-Port-type pointed to by the n'h Output-Port pointer.

set no inststrms (int n) sets the number of internal Stream-type objects in

a System object. This function is not actually required for Stream-type

objects to be connectors within a System object. A System oirject already

"owns" Port-types as part of the executive structure. Llo¡mecticns are rnade

with Port-type objects to Stream-type objects and so the cor'nectivity is

automatically available.

incorp_strm(Stream& strm, int n) attaches a Stream-type object to the

n'h Stream pointer. This function and the function above are not actually

required to define a connected System; they are included for the sake of

completeness in case other combined System-Stream types are developed.

One possibility is the creation of a class for modelling long pipe runs where

process conditions could result in stratified two-phase flow or significant

pressure drop.

184

A.1.2 System Analysis

setup O drives the mapping functions of the Port-type objects in a System object.

The function must be redefined for each new modelling class.

ss_analyse O performs depth-first connection and steady-state analysis of System-

types.

ss_buitd O performs depth-first connection and builds Vector objects containing

Equation and Variable pointers for steady-state solution.

reset_ss_eqns O resets the System object's steady-state Equation-Set object so

it can be reanalysed and recollected. Required for steady-state initialisation of

a dynamic simulation.

dyn_analyse O performs depth-first connection and dynamic analysis of System-

. types.

dyn_build O performs depth first connection and builds Vector objects containing

Equation, Variable and Derivative pointers for dynamic solution.

reset_dyn_eqns O resets the Dynamic_Set object so it can be reanalysed and

recollected.

4.1.3 Convergence Block class interfaces

set no tear st.reams(int n) setsthenumberofProcess Streamobjectsto

be torn.

tear (Process Stream& strm, int n) assigns a Process_Stream object to

be the nth torn stream.

l8s

tear and reassign ()tears and reassigns Variable objects prior to solution.

seq_solver (char s []) specifies the numerical method to be employed in the

sequential-modular iterations. Valid arguments are'NE'WT", "BROY",

"MARQ", "DIRS", "WEGS" or "NONE". "DIRS" and "Vy'EGS" correspond

to Direct Substitution and 'Wegstein methods. "NONE" switches off

sequential-modular solution.

sim solver(char s [])specifies the numerical method to be employed in the

simultaneous/equation-oriented flowsheet iterations. Valid arguments are

"NEWT", "BROY", "MARQ" or "NONE".

solve O solves the Flowsheet object.

4.2 Port-based classes

A.2.1 Fort, Input Port and Ou Port class interface functions

get_vars (Vector<VariabIe*>& v) is a member of the Port class. It is the

interrogation function described above. The Vector object v must be allocated

(i.e. with a build(i, j) call) before it is passed to the function. The

function assigns the pointers in a low-level Port object to the vector elements.

This function is usually only used for debugging.

map O is a virtual member of the Port class. It connects input and output Variable

objects to each other. Specific map () functions are discussed later in the text.

set sink (Streamt str) is a member of the Output-Port class. It sets the

Port's sink Stream pointer to str. This function is automatically called by

more specific Output_Port classes.

186

set source (Streama str) is a member of the Input-Port class. It sets the

port's source Stream pointer to str. This function is automatically called by

more specific Input_Port classes.

check_inputs (int n) is a member of the Input_Port class. It is used to

remove input variables from an equation set analysis. Valid arguments are oN

or oFF. Input_Port-types default with a call to check_inputs (oFF) .

A.2.2 Process Outnut Port and Process Input Port class interface functions

Process Ou Port:

set_temp_outl-et (Variable& v) sets a Variable object for the temperature of

the stream leaving through the port. (Normally the vessel temperature).

setSress_outlet (Variable& v) sets a Variable object for the pressure of

the stream leaving through the port. Sicrmally the vessel pressure).

set tot f low (Variabte& v) sets the total outlet flow Variable object.

set f racs (Vector<Variable>ç v) sets the composition Vector object of the

stream leaving through the port.

get_vars (Vector<Varíable*>& v) obtains a list of the pointer attributes in

the port. The elements of the Vector v are assigned in order of: composition,

total flow, output temperature, output pressure, downstream temperature and

downstream pressure. The user must know in advance how many components

are in a stream and build v appropriately.

These member functions above are usually sufficient for general-purpose modelling.

Member functions for bi-directional information flow are described below:

't87

get_temp_output () retums a pointer to the output temperature Variable object of

the stream.

get_press_output ()returns a pointer to the output pressure Variable object of

the stream.

get_temp_sink O returns a pointer to the temperature Variable object of the

downstream port or vessel.

get_press_sink O returns a pointer to the temperature Variable object of the

downstream port or vessel.

Process Input Port:

set_temp_owner (Variablec v) assigns a Variable object for the temperature

of the environment the stream is entering. Q.{ormally the vessel temperature).

set_press_owner(Variable& .v) assigns a Variable object for the pressure

of the environment the stream is entering. qNormally the vessel pressure).

set_temp_inlet (Variable& v) assigns a Variable object for the temperature

of the entering stream. The inlet temperature connection is set by the upstream

port.

set3ress_inlet (VariabIe& v) assigns a Variable object for the pressure

of the entering stream. The inlet pressure connection is set by the upstream

port.

set tot f 1ow (Variabte& v) assigns the total inlet flow Variable object .

set f racs (VectorcVariable>& v) assigns the composition Vector of the

inlet stream.

188

get_vars (Vector<Variable*>& v) obtains a list of the pointer attributes in

the port. The elements of the Vector v are assigned in order of: composition,

total flow, input temperature, input pressure, owner temperature and owner

pressure. The user must know in advance how many components are in a

stream and build v appropriately.

Member functions for bi-directional information flow are described below

get_temp_input O returns a pointer to the input temperature Variable object of

the stream.

get_press_input O returns a pointer to the input pressure Variable object of the

stream.

get_temp_owner O returns a pointer to the temperature Variable object of the

owner vessel.

get_press_owner O returns a pointer to the temperature Variable object of the

owner vessel.

A.2.3 Sienal Input Port and Signal Output Port class interface functions

These functions apply to both classes.

set_signal_var (Variable& v) assigns the signal Variable object of the

port.

get_vars (Vector<Variable*>& v) . The Vector object contains a single

element, which is set to the port signal.

A.2.4 Energy Input Port and Output Port class interface functions

189

These functions apply to both classes.

set_energy_var (Variable& v) assigns the energy Variable object of the

port.

get_vars (Vector<Variable*>& v) The Vector object contains a single

element, which is set to the energy Variable.

4.3 Stream classes

4.3.1 Stream class interface functions

get_source O returns the address of the source Port object.

get_sink O returns the addi'ess of the sink Port object.

4.4 Variable-based classes

4.4.1 Variable class interface functions

operator () is an overloaded operator. It returns the double precision value of the

Variable, or the value of the Variable object it is connected to. See the

example below.

operator = (double) is an overloaded = operator that assigns a double

precision value to the Variable object or the object it is connected to.

An example of usage is :

Variable vI,v2,v3 ;

v1 = v2O + v3O;

190

The = operator is deliberately restricted to operating only on double precision

values to enforce the use of a consistent method for specifying mathematical

operations and to reduce the amount of recoding required to perform numerical

calculations with the Variable class.

set val (doubl-e d) performs the same function as the = operator

connect to (Variable& v) assigns the connection of the Variable object.

connect to (Variable* v) assigns the connection of the Variable object.

lower (doubte d) sets the lower bound of the Variable object'

lower O returns the lower bound of the Variable object.

upper (double d) sets the upper bound of the Variable object.

upper O returns the upper bound of the Variable object.

get_type O retums the type of the Variable object, 'c' for a constant or parameter

and 'v' for a potential solution variable.

constant () sets the type of the Yariable object to 'c' (see get-type () above)

var O sets the type of the Yariable object to 'v' (see get-type O above).

check O returns true if the Variable is to be checked as part of an Equation-Set

analysis or false if it is not.

check(int n) sets the analysis status of the Variable object. If called as

check (ON) the Variabte object will be included in an Equation-Set

analysis, or excluded if called as check (oFF) .

l9l

get_connection O returns the immediate connection of the Variable object if it

has one

get_end_connection O returns the final connection of the Variable object. It

finds the end of a linked list of connected Variable objects (extension of

get_connection () above).

A.4.2 Derivative class interface functions

set state (Variable& v) sets the state Variable object of the derivative.

operator = . The Derivative class cannot employ the = operator of the Variable

class; it must be redefined even though it performs the same function. This is a

Clf restriction.

get_type O returns the type of the state Variable object associated with the

Derivative object.

A.4.3 Equation class interface functions

set no x (int n) assigns the number of Variables that affect the Equation

include (variable& v) includes a Variable in the list.

set derivative (Derivative& d)

Equation.

assigns the Derivative object of the

set_exp_var (variabl-e& v) assigns the explicit Variable for the Equation.

192

A.4.4 Equation Set and Dynamic Set class interface functions

Equation Set:

incorp_eqns (VectorcEquation>& e) attaches a Vector of Equation

objects to the Equation_Set object.

set no subset s (int n) sets the number of other Equation_Set objects that an

Equation_Set object contains or attaches to.

incorp_set. (Equation_Set &ê,

to the nth subset pointer.

int n) attaches an Equation_Set object

incorp_set (Equation. Set te) is the same as above except the

Equation_Set object is attached to the next available subset pointer.

get_no_vars O retums the number of solution Variable objects in tire

EqrnationrSet. I 'i

get_no_eqns O returns the number of solution Equation objects in the

Equation_Set.

check O returns true if the Equation_Set is to be analysed or false if it is not.

check(int n) sets the analysis status of the Equation_Set. If called as

check (oN) the Equation_Set will be analysed, or excluded if called as

check (OFF) .

Dynamic_Set:

set_indep (Variable& v) sets the independent Variable object for the

Dynamic_Set.

193

set no ae sets (int n) calls the set no subsets (int n) function

above. This function is implemented for clarity in speciffing whether a subset

is algebraic or dynamic.

incorp_ae_seL (Equation Set& e, int n) calls

incorp_set (Equation_Set &ê, int n) function above.

the

incorp_ae_set (Equat ion_Set &

incorp_set (Equation_Set çe)

e)

function above.

calls the

set_no_dyn_subsets (Dynamic_Set& d) sets the number of Dynamic_Sets

that the Dynamic_Set contains or attaches to.

incorp_dyn_set (Dynamic Set &d, int n) attaches a Dynamic_Set to the

nth dyn_subset pointer.

incorp_d)¡n_set (Dynamic Set ce) is the same as above e;rcept the

Dynamic_Set is attached to the next available dyn_subset pointer.

get_no_ae_vars O returns the number of algebraic solution Variable objects in

the Dynamic_Set.

get_no_ae_eqns O retums the number of algebraic solution Equation objects in

the Dynamic_Set.

get_no_dyn_vars O returns the number of state solution Variable objects in the

Dynamic_Set.

get_no_dyn_eqns O returns the number of state solution Equation objects in the

Dynamic_Set.

get_no_derivs () returns the number of Derivative objects in the Dynamic_Set.

194

4.5 Physical Property Classes

4.5.1 Component class interface functtons

get_MW O retums the molecular weight.

get_Tc O returns the critical temperature.

get_Pc O returns the critical pressure

get vc O returns the critical volume.

get_Tb () returns the boiling point.

get_Tf O returns the freezing point.

get_w O returns the acentric factor

get_dipm O returns the dipole moment.

get_Cpl O returns the liquid specihc heat.

get_CpV O returns the vapour specific heat.

get_rhol O returns the liquid density.

get_rhoV O returns the vapour density.

get_Hf g O returns the enthalpy of vapourisation.

A.5.2 User Component class interface functions

set MW (double d) sets the molecular weight.

195

4.s.3

set Tc (doubl-e d) sets the critical temperature

set Pc (double d) sets the critical pressure.

set Vc (doubte d) sets the critical volume.

set Tb (double d) sets the boiling point.

set Tf (doubl-e d) setsthefreezingpoint.

set w (double d) sets the acentric factor.

set dipm (double d) sets the dipole moment.

set_Cpl, (doubl-e d) sets the liquid specific heat.

set_CpV (doubl-e d) sets the vapour specific heat.

siet rhol, (doubte d) sets the liquid density.

set rhoV (double d) sets the vapour density

set Hf g (d.ouble d) sets the enthalpy of vapourisation.

ent Set class interface functions

Component_Set (int n) is a constructor. The argument n sets the number of

Components in the set.

incorp_comp (Component& c, int
position in the set.

n) attaches a Component to the n'h

set dataf il-e (ifstreamc dataf il-e) sets the text file containing the

Component property data.

196

get_properties O gets the properties for the incorporated Components from the

datafile object above.

4.5.4 General Component Mixture class interface functions

incorp_compset (Component. Set& cs) attaches a Component Set object to

the mixture.

incorp_thermo (Thermoc t) attaches a Thermo-type object to the mixture.

The Component_Set for the mixture is automatically attached to the Thermo

object.

incorp_vle (VLE& v) attaches a VLE-type object to the mixture. The

Component_Set for the mixture is automatically attached to the VLE object.

set mix f rac (VectorcVariable> &v) sets the mole fractions fcr the total

mixture.

set_vap_frac(Vector<Variable> av) sets the mole fractions for the

vapour phase.

set_liq_frac (Vector<Variable> cv) sets the mole fractions for the liquid

phase.

set To (doubl-e T) sets the reference temperature for the mixture.

set Po (double P) sets the reference pressure for the mixture.

vap_ave_MW () returns the average molecular weight for the vapour phase.

liq_ave_MW () returns the average molecular weight for the liquid phase.

ave MW () returns the average molecular weight for the mixture'

197

Cpl_mo1ar (doubl-e T, double P) returns the molar specific heat of the

liquid phase at temperature T and pressure P.

Cpl_mass (doubl-e T , double P) returns the mass specific heat of the liquid

phase at temperature T and pressure P.

CpV_molar (double T, double P) returns the molar specific heat of the

vapour phase at temperature T and pressure P.

CpV_mo1ar (doubl-e T, double P) returns the mass specific heat of the

vapour phase at temperature T and pressure P.

rhol, molar (double T , double P) returns the molar density of the liquid

phase.

rhol, mass (double T,

phase.

double P) returns the mass density of the liquid

rhoV molar (double T, double P) returns the molar density of the vapour

phase.

rhoV mass (doubl-e T, double P) returns the mass density of the vapour

phase.

HL molar (doubl-e T, double P) returns the molar enthalpy of the liquid

HL mass (double T, double P) returns the molar enthalpy of the liquid

HV molar(double T, double P) returns the molar enthalpy of the vapour

phase

phase.

phase.

198

HV mass (double T, double P) retums the mass enthalpy of the vapour

SL molar (double T , double P) returns the molar entropy of the liquid

phase.

SL mass (double T, double P) returns the mass entropy of the liquid phase

SV molar(doubl-e T, doubLe P) returns the molar entropy of the vapour

phase

SV mass (double T, double P) returns the mass entropy of the vapour phase

GL mol-ar (double T, double P) returns the molar Gibbs energy of the liquid

GL mass (double T, double P) returr:s the mass Gibbs energy of the liquid

GV mol-ar (double T,

vapour phase.

double P) returns the molar Gibbs energy of the

GV mass (doubl-e T, double P) retums the mass Gibbs energy of the vapour

AL mol-ar (double T , double P) retums the molar Helmholtz energy of the

liquid phase.

AL mass (double T,

liquid phase.

double P) retums the mass Helmholtz energy of the

AV mol-ar (double T,

vapour phase.

doubl-e P) returns the molar Helmholtz energy of the

phase

phase.

phase

phase.

199

AV mass (double T,

vapour phase.

double P) returns the mass Helmholtz energy of the

Ki (Vector<double> &K, double T,

constants (K values) for the mixture.

doubl-e P) returns the equilibrium

4.5.5 Ideal VLE class interface functions

set no comps (int n) sets the number of Components in the set

set A (doubl-e a , int i) sets constant A for Component i.

set B (double b, int i) sets constant B for Component i

set C (double c r int i) sets constant C for Component l.

Pvapi (Vector<double> &Pvp, double T,

pressures of the Components in the mixture.

double P) returns vapour

Ki (Vector<double> &K, doubl-e T,

constants (K values) for the mixture.

doubl-e P) returns the equilibrium

4.6 Mathtool class interface functions

sofve NEWT O solves simultaneous equations using aNewton method.

sofve BROY () solves simultaneous equations using a Broyden method

solve MARQ () solves simultaneous equations using a Marquardt method

setup_solve () passes a System object's analysed steady-state Equation-Set to

the solvers

200

setup_integ () passes a System object's analysed Dynamic-Set to the solvers.

BDF integrate(doubte start, double stop, double hstart,
double hmin, double hmax, int max-steps, double tol)
employs a variable-step variable-order Gear Backward Difference method to

perform the dynamic simulation. Differential and algebraic equations are

solved simultaneously as one large set. Integrates over the interval from

st.art to stop, commencing with a step size hst.arL, a minimum step size

hmin < hstart, with a maximum step size hmax, a maximum number of

steps max_steps to an integration error tolerance tol-.

201

B.1 Constructor

Anpendix B: Flash Class Member Functions

FIaEh¡:Flash(int n, int no comps, double vol, //Consttuctot
double diam) :Unit(n) {

int i,)¡//Counters.
nc=rro comps ¡ //tnitiaLise unit parameters.
VoI=vol;
Area=PI/ 4. 0 *diam*diam;
¡¡¡¿¡¡=Vol /Area;

K.buitd11,nc) ¡ //a77ocate vector storage.

x.build(1,nc);
y.build(1,nc);
z.build (1,nc) ;
N.bulld(1,nc);
Nv.build(1,nc);
NI .build(1,nc);
dNdt,.build(1,nc) ;

de.build(1,nc+l) ;
eqbm.buíId (1, nc) ;
mfs.build (L,2) ;
cmb.build(l.,nc) ;
lmb.buil<t(1,nr:) ;
vmb.build(1,nc) ;
vb.build(L,4) ¡

for (i=l; í<=nci í++l {//create dynamic equation map.

de (i) . seÈ derivaEive (dNdt (i)) ;
dNdÈ (i) . aet Etate (N(i)) ;
de(í).set no x.(7 I ¡

de (i) . include (z (i)) ;
de (i) . include (F) ;
de (i) . include (x (í)) ;
de(i).inc1ude(N(i));
de (i) . include (L) ;
de (i) . include (y (i)) ;
de (i) . include (V) ;

)
de (nc+l) .set derivaEive (dTdt) ;
dTdt,.set state(T);
de (nc+1) . Eet no x(3*nc+10) ;
for(i=1;i<=¡rc;i++) {

de (nc+1) . include (x (i)) ;
de (nc+1) . include (y (i)) ;
de (nc+1) . include (z (i)) ;

)
de (nc+1) . include (N\/) ;
de (nc+l) . include (Nr.) ;
de (nc+1) . include (Q) ;
de (nc+l) . include (L) ;

202

de (nc+l)
de (nc+1)
de (ne+1)
de (nc+1)
de (nc+1)
de (nc+l)

. include (V) :

. include (F) ;

. include (T) ;

. incl-ude (P) ;

. include (Tin) ;

. include (Pin) ;

de_eet. incorp_eqns (de) ;
//ginisned dynamic equation maP.

/ /create equiTibrium equation map.
for(i=1;i<=rcii++) {

eqbn(i) .Eet_no_x (2*nc+2) ¡

for(j=1ij<=ncii++) {
eqbm(i) . include (x (j)) ;
eqbm(í) . include (y (j)) ;

)
eqbm (i) . include (T) ;
eqbm(i) .include(P);

)

eqbrn_set. incorp_eqns (eqbm) ;

/ /rinished equiT ibrium equation map

//Create mofe fraction summation map.
mf e (1) . set no x (nc) ;
for (i=1; i<=nc;i++)mfe (1) .include (x(i)) ;

mf s (2) ;Ée'ts no tç(nc) t
for(i=l-;'i<=nc;i++)mfE (2) .include (y(i)) ;

mf s 'set " å'scorp._eqns (mf e) ;
//tinished mofe fraction summation map

//Create component moLe baTance map

for (i=l; i<=nC; i++) {
c¡nb(í).set rro x(3);
c¡rib (i) . include (tl (i)) ;
c¡nb (i) . include (nv (i)) ;
cnrb (i) . include (NI(i)) ;

)

cmb_set . incorp_eqne (cnb) ;
//Finish component moTe bal-ance map

//create Tiquid mofe bal-ance map
for(i=1;i<=nc;i++) {

t¡nb(i).set no x(3);
lmb (i) . ínclude (NL) ;
lrnb (i) . include (x (í)) ;
frrib (i) . include (Nt (i)) ;

)

lmb_Eet. incorp_eqne (Irnb) ;
//Finished Tiquid mol-e baLance map.

//Create vapour moTe balance maP

for (i=l; i<=rrc; i++) {
vrnb (i) . Eet no x (3) ;
vrnb (i) . include (N\¡) ;

203

)

vrnb (i) . include (y (i)) ;
vrnb (i), include (Nv(i)) ;

vmb_set. incorp_eqns (vmb) ;
//pinished vapour mol-e balance map

//Create voTume baTance map
vb(1).Eet no x.(2);
vb (1) . include (vr,) ;
vb (1) . ínclude (W) ;

vb(2).aeu no x(nc+2);
for (i=l; i<=nc; i++) vb (2)
vb (2) . include (VL) ;
vb (2) . include (NL) ;

. ínclude (x (i)) ;

vb(3).set no x(nc+2);
for (i=1; i<=nc i i++) vb (3)
vb(3).ínclude(\nr);
vb(3).inc1ude(N\r);

. include (y (í)) ;

vb (4)
vb(4)
vb (4)

. Eet no ><(21 ¡

. include (vL) t

. include (h) ;

vb_set. ineorp_eqne (vb) ;
/ / Fi-ni shed,. vol-ume balance map.

//Create equation set structure.
de.. re¡i.'seE_ií¡c: . ae_set,e (6) ;
de_set. incorp_ae_Bet (eqbm_set, 1-) ;
de_set . incorp_ae_aet (mfE_set, 2) ;
de_sets . incorp_ae_Eet (cmb_Eet, 3) ;
de_set . incorp_ae_Eeu (I¡nb_set, 4) ;
de_set . incorp_ae_seu (rrmb_set, 5) ;
de_set . incorp_ae_se! (vb_set, 6) ;

incorp_maín_dyn_s e t (de_se ts) ;
ineorp_main_se_seÈ (de_set) ;
//rinisned equation set structure

//AlLocate interface variables
feed. eeL fracE(z) ¡

feed. 6et_temp_input (Tin) ;
feed. set;ress_input (Pin) ;
feed. set_temp_owner (T) ;
feed. Eet_preEs_owner (P) ;

vapour.eet_fracs (y) ;
vapour. set_temp_output (T) ;
vapour . Eeu_preEs_output (P) ;

J.iquíd. set_f racs (x) ;
liquid. 6eÈ_temp_outpuÈ (T) ;
liquid. seEsress_outpuÈ (P) ;

level_sig. set_eignal_var (h) ;
press_sig. eet_signal_var (P) ;

204

8.2 Port setup

8.3 Connection Functions

t,emp_sig. set_signal_var (T) ;
heat. set_eignal_var (Q) ;
/ /Pinished interface variabTes

//Create process sËructute
geÈ no ínpstrms(2);
own_input_port (f eed, 1) ;
own_inputSort (heat, 2) ;

set no out,Etrme(5);
owr¡_output_port (liquid, 1) ;
owri_output_port, (vapour, 2) ;
own_output_port (level_si g, 3l ;
own_outpuL_ports (tsernP_sig, 4) ;
own_output3ort (Preee_si g, 5 I ;
//ginished process structute.

/ /tnitial- ise physicaT properties
Vf._mix. set_no_comPe (nc) ;
VL_míx. set_liq_frac (x) ;
Vf,_mix. set_vaP_frac (Y) ;
Vl_mix. set_mix_f rac (z) ¡

/ /Yinished physical ProPerties -

j / /øt¡o consEructor.

.iÌ-'r : 'l r, : ,/'

voíd Flash: :eetup O {//connects input and outputs
//nun by fTowsheet.

f eed.map O ;
heat.map O ;

Iiquid.map O ;
vapour.map O ;
Ievel sig.napO;
temp_eig.map () ;
press_eig.map O ;

)

/ /Connection functions.
void Flash::feed in(Stream& Etr){

inp_streann(str,1) ;

)

void Flash: :heat-in(Stream& etr) {
inp_stream (sEr,2l ¡

)

void Flash: :liquid-out (SLream& Etr) {
ouÈ BLreann(etr,1);

)

205

)

void Flash: :vapour-outs (Stream& sÈr) {
out Etreari(sEr,2) ¡

void Flash: : level oub (Stsream& str) {
out stream(etr,3);

void FLash: : temp-outs (Stream& str) {
ouu stream(str,4);

void Flash: :press-out (Stream& str) {
out strearn(str,5);

)

)

)

206

Appendix C: Tennessee Eastman Unit Models

In all models, the subscript index i : 1...8 corresponds to components 4...H. Physical

property data for the simulations was calculated from pure component properties as presented

in the original paper by Downs and Vogel (1993). Nomenclature is presented at the end of the

appendix. Models are presented in an equation-oriented form.

C.1 Mixer Model

The mixer model is based on a trivial gas-phase material and energy balance. The total mixer

volume is 141.6 m3.

dN.,. ¿
-" -).F,2,,+Vy,
dTå
i-l-,FiHoi+vuv

N,,
Y¡ - 8

2N,,
j=1

8

R?'t N,. .
H ll

0 i:1...8

0 i : 1...8

0

0

(B.1)

(8.2)

(8.3)

(8.4)
j=rP_
V^*

207

C.2 Reactor Model

The reactor model is presented in equation-oriented form below. The reaction kinetic

expressions are overleaf. The vapour phase contains a partial pressure balance based on

contributions from the condensible and incondensible components. The total reactor volume

is 36.8 m3.

+-Fz,+vy,-x*, 0 i = 1...8

i:4"..8

i = 1...3

i = 4...8

0

i = 1...8

i : 1...3

i = 4...8

i = 4...8

(B.s)

(8.6)

(8.7)

(8.8)

(B.e)

(8.10)

(8.11)

(8.12)

(8.13)

(8.14)

(8.1s)

(8.16)

(8.17)

(B.18)

dT
dt

j=l

!¡-

!¡-

I (rn, -vuv + H* + e) 088

crrLNt¡tcrrZN,,
j=l j=t

+ -hþeF**^c "*(", - ")-
q)

e-ua!t(r -r*)Vr^*,
8

ZN,,
' i=l
' Pr.

x¡Prrt¡
lct- p,

3

Zn, -i
j=t

8

Zn, -r

0

0

0

0

0

0

0

0

=0
=0
=0N,,

N
N
N

xi

Vi
H,V,
RT

Nv,
Nv¡ -
N,,
V,P,

208

Rr 0.454

R2 0.454

(qooool
exp[3 1.58s9s36 - Lss.,r)(aooool
exn[3.00094014 - LgB., T)

(40000ì
exp[3 l.58ses36 - L*BT r)

ot rt-1s44 p' ro'"" p' o(zs.zt+lvr\

Ot rt'544 Or ro.373s
p,

'(ZS.ZL4Tç)

P', P's(zs.zt+lvr)

(B.1e)

(8.20)

,R3

R4

HR

x*,
x*,
Xnz

Xnq

x*,
Xno

Xnt

= 0.454

= 0.76748834Rrp', p'o

: H^rRr+H*rR,
= -Rr - Rr- Rt

: _Rr_4,

= -Rr -1.5R4
: _ft, _R,

= ,R,+RO

= .Rl

=R2

(8.21)

(8.22)

(8.23)

(8.24)

(8.2s)

(8.26)

(8.27)

(8.28)

(8.2e)

(8.30)

209

C.3 Separator Model

The separator model is similar to the reactor model, with addition of a liquid product stream

and the omission of the reaction kinetics. The total separator volume is 99.1 m3.

+ Fz, +vy, - Lx, 0 i = 1...8

i = 4...8

i = 1...3

i = 4...8

0 i = 1...8

0 i: 1...3

0 í = 4...8

0 i = 4...8

(8.31)

(B.32)

(8.33)

(B.34)

(8.3s)

(8.37)

(8.38)

(8.3e)

(B.41)

(8.42)

(8.43)

(8.44)

dT 1 (rn, -vuv - LH, + e) 0
dt

C

dT*
dt M*C r*

Q-uA(r -r,)
8

8

Nt¡tCrrZNn,
j=t

8I
j=t

1

PL

(*nF*
^^c ,*(r* ^ - r-) -

q) 0

0

F¡r..
VL

j=1
8

j=1

Pt
0

0

0Znr, -t

(8.36)

Zr,, -t
j=t

!i-

!i-

¡r
N

^r

(i

0

0 (8.40)

vi RT
N,,
Nr,-Nr,

210

C.4 Stripper Model

The Tennessee Eastman Fortran code contains an unusual model for the stripping column.

The model form is not completely clear from the code, but the model appears to assume that

vapogr phase holdup equilibrium is instantaneous. The stripper vapour volume is neglected in

the code. The split between vapour and liquid is calculated from a temperature and feed-flow

dependent recovery term. The specific heat of the vapour phase is neglected. The heat duty is

regulated by a simple linear-dependence equation. All components are condensible in this

model for the purposes of the liquid product stream.

+- (1 - ú,)(F,r,, + F,2,,)+ Lx, 0 i = 1...8 (8.45)

(B.46)dT
dt

(rrn r, + F2H F2 -vTv - LH, + e) 0

j=4

ó,(nrzr, + Frzr,)-vy,

1

C,,ZN ,,

8

Zv
j=l

a

I

0 i: 1...8

i = 1...8

(8.47)

(8.48)

(8.4e)

(8.s0)

(B.s1)

l
0

0

0

Q^*

xi-

xe

VL

N,,
8I ¡r.

j=l
8I ¡r.

j=l

Pr

The recoveries are calculated from the following expressions

363.744
-2.22579488Tfact

177 - (T -273.rs)
lLrro"t
Fl ¿

0.99s

0.99r

0.990
s,Rfact

Rfact

0

A

ó'

ú'

ø' í = 4...8

(8.s2)

(8.s3)

(B.s4)

(B.ss)

(8.s6)

(8.s7)
| + s,\fact

2tl

C.5 Nomenclature

All pressures are absolute. The majority of the constants have been converted from values in
the Fortran code.

Symbol

CPL

c",
F
Fj
Fj
HF
Hrj
HL
HR
HV
JV,

Ntt
Nn
P
P¡
PC

P*ti
a

Rfact
.R¡

T
Tføct

TW

V
VL

vv
x¡
xQ

X^t

!ci
!¡
!u¡

Z¡

7..þll

kJ/kmol/K
kJ/kmoVK
kmol/h
kmoVh
kmol/h
kJ/kmol
kJ/kmol
kJ/kmol
kJ/h
kJ/kmol
kmol
kmol
kmol
kPa
mm Hg
kPa
kPa
kJ/h

Units

kmol/tr

0-1
kmol/h

molar specific heat of liquid phase

molar specific heat of vapour phase

flowrate of feed stream

flowrate of feed stream j
flowrate of feed stream j
specif,rc enthalpy offeed stream

specific enthalpy offeed streamj
specific enthalpy of liquid stream

heat production rate in reactor
enthalpy of vapour stream

total holdup ofspecies i
liquid phase holdup ofspecies i
vapour phase holdup ofspecies i
vessel pressure
partial pressure of component i
total vapour partial pressure ofcondensible components

saturated vapour pressure ofcomponent i
cooling or heating duty
stripper temperature and feedrate recovery factor
rate ofreaction i
vessel temperature
stripper temperature factor
cooling water temperature
vapour flowrate
liquid phase volume
vapour phase volume
mole fraction species i, liquid phase

position of cooling/heating supply valve
production rate ofspecies i in reactor
mole fraction condensible species i, vapour phase

mole fraction species in vapour phase

mole fraction uncondensible species i, vapour phase

mole fraction of component i in feed

mole fraction of component i in feed stream j

kmol/h

K

K

m'
m'

212

Constant

Hn,
Hn,

Q^*
Frr.*

Value

Units

kmol/m3

Units

mrkPa/kmol/
kJ/h/K

kJ/kmol
kJ/kmol
kJ/h
kg/hr

kJ/kg/K

kg

m3

K

R
UA

gas constant
heat transfer coeffi cient

specific heat production ofreaction I
specific heat production ofreaction 2

maximum heating duty available (stripper)

maximum cooling water flowrate available

specific heat of water
stripper condensible component vapour recovery
constant

Mw mass holdup of water in cooling coil

8.3144
1.0679 x 106 (react)

7.0000 x 105 (sep)

I s0000
I 10000
lx106
227100 (react)

272000 (sep)

4.1 86

sr: 8.5010
ss : I 1.402
se :11.795
sz: 0.048
sr:0.0242
5000 (react)
7500 (sep)

21.0
308. I 5

crn

Vr.*
T*n

Greek
symbols

s,

Pt
ó'

maximum liquid volume in reactor
cooling water supply temperature

Description

liquid molar density

stripper vapour recovery fraction

213

Appen dix D: Tennessee Eastman Flowsheet Definition

A flowsheet example for the definition of the Tennessee Eastman problem with the control

system illustrated in Figure 5.5 is presented below. The flowsheet specifies a setpoint change

to the reactor pressure.

#include "c:\easÈman\tenneaet.hpp" //header fiLe for the problem

void main(void) {//start program

//decTare components, streams, units etc
//a11 objects are decl-ared static to avoid overfTowing
//the stack in memory

static UEer ComPonent TenrÀ, TennB, TenrrC,TennD;
sbatic User Compor¡enL TennE,TennF'TennG,TennH;

sÈatic ComponenE_SeÈ TenrrseU (8) ;
static ldea1 VLE TennVIe (8) ;
static Simp1e Thermo TennTherm(8) ;

#inctude "c: \\eastman\\teproPE.hpp'r //incTude component data f i7e
//this file contains the C++ code for detining componenE ptoperties
//etc and where the components ate assigned Ëo the set

/ /Most
statÍ.c
Etatic
static
gÈatic

stsatic
static
sÈatic
sÈatic
static
static
sÈatic

names are seTf expTanatorY
FlowEheeÈ f (999) ;
Boundary_Node Àeource (1, 8),Csource (2, 8l ¡

Boundary_Node Dsource (3, 8),EEource (4, 8) ;
Boundary_Node prod_Eink (5, 8),purge_sink (6, 8) ;

TE Míxer mix(7,5);
TE Reactor rx(8);
TE Incon Flash sep(9);
TE Stripper strip(10);
Sp1itÈer split (11) ;
Compressor compr (L2) ¡

Punp pmp(13);

PI Controller PCrx (24) , TCrx(25) ;
PI Controller TCstrip (26) ,FCprod (27) ¡

P Controller LCsep (28) , LCstrip (29) , LCrx (30) ;
P Controller CCA(31);
PI ConÈro1ler CCB (321 ¡

static Ratio Controller RC(33);

sÈatic Simple_Valve vA(14, 8),vC(15, 8),vD(16, 8),
staÈic SímpJ-e_Valve vE (L7 ,8),prod valve (18,8) ;

etatic Control Valve v10 (19,8) ,v9 (20,8) ¡

sÈatic Flow Valve vmr (2L,8) ,vrs(22,8) ,vrec (23 '8) ¡

static
static
static
static
staÈic

gtatic TE Analyser prod an(34),purge-an(35);

214

static Flow Indícator fiprod(36,8) ;

static
statie
static
stsatic
Etatic
sÈatic
static

Procegs St,reaÍt
ProceEs Stream
Procegs SÈrea¡n
ProceEs Stream
ProcegE Stream
ProceEE Stream
Proeesa Stream

Àfeed, Cfeed, Dfeed, Efeed;
str1, EEr2, st,r3, sErâ¡
etrS, str6a, Etr6b;
eEr7a, EEr7b, etr8a, etrSb;
EtrBc, Etr9a, str9b, str10a;
str10b, str10c, Etr1la, etrl1b;
sepout, vsepouf;

static
Etatic
static
static
statsic
Etatíc
static

SignaI_Stream
Sígnal_Stream
Signal_Stream
Signal_SÈream
Signal_Stream
Sígnal_Strearn
Signal_Stream

RxPeig, RxVEig, rxTsig, rxQsig;
vÀsig, vCsig, vDsig, vEsig ;
Gsig, Heig,Àsig, Bsig;
SepVsig, v10sig, v9sig ;
Stripvsig, etripTEig, sÈripQsig;
prodf lowsig, prodvalves ig ;
eepTsig, sepQeig;

//øtuo FLIwSHEET AND uurr DECLARATToN

TennSet.incorp_VlE(TennVle) ¡ //attach the property objects to the set
TennSe t . incorp_Ther¡no (TennTherm) ;

//START PROCESS LAYOUT

Àsource.ouÈ EUrm(Àfeed),
Csource.out stsrrr(Cfeed) ;
Dgource.out strm(Ofered) ;
Egource.ouÈ sÈrm(Efeed) ;

vÀ. inp_strm(Àf eed,1) ;
vÀ.out strm(Etrl,1) ;

vC. inp_strm (Cfeed, 1) ;
vC.out Etrm(stsr4,1) ;

vD. inp_strm (Dfeed, 1) ;
vD.out strm(Etr2,1) ;

vE. inp_strm (Efeed, 1) ;
vE.out strm(Etr3,1);

mix. inp_strm (Etr1, 1) ;
mix. inp_sErm(sLr2 '2) ¡

mix.inp etrm(str3,3);
mix. inp_strm (Etr8c, 4) ;
mix. inp_strm (Etr5, 5) ;
mix.out Etrm(str6a, 1) ;

vmr. inp_strm (str6a, 1) ;
vmr.out strm(str6b, 1) ;

rx. inp_strm (str6b, 1) ;
rx.out strm(Etr7a,Ll ¡

vre. ínp_strm(str7a, 1) ;
vrs.out Etrm(str7b, 1) ;

215

sep. inp_Etrm (Etr7b, 1) ;
Eep. out_strm(sepout, 1) ;
sep. out_atrm (strl0 a, 2) ¡

pump. inp_strm (strlOa, 1) ;
pump. ouu_EÈrm (sÈr10b, 1) ;

v10. inp_strm (strlOb, 1) ;
vl0.ouÈ strrn(str10c, 1) ;

strip. inp_strm (strl0c, 1) ;
strip. inp strm (sLr{, 2) ¡

strip. out_strm (Etr5, 1) ;
strip.ouÈ_strm (strlla, 2) ;

prod_valve. inp_strm (strlla, 1) ;
prod_valve. ouu_aurm (str11b, 1) ;

prod_sink. inp_strm (strllb) ;

spliu. ínp_etrm (eepouÈ, 1) ;
splits. ouÈ_Etrm (gtr9a, 1) ;
sp1its. out_strm (str8a, 2) ;

v9. inp_strm (gtr9a, 1) ;
v9 . out strm(str9b, 1) ;

purge_sink. inp,st,rm (str9b) ;

compr. inp_strnr (sLr8a, i) ;
compr. out_strm (str8b, 1) ;

vree. inp etrm(str8b, 1) ;
vrec.out sErm(str8c, 1) ;
//EnD PRocEss LAvour

//srART coNTRoL LAYour

//start reactor pressure controT
PCrx. signal_out (vCsig) t
PCrx. signal_in (RxPsig) ;
r*. pressure_signal (RxPsig) ;
vC. signal_sEreaÍi (vCsig) ;
//end reactor pressure controL

//start reacEor temperature control-
TCrx. signal_in (rxTsig) ;
TCrx. signal_out (rxQsig) ;
rx. temp_aignal (rxTsig) ;
rx.heaÈ signal (rxQsig) ;
//end reactor temperature controJ-

//start reactor LeveT control-
LCrx. signal_out, (vEsig) ;
LCrx. signal_in (Rxvsig) t
rx.volume signal- (Rxvsilf) ;
vE. signal Etream(vEsig) ;

216

//end reactor TeveL controL

//start product ratio control-
prod_an. set_stream (Etrllb) ;
prod_an. out_strm (GEig, 7) ;
prod an.out strm(HEig,8) ;

RC.signal R in(Gsig);
RC. eignal_B_ín (Heig) ;
RC. eignal_out (vDsig) ;
vD. signal_Etrea¡n (vDeig) ;
//end product ratio contro}

//start production rate controL
f iprod. inp_strm(st,rllb,1) ;
f iprod. out_strm (prodf lowsí9, 1) ;
FCprod. signal_in (prodflowsig) ;
FCprod. e ígnal_out (prodvalvesig) ;
prod_valve . signal_surean (prodvalvesig) ;
//end product rate control-

//start purge A s, B control-
purge_an. set_sÈream (str9b) ;
purge_an. ouL_strm (Rsig, 1) ;
purge an.ouL strm(Bsig,2) ;

CCB . signal_in (Bsig) ;
CCB . signal_ouÈ (v9eig) ;
v9 " eignal._st,rearn (v.9eig) ;

CCA. sig;nai i.n (AsÍø.i' ;
CCÀ.signal out(vAsig) t
vA. signal_strea¡¡r (vAsig) ;
//end purge controf

//start separator l-eve7 controT
sep. volume_signal (Sepvsíg) ;
LCEep. aignal_in (Sepveig) ;
LCEep . signal_out (EepQsig) ;
sep. heat_eígnal (eepQsig) ;
//end separator TeveL controL

//start sEripper TeveL controL
strip. volume_Eignal (Stripvsig) ;
LCetríp. sígnal_in (Stripvsig) ;
LCetrip. signal_out (v10Eig) ;
vlO.signal stream(v10sig) ;
//end stripper Level- controL

//start stripper temp controJ
stsrip. Uemp signal (stsrípTsig) ;
TCstrip. signal_in (stripTsig) ;
TCetrip. eignal_out (stripQsig) ;
strip.heat signal (sÈripQeig) ;
//end stripper temp controJ

//øtuo coNTRoL LAYour

; I i., .tt

f.set eys(36) ¡//36 systems in the fTowsheet

217

f. incorp_sys (Asource, l) ;
f . incorp_sys (Ceouree, 2) i
f . incorp_sys (Dsource, 3) ;
f . incorp_sys (Esource, 4) ¡

f . incorp_sye (vÀ, 5) ;
f .incorp_sye(vC,6);
f.incorp_eys (vD,7) ;
f.incorp_sys (v8,8) ;
f . incorp_eys (rnix, 9) ;
f. íncorp_sys (wmr,10) ;
f. incorp_gys (rx,11) ;
f. incorp_EyE (vrs ,L2) i
f . íncorp_sye (sep, 13) ;
f . incorp_eys (purnp,14) ;
f. incorp_sys (v10 ,L5) i
f. incorp_eys (etsrip ,L6) i
f . incorp_sye (prod valve, 17) ;
f.incorp_sye (prod gink,18) ;
f. incorp_sys (split ,L9) ;
f . incorp_eys (compr, 201 i
f. incorp_eys (v9 ,2L) ¡

f . incorp_ays (vrec, 22) ;
f . incorp_eys (LCrx, 23) ;
f . íncorp_Eys (PCrx,24l ¡

f . incorp_sys (purge_sink, 25) ;
f.incorp sye (purge-qn,26) ¡

f . incorp_sye (prod an,27) ¡

f . inenrç _sys (TCstríp,,281 ¡

f . incorp_sys (LCstríp, 291 i
f . inc<:r'¡.._øye (CC^it, 3 0) ;
f. incorp_sys (fiprod,3l) ;
f.incorp sye (FCprod,32) ¡

f . ineorp_sys (RC, 33) ;
f . incorp_eys (CCB, 34) ;
f. íncorp_eye (LCsep ,35) z

f.íncorp sye (TCrx,36) ;

f.setupO;//set up a77 the subsystems

//ettach Ëhe set of components to each unit
mix. set_comps (TennSet) ;
rx. set_comps (TennSet) ;
vA. set_cornpe (TennSet) ;
vC.Eeu compE (TennSet) ;
vD.Eet comp6 (TennSet) ;
vE.Eet comps (TennSet) ;
vmr.set comps (TennSet) ;
vrs. set_comps (TennSet) t
v10. set compe (TennSet) ;
v9. set comps (TennSet) ;
prod_valve. Eet_compE (TennSet) ;
vrec.set compE (TennSet) ;
Eep. Eet_cornps (TennSet) ;
strip. set_comps (TennSet) ;
fiprod. aet_compe (TennSet) ;
RC.Eet comps (TennSet) ;

//set controLLer parameters. Ti is in hours.

2t8

Pcrx.aet Kc(0.00125);
PCrx.set Ti (L.25't,

//output fraction/kPa

TCrx.seE Kc(-0.03125) ; //output fraction/K
TCrx.set Tí (20.O/60.01 ¡

CCA.aet xc(1.0) ; //output fraction/mole fraction

LCrx.Eet Kc(0.04) ; //output traction/m^3

Lcsep.set_Kc(0.04) ; //output fraction/m^ 3

RC.seÈ Kc(0.3) ; //output fraction/ratio fraction
Rc. Eeu tí (1.0) ;

r,Cstrip.Eet_Kc (0.1) ; //output fraction,/m^ 3

TCstrip.set_Kc (0.02) ; //output fraction/K
TCstrip. set_Ti (1.0/6 .0) ;

FCprod.Eet_Kc (0.15) ¡ //output fraction,/voTume fl-ow fraction
FCprod. Eet_Ti (58-3) ;

ccB.Eet Kc(-12 .O) ; //outPut. fraction/mo7e fraction
CCB.Eet Ti(12.0);

fiprod.volume O ;
fiprod.seu_Fmax(49.10) ¡//maximum volume fJow, m^3 /hz'

prod an.seÈ_freq(0.251 ¡ //sanpling trequency and deadtime
prrriîEe_aÍ:. serts_:freq (0. L) ; .ìl i' ' ì-,, : ':

#include " c:\\eaetrnan\\es est,.uxt"); //incl-ude f i7e with steady-state
//initial- estimates
//open output til-es for desired units
mix. open_outpuÈ_file ("c : \\eaEtman\\mix. txt") ;
rx. open_output_f ile (rrc : \\eastman\\rx. txt") ;
sep. operr_ouÈput_f ile (rrc: \\eastman\\sep. txt") ;
stsrip . open_outpuÈ_file (" c : \\eastman\\strip . txt ") ;
PCrx. open_output_fiIe ("c : \\eastman\\pCrx. Èxtr') i
LCrx. operr_output_fiIe ("c : \\eastman\\LCrx. txtrr) i
TCrx. open_output_file ("c : \\eaEtman\\TCrx. txt") i
TCstrip. open_output_file ("c : \\eastman\\TCstrip. t'xt") ;
LCsep. open_ouuput_file ("c : \\eastman\\t Csep. txE'r) ;
LCstrip. open_outpuÈ_file ("c : \\eastman\\LCEtrip. txt") i
cc. open_output_f ite ("c : \\eastman\\cC. txt'1) i
CCA. open_output_file ("c : \\eastman\\CCn. txt") i
Rc. open_output_file (" c : \\eastman\\nc . txÈ'r) ;
FCprod. open_output_file (" c : \\eastman\\ fcProd. txt") i

//anaTyse and construct equation set
f. ee_ana1yse O ;
f.ss buildO;

f.setup_solve() ¡ //send equation set to sofver
f.Eo1ve NEWT(l ¡ / /soLve system

//output ss solution to fil-e
mix.gs outputO;

219

rx.EE output();
Eep . se_outpuu () ;
strip. ss_output () ;
PCrx. se_output O ;
LCrx. sa_output () ;
TCrx. ss_outputs () ;
TCeep . ee_output () ;
TCrxw. se_ouÈput () ;
TCstrip. se_output O ;
LCsep. ss_output O ;
LCstrip . ss_output () ;
CC.EE outputO;
CCA.EE outputO;
RC.ss_outputO;
FCprod. as_output () ;

f.reset Es eqna O ¡ //reset equations

#include " c:\\east¡nan\\dlm_EPece.trtt") ¡ //incTude f il-e with dynamic
/ /specifications

//anaTyse and construct equa|ion set
f . dyn_analyse () ;
f.dyn_buildO;

f .eetup_integ(l ¡ //send equations to soTver

PCrx. Eet Bp Q746.0) ¡ //change setpoint

//integrate. Parameters are
//bec;in time, end time, iniEiaT step, minimum step,
//maximum step (nu7l in this case), maximum no. of steps,
//and toTerance
f .BDF integraÈe (0.0, 24.0,0. 0005, 1E-8, 0. 0, 150000,L8-4) ¡

)

220

Appendix E: Fermentation Model Parameters

The parameters for the fermentation model, equations (5.6) - (5.25) are:

a k p correlation parameter

growth-limiting acetate concentration

k¡a corr elation parameter

IPTG recovery ratio constant

agitator diameter

IPTG protein production constant

k ¡a corl elaÍion parameter

yield of protein product from plasmid

IPTG shock/recovery rate constant

plasmid loss probability equation saturation

coefficient

IPTG saturation constant

saturation constant for oxygen

plasmid loss probability equation parameter

maximum specific growth rate, wild cells

m¿'.ximum specific growth rate, recombinant cells

biomass oxygen maintenance coefficient

biomass glucose maintenance coeffi cient

plasmid loss probability equation exponent

agitator power number

vapour pressure of water

growth-limiting protein product concentration

broth density

glucose feed density

maximum plasmid replication rate

yield of acetate from glucose

yield ofprotein product from glucose

yield of biomass from oxygen

yield of biomass from glucose

(gacetale) lL

(g IPTG) /L

m

(g IPTG) /L

m" lso' lWol

(mg protein) /(mg plasmid)

h-r

(g IPTG) /L

(mmolOr) lL

h-;

l'-l
lt I

(mmol Où l(ebiomass) /h

(g glucose) /(g biomass) /h

kPa@37oC

(g protein) /L

clL
(g glucose) /(L feed)

(mg plasmid) /(g biomass) /tr

(g acetate) /(g glucose)

(g protein) /(g glucose)

(g biomass) l(mmol 02)

(g biomass) /(g glucose)

0.3

15.0

0.7

0.22

0.12

0.0005

0.0018

41.8

0.09

0.132

A^u*

p

CA

d,

.f,

k

KoE

k

Kh

KI

Ko,

)"

l4nu*

+
l4nu*

^*,
lnxs

n

NP

Prro

P^u*

p

Ps

tfl

Yns

YPs

Y*,

Yxs

0.034

0.0027

0.0015

0.75

0.70

0.481

0.054

r.78

5.2

6.233

1.0

1 100

100 - 500

0.215

0.23

0.2

0.03855

0.5

221

