Object-Oriented Simulation of Chemic?
and Biochemical Processes

Damien Hocking

Department of Chemical Engineering
University of Adelaide

Thesis submitted for the Degree of
Doctor of Philosophy
in
The University of Adelaide
Faculty of Engineering

February 1997

il

This work contains no material which has been accepted for the award of any other degree or
diploma in any university or other tertiary institution and, to the best of my knowledge and
belief, contains no material previously published or written by another person, except where

due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being

available for loan and photocopying.

Signed: Damien Hocking

Date: (Q.:c)- UJ}/! 1991

ACKNOWLEDGMENTS

I would like to thank my supervisors, Dr. Brian O’Neill and Dr. John Roach for their support
and guidance throughout this project. Their contribution has been invaluable. I would also
like to thank the staff and postgraduate students of the Chemical Engineering Department at
the University of Adelaide for many interesting discussions and assistance. I would also like

to thank my family and friends for their support.

I gratefully acknowledge the financial support of the Co-operative Research Centre for Tissue

Growth and Repair without which I could not have commenced this project.

ii

CONTENTS

Chapter 1:

Chapter 2:

Introduction and literature review
1.1 Simulation Techniques
1.1.1 Sequential-Modular
1.1.2 Equation-Oriented
1.1.3 Parallel-Modular
1.2 Object-Oriented Process Simulation
1.2.1 Object-Oriented Simulation

1.2.2 Languages

1.2.3 Object-Oriented Simulation Environments

1.2.4 Summary of Object-Oriented Simulation

1.3 Biochemical Process Simulation

1.3.1 Summary of Biochemical Process Simulation

1.4 Physical Property Calculation

1.5 Numerical Analysis Methods
1.5.1 Nonlinear Algebraic Equations
1.5.2 Integration Methods

1.6 Conclusions and Project Scope

Simulator Development and Data Structure
2.1 Development Language
2.2 Data Structure
2.2.1 Physical Information
2.2.2 Simulator Executive
2.2.3 Mathematical Information
2.3 Functionality and Behaviour
2.3.1 Structural Analysis
2.3.2 Equation Evaluation
2.3.3 Model Evaluation
2.3.4 Behavioural Changes
2.3.5 Numerical Methods

2.3.6 Interchangeable Simulation Techniques

AN N B~ N

18
19
21
22
24
24
27
29

31
31
35
36
39
40
48
48
51
52
54
56
60

iv

2.4 Chemical Components and Property Calculation 62

2.5 Summary 66
Chapter 3: C++ Implementation 68
3.1 C++ Constructors and Destructors 68
3.2 Vectors and Matrices 69
3.3 Process Class Structure 73
3.3.1 System Class and Descendants 73

3.3.2 Port Class and Descendants 77

3.3.3 Stream Class and Descendants 80

3.4 Mathematical Class Structure 81
3.4.1 Variable Class and Descendants 81

3.4.2 Equation_Set and Dynamic_Set classes 83

3.5 Component, General Component_Mixture

and Properties Classes 88
3.5.1 Component class and Descendants 89
3.5.2 General Component Mixture Class 90
3.5.3 Properties Class and Descendants 90
3.6 Numerical Method Classes 91
3.7 Summary 92
Chapter 4: Modelling and Simulation 93
4.1 Decomposition Techniques 93
4.1.1 Medium and Machine Decomposition 93
4.1.2 Primitive Behaviour Decomposition 94
4.1.3 Mathematical Decomposition 95
4.2 Modelling Examples 97
4.2.1 Mixing Tank 98

4.2.2 Bi-Directional Information Flow 105

4.2.3 Connected-System Modelling 112

4.2.4 Multiple-Inheritance Modelling 120

4.2.5 Modelling with Physical Properties 126

4.3 Simulation 130

Chapter 5:

Chapter 6:

4.3.1 Instruction Sequence
4.3.2 Steady-state example
4.4 Summary

Major Test Problems

5.1 Cavett Problem

5.2 Tennessee Eastman Process
5.2.1 Control Systems
5.2.2 Simulation Results

5.3 Recombinant Fermentation Model
5.3.1 Model Description
5.3.2 Control System
5.3.3 Simulation Results

5.4 Discussion

5.5 Summary

Summary, Conclusions and Recommendations
6.1 Summary

6.2 Class Description

6.3 Modelling

6.4 Simulation

6.5 Recommendations

Bibliography

Nomenclature

Appendices

Appendix A: General member function descriptions

A.1 System-based classes

130
131
135

136
136
141
143
150
157
158
161
162
165
167

168
168
168
169
170
171

173

180

182

183
183

vi

A.1.1 System Connectivity and

Mathematical interface functions 183
A.1.2 System Analysis 185
A.1.3 Convergence Block class interfaces 185
A.2 Port-based classes 186

A.2.1 Port, Input_Port and Output_Port

class interface functions 186
A.2.2 Process_Output_Port and

Process_Input_Port class interface functions 187
A.2.3 Signal Input_Port and

Signal_Output_Port class interface functions 189
A.2.4 Energy Input_Port and

Energy Output_Port class interface functions 190
A.3 Stream classes 190
A.3.1 Stream class interface functions 190
A.4 Variable-based classes 190
A.4.1 Variable class interface functions 190
A.4.2 Derivative class interface functions 192
A.4.3 Equation class interface functions 192

A.4.4 Equation_Set and Dynamic_Set

class interface functions 193
A.5 Physical Property Classes 195
A.5.1 Component class interface functions 195

A.5.2 User_Component class interface functions 196
A.5.3 Component_Set class interface functions 196

A.5.4 General Component_Mixture class

interface functions 197

A.5.5 Ideal_VLE class interface functions 200

A.6 Mathtool class interface functions 200
Appendix B: Flash Class Member Functions 202
B.1 Constructor 202

B.2 Port Setup 205

vii

B.3 Connection Functions

Appendix C: Tennessee Eastman Unit Models
C.1 Mixer Model
C.2 Reactor Model
C.3 Separator Model
C.4 Stripper Model

C.5 Nomenclature

Appendix D: Tennessee Eastman Flowsheet Definition

Appendix E: Fermentation Model Parameters

205

207
207
208
210
211
212

214

221

viii

INDEX TO FIGURES

Figure 2.1: Simple layout of Tennessee Eastman Process.

Figure 2.2: Basic connection example.

Figure 2.3: Stream class hierarchy.

Figure 2.4: Port class hierarchy.

Figure 2.5: Simple draining tank.

Figure 2.6: Variable and Equation_Set class hierarchies.

Figure 2.7: Flow restriction valve between two tanks.

Figure 2.8: System class hierarchy.

Figure 2.9: A flowsheet and its connected System-based tree.
Figure 2.10: Connected mathematical tree of flowsheet in Figure 2.9.
Figure 2.11: Virtual and polymorphic model functions.

Figure 2.12: Multiple inheritance numerical method class structure example.
Figure 2.13: Mathematical inheritance tree.

Figure 2.14: Combined System/Mathtool class hierarchy.

Figure 2.15: Physical property class hierarchies.

Figure 3.1: Multiple access of Vector objects.

Figure 3.2: System-class steady-state analysis algorithm.

Figure 3.3: System-class steady-state collection/building algorithm.
Figure 3.4: Combined System/Mathtool class hierarchy.

Figure 3.5: Port class hierarchy.

Figure 3.6: Stream class hierarchy.

Figure 3.7: Variable class hierarchy.

Figure 3.8: Equation_Set building algorithm.

Figure 3.9: Dynamic_Set building algorithm.

Figure 3.10: Tank volume balance equation tree.

Figure 3.11: Physical property class hierarchies.

Figure 3.12: Mathematical inheritance tree.

Figure 4.1: Cylindrical liquid mixing tank.

Figure 4.2: Flash vessel.

Figure 4.3 Simulation instruction sequence.

126
131

ix

Figure 5.1:
Figure 5.2:
Figure 5.3:

Figure 5.4:

Figure 5.5:

Figure 5.6:

Figure 5.7:

Figure 5.8:

Figure 5.9:

Cavett Process.

Tennessee Eastman Process.

Reactor pressure response.

Reactor pressure setpoint change from

2806 to 2746 kPa absolute.

Separator level response.

Reactor pressure setpoint change from

2806 to 2746 kPa absolute.

Modified Luyben Control Scheme for Tennessee
Eastman Problem.

Tennessee Eastman response to 15%

decrease in production rate.

Tennessee Eastman response to product G:H mass ratio
setpoint change from 50:50 to 40:60.

Tennessee Eastman response to reactor pressure setpoint
change from 2806 kPa. abs. to 2746 kPa. abs.

Tennessee Eastman response to purge composition setpoint

change from 13.82 mole % B to 15.82 mole % B.

Figure 5.10: Fermenter control system diagram.

Figure 5.11: On-off glucose control simulation.

Figure 5.12: Full glucose control simulation. Setpoint 0.01 g /L.

Figure 5.13: Full glucose control simulation. Setpoint 0.001 g /L.

136
142

147

147

149

153

154

155

156

162

163

164
165

INDEX TO TABLES

Table 4.1:
Table 5.1:
Table 5.2:
Table 5.3:

Table 5.4:

Composition and duty for vapour-liquid flash calculation.

Cavett feed and product stream compositions.
Cavett flash specifications.

Iterations and solution time to convergence
for the Cavett rating problem.

Tterations and solution time to convergence

for the Cavett design problem.

134

138

139

140

140

X1

CHAPTER 1

Introduction and Literature Review

Simulation may be defined as reproducing the behaviour of a physical process by artificial
means. In a chemical engineering context it can be considered as the use of a computer to
mathematically model and solve steady-state and dynamic process flowsheets. Chemical
process simulation commenced in the late fifties when computer technology had advanced to
the point where moderately complex programs were possible. Traditionally, process
simulations and simulators have been coded in procedure-oriented languages such as Fortran.
Simulations were originally limited to simple process systems or unit operations. These were
coded on a problem-specific basis. The focus was on simulation of a chemical process from
the corresponding unit model equations. This approach was still employed in the eighties
(Shacham 1985) and can be a fast, useful tool for small problems. As computing power and
languages developed through the sixties, simulation packages were designed that provided a
variety of unit operations that could be linked together to simulate different process

flowsheets. This is the type of simulation environment we are familiar with today.

1.1 Simulation Techniques

For a process flowsheet three basic methods can be used to find a solution. These are the
sequential-modular, equation-oriented (simultaneous) and the parallel-modular methods. All
are applicable to both dynamic and steady-state simulation, although the definition of parallel-
modular as applied to dynamic simulation is unclear (Hillestad and Hertzberg 1986) and will

not be discussed further. The methods are summarised below.

1.1.1 Sequential-Modular

This was the initial method used for simulation of processes with recycle streams. The
computational demands of the method were reasonably low. This was a significant factor
for early simulations because a powerful digital computer in the early seventies only
possessed 32kB of RAM and a 1 MB disk drive. Steady-state sequential-modular

simulations proceed on a unit-by-unit basis around the flowsheet and convergence blocks

adjust stream variables until convergence is achieved. Design problems can be difficult to
specify, although this is dependent on the unit model form. However, if units are modelled
with simultaneous equations, design calculations are simple. Different locations and
number of convergence blocks can dramatically affect simulation efficiency for a given
flowsheet. Initial estimates are required for convergence block output streams to

commence calculations.

Dynamic sequential-modular simulations have unit input variables approximated by
polynomial interpolation for each time interval, with separate integrators applied to each
unit module (Hillestad and Hertzberg 1988). This dynamic method sometimes copes
poorly with strongly coupled systems (Fletcher and Ogbonda 1988). Steady-state
sequential-modular simulation requires relatively few computing resources. DYFLO
(Franks 1972) and DYNSYL (Patterson and Rozsa 1980) are examples of dynamic
sequential-modular simulators. DYNSYL was originally developed for simulation of
nuclear fuel processing systems and was coded in Fortran. DYNSYL included an option

for fully equation-oriented simulation.

Sequential-modular methodology in its various forms has dominated commercially
available process simulators until recently. Two notable steady-state simulators of this
type are ASPEN (Evans ef al. 1979) and PROCESS. ASPEN was originally developed at
Massachusetts Institute of Technology and is programmed in Fortran. It employs a
separate input file language for flowsheet description. In recent years a graphical interface
(called ModelMaker) has been developed that translates a visual description of flowsheets
into the input file language. ASPEN can also simulate multi-phase streams and solids

processing. The simulator incorporates a large physical properties database.

1.1.2 Equation-Oriented

The equation-oriented approach considers the flowsheet as a whole and solves the set of
flowsheet equations simultaneously using a Newton or quasi-Newton algorithm. This
method is mathematically superior to other flowsheeting methods because the numerical
solution is independent of the problem formulation. Equation-oriented dynamic simulation
generally requires the solution of a set of algebraic equations with a set of differential

equations. The two sets can be solved separately at each time step, or using polynomial

2

interpolation with the state or derivative values the differential equations can be solved

simultaneously with the algebraic equations.

The computing resources required significantly exceed those for an equivalent sequential-
modular simulation. The versatility of a system where the problem formulation is
independent of the solution is offset by the effort required to provide a non-singular
problem specification. Steady-state simulation requires a reasonable initial estimate for all
solution variables to start the calculations. Convergence problems can occur with poor
initial estimates or if the solution method encounters a ‘difficult’ solution region.
Equation-analysis tools can assist with ensuring a non-singular problem. Variable
estimates can be provided by a sequential-modular initialisation although this facility is
extremely rare in equation-oriented simulators. Dynamic simulation requires consistent
initial conditions for state and algebraic variables. These are often provided by the steady-

state solution of the dynamic flowsheet.

SPEEDUP (Perkins and Sargent 1982; Pantiledes 1988) and QUASILIN (Hutchison ef al.
1986a,b; Smith and Morton 1988) are equation-oriented simulators capable of steady-state
and dynamic simulation. SPEEDUP has an input language for model definition and a
symbolic manipulation tool for determining partial derivatives. The simulator executive is
implemented in Pascal and the numerical routines are in Fortran. From the flowsheet
definition the executive program translates the input file into Fortran code. SPEEDUP also
has a database for file management. Physical properties are calculated as separate

procedures to the simulation and not generally included in the equation set.

QUASILIN is similar to SPEEDUP in many respects, although the package is
implemented completely in Fortran. Some thermodynamic properties can be included in
the equation set although the majority are implemented as utility procedures through the
physical property interface of the simulator. DIVA (Holl et al. 1988; Kroner et al. 1990a)
is another equation-oriented dynamic simulator with similar features. The numerical
methods and basic executive in DIVA are implemented in Fortran and the model building
facility and user interface are developed in an expert system tool called KEE (Knowledge

Engineering Environment). Physical properties are included in the flowsheet equation set.

1.1.3 Parallel-Modular

Steady-state parallel-modular simulation has three definitions. Firstly, there is a two-tier
approach in which sequential-modular unit models are converged in turn with a linearised
flowsheet equation set. The linearised set is obtained from perturbations of the sequential
models. This method was developed to try and take advantage of the versatility of
equation-oriented flowsheeting while utilising sequential-modular models. The simulator

MASTEP (Timar et al. 1984) employs this method. MASTEP is coded in Fortran.

Secondly, sequential-modular outputs can be compared with equation-oriented outputs.
This is known as a “tear every stream” approach and requires considerable computing
resources. A third approach is a condensed version of the previous one and can equally be
interpreted as sequential-modular. The tear stream sets for a sequential-modular simulation
are considered as simultaneous equations. Each loop around a flowsheet becomes an
extended set of nonlinear equations. The main advantage of this particular method is that
interaction between tear variables is accounted for and the simultaneous solver can provide
a better solution direction. The ASPEN simulator has this method as an opticn. Biegler

(1983) presents a comprehensive review of parallel-modular flowsheet solutiorn:.

1.2 Object-Oriented Process Simulation

Over the past few years, object-oriented programming techniques have been adopted for
developing a variety of computer software. Object-orientation originated with the SIMULA
language developed in the sixties (Dahl et al. 1968). The graphical interfaces of operating
systems and computer-aided-drafting packages were among the first applications programmed
using object-orientation. The basic philosophy of object-orientation matched well with the

types of geometric objects encountered.

In object-oriented programming, the focus is on the data of the system under consideration.
The data have directly associated behaviours or functions, i.e. the data can do things. This is
in contrast to procedural programming languages where the emphasis is on functions that own
and manipulate data. Object-oriented languages retain the manipulative capabilities of non-
object-oriented languages with the additional capability to represent structure in a logical way.
An object has been described as “...a chunk of structured knowledge.” (Stephanopoulos et al.
1987, p656).

The main principle behind object-orientation is the creation of user-defined #ypes. These are
often referred to as classes. An object is a specific instance of a class. A class can contain
any data type that the programming language supports in addition to objects from classes
defined by the programmer. The member objects contained in a class are called attributes of a
class. A class can have its own behaviours, called member functions. A class is a definition

of a data structure. An object contains the values or states of the data.

There are three basic concepts associated with classes and objects. They are inheritance,
polymorphism and encapsulation. Inheritance means that a class can inherit attributes from
another class. A derived class automatically contains the data structure and functionality of
the class it inherits from. The inherited class is called a parent class. A derived class is called
a child of the inherited class. Considering a computer-aided-drafting package, there could be
a basic class of Shape. Specific shape classes, such as Square, Triangle and Straight_Line
could inherit a set of general shape attributes and behaviours from the Shape class. In some
object-oriented languages (such as C++), a class can also be derived from several parents at

one level. This is called multiple inheritance.

Polymorphism means that the same basic behaviour can be implemented in different ways.
The Square, Triangle and Straight_Line classes all need to know how to draw themselves
on the screen. This may be accomplished by having a basic draw() function in each class.
The name of the function or behaviour is the same for each class, but the method used to draw

them would be different.

Encapsulation means that an object’s data may be protected by permitting modification of the
data only through operations (member functions) owned by that object. For data manipulation
the class definition must provide the necessary operations and functionality. A sub-set of
operations provides a controlled interface to the outside world. As well, they define how the
data can be viewed externally. Encapsulation promotes data hiding by ensuring that data is
accessed in a formally defined way. There are clearly varying levels of encapsulation that
may be enforced in the class design, from completely loose, unprotected access to very strict

control.

These concepts are readily extended to process simulation. The familiar entities such as
streams, process units and components can be considered as basic classes. More specific
classes can be derived from these. Member functions can be used for polymorphic unit

models, solution methods and data transfer, etc.

1.2.1 Object-Oriented Simulation

The potential advantages of object-orientation for engineering application are well-
documented (Lee and Arora 1991; Motard 1989). Westerberg and Benjamin (1985) have
described the desirable characteristics of object-orientation as applied to process simulation.
The authors expressed a desire for a building-block approach to process simulation. Process
models should be constructed on a part-whole basis, with simple, tested constructions forming
the basis of larger blocks or model parts which in turn form parts of the larger system and so
on. The authors state:- “...the method of communication for building a model is through the
use of a specially designed nonprocedural language...”. Several other object-oriented
language characteristics are discussed. Complete interaction with the simulation environment
dowr to the individual unit model equations and variables is suggested to enhance debugging.

A comprehensive database and expert-system based communication are also recommended.
Object-oriented simulation has followed two main paths of evolution. The first is the
development of object-oriented simulation languages. The other is the development of object-

oriented simulators and simulation environments.

1.2.2 Languages

Object-oriented simulation languages generally describe a process in terms of node and
connector objects. The process can be interpreted in two ways (Bischak and Roberts 1991).
The first interpretation is queue-based. The process is a network of queues and activities.
Transactions pass through the network, where they wait in queues or are serviced by
activities. The network is an object containing node and connector objects. Transaction
objects are temporary because they enter and leave the various nodes. The relationship
between objects and the process means that the objects flow through the process. Network
simulation languages such as GPSS (Schriber 1991), SLAM (Pritsker 1986) and SIMAN
(Pegden et al. 1990) employ this approach. This method of simulation is well suited to

production line and schedule modelling, where discrete entities such as cars or television sets

move through a factory and are gradually constructed. The approach is not suited to chemical
process simulation, primarily because flow of material through a pipe takes place
continuously, rather than as discrete “lumps”. The use of network languages to simulate
chemical plant operation and scheduling has been discussed in the literature (Morris 1992;

Habchi and Deloule 1992).

The second interpretation is that process is an action and is a property of the node object, such
as a member function. This is the normal implementation in most object-oriented
programming languages. Languages such as MODEL.LA (Stephanopoulos et al. 1990a,
1990b), OMOLA (Nilsson 1993), gPROMS (Pantiledes and Barton 1992) and the modelling
language in the ASCEND environment (Piela et al. 1990), have been developed and follow
this interpretation. These languages and their major features will now be discussed with

respect to chemical process modelling.

MODEL.LA

The focus of MODEL.LA is on the automatic definition of @ model from knowledge about
the system. Model construction from system knowledge is recommended to accelerate the
model-building process, reduce errors and separate model definition: from model solution
methods. The system knowledge includes modelling assumptions, simplifications and
model purpose, which are unclear from a purely mathematical description. The language
supports object-oriented principles and process representation through six modelling

elements and eleven semantic relationships. These are described briefly below.

The modelling elements are:

e Generic-Unit :- A bounded system. The system can be a single unit, a group of
connected units or a whole plant flowsheet.

e Port :- The interface between Generic-Units and the outside world. A Port is used
to transfer information between Generic-Units.

e Streams :- These are connectors between Ports that enable Generic-Units to be
connected together.

e Modeling-Scope :- A set of declarative relationships that apply to all the aspects of

the model. It encapsulates the assumptions and relationships in a given model.

e Constraint :- Each relationship inside a Modeling-Scope is declaratively described
by a Constraint. A Constraint is an unsolved relation among quantities, for
example an equation.

e Generic-Variable :- A more complex version of a solution variable. It is used as a

building block for describing modelling relationships.

Each modelling element is derived into more specific classes.

The semantic relationships are:

1. Is-a :- Denotes inheritance from a parent class.

2. Is-a-member-of :- Denotes an instance (object) of a class. The “member”
terminology here refers to an instance declaration, as opposed to an attribute of a
class in the earlier discussion.

3. Is-composed-of :- Describes the relationship between an object and the objects it
contains. (Objects of a different type in the same context. See below, “Is-
disaggregated-in”).

4. Is-part-of :- Reverse of the above. Describes the relationship between an object
and the object that contains it.

5. Is-attached-to :- Defines connection from a Port to a Stream, or a Port to a
Generic-Unit.

6. Is-connected-by :- Reverse of the above. Defines connection from a Generic-Unit
to a Port, or a Stream to a Port.

7. Is-described-by :- Defines a link from a Generic-Unit or Port to a Generic-
Variable or Constraint.

8. Is-describing :- Reverse of the above. Defines a link from a Generic-Variable or
Constraint to a Generic-Unit or Port.

9. Is-disaggregated-in :- Breaks down groups of objects of the same type into more
manageable pieces. (Objects of the same type in different contexts. See above, “Is-
composed-of”).

10.Is-abstracting :- Reverse of the above. Groups objects of the same type together.

11.Is-characterized-as :- Establishes a relationship between a modelling object and

an attribute of its description.

The relationships (3.4), (5,6), (7,8) and (9,10) are symmetric in that invoking one member

of a pair implies the other.

A process model is represented graphically. The graphical description is generated by
algorithms that operate on the context (description and assumptions) of the model. The
model is developed in applications that run on top of the expert-system tool KEE. This is
in contrast to the majority of languages where models are developed in the language itself.
MODEL.LA employs phenomena-based descriptions to generate the mathematical model.
For example, by defining part of a model as “MASS-LUMPED-BALANCE”, the
mathematical relations are automatically generated in MODEL.LA’s mathematical
language. MODEL.LA supports equation-oriented modelling but incorporates no
numerical methods, it is a model development and definition platform. The language is
incorporated into the simulation environment DESIGN-KIT (Stephanopoulos 1987 op.cit.).
DESIGN-KIT is discussed in section 2.2.2, Object-Oriented Simulation Environments.

OMOLA
OMOLA is a general object-oriented data representation language. It-is designed for
general modelling purposes. It has four predefined classes, three of which are parents for

other predefined classes. They are described below:

e Model :- The base parent class for all user-defined models.

e Terminal :- The base parent class for all model interaction classes. Similar to the
Port class in MODEL.LA.

o Parameter :- A user-specified constant value, for example a tank surface area.

e Variable :- The base parent class for mathematical variables.

The general syntax for a user-defined class is :

{name} ISA {name of parent class} WITH
{class body}

END;

The class body contains the attributes of the class. The attributes can include class
definitions, variables and equations. OMOLA does not support member functions or
operations in the conventional object-oriented sense. The language employs equations
which perform the same function. OMOLA employs only two semantic relationships but

each works in two ways. The relationships are:

1. ISA :- Denotes inheritance from a parent class, as indicated above. It also denotes
an instance of a class.
2. WITH...END :- Used to define the set of attributes in a class definition. It is also

used to initialise some attributes of the objects that a class owns.

OMOLA class definitions include sections for various modelling entities, for example
Terminals, Submodels, Parameters, Variables, Equations and Connections. There is no
structure for the definition of connecting streams, connections are made directly via
Terminal-hierarchy objects with an “AT” relationship. An example of the definition of a

simple tank is given below. The ’ after the mass variable denotes a time derivative.

TankModel ISA Model WITH

terminals:

In ISA PipeInTerminal;
out ISA PipeOutTerminal;
Level ISA SimpleTerminal;

parameters:
Density ISA Parameter;
TankArea ISA Parameter;
variable:
mass ISA Variable;
equations:
mass’ = Density*(In.Flow-Out.Flow);
mass = Density*TankArea*Level;

END;

10

OMOLA does not offer some programming language features such as arrays and looping.
OMOLA is part of the OMOLA Simulation Environment, called OMSIM (Mattsson et al.
1993). Like MODEL.LA, equation-oriented models are supported and numerical methods
are provided by a companion simulation environment, called OMSIM. OMSIM is

discussed in section 2.2.2, Object-Oriented Simulation Environments.

ASCEND modelling language

The modelling language in the ASCEND environment focuses on the representation of
nonlinear algebraic systems. The primary goal of ASCEND is to provide an equation-
oriented modelling environment. The environment consists of the modelling language and
a set of tools for manipulating the structures created in ASCEND. A variety of
simultaneous equation solvers are included. ASCEND is similar to OMOLA in many

respects. The language contains three predefined classes for model building:

e Model :- The base parent class for user-defined models.
e Atom :- Denotes a physical quantity, e.g. length.
e Type :- Elementary language data type, e.g. int.

Object-oriented semantic relationships are provided with the following statements:

1. REFINES :- Denotes inheritance from a parent class.

2. IS_A :- Denotes an instance (object) of a class.

3. IS REFINED _TO :- Changes the type associated with a previously defined
object.

4. ARE_ALIKE :- Operates on a group of objects and forces them to be of the same
type. The type is the most derived class of the group of objects.

5. ARE_THE_SAME :- Takes 4) a stage further and merges the group of objects

into one instance or object.

A specific instance (object) can be further declared as UNIVERSAL. This creates a single
instance that can be referenced throughout a model. It operates the same way as the
ARE_THE_SAME relationship. The ASCEND modelling language does not contain a

Port/Stream data structure for connectivity. Connections are defined with the

11

ARE THE SAME relationship. ~ Dynamic simulation is not directly supported.
Integration methods can be programmed in as Model-hierarchy classes. The tank example
given below assumes the Atoms for vol flowrate, length, density, mass
and mass flowrate are already defined and that an integration method has been

programmed.

MODEL TankModel REFINES model;
no of states 1= 1;

in flow, out_flow IS A vol flowrate;

level IS A length;

rho IS A density;

m IS A mass;

dm 4t IS A mass_ flowrate;
area IS A generic real;
area.fixed 1= true;

y prime[l], dm dt ARE THE SAME;

yil]l, m ARE THE SAME;

t IS REFINED TO time;
dm dt = rho* (in flow - out flow);
m = area*rho*level;

END TankModel;

In this example the integrator has a number of states which must be set prior to solution.
This is done with the assignment no _of states := 1;. The tank model merges the
time derivative object dm_dt withthe y prime [1] object of the integrator, and the state

variable y [1] is merged with the mass m.

One interesting aspect of ASCEND is that it promotes open data structures, to the point
where the philosophy is almost anti-encapsulation. In traditional software engineering and

object-orientation, the principle of encapsulation or information hiding is standard for

12

protecting the internal data of an object or software module. The ASCEND group contend
that information hiding impedes the development and debugging process by preventing
direct access to structure and attributes. They suggest that in an extendable system the user
should be able to work at whatever level of abstraction they consider appropriate and as

such all elements of the system should be accessible.

gPROMS

gPROMS is an object-oriented extension of the modelling language present in the
SPEEDUP simulator. The language is designed to model combined discrete and
continuous processes. The syntax of gPROMS is very similar to the preceding languages.
A variety of classes is available for constructing unit models. Predefined class hierarchies
exist for streams, physical quantities and elementary data types efc. Object-orientation is

derived from the following two relationships:

1. INHERITS :- Denotes inheritance from a parent class.

2. AS :- Denotes an instance of a class.

Connectivity is defined with an “IS” relationship. The tank example is given in gPROMS

below. The $ symbol denotes a time derivative.

MODEL TankModel

PARAMETER

TankArea AS REAL

VARIABLE

Flow In, Flow Out AS Volume Flowrate

m AS Mass
rho AS Density
h AS Length
STREAM
Inlet :Flow In AS Mainstream

13

Outlet :Flow Out AS Mainstream
EQUATION

$m = rho* (Flow_In - Flow_Out) ;

m = h*TankArea*rho ;

END

gPROMS is being further developed to model distributed parameter processes (Oh and
Pantiledes 1994) and has a facility for translating its models into other languages, such as

ANSI C.

1.2.3 Object-Oriented Simulation Environments

Three broad classifications are possible for simulation environments. The first includes the
familiar simulators that provide a library of existing process models that the user can connect
together to create flowsheets. Their capacity for user-defined model construction is limited.
The second is complete modelling and simulation environments that incorporate & library of
process models and in addition have a facility and/or a language for user-defined models. The
third classification covers interfaces to existing software that are designed to bring together
different useful aspects of several packages. Object-oriented approaches to the three

classifications have been developed. Some of these developments are discussed below.

IOWA STATE UNIVERSITY

A prototype steady-state object-oriented simulator was developed at Iowa State University
(Gadijaru 1992, Lau 1992). The project aim was to investigate process simulation and its
application to object-oriented process integration. The simulator is coded in C++. The
simulator can employ sequential-modular simulation to initialise an equation-oriented
simulation. Several sequential and equation-oriented solution methods are available. It is

not capable of dynamic simulation. Flowsheet definition is based on text input with C++.

Object-orientation is employed at many levels in this work; almost everything that the user
manipulates is an object. The equations in a model are represented as sets of binary tree

objects. The elementary data structures are also implemented as class hierarchies, for

14

example, matrices. Mathematical operations on matrices are accomplished by overloaded
operators, which enables matrix addition, say, to be written in the C++ codeasC = A +
B. Tools are provided for sequential-modular tear set selection, equation analysis and

partitioning.

Model extension is considered a desirable and necessary feature, although a model
construction facility is not described. The authors stress that extension should be at the
object level whenever possible. Thus, some objects should be user-modifiable and the
system still includes extension at the class level for more experienced users/programmers.

Dynamic simulation facilities are not provided.

DESIGN-KIT

DESIGN-KIT is a knowledge-based support environment for process engineering. The
emphasis is on knowledge-based analysis rather than pure simulation. It incorporates
MODEL.LA as the associated modelling facility. The objective was to create a
homogeneous package for all aspects of process engineering - flowsheet synthesis, control”
synthesis, scheduling, planning, simulation and equipment costing and design. DESIGN- -
KIT is developed in CommonLISP and KEE. CommonLISP is employed for the usei
interface and KEE is employed for process knowledge and model description. The
package supports steady-state equation-oriented simulation and has a variety of tools,
including equation analysis, order-of-magnitude reasoning and a rule interpreter. The
environment incorporates a graphical interface for the various activities. Dynamic

simulation facilities are not provided.

OMSIM

OMSIM is the simulation environment for OMOLA. OMSIM is implemented in C++ but
user-defined model classes must be written in OMOLA. OMSIM contains facilities for
model development either as direct OMOLA text or a graphical interface and class browser
for mouse-based model construction. It also provides the software for simulating the
developed models and a database for model storage. Simulation of a model is a two-step
process. First, the model is checked to see if it is lexically and syntactically correct and
that all types and connections are valid. This is similar to compilation in a normal

programming language. Second, the resulting mathematical structure is analysed. The

15

analysis checks for singularity, attempts to resolve high-index problems in the dynamic
equations and performs partitioning and symbolic manipulation. Simulation and modelling
are at the class level. A model forms part of the definition of a new class, as opposed to

dynamically connecting everything at the object or instance level.

A wide variety of numerical methods are provided for integration of ordinary-differential-
and differential-algebraic-equations. OMSIM does not have steady-state numerical
methods. The interface can be interactive during a simulation and results are available

graphically on-the-run.

MODELER

MODELER is an object-oriented environment for the modelling of physico-chemical-
biological systems (Lee 1991b). The environment is implemented in MODULA-2. The
building-blocks of MODELER are structures based on Newtonian physics and axiomatic
thermodynamics. The structures are used to form conservation relations in mass, energy

and momentum. Five primitives are defined :

e Phase :- A region within a system with homogeneous properties.

e Physical Lumped System :- A region of space, enclosed by a boundary and
specified by a given set of state variables.

e Chemical System :- A system containing stoichiometric and kinetic information
about a chemical system associated with a physical lumped system.

o Physical Property System :- A system containing numerical values of and/or
calculation methods for physical properties.

e Information System :- A system that contains a mechanism for transforming

information (e.g. a controller).

A system model is built from the primitives and connection streams with a graphical
interface. The system is represented as a block diagram. Mass and energy balances are
constructed automatically from the primitives and connectivity in a model. MODELER

does not provide numerical methods.

16

EPEE

EPEE (Ballinger et al. 1994) is an object-oriented interface system for process engineering.
The goal of the project is to share data amongst process engineering software packages. It
provides a set of common process-engineering objects that are user-extensible, for example
process, stream or component. The software packages are considered to be methods of
EPEE. The packages available are the steady-state ASPEN simulator, the PPDS physical
property system (N.E.L. 1982) and a heat integration package called CHiPS (Fraga er al.
1991).

VeDa
VeDa is an object-oriented process modelling paradigm (Marquardt 1993). It is based on

‘Substantial Modelling Objects’. The main objects are described as:

e Devices :- These are the things in a process, similar to the Genetic-Unit or Models
described earlier.

¢ Elementary-Devices :- A device that is non-decomposable. Similar i some ways
to the Type class in ASCEND.

e Connections :- Objects that connect Elementary-Devices together.

e Composite-Devices :- An aggregation of Elementary-Devices joined together with
Connections. Composite-Devices can be joined together to form more complex

Composite-Devices.

The object-oriented data model is similar to the principles of other object-oriented
simulation languages. It employs user-defined types with multiple inheritance, attributes
and methods to define systems. Knowledge-based descriptions are implemented and a
database is required for system management. A translator to turn VeDa descriptions into

code compatible with the DIVA simulator is under development.

KBMoSS
KBMOoSS is a recent development (Vazquez-Roman et al. 1996). It is a knowledge-based
modelling support system. Models can be generated automatically from knowledge-based

descriptions and the user can modify the generated models or develop one from first

17

principles without the knowledge-base. The environment and modelling procedure are

based on five characteristics:

e A modelling procedure is a knowledge-based exploration task. Therefore, tools for
exploration of alternatives, refinement and reasoning are necessary.

e Model development is evolutionary. Evolution represents the progressive
improvement of a model.

e Cooperation (within the system) enhances the sharing of data and knowledge.

e The support system should integrate all the tools and information required for
modelling.

e Automation facilitates analysis and promotes consistency.

KBMOoSS is implemented in CommonLISP and can write final unit models in gPROMS. It

does not provide numerical techniques for simulation.

1.2.4 Summary of Object-oriented Simulation

The languages and their associated examples follow a similar appreach. They are all part of a
farger simulation environment but are implemented differently. =~ ASCEND and OMOLA
support only single inheritance. MODEL.LA and the VeDa data model support multiple
inheritance. Single inheritance can achieve the same structural and functional goals as
multiple inheritance, but it produces a longer class hierarchy. ASCEND promotes open

access to all the elements of a data structure with no encapsulation.

MODEL.LA, MODELER and to a certain extent VeDa employ process knowledge to
construct models from a set of relationships and assumptions. The other languages require a
textual description of the class structure and modelling equations. KBMoSS supports both
knowledge and textual description. The objective of knowledge-based synthesis is to provide
complete documentation of the modelling process, increase consistency and reduce errors.
The use of database facilities for maintenance and model development is common. The level
of sophistication varies, from basic file saving in MODELER to the knowledge-based
applications in MODEL.LA and DESIGN-KIT.

18

Some of the languages provide standard looping and conditional structures similar to those in
procedural languages (e.g. FOR and IFEELSE constructs) and arrays. In addition gPROMS
includes a library of commands for discrete-event processing and distributed-parameter

Processes.

The development of object-oriented interfaces to other software is interesting. It can exploit
the large programming effort expended on existing packages and present the user with a
single consistent simulation platform. A potential major disadvantage of such an interface is
that it could require many different interpreters and translators to provide user-extension to the

software it drives.

1.3 Biochemical Process Simulation

Biochemical process simulation is a relatively immature field when compared to process
simulation in conventional chemical processing (Villadsen 1989; Petrides and Cooney 1993).

The main reasons are summarised below.

The primary reason is system complexity. Biological systenis are complex by nature and
therefore are difficult to describe qualitatively and mathematically. Some aspects of the
system under consideration could be irrelevant. In addition, biochemical researchers often do
not have a process-engineering background and have been reluctant to apply mathematical

modelling principles to biochemical processes until recently.

The products from biochemical processes are often difficult to characterise because of their
complicated chemical structure. This makes the calculation of physical properties difficult.
Many bioprocess unit operations are poorly understood and models are hard to develop. Most
bioprocesses are batch or semi-continuous. These require dynamic models and simulation

facilities.

Another reason is not stated in the above articles. It concerns the financial difference between
the high-volume commodity products of the traditional process industries as opposed to the
low-volume specialised products of biochemical plants. A great proportion of the world’s
economy has been dependent on petroleum products for many years. The corresponding

competition provides enormous financial incentive for development of highly efficient

19

processes, in which process simulation plays a significant role. Low-volume, high-added-
value bioproducts are not exposed to the same levels of competition and corresponding
incentive for optimisation with process simulation. For state-of-the-art bioproducts, patent
protection further reduces the financial incentive for modelling. In those bioprocesses where
process scale and competition has significant economic effect, the level of understanding of
the bioprocess is considerably greater and simulation has had much wider application. Two

good examples are ethanol production from yeast and the production of penicillin.

A number of software packages have been developed for bioprocess simulation. Several

different approaches have been taken and are discussed below.

ASPEN BioProcess Simulator (BPS)

BPS is an extension of the ASPEN process simulator (Evans 1988; Petrides et al. 1989).
A large variety of biochemical unit operations have been added to the existing simulator.
It is not capable of dynamic simulation. Instead, a time-average is applied to batch
operation modules. This produces a pseudo-continuous operation that can then be solved

with the steady-state simulator. BPS does not provide a modelling facility.

BioPro Designer

BioPro Designer is an interactive synthesis/analysis program (Petrides 1994). The
synthesis tools are knowledge-based and are used to create flowsheet topologies. The user
inputs details such as product properties and micro-organism type. The resultant flowsheet
can then be simulated with the analysis component of the program. The analysis
component can perform material and energy balances and economic evaluation. The
knowledge-based tools are implemented with an object-oriented environment named
Nexpert and the analysis tools are programmed in ANSI C. The program incorporates a

graphical interface. BioPro Designer does not provide a modelling facility.

CAMBIO

CAMBIO is a knowledge-based environment for modelling and simulation of bioprocesses
(Farza and Chéruy 1991). It exploits prior knowledge to aid in flowsheet synthesis and
model construction. Models can be taken from the supplied library or modified by the

user. The material balances are generated automatically. Models are constructed from

20

basic elements such as substrates, biomass, enzymes and reactions, efc. with a graphical
interface. The final system is modelled as a set of differential-algebraic equations (DAEs).
The DAEs are then compiled as a subroutine and solved with the DCO3AD integration
package in the HARWELL code library. CAMBIO is written in the Pascal language.

SIMBIOS

SIMBIOS is a steady-state simultaneous-modular bioprocess simulator (Simon ef al.
1994). The simultaneous-modular technique employed is the two-tier method where unit
outputs are calculated and then used to linearise a flowsheet model. The simulator contains
an interface to a large physical property system. Dynamic simulation facilities are not

provided.

BioSep Designer

BioSep Designer is a knowledge-based flowsheet synthesiser focussing on protein
separation systems (Siletti 1990). It determines an optimum flowsheet from a set of input
data. A database is provided for protein properties. BioSep Designer is programmed in

CommonLISP.] e

gPROMS

The language gPROMS, discussed earlier, has been employed for bioprocess simulation
(Lu et al. 1994). The production of alcohol dehydrogenase from yeast cells was examined.
Five unit operations were considered in the flowsheet: fermentation, centrifugation,
homogenisation, debris removal and product precipitation. The main advantage cited for
gPROMS was that it is capable of simulating dynamic discrete events and could therefore

be used for each batch process in the flowsheet.

1.3.1 Summary of Bioprocess Simulation

There are few bioprocess simulation packages compared to traditional process simulators.
The extension of existing simulators to bioprocesses (e.g. ASPEN BPS) provides a robust
platform for simulation but restricts the application to simulation methods supported by the
base system. ASPEN is restricted to steady-state sequential-modular simulation. Of the
biochemical simulators discussed, only BioPro Designer and CAMBIO can perform dynamic

simulation. CAMBIO supports model extension. BioSep Designer and BioPro Designer

21

employ process knowledge for flowsheet synthesis. BioSep Designer is purely a synthesis

program and has no simulation facility.

1.4. Physical Property Calculation

Physical property calculation is an area of study comparable in size to that of process
simulation. The combination of the enormous variety of calculation methods and the number
of chemical components likely to be required by a process simulator makes the development
of a comprehensive physical property package a daunting task. Specific property calculation
packages or methods are not reviewed but a general discussion of the requirements for process
simulation is presented. Calculation of properties for gases and liquids is discussed in Reid

(1988).

It has been estimated that up to 80% of the computer time required for a simulation is
consumed by physical property calculation (Westerberg 1979). Four principal capabilities

were identified:

1. Supply estimates for several physical properties for several different components
during the course of a simulation.

2. Provide the user with values for properties of interest during the simulation and
after completion.

3. Allow user-defined property data.

4. Supply estimates where data is poor or unavailable.

The representation of a mixture of components and corresponding physical properties interact
strongly in a simulator. Britt (1980) provides a detailed discussion in the context of steady-

state simulation and process streams. Salient points include:

1. A stream can consist of many phases: solid, liquid and vapour. The source unit of
the stream establishes the phase condition. Any combination and number of phases
can occur, with the restriction of a single vapour phase.

2. Liquid and vapour phases can be assumed to be at equilibrium. Solid phases might

or might not be at equilibrium.

22

3. The level of information associated with a stream can vary. If a stream consists of
several phases, is a composition for each phase required, or just an average
composition for the whole stream?

4. Some solid phase properties can be characterised in terms of pure component data
similar to vapour-liquid equilibrium. Other solid properties could require further
characterisation.

5. Some solid phases cannot be characterised in terms of pure component data. The
material must be otherwise characterised. The process stream must cater for this
alternative characterisation. Property calculation for the characterisation will be
different.

6. The necessary characterisation is dictated by the requirements of the unit model.

Complications arise when unconventional components are considered. Bioprocesses are
sources of unconventional components. How is a cell characterised? Generally a molecular
formula for a cell species can be experimentally determined in terms of carbon, nitrogen,
oxygen and hydrogen, but this indicates nothing else about the physico-chemical properties.

One option is the definition of properties on a micro or macro level. Conventional
components can often be characterised in terms of their structure and interactions on a
molecular or micro level. Unconventional components could be characterised in terms of
other attributes, for example size or bulk density which are properties that can be determined

at the macro level. This is applicable to solids and slurry processing and bioprocesses.

The implementation of physical property methods can be approached in two ways. Physical
property data can be calculated as a utility to the unit models. This is the case for the majority
of process simulators. The assumption of vapour-liquid equilibrium in steady-state simulation
is usually justified and means that property data can be calculated explicitly from process

conditions.

23

1.5 Numerical Analysis Methods

Considerable research effort has been expended in the development and testing of numerical
methods for process simulation. Comprehensive reviews are available (Seider and Brengel
1991; Shacham 1985; Sargent 1981). Numerical methods applicable to steady-state and
dynamic simulation are discussed below. The reader is referred to the review articles above
for further information. Methods for the solution of distributed-parameter systems are not

discussed.

1.5.1 Nonlinear Algebraic Equations

Solution algorithms for nonlinear algebraic equations fall into two categories, explicit and
implicit. Explicit solution methods require the variables of interest (output variables) in each
equation to be available explicitly as a function of the other variables (x) and parameters (u)
in the equation set, i.e.

x = f(x,u) (.Y
Usually the explicit output variables are functions of themselves and an iterative substitution
is required to converge the equaiions. This method was employed in early simulators and is
the reason sequential-modular simulators were criticised for coping poorly with some problem

specifications. If a problem specification required solution for a variable not in the explicit

output set, a further iterative loop was required to solve for the variable.

Implicit methods solve a system of simultaneous equations by forcing a set of residual values

to below a specified error tolerance. The model formulation is:
fx) = 0 (1.2)
An explicit equation formulation can be made implicit by the transformation:

fx) = gx)-x = 0 (1.3)

Solution of the system of equations follows an iterative procedure:

24

of

J(x,) = — (14)
X .

Jx)Ax = -f(x,) (15)

X1 = Xx,+Ax (1.6)

The Jacobian J(x) can either be the true partial derivatives of f(x) as in the exact Newton’s
method or an approximation, such as the update formula in Broyden’s method (Broyden
1965). The partial derivatives can be calculated either by analytical differentiation of the

equations, or by a numerical finite difference approximation.

Hybrid algorithms exist where the Ax term is calculated as a weighted combination of the
Newton direction given above and the direction of steepest descent. Powell’s dogleg (Acton

1990) and Marquardt’s method (Marquardt 1963) are examples.

Systems of equations in flowsheeting generally do not have every variable occurring in every
equation. Often the systems are sparse and have only a few percent non-zero entries in the
Jacobian matrix. Considerable savings in execution time are possible if numerical methods
are employed that take advantage of sparsity in the solution for the Ax term above. Reviews
of sparse numerical techniques are available in Bogle and Perkins (1988) and Stadtherr and

Wood (1984 a, b).

Another more recent development in numerical methods for nonlinear equations is the use of
homotopy paths (Wayburn and Seader 1987). Homotopy methods are designed to promote

convergence of a nonlinear system of equations from a poor initial estimate:

The objective of a homotopy method is to obtain the solution of the set of equations

fx) = 0 (1.2)

by the solving the homotopy

25

h(x,t) = 0 (.7)

The homotopy h(x,f) defines a path x(f), where ¢ is a mathematical parameter. Assume that
h(x,0) = 0 has a known solution. Also assume that h(x,1) = f(x). If x* = x(1), then x* is a
solution of f(x). Therefore if a homotopy function h(x,f) exists and the path x(f) can be

followed from an initial estimate x(0) to x(1), the solution to f(x) = 0 can be found.

One method of solution for a homotopy is to transform the problem into a set of ordinary
differential equations. Consider the function h(x,f), with x = x(f). Taking the derivative of

h(x,f) with respect to #, we obtain:

dh(x(t),f) Shdx Jh

it~ oxdt Tor 0 ()

A variety of choices exist for the homotopy. Consider the Newton homotopy, given by:
hix,) = f(x)-(1-Dfx,) (19)

where X, is the initial estimate for the system. The transformation to ordinary differential
equations becomes:

dhx(),f) _ Of dx _
= = S g i) = 0 (110)

This is an initial-value-problem to be integrated on # = [0,1] with initial condition x(0) = x,.
The coefficient matrix of the derivatives is the Jacobian of the nonlinear system. Paloschi

(1996) discusses the application of sparse methods to homotopy solution.

26

1.5.2 Integration Methods

Dynamic process simulation normally requires the integration of a set of ordinary differential
equations (ODEs). A large number of ODE integration algorithms exist, such as explicit and
implicit Runge-Kutta, Backward-Difference, Adams-Moulton, Burlisch-Stoer efc. Often with
the set of ODEs there is an associated set of algebraic equations (AEs). The AEs are often
nonlinear. The combined set of ODEs and AEs is referred to as a differential-algebraic-

equation (DAE) set.
DAE sets can be solved in two ways:

e Solve the AEs with a simultaneous solver and then the ODEs with an integration
algorithm.

e Solve the DAE set as a whole, converging AEs and ODEs at the same time.

It has been found that it is generally more efficient to solve the DAE set as a whole rather than
AEs and ODEs separately (Marquardt 1991). The most widely-used DAE algorithm is Gear’s
Backward-Difference-Formulae (BDF) method (Gear 1971). The BDF method approximates
the vector of derivatives in the system with polynomial backward differences of various
orders. The simplest is the first-order backward difference formula, where Euler’s

approximation is applied to the derivatives as below:

dx,,, X,,—X
— n+ — n+ n 1.11
n+l dt t —t ()

n+l n

X

The DAE system can then be solved as a set of algebraic equations driven by an integration

algorithm as:

F(X,,+1,X"+1,tn+1,U) =0 (112)

where x denotes the vector of state variables and u denotes the vector of inputs or design
specifications for the problem. This formulation has many advantages. The equation
structure is preserved, which means that sparse matrix techniques can be readily applied. The
solution method is applicable to DAE and ODE problems, systems with implicit derivatives

and stiff systems of equations. Stiff equation systems arise frequently in chemical reaction

27

Kinetics. Stiffness arises in systems with time constants differing by several orders of
magnitude. This is not a strict mathematical definition of stiffness. Lambert (1991) presents

a discussion on stiffness of linear and nonlinear DAE systems.

The solvability of a system of ODEs or DAEs can be characterised by a parameter called the
index. There are a few definitions of the system index (Unger ef al. 1995). Generally the
differential index of a system is referred to. The differential index is defined as the minimum
number of times the DAE system F(x, X, u) = 0 must be differentiated with respect to time
in order to determine x as a continuous function of x and u. Systems with indexes of zero or
one are easy to solve with standard ODE or DAE methods. A system of ODEs that are
solvable has an index of zero. The addition of one or more algebraic equations raises the
index to one. Higher index problems result when a state variable response is specified as a
function of time and the required system input must be determined. The concept of system

index is best illustrated with examples.

Consider a simple lumped-parameter mass balance of liquid inside a cylindrical tarnk. The

tank has one input and one output stream. The mathematical model is :

amM
—=F, - F,

1.13
dt in out ()

where M is the total mass of liquid in the tank and F,, and F,,, are the mass flows in and out
respectively. For specified F,,(¢) and F,, (1), the integration of the differential equation in M is
an index zero problem, solvable by any ODE integration algorithm. Now consider calculating

the height &(#) of liquid in the tank with an algebraic equation. The equation set becomes:

am
dt
0

F,-F.

ot

(114)

Il

pAR(t)— M(t) (115)

where p is the density of the liquid and A is the tank area. The addition of the algebraic
equation raises the index to one. Any DAE algorithm, given valid initial conditions can solve

the system. The index is raised to two if the height profile of the tank with time is specified

28

and the required input flow profile F,(f) is required. The mass profile M(#) calculated from
the k() function must be differentiated in order to determine F,(¢).

Index reduction can be accomplished by careful modelling (Lefkopoulos and Stadtherr 1993),
symbolic manipulation of the equations in the system (Chung and Westerberg 1990; Gear

1988) and structural analysis of the equations (Unger ef al. 1995; Pantiledes 1988).

1.6 Conclusions and Project Scope

The areas discussed offer considerable scope for research. The following conclusions are

drawn from the discussion:-

o Systems that have a facility for model construction are more versatile than the
traditional black-box process library in older simulators. In leading-edge
technology, particularly biotechnology, process information remains proprietary.
Off-the-shelf simulators are unlikely to contain models for novel unit operations. A
modelling facility is practically a necessity in a modern simulation environment.

e Object-orientation assists model development, but object-orientatio: ia itself is not
sufficient to define a modelling methodology. Models require a logical and
consistent structure. The concept of systems containing ports that can be connected
to other systems is prominent. Complex systems should be modelled through
decomposition into smaller component systems. This is often referred to as
hierarchical decomposition and further promotes the object-oriented principles of
software re-use and extension.

o Systems that can apply knowledge to the model development process have
advantages, but modelling should not be exclusively a knowledge-based activity.

e Steady-state and dynamic simulation should be supported. Dynamic methods are
required for control systems and biochemical process simulation.

e Equation-oriented unit models should be preferred, but not necessarily exclusively.

e In steady-state simulation, equation-oriented, sequential-modular and parallel-
modular flowsheet calculations all have advantages. Ideally all three should be
available in an integrated form. The equation-oriented approach is superior for

dynamic simulation.

29

e There are many requirements for physical property calculation, depending on the
process and simulation type. The physical property structure should be simple to
allow the integration of different property methods into the system.

e Equation analysis and numerical tools are required in a complete simulation

environment.

From the conclusions, the primary project objective was defined:

To develop a basic object-oriented data structure and tools for the modelling and

simulation of chemical and biochemical processes.

The sub-objectives were defined as follows:

1. Provide steady-state and dynamic capabilities, with the ability to transition from
steady-state to dynamic simulation.

Provide a variety of steady-state and dynamic solution methods.

Provide interchangeable steady-state simulation methods.

Provide a basic physical propeity and component data structurc and methods.

U

Provide a reasonably simple structure and methodology for the definition of model

classes and associated equations.

Some implementations and topics discussed in this chapter are considered outside the scope of
the primary objective. A knowledge-based implementation cannot be developed until a
validated mathematical structure exists. The numerical methods are based on the “traditional”
Newton-based methods and Gear’s Backward Difference method. Homotopy methods and

index analyses are unnecessary at this stage of the project’s development.

The design of a class structure based on the attributes of a process flowsheet and the project

objectives is discussed in the next chapter.

30

i

CHAPTER 2

Simulator Development and Data Structure

In this chapter the development language is discussed briefly using a simple example. This is
followed by the design of the basic class structure for the simulator. The design of the class
structure results from an examination of the various characteristics of a process flowsheet and

an analysis of the requirements for simulation of a flowsheet. Class names are printed in bold

type.

2.1 Development Language

Several languages specifically developed for process modelling have been discussed. In this
work, it was decided to exploit a highly refined and commercially available object-oriented
language (namely C++) instead of developing another special-purpose modelling/simulation
language. The use of an existing numerically-oriented commercial language provides a

nuiriber of benefits:

1. Language structure. A programming language must be subject to rigorous testing
and development for successful commercial application. This is extremely
important for an object-oriented language that naturally encourages language
extension. In a commercialised object-oriented language, debugging is restricted to
the programmer’s language extensions rather than the language itself, which would
be the case if a new language was developed.

2. Consistent software platform. The final purpose of simulation and modelling
languages is to define a numerical problem from a process structure. A simulation
environment must support flexible and realistic modelling of processes while
promoting efficient numerical analysis. Simulators have been described which
employ different languages for modelling, numerical methods and the interface.
This increases complexity. A more versatile simulation environment can be

developed if all the facilities are coded in the same language.

31

3. Versatile development environment. Powerful compilation and debugging
environments are available for commercial programming languages. The
development of such environments is not a ftrivial task (consider the
MODEL.LA/DESIGN-KIT system, (Stephanopoulos et. al. 1987, 1990 a,b)).

4. High portability. A language in common use offers high portability between
different operating systems and computers.

5. Pre-defined data types, operators, looping and utility function libraries. Process
simulation calculations require repetitive numerical calculations and logical
decisions. Facilities for input, output and file manipulation are also required.
These are provided by existing commercial languages.

6. Potential interfaces to existing software. Employing an existing commercial
language enables access to a vast library of potential software, depending on the
application. The development of libraries of numerical software is very common.
Such libraries generally have simple functional interfaces to the developed code,
enabling easy incorporation into a simulator’s numerical library. Many language
development environments have a facility for incorporating compiled and linked
code from another programming language. Physica! property calculation provides
a good example, where existing, well-refined libraries could be incorporated into a

simulator via the development environment.

C++ offers all of the facilities described above. It was developed in the early eighties as an
object-oriented superset of the C language (Ellis and Stroustrup 1994). A class in C++ is a
generalisation of the ANSI C structure type. It has been comprehensively tested for a variety
of programming applications and an international standard, ANSI C++. Several powerful
development environments are available, most of which contain facilities for file
management, debugging and class/object browsing. Through its subset, ANSI C, several
numerical software libraries are available. C++ is considered a hybrid language because
object-orientation is optional. Employing a combined object-oriented/procedural approach
can incorporate existing C software libraries. A “pure” object-oriented language (Eiffel, for
example (Meyer 1992)) requires the programmer to consider every entity in a program as an
object. As the object-oriented paradigm has become dominant in the software industry, C++

has taken over as the most commonly employed object-oriented programming language.

32

#include <math.h> //include header file for math functions

class Complex Number{ //start class definition
public:

double re,im; //declare real and imaginary parts

double mod(void); //declare member function to
//calculate modulus

double arg(void); //declare member function to
//calculate argument

//other member functions would be below for

//addition, multiplication etc

}; //end class definition

double Compieix Number::mod(void){ //start definition of membéz-
//function ‘mod(void)’
return sqrt(re*re + im*im);

} //end definition of member function ‘mod(void)’

double Complex Number::arg(void){ //start definition of member
//function ‘arg(void)’
return arctan(im/re);

} //end definition of member function ‘arg(void)’

Many other member functions could be defined for the class, for example a function to print
out the real and imaginary parts. C++ also permits the various operators (+,*, =,< etc.) in C to
be redefined. This is known as operator overloading. Overloaded operators for the
Complex_Number class would permit simple arithmetic such as z = x*y to be performed
directly. An obvious application of classes and overloaded operators is the use of vectors and
matrices for numerical computation. The Complex_Number class can be used in the

following way:

33

Complex_Number class would permit simple arithmetic such as z = x*y to be performed
directly. An obvious application of classes and overloaded operators is the use of vectors and
matrices for numerical computation. The Complex_ Number class can be used in the

following way:

#include <iostream.h> //include header file for standard C++
//input/output

void main(void){ //start C/C++ program

Complex Number Xx;

x.re = 1.2; //set real part
x.im = 2.0; //set imaginary part

//cout below is the standard C++ output device

cout<<” \n Mod x is ™ <<x.mod():

cout<<” arg x is ™ <<x.arg()<<” radians” ;

} //end C/C++ program

Some features of C++ code should be emphasised. (A full description of C/C++ syntax is
available in any of the common C/C++ textbooks, such as Ellis and Stroustrup (1994)).
Attributes or members of objects are accessed with the °.” operator, for example, x.re and
x.mod () above. The ‘;” operator denotes the end of a code statement. C++ provides three
levels of access to attributes of an object. The broadest is public access or scope, where

2

any member of an object can be accessed through the °.” operator. This is the same as the
ASCEND language described in the previous chapter and is used at the start of the class
declaration above. The next level is called protected access. Any attribute declared
protected may only be accessed by objects of the same class or classes lower in that
hierarchy. The most restricted access is private. Members declared private cannot be

accessed with the ¢.” operator at all and are only available within the class or object structure.

34

2.2 Data Structure

Object-oriented programming is an information modelling process. It embraces three
significant aspects of good software engineering, viz. abstraction, modularity and information
hiding.

o Abstraction: ldentifying and applying the broad structure and functionality of the
components in terms of user-level concepts, details of which need not be specified
until actually required.

e Modularity: Dividing the problem and solution into structured components with
formal interfaces for communication between components.

e Information Hiding: Making the internal details of components accessible through

the formal interfaces.

Historically chemical engineers have adopted a highly modular approach to process systems
analysis. Physical plant modules and their associated unit operations can be well-represented
by object-oriented principles as can their aggregated behaviour in the form of a process
flowsheet. These concepts are not as conveniently implemented in traditional procedure-

oriented languages.

Simulation of a chemical process requires the modelling of two broad categories of
information; physical and mathematical. Physical information is essentially the “things in the
process”, such as process units, streams, chemical components, efc. —Mathematical
information includes the equations for the models, the model type (steady-state, dynamic,
lumped-parameter, etc.) and the numerical analysis tools. It is not possible to develop the data
structures for these two categories of information completely independently because at
various points within a simulator they must interact. A simple example is the use of
convergence blocks in a sequential-modular simulation. A convergence block becomes part
of the process layout via stream variables, but it is really part of the solution tools and not the
process structure. If the interaction between the process and mathematical data structures can
be restricted to well-defined interfaces then a versatile, user-extendable simulation

environment should be more easily realised.

The design of the data structures of this project is described below by applying the principles

of abstraction and modularity firstly to the physical and mathematical information of a

35

process flowsheet and secondly to functional considerations. The application of the principle
of information hiding is discussed in Chapter 3. The physical information of the process

flowsheet structure is considered first followed by the mathematical information.

2.2.1 Physical Information

Consider the flowsheet drawn below in Figure 2.1, the Tennessee Eastman Challenge Problem

(Downs and Vogel, 1993).

splitter

purge

compressor |
¥

Y

[Ll:d[

separator

feed _

product

Figure 2.1: Simple layout of Tennessee Eastman Process.

Many of the basic parent classes required to represent the physical structures in typical
chemical processes can be determined by examining the key attributes of this flowsheet. The
flowsheet can be decomposed into units. These units could possibly be further decomposed
(internally) into sub-units. For example the stripping column could be subdivided into a set of
trays. The units receive inputs and produce outputs through streams. The flowsheet’s
primary function of synthesising a product from feeds is the result of specific functions of its
constituent units. The various units mix, react and separate various chemical components. A
detailed understanding of each unit’s functionality is not apparent from the flowsheet (for
example, reaction kinetics or order) but it is sufficient at this stage to identify a general

functionality as a key property of a unit.

36

Four physical attributes common to most process flowsheets can be identified and used to
define three basic parent classes that may contribute to object-oriented simulation. The first
class is a group of processors that produce an output response from an input. In this work, the
resulting C++ class is named System. The second class is for the connectors, named Stream.
The third class is for the set of chemical components that a flowsheet manipulates. The
relevant C++ class is named Component. The attribute of functionality will be discussed

later in this chapter.

The System class is in principle similar to the Generic-Unit or Model classes of other work
reviewed in Chapter 1. Given the varying levels of complexity contained in a flowsheet it is
clear that a System-based object must be able to contain other System-based objects. A
flowsheet contains unit operations and may be considered a single complex unit operation.
Connections between System-based objects are made with Stream-based objects. However,
this is not sufficient in an environment designed for user-extension of process models. A
point of connection for each Stream-type object is required. While it is possible to manually
code in the connections between the output variables of one unit and the input variables of
another, it is simpler and more efficient to create classes of System-to-Stream interfaces that
can perform the connection automaticaily. In a similar manner to other work reviewed in
Chapter 1, a generic parent class named Port is introduced to provide the interface between
System objects and their connecting Streams. The set of Ports for a System object defines
the boundaries of that System. A System-based object would own a set of Peort-based

objects, with the connections made through Stream-based objects, as in Figure 2.2 below:

System-type object
Stream-type
object

Port-type G 9
objects

Stream-type
objects

Figure 2.2: Basic connection example.

37

There are many different kinds of stream in a flowsheet. The most obvious are the process
streams carrying material from unit to unit. Other kinds of streams include signals to and
from controllers, or work streams where energy is transferred in and out of systems. The
corresponding classes could logically be titled Process_Stream, Signal Stream and
Energy Stream. The Stream hierarchy defines a group of classes of simple connectors,

illustrated in Figure 2.3.

Figure 2.3: Stream class hierarchy.

There is a one-to-two correspondence between Stream classes and Port classes. For each
Stream type, an input and output Port class must be defined. While separate input and output
Port classes are not absoluiely necessary to model a connected system, in a chemical
engineering context there is usually a direction associated with connections and the Port class

is divided to reflect this. The inheritance tree for the Port class is illustrated in Figure 2.4.

Process_Output_Port
Signal_Input_Port
Process_Input_Port

Energy Input_Port

Signal_Output_Port
Energy Output_Port

Figure 2.4: Port class hierarchy.

38

Other advantages of a Port data structure will be discussed in section 2.2.3, Mathematical

Information.

A complete object-oriented component and physical property system was considered outside
the scope of the project given the time available. The other data structures have been made as
simple and as flexible as possible to permit incorporation of more sophisticated data structures
for components and physical properties. The Component class hierarchy provides part of the
interface for physical property calculation. The design of the physical and chemical property
class structures is presented at the end of this chapter in section 2.4, because it is more easily

developed if the physical and functional aspects are considered together.

2.2.2 Simulator Executive

In order for object-based model classes to be created and used within the simulator by the
modeller, a high-level simulator executive is required to process and manage the low-level
model structures and behaviour. In most of the simulation projects discussed, the simulator
executive is coded in a separate language from the model definitions, for example the OMSIM
environment for the OMOLA language. The executive then translates the low-level model

code into an equivalent high-level representation.

In this project, the executive is coded in the same language as the modelling classes.
Therefore the equivalent high-level representation must exist in advance of any low-level
structure. The high-level representation must be capable of connecting whatever low-level
structure is created while maintaining its integrity and consistency. This is a stringent
requirement. The equivalent high-level representation effectively becomes the executive

itself.

While appearing complex, this multi-level structure is readily implemented with the class
structure discussed. The examination of the basic classes in section 2.2.1 provides part of the
solution. A System class was described that may contain other System-based objects.
System-based objects must also connect to other System-based objects. This containment
and connection may be implemented at the executive level and at the modelling level quite
simply. At the executive level, the System class may contain a set of pointers to other

System-type objects. A pointer in C or C++ is a type that contains the memory address of an

39

object (i.e. it points to where the object resides in memory). Through the memory address the
object can be accessed. Object pointers are preferred because they require considerably less
memory storage than extra sets of complete objects. A specific System-based object does not
need to know in advance how many pointers there are or what type of System-descendant
object they will attach to. In a similar fashion, the System class may also contain sets of
pointers to Input_Port and Output_Port objects. Again, a System-based object does not
require advance knowledge of the number or specific type of each connection. The low-level
model descriptions may then assign the generic high-level data structure to their specific low-
level object structures. The low-level structure is then available to the executive for analysis
and manipulation. The high-level structure describes a System-based object potentially
containing other System-based objects and sets of input and output connections. The actual
connection objects are specifically described in the low-level structures. The code

mechanisms for this are described in Chapter 3 and examples are presented in Chapter 4.

2.2.3 Mathematical Information

The mathematica! information is part of the internal or invisible attributes of a process
flowsheet. Traditional “black-box” simulators completely hide the mathematical information
associated with a flowsheet and present the user with a set of predefined unit operation
models. A simulator with a modelling facility must provide access to the mathematical
information, preferably with a consistent set of building blocks for model development. In a
similar fashion to the physical structure of a flowsheet, examination of the physical structure
of a set of equations provides potential class structures for mathematical modelling. This is

best illustrated with a simple example.

A vertical, cylindrical liquid mixing tank and valve are presented in Figure 2.5. Consider
modelling the dynamic liquid holdups M, of the tank with n components. It is assumed that
the tank is open, is fed through stream F (with compositions z;), drains through the valve and
the flow out L (with compositions x;) follows a square-root dependence on the pressure P at

the bottom of the tank. The total mass in the tank is M.

40

The equations and variables for the dynamic mass balance are given below:

dM,
dt

Variables :

Figure 2.5: Simple draining tank.

Fz, - Lx;, l..n
x,M, l..n
1

h

p gh

c./P-P,

xi(n)bzi(n)DMi(n)aMTaLanhaPaPO

(2.1)
(2.2)

2.3)
(3.4)
(2.5)
(2.6)

The attributes of the equations are in some ways similar to the attributes of a flowsheet. A

flowsheet equation set consists of the equation sets of the units within the flowsheet. The

equations constitute a set of mixed differential and algebraic equations (a DAE set). The

individual equations are connected by variables, for example x; appears in equations (2.1),

(2.2) and (2.3). There are different kinds of variables in the equation set: state (dynamic),

algebraic and derivative.

If the set above was to be used for steady-state and dynamic simulation, different equations

and variables could take part in the solution. At steady-state, equations (2.1) and (2.3) could

be solved, giving n+I equations with the time derivatives set to zero. The corresponding

variables are x,(n), z,(n), F and L, of which n+1 must be consistently specified for the set to

41

be solvable. If the steady-state height is specified, it is possible to solve for the component
holdups and the valve constant also. This would be useful for specifying consistent initial
conditions for dynamic simulation. The dynamic system requires all the equations, with the
variables x,(n), z(n), M(n), F, L and M,, of which n+I variables must be consistently

specified for solution.

A class structure can be developed from considering the equation set’s attributes. At the
highest level we introduce a parent Equation_Set class. This class represents sets of
equations within System-based objects. If System-based objects can contain other System-
based objects, logically Equation_Set objects should be able to contain other Equation_Set
objects. The concept of System-based objects containing System-based objects combined
with Equation_Set objects containing Equation_Set objects is a powerful tool for process
simulation. The major advantages will be discussed in detail in section 2.3.1. The flowsheet
equation set above would be constructed from two separate equation sets, one from the tank
and the other from the valve. Equation_Set is further refined into a Dynamic_Set class for
DAE sets. A Dynamic_Set object can contain other Equation_Set or Dynamic_Set objects.
The objective of steady-state and dynamic simulation requires Dynamic_Set objects to be

capable of steady-state and dynamic analysis.

A class Variable is defined for basic solution variables (state or algebraic). Two child classes
are refined from this class, Derivative and Equation. Derivative is the class for representing
derivatives in equations. It is not restricted to time derivatives, although this form represents
the most common usage in chemical process simulation. Equation is the class for
representing individual mathematical equations. It is capable of representing state or
algebraic equations. The Equation, Equation_Set and Dynamic_Set classes have similar
executive-level data structures to System. The Equation class owns a set of pointers to
Variable-based objects that affect it. The Equation_Set and Dynamic_Set classes contain
sets of pointers to the Equation objects that affect them, to create a pseudo-executive for
analysing mathematical structures. ‘The inheritance trees for the Variable and Equation_Set

hierarchies are drawn in Figure 2.6.

42

Equation_Set

Dynamic Set

Figure 2.6: Variable and Equation_Set class hierarchies.

In very strict object-oriented philosophy, an equation might not be considered a more refined
version of a variable. It is important to realise that object-orientation is a tool as opposed to
an end in itself. It is reasonable in some cases to deviate from a strict object-oriented structure
if there are advantages to be gained. The advantages in the case of the Variable and
Equation classes are primarily functional and relate to the analysis and solution of equation

sets. These aspects are discussed in the next chapter.

. The form of the equations must be considered. Are differential equations to be coded
., explicitly, such as y = f(y,t)or implicitly as f(y,y,£)=0 ? Are they iikely to be combined
if different models coded by different users are used together? The same applics to algebraic
equations. A user might wish to code an explicit iterative equation in the form x = f(x).
Ideally, the class structure for variables and equations should have the capacity to cope with

all of these in a mixed form.

As stated earlier, the mathematical and physical structures of a simulator must interact at
clearly-defined points. Identifying the interactions helps to determine the interfaces and

further refine the simulator class structure.

e Unit Inputs and Outputs

A unit will have sets of input and output variables, such as the (F, z;), and (L, x;) sets
of the tank example. Where do the variables reside? Are they an attribute of the
connecting stream or are they part of the unit that they enter or leave? The variables in
a stream are really defined by the unit that is the stream’s source; even a feed stream
must come from somewhere. Unit input and output variables in the current work are

therefore considered to be an attribute of the process unit, not the stream. The stream-

43

variable approach probably originated from a desire to keep memory storage to a
minimum in procedurally-programmed simulators. In the early stages of this project, a
prototype stream-variable structure was developed and tested. However, the potential
storage efficiency gains conflicted with the requirement of simple model development.

In addition, a stream-variable structure blurs the boundary of the System class.

If a unit is to own its input and output variables, some sort of connection is required
between the inputs of any unit and the outputs of its source. The logical connection
mechanisms are the Port classes. In a process-unit sense, the variables or contents of
a stream appear at the connecting flanges of the input pipes and disappear at the
flanges of the output pipes. The input port of the tank model would access the (F, z,)
variables and the output ports would access the (L, x;) variables. Other process stream
variables, such as temperature and pressure could be included in the sets also. The
connection mechanism between the variables, ports and streams can be provided by

member functions of the respective Port and Stream classes.

Another aspect of unit inputs and outputs must be considered. The direction of
mathematical information does not necessarily foliow the assurned direction of
connection between systems. An illustration of this point is a simple flow-restriction

valve between two vessels, as drawn below in Figure 2.7.

Figure 2.7: Flow restriction valve between tanks.

44

A reasonable flow equation (ignoring density effects) is:

F =F,=F,=C\P -P, 2.7)

where F, denotes flow, C is the valve constant and P; and P, are the vessel pressures.
The valve determines the flow in and out of the two vessels, but within the valve
model the vessels define the upstream and downstream pressures. The material flows
along the direction of the connections but the information flows in the opposite
direction to the connection into the second vessel. The data structure must therefore
permit bi-directional information flow. If the connections between input and output
variables can be made directly with the variables themselves the data structure should
become simpler. This could be achieved with Port and Stream class member
functions. The Stream hierarchy then becomes a group of very simple connector
classes with minimal structure. Ideally, the Variable class should contain the

structure and functionality required to be invisibly either an input or an output variable.

The advantages of input-output connections between Variable objects are further
demonstrated by examining stream compositions in the tank example above. The
composition of the two streams will not change as the process material travels from
the first tank, through the valve and into the second tank. In a simulation environment
where general unit models are likely to be employed for a variety of purposes, the tank
and valve models are likely to contain their own sets of composition Variables.
Assuming that compositions are modelled as a composition vector, at least three
vectors of Variable objects will be present in the tank example; one for each tank and
one for the valve. The principle of flow direction suggests that the outlet of the first
tank defines the composition. Therefore the second tank’s composition Variables
could connect to the valve’s composition Variables which in turn could connect to the
outlet composition of the first tank. This connection scheme is logical and provides
two very important advantages. Firstly, it can provide consistent evaluation of the
value of a particular Variable object. The Variable class may be easily coded to
evaluate connections if required. The number of connections is irrelevant because

several connections may simply evaluate further down a connected chain until the end

45

is reached, for example from the second tank, to the valve, to the first tank. This
ensures consistent numerical evaluation and facilitates model coding, if the evaluation

is invisible to the model developer.

Secondly, connections promote simple and consistent analysis of Equations and
Variables for problem specification. Consider the analysis of the tanks and the valve
in an equation-oriented simulation. If the first tank is analysed, the outlet composition
Variables will be analysed as part of the tank. If the valve is then analysed, the inlet
composition Variables will have already been examined with the first tank. A
connected Variable structure enables the simulator executive to immediately trace the
connections back to the tank and note that the Variables have already been analysed

and may be ignored. A similar procedure would occur in the analysis of the second

tank.

e Flowsheet and Complex Unit Equation Sets
A flowsheet equation set or an equation set in a complex unit will be made up of many
subsets of equations. The subsets will be owned by the subsystems of the flowsheet or
units. A flowsheet has the ownership of the othei System objects it contains and the
equation set associated with a flowsheet therefore owns the equation sets of the other
subsystems. This implies an interaction between the System and Equation_Set
classes at the executive level. This interaction must be consistent irrespective of the
model type or structure in order for the simulator to provide a modelling facility. The
interaction is most easily provided by an extension to the executive-level structure
described in the previous section. The System class can contain pointers to
Equation_Set and Dynamic_Set objects. Low-level models will contain a specific
Equation_Set and/or Dynamic_Set object which the executive structure may be
assigned to. The low-level mathematical structure is then available to the System

executive via the mathematical pseudo-executive described earlier.

System-based objects containing other System-based objects forms a nested tree
structure (for example, a flowsheet containing unit operations). By extension a
System-based tree may contain other System-based trees. The structure of a System-

based tree is sufficiently complex to justify a more refined class to specifically manage

46

the tree structure. The class is named Sys Man_Block, an abbreviation for System
Management Block. It inherits directly from System. The majority of the System
class’ functionality must be redefined to operate on the branches of the tree. The
Sys_Man_Block class is designed for modelling with and managing trees of System-
type objects in an arbitrary fashion, without necessarily adhering to flowsheet-type
layouts such as input and output streams. Sys_Man_Block is refined into a
Flowsheet class. A class for modelling with a single System-based object is also
introduced, named Unit. The Unit class is designed for modelling basic unit
operations and inherits from System. The class inheritance tree for the System

hierarchy is drawn in Figure 2.8.

Sys Man_Block

Specific unit
operations classes

Figure 2.8: System class hierarchy.

e Physical Structures

An undefined area of interaction exists when the basic physical building block classes
are not sufficient to describe what the user-developer wishes to model. An example is
the characterisation of a biochemical process mixture. The nature of many
biochemical systems may be so diverse that there are likely to be circumstances where
some aspect of a biochemical mixture is not catered for within a simulator. In a
system that provides user-extension, the user-developer should be able to modify
existing physical modelling classes, create new ones or use existing class structures in

a different way. The creation of a new type of mixture might require custom physical

47

property calculation and new Port-Stream-based classes. Within the data structure
proposed this is relatively simple. Custom calculation methods can be incorporated by
writing and compiling C functions or new C++ classes that operate on the existing
structures. With the mixture and stream variables owned by the units, the user-
developer only has to develop new Port and Stream classes that map input and output
Variable objects to each other. It could also be possible to use existing Port and
Stream classes for an unconventional purpose because Variable objects only interact
mathematically within a System boundary. If a Port-Stream type is used in an
unconventional way, it cannot be connected to conventional applications of the type,
because the Variable connections in the conventional and unconventional applications

will be different.

2.3 Functionality and Behaviour

To this point the structural aspects of the simulator and the information in a flowsheet have
been considered. Some functional aspects have been considered briefly. In this section, the
major functional requirements of the physical and mathematical structures will be examined.
In some cases, functional requirements.cr behavioural changes dictate additions or

modifications to the data structures.

2.3.1 Structural Analysis

The use of System- and Equation_Set-hierarchy objects to model a flowsheet of unit
operations creates a multi-level tree of objects. System-based objects own Equation_Set
objects. Equation_Set objects own Equation objects which in turn own Variable-based
objects. This creates a connected tree from a top-level Flowsheet object down to individual
Variable objects. Initially, only the physical structure tree will be fully connected as a result
of the flowsheet connectivity. The mathematical structure tree will be composed of smaller
trees within units or plant sections. In this project the mathematical tree is constructed after

the flowsheet connectivity is defined and the unit parameters are set.

An example flowsheet and its tree are drawn below in Figure 2.9. The symbols S; denote
objects from the System hierarchy and D, and E; denote Dynamic_Set and Equation_Set
objects respectively. Note that the .S; are not directly objects of the System class, they are

objects of classes derived from System. The flowsheet is §,, a mixer, a flash and a splitter are

48

units S,, S; and S, respectively. The heavy lines on the tree indicate the physical structure
connections of the flowsheet. S, contains S,, §; and §,. Each System-type object owns one or
more Equation_Set-based objects. The ownership is indicated by the light lines linking the §;
to the D, and E,. S, (the flowsheet) owns a Dynamic_Set object because some of its
subsystems contain Dynamic_Set objects. ; has a composite Dynamie_Set object (D;) with

a sub-set of algebraic equations (E}).

Figure 2.9: A flowsheet and its connected System-based tree.

The mathematical tree is not yet connected. The first step towards a fully connected
mathematical tree is to connect the input and output variables to each other through the Port-
based objects. This can be achieved with a setup function in each System-type object. After
this, D, still does not know about the existence of the other sets of equations in the subsystems
of §,. The physical structure for S, contains S,, §; and S,, so connection should start with the
physical structure. The optimal way to connect the tree structure above is with a depth-first
traversal. Both the physical and mathematical trees must be traversed. The end of a physical
branch must be reached before a mathematical branch may be analysed and connected. The
traversal order is S,, S,, E,, S;, D, , E;, S,, E,, D,. Even if a node on the tree is visited, it
will not be analysed until all nodes below it are visited and analysed. The analysis order is
therefore E,, S,, E;, D;, S;, E,, S,, D,, S,. This analysis automatically supports any level of
model decomposition. The connected mathematical tree that results is illustrated below in

Figure 2.10. The heavy lines now indicate the mathematical tree connections.

49

Figure 2.10: Connected mathematical tree of flowsheet in Figure 2.9.

Sets E, , D, and E, have effectively become “extra” sub-sets of D;,. A distinction is made
between an “extra” sub-set and a plain sub-set. An “extra” sub-set is appended during a
problem analysis whereas a plain sub-set is explicitly attached prior to the problem analysis as

part of a unit model definition, for example E; attached to D;.

Once the mathematical tree is connected, it can be traversed on its own to collect the
Equations and Variables for the flowsiheet. The physical and mathematical:structure could
be traversed in a similar manner to the previous connection step, however, traversing only the
mathematical tree requires less nodes to be visited. The Equation_Set objects are collected

inthe order £, , E;, D; , E,, D,.

. In line with the objective of providing both steady-state and dynamic solution methods, the
analysis and collection steps should create sets of Equation, Variable and Derivative objects
or object pointers that can be manipulated by various solving routines. Dynamic_Set objects

should be capable of both steady-state and dynamic analysis and collection.

Depth-first analysis and collection ensures that any Equation_Set object at any level in the
tree automatically contains or owns the Equation_Set objects below it on a physical and
mathematical branch (a node-branch). For example, in order for set D; to be collected into the
set D,, set D; must have already collected set E;. In addition, every Equation_Set object
contains its own set of Variable and Equation object pointers after analysis. Therefore these

Equation_Sets may be used to solve solitary units, as in a sequential-modular simulation. At

50

the same time, the Flowsheet object contains its own Equation_Set object which has its own
set of Variable and Equation object pointers. The Flowsheet’s Equation_Set object may be
used independently of the Equation_Set objects in the process units to solve the whole
system. The implementation of interchangeable simulation techniques is discussed further in

section 2.3.6.

Individual units can be solved within a flowsheet or the plant may be divided into plant
sections. Units could then be optimised individually (say, adjustment of a design
specification) and then solved again within the overall flowsheet structure. The set of
variables and equations for the parent flowsheet can remain static while individual node-
branches are reanalysed and simulated separately. Small plant sections can be constructed out
of units, simulated and used as building blocks of a larger flowsheet. A complete description

of the depth-first algorithms with flow diagrams is presented in Chapter 3.

2.3.2 Equation Evaluation

Numerical expressions must be evaluated in a simulator. The structure and functionality
present in the objects determine how object-oriented numerical expressions are evaluated.
Three options are considered here. The first has been explored in other work (for example,
Lau 1992). Equations can be represented and evaluated as binary trees of mathematical
expressions. Parsing textual mathematical expressions with an interpreter can create the trees.
This offers the potential advantage of symbolic manipulation of equations and automatic
access to the mathematical structure of the problem. A simple interpreter and parser was
developed early in the work but was found to be several orders of magnitude slower than
normal floating-point arithmetic when evaluating equations. There was also a considerable
storage overhead. Hence, the development was not carried further although a very
sophisticated implementation might have proved more effective. A possibility would be an

interpreter that translated textual expressions into C++ code instead of connected tree objects.

The second option is the definition of overloaded operators (described in Chapter 1, section
1.2.3) for the Variable types. The numerical, logical and assignment operators (+,-,/,*,= efc.)
could be overloaded to act on objects of the Variable hierarchy. The main disadvantage of

this approach is the enormous size of the code required to cater for every possible interaction

51

between Variable-type objects, conventional numerical types and the library of numerical

utility functions supplied in C++.

The third option retains an object-oriented structure such as the Variable hierarchy but
evaluates numerical expressions in conventional floating-point arithmetic as standard C++
arithmetic statements. This offers the structural information of the mathematical tree (but
without symbolic manipulation) with the convenience of floating-point arithmetic. There is
obviously an associated storage overhead with the structural information. No redefinition of
operators or utility functions is required, which removes a portion of software maintenance.
This option was adopted for the project. Other advantages of floating-point evaluation are

described in section 2.3.4.

2.3.3 Model Evaluation

Mixed equation forms (explicit/implicit) have been discussed previously. If mixed equations
are supported, the evaluation of unit models must be “intelligent” so that equations are
evaluated correctly. The evaluation could be at two levels, one that the user defines and an
invisible higher-leve! evaluation to cater for the different equation types in the equation sets::
The user-defined level is similar to the traditional unit model subroutine or procedure, where -
the model could be in explicit or implicit form and steady-state or dynamic. The higher-level
evaluation could examine the structural information of the equations and act accordingly. As
discussed in Chapter 1, explicit equations are easily transformed to implicit form in the

following manner:

=
|

f(x,y) explicit (2.8)
x-f(x,y) implicit 2.9

D
Il

This information is readily incorporated into the Equation class and is applicable to dynamic

and steady-state equations.

The principles of object-oriented polymorphism and C++ virtual functions are well-suited to
evaluation of model equations at the lower level. The System class can own a member
function with a particular name, such as dynamic_model (), that does nothing at the

System level. At the more refined level of a particular model, such as a flash, the

52

dynamic_model () function can be redefined to evaluate the equations of the flash. The
model is evaluated by a virtual function that changes its behaviour as the inheritance tree
becomes more refined. Different types of unit model then have polymorphic
dynamic_model () functions across the System hierarchy, such as the different models for

a flash, a mixer and a valve. These would be the low-level evaluations.

The C++ keyword virtual when applied to a member function means that the most refined
implementation of the function can be run by calling the function at any level in the
inheritance tree. For example, in a Flash class that is refined from System, by calling the
function dynamic_model () at the System level, the dynamic_model () function of the
Flash class is run. Hence, a System-type that contains other System-types (for example, a
Flowsheet object) does not need to know in advance what the contained types are in order to
run their models correctly. These concepts are illustrated with some example classes in

Figure 2.11:

System::dynamic_model () (does

T nothing)

: 3 Ta
Unit : Sys_Man_Block::dynamic_model ()

: A (evaluates
: olymorphic e
| P i models)
»> Y A
Flash::dynamic_model () Flow_Valve::dynamic_model ()
(evaluates flash T o (evaluates flow

equations) - polymorphic equation)

Figure 2.11: Virtual and polymorphic model functions.

The bold type and arrows indicate inheritance up through the System class hierarchy. The
straight dashed arrows indicate the refinement of the virtual dynamic_model () function
down the System hierarchy and the curved dashed arrows indicate the polymorphism of the

dynamic _model () function.

53

The higher-level evaluations could be performed by the numerical methods. Different
numerical methods require different evaluations, therefore the numerical methods should own
the evaluation methods. This also separates the user’s model definition from the model

solution. The user should only need to specify the equation type, which is a trivial task.

2.3.4 Behavioural Changes

This concept is generally restricted to dynamic simulation, where over the course of a
simulation, unit operations might operate outside their “normal” mode. Such a change in
behaviour may affect the progress of a simulation. A simple example is the saturation of a
controller output. In the physical plant, the output may simply hold at the saturated value. In
a process simulator, some mechanism is required that will enable the simulation to progress in
spite of the saturation. The difficulty is numerical. The controller output will be a state or
algebraic variable in the solution set. The sudden (discontinuous) freezing of a value could

effectively remove a solution variable from the equation set.

The connected Variable structure described earlier may be modified slightly to provide an
elegant sclution. A process unit is a transformation mechanism. In traditional pioeess control
terminology it has a transfer function that produces a response to an input. The inputs to a
unit are often outputs (or responses) from another but from the unit’s frame of reference the
inputs are only a forcing function. Consider a valve connected to a controller. The forcing
function for the valve is the controller output. The controller output Variable object will be
part of a Flowsheet object’s Dynamic_Set. The valve position input Variable object only
connects to the controller output. This means that in the event of saturation it is possible to
sever the connection between the valve input and controller output Variable objects without
affecting the numerical solution. The controller output Variable object remains a solution
Variable, and the valve position may be frozen at the saturated value. In the future, the
controller output might return to a normal range, in which case the valve may be reconnected.

Further functional requirements are apparent from the discussion. Generic virtual
functionality must be provided that enables Systems to check for potential discontinuities or
events and take appropriate action. The responsibility for the check must be on the System
that owns the output Variable, because there might be many input Variables connected to
one output Variable. The analysis of Equation_Set objects must also trace connected

Variables back to their source Variable, to ensure that if connections are broken, the correct

54

Variable is frozen and the solution set is not affected. The numerical methods are also
affected by discontinuities. They contribute a virtual function named disc_check ()
which may be redefined in unit models to test for and flag discontinuities. The discontinuity

checks and functionality are described in more detail in Chapter 3.

A more complicated example is a flash drum employed to roughly separate a process stream.
During normal plant operation, the drum would contain a liquid and a vapour phase.
However, if shutdown or upset conditions are simulated, unusual process conditions might
create a single phase. The disconnection principle above is applicable to the output stream
that “disappears”, but the model form might change also. Different model equations and
variables may apply. Alternatively, careful modelling may yield a set of equations applicable

to different phases in a flash calculation.

Some changes to equations may be accommodated relatively simply. If the numerical
dimension of the system and the solution Variables and Equations do not change, a different
evaluation: form may be substituted without adversely affecting the simulation. If the
numerical solution methods act solely on the values of sets of Equation and ¥ariable objects,
the form or method of evaluation of the value of an Equation is ‘irrelevant. This is
automatically catered for by designing Equation and Variable object evaluations to be based
on floating-point arithmetic as described in section 2.3.2. Traditional if. . .then coding
within the disc check () function can assign different evaluations for the unit model.
Variables may be effectively rendered constant by substituting a simple linear evaluation for
an Equation, for example e (1) = x() - 6.0 to hold the value of Variable x at 6.0

during the simulation.

Such a substitution is applicable to the controller saturation example above. If a different
evaluation was substituted for the controller output signal equation at saturation, the
disc check () function is required to evaluate the “true” controller output to determine if

the controller is to be reconnected.

55

2.3.5 Numerical Methods

The numerical methods available in a simulator should be as independent as possible of the
process and mathematical structures to permit simple addition of new methods or
modifications to the data structures. The requirement of operating on floating point values is
dictated above. An obvious question is:- Should these values be conventional floating-point
arrays, or accessed through arrays of Variable-hierarchy objects? Floating-point arrays
permit the simplest interfaces to existing third-party numerical code, especially with
precompiled libraries where the code cannot be modified. Most of this type of software
requires at least one interface function to be defined that evaluates the equation system,
derivative values, Jacobian efc. Arrays of Variable-hierarchy objects permit the use of the
structure and functionality of the objects. Examples include partitioning of equations or
reordering prior to solution. The information about the problem’s mathematical structure is
contained within the Equation objects. The input-output connectivity between Variable-type
objects could be employed to connect a set of Variable-type objects in the numerical methods

to the sets of pointers provided by the Equation_Set analysis methods. This would increase

. the amount of memory required. Third-party numerical code couid still be incorporated

- throwgh interface functions. The set of object pointers provided by the Equation_Set
methods could be manipulated directly. Minimal extra storage is required and the structure

and functionality of the objects is accessible. This approach was adopted for the project.

Broadly, there are two types of solution method employed in this project: AE and ODE/DAE
solvers. Pure ODE systems are rare in flowsheet simulation and are considered a simpler
subset of DAE solution. DAE solvers employ AE solvers as part of their algorithm. AE
solvers in turn employ linear algebraic equation solvers. The solvers require methods of
evaluating the Jacobian matrix. Related to pure numerical solution methods are methods that

can partition or reassign equations.

The various classes could be employed as parents or as building blocks of new classes.
Nonlinear equation solvers often require linear equation solvers. A linear equation solver
class could be a parent class of a nonlinear solver. In this case inheritance is used to
propagate functionality rather than structure down the inheritance tree. Alternatively, the
linear solver may be an object within the nonlinear solver class. Either approach would be

effective. A strict object-oriented philosophy dictates the use of objects instead of parent

56

classes. However, object-orientation is a programming tool and not an end in itself. If a
numerical method may be considered to be simply a repetitive procedure or algorithm, an
inherited functional approach is valid. It is a difficult issue to resolve. For this project, the

inherited functionality approach was adopted.

The interaction between the solvers and the flowsheet structure must also be determined. A
numerical method object could act on a System-type object. This concept is similar to older
Fortran-based simulators, where a flowsheet function, equations and variables are passed to a
numerical method function for solution. Conversely a System-type object could own
numerical tool objects that it employs for solution. This is more in line with the concept of a
flowsheet owning methods to solve itself. Is the solution method then a separate entity with
its own structure (i.e. an object) or is it only a service or method of the flowsheet? If the
solution method is an object, it requires access to System-type functionality (the unit model
functions) in order to solve the equations. This is easily achieved with a System-type pointer
within the numerical method. If the solution methods are a parent of a class then the

: functionality is automatically available.

In this project, the numerical methods are implemented as a combined parent with the System
class. The numerical method classes are designed to contain virtual function “mirrors” of
some System-hierarchy model functions. The high-level structure permits independent
development of the System hierarchy and the numerical methods. At the low-level, the
virtual functions merge to provide a System-type model function for the numerical methods.
The lower levels of the System hierarchy control the actual mathematical models because the
models must be independent of the solution method. The numerical methods may contain
whatever high-level functionality is required to drive the low-level model in order to solve the
numerical problem.

To achieve independence, the numerical method classes and System class could become joint
parents (multiple inheritance) of the Unit and Sys_Man_Block classes, because from these
levels down specific functionality and hence solution requirements are identifiable. It can be
argued that if the numerical methods are considered to have absolutely no structure, then
object-orientation of them is not necessary and they could be implemented as pure C
functions. However, on further examination there are some behavioural aspects that object-

orientation can neatly organise.

57

The discussion above of various solver types implies a set of classes, for example linear
equation solvers, algebraic equation solvers and differential-algebraic equation solvers.
Multiple inheritance may be employed to produce, say, a class of nonlinear solver that inherits
from a specific linear solver (e.g. LU factorisation) and a numerical utilities class.
Alternatively, a single-inheritance structure, commencing with the numerical utilities and
inheriting down into linear, then nonlinear and then differential-algebraic solvers is also
possible. A numerical method class named Mathtool was implemented as a collector of all
the parent numerical methods, analogous to a numerical methods library. A multiple-
inheritance structure based on four parent classes was initially investigated. The four parent
classes were Linear Solver, Nonlinear_Solver, DE_Integrator and Math_Util. An
example of a backward-difference differential-algebraic class (BDF) is provided below in

Figure 2.12.

Linear_Solver DE_Integrato

/’/

Mod_Newton

other linear
solver classes

other methods other methods

Figure 2.12: Multiple inheritance numerical method class structure example.

From Figure 2.12 it is clear that there will be several methods inheriting one or more of the
four basic parent classes, such as Linear_Solver. C++ provides a mechanism so that only
one copy of a parent class actually exists in a complex multiple inheritance structure, if
desired. This mechanism is called a virtual base class and is explained in detail in Ellis and
Stroustrup (1994). The advantage of a virtual base class is that it resolves ambiguities with

multiple parent classes and avoids duplication of class data. The four basic parent classes

58

become virtual base classes of the rest of the numerical structure. The class structure is
reasonably complex for the BDF class. In spite of the virtual base class capability, the
multiple-inheritance approach proved to be difficult to implement and manage and was

abandoned.

A single-inheritance approach was finally adopted for the numerical classes in the project. A
top-level base-class was designed to contain basic structure and the virtual function “mirrors”
discussed earlier. The class is called Math_Top. Math_Ultil inherits from Math_Top and
Linear_Solver inherits from Math_Util. Nonlinear_Solver then inherits from
Linear_Solver. Nonlinear_Solver is the parent of the DAE_Solver class. Mathtool then

inherits from the DAE_Solver class. The class hierarchy is illustrated in Figure 2.13.

Math_Top

Linear_Solver

Nonlinear_Solver
DAE_Solver
Mathtool

Figure 2.13: Mathematical inheritance tree.

The various methods for solving linear algebraic equations are in the Linear_Solver class, all
the methods for nonlinear algebraic equations are in the Nonlinear_Solver class and so on.
Mathtool then provides a separate interface class. The Nonlinear_Solver class methods have
access to a large variety of linear algebraic equation solvers from one parent class. The
DAE_Solver class has similar access to a variety of nonlinear equation methods, although
generally a derivation of Newton’s method is applied in most cases. In spite of the diverse

functionality presented at the Mathtool level, the extra structure is minimal and restricted to

59

the data in the Math_Top class. The lower child classes provide functionality only. The
functionality is more versatile than that provided by the multiple-inheritance approach and has
a much simpler class structure. The combined System/Mathtool inheritance tree is drawn
below in Figure 2.14. The System and Mathtool classes are multiple parents of the Unit and
Sys_Man_Block classes. They each contain virtual functions with the same name, so that in
lower-level classes there is a functional connection between the System and Mathtool

parents. A new Convergence Block class, described in the next section, is also illustrated.

Mathtool

Specific unit
operations classes

Figure 2.14: Combined System/Mathtool class hierarchy.

2.3.6 Interchangeable Simulation Techniques

One of the objectives of the project was to provide interchangeable steady-state simulation
techniques. An Equation_Set object can analyse itself and any Equation_Set objects it
contains. The interchangeable application of sequential-modular and equation-oriented
simulation requires some additions to the simulator class structure. The dominant feature of
sequential-modular solution is that it interferes with the flowsheet layout by tearing streams,
although the interference is usually invisible to the user. Convergence blocks then manipulate

the variables in the torn streams to converge the flowsheet.
If the functional aspects of a convergence block are examined, a very simple way of providing
interchangeable solution methods is revealed. A convergence block requires a unit-by-unit

iteration of the loop it is inside to perform its calculations: the unit model for a convergence

60

block is really a flowsheet or section of flowsheet. For the purposes of sequential-modular
simulation, the flowsheet can be considered a subsystem of a convergence block. This
suggests a more refined version of the Sys Man_Block class, which is named
Convergence Block. The class can own Variable objects, Equation objects and an
Equation_Set object. A Flowsheet object is a predefined System-type that can be set up and
analysed for equation-oriented simulation. If the Flowsheet object is made a subsystem of a
Convergence_Block object, the methods to drive the unit model functions already exist. The
Convergence Block object can then tear streams by reassigning the input and output variable
connections of the relevant units. A convergence block in a simulator only acts on process
stream variables. The simulator class structure provides a Port hierarchy that acts as the
interface between Stream-types and Variables, so by interrogating the Port-type that the
process stream attaches to, the input-output connections are accessible. Some sequential-
modular simulators also attach convergence blocks to unit variables for design problems.
This is only necessary if the unit models are explicit and the numerical methods based on
iterative substitution. If explicit unit models can be converted to implicit models for equation-

oriented solution then unit convergence bldcks are not necessary.

A convergence block can employ the nuinerical methods for nonlinear equations available
from the Mathtool class. Other methods can be provided in the Convergence_Block class
for finding tear sets and determining computation order of the Flowsheet object it owns (e.g.
Roach 1996). An equation-oriented Flowsheet object is unaffected by changes in unit
computation order. The Convergence_ Block solution methods could then apply either

sequential calculations or equation-oriented solution, depending on convergence progress.

An interesting aspect of flowsheet solution should be considered here. It is clear that a
Convergence Block could be employed purely for equation-oriented simulation by
“switching off” the sequential-modular capabilities. The concept of a “super” convergence
block is suggested, capable of driving all types of flowsheet simulation, including dynamic.
The Flowsheet object within the Convergence_Block could set itself up for dynamic
simulation. The Convergence Block could then contain functionality to drive the
Flowsheet’s integration methods. An alternative structure would be to place all of the

Convergence_Block functionality and structure into the Flowsheet class, in which case a

61

Flowsheet then has the capacity to initialise an equation-oriented simulation with sequential-

modular iterations, converge the steady-state and then switch to a dynamic simulation.

Dynamic-modular analysis and solution could be performed in a similar fashion and
implemented inside the Convergence_Block or Flowsheet classes. This would provide a
large variety of potential solution methods for steady-state and dynamic simulation.

Implementation of dynamic-modular simulation is not explored in this project.

The actual Convergence Block implementation is less sophisticated. Sequential-modular
and parallel-modular simulation are provided through the Equation_Set object of the
Convergence Block class. Equation-oriented simulation is provided by the Flowsheet object
that the Convergence Block class owns. The user must supply the appropriate tear streams.

The Convergence_Block class is explained in more detail in Chapter 3.

2.4 Chemical Components and Property Calculation

The class for representing chemicai. components in the simulator is named Component.
Chemical components usually occur as part of a mixture. Different types of mixture occur in
a flowsheet, implying some sort of basic mixture class. In this project the class is named

General_Component_Mixture.

The data structure and functionality for Component and General_Component_Mixture is
based on attributes and methods for property calculation reviewed in Reid (1988). The
discussion here covers conventional chemical components and is extended to unconventional
(e.g. biochemical) components. Only systems where equilibrium between phases can be

assumed are considered.

A conventional chemical component has several attributes. The most important is the
component’s name, and/or the molecular formula, through which the simulator’s physical
property service accesses the basic component data. Basic (invariant) pure component data
includes the molecular weight, critical temperature, pressure and volume, boiling point,
freezing point and enthalpies of formation at a standard reference condition, acentric factor,
dipole moment efc. Other attributes possibly dependent on system or mixture conditions

include ideal liquid and vapour heat capacity, enthalpy at system temperature and pressure,

62

enthalpy of vaporisation and liquid and vapour density. All of these attributes are required in
a Component class for general physical property calculation. Methods for assigning values
to the attributes are required, with the values extracted from a database or file. A user-defined

component class would be useful for components not in the simulator database.

A component mixture is simple to represent physically as a General_Component_Mixture
class: it contains a set of Component objects and a measure of their relative amounts (mass or
mole fractions). Functionality is more complex. Which properties are likely to be required
for process simulation? A very obvious one is mixture molecular weight. Likewise,
thermodynamic properties are required. Mixture specific heat, enthalpy, entropy, Helmholtz
and Gibbs energy and fugacity are examples. Vapour-liquid equilibrium calculations are also
required in multi-phase mixtures, for example the K; values in a flash calculation. Vapour-
liquid equilibrium is related to the thermodynamics of the mixture through the fugacities. A
basic parent class named Properties is introduced to provide the link to the set of relevant
Component objects in the mixture. Separate classes named Thermo and VLE are defined
for thermodynamics and vapour-liquid equilibrium because for simple approximations, the
two calculations can be separated. The simple approximations are calculation of mixture
properties from pure component properties and the assumption of Raoult’s' Law for vapour-
liquid equilibrium where Antoine constants can be applied. The Thermo and VLE classes
contain the virtual function declarations for the various thermodynamic and equilibrium
calculations and inherit from the Properties class. Two child classes, Simple_Thermeo and

Simple_ VLE are introduced for the simple approximations.

More sophisticated methods can be incorporated. Cubic equations of state (cubic EOS),
which combine thermodynamics and vapour-liquid equilibrium can inherit from both the

Thermo and VLE classes. The basic form of many cubic EOS is given by :

RT a

P= -
V-b V?+ubV +wb’

(2.10)

The parameters a,b,u and w vary depending on which particular equation is employed, e.g.
van der Waals, Peng-Robinson etc. A further class structure is suggested here: a basic

Equation_Of State class containing the form of equation (2.10) with, say, a specific

63

Peng_Robinson class (and others) that initialise a,b,u and w, appropriately. The enthalpy
calculations and other properties discussed above would be member functions of the

Equation_Of_State class.

In the early stages of the project, the modelling of separate phases was investigated. The
General_Component_Mixture class could be extended to separate classes for different
phases, Liquid_Mixture and Vapour_Mixture. These two classes could then be employed
to define a Vapour_Liquid_Mixture class. Implementation of this class would be similar to
the classes for numerical methods. The class could either inherit from both the
Liquid Mixture and Vapour Mixture classes, or contain Liquid_Mixture and
Vapour_Mixture objects. Objects would be preferable because a phase is physically
identifiable.

The General Component_Mixture class would contain a pointer to a Thermo object. This
would enable different mixtures in different process units to access different thermodynamic
methods if desired. The Liquid Mixture and Vapour_Mixture classes would then have
specific methods for liquid and vapour properties. The Vapour_Liquid_Mixture class
would contain a pointer to a VLE object. The Therme and VLE class hierarchies should
have polymorphic functions for calculation methods so that the user-developer is presented
with the same functional interface for the same property regardless of how it is calculated.
For a cubic EOS, the Thermo and VLE pointers would access the same Equation_of_State-

type object.

While this multi-level mixture class structure is logical, sophisticated phase modelling is
unnecessary at this stage of development. A General Component Mixture class may provide
similar phase calculation services with liquid and vapour calculation methods. The main
physical property emphasis was therefore placed on the General_Component_Mixture class,
without major development of the separate phase classes. The
General Component_Mixture class also contains pointer to a VLE object. The
incorporation of a Vapour_Liquid_Mixture class into a physical property structure raises the
question of whether a flash calculation is a member function of the class or a System-based
unit operation model. In this project a flash is a System-based model. The physical property

class hierarchies are illustrated in Figure 2.15.

64

Equation_Of State
Simple_Thermo “" Ideal VLE

Peng_Robinson
General_Component_Mixture

Figure 2.15: Physical property class hierarchies.

Unconventional components, such as biochemical components retain some of the attributes
above and add or delete others. Components common to “normal” chemical processing and
bioprocessing could require completely different characterisations for each process type, for
example ethanol. Attributes. of bacterial cells, subst_rates and cell products or metabolites car
be specified from an examination of the kinetics and thermodynamics of biochemical
reactions (Roels 1983). The attributes include cell and product specific yields, specific heat
dissipation, and degrees of reduction based on electron transfer. However, these are not
physical properties, they are stoichiometric coefficients. Molecular weights and formulae are
a common attribute, already catered for with the Component class. The meaning of the
molecular formula of a bacterial cell type is different from a conventional component: you
cannot isolate a molecule of cell, but you can isolate a whole cell. A macro-level approach
was discussed in Chapter 1. It is similar to considering the cells as a semi-inert solid phase.
For bacteria, cell strength, size and bulk density are useful properties. Cell size and strength
are useful for homogenisation and centrifugation, and bulk density could be a useful

parameter for calculating broth level in a fermentor.

A class for cell types could inherit from the basic Component class. Many of the basic
attributes of the Component class are reusable, for example the density, specific heat and

molecular weight. The General Component Mixture class could be a parent of a

65

biochemical mixture class. The mole or mass fractions of the class could become the
fractions in a size or strength range for a cell type. Some of the thermodynamic methods
would still be applicable. Vapour-liquid equilibrium calculations could also have applications
to a biochemical mixture. A vacuum flash operation might be applied to separate volatile
organics from an aqueous cell suspension, containing a General_Component_Mixture
object and an inert biochemical mixture. A full biochemical class structure on this basis is not
designed for the simulator. The development of physical and chemical property structures
was restricted in order to keep the project to a manageable size and permit the inclusion of

more comprehensive property facilities at a later date.

2.5 Summary

The design of the data structures for the simulator has been discussed in terms of the physical
and functional characteristics of a process flowsheet and the objectives outlined in Chapter 1.
These characteristics have been used to define class structures for three physical modelling

areas and numerical methods which are reviewed below:

o Structural. Based on a System class hierarchy for representing unit operations and
" flowsheets. System-type objects are connected to other System-type objects with:
objects of a Stream class. The boundaries and interface between System-type
objects and Stream-type objects is provided by a Port class hierarchy. A System-
type can contain other System-type objects to create a tree. A class, named
Sys_Man_Block is described for managing System-trees.

e Mathematical. Based on a Variable class hierarchy for representing equations,
variables and derivatives, and an Equation_Set class hierarchy for representing
algebraic and differential equation sets. Equation_Set-type objects can contain
other Equation_Set-type objects, similarly to System.

e Chemical Components, Mixtures and Properties Calculation. Based on three class
hierarchies: Component, General_Component_Mixture and Properties.
Component is the parent class for chemical components.
General Component_Mixture is a class for representing mixtures and Properties
is the parent class for various chemical and physical property calculation types.

e Numerical Methods. A multiple-inheritance approach to the numerical methods

proved to be unwieldy and a single-inheritance design was implemented. The

66

numerical methods are supplied as part of a collective Mathtool class that inherits

from a variety of different solver classes.

The simulator executive has been designed to be a generic data structure that may be mapped
to the low-level models. The main functional aspects of the three physical areas have also
been considered. The functional aspects discussed were the analysis of physical/mathematical
structures, evaluation of equations, evaluation of models, behavioural changes, numerical
methods, and interchangeable solution techniques and property calculation. The C++

implementation of the class structures is discussed in the next chapter.

67

CHAPTER 3

C++ Implementation

This chapter describes the implementation (in C++) of the class hierarchies designed in
Chapter 2. Structure and functionality are described concurrently. Complete class definitions
are not presented in this chapter. Emphasis is placed on the attributes and functionality
required for a user-developer to model unit operations and construct flowsheets. Examples of
the application of the classes to modelling will be provided in Chapter 4. Class names are

printed in bold type.

3.1 C++ Constructors and Destructors

Object-oriented programming is based on the creation of user-defined types. A C++ class
definition describes a data structure and tells the compiler what is in an object of a particular
class. In order for a user and the language compiler to create an object some further
information is required. The user and compiler need to know the states of the data are when a
new object is to be created (i.e. how to put it together). This information is contained within
member functions named constructors in C++. The number of different constructor functions
depends on how many different ways the class developer decides an object can be created. A
constructor function has the same name as the class that owns it. Different constructors take
different function arguments. If a constructor function is not defined for a class, the compiler
attempts to define one itself. It is poor programming practice to fail to define at least a default

constructor for a class. Complex classes nearly always require constructors to be defined.

Similarly, the compiler needs to know how to dismantle an object when it is no longer
required. The function that dismantles the object and frees the associated raw memory is
called a destructor. Only one destructor function may be defined for a class. A destructor
function has the same name as the class that owns it but is preceded by a tilde (~). A
destructor function may be non-trivial. The use of pointers to manipulate data structures and
objects is common in C++. There are potential execution problems if an object is destroyed

and other objects or data still contain references to the destroyed object. The data structure of

68

this simulator is designed so that interconnected objects are not destroyed until a simulation is
complete and the entire program exits to the operating system. This significantly simplifies
destructor coding, although a more sophisticated implementation would be required for more
advanced development. The role of constructors and destructors will become clearer in the

next chapter.

3.2 Vectors and Matrices

In practically all areas of programming, continuous collections and sets (arrays) of data types
are required. Matrix and vector computation is standard in numerical work. A criticism of
traditional implementations of arrays in computing languages is that a basic array in memory
does not know anything about its size, starting index or finishing index. The application of
object-orientation to address these deficiencies is obvious. A Vector class has been created
for this project that contains all the necessary information about an array of values: the
starting index, finishing index, memory location and functionality to inform the user when an

attempt is made to access memory out of the array bounds.

.~ C++ offers a further enhancement, which is the concept of a templaic class. A template class

is basically a class for classes. Template classes are explained in Eliis and Stroustrup (1994).
A template permits the Vector class to construct a vector of any type of object, so that a
Vector class is defined for every other C++ class. Vectors of System-types, Variable-types,
integer-types efc. can be created with a single, consistent declaration. Another advantage of
C++ is dynamic memory allocation. This means that a Vector-type object can be declared
without necessarily defining its size. The memory for the array of objects can be allocated in
the future. In ANSI C and C++ this is called dynamic memory allocation. C++ has built-in
error handlers in case sufficient memory is not available. The Vector class is a template class.

A similar Matrix template class has also been defined.

Another feature of dynamic memory allocation is that it enables arrays to be lengthened or
shortened. Only lengthening is implemented in this project. One application is the analysis of
the System/Equation_Set structure of a Flowsheet object where extra sets of equations are
added to the Flowsheet object’s set during the depth-first analysis. The lengthening
functionality incurs no penalty for access time in the lengthened Vector. Another feature

incorporated into the Vector class is the capacity for one Vector object to access another

69

Vector object’s array, provided they are of the same type. This is useful for passing arrays of
Variable and Equation object pointers to numerical methods. Objects from the Vector class
will be employed in unit operation examples later in the thesis. Examples of the use of

Vector and Matrix objects serve as a useful demonstration of some important aspects of C++.

A Vector object, called x, containing ten double precision elements, starting at index one and

finishing at index ten is declared by:

Vector<double> x(1,10):;

Elements are accessed by an integer argument in round parentheses, thus:

x(3) = 4.0;

Simple arrays in C or C++ are normally accessed with square brackets (e.g. x[3]). The
array operator [] could be overloaded in the Vector template ciass to mimic the simple array
. operator, however the () operator is overloaded instead to indicate to users that they are
working with a Vector-type object and not a simple array. Vector objects do not have to start
at index one, they can start at any index greater than or equal to zero. The end index must be
greater than or equal to the start index. A similar Vector object called f, containing ten

Flowsheet objects is created by the code statement:

Vector<Flowsheet> f£(1,10):

An unallocated Vector object x, containing double precision elements, is created by the code
statement:

Vector<double> x;

The Vector object’s size can be allocated later in the code by the statement:

x.build(1,10);

70

The x object above may be increased in size by the statement:

x.grow(l,5);

This adds five elements to the end of %, giving it an index range of x (1) #x (15). Accessing

another Vector object’s array is demonstrated by the code:

Vector<double> x(1,15), vy

x.s8ub access(y,5,15);

Two Vector objects x and y are declared. Only x is allocated storage. The Vector x then
assigns the unallocated array pointer in Vector y to elements x (5) ¥x (15). An important
point is that the elements of y default to y (1) $y (10) and not y (5) $y (15) . The principle
is illustrated in Figure 3.1. The Vector x owns the allocated memory and y has access to part

of x’s memory.

x(lS) y(10)

Figure 3.1: Multiple access of Vector objects.

This also illustrates the use of different constructors in a C++ class. Any type may be
allocated into a Vector object, provided the type has a default constructor. A default

constructor takes no arguments and generally puts an object together in the simplest way

71

possible. Inside the Vector class there is a constructor taking two integer arguments that
define the start and end indices of the array. The constructor then allocates the required
memory for the number of elements of the type passed to the Vector. This constructor runs
when the declaration Vector<double> x(1,15) is made. The Vector’s default
constructor (with no arguments) is run when the object y is created. This default constructor
sets the start and end indices to zero and ensures that the array inside the object is null. The
constructors and their arguments dictate how an object may be declared. It is not possible to
declare a Vector object x with the statement Vector<double> x(1,10,4) ; because no
constructor function exists that takes three arguments. The corresponding destructor function

for the Vector class deallocates the array’s memory.

The Matrix class is similar. A Matrix object called x, with three rows and five columns of

double precision elements is declared by the code statement:

Matrix<double> x(1,3,1,5);

The element in row three, column four is accessed and assigned by the code:

x(3,4) = 5.234

e

The indices are placed within a single pair of parentheses to decrease execution time for the
access operation. To overload the () operator to enable code such as x (3) (5) requires a
matrix to be stored as a Vector of Vectors, which greatly increases the access time for an
element by several factors. Slow access time is unacceptable, particularly for numerical

computation.

The arrays in both Matrix and Vector objects can be erased with a member function named

clear (). The object can be reallocated with the build (i, j) function described earlier.

Unit operation classes are created in the next chapter, which further demonstrates the

complexity and importance of constructors.

72

3.3 Process Class Structure

This section describes the implementation of the System, Stream and Port class hierarchies

in C++. Detailed descriptions of each class’ functionality are provided in Appendix A.

3.3.1 System Class and Descendants

The System-based data structure is implemented at an executive and a modelling level as
outlined in Chapter 2. The executive structure is the basic framework for process
representation and may not be modified. This structure relies on the basic attributes of a
connected physical system being similar. The majority of the executive structure is contained
inside the System class definition. The low-level structure is user-defined and deals
predominantly with object-based modelling. The low-level structure is implemented in

classes derived from System and is demonstrated in the next chapter with examples.

At the high level, a System owns inputs, outputs, other Systems, Streams, steady-state and
dynamic equation sets and a transformation model. These attributes are generic at this level.
The physical attributes are implemented as Vector objects containing pointers to objects of
the basic System, Input_Port and Qutput_Port classes. The mathematical attributes are

pointers to objects of the Equation_Set hierarchy.

The specific attributes must be invisible to the user and inaccessible except through a limited
set of interface functions. This is an application of the software engineering principle of
information hiding. These attributes are therefore private or protected in the System class
declaration. Without an insulated high-level structure it would be difficult to provide
consistent, user-extendable modelling facilities. In other simulation systems (e.g. OMOLA),

the high-level structure is protected by separating the modelling and development languages.

The executive interface functions are solely defined at the System level and are not virtual.
This prevents a user-developer from redefining the functions at a lower level and corrupting
the integrity of the data structure. The functions are designed to assign the executive-level
pointers to specific objects at lower levels. The member interface functions are described in

section A.1.1 of Appendix A.

73

Two pairs of virtual functions are defined for analysing the main steady-state and dynamic

Equation_Set objects in a System. One function in each pair performs the depth-first

connection and analysis of the main Equation_Set objects in each System and the second

function performs the depth-first collection and building of Vectors of Variable and

Equation pointers.

collection/building in Figures 3.2 and 3.3. The dynamic algorithms are similar.

Is this System
already analysed?

Does this System
own sub-Systems?

First suk-System

Next sub-System :l

]

E

Analyse sub-System

Append sub-System’s
Equation_Set to this
System’s Equation_Set

Are there any more
sub-Systems?

Analyse this System’s
Equation_Set

-~

Figure 3.2: System-class steady-state analysis algorithm.

The algorithms are shown below for steady-state analysis and

During the analysis the appended Equation_Set objects become “extra” Equation_Set

objects that will be built as part of the Equation_Set object that they are appended to (see

section 3.4).

74

Is this System
already built?

Build this System’s
Equation_Set

Figure 3.3: System-class steady-state collection/building algorithm.

The algorithms for analysis and building of Equation_Set-types are described in section 3.4.

The corresponding functionality is described in section A.1.2 of Appendix A.

The System class also contains virtual functionality for unit models and associated ancillary
functions. One steady-state and one dynamic function are provided for model definition. The
functions are named stst_moéiel () and dynamic_model () respectively. The default
operation is to run the dynamic_model () function for steady-state solution. This is based
on the assumption that a steady-state model is a dynamic model with time derivatives set to
zero. The model developer is required to ensure that separate steady-state models can

initialise a dynamic model correctly.

At the System level the dynamic model () function does nothing and must be redefined
for specific model types. These functions take no arguments because it is assumed that all the
relevant model values are part of the class definition. If this is not the case then the two
model functions can drive other functions that take arguments. Both the model functions
return an integer value. This value is zero for a failed model evaluation and nonzero for a

successful evaluation.

Three ancillary virtual functions are provided that take no arguments. The first is named
ss_output () and is designed to be redefined for each unit class to output relevant solution

Variable values at the conclusion of a steady-state simulation. The second function is named

75

update () and is automatically run for each unit after each time step in a dynamic
simulation. It can be employed for updating past array values, model switches and variable
output files, etc. The third function is supplied by both System and the Mathtool classes,
named disc_check (). Inlower level classes that inherit from System and Mathtool, the
two functions simply merge. The function disc check () is used for checking ahead for
discontinuities in dynamic simulation. The function returns zero if no discontinuity exists
over the next integration step and one if there is a discontinuity. The user is required to
specify how a discontinuity is detected within individual unit models. An associated
discontinuity variable is also available for the user to set or solve for the time at which the

discontinuity occurred. The default behaviour is to return with no discontinuity.

The two main child classes of System (excluding specific unit operation classes) are Unit and
Sys_Man_Block. Flowsheet and Convergence Block then inherit from the
Sys_Man_Block class. Specific unit operation classes may inherit from any of Unit,
Flowsheet or Sys Man_Block as required. The Mathtool class is a joint parent of the Unit
and Sys Man_Block classes. The Mathtool class does not contribute to the process structure
or unit models. It providss direct functionality to the Unit and Sys_Man_Block classes. The
numerical methods are discussed ini section 3.6. Unit is a pure interface class and contains no
further structure or functionality from System. Sys Man_Block contains no extra structure
but has refined functionality for modelling, setting up and solving groups of connected
System-types. The functionality drives the System-types it contains, for example the model
and discontinuity functions. Flowsheet inherits directly from Sys_Man_Block and contains
no extra structure or functionality. Note that the public functionality of the System class is

available also. The inheritance tree is illustrated in Figure 3.4.

76

Sys_Man_Block

Convergence_Block

Specific unit
operations classes

Figure 3.4: Combined System/Mathtool class hierarchy.

The Sys Man_ Block and Flowsheet classes contain a public virtual function named
initialise () which sets initial estimates for solution Variables of each unit.

Redefinition of the function in lower-level classes is optional.

The Convergence Block ciass is designed to reassign the input and output Variables. -
associated with Process_Streamé. It contains its own Variables, Equations, an
Equation_Set and a Vector of torn Process_Streams. There are public interface functions
for tearing process streams, specifying solution methods and reassigning the input and output
Variables of process units prior to solution. The interface functions are described in section

A.1.3 of Appendix A:

3.3.2 Port Class and Descendants

The Port class hierarchy provides objects for connecting System-types together with Stream-
types. The Port class contains a pointer to the System-type that owns it. This pointer is a
protected class member. The Port class also contains generic virtual functionality for
connecting input and output Variables. These functions are public because low-level

System-types must be able to drive the connection functions.

77

A high-level interrogation function for accessing the Variable pointers in a low-level Port-
type is provided. This function is public. This does not contravene the information hiding
requirement of the high-level structure. The Variable pointers do not exist at the Port level;
they only exist in lower level classes derived from Port (e.g. the Process_Input_Port class).
The specific Variable objects assigned to the pointers in a low-level Port class are user-
defined and therefore already accessible. The virtual interrogation function is designed to

provide an interface for model debugging.

The Port class is divided into Input_Port and Output_Port classes. These two classes
contain protected pointers to source and sink Stream-types. The high-level structure ends
with the Input_Port and Output_Port classes. There is a direction associated with most
connections in a flowsheet. The Port hierarchy caters for this with automatic functionality
that instructs the Variables associated with an Input_Port-type to remove themselves from
an equation analysis. This is done because the inputs to a unit are usually outputs from
somewhere else. For the purpose of constructing a solvable set of equations it is reasonable to
assum:e that unit inputs are constant. If the inputs are actually solution variabies they will be

analysed as outputs of the preceding units. This automatic “switching off” is user-revezzible.

The interface functions for the Port, Input_Port and Qutput_Port classes are described in

section A.2.1 of Appendix A.

The executive-level Port classes are not employed as modelling objects. At the lower level
six child classes are defined for process streams, signal streams and work streams with an

input and an output class for each.

The Process_Input Port and Process Output Port classes are for representing the entry
and exit of process mixtures from a System-type. Both classes own a mixture composition, a
total flowrate, and the temperature and pressure of the System-type that owns them. In
addition the Process_Input_Port class knows the temperature and pressure of the System-
type that feeds it and the Process_Output_Port class knows the temperature and pressure of
the System-type that it is feeding. This structure provides bi-directional information flow.

The application of this facility is demonstrated in Chapter 4. The flow, temperature and

78

pressure attributes are implemented as pointers to Variables. The mixture-composition

attribute is a pointer to a Vector.

The Variable pointer attributes are private to the class, although member functions are
provided to access them. Ideally the attributes should be completely inaccessible but this
makes it difficult for user-developers to exploit the bi-directional information flow. The
attributes are therefore private to ensure that access and modification is only possible through

a deliberate member function call.

Each class has its own implementation of the map () and
get_vars (Vector<Variable*> &v)functions of the Port class (see section A.2.1,
Appendix A). The bi-directional temperature and pressure attributes are set automatically by

the map () function. Interface functions are described in section A.2.2 of Appendix A.

The Signal Input_Port and Signal_Output_Port classes are for representing the entry and
exit of process signals from System-types, such as controller or measuring element signals.
The classes only have one attribute, which is the signal. The class structures -are exactly
analogous 1o the Process_Input_Port and Process_Output_Port classes, except that bi-
directional information flow is essentially automatic because there is no gradient associated
with a signal. The interface functions for each class are described in section A.2.3 of

Appendix A.

The Energy Input Port and Energy_Output_Port are classes for the transfer of energy to
and from System-types. The type of work is not specific; it can be heat, shaft power or
electrical efc. The class structure is the same as the Signal Input Port and
Signal Output_Port classes above. Connections with this Port-type have a nominal
direction but do not affect the numerical analysis. The interface functions are described in

section A.2.4 of Appendix A

It should be emphasised that a Port-type provides an optional connection point that is
independent of any equation structure. It is not necessary to connect Streams (see 3.3.3
below) to all of the Ports in a System. For example, the PI_Controller class owns a

Signal Input_Port for the setpoint. This enables cascaded control loops to be constructed.

79

However, a PI_Controller may be used as a stand-alone controller without a connection to

the setpoint Variable object. The complete Port class hierarchy is illustrated in Figure 3.5.

Process Output_Port Signal_Output Port

Signal Input Port
Process_Input_Port
Energy_Output_Port
Energy_Input_Port

Figure 3.5: Port class hierarchy.

3.3.3 Stream class and Descendants

The basic Stream class is implemented as a pure connector with no funciionality. Tt contains
“two privaté attributes for theﬂ source and sink Ports of the stream. It has three friend classes:
Port, Input_Port and Output_Port. A class declared as a friend of another class in C++ is
permitted to access the private and protected attributes of the class. This is reasonable in the
case of the Port hierarchy, the connectivity is controlled by the Ports so a Stream object
requires access to the physical mechanism of connection. The class has two interface

functions, get _source () and get _sink () , described in section A.3.1 of Appendix A:

These two functions are used for obtaining access to the Variable objects associated with a
particular Stream, for example with the Convergence_Block class. There are three low-level
child classes of Stream that correspond to the three low-level Port-types: Process_Stream,
Signal_Stream and Energy Stream. None of these classes contain further structure or
functionality. The three classes are derived to simplify coding of connections. The class

hierarchy is illustrated in Figure 3.6.

80

Stream

Signal_Stream

Energy Stream

Figure 3.6: Stream class hierarchy.

3.4 Mathematical Class Structure

This section describes the implementation of the Variable and Equation_Set hierarchies.

3.4.1 Variable Class and Descendants

The Variable class is used for representing possible solution variables in the simulator. It is
the parent class for the Derivative and Equation classes. The Variable class contains a
number of attributes. It contains a value and a pointer to another Variable for input-output
connections, upper and lower bounds, a switch to determine if it is a solution variable or
parameter and a switch to determine if it is to be analysed as part of an Equation. There are
also attributes that determine if the Variable has been analysed anad collected as part of an
Equation_Set. These attributes are protected and member functions are provided to assign or
access the values of the attributes. The list of public member functions is reasonably large for
this class (other member functions are protected for use by the Equation_Set hierarchy which
is a friend of this class). The public member functions are described in section A.4.1 of
Appendix A. The most important member functions are named operator (), which returns
the double precision value of the Variable object and =, for assigning values. Use of these

functions is demonstrated later in this section.

The Derivative class also contains a connection to its state Variable object. This is a
protected attribute and the Dynamic_Set class is a friend of the class. The member functions

are described in section A.4.2 of Appendix A.

The Equation class contains a list of the Variable objects that affect it. The list is modeller-
defined. The Equation class is descended from the Variable class because the status

functions, analysis and collection attributes and the value operator () are directly applicable.

81

The = operator is again overloaded for the class. The connection attribute of the Variable
class is potentially useful for assigning a solution Variable to an Equation. The Equation
class also contains two other protected attributes. One is a potential connection to a
Derivative if the Equation is dynamic and the other is a connection to a Variable-based
object if the Equation is to be written in explicit form. The public member functions of the

class are explained below for convenience in examining the C++ example that follows.
set no x(int n) assigns the number of Variables that affect the Equation.
include (Variable& v) includes a Variable in the list.

set derivative (Derivative& d) assigns the Derivative object of the

Equation.
set _exp var (Variable& v) assigns the explicit Variable for the Equation.

The principles of explicit and implicit Equation objects zre best illustrated by example.

Consider an equation written implicitly and explicitly below:

o
f

X — Xy (3.1
X = Xy (3.2)

In the class structure described, they would require an Equation object and two Variable
objects (say, e, x and y respectively). Evaluation of the implicit form is straightforward. The
C++ code would be:

e =x(0 - xO*y(O;

The terms x () and y () demonstrate the use of the operator () function described earlier.

The explicit form is slightly more complex. Writing the code as

x = x()*y();

82

does not include the Equation object e. It also overwrites the value of the Variable x which
is undesirable for interchangeable numerical methods. The solution is to use the Equation

object itself as the left-hand-side of the expression, thus:

e =x()*y();

The code required to setup this equation is simple:

Equation e;//declare Equation object

Variable x,y;//declare Variable objects

e.set no x(2);//Equation is affected by 2 Variables
e.include(x);//Include the first Variable
e.include(y);//Include the second Variable

e.set _exp var(x);//Set explicit Variable for the Equation

The Equation object then contains the result of the cxplicit calculation e = x () *y () and it
also knows which Variable the explicit expression: refers tc. Therefore the implicit equation
form is immediately available from the Equation object and the original value of x is
preserved. The implicit equation residual can be calculated by the numerical methods without
user intervention. The same principle is applicable to explicit and implicit dynamic

Equations. The Variable hierarchy is drawn in Figure 3.7 below.

Figure 3.7: Variable class hierarchy.

83

3.4.2 Equation_Set and Dynamic_Set classes

The Equation_Set and Dynamic_Set class structures are complex although the inheritance is
simple. The Dynamic_Set class inherits from Equation_Set. An Equation_Set owns a
pointer to a Vector containing Equation objects. A single Equation object may only be
incorporated as a single-element Vector. An Equation_Set may only connect to one Vector
of Equations. This one-to-one correspondence is enforced to encourage the isolation of
specific sets of Equations within a System-type. A Vector of Equations may be connected
to several Equation_Sets. This permits the definition of different mathematical structures
within a model. This is demonstrated in the next chapter. The design of the Equation_Set
hierarchy encourages the connection of Equation_Set types so the one-to-one correspondence
does not restrict mathematical modelling. The Dynamic_Set class can further connect to
other Dynamic_Set or Equation_Set objects. Mixed dynamic and steady-state Equations
are not permitted within the Vector of Equations for a Dynamic_Set. The Vectors are
protected in the Equation_Set class (to allow the Dynamic_Set class to use them) and
private in the Dynamic_Set class. If a purely algebraic Equation_Set is required for a

dynamic simulation, it must be made a subset of an empty Dynamic_Set.

- The Equation_Sei class owns two Vectors of pointers to Equations and Variables. The
Dynamic_Set class owns five additional Vectors of pointers: one each for the set of
Derivatives, algebraic Variables and Equations and the dynamic Variables and Equations.
These Vectors are passed to the numerical methods for solution. The Dynamic_Set class also
contains a pointer to an independent Variable. The Equation_Set class owns two Vectors of
pointers to other Equation_Set types. One Vector is for user-defined subsets of equations
and the other is for extra subsets connected during the depth-first analysis. An example is a
Flowsheet object: it has no user-defined subsets but collects the Equation_Sets of the
System-types it contains. A similar pair of Vectors is defined in the Dynamic_Set class for
dynamic subsets. The Vectors of pointers are protected in the Equation_Set class and
private in the Dynamic_Set class. The interface functions for the classes are described in

section A.4.4 of Appendix A.

The classes contain other functionality to ensure that Equation_Set objects are not repeated
in another Equation_Set-type (i.e. structurally singular) and for analysing and building the

Vectors of Derivatives, Variables and Equations. The owner System-type drives this

84

functionality. The building algorithms are illustrated for both classes in Figures 3.8 and 3.9.

The analysis algorithms are similar, except that the “build” steps are replaced with “analysis”

steps and the “extra” sub-sets do not exist. The “extra” sub-sets only exist after an analysis

step, as described in section 3.3.1 and Chapter 2, section 2.3.1.

s this Equation_Se
already built?

Daes this Equation_Set
own extra sub-sets?

First extra sub-set

Next extra
sub-set -

l.—

Build extra sub-set

Are there anymore
extra sub-sets?

finish

own sub-sets?

Does this Equation_Set

First sub-set

l.—

Build sub-set

Next
sub-set

Are there anymore
sub-sets?

Does this Equation_Se!
own Equations?

Build this
Equation_Set’s

Equations

[

Figure 3.8: Equation_Set building algorithm.

The analysis and collection functions are not virtual, so if a Dynamic_Set is incorporated as

the main steady-state set for a System-type; the Derivatives in the Equations are ignored.

The state Variables become potential solution Variables of the steady-state set. This applies

at all levels in a connected set of Systems and Equation_Sets and so Dynamic_Sets and

Equation_Sets can be mixed together in a steady-state analysis.

85

s this Dynamic_Set
already built?

Does this
Dynamic_Set
own extra dynamic
sub-sets?

First extra
dynamic sub-set

Dynamic_Set own
dynamic Equations?

Build this
Dynamic_Set’s
dynamic Equations

l._—__.

MNext extra
dynamic sub-set

Does this
Dynamic_Set
own extra algebraic
sub-sets?

Build extra
dynamic sub-set

Are there
anymore extra dynamic
sub-sets?

Does this
Dynamic_Set
own dynamic sub-sets?

First dynamic sub-set

First extra
algebraic sub-set

1.—

Next extra
algebraic sub-set

Build extra
algebraic sub-set

l‘,___

Next dynamic
sub-set

Are there anymore
extra algebraic
sub-sets?

Does this
Dynamic_Set
own algebraic
sub-sets?

Build dynamic sub-
set

Are there anymore
dynamic sub-sets?

r

First algebraic sub-set

3

E__

Next algebraic
sub-set

Build algebraic
sub-set

Are there anymore
algebraic sub-sets?

3

Figure 3.9: Dynamic_Set building algorithm.

86

To illustrate the application of the mathematical structure classes, consider a simple model of

balancing liquid height and volumetric flow in and out of a cylindrical tank. Two

simultaneous equations can describe the system:

dh
A E - En - F:mt = 0 (33)
F. . —-CJh = 0 (34)

Representation of these equations is simple:

Variable Fin, Fout,h,C;//declare Variables etc.
Derivative dhdt;

Vector<Equation> de(l,1),ae(l,1);//Single elements
Dynamic_Set d;

Equation Set e;

de(1l) .set mo x(3);//3 Variables affect this Equation
de(1l) .include(h);

de (1) .include (Fin) ;

de (1) .include (Fout) ;

de (1) .set derivative(dhdt);//set the Derivative object

dhdt.set state(h);

ae(l) .set no x(3); //3 Variables affect this Equation
ae(l) .include(h) ;
ae(l) .include (Fout) ;

ae(l) .include (C);

d.incorp eqns(de);//include the de Vector
d.set no ae sets(l);//has 1 algebraic set...
d.incorp ae set(ae,1);//... which is the ae object
//the set is now ready for analysis

//or Variable specification, e.g. constant(), var()

87

The code creates a connected tree of Equation_Set, Equation and Variable objects, as

illustrated in Figure 3.10.

Figure 3.10: Tank volume balance equation tree.

The tree may be traversed and analysed for solution either as a dynamic or steady-state
system. There is a X‘é.dundanlc branch associated with the Derivative dhdt and Variable L
The redundant branch is cémpulsory in mathematical structure definition to ensure that thc
model developer caters for steady-state and dynamic analysis explicitly. The flow coefficient
C is included as a Variable because in steady-state solution, a specified liquid height h
permits exact calculation of the flow coefficient. Alternatively, specification of the coefficient
permits calculation of the steady-state height. An example of a multi-component liquid

mixing tank model is provided in the next chapter.

3.5 Component, General Component Mixture and Properties classes

This section describes the Component, General Component Mixture and Properties
hierarchies. The calculations are based on S.I. units in all cases. The classes contain
comparatively little structure and the discussion emphasises the interface functions for various

calculations. The physical property class hierarchies are illustrated in Figure 3.11.

88

mta @
Equation_Of State
Peng_Robinson
General_Component_Mixture

Simple_Thermo

Figure 3.11: Physical property class hierarchies.

3.5.1 Component class and Descendants

The attributes of a conventional chemical component were discussed in Chapter 2. The
attributes of the Compenent class are: name, molecular weight, critical temperature, critical .-,
prqssﬁre, critical volu:_iﬁe, boiling point at standard conditions, freezing point at standard
conditions, acentric facfor, dipole moment, liquid and vapour specific heat, liquid and vapour
density and enthalpy of vapourisation at standard conditions. The class also contains a pointer
to text file which stores these attributes based on the name of the Component. These are all
private attributes. The attributes are defined in S.I. units where applicable. There are public
member functions to access the values of the attributes, set the datafile and retrieve the

Component information. The functions are described in section A.5.1 in Appendix A.

The class is refined into a User_Component class. The class contains extra functionality to

permit the user to define the properties, described in section A.5.2 of Appendix A.
A Component_Set class is also defined. It provides a container for groups of Components

to be attached to the General Component Mixture and Properties classes. The

functionality is simple and is described in section A.5.3 of Appendix A.

89

3.5.2 General Component Mixture class

The General Component_Mixture class contains a pointer to a Component_Set and a
corresponding double-precision Vector of mole fractions. It also contains pointers to
Thermo and VLE objects and reference values for temperature and pressure. These attributes
are private. The Thermo class is part of the Properties hierarchy and is discussed in the next
section. The class contains public interface functions to calculate general properties of
interest. Properties are calculated with respect to the reference values and state of the mixture.

The member functions are described in section A.5.4 of Appendix A.

Most of the functionality reflects the capabilities of an equation of state, discussed in the next
section. Some functionality will be invalid for simple approximate calculations. All vapour
pressure calculations are based on the Antoine equation. While departure functions of the
Equation_Of State hierarchy were implemented, only the methods for enthalpy and specific

heat are currently available.

3.5.3 Properties class and Descendants

The Prqperties class is a very simple parent for specific types of property calculation. The
main attnbute is a | Vector of Components, which it accesses ‘from the
General Component_Mixture it is attached to. Properties is the parent class for two types
of property calculation: thermodynamics and vapour-liquid equilibrium. The classes are
named Thermo and VLE respectively. These classes are high-level parents and cannot be
employed as modelling objects. They contain virtual functionality for the calculation of
thermodynamic and vapour-liquid equilibrium properties. Property calculation with lower-
level Properties-types is accessed through the interfaces of the
General_Component_Mixture class and not through the Properties descendants

themselves.

The Simple Thermo class inherits from the Thermo class. The class employs extremely
simple calculation methods, based on mole fraction averages of each Component’s
properties. The Ideal VLE class provides simple vapour-liquid equilibrium calculations,
based on Anioine constants. The user must supply the values of the constants, through the
interface functions. The interface functions are described in section A.5.5 of Appendix A.

Property calculation must be performed with the General_Component_Mixture class.

90

The Equation_Of State class inherits from the Thermo and VLE classes. It is designed for

cubic equations of state of the form:

RT a

P= -
V—-b V?+ubV +wbh?

(3.5)

The class contains functionality for the calculation of fugacity coefficients for vapour-liquid
equilibrium and departure functions for enthalpy, entropy, Helmholtz energy and Gibbs
energy. The class inherits into a more specific Peng_Robinson class that automatically
specifies the values of a,b,u and w above. Reid (1988) discusses equations of state and

calculation methods in detail.

3.6 Numerical Method Classes

Development of new algorithms was not an objective of the project. The basic numerical
method classes were described in the previous chapter. The inheritance tree is presented

below in Figure 3.12. S

Math_Top

Linear Solver

Nonlinear_Solver
DAE_Solver
Mathtool

Figure 3.12: Mathematical inheritance tree.

91

The numerical methods are part of the high-level structure of the simulator and are not
intended for modification. The Broyden and Newton methods are object-oriented
modifications of code presented in Press et. al. (1992), designed to exploit the Variable and
Equation structure. The Direct Substitution, Wegstein and Marquadt methods were coded
from algorithms presented in Henley and Rosen (1969). The Backward Difference integrator
was coded from an algorithm presented in Hall and Watt (1976). The backward differences

are computed with a Vandermonde matrix (Press et. al. 1992).

The Mathtool class interface functions are described in section A.6 of Appendix A.

3.7 Summary

The C++ class structure has been developed from the design requirements determined in
Chapter 2. The class structure has been discussed in terms of the attributes and functionality
available for a user to model and simulate unit operations and flowsheets. The process
structure is modelled with refined classes from the System, Port and Stream hierarchies.
Various connection types and multi-level System-based models can be ‘created. The
mathematical structure is modelled with classes from the Varigble and- Equation_Set
hierarchies. Multi-level mathematical structures are possible through a connection philosophy
similar to the System hierarchy. Equations can be implicit or explicit. Model evaluation is
based on steady-state and dynamic System-based model functions. Physical and
mathematical representation is achieved with a relatively small set of attributes and
functionality. The class hierarchies for Component, General Component Mixture and
Properties were described with reference to the property methods available. Examples of the

application of the C++ classes are provided in the next chapter.

92

CHAPTER 4

Modelling and Simulation

This chapter discusses some decomposition techniques applicable to process modelling,

followed by examples demonstrating the M.O.P.S. C++ classes for modelling and simulation.

4.1 Decomposition Techniques

The final goal of a simulation model is a valid mathematical description of the process. The
mathematical description can be developed in many different ways, depending on the frame of
reference that is applied to the system under consideration. The most basic model
development process is to code the complete set of equations for a model as one block within
the framework of the modelling environment. For small process models, with say, less than
ten equations this is reasonably fast and easy. There are drawbacks to this approach.
Modification of the model is a complex process because a small change alters the entire
miodel. This partially negates the advantages of object-oriented modelling. For large models
single equation blocks are time-consuming and unwieldy. Likewise, model validation is also

more difficult with large equation sets.

Usually a model is decomposed to reduce it to components that can be modelled and tested
individually. Nilsson (1993) provides a detailed discussion of two model decomposition
techniques, called Medium and Machine Decomposition and Primitive Behaviour

Decomposition.

4.1.1 Medium and Machine Decomposition

This technique divides the model into two systems, one for the machine-based model and one
for the medium. The machine is the vessel or physical container of the unit operation. The
medium is the mixture within the vessel. The model characteristics in each system depend on
the frame of reference. The machine could be considered as owning the dynamic behaviour
(holdups efc.) of the system and the medium could own the static behaviour of the system, for

example chemical equilibrium. This is known as a static medium model. Alternatively the

93

machine and medium division can be based on intensive and extensive properties. Extensive
properties such as total mass are part of the machine model and the intensive properties such
as component concentration are part of the medium model. This is known as a dynamic

medium model.

In both cases the two systems communicate via a connection interface. The interface for a
mixture of components would be similar to the Process_Port class described earlier. A
consistent interface offers the potential for different machine models to be connected to
different medium models. Machine and medium classes could be implemented with the

System class structure.

Medium and machine decomposition can be provided in two ways in an object-oriented
environment. A model could be constructed from medium and machine objects, or by
inheriting the desired medium and machine classes into a new model class. Both methods
require some sort of connection between common variables, for example the total input flow
which affects the total mass balance in a machine model and the coinponent concentrations in

a medium model. :

The emphasis of this project is to model complex systems as connected objects. However,
C++ offers the facility to access the attributes of the individual parent classes and so
decomposition by multiple inheritance is available. The General_Component_Mixture

hierarchy provides some of the facilities of the static medium model.

4.1.2 Primitive Behaviour Decomposition

A primitive behaviour of a model is behaviour that results from a particular modelling
principle or assumption, such as conservation of mass. Primitive behaviour decomposition
involves breaking a model up into compartments that define the model from the underlying
modelling assumptions. If the compartments can be defined as modelling entities themselves
with their own inputs, outputs and behaviour, modelling becomes a knowledge-based
procedure. Model equation sets are constructed by selecting an appropriate modelling
assumption, such as an object from a hypothetical Mass_Balance class. Several primitive
objects could be connected together to create a general model, with more specific details (e.g.

reaction rates) coded in on an as-needed basis.

94

As stated previously, a knowledge-based implementation was considered outside the scope of
the project. However, the existing class structure can accommodate aspects of a knowledge-
based environment. Consider the definition of primitive behaviour classes for mass,
component and energy balances. The mass and component balances could be incorporated
into a System-based class that owned Equation, Variable and Port-type objects. The energy
balance could be part of another System-based class with the same attributes plus an
Energy Output_ Port and a General Component Mixture-type for thermodynamic
calculations. In a specific reactor class these two primitives could be declared as objects of
type MassBal and EnergyBal, say, with the reaction kinetics coded by the developer.
Connections between the primitives and the rest of the model could be accomplished via the
Variable class’ connectivity or with Stream- and Port-types. The number of inputs and
outputs would be parameters of the constructor functions for MassBal and EnergyBal. The
basic equation structure for the model is defined from pre-validated modelling objects. A
knowledge-based implementation is a very basic building-block approach to process
modelling and simulation. The declaration of a flash-type for example is only a collection of

modelling assumptions about mass, energy and phase equilibrium.

4.1.3 Mathematical Decomposition

Methods have been described for the decomposition of a process model by various modelling
principles and assumptions. A further decomposition is based on the mathematical structure
of the modelling equations. This decomposition is applicable independently or as an
extension to the decompositions above. It is partially derived from the Equation_Set
structure. The requirements and attributes of mathematical modelling with the Equation_Set

hierarchy are reviewed below:

e An Equation_Set may connect to (or contain) any number of other Equation_Sets
as subsets.

e A Dynamic_Set may connect to (or contain) any number of Dynamic_Sets and/or
Equation_Sets as subsets.

e An Equation_Set-type may contain only one Vector of Equations.

e A Vector of Equations in an Equation_Set type may only contain either steady-

state or dynamic equations, not a mixture.

95

e An algebraic set of Equations for a dynamic simulation must be part of an

Dynamic_Set may contain subsets only and no dynamic Equations of its own.

Equation_Set. This Equation_Set must then be a subset of a Dynamic_Set. A

The one-to-one correspondence between an Equation_Set-type and a Vector of Equations

suggests decomposing the mathematical model into groups related to a particular model

aspect. This is best demonstrated with an example. Consider an open liquid mixing tank

similar to the one discussed in Chapter 2, redrawn in Figure 4.1. The system equations are

derived from a mole balance.

The equations and variables for the dynamic mole balance are given below:

dN,
dt

N i
Z o
i=l

Nt
Ap molar
P

P

out

Variables:

Figure 4.1: Cylindrical liquid mixing tank.

Fz, - Lx, I..n
x;N

i !

1

h

Pmass &
P+P

atm

xi(”)?zi(n)sNi(n)aN,sL,Fsh’Pap

out

(41)
(4.2)

(4.3)

(44)

(4.5)
(4.6)

96

The tank is adequately modelled by equations (4.1 - 4.6). A mole balance is performed
because this is compatible with the rest of the simulator structure. The minimum number of
Vectors of Equations is two, one for the dynamic equation (4.1) and one for the algebraic
equations (4.2 - 4.6). This requires a corresponding Dynamic_Set with an Equation_Set
connected as a subset to represent the DAE system. The decomposition could be extended
further. Equation (4.2) relates component holdups to total holdup and could form their own
Equation_Set object. Equations (4.3), (4.4) , (4.5) and (4.6) could be part of a second
Equation_Set object.

Depending on the simulation requirements, the system could be decomposed by separating the
equations according to the requirements of steady-state and dynamic simulation. The full set
could be solved in steady-state to initialise a dynamic simulation with the correct holdups.
Equations (4.1) and (4.3) are adequate for a purely steady-state analysis where holdups are

irrelevant.

The Equation_Set hierarchy can accommodate a variety of equation structures within one
model. Four Equation_Sets and ohe Dynramic_Set can cater for the options discussed so far.
To do this, one Equation_Set is attached to each of equations (4.2), (4.3) and the triplet
(4.4),(4.5),(4.6). One Dynamic_Set and one Equation_Set is attached to equations (4.1).
This is permitted within the data structure; a Vector of Equations may have a one-to-many
connection with Equation_Sets (the Vector does not “know” if it is attached to anything).
The three Equation_Sets for equations (4.2), (4.3), (4.4), (4.5) and (4.6) are then made
algebraic subsets of the Dynamic_Set. This provides the full steady-state and dynamic
holdup model. The smaller steady-state model is created by connecting the Equation_Set
that owns equations (4.1) to the Equation_Set for (4.3). The simulated model is selected by
assigning the appropriate set through the incorp main ss set (Equation Set& e)

and incorp main dyn_ set (Dynamic_Seté& d) functions of the System-class.

4.2 Modelling Examples

The mixing tank will be used as an initial example of modelling with the C++ classes. The
model will be in a basic form without physical properties or an energy balance. The
mathematical structure will be the full steady-state and dynamic model discussed above.

Other models will be developed in this section to demonstrate bi-directional information flow,

97

connected system modelling, multiple inheritance of characteristics and complex physical
property, energy and mass balance modelling. The modelling process employed is similar to
the development of the simulator class structure; the physical attributes are determined
followed by the mathematical structure. Variable and Equation_Set types and most member
functions are generally public attributes. This follows from a similar philosophy to the
ASCEND (Picla et al. 1990) modelling language where the user can manipulate whatever
element of the structure they desire. This facilitates model debugging and the initialisation

and assignment of values. Unless specified, measurement units are in the S.I. system.

4.2.1 Mixing Tank

The mixing tank drawn in Figure 4.1 has one input and one output stream. These connections
are represented by a Process_Input_Port and a Process_Output_Port. Associated with each
Port-type is a Vector of compositions, a temperature and a pressure. It is assumed for this
simple example that the liquid level is not an interface Variable and that the vessel cannot
overflow. The set of equations (4.1) - (4.6) contains the compositions, holdups, holdup
derivatives, the tank level, area; fluid-density and outlet pressure. The equations are assigned
to two Equation Sets and oug Dynamic_Set: The Dynamic_Set owns equation (4.1). One
Eguation_Set owns equation (4.2) and equations (4.3) - (4.6) are allocated to the other
Equation_Set. The class declaration describes what the attributes of the Tank class will be
and any functionality that the class owns. The class must inherit the high-level System
attributes from the Unit class. The C++ class declaration is given below. Comment
statements are indicated by italic text that follows a double forward slash (//). C++ code is in

bold type.

#ifndef MIXTANK HPP

##define MIXTANK HPP

//Standard C/C++ practice for header files, avoids multiple
//inclusion of files. File name is ™ mixtank.hpp” .

#include ™ unit.hpp” //Includes the Unit class header file.
//The unit.hpp header file contains all the basic header files
//required for modelling units, such as mathematical
//operations, screen output, Equation Sets, Variables etc.

class Mixing Tank:public Unit{//Commence class declaration.
//Inherits from the Unit class.
public://Attributes at this modelling level are public.

98

Vector<Variable> z,x,N;//Declare inlet and outlet
//composition and holdup vectors.
Vector<Derivative> dANAdt; //Declare holdup derivative
//vector.
Vector<Equation> de,ael,ae2;//Declare dynamic and
//algebraic equation vectors.
Variable Pin,Pout,Tin, Tout;//Declare inlet and
//outlet pressure and temperature.
Variable F,L,Ntot,h,P,Patm; //Declare inlet and
//outlet flow, total molar holdup,
//1liquid height, height pressure
//and atmospheric pressure.
Equation Set egmnsetl,eqnset2;//Declare
//Equation_Sets.
Dynamic_ Set dynsetl;//declare Dynamic_Set
double rhomass,rhomolar,Area,g;
//Declare mass density,
//molar density, tank area and
//gravitational acceleration.
//Not solution variables. Must be set
//by the user.
int nc; //Declare variable to hold number of
//components in the tank.
ProcesénInpdt_Port in; //Declare input port.
Process.Output Pert out;//Declare output port.

int dynamic model();//Declare the dynamic model.

void setup():;//Declare function to connect ports.

Mixing Tank(int n, int no comps);//Declare
//constructor function. Both arguments
//are integer types. Argument n 1s an
//index number for the System-type,
//no_comps is the number of components
//in a stream.

~Mixing Tank() {};//Declare destructor function.
//It does nothing but it is good
//programming practice to include a
//null definition

}:;//End of class declaration

#tendif//End of #ifndef above

It should be noted that no assignments are permitted within a class declaration in C++; hence
the Vector objects are declared with no dimension. A molar and mass density are required.
Normally these are available directly from the physical property classes but this model has no
physical property calculation objects. The Vector dimensions are allocated within the class

constructor. The three member functions dynamic model (), setup() and

99

Mixing Tank (int n, int no_ comps) must be defined for the class. The definitions

are given below. The constructor function is the most complex.

Mixing Tank::Mixing Tank(int n, int no comps) :Unit(n){//Start
//constructor definition.

//The constructor is where an object of the class 1is put

//together. Note that the ‘n’ argument 1s passed directly to

//the Unit constructor function, Unit(n).

int i;//Declare counter variable 1.
nc=no_comps;//Assign value in no_comps to nc.

//Allocate Vector objects.
z.build(1l,nc);

x.build(1l,nc);

N.build(1l,nc);

dNdt.build (1, nc);

de.build(1l,nc);

ael.build(l,nc);

ae2.build(1,4);

//Finished allocating Vector objects.

//Start physical structure definition.
in.set tot flow(F);,//Assign the total flow Variable for "=
//the inlet.
in.set fracs(z);//Assign the composition Vector for the
//inlet.
in.set press inlet(Pin);//Assign the pressure Variable
//for the inlet.
in.set temp inlet(Tin); //Assign the temperature Variable
//for the inlet.
in.set_press_owner (Patm); //Assign the owner’s pressure
//for the inlet. Necessary for
//bi-directional information
//flow. Open tank will always be
//at atmospheric pressure.
in.set temp ownmer (Tout);//Assign the owner’s temperature
//for the inlet. Necessary for
//bi-directional information
//flow.

out.set_tot flow(L);//Assign the total flow Variable for
//the outlet.

out.set fracs(x);//Assign the composition Vector for the
//outlet.

100

out.set press outlet(Pout);//Assign the pressure Vafiable
//for the outlet. R

out.set_temp_outlet(Tout);//Assign the temperature -
//Variable for the outlet.

//This unit has no energy balance and is an open tank.
//Therefore the temperature inlet and outlet Variables
//should be connected for continuity from one unit to the
//next.

Tout.connect_to(Tin);//Connect outlet temperature to the
//inlet temperature.

set no_inpstrms(l);//Set the number of input streams.
set no outstrms(l);//Set the number of output streams.

own input port(in,l);//The tank owns the inlet.
own_output_port(out,l);//The tank owns the outlet.
//End physical structure definition.

//Start mathematical structure definition.
for (i=1;i<=nc;i++){//Loop over dynamic Equations.
//Corresponds to equations (4.1) in the
//text.
de(i) .set no x(5);//Each differential Equation has 5
//Variables.
de (i} /inciude (F) ; //Include iniet flow F.
de (i) .include(z (1)) ;//Include inlet composition
//element z(1i).
de (i) .include (L) ; //Include outlet flow L.
de(i) .include(x(i));//Include outlet composition
//element x(1i).
de (i) .include(N(i));//Also include the state
//Variable (holdup element N(i)).
de (i) .set derivative(dNdt(i));//Set the derivative
//for this Equation.
de(i) .set exp var(dNdt(i));//The Equation stores
//the Derivative dNdt (i)as
//its explicit Variable
// (see Chapter 3, section 3.4.1).
}//End dynamic equation loop.

for(i=1;i<=nc;i++){//Loop over Derivatives.
dNdt (i) .set state(N(i));//assign the state Variable
//for each Derivative.
}//End loop over Derivatives.

for (i=1;i<=nc;i++) {//Loop over first set of algebraic

//Equations. Corresponds to equations (4.2)
//in the text

101

ael (i) .set no x(3);//Each algebraic Equation in this
//Vector has 3 Variables.
ael(i) .include(N(i));//Include holdup N(i).
ael(i) .include(x(i));//Include composition element
//x(1).
ael (i) .include (Ntot) ; //Include total holdup Ntot.
//Note that no explicit Variable is assigned for
//these Equations. They must be written in the
//model in fully equation-oriented form.
}//End loop over first set of algebraic Equations.

ae2 (1) .set no x(nc);//Corresponds to equation (4.3) in the
//text. Has the nc elements of the x
//composition Vector.
for(i=1;i<=nc;i++) {//Loop over the x composition
//elements.
ae2(1l) .include(x (1)) ;
//No explicit Variable is assigned.

}

ae2(2) .set no x(2);//Corresponds to equation (4.4) in the
//text. Has 2 Variables.

ae2(2) .include (Ntot) ; //Include the total holdup Ntot.

ae2(2) .include(h) ; //Include liquid height h.

- //No explicit Variable is assigned.

ae2 (3) .set_no x(2);//Corresponds to equation (4.5) in the
//text. Has 2 Variables.
ae2 (3) .include(P) ; //Include the height pressure P.
ae2(3) .include(h); //Include the liquid height h.
//No explicit Variable is assigned.

ae2(4) .set no x(2);//Corresponds to equation (4.6) in the
//text. Has 2 Variables. Note that
//Patm is not included in this Equation
//because it is never a solution
//Variable.

ae2(4) .include(Pout) ; //Include the outlet pressure Pout.

ae2 (4) .include(P) ; //Include the height pressure P.

//No explicit Variable is assigned.

dynsetl.incorp_eqns(de);//Attach the de Vector to the
//Dynamic Set object dynsetl.

eqnsetl.incorp eqns(ael);//Attach the ael Vector to the
//Equation_Set egnsetl.

egqnset2.incorp eqns(ae2);//Attach the ae2 Vector to the
//Equation_ Set egnset2.

102

dynsetl.set no ae sets(2);//dynsetl has two algebraic
//subsets.

dynsetl.incorp ae set(egnsetl);//egnsetl is a subset.

dynsetl.incorp ae set(eqnset2);//so is eqnset2.

incorp main ss set(dynsetl);//dynsetl is the main
//steady state set for this
//model. Dynamic Sets can be
//analysed for steady-state
//solution (see Chapter 3,
//section 3.4.2).

incorp main dyn set(dynsetl);//dynsetl is the main
//dynamic set for this model.

//End mathematical structure definition.

Patm = 1013.0;//Set atmospheric pressure in kPa.
g = 9.81;//Set gravitational acceleration in m/s/s.

}//End constructor definition.

The constructor describes an equation-oriented model. A very important aspect of equation-
oriated simulation and modelling must be emphasised here. If the unit comrputation order is
aru.iary, any interface Variable (i.e. a Variable associated with a Powmi-iype! sthat is &
potential solution Variable must be part of a simultaneous Equation. Consider equations
(4.4), (4.5) and (4.6). These are very simple equations with obvious explicit solutions. If the
equations were in explicit form and a unit downstream of the tank is calculated before the
tank, the value of the pressure in the connecting stream will be incorrect. The stream pressure
will still be at the value from the previous iteration until the tank is calculated. The
convergence of a steady-state system could be retarded or destabilised and a dynamic
integration would contain a constant error. At this stage the project has no algorithm available
to determine computation order. An ordering algorithm would be a great advantage because
the requirement of including all interface Variables in simultancous Equations increases the
dimensions of a problem. Alternatively a sparse solution method could be provided to reduce

the solution time of the fully equation-oriented system.

The code for evaluation of the model is placed inside the virtual dynamic model ()

function:

103

int Mixing Tank::dynamic model() {//Start mathematical model

//definition

int i;//Declare counter.
double xsum; //Declare mole fraction summation.
//Evaluate DEs.
for(i=l;i<=nc;i++){
de(i) = F(O)*z(i) () - L *x(i) ();
//Note that the derivative does not appear
//in the evaluation. This is because the
//Derivative has been set as the explicit
//Variable for the Equation. See constructor
//above and Chapter 3, section 3.4.1.
}//End DE evaluation.

xsum=0.0; //Initialise mole fraction summation.
//Evaluate first set of AEs.
for (i=1;i<=nc;i++)
ael(i) = x(i) () *N(i) () - Ntot():
//These Equations have no explicit Variable.
xsum = xsum + x(1i) ();//Calculate summation.
}//End first AE evaluation.

//Evaluate other AEs.

ae2(1)
“an(z)
"ae2(3)

ae2 (4)

xsum - 1.0;
h() - Ntot () / (rhomolar*A) ;
rhomass*g*h() - P()*1000.0;//1060.0 converts to

//kPa.
Pout() - (P() + Patm());

//End other AE evaluation.

return OK; //Model evaluation complete. Return OK signal.

}//End mathematical model definition

The dynamic model () function above is run for both steady-state and dynamic

simulation. The final member function definition is trivial and drives the map () functions of

the Port-types within the tank:

void Mixing Tank::setup() {//Start setup/connection function

//definition.

in.map () ;//Connect inlet.
out.map () ; //Connect outlet.

}//End setup/connection function definition.

104

The class declaration and function definitions are straightforward and the purpose of the code
statements is reasonably clear. For many models, a class definition and these three member
functions are sufficient to describe a model that is compatible and solvable within the
simulator structure. The tank area, mass and molar density must be set before the model can
be simulated. In this example, no member functions have been defined to set these
parameters, so the parameters must be accessed directly from an object of the Mixing Tank
class. The tank only has one input and one output stream. The System class provides basic
connectivity functions (Chapter 3, section 3.3.1), which enable Process_Streams to be
connected to a Mixing_Tank object. An example is provided below that demonstrates

connectivity and specification of the class’ parameters:

Mixing Tank tankl(99,1);//index number 99, 1 component
Process_Stream strml,strm2;

...//etec

tankl.rhomass = 1000.0;//e.g. water, 1000 kg/m"3
tankl.rhomolar = 55.55;//kgmol/m”"3

tankl.area = 0.785;//about 1 metre diameter

...//etc
tankl.inp stream(strml,1l);
tankl.out stream(strm2,1);

Non-descriptive connectivity is acceptable for System-types with few connections. For
models with several connections, it is usually necessary to define specific functions within the
model class that connect Stream objects appropriately. This is demonstrated in the examples

later in this chapter.

4.2.2 Bi-Directional Information Flow

Bi-directional information flow will be demonstrated with a Control_Valve class. As
discussed in Chapter 2, flow through a valve can be modelled with a square-root dependence
on the pressure drop. For a control valve, flow F is given by equation (4.7) below. The

dependence of flow on mixture density is ignored in this example. P,;, and P

on

, are the inlet

and outlet pressures of the valve, x is the stem position and C is the valve constant.

F,=xC\P, —-P

out in out

(4.7)

105

The inlet and outlet pressures of the valve are defined by the vessels that are upstream and
downstream of the valve. The inlet pressure is automatically available from the inlet Port-
type but the outlet pressure must be obtained from the downstream vessel. In addition, the
flow through the valve dictates the flow out of the upstream vessel for an incompressible
fluid. The upstream vessel’s outlet flow should therefore be reassigned to the valve’s outlet
flow. A valid connection structure is still created without the flow Variable reassignment. In
this case the upstream vessel and not the valve will own the solution Variable for flow. The
operations required to reassign connections are moderately complicated but are explained in

detail below. The flow will be reassigned in this example.

The Control_Valve class has three connection points: a Signal Input Port, a
Process_Input_Port and a Process_Output Port. It also has flow, stem position, valve
constant, temperature and pressure Variables, an Equation_Set and a Dynamic_Set. A

composition Vector is also required. The class declaration is given below.

#ifndef CONVALVE HPP

#define CONVALVE HPP

//Standard C/C++ practice for header files, avoids multiple
//inclusion of files. File name is ™ convalive.hpp” .

#include ™ unit.hpp” //Includes the Unit class header file.
//The unit.hpp header file contains all the basic header files
//required for modelling units, such as mathematical
//operations, screen output, Equation Sets, Variables etc.

class Control Valve:public Unit{//Commence class declaration.
//Inherits from the Unit class.
public://Attributes at this modelling level are public.

Vector<Variable> z;//Declare composition vector.
Vector<Equation> ae;//Declare algebraic equation
//vector.

Variable Pin,Pout,T;//Declare inlet and
//outlet pressure and a temperature.
Variable Fout,Fin,C,x;//Declare flows, valve
//constant and position variable.
Equation Set eqgmsetl;//Declare Equation Set.
Dynamic_Set emptydyn;//Declare Dynamic Set. Will
//not have any dynamic Equations.
int nc; //Declare variable to hold number of
//components in composition Vector.
Process Input Port in;//Declare input port.
Process Output Port out;//Declare output port.

106

Signal Input Port sig in;//Declare signal port.

//Declare 3 connection functions.
void flow in(Stream& str);

void flow out(Stream& str);

void signal in(Stream& str);

int dynamic model();//Declare the dynamic model.

void setup();//Declare function to connect ports.

Control Valve(int n, int no_comps);//Declare
//constructor function. Both arguments
//are integer types. Argument n 1s an
//index number for the System-type,
//no_comps is the number of components
//in a stream.

~Control Valve(){};//Declare destructor function.
//Does nothing but it is good
//programming practice to include a
//null definition

Y://End of class declaration

#endif//End of #ifndef above

The class’ constructor is:

Control Valve::Control Valve(iat n, VL
int no comps) :Unit(n){//Start
//constructor definition.
//The constructor is where an object of the class is put
//together. Note that the ‘n’ argument is passed directly to
//the Unit constructor function, Unit(n).

nc=no_comps; //Assign value in no comps to nc.

//Allocate Vector objects.

z.build(1,nc);

ae.build(1,1);//Vector only has one Equation.
//Finished allocating Vector objects.

//Start physical structure definition.
in.set_tot flow(Fin);//Assign the total flow Variable for
//the inlet.
in.set fracs(z);//Assign the composition Vector for the
//inlet.
in.set press inlet(Pin);//Assign the pressure Variable
//for the inlet.
in.set temp inlet(T); //Assign the temperature Variable
//for the inlet.
out.set tot flow(Fout);//Assign the total flow Variable

107

//for the outlet.
out.set fracs(z);//Assign the composition Vector for the
//outlet.
out.set press outlet(Pout);//Assign the pressure Variable
//for the outlet.
out.set temp outlet(T);//Assign the temperature
//Variable for the outlet.

//Note that the composition Vector x and

//temperature T are common to both the inlet and outlet
//process ports. There is no holdup or energy balance in
//the valve, so common Variables provide direct inlet -
//outlet connections.

sig in.set signal var(x);//Assign the signal Variable
//for the signal inlet

set no inpstrms(2);//Set the number of input streams.
//One process input and one signal input.
set no outstrms(l);//Set the number of output streams.

own_ input port(in,1l);//The valve owns the process inlet.
//See definition of ™ flow in(Stream& str)” below.

own input port(sig in,2)://The valve owns the signal
//iniet.

//See definition of ™ signal in(Stream& str)” below.

own_ output port(out,l);//The tank owns the process
//outlet.
//See definition of ™ flow out (Stream& str)” below.

//End physical structure definition.
//Start mathematical structure definition.

ae(l) .set no x(4);//Corresponds to equation (4.7) in the
//text.

ae(l) .include(Fout) ; //Include the outlet flow Fout.
ae(1l) .include(C) ; //Include the valve constant C.

ae(1l) .include(x);//Include the stem position Xx.

ae(l) .include(Pin) ; //Include the inlet pressure Pin.
ae(1l) .include(Pout) ; //Include the outlet pressure Pout.

egnsetl.incorp eqns(ae);//Attach the ae Vector to the
//Equation Set egnsetl.

emptydyn.set no ae sets(l);//emptydyn has one algebraic
//subset.

108

emptydyn.incorp ae set(egnsetl);//egnsetl is a subset.
//Note that emptydyn owns no Equations itself.

incorp main ss set(emptydyn);//emptydyn is the main
//steady state set for this
//model. Dynamic Sets can be
//analysed for steady-state
//solution (see Chapter 3,
//section 3.4.2). Could also
//have assigned eqnsetl here.

incorp main dyn set (emptydyn);//emptydyn is the main
//dynamic set for this model.

//End mathematical structure definition.

}//End constructor definition.

The model function is trivial:

int Control Valve::dynamic model () {//Start mathematical model
//definition

ae(l) = Fout() - x()*C()*sqgrt(Pin() - Pout()):;
return OK; o

}//End mathematical model definition

Three connection functions were declared in the class. These functions call the System-level
connection functions. Application-specific connection functions should be defined in classes
with complex connectivity to clarify the purpose of each input and output Stream-type. The
index n in the call to the out stream(Stream& strm, int n) should correspond to
the index n in the call to own output port (Output Port& p, int n). The same

applies to the input functions. This is demonstrated as follows:
void Control Valve::flow in(Stream& str){//Attaches inlet
//Process_Stream
inp stream(str,1l);//The Process Input Port ” in” 1is the

//first ™ owned” Input Port-type in the
//constructor function.

109

void Control Valve::signal in(Stream& str){//Attaches inlet
//Signal Stream

inp stream(str,2);//The Signal Input Port ” sig in” 1is
the

//second ™ owned” Input Port-type in

//the constructor function.

}

void Control Valve::flow out (Stream& str){//Attaches outlet
//Process_Stream

out stream(str,1l);//The Process Output Port ” out” 1is the
//first ™ owned” Output Port-type in
//the constructor function.

The setup () function is where the bi-directional information flow is exploited. The
downstream pressure is obtained and connected to by interrogating the Process_QOutput_Port
out. The upstream vessel’s flow is reassigned to the valve’s outlet flow Fout. The
setup () function is:

void Control Valve::setup(){//Start setup/connection function
//definition.

in.map () ;//Connect process inlet Variables.

sig in.map();//Connect signal inlet Variable.
out.map();//Connect process outlet Variable.

//The connections have been made. Now the Variables
//can be reassigned.

//Reassign pressure.
Pout.connect to(out.get pressure sink());

//The statement above 1s a dual function call. The
//call ™ out.get pressure sink()” obtains the address
//of the pressure Variable of the downstream vessel.
//The valve’s output pressure Variable, Pout, is then
//immediately connected to the pressure Variable
//returned by the get pressure sink()function.
Pout.check (OFF) ; //Pout is a solution Variable

//of the downstream vessel and should not be analysed
//as part of the valve’s Equation Set.

//Reassign flow. Uses another dual function call.
(Fin.get connection()) ->connect to(Fout);

//This is more complicated. The call

//" Fin.get connection()” obtains the address of the
//outlet flow Variable of the upstream vessel. The ™ ->”

110

//operator dereferences the address (obtains the actual
//Variable object)and connects the outlet flow Variable
//of the upstream vessel to the outlet flow Variable of
//the valve.

(Fin.get connection()) ->check(OFF);//The upstream flow is
//now a solution Variable of the valve and should not be
//analysed as part of the upstream vessel’s Equation Set

}//End setup/connection function definition.

The reassignments above cannot be made until the Port-types and their Variables have been
connected by the map () functions. The Variable Fin is a dummy that takes no part in
solution or equation analysis. The purpose of Fin is to enable a connection to be made
between the Process_Input_Port in and the Process Output Port of the upstream vessel
prior to the connection reassignment. If the flows were not to be reassigned, Fin would not
be required at all. The Ports in and out would both be attached to Fout in a similar

fashion to the Variable T.

The reassignment would affect sequential-modular simulation. Without the reassignment, the
flow solution Variable is owned by the upstream vessel. Therefore in a sequential-modular -
simulation, the valve could nct be solved for the flow because the flow would be specified by
the solution of the upstream vessel. With the reassignment, the upstream vessel could not be
solved for the flow because the flow is a solution Variable of the valve. The ownership of the
flow solution Variable affects the problem specifications that may be made. Similar
problems occur with the pressure reassignment. The simulator data structure permits these
problems to be overcome easily with the Sys Man_Block class. The upstream vessel, valve
and downstream vessel could be incorporated into a Sys_Man_Block object. Then the
Sys_Man_Block object can be incorporated into a Flowsheet object instead of the three
separate units. A Convergence_Block object can then drive the Flowsheet object. The
three-unit system can then be analysed and solved as one equation-oriented System-type,
removing the restrictions on problem specification. The reassignment of Variable
connections becomes irrelevant. The code for grouping the vessels together and incorporating

them into a Flowsheet object is simple:

111

Process Stream strml,strm2;//Other Streams would be
//required
//in a large flowsheet
Vessel upstream(l,6),downstream(2,6) ;
Control Valve v1(2,6);
Sys Man Block smbl(999);
Flowsheet flwsht(111l);

upstream.out stream(strml,1l);
vl.flow in(strml);

vl.flow out(strm2);

downstream.inp stream(strm2,1);

smbl.set sys(3);

smbl.incorp sys(upstream,l);
smbl.incorp sys(vl,2);
smbl.incorp sys (downstream,3) ;

flwsht.incorp sys(smbl,1l);

4.2.3 Connected System Modelling

Flowsheet-level modelling with connected Systems is briefly introduced above. Connected
System objects can also be created within a class definition. This is illustrated with the
definition of a Ratio_Controller class. The Ratio_Controller class will be developed from
simplified PI_Controller and Ratio_Block classes. The final model is an aggregation of an
object from each class. The advantage of this approach is that the model is constructed

completely from tested, validated objects in the same way as a flowsheet definition.

The mathematical model for the PI_Controller class is:

£ = (48)
et) = Y-y, (1) (49)
c(t) = Kc(e(t)+%l(t)j+cs (410)

112

K, is the controller gain, 7; is the integral time, e(?) is the error, I(?) is the integral of the error,
Vo) is the setpoint, y, (¢ is the measured variable, c(?) is the controller output signal and ¢, is

the steady-state controller output or bias signal.

The mathematical model for the Ratio_Block class is:

S

4.11)
V>

ot

R, is the output ratio and y, and y, are the input signals. R, becomes the measured variable

out

Ym(®) in the Ratio_Controller class and y,,(?) becomes the specified signal ratio.

The PI_Controller class declaration for this example is :

#ifndef PICONT HPP

#define PICONT HPP

//Standard C/C++ practice for header files, avoids multiple
//inclusion of files. File name is ™ picont.hpp” .
#include ™ unit.hpp” //include Unit class header file.

class PI Controller::public Unit({
public:

double Ke¢,Ti;//Gain and integral time.
Variable c,cs,e,ysp,ym,1;//Variables in equations
//4.8 - 4.10 above.
Derivative dIdt;
Vector<Equation> de,ae;//de is for equation 4.8,
//ae is for equations 4.9 and 4.10.
Dynamic_Set de set,ae set;//For de and ae above.
Signal Input Port meas in,sp in;//Measured value
//and setpoint signal input ports.
Signal Output Port sig out;//Controller signal
//output port.
void set Kec(double k) {Kc
void set Ti(double t){Ti

k
t

e e

}
}

~e e

//Connection functions below.
void measured in(Stream& str);
void setpoint_in(Stream& str);
void signal out (Stream& str);

void setup():;
int dynamic model () ;

113

PI Controller(int n);//” Normal” constructor.
//Argument n is set to the System parent’s
//index number. Used for a stand-alone
//controller object.

PI Controller();//C++ default constructor.
//Same as above, with no index number set.
//Required for declaring objects within
//class structures, e.g. Ratio Controller
//model with objects.
PI Controller(int n, int m):;
//Used for multiple-inheritance modelling.
//Only creates mathematical structures and attaches
//Variables to Port-types. Does not manipulate
//System-level data structure. See section 4.2.4
//below.

}; //End class declaration

#endif

This class is a simplification of the class actually implemented in the simulator and inherits

directly from Unit. The dynamic model () function for the PI_Controller class is:

int PI Contreller::dynamic model() {//start model ey)

de(l) = e();//de(1) is the LHS of equation 4.8.
ae(l) = ysp() - ym();//ae(1) is the LHS of
//equation 4.9.
ae(2) = Kec*(e() +1.0/Ti*I()) + cs8();
//ae(2) is the LHS of equation 4.10.
return OK;

}//End model.

The setup () function for the PI_Controller class is:

void PI Controller::setup() {//Start setup.
meas_in.map () ;
sp_in.map();

sig out.map();

}//End setup.

114

The Ratio_Block class declaration is:

#ifndef RATBLOCK HPP

##define RATBLOCK HPP

//Standard C/C++ practice for header files, avoids multiple
//inclusion of files. File name is ™ ratblock.hpp” .
#include ™ unit.hpp” //include Unit class header file.
class Ratio_Block::public Unit{

public:

Variable Rout,yl,y2;//Variables in equation 4.11
//above.

Vector<Equation> ae;//ae is for equation 4.11.
Dynamic Set de set,ae set;//For ae above.

Signal Input Port sig A,sig B;//Measured
//values.

Signal Output Port ratio;//Ratio output port.

//Connection functions below.

void signal A in(Stream& str);

void signal B in(Stream& str):;

void ratio out(Stream& str);

//These connection functions are only valid
//for a stand-alone Ratio Block object.
//They must be redefined in the child
//Ratio_Controller class because the
//connectiVity is partly based on the
//System-level data structure.

void setup():;

int dynamic_model() ;

Ratio Block(int n);//” Normal” constructor.
//Argument n 1is set to the System parent’s
//index number. Used for a stand-alone
//object.

Ratio Block();//C++ default constructor.
//Same as above, with no index number set.
//Required for declaring objects within
//class structures, e.g. Ratio Controller
//model with objects.

Ratio Block(int n, int m);

//Used for multiple-inheritance modelling.

//Only creates mathematical structures and attaches
//Variables to Port-types. Does not manipulate
//System-level data structure.

}; //BEnd class declaration

#endif

115

The dynamic_model () function for the Ratio_Block class is:

int Ratio Block::dynamic model () {//s tart model
ae(l) = Rout() - v1()/y2();

return OK;
}//End model .

The setup () function for the Ratio_Block class is:

void Ratio Block::setup(){//Start setup.
sig A.map () ;
sig B.map () ;

ratio.map() ;

}//End setup.

The connection functions of the PI_Controller class are:

measured in(Stream& str) connects the Stream that supplies the measured
variable.

setpoint in(Stream& str) connects the Stream that supplies the setpoint in
cascade control systems. This is an optional connection.

signal out (Streamé& str) connects the Stream that carries the output signal.

The connection functions of the Ratio_Block class are:

signal A in(Stream& str) connects the Stream that supplies the first signal.

signal B in(Stream& str) connects the Stream that supplies the second

signal.

ratio_out (Signal& str) connects the Stream that carries the output ratio.

116

The Sys Man_Block class is a suitable parent because it is designed for managing sets of
connected Systems. No extra Variables are required for the model definition. A
Dynamic_Set is required for the main steady-state and dynamic set of the class. The class

definition is below:

#ifndef RATIOCON HPP

#define RATIOCON HPP

//Standard C/C++ practice for header files, avoids multiple
//inclusion of files. File name is ™ ratiocon.hpp” .
#include ™ smblock.hpp” //Includes the Sys Man Block class
//header file.

#include ™ picont.hpp” //Also include PI Controller
#include ™ ratblock.hpp” //and Ratio Block class headers

class Ratio Controller:public Sys_Man_Block{//Commence class
//declaration. Inherits from the
//Sys _Man Block class.

public://Attributes at this modelling level are public.

PI Controller ctrllr;//Declare PI Ccntroiler
//object
Ratio Block ratio;//Declare Ratio Block object
Signal Stream internal conn;//Declare a
//Signal Stream for an internal
//connection.
Dynamic_ Set dynsetl;//Declare Dynamic Set.

//Declare 3 connection functions.
void signal A in(Stream& str);
void signal B in(Stream& str);
void signal out (Stream& str);

Ratio Controller(int n);//Declare constructor
//function.

~Ratio Controller(){};//Declare destructor
//function.
//Does nothing but it is good
//programming practice to include a
//null definition

}://End of class declaration

#endif//End of #ifndef above

117

In the class definition, no setup () or dynamic model () functions are declared. The
Sys_Man_Block class runs the setup and model functions of any subsystems it contains. The
user is required to explicitly indicate the subsystems. This is part of the constructor function

below:

Ratio Controller::Ratio Controller (int n) :Unit(n){//Start
//constructor definition.

//The constructor is where an object of the class is put

//together. Note that the ‘n’ argument is passed directly to

//the Unit constructor function, Unit(n).

set sys(2):;//Initialise number of subsystems
incorp sys(ratio,l);//Incorporate subsystems
incorp sys(ctrllr,2);

//Start internal connections. Creates a pseudo-
//flowsheet.

ratio.ratio out(internal conn);

ctrllr.measured in(internal conn);

//End internal connections

incorp_main_ ss_ set(dynsetl);//dynmsetl is the main
//steady-state get for this
//model .

incorp main dyn set(dymsetl);//dynsetl is the main
//dynamic set for this model.

}//End constructor definition.

The simulator executive automatically attaches the Dynamic Sets of the ratio and
ctrllr objects to dynsetl in the equation analysis step. The two objects do not have to
be connected with a Signal_Stream. They may be connected directly with their respective
Variable objects for measured variable and output ratio because these attributes are public.
This breaks the boundaries defined by the Port-types within the objects. However, there
might be circumstances where a Port-type is not available for the Variable objects of interest

and direct connection between Variable objects is the only option.

If a class contains its own Equations and its own Ports in addition to other Systems, new
setup () and dynamic model () functions are required. The functions must operate on
the Equations and Ports of the class and the subsystems are operated on by the functionality

in the ancestor Sys Man_Block class.

118

The three connection functions declared in the class definition drive the connection functions

of the ratio and ctrllr objects:

void Ratio Controller::signal A in(Stream& str){

ratio.signal A in(str);//Connect directly to ratio
//object

}

void Ratio Controller::signal B in(Stream& str) {

ratio.signal B in(str);//Connect directly to ratio
//object.

}

void Ratio Controller::setpoint in(Stream& str) {

ctrllr.setpoint in(str);//Connect directly to ctrllr
//object.
}

void Ratio Controller::signal out (Straam& str) {

ctrllr.signal out(str);//Connect directly to ctrllr
//object.

An example of a Ratio_Controller object is provided below:

Ratio Controller RC(1l);//index number 1.
Signal Stream signal B,signal A,con sig;
... /J/ete.

RC.signal A in(signal A);
RC.signal B in(signal B);

RC.signal out(con sig);

//Note no setpoint signal.

119

4.2.4 Multiple Inheritance Modelling

Multiple inheritance modelling is performed at the class level as opposed to the aggregation
approach with objects in the previous section. Multiple inheritance modelling does not
provide the same level of automatic consistency as aggregation. The developer models with
inherited attributes that do not necessarily provide an encapsulated object with specific
interfaces. Depending on the application this can be considered an advantage or a

disadvantage.

The System data structure supports permit multiple inheritance of characteristics as described
in section 4.1.1. However, the successful implementation of multiple-inheritance modelling is
dependent on the constructor functions of the parent classes. In the modelling examples
above, the constructors drive a number of System-level functions to define System
boundaries with Ports and incorporate Equation_Sets. The System class is a virtual base
class (Ellis and Stroustrup, 1994) of Unit and Sys_Man_Block and consequently only one
copy of the System data structure exists for each model class. This is necessary for the
principle of incorporated subsystems to work effectively. The virtual base class also restricts
the operations that may be carried out on the System data structure. A class with multiple
parents (or multiple levels of refinement, e.g. System-Unit-Controller-PI_Controller) will
have several ancestor constructor functions that are run prior to the constructor function of the
new class. If all the low-level constructors of a class with multiple parents try to manipulate
the same System-level data structure in turn, an object of the new class will not initialise
correctly (if at all). The solution is straightforward: any model class capable of being a
parent of another class must contain at least two constructor functions. The constructor
functions require different arguments in order for the correct constructor to be identifiable and
run. One of the constructor functions will be similar to those already presented, with
mathematical and physical connection structures fully described. The other constructor will
still describe the mathematical structures and associate Variables with Port-types, but will
not declare ownership of Port-types or incorporate Equation_Set-types into the System-level
structure. This constructor only operates on modelling objects at each class’ level and ignores
the System-level data structure. The reason for this is because it is only at the most refined
level (i.e. the new model class) that the final structure is known. Therefore the most refined
constructor is the only one that may operate on the System-level structure. This constructor

will be quite complex as a result. All the ancestor Equation_Sets, connection Variables and

120

Ports must be known and available to the constructor (public or protected) in order for it to
build the model correctly. The low-level connection functions (e.g.
signal out (Stream& str) above) must be redefined for each parent class, because
part of each connection is made at the System level. This is more complicated than
aggregating a model with objects because it requires a great deal more knowledge of the

ancestor modelling classes.

The Ratio_Controller class will now be redefined as a class with multiple parents. The

multiple-inheritance constructors of the parent classes must first be examined:

PI Controller::PI Controller(int n, int m):Unit(n) {

de.build(1,1);//Only 1 element, equation 4.8.
ae.build(1,2);//Equations 4.9 and 4.10.

de(l) .set no x(1);//One variable affects equation 11.
de(1l) .include(e) ;

de(l) .set_outputvar(dIdt);//Explicit output variable
//for this equation is the derivative dIdt. See

//” dynamic_model () ” funetion:in section 4.2.3.
dIdt.set state(I);

de set.incorp eqns(de);

ae(l) .set no x(4);//Four variables affect equation 4.9.
ae(l) .include(e);

ae(l) .include(I);

ae(l) .include(c);

ae(l) .include(cs);

ae(l) .set _outputvar(e);//Explicit output variable
//for this equation is the controller output c. See
//” dynamic model ()” function in section 4.2.3.

ae(2) .set no x(3);//Three variables affect equation 4.10.
ae(2) .include(e);

ae(2) .include(ysp) ;

ae(2) .include (ym) ;

ae(2) .set outputvar(e); //Explicit output variable

//for this equation is the controller error e. See

//” dynamic model ()” function in section 4.2.3.

ae set.incorp eqgns (ae);

de_set.set no ae sets(1l);

121

de set.incorp ae set(ae set);

meas_in.set_signal var(ym);
sp in.set signal var(ysp):
sig out.set signal var(c);

}//end constructor

In this constructor, the argument int m is not used. The extra argument is designed to be
used for conditional construction (e.g if (m==1) efc.) in complex multiple-inheritance
models where different structures may be necessary depending on the modelling

requirements.

The multiple-inheritance constructor for the Ratio_Block class is:

Ratio Block::Ratio Block(int n, int m):Unit(n){
ae.build(1,1);//Only 1 element, equation 4.11.

ae(l) .set_no x(3);//3 variables affect equation 4.11.
ae(l) .include(Rout) ;.. -

ae(l) .include(yl):

ae(l) .include(y2) ;

//Fully implicit equation, no explicit variable.
//See dynamic_model () function in section 4.2.3.

ae set.incorp eqgns(ae);

de set.set no ae sets(1l);
de set.incorp ae set(ae set);

sig A.set signal var(yl);

sig B.set signal var(y2);

ratio.set_signal var (Rout);
}//End constructor

The class declaration for the multiple-parent Ratio_Controller class is similar to the

aggregated object class declaration:

#ifndef RATIOCON HPP

#define RATIOCON HPP

//Standard C/C++ practice for header files, avoids multiple
//inclusion of files. File name is ™ ratiocon.hpp” .

122

#include ™ picont.hpp” //Also include PI Controller
#include ™ ratblock.hpp” //and Ratio Block class headers

class Ratio_Controller:public PI Controller, public
Ratio Block{//Commence class
//declaration. Inherits from the
//Sys _Man Block class.
public://Attributes at this modelling level are public.

Dynamic Set dynsetl;//Declare Dynamic Set.

//Declare 4 connection functions.
void signal A in(Stream& str):;
void signal B in(Stream& str);
void signal out(Stream& str);
void setpoint in(Stream& str);
//Only 4 Ports used out of 6.
void setup():;

int dynamic_model () ;

Ratio Controller(int n);//Declare constructor
//function.

~Ratio Controller(){};//Declare destructor
//function.
//Does nothing but it is good

. //programming practice to include a
//null definition
}:;//End of class declaration

#endif//End of #ifndef above

Some of the connection functions must be redefined to reflect the different System-level
structure. There are now six Ports in the Ratio_Controller class. Only four of these are
required for external connections. The constructor for the Ratio_Controller class must run
(specifically) the multiple-inheritance constructors of the two parent classes. It must also
explicitly combine the Equation_Sets of the two parent classes together, allocate the various
Ports to the System structure, connect Variable ysp to Rout and remove ysp from the
mathematical structure, as follows:

Ratio Controller::Ratio Controller (int n):
PI Controller(n,0),Ratio Block(n,0){//Start
//constructor definition.
//The constructor is where an object of the class 1s put
//together. The Unit and System class structures are
//provided by the parent classes. Note the argument ‘0’
//in the call to the parent multiple-inheritance constructors.

123

//This argument is not used in either of the parents’
//constructors, it could be set to any valid integer value.

incorp main_ss_set(dynsetl);//dynsetl is the main
//steady-state set for this
//model.

incorp main dyn set(dynsetl);//dynsetl is the main
//dynamic set for this model.

ysp.connect to(Rout);//Connect variables.
ysp.check (OFF) ;//ysp is really Rout and not

//a separate Variable anymore. It will be examined
//for analysis and collection as Rout.

set_no_inpstrms(3);//3 potential input connections.
own_ input port(sig A,1):;
own input port(sig B,2);
own input port(sp in,3);

set no outstrms(l);//1 output connection.
own output port(sig out);

dynsetl.set_no_dyn subsets(2);//Has no Equations
//of its own, just the Dynamic_ Sets of the parent
//classes.
dynsetl.incorp K dyn set (PTI _Controller::de_set);
dynsetl.incorp dyn set(Ratio Block::de set);

//The ™ ::” 1is the scope resolution operator. It
//identifies a function or piece of data as an
//attribute of a particular class.

//i.e. PI Controller::de_set means the object
//de_set that is owned by the PI Controller class.

}//End constructor definition.

The redefined connection functions are:

void Ratio Controller::signal A in(Stream& str){

inp strm(str,1);//System-level.

}

void Ratio Controller::signal B in(Stream& str){

inp strm(str,2);//System-level.

124

void Ratio Controller::setpoint_in(Stream& str) {

inp strm(str,3); //System-level.

}

void Ratio Controller::signal_ out(Stream& str){

out strm(str,1);//System-level.

New setup () and dynamic_model () functions must be defined to run the parent

functions:

int Ratio Controller::dynamic model(){//start model

PI Controller::dynamic model();//Run parent models.
Ratio Block::dynamic _model () ;
return OK;

}//End model.

The setup () function for the Ratio_Block class is:

void Ratio Controller::setup(){//Start setup.

PI Controller::setup();//Run parent setups.
Ratio Block::setup();

}//End setup.

In the setup () function above, all six Ports of the two parent classes will be mapped. This
is acceptable because connection to Ports is optional and so the two Ports without
connections (meas_in from PI_Controller and ratio from Ratio Block) will
automatically ignore any connection commands. The setup () function could also have

been redefined to map only the four Ports with potential connections.
The construction of the Ratio_Controller class with multiple inheritance does not require

much more code than the aggregated object example, but more detailed knowledge about the

underlying class structures is required. Objects of the new class may also be corrupted easily.

125

All the connection functions of the parent classes are public and therefore available from the
child class through the scope resolution operator or directly (e.g.
Ratio Block::signal A in(Stream& str) and measured in(Stream&
str)). These connection functions still operate on the System structure at the parents’ level
and will corrupt the structure created by the Ratio_Controller constructor unless they are
redefined to do nothing. The connection functions of the internal objects in the aggregated
Ratio_Controller class are also available, but invoking them requires the identification of a
specific internal object, i.e. ctrllr or ratio. The use of the multiple-inheritance based

Ratio_Controller class is exactly the same as the aggregated class.

In further examples all models are created by aggregation or a completely new class definition

without multiple inheritance.

4.2.5 Modelling with Physical Properties

As a final modelling example, a dynamic, molar holdup flash model will be developed with a
two-phase component mixture, equation-of-state physical property calculations and an energy:

balance. The vessel is illustrated in Figure 4.2.

F;zix hF —
—_—

Figure 4.2: Flash vessel.

The equations for the dynamic molar holdup model of an equilibrium flash vessel with n
components are given below. N, N, and N, denote the total, liquid and vapour molar
holdups respectively for each component. N, and N, denote the total molar holdups in the

liquid and vapour phases respectively. V,,, ¥V, and ¥V, denote the total vessel, vapour and

126

liquid volumes. The model is directly applicable to steady-state simulation if the liquid level

h is specified.

dN,
dt

(NLCpL + NVCpV)—

0

S O O O O O

Variables:
F,VDLﬂT’PDQJ

Ny N, V..V, .h,

z;(n), x;(n), y;(n),
Ni(n)a NLi(n)a NV,-(”)

Fz, - Lx, - Vy,

Q+Fh, —Lh, -Vh,

yi—Kx,

Zx,. — 1l
i=l
Z.Vi -1
i=1

N,-N,,-N,,
N, x,—N,,
Nyy, =Ny,
Vo=V, -V,

tot

Total Equations:

Total Variables:

l.n (4.12)
1 (4.13)
1.n (4.14)
1 (4.15)
1 (4.16)
1. 4.17)
1. (4.18)
1. (4.19)
1 (4.20)
1 (4.21)
1 (422)
1 (4.23)
Sn+7

6n+11

In Figure 4.2 there are four obvious Ports: feed, liquid, vapour and heat duty. Three more

Ports are required, for transmitting level, temperature and pressure signals. The constructor

allocates equations (4.12) - (4.23) to separate Equation_Sets according to their purpose.

Equations (4.12) and (4.13) are dynamic equations (de and de set below), (4.14) are

equilibrium relations (egbm and egbm set), (4.15) and (4.16) are mole fraction

summations (mfs and mfs set), (4.17) are total component mole balances (cmb and

cmb_set), (4.18) are liquid phase mole balances (1mb and 1mb_set), (4.19) are vapour

phase mole balances (vmb and vmb_set) and (4.20) - (4.22) are volume balances (vb and

vb_set). The vessel is assumed to be cylindrical. The vessel area and volume are also set

127

through the constructor. The constructor function for the Flash class is listed in Appendix B.

The class declaration and dynamic model are listed below:

#ifndef FLASH HPP

#define FLASH HPP

//Standard C/C++ practice for header files, avoids multiple
//inclusion of files. File name is ™ ratiocon.hpp” .
#include ™ unit.hpp” //include Unit class header file.
#include *“ physprop.hpp” //Includes the physical properties
//header files.

class Flash::public Unit{
public:
double Vol,Area,hmax;
int nc;//Number of components.
Vector<double> K;//Equilibrium constants.
Vector<Variable> x,y,z,N,Nv,Nl; //Liquid, vapour
//and feed compositions, total molar, vapour and
//ligquid holdups.
Vector<Derivative> dNdt; //Molar holdup derivatives.
Derivative dTdt;//Temperature derivative.
Variable Tin,Pin,T,P,Q,F,V,L,VL,VV,NL,NV, h; //Other
//variables.
Vector<Equation> de,egbm,mfs, cmb, lmb,vmb, vb;
Dynamic_Set de_set;
Equation Set egbm set,mfs set,cmb set,
lmb set,vmb set,vb set;
//de = dynamic equations (egqns 8 & 9).
//egbm = equilibrium equations (egqn 10).

//mfs = mole fraction summation (egns 11 & 12).
//cmb = component mole balance (eqn 13).

//1lmb = liquid mole balance (egn 14).

//vmb = vapour mole balance (egn 15).

//vb = volume balances (eqn 16,17,18 & 19).
Peng Robinson peng rob;//Physical properties.
General Component Mixture VL mix;//2 phase mixture.

Process Input Port feed;//Process inlet.

Process Output Port vapour,liquid;//Process outlets
Signal Output Port level sig, press sig, temp sig;
//Signal ™ transmitters” .

Energy Input Port heat;//Heat duty.

void feed in(Stream& str);//Connection functions.
void heat in(Stream& str);

void liquid out(Stream& str);

void vapour out (Stream& str);

128

void level out(Stream& str);
void temp out (Stream& str);
void press_ out(Stream& str);

void setup();//Input-output connection
int dynamic_model () ; //Model
void attach compset(Component Set& cs){
VL Mix.incorp compset (cs);
VL mix.incorp Thermo (peng rob);
VL mix.incorp VLE (peng rob);
}:
//attach set of Components to VL mix object
//can define functions inside class header
//1if desired
void initialise();//set initial estimates
void ss output();//prints out steady-state
//solution.
Flash(int n, int no comps, double vol,
double diam);//Constructor.
//Creates equation structure and connects
//variables to port interfaces etc.
~Flash(){};//Null destructor.

}://End class declaration

int Flash::dynamic model () {//Start model

int i;
double CpL,CpV,hF,hL,hV,xsum,ysum, rhoL, rhoV;

//Start physical properties.
CpL = VL mix.CpL(T(),P());
CpV = VL mix.CpV(T(),P());

hF = VL mix.H mix(Tin() ,Pin());
hL = VL mix.H 1ig(T(),P());
hV = VL mix.H vap(T(),P());

VL _mix.calec Ki(K,T(),P());
rhol. = VL mix.rhoL molar(T(),P());
rhoV VL mix.rhoV molar(T(),P()):;
//End physical properties.

//Start equation evaluation.
for(i=1;i<=nc;i++)
de(i) = dNdt() - F()*z(i) () +
LO*x(1) () + VO*y(i)(); //Equation 4.12

129

de (nc+l) = (NL()*CpL + NV{()*CpV) *dTdt () -
Q) - FO*hF + L()*hL + V()*hV; //Equation 4.13

Xsum =
ysum =

o O

. .

o O
-

e

for (i=l;i<=nc;i++){
egbm(i) = y(i) () - K(i)*x(i) ();//Equation 4.14
xsum = xsum + x(i) ();
ysum = ysum + y(i) ()

}

mfs (1)
mfs (2)

xsum - 1.0; //Equation 4.15
ysum - 1.0; //Equation 4.16

for(i=1l;i<=nc;i++){
cmb (i) = N(i) () - Nv(i)() - N1(i) (); //Equation 4.17
1mb (i) N1(i) () - x(i) () *NL(); //Equation 4.18
vmb (1) Nv(i) () - y(i) O*NV(); //Equation 4.19

}

vb (1) Vol - VL() - VV(); //Equation 4.20
vb (2) VL() - NL()/rhoL; //Equation 4.21
vb(3) = vv() - NV()/rhoV; //Equation 4.22
vb (4) h() - VL()/Area; //Equation 4.23

//End equation evaluation.

return OK:;
}//end model.

4.3 Simulation

Although this thesis is not intended to be a user’s manual, a small example that performs a
steady-state simulation of a Flash object serves as a useful introduction to simulation with the

M.O.P.S. C++ classes.

4.3.1 Instruction Sequence

A specific sequence of C++ instructions must be supplied in order to generate simulation code
that will compile and run correctly. The objects and member functions of the M.O.P.S. C++

classes should not be manipulated in an ad hoc manner. The sequence of instructions for

130

describing a problem with the simulation classes is simple and logical. A flowchart of the
steps required is presented in Figure 4.3. The flowchart is applicable to steady-state and
dynamic simulation. If a steady-state simulation is employed to initialise a dynamic
simulation, two instruction sequences are required. The steady-state sequence would be
exactly as in Figure 4.3 but the dynamic sequence that follows would commence at the “setup
problem specification” block. An example of a combined steady-state and dynamic

simulation file is provided in Appendix D.

| start | setup assign
process »| process
connectivity values
declare J simulate
simulation v v
objects setup analyse
process and build
units equation sets out‘put
set'up ‘ results
physical v ;
properties setup . setap solver
problem . and |
specification estimates @
L

Figure 4.3 Simulation instruction sequence.
The “setup problem specification” and “assign process values” steps may be mixed together
because it is more convenient in complex processes to assign specifications and values on a

unit-by-unit basis.

4.3.2 Steady-state example

A three-component steady-state flash example is demonstrated using the Flash class described
earlier. The components are arbitrarily selected to be ethane, propylene and heptane. The
flash conditions are 400.0 Kelvin and 5.0 bar absolute. The feed conditions are 450.0 Kelvin

and 8.0 bar absolute. The reference conditions for the enthalpy calculations are 1.0 bar

131

absolute pressure and 298.15 Kelvin. Physical properties are calculated with the Peng-

Robinson equation of state with binary interaction parameters set to zero.

The simulation input file for the example is presented below. The steps illustrated in Figure
4.3 are clearly indicated in the code. The file must be compiled and linked as part of the rest

of the simulator structure.

#include ™ simstuff.hpp” //” simstuff.hpp” contains
//the general header files for various classes for
//flowsheet simulation, such as the Flowsheet and
//Process Stream classes

#include <fstream.h>//include standard C++ header
//for file stream types

#include ™ flash.hpp” //include Flash class header file

void main(void){//start C++ program
int i;// Counter.
//DECLARE SIMULATION OBJECTS
Flowsheet flwsht(999);//Declare a Flowsheet object.
Flash flsh(1,3,10.0,1.5);//index no. 1,
//3 components, 10 m~3 volume&, 1.5 m diameter

Process_Stream feed__str,vapo'df_str, liquid str;
Energy Stream heat str;

Component ethane (™ C2H6”),propylene(™ C3H8”);
Component heptane (™ NC7H16”) ;

Component Set comp set(3);//Has 3 components.

ifstream hcs ("hydrocar.dat");//C++ ifstream object
//containing hydrocarbon property data
//FINISHED DECLARING SIMULATION OBJECTS

//SETUP PHYSICAL PROPERTIES

comp set.incorp comp (ethane, 1) ;
comp set.incorp comp (propylene,2);
comp set.incorp comp (heptane, 3);

comp set.set datafile(hcs);
comp set.get properties();

flsh.attach compset (comp set);
//FINISHED SETTING UP PHYSICAL PROPERTIES

132

//START PROCESS LAYOUT/CONNECTIVITY
flsh.feed in(feed str);
flsh.vapour out (vapour str);
flsh.liquid out(liquid str);
flsh.heat in(heat str);

flwsht.set sys(1l);//Only has one unit....

flwsht.incorp sys(£flsh,1);//...which is the flash drum.

//FINISHED PROCESS LAYOUT/CONNECTIVITY

//SETUP PROCESS UNITS
flwsht.setup();//Set up the units in the flowsheet.
//FINISHED PROCESS UNIT SETUP

//START PROBLEM SPECIFICATIONS
flsh.Tin.constant () ; //Feed and process conditions
flsh.Pin.constant () ; //are specified parameters.
for(i=1;i<=3;i++)flsh.z (i) .constant();
flsh.F.constant () ;

flsh.T.constant () ;
flsh.P.constant () ;
flsh.h.constant () :
//FINISHED PROBLEM SPECIFICATIONS

//ASSIGN PROCESS VALUES

flsh.z (1) 0.2;//Ethane feed mole fraction.
flsh.z(2) = 0.3;//Propylene feed mole fraction.
flsh.z(3) = 0.5;//Heptane feed mole fraction.
flsh.F = 0.05;//kmol/s. Equivalent to

//about 3.4 kg/s feed.

flsh.Tin 450.0; //Feed temperature.
flsh.Pin 8.0E5; //Feed pressure.
flsh.T = 400.0;//Flash temperature.
flsh.P = 5.0E5;//Flash pressure.

flsh.h = 2.5;//Liquid height in metres.
//FINISHED ASSIGNING PROCESS VALUES

//START ANALYSIS AND BUILDING OF EQUATION SETS
flwsht.ss analyse();//Analyse and build

flwsht.ss build();//equation structure.
//FINISHED ANALYSIS AND BUILDING OF EQUATION SETS

//SETUP SOLVER AND INITIAL ESTIMATES
flwsht.setup solve();//Send to solver.
flwsht.initialise();//Sets up initial estimates
//for units in flowsheet

133

//SIMULATE THE PROBLEM

flwsht.solve NEWT();//Solve flowsheet.

//OUTPUT RESULTS

flsh.ss output();//Print out the answer.

//At this point the flowsheet’s equation

//structure could be reset and re-analysed for

Valves would be required

//on the vapour and liquid streams with specified
//pressure drop to create a full dynamic simulation.
//These would normally be solved for valve coefficients
//as part of the steady-state simulation to provide

//dynamic simulation.

//a consistent initialisation.

}//End of C++ program

Process_Stream, Energy_Stream and Flowsheet objects are employed for completeness

although they are not actually necessary in this example because the Flash class owns all of

the relevant Variables. In general, single-unit steady-state and dynamic simulations may be

run with only an object of the class and correct problem specifications. Stand-alone numerical

models without any connectivity may also be created and solved.

The results for the simulation are in Table 4.1. Compositions are in mole fractions.

Feed | Vapour | Liquid
Temperature (K) 450.0 400.0 400.0
Pressure (bar) 8.0 5.0 5.0

ethane 0.2000 | 0.2194 | 0.0133

propylene 0.3000 | 0.3268 | 0.0416

heptane 0.5000 | 0.4538 | 0.9451

Total Flow (kmol/s) 0.05 0.0453 | 0.0047
Cooling Duty (kW) 724

Table 4.1: Composition and duty for vapour-liquid flash calculation.

134

4.4 Summary

Several model decomposition techniques were presented in this chapter. Medium and
Machine Decomposition divides the model into the physical object (machine) and vessel
mixture (medium). Primitive Behaviour Decomposition creates composite models from sub-
objects that are in turn based on modelling principles and assumptions (e.g. conservation of
mass). Mathematical Decomposition is based on organising the equations in a model into sets
according to the equations’ purpose in the model (e.g. mass balance, equilibrium, steady-state

or dynamic etc.).

Modelling examples were provided to demonstrate various characteristics of the simulator
data structure and modelling approaches. The basic data structure was demonstrated with a
Mixing_Tank class. Aggregation of model characteristics with connected objects and
multiple inheritance of characteristics were contrasted using a Ratio_Controller class.

Physical property modelling was demonstrated with a Flash class.

Finally, simulation with the M.O.P.S. data structure was introduced with a smali steady-state

example.

135

CHAPTER 5

Major Test Problems

The simulator has been tested with three major plant process models, viz. the four-flash
Cavett problem (Cavett 1963), the Tennessee Eastman Process (Downs and Vogel 1993) and

a recombinant fermentation model, developed from various model elements in the literature.

5.1 Cavett Problem

The well-known Cavett problem contains four flash vessels with three recycle streams, as
illustrated below in Figure 5.1. The mathematical model for the flash calculations is different

from the model described in the previous example.

mixer 2 flash 4

feed

mixer 1

heavy

Figure 5.1: Cavett Process.

The process is basically a stripping operation with four ideal stages. There are sixteen
components in the process: nitrogen, carbon monoxide, hydrogen sulphide, methane, ethane,
propane, n- and i-butane, n- and i-pentane, hexane, heptane, octane, nonane, decane and

undecane.

136

The problem was originally proposed as a small but stringent test for sequential-modular
simulators. While trivial compared to the Tennessee Eastman test problem (see section 5.2),
the Cavett process was appropriate as a steady-state development problem for this project.
The Cavett process was employed to refine the Equation_of_State physical property classes
(specifically the Peng_ Robinson class) and to develop interchangeable solution methods

within the Convergence_Block class.

It was not an objective to thoroughly investigate the convergence behaviour of the Cavett
problem with different tear sets as many researchers have already accomplished this (Lau
1992 and Chen and Stadtherr 1985 are two good examples). The tear set chosen was streams
Z1 and Z2, given by a synthetic tearing algorithm (Roach et al. 1996). The principal

objectives were:

e to investigate sequential-modular initialisation and assistance of equation-oriented
simulation.
¢ to demonstrate the variety of simulation techniques available with the simulator

data structure.

A secondary objective was to investigate sequential- and parallel-modular simulation of the
Cavett problem while employing an equation-oriented unit solution. Equation-oriented unit

solution was chosen to facilitate the specification of design and rating simulations.

The rating calculations were based on a mass balance around the process. The design
calculations were based on a mass balance with specification of i-butane recovery into the
vapour stream from the second flash unit (see Figure 5.1). The specification was 50%
recovery of the i-butane in stream Z1. Energy balances were not performed. Physical
property calculation was based on the Peng-Robinson equation of state with binary interaction

parameters set to zero.

137

The feed and product stream compositions for the rating and design simulations are

summarised in Table 5.1.

Rating Design

Tpu:=365.0K
Component Feed Light Heavy Light Heavy
(kmol/s) (kmol/s) (kmol/s) (kmol/s) (kmol/s)
N, 0.04523 0.04348 0.00175 0.04327 0.00196
(60 0.62697 0.62694 0.00003 0.62692 0.00005
H,S 0.04285 0.03562 0.00723 0.03562 0.00723
CH, 0.37822 0.37792 0.00030 0.37783 0.00039
C,H, 0.30246 0.28303 0.01943 0.28155 0.02091
C;H, 0.28927 0.15351 0.13577 0.16278 0.12649
i-C,H,, 0.07628 0.01832 0.05796 0.02044 0.05584
n-C,H,, 0.19443 0.03357 0.16086 0.03711 0.15732
i-C;H,, 0.09980 0.00685 0.09295 0.00682 0.09298
n-C.H,, 0.14266 0.00725 0.13501 0.00702 0.13524
CH,, 0.22282 0.00301 0.21981 0.00257 0.22025
C,Hy, 0.32913 0.00104 0.32809 0.00087 0.32826
C,H,; 0.23289 0.00016 0.23273 0.00014 0.23275
C,H,, 0.21073 0.00003 0.21070 0.00003 0.21070
C,Hy, 0.10501 0.00000 0.10501 0.00000 0.10501
C,H,, 0.15335 0.00000 0.15335 0.00000 0.15335

Temperature (K) 322 311 303 311 303

Pressure 439 5620 191 5620 191

(kPa abs.)

Table 5.1: Cavett feed and product stream compositions.

138

The rating specifications for each flash vessel are in Table 5.2. The design simulation

calculated the temperature of the second flash unit to be 365.0 K.

Unit Temperature Pressure
(K) (kPa abs.)
flash 1 311 5620
flash 2 322 1960
flash 3 309 439
flash 4 303 191

Table 5.2: Cavett flash specifications.

The number of iterations and time in seconds to convergence are presented in Table 5.3 for
rating simulations and in Table 5.4 for design simulations. The results are presented as
iterations (fime) in each cell. Each simulation was run from three initial tear estimates of x,,
0.1x, and 10x,. The estimate x, corresponds to a tear stream esiimate ef equimolar
‘corapositicn and a flow of 0.5 kmol/s. Parallel-modular and equatios:-oriented simulations
were initialised with one sequential-modular iteration around the flowsheet. Each Flash
object contained 16 equations and each Mixer object contained 8 equations, to yield a total of
160 equations in the equation-oriented system. The unit models for each simulation run were
identical. Jacobian matrices were calculated with central differences. Each tear stream
contained 16 variables. The simulations were performed on an IBM 486 DX33 with 16MB
RAM under the OS/2 operating system.

139

Simulation Method
Sequential-modular Parallel-modular Equation-oriented
Initial Dir Subst Wegs Newt Broy Marq Newt Broy Marq
estimate

0.1x, 49 (130) 50 6(127) 13 (47) 16 (331) 7 (188) 12 (53) 3(144)
(140) seq. 2*

X, 51(134) 50 6 (128) 13 (44) Sail 5(136) 23 (66) 4 (185)
(135) seq. 2*

10x, 74 (296) 73 6 (160) 13 (76) Jail 29 (1285) | 35(84) | 12 (1500)
seq. 2* seq. 2, 4*

Table 5.3: Iterations and solution time to convergence for the Cavett rating problem.

* seq. n indicates where an equation-oriented method encountered convergence difficulties on iteration n. At

this point the Convergence_Block object switched to a sequential-modular simulation for one iteration and then

switched back to the equation-oriented method.

Simulation Method
Sequential-modular Parallel-modular - Equation-oriented
- Jmitial | Dir Subst Wegs Newt Broy Marq Newt ;. Broy Mara
estimate
0.1x, 49 (234) 48 6 (756) 15¢161) fail 7(182) 14 (57) 3 (194)
(179) seq. 2*
X 53 (208) 53 Jail 15 (162) Jail 25(716) | 86 (142) 4 (189)
(210) (>10%)
10x, 76 (497) 80 7(1148) | 16 (185) Jail 44 (728) | 36 (202) | 22 (1809)
(455) seq. 2* seq. 2* seq. 2*

Table 5.4: Iterations and solution time to convergence for the Cavett design problem.

* seq. n indicates where an equation-oriented method encountered convergence difficulties on iteration n. At

this point the Convergence_Block object switched to a sequential-modular simulation for one iteration and then

switched back to the equation-oriented method.

The majority of equation-oriented simulations did not require sequential-modular assistance
for convergence. However, for this problem it was considerably easier to commence an
equation-oriented simulation with a sequential-modular iteration because only 32 tear stream

variables had to be estimated out of the 160 variables in the complete flowsheet, because the

140

flash vessels contain their own initialisation routines. Marquardt’s method was the most
efficient numerically and Broyden’s method the fastest to solve in the equation-oriented

simulations.

The iterations for sequential- and parallel-modular simulations are similar for the successful
design and rating calculations. This result is reasonable; there was only a single design
specification, hence the iterations to convergence should not be affected greatly. A similar
result could probably be expected with a traditional “design convergence loop” around a
Flash unit. The main advantage of equation-oriented unit solution is that design and rating
calculations are considerably easier to manage at the flowsheet executive level. The design
calculation times were longer because generally a design flash calculation required 30 - 50%
more iterations to converge compared to a similar rating calculation. Marquardt’s method
performed extremely poorly on parallel-modular simulations due to problems with calculation
of the feed:vapour ratio in the third flash vessel. Newton’s method was terminated on one of
the parallel-modular simulations because 5 iterations required over 10000 seconds to complete

with little convergence progress.

None of the numerical methods or simulation techniques demonstrated themselves to be
superior. While testing one process does not provide conclusions about steady-state
simulation in general, it is clear that there are potential advantages in having a variety of
interchangeable numerical and flowsheet solution methods available. In particular,
sequential-modular initialisation of equation-oriented flowsheet solution is a very useful
feature. Equation-oriented unit solution within a sequential-modular simulation provides the
advantage of simple design specification (provided the unit models are written correctly) with

the lower resource requirements of sequential-modular simulation.

5.2 Tennessee Eastman Process

The Tennessee Eastman Process was proposed several years ago as a dynamic process-control
test problem. The basic process layout is drawn in Figure 5.2. The layout is slightly different

from that provided in the original paper.

141

splitter

stripper

G&H
products

Figure 5.2: Tennessee Eastman Process.

There are eight chemical species in the process: A,B,C,DJ3,F,G and H. The process produces
two products (G and H) and a by-product (F) from A,C,D and E from the following

exothermic reactions (B is an inert component):

Ay +Cipy + Dy > Gy,
Ay +Cp+E,, —> H
A, + E > Fy,

3D — 2F

(&))

Three vapour-phase reactants and two recycle streams are mixed in a vapour-phase mixing
section. The reactor is two-phase with a vapour product. The reactor product enters a
separation vessel. The vapour stream of the separator contains primarily unreacted feed
components. A small fraction of the stream is purged and the remainder is compressed and
recycled. The separator liquid enters a stripping column where the major products are
removed in the bottoms stream and the overhead stream is recycled. The plant contains dead-
time and discontinuities from the concentration analysers on the reactor feed stream, purge
stream and product stream. The reactor feed-stream and purge-stream analysers sample every
0.1 hours and have a 0.1 hour dead-time, the product analyser samples every 0.25 hours and

has a 0.25 hour dead-time. The plant dynamics are slightly stiff.

142

The original problem was distributed as a complex piece of Fortran code. Mathematical
models (such as reaction kinetics) were not provided explicitly. The code contained various
arrays through which the major process variables could be accessed. Incorporation of Fortran
code into C++ code is feasible. If the code was incorporated into this simulator project, it
would produce one System-type object with very complex internals. However, by attaching
Variable and Derivative objects to the relevant arrays in the Fortran model and defining a
Vector of Equation objects, the code could become the dynamic model () of a large
Tennessee Eastman class, with appropriate Signal_Input_Ports and Signal_Output_Ports

for controller connections.

Incorporation of the Fortran code does not really test the modelling capabilities of the data
structure. With a view to modelling the unit operations separately, the Fortran code was
reverse-engineered to determine the reaction kinetics and basic unit operation principles. The
deconstruction was time-consuming but successful. The separator was modelled as a simple
flash drum with three incondensable components and the stripper was modelled with a
temperature-dependent vapour recovery as in the .(#)1‘_igina1 code. The heat duty of the stripper
published in the original Tennessee Eastman paper exceeds that calculated by the Fortran code
by factor of 10. The reactor product condenser of the original process was incorporated into
the separator drum. The dead-time and discontinuities in the analysers are incorporated.
While the Fortran code contained physical property methods based on temperature-dependent
specific heat, the basic pure component data provided in the original paper was sufficient to
permit the use of the ideal physical property classes described in earlier chapters. The

complete models for the major unit operations are provided in Appendix C.

5.2.1 Control Systems

Many papers have been published on various control strategies for the Tennessee Eastman
problem. Nonlinear Model Predictive Control (NMPC) was investigated by Ricker and Lee
(1995a). The process model employed was theoretically based with adjustable model
parameters (Ricker and Lee 1995b). A NMPC scheme was outside the scope of the project.
NMPC could be implemented with the existing class structure however; it is a matter of
defining the appropriate controller algorithms in System-based classes. Various SISO
formulations are described in Lyman and Georgakis (1995), Ye and McAvoy (1995), Banerjee
and Arkun (1995) and McAvoy and Ye (1994). A very simple and effective SISO scheme is

143

proposed by Luyben (1996). The production rate out of the plant is controlled by the valve on
the stripper bottoms, giving almost instantaneous production rate control. The liquid level

control loops operate opposite to the direction of flow.

Initially some of the cascaded SISO schemes suggested by McAvoy and Ye (1994) were
simulated but the reactor pressure control was poor and the results of McAvoy and Ye could
not be duplicated. The reverse-engineered plant model of this project is slightly different
from the original Fortran model and this may account for the control behaviour. The reactor
pressure was controlled by manipulating the flow control setpoint of component A (stream 1)
to the mixer. Normally, this has a positive gain: a higher concentration of component A
increases the reaction rate and the pressure decreases as a result of product condensation.
However, the gain of the reactor pressure relative to component A changes sign when the
partial pressure of A is high in the reactor (Ricker and Lee 1995a). At high concentrations of
A, the reaction rate decreases due to the low concentrations of the other reactants and
consequently the pressure increases. A scheme of Banerjee and Arkun (1995) with reactor
pressure controlled by manipulating the reactor cooling water flow was also tested. This

provided exceptionally tight contro! of reactcr pressure.

Based on the excellent results obtained with the Banerjee and Arkun scheme it was decided to
investigate whether a pressure-temperature reactor control system could be combined with the
Luyben production-rate scheme. The complete Luyben scheme controls the production rate
with liquid flow valve from the stripper. This provides the fastest control on production rate.
The separator drum liquid flow valve then controls the level in the stripper. Manipulating the
cooling duty of the separator controls the separator level. Reactor pressure is controlled with

the C feed stream. Reactor level is controlled by manipulating the D and E feed valves.

In the combined scheme, the reactor pressure was controlled by manipulating the reactor
temperature. The reactor liquid level was controlled with the E feed stream. The D feed
stream flow was regulated by a composition controller on the product stream to control the
mass ratio of the products G and H. The purge composition of component B was controlled

by the purge flow valve.

144

Initially, the reactor pressure controller manipulated the reactor cooling water valve directly.
This system was unstable unless tuned for an unacceptably slow response. The addition of a
cascaded PI reactor temperature controller made the pressure more rapidly controllable, but
produced an oscillatory response. The cascaded controller was not required in the Banerjee
and Arkun scheme. It was also found that the level in the separator could not be controlled by
manipulating the separator temperature. To reduce reactor pressure, the reactor temperature is
increased. This increases the rate of production of heavy components F,G and H, which in
turn increases the level in the separator. If the separator level is controlled by temperature, the
level controller will decrease the separator cooling to vaporise the heavier components and
reduce the level. The heavier components then traverse the recycle loop and dilute the pure
reactant concentrations, thereby reducing the reaction rate. In addition, the extra heavy
components in the separator vapour increase the amount of gas in the volume of the recycle
system, which also increases pressure. This control system contains a significant amount of

positive feedback.

Stabilising effects are provided by the reactor level controller, product ratio controller and the
stripper product flowrate. With more-heavy components in the recycle, the reactor level will
increase. Therefore the level controlier will decrease the E feed and the ratio controller will
eventually reduce the D feed. The reduced reactant concentrations would reduce the reaction
rate further. The stripper product flowrate would then deplete the separator level. However,
in practice, the system saturated or reached shutdown limits before it could stabilise, typically
in five hours or less. This indicates that the effect of temperature on reaction rate greatly
exceeds the combined effects of the reduced reactant feeds and concentrations. The separator
temperature continued to increase to the point where the liquid feed to the stripper was
sufficiently hot to close the stripper reboiler steam valve, thus decoupling the stripper
temperature control loop. The increasing stripper temperature then forced more heavy
products back up into the recycle loop, increasing the pressure further. Depending on
controller tuning, the reactor pressure reached the shutdown limit or the separator would
overfill without stabilising. Pure proportional control of the plant was also unstable with this

scheme.

145

Examination of the unstable responses revealed a possible solution. The production rate in
the reactor should obviously balance the flowrate of products from the stripper base. The rate
of change of level in the separator indicates the balance between the reactor production rate
and stripper flowrate. If they are out of balance the separator will either run dry or overfill.
The control objectives for the problem state that reactor pressure should be independently
controllable. If the reactor pressure is controlled by manipulating reactor temperature, two
variables for directly manipulating the reaction rate are unavailable. The remaining
possibilities for reaction rate control are the various feed streams. Four streams are available
(A feed, C feed, D feed and E feed). Only components A and C affect all reactions. The A
feed stream was considered too small to provide effective control and was instead tied to a
purge composition controller to maintain the component A concentration in the reaction loop.
The C feed stream is the largest feed stream to the process and should provide the best
control, provided that there are no adverse effects on other process variables. The separator
level was therefore controlled with the C feed stream. The A composition control loop
ensured that only the concentration of component C affected the reaction rate. The separator
temperature was controlled by manipulating the separator cooling water flowrate. This also
helped to reduce temperature disturbances into the stripper. The stripper temperature was

controlled by regulating the stedin flow into the reboiler.

Simulations of this control system gave, at best, erratic pressure control of the reactor. The
adjustments to the C feed rate by the separator level control seriously affected the behaviour
of the reactor pressure control loop. Although some pressure effects were expected, it was
hoped that the pressure/temperature cascade would be sufficiently robust and fast enough to
override the disturbances. This proved not to be the case. Simulation results for the reactor

pressure setpoint change are provided in Figure 5.3.

146

Reactor pressure vs. time

2810 =

2800 |
2790
2780
2770
2760
2750
2740
2730

reactor pressure (kPa abs.)

0 1 2 3 4 5 6

time (hours)

Figure 5.3: Reactor pressure response.

Reactor pressure setpoint change from 2806 to 2746 kPa absolute.

The corresponding separator level response is in Figure 5.4.

Separator level vs. time

5.9
5.7
5.5
5.3
5.1
4.9
4.7 |

45 | |
0 1 2 3 4 5 6

time (hours)

separator level (m*3)

Figure 5.4: Separator level response.

Reactor pressure setpoint change from 2806 to 2746 kPa absolute.

Obviously the effect of the C feed stream on the reactor pressure exceeds the capability of the
pressure control loop. Following the setpoint change, the reactor temperature increases to
decrease the reactor pressure. This increases the reaction rate and hence the flow of heavy

products into the separator increases, which increases the separator level, in spite of the lower

147

pressure. Therefore the separator level controller reduces the C feed, which slows the reaction
rate. Again the reactor pressure to rises. As the separator level decreases and undershoots,

the C feed is increased, which increases the reaction rate and the system settles down.

The pressure control loop could not be tuned more aggressively because the reactor
temperature controller could not cope with faster setpoint changes. The spikes in the reactor
pressure response in Figure 5.3 are due to the reactor temperature controller overshooting
slightly. The response time of the temperature loop could possibly have been decreased with
derivative action but the original problem statement declared that the process measurements in
the Fortran code were noisy and so derivative action was not considered. An alternative,
much slower pressure control loop was tested, but the effects of the C feed stream changes
caused the reactor pressure to oscillate for many hours before stabilising. A slower separator
level control loop assisted the reactor pressure control, but caused the separator to overfill.
Further fine-tuning of the system could have provided improved performance but the basic
system is strongly coupled and only marginally stable for separator level control. The scheme
was abandoned with no further testing. Good control of product composition was maintained

o~

in all the tests.

The most successful control system simulated was a modification of that proposed by Luyben

(1996). There are three major deviations from the original Luyben scheme:

1. The reactor level is controlled with only the E feed stream and the product
composition is controlled by a ratio controller manipulating the D feed stream.

2. In the Luyben scheme, a separator temperature controller manipulates the reactor
temperature controller setpoint. This loop was deleted.

3. Proportional-integral controllers are incorporated, whereas the Luyben scheme

employs only proportional controllers.

The major control loops are not cascaded to flow control loops. While cascaded flow control
loops are good control practice, they produced no difference to the final simulation results and
were omitted in the interests of computational speed. The Luyben reactor pressure control
loop is very effective. The reactor pressure is controlled by regulation of the C feed stream.

The C feed stream simply adjusts the amount of gas circulating through the compression

148

recycle loop. Integral action is applied to vessel temperatures and to controlled variables with
specific objectives in the problem statement. The product flow and composition, purge
composition, separator, stripper and reactor temperature and reactor pressure controllers are
proportional-integral. Vessel level controllers are proportional only. The final scheme is

illustrated below in Figure 5.5.

compressor splitter 4

8¢ 8b

stripper

Figure 5.5: Modified Luyben Control Scheme for Tennessee Eastman Process.

The original paper specifies four main process changes to evaluate performance:

1. Production rate change: Make a step change to the production rate control
variables to reduce the production rate by 15% on a mass basis.

2. Product mix change: Make a step change to the product composition control
variables to adjust the production rates of products G and H from 7038 kg/h each to
5630 kg/h G and 8446 kg/h H. This is a 50:50 to 40:60 change.

3. Reactor operating pressure change: Make a step change to the reactor operating
pressure setpoint from 2705 kPa (gauge) to 2645 kPa (gauge).

4. Purge gas composition change: Make a step change so that the composition of

component B in the purge changes from 13.82 mole % to 15.82 mole %.

149

These changes were simulated with the Luyben-based scheme described previously. The
results are presented in the next section (5.2.2). The process conditions prior to the setpoint
changes were determined by performing an equation-oriented, steady-state simulation with the
dynamic plant models. (Time derivatives were set to zero). The steady-state simulation
calculated process conditions, all holdups, cascade setpoints and controller bias signals. This
ensured consistent initialisation of the dynamic system. The full dynamic plant model
contained between 190 - 220 equations, depending on the control system being simulated.
About 50 - 70 equations were dynamic and the remainder algebraic. Physical properties were
not part of the flowsheet equation set. The initial estimate for the steady-state simulation was
provided by the process conditions outlined in Downs and Vogel (1993). As stated earlier,
the plant model differed slightly from the original Fortran model and about five iterations

were required to converge the steady-state.

The dynamic simulations were solved with the variable-step, variable-order BDF integration
method from the Mathtool class. The stiffness of the original problem is increased by the
many difierent time constants of the control system. A complete definition file fof ihe reactor
pressure setpoint change simulation is provided in Appendix D. The code in the definition
file is reasonably self-explanatory and follows a similar specification format to other
simulators employing a text-based input. Each time the file is modified it must be recompiled
for the new simulation to run. The analysis and construction steps for the equation sets
indicate the number of variables and equations participating from each unit to assist problem

specification.

5.2.2 Simulation Results

The time responses for the major process variables are presented on the following pages.
Results for the original control scheme using the Fortran model are presented in Luyben
(1996). The original Fortran model contained built-in plant noise. The absence of noise in
the C++ model makes controlling the process easier. Controller tuning constants are provided

in the flowsheet specification in Appendix D.

Referring to Figure 5.6, the production rate control is almost instantaneous. The problem
specification states that variations in product flow of greater than + 5% with a frequency

between 8 - 16 h™' are harmful to downstream processes. The mole fraction of component G

150

in the product stream should not vary by more than + 5% with a frequency of 6 - 10 h”'. The
product flow exhibits no variation after it reaches the new setpoint. The product composition
exhibits one oscillation between 2 - 6 hours but the variation is within the specification. The

oscillation is caused by the reactor level controller.

The stripper temperature plot requires further explanation. The controller setpoint was 338.8
K. The decreased production rate raises the level in the separator. The separator level is
controlled by regulating the separator cooling water flow. With a higher separator level, the
level controller will increase the temperature to reduce the level. Although not shown on the
plots, the separator temperature increased by about 10 degrees. The higher separator liquid
temperature meant that the stripper steam was no longer required and the temperature
controller output saturated at zero. After about six hours the stripper temperature stabilised.
The simulator data structure permits connections between Variable objects to be broken and
remade without affecting the equation structure. The Controller classes exploit this feature.
The principle is very simple. The stripper steam valve’s position Variable is connected to the
coniroller’s output Variable. The controller’s Variable is thus the “driver” and is the
Vzriable that the numerical method manipulates. At saturation, the controiler finds the steam
valve Variable by interrogating the appropriate Signal Output Port.: Informally, the
controller looks down the Signal Stream to get the Variable at the other end. The steam
valve’s Variable is then disconnected from the output Variable and frozen at the saturated
value. The valve position is no longer a process input. The controller’s output Variable
remains in the solution set and its value changes with time as it did prior to the disconnection.
In addition, at disconnection a controller switches off the integral action, resets the integrated
error term to zero and flags a discontinuity for the integration to restart. If the stripper
temperature had decreased below the controller setpoint, the controller would have
reconnected the valve and resumed control action. The reconnection behaviour is the opposite
to disconnection. The decoupling could possibly be prevented by incorporating the separator

temperature control loop of the original Luyben scheme.
Figure 5.7 contains the responses to the product ratio setpoint change. The product ratio is

changed and stable in about three hours. The product molar flowrate decreases because of the

composition change. The stream is controlled based on the volume flow. The mass flowrates

151

of the products are within one percent of the specification. The other process variables remain

well-controlled.

The responses for the reactor setpoint change are in Figure 5.8. The reactor pressure responds
rapidly, overshooting very slightly by about three kPa before stabilising at the new setpoint.

In spite of the large change, the rest of the process remains relatively undisturbed.

The purge setpoint responses are in Figure 5.9. The process has a large vapour volume and
component B is a very minor part of the A and C feeds, so the setpoint change requires some
time to propagate through the system. The new setpoint is reached after about 11 hours with

little effect on the rest of the process.

The control system and plant model contained 203 equations. The four simulations were
completed in about 2 hours each on a Pentium 100 MHz with 16 MB RAM. The BDF solver

employed a non-sparse matrix technique and solved the dynamic and algebraic equations

- simuitaneously. oy

The complete Tennessee Eastman problem statement describes a number of piant upsets and
disturbances. The paper by Luyben describes the (few) deficiencies of this control system and
suitable overrides for coping with the upsets. The overrides were not incorporated into the
control system described here and were not simulated. Overrides are generally event-driven,
and the override controllers would need to be objects of a class that can take appropriate
event-based action. The main difficulty would be providing sufficient functionality for the
many different events a user will require. A similar approach to user-defined unit models
with the System hierarchy may be taken. The existing Port hierarchy is sufficient for
connecting to process variables. The dynamic model (), disc _check() and
update () functions could perform the event actions as required. The main difficulty would

be the potential changes to the equation structure of the problem.

152

Stripper level vs. time | Product mole fractions vs. time

[
o
)

|
55] | = oss ~/\,
£ g os |
g % [|—H|
45 g 045 |
v\———

IS
o
IS

0] 10 15 20 25

0 5 10 15 20 25
time (hours) time (hours)
|
Stripper product flow vs. time Stripper temperature vs. time
215 - T — 343
210
— 342
£ 205
[3
| -
5 200 | 34t
3
é 195 g
$ 190 g 340
g | §
2 185 2
- . 339
180 [
175 | — 338 i
0 5 10 15 20 25 0 5 10 15 20 25
time (hours) time (hours)
Reactor pressure vs. time -* level ve time
2830
& 2805 |
o 1 -—
s 2
£ 2620 | t
% 2815 E
8 | 5
£ 2810 [£
I°- o
3 2805 £
e
2800 ! 5 16
0 5 10 15 20 25 0 5 10 15 20 25
time (hours) time (hours)
Separator level vs. time B mole fraction in purge vs. time
7.5 . | 0.16 . I
7 ‘ 0.155 |
8.5
= 92 o015
2 6 S
E B 0145
T 55 E
2 ° 0.14
; I - L—d_—_’_’_
4.5 | 0.135
P —— g ! 0.13 —
0 5 10 15 20 25 0 5 10 15 20 25
time (hours) time (hours)

Figure 5.6: Tennessee Eastman response to 15 % decrease in production rate.

153

Stripper level vs. time Product mole fractions vs. time
5. : 0.6 ..
49 | |
:‘3 | T 055
= Y] f
© |
£ 32 N : 09 .
=g g | H
2 44 g —
> T Y=
[] | @
243 o
| 2 o045
4.2 I E
4.1 |
4 0.4 — i
0 5 10 15 20 25 0 5 10 15 20 25
time (hours) time {hours)
Stripper product flow vs. time Stripper temperature vs. time
220 - 343
218 }
= 216 | 342 |
3 214 i’ c
§o2, @ 341
1 =)
g 210 | £
T 208 | g 340
2 206 | 5 _
g 204 | 339 h'.'_,—r
202 | |
i |
200 + 338
0 5 10 15 20 25 ' 0 5 10 15 20 25
time (hours) time (hours)
Reactor pressure vs. time . »Reactoz lavel vs. time
2845 . - - 17, B
E 2840 |
2 2835 5
§ 2830 .
< 2825 g
5 2820 s
@ 2815 =
=4 o
S 2810 -
| ~
g 2805 | &
g I
E]
| |
0 5 10 15 20 25 5 10 15 20 25
time (hours) time (hours)
Separator level vs. time B mole fraction in purge vs. time
[0.16
49 0.155
m
5 48 < 0.15
€47 S 0.145
o E
3 46 é 0.14
45 0135 V’
44 | ! 013 L |
0 5 10 15 20 25 0 5 10 15 20 25
time (hours) time (hours)

Figure 5.7: Tennessee Eastman response to product G:H mass ratio setpoint change

from 50:50 to 40:60.

154

Stripper level vs. time Product mole fractions vs. time

3
o
@

o

o

(3]
_)7—|

EE N
~N @ ©

level (m*3)
PP N N
E ¢)

NN
- N oW

—H

o
'S
(4]

.

mole fraction G, H
o
o

A
I
'S

(=)
W

10 15 20 25 10 15 20 25

time (hours) time (hours)

o
o

Stripper product flow vs. time Stripper temperature vs. time

N
N
o
:
|
|
|
|
|
£
w
|
|
[
|

215
- 342 |
£ 214 - |
9 43
o w 341 |
= 5 |
Z 212 2
b g 340
B 211 e a ¢
3 E |
< 2
2
a

NN
o
o o
w
W
o

N
(=]
@
[&]
w
@

] 5 10 15 20 25

0 5 10 15 20 25
time (hours) time (hours)
Reactor pressure vs. time Reactor level vs. time
2820 _ = 17
w 2810
ﬁ |
o 2800 & 1675 |
n <
X 2790 £ |
[-—
5 2780 | 2 65,
? | 2
g 2770 | é
5 2760 § 1625 |
8 2750 ‘
© |
2740 ! | 16 | |
0 5 10 15 20 25 | 0 5 10 15 20 25
time (hours) time (hours)
|
Separator level vs. time ' B mole fraction in purge vs. time
|
55 0.16
49 | 0.155
o
. 0.15
T 48 | §
E ‘g 0.145
2 47 | | @
@ ‘ - 0.14 r___
£
48 1 | 0.135
45 .) 0.13 i
0 5 10 15 20 25 ' 0 5 10 15 20 25
time (hours) time (hours)

Figure 5.8: Tennessee Eastman response to reactor pressure setpoint change from 2806

kPa abs. to 2746 kPa abs

155

. . [. .
Stripper level vs. time Product mole fractions vs. time
5 . | 0.6 S
49 [|
:3 ' | = oss
F a6 I | €
< | s R
E s g 05 H
E 4.4 P " £ —
243 @
S 0.45
42 | E
4.4 |
4 i 0.4 —
0 5 10 15 20 25 0 5 10 15 20 25
time (hours) | time (hours)
- [
Stripper product flow vs. time | Stripper temperature vs. time
|
216 S <Y R— -
215
= 342 |
£ 214
] 3
g =3 s 3 |
=
é 212 ©
8 211 & 340
3 §
e 210 = |
o 339 o
209 |
208 338
0 5 10 15 20 25 0 5 10 15 20 25
time (hours) time (hours)
Reactor pressure vs. time Reactor level vs. time
2820 17
G
N
w 2815 | & 16.75
o <
B £
e ° [\——
5 2810 > 165
2 k)
r
& 8
5 2805 | e 16.25
2 e
Q
o
e
2800 - | 16 |
0 5 10 15 20 25 0 5 10 15 20 25
time (hours) time (hours)
Separator level vs. time B mole fraction in purge vs. time
49 . : 0.16 -
485 | 0.155
] |
~ 48| = 015
2 | S
E 475 | B 0.145
T, £
3 47 S o014
| £
4.65 | 0.135
46 | ——== | 0.13 |
0 5 10 15 20 25 0 5 10 15 20 25
time (hours) [time (hours)

Figure 5.9: Tennessee Eastman response to purge composition setpoint change from 13.8

mole % B to 15.8 mole % B.

156

5.3 Recombinant Fermentation Model

For the duration of this project, the Chemical Engineering Department at Adelaide University
has been a partner in a biochemical engineering research group. The Department’s laboratory
facilities include a plant for fermenting and purifying protein products from recombinant
Escherichia Coli bacteria. The principal products from the plant are insulin-like growth
factors (IGFs) for medical research. These growth factors are grown as inclusion bodies
within cells that have been genetically modified by insertion of a plasmid into the cell’s DNA.
The plasmid is a piece of DNA that instructs the cell to produce the recombinant protein
product. At the completion of the fermentation, cells are homogenised to release the inclusion

bodies and are then centrifuged to recover the pure inclusion body protein.

As part of the project, it was decided to develop and simulate a complete recombinant
fermentation model. The final model is based on first principles and is derived from various
characteristics of recombinant E. Coli fermentation identified in the literature. No
experimental work was undertaken. The model is not intended to be an exact representation
of the departmental facilities, it was developed purely as a modelling and simulation exercise.

The model is not specific to a particular recombinant protein product.

The general model form is based on Monod growth kinetics, substrate and product inhibition
and assumption of an ideal stirred tank reactor as described in Nielsen and Villadsen (1991).
An example of Monod kinetics is given below for growth of biomass X at a specific growth
rate 1 on a substrate § with inhibition by a product P. The model describes growth, substrate

consumption and product formation in a batch system of constant volume.

dXx

= 5.1
7] HX (5.1)
Ky P

= 1- 5.2
i ﬂmx(“l{sj(P,,,,,) (5.2)
s 1ax 1dp o 53
dt Y, dt Y, dt
dP
— = r X 5.4
i (1) 6.4

X, S, Kg, P and P, have units of g/L. Equation (5.1) is the dynamic biomass balance.
Equation (5.2) describes the actual growth rate of the cells. Kj is a saturation constant for the

dependence of growth rate on substrate concentration; the growth rate decreases rapidly when

157

S is less than K;. P, is the concentration of product at which growth ceases. 4, is the
maximum specific growth rate of the cells with units of h”. Equation (5.3) is the dynamic
substrate balance. ¥y and Y are yields of biomass and product, respectively. Their units are
(g biomass)/(g substrate) and (g product)/(g substrate). myg is the cells’ maintenance
requirement for metabolic activity, in (g substrate)/(g biomass)/h. Equation (5.4) is the
dynamic product balance. The function r,(4) determines the rate of product formation. The

units are (g product)/(g biomass)/h.

5.3.1 Model Description

The fermenters in the department normally operate in an aerobic, fed-batch mode. Therefore
an overall volume (mass) balance must be incorporated into the basic model form above.
Recombinant fermentations generally proceed without significant protein product formation
until there is sufficient cell mass to produce a reasonable amount of product. Product
formation is then initiated by an inducer, isopropylthiogalactoside (IPTG). The complete

model 1s below:

‘ oo, P, 4 S 0, _ _} .
[= ,um“(l PMJ(I Am_,J(s+Ksj(02 +K0J(k, +k R) /k (5.6)
: N | S 0,
u = ym(l Am)(su(s)[oz +K0,J(k, +k,R)) /h (5.7)
d(':‘) = (1-p,)i (rx") gbm/h (5.8)
d(lz(_) = pur (VX)+ (vx) gbm /h (5.9)
d(‘:A) = rﬁ,(y')(VX‘)+rﬁ,(,u*)(VX+) gacet/h (5.10)
avs) _ o [d(VX)+d(VX')]_Ld(VA)m 1 d(VP)_mxs(VX++VX_) ggue /b (S11)
dt Y\ dt dt Y, dt Y, dt
d(vP AT s
(dt) . T, (u)(ﬁj(Vx) gprot/h (5.12)
d(vo. . 1 (d(vx) d(vx- . i
(dt 2) = Vk,a(()z _0;)— 7. ((dt) + (dt)J _mxo,(VX +VX) mmol O, /h (5.13)
av _ K L/h (5.14)
dt Ps
dk .
E = —kk (5.15)
o = k(1-k) (5.16)

158

c

R - 4
: C,+1I
(z
P, = Al &)
1 + ;_.
r.() = 0.7(4—0.5) gacet/gbm/h
r,(u) = K& +0.036)Gp(,u*) gprot/gbm/h
G (1) = E+ 0.1 mg plasmid / g bm
7
P B
k,a = 3600kus“(7'") /h
P, = N,pN°d * w
. PO
0, = - mmol / L
94.51
P, = 0.2095(P,-P,,) kPa

plasmid-free biomass
plasmid-carrying biomass
A acetate concentration
Fy glucose feed rate
Gp(u’) plasmid concentration in biomass
1 IPTG concentration
ka volumetric mass transfer coefficient
k, IPTG recovery rate variable
K saturation constant for glucose
k; IPTG shock rate variable
specific growth rate

7
N agitator rotational speed

0, oxygen concentration
0, saturated oxygen concentration
P protein product concentration
Py fermentor absolute pressure
P, mixing power
P, oxygen partial pressure

. probability of plasmid loss
r.(y) rate of formation of acetate

rp(u’) rate of formation of protein product
IPTG recovery ratio

glucose concentration

R,
S
u, superficial gas velocity
| 4 broth volume

X

biomass concentration

The model parameters are in Appendix E.

(5.17)

(5.18)

(5.19)
(5.20)

(5.21)

(5.22)
(5.23)
(5.24)
(5.25)

(g acetate) /L
(g glucose) / h
(mg plasmid) /(g biomass)
(g IPTG) /L
h!

(g glucose) /L.

h!
rev /s

(mmol O,) /L
(mmol O,) /L
(g protein) /L

kPa

w

kPa

(g acetate) /(g biomass) /h
(g protein) /(g biomass) /h

(g glucose) /L
m/s
L
(g biomass) /L

159

The effects of different factors are evident in several equations. Equations (5.6) and (5.7)
describe the actual growth rates of the plasmid-harbouring and plasmid-free cells. Both
equations include terms for substrate and product inhibition. The values for glucose and
oxygen saturation constants were calculated for E. Coli as recommended in Roels (1983).
The inhibiting acetate concentration A4, is extracted from Konstantinov et al. (1990). The
term (k, + k,R,) determines the effect of IPTG inducer on cell growth rate. E. Coli cell growth
and product formation rate are both affected by the concentration of the inducing agent. The
addition of IPTG “shocks” the bacteria and their growth rate slows. This effect has been
modelled as a combination of time-differential shock and recovery terms by Lee and Ramirez
(1992). 1t is assumed that the addition of IPTG affects cells with and without plasmids.
These workers also modelled the IPTG concentration’s contribution to the protein production

rate with a saturation expression similar to those for substrate saturation. To account for this
the (%) expression is included in equation (5.12). The term f; accounts for the fact that the
'

recombinant cells produce small amounts of protein without any inducer present.

Equations (5.8) and (5.9) are the dynamic balances for plasmid-containing and plasmid-free
cells, respectively. Plasmid-containing cells have a tendency to lose the plasmid as they
replicate (Lee et al., 1988), thereby reducing product yields. In very small-scale experiments,
it is possible to incorporate a gene into the cells that renders the plasmid-containing cells
immune to certain antibiotics, such as ampicillin or tetracycline. The antibiotic is then fed
into the cell culture. Plasmid-free cells are not resistant to the antibiotic and die without
replicating, thus ensuring a pure cell culture. This is known as selection pressure. On large-
scale equipment it is prohibitively expensive to apply such selection pressure and hence the

fermentation broth may contain a significant number of useless cells.

The probability of plasmid loss from E. Coli has been modelled by Mosrati et al. (1992). The

probability term is p (1) in the equations and is calculated in equation (5.18). It is generally
less than a few percent, however over the course of a fermentation the fraction of plasmid-free

cells can increase significantly. This is demonstrated in the model simulations.

Equation (5.10) provides an acetate balance. Acetic acid production is also related to the cell

growth rate. This has been modelled by Majewski and Domach (1990). The acetate

160

production rate r, (1) is calculated in equation (5.19). Equation (5.11) is the glucose substrate
balance, similar to the earlier equation (5.3). The yield and maintenance coefficients are
calculated as per Roels (1983), except Yps. Ypg is approximately calculated from data
presented in Cockshott and Bogle (1992).

Equation (5.12) summarises the protein product balance. The dependency of protein product
formation on the inducer concentration has been described above. Product formation is also

dependent on the cell growth rate and the concentration of plasmid in the cell (Lee et.al.

1988). The rate of product formation r,(z) is calculated in equations (5.20) and (5.21).
¥/

Equation (5.13) is the oxygen substrate balance. The oxygen yield and maintenance terms are
calculated as per Roels (1983). It is assumed that protein product formation is part of the
general cell oxygen yield and maintenance. The correlation for the volumetric mass transfer
coefficient (equation (5.22) and impeller power requirement (equation (5.23)) is from Nielsen
and Villadsen (1991)). Equations (5.24) and (5.25) calculate the saturated oxygen

concentration from Henry’s Law.

The volume balance for the fermenter is presented in equation (5.14). V is pure broth volume

because the bubble phase is not included in the balance.

Finally, equations (5.15), (5.16) and (5.17) calculate the shock and recovery parameters for
the IPTG growth effects.

Some further comments are in order. The literature cited above covers a variety of different
E. Coli genetic strains, plasmid types and protein products. Therefore the model will not be
an accurate description of any particular process. However, the model should reasonably

simulate the general features of a recombinant fermentation.

5.3.2 Control System

A desirable goal of any fermentation of this type is to maximise the yield of recombinant
protein product. An examination of the model indicates potential controlled variables in a
process control scheme. The obvious controlled variables for this model are the substrate

concentrations (i.e. glucose and oxygen). With one of these held in excess, control of the

161

other should regulate the cell growth rate, which in turn affects the rate of product and non-
viable cell formation. Oxygen was selected to be the excess substrate, with glucose
concentration as the major controlled variable. The final control scheme is illustrated below

in Figure 5.10.

o o7 7
glucose i _—%ﬂ

@ @__. @ glucose controller
air in i oxygen indicator
C O @ oxygen controller
ressure indicator
Fermenter P
@ pressure controller

Figure 5.10: Fermenter coiitrol system diagram

The oxygen concentration is controlled by the regulation of air flow into the fermenter broth.
The air flow determines the oxygen transfer rate kg in equation (5.13). The agitation speed is
held constant. The pressure in the fermenter is controlled by regulating the outlet air flow.
The glucose concentration is controlled by regulating the flow of a glucose solution to the

fermenter.

5.3.3 Simulation Results

The objective of the simulations was to investigate the differences between various glucose

feed flows and controller setpoints. The simulations were run from a consistent basis:

e Initial inoculation of 250 g of plasmid-harbouring cells into the fermenter.
e Dissolved oxygen concentration controlled to 40% of saturation, referenced to

atmospheric pressure and 37°C.

162

e IPTG was added at a fotal biomass concentration of 10.0 g/L.. At induction 1.1 g of
IPTG was added in a 0.1 L solution to the broth.

e Fermenter pressure was controlled to 200 kPa absolute.

e Initial glucose concentration was 36.0 g /L in an initial broth volume of 15.0 L.

o A total of 4.5 L of glucose feed solution at a concentration of 300 g /L glucose was

available for fed-batch operation.

As a comparison to a fully-controlled glucose feed, a simple on-off control system was also
investigated. The on-off system was set up to add glucose to the broth at a constant 325 g/h
(approximately 1.08 L/h feed solution) once the broth glucose concentration had decreased to

0.1 g/L. The results for the on-off control simulation are presented in Figure 5.11.

Recombinant Fermentation
40 2
35 W W MmN W Em WS Imma 1.8
1.6 -
30 3
2 147 _
R £ Xnp
of E 20 1 g m = s
0w = c
E c k] A
° 8 06 3>
a 10 33
04 5
2 0.2
0 L0
0 5 10 15 20 25
time (hours)

Figure 5.11: On-off glucose control simulation.

After about 15 hours the broth glucose concentration decreased rapidly as the cells entered an
exponential growth phase. At approximately t = 18 hours the broth was induced with IPTG.
At t = 19.5 hours the constant-rate glucose feed commenced and the glucose concentration
briefly rose before the increasing biomass rapidly consumed the extra glucose. Just after 23

hours the glucose feed was exhausted and the simulation ceased. The final protein

163

concentration was 0.61 (g protein) /L. The specific protein yield was 0.0197 (g protein) /g
plasmid-harbouring cells. The final acetate concentration was 1.38 g /L, not enough to have

significantly inhibited growth because the acetate inhibition constant is 15.0 g /L.

The response for a simulation with full glucose control, with the glucose controlled to a
setpoint of 0.01 g /L is presented below in Figure 5.12. The glucose substrate saturation
constant K is 0.004 g /L. 0.01 g /L glucose would therefore retard the growth rate by

approximately 29% over an excess glucose system.

Recombinant Fermentation

i
o
Ny

-
[o2]

[
-
]

[
N
~

Xp
Xnp |

-
N

biomass & substrate concentration

(g/L)
N
o
=

product concentration (g/L)

[|
[|
%]

0 5 10 15 20 25

time (hours)

Figure 5.12: Full glucose control simulation. Setpoint 0.01 g /L.

No glucose hump is present in this run. The broth was induced at about 18 hours. The
growth rate decreased very slightly at t = 19.5 hours. The average glucose feed rate was
slightly lower and so the run continued for 24 simulated hours before stopping. The extra
production time resulted in a final protein concentration of 0.73 g /L. The specific protein

yield was 0.0244 g/ g. The final acetate concentration was 1.33 g /L.

A further run was undertaken to investigate the effects of a very low controlled glucose

concentration of 0.001 g /L. A glucose concentration of 0.001 g/IL would retard the growth

164

rate by about 80% over an excess glucose system. The simulation results are presented in

Figure 5.13.

Recombinant Fermentation

!E-----.---.---l 1.8

1.6

1.4

Xp
Xnp

1.2

0.8
0.6

0.4

biomass & substrate concentration
(g/L)
[\S]
o
protein product concentration (g/L)
1
1
w

0.2

¥ - e e o e 0
0 5 10 15 20 25 30 35 40

time (hours)

Figure 5.13: Full glucose control simulation. Setpoint 0.001 g /L.

At an equivalent 24 hours, the protein concentration is only around 0.4 g /L because of the
restricted growth rate. However, the final protein yield was 0.81 g /L. Equation (5.21)
indicates that at lower growth rates, the plasmid concentration in the biomass is greatly
increased. The specific protein yield was 0.0403 g /g, considerably higher than the previous
runs. The comparatively low glucose feed rate meant that protein production could continue
for 12 hours longer than the other runs, providing a higher production efficiency in spite of the

retarded growth rate.

5.4 Discussion

The advantages of integrated steady-state and dynamic process simulation become apparent
when applied to complex test problems. With a sufficiently accurate model and a suitable
simulator, the performance of a plant may be determined without disturbing the physical
process. This is particularly well demonstrated by the Tennessee Eastman model. Well over

100 simulation runs were undertaken while evaluating and tuning the various control schemes

165

discussed. This would be prohibitively expensive in production costs, safety risk and time on

the physical plant.

A process model can provide information about process variables that are not physically
measured, simply by interrogating the appropriate unit operation model. The degree of

confidence in the simulated information is of course dependent on the accuracy of the model.

Dynamic simulation provides a great deal more information about plant operation than steady-
state simulation alone. The Cavett problem was originally designed as a sequential-modular
convergence test problem but a dynamic analysis is still applicable. The simulated steady-
state design specification on i-butane recovery provides an accurate operating point for the
temperature of the second flash unit only when the compositions of the feed streams and the
other unit conditions are exactly as simulated. Changes in process conditions must be re-
simulated to determine a valid operating range. Alternatively, dynamic simulation offers the
ability to implement and test control system designed to maintain the i-butane recovery over a
wide range of process conditions. Hydrocarbon systems are well-understood and the results
may be expected to be quite accurate. Steady-state design tools for control systems cannot
provide the same inf:()rhiéit'igri': “Gne ma{jor benefit of steady-state simulation is its
effectiveness for initialising a dynamic simulation. Even the fermentation model was

initialised with steady-state simulation, to obtain controller outputs and setpoints.

The Tennessee Eastman problem statement specifies a wider range of process operating
conditions than those explored here. The steady-state plant model may be simulated to
provide any of the desired plant conditions at a wide variety of individual unit conditions. For
example, the unsuccessful pressure-temperature control system may be solved for all of the
operating conditions in the original paper. This does not provide any information about the

dynamic performance however.

Finally, integrated steady-state and dynamic simulation aids process understanding. The
descriptions of the behaviour of the unsuccessful control schemes were determined from sets
of simulation results. The Tennessee Eastman plant model is quite complex and as such is

effectively useless without some form of simulation to describe the model’s behaviour.

166

5.5 Summary

Three processes were employed to evaluate the simulator performance and applicability. The
different steady-state capabilities of the simulator were examined with the four-flash Cavett
problem. The unit models were the same in all simulations. No simulation technique was
found to be completely superior. Sequential-modular process simulation is a useful technique
for initialising equation-oriented simulations and can be readily applied to design problems if

the unit models are solved in an equation-oriented form.

The dynamic capabilities of the simulator were investigated with the Tennessee Eastman
Challenge Problem. The dynamic system was initialised with equation-oriented steady-state
solution of the dynamic unit models. Several control systems were evaluated with varying
degrees of success. The capability to break connections between Variable objects was
demonstrated to be useful for simulating saturated controllers. Complete results for the very
simple and effective control scheme proposed by Luyben (1996) were presented. The process

remained under stable control for the process changes initiated.

Finally a recombinant fermentation model was developed and simulated. The model does not:
represent a specific process and may not be generally applicable. Different controlled glucose-
feeding strategies were demonstrated to increase product yield by approximately 50 % over

simple uncontrolled systems.

The next chapter is the final chapter of the thesis and summarises the project’s conclusions

and suggests directions for future work.

167

CHAPTER 6

Summary, Conclusions and Recommendations

6.1 Summary

The preceding chapters have discussed the requirements, design, implementation and testing
of a C++ class structure for simulation of biochemical and chemical processes. The simulator
is capable of steady-state and dynamic simulation, employing the same unit models.
Multiple, interchangeable steady-state simulation techniques are supported. The data
structure is designed to promote user-defined process models. The project has met the

objectives outlined in Chapter 1.

6.2 Class Description

An examination of the physical attributes of a process flowsheet provided the basis for the
design of a class stzucture to represent general flowsheet objects and their connecticis. -T2
design of the 1‘z:>:aﬁhemat§,?if~1]A strudure followed from the requirement of multiple solution.
methods, both steady-state and dynamic. A versatile class structure has been developed,

summarised below into four main areas:

1. Process representation classes for modelling the physical attributes of a chemical
process. There are three main parent classes in this group: System, for modelling
entities that transform information or material, Port, for defining connection
interfaces to Systems, and Streams, for connecting Systems through their Ports.

2. Mathematical representation classes for modelling the mathematical structures
contained within System-types. There are two main parent classes in this group:
Equation_Set for collecting sets of model equations and Variable for modelling
the individual components of an equation.

3. Physical property classes for modelling the behaviour of chemical components and
mixtures manipulated by System-types. There are three main parent classes in this

group: Component, for modelling individual chemical components,

168

General_Component_Mixture, for modelling mixture phases and Properties, for
calculating the properties associated with a mixture or phase.

4. Numerical method classes to provide solution methods for sets of equations. This
group of classes has comparatively little structure and is designed to provide
solution functionality. The class structure is based on single inheritance,
commencing with a Math_Top class, through Math_Util, Linear_Solver,

Nonlinear_Solver, DAE_Solver and Mathtool classes.

The capability for Systems to contain other Systems and Equation_Sets to contain other
Equation_Sets facilitates model description because the executive-level structure of a
complex flowsheet has the same basis as the executive-level structure of a simple valve. The
containment principle creates a readily-analysed, connected tree of System objects and
Equation_Set objects which in turn permits a variety of solution techniques to be applied.
The Sys_Man_Block class exploits this capability to cater for connected multi-System
models as complex unit operations or as flowsheets. Different sections of a Flowsheet may
be exammed and solved independently of the rest by allocating the sections to a
Sys Man Biock object The sections may overlap. The management of Systm».-types i3

demonstraled by the solut10n method controls built in to the Convergence_Block class.

6.3 Modelling

The classes provide a consistent framework for model definition and solution. Various model
decomposition techniques have been described: Medium and Machine Decomposition,
Primitive Behaviour Decomposition and Mathematical Decomposition. The application of

the techniques with the class structure was discussed.

The class structure supports bi-directional information flow. This was demonstrated with a
Control_Valve class. Models may acquire attributes through aggregation and connection of
sub-objects or through multiple inheritance of characteristics. These were demonstrated with
two separate definitions of a Ratio_Controller class. Aggregation provided a stricter
modelling methodology that did not break the encapsulation of the sub-objects and in
particular left the final class with a single set of accessible interface functions. Multiple
inheritance of characteristics left some ancestor interfaces still functional. This can corrupt

the System-level structure that the rest of the simulator interacts with unless suitable

169

precautions are taken. With this class structure, multiple inheritance modelling requires more
knowledge about the parent classes and more effort to ensure consistent object construction.

The physical property classes were demonstrated with a multicomponent Flash model class.
A three-component flash was simulated in steady-state to introduce Flowsheet-level

simulation.

The permitted level of access to internal attributes of an object is an interesting issue in
software engineering. As stated in previous chapters, the majority of the System-level
structure must be inaccessible from specific unit-operation objects. This preserves the
consistency of the structure at an operational level. However, a system in which unit model
definition is in the same language as the important high-level data structure and functionality
is potentially easier to corrupt, especially in a system operated through a compiler. The low-
level model attributes are nearly always accessible; this could be considered a necessity in an
environment that encourages user-defined models and versatility. A system for widespread
use could perhaps supply the high-level code as a precompiled set of libraries that are
automatically attached to the user’s low-level code. This would seem to be a simple ¢ption,
the eencept of-\Dynamic-Linked-Libraries (DLLs) is popular in C++. Complete-resolution of

the issue is not required at this stage of the project’s development.

6.4 Simulation

Three test processes were simulated; the four-flash Cavett problem, a recombinant
fermentation model and the Tennessee Eastman control challenge problem. The simulator
provides interchangeable sequential-modular, parallel-modular and equation-oriented
simulation techniques with the same unit models. This was demonstrated with the Cavett
problem. Sequential-modular simulation was especially effective for initialising equation-
oriented simulations, although no single flowsheeting or numerical method proved to be
completely superior. Sequential- and parallel-modular design problems were easily specified

and solved with equation-oriented unit model solution.
A biochemical application was demonstrated with the development of a moderately complex

recombinant fermentation model for protein production in E. Coli bacteria. The model was

used to investigate potential advantages of process control applied to glucose feed flow.

170

The major test process for the dynamic capabilities of the simulator was the Tennessee
Eastman problem. The original Fortran code was reverse-engineered into a set of unit
operation classes. The physical properties were calculated with the ideal property and
User_Component classes in the simulator. Equation-oriented steady-state simulation
initialised the dynamic system. The same unit models were employed for both steady-state
and dynamic simulation. The control system was capable of adjusting the process operation
rapidly to suit the four standard setpoint changes for the plant. The real-time-to-simulated-

time ratio of the control system tests was about 1:10. There were 203 equations and variables.

6.5 Recommendations

Further development of the simulator is justified if emphasis is placed on modelling and
simulation capabilities for small, unconventional processing systems. There are many
packages available for large-scale simulation of conventional systems. The recommendations

below reflect this special-purpose focus.

A betterinterface is required to facilitate the modelling process, especiali, if the emphasis is
:placed on special-purpose modelling. At this stage, model developmerit.is restricted tc the
text-based compiler environment with C++ code. The simulator output is text-based, either to
the screen or to a file. Dynamic simulation results must be read into a spreadsheet program
for plotting. The addition of real-time graphing facilities would greatly enhance the

simulator.

The physical property package is quite basic. Only ideal and Peng-Robinson methods are
available. An object-oriented physical property package is probably a thesis in itself.
Physical property calculation is generally a service function to a simulation package. A
comprehensive interface to an existing property package would be a more sensible and much

simpler extension project than a complete object-oriented property database.

The data structure should be extended to handle other material types, for example solids or
slurry processing. The basic Process_Port class could be a starting point, because the
contained Variables are not of a specific type. The composition Vector in a Process_Port

could be employed as fractions within a size range. A slurry characterisation would greatly

171

expand the capabilities for bioprocess modelling simulation, such as centrifugation or

homogenisation operations.

The multiple steady-state solution techniques add complexity to the simulator. While the
mathematical superiority of the equation-oriented approach is recognised, the difficulty
associated with commencing the solution of larger problems (specifically the provision of
reasonable initial estimates) requires a simple, robust initialisation technique. The basic

sequential-modular capability should be retained for the initialisation.

Finally, a robust, sparse-matrix solver is recommended for equation-oriented simulation. The
Tennessee Eastman Jacobian matrix is almost 98% sparse, for example. The sparse solver is
probably better provided by an interface to existing third-party numerical software, because

the interface coding is likely to be simpler than the coding of another numerical method.

172

BIBLIOGRAPHY

Acton, F.S. 1990. Numerical Methods That Work. 454-458. Mathematical Association of
America, Washington.

Ballinger, G.H., Banares-Alcantara, R., Costello, D., Fraga, E.S., Krabbe, J., Lababidi, H.,
Laing, D.M., McKinnel, R.C., Ponton, J.W., Skilling, N., and Spenceley, M.W. 1994.
épée: a Process Engineering Software Environment. In Proceedings of European
Symposium on Computer-Aided Process Engineering- 3 (ESCAPE-3). Suppl.
Computers and Chemical Engineering, 18, S283-S287.

Banerjee, A. and Arkun, Y. 1995. Control Configuration Design Applied to the Tennessee
Eastman Plant-Wide Control Problem. Computers and Chemical Engineering, 19 (4),
453-480.

Biegler, L.T. 1983. Simultaneous Modular Simulation and Optimisation. In Proceedings of
the 2d International Conference on Foundations of Computer-Aided Process Design,
Westerberg, A.W. and Chien, H.H., (eds.), 369-408. Cache, Ann Arbor, Michigan.

Bischak, D.P., and Roberts, S.D. 1991. Object-oriented Simulation. In Proceedings of the
1991 Winter Simulation Conference, B.L. Nelson, W.D. Kelton and G.M. Clark (eds.),
194-203. Institute of Electrical and Electronic Engineers, San Francisco, California.

Bogle, I.D.L., and Perkins, J.D. 1988. Sparse Newton-Like Metheds in Equation Oriented
Flowsheeting. Computers and Chemical Engineering, 12 (8), 791-805.

Britt, HI. 1980. Multiphase Stream Structures in the ASPEN Process Simulator. In
Proceedings of the 15! International Conference on Foundations of Computer-Aided
Process Design, Mah, R.H., (ed.), 471-510. Engineering Foundation, New York.

Broyden, C.G. 1965. Mathematics of Computation, 19, 577-593.

Chung, Y., and Westerberg, A.W. 1990. A Proposed Numerical Algorithm for Solving
Nonlinear Index Problems. Industrial Engineering Chemistry Research, 29 (7), 1234-
1239.

Cockshott, A.R. and Bogle, I.D.L. 1992. Modelling a Recombinant E.Coli Fermentation
Producing Bovine Somatotropin. In Modeling and Control of Biotechnical Processes
1992 and Computer applications in fermentation technology (5th International
Conference) : selected papers from the IFAC and ICCAFT 5 meetings, Keystone,
Colorado, USA, 29 March - 2 April 1992. Kamin, M.Z. and Stephanopoulos, G.,
(eds.), Pergamon Press, New York, 219 - 222.

Dahl, O.J., Myhrbaug, B., and Nygaard, K. 1968. SIMULA-67 Common Base Language.
Norwegian Computing Centre, report no. S-2.

173

Downs, J.J., and Vogel, E.F. 1993. A Plant-Wide Industrial Control Problem. Computers
and Chemical Engineering, 17 (3), 245-255.

Ellis, M.A., and Stroustrup, B. 1994. The Annotated C++ Reference Manual. Addison-
Wesley, Massachusetts.

Evans, L.B. 1988. Bioprocess Simulation: A New Tool for Process Development.
Bio/Technology, 6 (2), 200-203.

Evans, L.B., Boston, J.F., Britt, H.I., Gallier, P.W., Gupta, P.K., Joseph, B., Mahalec, V., Ng,
E., Seider, W.D., and Yagi, H. 1979. ASPEN: An Advanced System for Process
Engineering. Computers and Chemical Engineering, 3, 319-327.

Farza, M., and Chéruy, A. 1991. CAMBIO: software for modelling and simulation of
bioprocesses. CABIOS, 7 (3), 327-336.

Fletcher, J.P., and Ogbonda, J.E. 1988. A Modular Equation-Oriented Approach to Dynamic
Simulation of Chemical Processes. Computers and Chemical Engineering, 12 (5),
401-405.

Fraga, E.S., McKinnon, K.LM., and Johns, W.R. 1991. Process Synthesis using a Parallel
Computer. In Computer-Oriented Process Engineering, L. Puigjaner and A. Espufia
(eds.), 235-240. Elsevier, Amsterdam.

Franks, R.G.E. 1972. Modelling and Simulatior: ir Chemical Engineering. Wiley
Interscience, New York.

Gadijaru, V.V. 1992. Development of a Process Simulator using Object-Oriented
Programming: Information Modeling and Program Structure. PhD Thesis, Chemical

Engineering Department, lowa State University.

Gear, C.W. 1971. Simultaneous Numerical Solution of Differential-Algebraic Equations.
IEEE Transactions on Circuit Theory, CT-18 (1), 89-95.

Gear, C.W. 1988. Differential-Algebraic Equation Index Transformations. SIAM Journal of
Scientific and Statistical Computing, 9 (1), 39-47.

Habchi, G., and Deloule, F. 1992. Study of modelling and simulation for a chemical
production system. Simulation, S8 (6), 366-374.

Hall, G. and Watt, JM. 1976. Modern Numerical Methods for Ordinary Differential
Equations. Clarendon Press, Oxford, London.

Henley, E.J and Rosen. 1969. Material and Energy Balance Computations. Wiley and Sons.
Hillestad, M., and Hertzberg, T. 1986. Dynamic Simulation of Chemical Engineering

Systems by the Sequential Modular Approach. Computers and Chemical
Engineering, 10 (4), 377-388.

174

Hillestad, M., and Hertzberg, T. 1988. Convergence and Stability of the Sequential Modular
Approach to Dynamic Process Simulation. Computers and Chemical Engineering, 12
(5), 407-414.

Holl, P., Marquardt, W., and Gilles, E.D. 1988. DIVA - A Powerful Tool for Dynamic
Process Simulation. Computers and Chemical Engineering, 12 (5), 421-426.

Hutchison, H.P., Jackson, D.J., and Morton, W. 1986a. The Development of an Equation-
Oriented Flowsheet Simulation Package - I. The Quasilin Program. Computers and
Chemical Engineering, 10 (1), 19-29.

Hutchison, H.P., Jackson, D.J., and Morton, W. 1986a. The Development of an Equation-
Oriented Flowsheet Simulation Package - II. Examples and Results. Computers and
Chemical Engineering, 10 (1), 31-47.

Konstantinov, K., Kishimoto, M., Seki, T. and Yoshida, T. 1990. A Balanced DO-Stat and
Its Application to the Control of Acetic Acid Excretion by Recombinant Escherichia
Coli. Biotechnology and Bioengineering, 36, 750-758.

Kroner, A., Holl, P., Marquardt, W., and Gilles, E.D. 1990. DIVA - An Open Architechture
for Process Simulation. Computers and Chemical Engineering, 14 (11), 1289-1295.

Lambert, J.D. 1991. Numerical Methods for Ordinary Differential Systems: The Initial
Value Problem. Ch. 6, pp. 213-260, Ch. 7, pp. 261-284. John Wiley and Sons,
Chichester. A

Lau, K.H. 1992. Development of a Process Simuicitor using Object-Orieated Programming:
Numerical Procedures and Convergence Studies. PhD Thesis, Chemical Engineering
Department, Towa State University.

Lee, HH., and Arora, J.S. 1991a. Object-oriented Programming for Engineering
Applications. Engineering with Computers, (7), 225-235.

Lee, J. and Ramirez, W. 1992. Mathematical Modeling of Induced Foreign Protein

Production by Recombinant Bacteria. Biotechnology and Bioengineering, 39, 635-
646.

Lee, S.B., Ryu, D.D.Y., Seigel, R. and Park, S.H. 1988. Performance of Recombinant
Fermentation and Evaluation of Gene Expression Efficiency for Gene Product in Two-
Stage Continuous Culture System. Biotechnology and Bioengineering, 31, 805-820.

Lee, T.Y. 1991b. The Development of an Object-Oriented Environment for the Modeling of
Physical, Chemical and Biological Systems. PhD Thesis, Chemical Engineering
Department, Texas A&M University.

Lefkopoulos, A., and Stadtherr, M.A. 1993. Index Analysis of Unsteady-State Chemical

Process Systems - I. An Algorithm for Problem Formulation. Computers and
Chemical Engineering, 17 (4), 399-413.

175

Lu, Y., Clarkson, A., Titchener-Hookner, N., Pantiledes, C., and Bogle, D. 1994. Simulation
as a Tool in Process Design and Management for Production of Intracellular Enzymes.
Transactions of the IChemE, 72, Part A, May, 371-375.

Luyben, W.L. 1996. Simple Regulatory Control of the Eastman Process. Industrial
Engineering Chemistry Research, 35 , 3280-3289.

Lyman, P.R. and Georgakis, C. 1995. Plant-Wide Control of the Tennessee Eastman
Problem. Computers and Chemical Engineering, 19 (3), 321-331.

Majewski, R.A. and Domach, M.M. 1990. Simple Constrained-Optimisation View of
Acetate Overflow in E. Coli. Biotechnology and Bioengineering, 35, 732-738.

Marquardt, D.W. 1963. Journal of the Society for Industrial and Applied Mathematics, 11,
431-441.

Marquardt, W. 1991. Dynamic Process Simulation - Recent Progress and Future Challenges.

In Proceedings of the 4th International Conference on Chemical Process Control, Y.
Arkun and W.H. Ray (eds.), 131-180. AIChE publication 67.

Marquardt, W. 1993. An Object-oriented Representation of Structured Process Models. In
Proceedings of the European Symposium on Computer-Aided Process Engineering - 1
(ESCAPE-1). Suppl. Computers and Chemical Engineering, 16, S329-S336.

Mattsson, S.E., Andersson, M., and Astrém. K.J. 1993. Object-Oriented Modelling and
Simulation. In D.A. Linkens (ed.j, CAD for Conirol Systems, pp. 31-69, Marcel
Dekker, Inc, New York. © Mg

McAvoy, T.J. and Ye, N. 1994. Base Control for the Tennessee Eastman Problem.
Computers and Chemical Engineering, 18 (5), 383-413.

Meyer, B. 1992. Eiffel: The Language. Prentice-Hall.

Morris, R.C. 1992. Process Simulation: Successes and Failures. In Proceedings of the 1992
Winter Simulation Conference, J.J. Swain, D. Goldsman, R.C. Crain and J.R. Wilson
(eds.), 1249-1255. Institute of Electrical and Electronic Engineers, San Francisco,
California.

Motard, R.L. 1989. Integrated Computer-Aided Process Engineering. Computers and
Chemical Engineering, 13 (11/12), 1199-1206.

N.EL. 1982. PPDS (Physical Property Data System) User Manual. National Engineering
Laboratory, United Kingdom.

Nielsen, J. and Villadsen, J. 1991. Bioreactors: Description and Modelling. In
Biotechnology, Vol. 3, Ch 2. Rehm, H.J., Reed, G., Puhler, A. and Stadler, P., (eds.).
VCH, New York, 79 - 102.

Nilsson, B. 1993. Object-Oriented Modeling of Chemical Processes. PhD Thesis,
Department of Automatic Control, Lund Institute of Technology.

176

Oh, M., and Pantiledes, C.C. 1994. A Modeling System for Lumped and Distributed
Parameter Processes. In Proceedings of the 1994 IChemE Research Event, P.A.
Shamfou, A.R.H. Cornish, L.S. Hershenbaum, S. Moore, N. Titchener-Hooker (eds.),
v2, 791-793. IChemE, United Kingdom:.

Paloschi, JR. 1996. Using Sparse Bounded Homotopies in Steady-State Simulation
Packages. In Proceedings of the European Symposium on Computer-Aided Process
Engineering - 6 (ESCAPE-6). Suppl. Computers and Chemical Engineering, 20,
S285-S290.

Pantiledes, C.C. 1988. SPEEDUP: Recent Advances in Process Simulation. Computers and
Chemical Engineering, 12 (7), 745-755.

Pantiledes, C.C. 1988. The Consistent Initialization of Diferential-Algebraic Systems. SIAM
Journal of Scientific and Statistical Computing, 9 (2), 213-231.

Pantiledes, C.C. and Barton, P.I. Equation-Oriented Dynamic Simulation: Current Status and
Future Perspectives. In Proceedings of the European Symposium on Computer-Aided
Process Engineering- 2 (ESCAPE-2). Suppl. Computers and Chemical Engineering,
17, S263-S285.

Patterson, G.K., and Rozsa, R.B. 1980. DYNSYL: A General-Purpose Dynamic Simulator
for Chemical Processes. Computers and Chemical Engineering, 4, 1-20.

Pegderi, C.D., Shannon, R.E., and Sadcwski, E.P. 1990. Iniroductior to Simulation using
SIMAN. McGraw-Hill, New York.

Perkins, J.D., and Sargent, R W.H. 1982. SPEEDUP: A Conputer Program for Steady-State
and Dynamic Simulation and Design of Chemical Processes. AIChE Symposium
Series No. 214, 78, 1-11.

Petrides, D. 1994. BioPro Designer: An Advanced Computing Environment for Modeling
and Design of Integrated Biochemical Processes. In Proceedings of the European
Symposium on Computer-Aided Process Engineering - 3 (ESCAPE-3). Suppl.
Computers and Chemical Engineering, 18, S621-S625.

Petrides, D., Cooney, C.L., Evans, L.B., Field, R.P.,, and Snoswell, M. Bioprocess
Simulation: An Integrated Approach to Process Development. Computers and
Chemical Engineering, 13 (4/5), 553-561.

Petrides, P.P., and Cooney, C.L. 1993. Trends in Biotechnology, 11.

Piela, P.C., Epperly, T.G., Westerberg, K.M., and Westerberg, A.W. 1991. ASCEND: An
Object-oriented Computer Environment for Modeling and Analysis: The Modeling
Language. Computers and Chemical Engineering, 15 (1), 53-72.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. Numerical Recipes in C.
2™ edition. Cambridge University Press, Aust.

177

Pritsker, A.A.B. 1986. Introduction to Simulation and SLAM II, 3* ed. Halsted Press, New
York.

Reid, R.C., Prausnitz, JM. and Poling, B.E. 1987. The Properties of Gases and Liquids.
McGraw-Hill, New York.

Ricker, N.L. and Lee, J.H. 1995a. Nonlinear Model Predictive Control of the Tennessee
Eastman Challenge Process. Computers and Chemical Engineering, 19 (9), 961-981.

Ricker, N.L. and Lee, JH. 1995b. Nonlinear Modeling and State Estimation for the
Tennessee Eastman Challenge Process. Computers and Chemical Engineering, 19 (9),
983-1005.

Roels, J.A. 1983. Energetics and Kinetics in Biotechnology. Elsevier Biomedical Press,
Amsterdam.

Sargent, R W.H. 1981. A Review of Methods for Solving Nonlinear Algebraic Equations.
Foundations of Computer-Aided Chemical Process Design, R.H. Mah, W.D. Seider
(eds.), v1, 27 - 76. Engineering Foundation, New York.

Schriber, T.J. 1991. An Introduction to Simulation using GPSS/H. John Wiley and Sons,
New York.

Seider, W.D., and Brengel, D3. . 1991. Nonlinear Analysis in Process Design. AIChE
Journal, 37 (1), 1-38. ' :

Shacham, M. 1985. Comparing Software for the Solution of Systems of Nonlinear Equations
Arising in Chemical Engineering. Computers and Chemical Engineering, 9 (2), 103-
112.

Siletti, C.A. 1990. Design of Protein Purification Recovery Processes. In Artificial
Intelligence in Process Engineering, M.L. Mavrovouniotis (ed.), 295-310, Academic
Press.

Simon, F., Narosdoslawsky, M., Csermely, Z., and Altenburger, J. 1994. Physical Property
Data Management in a Bioprocess Simulation System. In Proceedings of the
European Symposium on Computer-Aided Process Engineering - 3 (ESCAPE-3).
Suppl. Computers and Chemical Engineering, 18, S675-S680.

Smith, G.J., and Morton, W. 1988. Dynamic Simulation Using an Equation-Oriented
Flowsheeting Package. Computers and Chemical Engineering, 12 (5), 469-473.

Stadtherr, M.A., and Wood, E.S. 1984a. Sparse Matrix Methods for Equation-Based
Chemical Process Flowsheeting - I Reordering Phase. Computers and Chemical
Engineering, 8 (1), 9-18.

Stadtherr, M.A., and Wood, E.S. 1984b. Sparse Matrix Methods for Equation-Based
Chemical Process Flowsheeting - II Numerical Phase. Computers and Chemical

Engineering, 8 (1), 19-33.

178

Stephanopoulos, G., Henning, G., and Leone, H. 1990a. MODEL.LA. A Modeling
Language for Process Engineering-I. The Formal Framework. Computers and
Chemical Engineering, 14 (8), 813-846.

Stephanopoulos, G., Henning, G., and Leone, H. 1990b. MODEL.LA. A Modeling
Language for Process Engineering-II. Multifaceted Modeling of Processing Systems.
Computers and Chemical Engineering, 14 (8), 847-869.

Stephanopoulos, G., Johnston, J., Kriticos, T., Lakshmanan, R., Mavrovouniotis, M., and
Siletti, C. DESIGN-KIT: An Object-oriented Environment for Process Engineering.
Computers and Chemical Engineering, 11 (6), 655-674.

Timar, L., Simon, F., Csermely, Z., Siklés, J., Backsai, S., and Edes, J. 1984. Useful
Combination of the Sequential and Simultaneous Modular Strategy in a Flowsheeting
Programme. Computers and Chemical Engineering, 8 (3/4), 185-194.

Unger, J., Kroner, A., and Marquardt, W. 1995. Structural Analysis of Differential-Algebraic
Equation Systems - Theory and Applications. Computers and Chemical Engineering,
19 (8), 867-882.

Vazquez-Roman, R., King, JM.P., and Banares-Alcantara, R. 1996. KBMoSS: A Process
Engineering Modelling Support System. In Proceedings of the European Symposium
on Computer-Aided: Process Engineering - 6 (ESCAPE-6). Suppl. Computers and
Chemical Engineering, 20, S309-S314.

Villadsen, J. 1989. Simulation of Biochemical Reactions. Computers and Chemical
Engineering, 13 (4/5), 385-395.

Wayburn, T.L., and Seader, J.D. 1987. Homotopy Continuation Methods for Computer-
Aided Process Design. Computers and Chemical Engineering, 11 (1), 7-25.

Westerberg, A.W. 1979. Process Flowsheeting. Ch. 4, p105. Cambridge University Press.

Westerberg, A.W., and Benjamin, D.R. 1985. Thoughts on a Future Equation-Oriented
Flowsheeting System. Computers and Chemical Engineering, 9 (5), 517-526.

Williams, T.J. and Otto, R.E. 1960. A Generalized Chemical Processing Model for the
Investigation of Computer Control. AIE.E. Transactions, 79, Part 1
(Communications and Electronics), 458-467.

Ye, N. and McAvoy, T.J. 1995. Optimal Averaging Level Control for the Tenessee Eastman
Problem. Canadian Journal of Chemical Engineering, 73 (April), 234-240.

179

NOMENCLATURE

Due to the complexity of the biochemical process model (ref. Chapter 5, p155-156), the

general nomenclature for the thesis and the biochemical process are presented separately.

General

Viot
Vv
X
XisYisi
Yult)
V(¥
P
Pr
Pv

4

Area

Valve flow coefficient

Controller signal

Liquid molar specific heat

Vapour molar specific heat
Controller steady-state signal
Controller error signal

Feed stream flowrate or process flowrate
Liquid height

Integral of controller error signal
Controller gain

Equilibrium constant for component I
Liquid stream flowrate

Mass holdup of cemponent i

Totai mass holdup

Total molar holdup of component i
Total molar holdup of liquid phase
Molar holdup in liquid phase of component 1
Total molar holdup of vapour phase
Molar holdup in vapour phase of component I
Pressure

Ratio

Temperature

Vapour stream flowrate

Liquid phase volume

Total volume

Vapour phase volume

Valve position

Mass or mole fraction

Controller measured value

Controller setpoint

Mass density

Molar density of liquid phase

Molar density of vapour phase

Integral time

mZ

kmol/s/Pa®’

kJ/kmol/K
kJ/kmol/K

kmol/s

kmol/s
kg
kg
kmol

kmol

kmol
Pa

kg/m?
kmol/m
kmol/m?

3

180

Biochemical Model

T fa(,u)
T, ﬁ;(ﬂ+)

X <R X

plasmid-free biomass
plasmid-carrying biomass

acetate concentration

glucose feed rate

plasmid concentration in biomass
IPTG concentration

volumetric mass transfer coefficient
IPTG recovery rate variable
saturation constant for glucose
IPTG shock rate variable

specific growth rate

agitator rotational speed

oxygen concentration

saturated oxygen concentration
protein product concentration
fermentor absolute pressure
mixing power

oxygen partial pressure
probability of plasmid loss

ratg of formation of acetate

rate of formation of protein product
IPTG recovery ratic

glucose concentration

superficial gas velocity

broth volume

biomass concentration

(g acetate) /L.
(g glucose) /h
(mg plasmid) /(g biomass)
(g IPTG) /L
h-l

(g glucose) /L

h!

rev /s
(mmol O,) /L
(mmol O,) /L
(g protein) /L

kPa

w
kPa

(g acetate) /(g biomass) /h
(g protein) /(g biomass) /h

(g glucose) /L
m/s
L
(g biomass) /L

181

APPENDICES

Appendix A:

Appendix B:

Appendix C:

Appendix D:

Appendix E:

General member function descriptions

Flash class member functions

Tennessee Eastman Unit Operation Models

Tennessee Eastman Flowsheet Definition File

Recombinant fermentation model parameters

182

Appendix A: General Member Function Descriptions

A.1 System-based classes

A.1.1 System Connectivity and Mathematical interface functions

incorp main_ ss_set (Equation_Set& e) attaches an executive-level
Equation_Set pointer to the low-level Equation_Set object e. The
Equation_Set object is then available to System for analysis. A
Dynamic_Set object can also be passed as an argument for steady-state
analysis of a dynamic system. The & symbol denotes a reference type in C++,
which is similar to a pointer (Ellis and Stroustrup 1994), so e is then a
reference to an Equation Set object. The function permits different

Equation_Set objects to be employed within a System.

incorp main dyn set (Dynamic_Set& d) has the same function as above,

except for dynamic analysis within System.

set_sys(int n) sets the number of System-type objects that the System contains

or attaches to.

incorp sys(System& sys, int n) attaches a System-type object to the n™
System pointer in a Vector object named subsys. This function and the
function above are employed directly in the Flowsheet class and for

constructing multi-System models.

set_no_inpstrms (int n) sets the number of Stream-type objects entering the
System object and hence the number of Input Port-type objects. The
function could equally be named set no_inp ports(int n) but it is

more natural to perform connections with Stream-type objects.

own_ input port (Input_Port& p, int n)attaches an Input_Port-type

object to the n" Input_Port pointer.

183

inp stream(Stream& strm, int n)attaches a Stream-type object to the

Input_Port-type pointed to by the n" Input_Port pointer.

set_no_outstrms (int n)sets the number of Stream-type objects leaving the

System object and hence the number of Output_Port-type objects.

own output port (Output_Port& p, int n) attaches an Output_Port-

type object to the n" Output_Port pointer.

out stream(Stream& strm, int n)attaches a Stream-type object to the

Output_Port-type pointed to by the n® Output_Port pointer.

set no inststrms(int n) sets the number of internal Stream-type objects in
a System object. This function is not actually required for Stream-type
objects to be connectors within a System object. A System object already
“owns” Port-types as part of the executive structure. Conrnecticns are made
with Port-type objects to Stream-type objects and so the connectivity is

automatically available.

incorp strm(Stream& strm, int n) attaches a Stream-type object to the
n" Stream pointer. This function and the function above are not actually
required to define a connected System; they are included for the sake of
completeness in case other combined System-Stream types are developed.
One possibility is the creation of a class for modelling long pipe runs where
process conditions could result in stratified two-phase flow or significant

pressure drop.

184

A.1.2 System Analysis

setup () drives the mapping functions of the Port-type objects in a System object.

The function must be redefined for each new modelling class.

ss_analyse () performs depth-first connection and steady-state analysis of System-

types.

ss_build () performs depth-first connection and builds Vector objects containing

Equation and Variable pointers for steady-state solution.

reset ss_eqns () resets the System object’s steady-state Equation_Set object so
it can be reanalysed and recollected. Required for steady-state initialisation of

a dynamic simulation.

dyn analyse () performs depth-first connection and dynamic analysis of System-

types.

dyn_build () performs depth first connection and builds Vector objects containing

Equation, Variable and Derivative pointers for dynamic solution.

reset_dyn eqgns () resets the Dynamic_Set object so it can be reanalysed and

recollected.

A.1.3 Convergence Block class interfaces

set _no_tear streams(int n) sets the number of Process_Stream objects to

be torn.

tear (Process Stream& strm, int n) assigns a Process_Stream object to

be the n'™ torn stream.

185

tear and reassign ()tears and reassigns Variable objects prior to solution.

seq solver (char s[])specifies the numerical method to be employed in the
sequential-modular iterations. Valid arguments are “NEWT”, “BROY”,
“MARQ”, “DIRS”, “WEGS” or “NONE”. “DIRS” and “WEGS” correspond
to Direct Substitution and Wegstein methods. “NONE” switches off

sequential-modular solution.

sim_solver (char s[])specifies the numerical method to be employed in the
simultaneous/equation-oriented flowsheet iterations. Valid arguments are

“NEWT”, “BROY”, “MARQ” or “NONE”.

solve () solves the Flowsheet object.

A.2 Port-based classes

A.2.1 Port, Input Port and Output_Port class interface functions

get vars (Vector<Variable*>& v) isa member of the Port class. It is the
interrogation function described above. The Vector object v must be allocated
(i.e. with a build (i,) call) before it is passed to the function. The
function assigns the pointers in a low-level Port object to the vector elements.

This function is usually only used for debugging.

map () is a virtual member of the Port class. It connects input and output Variable

objects to each other. Specific map () functions are discussed later in the text.
set sink(Stream& str) is a member of the Output Port class. It sets the

Port’s sink Stream pointer to str. This function is automatically called by

more specific Output_Port classes.

186

set_source (Stream& str) is a member of the Input_Port class. It sets the
port’s source Stream pointer to str. This function is automatically called by

more specific Input_Port classes.
check_inputs(int n) is a member of the Input_Port class. It is used to

remove input variables from an equation set analysis. Valid arguments are ON

or OFF. Input_Port-types default with a call to check inputs (OFF).

A.2.2 Process Output Port and Process_Input_Port class interface functions

Process Output Port:

set temp outlet (Variable& v)setsa Variable object for the temperature of

the stream leaving through the port. (Normally the vessel temperature).

set press_outlet (Variable& v)sets a Variable object for the pressure of

the stream leaving through the port. (Normally the vessel pressure).

set tot flow(Variable& v) sets the total outlet flow Variable object.

set_fracs(Vector<Variables>& v) setsthe composition Vector object of the

stream leaving through the port.

get vars (Vector<Variable*>& v) obtains a list of the pointer attributes in
the port. The elements of the Vector v are assigned in order of: composition,
total flow, output temperature, output pressure, downstream temperature and
downstream pressure. The user must know in advance how many components

are in a stream and build v appropriately.

These member functions above are usually sufficient for general-purpose modelling.

Member functions for bi-directional information flow are described below:

187

get temp output () returns a pointer to the output temperature Variable object of

the stream.

get press_output () returns a pointer to the output pressure Variable object of

the stream.

get temp sink ()returns a pointer to the temperature Variable object of the

downstream port or vessel.

get press_sink ()returns a pointer to the temperature Variable object of the

downstream port or vessel.

Process Input_Port:

set temp owner (Variable& v) assigns a Variable object for the temperature

of the environment the stream is entering. (Normally the vessel temperature).

Set press_owner (Variable& <) assigns a Variable object for the pressure

of the environment the stream is entering. {Normally the vessel pressure).

set temp_ inlet (Variable& v) assigns a Variable object for the temperature
of the entering stream. The inlet temperature connection is set by the upstream
port..

set press_inlet (Variable& v) assigns a Variable object for the pressure
of the entering stream. The inlet pressure connection is set by the upstream
port.

set_tot_flow(Variable& v) assigns the total inlet flow Variable object .

set fracs(Vector<Variable>& v) assigns the composition Vector of the

inlet stream.

188

get_vars (Vector<Variable*>& v) obtains a list of the pointer attributes in
the port. The elements of the Vector v are assigned in order of: composition,
total flow, input temperature, input pressure, owner temperature and owner
pressure. The user must know in advance how many components are in a

stream and build v appropriately.

Member functions for bi-directional information flow are described below:

get temp_ input ()returns a pointer to the input temperature Variable object of

the stream.

get press_input () returns a pointer to the input pressure Variable object of the

stream.

get temp_ owner ()returns a pointer to the temperature Variable object of the

owner vessel.

get press_owner () returns a pointer to the temperature Variable object of the

owner vessel.

A.2.3 Signal Input Port and Signal Output_Port class interface functions

These functions apply to both classes.

set_signal var(Variable& v) assigns the signal Variable object of the

port.

get vars (Vector<Variable*>& v). The Vector object contains a single

element, which is set to the port signal.

A.2.4 Energy Input Port and Energy_Output_Port class interface functions

189

These functions apply to both classes.

set_energy var (Variable& v) assigns the energy Variable object of the

port.

get vars (Vector<Variable*>& v) . The Vector object contains a single

element, which is set to the energy Variable.

A.3 Stream classes

A.3.1 Stream class interface functions

get source () returns the address of the source Port object.

get sink () returns the address of the sink Port object.

A.4 Variable-based classes

A.4.1 Variable class interface functions

operator ()is an overloaded operator. It returns the double precision value of the
Variable, or the value of the Variable object it is connected to. See the

example below.

operator = (double) is an overloaded = operator that assigns a double
precision value to the Variable object or the object it is connected to.
An example of usage is :

Variable v1,v2,v3;
vl = v2() + v3();

190

The = operator is deliberately restricted to operating only on double precision

values to enforce the use of a consistent method for specifying mathematical

operations and to reduce the amount of recoding required to perform numerical

calculations with the Variable class.

set val (double d) performs the same function as the = operator.

connect_ to(Variable& v) assigns the connection of the Variable object.

connect_to(Variable* v) assigns the connection of the Variable object.

lower (double d) sets the lower bound of the Variable object.

lower () returns the lower bound of the Variable object.

upper (double d) sets the upper bound of the Variable object.

upper () returns the upper bound of the Variable object.

get_type () returns the type of the Variable object, ‘c’ for a constant or parameter

and ‘v’ for a potential solution variable.

constant () sets the type of the Variable object to ‘c’ (see get_type () above).

var () sets the type of the Variable object to ‘v’ (see get_type () above).

check () returns true if the Variable is to be checked as part of an Equation_Set

analysis or false if it is not.
check (int n) sets the analysis status of the Variable object. If called as

check (ON) the Variable object will be included in an Equation_Set

analysis, or excluded if called as check (OFF) .

191

get connection ()returns the immediate connection of the Variable object if it

has one.
get end connection ()returns the final connection of the Variable object. It

finds the end of a linked list of connected Variable objects (extension of

get connection () above).

A.4.2 Derivative class interface functions

set state(Variable& v) sets the state Variable object of the derivative.

operator = . The Derivative class cannot employ the = operator of the Variable
class; it must be redefined even though it performs the same function. Thisis a
C++ restriction.

get_ type ()returns the type of the state Variable object associated with the

Derivative object.

A.4.3 Equation class interface functions

set no x(int n) assigns the number of Variables that affect the Equation.

include (Variable& v) includes a Variable in the list.

set derivative (Derivative& d) assigns the Derivative object of the

Equation.

set exp var (Variable& v) assigns the explicit Variable for the Equation.

192

A.4.4 Equation_Set and Dynamic_Set class interface functions

Equation_Set:

incorp egns(Vector<Equation>& e) attaches a Vector of Equation

objects to the Equation_Set object.

set no subsets(int n) sets the number of other Equation_Set objects that an

Equation_Set object contains or attaches to.

incorp set (Equation Set &e, int n) attaches an Equation_Set object

to the n" subset pointer.

incorp set (Equation Set &e) 1is the same as above except the

Equation_Set object is attached to the next available subset pointer.

get no vars ()returns the number of solution Variable objects in the

Eguation_Set. o

get no eqgns ()returns the number of solution Equation objects in the

Equation_Set.

check () returns true if the Equation_Set is to be analysed or false if it is not.

check (int n) sets the analysis status of the Equation_Set. If called as
check (ON) the Equation_Set will be analysed, or excluded if called as

check (OFF).

Dynamic_Set:

set _indep(Variable& v) sets the independent Variable object for the

Dynamic_Set.

193

set no ae sets(int n) calls the set no_subsets(int n) function
above. This function is implemented for clarity in specifying whether a subset

is algebraic or dynamic.

incorp ae set (Equation_Set& e, int n) calls the

incorp set (Equation Set &e, int n) functionabove.

incorp ae set (Equation_ Set& e) calls the

incorp set (Equation_Set &e) function above.

set no_dyn subsets(Dynamic_Set& d) sets the number of Dynamic_Sets

that the Dynamic_Set contains or attaches to.

incorp dyn set (Dynamic_Set &d, int n) attaches a Dynamic_Set to the

n® dyn_subset pointer.

incorp dyn set (Dynamic_Set &e) is the same as above except the

Dynamic_Set is attached to the next available dyn subset pointer.

get no ae vars ()returns the number of algebraic solution Variable objects in

the Dynamic_Set.

get no ae_ eqns () returns the number of algebraic solution Equation objects in

the Dynamic_Set.

get no_dyn_vars () returns the number of state solution Variable objects in the

Dynamic_Set.

get no dyn_egns () returns the number of state solution Equation objects in the

Dynamic_Set.

get no_derivs () returns the number of Derivative objects in the Dynamic_Set.

194

A.5 Physical Property Classes

A.5.1 Component class interface functions

get MW () returns the molecular weight.
get Tc () returns the critical temperature.
get Pc () returns the critical pressure.

get Ve () returns the critical volume.

get Tb () returns the boiling point.

get Tf () returns the freezing point.
get_w () returns the acentric factor.

get dipm() returns the dipole moment. |
get CpL () returns the liquid specific heat.

get CpV () returns the vapour specific heat.

get rholL () returns the liquid density.
get_rhoV () returns the vapour density.

get Hfg () returns the enthalpy of vapourisation.

A.5.2 User Component class interface functions

set MW (double d) setsthe molecular weight.

195

set Tc(double d) sets the critical temperature.

set Pc(double d) sets the critical pressure.

set Vc (double d) sets the critical volume.

set Tb(double d) sets the boiling point.

set Tf (double d) sets the freezing point.

set w(double d) sets the acentric factor.

set dipm(double d) sets the dipole moment.

set CpL(double d) sets the liquid specific heat.

set CpV(double d) sets the vapour specific heat.

set rhoL (double d) sets the liquid density.

set_rhoV(double d) sets the vapour density.

set Hfg(double d) sets the enthalpy of vapourisation.

A.5.3 Component Set class interface functions

Component_ Set (int n) is a constructor. The argument n sets the number of

Components in the set.

incorp_ comp (Component& <, int n) attaches a Component to the n®

position in the set.

set datafile(ifstream& datafile) sets the text file containing the

Component property data.

196

get_properties () gets the properties for the incorporated Components from the

datafile object above.

A.5.4 General Component Mixture class interface functions

incorp compset (Component_ Seté& cs) attaches a Component_Set object to

the mixture.

incorp thermo (Thermo& t) attaches a Thermo-type object to the mixture.
The Component_Set for the mixture is automatically attached to the Thermo

object.

incorp vle (VLE& v) attaches a VLE-type object to the mixture. The

Component_Set for the mixture is automatically attached to the VLE object.

set_mix_frac(Vector<Variable> &v) sets the mole fractions for the total

mixture.
set vap frac(Vector<Variable> &v) sets the mole fractions for the
vapour phase.

set_liq frac(Vector<Variable> &v) sets the mole fractions for the liquid

phase.

set To(double T) sets the reference temperature for the mixture.

set Po(double P) sets the reference pressure for the mixture.

vap_ave_ MW () returns the average molecular weight for the vapour phase.

1lig ave MW () returns the average molecular weight for the liquid phase.

ave MW () returns the average molecular weight for the mixture.

197

CpL molar (double T, double P) returns the molar specific heat of the

liquid phase at temperature T and pressure P.

CpL_mass (double T, double P) returns the mass specific heat of the liquid

phase at temperature T and pressure P.

CpV_molar (double T, double P) returns the molar specific heat of the

vapour phase at temperature T and pressure P.

CpV_molar (double T, double P) returns the mass specific heat of the

vapour phase at temperature T and pressure P.

rhol. molar (double T, double P) returns the molar density of the liquid

phase.

rhol. mass (double T, double P) returns the mass density of the liquid

phase.

rhoV _molar (double T, double P) returns the molar density of the vapour
phase.
rhoV _mass (double T, double P) returns the mass density of the vapour

phase.

HL molar(double T, double P) returns the molar enthalpy of the liquid
phase.

HL mass (double T, double P) returns the molar enthalpy of the liquid

phase.

HV molar (double T, double P) returns the molar enthalpy of the vapour

phase.

198

HV mass (double T, double P) returns the mass enthalpy of the vapour

phase.

SL molar(double T, double P) returns the molar entropy of the liquid

phase.

SL mass (double T, double P) returns the mass entropy of the liquid phase.

SV _molar (double T, double P) returns the molar entropy of the vapour

phase.

SV mass (double T, double P) returns the mass entropy of the vapour phase.

GL _molar (double T, double P) returns the molar Gibbs energy of the liquid

phase.

GL mass (double T, double P) return:s the mass Gibbs energy of the liquid

phase.

GV molar(double T, double P) returns the molar Gibbs energy of the

vapour phase.

GV _mass (double T, double P) returns the mass Gibbs energy of the vapour

phase.

AL molar (double T, double P) returns the molar Helmholtz energy of the

liquid phase.

AL mass(double T, double P) returns the mass Helmholtz energy of the

liquid phase.

AV molar (double T, double P) returns the molar Helmholtz energy of the

vapour phase.

199

AV mass(double T, double P) returns the mass Helmholtz energy of the

vapour phase.

Ki (Vector<double> &K, double T, double P) returns the equilibrium

constants (K values) for the mixture.

A.5.5 Ideal VLE class interface functions

set no_comps (int n) sets the number of Components in the set.
set A(double a, int i) setsconstant A for Component i.
set B(double b, int i) setsconstant B for Component i.
set C(double c, int i) setsconstant C for Component i.
i |
Pvapi (Vector<double> &Pvp, double T, double P) returns vapour

pressures of the Components in the mixture.

Ki (Vector<double> &K, double T, double P) returns the equilibrium

constants (K values) for the mixture.

A.6 Mathtool class interface functions

solve NEWT () solves simultaneous equations using a Newton method.

solve BROY () solves simultaneous equations using a Broyden method.

solve MARQ () solves simultaneous equations using a Marquardt method.

setup_ solve () passes a System object’s analysed steady-state Equation_Set to

the solvers.

200

setup integ () passesa System object’s analysed Dynamic_Set to the solvers.

BDF_ integrate(double start, double stop, double hstart,

double hmin, double hmax, int max steps, double tol)

employs a variable-step variable-order Gear Backward Difference method to
perform the dynamic simulation. Differential and algebraic equations are
solved simultaneously as one large set. Integrates over the interval from
start to stop, commencing with a step size hstart, a minimum step size
hmin < hstart, with a maximum step size hmax, a maximum number of

steps max_steps to an integration error tolerance tol.

201

Appendix B: Flash Class Member Functions

B.1 Constructor

Flash::Flash(int n, int no_comps, double vol, //Constructor
double diam) :Unit (n) {

int i,j;//Counters.
nc=no_comps;//Initialise unit parameters.
Vol=vol;

Area=PI/4.0*diam*diam;

hmax=Vol/Area;

K.build(1l,nc);//Allocate vector storage.

x.build(1l,nc);
y.build(1l,nc);
z.build(1,nc);
N.build(1l,nc);
Nv.build(1l,nc);
Nl.build(1l,nc);
dNdt .build(1l,nc) ;

de.build(1l,nc+l);
egbm.build (1, nc);
mfs.build(1,2);
cmb.build(1,nc) ;
lmb.build (1, no?;
vmb.build(1l,nc);
vb.build(1,4);

for(i=1l;i<=nc;i++){//Create dynamic equation map.

de (i) .set_derivative (dNdt(i));
dNdt (i) .set state(N(i));
de(i).set _no x(7);
de (i) .include(z(i));
de (i) .include (F) ;
de (i) .include (x(i));
de (i) .include (N(i));
de (i) .include (L) ;
de(i) .include(y(i));
de (i) .include (V) ;
}
de (nc+l) .set_derivative (dTdt) ;
drdt.set_state(T);
de(nc+l) .set_no_x(3*nc+10);
for(i=l;i<=nc;i++) {
de (nc+l) .include(x (1)) ;
de (nc+l) .include (y (i));
de(nc+l) .include(z (1)) ;
}
de (nc+l) .include (NV) ;
de (nc+1l) .include (NL) ;
de (nc+1l) .include (Q) ;
de (nc+1) .include (L) ;

202

de (nc+l) .include (V) :
de (nc+1l) .include(F) ;
de (nc+l) .include (T) ;
de (nc+l) .include(P) ;
de (nc+l) .include (Tin) ;
de (nc+l) .include (Pin) ;

de set.incorp_eqns(de);
//Finished dynamic equation map.
//Create equilibrium equation map.
for (i=l;i<=nc;i++) {
egbm(i) .set_no_x(2*nc+2);
for (j=1l;j<=nc;j++){
egbm (i) .include(x(j));
egbm (i) .include(y(j));
}
egbm (i) .include(T) ;
egbm (i) .include (P) ;

}

egbm set.incorp_eqns (egbm) ;
//Finished equilibrium equation map.

//Create mole fraction summation map.
mfs (1) .set_no_x(nc);
for (i=l;i<=nc;i++)mEfs (1) .include(x(1i)) ;

mfs (2) .set_no_x(nc);
for(i=1l;i<=nc;i++)mfs(2) .include(y(i));

mfs ‘set.iticorp_eqns (mis);
//Finished mole fraction summation map.

//Create component mole balance map.
for (i=1;i<=nc;i++){

cmb (i) .set_no_x(3);

cmb (i) .include (N (i)) ;

cmb (i) .include (Nv (1)) ;

cmb (i) .include (N1 (i)) ;

}

cmb_set.incorp_ egns(cmb) ;
//Finish component mole balance map.

//Create ligquid mole balance map.
for(i=l;i<=nc;i++) {

lmb (i) .set_no x(3);

lmb (i) .include (NL) ;

lmb (i) .include(x (1))

lmb (i) .include (N1 (i));

}

lmb set.incorp_eqns (1lmb) ;
//Finished liquid mole balance map.

//Create vapour mole balance map.
for (i=l;i<=nc;i++) {

vmb (i) .set_no_x(3);

vmb (i) .include (NV) ;

203

vmb (i) .include (y(i));
vmb (i) .include (Nv(i)) ;

}

vmb_set.incorp_eqns (vmb) ;
//Finished vapour mole balance map.

//Create volume balance map.
vb (1) .set _no x(2);
vb (1) .include (VL) ;
vb (1) .include (VV) ;

vb (2) .set_no_x(nc+2);
for(i=1l;i<=nc;i++)vb(2).include(x(i));
vb(2) .include (VL) ;

vb(2) .include (NL) ;

vb (3) .set_no x(nc+2);
for(i=1l;i<=nc;i++)vb(3) .include(y(i));
vb(3) .include (VV) ;

vb (3) .include (NV) ;

vb (4) .set_no_x(2);
vb(4) .include (VL) ;
vb(4) .include (h) ;

vb_set.incorp eqns(vb);
//Finished-volume balance map.

//Create equation set structure.
de sa:.set_nc.ae sets(6);

de set.incorp ae_set(egbm set,1);
de set.incorp ae_set(mfs_set,2);
de_ set.incorp_ae_set(cmb_set,3);
de set.incorp_ ae_set(lmb_set,4);
de set.incorp ae_set (vmb_set,5);
de set.incorp_ae set(vb_set,6);

incorp main_dyn set(de_set);
incorp main_ss_set (de_set);
//Finished equation set structure.

//Allocate interface variables
feed.set_ fracs(z);

feed.set temp_input(Tin);
feed.set press_input(Pin);
feed.set_temp owner (T);
feed.set press owner (P);

vapour.set fracs(y):
vapour.set temp output(T);
vapour.set press output(P);

liquid.set fracs(x):
liquid.set temp output(T);
liquid.set press output(P);

level sig.set_signal_var (h);
press sig.set_signal_var(P);

204

temp sig.set_signal_var (T);
heat.set signal_ var(Q);
//Finished interface variables.

//Create process structure.
set_no_inpstrms(2);
own_input port (feed,1);
own_input port (heat,2);

set _no_outstrms(5);

own output_port(liquid,1);
own output_port (vapour,2);
own_output port(level_sig,3);
own_output_port (temp_sig,4);
own output_port(press_sig,5);
//Finished process structure.

//Initialise physical properties.
VL mix.set_no_comps (nc);

VL mix.set_liqg_frac(x);

VL _mix.set_vap_ frac(y);

VL mix.set_mix frac(z);
//Finished physical properties.

}//END Constructor.

B.2 Port setup

Cenh : (LY

void Flash::setup () {//Connects input and outputs.
//Run by flowsheet.

N

feed.map () ;
heat.map() ;

liquid.map () ;
vapour.map () ;
level sig.map();
temp sig.map();
press _sig.map();

B.3 Connection Functions

//Connection functions.

void Flash::feed in(Stream& str)({
inp stream(str,1);

}

void Flash::heat in(Stream& str)
inp stream(str,2);
}

void Flash::liquid out (Stream& str){
out_stream(str,1);
}

205

void Flash::vapour out(Stream& str){
out_stream(str,2);
}

void Flash::level out(Stream& str) {
out stream(str,3);
}

void Flash::temp out(Stream& str){
out stream(str,4);
}

void Flash::press out(Streams str) {
out_stream(str,5);
}

206

Appendix C: Tennessee Eastman Unit Models

In all models, the subscript index i = I...8 corresponds to components A..H. Physical
property data for the simulations was calculated from pure component properties as presented
in the original paper by Downs and Vogel (1993). Nomenclature is presented at the end of the
appendix. Models are presented in an equation-oriented form.

C.1 Mixer Model

The mixer model is based on a trivial gas-phase material and energy balance. The total mixer
volume is 141.6 m’.

dN, 3
LN Fz, +Vy, = 0 i=1.8 (B.1)
dt j=1 !
dT
—_NFH, +VH, = 0 B.2
> Z Hp . (B.2)
N,
Y- = 0 i=1..8 (B.3)
2Ny,
j=1
8
RT) N,
P——_— = 0 B.4

207

C.2 Reactor Model

The reactor model is presented in equation-oriented form below. The reaction kinetic
expressions are overleaf. The vapour phase contains a partial pressure balance based on
contributions from the condensible and incondensible components. The total reactor volume
is 36.8 m’.

dN,
o~V - Xy, = 0 i=1..8 (B.5)
dT 1
e ; ; (FH,-VH, +H,+Q) = 0 (B.6)
Cp, D Ny, +Cp, D Ny,
j=1 j=l1
dT, 1
14
Q-UA+ (T-1,) = 0 (B.8)
Lmax
8
LN,
V, -+ =0 (B.9)
P
x,P .
yc,—'Ts“" = 0 i=4..8 (B.10)
i C
Yoy, -t = 0 : (B.11)
j=1
8
> ¥e; -1 = 0 (B.12)
Jj=l
P-P. .
yi—(P")ym = 0 i=1..3 (B.13)
P.
y,.—(% Yes = 0 i=4.8 (B.14)
NV,—PIy{";fV = 0 i=1..8 (B.15)
N,-N,, = 0 i=1..3 (B.16)
N,-N,, - N, = 0 i=4.38 (B.17)
N,
X, —— = 0 i=4..8 (B.18)
Vo

208

=

=

N

M 3 M <} TR R

=
-~

0454 exp(3 15859536 —
0454 exp(3.00094014 -

0454 exp(3 15859536 —

0.76748834R,p', p',
H, R +H,,R,
_Rl —R2 _Rs

- Rl _Rz

- R, —-15R,

_Rz _Ra

R, +R,

R,

R,

40000

)p.11.1544 p.30.3735 P'4 (35'3147VV)

1987T
60000

1987T

40000

)p.11.1544 p.30.3735 P's (35‘3 147VV)

——) P, ps(353147,)

1987T

(B.19)
(B.20)

(B.21)

(B.22)
(B.23)
(B.24)
(B.25)
(B.26)
(B.27)
(B.28)
(B.29)
(B.30)

209

C.3 Separator Model

The separator model is similar to the reactor model, with addition of a liquid product stream
and the omission of the reaction kinetics. The total separator volume is 99.1 m’.

dN

dt" — Fz, +Vy, - Lx, = 0 i=1..8 (B.31)
dT 1
— : - (FH,.-VH, -LH,+Q) = 0 (B.32)
Cp, 2N, +Cp, D Ny,
j=1 j=1
dT,, 1
- F, C, (T, -T,}- =0 B.33
dt MW CPW (xQ W max PW(W in W) Q) ()
Q-UA(T-T,) = 0 (B.34)
8
2N
v, - = 0 (B.35)
PrL
xiPm.rf .
Yo, ———k = 0 i=4.8 (B.36)
3 PC
Z yy; -1 = 0 (B.37)
1;1
> ¥e; -1 = ¢ (B.38)
j=1
P-P.
y,.—[= iju‘. = 0 i=1.3 (B.39)
P,
¥, _[?‘] Viss =0 i=4..8 (B.40)
PyV, :
Ny, - RT" = 0 i=1..8 (B.41)
N,-N,, = 0 i=1.3 (B.42)
N,-N,,-N,, =0 i=4..8 (B.43)
N, .
x, ——22 = 0 i=4..8 (B.44)
V.o

210

C.4 Stripper Model

The Tennessee Eastman Fortran code contains an unusual model for the stripping column.
The model form is not completely clear from the code, but the model appears to assume that
vapour phase holdup equilibrium is instantaneous. The stripper vapour volume is neglected in
the code. The split between vapour and liquid is calculated from a temperature and feed-flow
dependent recovery term. The specific heat of the vapour phase is neglected. The heat duty is
regulated by a simple linear-dependence equation. All components are condensible in this
model for the purposes of the liquid product stream.

dNL,- .
7—(1—(4)(Ezli + Fyg,,)+ Lx, = 0 i=1..8 (B.45)
dT 1
—— (FH,, +FH,,~-VH,-LH, +Q) = 0 (B.46)
CPL Z NL,-
j=4
#(Fz, + Fyz,,) -V, = 0 i=1..8 (B.47)
8
>y -1 = 0 (B.48)
=
QQ -X, = 0 (B.49)
max NL . '
fopp— = 0 i=1.8 (B.50)
Z Nth
j=!
8
2N,
v, -+—ro0 =0 (B.51)
PrL
The recoveries are calculated from the following expressions:
363.744
Tfact = — 222579488 B.52
Jac 177 —(T - 27315) (B22)
F
Rfact = —Finact (B.53)
1
é = 0995 (B.54)
@, = 0991 (B.55)
&, = 0990 (B.56)
Rfact
4 _ Sftfect i=4.8 (B.57)
1+ s,Rfact

211

C.5 Nomenclature

All pressures are absolute. The majority of the constants have been converted from values in

the Fortran code.
Symbol
Cpp molar specific heat of liquid phase
Cpy molar specific heat of vapour phase
F flowrate of feed stream
F, flowrate of feed stream j
F; flowrate of feed stream j
Hy specific enthalpy of feed stream
Hp specific enthalpy of feed stream j
H, specific enthalpy of liquid stream
Hy heat production rate in reactor
Hy, enthalpy of vapour stream
N; total holdup of species i
Ny; liquid phase holdup of species i
Ny; vapour phase holdup of species i
P vessel pressure
| partial pressure of component i
P, total vapour partial pressure of condensible components
P, saturated vapour pressure of component i
o cooling or heating duty
Rfact stripper temperature and feedrate recovery factor
R, rate of reaction i
T vessel temperature
Tfact stripper temperature factor
Ty cooling water temperature
| 4 vapour flowrate
vV, liquid phase volume
vV, vapour phase volume
X; mole fraction species i, liquid phase
X position of cooling/heating supply valve
Xri production rate of species i in reactor
Yei mole fraction condensible species i, vapour phase
Vi mole fraction species in vapour phase
Yui mole fraction uncondensible species i, vapour phase
% mole fraction of component i in feed
%i mole fraction of component i in feed stream j

Units

kJ/kmol/K
kJ/kmol/K
kmol/h
kmol/h
kmol/h
kJ/kmol
kJ/kmol
kJ/kmol
kJ/h
kJ/kmol
kmol
kmol
kmol

kPa

mm Hg
kPa

kPa

kl/h

kmol/h
K

K
kmol/h
m3

m3

0-1
kmol/h

212

Constant

Vmeu:

TWin

Greek
symbols

Pr
¢

gas constant
heat transfer coefficient

specific heat production of reaction 1
specific heat production of reaction 2
maximum heating duty available (stripper)
maximum cooling water flowrate available

specific heat of water

stripper condensible component vapour recovery
constant

mass holdup of water in cooling coil

maximum liquid volume in reactor
cooling water supply temperature

Description

liquid molar density
stripper vapour recovery fraction

Value

8.3144

1.0679 x 10° (react)
7.0000 x 10° (sep)
150000

110000

1 x10°

227100 (react)
272000 (sep)
4.186

s, = 8.5010
s;=11.402
s,=11.795
5,=0.048

sy =0.0242

5000 (react)

7500 (sep)

21.0

308.15

Units

kmol/m?

Units

m’kPa/kmol/
kJ/h/K

kJ/kmol

kJ/kmol
kl/h

kg/hr

kI/kg/K

kg

~ B

213

Appendix D: Tennessee Eastman Flowsheet Definition

A flowsheet example for the definition of the Tennessee Eastman problem with the control
system illustrated in Figure 5.5 is presented below. The flowsheet specifies a setpoint change

to the reactor pressure.

#include "c:\eastman\tenneast.hpp"//header file for the problem

void main(void) {//start program

//declare components, streams, units etc
//all objects are declared static to avoid overflowing
//the stack in memory

static User Component TennA,TennB, TennC,TennD;
static User Component TennE, TennF, TennG, TennH;

static Component Set TennSet (8);
static Ideal VLE TennVle (8);
static Simple Thermo TennTherm(8) ;

#include "c:\\eastman\\teprops.hpp"//include component data file
//this file contains the C++ code for defining component properties
//etc and where the components are assigned to the set

//Most names are self explanatory

static Flowsheet £f($39);

static Boundary Node Asource(l,8),Csource(2,8);
static Boundary Node Dsource(3,8),Esource(4,8);
static Boundary Node prod sink(5,8).,purge_sink(6,8);

static TE Mixer mix(7,5);
static TE_Reactor rx(8);
static TE Incon_Flash sep(9);
static TE Stripper strip(10);
static Splitter split(1l1l);
static Compressor compr(12);
static Pump pmp(13);

static Simple Valve vA(14,8),vC(15,8),vD(16,8);
static Simple Valve vE(17,8),prod valve(18,8);

static Control Valve v10(19,8),v5(20,8);

static Flow Valve vmr(21,8),vrs(22,8),vrec(23,8);
static PI_Controller PCrx(24),TCrx(25);

static PI_Controller TCstrip(26),FCprod(27);

static P_Controller LCsep(28) ,LCstrip (29) ,LCrx(30);
static P_Controller CCA(31);

static PI_Controller CCB(32);

static Ratio_ Controller RC(33);

static TE Analyser prod_an(34),purge_an(35);

214

static Flow Indicator fiprod(36,8);

static Process Stream Afeed,Cfeed,Dfeed,Efeed;
static Process Stream strl,str2,str3,str4;

static Process Stream str5,str6a,str6b;

static Process Stream str7a,str7b,str8a,str8b;
static Process Stream str8c,str9a,str9b,strila;
static Process_Stream strlOb,strlOc,strlla,strllb;
static Process_Stream sepout,vsepout;

static Signal Stream RxPsig,RxVsig,rxTsig,rxQsig;
static Signal Stream vAsig,vCsig,vDsig,vEsig;
static Signal Stream Gsig,Hsig,Asig,Bsig;

static Signal Stream SepVsig,v1l0sig,v9sig;

static Signal Stream StripVsig,stripTsig,stripQsig;
static Signal Stream prodflowsig,prodvalvesig;
static Signal Stream sepTsig, sepQsig;

//END FLOWSHEET AND UNIT DECLARATION

TennSet.incorp VLE(TennVle);//attach the property objects to the set
TennSet.incorp_ Thermo (TennTherm) ;

//START PROCESS LAYOUT

Asource.out_strm(Afeed);
Csource.out strm(Cfeed);
Dsource.out_strm(Dfced);
Esource.out_strm(Efeed);

vA.inp strm(Afeed,l);
vA.out strm(strl,l);

vC.inp strm(Cfeed,1);
vC.out strm(str4,1);

vD.inp strm(Dfeed,l);
vD.out_strm(str2,1);

vE.inp strm(Efeed,1);
vE.out_strm(str3,l);

mix.inp strm(strl,1);
mix.inp strm(str2,2);
mix.inp strm(str3,3);
mix.inp strm(str8c,4);
mix.inp strm(str5,5);
mix.out strm(stréa,l);

vmr.inp strm(stréa,l);
vmr.out_strm(stréb,1l);

rx.inp strm(stréb,1);
rx.out strm(str7a,l);

vrs.inp strm(str7a,l);
vrs.out_strm(str7b,1);

215

sep.inp strm(str7b,1};
sep.out strm(sepout,l);
sep.out_strm(strlOa,2);

pump.inp strm(strlOa,l);
pump.out strm(strlOb,1);

v10.inp strm(strlOb,1);
v1l0.out strm(strlOc,1);

strip.inp strm(strlOc,1);
strip.inp strm(str4,2);

strip.out strm(str5,1);
strip.out strm(strlla,2);

prod valve.inp strm(strlla,l);
prod valve.out strm(strllb,1l);

prod sink.inp strm(strllb);

split.inp strm(sepout,l);
split.out strm(str9a,1);
split.out strm(str8a,2);

v9.inp strm(strSa,l);
v9.out_strm(strSb,1);

purge sink.inp.strm(str9b);

compr.inp strm{sgtr8a,l:};
compr.out strm(str8b,1l);
vrec.inp strm(str8b,1);
vrec.out_strm(str8c,1);
//END PROCESS LAYOUT

//START CONTROL LAYOUT

//start reactor pressure control
PCrx.signal out(vCsig);
PCrx.signal in(RxPsig);
rx.pressure signal (RxPsig);
vC.signal stream(vCsig);

//end reactor pressure control

//start reactor temperature control
TCrx.signal in(rxTsig);
TCrx.signal out (rxQsig);

rx.temp signal (rxTsig);

rx.heat signal (rxQsig);

//end reactor temperature control

//start reactor level control
LCrx.gignal out (vEsig);
LCrx.signal in(RxVsig);
rx.volume signal (RxVsig);
vE.signal stream(vEsig);

216

//end reactor level control

//start product ratio control
prod an.set stream(strllb);
prod an.out strm(Gsig,7);
prod _an.out strm(Hsig,8);

RC.signal A in(Gsig);
RC.pignal B in(Hsig);
RC.signal out (vDsig);
vD.signal stream(vDsig);
//end product ratio control

//start production rate control
fiprod.inp strm(strllb,1l);

fiprod.out strm(prodflowsig,1l1);
FCprod.signal in(prodflowsig);
FCprod.signal out (prodvalvesig);

prod valve.signal stream(prodvalvesig);
//end product rate control

//start purge A & B control
purge an.set stream(str9b);
purge_an.out strm(Asig,l);
purge an.out strm(Bsig,2);

CCB.signal in(Bsig);
CCB.signal cut(v9eig);
v9.signal_gtream(v9sig) ; %

CCA.signali in(Asig:: ik
CCA.signal out(vAsig);

vA.signal stream(vAsig);

//end purge control

//start separator level control
sep.volume signal (SepVsig);
LCsep.signal in(SepVsig);
LCsep.signal out (sepQsig);
sep.heat signal (sepQsig);

//end separator level control

//start stripper level control
strip.volume signal (StripVsig);
LCstrip.signal in(StripVsig);
LCstrip.signal out(v1l0sig);
vl0.signal stream(vlO0sig);
//end stripper level control

//start stripper temp control

strip.temp signal (stripTsig) ;

TCstrip.signal in(stripTsig);

TCstrip.signal out(stripQsig);
strip.heat signal (stripQsig);

//end stripper temp control

//END CONTROL LAYOUT

f.set sys(36);//36 systems in the flowsheet

217

f.incorp sys(Asource,l);
f.incorp sys(Csource,2);
f.incorp sys(Dsource,3);
f.incorp sys (Esource,4);
f.incorp sys(vA,5);

f.incorp sys(vC,6);
f.incorp_sys(vD,7);

f.incorp sys(vE,8):

f.incorp sys(mix,9);
f.incorp sys(vmr,10);
f.incorp sys(rx,11l);
f.incorp sys(vrs,12);
f.incorp sys(sep,13);
f.incorp sys(pump,14);
f.incorp sys(vlo0,15);
f.incorp sys(strip,16);
f.incorp sys(prod valve,l7);
f.incorp sys(prod sink,18);
f.incorp sys(split,19);
f.incorp sys (compr,20);
f.incorp sys(v9,21);
f.incorp sys(vrec,22);
f.incorp sys(LCrx,23);
f.incorp sys (PCrx,24);
f.incorp sys(purge_ sink,25);
f.incorp sys(purge an,26);
f.incorp sys(prod _an,27);
f.inecory sys(TCstrip,28); hd
f.incorp sys(LCstrip,29);
f.incwrp Bys(CC2,30); g
f.incorp sys(£fiprod,31);
f.incorp_sys(FCprod,32);
f.incorp sys(RC,33);
f.incorp sys(CCB,34);
f.incorp sys(LCsep,35);
f.incorp_sys(TCrx,36);

f.setup();//set up all the subsystems

//Attach the set of components to each unit
mix.set comps(TennSet);
rx.set comps (TennSet) ;
vA.set comps (TennSet);
vC.set_comps (TennSet) ;
vD.set_comps (TennSet) ;
vE.set comps (TennSet) ;

vmr .set comps (TennSet) ;
vrs.set comps (TennSet);
v10.set comps (TennSet);
v9.set comps (TennSet) ;

prod valve.set_ comps(TennSet) ;
vrec.set_comps (TennSet) ;
sep.set comps (TennSet) ;
strip.set comps (TennSet);
fiprod.set comps(TennSet);
RC.set_ comps (TennSet) ;

//set controller parameters. Ti is in hours.

218

PCrx.set Ke(0.00125); //output fraction/kPa
PCrx.set Ti(1.25);

TCrx.set Kc(-0.03125); //output fraction/K
TCrx.set Ti(20.0/60.0);

CCA.set Kc(1.0); //output fraction/mole fraction
LCrx.set Kc(0.04); //output fraction/m"3
LCsep.set Kc(0.04); //output fraction/m"3

RC.set Kc(0.3); //output fraction/ratio fraction
RC.set Ti(1.0);

LCstrip.set Kc(0.1); //output fraction/m"3

TCstrip.set Kec(0.02); //output fraction/K
TCstrip.set Ti(1.0/6.0);

FCprod.set Kc(0.15); //output fraction/volume flow fraction
FCprod.set Ti(5E-3);

CCB.set Kc(-12.0);//output fraction/mole fraction
CCB.set Ti(12.0);

fiprod.volume () ;
fiprod.set Fmax(49.10);//maximum volume flow, m"3 /hr

prod_an.set freq(0.25);//sampling frequency and deadtime .
purge an.set freqg(0.1); A

=
-

#include ™ c:\\eastman\\ss est.txt”);//include file with steady-state
//initial estimates

//open output files for desired units

mix.open output file("c:\\eastman\\mix.txt");

rx.open output file("c:\\eastman\\rx.txt");

sep.open output file("c:\\eastman\\sep.txt");
strip.open output file("c:\\eastman\\strip.txt");
PCrx.open_output_file("c:\\eastman\\PCrx.txt");
LCrx.open_output_file("c:\\eastman\\LCrx.txt");
TCrx.open_output_file("c:\\eastman\\TCrx.txt”);
TCstrip.open output_file("c:\\eastman\\TCstrip.txt");
LCsep.open output file("c:\\eastman\\LCsep.txt");
LCstrip.open output file("c:\\eastman\\LCstrip.txt");
CC.open output file("c:\\eastman\\CC.txt");

CCA.open output file("c:\\eastman\\CCA.txt");

RC.open output file("c:\\eastman\\RC.txt");
FCprod.open output_file("c:\\eastman\\fcprod.txt");

//analyse and construct equation set
f.ss_analyse();

£.s8s build();

f.setup solve();//send equation set to solver
f.solve NEWT();//solve system

//output ss solution to file
mix.ss output();

219

rx.ss_output();
sep.ss_output();
strip.ss output();
PCrx.ss_ output();
LCrx.ss_output () ;
TCrx.ss_output();
TCsep.ss8_output();
TCrxw.es_output();
TCstrip.ss output();
LCsep.ss_output();
LCstrip.ss_output();
CC.ss_output():
CCA.ss_output();
RC.ss_output();
FCprod.ss output();

f.reset ss_eqns();//reset eguations

#include * c:\\eastman\\dyn specs.txt”);//include file with dynamic
//specifications

//analyse and construct equation set
f.dyn_analyse();
f.dyn build();

f.setup integ();//send equations to solver

PCrx.set sp(2746.0);//change setpoint

//integrate. Parameters are

//begin time, end time, initial step, minimum step, o1
//maximum step (null in this case), maximum no. of steps,

//and tolerance
f.BDF_integrate(0.0,24.0,0.0005,1E-8,0.0,150000,1E-4);

220

Appendix E: Fermentation Model Parameters

The parameters for the fermentation model, equations (5.6) - (5.25) are:

max

kyu correlation parameter

growth-limiting acetate concentration

kja correlation parameter

IPTG recovery ratio constant

agitator diameter

IPTG protein production constant

kja correlation parameter

yield of protein product from plasmid

IPTG shock/recovery rate constant

plasmid loss probability equation saturation
coefficient

IPTG saturation constant

saturation constant for oxygen

plasmid loss probability equation parameter
maximum specific growth rate, wild cells
maximuin specific growth rate, recombinant cells
biomass oxygen maintenance coefficient
biomass glucose maintenance coefficient
plasmid loss probability equation exponent
agitator power number

vapour pressure of water

growth-limiting protein product concentration
broth density

glucose feed density

maximum plasmid replication rate

yield of acetate from glucose

yield of protein product from glucose

yield of biomass from oxygen

yield of biomass from glucose

0.3
15.0
0.7
0.22
0.12
0.0005
0.0018
41.8
0.09
0.132

0.034
0.0027

0.6015
0.75
0.70

0.481

0.054
1.78
52
6.233

1.0
1100
100 - 500
0.215
0.23
02
0.03855

0.5

(g acetate) /L

(g IPTG) /L
m
(g IPTG) /L
m2 7 /SO 7 /WO 7
(mg protein) /(mg plasmid)
h—l

(g IPTG) /L
(mmol O,) /L

h—;
K
(mmol O)) /(g biomass) /h

(g glucose) /(g biomass) /h

kPa @ 37°C
(g protein) /L
g/L
(g glucose) /(L feed)
(mg plasmid) /(g biomass) /h

(g acetate) /(g glucose)
(g protein) /(g glucose)
(g biomass) /(mmol O2)

(g biomass) /(g glucose)

