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Abstract

Synthetic aperture radar is a well established technique for imaging the ground to one side of

an airborne platform.

Moving target detection is a very useful capability for a long range sensor.

The combination of synthetic aperture radar and moving target detection has the potential

to produce high resolution ground imagery with superimposed moving target information. Un-

fortunately, using conventional imaging data for detecting moving targets leads to ambiguities

in the targets' positions and velocities.

By utilising a non-uniform pulse repetition interval, the proposed ground imaging / moving

target detection radar overcomes this limitation and allows the azimuthal data to be focussed

at any velocity of interest, whilst collecting data at the same average rate as a conventional

synthetic aperture radar. This approach permits the flexible use of a multimode radar, relaxes

the specifications of data acquisition systems, affords a degree of protection against electronic

countermeasures and retains alarge unambiguous range swath, but with the added complexity

of processing the non-uniform samples. This thesis investigates the technique in detail,

incorporating optimal target detection strategies and azimuthal beampatterns, and demonstrates

it using simulations of non-uniform transmissions with real data.
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Definitions

These are the definitions of some terms used in this thesis:

Conventional SAR This is a synthetic aperture radar (SAR) which operates in srripmap mode

with its single antenna directed towards a scene of interest at broadside. It travels in a

straight line at a constant velocity and transmits chirp pulses at a fixed pulse repetition

frequency which is slightly greater than the 3 dB Doppler bandwidth. The returns are

processed using phase corrections (which compensate for the transmitted waveform and

changing radar-target geometry) to form a focussed image of the scene.

Imaging Graphically representing the estimated reflectivities of the scene at a set of discrete

positions results in a two dimensional image of the ground. (If the position of a known

scatterer were to be estimated, the process would be known as 'parameter estimation'.)

Moving targets may be defocussed since their precise motions are not fully compensated

for. (With inverse SAR, the motion compensated imaging of a moving target which

undergoes a significant aspect change during the observation period produces a picture of

the target itself. This is useful for identification.)

Ground clutter The distributed, stationary scatterers in a radar scene are known as ground

clutter

Moving target indication, MTI This is the process of determining the existence of a moving

target using a radar which transmits at a pulse repetition frequency (PRF) high enough to

oversample the spectrum of the ground clutter. The clutter is filtered out using a high pass

filter, revealing the presence or otherwise of a moving target (which has a Doppler shifted

spectrum). With a PRF low enough to avoid range ambiguities, this scheme has inherent

blind speeds which result from the moving target's signal being subsampled and so made

to overlap the ground clutter in the sampled spectrum: it is inadvertently removed by the

filtering process. This problem is normally overcome by combining results from multiple

PRFs.

Since target spectra may lie within the clutter spectrum, and targets may not have a purely

radial velocity, MTI is a less sensitive moving target detector than MTD.

Moving target detection, MTD This refers to both determining the existence of, and estimat-

ing the velocity of, moving targets. A bank of narrowband filters is applied to the radar
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data to detect targets moving with certain parameters corresponding to the parameters

of the filters. This sensitive procedure may therefore combine detection and parameter

estimation.

Parameter estimation The process of establishing the position and/or motion parameters of

a moving target which is known to be present.

Radar cross section, RCS A moving target is detected when the magnitude of its (coherently

integrated) radar return sufficiently exceeds that of the clutter. The amplitude of a single

return depends upon the target's effective area, as seen by the radar; this is known as

the radar cross section. More formally, it is the equivalent capture area of an isotropic

radiator which causes the same field strength to appear at the radar receiver as the actual

target, assuming antenna far field effects (Skolnik 1990).
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CunprER 1

Introduction

1.1 Motivation

Radar has been in continuous use since its invention early this century. Its ability to detect,

locate and determine the velocity of objects at ranges beyond human vision, especially in

situations of poor visibility, has made it a necessity of modern life. It has applications from

air traffic control to surveillance and target identification. Radars have been used for years in

civilian aircraft for weather avoidance, and in fighter aircraft for airborne target acquisition

and tracking, fire control and many other tasks (Stimson 1983, Skolnik 1990).

Coherent radars have the ability to combine returns over a period of time: incorporating

phase information from slight differences in the relative radar-target position permits the

fine resolution of individual scatterers comprising an object (Wehner 1995). Applying this

principle to a moving, side looking radar results in a synthesised antenn¿ which can distinguish

reflectivities from patches of ground, separated by a few metres, at ranges of tens or hundreds

of kilometres. This is analogous to a very long phased array of antenna elements. Such a

synthetic aperture radar, or SAR, is a relatively modern invention; its photograph-like results

have applications in ground mapping, remote sensing and wide area surveillance (Cutrona

1990, Curlander and McDonough 1991, Wehner 1995).

Early in the history of radar it was noticed that moving targets may be detected by exploiting

the Doppler effect on the radar return. This had important military consequences. It was

said that movement was the Achilles heel of ground forces since it made them detectable

beyond visible range by moving target indication (MTÐ radar (Fowler 1996). The US Army

investigated MTI radars which could be temporarily deployed to detect the enemy without

giving away its own presence. It researched launching devices including mortars and flying

I



2 CHAPTER I. INTRODUCTION

discs. Airborne MTI radars are now commonplace (Shrader and Gregers-Hansen 1990).

The more useful process of both finding the moving targets and determining their velocities

is known as moving target detection (MTD).

There is great potential for a radar which can simultaneously image the ground at high

resolution and indicate the positions and velocities of any moving targets, i.¿., SAR MTD.

Such radars exist; the Joint Stars radar, which was demonstrated during the Gulf War, is

one such example. Another is the AN/APG-76 (Tobin 1996). Civilian applications of this

technology include traffic monitoring and search and rescue. SAR MTD can also be used to

detect a moving target and prime the activation of an inverse SAR target recognition system by

predicting when the vehicle will reach a turn in the road (Fowler 1996). (If the target undergoes

an aspect change of several degrees, it may be imaged at high resolution with so-called inverse

SAR (Wehner 1995).)

There is even more potential for a SA/IVITD radar which uses a minimum number of

transmissions: a modern multimode radar has many tasks, only one of which may be ground

imaging/l\4TD. If this only requires few, irregular transmissions, the radar may be able

to perform other tasks, such as searching for, tracking and identifying airborne targets by

transmitting between the ground imaging pulses. In addition, there is the concern of sensitivity

to electronic warfare (Farina 1990): radars are far more difficult to classify and/or mislead if
their behaviour is unpredictable. Long unambiguous range swaths are also possible with a low

average pulse repetition frequency (V/ehner 1995).

This thesis addresses the problem of a minimum transmission SAR MTD system by investi-

gating moving target detection and imaging using a chirp compression radar with non-uniform

pulse repetition intervals (PRIs).

1,2 Thesis Outline and Contributions

The main contribution of this thesis is an analysis of the novel application of

a non-uniform pulse repetition interval to a synthetic aperture radar for both

moving target detection and ground imaging.

This thesis investigates a non-uniform PRI SAR MTD system by presenting background

information, including the principles of SAR and existing SAR MTD techniques, and deriving

a moving target ambiguity function which is used to explore its properties. Optimal detection

and parameter estimation theory is applied, the imaging performance is investigated and the



1.2. THESIS OUTLINE AND CONTRIBUTIONS

idea is demonstrated by resampling uniformly sampled real data.

This research required the fusion of several areas of work:

¡ SAR and other high resolution radars,

o the narrowband range-Doppler ambiguity function,

o classical radar moving target indication and detection,

o non-uniform sampling theorY, and

o optimal methods: detection and estimation theory. (Classical radar moving target indica-

tion and detection are a subset of this.)

This thesis is comprised as follows:

o Chapter 2 discusses the literature, covering the preliminary theory of synthetic aperture

radar and the effects of moving targets. Existing SAR moving target detection techniques

are covered in detail. Radar waveforms and non-uniform sampling issues, including

spectral estimation and filtering, are also discussed.

Contribution: A non-uniform PRI is proposed for SAR MTD and justified

heuristically.

o The moving target ambiguity function of a stripmapping SAR is discussed in Chapter 3.

This describes the degree to which a moving target is focussed when the ground is fo-

cussed, and vice versa. It is important that this function approximate a 'thumbtack',

maximising the radar's ability to distinguish moving from stationary targets. This chapter

serves as an introduction to later chapters; it formulates both range and azimuthal com-

pression and considers moving target detection, parameter estimation and ground imaging

using simplifying assumptions which are not made in later chapters.

Contributions: The SAR moving target ambiguity function is derived and its

properties are discussed. The effects of a non-uniform PRI are discussed with

respect to the discrimination between moving and stationary targets. The case of

two staggered PRIs is discussed in detail. The expected ambiguity function for

a random PRI is derived and its performance is formulated for several sampling

3
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4 CHAPTER I. INTRODUCTION

o Optimal moving target detection theory is applied to a SAR with a non-uniform PRI in

Chapter 4.

Contributions: This chapter draws together many references to derive optimal

conventional and non-uniform Pzu SAR target detection filters, figures of merit

and receiver operating characteristics. A new clutter cancellation technique is

presented.

o chapter 5 investigates the estimation of the parameters of moving targets.

Contribution: The first part of this chapter applies maximum likelihood tech-

niques to estimate the amplitude, position and polynomial phase coefficients of

a signal in coloured noise, with arbitrary sample times. The issue of bias is

considered.

o The lower variance bounds on the estimates of moving target motion and position pa-

rameters are also derived in Chapter 5 by considering the SAR moving target estimation

problem in its most general form as one of estimating the parameters of a polynomial

phase signal model.

Contributions: The bounds on the estimation cf the polynomial phase pa-

rameters are derived for non-white noise and arbitrary sample times. They are

of particular interest when the probability density functions of the transmission

times are incorporated into the formulation. It is shown that, in the limiting case,

non-uniform sampling results in estimates which are as accurate as the estimates

from uniformly sampled data, despite them not suffering from aliasing effects.

The analytical results are supported by simulation.

o Chapter 6 discusses imaging issues

Contributions: The contributions of this chapter are maximum likelihood

SAR imaging with a non-uniform PRI and the application of various sidelobe

reduction techniques, including maximising the integrated sidelobe ratio (which

also specifies optimal transmission times). The probability density functions

of the transmission times are also inco¡porated, leading to the expected beam

patterns for several sampling schemes.



1.2. THESIS OIJTLINE AND CONTRIBUTIONS

. A non-uniform Pzu SAR is simulated by resampling real data in Chapter 7

Contribution: Non-uniform SAR MTD is demonstrated by resampling and fil-

tering uniformly sampled real data to simulate non-uniform transmission times.

The parameters of a moving target are estimated, and it is shown that the target

can successfully be distinguished from the ground in circumstances where a con-

ventional SAR would confuse the two. A comparison between the conventional

and non-uniform PRI SAR ground-focussed images shows no appreciable dif-

ference in image quality, which is emphasised by a demonstration of the clutter

cancellation technique proposed in Chapter 4.

o The research is summarised and conclusions are drawn in Chapter 8. This chapter includes

a list of future research toPics.

o There are five appendices.

- Appendix A lists properties of a generalised form of the Woodward ambiguity func-

tion,

- Appendix B discusses SAR clutter modelling,

- Appendix C derives the lower variance bounds for biased estimators,

- Appendix D derives the complex Gaussian Fisher information matrix, and

- Appendix E discusses optimal radar transmission times.

5
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Cseprpn 2

Background Information

This chapter covers some of the theory this thesis is based upon. It discusses the principles of

synthetic aperture radar (SAR), moving target detection (MTD) and non-uniform sampling and

reviews the literature regarding existing SAR MTD techniques. It also proposes an alternative

SAR MTD method.

After discussing the fundamental theory of SAR in Section 2.1 and rada¡ moving target

indication and detection in Section 2.2,tbeeffects of moving targets are covered in Section 2.3.

This is followed by a brief explanation of radar waveforms and the Woodward ambiguity

function in Section 2.4. Section2.5 categorises and discusses existing SAR MTD techniques.

The proposed SAR MTD technique is introduced in Section 2.6. Non-uniform sampling theory

is discussed in Section 2.7,both generally and in the context of SAR, and SAR performance

measures are presented in Section 2.8.

2.1 Synthetic Aperture Radar Fundamentals

SAR is a method of obtaining real time, high resolution images of the ground to one side of a

moving platform (Cutrona 1990, Curlander and McDonough 1991, Wehner 1995). Achieving

one metre resolution from a range of tens of kilometres requires an antenna hundreds of

metres long. It is impractical to carry a physical antenna of these dimensions aboard an air-

or spaceborne platform; however, such an antenna may be synthesised by combining radar

retums from a single target using a realisable antenna as the platform travels. This is analogous

to phased array processing, but with one time shared array element rather than many operating

simultaneously. See Figure 2.1 fot a representation of this.

Applications for SAR are many and varied due to its day/night and all-weather capability;

1
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imaged area

antenna beam
SAR platform
positionl0, ø)

velocity(0, w)

d(u)
azimuth

polnt target
(R, y)

range

(0,0)

Figure 2.1: Simplified stripmapping SAR geometry in the plane of the radiation. One antenna
element is moved along the length of the aperture being synthesised. The platform's altitude
has not been shown.

antenna

scene

Figure 2.2: An overview of SAR processing.

they include ground mapping, remote sensing, search and rescue, ground target identification

and the detection of moving targets, in both the defence and civilian are¿Ìs.

To form an image, a SAR has to resolve radar scatterers in both the slant range (or just

range) and azimuthal dimensions. The former is done by controlling the transmitted pulse's

waveform, the latter by combining the returns from an ensemble of such pulses. See Figure 2.2

for an overview of SAR processing.

SARs may operate in a number of different modes, depending upon the imaging geometry.

Forming an image continuously with the antenna pointed normally to the direction of travel is

known as broadside stripmap mode. Having the antenna pointing at a fixed, arbitrary angle

is squint mode, whereas continuously aiming the antenna at a specific target, thereby seeing

recelver
transmitter/

range
processing

azimuthal
processing

lmage
display

data logging,
transmission

moving target
detection



2.1. SYNTHETIC APERTURE RADAR FUNDAMENTALS

it undergo a large aspect change, is known as spotlighl mode. If the motion of the target

itself allows imaging, we have inverse synthetic aperture radar; which is excellent for target

identification. Although any movable platform may theoretically carry a SAR, an aircraft will

be assumed here.

The main reference for the following theory, describing SAR fundamentals, is (Wehner

l9es).

2.1.1 Range Information

The first objective is to achieve high resolution in range.

A transmitted pulse with a duration such that the radiation travels a distance of only

twice the desired resolution is difficult to generate: the amplitude required to provide an

adequate detection performance is very large. However, matched filtering can be used to both

maximise the receiver output signal to noise ratio for a given transmitted energy and allow

independent control of the length of the transmitted pulse and the range resolution (Curlander

and McDonough 1991, page 132). With such a filter, a long pulse with a wide bandwidth and

achievable average power can satisfy both detection and resolution criteria. This technique is

commonly used in a wide variety of high resolution radars. The signal used most often in SAR

systems is the linear-FM, or chirp pulse.

The chirp waveform, representing the linear frequency ramp / : f" * I{t,is given by

9

s(ú) : ¡ss¡
t

Tt
cos (2"¡¡"t + K* l2l) ,

where ú is time, /" is the centre (carrier) frequency, ?r is the uncompressed pulsewidth, ,Il is

the chirp rate (in Hzls) and

1, if l¿l < å,

0, otherwise.
rect(ú) :

Typically for SAR, s(f) is considered to be a naruowband signal since the large absolute

bandwidth (tens of megahertz) is still small when compared with its centre frequency (say

X-band, or ten gigahertz). This bandwidth, B, is approximately KT1. It can be shown that

this provides slant range resolution

^- - 
c

A's ru 
28'

where c is the speed of propagatton.

A stationary point target with complex reflectivity þ at range delay r(u), where z is the



position of the SAR (Figure 2.1), has the response

s'(t,u) : lil...,(=@) .".1r" {¡"1, -r(u)l + ri ït -,ç,¡]'z ¡z})

(neglecting the amplitude of the transmitted signal, the propagation attenuation loss and system

noise). The baseband response (after mixing with a reference signal at frequency "f" and

quadrature demodulating) is therefore

s'(t,u) - þrect(=r) "-iz*{r"t')-rt¿-<"¡2}. (2.t)

The fundamental azimuthal resolution limits of real and synthesised antennas will now be

discussed.

l0 CHAPTER 2. BACKGROUND INFORMATION

2.1.2 From ReaI to Synthetic Aperture

Assuming a uniform taper, a physical phased array comprised of lú elements separated by

distance d has the beam pattern

where d is the angle relative to broadside and ) is wavelength and the array has weights chosen

to steer the main beam at broadside (Johnson and Dudgeon 1993, Stimson 1983, Cashman

1997). Since the same antenna is used for reception, the two-way pattern for large I/ and small

dis

r@) :

fzQ) x N2

sin("f sin(a))

sin(nf sin(d)) '
(2.2)

(2.3)

Dsln 0
À

2

1f
À

0

where D : (N - l)d, is the length of the antenna. Thus the 3 dB beamwidth is

0,o N 0.64^lD

and the null-null beamwidth

ïro,n : 2^lD

The first sidelobe is at -26.8 dB relative to the main lobe
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The antenna's spatial resolution at range .R is given by

Pro R0,o
,B)

which is very poor at long range when D is small.

Alternatively, the antenna could be mounted on a moving platform and directed normally

to its motion, as shown in Figure 2.1, with the radar storing complex returns as the platform

travels. Combining them forms a synthetic affay.

Simply summing the returns over the length of this array results in an unfocussed SAR.

The best resolution which can then be achieved is p,u æ 05J R^ (Curlander and McDonough

1991,page22).

An aperture may be synthesised by travelling a distance

L(R) : P6," (2.4)

(the width of the real antenna beam at range ,R).

This synthesised array has an element to element phase shift which is twice that of the

real array, due to the two-way travel of the radiation, and has no one way pattern. For

omnidirectional elements, its unweighted pattern is

D

so that its 3 dB beamwidth is

0,o N 0.44^lL

(compared with 0.64À lD for the real case) and the null-null beamwidth

0r",^ : Àf L

(which is half the real case). The first sidelobe is at - 13.4 dB'

Using the latter beamwidth result (without qualification), it is commonly stated that a

synthetic antenna therefore has half the resolution of a real antenna of the same length (e.g.,

(Stimson 1983)). This is doubly misleading: not only is it the null-null beamwidth rather than

the 3 dB beamwidth, but sidelobes are not considered (Cashman 1997): the SAR's sidelobes
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are worse than those of the real array. If the SAR's response were weighted using a triangular

shading function, its modified response would be identical to that of the real array.

The best possible (Rayleigh) spatial resolution of the synthetic array is given by

Pto R0,"
rfÀ

2L(R)
l)
2 0,o

D 12, (2.s)

which is half that of the horizontal dimension of the real antenna aperture used as synthetic

array elements, and is independent of range.

To achieve this, the data have to be focussed by correcting the phase variation which

results from the distance to the target changing as the SAR platform travels. The position of

the platform therefore has to be measured to a fraction of the wavelength (which is 3 cm at

X-band).

2.1.3 Azimuthal Information

Refening to the SAR geometry in Figure 2.1, the position-dependent range delay between the

radar and a stationary target at (R,y) is given by

,(") u2d,( )1"

R2+(u-y)2.

The radar return, s'(t,u), Equation (2.1), is valid only while the target is in the antenna

beam. The width of this beam, L(R), is given by Equation (2.4).

It is the form of the phase response which is of interest. If we assume that the beam

illuminates the target uniformly, and neglect the amplitude of the transmitted signal, the

propagation attenuation loss and system noise, the baseband response to a point target is given

by

?
c

n211"-u¡z

s,(t,u) - þrecr(-#) ,"*(ffi)t'*{ ,a t,-"1,1:2 )
) . (2.6)

An exponential argument in Equation (2.6) can be simplified by aMaclaurin series expansion
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to be in the form

pz¡¿z n: .R*
)a-

2R,

where ,R3 > aa lWehner 1995). s' (t , u) can therefore be written

t3

(2.7)

s'(t,u) : þ rect

The overall phase response to a point target therefore appears as the sum of a constant offset and

two quadratic functions. The constant phase offset is related to the wavelength and minimum

target range. The quadratics represent the slowly varying azimuthal response and the rapidly

varying range compression pulse response respectively. Since the azimuthal phase response is

quadratic, it is commonly referred to as an "azimuthal chirp". (It is often said to be a result

of Doppler effects, despite the fact that the SAR and target may be stationary during the radar

transmissions.)

In orderto approach the ideal D f 2 azimtthal resolution (Equation (2.5)), the focussed SAR

needs to correct for these phase variations. This can be achieved by applying the filter g(t,u),

which is matched to the form of the target's return: g(t,u) : s"(-t, -u). Note that this filter

is a function of range.

2.1.4 PRF Selection

Lower PRF Limit

To avoid aliasing ambiguities, the radar's uniform pulse repetition frequency (PRF), /", must

exceed the frequency which ensures that a stationary target's two-way distance never changes

by more than half a wavelength between samples. i.e.

(=t),""(ffi) ; "" {+* 
t":!r2 -* t'l-"f "\r2 }

(t,,r).sp

,(

,( 2uro

2ursin(0,"f 2)

À

2ur0,o

À

l2rd

)'

therefore,

r,>
À

(2.8)
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where uo is the platform's speed in the azimuth direction relative to the stationary target.

Xurï,. f À is the frequency extent of a signal returned by a scatterer from the ground. (Å only

needs to be larger than this, and not larger than twice this, since the samples are complex.)

This frequency extent is known as the "3 dB Doppler bandwidth", B¿, ànd is independent of

range. Under these conditions, the maximum resolution (Equation (2.5)) may be obtained.

For example, if uo: 70rnls, 0,o : l.5o and À : 3.2cm, B¿: I 15 Hz. In practice, to avoid

azimuthal ambiguity a safety margin is used to allow for beam pointing errors and a beamwidth

greater than the 3dB 0,,. Azimuthal ambiguity is manifested as a target appearing in more

than one azimuthal position in an image.

Upper PRF Limit

To avoid range aliasing effects, which result from simultaneous returns from two pulses in

flight, the unambiguous range interval must be sufficiently large that returns from the ground

at ranges other than the one of interest do not degrade the signal to noise ratio. (In the worst

case, this ambiguity prevents the absolute determination of a target's range with a conventional

radar (Stimson 1983). In SAR, however, the Doppler rates of the targets will differ, allowing

them to be distinguished by azimuthal focussing (Tomiyasu 1993). However, this phenomenon

is generally ignored by the literature, and SAR upper PRFs are chosen according to the same

criteria as used for one dimensional radars (e.g., (Wehner 1995)).) This imposes an upper limit

on the range extent being imaged, known as the range swath, -R". Thus there is the restriction

that

f, 1 cf2&". (2.9)

The distance to the horizon is

Rn x J2rh

(e.9. (Hovanessian 1984, pages 179-180)) where r p 6350km is the radius of the Earth and å

is the altitude of the radar above the surface of the Earth. For example, if å : 10000m , Rh :
370 km; if this represented the upper limit of an airborne radar's range swath, its lowest upper

PRF limit would be

f, < 405H2.

Alternatively, for A" : 50km, f " < 3kHz. Therefore, range ambiguity is usually only a

problem for spaceborne, rather than airborne, SARs due to their higher range swaths and

ground speeds; under these conditions, the PRF needs to be high to satisfy the minimum
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sampling rate requirement, Equation (2.8).

Additi on aI PRF Con si der ati o n s

,f" may also be chosen so that nulls is the synthetic antenna beam are placed on sidelobes of

the real antenna beam.

Also, the data logging, processing or digital transmission capability of the SAR may

ultimately impose restrictions on the selection of the PRF.

2.2 Radar Moving Target Detection

Moving targets are detected with radars using their Doppler frequency which differs from that

corresponding to the ground.

The Doppler frequency is the difference between the frequency of the radar's transmitted

signal and the received signal. This frequency shift phenomenon may be explained in two

ways. Firstly, it is analogous to the familiar change in the pitch of a sound; an object transmits

wavefronts which propagate at a uniform velocity, so they become more closely spaced as the

target moves towards the observer, resulting in a higher frequency. This viewpoint involves

actual motion between the source and the receiver. Alternatively, there is a geometrical

viewpoint: a target moving a distance of half a wavelength towards the radar will cause the

radar to see a phase change of 360"; therefore, moving at half a wavelength per second towards

the radar results in a Doppler shift of I Hz. (This interpretation is appropriate when discussing

synthetic aperture radar, since it is a physical aperture being synthesised and no motion is

rcquired per se.)

Radar moving target indication (MTI) is the process of determining the existence of r

moving target in a particular region without necessarily finding its velocity. This is achieved

using a high PRF and filtering out the clutter from the resulting Doppler spectrum. (Clutter is

the unwanted signal due to returns from stationary targets on the ground.) Forthe indication of

ground targets in strong clutter, incoherent cancellation techniques may work well; in addition,

high frequencies should be used so that targets with slow speeds can be detected (Staudaher

1990).

Alternatively, the data may be passed through a bank of filters tuned to different moving

target velocities. A filter output larger than a threshold indicates the presence of a moving

target; the parameters of the corresponding filter are an estimate of the parameters of the target.
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This process is known as moving target detection, MTD.

Classical optimal filtering theory, which assumes a particular model for the environment,

may be applied to the MTI/N{TD problem. This is done is Chapter 4. However, real-world

complications, such as non-stationary rain clutter, may be better addressed using ad hoc

techniques (D'Addio and Galati 1985).

2.3 The Effects of Moving Targets on SAR

This section discusses well known SAR moving target phenomena (e.g., (Raney l97l)). A
more detailed discussion may be found in Chapter 3.

Since the Doppler shifts associated with slowly moving targets are very much smaller than

the bandwidth of the range compression chirp (kilohertz compared with tens of megahertz),

only their azimuthal phase responses are of interest (Freeman 1984). Furthermore, moving

targets will be accurately focussed in range even when treated as if stationary.

The azimuthal chirp, derived in Section 2.1.3, can be approximately specified by two

parameters apart from the target's azimuthal position, neglecting range migration effects:

frequency shift ("Doppler centroid") F¿" and frequency rate ("Doppler frequency rate") F¿,,

viz:

u(t) : 
"izr'l'(t) - "i2t(Factlro,*¡z¡ e.rc)

ignoring a constant phase term. (The Doppler centroid is "the Doppler frequency caused by

the relative motion between the sensor and a target in the azimuth beam centre line" (Runge

and Bamler 1989).) These terms are controlled by the velocity components of a moving target:

using the instantaneous frequency-phase relation

f¡
I duþ(t)

2r dt

it can be shown that, for a target moving with velocity (A,y) at slant range .R, these are

Fo"
2R

À
(2.rr)

and

(2.12)

for a narrow antenna beamwidth, where the radar has velocity u, andoperates at wavelength I
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In practice, the Doppler centroid may be nonzero for a stationary target since the SAR platform

may have some lateral motion. Of course, if B : ù : o, the formulations would correspond

to the scenario described in Section 2.1.3.

The automatic estimation of the Doppler centroid and frequency rate are known as "clut-

terlock" and "autofocus" respectively (Li, Held, Curlander and Wu 1985). (Clutterlocking

is of vital importance to spaceborne SAR systems since the instantaneous ground Doppler is

unknown due to errors in the antenna's pointing direction and the spacecraft's velocity and

position (Elachi 1988, page 143).) Due to their similarity, clutterlocking and autofocussing

techniques may provide insight for SAR MTD.

It was shown in Section 2.I.4 rhú if uo : 70 m/s, the antenna's azimuthal 3 dB beamwidth

0,o : l.5o and À :3.2cm, the Doppler bandwidth is l15Hz. If this is the radar's PRF,

sufficient to image the ground, we see that, with zero azimuthal motion, any raîge motion will

cause part of the azimuthal chirp to become aliased, and targets moving faster than t3.3 kph

will have their Doppler centroids aliased. If ,R : + 100 kph, Fr" : 3480H2- 30 times larger

than the Doppler bandwidth. (If the radar were to use this as its PttF to see these targets, its

unambiguous range swath would be under 50 km!) It is therefore desirable to image moving

targets unambiguously with a lower PRFI.

The bandwidth of the azimuthal chirp is dependent upon azimuthal velocity; it is given by

If ù :0, this is equivalent to the 3 dB Doppler bandwidth, or minimum PRF (Equation (2.8)).

A ground-focussing matched filter gives a peak response when u(f ) crosses OHz. This time

is dependent upon a cross coupling between the chirp's centroid and position, hence y and R,

leading to an azimuthlDoppler ambiguity. The apparent azimuthal shift of a target is

B¿
20.o, .,

^ 
lur - al.

(#.+)mod(,Re..)
R0,o

,)

(2.t3)

(2.r4)LYx

(Raney lg7l),which is valid if ,R¿ < ,R and il K up.As an example, if -R : 30km, -R : 1m/s

andur:70rnls, AY = 430m!

Figure 2.3 shows the first order effects of moving targets on a ground-focussed image. In

lIf the data processing is performed over a long interval, a lower PRF may be used since the azimuthal chirp

is no longer linear, leading to a lower crosscorrelation with a return from the ground. However, this would negate

some advantages of the technique.
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Figure 2.3: The first order effects of moving targets on a SAR image.

Figure 2.3(a) the SAR platform and targets are shown at time le, with A stationary, B moving in

range and C moving in azimuth. Figure 2.3(b) shows the corresponding azimuthal frequencies

at all ranges. A's linear chirp is centred on OHz, B's is similar but offset and C's has a

different slope. (The PRF is assumed to be è 28¿ so as to unambiguously sample target .8.)

Figure 2.3(c) shows the resulting ground-focussed image, with A focussed, B displaced and

C partially focussed (neglecting range migration effects).

Figure 2.4 shows the general moving target imaging case, including smearing due to range

migration. This figure is similar to (Raney 1971, Figure 3(B)). (Since the radar may have a

range resolution in the order of a few metres, it is possible that the target will traverse several

range cells during the measurement period.)

As an aside, the Doppler rate is very sensitive to target range acceleration; it becomes

z[@,-a)'z+nil]
ÀA

This has implications for imaging moving targets, which requires coherent integration over

a period of time. The normal assumption of linear motion may not be valid, resulting in a

t-f
BI

F¿r:-
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Figure 2.4: The general appearance of a moving target's return after being processed as if the

target were stationary. It appears as a displaced, defocussed, stationary scatterer'

mismatch between the target's signal and the filter. This produces a defocussed image which

makes velocity and position estimation difficult, and reduces the radar's ability to detect moving

targets in areas of strong clutter. The result may be an image which is no better focussed than

the object shown in Figure 2.4.

(If the assumption of linear motion is not made, so that the motion has to be estimated,

better results may be obtained. This technique, inverse SAR, may allow the imaging of the

target itself, but is inapplicable to target detection.)

2.4 Radar Waveforms

Conventionally, a radar signal's ambiguity function (AF) is the crosscorrelation of that signal

with a time delayed, frequency shifted version of itself. This describes the radar receiver's

response when it passes the signal returned from a distant, moving point target through a filter

matched to the original signal. This asymmetrical, narrowband AF is written

x'"ç¡(r,ó) :,/- "(r)".(¿ - r)e-i2"ót d't

(Blahut 1991), where s(ú) is the radar's transmitted signal, z is the delay between the signal's

transmission and reception and { is the Doppler frequency shift caused by the radar-target

relative motion. This is known as the Woodward ambiguity function. (The properties of

Equation (2.15) are a subset of those discussed in Appendix A.)
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The corresponding cross AF is

(2.t6)

This is used when the receiver's f,lter is different from the transmitted signal.

The magnitude of Equation (2.15) is commonly used to characterise the signal s(ú), or,

conversely, the desired AF may determine the signal to be used by a particular radar. The

difficult problem of designing signals from AFs is discussed by Vakman (1968) and Wong,

Luo and Jin (1993). The desired envelope of Equation (2.15) depends, for example, upon

the required range and Doppler resolutions. A ground-based radar searching for the presence

of aircraft requires an ambiguity function which has a large magnitude for the entire range

of possible /. Alternatively, a radar wishing to accurately estimate both targets' velocities

and positions requires a 'thumbtack' AF, whose magnitude is large at the origin and small

elsewhere. Under these circumstances it is possible to tune the receiver's filter to achieve the

largest output, thereby estimating the target's range and Doppler parameters.

In practice the AF may have spurious peaks or a periodic repetition, making it difficult to

estimate the parameters of the target. The objective of special radar waveforms is to help the

ambiguity function more closely resemble the ideal thumbtack by removing the periodicity

in the signal. This may be possible by using irregular frequency, phase or timing variations

(Blahut 1991, p. 23), reducing the signal's autocorrelation away from the origin: there are no

general ways of working backwards from a desired AF to the required signal. To give some

examples:

o rather than broadcasting periodic pulses for atmospheric sounding, Sulzer ( 1986) describes

a long, phase switched pulse radar waveform to make full use of a klystron power stage.

This stage would otherwise be inefficient, since the klystron is powered whether or not

signals are being transmitted.

o Golestani, Chandrasekar and Keeler (1995) discuss a staggered PRI scheme with dual

polarisations for weather radars.

¡ Martin, Jain and Bolton (1994) doubled the range resolution in a SAR system without

collecting any more data by randomly switching between two range compression chirp

signals with adjacent spectra. This resulted in an increased detection performance with

the penalty of increased imaging sidelobes.

Xt,1q,,p¡(r,ó) :,/- t(r)r.(¿ - r)e-i2nöt dt
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o In planetary SAR imaging with an Earth-based radar (using, for example, the antenna

at Arecibo), there is a two way positioning ambiguity: both in range and azimuth. This

'overspread' problem may be overcome using a random radar waveform, as discussed

in detail by Hagfors and Kofman (1991) and with regard to the imaging of Mercury by

Harmon and Slade (1992).

The moving target ambiguity function for a SAR is derived in Chapter 3, and it is shown

that the ambiguities inherent in a conventional SAR may be overcome using irregularities in

the timing of the radar's transmissions. (Interestingly, the waveform s(ú) cannot be directly

controlled by the radar in the SAR case since it is dependent u.:on the azimuthal geometry.

The transmission timing is the only degree of freedom available (Section 3.2.5).)

2.5 Existing SAR MTD Techniques

This section summarises existing SAR moving target detection (MTD) techniques' They have

been classified in Table 2.1. The proposed technique, discussed in Section 2.6, has been

included in the table for comparison.

The functions listed in the table are

Indication The technique indicates the existence of moving targets without necessarily finding

their parameters.

Estimation The technique estimates targets' velocities and positions

Imaging The technique focusses the target in two dimensions (possibly to estimate its param-

eters).

The data required by the techniques have been classified thus:

Conventional The technique uses data from a conventional SAR.

Oversampled The technique requires a higherPRFthan aconventional SAR(to avoid aliasing

problems), or the collection of more data.

Radar modifications have also been classified:

Hardware modification The radar is different in some fundamental way from a conventional

SAR (e.g., it has several antennas).
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: The site of interest must be revisited by the radar.

$$r This function is possible using some implementations of the technique.
$ t: This type of data may be required by some implementations of the technique.
t: Range rate is estimated.

f : The PRF may be low;however, there are many receiving channels.

tt, Moving target indication may be performed using clutter cancellation techniques.

Table 2.1: SAR MTD summary. See the text for the meanings of the column headings.

Waveform modification The transmitted waveform differs from that of a conventional SAR.

There are many techniques which operate using oversampled data to unambiguously deter-

mine the target's Doppler, reflecting the greater ease with which MTD may then be performed.

The techniques are:

Change detection The concept is to detect movement over a long time frame (hours or days)

by finding the differences between two SAR images of the same scene. There are two

main problems, discussed by White (1991) in detail:

Geometric correction The images have to be adjusted so they can be correctly registered.

This is to take account of unknown aircraft motion, turbulence, etc., as well as any

differences in the fields of view, which may not be perfectly aligned.

Image interpretation Speckle will cause differences between the images which need to

be accounted for, with no prior information as to the area being imaged.

$

Technique Moving target function
Estimation Imaging

Data Radar mod.
Conv Oversamp. Hard Wav

Change detection
Standard MTI
'True'Doppler
Freq. detection
Shadow detection
Prefiltering
DPCA
Phase detection
lD hopped freq.
Clutterlock
Autofocus
Doppler rate

Coord. transform
Phase asymmetry
Range walk
Clutter cancel.

STAP, e/c.
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A third problem is the long delay between the sensor seeing the target on the first pass

and the decision that a target was present, which is made only after the second pass. It is

far more useful to detect a moving target with only one visit to an area.

An alternative approach is to find the difference between low resolution multilook images

(Ouchi 1985). This is discussed under 'Range walk detection'.

Standard MTI Moving target indication (MTI) involves transmitting at a high PRF and

observing the spectrum of the returns, using the principle that moving targets are separated

in frequency, or 'Doppler shifted', from stationary ones ('ground clutter') (Shrader and

Gregers-Hansen 1990). Using several PRFs avoids aliasing-related ambiguities (via the

Chinese remainder theorem).

This technique gives range rate information, rather than two dimensional velocities,

images or accurate positioning.

'Thue' Doppler See under 'Clutterlocking techniques'.

Frequency detection D'Addio, Di Bisceglie and Bottalico (1994) expand on Raney's sugges-

tion of using a PRF which is sufficiently high to cover the necessary azimuthal frequency

range (Raney l97I). It should be

f" > 2lF¿",^o" I B¿,^""121,

where Fd.",^o, and B¿,^o, are given by Equations (2.11) and (2.13) respectively with their

maximum velocity values substituted. Moving targets are found using a bank of Doppler

filters.

Shadow detection Novak (1996) described a technique applicable to very high resolution

millimetre-wave SAR". It relied on the moving target being displaced from its actual

position in the ground-focussed image: since the vehicle is masking the road, there will

be a dark patch on the road at the vehicle's position. (A 'shadow', as it were.)

Prefiltering To detect moving targets, Freeman (1984) suggests oversampling, high pass

filtering (to remove ground clutter), and subsampling to the 3 dB Doppler bandwidth.

This will alias moving target signals to frequencies below the Doppler bandwidth. The

normal stationary target matched filter may then be used; any bright scatterers which

appear represent moving targets. Problems include blind speeds (where targets are
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aliased into the ground bandwidth) and its suboptimal detection of targets moving in

azimuth-these have a similar Doppler centroid, but a different Doppler rate from that

of the ground (Equation (2.12)).

Displaced phase centre antenna Stone and Ince (1930) describe a SAR system which has

two identical, identically aligned antennas and forms an image with each. Since the

trailing antenna receives when it is in the position occupied by the leading antenna when

it received, the images formed should be identical if all targets are stationary. The

difference between them indicates the existence of moving targets. This is a special case

of along-track interferometry. Hammerle (1990), Smith and Clarkson (1992) and Coe

and White (1995) also discuss DPCA techniques. The JSTARS radar, which received

much publicity during the Gulf V/ar, operates on similar principles.

Another existing radar is the AN/APG-76 multimode radar system (Tobin 1996), which

may be fitted to existing aircraft. This has simultaneous ground mapping and moving

target detection capability with Doppler beam sharpening and spotlight imaging modes.

It uses a high PRF and many receiving apertures.

The main DPCA problems are with antenna differences and misalignment; space-time

adaptive processing may be more robust for SARs with array antennas.

Phase detection Raney (1971) and (1992, pages 10-ll-12) suggests transmitting pulses in

pairs with small intervening delays, or receiving with two antennas. Subtraction of the

returns results in a phase shift which has a characteristic indicative of moving targets.

This is an approximation to the DPCA technique. Note that subtraction is the optimum

method if the clutter is highly correlated.

Hoppedfrequencies Wehner (1995, pages 213-20) discusses the use of a radar waveform

modification to obtain unambiguous range/velocity information in a one dimensional

synthetic range profile with a stepped frequency radar. Instead of using a conventional

monotonic frequency firing order, he randomises it, achieving an improved rangeiDoppler

ambiguity.

Costas (1984) suggests a specific order which implements an almost ideal 'thumbtack'

range/Doppler ambiguity function, making independent measurements realisable.

This technique could be applied directly to a SAR with synthetic range compression, since

the PRF is high. (Stepped frequency SAR is covered by Wehner (1995, page277-286).)
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Its implications for chirp SAR, the radar of interest, are less apparent: fundamentally, the

pulse is too short for the target to have moved significantly during the time it illuminates

the target.

Clutterlocking techniques Since they both address the problem of estimating an unknown

Doppler centroid, clutterlocking techniques may provide insight for SAR MTD. The

difference is that clutterlocking is concerned with the scene as a whole, typically averaged

to reduce the effects of data discontinuities, whereas MTD is concerned with isolated

targets.

Ideally, one would estimate the unambiguous Doppler centroid, F¿", in

Fo": kf,*Fo, (2.r7)

(Chang and Curlander 1992,page94l) where k is an integer, /" is the PRF and F¿" is the

ambiguous Doppler centroid estimate. Most clutterlocking techniques find only Ê¿".

Antenna beam correlation Curlander and McDonough (1991, page 223) discuss basic

clutterlocking techniques. The most fundamental exploit the fact that the power

of the Doppler spectrum around its centroid should be the same as the two-way

antenna characteristic: they crosscorrelate the two, before or after range or azimuth

compression.

Range subaperture correlation Doppler centroid ambiguity may be resolved by cross-

correlating multilook images (Curlander and McDonough 199 I , page 240).

A slightly different approach is to carry out multilook processing and deduce the error

in the assumed Doppler centroid iteratively by comparing image energies (Curlander

and McDonough 1991, page227).

Multiple PRFs Chang and Curlander (1992) describe the use of multiple PRFs to un-

ambiguously determine F¿" in Equation (2.I7). The technique involves transmitting

at one PRF for a second, then another for a second, and staying on a third for the

duration of the required measurement. The actual centroid is then determined using

the Chinese remainder theorem, as per conventional MTI systems, but based on the

three F¿"s. This estimate is continuously updated during the entire measurement

period using conventional techniques. The PRFs are retransmitted in reverse order

at the conclusion of the measurement for checking purposes.
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Apart from the data averaging issue and the use of multiple PRFs at only the start

and finish, this concept could be applied to SAR MTD.

Multifrequency SAR Runge and Bamler (19S9) suggest that a multifrequency SAR can

unambiguously resolve the Doppler centroid. This is because the centroid is inversely

proportional to wavelength (Equation (2.11)). In addition, the lower the operating

frequency, the lower the required PRF: a Doppler centroid measurement at L-band

may be used to correct an image taken with a higher PRF, simultaneously, at X-band.

'Tþue'Doppler Moving targets cause a shift in the frequency of the received signal

relative to the transmitted signal. (This is a true Doppler shift.) If it is measured, the

target's velocity will be known. This is very difficult in conventional SAR since

e the target's Doppler shift will be a few hundred hertz compared with the pulse

compression signal's bandwidth of tens of megahertz, and

o the ambiguity function of a typical pulse compression signal, a linear chirp, does

not have a sharp peak. It is analogous to the moving target azimuthal compression

problem with a conventional SAR.

When this technique is used for Doppler centroid estimation, many spectra have to

be averaged to reduce speckle noise (Runge and Bamler 1989).

Autofocussing techniques Due to the similarity in effect between SAR platform velocity

errors and targets moving in azimuth, autofocussing techniques provide insight for target

velocity estimation.

Most SAR processors perform autofocussing, the estimation of azimuthal Doppler rate,

in the same manner as clutterlocking: by exploiting the antenna beam pattern (Curlander

and McDonough 1991, page234). Alternatively, some use the fact that the image contrast

decreases when the speed parameter is erroneous, and perform an iterative estimation.

This is Doppler rate filtering. (Ping andZongzhi (1996) use a wavelet transform.) The

concept is applied to SAR MTD in (Barbarossa 1989, Peyregne 1996). Filters tuned to

different Doppler rates may be able to distinguish moving from stationary targets, even

though their spectra may overlap.

Another technique is to track the phase of the return from a bright scatterer. This may be

used with moving targets provided that there is a sufficiently high signal to noise ratio.
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Coordinate transformation Yang and Soumekh (1992) and (1993) show that a moving target

can be imaged by processing its data as if it were a stationary squint mode target, with

the focussing parameters dependent upon the target's velocity - to a first approximation,

the two situations are analogous. (See Section 3.4.3.)

Correctionof movingtargetphaseasymmetry Chen and McGillem (1991) describe a

scheme whereby the quadratic phase asymmetry of moving targets is removed prior

to conventional SAR processing.

A threshold frequency is used to detect a moving target, viz conventional MTI. There is

a higher sampling rate than that of a conventional SAR.

Range walk detection A moving target may traverse more range cells during the azimuthal

integration period than a stationary target (Raney l97l). This can be detected using two

dimensional filters matched to the responses of targets moving at the velocities of interest.

Runge and Bamler (1989) describe three techniques, the simplest of which is to crosscor-

relate two outer looks after multilook processing. This technique is discussed in detail by

Ouchi (1985); an apparently similar method is discussed by Yang and Soumekh (1992),

although the processing is performed in another domain.

Clutter cancellation The cancellation of clutter using a predictive filter is discussed by Bar-

barossa (1989). The difference between the assumed homogeneous characteristics of

clutter and those of a moving target permit the detection of targets moving within the

clutter's bandwidth.

Space-timeadaptiveprocessingretc. The STAP approach (e.g. (Klemm 1996b, Klemm

I996c, Klemm 1993, Klemm I996a, Ender 1996)) uses a multichannel (array) antenna,

treating SAR as a beamforming problem. This can give optimum performance (using

any criterion of interest), allowing nulls to be positioned over jammers and ground clut-

ter. It is the most powerful of the MTD techniques, and also the most signal processing

intensive. It is currently receiving much interest, particularly in comparison with the

DPCA technique, now that low cost, high performance signal processing devices are

available. Ender (1996) discusses multichannel SAR MTI performance bounds, etc. An

implementation is discussed by Jansen and Kirchner (1996).

Jingwen, Junxiang, Yinqing and Shizhang (1995) image moving targets with SAR at a

low PRF by the careful, uniform positioning of the elements of an array antenna, using

27
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the spatial separation to obtain the equivalent of a higher pRF.

Kent and Paker (1996) use the differential phase between two receive antennas to track

non-uniform target motion.

Wigner'Ville,etc. Barbarossa and Farina (1990) and Barbarossa (1992a) used the Wigner-

Ville distribution to estimate the parameters of moving targets. He later combined it with

a Hough transform to reduce the cross terms (also (Yinfang, Guoan and Junfeng 1996)).

Rieck ( 1996) reduced the effects of cross terms used an adaptively smoothed Wigner-Ville

distribution.

To reduce the effects of range migration, the initial parameter estimation was performed

on a version of the data with degraded range resolution. The results were later transferred

to the high resolution data.

Barbarossa also discussed a technique using multilinear time-frequency distributions to

estimate the parameters of a target where there are many scatterers in the same resolution

cell and when the phase may not necessarily be second order (Barbarossa and Mascolo

1994).

Porchia, Barbarossa, Scaglione and Giannakis (1996) propose a SAR moving target

detection and focussing method based on the mult;lag high order ambiguity function

discussed in (Barbarossa, Porchia and Scaglione 1996). This function is also used for

autofocussing stationary targets.

Wang, Wang, Jing and Liang (1996) use a chirp transform to focus the unambiguously

sampled moving targets.

Ikram, Abed-Meraim and ilua (1996) describe an iterative technique which overcomes

the problem in polynomial phase estimation of errors in a low order coefficient being

increased by errors in the estimation of higher order coefficients.

(Moving target parameter estimation techniques are discussed in detail in Chapter 5.)

ISAR Unknown, arbitrary target motion over several seconds may prevent accurate imaging

by a fixed filter. An alternative is inverse SAR (ISAR), where high resolution is obtained

by exploiting the motion of the target itself, rather than the induced motion of the platform

past it (Wehner 1995). Sophisticated processing techniques exist which contend with this

arbitrary motion.
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It is the best class of techniques for imaging moving targets over many seconds; its prime

application is the long range identification of ships, although it has also been applied to

ground vehicles, air- and spacecraft.

Radar imaging relies on the target undergoing an aspect change in order to obtain high

resolution from the differential distance changes between the radar and each scatterer. In

stripmapping SAR, the aspect change is restricted to the beamwidth of the antenna. In

spotlight SAR, it can be chosen to suit the resolution requirements. In ISAR, it depends

upon the target rotating while it is being viewed.

One ground target identification scenario is for a SAR MTD system to first image the

ground and locate and determine the parameters of a moving target. By studying the road

being used by the vehicle, the radar could predict when it will round a corner. A spotlight

SAR/ISAR system could therefore be cued in anticipation of this aspect change (Fowler

r996).

2.6 Proposed SAR MTD Technique

A non-uniform PRI permits the unambiguous determination of the moving target's Doppler

centroid without requiring any more data than collected by a conventional SAR. This technique

will be discussed heuristically in the next section.

The main application for the proposed radar is that of wide area surveillance of terrain

such as that found in outback Australia. Of primary importance is the detection of man made

objects, both stationary and moving. Fundamentally, these are sparsely distributed and consist

of discrete scatterers wi*h relatively large radar cross sections. Thus the accurate metrology

of surface textures, for example, while appropriate for estimating foliage biomass, etc., is of

low priority. Thus it is reasonable to expect to obtain useful information about a scene from

relatively few radar transmissions.

A non-uniform PRI for SAR is not new; such systems have been discussed previously for

a variety of reasons (e.g., Doppler centroid resolution (Chang and Curlander 1992), choosing

the transmission times to suit a particular imaging geometry (hanis 1984) and to improve

SAR electronic warfare characteristics (Mobley 1995, Mobley and Maier 1996)). However,

it has not previously been applied to the problem of moving target detection to the author's

knowledge.

Note that several of the existing SAR MTD techniques discussed above, including Doppler
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Figure 2.5: The distances to two targets seen by the radar

rate filtering and clutter cancellation, may stitl be used with non-uniformly spaced data samples.

2.7 Non-UniformSampling

This section presents an intuitive explanation for the applicability of non-uniform sampling

to SAR MTD, and discusses non-uniform sampling theory in general. The topic is discussed

at length by Bilinskis and Mikelsons (1992). For the purposes of this thesis, the signal

processing terms 'sampling times/sampling intervals/sampling frequency' may be taken as

synonymous with the radar terms 'radar transmission times/pulse repetition intervals/pulse

repetition frequency'.

It is assumed that the reader is familiar with uniform sampling concepts.

2.7.1 Heuristic lustifrcation for Non-(Jniform PRI SAR MTD

An intuitive way to understand the effectiveness of a non-uniform pulse repetition interval is

to consider the unwrapped phase of a sampled azimuthal chirp. Phase unwrapping removes

absolute discontinuities greater than z' radians from a sequence of phase samples by offsetting

samples by a multiple of 2r.

Figure 2.5 shows the distances between the radar and two targets: one stationary (A) and

one moving in range at 3 m/s (.B, illustrated in Figure 2.3(a)). These distances are shown at

the times when the targets are inside the radar's antenna beam.

6 I
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Figure 2.6: Radar azimuthal phase returns'

Figure 2.6 shows both the real part of the azimuthal return and the coffesponding unwrapped

phase response from these targets for a radar operating with a uniform PR[. Although the

distances to the targets may be very different, the azimuthal data are very similar due to

subsampling effects. A filter designed to focus the stationary target will clearly partially focus

B.

A non-uniform PRI gives an azimuthal response like the one shown in Figure 2.7. Because

the slope of the distance change is small for target A, a small change in timing will not have

much effect on the radar returns, so the left hand side of Figure 2.7 is very like the left hand

side of Figure 2.6. The same timing offsets have a profound effect on the return from the

moving target, however, due to the increased slope of the distance plot. Intuitively, a filterused

to focus A will îow not accurately focus B. Conversely, a filter attempting to focus B will

suppress the stationary target (i.e., clutter) A. This will be discussed in detail in later chapters.

I

Non-uniform sampling theory will now be presented.

2.7.2 Introduction

Deliberate non-uniform sampling is an underrated branch of data acquisition and signal pro-

cessing since, ideally, it permits an alias free, discrete representation of an analogue signal with

a bandwidth far higher than the average sampling rate (Bilinskis and Mikelsons 1992)'
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Figure 2.7: Radar azimuthal phase returns; non-uniform PR[.

Applications include spectral analysis where the bandwidths of interest are far higher than

analogue to digital converters can sample directly, and where only the minimum amount of

data is desired to characterise a given signal.

Non-uniform sampling and processing are well known in fields including astronomy, where

measurements may be made at irregular intervals due to practical constraints, such as telescope

availability and weather conditions (Lomb 1976, Scargle 1982). However, the data in this case

are still oversampled: variable stars may have periods of months or years. The emphasis in

this thesis is on undersampled data, where aliasing is an important issue.

Aliases are ambiguities which arise when more than one conceivable signal, usually from

a model with differing parameters, can give rise to the set of measurements. It is then not

known which represents the actual situation. It is important to realise that aliases are a result of

uniform sampling, not samplin g p¿r se. Carefully chosen sampling times give very desirable

characteristics, including alias suppression. It may be that the sampling times result from a

random process. (The times are assumed to be accurately known, and are taken into account

during processing; they are just specified randomly.) The expected performance of a signal

processing operation with respect to the probability density function of the sampling times may

therefore have to be calculated. In fact, it can be shown that the expected estimated spectrum

produced from a signal sampled at times with a uniform probability density function p7(Í)

tends towards that of the original analogue signal (Bilinskis and Mikelsons 1992, page 38).
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However, this is not achieved in practice since it requires an infinite number of samples with

infinite precision.

Clearly, the performance of an estimator using randomly sampled data depends upon the

degree of randomness in the sampling scheme. To reduce statistical error in this performance,

there should be a minimal degree of randomness, such as a small deviation from uniform

sampling times.

The amount of randomness required depends upon the number of samples processed: when

filtering out aliases, for example, the greater the number of non-uniform samples processed,

the smaller the deviation from uniform needs to be.

2.7.3 Minimum Sampling Requirements

The well known sampling theorem states that a real signal with banCwidth B may be recon-

structed from samples collected at a rate equal to at least I IQB) hertz. This is known as the

Nyquist rate (Roberts and Mullis 1987, 129). For complex signals, the complex sampling may

bedone at> lf BHz.

The general bandpass sampling theorem is slightly more general (Martin 1997): tlte average

sampling rate must be greater than the sum of the bandwidths of the components making up

the signal, provided it is known which parts of the spectrum are occupied by the signal.

2.7.4 Pseudonndom Sampling

It is difficult in practice to generate samples at known, arbitrary times; the times themselves

have to be known to high accuracy. An alternative is pseudorandom sampling (Bilinskis and

Mikelsons 1992, page 55,91-92), where a high frequency reference clock produces pulses

at uniform intervals, and times are chosen from this set to satisfy a predetermined sampling

scheme. The highest unaliased frequency of a sampled signal is given by half the frequency

of the reference clock.

2.7.5 SignalProcessing

Spectral Analysis

It is very useful to analyse the spectrum of sampled data. The power spectrum corresponding

to the signal q(ú) sampled at the known times {t*},, - l, . . ., ff, may be approximated by

the squared discrete Fourier transform (DFT)
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This results in slight enors which can be avoided using a more complex spectral estimator,

such as least squares (Bilinskis and Mikelsons 1992, page 222-225), (Scargle l9g2). (The

DFT is the same as the least squares spectral estimator in the case of uniform samples.) This

may require the (numerically intensive) inversion of a matrix, which may be precomputed if
the sampling times are known beforehand. Alternatively, computationally efficient spectral

estimators for non-uniform samples are discussed in (Lomb 197 6) and (Bilinskis and Mikelsons

7992, pages 235-243).

Reconsfruction of Spectra

An important issue is the effect that a random sampling scheme may have on the measured

spectrum of a signal, and whether or not it is possible to uniquely reconstruct the signal (i.e.,

whether or not the spectrum is alias free). This issue is important when considering a non-

uniform PRI scheme for finding moving targets' Doppler centroids unambiguously. The main

reference for the rest of this section is (Martin 1997).

It can be shown that the observed power spectrum

P'U) : PU) *^9(/),

where P(/) is the true power spectrum. S(/) is the spectrum of the sampling process, given

by

s(/) : I :0,

æ{ìl"djl}, r +0,ñu) + t,

where p(/) is the Fourier transform of p(t), the probability density function of the intersample

spacing.

The spectrum is alias free if it is possible to unambiguously reconstruct P(/) from a

knowledge of P"(/) and S(/). It has been found that this is the case when the complex values

of ñU) are unique for all values of /. For example, the poisson distribution

(2.r8)

a
P(t) : ae-"t --+ pu) a+j2trf
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Figure 2.8: Correlation filtering of non-uniformly sampled data.

gives a flat spectrum (Marvasti 1987, page 96) which is alias free. On the other hand, regular

sampling, with its repeated values, gives ambiguities.

It was conjectured that for a given distribution to be alias free, it must be nonzero near

the origin. (However, although a scheme may exhibit aliases, they may be sufficiently low in

amplitude not to cause difficulties.)

These results will be used when the ambiguity function is considered with a randomly

switched stagger pattern Section 3.7.1, and when optimal random times are discussed Sec-

tion E.2.3.

Filtering

Figure 2.8 shows the process of crosscorrelating a filter with data sampled at arbitrary times.

(This figure is similar to Figure 11.1 in (Bilinskis and Mikelsons 1992, page 277).) The filter

values are calculated at times corresponding to the data's sampling times. These are multiplied

by the data samples for the duration of the filter, and the accumulated results are output. In this

example, the filter is shifted along the time axis at uniform intervals.

Conventional digital filtering, by contrast, has uniform samples of the input data, and syn-

chronous output samples. This means that the same filter values are used for each calculation,

and the process can be described using a convolution operator.
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General filtering cannot be performed with any acceptable level of performance using non-

uniform samples (Bilinskis and Mikelsons 1992, pages 293-303). (This is because impulse

responses which tend toward zero rapidly cannot be effectively represented with non-uniform

samples.) However, it is possible to perform narrowband, selective filtering, even in parts of

the spectrum outside what would normally be the unambiguous region.

This has an impact on non-uniform PRI SAR MTI with a low average pulse repetition

frequency (PRF) (Section 4.4): since wideband clutter cannot be selectively filtered our from

the signal, MTI cannot be performed.

The definitions of different sampling schemes will now be presented.

2.7.6 Timing Specifrcations

Sampling times {ú,}, n : I,. . . , ff, will be specified in terms of their joint probability density

function (PDF) p¡(t) thus:

Known If the sampling times are known,

pr"(t) : 6(t - tn) vn,,

where á(t) is the Dirac delta function

Uniform If the sampling times have a uniform separation ú" and are centred on I : 0,

tn : ("- t - {/) t", ft :1,...,rú;

pr,(t): o(,- þ- '-Y/l ,") o"

(2.1e)

Figure 2.9 shows the estimated spectrum of a2.2Hz cisoid sampled uniformly at lHz
Aliases make it impossible to determine which peak represents the true signal.

Random offsets The transmission times can also be specified relative to the uniform trans-

mission times:

tn: Tt,trlL,rn^o¿¡y1,

with M offsets {4",}, n : 0,...,¡y' - 1; Ars : g.

This scheme is also known as 'periodic sampling with jitter' (Bilinskis and Mikelsons

1992), 'independent jitter' (Berkovitz and Rusnak 1992) and the 'random deviation
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Figure 2.9: Estimated spectrum; uniform sampling.

method' (Vergara-Dominguez I 993).

It has poor properties since the corresponding sampling PDF in general drops to zero

between the samples (Bilinskis and Mikelsons 1992, page 62): it is far better to have a

finite probability over the entire sampling interval. The case when there are no nulls has

Ar : t"f 2, which has two problems: a large random component (which means a large

random error) and the fact that some intervals are going to be extremely small. The latter

condition is unacceptable in a radar application due to range ambiguities.

Figure 2.10 shows the estimated spectrum of the 2.2Hzcisoid sampled at lHz on average

with uniformly distributed random timing offsets of 20Vo. The least squares estimator

was used. This spectrum clearly shows that the signal has been unambiguously identified.

The first sidelobe is at = - 13 dB (not clearly shown).

Random intervals The times within a frame period correspond to the delays {rn}: t",n :

ú",r,-l * Tn-t,D- 0,...,¡ú - I andt¡,o^" :DYo' T¿. Tn ) 0,n :0,..., M - l.

This is also known as the 'additive random point process' (Bilinskis and Mikelsons 1992,

page 35), 'accumulated jitter' (Berkovitz and Rusnak 1992) and 'random interval method'

(Vergara-Domin guez 1993) .

See Figure 2.ll for a representation of a non-uniform sampling scheme.
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Figure 2.I l: Non-uniform sampling with the specified notation for M : 3

To obtain the desirable sampling properties, the actual distribution of ¡ is not important,

since its effects are cumulative (Bilinskis and Mikelsons 1992, pages 35 and 66), even-

tually resulting in a flat probability density function by the central limit theorem. It is

useful, though, to specify the ratio of standard deviation to the mean, o f ¡t, and good

results may be obtained for 0.01 < o I p < 0.3, depending upon the application.

Figure 2. 12 shows the estimated spectrum of the 2.2[zcisoid sampled at I Hzon average

withuniformlydistributedrandomtimingintervalsof2OVo. AswithFigure2.l0,thesignal

has been identified, although the sidelobe structure has changed. Here there is a larger

band around the signal without noise and the nearest aliases to the signal are smaller than

in Figure 2.10, but the noise floor is higher. Again, the first sidelobe is at = - l3 dB.

Correlated intervals Further improvements may be realised by implementing the intervals

I as an autoregressive process with a positive correlation coefficient p (Bilinskis and

Mikelsons 1992, page 66-69): a flat PDF is achieved with fewer samples. This results

in a lower variance in the estimate of mean square value, for example (Bilinskis and

Mikelsons 1992,page 130-131). Ir is lower than for jittered sampling.
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spectrum: random sampling intervals: 20.07o deviation.
0
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Figure 2.12: Estimated spectrum; random intervals.

However, a plot of the sampled spectrum using this scheme with p : 0.5 looks extremely

similar to the spectrum obtained with random intervals using a Gaussian distribution

(which is slightly different to Figure 2.12). This is because many samples were processed;

differences would be more profound if only a few were considered.

Sampling periodic signals can be a problem if the signal's period is comparable to the

average sampling interval: there is a tendency to sample the same part of the waveform.

This tendency is alleviated using a positive correlation between intervals (Bilinskis and

Mikelsons 1992, page 79-80).

Bilinskis and Mikelsons (1992, page 87-88) show the effects of the correlated additive

random point sampling function on worst case alias suppression.

If the input signal is asynchronous with the sampling scheme, the sampling PDF may be

flat initially, rather than just tend towards a constant value (Bilinskis and Mikelsons 1992,

page 74).

2.7.7 SAR Specifrcs

This section discusses the specific application of non-uniform sampling to SAR.

From the minimum sampling rate requirement discussed in Section 2.7 .3, it is reasonable to

detect moving ground targets with a narrow range of predefined speeds with a SAR operating

at the same average PRF as a ground imaging radar provided that the scene is not arbitrarily

complex. (Although the moving target's signal is a chirp and occupies approximately the same
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bandwidth as a stationary target, a low sampling rate may be used since the signals' chirp

rate is approximately known and the signal's dechirped bandwidth is very small. It can be

modelled as amoving scatterer, rather than an extra scatterer in the scene.) The technique can

be applied to circumstances where there are few moving targets, such as detecting the presence

of vehicles in remote areas. City traffic monitoring, on the other hand, requires a high average

PRF due to the much greater information content of the radar return.

Some miscellaneous sampling issues follow:

o Having the number of sample time offsets M : I corresponds to a conventional SAR.

The upper limit for M is the number of samples during the integration time (ultimately

the number of transmissions over a synthetic aperture):

M*o, L^o, I p"o

R^o"ïro

where .R-* is the maximum slant range, I,o is the antenna's horizontal beamwidth and

p,o is the azimuthal resolution.

o The number of transmissions over the length of a synthetic aperture must be the same as

the number used by a conventional SAR, a constraint imposed for this thesis.

o The lowest common denominator of the sampling intervals 7¡"¿ ûulSt be small enough to

unambiguously detect the phase changes corresponding to a moving target, as well as that

of the ground; i.e.

lf r¡"¿ ) 2lF¿",^o, * B¿,^",f 21,

where the maximum Doppler centroid Fd.,^o, and maximum Doppler bandwidth Bd,^o,

are given by Equation (2.11) and Equation (2.13) respectively with the maximum target

velocity values substituted (D'Addio et al. 1994). This is important when pseudorandom

sampling is used.

: the minimum transmission interval

: min(r"), 0<n1M.

Pto

o Let

Tmi¡



2.7. NON-UNIFOR]VÍ SAMPLING 4l

Then /",-o" (: I lr*;,) must satisfy the conventional SAR upper PRF bound

Í",^o" 1 cf2&,

(Section 2.1.4), to avoid range ambiguities

o The first target motion ambiguity must occur at a higher speed than the maximum target

speed (Mao 1993 , page 312).

2.7.8 Non-Uniform Anays

There is a clear analogy between SAR and real array antennas: SAR is array processing with

data collected from one time-shared antenna element. It follows that a non-uniform PR[ is

analogous to a non-uniform array.

Non-uniform arrays are used to achieve a higher resolution than uniform arrays with the

same number of elements by permitting antennas to cover a larger area. If the elements of a

uniform array have separations greater than half a wavelength, the antenna exhibits 'grating

lobes', sidelobes analogous to the aliases associated with undersampling. (The SARequivalent

is termed'azimuthal ambiguity'.)

Techniques exist which specify the optimal positions of non-uniform array elements. One

technique, that of maximising the integrated sidelobe ratio (Boni, Richard and Barbarossa

Igg4),is applied to a non-uniform PRI SAR in this thesis (Section 6.4.3). Another, a minimum

redundancy approach (Pearson, Pillai and Lee 1990) is used in Section E.3.

Throughout this thesis, sampling will be considered to be in the time domain without loss

of generality.

2.7.9 Non-(Jniform Sampling: Concluding Remarks

Non-uniform sampling is an appropriate technique for capturing a signal whose components

occupy a small fraction of the spanned bandwidth using a small number of samples. It is well

suited to synthetic aperture radar moving target detection.

Ideally, using the non-uniformsampling theory outlined above, for avoiding aliasing effects

we would use an additive pseudorandom point process with small o I p @.g., 0.3) and a

correlation of 0.3, precalculated for Iú samples, with a reference clock high enough to capture

the entire range of frequencies of interest. Combined with asynchronous sampling, this scheme
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Function Property Where
Ground imaging 3 dB resolution

unambiguous range
peak sidelobe
integrated sidelobe ratio

Section 6.5.1

Section 2.1.4

Table 6.2
Table 6.2

MT indication improvement factor
target velocity range

Section 4.4
Section 4.6

MT detection si gnal-to-disturbance ratio improvement
receiver operatin g characteristic
(i.e., detection prob. vs. false alarm prob
vs. signal to clutter ratio)

Section 4.3.3
Section 4.3.4

MT parameter

estimation
position error
velocity error

Section 5.8
Section 5.8

Implementation computational cost Sections 4.6 and 5.7

Table 2.2: SAR imaging and moving target detection considerations.

approximates a uniform sampling PDF p¡(t) of unity, which provides good alias suppression

(Bilinskis and Mikelsons 1992, page 80-88). It is shown in this thesis (Chapter 5) that rhis also

results in parameter estimation variances which approximate those of uniform sampling.

SAR performance requirements will now be presented.

2.8 Performance Requirements

The non-uniform sampling scheme to be adopted for simultaneous ground imaging and moving

target detection should be considered with respect to the criteria listed in Table 2.2. Many

schemes are discussed in Appendix E. Every scheme will be a compromise: ideal imag-

ing/lvITD/lvITI cannot be performed with a minimum volume of data. These criteria will be

referred to by later chapters.

2.9 Summary

This chapter discussed the fundamentals of synthetic aperture radar and the effects of moving

targets. It covered radar waveforms in general, defining the V/oodward ambiguity function

and methods for reshaping it. Existing SAR moving target detection techniques were then

discussed in detail, and the proposed technique, that of a non-uniform PRI for SAR, was

introduced. This was followed by a discussion of non-uniform sampling theory in general, and

the implications for SAR in particular. The criteria to be addressed by SAR MTD/imaging

schemes were presented.



Cunpren 3

Moving Target Ambiguity Function

This chapter derives the moving target ambiguity function (AF) of a chirp pulse compression

synthetic aperture radar (SAR) with arbitrary and random transmission times. It is shown that

such a radar is able to unambiguously determine ground targets' two dimensional positions

and velocities whilst operating with the same average pulse repetition frequency (PRF) as a

conventional ground mapping radar.

3.1 Introduction

A conventional SAR, with a PRF sufficient only to unambiguously sample the Doppler band-

width of the ground, is incapable of determining the parameters of a moving target. As

discussed in Section 2.3, theazimuthal signal returned from a stationary target is, ideally, a

linear frequency ramp centred on OHz. In contrast, a moving target's is a Doppler shifted,

time scaled, possibly non-linear frequency ramp (Raney l97I). Since, in practice, the shift

may be many times the PRF, there are ambiguities resulting from aliasing effects. A practical

consequence of this is that moving targets are displaced from their actual positions, and are

consequently not registered correctly in the image.

The AF is the response of the radar to a point target on the ground, allowing for mismatches

between the parameters specifying the signal received fromthat target and those of the focussing

filter. These parameters include the target's velocity and position, and it is important to

investigate the effects on the AF on non-uniform sampling.

The contribution of this chapter is to derive the moving target AF of a ground mapping,

airborne SAR and use it to investigate the effects of a non-uniform or random pulse repetition

interval (PRI): it is shown that a non-uniform PRI gives this radar the dual capability of ground

43
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sr(t)

osc. f
v(t)

¡t1 {astI tlme

slow time

r(.)
target <r-
p(.) -->

range
profiles

z(m, w)

Figure 3.1: A block diagram of the radar model.

imaging and unambiguous, two dimensional moving target velocity and position determination.

The AF is derived in Section 3.2, used for moving target focussing in Section 3.4 and applied

to uniform and non-uniform PRI radars in Sections 3.5 and 3.6 respectively. The latter includes

a detailed example with two alternating PRls. Section3.T discusses the expected AF resulting

from a random PRI when the sampling probability density function is known. Appendix A

lists some properties of the extended AF, the form of the stripmapping SAR AF. This is a

generalised version of the Woodward ambiguity function with a Doppler frequency rate term.

3.2 Ambiguity Function Derivation

In this section, the stripmapping SAR AF is derived, starting from a general pulsed radar

scenario and becoming progressively more specific to stripmapping SAR. The initial derivation

is based on Lush's analysis oî a pulse Doppler radar (1990). Figure 3.1 shows a representation

of the processes performed by a SAR.

3.2.1 Radar Scenario and Signals

The radar transmits the signal s7(t) which propagates towards the scene of interest, having

the complex reflectivity þ(r,y,z), and is instantaneously retransmitted by it. In general,

the scene is moving relative to the radar, resulting in a time- and position-dependent range

delay r (r , a , z , t) between the times of transmission and reception. The radar then coherently

NDfilter
h, (t)

corner
turn

memory

slow time
compres

hu(t)

rmage
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path of SAR

45

antenna

pattern
y (azimuth)

z (altitude)

x (ground range)

SAR travelling into page

o.-.

antenna

pattern

x

ground

Figure 3.2: The SAR two-way antenna pattern, ã,(x,y,z.,t). (This is equivalent to

ä(r,t - U lup,z) since the radar is moving with velocity u, in the azimuthal direction.)

receives the signal

x(l) = Irlrl*þ(r,y,z)á(æ,a,z,t)"r(t - r(r,y,z,t)) d,rd,y d'z

(based on (Cutrona 1990)), neglecting attenuations due to range and radar hardware. The

time- and position-dependent amplitude modulation term ã(r , U , z.,t) permits great generality,

allowing the modelling of the two-way antenna pattern for arbitrary imaging scenarios, and

may incorporate effects such as antenna pointing errors. ã(*,A,z,t) is shown for SAR in

Figure 3.2. The integration is over the entire scene.

We restrict attention to point scatterers moving relative to the radar, rather than the moving

ensemble considered in inverse SAR. (Porter, Tough and Ward (1993) and Damini and Haslam

(1996) unify inverse SAR and SAR ground imaging using such a model.) If it is assumed

that the scatterers in the scene are isotropic over the observed aspect angles, their reflectivity

þ(, , A , ") 
x þ, so the received signal from one scatterer becomes

*(t) : s¿(t) *n(/),

where

sA(¿) : p 
"(t) 

s7(t - r(t)) (3.1)
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a(ú) is the radar's two-way antenna pattern, centred on the transmission time of ú : 0. n(t)

is an unknown disturbance (clutter and noise) and r(l) : r(r,U,z,t).The time-dependent

range delay

r(t) : zd(t)lc, (3.2)

where d(t) is the one way distance to the target; it is reasonably assumed that the velocity

of propagation c is much greater than the greatest radar-target speed. The effects of multiple

scatterers may be found by superposition.

The form of the signals will now be discussed.

The transmitted signal may be represented by the real function

s7(ú) : a(ú)cos(B(t)),

where o(f ) and B(t) are amplitude and phase modulation terms respectively. Without loss of

generality, the analytic representation of this signal sr(t) witt be used such that

s7(t) : ft{s¿(t)},

where ft{.} returns the real part.

If we assume that the transmitted signal is narrowband, meaning that its bandwidth is small

compared with its centre frequency, it can be represented by

s¿(t) : u(t) ei2"Í"t,

where u(l) is a complex envelope modulating the carrier at frequency /". From Equation (3.1),

s,(t) : po(t)u(t - r(t)) ¿iz"Í"[¿-"(¿)]

If the radar generates a train of l{ identical, coherent pulses nt(t), each centred at time f ,,

and of duration fi, we have

u(t;{t"}¡ : D p,(t-t")
N-l

n=0
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The {t"} are monotonically increasing. To avoid overlapping transmissions and range ambi-

guities, ?r + maxt(¿) < min(ú,,-,.¡ - ú,)Vn. Then

s,(ú) : p o(t)Ð pr(t - tn - r(t)¡ 
"iz"t"þ-"(t)1.

,1,

Since pr(.) is nonzero only in the small range +Ttlz about each ú,,, and neither o(t) nor

r(ú) change significantly over t^ ITtf 2, s,(t) may be writte

s"(t) : ol a(t"¡ pÁt - t, - r(t*)) "i2rt'lt-r(t"))n

Recall that a(ú") was centred on f : 0.

3.2.2 RangeCompression

The transmitted pulse pr(t) is chosen to have the property that the convolution with a weighted

matched filter with impulse response piet)

l* nr@pî(rt -t)dq : a1t; æ o1t¡,

where * is the conjugation operation and 6(f ) is the Dirac delta function. (It is normal for SAR

systems to incorporate weights for sidelobe suppression, such as those discussed by harris

(1978).) A linear frequency ramp (chirp), where

Pr(t) :

is such a signal; its performance may be approximated by

"itøt2, ltl<T12,
0, otherwise,

ó(r¡ : 1, ltl < Lr I Qc),,

0, otherwise,
(3.3)

where Ar = clLB is the range resolution, B x aTl being the chirp's bandwidth. In practice,

fi is only a few tens of microseconds. The moving target does not move a significant fraction

of a wavelength during such a short interval, so there can be no velocity discrimination between

slow targets and the ground using the return from the range compression pulse.

The received signal is quadrature demodulated to baseband and passed through a linear,
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time invariant filter with impulse response h,(t), giving

v(t) : Ë "-i2tfcn 
s,þ¡) h,(t - n) dry.

Let h,(t) : p*(-t), neglecting the time delay required to make this filter realisable. The

output due to the discrete scatterer is

vþ) þ l-4"þ.) pt(n - t^ - r(t,)) pî(rt - t) e-i2nr"'(t') ¿, Q.4)

pÐ 
"(t") "-i2trr"r(t") 

6çt - t^ - r(t*)). (3.5)

ó(l) was defined in Equation (3.3).

Equation (3.5) is an intuitive result: the output is zero unless t : tn + r(t^), when there is

a range delay-dependent phase terml.

It is useful to perform SAR MTD on the range compressed data, therefore, because

o the slow speed of the moving target has a negligible effect on range compression, since

its Doppler frequency is small compared with the bandwidth of the range compression

signal,

o there is no stationary target/moving target discrimination with a short pulse,

o the volume of data to be processed when searching for a target is vastly reduced,

o range compression vastly reduces the amount of clutter with which the signal has to

compete (Barbarossa l992b,page 81), and

o after azimuthal compression it is difficult to distinguish moving from stationary scatterers

(Barbarossa 1992b).

The range compressed signal y(tl is then sampled at times mT, * tn, m: 0, . . . , M,o - I,

where I f T, is larger than the bandwidth of p,(t). The sample rate then satisfies the Nyquist

criterion. This produces a range profile of M,, samples for each radar transmission. (Of

course, the signal could have been digitised prior to range compression.)

rAs an aside, for the case where r(t) = r t it, it can be shown that Equation (3.4) can be expressed in terms
of the standa¡d asymmetrical narrowband cross AF, Equation (2.16) (similarly to (Lush 1990)):

a(t) N þe-izrl"Ír+itl D o(r") X'p¡1t¡,p,1t¡(r - lt - t^), Í"i).

n

n
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Figure 3.3: The SAR imaging scenario in the plane of the raoiation

3.2.3 S.low Time Compression

The radar collects compressed range profiles as it travels, storing them in a corner turn memory

as illustrated in Figure 3.1. The data at each range, a function of time, may be processed in

a variety of ways, including moving target indicator filtering (Lush 1990). Here, slow time

compression will be performed by cross correlating the data with an appropriate filter. In

SAR, slow time compression is imaging in the azimuthal dimension. See Figure 3.3 for a

representation of this.

The response to a single scatterer is

z(m,u) : Ð a(mT, t t,) h"(w - rnT, - tn), (3.6)
n

where rn is the range index and tu is a time delay. For matched filtering, å,(ú) is a normalising

y.(_t) (neglecting the delay required for causality)2; here, since the effects of mismatches

due to target motion are of interest, let h"(t) : y:(-t),where y"(t) is similar to y(f) in

Equarion (3.5) but has range delay and amplitude terms r,(.,t) and ø"(ú) which model a

reference target.

y"(t) : D""(t^) "-i2r!'r"(''t") 
ó(¿ - t, - r"(t^)) (3.7)

n

2For non-uniform {t,}, this is strictly a correlation, rather than matched, filter since it changes depending

upon the spanned sample times. See Section 2.7.5.
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The reference target range delay r" ( . , ú ) incorpor ates additional paramefers (represented by the

dot) which are relevant to the situation of interest. In the stripmapping SAR case, for example,

they could be the moving target's range and azimuthal velocities. (This is a more general

approach than the ambiguityfunction theory discussed in Section 2.4) a,(t) is anormalising

version of a(t): an optional amplitude weighting term is assumed to be unity. (Weights

are considered for moving target detection in Section 4.3 and reducing imaging sidelobes in

Section 6.4.2.) An additional amplitude masking term may be used to incorporate multilook

processing (the effects of which are discussed in (Ouchi 1985)).

Using Equations (3.5), (3.6) and (3.7),

z (., m, w) : þ t I b(t r) 6(mT, i tn - t, - r (t r)) Ð ¿;(¿, ) O(-. I mT, i t, - t, - r,(t r)),np q

where b(tò: a(to¡e-iz"t "(úr) ¿¡¿ b,(tò: a"(to)"-i2trf.r"(',t). z(.,m,ur) will be zero

unless the absolute values of the arguments of both á(.) functions are less than LrlQc)
(Equation (3.3)).

Taking the argument of the first one, we have l*7, - r(t) + t* - tpl < Lrlec). w'e

know that the difference between any two transmission times tn - tp is much greater than both

mT, - r(to) and L^r l(2c), since range ambiguity has been avoided. Therefore, the expression

can only be nonzero whentn: tr.
Therefore, 6(mT, I tn - te - r(tò) may be written in the form 6(mT, - r(tp)) 6(t. - tò.
Hence, using

ÐI *ff@),f@) dU(ù- f@Ð : D ,ff@),f@)) (3.8)
np n

for/(n) # f@whennf p,

m þ DD b(t") b:(tq) 6qmT, - r(t,)) 6(mT, - ,"(t) + tn - tn - .)nq
7 w

For this to be nonzero,lmT, - r"(tr) i tn - to - ul < Lrlec). This happens when ún :
mT,-r"(tn)+t"-w+Lrl(2c),allowing z(',m,u.r)tobesimplifiedaccordingtoEquation(3"8)

again-ó(') = á('). Thefactthat b"(tò(theslowtimeazimuthalchirp)changesslowlyrelative

to r"(fo) (the fast time range delay) implies rhat

b" (mT, - ,,(t) I tn - w + Lr lQc)) x a,(t, - w) e-i2nJ.r"(',tn-u)
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Therefore, we have

where

51

(3.e)

z(.,m,w) : þX'(,m,u),

X'(.,m,w) : Do(t")a"(tn - w) eiz"f'1"'('tn-u)-r(tn)l 6(*T, - r(¿"))
n

z(.,m,tr) has a peak magnitude of lþl when the filter parameters match those of the target.

If 5(¿) is given by Equation (3.3), X'(.,m,u.') is nonzero when r(ú") is within the range

mT,c*.L.r 12. Theexpression therefore incorporates both range resolution and range miglation

effects, the latter of which is important when r(Í) varies markedly with time.

If it is assumed that the range resolution is sufficiently low that there is no moving target

range migration during the integration time, we have the important ambiguity function

N-l

X'(.,-) : D o(¿,) a,(tn - w) ei2"Í"Í""(''t"-u)-r(tn)l
n=O

Any moving target parameters found from this data may be applied to the full resolution data

set afterwards (Barbarossa 1992b, page 80).

This expression is more general for dealing with a time varying, arbitrary 1"(', ú) than that

obtained by Lush and Hudson (1992),who analyse the AF by using a piecewise approximation

to the range delay.

It is also more general than the chirp transform discussed by Wang et al. (1996) as it

incorporates arbitrary amplitude variations, geometry and timing. In addition, Wang et al.

(1996) implicitly assumes that the PRF is sufficiently high to sample the spectrum of the

moving target unambiguously.

3.2.4 SAR Geometry

The radar is assumed to travel in a straight line at a constant altitude and constant, nonzero

velocity uo, directing its antenna towards a flat, stationary earth, as shown in Figures 3.2

and 3.3. (If this model is inaccurate, then the data will be assumed to have been compensated

so the approximation can be made.) It is imaging the area at slant range3 .R. A reference target

is at position (Æ", y") with velocity (.,1", i") and acceleration (-R", d;"). It is assumed that the

3The range R is slant range in the plane of the radar-target line of sight, not ground range Ro, which is the

distance between the target and the point on the ground directly below the radar. Note that they can easily be
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reflectivity of the target does not vary during the imaging process, and that the target's motion

is known. (Lush and Hudson (1992) discuss the effects of non-uniform target motion on the

response of a radar with a large time-bandwidth product.)

Using Pythagoras's theorem, the distance to a modelled moving target at (,R,0) is given by

d(t) : ftn + itt + ät, ¡z), + $tt + ü* 12 - ueÐz]ttz

(for example, (Raney 1971, Wehner 1995)).

Note that a time delay of u is equivalent to displacing the target a distance y : urw in

azimuth, so y is incorporated using d(t - y lur).

Substituting Equation (3.10) and its equivalent for d"(ú) into Equation (3.2) and Equa-

tion (3.9) along with an appropriate antenna pattern yields a very general SAR azimuthal

moving target AF which can be applied to spotlight, squint and broadside stripmap imaging

scenarios.

3.2.5 Stripmapping SAR Ambiguity Function

In the broadside stripmap case with a naffow antenna beam, Equation (3.10) may be simplified

using a second order Maclaurin expansion (Equation (2.7)) to give

(3. r0)

expressed in terms of each other for the flat earth case using

R_ h2 + R2o,

d(t) x R + nt + ät2 ¡z * 9t=+ 
¡!12 ,,",t1 .-"" t -' 2(R+ ilt + ätrlz)'

which simplifies to

d,(t) x R+ itt. ålu + |ra -,,r,), . (3 n)

(for example, (Wehner 1995)) since yÍ is negligible when compared with u, and ,Rf + ät2lZ

is negligible when compared with .R. This gives rise to the well known Doppler centroid and

rate expressions (Equations (2.1 l) and (2.12)).

The time varying amplitude of the received signal a(ú) is now given by the radar's two-way

where à is the altitude of the radar. Slant range is therefore used throughout this thesis without loss of generality
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(3.12)
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(3. l 3)

(3.14)

antenna beam pattern, which can be approximated by

a(t; R) :

where T : T(R) - R0,olup is the time taken for the SAR platform to travel the width of the

real antenna beam, 0,o is the small horizontal beamwidth of the real antenna. This assumes a

wider main beam than Equation (2.3). (a(') ignores the target's motion, making the assumption

that j, -R and ¡ Ìi at K up, which is reasonable for ground based targets.) This approximation

is invalid for SARs with large beamwidths, e.g.(Soumekh 1995)'

If the modelled target is stationary, and the reference target is moving as previously de-

scribed, we have from Equations (3.1 l), (3.2) and (3.9) the stripmapping SAR AF

1

0

Itl < r 12,

otherwise,

X'(R",Â", å", U",'i/,i R, {t*},r0, )) :

D o(t";R)a(t" - v"f ur;R").

..nûrTfo" - A+ A" ('" - i) .

;( a" + Lott"- 
",') (

É
2R

'U't _-þn
U,P

)

*"

Interestingly, Equation (3.13) can be written in terms of a generalisation of the classical

asymmetric cross AF (Equation (2.16)) with a Doppler rate term, known here as the 'extended

ambiguity function',

Xt"lt¡,,ç¡(r,Ó,,Ó') : ,/-- t(t) '*(t - r)e-iz"(ót+Ó'û) dt,

as shown on the next page. (This result assumes that the target's return has been sampled by

the radar at the correct times (f, * r).) In this formulation, the stationary target's slow time

response s(t;Æ) takes the place of the radar's transmitted signal in the conventional use of

¡,(.), and the moving target aspects are confined to the phase terms. This is known here as the

'extended cross-ambiguity function.' Note that if the range of the moving target is known, so

R: R,,then s(f ) : r(t), and the cross-ambiguity function becomes equivalent to the (auto-)

ambiguity function.

If it is too difficult to work with the extended cross AF, the conventional Woodward

equations, Equations (2.15) and (2.16), are still useful: // (Equation (3.18)) becomes zero for
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where
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X'orþþ,r,, ó, ó'; R, R", {¿"}) : "-i2rtÞ Xl1r:n¡,,1t;n "¡(r, ó, ó'),

r : y"fup,

(3. ls)

(3.16)

(3.17)

s(r;,?) : 
T 

a(t; R)"-o(-rT 
l^ 

- fl*]) r,, - tn),

r(t;R"): 
Ð 

a(t;R")".n(-rTlo"* *r]) ,1, -,,¡,

- ftfu"* fto,-r,ò]\,

fu" 
* fr,"- r,ò]- A")

1þ:

ó

and

fu" 
* frlo"- r,,)] (3.18)

a range acceleration and azimuthal velocity of zero, so Equation (3.14) becomes equivalent

to Equation (2.16). Range velocity may still be investigated since it influences the / term

(Equation (3.17)). The properties of Equation (3.14) with r(ú) : s(ú) are lisred in Appendix A.

It is important to notice that, although there is an apparent similarity between

Equation (3.15) and the conventional radar ambiguity function, there is a pro-

found difference in its meaning. In the conventional interpretation, the radar

signal s(t) is under the direct control of the radar designer, and may be changed

to achieve a desired ambÍguity function. Ilere, s(f ) is out of our control, being

a function of the imaging geometry. The only degree of freedom we have is

choosing the radar's transmission times.

3.3 Depth of Focus

The depth of focus considers the amount by which the azimuthal focussing parameters can

be in error and still achieve a focussed image. It is commonly used to determine the range

variation over which a given azimuthal filter may be used.

ó':-+



3.4. MOVTNG TARGET FOCUSSING

Using Equation (3.13) with the unwanted parameters set to zero,

X'(R",0,0,0,0;,8, {f'}, rr,À) : Do(t": R) a(t"; R,)

55

n

".,Q,T[o" - * *+(å - *),r])
The phase error at the edge of the filter must be less than e . Then

lmaximum phasel - lminimumphasel I e

We take time ú,o to be its maximum value, which it W at the edge of the antenna beam. Iüy'e

have

,nu| ¡n- n,l f4ful' _o . ,.-"]\ R"R) \zrr) "-
Since R" æ R, and letting 6R: R - R",

6R < ,i,L,

Since the azimuthal resolution psa : )fi, and letting e : rl4, an azimuthal compression

filter may be used over the range extent

6.R <
2p?^

which is the standard result (ø.g. (Curlander and McDonough 1991, page 173)), corresponding

to a 0.3 dB power reduction.

3.4 Moving Target Focussing

Equation (3. I 3) results from the cross correlation between the azimuthal returns from stationary

and moving targets. The more general ambiguity function for an arbitrarily positioned moving

target requires a more general version of Equation (3.9) with both r"(.) and r(') having moving

target parameters. Then Equation (3.9) takes the form shown in Equation (3.19), where 0 is a

vector containing the reference target's parameters lR, Ìi'., ii,V,ùl' . 0e is a vector containing

the parameters of the modelled target, [Ao, Ao, än,Ar,Ao]'.

À
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X'."(0;0s, {t,},ur,À) : t a(t^ - aofur; Rs) a(t^ - y lur; R)
oo

?1= - OO

2

*p{¡zTl*- o. - ""(o- #) -t +

t-a
u"p

y3

2Ro

2 2

R
v
2

U,P (ùo - rr)2

R-Rû-Ra*&'o*
up Dp

(úo -,,)] ,, *

l "l)
(3.1e)

I +

ùo

vOr**
å('

:lu

-i)(ù-,,)-fr ('
I

.Ro

u^

2

3.4.1 Linearity

It is important to know the extent to which Equation (3.19) can be approximated by Equa-

tion (3.13), so only the relative positions, velocities and accelerations of the moving target

and the filter need to be considered. For example, is focussing a target with ,R : 6 m/s using

a filter adjusted for an Ao : 5 m/s the same as focussing a target with A : 1 m/s using a

ground-focussing filter? If so, it is only necessary to use Equation (3. I 3) when analysing range

velocity effects. If not, it would be more difficult to investigate the effects of non-uniform

sampling on the range velocity response, for example.

Linearity was investigated by testing to see if y'",(0 * 0;00 i 0t,{t.},u0,À) :
X'^,(0;0o, {t^},ur, À), where d is a vector containing the moving target's parameters.

There were non-linear effects with most of the parameters. The deviations from zero are

summarised in Table 3.1. (Phase terms are unimportant since it is the magnitude of the AF

which is of concern.) It appears that target range and azimuthal velocities, the main parameters

of interest, may be considered to be linear for the purposes of this thesis. Therefore, the use of

a stationary target as a reference is justified.

3.4.2 Unique Identifrability

An important consideration of an ambiguity function is whether or not an output peak corre-

sponds to a unique set of parameters. (The term 'ambiguity' ret'ers to the idea that it may not.)

This will now be addressed in terms of the signals used to form the ambiguity function.

The modelled target has the five unknown parameters ,Rs, Ao, Æo, !6 and 3]s. (Azimuthal

acceleration contributes only to a third order phase term, which was discounted from the

ambiguity function.)



Parameter 1,, coefficient Comment
Phase tn ti

R

h
ä

v

a

f Rr(vo - a)

Tfrtu' - a3+
2a'(a - so)l

=0

0

T*,@' - a)

¡y0

0

0

=0

Assumed to be matched by the range

compression.

i.¿., linear apart from phase.

A time shift of -At f u, compensates

for a shift in azimuthal position of y1

for a stationary target and a uniform
PRI. A non-uniform PRI implies a

dependence upon position.
Small errors only, provided that

a,'ilo K. ur.
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Table 3.1: Ambiguity function errors resulting from the non-linear effects of target motion

However, the azimuthal chirp corresponding to a moving target has only four independent

parameters: magnitude, initial phase, Doppler and Doppler rate. The phase is useless since

it depends upon the exact range of the scatterer, which cannot be found to a fraction of a

wavelength by range compression. In addition, it is extremely sensitive to minor variations in

target motion, since a 360" phase change corresponds to a change in distance of only a few

centimetres at X-band. There will therefore be inherent ambiguities unless some assumptions

are made.

Due to range compression, the range .Ro is known to reasonable accuracy (several metres,

say). This is sufficient to justify the assumption that R : Ro when correlation processing.

The moving target's azimuthal position Aomay be estimated using the magnitude information

in the target's azimuthal response: the greatest correlation will occur when the moving target

is broadside to the radar's antenna.

If the moving target's range acceleration is assumed to be zero, there are two remaining

unknowns: range velocity and azimuthal velocity. It is possible to estimate these from

the Doppler and Doppler rate measurements; indeed, they are independent to first order

(Equations (2.11) and (2.12)). Howeveç there is a coupling between the two; see Section 3.5.1.

If the range acceleration were assumed to be zero when in fact it ',vasn't, the range and

azimuthal velocity estimates obtained by correlation processing would be biased. This cor-

relation is modelled by the ambiguity function, Equation (3.19), which will peak when the

coefficients of ú,, and t2^ are made equal to zero, as stated by extended ambiguity function
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property 6 in Appendix A. Instead of i/ : úo and -R : fto, the estimates would be

@o-ùo)'lRoRo

and

1

v

(using the fact that y 1 ur). Note that y is extremely sensitive to range acceleration, as it is

multiplied by the range.

Parameters other than just ,R and y may be estimated if other measurements are obtained

or other assumptions are made. For example, a target's direction may be known, since it

may be known which road it is travelling along. In that case, its range acceleration may be

estimated, or its azimuthal position may be estimated more accurately than would otherwise

be possible. The position of the road itself may also be taken into consideration, assisting with

the determination of y (see Chapter 5). However, it is assumed here that no information other

than the azimuthal me¿ìsurement is available.

3.4.3 Squinú Mode

As an aside, the broadside moving target ambiguity function (Equation (3.19)) may be applied

to the situation where the antenna is pointed away from broadside (i.e., squint mode). This is

because the response of a stationary squint mode target is approximately the same as that of a

moving, broadside target when the antenna beamwidth is small (Yang and Soumekh 1992, Yang

and Soumekh 1993).

The distance to a stationary, squint mode target with minimum range R6 in the direction /
is given by:

t

h : R" - ry - ftrr - vl,,)(it -,,) rä,t - ùol,)(ito - u,)

: o, * #[(vo + v)(,p - ù)' - 2vo(up - ùr)']

dö(t) : R?a + u|

A Taylor expansion of this about the beam's centre, t : Y, has been found as a polynomial

in l. (The details have been omitted for brevity.)

A Legendre series expansion for the distance to a moving target, Equation (3.10), has also

been found as a polynomial in ú.
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Equating the coefficients of these polynomials results in equivalents for the moving target

parameters in the stationary, squint case:

R

R

ul

n(r+ +-+)

Therefore, Equation (3.19) is capable of modelling more than just broadside scenarios.

Yang and Soumekh (1992), (1993) use this concept (but not this formulation) to focus

moving targets as if they were stationary, squint mode targets'

3.5 Uniform PRI

This section discusses the effects of uniform sampling on the ambiguity function with respect

to the target's parameters.

3.5.1 Azimuthal Position/Range Velocity

A pronounced SAR moving target effect is that of the azimuthal position/range velocity ambi-

guity (Ran ey 197 l) . This can be investigated by considering the magnitude of Equation (3. 1 3)

as a function of azimuth y" and range velocity -R", with range acceleration -R" and azimuthal

velocity y, set to zero, and the range terms matched (A : r3"). Setting the range, SAR platform

velocity uo and wavelength À to realistic values results in the ambiguity function shown in

Figure 3.4 when a uniform PRI is used.

The function has a series of diagonal stripes whose amplitudes are shown in Figure 3.5.

(The shapes of these curves are governed by the crosscorrelation of the two-way antenna

pattern and the filter's weighting function.) This means that a target moving in range, whose

other parameters are matched to those of the azimuthal filter, may appear displaced from its

true position, and multiple targets whose Doppler frequencies are subsampled by the PRF

may appear in the same place. In fact, targets generally appear in two places: once inside

the azimuthal coverage of the antenna beam, and once outside. (This phenomenon-the

appearance of a target when it wasn't illuminated by the radar-is due to a correlation

Ë:

'i/ :
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SAR ambiguity function

-s00

-10 -505
range velocity (m/s)

l0

Figure 3.4: The log magnitude of the azimuthal ambiguity function of a broadside looking
stripmapping SAR where the reference target's range velocity and azimuthal position are varied.
The horizontal línes show the azimuthal extent of the antenna beam. Range is 30 km, antenna
horizontal beamwidth 1.5o, wavelength 3.2cm, platform velocity 70mls and PRF lI4Hz (the
minimum); 11.3 s integration times. The dynamic range is 60d8.
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between the target's return and the corresponding filter.)

Equation (3.13) reduces to

x' (R"rÃ", 0, u rr0', Rrrnt "rt)rrÀ) 
:

6l

v R,u")
I

l)2R" u,

where f" is the sampling interval. The summed exponential term has maxima when

\o(r^, 
R") a(t^ - a"f uo;.R") exp 

Qr+ fa" -

'r(^"-Ht": n1',

u": * ("" **+) ,

U "up
B" ] "'")

where rn is an integer. A target with velocity -R" therefore has the apparent positions

(3.20)

reversing the sign of the arbitrary rn.

Using the minimum PRF which satisfies the Nyquist sampling requirements of the Doppler

frequency at the antenna's 3dB points, lf t":2up0,"1\ (Equation (2.8)), Equation (3.20)

becomes

a": (T.ry)mod(-R"e,)-ry, Q:1)

as stated by Raney (1971) and given in the introductory chapter (Equation (2.I4)). This

equation describes the lines shown in Figure 3.4.

The overall worst case range velocity response is therefore given by the magnitude of

Equation (3.13) evaluated along the diagonal lines shown in Figure 3.4 and described by

Equation (3.21). This is shown in Figure 3.5.

A higher PRF than the minimum has the effect of moving the diagonal lines further apart

horizontally, so the moving target may not appear at all in a ground-focussed image when the

PRF is greater than2f t,.
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SAR ambiguity function
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Figure3.6: Thelogmagnitudeoftheazimuthalambiguityfunctionwherethereferencetarget's
azimuthal velocity and position are being varied.

3.5.2 Azimuthal Position/Azimuthal Velocity

As a function of just y and y, Equation (3.13) reduces to

x'(y,il; R, {t^},ur, À)

: 
Ð"(r", 

R) a(t, - a lupi-R) exP

: la(nt,; R) a(nt" - y lur; R) .

(trT *l(u - u,)' (t, - y r,ò' -,',,'"])

n

*r(¡rT! l(u - ,ò'{nt" - a l,ò2 -,îf,e,l) (3.22)

for uniform sampling with interval f", assuming that |tl < u, (and omitting the 
" 

subscripts

for clarity). Range velocity and acceleration have been set to zero and ,B - R".

Figure 3.6 shows the magnitude of Equation(3.22) in two dimensions. Range, SARplatform

velocity and wavelength parameters were set to the same values as for Figure 3.4. Figure3.7

shows cross sections of Figure 3.6 along the azimuthal plane. The lines are separated by

azimuthal velocity increments of 0.4 m/s. The defocussing of the scatterer as the azimuthal

speed is increased is clearly visible.

3.6 Non-Uniform PRI

Figure 3 .8 shows the magnitude of Equation (3. 1 3) under similar conditions as the plot of Fig-

ute 3.4, except that the transmission intervals have been displaced from uniform by 2OVo using



3.6. NON-LTNIFORMPRT 63

SAR ambiguity function
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Figure 3.7: The log magnitude of the azimuthal ambiguity function where the reference

target's azimuthal velocity and position are being varied. The curves differ by azimuthal

velocity increments of 0.4 m/s.

SAR ambiguity function
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range velocity (m/s)

10

Figure 3.8: The log magnitude of the azimuthal ambiguity function with a non-uniform pulse

repetition interval. Parameters are the same as for Figure 3.4.

a úniform distribution (Section 2.7 .6).It can clearly be seen that the diagonal position/velocity

ambiguity pattern evident in Figure 3.4 has been destroyed where * + 0 in Equation (3.20).

Figure 3.9 shows the magnitude of Equation (3.13) evaluated along the diagonal lines

described by Equatio n (3.21) in a similar fashion to Figure 3.5. The non-uniform PRI has

clearly made the AF more closely approximate the ideal thumbtack, permitting moving targets'

parameters to be determined unambiguously. (Here, the main lobe occurs when the moving

target parameters correspond to those of the reference stationary target, i.e. Ìì": 0 m/s.) The

effect of the non-uniform PRI on the main lobe has been negligible.

The moving target/stationary target mismatch appears to be a stepwise function; this is

0

500

N
d
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Figure 3.9: The magnitude of the non-uniformtransmission time ambiguity function evaluated
along the diagonal lines shown in Figure 3.4.
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Figure 3.10: The log magnitude of the azimuthal ambiguity function with a non-uniform pulse
repetition interval. Parameters are the same as for Figure 3.6.

similar to Bilinskis and Mikelsons's alias suppression plot (Bilinskis and Mikelsons 1992,

page 86), which shows the level of aliases as a function of the ratio between the signal

frequency and the sampling frequency.

Ideally, if the target's signal were completely defocussed, its energy would be divided

equally among all of the azimuthal cells in a synthetic aperture, ly'. Compared with ideal

focussing, where this energy is concentrated into one cell, this is an energy suppression ^9 of
20logto(lú)dB. For the figures used in this example, -ðy' æ 1300, so s x 62d8.

Figure 3.10 shows the magnitude of Equation (3.13) in a similar fashion ro Figure 3.6, but

with a non-uniform PRI. Figure 3.1 1 shows cross sections of Figure 3.10 in a similar fashion

to Figure 3.7, but with a non-uniform PRI. Because these plots are so similar, it follows that

Irr
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Figure 3. I I : The log magnitude of the azimuthal ambiguity function with a non-uniform pulse

repetition interval. Parameters are the same as for Figure 3.7.

the effects of the transmission times on the azimuthal velocity response is minimal. This is

because the bandwidth occupied by the moving and stationary targets are similar.

3.6.1 The Effect of Two Staggered PRIs

It is instructive to compare the ambiguity function of a SAR with two sampling intervals with

that of a conventional SAR.

For convenience, the AF in Equation (3.15) will be used with s(ú) (Equation (3.16)) written

in the form

s(t) : Dr(¿) "-i2t(4t'ttÞt') 
6(t -t*). (3.23)

It is assumed that the moving target's range is approximately known, so that r(ú; ,R") æ s(t; ,R)

Then, substituting Equation (3.23) and the equivalent r(f) into Equation (3.14), we have

lx'""(rþ,r,ó,ó';{t,})l' : lx'o"(r,e,þ';{t,¡¡¡2 : lDrfr,)r{ 
tn- r)¿-iz^n'*r''"1- 

,.
(3.24)

where

e :Ztþr*ó (3.2s)

can be thought of as a 'frequency' term, being the coefficient of ú,, in the summed exponential.

This term is of primary interest as it is the only one influenced by the range velocity.

For the purpose of this example, other parameters may take on assumed values:

I
t

j

i
,lt
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o the antenna beam is assumed to be uniform, as specified by Equation (3.12)

. r? and y are assumed to be zero, so ó' :0 (Equation (3.18))

o Only the amplitude of the main lobe of the synthetic antenna beam is considered here, so

the AF is evaluated with z : 0.

Equation (3.24) may now be written

)

One PRI For one PR[, ú," : rtt",n : 0,. . ., ¡y' - I (Equation (2.19), neglecting the time

centering on I : 0). 1ú is chosen to be the number of transmissions which occur as the

platform travels the width of the antenna beam's footprint on the ground. Then

lx'tG)l'

^t
lx'.,(t; {t"})l' : ll "-i'"""ln

"-itret 
"(N - t, 

sin(zre¿"//) 
|

sin(z-ef ") |

2

j2trent

,¡rret

")
retsin(

For large I/, this is Xi(e) 
2 æ N26(e - rnlt").

N-l

Ð
n=0

sin(

e

2

2

(3.26)

TWo PRIs Since the sampling order is arbitrary, the times with two intervals may be specified

as two uniform sequences separated by the interval A, thus:

t
2nt", n:0r...rNf2-1,
2(" - Nl2)t, + L n : N12,...,ff - 1,

(assuming .lú is even), where 0 < A 1 2t".Then, skipping some of the working,

N/2-t

D
n=0 "-i4nent" 

a Ð "-i2nel2t"(n-N/2)+A)

n

lxlzþ; Ð]'z :
N-l

n-N/2

2

)

"-iretsN 
("iz"rr" ¡ eiz"r(t"-t))

sln

sin(2reú")

ret"N

2"i ne(2t 
" -t "N-a) cos (zrro) 

##

,,
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Figure 3.12: The normalised SAR azimuthal AF with one PRI plotted against range velocity.

+lcos(,,ea)ffi1'

lú2 lcos(øeA)l'A )
n1,

c--" 2t,

for large Iú.

Of course, the single and two PRI formulations are equivalent if A : f": applying the

trigonometric identity

sin(2d) : Zsin(p) cos(p),

to the denominator of Equatio n (3 .27) allows the coefficient and cosine term to cancel, resulting

in Equation (3.26).

Figure3.l2showsthenormalisedsquarerootof Equation (3.26) asafunctionof range

velocity, using Equations (3.25) and (3.17) to convert between range velocity and e. The range

was 30 km, the radar velocity 70 m/s, the antenna beamwidth 1.15" and the wavelength 3.2 cm.

The effects of aliasing are clearly present, with identical responses at velocities equal to half

a wavelength per sample. This is the same as a horizontal cross section Figure 3.4 with an

azimuth of zero.

Using Equation (3.27), normalised, with A : 0 gives the response shown in Figure 3.13.

The effective sampling rate is now half that of Figure 3.12, so that aliasing occurs at half the

range velocity.

With A - 0.3t", Figure 3.14, it is clear that the aliases shown in Figure 3.12 are being

suppressed at the cost of allowing through some of those in Figure 3.13. The aliases clearly
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Two PRIs: first is 0.00 x nominal
1

Figure 3.13: The normalised AF with superimposed sample times.
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Figure 3.14: The normalised AF with two PRls: the first is 0.3 x the nominal value.

have a cosinusoidal envelope, which is expected from Equation (3.27).

Having more PRls permits these aliases to be suppressed to arbitrarily low levels, as

discussed in Section 2.7.

Optimal L

The interval between the timing staggers, A, may be found to satisfy any criterion of interest.

For example, if it were important to suppress the first alias at e : I f t",the relevant term inside

Equation (3.27) is

cos(n'A/t") : 0.
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Two PRIs: first is 0.50 x nominal
1

69

c)

È
(Ë

0.8

0.6

0.4

9

o.2

5 05
range velocity, m/s

10

Figure 3.15: The normalised AF with two alternating PRIs: the first is 0.5 x the nominal

value.

Then r L,f t" : r 12 * mr, where rn is an integer, so that

L,: t"(m+ll2)

Since 0 < A ( Í", the criterion is satisfied when L, : t"12.A normalised plot corresponding

to this is shown in Figure 3.15. By comparing Figure 3.15 with Figure 3.l2,it is clear that the

odd aliases have been completely suppressed.

The AF with two PRls, switched randomly, is discussed in Section 3.7 '1.

3.7 The Ambiguity Function with Random Sampling

This section considers the expected ambiguity function given a distribution of sampling times,

as opposed to the function obtained for a specific instance of a sampling scheme.

Using Equation (3.13), the expected AF is

E" [x'(R", iì,, ii", u ", ù "i 
R, pr(t), ur,, À) l_l-

n" + f,tr;, -,,)') #]) "äE1[r(ú,)] 
, (328)

"-n|r+lo" - o- o"f*; (
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co

where

r(t") : o,(t; R) a(t^ - a"f uo; R")

1

*¿ (ù"-,;')) ,, *

i (u"* f,t,;" -u,)' *),t]),
p¡(ú) is the joint probability density function (PDF) of the sampling times which are stored in

vector t : ltt,tz,. . . ,tx)T, where 1/ is the number of samples which occur during the time

taken to travel the length of a synthetic aperture and the superscript ? denotes the transpose

operation.

We are normally interested in the square of the ambiguity function, rather than the function

itself, to give a relative power: the phase is of no real interest. It is important to note that here

we are finding the expected response, since it is the response which is exhibited by the radar.

So

".nQ'Tl(""- iþ"

Erlx'(;r.(¿))l : exp(.) t E"["(¿")]
7¿= - OO

oo

exp(') t I. In lr,*(tn) Pr"r,'",r*(tt'tz' ' ' ' 't¡t)7¿= - OO

oo: exp(.) t
fL=-oo

dttdt2... dtN,

r(t) p7.(t) dt,T. (3.2e)

if the sampling time PDFs are independent, and

E lx'(.;pr(¿))l : riexp(') Irrþ)pr(t)dt, (3.30)

if the PDFs are the same.

The expected AF for parameters of interest will now be considered with respect to several

sampling PDFs. The imaging case may be found in Chapter 6.
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3.7.1 Range Velocity/Azimuthal Position

Let -R : 4", Ë" : 0 and y" : 0, so Equation (3.28) becomes a function of the target's range

velocity and azimuthal position:

7T

(3.31)

omitting the 
" 

subscripts for clarity.

Case 1: Uniformly Distributed Times

Suppose that the sampling PDFs are uniform:

pr^(t) : rlT, -T12<t<Tf2,
0, otherwise,

Vn,

where T : R0*lu, is the time taken by the SAR platform to travel the length of the synthetic

aperture, and that the antenna beam is uniform over the length of the aperture, as defined in

Equation (3.12). Then, using Equation (3.30),

E lx'(R,a: R,pr(t),rr, À)]

E, [x'(.R, y; R,ralþ),ro, À)] :

*,(¡'Tl*-#l)
Ð B' 

þr,,1 
a(tn - a tup) *r(¡rT 

lh - ry1,")],

"-,þ,Tl*-#]) # l,'1,_,,, "*P (-',Tlo-ry1,) 0,,

"., (¡,T l* - #)) I L',",',*'' "*, (-,'T lo

0<y1Rï,o,

-ry1,) 0,,

-R0,o 1 y 10,
otherwise,

ñË-Ð",.n(-, +#)""(T lu - ryl [' - ;])'

0

-Rï,o 1y 1 Rï,o,

otherwise.0,

(3.32)
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SAR ambiguity function
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Figure 3.16: The log magnitude of the expected SAR AF; uniformly distributed sampling.
Parameters are the same as for Figure 3.4.

(y's extent is twice that of the target's return to allow for overlap between the target response

and the filter.)

Note that, us ,? -- AuplL,

E lx'(R,y; R,pr(t),r0, À)] - # þrT -y) exp (-,T#) ,

providing a linear amplitude variation with y along the range velocity/azimuthal position

ambiguity line described by Equation (3.20) with rn : 0.

Figure 3.16 shows the normalised, squared magnitude of Equation (3.32) plotted as a

function of azimuthal position and range velocity in a similar manner to Figure 3.4. All but

the central diagonal line has been suppressed by the expectation operation.

Figure 3.17 shows the normalised, squared magnitude Equation (3.32) evaluated along the

lines described by Equation (3.21), similarly to Figure 3.5 (although with a different vertical

axis scale). These plots clearly demonstrate the dramatic alias suppression expected when

uniformly distributed sampling times are used.

Case 2: Uniformly Distributed Offsefs

This section considers using Equation (3.31) with a uniform beam pattern and uniformly

distributed offsets (jitter) as discussed in the non-uniform sampling section (Section 2.7.6), so

that

tn
/ ¡r- r\
(" - t - i )t" 

+ u(o,bt"), n- 1,. ¡r
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Figure 3.17: The magnitude of the expected ambiguity function for uniformly distributed

sampling evaluated along the diagonal lines described by Equation (3.21).

where
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0

I/,(p, ") t
IlQs), !,-s1r1þ*s,
0, otherwise,

for uniformly distributed offsets. Then

pr.(t) : l/(ln- 1 - (N - r)l2lt",bt").

The measurement duration is then slightly greater than that with uniform sampling, since the

PDFs of the extreme samples extend earlier and later than the respective nominal values. Their

mean separation is the same, however.

Then, using Equation (3.29) we have

Et lx'(fi, y; R,pr(t),rr, À)]

: *,(¡'Tl*-#]) +
þ ff|,'i,' "" 

or' - v t up) "-nQ'T lÈ - ry]') o',

where n't : n - I - ! and ø(ú) has been assumed not to change over the interval tnt bt"Vn
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The remaining antenna beam term may be incorporated by changing the summation

E [x'(,R, v; R, n(t),r0, ))]

"-n(¡'Tl* #D # Ð^, I::::""".p (,
2tr

dt

-Rï,o 1y 1 Rq,o,

otherwise,

)
)

0,

where mt: (ylro-f 14lt"andm2:Tl(2t") for0 ( y 1R0* andrnl : -Tl(2t")an¿
rrr,2: (ylrrIT12)lt"for -R0,o < y < 0.

After some arithmetic, this simplifies to

E" lx'(Ä, a; R,n(t),ro, À)]

2tr Ìly
exp J ),'". (rT+t,,- Ð)

(yu, - nn¡ç¡r * t,lup- y))
Àu,
sin( 2r

sin **fu,, - ,?,r) (3.33)

0,

-Rï,o 1y 1 Rï,o,

otherwise,

where sinc(z) ê sin(r)/r.

When å : 0, indicating that there is no randomness to the sampling, the sinc(.) term

becomes I and Equation (3.33) is identical to the uniform sampling case.

'When ó : 0.5, the largest it can sensibly be, Equation (3.33) is identical to the result for

the uniformly distributed times, except for an antenna beamwidth of ur(T f t") rather than

urT. This is due to the extra integration period obtained using the extrat"f 2 terms at the start

and finish of the integration period. (The results are similar since a definite integral results in

the difference between the terms given by the indefinite integral evaluated ai the two limits.
'When such definite integrals are summed, and the upper limit is equal to the lower limit at the

next stage in the summation, the results cancel, resulting in the equivalent of a single definite

integral evaluated at the extremes of the summation.)

Figure 3.18 shows the normalised, squared magnitude of Equation (3.33) plotted as a

function of azimuthal position and range velocity for å : 0.2. All but the central diagonal

line have been partially suppressed. However, the plot clearly shows higher sidelobes than the

example using an instance of random intervals, Figure 3.8.
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SAR ambiguity function
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Figure 3.18: The log magnitude of the expected SAR AF; uniformly distributed offsets of
0.2t". Parameters are the same as for Figure 3.4.

Randomly S witched Staggering

Rather than have arbitrarily valued random PR[, or have PRls change regularly between two

values as discussed in Section 3.6.1, it is also possible to randomly choose which of a set of

values each interval will be.

If we let the probability density function of the transmission intervals be

p(t) : 1

t [6(¿ - o.s¿") + ó(r - l.s¿")] ,

having two possible intervals with a mean interval of ú", and use Equation (2.18), we get the

expected ambiguity function as a function of the range velocity (or the power spectrum of the

sampling process) shown in Figure 3.19.

This maintains the zeroed first alias shown in Figure 3.15, but also reduces the amplitude

of the sidelobes, the randomness in the sampling spreading them over a wide bandwidth. This

is a desirable feature.

(Thus there are several ways in which randomness may enter the sampling process: by

intervals which a¡e random, and by randomly choosing between fixed intervals. With pseudo-

random sampling, the distinction between the two is blurred.)
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randomly switched PRIs
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Figure 3.19: The normalised AF with randomly chosen PRIs.

3.7.2 Azimuthal Velocity

Let R: fi", Æ" : 0, Ã" : 0 and y - 0, so Equation (3.28) becomes a function of the target's

azimuthal velocity:

Erlx'Q; R,pr(t),ro, ))] :

(3.34)

again omitting the , subscripts for clarity

Case 1: Uniformly Distributed Times

Using the assumptions of uniform sampling PDFs and a uniform antenna beam, Equation (3.30)

glves

D B" 
l"'þ-t?) 

exp 
Q*fu' - zù,,lrr)],

i l::,*rQ #lu' - zau,l t') at, (3.3s)

J" "u(å -i#fvz - zi¡u,lT

-i #lY' - zvur)

where the error function

erf(r) a 2

t/"
_r, 

dt

¡t/

T

e

Now, as a function of just ú (with y : 0), the ambiguity function with known times,
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Equation (3.22), becomes

77

(3.36)

x' ({r; R, {t,}, u,, À) :,rî,',1:to, 
ïo 

(t 4*lu' - z'1,,] t'^)

: 
^:Ë; ",*, 

(t au 
lu, - z*,,1,, t1)

for uniform transmissions and a uniform antenna beam. Since this function is being evaluated

at fine intervals compared with the rate of change of the function, Equation (3.36) closely

approximates Equation (3.35). Therefore, randomly distributed sampling gives approximately

the same result as uniform, deterministic sampling. This will now be shown.

The discrete sum is equivalent to a numerical integration using the midpoint rule (Burden

and Faires 1985). The error resulting from the integration of the function /(ú) between ¿ and

ô using this rule with rn * I evaluations is

I (b - ")' ef1r) (3.37)
2m dp'

for some ¡^r between a and b. f (t) has a continuous second derivative overthe interval [ø,å]

and ¡r is chosen to maximise this second derivative (Burden and Faires 1985, page 166).

Here ¿ : -Tl2,b: T12andm: Tlt",wheref" istheminimumpulserepetitioninterval.

/(t) is a real function, so the argument of the integral in Equation (3.35) is separated into real

and imaginary parts, whose errors are calculated independently,viz:

r,þ) :."'(# lv' - ztt,,l*)

and

er7
+ 2)'6(

2r
À,R

.a
a' 2ù,,f(ú) : sin *

Using Equation (3.37) with 7 : ll.Zs, À : O.O32m, r? : 30km, up:1Ùrnls, ú" :

I I lß s and gi : 5 rnls gives relative errors of 0.14 and 0.15 for the real and imaginary parts,

respectively. With y : Zmls, the effors are 0.014 and 0.017, respectively. (There is an error

of zero when y : Q.¡

Had a significant degree of aliasing taken place, the errors would not have been so small.

Non-uniform sampling only makes a significant difference when undersampling is involved. It

is not necessary to consider Equation (3.34) evaluated for Case 2, as the results will be similar

to this.
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3.8 Conclusions

The response of a radar to a moving target is given by its ambiguity function, which incorporates

the target's position and motion parameters. In SAR, moving target information is contained

within the azimuthal signal, whose form is outside the radar designer's control, being a function

of the imaging geometry. The only degree of freedom the designer has is that of choosing the

radar's transmission times.

The original work in this chapter was to derive and investigate an expression for the slow time

AF for a SAR. This was expressed in a form analogous to the Woodward ambiguity function;

its properties are shown in Appendix A. Moving targets were focussed, with consideration

given to unique identifiability,linearity and an equivalence with squint mode targets.

A uniform PRI was used with the function, showing an ambiguity between the range velocity

and azimuthal position. This was suppressed with the use of non-uniform radar transmission

times. The effects of two staggered PRls were also discussed, as was the expected ambiguity

function resulting from a random sampling scheme when the probability density functions

of the transmission times were known. This was investigated for several different sampling

schemes.

It was shown that non-uniform sampling causes the ambiguity function to more closely

approximate the ideal 'thumbtack' shape, allowing moving targets' velocities and positions to

be estimated unambiguously. They may be distinguished from stationary scatterers provided

that their range velocity makes their Doppler centroid sufficiently large in comparison with the

bandwidth of the stationary target, or if their azimuthal velocity causes a sufficient change in

the Doppler rate.
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Moving Target Detection

This chapter formulates synthetic aperture radar (SAR) moving target detection (MTD) as an

optimal detection problem, considering the decision of whether the measurement contains only

the disturbance (clutter and noise), oi a moving target signal in addition to the disturbance'

The effects of a non-uniform pulse repetition interval are discussed in detail.

4.1 Introduction

MTD is a useful function for a long range sensor, assisting with the difficult problem of sifting

those targets of interest from the clutter. In order to do it well it is necessary to accurately

model the structures of the desired signal and the disturbance so it may be decided which of

these best represents the measured data. Based on these models, theory exists which leads to

an optimal decision.

The procedure used in this chapter is taken from the literature (e.g., (McDonough and

'Whalen 1995, Galati and Crescimbeni 1993)); the contributions are to apply it to a SAR with

a non-uniform pulse repetition interval (PRI), present some numerical examples and propose

a clutter cancellation scheme for improving detection performance. A model representing

the radar's received data is discussed in Section 4.2, Section 4.3 covers optimal detection

theory, incorporating the signal-to-disturbance ratio improvementfactor and receiver operating

characteristic, and Section 4.4briefly discusses moving target indication. Section 4.5 proposes

the clutter cancellation method. Appendix B discusses SAR clutter modelling.

79



80

4.2

CHAPTER 4. MOVING TARGET DETECTION

Data Model

This section establishes a model used to represent the data received by the radar.

It is assumed throughout this chapter that range compression has been performed prior

to any moving target detection processing, so the azimuthal data are the sole concern. This

reasonable assumption was discussed in Section3.2.2.

4.2.1 Azimuthal Signal

From Section2.3, the moving target's range-compressed azimuthal signal can be represented

by

s(t) : a(t - y lu) "-i2rf'r(t-v¡"o;n,h',u) (4.1)

where a(f ) is the radar's two-way antenna beam pattern, y is the target's position, uo is the

platform velocity, f" : clÀ is the carrier frequency, c is the velocity of propagation, À is

wavelength, -R is range, -R is the target's range velocity, y is the target's azimuthal velocity and

. '¡/
r(t;h,ù) : ; (n +,Èr +

2R
ù - ,r)2 *

The target's acceleration is assumed to be zero.

The return from a scene incorporating a target and random disturbance may be approximated

by the chirp model

y(t) : p a(t - v f ur) ¿iz"ÍÓ¡F¿"(t-v/u)*F¿,(t-vlu,)')/, + n(t),

(4.2)

(4.3)

where p is an unknown amplitude, / is an unknown phase, Fo" is the Doppler centroid

(Equation (2.11)), Fo, is the Doppler rate (Equation(2.12)) and n(t) represents the disturbance,

modelled as a known, zero mean, stationary, circular, Gaussian noise process (having real and

imaginary parts which are independent and have the same variances). y(l) is sampled at the

times {t¿}, i : I,. .., ¡ú.

4.2.2 Hypotheses

It is assumed that there is a particular position of interest, with a known range Ê and azimuth

y :0, in the scene visible to the radar. The detection problem is to decide whether or not a

moving target of unknown amplitude and velocity is in that position. For convenience, time ú
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is taken to be 0 when the radar is adjacent to the position of interest. In order to detect a target

anywhere in the scene, this procedure is repeated for every position which a target may occupy.

In order to determine the existence of a target, we wish to distinguish between alternative

hypotheses where this vector is either composed purely of the disturbance, defined as the

clutter (the signal received from innumerable scatterers in the scene) plus the noise (used to

represent imperfections in the raclar hardw are, etc.), or the moving targetplus the disturbance.

If the target's amplitude and motion parameters are assumed to be unknown, the alternative

hypotheses may be represented bY

Ho:

Ht;
A : o"t)" * onn disturbance onlY

V - pAa(0 , ö) I o"t). I onÍù moving target and disturbance
(4.4)

where the range-compressed, sampled azimuthal signal for a particular range have been stored

in the vector g. o" \s the amplitude of the normalised clutter vector tr" and ø, is the amplitude

of the noise vector n. The signal's amplitude p scales the two-way antenna response .4

and the signal's structure a(0,ó). This is dependent upon the target's phase parameters

0 : 10t,02,...,lxf'and phase offset S: @Q d))¿ : exp(jzr(S I ïft¿ + ïzt?)). " denotes

the transpose operation.

"(tt)

A
a(t2)

(4.5)

0

0 d(úN)

where ø(t) is the two-way antenna pattern as a function of time, centered on t : 0. {Ú,,}, n -
1,. . .,N, are the radar's transmission times.

Assumptions will now be clarified.

4.2.3 Assumpfions

l. There is only one moving target in the block of data being processed, as discussed in

Section 2.7.1. (Identifying multiple targets is similar to finding the unknown position of

a single target, except that the local peaks of threshold crossings may be used, instead of

the overall maximum of the filtering operations.)

2. Moving target range migration was taken into account when the azimuthal data vector 3l
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was formed.

3. The signal vector tr is scaled such that its energy llr llt : aH a -- N, where the superscript
H denotes the conjugate transpose and 1ú is the number of samples processed.

4. The time series output due to the clutter is wide sense stationary

5. The disturbance has an expected value of zero. This could be assumed, even if it weren't

true, if the estimated expected value of the received signal were subtracted from it prior

to MTD processing.

6. The disturbance has a Doppler centroid of zero. This could be assumed, even if it weren't

true, if the received signal was frequency translated (after using standard clutterlocking

techniques) prior to MTD processing.

7 . a(t), 07, a 
", 

o2, andr¿ are known. (If not, there are techniques for estimating the parameters

of the disturbance, for example (Barbarossa, Marsili and Mungari 1996)t.)

Due to the prior range compression, the target's range is known to within the range resolution

of the radar. This is not accurate to a fraction of a wavelength, being in the order of metres

rather than centimetres, so the signal's constant phase offset is unknown; therefore, during the

process of determining the optimal target detection filter and its performance, it is necessary

to average the detection statistic over the range of possible phase angles (i.e., 0-360"). This

results in an incoherent detection.

4.2.4 Disturbance Modelling

The disturbance is assumed to consist of two terms: ground clutter and white noise. The

covariances from each of these can be summed to form the disturbance covariance matrix.

The disturbance is also assumed to be stationary in the wide sense. The rejection of moving

clutter is discussed by Mao (1993, page 358); in addition, Bühring (1980, page 191) presents

a covariance modelling weather clutter.

The covariance of two complex random variables is defined to be

Cov[X, Y] : E[(X - EtX])(v - Etvl).1 : E[XY-] - EtxlElv.l

lThe emphasis of this work is to identify the theoretical difference in detection performance between uniform
and non-uniform sampling.
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where E['] is the expectation operation and the superscript. denotes the conjugation operation.

The covariance of a random process æ : l*t,ø2¡...,x¡v)T may then be written in matrix

notation as

'c : E[t' -Etæ])(æ - Et'l)ir].

(It is assumed here that E[æ] : 0.) When æ contains uniformly spaced samples of a stationary

random process, the matrix has the form

.(0)

"(-l)

r(,nr - 1)

R

where r(-r): r*(r).

Each disturbance term will now be considered in detail.

SAR ground clutter One approach to determining the covariance corresponding to the return

from uniformly distributed, stationary ground clutter progresses from an expression for

its power spectral density to the covariance matrix, making use of the Wiener-Khinchine

relationship

(R")0,, : * I:G(f)etz*(tr-tùr 
d,f ,

(e.g., (Cooper and McGillem 1986, page 253)) as done by Barbarossa (1992b). This is a

Doppler viewpoint; it uses the motion of the radar.

The normalised two-way azimuthal radiation power pattern from a uniformly illuminated

antenna is given by Equation (2.2) normalised and squared:

F(0) : rin.'("f sin(d)), (4.6)

(4.7)

where 0 is the (assumed small) angle relative to the antenna broadside. (sinc(r) a

sin(r)/r.)

With no SAR-clutter relative motion in the range direction, the Doppler shift of a stationary

target at an angle d is

r 2r,
sin 0,

À

so, for small d, 0 -- 
^f 

lQuo). Substituting this into Equation (4.6), the spectrum of the
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ground clutter is therefore

Gff) : '^c("fir) (4.8)

The inverse Fourier transform of this (in the time lag domain) is

aa[ i@or)'-(aol2 + l],
B¿l-[(B¿r)3+(B¿r)z - 2Bar -t t),
0,

o< I'l l¡I,
fi< l,l!fi,
otherwise

r(r) :

(which is what Barbarossa (1992b, page 82) intended). The clutter bandwidth B¿ :
Zurf D : 2urï,of À, where uo is the platform velocity, d,o is the beamwidth of the antenna

and I is the wavelength (Section2.l.4).

This may be used to form the covariance matrix.

There are many other ways of modelling the clutter, as discussed in Appendix B. However,

Equation (4.8) will be used throughout this thesis since it is a reasonable approximation to

other, established models (see Appendix B). In addition, the emphasis here is comparing

uniform and non-uniform PRI SAR: precise clutter modelling, a field in its own right

(e.9., (Skolnik 1990)), is a secondary consideration.

Simplified ground clutter There are many simplified models which can be used to represent

clutter. These models may be implicitly assumed to be accurate by signal processors

designed to be computationally efficient; assuming autoregressive clutter, for example,

results in a far simpler optimal filter structure than does an accurate clutter model.

Gaussian antenna pattern Barbarossa and Farina (l994,page 356) discuss a more com-

prehensive clutter scenario using a Gaussian antenna radiation pattern. Brennan and

Reed (1968, page 267), Hsiao (1974, page 623) and Mao (1993, page 290) use the

Gaussian simplification also:

Gu): #*r(-#),
where ø" is the bandwidth of the clutter. The clutter Doppler centroid is assumed to

be zero. The corresponding covariance matrix entries are

(I?")n,, - "-2r2o2.(ti-t¡)2
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Autoregressive Another simplified clutter model is that of a first order autoregressive

process (Barbarossa 1992b), where clutter samples are conelated:

u"(nt,) : pu"([n- 1]r") + G,

where t" is the sampling interval, lpl < 1 and (, are samples of a white, Gaussian

noise process: ( - ¡f (O,ot). fne significance of this model is the simple form of

the inverse of its covariance matrix

I -p 0

-p 1+p2 -p

0

R;t: )
0 -p r+p2 -p

0

(4.e)
0

-p llp' -p
0 -p 1

which translates into a simple, three tap, finite impulse response filter. When p : l,

this is a classical moving target indication filter (Shrader and Gregers-Hansen 1990,

page 15.23).

White noise Other unwanted signals, such as thermal noise, analogue to digital converter

qnantising etrors, etc., are modelled as white Gaussian noise with zero mean and variance

o2"'

¡¿^ : o2^I .

4.3 Optimal Detection

The objective of this section is to determine the optimal filters to best distinguish between the

target present/target absent hypotheses, Equation (4.4).

The signal, stored in the vector gl, is passed through a filter bank O to give the outputs

We can specify which filter is to be designed using the vector e¿, which has a 1 in its ith position

and zeros elsewhere (McDonough and Whalen l995,page228). Then the output zi : eT llg.

{ls
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We can let el Q: crr, so that

CHAPTER 4. MOVING TARGET DETECTION

(4.10),:yHa

We now wish to determine the optimal filter c.r.

The most appropriate detection criterion is the Neyman-Pearson criterion, which minimises

the probability of a missed detection given a false alarm constraint. It makes no assumptions

about the prior probability of the presence of a moving target. This optimal detection scheme

is given by the likelihood ratio

L(vlp,e, ó) : p(v; p, ó,0)
p(s;0, ó,0)

n

H1

I
Hs

(4.1 1)

(4.t2)

where p(y;p,þ,0) is the probability density function (PDF) of the measurement g parame-

terised by p, Ó and 0 . The corresponding threshold used by the detector, ry, will be discussed

in Section 4.3.4.

It is assumed that the disturbance is coloured and circular Gaussian (having real and

imaginary parts which are independent and have the same variances), with the PDF

p(r) : #r* ,l -' exp (- (æ - E[ol)H K,-' (, - Etr ] )) ,

where .tf" is a covariance matrix and u is a vector with length /ú (McDonough and Whalen

1995, page 459). (The covariance matrices discussed in Section 4.2.4 thus completely char-

acterise the distribution.) This is representative of many types of clutter, and can arise from a

homogeneous scene where each resolution cell contains a large number of independent scatter-

ers (by the central limit theorem). This model could obviously be improved to represent more

realistic situations; the presence of dominant scatterers may justify the use of the K-distribution,

for example.

It is assumed that the mean of the disturbance is zero, as stated earlier; i.e.,Elo.u 
" 
* onn) -

0.

The conditional PDF of the received data, given that a moving target is present, is then

p(a;p,ó,0) : #1"-'1"*n(-t, - pû(0,ó)l'R-'ls- pa@,Ðl),
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where

n: E[vs')-e¡s]n[vH]

and 6(0,/) is the signal weighted by the two-way antenna pattern: û(0, Ó) : û : Aa(0, þ).

Sincey:pûIo"u.lonrù,

: p'û E' + ol9la.a!) + "'"nlnn"l - p2 û0H, since 6, u" and n. are uncorrelated,

: 
"!n1"""!l + o2*1, where .f is the identity matrix,

: R"+ R-

: o3R¿

isthecovarianceof thedisturbance. Thisisknown, sinceoj,a",o2nandn wereassumed

to be known. R¿ is normalised to have unity down the diagonal, which is justified since the

diagonal has the largest value (Hsiao 1974, page 623). The white noise component therefore

has the effect of reducing the off-diagonal elements.

The logarithm of the likelihood ratio (Equation (4.1 I )) can be rearranged to give

-Íy - pû(0, ó))' R-,ly - pû(0, ó)l + uH P¿-tu ln ?,

or
Ht

pûHR-rn + py'Pc-tû - p'ûHR-tû I lnl¡

Hs

Since R' is Hermitian (it is its own conjugate transpose), gH Pt-t ô : ( ûH Pc-tg)*, so

H1

Hs

where ft{.} returns the real part of the argument. Therefore, the optimal hypothesis test for

coherent detection can be written

Ht

I
Ho

zpft{uH n-t o} p2 ûH rc-t û ln ?, (4.13)

H1

I
Hs

n{u"n-'o} *t"' + la* n-'a (4.t4)
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Since the phase of the target (1.e., its minimum range to a fraction of a half-wavelength) is

unknown, the likelihood ratio has to be altered. û(0, ó) can be written as ûs(O)ei2"d lcalati
and Crescimbeni 1993, page 4l). Then, from Equation (4.13),

zpü,{aH R-r 6o"izró} - p2 a{ rt-t ao

H1

ì
Hs

ln?

since uH R-t as : lu, Ft-t ûolet., ffi{gHn-r ûoei2"ó} : la* fc-t 0slcos(a -t 2rþ). The

likelihood ratio can then be averaged over the unknown / to give the optimal Bayes test (Galati

and Crescimbeni 1993, page 41)

L(slp.,0) : EolL(ulp,0, ó)l

e-e'ûl R-t ,, 
Iot "*p(¡zplyr*-t ,ol cos(a + znfi) d6

e-e,ûl R-t 
" h(zrlnr*-'rol) ,

where
a-I

2"
exp(r cos(B)) dB

is the modified Bessel function of the first kind and order zero

The hypothesis test (Equation (4.1 1)) therefore reduces to

lu'n-'atÐl : lz(o)l

:xIo( ) I,

H1

I
Hs

I,¡ (4.ts)

(writing 0 instead of Û6 without loss of generality). The left hand side of this equation is the

sufficient statistic.

This is an incoherent envelope detector; it requires about 0.5 dB greater signal to distur-

bance ratio for equivalent detection and false alarm probabilities to the coherent detector,

Equation (4.14) (Mao 1993 , page 43).

Recognising that Equation (4.l5) is in the fbrm of Equation (4.10), the optimal filter weights

are therefore

u(0) : P¿-t û(0). (4.16)

This is the Wiener-Hopf equation (e.g., (Kay 1993)).
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Equation (4.15) may be evaluated for all plausible combinations of the parameters 0, each

time comparing the result with the threshold. If the threshold is exceeded, indicating the

presence of a moving target, the corresponding filter parameters provide an estimate of the

parameters of the moving target. It will be shown in the numerical examples below that a target

in a given position may give rise to thresholds being exceeded for widely varying parameters,

reflecting the ambiguity resulting from subsampling effects. In addition, it was shown in

Section 3.5.1 that SAR targets exhibit range velocitylazimuthal position ambiguities, so that

multiple detections at different speeds in adjacent azimuthal cells may be caused by the same

target.

When searching the parameter space d it is practical to perform a coarse resolution estimate,

and then a fine resolution estimate, as discussed by Barbarossa (1992b). Practical considera-

tions for both moving target detection and parameter estimation are made in Section 5.7.

The matrix multiplication in Equation (4.15) may be computationally expensive; Bühring

describes a simplification which results in vast computational savings by decomposing the

clutter covariance matrix into smaller, triangular matrices (Bühring 1980, page 190).

If the clutter were modelled as white noise, so that R: o3I, Equation (4.15) would be

a classical matched filtering operation, corresponding to the ambiguity function derived in

Chapter 3. In the uniform sampling case, this operation could be performed efficiently using

fast Fourier transforms.

Examples of optimal filters for a uniform PRI with differing values of clutter-to-noise ratio

(CNR), 
"?1"'., 

are given in (Barbarossa 1992b, page 83).

4.3.1 Numerical Examples

Table 4.1 shows the parameters used for the following examples. The moving target was

modelled using

(60); : ei2Î(Fdct'+Fdrt?/2) Ø,1)

(see Equation (4.3)). The frequency domain clutter model, Equation (4.8), was a very good

approximation to the time domain model discussed in Appendix B, Equation (B.2), since only

64 samples were processed (compared with more than 1000 for a full aperture) - the variation

in ú¿ was very small.

Figure 4.1 shows the normalised spectra corresponding to the disturbance (dash-dotted),

a moving target's signal (dashed) and the optimal moving target detection filter (solid) as
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Parameter Value(s) Comments
range
platform velocity
wavelength
antenna beamwidth
Doppler bandwidth
mean PRF

target amplitude
clutter model
antenna beam pattern
clutter to noise ratio
number of samples

processed

sampling scheme

moving target velocity

30000m
70mls (140kÐ

3.2cm (X-band)
1.50

ll5Hz
8 x l15Hzor

ll5Hz
assumed constant
coloured Gaussian
assumed constant

40dB
64

uniform, or
random intervals

il. : -3.67 mts (z3o:Hz),

Ú :Om/s

(derived)

since only a small aperture
as per Equation (4.8)

Range velocity
is of interest.

Table 4.1: Parameters used for the moving target detection examples. These are similar to those
used for the parameter estimation examples (Table 5.1) and the imaging examples (Table 6.1).

determined by Equation (4.16). The pulse repetition frequency (PRF) was eight times thar of
the I l5 Hz Doppler bandwidth. The moving target's range velocity of -3.67 m/s corresponds

to a Doppler centroid of twice the Doppler bandwidth. The optimal filter's spectrum peaks

when there are nulls in the disturbance spectrum and vice versa, while being weighted by the

spectrum of the moving target's signal. (Note that the spectrum of a matched filter is identical

to that of the moving target, ignoring the spectral characteristics of the noise.)

The effects of aliasing are clear: the single target gives rise to identical responses at frequen-

cies other than the target's true Doppler frequency. As discussed in previous chapters, these

may be attenuated with a non-uniform PRI. Figure 4.2 shows the same situation as Figure 4.1,

but uses an instance of transmission intervals which have been varied from uniform by up to

207o according to a uniform distribution (Section 23.6). (The least squares spectral estimator

was used for generating the plot (Section2.7 .5).) The alias has clearly been suppressed, leading

to an enhanced ability to distinguish the target from the disturbance.

Figure 4.3 shows a similar situation to Figure 4.1 but with a PRF which is equal to the

Doppler bandwidth. Due to the clutter spectrum aliasing, the disturbance approximates white

noise (within several decibels) and so has less effect on the optimal filter's spectrum, which

therefore more closely resembles the moving target's spectrum.
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Figure 4.1: Unwindowed spectra of the disturbance (dash-dotted), moving target (dashed) and

the corresponding optimal filter (solid) with a PRF of eight times the Doppler bandwidth. The

nulls in the signal's spectrum have been suppressed for clarity.
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Figure 4.2: Unwindowed spectra of the disturbance (dash-dotted), moving target (dashed) and

the corresponding optimal filter (solid) with non-uniform sampling intervals; the PRF averages

eight times the Doppler bandwidth.
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Normalised Spectra
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Figure 4.3: Unwindowed spectra of the disturbance (dash-dotted), moving target (dashed) and
the corresponding optimal filter (solid) with a PRF equal to the Doppler bandwidth.
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Figure 4.4: Unwindowed spectra of the disturbance (dash-dotted), moving target fdashed) and
the corresponding optimal filter (solid) with non-uniformsampling intervals; the PRF averages
the Doppler bandwidth.

Figure 4.4 shows a similar situation to Figure 4.3 but with a non-uniform PRI. Aliases have

clearly been suppressed, albeit by only a few decibels at frequencies near the true value. (A

transmission deviation of more than 20Vo from uniform results in greater suppression.) This

result has been achieved at the cost of the raised noise floor, which will reduce the detection

performance, particularly in situations of low signal to disturbance ratio. (See Section 4.3.4.)

ll
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4.3.2 Alternative Optimality Criterion

As an alternative to the Neyman-Pearson detection criterion, we can consider maximising the

ratio of the signal power to the disturbance power at the output of the moving target detection

filter.

For a target with parameters 0 and no disturbance, the output (signal) power is

P,(0) : El'Q)'l

: orlo+ çe¡rl' ,
(4.18)

using Equations (4.10) and (4.4).

When there is a disturbance and no target, the output (disturbance) power is

P¿Q) : uH Ru

(Brennan and Reed 1968).

Maximising the output signal to disturbance ratio is equivalent to minimising the output

disturbance power for a given output signal power. We can form the sum P¿(0) + lP"(d),

where I is aLagrange multiplier, and differentiate with respect to each weight c.r¡ (McDonough

and V/halen 1995, page 228). As with the Neyman-Pearson criterion, this procedure gives

Equation (4.16) as the optimal weights.

4.3.3 Signal-to-Disturbance Ratio Improvement

The signal-to-disturbance ratio improvement, a useful figure of merit for a moving target

detection filter, is the signal-to-disturbance power ratio (SDR) at the output of the MTD filter

divided by the signal-to-disturbance ratio at the input to the filter. It allows for both clutter

attenuation and signal gain. This is

p2 aH p¡,12 -l
I,o,(0)

p2

oloj usH R¿u

la'çe¡'l'
usH R¿u

(4.1e)

(Shrader and Gregers-Hansen 1990, page 15.20), (Staudaher 1990), (Brennan and Reed 1968).

It is analogous to array gain, a beamforming figure of merit given by the ratio of the phased
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¿uray's signal-to-noise ratio and the signal-to-noise ratio of an individual sensor (Johnson and

Dudgeon 1993, page 138).

For an optimal filter, c,.r(d) : .R,-16(0), so that

I,d,(o) : ûH Q)Ii.dt û@) (4.20)

For a matched filter (which ignores the disturbance covariance, implicitly assuming the

clutter is white), u(0) : û(d). Then

I,o,(0)
ûH @)û@)

(0)Rû(0)

)

a

(4.2t)

I,¿, mã! also be interpreted as the gain in signal-to-disturbance power ratio obtained by

filtering, and is given by

lP"l(P" * &)1,,,

: N'? (aH çe¡,ao(o))-'

lP"le" * P")1,"

P" oø (P" * Pn),^

P" * (P.l P,.)ou,

signal gain x clutter attenuation,

Ir¿, :

taking into account the statistical independence between noise and clutter (Barbarossa I992b,

page 84). P" is the signal power, P" is the clutter power and Pn is the thermal noise power.

The maximum signal gain is given by the coherent integration of I/ samples, l0log,o(,V) dB.

The maximum clutter attenuation is the input CNR (which is shown in (Barbarossa and Farina

1994, page 348), and commonly expressed in decibels). Adding these gives the best 1"¿,

(Barbarossa 1992b).

Numerical Examples

Figure 4.5 shows the signal-to-disturbance ratio improvement for the example in Figure 4.1.

(The parameters are shown in Table 4.1.) Figure 4.5(a) shows the case where the optimal filter

for a Doppler centroid of 230 Hz is used and the actual target Doppler changes over the range

indicated on the horizontal axis. (The Doppler centroid, f'¿", was used in the model shown in

Equation (4.17).) Clearly there is a sharp peak when the target's Doppler is the same as that

of the filter, or has offsets at multiples of the sample rate. This peak is almost the ideal 40 dB,
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Isdr, fixed hlter, different targets
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filter and changing target Doppler.
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(b) 1,¿, for changing filter and target. Solid: opti-
mal filter; dashed: suboptimal ; dotted: matched.
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Figure 4.5: The signal to disturbance ratio improvement for a SAR with a PRF eight times the

Doppler bandwidth.

the CNR, indicating that the filter is suppressing the clutter extremely well.

This plot is actually the ambiguity function, and would give the same results as the expression

derived in Chapter 3 (Figure 3.13) if the CNR were small.

Figure 4.5(b) shows the I,¿, as the signal and filter are changed together, for three different

types of filter. (The parameters of the signal and filter are matched, including their Doppler

centroid.) The solid line shows the optimal filter, described by Equation (4.20). The dotted line

shows the output resulting from a matched filter, i.e. Equation (4.21), which has a significantly

worse performance due to the non-white nature of the disturbance. Between these is a dashed

line corresponding to a suboptimal filter which uses the inverse covariance of an autoregressive

process, Equation (4.9). Clearly this simple three tap filter structure, as used by classical moving

target indication filters, achieves a performance within a few decibels of the optimal filter when

the actual noise is coloured and Gaussian.

The common local minimum at a Doppler centroid of t8 times the Doppler bandwidth

indicates that the filters cannot distinguish the signal from the clutter at this frequency. This is

a result of aliasing.

Figure 4.6 shows similar results to Figure 4.5, but for non-uniform sampling. This cor-

responds to the situation of Figure 4.2. The ambiguity function now shows some ability to

suppress the alias, and the /"r. is vastly improved where the Doppler centroid is 8 times the

Doppler bandwidth, showing the ability to successfully distinguish the aliased signal from the
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Figure 4.6: The signal to disturbance ratio improvement for a SAR with a non-uniform PR[;
the PRF averages eight times the Doppler bandwidth.
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Figure 4.7: The signal to disturbance ratio improvement for a SAR with a PRF equal to the
Doppler bandwidth.

disturbance.

Figure 4.7 is similar again, and corresponds to Figure 4.3. Aliasing is the major problem

with such a low, uniform PRF. The similarity between the plots in Figure 4.7(b) show that

there is a negligible difference in performance between the filters, a result of the disturbance

spectrum being smoothed by aliasing effects.

The 1,¿, for a non-uniform PRI and low average PftF, corresponding to Figure 4.4,is shown

in Figure 4.8. The aliasing phenomena have been overcome. Again, the small difference
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Figure 4.8: The signal to disturbance ratio improvement for a SAR with a non-uniform PR[;

the PRF averages the Doppler bandwidth.

between the performance of the filters justifies the use of the matched filter, as explicitly

modelled by the ambiguity function in Chapter 3 (Equation (3.13)).

4.3.4 Receiver Operating Characteristic

The receiver operating characteristic is the relationship between the probability of detection

of a moving target, the signal to disturbance ratio (SDR) and the probability of a false alarm,

Pr. lt requires the specification of the detection threshold 7, which is chosen to satisfy a false

alarm constraint, as discussed previously.

Since we are also interested in the effects of the sample times {t¿} and the moving target

parameters 0 , we wish to find the characteristic as a function of these parameters also:

Po : ROC(SDR, Pp, {t;},0) (4.22)

This is found using the probability density function of the sufficient statistic, Equation (4.15),

which is ( : lt@)l maximised by the use of an appropriate 0.

Since z : yH a has the complex Gaussian PDF

z - cú¡¡(u","?) : crf¡'t (n[u"].", uH P"u), (4.23)

('s PDF is Rayleigh (or chi with two degrees of freedom) with no target and Rician (or



98

non-central chi) when a target is present2:
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Pç¡a,(() :

Pçp,(O:

r('
2"?

Rayleigh;

Rician
2

exp

exp

(--

(
-o;

r(+p,? ( tt"
olol

In order to determine the threshold 7 to distinguish between the hypotheses using Equa-

tion (4.15), we need to specify a false alarm probability P¡. This can be done since the

sufficient statistic (Equation (4.15)) does not depend upon the unknown signal magnitude p.

P¡, being the probability that the processed signal's amplitude lies above 7 when no target is

present, is given by

T,*
Pp

1

nçs,(o de

lo' nç¡r,(Ò d'e

Therefore, the threshold is given by

'l -2oltn(Pp)

-ZuH Ru ln(P¡). (4.24)

Similarly, the detection probability is the probability that the processed signal's amplitude

lies above the threshold when a target is known to be present:

oo

nÇn,(() d(.

2For two independent Gaussian random variables x : N(p,oz) andy : N(0,a2), the pDF or z -
JxrTT, is Rician:

rz(,) = 3"*,(-;t#) n(fr) "ra,
where the step function u(z) guarantees that the expression is zero for z 1 0 (Stark and Vy'oods 1986, pages 94-
95). In the application of interest, X andY are to represent the real and imaginary parts of the complex value z
whose magnitude is to be found.
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This may be written in a form approaching that of Equation (4'22):

Pn: Q(lt"lo",^llo"),

p' (ûH r)'
4uH RdJ'r'

99

-2rn(Pp) since ¡.r,lä1: pû

I 
"a, -2tn(Pp)

using Equation (4.19). p2l"'¿ is the signal to disturbance ratio and 8(') is the Marcum-Q

function

e(o, Ð L I*, ".0 (- åt 
u' + ,'l) rs(au) d,u,

which is I minus the distribution function of a Rician distributed variable.

The greatest probability of detection P¡r is achieved with the largest SDR, which requires

the coherent processing of as many samples as possible (or as large a signal as possible). While

the use of the whole synthetic aperture may attempt to do this, it is important to realise that the

target may not be coherent (i.e., moving in a predictable fashion to a fraction of a wavelength),

resulting in a poorer performance than anticipated.

Optimal Processing

With optimal processin E, a"pr(O) : .F|-r0(0) so o\opt : ûH Q)P,-t 0(0) and the decision

threshold

'Yopt: -2ûH Q) P¿-t A @) ln(Pp,o¿).

Note that this is dependent upon the local covariance as well as the parameters being searched

Matched Filtering

Using matched filter processing, the clutter covariance is ignored, giving u(0) : ô(d). Then

02^¡ : sH (qP.û(g) and the decision threshold

p2
-_;
oã

: t(

: t(

for.

1^J : -2ûH @)Ro(0)ln(P¡,0,)
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Variable Parameter of interest Approx. value per square kilometre
# range cells
# azimuthal cells
# possible target -R

# possible target A

signal bandwidth
integration time
Doppler centroid
Doppler rate

300
300

20
20

Table 4.2: The number of values which may be assumed by the various parameters for a square
kilometre

F aI se Al arm P r ob ab i lity

It is necessary to determine a reasonable value for the false alarm probability, P¡, so ân

appropriate detection threshold may be determined using Equation (4.24).

Suppose we allow one false alarm per square kilometre. Table 4.2 shows the number of
values each parameter of interest may assume. Since they are independent, their product gives

the total number of filtering operations required: about 3.6 x lO7 . This gives a Pp of roughly

3 x 10-8 per filtering operation.

Numerical Examples

Figure 4.9 shows the receiver operating characteristic of a SAR with the parameters listed in

Table 4.1, the PRF being eight times the Doppler bandwidth. An optimal filter was used. Both

uniform and non-uniform sampling cases ¿ìre shown, the latter with random intervals deviated

2O7o fromthe nominal PRI. The uniform case outperforms the non-uniformby about 1dB.

Figure 4.10 is similar, but for a mean PRF which is equal to the Doppler bandwidth. The

performance is far worse than in Figure 4.9, which results from the spectral density of the

disturbance: a high average PRF is able to utilise the fact that the signal and disturbance

spectra do not overlap.

Due to this overlapping with a low mean PRF, a result of subsampling, the discrimination

offered by non-uniform sampling gives it a superior detection performance to that of uniform

sampling.

Using a matched filter rather than an optimal filter gives results shown in Figure 4.11. The

performance of the uniformly sampled system is almost indistinguishable from that using an

optimal filter; the non-uniform case is worse by about 0.6 dB.

Having such a low average PRF for moving target detection clearly comes at a high price.

The difference in SDR to achieve a comparable detection performance to a scheme with eight

times the PRF is approximately 40 dB. This is a result of the clutter being coloured: the target

and clutter spectra do not overlap in the high PRF case, allowing the filter to better distinguish
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Figure 4.9: Receiver operating characteristics for the optimal filter detecting a target with a

Doppler frequency of -23OH4 using a mean PRF of eight times the Dopplerbandwidth. Solid

line, uniform transmissions; dashed, non-uniform'
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Figure 4.10: Receiver operating characteristics for the optimal filter detecting a target with a

Doppler frequency of -23OHz, using a mean PRF equal to the Doppler bandwidth. Solid line,

uniform transmissions; dashed, non-uniform.
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Figure 4.1 l: Receiver operating characteristic curve of a matched filter detecting a target with
a Doppler frequency of -230Hz using a mean PRF equal to the Doppler bandwidth. Solid
line, uniform transmissions; dashed, non-uniform.

the two.

If a low PRF is to be used, however, it is clear that a non-uniform scheme is preferable to

uniform transmissions since it resolves ambiguities and has a superior detection performance,

even when the processor ¿rssumes that the coloured clutter is white.

4.4 Moving Target Indication

The objective of moving target indication (MTI) is to determine the existence of a moving

target with a single filter rather than use a bank of filters, as required by optimal moving target

detection. Since the signal and clutter spectra overlap, there will be a corresponding loss in

sensitivity.

A useful criterion to measure the performance of an MTI system is the average SDR

improvemert 1,¿., given bY I,¿, averaged over the parameters of interest (based on (Mao 1993,

page 348)).

The preferable test variable for finding the optimal weights, an average of the likelihood

ratio over the a priori distributions of the unknown parameters 0, appears to be intractable with

-20 5
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non-uniform samples (Brennan and Reed 1968). However, there is an altemative (Brennan

and Reed 1968, page 267):

Averaging Equation (4.18) over the uniform a priori distribution of parameters d, where

for example the target Doppler centroid is assumed to be between 01 and oz, where3

(or- or)(ú,+r -t") < I Vn (4.2s)

glves

P" uH u.

Using a Lagrange multiplier, the output disturbance power is minimised for a given P" whe¡

P¿ - ÀP" : eH (R - Àr)u:,

where -f is the identity matrix. Setting the derivatives of this to zero with respect to the elements

of ar gives (Johnson and Dudgeon 1993, page 501), (D'Assumpcao and Gray 1995, page 17)

(R- ÀI)u : O (4.26)

i.e.,lR - À/l : 0. The average MTI gain is then
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æ^,

The smallest eigenvalue gives the largest MTI gain; the corresponding weights are given by

Equation (4.26).

Hsiao (1914) shows that for reasonable clutter rejection with a single filter, the PRF must

be much greater than the clutter bandwidth, even when using non-uniform PRIs. This agrees

with Bilinskis and Mikelsons (lgg2, pages 293-303) and is implied by the assumption of

Equation (4.25). (See Section 2.7.5.) This means that a SAR with an average PRF equal to

the clutter bandwidth cannot perform MTI, unless there is a short burst at a high PRF: Hsiao

(lg74,Figure 3) shows that even a 10 pulse MTI filter is capable of useful clutter suppression.

3This inequality was inverted in the publication
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4.5 ClutterCancellation

In order to improve moving target detection performance, it is desirable to subtract the dis-

turbance from the measured data prior to MTD processing. This requires an estimate of the

disturbance which has not been comrpted by the moving target signal.

Freedman, Bose and Steinberg ( 1996) and Kesteven ( 1997) discuss an appropriate technique

for spurious sidelobe reduction called CLEAN. This involves thresholding the ground image

to estimate the positions and intensities of bright scatterers. The measurement required to

generate these images is then calculated (since it may be accurately predicted) and subtracted

from the data. This lowers the noise floor, permitting other scatterers to be cancelled. The

iterative procedure is stopped when a criterion is met. The resulting data may then be used to

find moving targets. The technique assumes a sparse distribution of bright scatterers, which is

in accordance with the assumptions in this thesis.

Another method is now proposed.

If the available average PRF were twice that of the minimum, staggered PRI data could

be collected at the same time as conventional SAR data by interleaving the transmissions as

appropriate, maintaining a minimum PRI. This allows two independent ground images to be

formed: one from each set of data. Incoherent subtraction of the two reveals the moving

targets, which appear only in the conventional image, and whose positions and velocities may

be found by processing the staggered PRI data. Since azimuthal motion causes defocussing,

it may be necessary to perform this process with a range of Doppler rates. This technique

could be applied to superior ground map generation: the higher quality conventional image

(see Chapter 6) may have the defocussed moving targets removed.

Since the technique requires twice the volume of data as a conventional radar, it is reasonable

to compare it with two antenna MTD techniques, such as a displaced phase centre antenna

(Section 2.5). This is able to detect slowly moving targets, with spectra overlapping that of the

ground clutter, although at the expense of a greater volume of ha¡dware (requiring two, well

aligned antennas and an additional receiver).

An example of the proposed clutter cancellation technique is shown in Section 7.4.
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4.6 Practical Considerations

Theoretically, for a target with arbitrary velocity parameters occurring anywhere in the scene,

Equation (4.15) needs to be evaluated at all combinations of parameters in order to achieve

optimal detection performance. This is impractical, so coarse estimates need to be made, at

least as a first approximation.

When moving target velocities and positions are being found coarsely, the spacing of

filtering evaluations is given by the variations of 0 which produce a reduction in the response

of the MTD filter's main lobe by several decibels. An example of such a filter is shown in

Figure 4.5.

If the spacing between the parameters used for the evaluations are sufficiently small, no finer

estimates need to be found and the coarse spacing then gives the resolution of the estimate.

This was discussed by Barbarossa (1992b): when considering the frequency and frequency

rate parameters, the frequency resolution óo is inversely proportional to the integration time

f @) and the rate 6 B is inversely proportional to T (R)2. If the expected possible ranges of o

and B a¡e Ao and AB respectively, the total number of filters is given by

6a 6B'

where óa : 0.88/? and 60 : l.8lT' for a 3 dB resolution.

Note that the smallest interval between the parameter values specifying a stationary target

and those for the closest coarse evaluation specify the smallest velocity at which a moving

target can travel and still be detected. This point is well illustrated by the main lobes of

Figures 3.9 and 3.10 representing a stationary target.

There is no obvious limit on the maximum speed with which a target may travel and still

be detected or have its parameters estimated (provided it has a sufficiently large radar cross

section and is seen by the radar several times). It is necessary, though, for the processor to

perform the required assembling of data according to the expected range migration.

The maximum unambiguous target speed depends upon the resolution of the sample time

generator: if samples are pseudorandom (Section 2.7.4), the maximum unambiguous Doppler

corresponds to half the frequency of the reference clock. With arbitrarily positioned random

times, however, all detectable targets may have unambiguous parameter estimates.

In practice, there is a significant difference (low correlation) between the return from a

stationary target and the return from a target with a large Doppler. This is because the linear

L,a L,B
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azimuthal chirp approximation becomes invalid. Therefore, it may only be necessary for the

pseudorandom sampling to exhibit unambiguous spectra out to (say) ten times the Doppler

bandwidth of the ground.

The practical considerations mentioned in this section also apply to the parameter estimation

problem (Chapter 5).

4.7 Conclusions

This chapter applied optimal detection theory to investigate the effects of a non-uniform PRI

on the moving target detection performance of a ground imaging SAR. It derived the optimal

filter for an unknown phase using both Neyman-Pearson and maximum signal to disturbance

power ratio criteria. The chapter also derived the signal to disturbance ratio improvement

and the receiver operating characteristic. It was shown that a non-uniform PRI has a superior

performance to a uniform PRI SAR with the same average pulse repetition frequency. It was

also shown that a higher average PRF gives much better results, which may be attributed to the

optimal detector utilising the non-white structure of the clutter. Some consideration was given

to moving target indication. The proposed clutter cancellation method improves detection

performance at the price of a higher average PRF.
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Moving Târget Parameter Estimation

This chapter investigates the estimation of the parameters of a moving target using azimuthal

synthetic aperture radar (SAR) data sampled at arbitrary times. It discusses the literature, both

optimal and practical estimation techniques, estimator bias and the Cramér-Rao lower variance

bounds. These bounds are derived for both deterministic and random sampling times and are

verified by simulation.

5.L Introduction

Once a moving target is known to be present in the radar scene, its position and velocity can

be estimated. The moving target's signal may be modelled as a sampled exponential with a

slowly varying amplitude and complex, polynomial phase (Section 2.3). The contributions

of this chapter are to investigate the problem of estimating the target's unknown parameters

for arbitrary, but fixed, radar transmission times by taking an optimal (maximum likelihood)

approach and finding the theoretical lower bounds on the variance of the estimates. The

variance bounds are also found for a variety of random transmission schemes, and it is shown

that the attainable polynomial phase coefficient estimation accuracy with a random pulse

repetition interval approaches that of a uniform interval as the number of processed samples

is increased, even though the former overcomes the range velocity ambiguities inherent in the

latter.

Whilst many other authors have found the Cramér-Rao lower bounds for various cir-

cumstances, I know of none who model a polynomial phase signal in coloured noise with

non-uniform sampling times, and none who consider different probability density functions for

various sampling schemes. I also know of none who relate the results to the actual unknown

ro7
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pÍuameters in a SAR moving target scenario (Section 5.8).

Section 5.3 discusses polynomial phase estimation methods covered in the literature, Sec-

tion 5.2 defines the model of the radar's data and Section 5.4 derives the maximum likelihood

(ML) estimator for the unknown parameters, including its bias and lower variance bounds for

arbitrary transmission times. Section 5.5 discusses the variance bounds for random samples

with known distributions. Several examples are given. Simulations verify the analytical results

in Section 5.6 and practical considerations are given in Section 5.7. Section 5.8 relates the

parameter estimation model to the actual SAR parameters and shows several numerical exam-

ples. Section 5.9 concludes. Appendices C and D derive lower variance bounds for a biased

estimator and the Fisher information matrix for a complex G¿ussian scenario respectively.

5.2 Signal Model

The model to be used to represent the signal in this chapter is similar to that used for moving

target detection in Chapter 4. The moving target's range compressed azimuthal signal can be

represented by Equations (4.1) and (4.2). The return from a scene incorporating a target and

random disturbance may be approximated by

y(t) : pa(t - u) ei2"lö+etþ-ur)+02(t-u)2+...+0x(t-.)ol ¡ n(t),

where p is an unknown amplitude, ø(ú) is the radar's two-way antenna beam pattern, tr.r is

the time the target is centred in the antenna beam, / and {îx},,k - 1,. ..,1{, are unknown

polynomial phase coefficients and rz(ú) represents the disturbance, modelled as a known, zero

mean, stationary, circular, Gaussian noise process (having real and imaginary parts which are

independent and have the same variances). Ncte that the unknown signal model parameters

are non-random, and that there is a relationship between ø(t) and n(ú) (Section a.2.9. y(t)

is sampled at the times {ú;}, i : 1,. . ., ¡y'. The use of the polynomial phase makes this

formulation more general than that used in Chapter 4.

The target's slant range is assumed to be known to within the range resolution of the radar

due to the prior range compression. A justification for using range compressed data when

estimating the parameters of moving targets was given in section 3.2.2.

Figure 5.1 shows a representation of the parameters to be estimated. For n¿urow antenna

beam, it is reasonable to restrict I{ : 2, so that the instantaneous frequency is a straight line

(indicated by the dashed line). It is then clear that the estimation accuracy of the unknown
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Figure 5.1: A representation of the model and its unknown parameters.

time u.r depends primarily upon the shape of the antenna beam pattern. Since ø(f) is a slowly

varying function, it follows that u; cannot be found very accurately; consequently, the Doppler

centroid d1 and hence range velocity ,R of the moving target (via Equation (2.1l)) cannot be

found accurately either.

Alternatively, if a(f ) had a narrow peak, tu could be found accurately; however, that would

mean that the signal to noise ratio away from time ur would be poor, degrading the quality

of the phase parameter estimations. This is the classical time-frequency estimation problem:

accuracy in one dimension is at the expense of degraded accuracy in the other.

In SAR ground imaging, it is normal to assume that ø(t) is uniform. Although there

is insufficient information to determine the t¿ corresponding to a specific target under these

time

w
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circumstances, it is quite practical to find the amplitude of a target with an assumed tu,

corresponding to a scatterer's azimuthal position.

It is possible in the moving target problem to assume that t¿ is known to be zero (say), which

is often done for analytical convenience, reducing the problem to one of polynomial phase

parameter estimation, e.9., (Ikram et al. 1996). This corresponds to a scenario where a target

is assumed to be travelling on a road which is located accurately in the azimuthal dimension.

With u known, the target's range velocity may be found very accurately (Section 5.8.1). (It

may be thought that the w : 0 assumption is valid in any case, since the target's parameters

are estimated following its detection, and t.r,r was estimated then. However, that process was

not performed without error, so the argument is invalid.) The target's azimuthal position is

assumed to be unknown at this stage, although it will be assumed to be known later in this

chapter.

The sampled signal can be represented by

y(t) : p¿i2"Ó A(t - wt)as(O,t - wt) * n.

(Boldface indicates vectors or matrices.)

a(tt)

A(t) : a(t2)

0 a(tN)

(as definedinEquation (4.5)), t : ltt,tz.,. . .,t¡v)r and L : [1, 1,. . ., l]" wherethe superscript

T denotes the transpose operation. The signal

(oo(0,ú)), : 
"i2t(0fi;to2tl+"'+eaf¡

with 0 :10t,02,...,0x1r. The disturbance vector

N CA|N(0, R)

0

n

#F-'l "*p(-¡" - Etærl'n-'[" - Et']l)

n : ElnrrH] is the noise covariance matrix, the superscript H denoting the Hermitian

conjugate-transpose operator. E['] denotes the expectation operator.
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For convenience, the unknowns are stored in the vector u : [p,., ó,07]T . It is assumed

that the number of measurements 1ú exceeds the number of unknowns.

5.3 Existing Work

This complex signal parameter estimation problem is well known; some practical techniques

are

Discrete polynomial transform Peleg and Porat (199lb) introduced the continuous and dis-

crete polynomial transforms, which are powerful, computationally efficient tools for esti-

mating the parameters of signals with polynomial phases, including the order. Estimation

accuracy is considered in (Peleg and Porat l99la). Later papers extend the algorithm

to allow for a time varying amplitude and multiple component signals (Friedlander and

Francos 1995). O'Shea (1996) extended the algorithm to allow for low signal to noise

ratios.

Interpolation Dowski, Whitmore and Avery (1983) estimate the parameters of real sinusoids

sampled at arbitrary times by first interpolating to find the values which would have been

obtained using uniform sampling times (using singular value decomposition). Principle

component autoregressive modelling is applied to identify the line spectra and then the

amplitudes and phases are found using a linear least squares approach. The va¡iance of

the method is shown to compare favourably with the Cramér-Rao lower bound.

Minimum variance Kitchen (1992) performed a polyphase signal estimation using a mini-

mum variance estimator.

Kay's estimator Kay (1988) described an estimator which was based on measurement phase

differences (but did not use phase unwrapping).

Pisarenko's estimator has been extended for coloured noise (Sakai 1986)

Some authors have applied techniques to the SAR moving target problem specifically:

Iterative Barbarossa (1992b) discusses an iterative scheme which estimates the Doppler cen-

troid and rate simultaneously. This is done in coarse and then fine resolution stages; the

former provides an initial guess for the latter. This is a simple, practical technique.
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High order multilag ambiguity function The multilag high order ambiguity function was

introduced by Peleg and Porat in 1991 as a parameter estimator for multicomponent

polynomial phase signals in white noise. (It is not a ML estimator.) It has been applied

to SAR recently (Barbarossa, Porchia and Scaglione 1996, Porchia et al. 1996).

Wigner-Ville The Wigner-Ville (WV) distribution has been used a great deal for instantaneous

frequency estimation; it is appropriate for SAR since the azimuthal chirps appear as

straight lines, which may be detected through the use of a Hough transform following

the WV processing. Integrating along the possible lines in the 2D time-frequency space

overcomes the cross-term problem with the V/V distribution: since the cross terms

alternate in sign along their length, they will cancel. This technique has been applied to

SAR data in (Barbarossa and Farina 1990) and (Barbarossa 1992a).

Phase unwrapping A curve may be fitted to the unwrapped phase of the signal, for example

(Slocumb and Kitchen 1994).

Multilinear time-frequency representation Barbarossa and Mascolo (1994) use another

non-linear estimation technique to focus SAR moving target signals in the presence

of strong clutter and for imaging geometries which depart from the usual quadratic as-

sumption.

ISAR Inverse SAR accommodates arbitrary target motion and uses it to resolve scatterers on

the target itself (Wehner 1995). This was discussed in Section 2.5.

Note that an optimal technique, the exact maximum likelihood (given that there is a

uniform prior), involves an exhaustive search over the p¿uameter space. Although this is

impractical, it is of interest as it is theoretically optimal.

Soumekh (1996) argues that most SAR supe¡-resolution techniques in the literature (includ-

ing, by implication, maximum likelihood) will not meet the claimed performance in practice

due to inaccurate modelling of the target's complex amplitude characteristic, which is typically

assumed to be uniform. In reality, the target's amplitude may vary dramatically, and may not

even peak at the shortest range (when the target is centred in the antenna beam).

However, meaningful theoretical results may still be found while using the uniform am-

plitude assumption, since the SAR of interest here has a narrow beamwidth (in the order of a

degree). It is unlikely that the target's amplitude will vary to the extent shown by Soumekh

over such a small aspect change. (A more important assumption is that of linear target motion.)
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In summary, the differences between the problem of interest and that of the well known

polynomial phase parameter estimation problem are

¡ coloured Gaussian noise,

r the amplitude term with an unknown delay,

o the parameters of interest are derived from the polynomial coefficients rather than being

the coefficients themselves, and in particular

o the sampling is at arbitrary times, rather than at fixed intervals. For the case of random

sampling, the estimator's performance should incorporate the sampling probability density

function.

5.4 Maximum Likelihood Estimation

The maximum likelihood (lvtl-) estimator for these parameters is found by applying classical

theory, for example (Rife and Boorsteyn I974,Peleg and Porat l99la). It is of interest since it

returns the most likely value of the parameters, given an equal prior probability, with va¡iances

achieving the Cramér-Rao lower bound asymptotically. The ML estimate corresponds to

the parameters which maximise the probability density function (PDF) of the observations

p(y;t,ø) (termed the likelihood function). This PDF is parameterised by the sampling times

and the vector of unknowns u. Then

u arg max p(y;t,u)
u

u

arg min (a - peiz"ø ûù'R-'(V - o"lz"Ó ûo¡

u

where ûo : Aao, the weighted polynomial phase signal. For any t¿r and 0, the ML estimator

of the amplitude and initial phase

ars max #1"-tl"*o(-t, - o"iznÓ AaslT lit-tÍu - peiz"ooooJ)

{þ,ó} : arg min (u - peiz"Ó aù'R (v - p"j'"Ó ûo)

P'Ó

(5.1)
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ûoH P¿-t,

If we consider the amplitude and initial phase to comprise a complex amplitude with real

and imaginary components pr t j p¿ : pei2nÓ, we can differentiate the right hand side of
Equation (5.1) with respect to these components and set the results to zero. This gives

þ,:ffifl"".
.. _ s{ootn-'s}
¡'t 

ûoH p.-t 6o '

where ft{'} and 3 {'} return the real and imaginary parts, respectively. Since fi| is positive

definite, fil-r is positive definite, which means that 0sHÃt-l û6 is real. Therefore,

þ¿iz"ô (s.2)

(s.3)

?) F.-t ûo'

which is the least squares amplitude estimator. If the noise were white with variance ø2 qso

R : ozf where 1 is the identity matrix), the antenna beam were uniform (so ,4 : f) and

r.t) : o, this would reduce to the matched filter: þei2"ó : aoïg. rf 0 : [d,], this would be

equivalent to evaluating the discrete time Fourier transform (DTFT) of the sampled signal at

the frequency of interest.

The estimator for the delay and polynomial phase coefficients

û,0 arg min (a - ¡'"i'"0 ûùH R-r1n - peiz"ô Ao¡
w,,0

gH F¿-t ûo
arg max

wr0 Ug P¿-t ûo'

using Equation (5.2). Thus d can be estimated without knowledge of the amplitude or initial

phaser. Again, in the case of white noise, uniform antenna beam, w : 0 and 0 : [á¡], this

is the frequency which maximises the squared magnitude of the DTFI. (In practice, a coarse

frequency estimation may be performed by finding the maximum squared value of the discrete

I As an aside, if the amplitude and initial phase were known a priori, the maximum likelihood estimator of 0
would be

ê = arg max nft{eiz"ornp-t Ao} - p2 ûsH Fc-t û¡.
0

The known phase compensates for the fixed phase shift of the measurement, thereby allowing the estimator to be
coherent. (Equation (5.3), by contrast, squ¿¡res the gH P¿-r ôs term, destroying the requiremãnt for a knowledge
of the phase information.)
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Fourier transform evaluated at a finite number of frequency bins. As the signal to noise ratio

is reduced, it suddenly becomes more likely that a noise spike will be larger than the value in

the frequency bin nearest the signal, leading to a gross error. This is known as the 'threshold

effect' (Rife and Boorsteyn I974).)

V/ith u; : 0 it is possible to prewhiten the measurement using

y, : (Pc-tA)tlrg,

but this approach will not be considered due to possible systematic errors.

The performance of the ML estimator will now be considered.

5.4.1 Bias

Firstly, the expected value of the complex amplitude estimate

nlÞ"iz"a1 : ûoH F¿-tBlyl
ûsH Pt-r ûs

pei2"ö,

so the estimator in Equation (5.2) is unbiased, irrespective of the sampling times.

Ambiguities result when more thrn one signal can give rise to the set of observations. This

is well known with uniform sampling since a cisoid can be fitted to the data at the signal's

frequency or at multiples of the sampling frequency away from this. These aliases may be

interpreted as estimationbiases since, with no prior knowledge, a practical estimation strategy

which searches for cisoids from a predefined starting point will consistently take one of them

as the true value. (Another possibility, that the estimator has a random frequency at which it

starts its search for cisoids, is not worth considering. The errors in the estimates which result

from choosing an alias would then depend upon the strategy adopted. For the evaluation of

the variance below it is assumed that none of the aliases have been chosen.) These biases will

now be considered in detail.
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Suppose that u.r is known to be 0 and A: f . Then the expected value of the polynomial

phase coefficient estimator (Equation (5.3))

2
yH P¿-rao

r[.â] : E
uoH R- Ag

arg max

0

I

lDlr'"-t'"(ó'+|ith+lit2k, * rr*J I]t-t *,t p 
"i2"(ó+eftftlztî)

I È,¿

)

E

where the parameters of the actual signal are primed u,', and only a second order polynomial

phase is being considered for brevity.

For white noise and a high signal to noise ratio this becomes

t[â] - E arg max
0

0t : 0'r+xlt"

and 02 : |'r+alt"z

D "l 
r,Í{r, - e rl, r + fe, - e lVil'f

For uniform sampling, where tk : kt", ú" being the sampling interval, the sum of the

exponentials will reach a maximum when the exponential's arguments are multiples of j2r-
This will happen when both

(5.4)

for arbitrary integers ø and y. The estimated spectrum will reach the same value in each of

these cases. Thus the estimator is biase&.

In theory, any other sampling scheme will suppress these effects, since the phases will
then not be aligned. However, it may be important to suppress aliases as much as possible.

This is especially true when there are several signals, a case not considered here. Bilinskis

and Mikelsons (1992, pages 80-88) discuss the degree of aliasing, defined as the squared sum

of the Fourier coefficients at aliasing frequencies, for a variety of different random sampling

schemes. They show that random intervals with a positive correlation perform better than with

no correlation, or periodic sampling with jitter. These were discussed in Section 2.7.6. (In

2This is true in practice for the frequency term in the SAR moving target parameter estimation scenario. (This
was discussed in relation to the range velocity in Section 3.5.1.) Howeveç since the radar's speed is assumed to
be much larger than the moving target's azimuthal speed, there are no aliasing problems for the frequency rate
term.
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general, sampling schemes which approximate a uniform probability of a sample occurring as

a function of time have the best properties.) These schemes will be discussed later.

5.4.2 Vniance

The variance of an estimator is a measure of its inaccuracy. It is useful to put a theoretical

lower limit on this variance; this provides a convenient way of comparing the performance

of estimators under different conditions. The lower variance bounds on the estimation errors

of sinewave parameters were possibly first discussed in detail by Rife and Boorsteyn (1974),

(re76).

This lower variance bound for an unbiased estimator, the Cramér-Rao bound, is given by

cRl-B{(fifr} : (r-')*,0 (5.5)

(e.g., (Kay 1993)), where the Fisher information matrix

has the elements

r t EIP+t) (r'",5î,' ",)']

(J)r,¿ ê n ôlnp(y;t,u) ?lnp(g;t,u) (s.6)
0(u)r 0(u),

Since the ML estimator has unbiased amplitude and phase estimates and only additive bias

for the polynomial phase coefflcient estimates (Equation (5.4)),

E[,ù] : ulb,

where b is a vector containing the offsets. It is shown in Appendix C that the lower variance

bound for this biased estimator is still the Cramér-Rao bound, the result achieved by an unbiased

estimator. This is expected, since variance is not affected by an additive offset.

It is shown in Appendix D that for y - cI{(rn(u), fi|), Equation (5.6) simplifies to

(J)r,r : zft{wt-,w?)
: rft{al'+iåit'Y *-"'"t;ë,rl'\

for this problem, where ûs : Aas, (ro)n : 
"i2r(9fi;*0zt!+"'+etttl'{) 

and u : LP,w, Ór0')' .
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Here we have, using vector notation for brevity,

ôpei2"ó 5o ;r.
^ 

: et'''ó û0,
op

ôpeiz"óû, ,r*^loAçt - url)
T:eJzTa|".-\"__*^/j2lrA(0[+202TI30zT2+''.+It0KTK_|)

: 
"i2"öBag,

ðpei2"Ó ûo"'" 
uó 

"' : i2rP¿iz"ø û6' and

ôpeiz"ö ûo" '" 
urn 

" u : izT Pei2nöT" ûs'

,Ug

where ? is a matrix containing the sampling times and unknown delay

t1 0

t2T_ -wI

0 f¡¡

J may then be written as shown in Equation (5.7). (Note that AH : A.)

This expression is difficult to simplify, since .B is dependent upon the form of a(ú).

Therefore, we shall consider the case when u.r is known to be zero. Then the unknowns

u : lp, þ, orlr , so

(J)r,r :
(J)*,t :
(J)r,r :
(J)t,r :

k>

l)2,
k',1> 2'

2

2m{

anps{

-azrpS{

ûoH Fc-t ûo) ,

ûoH7k-z*-t to),
ûoH R-t7t-' ro]¡ ,

ûsHTk-2R-tTt-2 ûo\

(s.8)

812 p'n{
l> 2,

le ,l> 2.

k> 2

For white noise, this is

(J)r,r :
(J)t,r :
(J)',, :
(r)r,, :

2Dl=t o'(t,),

0,

0,

8n' p' DI=, o' (t 
^) 

t!^*' - 0,
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(s.7)

J

For white noise, u) : 0, A -- I and 0 : 10t,02]T , the matrix becomes

2N000
0 8n2p2N 8n'p'Dt tt 8n'p'Ðt,ttx

0 ïn'p'Dxt* 8o'p'Drtl 8n'p'D*t3t

o 8n'p'D*t'n 8n'p'D*t?, 8n'p'Ð*tî

(s.e)

This second order case is of interest since it equates to the simplified azimuthal response of the

moving target in a SAR scene (Section 2.3).

Since absolute times {f ¡} are referred to, it is necessary to specify a reference, here denoted

fs, relative to the origin. For uniform sampling, let the times be centred on ús:

tk:
ft* - 

tl - {/] t"*to, k : 1,...,N,

where Í" is the sampling interval.
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3 o2 t"4lN'(3N' - 10) + 7l + z+tfiltotl- t"2(.nr2 + t)l
32 p'

(s.10)

Using Equation (5.5), we get

CRLB{¡ô} : o2lQN),

{d}CRLB

cRLB{rr} : ##
cnr-s{p"} : 41 t---- t 'J Zo, p,

rzt,4N(N+-5N2+4)

It"'(N'-\+eotltffi,ana
I

t,41ú1lrr+ -5N2+4)

(Note that o2 f p2 is the signal to noise ratio.)

Some of the Cramér-Rao lower bounds therefore depend on ls, which is not intuitive,

although the effect was observed for the simpler problem of estimating both S and d1 by Rife

and Boorsteyn (1974, p. 592), who stated that the minimum Cramér-Rao lower bound on fr

was obtained by choosing ú0 : - (5t) f". An explanation is that the parameters form part

of the model of the continuous function y(ú), which is valid for all time. By finding the phase

we are implicitly specifying the value of the function att :0. For the linear phase case it can

intuitively be seen that choosing the centralised úe : - (Y) ú" minimises the variance of the

y intercept.

However, it transpires that the lower variance bound for phase in Equation (5.10) reaches

a minimum when the sample times are centred on ús : f t,z(Nz + l) 120, a significant

departure from 0. Whilst this is an interesting phenomenon, it will not be discussed further

here.

The most appropriate ús to use may be found by arranging the cross terms in the Fisher

information matrix Equation (5.9) tc'be 0. With the uniform sampling scheme described above,

this happens when úo : 0: elements with sums of ú to odd powers become zero, so the bounds

become

CRLBiiÌ : o2lQN),

CRLB{d}
3 o2 3N2-7

CRLB{rr }

3212 p2 ¡\r(¡/2 - 4)'
3o2 1

2o' pt ú"2¡ú(¡/2 _ 1)'

45o2 1

and

(s.11)

CRLB{or} :
2n, p, t"4¡/(¡/4 - 51ú2 + 4)'
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For non-uniform samples, we have

È-l
t¡ : lr¿, le 1, "', Nt

i-0

where the {rr} is the interval between samples l; and t;11, ro being the offset of ú1 from

to -- t: 0. For the sum of the times to be zero, we have

(s.t2)

so úo is intuitively positioned at the 'centre of gravity' of the times. For the sum of cubed times

to be zero, we need to solve the cubic equation

'o: #Þ.,t-N)'0,

t ro*Dt 0
N

È=l

/c- I

i=l

J

Since this will give a different result to Equation (5.12) in general, the value of 16 to be used

is not clear; the global minimum of the Cramér-Rao lower bounds may need to be found.

5.5 Random Sampling

Provided the sampling times are fixed, the Cramér-Rao lower bounds in the coloured Gaussian

case can be found using Equations (5.7) and (5.5). However, of particular interest here are the

effects of random sampling on the parameter estimation accuracy. If the times are specified in

terms of distributions p¡(ú) rather than specific instants, it is desirable to know the expected

Cramér-Rao lower bounds. An additional complication is a variable time delay between the

actual sample times and the times used for processing the data, which models the effects of an

unknown radar position at the time of transmission. The situation is shown in Figure 5.2. The

model of the data is now

V(t) : pei2"ö as(O,,t+ ó) + n.,

where ó is an 1ú x I vector containing the random timing errors, which are assumed to have

rhe form 6 - Jl'x(O,"3). (This aspect of the problem is similar to work of Swingler (1996),

who approximated the Cramér-Rao lower bound for frequency estimates with sampling jitter.)

If the sampling times were not known at all, the vector of unknowns would be lt" :
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n(Ð

sampler

u --È v(r)

unknown
delays

pr(t)

Figure 5.2: A representation of the random sampling estimation scenario. The sampling times
are randomly distributed, but approximately known.

lur , o'a,¿"]7 and the Fisher information matrix would be

v

u

(J")*,t : Ey,s,,
?lnp(9,u") Alnp(g,u")

ð(u")* ô(u")t

(which is similar to (Van Trees 1968)), where p(U,u") is the joint PDF of the measurements

and unknowns. Note that the expectation is over the sample spaces of both the random

measurements and the random unknowns. The unknowns' PDF W,(u") implicitly appears as

a priori information (via the conditional probability expression p(y,u") : p(ylu") W,(u")).
It is assumed here, however, that the nominal sampling times ú are known, but differ from one

realisationtothenext. Therefore, letut:luT,o|lrbethevectorof unknowns. Thereare

two clear approaches to finding the expected Cramér-Rao lower bounds:

l. Find the expectation of the bounds assuming constant transmission times with respect to

the known timing distributions

E?[CRLB{(u');}l : 1.*B{(r')¿; t} e¡Q) d,t.

This is an intuitive method; however, its true meaning is not clear.

2. Since the likelihood function now contains random (but known) times, p¡(ú) should be

incorporated into the Fisher information matrix (Equation (5.6)):

(s.13)

0 ln p(y, t; u') 0 ln p(9, t; u')

õ

process

data

senerate
íampling

tlmes

(J')*,t a Er,a,z 0(u')r 0(u'),
(s.14)
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p(y,t;u') is the joint probability density function of the sampled signal and the trans-

mission times, parameterised by the unknowns. The expectation is now over the sample

spaces of the random measurements, the unknown delays and the random measurement

times.

This is the approach which has been adopted here

Using a conditional probability expression,

p(A,t;u') : p@lt;u') p,¡(t;u'),

and letting pr(t;u') : n(t), since the sampling times do not depend upon the parameters,

from Equation (5.14)

(J')*,t : EY,a,r

Ev,¿,r

Ev,¡,r
o(u')r o(u')r

0 tn(p(ylt; u') m QD ô tn(p(s lt; u') m Q))
ð(u'),o(u')*

0 {rn p(slt; u') + ln p¡ (t) } 0 {tn p(y lt; u' * lnp¡ t Ì
ô(u')*

0 tn p(ylt; u' ) ô ln p(s lt; u' )

o(u')t

With ø] assumed to be zero, our vector of unknowns is just u and we have

(J')*,t : TT
0 tn p(y lt; u) 0 tn p(slt; u)

0(u)r 0(u)t
ô tn p(y lt; u) ô tn p(s lt; u)

ô(u)* o(u),
p@lt;u) ds py(t) dt

V,t;u) dy dt.

lr{t)r,, p¡(t) d,t

: Er[(J),r,¡],

where J was defined in Equation (5.6). The final result is similar in concept to Equation (5.13),

except that the expectation is over the Fisher matrix elements rather than the Cramér-Rao lower

bounds.

J's elements (Equation (5.7)) can be written in the form

(J)*,r : a(lc, D f {urH(k)R-'ø(/)i,
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where /{.} extracts the real or imaginary part, so
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(s.1s)

.äf-r cannot readily be simplified since the covariance matrix entries are in the form (R)^,n :
r(t* - ú,): they are a function of the variables being integrated over.

In the case of white noise, Equation (5.15) becomes

(J')x,t : a(k,,) r {Iu)H &)r¿-t *U) prr,) dù

(J')¡,,¡ : ry f{[-, çtþ(r) e*(Ð dt] .

For u known to be 0, this is

(J')*,t: #, lr, o' rnro tl o o e, çt¡ at\{

02

a'(k,l)
02

a'(lc,l¡ :

and g(k,/) expresses the powers of f

lrf a A; o2 (t 
^) 

¿s 
(x't) 

ç8 o) 
^ 

pr (t) dt\,

lro'(r^)rs<t,D ^çe 
dt][ ,

a'(k,l) r

r
Ð

Ð

since the phase terms cancel. The superscript * indicates the conjugation operation. Here

2,

4n p,

-4n p,

8o'p',

lc: l: l,
k ) l,I: l,

Ic:l,lll,
k',1> I

s(k,t):

If the PDFs are independent, we have

(J')*,t : a'(k,l)
02

a'(k,l)

t{p lr. lnlr,o'(t^)¿o(*Ð fIw^(t*) dttdtz"' dtN

t{ç lr^o'(t,) ¿o(k't) 'pr,(r) or| ,

0,

k+l-4,
undefined,

le:l:I,
lc,l > 2,

otherwise.

02
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as discussed in Section3.J.l, where

(, - t- {;1) t" + tt(o,bt"), n- r,.. ., ff,
\ 2 /"

r25

and

(r')¡,¡ : #* ¡{lr*A"¡¡s{t',t) ,pr(t) dt\

if the PDFs are the same. (Note that if a(t) : I V¿ the argument of / is the g(fr, /)ü moment

of the PDF of ú.)

5.5.1 Example Sampling Distributions

The timing specifications for several sampling schemes were discussed in Section 2.7.6

Known times If the sampling times are known, so that

pr^(t) : 6(ú -tn)vn,

where ó(t) is the Dirac delta function, it can easily be shown that Jt : J

Random offsets If there are random offsets from uniform samples centred on t : O (i.e.,

jitter), we have

tn

t/,(p,, s) t

for uniformly distributed offsets. Then

pr.(t) : u(ln - 1- (N - l)l2l¿,,öú").

The duration of the measurement is then slightly greater than with uniform sampling, as

mentioned in Section 3.7.1, since the PDFs of the extreme samples extend earlier and

later than the respective nominal values.

tlQs),

0,

lt-s (c( þ*s,
otherwise,
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It can be shown that, for u known to be 0 and A : I,

(J')t,t

(J')*+z,t

(J')r¡,+z

(Jt)x+z,t+z

: 2Nfo2,

0,

0, and

8n'p' I
02 zb(k + /+ l)

(5.16)

Of course, if ó -r 0 these PDFs approaches delta functions: the Fisher matrix result is the

same as for uniform sample times discussed above.

Uniformly distributed over whole interval In this case, for all n,

N

D{t" - I - (/ú - t)lzlt"* ó}r+t+t
n=l

-{["- I -(¡/ -t)12]t"-ó]È+¡+t.

pr^(t) :

This distribution may be approximated in practice by using random intervals between

samples; the distribution of the intervals is of no real importance when /ú is large.

(Section 2.7.6 discussed this.)

It can be shown that, for t¿ known to be 0 and A : I,

(J')',' : 2Nf o2,

(J')*+z¡ : 0,

(J')t¡,+z : 0, and

(Jt)*+z,t+z
812P2 Nbl+t

o'(k+ /+ 1)'

t lQb.),
0,

-b. 1¿ 1b_,

otherwise.

fr + / even,

otherwise.0,

This is the same as the result achieved with random offsets (Equation (5.16)) where the

offsets are t0.5ú". However, it is preferable to use random intervals in practice: the

intervals may be constrained to have a minimum sampling time separation, unlike with

random offsets, and there need only be a small degree of randomness; a large amount, such

as *0.5ú", leads to a degree of unpredictability in performance (Bilinskis and Mikelsons

1992). This was also discussed in Section2.7.2.
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If ô- - (N - l)t"f 2, making the time span the same as for a uniforrn sequence, and

0 : l0t,02lr,the corresponding Cramér-Rao lower bounds are

CRLB {p} : o2 l(2N),
9 o2 1

CRLB
32¡rz p2 N'
3o2 I

2", p, ¿"2¡\¡(¡ú - I),'
45o2 I

CRLB{dr}
2n, p, ¿"4N(¡ú - l)r'

This is equivalent to Equation (5.1/,)for large N, but larger forsmall ly', meaning that the

parameter estimation accuracy is the same for uniform and non-uniform sampling times

with an infinite number of samples. (Increasing the interval ó- will not make them the

same for finite N: the effects are non-linear.)

This result is expected: for random intervals, which approximate uniformly distributed

samples, the noise floor of the sample spectrum near a single signal is very low, as shown

in Figure 2.12. Intuitively, this implies that, once the signal has been identified, estimating

its parameters may be done accurately.

Figure 5.3 shows a comparison between the Cramér-Rao lower bounds corresponding to

uniform sampling (Equation (5.11)) and uniformly distributed random sampling (Equa-

tion (5.17)) as a function of the number of samples N. The variance 02 : I, the squared

amplitude p2 : l, the time offset t¿ is known to be 0, the weights A : f and sampling

interval t" : L There is a difference of only about 1 dB between the two when ¡ú > 15.

Random intervals Here the PDF of each sample depends upon the previous one:

t1 : -(/ú -l)T"12; tn*t : tn*rn.

For Gaussian offsets, ,^ - ,\l (tr,o')

6(¿- [^/ -r]t"12),

{ô}
(5.l7)

CRLB {0, } and

nr,(t)

pr,(t) ,,rr(ir - (¡ú - \ l2lt,, o2),

pr"(t) t{ (1"- I - (N - t)lzlt',ln - tl"').



128 CHAPTER 5. MOVING TARGET PARAMETER ESTIMATION

CRB comparison
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Figure 5.3: Cramér-Rao lower bounds for uniform sampling (o) and uniformly distributed
random sampling (x) with normalised parameters and u.r known to be 0.

In this case,

tk+tdt,

where m: (n - 1- IN -l]12)ú". This is adifficultinregraltoevaluateforarbitrary

k+1.

For large n and any non-trivial offset distribution, it is as if the offsets were Gaussian by

the central limit theorem; in fact, pr"(t) tend towards being uniformly distributed. This

case w¿rs discussed above.

5.6 Simulations

Figure 5.4 shows the estimation errors obtained as a function of the noise variance when the

four parameters p, þ,01 and 02 were estimated with simulated data and uniform samples. The

signal's magnitude p was l, the number of samples ,f/ was 20, the sampling interval ú" was

2, the delay u was known to be 0, the amplitude term a(t) : I Vú, the phase parameter /
was 0.123, the frequency dl was 0.106 and the frequency rate dz 0.01. 15 estimations were

performed for each noise variance; the vertical bars in the figure show the correspondinggg%o

confidence intervals. The noise values were the same for each of the three simulations. The
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Figure 5.4: Estimation errors found by simulation with uniform sampling. The horizontal

curves show the Cramér-Rao lower bounds.

antenna beam ø(t) was assumed to be unity as it only varies very slightly over 16 samples in

the stripmapping SAR case.

Figure 5.5 shows the errors obtained during a similar simulation, but using uniformly

distributed samples. The sample times were the same for each of the three noise variances.

There is excellent agreement between the sample variances and the Cramér-Rao lcwer bounds

in all cases.

5.7 Practical Considerations

Theoretically, the ML estimator demands that the parameters of the moving target be found by

exhaustive search, since only then will the optimal estimates be obtained under conditions of

arbitrarily poor signal to noise ratios. (This is also true for the detection problem, where the

likelihood ratio needs to be evaluated with the exact target parameters in order to achieve the

optimal detection performance.)

This is impractical, since there are too many combinations of parameters which have to

be used in Equation (5.3). However, once an approximation to the result is known, the ML

technique may be implemented using a variety of algorithms including gradient descent (e.g.,

(Haykin l99l)) and expectation maximisation (e.g", (Kay 1993)). In order for these algorithms
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Figure 5.5: Estimation errors found using uniformly distributed samples.

to converge on the true parameters in an environment with a poor signal to noise ratio, they

must be initialised with a good first approximation to the true parameters.

This gives rise to the idea of coarse parameter estimates which are used to initialise the ML

algorithms. As mentioned previously, there is a 'threshold effect' which is a property of coarse

evaluation methods when there is a low signal to noise ratio.

Section 4.6 discuss practical considerations relating to moving target detection with coarse

parameter steps. These also apply to the problem of parameter estimation.

5.8 Actual Unknown Parameters

The derived Cramér-Rao lower bounds for the polynomial phase signal parameters can be

related to the elrors in estimating moving target azimuthal position and range and azimuthal

velocities3. If the parameters of interest are stored in the r x 1 vector a and specified in terms

of a continuous and differentiable r-dimensional function of the parameters ?1, d. : g(tr), then

the matrix

.-Wt-'uná?'> o

3The other moving target parameters are not of concern; see Section 3.4.2 for a discussion of the parameters
which can be determined.
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(meaning that the left hand side is non-negative definite) (Kay 1993, p. 45). The r x r matrix

C contains the parameter covariance Cramér-Rao lower bound. This assumes that a is real

(which will almost certainly be true in practice).

Here, the parameters of interest are the az imuthal position A , Íaîgevelocity ,R and az imuthal

velocity ù: a - la, il,vl' .The unknowns in the model aÍe 1L : lp,r, Ó,0r,gr]r .The model

was ejz"ó A(t - wl)ao(o,t - wl) where

(oo(0,¿))r : 
"i2rf0tt;*ïzti+"'+e"ty1

Relating this to the structure of the azimuthal signal, Equations (4.1) and (4.2), gives

(Note that 02 is half the Doppler frequency rate, F¿,.) Since

g

ôs(u)
0u

uj cnrn{ta}

-f cou[4,ø]

-fficou[ar.i,]

000
0 -^12 o

o o -åÀÆ(-ÀA0r)-r¡z

oup
:00

00

C

-t' co"[,i'a']

f; cru-n{a,}

&co'faro']

-#-urcou[,]'at]

&cov[aroz]
-ffi cnrn{a,}

Therefore

c) uf cru,n1ti'1

(å)': (c)r,, : CRLB

II,(

{d'},

{r}CRLB : (c)tt : -ry*cRLB{d,}

(Note fhat 02 will be negative, so CRLB{û} will be positive.)

(s.18)

For white noise, ur known to be zero, a uniform antenna beam, uniform samples centred on



r32 CHAPTER 5. MOVING TARGET PARAMETER ESTIMATION

Parameter Value(s) Comments
range
platform velocity
wavelength
antenna beamwidth
Doppler bandwidth
mean PRF

target amplitude
target position
clutter model
antenna beam pattern

clutter to noise ratio
(cNR)

number of samples
processed

signal to disturbance
ratio (SDR)

target Doppler centroid

29500m
70m/s (140kÐ
3.2cm (X-band)

1.50

115 Hz
115 Hz

assumed constant

A:Om(to:0s)
coloured Gaussian

sinca(.)
-80d8
40dB

64
256
0dB
20dB

0---+5xDoppler
bandwidth

chosen to match the real data

(derived)

since only a small aperture
unknown, except for Figure 5.11

as per Equation (4.8)
as per Equation (8.4)
i.e., white noise only
clutter dominates
to show the variation

0 to about 25 kph towards
the radar

Table 5.1: Parameters used for the parameter estimation examples. These are similar to
those used for the moving target detection examples (Table 4.1) and the imaging examples
(Table 6.1).

ú : 0 and large.lú we have

and (C)r,z: (C)z¡ :0

5.8. 1 Numerical Examples

The Cramér-Rao bounds for actual parameters were found using Equations (5.18) and (5.5)

evaluated for the Fisher matrix given in Equations (5.7) and (5.8) for different combinations of

parameters. Parameters common to the plots are shown in Table 5.1. The clutter is described

by the power spectral density of Equation (4.8), and the antenna beam ø(ú) is described by the

corresponding pattern, Equation (8.4).

cRLB{A}

CRLB{i}

3À2o2
gT2pzT2N3)

-45ÀRoz
8r202p2TaNs



Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Uniform, high PRF (4 x Doppler BW).
An instance of random intervals (20Vo deviation from uniform); average

PRF is 4 x Doppler BW.
Uniform, low PRF (equal to the Doppler BW).
An instance of random intervals (20Vo deviation fromuniform); average

PRF is the same as the Doppler BW.
Uniform, high PRF (4 x Doppler BW) with known position U : O (i.e.,

u.' : 0). For white noise, the expected bounds for the non-uniform
S case are the same as those for the uniform case.
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Table 5.2: A summary of the numerical example plots

The plots are summarised in Table 5.2. The corresponding legend is shown in Figure 5.6.

The most important features of the plots are the variations with respect to the Doppler

centroid, the clutter to noise ratio (CNR) and the sampling scheme. The numerical values are

of less significance, since real world situations may deviate from the model. (For example, the

target's motion may not be perfectly linear.)

In the white noise cases (with the low CNR), the Cramér-Rao lower bounds are uniform

with respect to the target's Doppler centroid. This is expected since there is no frequency

dependence.

In the coloured noise (high CNR) case in Figure 5.7, the bounds reflect the moving target

aliasing phenomenon-at 4 times the Doppler bandwidth, the PRF, they are the same as for

zeroHertz. This is clearly an undesirable situation.

The azimuthal velocity (Doppler rate) bound is interesting. It is clearly difficult to estimate

this to any reasonable accuracy at low signal to disturbance ratio (SDR) with samples spanning

a short duration, although it was found that spanning several seconds' worth of data has the

potential to resolve fractions of metres per second.

The well known relationship between azimuthal position y and range velocity -R, Equu-

tion (2.14) (also derived in Chapter 3), implies that

a 6. Ri¿
up

Therefore, it is expected that cRLB{i} o( (;)'cru.n{a} : (#)'cru.n{n} È

178000Cnf-n{n}. This is true. For example, for the range velocity dot-dashed line in

Figure 5.7, there is a bound of about 0.002 m2ls2. 178000 x 0.002 is 300m2, the azimuthal
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bandwidth.

position bound. y's inaccuracy may be explained by considering the number of samples pro-

cessed, which is around a twentieth of the 3 dB antenna beamwidth for 256 points. (It was the

irregular shape of the beam which determined t¿r's accuracy.) From the bounds' va¡iation with

/{ it is apparent that a fourfold increase in the number of samples lowers the bounds by about

L8 orders of magnitude. Therefore, assuming linearity, a factor of 20 should be equivalent to

around 3.9 orders, giving a lower bound around 0.039 m2 for a full aperture and 20 dB signal

to disturbance ratio. The effects are believed to be non-linear, due to the increased slope of

the antenna beam edges as more samples are used, reducing the bound below this. (It was

found separately that there is an improvement of four magnitudes if the antenna beamwidth is

reduced by a factor of ten, thereby making the shape of the antenna beam less linear.)
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Figure 5.9: Cramér-Rao lower bounds: the uniform PRF averages the Doppler bandwidth.

It is clea¡ from the model that the error in y could not be much greater than the width of the

real antenna beam, which is of the order of many hundreds of metres (for a n¿urow antenna

beam at a range of tens of kilometres). However, larger effors may occur if, for example, the

target had a much larger rada¡ cross section away from the radar's broadside than at that angle.

As expected, the SDR makes an important contribution to the quality of the estimates; it

is clear that a variation of 20dB changes most of the lower bounds by 20dB (two orders of

magnitude).

Figure 5.8 shows that non-uniform sampling has kept the bounds low at frequencies away

from that of the ground clutter. The effects due to aliasing have been suppressed, showing a

benefit of non-uniform sampling.

-a;?-t 5 j-r s.'; )-t=ìrA 7 r'
la

¿'
,ê!a*.;;''s.Ìt--.,

I t - 
t'f ¡ r¡ 

-- 
ta I ì. 5.,--rGrÈt¡-J¡-rÊ 't-tst---Ê

lr¡t=tOtltlrl-r'¿tv11 r, lf¡tF¡.¡-,,¡rrt,'at.-,.-rr,¡-r'lEr.rar,¡rr.--,,¡-r

I . t - 
I I -. - - -- 

l¡ f I O- I r J S 
-I--,-.r-

-rfl r't b

| | I t I I I I t r ¡ ¡ I ¡ I I ¡ , . , I a a a a r ¡ ¡ I ¡ a a a t I I I t t r ) r t I À I r ¡ r d I f f r ù ¡ \ t I I f, tr | r r, r, r. ¡r r r ù I

I I t t - - -. - - -- - - - 
r-- ì, I 

--I--,-.-

I I f I I r - 
I Io- t 

- a j r 
- 

¡ 
- 

r I r I' l- ¡ I r 
- 

r-' I 
-.-t-¡l¡f -f -u



ô¡
c)

6t
c)ts

Êqú
O

5.8. ACTU AL LINI(NOWN PARA]VÍETERS r37

amplitude; random sampling intervals: 20.0% deviation.
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Figure 5.10: Cramér-Rao lower bounds: the non-uniform PRF averages the Doppler band-

width.

At a constant, low PRF (Figure 5.9), the bounds apart from the one corresponding to

amplitude are almost uniform. reflecting the approximation that the coloured noise occupies

the entire unambiguous bandwidth and therefore almost appears white.

This plot needs to be interpreted ca¡efully. It tells of the minimumvariance of the estimate;

it does not take bias into account. The estimation itself is ambiguous due to aliasing effects

since the Doppler centroid may be beyond the sampling rate of the radar, so the plot gives an

optimistic impression of the quality of the estimator.

In the non-uniform case (Figure 5.10) the curves are almost identical, except that the

amplitude estimation accuracy never becomes Írs poor as for low velocities when targets have

Doppler centroids below half the Doppler bandwidth. In addition, there is no bias error, as
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Figure 5.ll: Cramér-Rao lower bounds: the uniform PRF averages four times the Doppler
bandwidth. Azimuthal position is assumed to be known.

there would be for the situation of Figure 5.9.

It is to be noted that the bounds for the white noise, non-uniform sampling case are very

similar to those of the uniform case, as predicted, despite the low number of samples.

Figure 5.11 is similar to Figure 5.7, but ¿ìssumes that the azimuthal position is known. The

amplitude lower bound is unchanged, the azimuthal velocity has changed marginally, while

the range velocity bound is dramatically lowered (by about five orders of magnitude). These

effects were expected from the consideration of Figure 5.1.
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5.9 Conclusions

This chapter has many contributions.

o It derived the ML estimator for the parameters of moving targets in a SAR scene where

non-uniform transmission times are used.

o It discussed the subsampling bias which results from uniform sampling.

o It found Fisher information matrices which incorporate non-uniform sampling: where the

sampling times are explicitly specified, or their distribution is known.

o It has shown that, for white noise and large .lú, the Cramér-Rao lower bounds are the

same if random samples are distributed uniformly over the entire time frame of interest,

or if they are distributed uniformly within half a sampling interval of the nominal uniform

positions.

o It has also shown that, under these conditions, the Cramér-Rao lower bounds are the

same as those achieved in the uniform sampling case, even though the estimator does

not exhibit the bias which results from uniform sampling aliasing effects. (This permits

the accurate measurement of signal parameters well beyond the limits encountered with

uniform sampling.) These results were demonstrated by simulation.

¡ The variance bounds for the parameters used in the model were translated into real world

moving target parameters. These were plotted for a variety of conditions, showing the

effects described.
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Imaging

This chapter considers the azimuthal focussing of stationary scatterers in a synthetic aperture

radar (SAR) scene for the purpose of producing an image of the ground. (As such, the

requirements are quite different from those of detecting moving targets.) It is shown that

the beam pattern produced using a SAR with a non-uniform pulse repetition interval (PRI)

compares favourably with that of a conventional SAR, allowing the accurate representation of

the bright scatterers in a scene.

6.1 Introduction

Imaging is the representation of an arbitrary radar scene as a collection of discrete scatterers in

two dimensions. Its requirements are therefore entirely different from those of moving target

detection: instead of estimating the parameters of a single target which may or may not be

present, the scene is divided into arbitrarily many cells whose reflectivities are estimated. The

focussing filters must be capable of accurately performing the estimation in one cell while

ignoring the effects of the signals in adjacent cells, which may be very large.

As discussed in Chapter 2, the intended application for a non-uniform PRI SAR is for

the detection of sparsely distributed, man made objects in a background of relatively uniform

terrain. Thus the existence of some imaging sidelobes is not a serious handicap. It is recognised

from the outset that a non-uniform PRI SAR will not produce as good an image as a conventional

SAR, nor will it have the same computational efficiency; however, it is felt that the increase in

capability-simultaneous imaging and moving target detection using no more data-makes

it worthy of consideration.

It is assumed that the radar has performed a range compression operation, as discussed in

t4l
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Section 3.2.2, allowing us to consider only the azimuthal data. It is further assumed that the

azimuthal cells have been aligned correctly, taking range migration effects into account. The

focussing filter has only the me¿ìsurements received by the radar to work with, which for SAR

in the azimuthal dimension are dependent upon the changing geometry as the radar travels

past the targets. These data may or may not lead to a unique reconstruction of the scene. For

example, if the quadratic approximation is made, as discussed in Section 3.2.5, the signals

may be treated as linear frequency ramps. In this case, there is a unique reconstruction with a

uniform PRI in the same way that a discrete Fourier transform (DFf) has frequency bins which

are independent. This is because the situations are the same, except for a fixed, quadratically

varying exponential term. However, if the PRIs are non-uniform, there is no such set of basis

functions, leading to worse sidelobe performance or azimuthal ambiguity (grating lobes) in the

extreme case.

The original contribution of this chapter is coherent imaging with a non-uniform PRI

SAR: the optimal imaging process, the use of several different sidelobe reduction strategies,

a comparison of performance with that of a conventional SAR and the derivation of an

expected beam pattern for random transmission times. Section 6.2 discusses existing work,

Section 6.3 formulates the optimal imaging process for arbitrary transmission times in an

environment containing an arbitrary number of scatterers and a background of stationary,

Gaussian noise, Section 6.4 discusses several different processing and sidelobe reduction

strategies and Section 6.5 considers non-uniform PRI effects.

6.2 Existing Work

Most texts on SAR (reasonably) treat imaging as its sole purpose. There are many levels of

sophistication, however, from filtering the raw ground return through to geocoding (accurately

determining which patch of the ground corresponds to the pixel in an image, compensating for

the many sources of distortion). This chapter is concerned with the most fundamental level,

that of filtering, since that is where the differences between uniform and non-uniform PRls are

found.

It is normal for SAR to incorporate weights for sidelobe reduction, such as those discussed

by harris (1978) (which will be considered in Section 6.1.2).
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Other techniques include:

CLEAN: thresholding the image, calculating the predicted sidelobes associated with the result

and subtracting them from the image, allowing smaller targets to be detected (as discussed

in Section 4.5) (Kesteven 1997, Freedman et al. 1996),

Constraints to specify the beam pattern's real and imaginary parts separately,

Data interpolation, as was done for computational efficiency with a non-uniform PRI by

Mobley (1995) and Mobley and Maier (1996),

Minimax: minimising the maximum sidelobe level, and

Non-linear apodisation: lowering sidelobes while maintaining the full resolution achievable

with an unwindowed response by choosing the minimum corresponding pixels in images

produced using different windowing functions (Stankwitz, Dallaire and Fienup 1995).

Flynn (1992) gives an altered wavenumber-domain algorithm which allows for non-uniform

aircraft motion, incorporating a non-uniform PRI.

Mobley (1995) and Mobley and Maier (1996) investigated the imaging performance of

a SAR using different PRI schemes by interpolating the azimuthal data and comparing the

results with those of uniform transmission times. For comparison purposes, the data were first

processed using a standard DFT (which assumed uniform sampling times and was therefore

naturally subject to error), and then with a DFT after interpolation. The advantage of this tech-

nique over exact phase corrections is computational; provided the general bandpass sampling

theorem is satisfied, the interpolated reconstruction should be good.

6.3 Azimuthal Imaging Formulation

The objective of this section is to formulate the optimal imaging estimator with an assumed

number of independent scatterers superimposed on a background of noise. (This is different

from the ambiguity function formulation, which concentrated on focussing a single scatterer.)

The azimuthal signal returned from a scatterer at range ,R and azimuthal position uru is

given by

x(t;R,u) : a(t - u;R)ro(ú - u',R) þn,,,,

where u, is the velocity of the SAR platform, I is time, þn,, is the complex amplitude of the

scatterer, u0(¿; Ã) is its chirp-like response (which results from the geometry), v is the time the
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scatterer is adjacent to the radar and a(t; R) is the two-way azimuthal antenna beam pattern.

(This is the same as the expression used to model the disturbance in Appendix B.)

The signal seen by the radar is

vþ; R) : t(t; R,u) + n(t),

neglecting attenuation due to the radar and propagation losses, etc. n(t) is a complex noise

process which will be discussed later.

If the radar transmits at the discrete times {ú,}, n : l, . . . , ff, the measurements can be

written in matrix form as

a(R,r) : (-ooo)þ + n

: ûsþjn,

where (u)" : a(t^ - v; R), O is the Hadamard (element-wise) product and T is the transpose

operation. (This formulation is equivalent to the one used in earlier chapters, where ûo : Aao,

A having the two-way antenna pattern along its diagonal, (A),,n : a(tn - u; R), and zeros

elsewhere: (A)^,": O,rn I n (Eqtation (a.5)).)

The signal returned from M scatterers at time I is given by

M
aþ; R) f r(¿; R,u^) + n(ú)

m=l
M

Ð "(t - u*i-R) ue(t - u^i R) þn,,^ + n(t).

(6.1)

(6.2)

m=l

This can be written in matrix form as

v : (Wouo)Þ+n

: v@)þ + n'

þ:lþt,"',þv]r.V(a) is aknown N x M matrixdependentupon theknown parameters

0 : l{t,}, {r*}l' .Neither the {f,} nor the {z-} need ro be uniformly spaced.



6.3. AZIMUTHN- TMAGING FORM|u¿ATION

If the antenna beam is assumed to be an ideal broadside wedge shape as defined in Equa-

tion (3.12),i.e. 
(

a(t;R) : { 
t' irltl <T12'

[ 0, otherwise,

where T : T(R) : R0,olup is the time taken for the SAR to travel the length of the antenna

beam and 0,ois the antenna beamwidth, y(0) can be written as shown in Equation (6.Ð. tl:)

and t9ìr^ are the maximum and minimum values of tn - z less than T f 2, respectively.

v(e) :
,o(¿!),-) 0

,o(o)

,o(f")

uo(-ú")

,o(o)

,o(f")

,o(-1")

,o(o)

145

us(t1- u1) us(t1 - u2)

us(t2 - u1) us(t2 - u2)

us(h - u2)

us(t2 - 4)
us(h - h)

,oþ9ì,^)

0

0
(6.3)

0

0

uo(t[N-t)¡

0 ,o(¿Í,T)

uo(t¡r-l - ,*)
uo(úru - rr)

(More simply, for uniform sampling (tn: nt") and a scatterer adjacent to the radar during

each transmission (M -- lú), Equation(6.2) can be written as shown in Equation (6.4), where

tti^:(nt")^o,<T12.

,o(o)

,o(ú")

,o(-ú")

,o(o)

,o(ú")

þt

õ,

þs

þr¡

0

0

0 ,o(ú")

uo(f ¡r*)

0 uo(úr¡- )
(6.4)

The more general case will be assumed here, however.)

For an antenna with a narrow beamwidth directed at broadside, the signal from a stationary

scatterer is assumed to be given bY

0

us(t; A) - "i2tlFact+Fh(R)*/2) 
)

(6.5)
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as discussed in Section 2.3, where Fr" is the Doppler centroid, nominally zero, and the Doppler

rate

(6.6)

with À being wavelength.

6.3.1 Focussing

If the noise n (ú) is assumed to result from a homogeneous scene with many independent

scatterers tn each resolution cell, its probability density function is stationary and Gaussian by

the central limit theorem (Barbarossa 1992b). It is assumed at this stage that the noise is white

(which is justified by the low average sampling rate in comparison with the clutter's spectral

density (Section 4.2.4)).

Conventional SAR processing is done by the maximum SNR estimator, the matched filter,

which is given by

(6.7)

The many processing algorithms, including wavenumber domain (Flynn 1992) and step trans-

form (Curlander and McDonough 1991) are different implementations of this, with reduced

computational requirements. These computational benefits may not be available when the

radar's transmission times are arbitrary, however. (This topic is beyond the scope of this

thesis.)

Note that the azimuthal ambiguity function, Equation (3.13), is equivalent to Equation(6.7)

for the case of a single, stationary scatterer.

Normally, for each range cell, a unique scatterer is assumed to correspond to each resolution

cell on the ground. Due to the broadside antenna pattern with stripmapping SAR, the cells are

adjacent to the radar. If the minimun PRF is used, there will be one adjacent to the radar for

each transmission.

Unfortunately, this makes Equation (6.2) an under-determined system (N < M): at the

start and finish of the measurements, the antenna beam sees scatterers which afe never adjacent

to the radarl.

Therefore, instead of Equation (6.7), we can use the maximum likelihood estimator for

,12

Fo,(R) - -zffi

b^, : V'U

lThis isn't a problem with spotlight SAR, since the same patch of ground is viewed repeatedly.
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additive Gaussian noise, the least squares estimator, which uses the Moore-Penrose pseudoin-

verse

(6.8)

where

y+ : (vHv)-t vH

for l/ > M (more measurements than scatterers), or

y+ : vH (vvH¡-t

for M > l{. (Recall that V is I/ x M.)

It is well known that

þ^ : (vrv)-t þ^,.

V'V is the synthetic aperture's beam response pattern, ideally the identity, .I. (The columns

of this matrix correspond to the ambiguity function of stationary targets as a function of y.

This is discussed in Section 6.4.) The inverse of this is being used as a correction factor to the

standa¡d matched filter processor.

Equation (6.8) can be applied to the task of increasing the azimuthal resolution of a SAR

system: since M > .f{, we can apply it to obtain the least squares solution.

The minimum variance estimator is useful if the additive noise, n', is correlated or has a

changing variance. It is given by

þ^u : (vH x-'v)-'v'r<-tv, (6.e)

where .l( is a weighting matrix. It is normal to make .tf be the covariance matrix of the noise

(i.e., I{ --el"r;'r,ãl).
More complex processors can be found in (D'Assumpcao 1980).

6.4 ProcessingTechniques

Several SAR target focussing techniques are of interest:

Exact phase corrections as was done with the ambiguity function. This assumes arectangular

window and makes a useful frame of reference.

þ,, : V+Y
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\{eighted using standard weighting functions, such as the Hann window, and exact phase

corrections.

Maximum integrated sidelobe level based on work with real arrays by Boni et al. (1994).

These are discussed in detail below for a single scatterer with an arbitrary azimuthal position,

in which case

(s), : p o(t* - ,; R) "*r(-ir*ftA" - ù') + (n),,

(û,), : a(tn;.R) exp (-i^frrr")

Using Equation (6.7), by letting the azimuthal time offset be referenced by an equivalent

position offset U : Dpu and neglecting the amplitude þ andnoise n(t) terms gives

x'."(v; R, {t,},u0, À) : "-rQH),å aþ,; R) o(tn - v lur; R) "-o(-¡rTryr")
(6.10)

using Equations (6.1), (6.5) and (6.6).

The corresponding filter, tuned to a target centred at u :0, is given by

This is the same as the SAR ambiguity function, Equation (3.13), with a matched target range

and zeroed target motion parameters.

6.4.1 Phase Conections

For the case of a uniform antenna beam, Equation (3.12), Equation (6.10) becomes

exp

x',,(y; R,t",ur,À) :
'T ' ., expl,T#,r,),

n=(s /uo-T /2) /t " \
(,

2ny'
À,R

0,

-T <U 17,
otherwise,

where ? is the time taken to travel the length of a synthetic aperture and ú" is the mean PR[.

Using the result
n2 

Ox(n241) _ erntf ^'"
n=nl a"-l )

it follows that, for uniform sampling times and a uniform antenna beam,
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azimuthal response azimuthal response

0

500 l0

(a) Whole beam.

Figure 6.1: A magnitude squared SAR azimuthal response with uniform sampling.

Parameter Value(s) Comments

range
platform velocity
wavelength
antenna beamwidth
Doppler bandwidth
mean PRF
target amplitude
clutter model

29500m
70m/s (140kÐ

3.2cm (X-band)
1.50

ll5Hz
l15}tz

assumed constant
white Gaussian,
zero amplitude

(derived)

since only a small aperture

due to low average sample rate

Table 6.1: Parameters used for the imaging examples. These are similar to those used for

the moving target detection examples (Table 4.1) and the parameter estimation examples

(Table 5.1).
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Figure 6. 1 shows Equation (6. I 1) evaluated for the parameters listed in Table 6. I . A uniform

antenna beam between the beamwidth extremes gives a pessimistic sidelobe performance: real

sidelobes would be lower than this.

The normalised, squared response has been plotted to show the relative power of the return

from a specified direction.

lr
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Figure 6.2: The magnitude squared azimuthal response with non-uniform sampling,

TheskirtvisibleattheedgesofFigure6.l isaresultof thecrosscorrelationof tworectangular

chirp functions which are sampled at the Nyquist rate. Intuitively, when the functions start

to overlap, there are samples which do not cancel, resulting in large values. As the overlap

increases, averaging results in the expected low correlation. This skirt can be reduced by

windowing (see below). (In practice, the skirt may not appear since the antenna beam may not

be accurately modelled by a rectangular window function.)

It is interesting to note that the azimuthal response is twice as wide overall as the radar's

antenna beam, extending to a distance of LurT each side of the target, implying a non-causal

system: there is a response from a target beþre (and after) it is visible to the radar. This real

effect is due to the overlap between the filter and the target's response.

Figure 6.2 shows the azimuthal response with one instance of sampling with additive random

intervals which are uniformly distributed with a30Vo deviation. It is clear from Figure 6.2(a)

that the noise floor is poorer than in Figure 6.1, being -40d8 rather than below -60d8,
although there is very little difference between the plots' sidelobe structures in the vicinity of

the main lobe, shown in Figure 6.2(b).

In the uniform sampling case, Figure 6.1, the convolution of the target's response-an

impulse-and the rectangular window result in the distinctive beam pattern. In the non-

uniformly sampled case, the target's response is no longer a impulse, due to the samples not

being orthogonal. Convolving this with the rectangular window only suppresses sidelobes to

a limited extent.

-500 500

,, l, Ji
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Figure 6.3: The magnitude squared azimuthal response with uniform sampling and a Hann

window.

6.4.2 Weighting

Generalising Equation (6.10), the weighted azimuthal response to a single stationary target is

x'",(y; R, {t,},ur, À) : exP
,"à 

a(t"; R) a(t^ - y I uo: R) (d)"

*r(-¡,Try,^),

where d is a vector of weights.

l¡3t (d)* : d(t^), where d(t) is a continuous weighting function and {ú"} are the radar's

transmission times.

Figure6.3shows lx'^"(y;R,{t^},rr,À)l'fromEquation(6.12)evaluatedfortheparameters

listed in Table 6.1 for uniform sampling times and a Hann window:

|[r + cos(zrtlT)], ltl < r 12,

0, otherwise.

The magnitude has been normalised to the peak.

The skirt visible in Figure 6.1 has been suppressed in Figure 6.3, as expected. The shape is

that expected, being similar to that of the Hann window's spectrum.

Figure 6.4 shows the azimuthal response for one instance of sampling with additive random

inrervals which are uniformly distributed with a 3O7o deviation. The main lobe is like that

of Figure 6.3(b). The sidelobes, however, differ greatly for the reasons discussed in the last
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Figure 6.4: The magnitude squared azimuthal response with non-uniform sampling and aHann
window.

section: with an inherently noisy beam pattern, rather than an impulse, a Hann window does

not completely solve the problem.

6.4.3 Maximum ISLR

The integrated sidelobe ratio (ISLR) is a useful criterion as it simultaneously takes into account

both contrast and resolution.

Boni et al. (1994) optimises the weightings and the positioning of elements of a non-

uniformly spaced, linear array. The ideas in this section were taken from that paper.

The ISLR is defined as the ratio of the mainlobe to sidelobe energies

ISLR : =-E*=-.Í'f - 17¡ø

where Ev is the mainlobe energy and E7 is the total energy. Maximising the ISLR therefore

suppresses sidelobes.

Note that the energies do not need to be normalised prior to finding the ISLR, since any

scaling factor will cancel.

Using the weighted azimuthal response Equation (6"12), the energy over a specified az-
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imuthal interval -l 3 A < I
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(6.13)

(6.1s)

E : l' ,l*,^"{rr.)l'dy
: D a" Ð a; o(t"; R) a(t^; R) .

TL TTL

This can be expresse d as dH Atd, where d is the vector of weights and Al is a matrix with

entiles

(At)^," o(t"; R)o(t^; R)I a(t^ - y luo; R) a(t^ - y lur; R) .

Il,'fr- - v I uo; R) a(t^ - a I uo;,R) exp (t'T\r^ -'^lr) ¿,

QrTSo^-,-t) 
d, (6 14)

(A")^,^ : 2art".(#(r- - r,,))

exp

The energy in the main lobe is given by Equation (6'13) with I : ¿

lx'".(a;')l'da.

The width of the main lobe, 2¿, is the synthetic aperture resolution

,il R)
2a : P"o : ,L@ 

: ,;;(t^"" t^i)'

where the target is visible to the radar between the times f -¡. ârd Ú-o,. Since (-o, o) is small,

equivalent to a very small fraction of a degree of beamwidth, the antenna beam pattern does

not vary much from its maximum value, so ø(t - y lupiß) = l. Eu can then be expressed

using a simplified version of Equation (6.14)

t' -- l-,

(where sinc (r) ê sin(ø)/ø).

The total energy, given by Equation (6.13) with / : å

Er lu ul*'""{rr')l'da

may have to be solved numerically, since b < R0,"f 2 is large. This results in the matrix ,46,

which is defined similarly to A¡ in Equation (6.14).
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The optimal weights d are then given by the generalised eigenvector associated with the

minimum generalised eigenvalue of the pencil matrix

Añ
^A"d

(Boni er al. 1994).

Unfortunately, d has to be recalculated for focussing each pixel as the radar travels, since the

transmission positions are in a different place relative to the main beam2. This fact, combined

with the high computational load required, restricts the usefulness of this technique in practice.

Although this criterion could be applied to the problem of determining the optimal transmis-

sion times, it makes little sense to, since the radar is moving continuously, so that the optimal

positions cannot be maintained relative to a given scatterer. In addition, The main objective of

this thesis is the detection of moving targets, not ground imaging.

To demonstrate the beam pattern with optimal ISLR weights, a short range scenario was

chosen (so there would be a computationally feasible number of sampling times): -R : 330m.

Under these circumstances, the main beam approximation Equation (6:15) was not valid, so Ao

was determined using Equation (6.14). Figure 6.5 shows the short range azimuthal responses

for uniform sampling with rectangular and optimal ISLR weights, respectively. The main

beam was assumed to extend to +0.5 m and the sidelobes were constrained out to *5 m for

illustration purposes. It can clearly be seen that the sidelobes are unconstrained outside t5 m!

ISLRs: rectangular window, 9.22d8; optimal, 14.88 dB.

Figure 6.6 shows the corresponding azimuthal beam patterns for an instance of sampling

with additive random intervals which are uniformly distributed with a3OVo deviation. ISLRs:

rectangular window, 7.56 dB ; optimal, 12.7 I dB.

6.5 Effects of a Non-Uniform PRI

The performance of an instance of a non-uniform PRI is summarised by Table 6.2. The ISLRs

are parameterised by the width of the main lobe, which is either the width where its response

has dropped to -3 dB of the peak, the position of the first null or where the main lobe reaches

the level of the peak sidelobe.

2It may be possible to generate the weights for a large number of samples by interpolating those found for a
small number (private conversation with Dr Barbarossa, EUSAR'96).
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Figure 6.5: The magnitude squared azimuthal response with a short range and uniform sam-

pling.
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Figure 6.6: The magnitude squared azimuthal response with a short range and non-uniform

sampling.

Transmission times
and weights

rsLR (dB) PSL (dB)

-3 dB width first null peak sidelobe

Uniform, rectangular
Uniform, Hann

Non-uniform, rectangular
Non-uniform, Hann

4.00
5.49

2.10
4.56

9.30
29.86

6.40
t2.61

9.05
29.6

6.25
12.61

-r3.3
-31.5
- 13.1

-29.19

Table 6.2: Imaging performance: integrated sidelobe ratios and peak sidelobe levels for

various sampling schemes, weights and resolutions; I 1.2 s integration period. The non-uniform

sampling scheme uses random intervals with3OVo deviations.
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6.5.1 Resolufion

The resolution of an imaging system depends upon the aperture-the distance between the

ends of the antenna being used. The longer the aperture, the finer the resolution. In SAR,

the aperture length equates to the integration period. The sample times during this period

do not affect the resolving capability of the aperture, although they do affect the sidelobe

performance. Therefore, for an arbitrary scene, the 3 dB resolution of a SAR is given by

Equation (2.5) whether the transmission times are uniform or not.

However, using a model based approach, such as the one outlined in Section 6.3.1, has the

potential to increase the resolution beyond this, provided that the model is valid.

6.6 The Azimuthal Response with Random Sampling

The objective of this section is to determine the expected azimuthal response given the distri-

bution of sampling times, rather than to just use a particular azimuthal response resulting from

an instance of a sampling scheme.

For the weighted response, the expected result is

E IX',"(A;R,pr(t),r0,l)j - exp Q'#)
oo

D (¿)" Ea[r(ú")],
t¿= - ôo

where

x(t^) : a(t^; R) ü(t^ - y lur; R) *o(-¡rTþr^),
based on Equation (6.12). (As previously noted, the expected response is of interest, rather

than the expected squared response, since it is the response which is exhibited by the radar.)

This is a special, weighted case of the expected ambiguity function, Equation (3.28), where all

the parameters of the reference target are known except for its position.

So

E [X'",(y;R,pr(t),r,,l)] : exp(.) D @)" lr. L,l, x(tn) Pr"r''"''z'(lr 't2''" ' 
r¡¡)

oo

7¿= -OO

ôo: exp(.) D (¿)"

d,ttd,tz... dt¡,¡,

r(t) p7"(t) dt,
f¿= - oo l,^ (6.16)
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if the PDFs are independent, or

t57

if the PDFs are the same. Note that in the latter case, the shape of the expected response doesn't

depend upon the values of the weights, provided that their sum is nonzero and finite.

As an aside, nore that when ø(t) : I Vr, we have nrþ*p(-¡2'++t")1, which is the

characteristic function of the random variable ú,, (Cooper and McGillem 1986).

Several sampling PDFs will now be considered.

6.6.1 Case 1: Uniformly Distributed Times

Suppose that

o the sampling PDFs are uniform:

E lx'""(a; R,pr(t),,', ))l : exp(.) 
l,ä,0,") lr.U, pr(t) dt, (6.t7)

"-rQ'#)i #: r¡zexp(-¡z!fft) 
at, o1y 1r,

*rþH) I fl",+r?"*p( ¡z!fft) at, -r < u 10,

0, otherwise,

pr^(t) : tlT, -r12<t<T12,
0, otherwise,

Vn,

where T : R!.," is the time taken by the SAR platform to travel the length of the synthetic
úp

aperture,

o the {(d)"} sum to I{, the number of samples in the synthetic aperture, and that

¡ the antenna beam is uniform over the length of the aperture, as described by Equa-

tion (3.12).

Then, using Equation (6.17),

E lx'",(u; R,,pr(t),ro, À)]

, -T 1y 17,

otherwise.

(Th,, -ru,l (6.18)
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Figure 6.7: The magnitude squared expected azimuthal response with uniformly distributed
random sampling.

This is a continuous version of the unweighted response (Equation (6.11)). Its square has been

plotted in Figure 6.7 for the parameters shown in Table 6.1.

There is a strong resemblance to the uniform antenna beam, Figure 6.1, although the skirt

does not appear in this plot.

6.6.2 Case 2: Uniformly Distributed Offsets

This case uses Equation (6.16), a uniform beam pattern and uniformly distributed offsets

as discussed in the non-uniform sampling section (Section 2.1.6). Borrowing a result from

Section 3.7.1,

Er lx',"(y ; R, pr (t),r0, À)]

-500 500

dt -r0,o 1y 1 Rï,o,

I
ïl

otherwise.
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Figure 6.8: The sinc2(') scaling factor for the radar's expected beam power pattern when

non-uniform sampling with uniformly random offsets are used.

ErlX'^,(A; R, {t,},r0, À)]

I

slnc

otherwise.

With ó : 0, the result is the same as the uniform sampling case (Equation (6.I 1)). Otherwise,

the response is multipliedby the sinc(.) function, which has little effect over the range 0 < å <

0.5. (If it could get larger, to say 5, it would be able to usefully suppress sidelobes, which is an

ironic application for non-uniform sampling.) Figure 6.8 shows this sinc(') function squared,

plotted for the parameters shown in Table 6.1 and ó : 0.5, the largest it can sensibly be.

As was noted in Section 3.7.1, having ó: 0.5 gives the same result as using uniformly

random sampling times, Equation (6.18), except for the slightly different integration time.

6.7 Conclusion

The contribution of this chapter was to perform coherent irnaging with a SAR with arbi-

trary transmission times, discuss several sidelobe reduction strategies and derive the expected

azimuthal response when random transmission times are employed.

The use of a non-uniform PRI inevitably incurs an imaging performance penalty which may

be at least partially suppressed by using fixed weights, such as Hann windows, or position-

varying weights, such as those used to optimise the integrated sidelobe ratio. However, the

primary consideration here is simultaneous imaging and moving target detection: computa-

tionally expensive, slightly degraded imaging may be worth the benefit.

z?]fft"u -Rï,o5y3R0,",

0
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Application to Real Data

This chapter demonstrates the use of a synthetic aperture radar (SAR) with a non-uniform

pulse repetition interval (PRI) to both image the ground and perform moving target detection.

Non-uniform transmission times are simulated by the resampling of real, oversampled radar

data, which are focussed on the ground and on the moving target.

7.1 Introduction

Data from the airborne SAR INGARA were obtained for moving target experimentation from

the Microwave Radar Division of the Defence Science and Technology Organisation, Australia

(Stacy and Burgess 1996)t. The data were uniformly spaced and oversampled the signal by

a factor of 3.5: since they satisfied the general bandpass sampling criterion for capturing the

signals fromboth the stationary and the moving targets, they could then be resampled according

to any desired scheme, realistically simulating non-uniform transmission times.

The contribution of this chapter is to perform imaging and movingtarge| detection using

non-uniformly resampled real SAR data. Section 7.2 discusses the data, its resampling to

simulate both a conventional and a non-uniform PRI SAR and the focussing of both the ground

and a trials vehicle with a known velocity. The vehicle's parameters are estimated from the data

in Section 7.3. Clutter cancellation is demonstrated in Section 7.4. Conclusions are presented

in Section 7.5.

lThe author expresses his thanks to Dr Nick Stacy for his kind assistance.
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slant range

azimuth

(a) SAR Image. (b) Key.

Figure 7.1: An area containing moving targets. Slant range is lefrright; azimuth is top-bottom.
The vehicle of interest, not visible in the image, is travelling from left to right along the road
in the box. A second vehicle appears immediately to the left of the vertical road in the upper
left of the image; it is grossly defocussed, but still appears, due to its large azimuthal velocity
and small range velocity.

7.2 Moving Target Imaging

Figure 7.1 shows an X-band SAR image of a scene in South Australia. The white outlined

box highlights an area containing a trials vehicle carrying a corner reflector and travelling

approximately in the range direction at 18kph. Table 7.1 contains the radar parameters.

The data were provided already range compressed and motion compensated, requiring only

azimuthal compression.

Figure 7.2 shows the range compressed data. The moving vehicle and its mounted corner

reflector are clearly visible as a diagonal line. Its brightest rsturn is offset from its actual

broadside position 
-just above the centre of the image - probably because the corner reflector

was not directed normally to the aircraft's direction of travel. This causes a bias in the parameter

estimation, discussed in Section 7.3.

The pulse repetition frequency (PRF) was 378 Hz, about 3.5 times the 3 dB Doppler band-

width of the ground clutter, which was I l5Hz. It was intended that the trials vehicle indicated

in Figure 7.1 be travelling at l.4mls so the data would be unaliased-this PRF could ac-

commodate an unambiguous range velocity variation of *.3.02mls. Unfortunately, the target

moved at approximately 4.9 m/s; its Doppler centroid was at about -3l0Hz, so its response

was subsampled. Fortuitously, this spectrum was mostly outside that of the ground clutter, so

road

actual vehicleof of interest

defocussed
second
vehicle



Given Platform velocity
Real antenna beamwidth
Frequency
Sampling interval
A/D sample rate

Range

69.l68mls
1.50

9.375 GHz (X-band)
0.184343 m
50 MHz
29500m

Misc Doppler centroid (nominal) -0. 1 00 cycles/azimuthal samplet

Derived 3 dB Doppler bandwidth, B¿

PRF
Range resolution
Ground integration time

æ 115H2
318.47H2 (x 3.58d)
2.998 m
11 s (2D filter)
8.5 s (lD filterl)

7.2. MOVING TARGET IMAGING 163

tThe was to s tn areas

fThe integration time is reduced by range migration.

Table 7.1: Parameters corresponding to the real data.

Range
(m)

Intended
Speed (m/s)

Actual velocity
Speed (m/s) Direction (dee)

29617 r.4 4.93 -5
to s port

Table 7.2: Moving target information. The speed was estimated by 2D focussing of the image

to place the vehicle on the road.

the data were still usable. The target's parameters are shown in Table 7.2; a representation of

the spectrum of the data is shown in Figure 7.3.

To simulate a radar operating with a PRF approximately equal to the 3 dB Doppler band-

width, the data were corrected for the Doppler centroid error, upsampled, the moving target

was translated in frequency to its correct spectral position, and the result was subsampled. This

process is illustrated in Figure 7.4. The parameters are shown in Table 7.3.

Given Doppler centroid offset
Range

Range resolution
1D integration times

-0.04 cycles/azimuth cell
29617 m
2.998m
ground 8.5 s

target 0.59 s

Chosen PRF
Integration time
Target lower frequency

108.1H2 (378.47 + 3.5)

4s
47.25H2 (0.25 x Nyquist)

Derived Azimuthal pixel spacing
Azimuthal resolution

0.65 m
ground
target

1.7 m (2.6 cells)
24m (37 cells)

Table 7.3: Panmeters used when imaging the moving target area
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raw data
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Figure 7.2: Range compressed data corresponding to the highlighted area in Figure 7.I(a).
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Figure 7.3: The spectrum of the signal and sampled data, showing the subsampling problem.
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actual
target band / r - * signals removed* -

I I frequ"n.y (Hz)signal

-378 -310 68
initial position

ll5 Hz of target in data
Doppler bandwidth

new Nyquist limits: 757 Hz

Figure 7 .4: The spectrum of the upsampled data, showing the frequency translation of most of
the moving target signal and some of the ground signal.

The steps were:

1. The azimuthal data in the highlighted area were first corrected for the Doppler centroid

offset caused by a relative motion between the aircraft and ground in the range direction.

This was done by multiplying by a complex exponential whose phase changed linearly

as a function of position.

2. Thedatawerethenupsampledby afactorof twousingMAILAB's2 resamplefunction

3. Most of the moving target signal was separated from the ground clutter using a ninth order

Butterworth bandpass filter implemented with the f iltf ilt function, which had zero

phase distortion. The lower frequency of 47 Hz was chosen to best separate the moving

and stationary targets, based on a visual inspection of the short time Fourier transform of

the data.

4. The moving target (and part of the ground signal) was then subtracted from the upsampled

data, translated by -378.47 Hz to its correct spectral position, and added to the data.

5. The data were then decimated by a factor of seven to give an effective PRF of 108.13 Hz.

Figure 7.5 shows the processed images, focussed with one dimensional filters. The inte-

gration time, used for both images, was much less than the optimum 11 s to allow for range

migration. The moving target appears displaced from the road in the ground-focussed image,

Figure 7.5(a). The ghosting of the tree line across the road is an artefact resulting from part

of the ground data being shifted in frequency along with the moving target; it is analogous to

azimuthal ambiguity, but appears at half the target- ambiguity separation.

frequency translation

- ground

378

2MATLAB version 4.2c, @ 1984-94The MathWorks, Inc
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Figure 7.5: Conventional SAR images of the moving target area.
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Figure 7.6: Non-uniform PRI SAR images of the moving target area.
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Figure 7.5(b) was focussed with a filter tuned to the moving target parameters. (The

azimuthal velocity was assumed to be zero and the range velocity was estimated using the

knowledge that the target was travelling along the road). The target is in the correct position

relative to the road in Figure 7 .5(a), and is sharper than in that image. Its still blurry appearance

in azimuth is due to the poor resolution (11m), which results from the short integration time,

and decorrelation, due to non-linear target motion. Both the short integration time and the

range blurring were due to range migration.

The target in the moving target-focussed image has a higher amplitude than in the ground-

focussed image. Its greater range extent results from an improved overlap between the target's

phase history and the matched filter in the frequency domain. The filter's bandwidth is less than

half that of the target, so much of its phase history was not compressed in the ground-focussed

image.

In this example the target is clearly visible to a conventional SAR, albeit incorrectly posi-

tioned. Only in specialised cases would it be possible to infer the velocity of a moving target,

knowing its position relative to the road on which it is travelling, due to subsampling ambigu-

ities (which exist here) (Raney l97l). Targets with substantial azimuthal velocity components

are far less visible, requiring filters at a variety of possible velocities.

7.2.1 Non-Uniform PRf Smulation

To simulate a radar with a non-uniform PR[, the data were upsampled and the moving target

translated as before, and then upsampled further by a factor of 50. Samples of this were chosen

using a non-uniform pattern where intervals were t20Vo of the nominal PR[, which was the

reciprocal of the 3 dB Doppler bandwidth. A summary of the data sampling rates is 378.47 Hz

(original PRF) -r x2 (for correct moving target positioning) --+ x50 (interpolation) + +700

(random decimation) -r 108.13H2. (Of course, in practice the only data collected would

correspond to the transmission times chosen, so no resampling would be necessary.) Resulting

images are shown in Figure 7 .6; as desired, the moving target is defocussed in Figure 7 .6(a)

and the ground is defocussed in Figure 7.6(b).

This is an important result. It demonstrates the potential of a SAR with non-uniform

sampling to distinguish between stationary and moving scatterers, supporting the assertion

discussed throughout this thesis.

Imaging sidelobes have caused a minor degradation of quality in the dark areas of Fig-

ure 7.6(a) compared with Figure7.5(a) when they are at the same range as bright areas. The
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Figure 7.7: Peak filter outputs for different ranges and filter range velocity parameters; i :
0m/s.

significant features, such as the trees and the fence posts along the edge of the road, have been

imaged similarly.

The diagonal artefact does not appear in Figure 7.6(a), having been defocussed as if it were

a moving target. (Azimuthal ambiguity would be affected similarly, since it would occur at an

equivalent speed of about 1.7 mls. This suggests that non-uniform sampling can be used by

a ground imaging radar to achieve the same azimuthal resolution as a conventional SAR, but

withfewer samples. Equivalently, higher resolution could be obtained with the same number

of samples3. This is analogous to a real, sparse anay higher resolution is achieved by the use

of a larger aperture and the same number of antenna elements. An assumption is that the scene

consists of relatively few, bright scatterers, which are the features of importance.)

7.3 Moving Target Parameter Estimation

In order to estimate the moving target's parameters from the data, the non-uniformly resampled

azimuthal data were filtered repeatedly using various values for the range and azimuthal

velocities. This is equivalent to an exhaustive search. Figure 7.7 shows the normalised

magnitude of the peak ñlter outputs where the azimuthal velocity is zero and the range velocity

is varied between 0 and 10 m/s. The position of the moving target in range can clearly be seen.

The lower right hand edge of this plot, where -R : 0 m/s, corresponds to the peak output from

the focusse d stationary scatterers.

3This was suggested by Dr Alan Bolton, mid-1994.
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These data are shown in two dimensions for clarity in Figure 7.8. The peak is at R : 4.7 mls.

The discontinuities away from the central peak are due to the filter output being evaluated at

large intervals.

Figure 7.9 shows the peak filter outputs when the data at the range giving the peak output

in Figure 7.7 wasprocessed with Ä : 4.7 m/s and y varied. There is only a very slight change

in this amplitude. The peak is at gi : -0.9 m/s, corresponding to the slightly diagonal path of

the road in the image.

Figure 7.10 shows the moving target focussed using these estimated parameters: R :

4.7 mls and y - -0.9 m/s. The target is clearly displaced from the road in this image, despite

the parameter estimation. This is probably due to the vehicle-mounted corner reflector not
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Figure 7.10: The moving target focussed image using the estimated parameters fi : 4.7 tn/s
andy - -0.9mls.

being aligned normally to the flight path of the radar, as noted earlier and shown in Figure 7.2.

(It is interesting to note that this l00m displacement from the road was due to only aO.2mls

(0.72 kph) error in range velocity.) This image is clearly better focussed than Figure 7 .6(b),

however. In addition, the background is clearly better suppressed than in that figure, which

follows from the response shown in Figure 7.8: the filter has a much larger response for

R:4.7 m/s than 4.9mls.

7.4 Clutter Cancellation

This section demonstrates cluttercancellation by implementing an approximation to the scheme

discussed in Section 4.5. Figure 7.Il shows the incoherent difference between the ground-

focussed images produced using conventional and non-uniformly sampled data.

The only visible features are the moving target and the diagonal artefact from the con-

ventional image, and the defocussed moving target from the image generated from the non-

uniformly sampled data. Stationary scatterers, including the trees, have very effectively been

cancelled, permitting the target to be detected under conditions of severe clutter. This comes
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Figure 7.1 1: Clutter cancellation example: the difference between the ground-focussed images,

Figure 7.5(a) and Figure 7 .6(a).

at the expense of the volume of data being doubled, however.

Since the image's background shows little energy, it can be concluded that the image of the

ground produced by the non-uniformly sampled data is very similar to the conventional SAR

ground imagery.

7.5 Conclusions

This chapter's contribution was the demonstration of a SAR with a non-uniform PRI using real

data. Processing included ground imaging, moving target imaging and parameter estimation,

and clutter cancellation.

Although there is some degradation in the quality of the imagery produced by a radar using

a non-uniform PRI in comparison with a conventional system, the former has successfully

demonstrated the ability to unambiguously resolve moving targets and preserve the important

features of the ground image with real data, whtlst using the same quantity of data as the

conventional SAR. It is to be noted, however, that the vehicle in this scene was a trials vehicle

carrying a corner reflector; targets of opportunity may be more difficult to detect owing to their

smaller radar cross sections.
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Summary

The major contribution of this thesis was the application of a non-uniform pulse repetition

interval (PRI) to a synthetic aperture radar (SAR) to address the problem of simultaneous

ground imaging and moving target detection (MTD).

In a wide area surveillance scenario, the detection of man made objects is of the highest

priority. It was proposed for such a scenario that a SAR using the same average pulse repetition

frequency as a conventional ground imaging radar could result in

o the minimum amount of data to be collected and processed,

o the multimode radar being able to perform other duties interleaved with these SAR MTD

transmissions, such as searching for, tracking and identifying airborne targets,

o improved electronic warfare characteristics, including a lower probability of radar detec-

tion and increased difficulty of deception, and

¡ little or no range ambiguity penalty.

Section 8.1 summarises the technique by addressing the SAR MTD problems and consid-

ers advantages and disadvantages of non-uniform sampling, Section 8.2 lists areas of future

research and Section 8.3 concludes this thesis.

8.1 Summary of the SAR MTD Technique

Addressing the issues of an imaging/NlTD radar:

Ground imaging The ground is to be imaged faithfully at high resolution.

This is done accurately and efficiently by a conventional SAR.

t73
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Non-uniform samples lack the orthogonal properties of uniform samples, resulting in

worse imaging sidelobes and a greater computational expense (chapter 6).

Detection The existence of moving targets is to be determined.

This cannot easily be done by a conventional SAR due to the pulse repetition frequency

being only sufficient to sample the ground-a moving target's aliased spectrum will

always overlap that of the ground (Raney l97l) (Section 2.3).

A non-uniform PRI SAR is able to detect a moving target outside the unambiguous

bandwidth of a conventional SAR (Chapter 4).

However, the target's Doppler centroid must be outside the bandwidth of the clutter (or

its Doppler rate must be different from that of the clutter) in order for it to be detected,

as discussed in Section 3.6. Since this bandwidth is proportional to the radar platform's

velocity, it follows that slowly moving targets may only be detected when the platform

travels slowly. This restriction results from using a single antenna; it is not specific to

non-uniform sampling.

Since the target's motion may not be linear, or have random variations, the radar data will

decorrelate if they are integrated over too long a period. This limits the radar's detection

performance. (For a slow SAR platform operating at long range, as with the experimental

data used in Chapter 7, the target is visible for several seconds.) Integration time can be

minimised by:

o operating at shorter ranges,

o operating at broadside,

o using a larger antenna (to give a narrower beamwidth, since the integration time is

proportional to this), and

o using a lower azimuthal resolution (i.e. multilook processing, which commonly

performed for speckle reduction (Wehner 1995)).

Position and velocity estimation The target's position and velocity are important parameters

to be estimated.

The estimation may be performed in two dimensions using non-uniform sampling. In

contrast, conventional moving target indication systems have only coarse position in-

formation and determine only the range rate of the target (Shrader and Gregers-Hansen

1990).
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The conventional ground imaging SAR has the problem of aliasing moving target signals,

creating velocity ambiguities. These are resolved using non-uniform sampling (Chap-

ter 5). Furthermore, the statistical variability of the estimates, as characterised by their

Cramér-Rao lower bounds (Sections 5.4.2 and 5.5) is comparable to that of uniform

sampling.

Target decorrelation is a problem for parameter estimation as well as detection, affecting

the accuracy of the estimates. This is common to a/l SAR imaging with a single antenna,

including those with unambiguous PRFs, since azimuthal resolution requires looks from

different directions. If the target's specific motion or shape are of interest, inverse SAR

imaging may be used (Section 2.5).

These issues have been discussed in detail in this thesis.

In addition, these advantages of non-uniform PRIs should be noted

Efficient radar hardware use Simultaneous ground mapping and moving target detection can

be performed with the same number of transmissions as conventional SAR. Additionally,

a multimode rada¡ with no strict requirements regarding transmission times may perform

other functions between the transmissions to the ground.

Good electronic warfare characteristics A radar broadcasting few, non-uniformly spaced

transmissions is relatively resistant to electronic warfare.

Range swath Since the minimum PRI is fairly long, MTD is achieved with linle or no range

swath penalty or ambiguity.

There is also the potential for a SAR to use non-uniform transmissions to defocus azimuthal

ambiguities. (This was mentioned in Section 7.2.1). This technique would provide the radar

with a very high azimuthal resolution in an environment with sparsely distributed scatterers.

Current problems with the technique include:

Scene complexity There may only be a few moving targets in the scene; otherwise, a higher

mean PRF may be needed to capture the azimuthal signal (Section 2.7.7).

Computational cost Due to the non-uniform sampling, computationally efficient signal pro-

cessing techniques cannot easily be used. This is an important consideration.
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8.2 Future Research

There is much scope for future research on the topic of SAR with non-uniform sampling.

Possible areas include

o determining the optimal transmission times for the radar to use, subject to the various

criteria listed in Table 2.2 (see Appendix E),

o finding methods of processing non-uniformly sampled data to minimise the computational

requirements,

r applying different techniques to estimate the parameters of moving targets and quantifying

their performance relative to the Cramér-Rao lower bounds (Sections 5.4.2 and 5.5),

o applying different clutter cancellation methods to improve moving target detection per-

formance (Section 4.5),

o determining the susceptibility of conventional and non-uniform PRI SARs to various

electronic countermeasures (including jamming and deception),

o using non-uniform sampling to increase the radar's azimuthal resolution by permitting

longer integration times, and

o the use of least squares (and other model-based techniques) to improve imaging perfor-

mance over conventional methods (Section 6.3.1).

8.3 Conclusion

This thesis has investigated the novel application of non-uniform sampling to synthetic aperture

radar moving target detection. The technique was analysed in detail from several viewpoints:

the ambiguity function, optimal moving target detection, optimal parameter estimation and

imaging. During this, several important results were found.

The non-uniformPRl SAR demonstrates the ability to unambiguously resolve moving target

velocities and preserve the important features of the image while using the same average PRF

as a conventional SAR. However, there is some degradation of image quality in areas which

have low reflectivity compared with adjacent scatterers and there is a substantial computational

penalty.
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Extended Ambiguity Function Properties

The extended cross ambiguity function (AF), Equation (3.14), is duplicated here for reference:

xt"1t'¡,,ç¡(r.,ó',ó') : ,/- t(,) ,*(t - r) e-i2"(Ót+Ó'*) dt

Similarly to the conventional cross AF, Equation (2.16), this describes the radar receiver's

response when it passes the signal returned from a distant, moving point target through a filter

matched to the original signal. However, in addition to the radar's signals s(ú) and r(ú), the

time delay r and Doppler frequency /, there is also a Doppler rate term /' caused by the

relative acceleration between the radar and the target.

If r(ú) : s(ú),Equation (3.14) becomes

x'"1r¡,"ç¡(r, ö, ó') : 
,/-- "(,)"*(¿ - r) e-iz"(ót+Ó't') dt

: 
"-ir(ór*ó'r',r, I:sþ + r lZ)s.(t - r f 2) e-iz"l($¡$'r)t+6't2) ¿¿

: 
"-lr(órró'r'/z) 

y"(r, x, ó,)

where X"(r, x , /') is referred to here as the symmetric extended ambiguity function. Note that

*: ö* ó'¡.
Properties of the symmetric extended AF follow. (Blahut (1991, page 16) and Cook

and Bernfeld (1967, pages 68-76) list the properties of the conventional Woodward AF,

Equation (2.15).) The conventional results are obtained from the following if // : Q.

l. Let r:OandS':0: ¡"(0,ø,0) : /å l"(¿)12 ¿-i2"'t dt,whichistheFouriertransform

of the square of s(t).

t7l
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2. (Origin)I-et r : 0, t: 0 and ó' : O: X"(0,0,0) : /å lr(¿)lt dt : Ep, the energy in

'(r).

3. (Shift) Let s'(ú) : s(Í - A). Then X",(r, *, ó') : ¿-i2r(xa¡þ'a') y,(r, x + 2ó,L, ó,).

4. (Modulation) Let s'(t) : s(ú) 
"i2rft. 

Then ¡",(r, r, ó') : ¿i2rÍr X"(r, x, $')

5. (Symmetry) ¡"(r, r,ó'): X!?r,-î,-ó')

6. (Maximum) The largest value of the AF always is at the origin.

lX"(t, *,ó')l < lX"(O,0,0)l : øo,

with strict inequality if (r,r,d') I (0,0,0).

7. (Scaling) Let s'(ú) : s(¿ú), with ¿ > 0. Then

X",(rrxró') :

(Note that ø does not need to be greater than zero with the normal AF, but instead requires

lal in the denominator (Blahut 1991, page 16).)

8. (Quadratic phase) Iæt s'(ú) : s(ú) einot'. T\en

X",(r, x,, ó') : X"(r, x - ar,, ó').

9. (Volume property) It is well known that

l:Ëlx"(,,x)12drd,r : lx"(o, o)l' : 4,

which implies that the shape of the envelope of the AF may be rearranged by altering

s(f), but not reduced overall.

However,I have not been able to show that

I*"("',:,t.)

Ë Ë I*-l*"?, r, ó)f d,r d,x dó' : a constant.
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10. (Product rule) l-et z(t): u(t)u(t). Then

X"(rrx,Ó'): Ë xu(r,,À,ó' lz) x,?,r - ), Ó' 12) d^

is the convolution of the two individual functions in the Doppler domain, and a scaling

in the Doppler rate domain.
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Apppmox B

SAR Clutter Modelling

This appendix derives a simple model for ground clutter in synthetic aperture radar (SAR) for

the purpose of generating a covariance matrix as discussed in Section 4.2.4. This model is

compared with those in the literature (Barbarossa l992b,Ward 1994, Smith 1995).

The modelling of clutter is a significant field of radar (e.g., (Skolnik 1990)). In order for

a moving target detection radar to perform well, it is important that the model adopted by the

signal processor accurately represent the scene visible to the radar.

The ground clutter model discussed in Section 4.2.4, developed by Barbarossa (1992b),

is very simple; although it was derived from a Doppler viewpoint, it assumed no change in

geometry during the integration period. It is shown here, however, that it is a very good

approximation to the more accurate model derived in the next section.

8.1 Time Domain Clutter Modelling

The clutter vector o" should be derived from the same model as the signal from a moving

target, pAa(O,d), as defined in Equation (4.4). The scenario is represented by Figure B.l,

showing the clutter as a uniformly distributed collection of independent scatterers at similar

ranges. (This is known as the 'sandpaper' clutter model (Smith 1995).) This is a changing

geometr], rather than Doppler, viewpoint: it is the difference between the signals received by

the radar in two different positions which are important, rather than the motion of the radar, as

utilised by Barbarossa (1992b).

The covariance of the clutter R" : øla.a!), so its entries

(Iù")*,r : EÍu.(tu;,B) ul(t¡; A)1,
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Figure B.l: A representation of the ground clutter model.
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where {t,} are the sample times, ';' means 'parameterised by' and ,R is the minimum range

of the many scatterers in the scene, assumed to be the same for the entire data set due to the

prior range compression and nalrow antenna beamwidth. The expectation is with respect to

the random, complex amplitudes of the clutter returns, which are assumed to be statistically

independent and identically distributed.

The clutter response at time t¡,, u"(t¡;-B), is modelled by integrating the range-compressed

radar returns from all the scatterers:

u"(t*;A) : l]*Þ*,r^*, a(u;R)us(u;R) d,u

z is the relative position of the radar and scatterer, expressed as a difference between the time

the radar was in a particular position and the time it was adjacent to the scatterer. þR,tr+, is the

complex amplitude of the return from the scatterer adjacent to the radar at time t* I u.

uo(u; R) : exp(jLtrlFo"u + Fd,(R)u2l2l) (B.1)

(Equation (2.10)) is the geometry-dependent phase term. F¿" is the Doppler centroid and F¿,

is the Doppler rate. These are assumed to be the same for all scatterers due to the similar

radar-scatterer geometries. (This formulation deliberately neglects constant gain terms, such

as attenuation losses, being more concerned about the structure of the clutter.)

This model is similar to those used by Ward (1994) and Smith (1995), who formulate

the clutter covariance for a space-time adaptive processing (STAP) application. Both use

uncorrelatedclutter (althoughWard(1994) dividesthe scene into afinitenumberof uncorrelated

clutter patches, rather than having infinitesimal patches). The coordinate systems are different

from the one used here, with both references integrating around the azimuth angle rather
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than incorporating the SAR-clutter geometry. That is more appropriate when the patterns of

the receiving elements have large beamwidths; for a naffow beamwidth, as with SAR, it is

reasonable to neglect range migration effects for small values of Ú¿.

Both references assume a linear phase dependent upon the scatterers' positions, rather

than a quadratic phase. This is reasonable due to the very short length of a STAP antenna,

but is inappropriate for a long, synthetic array. However, both models tend towards that of

Barbarossa (I992b), Equation (4.8), when a naffow antenna beam and small radar position

change are assumed.

Using Equation (8.1), the covariance

(-R")*,r "ll I þn,,r+,, þh,,,+,, a(u1; R) a(vz; R) '

exp(j2trlF¿"(rt - u2) ¡ Fo,(R)(r? - ,î) l2l) du1 d,u2f

| | nlø",rr+,, þ*n,t,+,,f aQ¡ R) a(u2; R) '

exp(j2rlF¿"(rt - u2) ¡ F¿,(R)(r? - ,ôl2l) dv1dv2.

Since the scatterers' amplitudes are independent, they are uncorrelated

Elþa,ro¡,,þ**,r,*.) : p2 6(t¡, * q - tt - uz)

Then

(R")0,¡ p2 I a(uz + tt - t*i R) a(u2; R) ' (

"i2r 
(F a"Qzlt t -t k - v2)+ F d,l@2tt¡ -t ¡)z - 4l / z) ¿r,

O2 "- 
i2r[F a ct d+ F drtzd/ 2l

l*-tt, - ta; R) a(u; R) 
"-i2rFarvta 

¿, (8.2)

r(td),

where ta : t* - f¿ is the difference between the sample times of interest. Therefore, the

covariance is a function of the timing differences. This reflects the stationarity of the clutter

process.

For broadside stripmap operation, Equation (4.6) may be used with

0 : uptl R2 + (urt)2, (8.3)
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giving the antenna's normalised azimuthal power response

F(t\ : ,in.o /"---2þ1-)\/ 
\ 

^rlvr+(u,t)2)

a(t) : rinr'("
)

(8.4)

À

Duot

R2 + (uot)2

This may be substituted into Equation (B .2). Now, either Í¿ is small (in the order of several sec-

onds, say) in comparison with z (which approaches too) or t¿ and u have similar magnitudes,

in which case a(u - t¿; R) does not change much. (The limits of ú¿ were chosen to lie within

the 3 dB beamwidth of the antenna.) It is therefore reasonable to allow a(u - t¿; R) : a(r; R).

Additionally, normalising and using the assumption that Fo" : 0 (since the scatterers are

stationary) allows Equation (8.2) to be written

r(t¿) x 
"-itF¿,tzo l* o'(r, R) e-i2nF¿.'td du. (B.s)

With a change of variables (Equation (B.3) for 0 and Equation (4.7) for /, assuming rhat

R Þ urt), this is similar to the model with the power spectral density given by Equation (a.8)

(Barbarossa 1992b) except for the initial phase term. The next section shows a numerical

comparison of the two.

8.2 Comparison between Doppler and Time Domain Models

Figure 8.2(a) shows the power spectral density of the Doppler clutter model, Equation (4.8),

with a range,B : 30km, platform velocity up :'70mll wavelength I : 3.2cmand antenna

length D :1.2m.

Figure 8.2(b) shows the incoherent difference between this and Equation (8.5). This

difference is clearly very small, being in the order of -60 dB, justifying the use of Equation (4.8)

for the numerical examples in this thesis.
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Figure 8.2: Acomparison between the Doppler and time domain SAR clutter models.
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Apppxptx C

Biased Estimator Lower Variance Bounds

It is well known that the Cramér-Rao bound is the lower bound on the variance of an unbiased

estimator. This appendix discusses the Iower variance bound when a particular, biased estimator

is used.

The Cramér-Rao bounds for the 1l unknown parameters stored in the vector z are given by

CRLB{(f¿)01 : (J-t)r,r

where J is the Fisher information matrix, which has the entries

(J)¡,r ê n 0lnp(y;u) 0lnp(y;u)
0(u)r 0(u),

(from Equation (5.6)). p(g;u) is the probability density function of the measurement gt

parameterised by the unknowns. E['] is the expectation operation.

Often we are interested in specific, possibly dimension reducing functions of the unknown

parameters u; let these be denoted by the -R x I vector g : g(u). (An example of such a

transformation is that of estimating the signal-to-noise ratio of a sinusoid when its amplitude

and the variance of additive, white, Gaussian noise are unknown.)

It is shown by Kay (1993, page 4546, lV72) that the lower variance bounds for the

estimation of a transformation of the unknown parameters satisfy

^ AEtel ,-,081þl'r- o - ----;-¿-Y ðu 0u
0

t87
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(meaning that the left hand side is non-negative definite). The Jacobian

aE[(g)'] aB[(g)'] aE[(g)']
o(u),

anÍ6)rl
o(u),

aE[(0),]

ô(u)*
aElG)rl

ô(u)' ô(u)z ô(u)x

aE[(g)"] an[(g)"] ôn[(g)n]
0(u), 0(u)z ð(u)o

and T is the matrix transpose operation. 0 is an R x R square matrix with all elements set to

zero.

It follows that the lower variance bound for a biased estimator may be found via Equa-

tion (C.I) by using the expected value of that estimato4 expressed in terms of the actual

porameters, as avariable transþrmation. We then have g(z) : E[fr]. Then g is a I{ x I
vector. This gives

c¿-u\y't-'ry > o, (c.2)

so the lower bounds themselves are given by the diagonal of C ¿;

This is the vector equivalent of the scalar result published in, e.g., (Van Trees 1968,page 146).

In the limiting case, where an unbiased estimator is used, g : [(u)r,(u)2,. .. , (z)rç]T, so

tnat 
aåHl : /, the identity matrix. Therefore, the lower variance bound

Var[(ir.)¡] > (C a)r,o : (J-t)o,o : CRLB{(f¿)É},

the Cramér-Rao bound.

As afurtherexample, foran additivebias, g : ul ö, where ö is a vectorof bias values.

Tht" ':Hil : .r also, so from Equation (C.2) the lower variance bound is still the Cramér-Rao

bound.

l0AE
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Appexox D

The Complex Gaussian Fisher

Information Matrix

This appendix derives the Fisher information matrix for a random process æ N

CNx(*(u),R), where ^(u) is an l/ x I mean vector dependent upon the parameters

u : lut,lr2¡. . .,u*l' and .Ft is an /ú x Iy' covariance matrix. This problem is similar to one

solved by Kay (1993,page73-76) for a real Gaussian distribution.

æ's probability density function is

p(*;u) : #1.-'l "*p(-[, - *(u)]'R-'[' - "'(r)])

(using Equation (4.I2)),where H is the conjugate transpose operation.

The Fisher information matrix has the entries

(J)0,, ê r' 0lnp(æ;u) ?lnp(æ;u
7ur ïut

(from Equation (5.6)). The left term in the expectation is:

If we let U : æ - ,n(u) be the random values centred on 0, then

ry#P : rcP]' n-,tæ - rn(u)l + [, - m(u)]H R- ,ïnt(u)
0u*
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0lnp(æ;u) ôlnp(æ;u)
ôu* ôut

ôrn(u)\ A"rr1r¡H,=d#)T 
"--'a 

+

%P)sHR-
: UTJ:,'^-,o ôTf).R-,v 

+ u,R-,ryPaTf)"R-,s t

,)rn(u)
Ôrt

(2)

0rn(u) y'R-' ôrn(u)
0ut

(r)

ryP' r,-'v s' R-'uT::' i sH p-'l
0u*

(3) (4)

The expected values of each of these terms will now be considered:

Et(r )l "lW' r.-, y y, r,-,' u 

T::,.l
a 

T #)' r'-, nlu u, I 
*-,, u *uÍï,

a 

TP' '.-' 
nfu v" ) 

*-' u i!;'

where I is the transpose operation and * indicates conjugation. (Note that fil-l - R-t".)
Now,

ø[vv') : e[{"+ ib)("+¡Ð'l
: nl"",l - n[aa'] - ¡nl"u,l - ¡zfa",l

so that Et(1)] : 0 since the real and imaginary parts of y have equal autocovariances and are

uncorrelated.

Next:

0,

Et(2)l

_rïrn(u)
0u*

since E[uvt] : *.
It is easily seen thatEI(3)] : E[(2)]*, and that E[(4)] - 0 using a similar argument to rhat

used for E[(1)]
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Therefore,

(r)*; : ,o{ 9T#)'R ,ïrn(u)
0ut

where ft{.} returns the real part of its argument.
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Apppxpx E

Notes Regarding the Optimal

Thansmission Times

This appendix discusses issues related to determining the transmission times to be used by a

synthetic aperture radar (SAR) performing moving target detection and ground imaging with

the minimum number of transmissions. An investigation into the relative performance of the

multitude of possibilities is beyond the scope of this thesis.

E.1 Introduction

Although the randomly distributed sampling scheme may theoretically give the best perfor-

mance with a large number of samples (Section 2.7), other non-uniform radar pulse repetition

interval (PRI) schemes may be more appropriate for SAR. Note the specific SAR sampling

requirements discussed in Section 2.7.7.

There are several SAR moving target performance requirements: ground imaging, moving

target detection/indication (MTD) and moving target parameter estimation. The first should

be representative of the scene, the second quick and reliable and the third accurate in both

position and velocity. Estimating the target's radar cross section has a low priority.

Accordingly, each proposed sampling scheme should be rated according to its imaging

performance, detection statistics, parameter estimation performance (bias and variance) and

computational cost. (Its ambiguity function may also provide useful insights.) The performance

requirements are listed in Table 2.2.
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8.2 Possible Schemes

The author has divided sampling schemes into three classes: deterministic: heuristic, deter-

ministic: optimal and random. These will now be discussed.

8.2.1 Deterministic: Heuristic

These sampling schemes usually consist of a fixed number of unique sampling intervals

repeated continuously. They are chosen to satisfy a simple, common sense criterion, such as

having only a few sampling intervals-under these conditions, fast Fourier transforms may

be used and filter weights may be precalculated.

There are many possible schemes, some of which are:

High PRF bursts These may be separated by gaps, a low pulse repetition frequency (PRF) or

random PRIs. They are intended to permit moving target indication (MTÐ filtering by

allowing processing over several equally spaced samples.

Different PRFs This is similar in concept to a Doppler centroid estimation technique discussed

in Section 2.5 (Chang and Curlander 1992),where moving targets' Doppler centroids may

be found unambiguously using MTI and the chinese remainder theorem.

Minimum redundancy This scheme, based on sparse array theory, is discussed in detail in

Section E.3.

8.2.2 Deterministic: Optimal

It may be possible to find schemes which optimise the different figures of merit derived in this

thesis. Possibilities are

Imaging Transmission times may optimise the radar's azimuthal beam pattern, for example

the integrated sidelobe ratio (as done in Section 6.4.3).

Moving target detection There are three MTD expressions from Chapter 4 which may be

maximised with respect to the transmission times {úr}: the signal-to-disturbance ratio

improvement I,¿, (Equation (4.19)), the detection threshold 7 (Equation (4.24)) and the

o term in the Marcum-Q function used for the receiver operating characteristic. The

optimal filter, Equation (4.16), is valid for any transmission times; substituting this into
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each of these expressions gives the common result

195

(E.l){t¿} "p, 
: arg max û'(o,t)P'd(Ð-l û@,t)

{¿' i

where û(0,t) is the signal weighted by the two-way antenna pattern, 0 contains the

target's parameters, (t)¿ : t; arc the transmission times and Al¿(t) is the disturbance

correlation matrix.

A fourth alternative is to maximise the ratio of the signal-to-disturbance ratio improvement

for non-uniform samples to the value for uniform samples, thereby minimising the impact

of (or maximising the benefit from) the non-uniform transmission timesl. However, since

the denominator of this is independent of the non-uniform sampling times, the expression

for the optimal times simplifies into Equation (E.1).

Due to the matrix inverse, Equation (E.l) is an extremely difficult equation to solve.

Although this has been attempted by the author, no useful simplifications have been

found, and the equation may have to be solved numerically.

Parameter estimation The estimation errors may be minimised by optimising the Fisher

information matrix, Equation (5.7). This could be done by maximising its determinant,

for example. This is another very difficult problem, since it cannot be assumed that the

noise is white, and the covariance matrix depends upon the sampling times.

There may be little value in any of these results, since they may only be optimal when

the parameters of the radar and target match those used during the optimisation process. For

example, optimality may be achieved at a range of 30 km when a target in a certain azimuthal

position has a ground velocity of 5kph in range and lOkph in azimuth. Suboptimal results

may be achieved for a target in another position.

There is the possibility of adaptively changing the PRls depending upon a suspected detec-

tion, however.

8.2.3 Random Sampling Scåemes

It was shown in Section 3.1.l that it is preferable from a spectral estimation point of view to

use random sample times rather than repeated ones, as the sidelobes are spread out over a wide

lConversation with D. Gray, 1996.
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bandwidth. This is beneficial for SAR since

¡ with imaging they degrade the background, rather than cause azimuthal ambiguities,

o with parameter estimation they are less likely to affect the peak or cause ambiguities, and

o randomness gives improved electronic warfare characteristics due to its unpredictability.

However, randomness has the disadvantage of increased computational requirements: the

filters required for processing the data have to be recomputed for every radar position and

target velocity. Some possibilities are:

Good spectral estimation Equation (2.18), a relationship between the spectrum of the sam-

pling process and the probability density function of the sampling intervals, may be used

to design random sampling schemes which have good properties.

Work similar to this was done by Vergara-Dominguez (1993), who found the relationship

between the sampling probability density function and the signal-to-disturbance ratio

improvement and the velocity coverage percentage for both random intervals and random

offsets. These could be applied to the SAR problem.

Random intervals Random intervals, correlated and uncorrelated, were discussed in detail in

Section 2.7.6. They have good properties, tending towards those of uniformly distributed

samples in the limit (but without the problem of infringing the minimum transmission

interval). This means that the expected parameter estimation accuracy and imaging

performance tend towards those of uniform sampling (Sections 5.5 and 6.6).

Random offsets Although the properties of random offsets may be inferior to those of random

intervals, there is some potential for a computational saving: since small offsets do not

affect a slowly changing phase very much, a conventional, position invariant matched

filter may be applied to the central part of a target's azimuthal phase response, thereby

partially focussing the scatterer. For high resolution focussing, far shorter, position-

varying filters corresponding to the ends of the chirp may be applied and incorporated

with the low resolution image2.

Some sampling distributions may be mathematically interesting but unusable, such as the

Poisson distribution, which gives alias free spectral estimates but violates the minimum PRI

requirement.

2Dr Alan Bolton,6th May, 1995.



8,3. MINIM[./]Ví REDU]VDANCY SAMPLING S CHEME r97

Of course, it is possible to employ a sampling scheme which incorporates combinations of

the schemes listed above.

8.3 Minimum Redundancy Sampling Scheme

This section describes a novel deterministic sampling scheme in detail.

The philosophy adopted here is to arrange the transmission times such that their differences

span the range from half the reciprocal of the highest frequency of interest to the period of their

total duration in equal increments. The smallest time difference is limited by the reduction in

unambiguous range.

This is an original contribution. It is based on a technique used for sparse phased array

antennas attempting to determine the direction of arrival of as many targets as possible, e.g.

(Pearson et al. 1990). (Non-unifonn arrays were mentioned briefly in Section 2.7.8.)

The covariance matrix corresponding to an arbitrary SAR scene is given by Equation (B.2),

which is a function of the differences between the radar's N transmission times. Thus for

the times ú : [0, l,23fr, there are four ways of finding r(0), three ways of finding r(l),

two ways of finding r(2) and one way of finding r(3). However, if all the time differences

were different, such as for t : [0, 0.5,2,,3]1, many more values may be found for r(r): in

this case, r(0), r(0.5),"(l),r(1.5), r(2), r(2.5) and r(3). Even though the latter sampling

scheme has the same span as the former, it doubles the bandwidth of the unambiguous spectral

estimate: the intervals between the r(.) estimates have been halved, and the estimated power

spectrum is given by the Fourier transform of the covariance by the Wiener-Khinchine relation

(eg, (Cooper and McGillem 1986, page 253)). Note that the covariance samples are uniformly

spaced.

(For a phased ¿uray, the number of unique directions of arrival is given by the number of

unique spacing separations between antenna elements. If the anay had N uniformly spaced

elements, this would be N - l. V/ith non-uniform anays, the figure may be much larger-up

to l[(N - l)12 (Pearson et al. 1990).)

Unfortunately, optimal spacings do not exist for more than four samples. Beyond this, the

spacings with a minimum redundancy may be used. For a given 1ü, these have a minimum

number of repeated differences while guaranteeing that all differences are present. Pearson et

al. (1990) present an algorithm for generating a close approximation to these optimal spacings.

This concept may be applied to SAR by first considering the highest unambiguous frequency

desired. Suppose it were acceptable for the moving target to be detected unambiguously up to
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spectrum: minimum redundancy sampling intervals: 30 elements.
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Figure E.l: Estimated spectrum; minimum redundancy intervals

l0 times the bandwidth of the ground clutter (which is realistic, due to range ambiguity effects

and the increasingly non-linear moving target azimuthal response, Equation (3.11)). Using

Pearson's algorithm, it was found that this requires l{ : 30; the time intervals, normalised to

be in multiples of l, are l, 1, l, 1, 10, 10, 10, 10, 10, 19, 19, 19, lg, Ig, lg,lg, 19, Ig, lg,
19,9,9,9,9,5,1, 1, 1, l,givingaspanof 308. Transmissionswiththeseintervalscouldbe

generated repeatedly.

To detect targets, the returned signal is range compressed and dechirped at each Doppler

rate of interest prior to finding a spectral estimate. (Dechirping is necessary since the technique

relies on the signal being stationary.)

As an example of a spectral estimate, Figure E.l shows the estimated spectrum of a2.2Hz

cisoid sampled using four repeated sequences, each with a duration of thirty seconds. It
can clearly be seen that the aliases occur at multiples of about l0Hz. This figure should

be compared with those of the random offsets and random intervals, Figures 2.10 and 2.I2,

respectively. The first sidelobe is at approximately -6 dB, as opposed to æ - 13 dB for the

latter two, and the noise floor is several decibels worse than either.

8.4 Conclusions

This appendix classified and discussed many potential SAR sampling schemes. Minimum

redundancy sampling was described in detail. It is beyond the scope of this thesis to compare

them quantitatively.

lJr!¡l
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