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ABSTRACT

The microcystins are a range of cyclic heptapeptide hepatotoxins produced by a number of
common freshwater cyanobacteria. They have been shown to be tumour promoters in mouse skin
and rat liver. There is also strong epidemiological evidence of their involvement in the high rates
of primary liver cancer in certain areas of China due to the consumption of cyanobacterially

contaminated drinking water.

The effects of the microcystins are believed to be due to their potent inhibition of protein
phosphatases 1 and 2A, enzymes which are intimately involved in the maintenance of cellular
homeostasis, and in the regulation of the cell cycle. The Ki for the interaction of microcystin and
these enzymes is in the range 0.1 - 1.0 nM. Microcystin binds to the active site and can form a
covalent attachment there. Other toxins which target these enzymes, but which do not interact
covalently, include nodularin, okadaic acid, the calyculins, and cantharidin. Microcystin and
nodularin also differ from the others just mentioned in that they require active uptake by a
transport system related to that responsible for bile acid uptake. This confers a high degree of
liver specificity, and also means that a high intracellular concentration of toxin can be achieved at

relatively low exposure levels.

The present study examined the tumour promoting effects of the microcystins through two
independent means. First, a long term in vivo dosing study was performed in which cyanobacterial
extract containing a range of microcystins was given in drinking water to mice which had been
previously treated with the tumour initiator N-nitroso-N-methylurea by gavage. The aim of this
study, given that liver cancer is not a major form of neoplasm in western populations, was to
determine whether microcystins could promote non-hepatic tumour growth, in particular in the
upper intestine. Morbid animals were killed and a careful post-mortem examination was
performed. Liver, duodenum and any other affected tissues were examined histologically and
tumour growth was quantified using image analysis techniques. No significant differences were
found between the two microcystin-treated groups and the control group in terms of survival or
degree of development of tumours, nor in the type of tumour engendered.

Second, the effects of pure microcystin-LR were examined in cultured primary hepatocytes from
immature mice. The cells were isolated by collagenase perfusion from C3H/HeJ mice and grown
in conditions under which proliferation occurred without mitogenic stimulation. Previous studies
have used Epidermal Growth Factor (EGF) to induce proliferation in the hepatocytes in culture,
however, in this system EGF masked the effects of microcystin-LR. Therefore unstimulated cells
were exposed to the toxin. Effective concentrations of toxin were lower in this system than in
others which have been reported.

Microcystin-LLR was selectively toxic to hepatocytes in the range 1.0 - 100.0 nM. Cellular uptake
of tritium-labelled toxin was progressively lost during five days in culture. Therefore, further
studies were performed over three days of toxin exposure. A number of outcomes were seen
depending upon the toxin concentration and dosing regime used. In an experiment where cells
were exposed to a single addition of toxin, 1.0 nM microcystin-LR induced effects consistent with
a stimulation of cytokinesis, whereas a concentration of 10.0 nM microcystin-LR induced an
inhibition of cytokinesis. Cell-selective toxicity at this higher concentration also caused the
enrichment of a more proliferatively active cohort of cells. A reduced rate of cell death, possibly
due to interference with the apoptotic process, was also detected at 1.0 and 3.0 nM toxin.
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Microcystin-LR did not promote an EGF-like proliferative response. In all other experiments,
cells were exposed to multiple changes of medium containing microcystin-LR over three days in
order to maintain a more constant exposure. Similar effects to those seen in the single-exposure
experiment were observed. However, the effective concentrations were about 10-fold lower.
Thus, a stimulation of cytokinesis occurred at picomolar concentrations, whereas an inhibition of
this process was apparent at 1.0 nM toxin. Cells surviving a first exposure to 10.0 nM
microcystin-LR remained insensitive to further additions of the toxin, instead proliferating at a
rate greater than the untreated control.

The interaction of microcystin-LR with the apoptosis inhibitor nafenopin was explored. This
compound generally minimised the effect of microcystin-LR at all concentrations. This finding
suggests that at picomolar concentrations, microcystin-LR may have had an inhibitory effect on
apoptosis, whereas at selectively toxic (nM) concentrations of microcystin-LR, the toxin may
have been inducing an apoptotic response in some cells.

The cellular toxicology of microcystin-LR was compared with that of okadaic acid. There was no
evidence that okadaic acid had any effect on cytokinesis. Instead okadaic acid inhibited DNA
synthesis in a purely dose-dependent manner. The dose-response curves for cell death and DNA
synthesis inhibition were of similar shape. However, that for cell death was in the low nM region,
whereas that for DNA synthesis inhibition occurred at concentrations about ten-fold lower. This
was not the case with microcystin-LR, where DNA synthesis was unaffected in cells resistant to
microcystin-LR toxicity. Therefore, the extent of *H-thymidine labelling of DNA in cells exposed
to okadaic acid decreased with increasing toxin concentration, whereas the labelling of DNA in
cells exposed to microcystin-LR did not directly correlate with toxin concentration. This suggests
that either the differing affinities of these toxins for the protein phosphatases led to different
growth regulatory outcomes, or that microcystin-LR exerted a selective pressure on the
hepatocyte population such that less toxin-sensitive, proliferatively active cells were favoured.

To further explore the possible effects of microcystin-LR on the various hepatocyte sub-
populations, flow cytometric methods were developed in order to be able to differentiate between
cells based on their DNA content, that is their ploidy, which directly correlates with the level of
differentiation. To validate these techniques, nuclear (DNA) and cytoplasmic (protein) dual
fluorescent staining was used to monitor changes in ploidy and the rate of cellular division,
respectively, in a mitogen-stimulated hepatocyte population. The patterns of effects seen in these
studies compared well with those reported by other workers using different experimental
approaches. These techniques were then applied to a study of the cell cycle effects of microcystin-
LR. It was found that the acute toxicity of a single dose of microcystin-LR was only minimally
selective on the basis of ploidy at concentrations below 10.0 nM, the approximate ECs for acute
toxicity in this system. After three days’ exposure to microcystin-LR, using the multiple-addition
protocol outlined above, the number and proportion of binuclear cells increased with toxin
concentration up to 1.0 nM, above which a reversion to control levels was seen. Average nuclear
ploidy followed a similar pattern. These results suggest that up to 1.0 nM microcystin-LR,
proliferating binuclear cells accumulated in the hepatocyte population. At 10 nM microcystin-LR,
where cell-selective acute toxicity occurs, this effect was not seen in the hepatocyte population
surviving the first addition of the toxin. Therefore, the cells affected by microcystin-LR at lower
concentrations are also those preferentially killed by the toxin at higher doses.

Oviérall, the results from these hepatocyte culture experiments support the hypothesis that the
actions of microcystin-LR are not the same in all hepatocytes in the population. This selectivity
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may be due to the different rates of uptake of the toxin by the various sub-populations of cells
within the hepatocyte population, and also to variations in their cell cycle status at the time of
exposure. Therefore, one way in which this toxin might promote tumour growth is to selectively
Kill the more toxin-sensitive cells in the liver causing a regenerative response in the remaining
population. Furthermore, tumourigenic cells are generally diploid, tend to express fewer
differentiated characteristics than normal cells, and so are also likely to be less sensitive to
microcystin toxicity. Hence, they are likely to obtain a growth advantage during toxin exposure.
These effects are likely to play a role at higher exposure levels. When cells were exposed to a
single addition of 1.0 nM microcystin-LR, or multiple additions of the toxin at pM concentrations,
a promotion of cytokinesis appeared to occur in a significant proportion of the population. This
would have the effect of lowering the average ploidy of the hepatocyte population and therefore,
possibly, its level of differentiation. Lower ploidy cells, lacking the genetic redundancy of their
higher ploidy counterparts, are perhaps more susceptible to the effects of mutagens. An inhibition
of apoptosis, also suggested by observations made at these concentrations, could facilitate the
fixation of mutations in the genome of affected cells.





