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(i)

SUMMARY

The ai.m of the research undertaken was to

investigate groups of order coprime to six which admit.

a fixed-point-free group of automorphisms A isomorphj.c

to Se, and in particular to find a direct proof of the

solubility of such groups without using the FeiÈ-Thompson

theorem or other 'heavy machineEy'. this is a specific
case of the general conjecture that a group which admits

a coprime fixed.-point-free Eroup of automorphisms must

be soluble.

The first chapter consists of an account of the

necessary preJ-iminary results together with some other
result,s and examples which shed some liqht on the

properties of groups admitting a group of automorphisms

isomorphic to 53.

In chapter two we present results (obtained mainly

by Martineau and Glauberman) on the structure of maximal

,, V-invariant {p,q} subgroups of a minimal counter-

example to a more general conjecture than the one stated

above. These results are given in the most general

possible setting in order to be applicable to a wide

range of hypotheses-

In chapter three *" nror. that a minimal counter

example to our theorem has at, most three maximal

A-invariant {p,q} subgroups. This has proved to be

a useful mid-point in the deduction of solubility in
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other special cases of the conjecture, but does not

appear to be particularly useful in t,his instance.

Accordingly, a different approach was adopted,

and chapÈer four consists of preliminary results about

the maximal A-invariant subgroups of a mj-nimal counÈer-

example to the theorem. fn Èhe lasÈ Èwo chapters this
line of approach is developed and in a sequence of
arguments the structure of Èhese maximal A-invariant
subgroups is investigated, culminating in the prioof of
the theorem-
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INTRODUCTION

A grouP of automorphisms A of a group G is

said to be fixed-point-free (f'p'f') if it leaves

only the id'entity element of G fixed' lrle d'efine

Cc(A) = {xe cl*"=xVa€A}' Then A is f.P.f. on

G iff cc(A) = 1. The result that a finite group

admitting a f.p.f. automorphism of order 2 ís abelian

was proved' by Burnsid'e late in the nineteenth century'

andinlgOlFrobeniusprovedthatagroupadmit'ting

a f .p.f . automorphism of ord'er 3 is nilpotent of

class at most two (see t2l ) ' This prompted' Frobenius

to pose the following conjecture:

If G is a finite group admitting a f'p'f'

automorphism of o¡der p þ a prime) then

(i) G is soluble

(ii) G is nilPotent'

The proof of (ii) assuming (i) has been attributed'

to I¡Iitt in about 1936, and in any case the result

appears to have been known before Higman published

a proof in 1957. The proof of the conjecture was then

completed in 1959 by Thompson ( t2ol ) when he proved'

(i). Since that time, the conjecture has been extended

in various ways, and its most common form now is:

If G is a finite group admitting a f'p'f'

group of automorPhisms A with A cyclic or

tlcl,lell = r then
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(1) G is soluble -

(2) The nilpotent height of G is bounded above

by the number of primes dividing lel (counting

multiplicitY) .

In recent years most of the work on groups

admitting such automorphism groups has been centred

on (2), mainly because (1) appears to be a much deeper

problem, but also because by the result' of Feit and

Thompson in l4l, (I) follows if lel is even' There

have, however, been a few successes in proving (1) for

particular kinds of automorphism groups '

Thefirstresultinthisdirectíonwastheproof

of (I) when A is cyclic of order 4 by Gorenstein

and Herstein (t101) in 196I' In the mid-60rs Bauman

(t1])provedthatifAisaklein.fourgroupandG

is soluble then G' is nilpotent, and using this result

Glauberman proved (I) when A is the klein-four group'

An account of this work may be found. in [g], p. 351-356'

In 1968 Scimemi ( tISl ) generalized the result

of Thompson in Í,201 to the case where A is cyclic

of composite order, though he required additional

assumptions about the fixed'-points' Specif icalIy' he

proved:

Let G be a finite group admitting a f'p'f'

group of automorphisms [ = <o> of order n where

n is a product of distinct primes " ff the fixed-

points of the non-trivial powers of o are aII in the

same nilpotent HaII subgroup of G, then G is nilpotent'
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In a sequence of papers from L97L-73 ' Martineau

proved (1) (and' in some cases (2) also) for the

followingcases(weíncludeallresultshere'even

thoughSomerepresentimprovementsofothers,asthis
gives a better indication of the hard-won progress on

the proof of the conjecture):

(a) A is elementary abelian of order t' and

c"(cr.) is abelian fox all o' € A* ( tl2l ) '

(b) A is elementary abelian of order r" ( t13l ) .

(c) A. is elementary abelian of order 13 ( t14 I ) .

(d) A is elementary abelian ( tl4l ) '

During this period Ralston (tf7l) succeeded in

proving (f) when A is cyclic of order rsr where Ê

and s are d'istinct primes, and in Lg73 Martineau ( trsl ¡

was abte to resolve (f) when A is a soluble group

whose centre contains an elementary abelian subgroup

of order 13.

In 1975, Carr ( t3l ) proved the result in the case

when [ = <O> is cyclic of order r' where r is an

oddprime,undertheadditionalassumptionthateither

lc"tQt) I is odd or G has abelian Sylow 2-subgroups'

The most recent result was obtained in L976 by Pettet

( tI6 I ) . He proved (I) for the case that A is a

directproductoftwoelementaryabeliangroupsand

lel is not divisible by a Fermat prime'

Summarizitg, then, wê know that if A is a f'p'f'

group of automorphisms of G, with l lcl ' lal) = I if

A is non-cyclic, then G is necessarily soluble under

the following conditions:
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I A is cyclic of order P¡ rs (r + s)¡ 4t r'

(r odd. and. either lcot0ol I is odd' or G has

abelian Sylow 2-subgroups) or n (where n is

a product of distínct primes and the'fixed-

points of the non-trivial Powers of o are all

in the same nilpotent Hall subgroup of G)'

II A is elementarY abelian.

III A is a product Of two elementary abelian groups

and lel is not divisible by a Fermat prime"

IV A is soluble and z (A) contains an elementary

abelian group of order 13.

It should be noted that we have restricted

attention above to those results which are special cases

of the general conjecture, and then only to those that

can be obtained in a direct manner i.e. without employing

'heavy machinery' such as the Feit-Thompson theorem.

Thus we have omitted to mention the work of several

authors who have worked on hypotheses not requiring A

to act f .p.f . on G which also imply solubility.. AIso

Pettet has proved several cases of the qeneral conjecture

using 'high powered' methods, Rowley has similarly removed

the restriction of non-divisibilit.y by Fermat' primes in [16 ]

and Rickman has generalized some of the results above.

Ivlany of the proofs of the recent results listed

above have a common theme" using the facts that

cc(A) = I andeither A iscyclicor llel'lel) = I

it can be deduced" (see 19), theorems 1O'I'2 and 6'2'2)
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that for aII primes p dividing lel, A leaves

ínvariant a unique Sylow p-subgroup of G' These A-

invariant Sylow subgroups are then shown to be pairwise

permutable and. hence to form a Sylow system' P' Ha1l's

characterization of soluble grouþs ( t11l ) is then used

to deduce that G is soluble'

The most common technique used Èo deduce the

permutabilityoftheA-invariantsylowsubgroupswas

d.eveloped by Martineau, and involves a deÈailed

investigation of maximal A-invariant {p'q}-subgroups

of a minimal counter-example to the conjecÈure. Martineau

and' Glauberman ( t151, t8l ) have shown that one can say

a good deal about the structure of these subgroups for

a minimal counter-example to the general conjecture, and

usingtheseresultsforspecificcasesoftheconjecture

it is shown that there are 'not many' maximal A-invariant

{prq}-subgroups of G. This result is then used to

show that the A-invariant Sylow p- and q-subgroups

P and O of G must in fact permute' It is apparent'

however, that even under very strong assumptions about

the structure of A, it is often not possible to prove

that P and O permute by a purely 'Iocal' argument'

Incleed, having generalized the preliminary reduction

usedbyMartineautofind'asmallboundforthenumber

of maximal A-invariant {p,q}-subgroups in the special

casewhereAisaproductoftwoelementaryabelian
grouPs,Pettet(t16])wasforcedtoresorttoaglobal
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argument to prove the solubility of G'

All automorphism groups considered thus far'

with the exception of the paper of Martineau [15], have

been abelian. Thus it, is nalural to ask whether any

such results may be obtained when A is non-abelian'

and since shult ( t191 ) has proved (2) of t.he conjecture

when A - 53 and, (lGl,lAl ) = L our attention is

drawn to (1) for this case- of course, the problem

has been solved by the use of high powered techniques

from the theory of sj-mple groups (see , foç example, l7l ,

corollary 7.3) even in the case when (lGl,3) = 1,

but we are interested in finding a direct proof in

the hope of shedding some light on the possible proof

of the general conjecture.

The first approach Èo this problem was to follow

the techniques developed by Martineau, and although

some key results which hold in several of the special

cases listed above do noÈ hold for Se, it was possible

by this method to find" a small bound for the number of

maximal A-invariant {p,q} subgroups of a counter-

example G of minimal order.

However, it then appeared to be very difficult

to deduce the solubility of G from this resulÈ

wit.hout making additional rather restricÈive assumptions

about G, and these restrictions were necessary

mainly because it seemed not to be possible to otherwise

guarantee the existence of any A-invariant {p,q}
groups.
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This difficulty led fairly naturally to an

entirely differenÈ approach to the problem which

entailed consideration of the structure of maximal

A-invariantsubgroupsofamj-nimalcounter-example

to the theorem, and using the results of Glauberman

in t51 it was possible using this method to deduce

the solubility of G.

Thenotationforthemostpartisstandard'

taken from t 9l - In addition, all groups are assumed

to be f inite arld wherever A = Sg, we take

A - an,alnt = T2 = L, T-rnt = T2>. FOr automorphisms

or,oz of G we wilt denote the result of applying or

followed by 62 to an element x ôf G by either xoroe or

ozor (x), whichever is the more convenient' FÍnally'

for a prime P dividing lcl, oP (G) is def ined to

be the maximal p-factor group of G' ì
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CHAPTER ONE

PRELIMINARY RE SU LTS

Thischapterconsistsofadetailedaccount

of the more basic properties of a finite group admitting

a group of automorphisms A = S¡ ' We begin by proving

two easy lemmas which will be crucial to our later

work.

l.lLEMMALetGbeafinitegroupadmittinga
group of automorphisms A = Ss. then we have the

following:
(1) C"(n) is an A-invariant subgroup of G'

(2) If A acts f.p-f- on G, then C"(n) is abelian'

has odd order and' is inverted bY r'

PROOF

(1) Clearly C" (n) is n-invariant'

If ¡€Cc(Tr), n(t(x)) = tn2(x) = t(x), so

t (x) € cc(Tr).

Thus C"(n) is t.invariant, and hence A-invariant.

(21 ]rÍ. A acts f.p.f. on Gt then r must act f'p'f'

on cc (n) .

Now by [9'] , theorem 10.1.4 , C" (n) is abelian

and inverted bY r.

By [9], theorem 6-2.3, lc"(n)l is coprime Èo

l.rtl = 2. tr



admitting a group of automorphisms A = Ss ' Then

(1) If G is cyclic ' Tt centralizes G'

(2) If C"(t) = L, rr centralizes G'

(3) If G is a p-grouP, either C"(r) + 1 or

c"(t) + 1-

(4) ff C"(n) = 1t G is nilPotent"

(5) irf. C" (n) = I then (x,xn> is an A-invariant

abelian subgrouP of G for aII x in G

satisfying either xt = x t ot xt = x'

L.2 LE

PROOF

(1)

Q)

(3)

9.

å Suppose that G is a finite grouP

If c is cYclic, aut(G) is abelian"

Aut(G) contains a homomorphic image of

result follows.

By [9], theorem 6.2-3n G has odd order"

Then by [9], theorem 10.4.1 we have G -

where I = {x e cl*- = *-t}.

So 'r inverts every element of G'

Now Vx e G, n2t (x) = nz 1x-l )

and tn(x) = n(x)-1 = n'(x-t)"

Thus fi2 (x-1) = n (x-t ) , so that n (x) = x'

The result follows.

rf C"(n) = C"(t) = Lt A is a regular group of

automorphisms of G, contradicting [9] ' theorem

s.3. 14 (iii) .

This is the result of Frobenius mentioned in the

introduction.

Since

A, the

c (t).r
(J

(4)



(5) rf co

Vx€G

Thus

As xn -l -1T=x x clearly
(t).

(r)

2'tf - 1Íxx=x = xnx, so

Lt then xxt*n' = *n'*n* =

by [9], theorem I0.1.1(ii) '

10.

I

e = lxrxr > is abelian-

R is n-invariant-

2 -t - 'tTx x, so

fi=xxr

Hence in both cases

tr

theorem for abelian

This lemma will also

finite abelian

3, admitting a

Sg " Then

A-invariant and

2

Then xt = x and *nt = xt*

R is t-invariant-

Similarly if xt = x-I, xnt =

so again R is t-invariant'

R is A-invariant.

We can no!ü Prove a strucfure

p-groups which admit Ss f'P'f'

be used extensivelY later.

1.3 LEMMA SuPPose that G rsa

p-group' P a Prime different

f.p.f. group of automorPhisms

(1) C = Cn (n) x Gt where

(2)

Now suPpose ¡ç € Cn

By

As

is
In

c
t̂t

2
ffx

2
TlTx (x-1) n2

from

A:

Gr is

Ic^ (r)(Jt

rf p + 2, G = C"(n) x C"(t) t c"(t)t'

PROOF

(1) [9] , theorem 5.2-3, we have G = Co(<n>) x

both G and <îT> are A-invariant ' Gr =

A-invariant. The result follows'

view of (1) , it' suffices to prove t'hat if

(n) = I then G = C"(t) * C"(t)n'

[G, <rT>] .

IG, <1I> ]

(2)



Let G* = Cn(r) t C"(t)n. Then as in Èhe proof

of lemma f.2(5) above, G* is A-invariant'

so A is a regular group of automorphisms of

c/Gt by [g ] , theorem 6 .2 .2 '

Thus G = G* bY lemma f'2(3) ' E

Thefollowingresultonthestructureofcertain

finitegrouPswhichadmitanautomorphismoforder3

willberequiredinourinvestigationofsr-invariant

{p,q}-grouPs.

Suppose that G is a finite

automorphism 1I of order 3 '

is a p-grouP (P + 3)' Ç =

IG, <n>l < G

11.

grouP

Then

c (n) . [G, <fi>]
ft

centrallzed bY fi

p-subgrouP of

, then Gz < G.

L.4 LEMMA

admitting

(1) rf
and

\¡

(2) TfG

and

c(p

= GrGz

Gz isa

+ 3) with

where Gr is

n-invariant

c- (r) = I\J2

an

PROOF

FirstIY '
IG, <fi>] , since

Now (f) follows

(2) [G,<r>] =
2

ÏT TT e G>.g ,9 g lg

€ [Gz , <T>] "

€ fGz , <r>f ,

If geGl
-I î:.gg=

=

it is
<1T>

from
-1<g

g

-l

clear that C" (n) normalizes

and C"(n) centraLLze each other'

[9], theorem 5'3'5'

gtgz fot some 9t € Gr ' 9z € Gz"

(grgr) -t (9rgz) r

92 9r
-l fi9z 9z

-l 'Ítgg

llfrf
9t9z

2

Similarly so IG, <TT>] [Gz, <fi>] .



But by (1) ' Gz = [Gz, <n>] = [G, <fi>] '

Clearty C"(n) = Gl r so by the remark above

Gz<GrGz=Ç.

Our next result concerns groups of odd order

which admit S3 f-P.f.

L2.

tr

I. 5 L EMMA Suppose G

order admitting a f.P.f.

is a finíte grouP of odd

group of automorPhisms A = Sa '

and let t = {x e cl*t = *-t}.

Then c^ (r) c r
(t

,. i i

i.

PROOF

and. Cc(n) = t <+ Cn(t)

By [9], theorem 10.4.I(i), G = C"(t)'r'

By lemma 1.1(2) ' C"(n) : I.

Lf. C"(t) = I then G - I = C"(n) by lemma L'2(2) '

Conversely, if C"(n) = T' I is an A-invariant

normal subgroup of G by [9], theorem I0'4'1(ii) '

Thus G/r = C"(t) is A-invariant, so c"(T) = 1'
tr

The next three results are crucial to the

discussion of the structure of a mi-ni-mal counter-

example to the main theorem.

1.6 THE0REM LeÈ G be a finíte group with

( lcl ,gl = I which admits a f'p"f' group of automorphisms

A = Ss. Then for all prime divisors P of lel ' A

leaves invariant a unique Sylow p-subgroup of G'

I.
)
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PROOF

Let P be the set of all n-invariant Sylow

p-subgroups of G- Then P I 0 by [9] ' theorem 6'2'2'

Since lTT = TT2, t permutes P' and since t has

order Z each orbit of r on P has order I or 2'

Now if P,Q € P, by [9] , theorem 6'2'2 ax e c"(n)

suchthat Px=Q. Thus P-QÐP=Px
<+ x € Nc(P) n Cc(r).

so lPl = (c"(n) : c"(n) n Nc(P) ) I lc"(n) I

Hence I Pl is odd by lemma I'1(2)' so that some orbit

of r on P has order I '

That is, 3P € P such that P is t-invariant' and

hence A-invariant.

Now let PrQ be any two A-invariant Sylow

p-subgrouPs of G.

Then by [9 ] , theorem 6 '2 '2

Q = Px.

Thus O - t(Q) = r(P)t(*)

i.e. N, € NG(p).

But v € Co (n) so

Hence ¡¡ € Nc (P) ,

fx€C (n) such that
(J

-l I

=Px ,so P)(
x

P

x has odd order bY lemma I'f(2) '

so that A leaves invariant a

unique SYIow P-subgrouP of G'

Let G be a finite soluble grouP with

tlel,gl = I which admits a f'p'f' group of

automorphisms A = Sg' Then for all facLoxízations

lCl = mrl with (mrn) = 1, A leaves invariant a

unique Hall m-subgrouP of G"

tr/

L .7 L EMMA
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PR00F

Since the analogues of (i) and (ii) of 19l '

theorem 6.2.2 hold for HaIl m-subgrouPs of a soluble

group (using the analogous argument), we can apply the

same argument as in the previous lemma to deduce the

desired result. E

1. 8 L EÌ'll,lA

which admits

If H isan

A induces a

Let c be a fínite grouP with (lcl'¡l = 1

a f.p.f. group of automorphisms A = Ss'

A-invarj-ant normal subgroup of Gt then

f . p. f . automorphism group of G/H' '

Suppose CclH (A) + l. Then 
""7" 

{o) has an

A-invariant s1'1ow p-subgroup R/H for some prime

Let p be the A-invariant sylow p-subgroup of K

so that KIH = PH/H-

Then Vx € P-H, A leaves xH invariant'

Thus Va € Ar xt = xh fot some h € Ht so that

*-t*t€pnH.

It follows that A leaves

But if p * 2, [9] ' theorem

f.p.f . on PfP r\ Ht and if

hence A, acts f.P-f" on

Wethereforehave x€Pn

PROOF

I.9 L EMl'lA

tlcl,el
Let

1 and

pe

The next lemma enables us to

techniques to find' a sma]I bound on

A-invariant {P,q} subgrouPs of a

example to our theorem-

the coset xP fi, H invariant'

5.3. 15 asserts that A aqts

p = 2 then rtt and

P/P n H bY lemma l"I(2) '

Hf acontradiction. ¡ :

apply Martineau's

the number of maximal

minimal counter-

If c admits a

G be a finite soluble group with

let S be a SYlow P-subgrouP of G' i

f.p.f. group of automorphisms A = S¡

then G op, (G) .C" (z (s) ) .Nc (J (S) ) .



15.

PROOF

we proceed bY induction on lcl.
If op,(G) + 1, then by lemma 1.8 and the inductive

hypothesis we get

SO , (G) SO , (G)

c/op, (G) = Ce /o
(z( p

) ) .N (r( P ))
p , (c) o , (G) G/o , (c)

o , (G)p pp

z(s)o , (G) J (S)O , (G)
p p

G/o , (c) o , (c)p o , (G)
p p

( ) 'Nnzo . (G) (' p'

Thus 
" 

= on, (G) . cc(z (S) ) .Nc (J(S) ) as required

(it is routine to check that if T,M are subgroups

of a solubÌe grouP H such that tlrl,lull = I then

NH,zu (TMIM) = NH (T) M,/M and cu/nßM/M) = C" 11¡ l'tlu) '

Thus we may assume that Op, (G) = 1.

Now by [6], coroltary I we may assume that P = ?

(since tlcl,¡l = 1).

But then l.ntl is relatively príme to lcl and n

has no fixed. point of order 2 by lemma 1'1(2)'

The result then follows by [O], corollary 2' tr

The two main results obtained' by Shult (t 191 ) on

soluble groups admitting a coprime automorphism group

A = S¡ which acts f.p.f. are also critical for our

later work, and for the sake of completeness are

repeated here.



I6.

1.10 THE0REM (Shult r [191¡. If G is a soluble

group of order coprime to 6 admitting a f.P.f. group

of automorphisms A = Ss I then G has o-Iength at

most one for any collection o' of primes dividing

lel,

1.11 THEOREM (Shult, [19 ] ) .

group of order coPrime to 6

of automorPhisms A = Sg then

If G isasoluble

admitting a f.P.f. group

G' is nilpotent.

The following lemma is included because it

gives some insight into the way 53 can act f.p.f'

on certaln groups of order coprime to 3, even though

the result j-tself does not appear to be particularly

useful.

I.L2 LEMMA Let c be a finite group of order

coprime to 3 admitting a f.p"f. group of automorphisms

A = S¡. Suppose that I < Gr < G is a normal A-

invariant series of G such that Gr and G/Gt are

elementary abelian. Suppose further that A acts

irreducibly on Gr and G/Gt. Then either G is

abeliant ot lcrl = p2, lc/crl = q for primes p and q

suchthatqlp+1if p=5or11 (12)andqlp lif p=1
or 7 (L2).

PROOF

Since the only irreducible representations of

A over any field. have degree I or 2, the only

elementary abetian groups on which A can act

irreducibll' are 
"n 

and 
"n 

t 
"n.

Thus lcrl=pa and lclcrl =qb where 1(a,b(2-



Suppose first that a = 1- Then Gr is

hence centralized' by fi by lemrna I'2 (1) '

If þ = I, G/Gr is also centralized bY

L7.

cvclic and.

fÍ, and so

G is centralized bY r-

Hence G iS abelian by lemma 1.r(2) . Thus !'re may assume

that þ = 2.

If p * g, \^re can write G = GrQ r¡¡here 0 is the

A-invariant Sylow q-subgroup of G"

But then O < G by lemma L.4(2), so that again G is

abelian. ,

lle are lef t vrith 5 remaining cases:

I a = L, þ = 2, p = q

II a = 2, þ = Ir p = q

III a=2, þ=Lt p+q

IV a = b = 2, p = q

V a = b = 2, p + q.

trnIe deal with each case in turn '

I Clearly r^/e may assume that G is non-abelian'

Sothatby[9],theorem5.5.l,Gisisomorphic

to one of ta¡ (P), t4(P), Ds or Q¡ where

tf s (p) .g,hlgP gP*lt

l, Ig'h] Ih, k] t

irP 1
hq

l4(p) = <g,h,klgp=hP=ktr =

and Igrh] =

an<l Ds, Q¡ are respectivelY

quaternion groups of order 8.

k>

the dihed.ral and'
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By lemma 1.1(2), r acts f'p'f' on a 2-gtoup'

so G must have odd ord'er. Now both l't¡ (p)

and l¿(p) are extra-specialr so Gr = zrc) in

both cases.

Let Gr = <z> and' G/Gr = <xGr 'YGI> where

(w.1.o.g.) zn = z' (xGr)n = *l'-tc', and

(xGr)t = Y"r-

Then xn = *y-r za and Yn = *'"b for some

arb e Z.

suppose that [xry] = ,i i"e' xY = YxzL "

Applying 'rÍ, we get xy-t ,u*-'"b = x t'o*Y-t alzz

-r -l -t a+b+ia+bxy x z

-t Ixy x yz

-I -l

v z

-t -r

-1Now xy =Y xzr -tsoyz I
v z

Thus ,'i = L, and' hence 'í = I since G has

odd. order.

Thus x and y commute and G is abelian' a

contrad,iction.

Again \^te may assume that G 'is non-abelian' so

that as above G is isomorphic to Ms (p) or

vr(p) . As both are extra-special , Z(G) has

order p and hence Z(Gl ( Gr ' But then A does

not act irreducibly on Gl r a contradiction'

Let G = GrQ where O is the A-invariant Sylow

q-subgrouP of G.

0\

II

III



Then O is cyclic and' hence centralized by

by lemma 1.2(1).

Suppose first that P and q are both odd''

!,,f.1.o.g. tet Gr = <xry> where xt = x-ty,

r9.

uv
v

-Ê af ß.

fi

n -ly =x
Since Gr

for some

Applying

and xr=y and Q=<z> where

4 Gr z'txz = *oyß and' z-'Yz = x

0(orßrurv(p-1.

fi to ,-t*, = xoyß we get'

ftz z

-l -lzxyz (x-ty)a1v-r¡ß

(z-'x-lz) (z-'yz) -a- ß ct=x v

-o-ß o=x v

u-cl v-ß -a-ß ctx v =x v

Thus u-cr, = -u-ß(P) and' v-ß = c¿(P)

i.e. u = -ß(p) and' v = cl+ß(P).

-1So we have z xz= and z yz=x v

.I ct t¡re qetAppIying T to z x.z

-t

*-oy- ß*oyt

oßxy'

,-'t9yo,

*o ßyß ' *-oßUcr 
2 +o ß

ß=xy

zyz CT

v

v

(z-' xz) ß ( r-' yr) o

cr2+oß+ß2
v

ßx

Thus u,2 + crß + 92 = 1(p) .
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It follows that if G is non-abelian' the action

of z on <xrY) is just 'multiplication' by

(Ë 
";å) 

where s'2 + oß + 92 = 1(P)'

Ler w - {x e sr(2,p) lx = (Ë 
";å) 

}.

rhen (ä .,i8r rî **ir = (iî.8Ï.u" ;ÍïiÎËlß') ),

so riü is a subgrouP of SL(2,P) '

Define v - {(crrß) e tn t tnlcr'2+o3+92 = 1(p)}'

Then clearly lwl = lvl.
Now (c¿,ß) € v <+ (o+28) 2 + 3a2 = 4(p), and the

number of sorutions of N2 + 3Y2 = 4 (p) is
p-I(-r)*r( 3

PP )

rhus lwl lvl {n*t
'p- 1

ifP=

if p=

5 or If(12)

I or 7 (L2l

As ze wr wêmusthave qllvrl'

Thus lcr I = p2 , le/Grl = q and qlP+I if

p = 5 or 11(12) and' qlp-f if P = 1 or 7 (L2\ '

l,Ie have now to deal !'rith the case where P or q

are even.

Since î centralizes Q, q is odd by lemma I'f(f) '

suppose p = 2, and let Gr = {I'cl '9'^( 
} where

(w.t.o.g.) dt = \t Yn = 3, ot = ß and Yt = Y'

Again let Q = <z> where zn = z'

rf ,'' o, = crr aPPlYing fi we 9e! z-'\z = Y

and. it follows Èhat G is abelian'
_l -1If z az = ß, applYing Tr we gef z \z = cl'
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IV

-land z Bz v

l-Applying fi to uv = vtl x v , we get

$=z 't o, = z-'yz' = r-'3r'

Ttrus z3 centralizes 3, so z must also (since

(q'3) = 1).

But then y = ,-'g, = ß, a contradiction'

Similarly if ,-t o, = Y we get a contradiction'

Since G is a p-group I Z(Gl + l. As Gr ( G,

Grnz(G)+1.

Thus Gr n Z (G) = Gr, since A acts irreducibly

on Gr . i.ê. Gr < z(G).

Now w.1.o.g. Iet Gr = <xrY> where xn = x-ry,

y* = x-r and xt -- Y and let G/Gr = <uGr ¡vG1)

wh-ere (uGr)n = u lvGr, (vGr)r = u-lGl, and

(uG1) r = vGt.

No\¡r xry commute and ürv commute with x and

but u and. v onIY commuÈe modulo Gr'

So let [urv] = *íYj,
1r -r a bu' = u vx y

and

Y,

Îf -1 c d
=11 xy

- t *"ydo- t rr*uyb*-iyix- j

v

J

-tu ar*"ybt- t*tyu
=l¡

-1uvu -r*a+c"b+d = ' 
zar*a+c-i-jyo+d+i

-l -1uvu = r¡ tor*-'-jyt
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Now vu =ll -t vx v l so this gives-I ,
l-

-2uvx i -i -2 -i-'i i'yJ = l¡ vx 'Y

]- = *-i-j and yi i
vx

V

It follor¡¡s that ü- + j = O(P) and. i = j(e)'

so 3i = o(P).

Thus i=o= j(P) and [urv]= 1 sothat G

is abelian"

trlrite G = GrQ where O is the A-invariant

Sylow q-subgrouP of G-

Then since A acts irreducibly on both Gr and

Q, we musÈ have C", (n) = Cn(n) = 1' It follows

that Cc(r) = I (see lemma f"11 below), so G

is nilpotent, and hence abelian' ¡

The following example is included. to exhibit some

properÈies of non-soluble groups admitting a group of

automorphisms isomorphic to Ss r with the purpose of

gaining information which might give some insight into

the best method of attempting a proof of the theorem-

We examine the action of various Sa's on the simple

group PSL(3,4) of order 20L60, and in particular

calculate the Sylow p-subgroups whi-ch are left invariant

by eaeh 53 for p = 3,5 and 7.

1 " 13 EXA}IPLE

Let c = PSL(3,4), z = z(GL(3,4)) and

cF(4) = {0,1,O,A2 = 1+O}" Then G admits the following



four groups of automorphisms isomorphic Èo Ss:

where a is conjugation bY ( I )

(nr, ) z Lo

=2 and

ter\t z

-r -lf -af = a

23.

e
I

= 3.7¡

= 22.3.5.

l"l = 3 , lrl

G

(J

(b)

(J

G

(1) Ar = 1ãtf> t

and t maps

(2) Az = (âr*)r where * '. PZ + (P-t) t,

l*l:2 and *-1a*=.-t.

(3) Ag = <brf>, where b is conjugation by

lbl = 3 and f-tbf = b-1.

(,4) A'+ = <brh>r r,rhere þ = *g and' g is conjugation

by

(a) = <(t"), I g = sL(2,4)> I c" ta) | = 22 -3.5;

0lr
I 0 ).
ez L/

(i

(i
I
I
0 äl

some tedious calculation reveals the follolving:

c

c

,

'L 0Ir
(i r B)' 

z,'O I 0r

'(î î å)
,

zlx e cF(4) >

lcn (b) 
I

I c" trrl I

c

I

(f) = {pz I p = sL(3,2)} , lc"(f)l = 23.3.7¡

(*) = <S>Z where S = {p € SL(3,4) lptp e Z},

Ic"(*) | = 22'3'5;

c (h)
Lt

Th-us \^re can calculate:

" 
(a) n c" (f ) = { {r") zlz e sL(2 ,21}

has ord.er 6.

llrr ol
Lx/

.(i

c
Lt
(Ar) - C
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C"(Az¡ = C"(a) n cc(*) =

{ t1") zla e sL(2,4) and' BtB e z} has order 16'

Cn(A:) = C"(b) n CG(f ) = Cc(b) has ordet 2L'

c (A+ ) has order 3.
G

I The SYIow 7-subgrouPs

Since the Sylow 7-subgroups of G are cyclic

of order '7 | it follows from lemma r.2(I) that a sylow

7-subgroup which adnits a group of automorphisms

isomorphic to s¡ must be centralized by the 3-elements

of S¡ r while the 2-elements either centralize or

invert it. l[ow since C^(a) is not d.ivisible by 7 |

ArandAzleavenoSylowT-subgroupofGinvariant.

As cc (b) has a unique Slrlow 7-subgroup, namely

it is a simple matter to verify that f

also centralizes this group while h inverts it. Thus

Ag and A+ leave invariant a unique Sylow 7-subgroup

of G.

II The Sylow S-subgrouPs

As above, âtrY subgroup of ord'er 5 which a'dmits

a group of automorphisms isomorphic to Sg must be

centralized by the 3-elements of s¡ and. either

centralized. or inverted by the 2-elements' Now ca(a)

contains the following 6 subgroups of order 5:

1.,
o )z'
a/

tI 0
.f o t\1 I

0.,
L\,2,
6/

I
0
I

.(i



0
0

0

.(ä

.rå
\s

N

R

,
0r,
e'l,zo/

2

0
e

0

0
0

0

.(äP
0\
o. l>2,
l/

0r

?)"
0
0

0

tL

'(B

0
o2
t

25.

0
e

I
>z

M

o

2

2

0
e
e

0
0
o2

automorphism of order 3 of such a group must centralize

'I.lo
\s

0r

l")"
tL

.f o\s

Since cc(f) is not divisible by 5, Ar does not

centralize any of these groups' It ís easily checked'

that. f. does not invert any of them eittrerr so that

Ar leaves no Sylow S-subgroup of G invariant'

Routine calculation reveals that * inverts N and

TbutdoesnotcentraLízeorinverttheothersubgroups.

llence Az leaves two Sylow S-subgroups of G invariant'

As Cc (b) is not divisibte by 5 | neither Aa or A'+

can leave a Sylow S-subgroup of G invariant'

III TLr-e Sylow 3-subgrouPs

The SYlow 3-subgrouPs of

abelian of order 9. BY [9] ,

)
)2, T

G are elementarY

lemma 2.6.3 ' any

an element or order 3- We therefore determine the

Sylow 3-subgroups of G left invariant by eactr Ai

by the following stePs:

ti)Find'allelementsoforder3centralizedbya'
and, similar1Y for b.

(Ìi) Determine the centralizer of each of tlrese

elements, and hence all the sylow 3-subgroups

of G in which theY are contained'
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2'l .

InspecÈion nov¡ reveals that f' leaves Mr R' U and

v invariant and * leaves M and V invariant,

while all 10 subgroups are left invariant by a. Hence

Ar leaves 4 Sylow 3-subgroups of G invariant and'

Az leàves 2 invariant.

Similarly, cc(b) contains 7 subgroups of order

3 | and each is contained in a unique Sylow 3-subgroup

of G. Thus we need only consider the following:

(ä
äl

.(iB
0\
I )rz
gz/

Ir

?)"
I
02
0

(åir.(ic

0,.
o ìrz
s/

0
t
0

(3'ir.(iD

0,,
o )rz
1/

2
0
02o(iir.(iE

0.
e Itz
g2/

0r
o )rz
e2/

o2
I
e

(iil.(iH

0.
o Itz
g2/

0
0
0

(äil.(iI

0
1
I

I
I
I

t
I
0

I
0
0

0
0
1

0
I
0

I
0
I

0
0

0

(iir
tl

'(BF

,

t

t

I
e2
I

Now b necessarily leaves all of these subgroups

invariant and so does f., so A¡ leaves 7 Sylow

3-subgroups of G invariant. On the other hand, La

Ieaves only B invarj-ant, so Ab leaves invariant a

unique Sylow 3-subgroup of G.



The next lemma, which exhibits conditions under which

there ¡nust exist an A-invariant subgroup with a non-

trivial centralizer in a particular subgroup, is vital

to our later work.

LEMMA 1 .14 Let G be a fj-nite group with ( lc l' 0) =1

admitting a f.p.f. group of automorphisms A = Sg'

Let X be a minimal A-invariant q-subgroup of G and

Y a minimal A-invariant p-subgroup of G with

lx, Yl = 1 for primes p and q di-viding lc I ' Let

K be a soluble minimal <4, X x Y>-invariant {p,q}'

subgroup of G.

Then f an A-invariant subgroup Xo of X x Y

with cK(xo) I 1 under any of the following condltions:

(a) XxY<ca(n) and P=q"
(b) txxY, <n>l -xxY and P=q'

(c) x < c*(n) and ! = [Y, <n>] (in this case either

cK(x)11 or cK(Y)ll')"

28.

or
PROO F

x=zxz
q.

Similarly

(a) rf

Since X is minimal, we have either x=z q

q.

Y=z p
or Z xZpp

and X x Y < C*(n), the result follows

theorem 6.2.4, since any subgroup of

A-invari-ant.

hre may assume that cK (x) = cK (Y) = I

K is an elementarY abelian t-grouP

from

c, (n)

W.l-.o

-q

Ie],
is

.ÇJ-,

p

(b)

and that
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for some prime

By [9], theorem

Hence r¡Ie may as

By a symmetric

c.-(v) I L and
tt

sume w" I . o. g.

argument, lv

V -I=V

dihedral

t I p,q.-

6.2.4, 3Y € Y such that

-v -t (w.I.o.s. ) .

c* (v) I L.

We show that in this case Yr

Suppose first that Yr = Y-

Then t( = co(V) t cr,(yr) " cK(yn') as the latter

group j-s invariant under <4, X x Y>'

choose yo € Y such that Y; = Yot, so that

J = (y, yo>.

Then (yo, T> is a dÍhedral group of auto-

morphisms of c" (f ) .

As ye acts f .p.f - an cn(V) (otherwise

cK(Y)lr) , 3u€co(Y) suchthat ul l and

lrt = l¡ by [9], theorem 5.3.14(iii)"

But then ,rrrnrr.nt ," non-trivial and is centrali-zed

by A, a contradiction.

Suppose next that y has six conjugates under A'

Then K - c* (v) "c" (yn) "co 
(yt') ""o (y-) "c" (ynt) "c* (yn r) '

For x € c" (v) , (**n*n') t F '*, *n ,*n" '

But **n*nä € ca(n), so (**n*n')t = (xxT*T')-''

a contradiction.
that

€X

Ty=

such

-Iv

that
T

Then

of. c* (y) , and as C, (t) n

sa¡ne argument as above,

L.2Q) we must have [v,

group of automorPhisms

c* (V) = I bY the

in the proof of Lemma

c

(v,T> i-s a

AS

K
(v) .



(c)

We now

ifK

demonstrate that (b)

is not A-invariant,

of lemma l-.I4

provided that

30.

is valid even

(t)) l1

Similarly c*(v) < co(Y) , so that c*(v) = c^(V) '

Now by [9], theorem 5.2-3, K - c*(V) t Ko

where (v,y) normaLizes Ko.

By [9], theorem 6.2-4, 1z € (v,Y> such that

c,- þ) I 1.
K6

But by applying the same argument as above to z

(t i-nverts (v,Y) and hence z) we have

c*(z) = c*(v).

This contrarlictj-on completes the proof of (b) 
"

rf cn(n) I 1, X centralizes co(n) by lemma

1.1(2).

So we may assume that co(n) = I'

But then Y.K is nilpotent by lemma L'2(4) '

and hence Y central izes K. tl

cK (cY

LEMMA 1.15

p I 3 which

which admits

wj-th C, (n)

K with 
"o(

Then f an

cK(Yo) I 1.

Let Y be a P-group for some Prime

is isomorPhic to ,n * ,n' ,n' 
'n 

and'

a f.p.f. group of automorphisms A = Ss

= I. Suppose that Y acts on a p'-group

c.,(t)) 11.
Ì.

A-invariant subgrouP Yo of Y with

PROOF

Let c, (t)

by lemma 1.3 (2) 
"

<x,y>, so that Y (X, y)x(X 1ï ,Y
TI



Now <x

theorem

Let

> normal-izes cK (cy (t) ) ,

.4, lu € .*t,yn> such that

for some v € c, (t) .

1l(v, v." > i-s A-invariant bY

LEMMA 1.16 Let P be p-group,

.f. group

(n) < P.

2

1Tu=v

1T ÎT

'Y
6

3, admitting a f.

suchthat Ll C

c, (n) < cp (cp (t) ) .

31.

so by [9],
C (u) n

K

Iemma 1.2(5) artd

p a prime different

of automorPhisms

e = Nr(A).

= I and [ [a, <fi>] , Bl

[9], theorem 2-2.3.

[9] , theorem 5. 3.5

c*(cr(t) ) lr

cK(Yo)

Then Yo

I

The next lemma is used often in our later work'

I

from

A = s,

Then

PROOF

Then

Thus

But B

a

p

P

A
( ¡- \-,i

Let 1=cr(n) and

[ [4, B] , <,lT>l < [4, <n>]

[[8,<n>],Al = 1 bY

= [8, <r>l .Cu (n) by

1

= [8, <n>] .4

Thus B < cp(A), so that A < cp(A) as required"

The next two lemmas provid.e j-nformation about the

structure of a p-group admitting 53 f'p'f in

partj-cular circumstances which arise in our Iater

discussions.

LEMI{A L,I7 Let P be a p-group, p a prime different

from 3, admitting a f"p-f- group of automorphisms

A = Sa. Suppose that Z(P) is cyclÍc and that Pr

is a proper A-invariant subgroup of P with Cp(Pr) Pl.



Suppose further that for everY

xl l of Pr with X n z(P)

lr.rr(e r)/vrl
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A-invariant subgrouP

= I we have Cp(X) = Pr.

and P, is a characteristic-pThen either

subgroup of N (P
P

or lN, te ,) /e, I = P' and if

Ís a characteristic subgrouP of

= lr : co(x) |

lt</p ,l = p.

NP(Pl).

fnr{er)l}-P4, Pr

PROOF

Let K=N

By lemma 1.16, P, i" not centralized by r'

Since z(p) is cyclic, we must therefore have

ar(z(P)) . Qr(Pr).

rf 0r (z(P) ) . Q, (z(x) ), we can choose an A-invariant

subgroup x of zß) such that x n z(P) = 1"

But then cp(x) = K I Pt, contradicting the assumption"

Thus ç¿r(z(P)) = Qr(z(K))'

Now Íìr (Pr) z(K) /zß) < K/z(K) so f¿I (Pr) 'z(K) n 22 (K) > z(K)'

rt follows that ç¿r (Pr) n zz(K) t Qr (z(K) ) = nr(z(p) ) '

Let X be a minimal A-invariant subgroup of

lìr(Pr) (1 zz(K) with x n z(P) = r'

Suppose first that X ( Cr(n) ' so that X - <x) = Zp'

Now for y € K, (xz(x) )v = xZ(K) since x € z.(K)

i.e. xY € xz(K).

But In, tz(K) ) I = P, so x has at most p conjugates

in K.

Now lx : c"(x) |

so we must have

"(er).

lx , P,I bY assumPtion,
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Suppose Pr is not a characteristic subgroup of K'

Then il a subgroup S I Pr of K such that S = Pr'

Clearly K = SP' and since S and Pl are self-

centralizing in K, z(K) - S n Pr'

But z(K) is cyclic and hence is central-ized' by rt'

and since ler/ztx) | = p = lrlpr l' it forlows from [9] '

theorem 6.2.2, that K is centralized by Î'

But then K is abelian, contradicting CP(Pr) = Pl'

Hence Pl is a characteristic subgroup of K'

suppose next that [x,<n>] = x' so that lxI = p2

For x€

Thus lx
Suppose

Then for

where

x, AS above lx :

< P2 i.e.

co(x) I = p

lx,/erl = n 2

cK(x) I
orp

lx/p,I l=

ly, (xr*lt)n
cyclic.

that lt</p ,l = p

aII x€X, x

c¿r(z(P)) = <z>-

3 an integer j

andtake Y€K-Pr'
Y = *ri fot some integer i

Now

(*j

It

Now YT =

Thus I =

But then

that

Hence

rf Pr

yt for some

-'t 
fÎ

[y,xrxr-l " =

such that (i,j) = 1(p), SO

)Y = xjz

fol-lows that 3xr,x, € X such that

= XzZ.

Thus *r*-t € c"(v)-

*T = xrz and'

"I

t € Pt since

lyt, (x ,x; 
t 

) "]
-r t)r,(xrXz , (XrXz X centralj-zes I' so

y € Pr, a contradj-ction'

lr</e, I

2p

characteristic

of K with S

subgrouP of K, ll ais not a

subgroup S I Pr =t)- t l'
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Since Pr and S are self-centralizing in K,

P, n $ = z(Prs).

If P,S is A-invariant then n

since otherwise l.re can choose an

Xo of Z(PrS) such that Xo n

cp(xo) = Prs I Pr.

Thus lo, {e, n s) I = p.

Now lp, , Pr n sl = lP,s t P,l

lar(Pr) : f2,(P, n s) I ( p'-

Hence ¡n,{er)l(pt.

, (P, n s) = or (z(P) )

A-invarj-ant subgrouP

z@) = I and

( p', SO

ct
If PrS is not A-invariant, we must have l( = P,

where c! = T oilt.

But then as above z(K) = Pr n S n Scr and so

lp,:z(K)l<p'.
since 0r (z(K) ) = ç¿L(z(P) ), this again yields

In,(e,) l<p'.
rt fqllows that íf In, {er) I ÞPu,

subgroup of K.

S S

P is a characteristic

tr

LEMMA 1.18 Let P be a p-group, P a prime different

from 3,

such that

of order

w=zxp

PROOF

If

admitting a f.p.f- group of automorphisms A = Ss

cr(n) = 1. If P z(P) contains an element

p then P contains an A-invariant subgroup

p
zXzXz p p

fi

Let ç¿r(z(P)) = zo-

lzo I > p2 rhen lzo | 2 pu by lemma 1.3(2) since

acts f.p.f. on Zo-
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p2 and suppose

35.

Zo of order P.

The result then

suppose I zo I

Suppose that

Then (xzo)r =

But (xTzo)r =

Thus 'Í1

We may therefore

rf [x,xr1 = I,

Thus 3y€P Z

Then .y, yn> is

by lemma 1.2(5)

1I

3x

lIT

€P

xx t € zo

(xzo)-1

(xzo)rr

0

an

and

and

and

(xz

zo.

= *-nzo
-*2(xZo) qx-rz 

o ) 
r

x x €

lxrzo)r
2

o) 
tn

centralizes x-1r z a contradiction"

assume w.1.o.g. that **t É zo

1**t) t - **-.
such that Tv - v-

order p2group of

x <frY 1T is the required

0

of order p

A-invariant

w - zo

group.

Tf l*,*rf I
has class 2

sectlon 66.

Furthermore,

Thus (X, xT)

exponent

Si-nce r
T

l-, we have [x,xT¡ = z € z(P)

by the result of Frobenius in

since P

t2t,

z has order p

is a non-abelian

by Ie],
group of

lemma

order

2.2 "2.
p3 and

v -v

W - Zo x

Now z

Thus

-T Txxsoz

and it then

p.

normalizes (X, X

by [9], theorem

tr, 3y € (X,XT> such that

10. 1.4.
-T=Xx

folLows as above that

required group.

-t T -r Txx z

y É Zo

x x

<Y,Y

The next result is a simple application of shult's

theorem whj-ch will be used extensi-vely later'
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PROOF

By theorem I.I1 K' is nilpotent' so Kr < F(K) '

Thus K/F(K) is aberian. Thus K/iF(K) = cr/p(r<¡(n) t Ko'lF(K)

where K,/F(K) is an A-invariant group on which T acts

f .p.f . by lemma I.3(I).

It folfows from [9], theorem 6.2'2, that

ct</p(r)(n) = co(n).F(K) /F(R) and that r acts f 'p'f '

on Ko.

Hence K0 is nilpotent by theorem L "2(4) and since

Ko < K we have Ko < F(K).

It follows that K - co(n) .F(K)

Finallyr wê conclude this section with truo

results which are well-known but which are not readily

found in the literature.

LEMMA 1.19 Let K

a f .p.f .

f.p.f. on

L.2O LEMMA If O

group of automorphisms A = Ss' If IT acts

F(K) then l( = co(n).F(K)-

ì ',

be a fi-nite soluble group ,admitting

is an automorPhism of the grouPs

isagroupwith AnB= I thenAB

(o) 
"

-1o(a) = bo(b-t) -

a-Io(a) e A and

A

c

B, and

= cA(o) -
AB

PROOF

AsA

and

(o) c"

o (ab) = o (a) o (b) = ab Lf'f

B are o-invariant,

a

and

€ B.bo (b )

Tlr-us o(ab) = ab er o(a) = a and o(b) = b'

Th-e result follows. n



I.2L LEMMA Let R be a P-grouP and l4

abelian q-group of automorPtrisms of R'

are distinct primes.

37.

a non-cyclic

where p

and çI

Then f = <cR(B) lW/e is cYcric>.

PROOF

A minor mod.ification to tfre proof of [9] , t?reorem

3.3.3 will suffice to prove the above result when R

is elementary abelian. Th.e proof of ttre general result

is tlren analogous to that of I9l ' theorem 5.3.16"
tr



38.

c HAPTER Tt,.lO

MAXIMAL V -INVARIANT {p,q }-GROUPS

In this ctrapter we present the results obtained

by Martineau and Glauberman on the maximal V-invariant

{prq}-subgroups of a minimal counter-example to the

general conjecturer üsing the technique pioneered by

Ifartineau in t151. In order to maintain as much

generali€y as possibler wê assume only that G is a

finite group admitting a group of automorphisms V

with the f ollowing Propertj-es:

tA) ff II is a V-invariant sulrgroup of G then V

Ieaves invariant a unique Sylow p-subgroup of

H fot aII Prime divisors of ltt I '

(B) ff II is a soluble V-invariant subgroup of G

then for all facEorizations lnl = mn with

(mrn) = Lt v leaves invariant a unique Hall

m-subgrouP of !f '

tC) If il is a soluble V-invariant subgroup of

then Íror all prime divisors p of ltt I '

r = on, (H) . c.(z(s) ) -NE(J(S) ) where s is a

Sylow P-subgrouP of H'

G

It is well known that (A) and' (B)

V is a f .p.f . grouP of automorptrisms of

hold when

c with
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tle | ,lvll = L, and (c) holds in this case by 16l '

corollary 2. By theorem 1.6 and lemmas L'7 and L'9'

(A) , (B) and (C) hotd also when V = 53 acts f 'p'f '

on c and tlcl,¡l = I. Furth-ermorerward(t201)

h.asinvestigatedhypottresesothert'hanVactingf.p"f.

on G which will enable him to deduce the results of

this section, although he omitted mentíon of (B).

WeadoptthenotationthatifLisaV-invariant

soluble group and o a set of prirnes dividing lll'

thenLodenotestheV-invariantHallo-subgroupof

L. We first prove some preliminary results from the

hypotheses above which will be fundamental in our

later work"

2.L LEMMA Suppose G and V are as above' Then

we have the following:

(i) If H is a V-invariant subgroup of G' then

for all prime divisors p of I tt I , every

V-invariant p-subgroup of H is contained in

tlr,e unique V-invariant Sylow p-subgroup of H'

tiil rf H is a V-invariant subgroup of Gt then

H - I{ n P where P is th-e unique V-invariant
p

Sylow P-subgrouP of G'

(iii)TfIIisaV-invariantsolublesubgroupofG,

ttr-en for all f acEotLzations ltt| = mn with

(mrn) = L' every V-invariant subgroup of ll of
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order dividing m

V-invariant Hall

is contained in the unique

m-subgrouP of H'

(iv) rf L

then

are V-invariant subgrouPs of G

p

(v) A V-invariant subgrouP H of G

the V-invariant Sylow subgroups of

wise Permutable.

and lÍ

(LnM) MpnLp

(ii) Since

(i)
p

< P. Thus H < H n P, SO
p

is soluble iff

H are Pair-

H = H fì P.
p

PROOF

(i) (The proof given here is taken from [9] ' theorem

6.2.2butisreproducedforthesakeofcompleteness).
Let T be a V-invariant p-subgroup of H, and'

Iet P be a maximal V-invariant p-subgroup of

H containing T.

Then NH (P) is V-invariantn and hence contains a

unique SYlow P-subgrouP R bY (A) 
"

But P < R since P < NH(P)' so P = ft bY

our maximal choice of P'

I,row certainly P is contained in a sylow p-subgroup

A of H, and. if P c Q then P c Ne(P) " Thus

P = Q is a SYlow P-subgrouP of H'

H is a v-invariant p-subgroup of G¡ by

Hp

(iii) Let T be a V-invariant subgroup of H with

lrl l*o and let M be the V-invariant Hall

m-subgrouP of H'
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If p is any prime dividing lrl ' M contains

a unique V-invariant Sylow p-subgroup by (A) '

and this is clearly the V-invariant Sylow

p-subgroup P of H- By(ii), tn=TÔP<P<M'

It follows that 'T < M'

(iv) Since (L n M) p is a v-invariant p-subgroup of

L, 1¡ n M)p ( Lp bY (i)-

SimilarlY (L '-r M)p ( Mp, so that

1¡ n M)p ( Lp "
But now 

"n " 
*n

LnM, so 
"n.*n=1¡nM)

bv (i) "p

Hence (L n *)n 
"n ^ tn.

(v) Suppose H is soluble, and let P and' O be

respectively the V-invariant Sylow p- and

q-subgroups of H of order Porgß'

By(B),HcontainsauniqueV-invariantHall
poqß-subgroup S' and by (iii) \^te have P'Q < S'

It follows.that s = PQ = QP, so that P and o

permute.

The reverse implication follows from P' HaII's

characterization of soluble grouPs ( tll I ) ' tr

For the remaind.er of this section, hrê make the

followíng additional assumptions :

(D) (i) G contains no non-trivial normal V-invariant

subgrouPs.

M
p

is a V-invariant P-subgrouP of
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(ii) Every proper V-invariant subgroup of G

is solub1e.

These are clearly the hypotheses which would be

satisfied. by a minimal counter-example to a conjecture

of solubility of a group G admitt'ing a group of

automorphisms V such that (A), (B) and (C) are satisfied'

In particularr \¡rê will most commonly use (D) to deduce

that if H is a V-invariant proper subgroup of G then

Nc (H) is soluble "

lÍow let p and' q be any two primes dividing

lCl, and let P and. A be the, respective V-invariant

Sylow subgroups of G" If C and D are V-invariant

subgroups of P which are permutable with Q' then

so is <CrD>. Hence we can define X to be the largest

v-invariant subgroup of P which is permutable with Q,

and similarly define Y to be the largest v-invariant

subgroup of 0 to be permutable with P'

Then PY and QX are maximal V-invariant {p'q}-subgroups

of G, and PY=QX Lff Q=Y and' P={'

hle now define K to be the set of all maximal V-invariant

{p,q}-subgroups of G, and def ine lt - K {pv'Qx} '

Our aim ís

It, and to

in Chapter

{lcl,r) = I

to derive information about the elements

a lesser extent K , and. to utilize these

lnl <

of

results

and3 to prove that
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We begin with a result on the structure of certain

elements of K, which is a consequence of our

hypothesis (C).

2.2 LEMMA (Martineau, t15l ) - suppose zn < H e K'

Then H n P - o-(H).(H n x).
p

Similarly the symmetric statement holds'

PROOF

Suppose the lemma is fa1se, and' let 0r = Q rì H'

the V-invariant Sylow q-subgroup of H'

By (c), n = on(H)cHQrcr))NH(J(Qr))'

Hence H n P = on(H).c'n p(z(Qr))'Nn.'r(J(Qr))'

Now zn <HnQ=Qr(Q, so z(Q) <

Thus cc(z (Qr ) ) ( C" (z (O) ) '

By hypothesis cc (z (Q) ) is soluble, and as C".n (z (Qr ) )

is a V-invariant p-subgroup of Cc(z(O)) it is contained

in cc(z (Q) ) p, q

BuÈ e ( ccG@l)n,n¡ so it follows that c".,"(z(Qr))

is contained in a v-invariant p-subgroup of G which

is permutable with 0-

Thus C (z(Qr)) < x.
HNP

since we are assuming the lemma to be false, wê therefore

have Np(J(Qr)) $ x.

Now choose Q* < Q maximal subject to the following:

e* is V-invariant , z(Q) < Q* and NP(J(Q*) ) $ x"

Nc(J(e) ) is soruble, and'clearly Nc(J(0))p,4= Np(J(o))'a

Thus Np (J(Q) ) ( X, so that Q* c Q'
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Let P* and O be respecti''¡ely the V-invariant Sylow

p- and q-subgroups of N.(J(Q*) ), and let t< = P*õ'

By (e), * = on(K).cK(z(õ) ).Nr(J(0) ) "

Thus p* = i( ñ p* = on(K).cp*(z(õ)).Np*(J(õ)).

Now Z@l < Q* ( Q' so

It follows that Oe (K)

rhus op (K) ( C" (z (Q) ) ,

op(K) < x.

Now Q* ( N"(J(Q*) ) , so Q* < õ.

Therefore z(K-) < O* < õ ( Q, so z(O) <

Hence C"* (Z (0) ) ( Cn* (z (Q) ) < cc (z (o) ) .

so cP* (z (õ) ) < x.

Now O* < Q, so Q* < l¡( (8*) "

Thus Q* < Ne(Q*) ( N"(J(Q*) ), so Q' t õ.

Then we have zn < 0, O is V-invariant and 0*

so by the maximality of Q*, Np(J(õ) ) < x.

Since p* ( p, this gives Np*(J(o)) ( Xo and hence

P*<X.

This contradiction completes the proof" Ú

Before proceeding to the next' main resultr wê

require the following lemma, which has been attributed'

to Bender:

zrQ<
centralizes 7' rcl .

so that as above we get

Let t beaprimeand K at-constrained

T is a t-subgrouP of K then

( o., (K) .

õ ,

2.3 LEMMA

group. If

or, (NK(T) )
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PROOF

lrle proceed by induction on lx I .

rf or, (K) + I then by induction or, (NR(Í) ) < or, (R

where ñ = K,/o., (K) and î is the image of T in

But or,(R) = 1, so or,(NK(î)) = 1.

Thus oÈ, (NK(T) ) < or, (K) as required'

Hence we may assume that Ot, (K) = Lt so that

o. (K) + I by the d.efinition of È-constraint'

Now Or, (NK(T) ) x T is a group of automorphisms of

or(K) , and. [or, (NK(T) ) ,co, 1*¡ 
(r) ] K o., (NK(T) ) n o.

Thus by [9], theorem 5.3.4, tor(K) ,or, (NK(T) ) I = I'

But K is t-constrainedr so cK(Or(K) ) < Or(K) '

Hence or, (NK(T) ) = I as required' tr

[{e now prove a sufficient condition for two

members of K to be equal. Surprisingly¡ wê need

only a condition on the Fitting subgroups'

2.4 LEMMA (Martineauo tI31)" LeÈ HeK and

M is a V-invariant subgrouP of F(H)suppose that

with op (M)

H = K.

K

(K) 1

+l and O (14) + I. Then if M < K € K,
q

PROOF

We show first that the lamma holds for z - z(F(H))

in place of M.

Suppose that ,n and ,n are non-t'rivial'

As Nc(Zp) is V-invariant and soluble and contains H,
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NG (Z I =H.P'P'Ç
Hence tn * on(*"(zp)p,q) "

Since ( N"(rn) n,n we have ,n * on

No\,¡ K is soluble and hence p-constrained' by [9] '

theorem 6.3.3.

Hence by lemma 2.3 above' o

Thus ,n * Oq(K) .

But then op(K) ( C"(rn)n,o < H'

Similarly oq(K) ( H, so F(K) < H'

Now O^(K) + 1 since ,n * Oq(K) , and similarly
q

op (K) + l.

As F(K) ( H, certainlv z(F(K) ) < H so by the same

argument as above rvith H and K interchanged we

obtain F(H) < K.

Now Op (H) = On soO

Applying lemma 2-3 again, this gives Op(H) < o (K).
p

Similarfy oq(H) < oq(K) ' so F(H) < F(K) '

Now by interchanging H and K and' applying the sane

argumentweget F(K) <F(H)r sothat F(H) =F(K)'

But now I{ = N"(F(H) )n,n = N.(F(K) )n,n = Kr so the

lemma holds f or tlre particular case M - Z (F (H) ) '

Now let M be an arbitrary v-invariant subgroup of

F (H) with op (l{) + 1 and oq (M) + 1'

Since CG(Mq) is V-invariant and soluble' and

NK ( zp) (NK(zp) ) .

n(**(rn )) < o (K) .q

(t[c (oq (H) ) p , q) , p(H) * on(N*(os(H))).

z(F(H))

Ttus M

( c" (Mn) r we trave Cc (Mq) p ,8 
( H'

* on (cc (Mq) p, q) .p
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Now

q

Thus we can apply the first part of the proof to K

to derive K = !l and we are done ' tr

We now prove a result about the Fitting subgroups

of members of lt.

cK (Ms) 
(c.(tn)n,n, so *n*on("*(Mq)) *on (NK (Mq) ) .

By lemma 2.3 again, this gives *n * op(K) '

Ttrus oq(K) ( cn(*n) n,n 
( * since z(F(Il) ) < cG(Mp)

Similarly op(K) ( H, so F(K) < H'

Now op(K) + I since tn * op(K), and similarly

o (K) + 1.

2.5 LEMMA (Martineau'

Ttrcn Op (H) + I and' On

PROOF

2 .6 L EMMA (Martineau '
z(Al < H and'

lf5l). SuPPose Helt'

(H) + 1.

It5l). If He frt then

lI = F(II) . (H n xl .1s n Y).

Note th-at since H is soluble r we must have at

least one of op(H) , Oq(H) non-trivial (see [9] '

tlreorem 2.4.L) .

W.1.o.g., suppose Op(H) = 1. Then Oq(H) *.1' and'

since Nc(oq(H) ) is V-invarlant and soluble, we have

z(ø ( N"(oq(H) )n,n = Il.

Th,us by lemma 2.2 H n P = ÊI ñ Xr so that H ( QXr

a contradiction

Using lemma 2.2, we can no\¡r say a great deal about

the structure of elements of Jt

Z(P) ( H'
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PROOF

From lemma 2.5 r¡¡e have oq (H) + 1' Applying the

same argumenÈ as in the proof of that lemma'

z(Q) ( N"(oq(H) ) n,n = [I. Similarly z(Pl < H'

llence by lemma 2.2 we have I{ n P = On (Hl ' (lf n x) and'

I{ n Q = On(H) . (H n Y) .

So II - (H n P).(H n Q) = on(H)'oq(Ï{)'(If n x)'(H n Y)

= F(II).(H n x).(H n Y)" tr

2.7 LEMMA (Martineau, t15l ) " If H e fr, then

X n F(Il) = Y fì F(H) = 1.

PROOF

Suppose X n Op(Il) + 1"

Th-en M - (X n op(II)).oq(H) < XO and' It < F(H) < H"

ClearlyoP(M)andoq(14)arenon-trivialbylemma2.5.
so by lemma 2.4 we have xQ = Hr a contradiction. tr

lrle can now give a ref inement of lemma 2.4 for

elements of lt

2.8 LEMMA (Martineau tf5l ) ' rf H e K and M is

witha non-triviat V-invariant subgroup of F(Il)

M<K€K, then K=II-

PROOF

rf pq I lM I tlr.en op (M) , oq (M) are non-trivial

since M is nilpotentr so vre can apply lemma 2'4 to

deduce that ll = K.
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So w.I.o.g. assume that M is a q-grouP'

Let er = [Z (P) ,Ml .

By lemma 2.6, z(P) < H so z(P) normalizes oq(H) '

But l,t ( on(ll) , so Qr < Oq(H) and hence is a q-group'

Also Z(P) < K bY lemma 2'6' so 1'(Pl <

Now by [9] , theorem 6.3.3' z(P n K) = on,n(K) ' so

ztP) * on,n(").

But M < K, so Qr = [z(P) 't4] = on,p(K) '

As Qr is a q-group' this implies that Qr < Oq(K) "

Suppose Qr = 1. Then M ( Cn(z(P)p,q ( PY' so M < Y"

But th-en Y n Oq (H) + I ' contradicting lemma 2 '7 '

Tlus er + 1. Let M* = CFqr¡ (Qr) '

Th,en M* is a V-invariant subgroup of F (ir) with

oq(M*) + r (as z(Qr) + 1) and op(M*) = op(H) + r'

But M* < Cc(er)n,n so by lemma 2.4, Cc(Qt)n,n < II'

As Qr < oq(K) , this imPlies op(K) < H"

Thus n = on(K).Or is a nilpotent subgroup of ¡1 Ô F(K) '

so that bY lemma 2'4, H = K

The results listed tfr'us fax ' and in particular

Iemma 2.8, are sufficient to obtain our desired result

in tfre next section vi-z' to show that llcl < I for a

minimal counter-example to the special case of the

conjecture when V = 53 acts f'p'f' on G and'

tlcl 13) = 1. However, it is possible to gain

further information about the structure of
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PY and Qx and their relationship with elements of

It. Most of t'he results Iísted below are due fo

Glauberman and. Martineau ( tal ) . we begin by showing

thatthefactorizationoflemma2.2holdsforPY

and QX (this does not follow from lemma 2'2 as we do

not have z(Ð < Y and Z(P) < x) "

2.g LEMMA (Glauberman and Martineau' [e] ) '

n = O'(PY) "X and Q = Oq(QX) .Y.

PROOF

ff oq(PY) + r, z(a) ( N"(Oq(PY))n,n = PY'

Then by lemma 2.2, P = O'(PY) 'X'

Thus !,re may assume that' Oq(PY) = 1"

Then op (PY) + 1 and P = On (PY) " Cp$ (Y) ) 'Np (J (Y) )

by hypothesis (c).

Now NG(Z(Y))e,q < H for some H € K' and as

Y < NQ(Y) ( N"(Z(Y))n,n, H + PY.

ff. H = QX, then Np (Z (Y) ) < X.

Suppose H + QX so that H e lt and Z(A) < H' by

lemma 2.6.

Now Q ( cc(z(O))n,n, so cc(z(O))e,n < QX'

In particular cp (z (Q) ) < x'

since x n op (H) = 1 by lemma 2 "'7 , it follows that

co (H) (z(Q)) = 1.
p

rnls op (H) - coe (H) (z (o) ) " top (H) ,z(Q) I bv [9 ] ' theorem

5.3.5.
i.e. Op (H) = top

(H) ,z (o) I .
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Let Yr = Z(QIO

By lemma 2.2,

Y < H.

q(H) n Y.

e n H = On(H). (g n Y) = On(H) -Y as

Hence zrc) "oq(H) = YIoq(H) '

Now [Yr,Y] <

Also [Yr,Y] < Y and. since Y Ô os(H) = L' [Yr 'Y]

i.e. Yr <

But z(Y) * on,n(P") by [9], theorem 6'3'3' so that

Y, < O (PY).- PrQ

rhus op (H) 

= 1",l-l :"::"i*1, 'on 
(Ht 'z 

(Q) oq (H) l

= [Op(H) ,Yr] <

Hence NP(Z(Y)) < H n P = on(H)"(H n x) * on(PY)'X'

A similar argument yields Np(J(Y) ) * on(PY) 'x' so

" = On (PY) .X as required"

The other result follows by symmetry' tr

I

An easy consequence of lemma 2 '9 is the following :

2.LO COROLLARY If P and. 0 do not permute'

Op (PY) + I and Oq (QX) + l '

Thenextlemmahighlightsthedifferencebetween

PY, Qx and elements of Jt (refer to lemma 2'5)'

2.LL L EMMA

one of Oq

If P and

(PY) , op (Qx)

0 do not Permute, êt least

is trivial "

PROOF

SuPPose that both

non-trivial.

oq
(PY) and Op

(Qx) are
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< x.

(PY)nz(P)+1
Then z(P) ( N"(op(QX))n,n = QX, so

But op(PY) + I bY corollarY 2'L0,

Thus 1=on(PY)nX+1'

Then Toq(PY) < F(PY) n QX, so that

lemma 2.4.

This contradiction completes the proof"

p

py=eX by

ú

PY is the onlY member of

and similarlY for Qx.

Thenextlemmaisaspecialresultwhichwillbe

used to find a characteristic property of PY and QX'

2.L2 LEMMA (Glauberman and Martineau' tB I ) '

Let H e K and' suppose there exists a V-invariant

subgroup W of H n Op (PY) such that Vü E X and

XY normalizes VÍ. Then XY < H'

PROOF

Since W+X'H+.QX.

ff. H = PY the result is trivial, so we may suppose

that H e ,1t.

Let H* = <XrY,Oq(H) >. Then H* < QX and WH* : H*!{'

So H*W is a V-invariant {p,q}-subqroup of G'

Therefore H*W<K Íror some KeK'

As w + x and oq(H) $ Y, K + PY or Qx' Thus K e lt'

But then O (H) < K so H = K bY lemma 2'8'
q

Hence xY < Hf as required'' n

We can now Prove that

K which contains Op (PY) 
'
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2.T3 L E14MA

Suppose thaÈ

(1) rf. H€K

(2) rf H€K

(Glauberman and l{artineau'

P and O do not Permute.

contains O

contains O

(ev¡ then

(Ox) then

t8l ) .

Then

H=PY.

H = QX.

p

q

PROOF

(1) Supgose op(PY) < H for some H € K'

By lemma 2.9 , Op (PY) { X.

Since Op(PY) < PY, XY normalizes Op(PY)'

So lcy lemma 2"I2 we have XY < H'

Hence XOp(PY) =P(Hr sothat H=PY'

(2) Follows bY symmetrY.

2.14 C0R0LLARY (Glauberman ànd Martineau, tB 1) '

Ler H€K {PY}"

Then Cp (H) n z (P) = on (H) n Cn (Oe (PY) )

= On(H) n Z(O.(PY)) = L'

and similarly for the symmetric staternent"

P ROOF

Let ¡ = On (H) n Cn (Op (PY) ) . It is suf f icient to

showthat þ=I. SuPPose D+l'

i\trow Oq (Ii) + 1 if H € fC by lemma 2.5 or if H = QX

by corollarY 2.10"

As Doq(H) ( N"(D)n,n, H is the unique maximal

v-invariant {p,q}-subgroup of G containing N"(D)n,n

by lemma 2.4"

But oe(PY)<Cp(D)(N"(O)n,q<H, so H=PY by

lemnia 2.L3 .

This contrad.iction completes the proof' tr
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The next two lemmas give some information about

the relationship between the centres of op (PY) and.

O (Qx), and, members of lt,
q

2.L5 LEMMA (Glauberman and t4artineau' t8l).
and ZSuppose II € fC and let Z, = 7 (Oe (PY) ) = z(Oqa

Ttren Z pnH+I' renH+I and z, nH centralizes

n rï.

PROOF

As Zr 4 Pr Z, n Ze) + 1-

Thus z, n H + t by lemma 2.6- similarly 
'e 

n H + I'

Since ,e is normalized by O and x, 
'e 

n H is

normalizedby QnH and IInX"

Now by lemma 2.6, * = on(H)"(H n x).(H n Q)' so

op(H).(rç n H) < H.

Simitarly Oq(H) . (zp n H) < H.

Let I = on(H). (za ¡ H) n on(II). (zp n H).

Then I is V-invariant, so by lemma 2.L (iv),

In = Op(H) n (Zp n H) = 1 by corollary 2.L4.

Similarly In = L, so I = 1-

Thus top(ll) "(rç n H), oq(H) "(zp n I{) I < | = I' so

that in particurar I'zç n EI¡ zn n Hl = I as required'
tr

2.L6 LEMMA (clauberman and Martineau, tel) -

Suppose H € fC and let Zp, ,e be defined as in the

previous lemma. Then we have the following:

(1) Z, nH<X, rQ nH<Y.

(ax) ) .

,Q
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ñHl and o q(H), z, n Hl -to(2)

(3)

(H)

(H)

p lo

<op

p(H),
(PY)

(H) =
çt

(ox) .

a

op

PROOF

(I) As in the proof of the preced,ing lemma, Zp n Z(P)

and ,e n Z(Q) are non-trivial' Since

P < Cc(Zp ñ Z(P)) p,4, we must have

C"(2, n z(P) )p,q ( PY, so that ,e(', n Z(P) ) < Y'

Now Z" n Z(P) ( Z" ¡ Hr so by lemma 2'L5 we have

,QñH<"Q(r' nz(P)) <Y.

SimilarlY Z, nH<X.

and oq (H) = On

(2) Since Zn n Z(Pl ( H, we have by [9], theorem

5.3.5 that

oq(H) = cootr)(zn n z(P)).loq(Hl ,Zp n z(P)]'

But 
"e(rn 

n Z(P) ( Y, and since v n On(H)

by lemma 2.7 , we have

Oq(H) = [Oq(Il) ,zp n z(P) ] = [Oq(H) ,zp n H] '

The other result follows by symmetry'

(3) By (1), Zn n z(P) ( X, so that Z, n z(P) < z(X) '

But z(x) = on,p(Qx) by [9], theorem 6'3'3' so

that Zn n Z(P) <

Hence oq(H) = [oq(H) ,zp n z(P) ] <

* on, p 
(Qx) .

It follows that oq(H) * on(Ox) .

By symmetry we also have Op(H) = O'(PY) " EI

lrle show next ttr-at the result of lemma 2 ' 16 (3) can

be extended to elements of K.

=1
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2.I7 LEMMA (Glauberman and Martineau, [8]) '

Let H e K. Then op(H) < op(PY) and oq(H) * on(Qx)'

PROOF

We show Op(H) * O'(PY); the other result follows

by symmetry.

If H = py the result is trivial, and by lemma 2.16(3)

it holds if H € lt.

Hence r^¡e may assume that H = QX'

As O* (H) < QX, XY normalizes Op (H) 'p

But by lemma 2.g we have P = on(PY) 'x' so that

PY = op (PY) xY -

It follows that op(PY) .op(H) < PY, so

op(PY) .op(H) * on(PY) "

In particular op(H) * O'(PY) " tr

ourfinalresultforthissectionshowsthaÈwe

can deduce a certain amount of information about PY

and QX wh.en lt. is non-emPtY'

2.Lg LEMMA (Glauberman and Martineau, t8l).
andSuppose

'Q 
= z(o

J(. + Q and let ,n = Z(O'(PY) )

op(Qx) = on(PY)

z(P)(zn(x

q(QX) ) . Then

(1)

(21

PROOF

I

(f) Suppose oq(PY) + l.

By corollarY 2-L0'

and z (O) < < Y.
o

o
P

(PY) + 1.
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Since op (H) < op (PY) by lemma 2 ' 16 (3) ' oq (PY)

centralizes

Thus II = N contains
PrQ

P

op(H) * on(Pv) ,

a contradiction.

o

(o

(H) .

(H) )

p

IIence

(2) Since

z (P)

(J p

(PY) = L,

(PY) = I,

(PY) .

<op

so by lemma 2.4 we have H = PYr

z(P) * 2(Oe(PY)) = zp.

Now op (ll) (PY) by lemma 2 -L6 (31 t so

and similarlY op(Qx) = 1'

by [9] r theorem 6.3'3,

nH<X' sothe

oq

oq

<op

Thus

Z,

centralizes op(H) -

Hence Zn ( N"(On(ll))p,q = H'

But by lemma 2.L6 (L) , Z, = z

result follows.

Similarly z(0) 
" 

,Q < Y" D
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CHAPTER THREE

INFORMATION ABOUT A OUNTER.EXAMPLEc

In this section we consider the following

theorem (we are justified' in calling this a theorem

rather than a conjecture by corollary 7 '3 of l7l '
mentioned in the introduction):

Let G be a finite group with tlcl'gl = 1

admitting a f.p.f- group of automorphisms A = S¡'

Then G is soluble.

NowletGbeaminimalcounter-exampletothe

theorem. As hras indicated in chapter two' theorem 1"6

andlemmasL"Tandl.gimplythatthehypotheses(A),
(B) and (C) of that secÈion ho1d, and' the hypotheses

of(D)arecertainlysatisfiedforourminimalcounter-

example. By Iemma z.fivl, there exist primes p and

q dividing lcl such that the corresPonding

A-invariant Sylow subgroups P and O are not

permutable.Usingthenotationand'resultsofchapter

two, we intend in this chapter to show that lrl <

We begin with some relaÈively easy results"

3.1 L EMMA For H € Jt, No lqnH) = I=N (P n H)"

THEOREM I

oq (H)
e (H)

N
o

PROOF

Suppose
p

(H) lgnH) +1.
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n L,

As Nc(Q n H) is A-invariant and soluble'

NG(Q n H)p,q ( L for some L e K.

Since op(H) n L + I and (op(H) n L).oq(H) < F(H)

we have H = L by lemma 2.4-

But Na(QnH) >QnH, a contradiction

Thus No (H) (Q n H) = I-
p

Similarly N (PnH) = 1. D
oq (H)

PROOF

rfc
so that O

the lemma.

3.2 COROLLARY If fIt_tr, C*(n) + I

I, H is nilPotent bY lernrna L.2(4) ,

normalizes QÔH, contradicting
tr

(n) (n) = I bY lemma L.20 r So that

is nilpotent by lemmas 2.2,I.20 and'

normalizes P ¡ Hr again contradicting

H

p

(r)

(H)

3.3 CSR¡LLARy rf H€ff and c (n) = L'
F (H)

+ I and. + t.

PROOF

Supoose

c".* (r)c"n* (n)

Ic*n" (n)

Then C XnH. O
p

P n H.Oq(H)

L.2 (4) .

Thus Oq (H)

the lemma,

Hence c*n*(n)+t and similarly c"n*(n) + 1. ¡

To prove that l7c l <

examine those elernents of lt for v¡hich Cu,*, (n) = I,
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and to find. a small bound for the number of these"

Accordingly, we d.efine lÎr = {u e fflcr(nl (n) = 1}'

i¡[e will prove that lft I ( 1, but for the sake of

clarity the argument will be carried out in a sequence

of four lemmas; '.rüe first d.ispose of the case where

p or q is even:

3.4 LEMMA If p or q is even, ltt = 0.

PROOF

If H € Jtt , C*n* (n) + I and' C"..,* (n)

corollary 3.3.

It then follows from lemma 1.I(2) that both

q are odd.

+I by

Thus we may assume for the remainder of the

argument that PrQ are odd' and w.1.o.9" p < q'

Then we have:

p and

ú

3.5 LEMMA

PROOF

(t)l > p VH €tttlco (H)
p

Let Tr = 
"oo (*l 

(t) .

Then Tr + I by lemma L.2(2) - Suppose lf r I = p'

As t must centralize some element of flr (Z (Op(H) ) )

by lemma L.2(3) , it follows that rr ( llr (z(op(H) )).

But then A is a regular group of automorphisms of

op tH) /At Q(op (II) ) ) , so that op (H) = (tt (Z (oe (H) ) )

is elementary abelian (by lemma f.2(3) again)'
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Itrow by lemma t.3(2), op(Ir) has ord'er p2'

But H n Y is a q-group of automorphisms of Op(H) '

andas P<q itfollowsthat HÔY centralizes

op (H) .

But then Op(n) normalizes II n Y'O*(H) = H rì Q'

contradicting lemma 3.1.

Thus lr, | > P as required' D

lrle show next that every element of lt¡ contains

a subgroup of P which has a certaÍn property'

3.6 LEMMA ñ ltt contains an A-invariant subgroup

M of P with either C*(n) = M and M elementary

abelian of order at' least p3 or c*(n) + M'

PROOF

Let ICZt CZz c

series of P ' and' let

r.te show first t'hat if 7'

... c P be the uPPer central

H € ff r be arbitrarY.

j is centralized bY 1I then

z. < H.
J

Since ,j char P, z.op(H) is an A-invariant' p-group'

Then by lemma I.4(2) | ,t normalizes Op(H) '

Thus ,j ( N"(Op(H))n,n - H'

Now let i be the smallest integer such that ZL is

not centralized bY T.

Ifi=L|z(P|isnotcentralizedbyTand'

z(P) < H bY lemma 2.6.

Thus $/e may assume i > I'
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Hence Zi-r is centralized by fi and' Zi-r ( H by

the above comment.

Since Zr-, is abelian by lemma L'L(2) ' we may assume

that nr (Zi-r) is elementary abelian of order at most

p:. suppose first that I nr tzi-r) I = P2'

Then lre can write n, (zi-r) = <v> x <w> where v € z(P) '

By lemma L.2(2) , Cr, (t) + I and hence

cr. (n) c t = {x € ztlxt = *-t} by lemma 1'5'
¿ri

Ctroose t€I-Cr,(n).

Th-en t normalizes f¿r (Zi-t) , so t-twt € nr (Zi-r)

and hence is inverted by t bv lemma 1'I(2) '

i.e. tw-lt-1 = t-tw-lt

Th-us L2 , and hence Lt centralizes \^t"

So t centralizes f)r (Zi-t).

But now nr (zi-r) is a non-cyclic abelian group of

automorphisms of oq(H) r so oq(H) = 
*=rf (zi - trcoo {n)

by f9l , theorem 5.3.16.

Thus fy € nr (zi-r) such that too ,*, (V) + 1'

i.e. c"(V)p,q ñ oq(H) + I"

Since y € H n P and' Z(H Ô P) n Op(H) * I'

c"(v)p,q ô op(H) + 1.

So by lemma 2.4, C"(V)p,q ( H.

fn Particular, E € H'

Now if M is the smallest A-invariant subgroup of P

containing t thenclearly cM(r) +M and M<H'

(x)



63.

. \-

thus we may assume that lCrr {zi-r) I = p i'e' Zi-t

is cyclic.

Let Zi-f = <z>. Since Z¡- t and' Op(H) normalize

eacll other and intersect trivially (since 
"Oo {*) 

(n) = 1

by definit.ion), Èhey must centralj-ze each other.

As ,r/rr-, is abelian , Zi/Zt-r = 
"rrlrr - , 

(n) x S/Zi-t

where S/zi-t is A-invariant and' Cs /zi- , 
(n) = I by

lemma 1.3 (1) .

By [9 ] , theorem 6.2.2 (iv) , czr/,, - , 
(n) = Cr, U¡l /zi-t '

so that s/zi_t is non-trivial and. by the sarne theorem

applied to S/z¡-t we have cr(n) = Zi-t.

By [9], theorem 10.4.I(i), S = Cr(t).I where

| = {x e sl*t = *-t}.

Now Cr(t) + I by lemma I.2(21 , so Zi-, = Cr(n) c I

by lemma 1.5.

Choose s€I Zt_r"

Then "Zi-t + Zi-t' so \^re can choose t e <s> such

that EZi-, has order P.

Clearly t e I Cz.Ur).

Since t normalizes Zi_t = <z) t E-L zE is inverted

by r.
-l -1 --l -I.Lz t =t z E.

and hence tr centralizes

tü - {y-tyt ly = T, n} where

aô

Thus E2,

Now define

z.

Tt = coo .n) 
(r) '

such thaÈAs t € Zi, y-ty' "k for some k

1 < k < l"l ct=p
ty=

say "

zr. e. v
k



!trow tP e z and Y€O (H) so y tP= v.i-1 p

pt kp
v yz

But >c € O (H), so
P

10.r.r.
Thus f[ = 1Xr ,x* 

t 
o =

subgroup of Op (H)

byt
AsC

is an A-invariant

f.2 (5) ) which is

64.

abelian

centralized

v

Hence p" lkp, so that k a-1mp* ' f.or I ( m ( P.

It fol-lows that lwl ( P.

But by lemma 3.5, lftnl ) p, so 3u,v € Tr such that

u+v and

-'tt, n.t -fi¡--firtu (u )- = v tv )

;. (vu-')n = [(vu-t)n]'

i.e. t centrarizes 1vu-t)n = xn say'

Thus tr = t-l centralizes xnt =

n2x as x = vu e Tr"

tn2x

I

Hence t centralizes xn
2

-l2
1Tx =xx by [g], theorem

(x, XT )

R)

(by lemma

>RO (H), by lemma 2.4 we have
q

c" (*) n, n

PrQ
< H.

Hence t € H. Again take

A-invariant subgrouP of P

M<H and. c*(n) +M.

As H € f(t was arbitrarY,

(J

M to be the

containing

smallest

E, so that

the result follows. ¡
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with the aid of this lemmar wê can novt complete

the proof of our first main result:

3 .7 L EMMA lr' I

PROOF

As Nc(R)p,q Þ Ro

NG(R)P,q ( H.

Now if K € ltt,

Suppose first that fH € ffr with R = M n Op(H) + 1'

q
(H), by lemma 2-4 we have

NO is nilpotent by lemma L'2(4) , so that(H)
q

N<HnP and. Z(HnP)nO^(H)*1' so
P

M<KnP andsince Z(KnP) nOp(K) + l'

aoo ,*l (*) + 1.

Thus Op(K) n N"(*)n,n + I so by lemma 2'8'we have H = K'

Hence lr' I

1

Thus we may assume that ¡a n F (H) = I VH e K1

Now by theorem t.tl I tl' is nilpotent' so that

H' < F(H) "

Thus H/F (H) , and hence MF (H) /F (H) , is abelian "

But MF(H) /E(H) = M/M ^ F(H) = M so M is abelian'

Suppose first that Cr(n) + M'

Since M isabelian' M-cM(T) xN where N is

A-invariant and c*(n) = 1 by lemma I'3(1)'

Then Noq(H) is an A-invariant group on which r acts

f.p.f

Thus

o (H)
q

But

centralizes N

oe (H)c (N) + l.
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Hence by lemma 2.4, H is the unique maximal A-invariant

{p,q}-subgroup of G containing cc (N) p,e'
It follows that lrt I <

Now suppose that ,rT centralizes M and M is elementary

abelian of order at least P3.

Let H,K e t(1. Then M iS a non-cyclic abelian group

of automorphisms of oq(H) and oq(K), so

oq(H) = ."oo (nl (") | tutal = p> by lemma L'zL, and

similarly for oq (K) .

Thus there exist subgroups BrC of M of index p

such that 
"oo ,H) 

(B) + I and aoo ,K) 
(C) + 1'

Let u€BnC.

Then C" (u) p, q ( L for some L € K

But aoo,") (r) t 
"oo (H) (B) + I and 

"oo,n, 
(u) + I since

Op(H) n Z(H n P) + 1- So by lemma 2'4, H = L'

Similar1y K = L, so that H = K and lfCtl < 1' tr

we are now in a position to prove the main result

of this chaPter:

3.8 THEOREM

lrl < 1.

PROOF

Let H'K e fC with H + K.

By lemma 3"7 we must have one of the following (w.1.o"9')

I c n)+l
(tt) = I

F (K) (r)+I
F (H

(
)

and C

andIIC F (H) c F (K) (r)+I
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Suppose first that I ho1ds, and assume w'I'o'g" that

Po = 
"oo ,") 

(n) + r-

Then Cc(Po) is A-invariant and soluble and

cc(Po) P,9.Þ Po.Oq(H) .

Thusbylemma2.4,H.ístheuniquemaximalA-invariant'

{p,q}-subgrouP of G containing cc(Po)p,8'

But C"(n) ís abelian by lemma L'L(21 ' so

c, (*) (n) ( c" ("o) 
n, n

Thus F(K) n H + I, so by lemma 2'8' H = K afÈer all'

Suppose next that II holds, and assume w'l'o'g' that

"oo ,*l 
(n) + r.

Let N = Cn,..,*(n). Then N + I by corollary 3'3'

As cc (N) is A-invariant and soluble , cc(*) n, q < L

forsome L€K.

since cc(î') is aberian, coo (*) (n) < Cc(*)n,n'

Thus op(K) n L + I so that L + Qx by lemma 2'7'

AIso ,19 n H) n on(H) + L, so 
"oo ,*l 

(*) + 1' Hence

Oq(H) n L + I' so that L + PY (again by lemma 2'7) '

Thus L e H, and now H = L by lemma 2'8 because

Oq(H) n L * l, and' similarly K = L because

Op(K) nL+1- Thus H=K'

This contradiction completes the proof 
U



68.

CHAPTER FOU R

FURTHER INFOR 1'1AT I0N AB0 UT A

MINIMAL COUNTE R- EXAMP L E

As mentioned in the introduction' the approach

pioneeredbyMartineautodeclucethesolubilityofagroup

Gadmittingaf.p.f.groupofautomorphismsfrominformati-on

about ma-ximal A-invariant {p'q}-groups does not appear

to be a fruitful way of atten'pting a solution in the

case v:hen A = S: r despite the fact that in Chapter 3

wewerea-bletoshowthatthere\dereveryfewsuchsub-
grouFs in a minimal counter-exa-mple '

As it happens, the approach which eventually

provecl to be successful in leading to a solution in this

case v¡as to examine the structure of A-invariant

maximal subgroups of a minimal counter-example using

Glauberman,s results (t5l ), and in this Chapter we

present some preliminary results v¡hich wilt be used'

inthemainargumentpresentedinthefollowingchapters.
we consider the following theorem:

TH EO R EI''! Ii
Let G be a finite group of order coprirne to

6 which admits a f.p'f' group of automorphisms A = Sg'

Then G is soluble.

Throughoutthischapter(andsucceedingchapters)we

assume that G is a minimal counter-example to this

theoremr so that as in chapter Three the hypotheses
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We(A), (B), (c) and (D) of chapter Tv¡o are satisf ied'

show first that the norma.lizer of an A-invariant

Sylowsu.bgroupofGisamaximalA.invariantsub-

group of G.

LEI1MA 4.1 If M is a ma-xima-l

of c such that NG (zJ (P) ) < M

P of G then P<M.

A-invariant subgrouP

for a Sylow P-subgrouP

PROOF

Ler K = NG (zJ (p) ) and suppose that p I lMlF (M) I .

rhen pllKF (M)/E(¡t) l, so that pllK/K n F(M) l'

Now by theorem l.ll M/F(M) is a.belianr so K/K n F(M)

is also abelian. Thus Op (K) I K. .\. i.: .

Hence by Corollary 2.2 of t5l Op (c) I ct a contradiction.

Thus P < F(M) so that P < M" o

Thenextthreelemmasprovideinformationabout

maximal A-invariant subgroups of G which have non-

trivial intersection.

LTMMA 4.2 If H and M are distinct maximal

c such that F (M) < H thenA-invariant subgrouPs of

H n M = F(M).

PROOF

Now

Thus

IKrO

Let K=HnM andsupposethat F(M)cK'

tK,F(M)I I1, else K < F(M) by [9], theorem 6']'3'

3 a- prime p such that Op (I1) I I a-nd'

(M)l - P2 I l.
p



As F (M) c Kr K < M by thecrem 1'11' Hence P2 < M'

And Pz < Kr < ti' r so Pz ( F (H) by the sarn'e theorem'

Therefore op, (H) < Ca (Pz) < N* (Pz) = M'

It follows that op' (H) < Iq 0 H = Kt so that

op, (ri) * on, (K) .

rf K6=[K,op,(K)] I I then Ks<F(H)nop'(K)*on'(H)'

As K4MrKo<M and'since op(H)<Co(Ko)<M we

have o (H) <K.
p

Thus F(H) ( K, so that K < H'

But then I{ = N*(K) - M, a contraCicti-on'

Therefore we must have Ks = I i'e' Op' (K) <

Let P1 be the A-invariant Sylow p-subgroup of K'

Then F(M) < F(K) * Prop,(K), so Pron'(K) <

It follows that P1 d K, so P1 < M'

Thus M = NG(Pr), so that N"(Pr) < H fì M = K'

Hence P1 must be a Sylow p-subgroup of FI'

Thus F(H) ( Pr.Op, (Ii) ( K, so that again K < H'

This contradiction completes the proof ' D

LEMMA 4.3 Su¡:pose that H and M are distinct

maxim.al A-invariant subgroups of G wíth F (M) < H'

Then F(M.) is abelian, Z(H) = F(H) n F(M)' H = F(M)

and F (H) = z (H) ¡ Ho where Hs is an A-invariant

group of order coPrime to lr' {u) I '

PROOF

Let q

Qo = Oq(M) .

be a prime dividing 1r tu) I

70.

"F (H)

Then N
H

(Qo) = F(M) bY lemma. 4.2.

and let
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Thus Qo is a- Sylow q-subgroup of ÉI.

Now Qo.F(H) <

L.3.'7, we have H = NH(Qo).QoF(H)

= F (M) .F (rí)

ft oå 11, 0å <H'<F(H).

Thus tQ; roq, (F (H) ) I = 1, so Oå o NH (Q0) .F (H) = H'

But Oå 4 lrf r so we must have O; = I.

Thus F (M) is abelian.

Let r be a prime divid,ing lr {n) n F (M) | and let R0

be the A-invariant Sylow r-subgroup of F (FI) n F (M) '

Then as above or (M) is a Sylow r-subgrcup of H, so

Ro is a SYlow r-subgrouP of F (ti) .

Since R0 and F (M) are abelian, R0 < z (H) '

Now Z (H) centralizes F (Ii) and F (M) r So

z(H) < F(H) n F(M) by [9], theorem 6.I.3.

Hence Z(Ii) = F(H) n F(M) .

!ùe have shown above that if q is a prime dividing

lr tu) | , oq(M) is a syrow q-subgroup of H'

since z(H) = F(H) n F(M), it follows that

t lr (nl /z (Êtl I , lz (H) l) = r"

Thus v/e can write F (H) = z (H) x H0 where IIo is

A-invariant and clearly t lr tul | , lÊI0 l) = I. tr

LEMMA 4.4 Let q be a prime dividing lel ' a the

vI = N*(Q) .

A-invariant
H hasa

A-invariant Sylow q-subgroup of G and

If O is contained in another maximal

subgroup H of G then O is abelian,

normal q-complement anC 0 n F(!i) < z(H) .
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PROOF

By theorem 1. 11, O. F (H) < Ê: '

so by [9], theorem 1.3.7' H = NH(O) 'F (II)

= NH (Q) .Oq, (F (H) ) .

Now e' < NH (Q) and Q' < F (ËI) by theorem 1' 11 so

that [Q',oq_,(F(H))] = I' Hence Q' < H'

BuÈ Q' 4 Mr so we must have Q' = I' i'e' 0 is

abelian.

clearly we can v¡rite H = Q.E where B is a q'-groupt

so if O n F(H) = 1, [Q,B] < F(FI) < B'

ThusHhasanormalq-complementBandonF(H)<z(H).

rf OnF(H) 11, F(M)<Nc(QnF(H) )<Hr so

H tì M = F (M) by lemma 4.2.

Thus NH(Q) = fi [l M = F(M)"

But tQ rF (M) I = I, so NH (Q) = cH (Q) '

Thusby[9],theorem7.4.3'Hhasanormalq-complement.

Finally, [Q n F (ËI) ron, (H) I = 1 and O is abelian so

A n F(H) centralizes O'oq,(H) - H' i'e' 0 n F(H) < z(H)' tr

Thenextlemma.willbeused'frequentlyin

conjunction with lemma l'16 to show that for any A-

invariant SYIow P-subgrouP P of Gt c
P

(r) - Cp(Cp(n)).

and let P

Then
L EMMA 4.5 Let p be a- Prime dividing lc I

be the A-invariant Sylotr p'subgroup of

Cr(n) c P.

G
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SuPPose C, (n) = P anC let G*

direct ProCuct of G bY <Tt>'

If cG (P) = Nc (P), G has a normal

[9lr theorem 7-4.3.

Thus we maY assume that CG(P) - Nc

Hence <n> ( cc* (P) c Na* (P) and

is soluble.

By [9], theorem L-3.''¡ , NG,*(P) : L'

" 
= *r**(p) ('nt) - NNG(p) (<n>) '<n>

llence NGx(P) = L3i.cçx(P) where

73.

G.<n>, the semi-

p-complement bY

(P).

Ncx (P) N (P) . <r>
G

c (P ) where
G*

L,, .(r)
(r)

N (P).
G

(<¡>) < G.

< cG(P).

tr

(J

N (P).
u

=NN

<c
L̂r

Thenexttwclemmasexhibitconditionsunderwhich

certain A-invariant subgroups of G are contained in

specific maximal A-invariant subgroups of, G'

But [Lr, r<T>J < G fì <n> = 1, so L. 
'

This contradiction completes the proof '

L IMMA 4.6

and suppose

p-subgrouP

PROOF

of G.

Then P < M*, so bY lemma 4.4 M*

Let T be an A-invariant subgrouP of

that T contains a non-abelian Sylow

P of G for some Prime P' Then T <

Suppose T < M*, a maximal A-invariant subgroup

L EMMA 4 .7 Let P

A-invariant SYlow

of P containing

be a prime dividing lel, P the

p-subgrouPof G and K asubgrouP

z (P) . Then NG (K) < Nc (P) '
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Since z (P) <

Thus Z(P)s = Z(P)

Hence g € Nc(Z(P))

LEMMA 4. B Let p

A-invariant SYlow

of P. Then Cp (V)

Vg € NG(K) we have z(P)s < K < P

[5], corollarY 2.1(a).

c 
(P) , so Nc (K) < NG(P) ' tr

K,

by

=\J
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(v) .

The next 1emma, which is really a corollary of

lemma 4.7, will be used' frequently'

be a prime dividing lcl' P the

p-subgrouPof G and V asubgrouP

is a Sylow P-subgrouP of CG (V) '

PROOF

Let P?t be a SYlow P-subgrouP of C

containing cp (v) .

Since z (P) < Cp(V) we have

Iemma 4.7 .

rn particular Np,, (cp (V) ) ( P,

Hence P* = cp (v) i. e ' cp (v)

of cc (V) .

A-invariant Sylow p-subgroup of G anC

Suppcse that M = CM(n) .F (M) and that f

P* of P such tha.t cM (tr* ) É F (M) and'

Then for some prime t I lvrTr (M) I , if r

(v)
G

NG (cP (v) ) < Nc (F) by

so that N

is a Sylow

P(v)) P

p-subgrouP

ú

P* 
(c

Thefinaltwolemmasofthischapteraretechnical

results which are necessary f or our later a-rgurnent '

LEMI'IA 4.g Let P be a prime dividing lc I ' P the

c(P).
a subgrouP

crx(t) I 1.

is the A-

M=N

inva.riant Sylow t-subgroup of G we have:
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(1)

(21

PROOF

PNB

fx € crnr(n) - F(M) such that pllcc(x) l'
If B is a maxj-ma1 A-invariant subgroup of G

containing C"(x) then 1lCrn"(n) lr nB

and C (n) lP nB.

As cM(P*) I F(M), 3y € M - F(M) such that y

centralizes P*.

w.I .o.g. r we nr.ay assume that y is a t-element for

some prime tIlu7r(M) l.
(1) By theorem 1.11, T n M.F(M) < M so by [9lr

theorem I.3.7, M = Nt (T n Ivf ) 'F (M) '

Thus (TnM)'4Mr soif (TnM)'l l we

have T0M=T.

But tlluTr(M) l, so M I NG(r).

HenceTisabelianbylem¡ha4.4,acontradiction.

Thus (t n M)' = I. i.e. T n M is abelian'

Now 39 € M such that yg € T n M and by lemma

I.3 we can write yg = xz for x e Crn*(n) and'

z € T n F(M).

But then yg and z centr a1íze (P*)g r so x

must aIso.

Hence pllcc(x) l.
(2\ Since x € C,

and 4.5.

Hence t I Ct

Suppose that
I r n B.

(t) = P n B.

(B, so 1e*)9<PnB.

(n) r cT(x) ) Cr(n) bY lemmas I'16

nB

c

(n)

PNB

(x)Now (P* )g < c
LI
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Thus so 3v € P* such that

gtg-r inverts vr a contradiction

sance lcl is odd.

Hence crng (n) lP nB asrequired-'

LEMMA 4.10 Let P be a prime dividing lcl'

A-invariant Sylow p-subgroup of G' tut : N*(P)

P* = z.r (Cp (t) ) . If M = CM (r) 'F (M) anC CM(P* )

then C (t) has a normal P-comPlement'
G

PROOF

Let Po = Cp(P*).

By lemma 4.7 t Nc(zJ(P') ) < M and hence

NG(ZJ(Po)) n cc(P*) < F(M) and so has a normal p-

complement.

Now by lenma 4.8 P0 is a Sylow p-subgroup of CG(P*) '

soby[5]'theoremD,cG(P*)hasanormalp-complement.

As P0 is a Sylow p-subgroup of cc(P*) and'

cG(P*) o Nc(P*)r NG(P*) = (Nc(P0) fl Nc(P*))'cG(F*) bv

[9], theorem I.3"7.

But by Iemma 4.7 NG(P0) < M so NG(P*) = Nl¿(P*)'cG(P*)'

rt now follows from [9] ' thecrem 6'2'2 that

Nc(P*) n c*(t) = (NM(P*) n C*(t))'(cc(P*) n Cc(t))'

Clearly NM(P*) n ca(t) < F(M)' so

NM(P*) n c*(r) = [Np(P*) " op, (F(M) )] n C*(t) '

But op, (F (M) ) ('cc (P* ) r so we have

(p*) e ( c, (n) r

and 1v9¡r = qve¡-r.Tv=v
But then

P the

and

< F(M)
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NG(P*) n c*(t) (Np(P*) n Cc(t)).(cc(P*) n c.(t))

(N (P* ) o cc (t) ) .op, (cc (P* ) n c (r) )
t¡

P

(Np(P*) n cr(t)).op,(Nc(P*) fl cc(t))'

Thus Nc (P* )

Therefore bY

p-complement.

n ca(t) has a normal

[5J r theorem D, cG(r)

p-complement "

has a normal
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CHAPTER FIVE

PRELIMIN ARY REDUCTION

In this chapter we corrnence the proof of the

main theore¡n by demonstrating that the structure of

maximal A-invariant subgroups of a. minirnal counter-

example is restricted in certain ways. Throughout'

G v.rill be a minimal counter-example to Theorem IÍ,

and for the sake of clarity the argument is presented

in a series of lemmas.

we begin with a lemma which provides some basic

information fron which the argument in this chapter is

derived.

LEMMA 5.1 Let p be a prime dividins lc l, P the

G 
(P) .A-invariant Sylow p-subgroup of G and M = N

suppose there exists a_ maximal A-invariant subgroup

H I M such that Pr = P n H l1' Let P0 = p n F(FI)'

Then:

(i) Pl is abelian.

(ii) rf P0 I l, Pl is self-centralizing in P and

CG(Pl) = Pr t on,(CG(Pr)).

(iii)

(ir/)

(v)

(vi )

rf Po I I, NG(Pr) < M.

rf P0 11, op,(¡{) =on,(NG(Pr)) =on,(cc(Pr))'

If Pr . Pr Po n z(P) : I.

rf z(P)(PrlP' q isaprirneCividing lul

anC Qr is the A-invariant Sylow q-subgroup of

H then z(P) ( Nç(Qr).

ïf z(Pl (P, lP, q isaprimedividing lHl,

Ql is the A-invariant Sylcvr q-subgroup of II

(vii )
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and o
(viii ) If in

and O

o = Ql n F(H) then Qr = Cer(Z(P)).Q0"

add.ition to (vii) we have Po I I

p, (M) = I then 
"eo 

(z (P) ) = 1'

PROOF

(i) Ey theorem I.1I PrF(H) < H, so by [9], theoren'.

1.3.7, u = NH (P, ) .F (H) .

Since Pi ( Por wê must have Pi < H'

ff Pi 11, thisgives NG(P|) =FI sothat PI--P'

ButthenPisabelianbylemma4,4|soineither

case Pl is abelian.

(ii) Since Cp(Pr) < Nc(P0) - H' we must have

Cp (Fl) = Pr i.e. Pr is self-centralizing in P'

The second asserticn then follows from [9] t

theorem 7 .4.3.

(iii)IfFl=Ptheresultistrivia-lrsoassumethat

Pl I P.

Then Fl

Suppose

subgroup

Let P*

of M*.

Then as

rf M*l

But then

(ii).

Thus M*

above

M, it

= lrJ

N^(
Lr

of

be

P(Po) > Po.

Pr) <If*, a maxj-mal A-invariant

u"

the A-inva.riant Sylow p-subgroup

M* = NM* (P* ) .F (M*) and so P* | < M*.

follows that P* | = I.

) is abelian bY (i), contradictingNP(PT

N^ (P, )[1 i. e. <M



(iv) By lemma 2.3 , on , (N* (P r ) ) < o

It follows from (iii) that

* on, (Iq) .SO

But

(v)

(vi)

N

. (t't¡ .p'
(Pr) =

80.

G 
(z (P) ) .

(v).

n F(H).

z (P)

M

op,(Nc(Pr))

op, (M) < Nc(Pr) ( M, =: o

Thus op,(M) = on,(Nc(Pr)).
n, 

(1.,t) * on, (Nc(Pr)).

Clearly op,(Nc(Pr)) < cc(Pr) so that

op, (Nc(Pr) ) = on' (Cc(Pr) ) .

Thus op,(M) = on,(Nc(Pr)) = on,(Cc(Pr))'

Clearly we may assume that P0 I I and we have

Po < Np(Po) = Pr.

Then by (ii), Z (P) ( P,. Suppose that P0 n Z (P)

Then Cc(P. n Z(P)) Þ F(H).Pr > F(H) so by lemma

4.2, NG(Po n Z(P)) < H.

But cp(Po n z(P)) = Pr a contradiction'

Thus Po n Z(P) = l.

As above, ËI = NH(Qr).F(H)"

If Po = 1, Z(P) ( P, * Nr(Qr) .

Thus h/e may assume that P o I 1.

Nov¡ Nc(Pr) < M bY (iii), and since

I'1 = Na(P) = NG(Z(P)) we ha.ve Ner(Pr)

I r.

<N

Thus

Now

[*Qr(P')rZ(P)]

H = NH(P,).F(H), soO r = *g, (nr).Q,

I fì F(H)r soClearly Z (Pl normaf izes 0

normalizes Q1.

(vii) Since H = Nn (P, ) .F (H) , f an A-invariant Sylow

q-subgroup Qz of such that Qr = Qz.Qo.



Now [Q.,Z(P)] ( Pr n F(H) = Po.
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G
(P).

And O

z(P).

Thus

NG(P1) < M by (iii) , so Q2 normalizes
2

lQ2,z(P)l ( Po n z(P) 1 bv (v) .

Hence Qr = CQr(z(P)).Q0.

(viii) Su¡:pose 
"Qo 

(z (P) ) I I. Then 
"eo 

(z (P) ) ( M = N

As 
"eo 

(z (P) ) ( H, 
"Qo 

(z (P) ) < NG (Pr )

.'. tceo (z (P) ) ,Prl ç Qo n P, = 1"

Qo
* on, (cç(Pr)) bY (ii)

(iv).
Hence C (z (P) )

=Q , (M) by
p

The result follows.

LEMMA 5,? Let p be a prime dividing le l, P the

A-invariant Sylow p-subgroup of G and M = N* (P) '

Suppose f a maximal A-invariant subgroup H of G

such that I I P0 = P n F(H) ' Pr - P n Fì < P. Then

(i) F(il) fì M = Po.

(ii) If X is any A-invariant subgroup of

z(P) * On,(M) , cc(x) n on,(F(I{)) = 1.

(iii) ( lon, (F (Fi) ) l, lon, {u) l) = r.
(iv) Either z (P) x on, (Ir1) is cyclic and centralized

by r or z(,P') x op, (M) = Zn ' zn for some

integer n and r acts f.p.f. on z(P) x Op,(M)

PROOF

Leb Qo be a SYlow

someprime qlP.

Then [QorPr] < P n o

q-subgroup of M n F(H) for

q 
(tí) = It SO

(ii)

(i)

Qo * on,(cc(Pr)) bY lemma 5.1
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(ii)

(iii I

(iv)

= On , (M) by lemma 5.1 (iv) .

Thus [QorPì = 1.

Since Pr = Cr(Pr) . Pr P is non-abelian'

Thus by lemma 4.4 NG(Q') < M.

It follows that Qo = on(H), so that Q0 <

a contradiction.

Hence 14 n F(H) = Po.

Suppose X is an A-invariant subgroup of

z(P) x op, (M) with cc(x) n op, (F(I{) ) I I.

As P < CG(X), NG(x) < M bY lemma 4'4'

But then F(H) n M r P0' a contradiction.

suppose =ql 
( lcn, {r (H) ) l, lon, (I'{) l), and let Qr

be the A-invariant Sylow q-subgroup of H'

Then oq(H) I I and [:z(Qr) noq(H) l1'

Eut op, (M) < cG(P0) ( Li, so oq(M) ( c* (x) r

contradicting (ii).

Since op,(14) <cc(P)<H and op,(M) nF(H)=l

by (i), it follcws that op, (M) is abelian by

theorem 1.11.

Thus T - Z (P\ x Op , (M) is a-n abelian group of

automorphisms of op, (F (H) ) .

If f I cr(n) ( T, we can choose minimal

A-invariant subgroups X and' Y of T such that

x < Cr(n) and [Y,<r>] = 1-

But then lemma I.f4 (c) implies that 3 an

A-invariant subgroup X0 of T such that

cG (x 
0 ) n on , (F (H) ) I L, contradicting (ii) '
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LENI4A 5.3

Thus either c, ( n) = f or cT ( Tr) = I .

If Cr(r) - T and T is non-cyclic then sor.e

Sylow q-subgroup of T is non-cyclic ' But then

Iemma 1.14(a) yietds a contradiction as above'

Similarty if cr(n) = I lemm.a 1.14(b) yields

that each syIov.' subgroup of T is isomorphic to

Z-i x Z^i for some prime Qt so that f 'a Zn ' Zn
q.' q

fcr some integer n. tr

Let F be a prime dividing lc I' P

A-invaria.nt Sylow p-subgroup of G and M = Nc

Suppose I a maximal A-invariant subgroup Fi

such that L I Po = P n F(H) ' Pr = P n H < P'

cztr¡(tt) I 1.

the

(P).

ofG

Then

PROOF

Suppose that î acts f.P.f. on Z (P) '

We show f irst that C* (n) < Ii. Suppose Ca (ri) f H'

Now by lemma 5.2(ii), z(P) acts f.p.f. on op,(F(Ii))

and by [9], theorem 6.1.3, op,(F(Iï)) I l-'

Thus fx € C*(n) n z(op, (F(tI))) by lenma 1'2(4) ' It

follows that Ca(x) I H.

suppose c* (x) < M* where M* is a maximal- A-invariant

subgroup of G different from H.

Then F (H) < Mtr r so CH (x) = F (H) by lemma 4 '2 and

I,'* = F(H) .F(M*) and F' (H) is abelian by lemma 4.3.

Let Y = cro (n) and suPPose Y I 1'

Then cH (Y) > F (H) .Pr > F (H) ¡ so by lemn'.a 4.2 Cc (Y) < ri.
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But then C (n) ( H, a contradiction.
G

Hence rI must act f.P.f. on Io.

Now P n M* = Po by lemma 4.2, and as Ca (n) < M*

we must have C, (n) = 1.

Let L be an A-invariant Sylow q-subgroup of Mt

q, I p, with [LrPl I I (L must exist else op (M) I M,

contradicting [5J r Corollary 2.2).

Then Lo = C, (n) I l, Lo < M?h and [Lo rP] I 1.

Thus [LorPo] < F(Iv.*) n P ( Po.

Flence L0 < NG(Po) - H, so L0 < M* fì H = F(H).

Now [Pr rl,o) < P n F (H) = Po, so [Pr rlo rT,o] <

Thus by [9], theorem 5.3.6, [PlrLsl = l.

Eut then by lemrna 5.I(ii), L0 * on, (cc(Pr) ) = On, (l{) '
a contradiction.

Hence C* (n) ( H:

choose L as above, and let 0 be the A-invariant

Sylow q-subgroup of G. Let Ql = Q n H and suppose

that Qr t L.

By lemma 5.I (vii), Qr = 
"qJz 

(P) ) .Q0 where Q0 = Qr n F (H) '

If Q0 = L, Qr < I{ so that L >- Qtt a contraCiction'

Thus Qo I 1.

Now clearly 
"e, 

(z (P)) < L n H, and

tL ñ H, z(P)l <

Thus 
"Q,(z(P)) 

- L n H a-nd Qr - L n FI.Q''

Let M* = Nc (Q) .

Then z(p) < Nc(Qr) < M* by lemma 5.1(vi) and (iii).

Hence z (P ) normalizes NQ (Q L) /Q L .
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Thus by [9], theorem 5.3.5'

Na(Q Ll /Ar - cNQ(er )/e, (Z (P) ) ' Iz (P) 
' NQ (Q t) /Qr) '

Since C (n) < H and O n H = Q¡r T acts f.P.f. on
u

Na (Q r) /Q L.

It follows that N^ (Q, ) - Cq¡

= |rJ

Hence tz(P), Ne(Qr),/Qrl = Qr by lemma L'2(4)'

NQ(Qr )

Q(Qr)

(z (P) ) .Q,

o 
"Q 

(z (P) ) .Q,

= Nn(er) n L.Qr

(Qr) f'ì L, Z(P)l ç Qr n z(P)since [N
1

a

= Nn(e,) n L,Qo

since Qr - L n ¡¡'Qo'

But then L n Ng(Ql) ( Nc(tz (P) 
' Qrl ) = Nr(Qo) as

cc (z (P) ) ¡ Qo = r bY lemma 5'2 (ii)

i.e. L n NQ(Q') < H.

Thus N^ (0. ) ( H, so that Qr - O.
q,r

If M* = H, [PlrL] < Q n P = l.

Thus 
" 

* on, (Cc(Pl)) = on, (M) by lem¡¡'a 5'1(ii) and (iv) '

But then [LrP] = l, a contradiction'

Thus M* I H.

Now Q = C^ (Z (P) ).Oo by lemma 5.I (vii) and Q0 < Z (H)
q,

by lemma 4.4.

Thus a centralizes z (P) , so that Q < Ivl and hence

Q = L. Contradicti-on.

It follor,,rs that O n H < L.

As above tL fì H, Z (P) I = t.

Now L is abelian by lemma 5'l(i) , so l' = C,(n) x [L'<r>]

by lemma 1.3.
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Since n acts f.p.f. on Z(P)t tLrZ(P)l = ICL(r)'Z(P)].

Eut C*(n) < Hr so Cr(n) < L n H'

Thus [L, z(P)] <

We show next that z (P) < M* = NG (Q) 
"

LeÈ K be a maximal A-invariant subgroup of G

containing NG (L) .

Then Z (P) < K so we may assume K I M*'

If K = Mr f, = Nn(L) so that O = L" Hence Z(P) ç ¡4:t'

If KlM, KnP<P since P isnon-abelian'

But then by lemma 5.1(vi) z (P) normalizes K n Q so

\^¡e may assume that K n Q < Q.

ff O n F(K) = I, K n Q < cA(z(P)) by lemma S'I(vii)

sothat KnQ<M.

Thus KnQ<L andhence L=Q asaboversoagain

z{Ì) < M*.

Finalty, if O n F(K) I l, Nc(Q n K) < M* by lemma

s.r (iii).
Thus Z(P) < M*.

rt follows that z (P) normalizes Ne(L), and since

cn(n) < Q n H < L, r acts f.p.f" on NQ(L)/L and z(P).

Thus tNe (L) /L, z (P) I = I by lemma L '2 (4') '

ThereforetNa(L),2(P)l(L,sothatlNQ(L)'z(P)'z(P)l

rt then follows from [9] I theorem 5'3"6 that

lNe(L), z(P)l = 1.

Hence Ne(L) < I'f so Ne(L) - L i'e' L - A'

Next, let R0 be an A-invariant Sylow r-subgroup of

M:t with [RorQ] 11.

As tPnM*,Ql<PnA-1, rlP and M*f M'

1J_.
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Thus z(P) < Nc(Ro) bY lemma 5.I(vi)

else P is abelian bY lemma 4.4).

Now Ro is abelian bY lernma 5.1(i) t

Ro = CRo (Z (P) ) x. IZ (P), Ro].

But tZ(P), Rol ( Ro n F(M*),

(pnM*lP

SO

so lz (P) , Rol centralizes

o

Thus lcnn (z (P) ) , Q] I l.

However, CRo

by lemma 4.4.

(z(P)) ( M, so [cno(z(P)), Q] < Q n F(M) < z(M)

Thus [a*o (, (P) ), Ol = 1 by [9], theorem 5'3'6'

This contradiction completes the proof'

LEMMA 5.4 Let p be a prime dividing icl' P the

A-invariant Sylow p-subgroup of G and M = N* (P) '

Suppose f a maximal A-invariant subgroup H of G

such that I I Po = P n F(H) < PI = P n H < P'

Then op, (M) = I and if E is an A-invariant complement

to P in M then [PrE] -P andeither u<C*(t)

or [8, <n>] = E.

PROOF

By lemmas 5.2 (iv) and 5.3', Z(P) x Op, (M) is a

cyclic subgroup of cG (r) .

Let r be a prime dividíng lz (P) " on, (M) I and let R

be the A-invariant Sylow r-subgroup of Z (P) * On ' 
(M) '

If R f Z(Nt), 3 a minimal A-invariant t-subgroup T

of M for some prime L I t such that [T, R] I 1'
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Thus by [9ì, theorem 5-2.4, [T' llr (R) ] I t' Since

cr(n) is abelian, clearly T is non-cyclic'

But Or (R) is cyclic of order t and hence has a

cyclic automorphism grouP. Contradiction'

Hence R < z (M), so that . Z (P) x Op, (M) <

Suppose that op, (M) I 1 and let Qo be the A-

invariant Sylow q-subgroup of op , (IuI) f or some prime q '

Let O be the A-invariant Sylow q-subgroup of G'

since Q0 < z(M)r Qo I Qt = Q n M else Q0 = A and

G has a normal q-complement by [9J I theorem 7 '4'3'

Now Z (P) * c*(Qr), so z(P) * on, (M*) where M* = NG(Q)

by lemma 5.I (ii) and' (iv) .

Thus tZ (P), Ql = 1, so that Q < M i'e' Qt - O'

Since L I Ao < M, oq., (M*) < M'

Thus M = F(M*).F(M) bY lemma 4.3"

since [z (P), O] = I' z (P) < M* lì M = F (M*) '

IfP*istheA-invariantsylowp-subgroupofM*'
p* < M n M* = F(M*) so that P* < M*"

Thus P* = P, so M'k - Mr a contradiction'

rt follows that op , (M) = I.

Hence F(M) = p and so E is abelian by theorem 1'I1'

Now p = Cp(E).tPrEl by [9], theorem 5'3'5, so

E. [P, E] < ¡.',!.

Thus [PrE] = P bY [5], CorollarY 2'2'

Suppose next that E contains an A-invariant

Sylow q-subgroup A of G for soñe prime q'

Then [Q, z(P)] = 1 as z(P) < z(M)' and now a

contradiction is obtained as in the last paragraph of
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lemma 5.3 .

It follows that 3 a minimal A-invariant q-subgroup

c of E with cc (c) * M.

Suppose that e = C, (n) x [Er (r>] where c, (n) I I

and [E, <n>] I 1.

Then we can choose a minimal A-invariant subgroup D

of E suchthat tlcc"¡(n)lc xD'

As p = F(Ivl), CM(P) < P by [9]r theorem 6.I'3'

Let Þ = P,/Õ (P) r so that Þ = CÞ (D) x ¡Þrol '

If Þ = CÞ(D), D centralizes P by [9], theorem

5.1.4, a contradiction..

Thus þ* = tÞrDl I l.

Hence cF,Ê (c) I I by lemma 1.14 (c) , so that cP (c) I I

by [9], theorern' 6-2.2.

C1early [D, cp (c) ] I I

LetcG(c)<M*'amaximalA-invariantsubgroupofG.

Now [D, cp(c)] < P n F(M*) = Pt, so PT l1'

And since M* I M, PT . PT = P n M*.

Also Pî I P, else P would be abelian by lemma 4"4'

Thus by lemma 5"2(ii)r cG(z(P)) n F(M*) = PT i'e'

M n F(M*) = PT.

Hence E n F(M*) = t"

Let A be the A-invariant Sylow q-subgroup of G'

L = Q fì E, Qr = Q n M* and Qo = 0 n F(M*)'

By lemma 5.1(vii), Ql = Cer (z (P) ) 'Ao = L'Qo since

" = "Q(z(P)) 
( Qr.

since cc(c) f M but cc(c) < M*, w€ must have Qo I 1'

And Qr I Q, or else Qo <

(M* I NG(O) because E n F(M*) = f) and then [QorZ(P)] = 1'



Thus by lemma 5.1(ii) and (v) r z G-) n Q0 = 1.

It follows from lemma 5.2 (ii) that cc (z (Q) ) fì F (¡4't ) = Qo'

lrre show next that [z (Q) rE] = I.

Let r be a prime dividing ln l , r I q, ârid let Rl

be the A-invariant Sylow r-subgroup of M*.

By lemma 5.1(vi), z(Q) < NM,,(Rl) so

tE o R,, z(Q)l < R, o F(M*).

But clearly E normalizes Qr - L.Qo and as z (Q) ( Qp

90.

z(Q)l = 1.

and

1T

lE fl Rl' z(Q)l ç Qr.

Thus tE ñ R, , z(Q\l = 1 and' it follows that [E'

Let zo - Qr (z (O) ) (z (O) is cyclic by lemma 5'2

5.3) and take Eo to be either C or D so that

acts f.p.f. on Eo.

Then zo " Eo normalizes PT and cp,t(20) = t

cc(z(O)) n F(M*) = Oo.

Therefore by lemma 1.14, [EsrPf;J = 1.

Now by [9], theorem 5.3.6, it follows that

Ino rPf l = [Eo rPT rPT] <

Thus E0 * or,(C*(PT)) by lemma 5.f (ii)

- o , (M) bY Iemma 5.1 ( iv)
p

= 1 by the first Part of this lemma'

This contradiction completes the proof.

LEMMA 5.5 Let p be a prime dividing lel,

srnce

¡

P the

A-invariant Sylow p-subgroup of G and

Suppose that 1"1 = P.E where [Ern] = E

maximal A-invariant subgroup H of G

u = N*(P).

and. f a

such that
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L I Po = P n F(H) . P, = P n H < P. Then:

(i) C, (n) = C, (tr) .

(ii) Vx e C"(n) such that x I I' C*(x) < M'

(iii) T-f. q is a prime dividing lnl and I-' is the

A-invariant Sylow q-subgroup of E then Cp (t)

is cyclic.
(iv) 3 a maximal A-invariant subgroup M* of G

such that M* = cM*(r) .F(M*), cnx(n) n F(M*) = 1

O (M*) = I and E - Z(M*).
p

(v) H = Cr(t) .F (H) where r acts f .p.f . on F (Ií) '
o , (H) I I and is a Hall subgroup of G and
p'
(lo-, (H) l, lrl¡,r*l l) = l.'p'

,

PROOF

(i)

(ii)

Since r centralizes z(P) by lemmas 5'2(iv)

and 5.3, C* (n) < Cc (z (P) ) < M.

But Cu(n) = 1 by assumption, so C*(r) < P'

Suppose 3x e C, (n) such that x I t and

Ca(x) I M. w.l.o.g. v/e may assume that x has

order p.

Now CG (x) < H* for some maximal A-invariant

subgroup H* I l'tt.

rf P fl F(H*) = I, cr{n*¡(n) = I so that

H* = cp (n) .F (H* ) bY lemma l ' 19 '

Thus C, (n) is a Sylow p-subgroup of H* '

But C, (n) < c, (c, (n) ) < cc (x) by lemmas 1' 16

and 4.5, a contradiction.
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Hence P n F(H*) I 1.

CIearIy P n H* I P, else P would be abelian

by lemma 4.4.

Thus w.l"o.g. we may assume that co(x) ( Hr so

that C, (n) < H.

Let X be a minimat A-invariant subgroup

of Pl such that X n Z(P) = I and let

Zo = Qr (Z(P) ). Let q, I p be a prime dividing

lr(H)1"
Then X , Zo normalizes B = f{ n O*(F(H)) and

D = Non(r(n) 
) 

(B) '

Hence x , Zo normalizes D/8, so by lemma I'I4

jl an A-invariant sugrouP X0 of X ' Zo such

that coTs(xo) I B.

Thus cD(x0) f B so cD(x0) f M i.e. cH(x0) I M'

rf cp(x)lP, then cp(xo)lPt sothat

cG(x0) < M* , a maximal A-invariant subgroup of

G such that M* I HrM.

But then P n M* is abelian by lemma 5'I(i),

contradicting lemma 5. f (ii) . Hence c, (X) = P I '

It no$¡ follows from lemma 1.17 that

fN"te,)/er1 = p2 since c,(n) ( P'

Since Pr is abelianr Pr = Cr, (n) x [P1 r<T>1

by [9], theorem 5.2.3.

Now x € P, Z(P), and. <xtzot ( c¿r (cp, (n) ).

rr follows that In, {cr, (n) ) | > p'-
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And P, is self-centralLzing in Pr so by

lemma 1.16 Crr(n) . Pr.

Thus [Prr<n>l 1 1, so that Inr {tPrr(n>] ) l Þ p''

Hence lor{er)l ) Pn.

Thus by lemma 1.I7r P, is a characteristic

subgroup of P.

It follows that E < NG(P') and [ErP] ( Pt

since îT is f.P.f. on E and P/Pt'

Since p = Cr(E). tPrEl by [9], theorem 5.3.5,

cp(E) is not centralized by r. Let u € cp(E)

be an element which is not centralized by fi'

Let q be a Prime d'ividing ln I r let 0

be the A-invariant Sylow q-subgroup of G' and

let L-AnE.

Suppose Nc (L) < M* where Mìk is a maximal

A-invariant subgrouP of G.

Let0î=QnF(M*)rai=QnM*'PT=pnF(M*)

and Pi = P n M*.

Now u€PnM*-Pi andsince M*lM, Pi is

abelian by lemma 5.1(i). It follows that u is

contained in an A-invariant grouP U on which

ïï acts f.p.f., and since r also acts f'p"f ' on

op, (F (M*) ) , u centralizes F (M*) '

Thus u€Pil 1 andclearlY PT'PIlP"

By lemma 5.2(ii)r cc(z(P)) n op'(F(M*)) = I'

And by lemma 5.I(vii), Ai = 
"eT 

(z(P))'0i = L'QT'
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(iii )

Suppose that Oi = Q.

IfOî11,0î(21t4*)bylemma4"4'contradicting

lemma 5.1 (viii) .

If Oi=It a=QT=L.

But then NG(Q) < M* so 0 < M:t , a contradiction'

Hence Oî I ç and as L I NA(L) < OT' OT I 1'

Put then by lemma 5.3 Cn(n) I L, a contradiction'

Hence c, (x) < M.

Suppose that Cp(L) is not cYclic'

Since r centralizes Z (P) and acts f'p'f' on

L, z (P) norrnalizes L by lemma I ' 4 (2) '

Thus Iz (P),L] <

Choose x € cp(L) such that lxtz> is not cyclic'

where 17) = ç¿r (Z (P) ) .

Suppose that Nc (L) < M* ' a maxirp'al A-invariant

subgroup of G.

If x / Cr(n), we can d'erive a contradiction as

above (replacing u by x) ' Thus we may assun'e

that x € Cr(n).

rf op, (F(M*)) ( M, l<x,z>, op, (F(I1*))l < P n on, (F(M*))=

Thus op(F(M*)) l1 by [9], theorem 6'1'3' and

clearly P n M* I P.

Put then C*(z) fì op,(F(M*)) = I by lemma 5'2(ii)'

a contradiction.
Hence op,(F(M*)) f M.

But by [9], theorem 6.2.4,

op, (F (M*) ) = ."0n, (¡,(vr* ¡ ¡ 
(cr) lo, € lxtz))

< M by (ii).
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(iv)

This contradiction completes the proof that

cp (L) is cYclic -

Aga in let q be a prime d'ividing ln I , L the

A-invariant Sylow q-subgroup of E and

NG (L) < Iq* , a maxima-l A-invariant subgroup

of G.

If op (M* ) I I we derive a contradiction as

above.

So on(M*) = 1. and hence cF(Mx)(r) = I'

consequently yrc = cM* (n) .F (M* ) by lemma l ' 19 '

so that Oq(M*) = Q, the A-invariant Sylow

q-subgrouP of G.

rt follows that V primes r I le I , Mt( = Nc (R)

where R is the A-invariant Sylow r-subgroup

of G.

Furthermore t

Thus ILrM*]

rf L f Q'r

7 .4.4.

Hence oq(M*) I M*, contradicting [5] r corollary

2.2.

Thus L < Q' < z(Q) bY l2l, section 66.

It follows that E < Z(F(M*)).

Now vx € crx(n)r cc(x) n F(M*) < M f-ì F(¡'q*) = E'

since [xrE] < P fì r(u*) = 1, this yields

Z(M*) = E.

lcr*(n), Ll < P n F(M*) = I"

< Q' and hence LQ',/Q' < Z (M* /Qt ) '

oq (M* /e,) ¡ t't*/Q' by [9] r theorem



(v) rf cro (n) I I' cc (x) < M vx e Cro (n) such

rhar xl I by (ii).

Thus F (H) . P rF (H) ( M, contradicting lemma 4 '2 '

Hence Cro (n) = Lt so that fi acts f 'p'f ' on

F(H) and H = CH(n).F(H) by lemma 1'I9'

Clearly op, (H) I I (e1se F(H) = Po < z(H) by

lemma 4.3) t and, since H/F (H) is a p-group'

op, (H) must be a HaII subgrouP of G'

Finally , if v is a prime divisor of lon' (tt) I

and lr tu*) | then H = Na (v) = M* where v is

the A-invariant Sylow v-subgroup of G'

But then IP0rE] = L, contradicting (iii)'

Hence (lon,(FI)1, lF(M*)l) = r' D

96"

of

M,

LEMMA 5.6 Let p be a prime dividing lc l, P the

A-invariant Sylow p-subgroup of G and l't = N*(P)'

Suppose that 3 a maximal A-invariant subgroup H

c such that L I Po = P n F(H) < P, - P n H < P'

Then if E is the A-invariant complement to P in

e ( C*(n).

PROOF

Suppose that n I ca(n) ' Then by lemma 5'4 r

acts f .p.f . on E a-nd hence the results of lemma 5'5

hold. Let y* be the maxinral A-invariant subgroup of

described in (iv) of that lemma'

Let r I p be a prime dividing lr (H) l' let R be

the A-invariant Sylow r-subgroup of G' R- = Co(t)

V I by lemma f .2 (3) ) and' R* = zJ (Rr) '

\J
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By lemma 5.5 (v) ' H = NG (R) = CH (n) 'F (H) '

Now vx e C" (n) such that x I L' cc (x) < M by lemma

5.s(ii)and rl lvtl as E<F(M*) and

(lon,(r¡) l, lF(M*) l) = r bv (v) of the same lemma'

Thus by lemma 4,9 i CH (R* ) < F (H) '

It then follows from lemma 4.10 that C*(t) has a

normal r-comPlement.

Next, Iet q be a prime dividing lr tu*) |

and let Qr = Cn (t) where O is the A-invariant

Sylow q-subgrouP of G.

Then we may assume w.1.o.g. that R. normalizes

Let e* = Ce (Qr).

Then z Q) ( Q*, so Ne(Q*) < M* by lemma 4'7 '

Qr.

But Q* is a Sylow q-subgrouP of

so by [9] r theorem L.3.7,4.8 ,

(N
Lt

(Qr) î Nc (Q*) ) .cG (Qr)

Take a € z(R) n R.r, so that

by lemma 5.5.

Now R is a SYlow r-subgrouP of C

H = Nc(zJ(R)) so N(zJ(R) ) n C*(a)

cc (Qr) by lemma

Nc (Qr )

Now *, * NG(Qr) and r I l¡t* I by lemma 5'5 (v)

w.1.o.9. *, ( cG(Qr).

SO

\- (a) = F (H)
H

. (a) and

= F (H) has a normal

r-complement.

Hence by [5] '
r-comPIement.

Suppose that

theorem D, ca(a) has a normal

R contains an A-invariant subgrouP

R-invariant SYlowW = Er+ and 1et 0 bean
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q-subgrouP of Ca (a) (õ exists by theorem 6 '2 '2 of

te1).
Thenbylemma1.15]lanA-invariantsubgroupÞio

of W such that cQ (V'Io ) I 1.

Let Nc($I0) < K, a maximal A-invariant. subgroup of G.

Then by lemma L.2(4) cK(r) I I and hence pl lKl'

If P n F(K) = 1, r acts f.p.f. on F(K) and hence

îï centralizes P n K bY lemma 1' 19 '

But Po ( NG(Ív') < K and cro (n) = I by lemma 5'5 (v) '

Thus PnF(K) ll. since rN lul, KIM' rhus

P n K is abelian by lemma 5.f (i)' so that P n K I P

by lemma 5.f (ii).

rt now foll_ows from temma 5.5 (v) rhat q I lxl,

contradicting cõ (Wo ) I 1.

Hence R Contains no such subgroup vúr so by lemma

1.18 there is no element of order r in R-z (R) '

Nowif O isabeliantake x€ (O-AnE) flQ, and

if 0 is not abelian take x € (O z (O) ) n Qr (both

sets are non-empty by lemma 1.2 (3) ancl [9] ' theorem

6.2.2 because r acts f.p.f. on A/A n E and A/7'@))'

In the first case it follows at once from lemma 5 ' 5

that crx (x) = F (M* ) , so crx (x) has a normal q-

complement.

In the second case, suppose C"x (x) f F (M*) '

Then3y€M*-F(M*)suchthatycentralizesx'

and w.l.o.g. we may assume that y is a p-element'



Since P fì M* (n) is a Sylow p-subgroup of M*,

39 € M* such that yg € cr(n).

But Cc(yn) < M by lemma 5.5(ii), so xs < Q n 11 < Z(M*).

As g € M*, this implies x € Z(¡4*) so that x € Z(Q)r

a contradiction.

Hence C*x (x) ( r 114* ) and so ctx (x) has a normal

q-complement in this case as well.

Now ce (x) is a Sylow q-subgroup of c* (x) by lemma

4.8, and Nc(zJ(cA(x))) < M* by lemma 4'7'

Thus NG (zJ (cA (x) ) ) n Ca (x) ( C*x (x) and so has a

normal q-comPlemenÈ.

Hence by [5lr theorem D, cc(x) has a normal q-complement"

Let ñ. be a <Qrr>-invariant Sylow r-subgroup of

on, (cc (x) ) .

oo

= t2 \^te

Then

order

ç¿r (Z (ñ) ) ( Q, (Z (R) ) since there is no element of

x in R - z(R).

clearlv Inr {z (R) ) I = t2, so if lcl, {z (ñ) ) I

must have rìr (z (ñ) ) = ç¿r (z (R) ) .

But then qllNc(ç¿r(z(R)))l i.". qllHl, a contradiction'

Hence lslr {z (ñ) ) I = t, so that ç¿r (z (ñ) ) = <a>'

Thus z (O) normalizes <a>. If lz@¡ ,<a>1 I 1' 3w € H

such that a* = .o for some integer k I I by [51 I

Corollary 2.1 (a) .

Since * = 
"rn' 

(r) .F (H) and F (H) centralizes â'1 we

may assume thaÈ w e cr(n) r so that "* = ("*)T = u'*-t '

But then ,,,t2 , and hence w¡ centralizes <a> '



Thus tz(O)¡<â)l = 1, which yields <a> < M*'

This contradiction completes the proof.

LEMMA 5.7 Let p be a prime dividing lcl, P the

A-invariant Sylow p-subgroup of G and M = N*(P) '

Suppose f a maximal A-invariant subgroup H of G

such that 1 f P0 = p n F(H) < Pr = P n H ( P' and

let E be the A-invariant complement of P in M'

Then we have:

(i) Vx € E such that x I 1' Cp (x) = Cp (E) '

(ii) E is cyclic.
(iii) cp (E) is cyclic and cp (E) = c, (n) , so that

c, (n) = n.c, (n) is cYclic.

(iv) Vy e Cr(n) such that y I L, cr(Y) < M'

(v) Let q be a prime dividing lr I , 0 the A-

invariant Sylow q-subgroup of G and M* = NG

Then:

(a) Mtr = CG(n).F(t't*).

(b) Vx e Cr(n) F(M*)r Cn(x) = Cn(r)'

(c) vy e cn(n) such that Y 11, c*(v) < M*'

PROOF

tr

IUU.

(o) .

(i) By lemma 5.6, n < Ca (n) .

Let q be a prime dividing lr I

of order q. SuPPose that cp(E)

Let L-0nE v¡here O isthe

Sylow q-subgrouP of G.

Then L = cn (n) as ca (t) < M.

andtake x€E
< cr(x).
A-invariant
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Thus by lemmas 1.16 and 4.5r Ce(L) I L so that

c*(x) Í M.

Let H* be a maximal A-invariant subgroup of

c containing Cc(x).

Now n < ca (x) and [E, cp (x) ] I I by assumption'

Thus Pt = P n F(H*) I 1.

And PT=PnH*lP, else M=P'E<H*"

Let 0i - 0 n F(H*) and 0i = 0 n H*.

since L<cq1 (z(e))<Mfì Q=Lr wehave

C^* (z (P) ) = L.
búl

By lemma 5.I(vii), Oi = 
"eT 

(z (P) ).Oi = L.QT

and as L < ce(L) < AT we have Oi I l.

And by lemma 5"1(viii), Ai I A.

rf Ai = Qr 0i ( Z (¡¡'t) bY lemma 4-4.

But then at centralizes Z (P), contradicting

Iemma 5.1 (viii) .

Thus I I A\ t OT < Qr and it then follows from

lemmas 5.2, 5.4 and 5.6 that Z@) is cyclic,

Mìt = N*(Q) = Q.E* where E* is centralized' by

1T and oq, (M* ) = 1.

Now by lemma 5.I (ii) , ca (OT ) = QT "

Let Y be a minimal A-invariant subgroup of

0i with Y n z(Q) = I and suppose that

cQ(Y) I oi.
Then cG (Y) < M?t, since otherwise ce (Y) is

abelian by lemma 5.1(i), contradicting ca(OT) = QT'
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c,åÉ (z (Q) ) I I,
to

It follows that

Now by lemma I.14 | f an A-invariant subgroup

Yr of Y t Çlr (z (O) ) such that ce5 (vr) I 1'

If Y, = f¿r (Z (Q) ) ' CG (Yr ) < M¡t.

But then [cr¡ (Y1), z (O)] < PT n Q = r' so

co* (z (0) ) f r.
to

This contradicts lemma 5.I(viii)' so we must

have Yr I CIr (z (O) ) .

Thus Ce (Yr ) = Cn (Y) r so that as above

cG(Yl) < t{*.

But then tz (Q) 
' cp,* (Yr )l < op (M*) = L' so

again contradicting lemma 5'r(viii) "

ce (Y) = QT.

aTr so bY lemma 1.17 we have

luntof) : oil = e2.

By [9], theorem 5.2.3, Oi = cn(n) I tOi,<n>l

and since cn (n) I 1 and [Qf , <ri>l I I '

10, toil I Þ q'.
rf ¡0, toll I = q3 then lar (oi) I = q2 since

Oi fi L = I.
As z(P) acts f.p.f. on ç¿r(OT) by lemma 5'l(viii)'

we have p lq' r.

rf 1n, tOll I > q3, 0l is a characteristic

subgroup of O bY lemma 1.17.

Thus latOi I = q2 and as ca (z (P)) = L ( Qr r

z (P) acts f .p.f . on Q/Qr. Hence again p lq' I'

Now by the symmetric argument applied to Z (O)

and P we derive that qlP' I.

Now C
a
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As prq are odd this is a contradiction'

that Cp (x) = Cp (E) after all '

Now if v is an arbitrary element of E*

SO

(ii )

(iii)

q is a prime dividing ln l , c" (v) < cp (x)

and

for

some element x of order q'

Thus cp (E¡ < c, (v) < cp (x) = C, (E) r so that

Cp (v) = Cp (E) Vv € E*.

If E is non-cyclic, P = <c, (v) lv € Eìh> by

[9J, theorem 6-2.4.

Thus p = C, (E) by (i), contradicting lemma 5'4'

Hence E is cYc1ic.

Suppose that either Cp (E) is not cyclic or

cp (E) I c, (n) .

Let q be a prime dividing lel, and again

1et L=QnE where 0 isthe A-invariant

Sylow q-subgrouP of G"

Then CA(L) I L by lemmas I'16 and 4'5' so

cc (L) f M.

Let cc (L) < H* ' a maximal A-invariant subgroup

of c, and suppose that Fi* I M* = Nc(Q) '

Now LIP nH* I P else P wouldbeabelian

by lemma 5.1(i).

so bY remma S't(vii) we have

O n H* = 
"Unn*(z(P)).0 

n F(H*)'

Thus if A n F(Ii*) = I' O n H* ( Cr(z(P)) ( M'

a contradiction.
So O n F(H*) I 1.
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rf, A n H* = Qr O n F(FI*) < z(H*) by lemma 4'4'

But then Z(P) centralizes O n H* = Q so

Q < !.f I a contradiction.

Thus I I ç n F(H*) < Q. n Ii* I Q'

Now by lemmas 5.2 and 5.3, z(o) is cyclic and

by (ii) I\4* = Nc (Q) = Q.Er where E, is cyclic'

Thus cp(E) ( cr(z(a)) < M*r so cp(E) < E, ( Cc

yielding a contradiction in both cases '

lience cG(L) < M* = Nc(Q).

Since [I* lM, PnM* I P else P wouldbe

abelian by lemma 5.1(i).

rf P n F(M*) I l, by lemma 5'I(viii) "q(z(P))
a contradicti-on.

Hence P n F(Il*) = l.

Suppose that P n M* contains an A-invariant

subgroup Y of order p' such that T acts

f.p.f. on Y.

Let Zo = Qr(z(P)).

Since [LrY] < Q n p = I' Ca(Y) 2 L = Ce(20)'

Now by [9]' theorem 5.3.5' 9/a(Q) = lzo'Q/o(Q)l

tn/r(n) (zo)'

As Zo acts f.p.f . on fZo, O//0(O)l' TT must

also act f.P.f..

Hence Y centralizes lZ o t O/0 (A) I by

lemma I.2 (4 ) .

Since also Ce (z 
0 ) < ce (Y) , Y must centralize

o/o (o) .

(n),

I I

X
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Thus by [9] r lemma 5.L'4, Y centralizes O'

rf r I q is a prime dividing In(u*) | \^/e may

apply the same argument to Or (M*) since

cG(zo) n or(M*) < E and

tE 0 o" (M*) r Yl < or (M*) n P - L, to yield

[Y, or(M*)] = l-

Thus [YrF(M*)]=1 sothat Y<PnF(M*) by

[9) r theorem 6.1.3.

This contradiction proves that P n M* < C, (r) '

rn particular cp (E¡ < c, (n) , so that cp (E) = c, (n) '

It remains to show that cp(E) is cyclic'

Suppose not, and take x € Al (cp (E) ) z (P) '

As aL,ove, let zo = ç¿r(z(P))" Then cQ(20) - L'

Since <xr zo> is a non-cyclic group of auto-

morphisms of Qr by [9] r theorem 5'3'16

3w € 4xr Zo> such that Cn(w) I L'

As p n M* ( C, (n) r c, (w) f M* by lemmas I'16

and 4.5.

Let Cc (w) < H* for some maxi¡nal A-invariant

subgroup H* of G. Then we have shown that

H* I MrM*.

Now tca (w) , z ol I I and is a q-group since

z,o < M*.

Thus O n F(H*) I 1'

It then follows as above from lemma 4 '4 that

0 n H* I Q, so we have I I ç n F(H*) < A n H* I A'

But then by (ii) M* = QrEr where Er is cyclic'
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Since(iv)

(v)

P
(E) ( E, is cyclic after all.

C, (n) is cyclic' f¿r (C, (n) ) = ç¿r (z (P) )

IUO.

= <z>

r

say.

Now Vy e C"(n) r yt = z fot some integer n'

Thus c*(v) < cG(z) < I'1.

If there exists a maximal A-invariant subgroup

H* of c with IIA nF(H*)<OnH*lç then

the results follow from lemma 5.6 and (i), (iii)

and (iv) of this lemma.

Thus we may assume that no such maximal A-

invariant subgroup exists, and it then follows

as in (iii) that Cc(L) < M* where L = O n E

and. PnM*<cp(r). Hence z(P') <PnM*lP'

rf r I p is a prime dividing lt"t* I and' R

is the A-invariant Sylow r-subgroup of G, by

Iernma 5"1(vii) we have

R n M* = cRnM*(z(p)).R n F(M*) < cn(n).R n F(M*).

Since C*(n) < CG(L) < M*, it follows that

M* = cc (t) .F (M*).

Next, Iet rf q beaPrimed'ividing

and let x be an element of order

- F(U't¡.

ltn* /p (M* ) I

1n

If p the result (b) follows from (iv) , so
\r

r=
c (n)

we may assume r I P.

Let CG (x) < H* r a maximal

of G, and suppose that 
"Q

A-invariant subgrouP

(n) < c
a

(x) .
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Since Ylpr RfìM=C*(n) where R isthe

A-invariant Sylow r-subgroup of G'

Thus cR (x) f M by lemma 1.16r so that H* I M

and hence P n H* I P,

Now z (P) normalizes 0 n H* by lemma 5'1(vi)

and since A n M < O n H*, tO n H*, z(P\) I 1'

Hence O n F(H*) I 1.

If H* I M*n wê must have Q < H* by assumption'

But then O n f (g*) ( Z(Ht') by lemma 4'4, so

that by [91r theorem 5.3.6, [Q, Z(P)] = l,Qrz(P),2(P)l

= It a contradiction"

Thus H* = M*.

But clearly M* I Nc (R) so by the same argument

we have f I R n F(M*) < R n 14* I R"

Thus by Iemma 5.6 NG(R) = R.Ez where Ez < C*(n)'

But then by (iv) r c, (x) ( N* (R) r so

Cn(x) < Q n NG(R) = Cn(n).

Thus Ce (x) = Cn (n) , and it follows that

c* (v) = Cn (n) Vv € C, (n) - F (M*) '

FinallY, take Y € Cn(n) '

If y €z(Q), cc(y)=M* as M*=Cc(n)'F(M*)'

rf y F z (Q) , suppose ca (V) < H* for some

maximal A-invariant subgroup H* I M* of G'

Now ce (y) I ca (r ) by lemmas I ' 16 and 4 '5 ' so

lz(P), cn(v)ì I r.

Hence A n F(H*) I I' so that Q -< H't bY

assumption.
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But then O is abelian bY lemma 4 '4 so

y € z(Q), a contradiction.

Thus 
"* 

(y) < M*. tr

!{e are now in a position to show that a maximal

A-invariant subgroup H of the type mentioned in

lemmas 5.2 to 5.7 cannot exist.

LEMMA 5.8 Let p be a prime dividing lcl' P the

G 
(P) .A-invariant Sylow p-subgroup of G and M = N

Then there does not exist a maximal A-invariant subgroup

H of G such that I I Po = P n F(H) < Pr = P n H < P"

PROOF

Suppose that such a subgrouP H

the results of lemma 5.7 hold"

Let r I p be a Prime dividing lHl'

invariant Sylow r-subgroup of Gr Ro

Rr=RfìH'

Then by lemma 5.1(vii) and (viii) r R,

and cRo (z (P) ) = l.

But z (P) < C, (t) by lemmas 5.2 (iv) and 5 ' 3 '

Thus by lemma 5.7 (iv), CRr (z (P) ) < M'

It follows that cRr (z (P) ) < cG (n) and Coo (n) = l'

Suppose that Cro (n) I 1.

Then for x € Cro (n), Ca(x) < M by lemma 5'7 (iv) '

But then F (H) . Pr.F (H) < CG (x) ( M, contradicting

lemma 4.2.

Hence C, 
o 
(n) = 1.

It follows that 
"r(r) 

(n) = t and' therefore r

centralizes H/F(H) bY lemma 1.19.

existsr so that

R the A-

= R fì F(H) and

cR, (z (P) ) .Ro
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By lernma 4.2, 3 a Prime q, I P such that

Q0-OnF(H) I I where 0 isthe A-invariantsylow

q-subgroupofG.LetQl=QnHandsupposefirst

that Qo . Qr.

If Qr = Q, Q0 < z (H) by lemma 4.4, contradicting

l_emma 5.I (viii) .

Soot<Qandhencetheresultsoflemma5.Tholdfor

9r Nc (Q) and H.

Let X be a minimal A-j-nvariant subgroup of

Pr such that x n z(P) = I and suppose that Pr < cp(x) '

rf cc (x) f M, cp (x) is abelian by lemma 5.r (i),

contradicting (ii) of that lernma.

So CG (X) < M.

Now x x Ç1, (z (P) ) normalizes Qo, so by lemma 1'I4

3 an A-invariant subgroup xr of x t f2r (z (P) ) such

that 
"*o(*,) 

11.
As xr I ar (z (P)) by lemma S.I (viii) r we have

cp(xr) = Cr(X).

Thus CG(Xr) < M also.

But 
"Qo 

(z (P) ) = 1 by lemma 5.1(viii) , so

tz(P), cQo(xr)l I l.

Thus o , (F (M) ) I l, contradicting lemma 5'4'
p'
Hence P, = Cp (X) .

Since cp(Pr) = P, < P by lemma 5.I(ii) and z(P) is

cyclic by lemma 5.2 (iv) and 5.3, we nay apply lemma 1'I7

to derive that lll, {e L) /P Ll = p or p2 -
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If

Po o Np(Pr).

Thus Np(Pr) < NG(P0) = Hr a contradiction'

Hence lw, (e L) /P Ll = P2.

Now clearly In, {eo) | }- P2 and lsr, tcrr (n) ) I = p by

Iemma 5.7 (iii) .

rf 1n, {eo) I = p2, since cp' (z (Q) ) = I by lemma

5.1(viii) we have qlP' 1.

rf lslrteo)l>p', byremmal.lT Np(Pr) = P'

But then z (0) normalizes P since z Ql < CQ (r) ( M'

so Z (O) normalizes P /P t.
Now Cp/pl (z(O)) = Cp(z(0) ).PL/Pr and cp(z(0)) = Cr(r)

by lemma 5.7 (i) and (iii) "

AIso Cr(n) ( Pr, else P = cp(t) 'Pu and Po < P'

Thus Z (0) acrts non-trivially on P/P t, so again q lp' I '

By the symmetric argurnent plq' I and as p and q

are odd we have a contradiction'

Hence we may assume that Q0 = Qp so that Q0 = Q

i.e. H = N, (Q) for all primes q, I p dividing 1r tn) I '

Now let î I p be a prime dividing lr tH) l ' so that

H=N.(R)whereRistheA-invariantSylowr_

subgroup of G.

Let R* = zJ(cR(t)).

If cH (R* ) I F (H) , by lemma 4 '9 for some prime

tllHTr(H) l, fxe crnr(n) -F(H) suchthat rllc.tx)l

where T is the A-invariant sylow t-subgroup of G'

By lemrna 5.7 (v) , c* (x) < NG (T) = CG (r) 'F (Nc (T) ) '

But 1T acts f.p.f. on R, so that R n Nc(T) * r(Nc(T))'

lw, {e r ),/e, 
1

= Pr NP(Pr) = 
"*r(rr)(n).Po 

and so
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Hence R 0 NG (T) = R so that Nc (T) = N* (R) - H' a

contradiction.
Thus cH (R* ) < F (H) and' so by lemma 4 ' I0 C* (t ) has

a normal r-comPlement.

Next, Iet q be a prime dividing ln l' 0 the A-

invariant Sylow q-subgroup of G and' M* = NG (Q) as

in lemma 5.7 (v) .

By Iemma 4.5 ce(r) < Qr so ca(r) I I'

Let Q* : zJ (cn(t)), and suppose that cMx (Q*) I F (M*) 
"

Now F (M*¡ ( C¡1x (cz(e,(t) ) r so if cz(q)(t) I I we

must have F (M*) = cM* (cz(e, (t) ) by lemma 5'7 (v) (b) '

But cM;t (Q*¡ ( c¡4x (cz(e,(t) )r So cz(q) (t) = r'

Hence z (Q) is centralizeð' by n ' and' since cn(n)

is cyclic' 0r (c*(n) ) = Qr (z (0) ) '

Choose x € e* of order q. Then Crx (x) f F (M*).

Now by hypothesis =y F F (M*) such that y centralizes

x, and w.I.o.g. we may assume that y is an s-element

for some prime s I q,' Let S be the A-invariant

Sylow s-subgrouP of G'

since c, (n) .o" (F (M* ) ) is a sylow s-subgroup of M* '

39 € M* such that y9 = ab where a e c, (n) and

b € o=(F([f*)).

Now ab and b centralize x9, so a must also '

rf a € cr(n) F(M*) r by lemma 5'7 (v) (b) xs e cn(n) '

Put then *e € Qr(c*(n)) - ç¿r(z(Q))' so x € z(0)'

Contradiction.

Thus a € F(M*), and hence Ys € F(M*)'



But it then follows that y € F(M*) I a contradiction.

Ilence cM*(Q*) < F(M*).

Thus by lemma 4.f0, Co(t) has a normal

Let R. = Co (t) r Qr = Cn(t) and !'v' = C

Then R, is a SYlow r-subgrouP of W

theorem 4.3.

As *. * oq, (hr) r Iti = Nw(Rr).oq, (w) bY

Thus Oi < N!ù(Rr) for some x € s;'

rt follows that oi * N"(*.) ñ or, (w) 
'

[Rr, ail = 1.

rn particurarr 9l lcc (Rr) I and r I lcc (Or) l'
Now choose an element a € ç¿r (cz(R) (r) ) '

clearly F (H) < c, (a) , so if cn (a) I F (H) h¡e can

choosex€Co(n)F(H)suchthatxcentralizesa

Vl.l . o. ![. x is a t-element for some prime t '

Now by lemrna 5.7(v), c*(x) < NG(T) = cG(n).F(NG(T))'

where T is the A-invariant sytow t-subgroup of G'

rhus a € Nc (r), so that tl lNc (r) l.

Since î acts f.p.f. on Rr it follows that

R n NG(r) = 
p(Nc(r)).

Thus R n NG(T) = fl and R o Nc

x € F(H)r a contradiction.

Now R

Therefore C, (a) = F (H) .

is a Sylow r-subgrouP of C* (a) and

(zJ (R) ) so N (zJ (R) ) n c* (a) = F (H) has a

r-complement.

LLz.

q-cornplement.

*(r).
by 122) t

[9], theorem 1.3.7.

so that

(T) - H, so that

H=N
LI

normal
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Iíence by [5] r theorem D, cG (a) has a normal r-

complement.

Suppose that R contains an A-invariant subgroup

W = E"+ and let õ b.e an R-invariant Sylow

q-subgroup of cc (a) .

Then by lemma 1.15 f an A-invariant subgroup W¡

of hi such that cQ (wo ) I I.

Let NG(l¡I0) ( K, a maximal A-invariant subgroup of G'

Then pllKl because [Po,R] = I.

Suppose first that P n F(K) I l.

Now K I M since r / l¡ll, so we must have Pl lKlF (K) l.

And P n R l P| else P would be abelian by lemma 4.4,

contradicting the fact that Pr is self-centralízíng

in P (Iemma 5.I (ii) ).

Thus by the argument at the beginning of this proof

wehave K=C (n) .F (K) , so thatapplied to K

R n K < F(K).

lïence

Thus cõ(wo) < H

But then cõ (vüo )

K

<c (a) = F(H) r
H

a.

contradicting lemma

RlK=R andso K=N*(R)-H.

and centralizes

5.2(iii).
Thus we may assume that P n F (K) = t '
since P0 < K and P0 n F(K) = l, we must have

c'(f) (r) I L bY lemma I-I9-

choose a prime s I lr lx) I such that

where S is the A-invariant SYlow

crnr, o, (r ) I I
s-subgroup of G
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Then sllPl, so if S < F(K) we have

K = N*(S) - Cc(n).F (K) by Iemma 5.7 (v) (a) r a contradiition'

So Ll SnF(K) <SnK-S' andbylemma5'I(i)

Sr is abelian.

Thus for x € CS.F(K)(ir), F(K) ' Sr'F(K) < cc(x) < NG(S)

by Ie¡nma 5.7 (v) (c) .

Flence F (K) < K n Nc(s), contradicting le¡nma 4.2.

It follows that R cannot contain such a subgroup Wt

so that by lernma 1.18 there is no element of order r

in R - z(R).

Finally, choose an element b € Q such that b I I

and b€cz(q)(t) if z(O) isnon-cyclicor becn(t)

if z rc) is cyclic.

In the first case CM# (b) = F (M*) by lemna 5.7 (v) (b).

suppose j-n the second case that cMti (b) f F (M*)'

Then by lemma 4.9, for some prime t I lu*7r (M*) I ,

fx e Crnrx(n) - F(¡4't) such that if B is a maxj-mal

A-invariant subgroup of G containing Cc (x) then

"nnr(n) lçnB'
Now by lernma 5.7 (v) , C*(x) < Nc(T) = CG(n) 'F(Nc(T) ) '

Hence O n Nc(T) < c*(x), so that Cn(r) < Cn (x) 
'

contradicting lemma S.7 (v) (b) 
"

Thus in both cases CM* (b) < F (M* ) , anC Cc (b) n Cn (r) I t'

Let Q2 = Cn(b) . Then Qz is a Sylow q-subgroup of

cG (b) by lem¡na 4.8.

As z(O) <
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I

Thus N (ZJ (Q2 ) ) n CG (b) has a normal q-complement.

It then follows from [5], theorem D, that CG (b) has

a normal q-conplement.

Let ñ be a <Qzr'r>-invariant Sylow r-subgroup of

oq, (cG (b) ) .

Then fls < R for so¡ne elenent 9 e C*(t) by [9] r

theorem 6.2.2.

Thus f¿r (z tñ9 ll ( Q, (z (R) ) since there is no element

of order r in R - Z(R).

crearly In, {z(R)) | = r'r so if lcl, tztñ'g)) I = 12

we must have ç¿r (z tñE I ) = nL(z (R) ) .

rrence ql lNc(ar (z(R))) I i... ql lHl.
since q, X lr tHl I uv lemrna 5.2 (iii), this yields

Qn. < cn(n)r a contradiction.

Hence In, {z 1ñs¡¡ ¡ = t. so that flr (z (ñ) ) = 'a9 
t' : '",t

say.

Thusfor y€C,,

integer i.
-I

Applying r, we get yary-I = .i since ar = a9 e c"(t).

Thus yt , and hence y ¡ centralizes ar.

But then ar e c*(V) <.M* by femma 5.7 (v) (c).

So rl lu* l, a contradiction which completes the proof" Ú

(b)nc (r)'
a

-t ].y êrY = ê, for some
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CHAPTER S I X

P ROO F OF THE l,1AI N TH EOREM

fn this chapter we complete the proof of

theorem II which was commenced in the previous chapter.

Thus we contj-nue to examine a minimal counter-example

G to theorem II, and the argument is again presented

Ín a sequence of lemmas. we have shown in chapter

five that if p is a prime dividing lC I and

H I NG (p) is a maximal A-invariant subgroup of G

such that P n F(H) I f where P is the A-invariant

Sylow p-suþroup of G then P < H' We show next

that in fact there cannot exist a maximal A-invariant

subgroup Hl Nc(P) of G with PnF(H) I I and

then use this result to complete the proof'

lriefirstprovearesultwhichwillbeusedin

both of these sections of this chapter"

LEMMA 6.1 Let p be a prime dividing lcl, P the

À-invariant Sylow p-subgroup of G and tt'l = Na (P) '

If H I M is a maximal A-invariant subgroup of G

containing F (M) then at least one of the following

does not hold:

(1) r acts f .p.f . on M,/F(M) -

(2) lr (u) | and lvr/r (u) | are coprime '

c^ (n)
Lr

c. (n)

ÉM.

< H.

(3)

(4)



(s)

(6)

TL7.

If K is a maximal A-invarj-ant subgroup of G

such that K I H or M then TT acts f 'p'f '

on F(K), t(=c (n).F(K) and (lF(K)¡,lnol) =r

where H0 is the complement of z (H) in F(H) '

Vx € ca(n) such that x I I, ca(x) < H'

PROOF

Suppose to the contrary that all six properties

hold for H and M.

Then by lemma 4.3 F(M) is abelian, H = F(M) 'F(H) '

z(H) = F(H) n F(M) and F(H) = z(H) * Ho where

tlHol,lr'(u)l) = 1.

Let q be a prime dividing lHo I and let O be the

A-invariant Sytow q-subgroup of G"

Let r be a prime dividing lu/r(u) | and let R be

the A-invariant Sylow r-subgroup of G and n = Na (R) '

Since N I H or M, \l = C"(n) .F (N) by hypothesis (5) '

Let R* = zJ(cR (r) ) and suppose that cN(R*) f F(N) '

Then by lemma 4.g, for some prime t IN/F(N) l'

lx€crnr(r) -F(N) suchthat rllcc(*)1, where T

Ís the A-invariant Sylow t-subgroup of G"

But by hypothesis (6) , c* (x) < H so that t l lH l' a

contradiction.
Thus cN (R*) < F (N) 

"

It then follows from lemma 4.10 that c*(t) has a normal

r-complement.

Thus we may assume w-I.o.g. that R" = C*(t) normalizes
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Qr="e

Q=c

(t),

by

since R. and 0r

1,227, theorem 4"3"

are Sylow subgrouPs of

c^ (r)
Lr

Let

Then , so Nc (õ) < H bY lemma 4.7 '

But õ is a Sylow q-subgroup of cc(Qr) by lemma 4'8'

so by [ 9] , theorem L -3 -7 ,

N (o)) .c )

z (a)
Q 

(Q,

<õ

Nc (Qr) (n o )n ú \fG
O

TT
(

Now *, " Nc(Qr) and t I lttl, so R. <

SuPPose first that R contains an

subgroup W = E"q and take x € Cr(n) (t) '

Then by hypothesis (6), c*(x) = F(N) "

Now R is a Sylow r-subgroup of c* (x) and

N - NG(zJ(n) ) "

so N (zJ (R) ) n c* (x) = F (N) has a normal r-complement '

Thus by [5], theorem D, c*(x) has a normal r-complement"

Let Q* be an (R, r>-lnvariant SyJ-ow q-subgroup of

ca (x) and suppose w. I . o. g - that Q, ( Q* '

Then w fl R. centralizes Q.r, so by lemma 1'15 3 an

A-invarj-ant subgroup w0 of w such that ce., (w0) I l'

Let NG(wo) < K, a maxj-mal A-invariant subgroup of G.

since r/ lHl and q,X lul, KIH or M'

Thus by hypothesis (5) , ( = c*(n) 'F (K) '

Since r acts f.p.f. on R we must have R < F(K) and

cG (Qr )

A-invariant

hence K _ N.

cQlt (wr) )Thus < N and centralizes x
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But then cQtÊ (w0) < c*(x) - F(N), contradicting hypothesis

(s).

Thus R cannot contain an A-invariant subgroup !'I = Eru'

It follows from lemma 1.I8 that R Z(R) contains no

[sl, {z (R) ) I = r' R,

Let R2 = .tr, = f-¿l(Rr). Then fìt(z(R)) = "r'tf;''
If the Sylow r-subgroup of cG(Qr) is not cyclic' we

must have f¿r (z(R) ) ( cc(ar) -

But then Q, ( cc(ar(z(R))) ( N, yielcing a contradiction

as above.

is cyclic, and since Ra <

element of order t. and since

must be cyclic.

have R

Bv Ie], theorem I.3-7 ,

cG(Qr) r
weSo cG (Qr)

NN (R, ) . c* (R,

T
cc (Qr) r.

N^ (R" )
LT

andif y €

(v) since

(tl R n

C (r)
N

(n) ).cc(R2)

).

normalizes

( N
2 G

clearly F(N) = **(

Rz we must have R

centralizes Rz.

But then

R
2

r Ínverts Y and

R, < H by hypothesj-s (4), a contradiction'

= F (N) and hence n, (n, ) = cG (R2 ) .

be a prime dividins lc*(0.) l-

Q.) n N(Rr))t is an r'-group of automorphisms

of R
T

and hence of R,

2
<c (̂i

so NN (R

Let Ll

Then (c

,l
r
(

l¡

so (c. (0, )

central izes

ç¿ r (Rr) .

n Ì¡ (*.) ) a centralizes l¿r (Rr) ,

R, by [9], theorem 5-2-4-

is an abelian SYIow r-subgrouP of

and hence

cc(Qr),
T

Since R
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this yields R, ( z(cc(Qr) n N(Rr) ) so that bv [9] '

theorem 7 -4-3, cG(Qr) has a normal r-complement'

Thus R. normalizes a Sytow q-subgroup of cc (Qr) '

and since õ = Cn (Qr) is a Sylow q-subgroup of

cG (Qr ) by Lemma 4.8, t I lNc (õ) I '

But NG(õ) < H by remma 4-7, so tllHl'

This contradiction completes the proof' tr

we show in the next six lemmas that the hypotheses

(1) to (6) of lemma 6.1 hold for a maximal A-invariant

subgroup H of G suchthat IIP nF(H) <Pfl H=P'

LEMMA 6.2 Let p be a prime dividing lcl, P the

(P) .A-invariant Sylow p-subgroup of G and M=NG

Hof,a maximal A-invariant subgrouP

L/Po=PnF(H)<PlìH=P-

Then îï acts f . P. f . on M/F (M) .

Suppose :Ì

G such that

!300 F

By lemma 4.4, P

Thus F(M) < cG(Po) ( H,

And by lemma 4.3, F (M)

z(H) = F(H) n F(M) and

tlsol,lr(u) l) = r.

Suppose fx € M - F(M)

is abellan and Po <

so by lemma 4.2, H fì M = F (M) '

is abelian, H = F(H) .F(M),

F(H) = z(H) t Ho where

such that x € c*(n) .

= fl and sorf cz{H¡(n) 11, x€cc(cz(H)(n))

x € H 0 M = F(M), a contradiction. Thus cz(")(n) = I-



Let 0 be an A-invariant SYlow

for some Prima q such that q X

subgroup must exist or else F (H)

[9] , theorem .1 - 3) -

Suppose first that cz(q) (n) = 1'

rf "r(r)(n) = l, tz(O),r(u) I =

a contradiction-

so 
"r(r)(n) 

I I and hence ca(n) < M by lemma 4'2'

It follows that cn(n) = I and 
"r(n)(tt) 

= I'

Hence r centralizes H/F(H) by lemma l'19'

But then P0 = [P, <n>l is normalized by c*(n) ' so

x € c"(t) < H, a contradiction'

Hence we may assume that Cz(q)(n) I I'

suppose 3y € crtu¡(n) with Y I l'

Then y F z(H) since cz(rr)(n) = 1, so that F(H) < F(H)'<v>

* 
"*(cz(q,(n) 

).

It fol-Iows f rom lemma 4 -2 that CG (Cz( 
e) 

(n) ) ( H' and

in particular Ca(n) < H-

But then <x>.r(t"I) < M n H, contradicting the same lemma'

So = I and therefore fqrZf (M) is centralized by TT.

Take y € cz(q)(n) and suppose c*(v) ç ¡4rr where ¡4*

Ís a maximal A-j-nvariant subgroup of G'

Then clearlY M* I M and, M* I H'

But F(H) < M*, so by Ìemma 4' 3 M* = F(H) 'F(M*) '

Now if z(H) < F(M) n M*, F(H) < M* n H since

z(H) = F(M) n F(H).

Thus F (M) n M* = Z{H) .

L2L.

q-subgroup of F(H)

lr (u) | ( suctr a

t and rhen Z(A) < z(H),

cn{u¡(n)



Let s be a prime dividing lr"r/r(u) | and

A-invariant Sylow s-subgroup of G' Then

Thus tz(H),crnr(n)l < F(M) n M* = z(H)'

Hence crn*(n) < H and so F(M) < M fì H'

ft follows that fi acts f'P'f' on

[9], theorem 6 -2-2 (iv)'

L22.

S the

c (n) I L.
SNM

a contradicti-on -

M/F (M) by

tr

P the

^(P)"
ofG

LEMMA 6.3 Ler p be a prlme dividins lc l,

A-invariant Sylow p-subgroup of G and M = N

Suppose I a maximal A-invariant subgroup H

such that I I Po = P n F(H) < P n f[ = P'

Then lr (u) | and lu/r (u) I are coprime '

PROO F

SuPPose that ll a Prime s such that

Ll SnF(M) <S0M=S where S isthe A-invariant

Sylow s-subgroup of G' Let M* = NG(S) "

Then by lemma 6-2 r acts f'p'f" on ¡'1*/F(M*) and by

lemmas 4.2,4-3 and 4.4 M = F(M*)'F(M)'

Thus c'1u*)(n) I I' and since TI acts f'p'f'on

M/F(M) and F(M*) n F(M) = z(M) by lemma 4'3 we must

have cz 
{^a; 

( n) I I "

Thus c* (n) < F (M) 
"

It follows that T must act f'p'f' on H0 where H0

is the A-invariant complement of z(fH) in F(H) '

Suppose that r doesn't centralize H/F (H) '

Since F(M) is abelian, 3 an A-invariant subgroup

Y < F(M) such that Y f zIrJ) and cr(n) = 1'
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But then Y centralizes

Y centralizes Ho. Z (H) =

theorem 6. 1.3.

Hence r centralizes H/E (H) ,

cz{ri¡(n) I z(H) or else F(M) =

lemma 4.5.

clearly P. = Cr(t) < z(H), so

dividing lHo I and O is the

q-subgroup of Ho, Q ( Cc(e.) '

Thus by [9], theorem L-3-7, N*(

and it follows that

c*(n), contradicting

if q isaPrime

A-invariant SYlow

*r*(rr)(o) 'cc(Pr)

H- bv

F(H),

and so

Ie],
lemma L.2(4) ,

contradicting

P
T

cc (Pr )= H. CG (Pr)

Since S is abelian bY lemma

A-invariant subgrouP Yl = Z,

4

X

4, we can

ZofS
Þ

take an'

such that

Yr I F(M)

Let Yl =

Then P* =

and cr, (n) =

.y, yn> where

I.

y e cr(t).

C (v) X c- (yr)r X
r

p-group.

Clearly Y normalizes Pr,

Butthenfor x€Pr, Il xx

This contradiction comPletes

r2c"(y" ) is a <Yr,A>-invariant

< cr(v).SO P

IT x is centralized bY A

the proof.

T

T,

LEMMA 6.4

A-invariant

Suppose l

such that

Let p be a Prime dividing lcl,

Sylow p-subgrouP of G and |l[ =

a maximal A-invariant subqrouP H

F(H) <Pfì H=P-

P the

NG (P) "

ofG

l- I Po = P n

Then C
u
(r) lM
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PROOF

Suppose to the contrary that C*(n) < M'

Then Cr(n) < F(M) bY lemma 6'2'

Let r be a pri-me dividing l¡'rl¡'(u) l' R the A-

invariant Sylow r-subgroup of G, M* = NG(R) and

Rr=RnM'

Then clearlY T acts f.P'f" on R'

Since F (M) is an abelian Hall subgroup of G' it

forlows that if F(M) n F(M*) I I then F(M) < M*'

But then R'.F(M) < M n M*, contradicti-ng lemma 4'2'

so F(M) o r(u*) = r'
ïn particular' 'tt acts f.p'f' on F(M*) and so 1T

centralizes M*/F (M*) -

Thus [cMx(n),Rr] < F(M) n Q = l'

Let NG(R') < N where N is a maximal A-invariant

subgroup of G and suppose that N I M*'

Let M = Mr.F(M) where Ml is the A-invariant Ha1l

subgroup of M such that M, n F(M) = t'

Then Mr is abelian by theorem 1'I1' so MI < N'

rf rllr(u)1, wemusthave LIr. nF(N) <RfìN=R'

But then R i's abelian by lemma 4'4 and so Rl <

It f ol}ows that NG (R I ) = M* ' a contradi-ction '

Hence we may assume that t X lr(u) l'

Since r acts f.p.f. on R, 3 a prime sl lf(X) I

such that Csnrls¡(n) I I where S is the A-invariant

Sylow s-subgrouP of G'

Hence S<F(M), so Il SnF(N)<SoN=S'



But then F(M) \< cc(s n F(N)) ( N, so M = MI'F(M) ( N'

a contradiction.

Thus we must have NG(R') < M* = NG(R) '

Thus [cMåÊ(n),Mr] < F(M) n F(u*) = l' so c**(n)

centralizes Mr-F(M) - M i'e' ctx(n) <

Let v be a prime dividing lcr* (n) I and v the

A-invarj-ant Sylow v-subgroup of G'

Then V < F(M) and so V is abeli-an'

since v n z(M) I I, by [9]' theorem 7'4'4(ii) M I ov(M)"

But then by [5], corollary 2'2' G I ov(G) '

This contradiction completes the proof' n

LEMMA. 6.5 Let p be a prime dividing I c I'

A-invariant Sylow p-subgroup of G and M = N

Suppose 3 a maximal A-lnvariant subgroup H

suchthat LlPo= PnF(H) <Pfì H=P'

Then w.I.o.g" c*(r) < H'

PROOF

cz tn ¡ 
(n)so that

(x) < H*

L25.

P the

,(e).
ofG

1

for some maximal
Suppose that C*(n) I H'

choose x € c¡,(u¡ (n) . Then cc

A-invariant subgrouP H* of G

Clearly C*(r) and' F(M) are contained in H*'

H* I H by hypothesis and H* lM by lemma 6'4'

By Iemma 4.3, H* = F(M) 'F(H*) '

Suppose that F(M) î F(H*) = 1'

Then F (H*) is a HaIl subgrouP of G'

SO
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Now choose mj-nima1 A-invariant subgroups X ( C'(u¡ (n)

and Y < z(H).

rf crtn*¡(v) I r, F(H*) n H I r- But H = Ho -F(M) where

F(H) = Ho x Z(H) and (| Hol,lZ(H)l) = t, so F(H*) n Ho.l 1.

Since H0 is a Hall subgroup of G by lemma 4-3, it

follows that H = H*. Thus cr{u* 
¡ 
(v) = }.

Now by lemma 1.14 (c) , x must centralize F (H*) ,

contradicting [9], theorem 6.1.3.

Thus F(M) n F(H*) I I, so f a prime t such that

M = Na (T) where T is the A-invariant Sylow t-subgroup

of c and LIT nF(H*) <TnH*=T-

!^I.I.o.g., vJ€ may take t - p and H* = H. !

LEMMA 6.6 Let p be a prime dividing lcl, P the

A-invarlant Sylow p-subgroup of G and' l't = N* (P) '

Suppose 3 a maximal A-invarlant subgroup H of G

suchthat LlPo= PnF(H) <PfìH=P-

Let K be a maxj-mal A-invariant subgroup of G such

that K I H or M. Then ïÌ acts f .p.f . on F(K),

K - co(n).F(K) and ( lrtxl l, lHo l) : I where F(H) = Ho x z(Hl -

PROOF

rf ( lF(K) l, lsl) = I, the result follows

immedÍately from lemma 6.5.

so we may assume that ( lF(K) l, lHll I l.

suppose first that f a prime ql ( lF(K) l, lHo l)

0 be the A-invariant Sylow q-subgroup of G.

Then Q<Ho andso Ilç nF(K) <Qfì K=Q.

and let
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Thus by remma 6-3, lr(H) | and 1HlrtHl I are coprime'

a contradiction.

Hence ( lr(r) l, lH' l) = r so that F(K) n H < F(M) '

Let t be a prime dividins tlrtxl l'lr(M) l) and let

TbetheA-invariantsylowt-subgroupofG.

Then T < F(M) by lemma 6'3, so I / T n F(K) < T fì K = T'

Thus by lemmas 4-3 and 4'4, l( = F(M)'F(K) and

z(K) = F(M) n F(K)-

rf cz{r<¡(n) I r, cr(n) <K'

But then by lemmas 6'4 and 6'5' H0 n F(K) I 1' a

contradiction -

So 
", (ra ) 

(n) = I, and clearlY c, 
o

the A-invariant comPlement of

Hence 
"u(")(n) 

= I and so 1I

lemma I.19.

LEMMA 6.7 Let P

A-invariant SYIow

Suppose

such that

be a prime dividing lcl'

p-subgrouPof G and M=N

(n) = I where Ko is

z(K) in F(K)"

centralizes K/F (K) bY

¡

P the

c(P).
ofG3 a maximal A-invarj-ant subgroup H

ThenLlPo=PnF(H) <Pf'ì H=P'

Vx € ca(n) such that x I 1, co(x) < H'

PROOF

Let q be a prime dividing lc*(n) | and tet 0

be the A-invariant sylow q-subgroup of G' choose

Lfx€co(rr)andletF(H)=HoxZ(H\where(lHol,lz(H)l)

Suppose first that Q < Ho and that ca(x) < H*' a

maximal A-invariant subgroup of G different from H'

1
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rf I I an r(n*) < a n H* = Q, by Lemma 6'3 lrtHl I

and lH/r(H) | are coprime, a contradiction"

Hence O n F(H*) = l.

Now H* I lt,M so by lemma 6.6 r acts f 'p'f ' on F (ti*)

and r centralizes H*/F (H*) -

In particular fi centralizes O n H* '

But cn (n) < ca (cA (r) ) < c* (x) by lemmas 1' 16 and 4 '5 '

a contradiction-

Suppose next that Q < F(M) "

Then F (M) ( c* (x) , so if c* (x) < H* for some maximal

A-invariant subgroup H* of G we have H* = F(M) .F(H*)

by lemma 4.3 (H* I r'tl since I I cro (n) ( Cr(x) ) '

since 1l cro(n) <H* and tlHol,lr(u)l) = 1 bvlemma

4.3, we must have Ho n F(H*) 11"

rt follows that H* = H, so that c*(x) < H" The result

follows

we can now derive the main intermediate resu'Lt of

this chapter.

LEMMA 6.8 Let p be a prime dividing lcl'

A-invariant Sylow p-subgroup of G and M - NC

If H is a maximal A-invariant subgroup of G

that HIM and PllHl trren PnF(H) =l'

PROOF

Suppose that Po - P n F(H) I l, so that

P0 < P fì H = P by the results of chapter fÍve'

P the

(P) .

such
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Then the hypotheses (1) to (6) of lemma 6'1 hold by

femmas 6.2 to 6-7 respectively, and sj-nce Po <

by lemma 4.2 we have F(M) < H'

But then l-emma 6.1 yields a contradiction, completing

the proof. tr

our results thus far show that for any maximal

A-invariant subgroup H of a mj-nimal counter-example

G, F(H) is a HaII subgroup of G' We analyze this

situationinthesecondhalfofthischaptertoultimately

derive a Proof of theorem II '

LEMMA 6.9 LCt

of G and let

subgroup of H

is a maximal

[Hr fì K, F(H)

PROOF

By rheorem r.1I, [Hr fì K, F(H) n K] < F(H) n F(K) I

LEMMA6.l0LetHbeamaximalA-invariantsubgroup

of c and let H = H'.F(H) where Hr is an A-invariant

= I. SuPPosesubgroup of H such that

that L l cnr (n) < Hr -

Then if Y is anY minimal

cG (Y) < H.

H be a maximal A-invariant subgroup

H = Hr.F(H) where H, Ís an A-invariant

suchthat (lH, l,lF(H)l) = r' rf K

A-invariant subgrouP of G, R I H' then

n Kl = 1.

(lH,l,lr{H) l)

A-invariant subgrouP of H,.,

PROOF

Suppose Hr contains a minimal A-invariant
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subgroup Y with cc(Y) É H, and 1et K be a maxlmal

A-j-nvariant subgroup of G containing cG (Y) '

Let p be a prime dividing I r'(n) | and let P be

the A-j-nvariant Sylow p-subgroup of G.

Then by [9], theorem 5.2.3, P/A@) = cp/A(p)(v) x lP/a(P),Yl'

Now choose a minimal A-invariant subgroup X of Hr

suchthat [X,<n>]=X if V<C*(n) and X<Ca(n)

j-f [Y, <n>l = Y-

Since Hr is abelian, Hr < cc (Y) < K.

Thus [Hr,Cp(Y) ] = 1 bY lemma 6-9-

In particular [X,Cp(Y)] = 1, so that X centralizes

cp /o(p ) 
(v) = cp (Y) o (P) /a (P) "

But x centralizes [P,/0 (P) , Y] by l-emma I ' 14, so x

central j-zes P/ A @) .

Hence by [9], theorem 5-1-4, x centralizes P"

It follows that X centrafizes F (H) , contradicting

[9] , theorem 6.1.3. fl

COROLLARY 6.li Let H be a maximal

subgroup of G and let H = Hl.F(H)

A-invariant subgroup of H such that

suppose that I I cr, (n) . H,..

Then Hr is a HaII subgróuP of G and

PROOF

Let r be a PrÍme divid-ing lu t I ,

be a minimaL A-invariant r-subgroup of

be the A-invariant Sylow r-subgroup of

A-invariant

where Hl is an

tlH,l,lr(u)l) = r

C (n) <H
G

and let Y

Hr. Let R

G.
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Then by lemma 6 - 10, z (R) < cc (Y) < H '

But then if W is a minimal A-j-nvariant subgroup

of z(R), R < cc(w) < H bY lemma 6'10"

Itfol}owsthatHlisaHallsubgroupofG.

Since cr,(n) * 1, it follows at once from lemma 6'10

that ca (n) < H-

LEMMA 6.T2 H be a maximal

H = Hr.F(H) where

A-invariant subgrouP

Hl is an A-invariantof G and Iet

subgroup of H

Then eithellT

Hr.

PROOF

Let

such that

centrali-zes

tlH,l,lF(H)l) .I

SuPPosethat tlCnt

Let r be a Prime dividing

Sylow r-subgrouP of G and

We show that the hYPotheses

for M and H-

Let M = Ml.F(M) where Ml

of M such that (lMr|,lr(u)l) = r'

Hypothesis Q) holds triviallY'

If rT central- izes Mr, Mr < H by corollary 6 ' 10 '

Hence [l,tr,R) = I by lemma 6'9' so that R < z(M) '

ButthenGhasanormalr-complementby[9],theorem

7.4.3, a contradiction.

rf I I cr,(n) t M' by corollary 6'11 Mr is a HaLI

Hr or rt acts f.P'f' on

(r) < Hr-

lH, l, R the A-invariant

¡a = Na(R).

(1) to (6) of lemma 6'1 hold

is an A-j-nvariant subgrouP
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subgroup of G and Cr(n) < M'

since I I cHr(r) . Hr, cFlri¡(n) l1'

Hence ll a prime n I lr (H) I such that cr(r) I I

where P is the A-invariant sylow p-subgroup of G"

But then Pl lul, so that P < M'

Since Hr ( M, we have [Fl'p] = 1 by lemma 6'9'

But then P < Z(H) , yielding a contradiction as above'

Hence îT acts f.p.f. on M' so that (f) holds'

Now by lemma 6.10, cG(R) < H so F(M) < H'

Thus F(M) ( Hr, and since H < M we must have Hr = ¡'(M)'

ClearlyifKisanymaximalA-invariantsubgroup

of G different from H and M' fi must act f'p'f' on

F (K) and so must central-ize K/F (K) " And ( l¡'trl I , lr (H) | ) =

since F(K) and F(H) are Hall subgroups of G' Hence

(5) holds. ca(n) < H by corollary 6"II' and since

L I crr. (n) . H, we must have crtn¡ (n) I I and so
nl

c*(n) * M. Thus (3) and (4) also hold'

Finally, Iet t be a prime dividing lHl and let T

be the A-invarj-ant Sylow t-subgroup of G'

we show that Vx € cr(n) such that x / I, cc(x) < H'

If T < F(M) = H' the result follows from lemma 6'10'

So we may assume that T < F (H) '

Let x € Cr(n) such that x I l and supposê that C"(x) * H.

Let K be a maximal A-invariant subgroup of G

containing c* (x) -

Then KlH, so rlF(K) '

Hence 'rT central ízes T n K '

1



But C <c (x) < K bY lemmas I'16
T G

and 4.5.

This contradiction p :oves that C* (x) < H' and it

follows that (6) holds as well'

Thus al-t of the hypotheses of lemma 6'1 hold for M

and H, yielding a contradiction hich completes the

proof

LEMMA 6.13 Let

of G containing

Let H = Hr.F(H)

of H such that

Ht.

PROOF

H be a maximal

c*(n).
where Ht is an

(lH,l,lF(H)l) =

133.

A-j-nvariant subgrouP

A-invariant subgrouP

I. Then T centrafizes

cr(cr(r) )

Suppose that T doesn't centraLize H' so

that by lemma 6-12 T acts f'p'f' on Hr'

Thus C^ (n) < F(H), so that if K is a maxj-mal
G

A-invariant subgroup of G different from H' T must'

actf.p.f.onF(K)andTmustcentralizeK/F(K)

by lemma 1.19.

' choose a prime q dividing lHt l' let a be

the A-invariant Sylow q-subgroup of G and let

x = x*(Q).

Since r acts f.P.f- on Q'

and in Particular Hl < K.

Let K - Kr.F(K) where Kr

we must have Nc(Hr n O) < K

is an A-invariant subgrouP

t. clearlY Kr < F(H) .of K such that (lK'l.lr(x) l)
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If

[s],

e ( cc(Kr), oq(x) I K and hence oq(c) I G by

Corollary 2-2.

Thus O f cc(Kr).

choose a pri-me p dividing lx, I such that [P n Ki'Q]

where P is the A-invariant Sylow p-subgroup of G'

By [9], theorem 7.5'2, Q fì G' - O lì K''

Thus Q = Q n [Kr,K] = [K'Q,Q]'

Let 6=9/z@) and Rr = Krz(Q)/z(A)'

Now it follows from l2l , section 66 ' that O has class

< 2 and so tÕ,Ol = 26'

Theref ore tR r , Ql = tç, 0l = õ '

Hence cQ(Rl) =6 i'e'ce(Kr) <

Thus by lemma 6-9 H, n Q < Z(0)'

Now take xr € H, n Q such that *i = *;t

and xl has order q'

Then Q* = t*,,*l> is an A-invariant subgroup of

z (K) of order q2 '

Let P* = Cp(xr) -

We show first that Kr n P < P*'

Let Þ = P/P'.

Then by [9], theorem 5-2'3, Þ = Cp(Q*) x [Þ'Q*]'

Clearly Cp(Q*) = Kr fì P, and as in the proof of

Iemma 1.14 we have, w'I'o'9" "[Þ,qx1 
(x1) I 1'

It then fol-l-ows from [9], theorem 6'2'2(iv) that

Kr n P < c"(xr) = P*'

We prove next that P* is inverted by r '

Let [Þ,Q*] = P2-

l1



Then C- (x. ) xYz ¡

subgroup of Þ 
2

--r -¡'by r, YY Y

Since cU, (x, )

be inverted bY

As cc(Q*) < K,

inverted bY r,

is inverted bY

that

Thus

_2
cU, (xf ) * cÞ, ("i

and i-f i € cp r(
is centralized bY

is 'r-invariant,

T.

cp(Q*) < P fl Kr-

135.

) is an A-invariant

xr) is centralized

A, a contradiction'

it foLlows that it must

Thus cÞ (Q*) is

= cÞ (Q*)

Now by applying the same argument to each factor of the

derived serÍes of P and then applying [9] ' theorem

6.2.2(iv) to each in turn in the reverse order we have

that cr(xr) is inverted bY r'

Hence P* is abelian.

Now cp(P*) is a Sylow p-subgroup of cc(P*) by

Iemma 4.8, so bY [9], theorem L'3"7'

NG(p*) = Nr(p*) n N(cp(P*)).cc(P*)'

But z(p') ( cr(p*) , so N(cp(P*) ) < H by remma 4'7 '

Now cG(P*) < c*(x) for x € K, f P' and since

cr(x) Þ cr(cp(Tr)) > cr(n) by lemma 1'16' c*(x) < H

by lemma 6.t2.

Thus NG (P*) < H-

ïf P, is a Sylow p-subgroup of c*(xt) containing

P*, the same argument as above yields NG(PI) < H so

so that X

T

i.e. P* is a SYIow P-subgrouP of

cp (x, ) cp, (x, )

P

P
ca (x, )

I

Let ¡ = na(P*) n Ca(xr)
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Then H, < N so P* n z(N) centralizes Hr'

Hence P* n z(N) ( Kr'

But [P* n Kl,Hll = I by lemma 6.9, and since P* is

an abelian Sylow p-subgroup of N, P* n Kt <

Thus P* n z(N) = P* ñ Kr-

Thus by [9], theorem 7.4-4(ii), 3 a subgroup Yr of

cr(xr) such that c*(xr) = (P* n Kr).Yr'

Repeating this argument for aII prime divisors of lXt l,

we get Cr(xr) = Kr.Y where Y < C^(xr) and Y ñ K, = l'

Now N(ZJ(O) ) fì Y = F(K) has a normal q-complement'

so by [5], theorem D, Y has a normal q-complement.

Hence by [9], theorem 6-2-2(i) , Y contains a O-

invarj-ant Sylow P-subgrouP P o .

Then by t91. theorem L.3-7, Ncc(*r )(P0) = NK(Po).Ny(P0) "

Now *ra(", 
¡ 
(Po) contains a sylow p-subgroup of

cr(xr) and P 0 K, is a Sylow p-subgroup of K

contai-ned in c* (x, )

NcP
K

NSince

that

Thus

Now C

3y€K

(p n Kr )Y

covers

such that

y-1
0

c(*r)(Po)'/Nv(Po)'
(p fl K,)Y < Nc*(*,)

. Po is a SYlow P-subgrouP of
-t

it follows
(Po).

Nc" (x, )
(Po) -

n(x, ) is abelian, so I P n Kr ,Pl 1

normalizes Po and Y € l{ = Nc(Q),

t

Since 0

normalizes P

O

l

- ,--lLer P-Pi
Then [[Kr n P,P],Ql = [1,Q]

[[õ,e],Kr n Pl <

Thus by [9], theorem 2-2-3,

But by assumPtion 90 = [Kr

= I and

[[Kr rì P,Q],Pl

n P,Ql I 1, so

I

e ( C.(Qo)



Now if N o)
< H, Qo ( H, n O < Z(A) and then

u o

P fl Kr.F(K) ( H, contradicting Iemma 4-2-

Hence Nc (Q 
0 ) f H, and so we must have Nc (Q 

0 )

since r centralizes T/F(T) for every maximal

invariant subgroup T / H.

In particular Ë < X and hence Po < K and Cp

This contradiction completes the proof-

LEMMA 6.14 C (t) is nilpotent.
G

L37 .

<K

A-

x r) = p fl Kr.

PROOF

Let t be a prime dividing lcl, T the A-

invariant Sylow t-subgroup of c and M = Na(T) = Mr.F(M)

where Mt is the A-invariant complement of F(M) in M.

If cr,( 
u ) 

( n) = I, Tr must central j-ze Mr by lemma L .2 (4) '

on the other hand if cn(n) I I for some A-invariant

Sylow q-subgroup O of G contained in F(M), take

x € cn(n) .

Then by lemma 1.16 c*(n) < cn(x), so it follows from

lemma 6.L2 that c*(x) < NG(Q) = M.

Hence C*(n) ( M, so by lemma 6.13 we again have that

Mt is centralized bY T.

Let r* = z.r(c-(t) ) and suppose that cM(T*) I F(M) .

Then by lemma 4"9(1), for some prime p dividing lurl

3x€M,nP suchthat tllc*(x)l where P isthe A-

invariant SyIow p-subgrouP of G-

It follows from lemmas 1.16 and 6.12 that CO(x) < NG(P)

and so by lemma 4.9(2) we have I I crnn.(p) (n) I 1 n Nc(P) '
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Thus by lemma 6.12 T < F(NG(P) ) i.e. NG(P) = M'

This contradiction yields that cM(T*) < F(M) '

Now by lemma 4.10 Ca(r) has a normal t-complement,

and since t was arbitrary it follows that Cr(t)

is nilpotent.

We are now in a position to complete the

PROOF OF THEOREM II
Let H be a maximal A-invariant subgroup of

c containing c*(n).

Let H = Ht.F(H) where Hr is an A-invariant subgroup

of H suchthat (lHrl,lF(H)l) =I-

Then by lemma 6.13, 'tT centralizes Ht '

Let q be a prime dividing lHr l, O the A-invariant

Sylow q-subgroup of G and r = N*(Q) "

Let K = Kt.F(K) where Kr is an A-invariant subgroup

of K such that ( lKt l, lr(r) l) = r-

Clearly A fl H, = Cn(n), so by lemmas t'I6 and 6'L2 we

must have NG(Q fl Hr) < K.

It follows that Cr(n) < K, so that Kr j-s centralízeð'

by r by lemma 6.13.

suppose that for some prime tllH,l, T fl Hr j-s non-cyclic

where T is the A-invariant Sylow t-subgroup of G'

Then by [9], theorem 5.3.16, applied to each Sylow

subgroup of F(H) we obtain F(H) = *e $nn, "u(H¡(x) '

But by lemmas 1.16 and 6.13 c*(x) < K Vx € T 0 Ht so

that F(H) ( K, a contradiction-
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It fol-lows that Hl is cyclic, and simj-lar]y K1 is

cyclic.

Hence C*(n) is cyclic.

Let p be a prime dividing lxr l, P the A-invariant

Sylow p-subgroup of G and assume w.I.o.g" that

H - Nc(P) .

Choose a € C"(t) and suppose that cr(a) * F(H) '

then by lemma 4.9(1), for some prime "llttr I fx € s n Hr

such that pl lca(x) I where s is the À-invariant

Sylow s-subgrouP of G.

It follows from lemmas 1.16 and 6-I2 that C*(x) < Nc(S)

and from lemmas 4.9(2) and 6-12 that Nc(s) = H, a

contradiction.
Thus cn (a) < F (H) .

Let P r. = c, (a) . Then P 2 is a Sylow p-subgroup of

c*(a) bY lemma 4-8-

As z(P) <

Thus Nc(zJ(P2)) n c*(a) < F(H)

p-complement.

Hence by [5], theorem D, ca(a)

By the symmetric argument we also have that C^ (b) has

a normal q-completnent Vb € cn(t) .

Now suppose that P contains a characteristic non-cycJ-ic

abelian subgroup W.

Then l¡f = C,, ( n) x [W, <r>] and since C" (n) is cyclic
w

[w,<ir>] I l.

< H by lemma 4.7.

and so has a normal

has a normal P-comPlement-
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rf ln, { [w, <n> ] ) I > pu , []1, <n>l contains an A-invariant

subgroup E* = Enu.

Take x € C..(r), so that E*
W

aSylow q-subgroup A* I of

by lemma 6.14) .

Then by lemma 1.15, cõ(Po) I

subgroup Po of E*.

Since r acts f.p.f. on Po

<c
u

c ti
(c

a
c (x)

LT

I for some A-invariant

(x)

(x)

and normalizes

we must have <H

But cO(Po) < cc(d and as cr(x) = F(H) we must have

aO (no ) < F (H), a contradiction"

Hence In, t[w, <n>] ) I = p2 and as Hr n 0 acts f -p-f -

on Qr ( [w, <r>] ) we have q lp' - r.

Now if O also contains a characteristic non-cyclic

abelian subgroup we have plqt - 1, a contradlction"

Hence we may assume w.l-.o.g" that P does not contain

a characteristic non-cyclic abeli-an subgroup, and that

either O does not contain such a subgroup either or

that plq' 1.

In particular, Z(P) is cyclic.

Thus by [9], theorem 5.4.9, P is the central product

of an extra-speciaL group E and a cyclic group R.

CIearIy R < Z(P) and so R is A-invariant-

Thus we may assume w.I.o.g" that E is also A-invariant.

Now E/z(E) = E = C¡(n) x [E,<n>].

since Hl n Q acts f .p.f . on [E, <n>], if ltE, 'ntl I = p2

we have q lp' 1.

Thus by lemma 1.3 we may assume w.I.o.g. that l[e ,tttt] I >

cc(Po)

4p



But now it follows as in the proof of [9] ' theorem 5'5'2'

thatEisthecentralproductofnon-abeliangroups

of the type .u,u',r' where v € Cr(t) and' ¿'z> = z'@) '

Thus cr(v) ís non-abelian, and so 3y € ccr{.r) (t)

such that Y I z(cp(v) )'

Now y has p conjugates in P' and hence in Cr(v)'

As 1y,z> < cr(v), the conjugates of y are contained

in <y, z>.

Now cr(v) is a sylow p-subgroup of cr(v) by lemma

4.8, and since c*(v) has a normal p-complement we

can select a sylow q-subgroup õ of ca(v) which is

invariant under <cr(v), t> by [9] ' theorem 6"2' 2 (i) '

Let 1 - Zo < ZL < "'

series of õ, and let i be the least integer such

that Zí*, is not inverted bY r'

Then Zi is inverted by T ' and since z normalizes

Z. and z is inverted by T' z centralizes Z''
1

Hence Z, * C*(z) < H'

Now c,7 ( t) I I, so clearlY z i*, I H '
"i+ I

Since zi*r/zi = arr*.,,/zí þ) x lz, zi*r/"1 by [9] '

theorem 5.2.3, and ""r*r(") 
( H' it follows that

wo/2, = lz, zr*r/zi\ I Z. -

141.

X Iy, w
0
/zto (v)

o/ uicww o/zi1¡l o/ Z i,
1Since y normalizes

by the same theorem.

If y centralizes

in c, (v) .

l_

w o/z i, so wiLl each conjugate of Y
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But then 1y,Z)

Hence ly, w o/zi
Now Ly, W o/Zil
z acts f .p. f . on W o/%i we have

by [9], theorem 5.3.14(iii).

Since õ is 'r-invariant, by [9J ,

3a € C*(t) such that cn(t)o < õ.

But cQ(r)0 = cn(t) by lemma 6.L4.

Thus cwo (.) ( cn(t), so that ly,

cenÈralizes

I / 2..

w o/zi, a contradiction.

c ly, løo/zil (t) lr

theorem 6-2.2,

is invariant under 1î,2> and since

", o/r. 
(t) I

c

I

Iy, \r o/zíi

z

Hence t* 
or^r(') 

< cw 
o/2.(Y) ' so that

This contradiction completes the proof.

(t) I
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ERRAT&,Emqg.

For rkleÍn-four groupr read

'K1ein four-group'

For 'oP(e), read 'c,/op16¡ '

Add '(see [g] , tfreorem 10.I.5) ,

Include in the hlpothesis that

I cl is coprime to 6

For 'xp ñ H1 read rx(p l^ì H) r

For 'lemna I.l4 ' read ' lem¡na L.2Ol

For rorr read tof'

AddX +L
o

For rAr in the proof of the le¡runa

read tDt

Include in the hypothesis that lfl

is coprime to 6

For 'lammat read ,lemmal

For x read x

For x read x




