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(1)

SUMMARY

The aim of the research undertaken was to

investigate groups of order coprime to six which admit

a fixed-point-free group of automorphisms A isomorphic
to S;, and in particular to find a direct proof of the
solubility of such groups without using the Feit-Thompson
theorem or other 'heavy machinery'. This is a specific
case of the general conjecture that a group which admits
a coprime fixed-point-free group of automorphisms must

be soluble.

The first chapter consists of an account of the
necessary preliminary results together with some other
results and examples which shed some light on the
properties of groups admitting a group of automorphisms

isomorphic to S;.

In chapter two we present results (obtained mainly
by Martineau and Glauberman) on the structure of maximal

V-invariant {p,q} - subgroups of a minimal counter-

example to a more general conjecture than the one stated
above. These results are given in the most general
possible setting in order to be applicable to a wide

range of hypotheses.

In chapter three we prove that a minimal counter -
example to our theorem has at most three maximal
A-invariant {p,q} - subgroups. This has proved to be

a useful mid-point in the deduction of solubility in



(ii)

other special cases of the conjecture, but does not

appear to be particularly useful in this instance.

Accordingly, a different approach was adopted,
and chapter four consists of preliminary results about
the maximal A-invariant subgroups of a minimal counter-
example to the theorem. 1In the last two chapters this
line of approach is developed and in a sequence of
arguments the structure of these maximal A-invariant
subgroups is investigated, culminating in the proof of

the theorem.
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INTRODUCTION

A group of automorphisms A of a group G 1is
said to be fixed-point-free (f.p.£.) if it leaves
only the identity element of G fixed. We define
C,(a) = {x € G|x* = x va € A}. Then A is f.p.f. on
G 1iff CG(A) = 1. The result that a finite group
admitting a f£.p.£. automorphism of order 2 is abelian
was proved by Burnside late in the nineteenth century,
and in 1901 Frobenius proved that a group admitting
a f.p.f. automorphism of order 3 is nilpotent of
class at most two (see [2]1). This prompted Frobenius
to pose the following conjecture:

If G is a finite group admitting a f£.p.f.
automorphism of order p (p a prime) then
(i) G 1is soluble
(ii) G is nilpotent.
The proof of (ii) assuming (i) has been attributed
to Witt in about 1936, and in any case the result
appears to have been known before Higman published
a proof in 1957. The proof of the conjecture was then
completed in 1959 by Thompson ([20]) when he proved
(i). Since that time, the conjecture has been extended
in various ways, and its most common form now is:

If G is a finite group admitting a f£.p.f.
group of automorphisms A with A cyclic or

(lef,lal) =1 then



(1) G 1is soluble.
(2) The nilpotent height of G 1is bounded above

by the number of primes dividing |a] (counting

multiplicity).

In recent years most of the work on groups
admitting such automorphism groups has been centred
on (2), mainly because (1) appears to be a much deeper
problem, but also because by the result of Feit and
Thompson in [4], (1) follows if |a| is even. There
have, however, been a few succésses in proving (1) for
particular kinds of automorphism groups.

The first result in this direction was the proof
of (1) when A is cyclic of order 4 by Gorenstein
and Herstein ([10]) in 1961. In the mid-60's Bauman
([1]) proved that if A 1is a klein-four group and G
is soluble then G' is nilpotent, and using this result
Glauberman proved (1) when A is the klein-four group.
An account of this work may be found in [9], p. 351-356.

In 1968 Scimemi ([18]1) generalized the result
of Thompson in [20] to the case where A 1s cyclic
of composite order, though he required additional
assumptions about the fixed-points. Specifically, he
proved:

Let G be a finite group admitting a f.p.£.
group of automorphisms A = <g> of order n where
n is a product of distinct primes. If the fixed-
points of the non-trivial powers of o are all in the

same nilpotent Hall subgroup of G, then G 1is nilpotent.
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In a sequence of papers from 1971-73, Martineau
proved (1) (and in some cases (2) also) for the
following cases (we include all results here, even
though some represent improvements of others, as this
gives a better indication of the hard-won progress On
the proof of the conjecture) :

(a) A is elementary abelian of order r? and

Cola) is abelian for all o € A* ([12]).

(b) A is elementary abelian of order r2  ([131).

(c) A is elementary abelian of order r® ([141).
(d) A is elementary abelian ([141) .

During this period Ralston ([171) succeeded in
proving (1) when A is cyclic of order rs, where r
and s are distinct primes, and in 1973 Martineau ([151])
was able to resolve (1) when A is a soluble group
whose centre contains an elementary abelian subgroup
of order r’.

In 1975, Carr ([31) proved the result in the case
when A = <¢> is cyclic of order r? where r is an
odd prime, under the additional assumption that either
ICG(¢r)| is odd or G has abelian Sylow 2-subgroups.
The most recent result was obtained in 1976 by Pettet
([16]1). He proved (1) for the case that A 1is a
direct product of two elementary abelian groups and
|a| is not divisible by a Fermat prime.

Summarizing, then, we know that if A is a f.p.f.
group of automorphisms of G, with (lg],|al) =1 if

A is non-cyclic, then G is necessarily soluble under

the following conditions:
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I A is cyclic of order p, rs (r # s), 4, r?

(r odd and either |CG(¢r)| is odd or G has
abelian Sylow 2-subgroups) or n (where n is
a product of distinct primes and the fixed-
points of the non-trivial powers of o are all
in the same nilpotent Hall subgroup of G).
IT A 1is elementary abelian.
IIT A 1is a product of two elementary abelian groups
and |A| 1is not divisible by a Fermat prime.
v A 1is soluble and 2Z(A) contains an elementary
abelian group of order «r?.
It should be noted that we have restricted
attention above to those results which are special cases
of the general conjecture, and then only to those that
can be obtained in a direct manner i.e. without employing
'heavy machinery' such as the Feit-Thompson theorem.
Thus we have omitted to mention the work of several
authors who have worked on hypotheses not requiring A
to act f.p.f. on G which also imply solubility. Also
Pettet has proved several cases of the general conjecture
using 'high powered' methods, Rowley has similarly removed
the restriction of non-divisibility by Fermat primes in [16]
and Rickman has generalized some of the results above.
Many of the proofs of the recent results listed
above have a common theme. Using the facts that
C,(A) =1 and either A is cyclic or (|G|, |al) =1

it can be deduced (see [9], theorems 10.1.2 and 6.2.2)



that for all primes p dividing |G|, A leaves
invariant a unique Sylow p-subgroup of G. These A-
invariant Sylow subgroups are then shown to be pairwise
permutable and hence to form a Sylow system. P. Hall's
characterization of soluble groups ([11]) is then used
to deduce that G 1is soluble.

The most common technigue used to deduce the
permutability of the A-invariant Sylow subgroups was
developed by Martineau, and involves a detailed
investigation of maximal A-invariant {p,gl-subgroups
of a minimal counter-example to the conjecture. Martineau
and Glauberman ([151,[8]) have shown that one can say
a good deal about the structure of these subgroups for
a minimal counter-example to the general conjecture, and
using these results for specific cases of the conjecture
it is shown that there are 'not many' maximal A-invariant
{p,q}-subgroups of G. This result is then used to
show that the A-invariant Sylow p- and g-subgroups
P and O of G must in fact permute. It is apparent,
however, that even under very strong assumptions about
the structure of A, it is often not possible to prove
that P and Q permute by a purely 'local' argument.
Indeed, having generalized the preliminary reduction
used by Martineau to find a small bound for the number
of maximal A-invariant {p,q}-subgroups in the special
case where A is a product of two elementary abelian

groups, Pettet ([16]) was forced to resort to a global



argument to prove the solubility of G.

All automorphism groups considered thus far,
with the exception of the paper of Martineau [15] , have
been abelian. Thus it is natural to ask whether any
such results may be obtained when A 1is non-abelian,
and since Shult ([19]) has proved (2) of the conjecture
when A = S; and (IGl,lAl) = 1 our attention is
drawn to (1) for this case. Of course, the problem
has been solved by the use of high powered techniques
from the theory of simple groups (see, for example, [7],
corollary 7.3) even in the case when (lGl,3) =1,
but we are interested in finding a direct proof in
the hope of shedding some light on the possible proof
of the general conjecture.

The first approach to this problem was to follow
the techniques developed by Martineau, and although
some key results which hold in several of the special
cases listed above do not hold for Sj3, it was possible
by this method to find a small bound for the number of
maximal A-invariant {p,q} - subgroups of a counter-
example G of minimal order.

However, it then appeared to be very difficult
to deduce the solubility of G from this result
without making additional rather restrictive assumptions
about G, and these restrictions were necessary
mainly because it seemed not to be possible to otherwise
guarantee the existence of any A-invariant {p,a}l -

groups.



This difficulty led fairly naturally to an
entirely different approach to the problem which
entailed consideration of the structure of maximal
A-invariant subgroups of a minimal counter-example
to the theorem, and using the results of Glauberman
in [5] it was possible using this method to deduce
the solubility of G.

The notation for the most part is standard,
taken from [9]. In addition, all groups are assumed
to be finite and wherever A = Sj3, We take
A=<m,t|r® =12=1, t lnt = w2>. For automorphisms
0,,02 of G we will denote the result of applying 0.
followed by 0, to an element x of G by either x9192 op
0,01 (x), whichever is the more convenient. Finally,

for a prime p dividing |G|, oP (g) is defined to

be the maximal p-factor group of G. 0



CHAPTER ONE

PRELIMINARY RESULTS

This chapter consists of a detailed account
of the more basic properties of a finite group admitting
a group of automorphisms A = 5j. We Begin by proving
two easy lemmas which will be crucial to our later

work.

1.1 LEMMA Let G be a finite group admitting a

group of automorphisms A = S;. Then we have the
following:

(1) CG(W) is an A-invariant subgroup of G.

(2) If A acts f.p.f. on G, then CG(F) is abelian,

has odd order and is inverted by T.

(1) Clearly CG(ﬂ) is mw-invariant.

If x € Cg(m), T(Tt(x)) = Twi(x) = 1(x), soO

T(x) € CG(W). |

Thus CG(ﬂ) is T-invariant, and hence A-invariant.
(2) If A acts f.p.f. on G, then T must act £.p.£.

on CG(ﬂ).

Now by [9]1, theorem 10.1.4, CG(ﬂ) is abelian

and inverted by T.

By [9], theorem 6.2.3, |CG(n)| is coprime to

|<t>| = 2.
a



1.2 LEMMA Suppose that G 1is a finite group

admitting a group of automorphisms A = S3. Then

(1) If G 1is cyclic, centralizes G.

(2) If CG(T) =1, w centralizes G.

(3) If G is a p-group, either CG(ﬂ) # 1 or
CG(T) # 1.

(4) If CG(W) =1, G 1is nilpotent.

(5) If CG(W) = 1 then <x,x“> is an A-invariant
abelian subgroup of G for all X in G
satisfying either x' = x~' or x' = x.

PROOF

(1) If G 1is cyclic, Aut (G) 1is abelian. Since
Aut(G) contains a homomorphic image of A, the
result follows.

(2) By [9], theorem 6.2.3, G has odd order.

Then by [9], theorem 10.4.1 we have G = CG(T).I
where I = {x € G|x" = x '}.

So T inverts every element of G.

Now W¥Wx € G, Tmit(x) = 2 (x™h)

and Tr(x) = W(X)—l = m(x ).

Thus m2(x ') = m(x~'), so that m(x) = X.

The result follows.

(3) If CG(W) = CG(T) =1, A 1is a regular group of
automorphisms of G, contradicting [9], theorem
5.3.14(iii).

(4) This is the result of Frobenius mentioned in the

introduction.
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2 2
(5) If C,(m) =1, then xx"™x" =x" x"x =1

Vvx € G by [9], theorem 10.1.1(ii) .
Thus xx' = X ™ = x"x, so R = <x,x“> is abelian.

ki -1 -7 ) . .
As X =x x , clearly R 1s m-invariant.

Now suppose X € CG(T).

T T™T T m -1 -7
Then x = x and X = X = X =X X , SO
R 1is Tt-invariant.
2 2
. . -1 mT T -l.m n
Similarly if x' = x , X = X = (x ) = XX ,

so again R is r—-invariant. Hence in both cases

R is A-invariant.
(]

We can now prove a structure theorem for abelian
p-groups which admit S3 f.p.f. This lemma will also

be used extensively later.

1.3 LEMMA Suppose that G 1is a finite abelian

p-group, p a prime different from 3, admitting a

f.p.£f. group of automorphisms A = S;. Then

(1) G = CG(ﬁ) x Gy where G is A-invariant and
CGl(w) = 1,

(2) If p# 2, G=C,(m xClr) x cG(T)“.

PROOF

(1) By [9], theorem 5.2.3, we have G = CG(<ﬂ>) x [G,<m>].
As both G and <m> are A-invariant, Gi1 = [G,<m>]
is A-invariant. The result follows.

(2) In view of (1), it suffices to prove that if

_ m
CG(W) =1 then G = CG(T) X CG(T) .
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Let G* = CG(T) X CG(T)“. Then as in the proof
of lemma 1.2(5) above, G* is A-invariant,
so A is a regular group of automorphisms of
G/G* by [9], theorem 6.2.2.

Thus G = G* by lemma 1.2(3).
a

The following result on the structure of certain
finite groups which admit an automorphism of order 3
will be required in our investigation of Sj;~-invariant

{p,q}-groups.

1.4 LEMMA Suppose that G is a finite group

admitting an automorphism T of order 3. Then

(1) If G is a p-group (p * 3), G = CG(W)-[G,<W>]
and [G,<m>] < G.

(2) If G = G;G, where Gi 1is centralized by

and G, is a m-invariant p-subgroup of

G (p # 3) with Cs (r) = 1, then G2 9 G.
2

PROOF

Firstly, it is clear that C (™) normalizes
[G,<w>], since <m> and CG(w) centralize each other.
Now (1) follows from [9], theorem 5.3.5.

(2)  [G,<m>] = <g'lg",g‘1g“2|g € G>.

If g€ G, g = gi1g2 for some g1 € G1, g2 € G2.

g—lgTT = (glgz)_l(glgz)1T
-1 =1 7w T
= g2 91 9192

g2 g7 € [G2,<m>].

- 2
Similarly g 1g1T € [Gp,<m>], SO [(G,<m>] = [Gz2,<m>].



i Zs,

But bY (l)r G2 = [G21<TT>] = [Gr<">]-
Clearly CG(H) = G;, So by the remark above

G, 9 GGz = G.

Our next result concerns groups of odd order

which admit S; £f.p.f.

1.5 LEMMA Suppose G 1is a finite group of odd
order admitting a f.p.f. group of automorphisms A = Sj,
and let I = {x € G|x" =x '}.

Then CG(ﬁ) CI and CG(W) =TI« CG(T) = 1.

PROQF

By [9], theorem 10.4.1(i), G = CG(T).I.
By lemma 1.1(2), CG(N) c I.
If CG(T) =1 then G=1I-= CG(w) by lemma 1.2(2).
Conversely, if CG(ﬂ) = I, I is an A-invariant
normal subgroup of G by [9], theorem 10.4.1(ii).
Thus G/I = CG(T) is A-invariant, so CG(T) f 1.
O
The next three results are crucial to the
discussion of the structure of a minimal counter-

example to the main theorem.

1.6 THEOREM Let G be a finite group with

(|G|,3) = 1 which admits a £.p.f. group of automorphisms
A = S;. Then for all prime divisors p of lc|, A

leaves invariant a unique Sylow p-subgroup of G.
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PROOF

Let P be the set of all m-invariant Sylow
p-subgroups of G. Then P#¢ by [9], theorem 6.2.2.
Since nT = tn?, T permutes P, and since T has
order 2 each orbit of T on P has order 1 or 2.
Now if P,Q € P, by (9], theorem 6.2.2 3x € CG(ﬁ)
such that P* = Q. Thus P =Q ® p = p¥

& x € NG(P) N CG(ﬂ).
so |P| = (C (m = C(m) N N (P)) | [Cg(m |
Hence |P| is odd by lemma 1.1(2), so that some orbit
of T on P has order 1.
That is, 3P € P such that P is Tt-invariant, and
hence A-invariant.

Now let P,Q be any two A-invariant Sylow

p-subgroups of G.

Then by [9], theorem 6.2.2 3Ix € CG(ﬂ) such that

T(x) x—1 x =1
) =P , so P* =P

Thus Q = 1(Q) = T(P
. 2

i.e. x° € NG(P).
But x € CG(W) so x has odd order by lemma 1.1(2).

Hence x € NG(P), so that A leaves invariant a

unique Sylow p-subgroup of G.

1.7 LEMMA Let G be a finite soluble group with
(|G],3) = 1 which admits a f.p.£. group of
automorphisms A = S3. Then for all factorizations
|G| = mn with (m,n) =1, A leaves invariant a

unique Hall m-subgroup of G.



PROOF

Since the analogues of (i) and (ii) of o1,
theorem 6.2.2 hold for Hall m-subgroups of a soluble
group (using the analogous argument), we can apply the
same argument as in the previous lemma to deduce the

desired result, 0

1.8 LEMMA Let G be a finite group with (lgl,3) = %
which admits a f£.p.f. group of automorphisms A = Ss3.
If H is an A-invariant normal subgroup of G, then

A induces a f.p.f. automorphism group of G/H.

PROOF

Suppose CG/H(A) # 1. Then CG/H(A) has an
A-invariant Sylow p-subgroup K/H for some prime p.
Let P be the A-invariant Sylow p-subgroup of K,
so that K/H = PH/H.

Then Vx € P-H, A leaves XxH invariant.

Thus Va € A, x® = xh for some h € H, so that

x 'x* € P N H.

Tt follows that A leaves the coset xP N H invariant.
But if p # 2, [9], theorem 5.3.15 asserts that A acts
f.p.f. on P/P N H, and if p = 2 then 1w, and

hence A, acts f.p.f. on P/P N H by lemma 1.1(2):

We therefore have x € PN H, a contradiction. a

The next lemma enables us to apply Martineau's
techniques to find a small bound on the number of maximal
A-invariant {p,q} - subgroups of a minimal counter-

example to our theorem.

1.9 LEMMA Let G be a finite soluble group with

(|g|,3) =1 and let S be a Sylow p-subgroup of G.i .
If G admits a f.p.f. group of automorphisms A = S3

then G = 0_,(G).Cq(B(8)) Ny (I(8)).
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PROOF

We proceed by induction on |G| .

If Op,(G) + 1, then by lemma 1.8 and the inductive

hypothesis we get

SOP.(G) (SOP.(G)))
G/0_,(G) =C (2 (——)) .N (J (—=—
P P
Z(S)0_, (G) J(S)Op,(G)
=Csr0 ()" ” ) Neso (e )
p' OP.(G) p' Op.(G)

Thus G = OP,(G).CG(Z(S)).NG(J(S)) as required
(it is routine to check that if T,M are subgroups
of a soluble group H such that (|T|,[M|) =1 then

NH/M(TM/M) = NH(T)M/M and C_ M(TM/M) = CH(T)M/M).

/
Thus we may assume that Op,(G) = 1.

Now by [6], corollary 1 we may assume that p = 2
(since (|G|,3) = 1).

But then |<w>| 1is relatively prime to |G| and

has no fixed point of order 2 by lemma 1.1(2).

The result then follows by [6], corollary 2. [

The two main results obtained by Shult ([19]) on

soluble groups admitting a coprime automorphism group

IR

A S; which acts £.p.f. are also critical for our
later work, and for the sake of completeness are

repeated here.
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1.10 THEQOREM (Shult, [19]). If G 1is a soluble

group of order coprime to 6 admitting a f.p.£. group
of automorphisms A = S3, then G has o-length at
most one for any collection o of primes dividing

la] .

1.11 THEQREM (Shult, [19]). If G 1is a soluble

group of order coprime to 6 admitting a £f.p.f. group

of automorphisms A = S; then G' 1is nilpotent.

The following lemma is included because it
gives some insight into the way S; can act f.p.£f.
on certain groups of order coprime to 3, even though
the result itself does not appear to be particularly

useful.

1.12 LEMMA Let G be a finite group of order

coprime to 3 admitting a f£.p.f. group of automorphisms
A = S3;. Suppose that 1 < G, < G 1is a normal A-
invariant series of G such that G; and G/G, are
elementary abelian. Suppose further that A acts
irreducibly on G; and G/Gi. Then either G is
abelian, or |G;| = p?, |G/Gi| = g for primes p and g

such that q|p + 1 if p=5 or 11 (12) and glp - 1 if p = 1
or 7 (12).

PROOF

Since the only irreducible representations of
A over any field have degree 1 or 2, the only
elementary abelian groups on which A <can act
irreducibly are CP and Cp X Cp.

Thus |G;| = p® and |G/G:| = q© where 1 <a, b < 2.
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Suppose first that a = 1. Then G is cyclic and
hence centralized by m by lemma 1.2(1).
If b=1, G/Gi is also centralized by T, and so
G 1is centralized by .
Hence G is abelian by lemma 1.1(2). Thus we may assume
that b = 2.
If p # g, we can write G = G1Q where Q 1is the
A-invariant Sylow g-subgroup of G.
But then Q <« G by lemma 1.4(2), so that again G is
abelian. l o
We are left with 5 remaining cases:

I a=1, b=

|
N
o

=d

IT a=2,hbh=1,p q
IIT a=2,b=1,p *# g
v a=b=2,p=4g
\Y a=>b=2,p*d.
We deal with each case in turn.
I Clearly we may assume that G 1is non-abelian,

so that by [9], theorem 5.5.1, G is isomorphic

to one of Ms(p), M(p), Da or Qs where

. h 1
<g,h|g® =nP =1, g" = g""">

I"’I3 (p)

<g,h,k|g® = n? = k¥ =1, [g,h] = [h,k]

Il
=

M(p)

and [g,h] = k>

and D3, Q3 are respectively the dihedral and

quaternion groups of order 8.
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By lemma 1.1(2), w acts f.p.f. on a 2-group,
so G must have odd order. Now both M3 (p)
and M(p) are extra-special, so G = z(G) 1in
both cases.
Let G; = <z> and G/Gi1 = <xG1,yG1> where
(w.l.0.9.) z" = z, (xG1)" = xy—lGl, and
(xG1)" = yGi.
Then x" = xy 2% and y' = x 'z® for some
a,b € Z.

Suppose that [x,y]l = zi i.e. Xy = yxzi.

Applying m, we get xy—lzax-lzb = x—lszy_lzazi
xy-lx—lza+b = y-lza+b+i
xy 'x ' = v izt

Now xy & = y-lxz_i, so y"lz_i =y 'zt .

Thus 22i = 1, and hence zi =1 since G has

odd order.

Thus x and y commute and G is abelian, a
contradiction.

Again we may assume that G ‘is non-abelian, soO
that as above G 1is isomorphic to M3 (p) oOr
M(p). As both are extra-special, Z(G) has

order p and hence 72(Gg) < Gy. But then A does
not act irreducibly on Gi, a contradiction.

Let G = G,Q0 where Q 1is the A-invariant Sylow

g-subgroup of G.
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Then Q is cyclic and hence centralized by T
by lemma 1.2(1).
Suppose first that p and gq are both odd.

W.l.0.g. let Gi1 = <x,y> where x' = x_ly,

-1 T
y1r = X and x' =y and Q = <z> where z

. 1 o -1 u_v
Since G; 9 G, z Xz =X yB

and 2z 'yz = XY

for some 0 < o,B,u,v < p-l.

. -1 o
Applying ©® to z xz2 = XY

(z"'x"'z2) (27 yz) = x 7By
x—ay—BXuyv —u—Bya
u—ayv-B —a—Bya i

Thus u-o = -a-8(p) and v-8 = a(p)

i.e. u = -B(p) and v = a+B(p).

So we have 2z 'xz = anB and z yz = x_?Ya+B'

Applying T to 2 'xz = x%y®, we get

-1 XB

Zyz y®

v =z 'xPy%z

(z 'xz) B (27 yz) @

2 _ 2
- XuByS = asyu +aB

a?+aB+B?

Thus o2 + af + B2 = 1(p).
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It follows that if G 1is non-abelian, the action

of z on <x,y> is just 'multiplication' by

(g a;g) where a2 + aB + B% = 1(p).
Let W = {X € sL(2,p)|X = (j a;g)}.

a =8, ,u -v, _ ou-Bv - (av+pu+Bv)
ghes (B a+8)(v u+v) - (av+8u+8v au+ov+Bu )

so W is a subgroup of SL(2,p).
Define V = {(a,B) € Fp X Fp|0f.2+cx8+82 = 1(p)}.
Then clearly |W| = |V].

Now (a,B) €V & (a+2B8)2 + 302 4(p), and the

number of solutions of X2 + 3Y?

“p-1
p - (-1)&1‘(1%).

4(p) 1is

o]
+
'_-l
P.
)]

g
i
(&

or 11(12)

Thus lw| = |v| = {
‘p-1 1if p = 1 or 7(12) .

As z € W, we must have ql]|W]|.
Thus |G:| = p?, |G/Gi| = q and q|lp+l if
p =5 or 11(12) and gqlp-1 if p =1or 7(12).
We have now to deal with the case where p ©oOr (
are even.
Since T centralizes Q, g 1s odd by lemma 1.1(1).
Suppose p = 2, and let Gi = {1,0,8,vY} where
(w.l.0.9.) a = vy, v" = B8, oT = 8 and Y' = v.
Again let Q = <z> where z" = z.
If z ‘oz = o, applying ‘we get z YZ = Y
and it follows that G is abelian.

If 2z 'az = 8, applying 7™ we get 2" vz = a
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and z Bz = Y

Thus 2z? centralizes 8, so 2z must also (since

(q,3) = 1).

-1

But then vy = 2z Bz B, a contradiction.

Similarly if z oz

Yy we get a contradiction.
Since G is a p-group, Z(G) # 1. As Gi1 4G,
Gy N Z(G) # 1.

Thus G N Z(G) = Gi, since A acts irreducibly
on Gy . i.e. Gi < Z(G).

-1
Now w.l.o.g. let G = <x,y> where x" = x vy,

-1

y" o= x and x' =y and let G/Gi1 = <uGi,vGi1>
- ™ =1 ™ -1

where (uGi1)" = u vGi1, (vG1) =1u G, and

(UGl)T = VGi.

Now x,y commute and u,v commute with x and

but u and v only commute modulo Gi.

So let [u,v] = xlyj,
u" = utvx?yP

™ -1 _¢c_. d
u Xy .

and v

Applying ® to uv = vu xiyj, we get

-1 -1 -1 -1 i i _a
u anybu xcyd = u xcydu anybx lylx J
-1 =1 a+ + - +c-i-j_b+d+i
a tvu %2 cyb a _ & Avxa c-1i jyb a+i
-1__ =1 -2 -i-j_i

u vu = u VX Yo .

Y
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-1 -1 i 3 . .
Now vWvu = u VX yj, so this gives

2 i j _ =2 _-i-j_i
u vx'y- =u VX v

i

i ~i-3  an4 yj =y .

It follows that 2i + j = O(p) and i = j(p),
so 31 = O(p).
Thus i = O = j(p) and [u,v] =1 so that G
is abelian.

\Y Write G = G;Q where Q is the A-invariant
Sylow g-subgroup of G.

Then since A acts irreducibly on both Gi and

Q, we must have CGI(W) = CQ(W) = 1., It follows
that CG(w) =1 (see lemma 1.14 below), so G
is nilpotent, and hence abelian. O

The following example is included to exhibit some
properties of non-soluble groups admitting a group of
automorphisms isomorphic to Ss, with the purpose of
gaining information which might give some insight into
the best method of attempting a proof of the theorem.

We examine the action of various Sj3's on the simple
group PSL(3,4) of order 20160, and in particular
calculate the Sylow p-subgroups which are left invariant

by each S; for p = 3,5 and 7.

1.13 EXAMPLE

Let G = PSL(3,4), 2 = Z(GL(3,4)) and

GF(4) = {0,1,0,0%2 = 1+0}. Then G admits the following
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four groups of automorphisms isomorphic to S3s:

(1) A, = <a,f>, where a is conjugation by (ell)
) 2
and £ maps (pij)z to (pij)z

la] =3, |f] =2 and £ 'af =a .

(2) A, = <a,*>, where * : pZ » (p_1

|*| = 2 and *"lax = a7t

0861
(3) A; = <b,f>, where b 1is conjugation by (l 126>.
= 6 6°1

Ib| =3 and £ bf

(4) A, = <b,h>, where h = *g and g 1is conjugation

111
by (1 1 0).
100

Some tedious calculation reveals the following:

c (a) = <(tpiz | B esu@2,4>, |cgla] = 2%.3.5;
010 101
cC (b) = <<o 0 1) , (0 1 o>> Z, |cG(b)| = 3.7;
¢ 110 110
c,(f) = {pz | p € SL(3,2)} , ICG(f)I = 2%,3.7;

C,(*) = <8>Z where s = {p € SL(3,4)|ptp € 7},

ch(*)|

22.3.5;

22.3.5.

n
Il

011
(0 10)zlx e, logml

C_(h)
G 11x

Thus we can calculate:

c (1) = C (a) N C () = (s e suz,2)}

has order 6.
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c,(B2) = Cg(a) 0 C (%) =

{(lB)ZIB € SL(2,4) and BB € 7z} has order 16.

CG(Aa) = CG(b) NnNec (g = CG(b) has order 21.

G

101
<(0 1 0>Z> has order 3.

C.(Aay)
< 111

I The Sylow 7-subgroups

Since the Sylow 7-subgroups of G are cyclic
of order 7, it follows from lemma 1.2(1) that a Sylow
7-subgroup which admits a group of automorphisms
isomorphic to S3; must be centralized by the 3-elements
of Si, while the 2-elements either centralize or
invert it. Now since CG(a) is not divisible by 7,
A, and A; leave no Sylow 7-subgroup of G invariant.

As CG(b) has a unique Svlow 7-subgroup, namely

010
<(0 0 l>>Z, it is a simple matter to verify that £
110

also centralizes this group while h inverts it. Thus
A; and A, leave invariant a unique Sylow 7-subgroup

of G.

IT The Sylow 5-subgroups

As above, any subgroup of order 5 which admits
a group of automorphisms isomorphic to S3 must be
centralized by the 3-elements of Ss; and either
centralized or inverted by the 2-elements. Now CG(a)

r

contains the following 6 subgroups of order 5:
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100 10 O 10 O
M=<(0 ;] ez>>z ] N=<(0 62 ez>>z, P=<(0 62 e>>z
060 0 82 1 01 1
10 0 10 O 100
Q=<(0 62 1)>Z c R=<(00 e) >7, T=<(0 ) 6>>Z
06 1 0 82 0 0861

Since CG(f) is not divisible by 5, A: .does not
centralize any of these groups. It is easily checked
that f does not invert any of them either, so that

A; leaves no Sylow 5-subgroup of G invariant.

Routine calculation reveals that * inverts N and

T but does not centralize or invert the other subgroups.
Hence A, leaves two Sylow 5-subgroups of G invariant.
As CG(b) is not divisible by 5, neither As or Ay

can leave a Sylow 5-subgroup of G invariant.

IIT The Sylow 3-subgroups

The Sylow 3-subgroups of G are elementary
abelian of order 9. By [9], lemma 2.6.3, any
automorphism of order 3 of such a group must centralize
an element or order 3. We therefore determine the
Sylow 3-subgroups of G left invariant by each Ai

by the following steps:

(i) Find all elements of order 3 centralized by a,
and similarly for b.

(ii) Determine the centralizer of each of these
elements, and hence all the Sylow 3-subgroups

of G in which they are contained.
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(iii) Examine these subgroups to find which are left

invariant by each A;.

We find that CG(a) has 10 subgroups of order 3,
and each is contained in a unique Sylow 3-subgroup of

G. Thus we have only to consider the following:

100 01 o

M=<<Oll> ,(e eze)>z
010 11 62
100 01 1

N = <<o 0 ez> . (1 1 e) >%
061 1621
10 o\ 011

0 = <(o 0 e} , (1 1 ez) >7
0 82 1 101

1 0 01 O

P = <(o 62 o) , (o 82 1 )>z
0 8% 8 16 o2
(1 00 /o 1 62

Q = <\o 8 0 ) i \62 0 0 }>z
0 6 62 1 620
{1 o\ 010

R = <\o B2 o} , (o 1 1) >7
01 o 111
10 O 0 621

S = <<o 02 e) i (1 0 92>>z
00 8 82 0 O
100 o 0 82

T = <(o ) 92) i (ez 8 1 )>Z
0 92 I R
10 O 011

U = <(o 02 1) , (1 0 1>>z
00 8 100
100 001

vV = <(o 5 0 ) , (1 0 o)>z
00 982 01O
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Inspection now reveals that £ leaves M, R, U and
V invariant and * leaves M and V invariant,
while all 10 subgroups are left invariant by a. Hence
A1 leaves 4 Sylow 3-subgroups of G invariant and
A, leaves 2 invariant.

Similarly, CG(b) contains 7 subgroups of order
3, and each is contained in a unique Sylow 3-subgroup

of G. Thus we need only consider the following:

101 100

B = <(o 1 o) ; (e 6 1 )>z
110 6 Q 82
010 61 1

C = <(1 10 , (o 62 e)>z
11 %/ 00 1
110 /ez 00

D = <(1 1 l) 7 1 0)>Z
100 0 8
111 5 0 0

E = <(1 0 o) , (0 62 o>>z
001 82 9 1
100 01 o

F = <(o 0 1) , (e 82 o )>z
Q11 11 82
00 1\ 6 82 0

H = <(0 1 1/ ; (o 1 0 )>z
101 06 62
011 100

r-<(101) . (000,)
01AQ 0 0 82

Now b necessarily leaves all of these subgroups
invariant and so does f, so A3 leaves 7 Sylow

3-subgroups of G invariant. On the other hand, h

leaves only B invariant, so A, leaves invariant a

unique Sylow 3-subgroup of G.
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The next lemma, which exhibits conditions under which
there must exist an A-invariant subgroup with a non-
trivial centralizer in a particular subgroup, is vital

to our later work.

LEMMA 1.14 Let G be a finite group with (|G|,6) =1

admitting a f.p.f. group of automorphisms A = S5,.
Let X be a minimal A-invariant gq-subgroup of G and
Y a minimal A-invariant p-subgroup of G with
[X,Y] = 1 for primes p and q dividing |G|. Let
K be a soluble minimal <A, X X Y>~-invariant {p.q}
subgroup of G.

Then 3 an A-invariant subgroup X, of X X Y

with CK(XO) # 1 under any of the following conditions:

(a) X x Y < CG(W) and p = d.
(b) [X x ¥, <7>] = X x Y and p = Q.
(c) X < CG(H) and Y = [Y, <m>] (in this case either

CK(X) #Z1 or CK(Y) #1).

iR
N

Since X is minimal, we have either X or

X=Z X 2 .
q q

Similarly Y

IR

2 or Z._ X Z_.
e 1Y P

q and X x Y < CG(n), the result follows

(a) If p
from [9], theorem 6.2.4, since any subgroup of
CG(F) is A-invariant.

(b) W.l.o.g., we may assume that CK(X) = CK(Y) =1

and that K is an elementary abelian t-group
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for some prime t # p.,d.
By [9], theorem 6.2.4, 3y €Y such that

CK(y) # 1.

We show that in this case yT =y ! (w.l.o.g.).
Suppose first that yT = vy.

2
Then K = CK(y) X CK(yﬂ) X CK(yTT ) as the latter

group is invariant under <A, X x Y>,

ygl, so that

Choose y, € Y such that yg
Y = <y, ¥Y,>-

Then <y,, T> is a dihedral group of auto-
morphisms of CK(y).

As y, acts f.p.f. an CK(y) (otherwise
CK(Y) #1), 3u € CK(y) such that u # 1 and

u' = u by [9], theorem 5.3.14(iii).

2
T . . .
But then uu um is non-trivial and is centralized
by A, a contradiction.

Suppose next that y has six conjugates under A.

2 2
_ i i T mT meT
Then K = CK(y)XCK(y )XCK(y ) xCp (¥ )XCK(Y )XCK(Y ) =
2 2
For Xx € CK(y), (xxﬂxTT )T 3 <x,x1r,x1T >,
2 2 A
But xx'"x" € CG(ﬂ), so (xxﬂxTT )T = (xx x ) 1,

a contradiction.

Hence we may assume w.l.o.g. that YT = Y_1

By a symmetric argument, 3Iv € X such that

CK(V) #1 and v' = v,

Then <v,T> is a dihedral group of automorphisms
of CK(Y), and as CG(T) n CK(y) = 1 by the

same argument as above, as in the proof of lemma

1.2(2) we must have [v, CK(y)] =1 i.e. CK(y) < CK(V).
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» . < —
Similarly CK(V) CK(y), so that CK(V) CK(y).
Now by [9], theorem 5.2.3, K = CK(y) x K
where <v,y> normalizes K, .
By [9], theorem 6.2.4, 3z € <v,y> such that
CKO(Z) # 1.

But by applying the same argument as above to z

(1t inverts <v,y> and hence z) we have

Celz) = Cply).

This contradiction completes the proof of (b) .
(c) If CK(W) # 1, X centralizes CK(N) by lemma

1.1(2).

So we may assume that CK(ﬂ) = L,

But then Y.K is nilpotent by lemma 1.2(4),

and hence Y centralizes K. O

We now demonstrate that (b) of lemma 1.14 is valid even

if K is not A-invariant, provided that CK(CY(T)) # 1.

LEMMA 1.15 Let Y be a p-group for some prime

p # 3 which is isomorphic to ZP X Zp x Zp X Zp and

which admits a f.p.f. group of automorphisms A =

If
wn

with CY(ﬂ) = 1. Suppose that Y acts on a p'-group
K with CK(CY(T)) # 1.
Then 2 an A-invariant subgroup Y, of Y with

C (Yy) # 1.

PROOF

Let CY(T) = <x,y>, so that Y = <x,y>X<xﬂ,yﬂ>

by lemma 1.3(2).
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Now <xﬂ,yﬂ> normalizes CK(CY(T)), so by [91],

theorem 6.2.4, 3Iu € <x",yﬂ> such that CK(u) n CK(CY(T)) #Z 1.

Let u=v"' for some vV € CY(T).
Then Y, 6 = <v,vﬂ> is A-invariant by lemma 1.2(5) and
C(Y,) # 1. |

The next lemma is used often in our later work.

LEMMA 1.16 Let P be a p-group, p a prime different

from 3, admitting a f.p.f. group of automorphisms

A =S, such that 1 # CP(ﬂ) < P.

Then CP(ﬂ) < CP(CP(W)).

PROOF
Let A = CP(W) and B = NP(A).
Then [[A,B],<m>] < [A,<n>] =1 and [[A,<7m>],B] = 1.
Thus [[B,<m>],Al =1 by [9], theorem 2.2.3.
But B = [B,<ﬁ>].CB(W) by [9]1, theorem 5.3.5
= [B,<m>].A .
Thus B < CP(A), so that A < CP(A) as required. O

The next two lemmas provide information about the
structure of a p-group admitting S, f.p.f. in
particular circumstances which arise in our later

discussions.

LEMMA 1.17 Let P be a p-group, p a prime different

from 3, admitting a f£.p.f. group of automorphisms
A=S3,. Suppose that Z(P) 1is cyclic and that P,

is a proper A-invariant subgroup of P with CP(PI) = P,.



32.

Suppose further that for every A-invariant subgroup

X#1 of P

1

with X n Z2(P) = 1 we have CP(X) . Pl.

Then either le(P1)/P1| =p and P, is a characteristic
. _ .2 .

subgroup of N, (P ) or lNP(P1)/P1|"P and if

IQI(Pl)l >p" P, is a characteristic subgroup of

NP(Pl).

PROOF

Let K = NP(PI)'
By lemma 1.16, P, is not centralized by T.
since 2(P) is cyclic, we must therefore have
o (z(P) < q (P).
If QI(Z(P)) < QI(Z(K)), we can choose an A-invariant
subgroup X of 2(K) such that X n z(p) = 1.
But then CP(X) =K #P,, contradicting the assumption.
Thus §£,(Z(P)) = Q,(2(K)).
Now Ql(Pl)Z(K)/Z(K) @ K/Z(K) so €,(P;).Z(K) N z,(K) > Z(K).
It follows that § (P)) n 2,(K) > 9,(z(K)) = @, (Z(P)).
Let X be a minimal A-invariant subgroup of

R (P) n z,(kK) with xnz(®) = 1.

Suppose first that X < CP(ﬁ), so that X = <x> = Zp.
Now for y € K, (x2(K))Y = x2(K) since x € z, (K)
i.e. x9 € xZ(K).
But \QI(Z(K))l = p, so x has at most p conjugates
in K.
Now |K : CK(x)l = |K : CK(X)I = |k : P,| Dby assumption,

so we must have |K/P | = p.
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Suppose P, 1is not a characteristic subgroup of K.
Then 3 a subgroup S # P, of K such that S = P,.
Clearly K = sP,, and since S and P, are self-
centralizing in K, 2Z(K) =8 0 P,.

But 2Z(K) is cyclic and hence is centralized by T,

and since |P,/2(K)| =p = |k/P, |, it follows from [9],

theorem 6.2.2, that K is centralized by T.

But then K is abelian, contradicting CP(PI) = P,.
Hence P, 1is a characteristic subgroup of K.
Suppose next that [X,<m>] = X, so that x| = p2.
For X € X, as above |K : CK(x)l = DPa
Thus |K : CK(X)I <p? i.e. |K/P|=p or p2.

Suppose that |K/P|=p and take y € K - P,.

Then for all x € X, x?V = xzi for some integer 1
where Q,(Z(P)) = <z>.

Now 3 an integer j such that (i,3) = 1(p)., so
(xj)y = xJz .

It follows that 3Ix,,X, € X such that xf = X2 and

¥ —
X, = X,Z.
-1
Thus X X, € CX(y).
Now yTr = yt for some t € P, since |K/Pll is cyclic.
_ -1, 7T _ =1y Ty -1, 7
Thus 1 = [y,.x,x, 1 = [yt, (x,x,7) "] = ly, (x,x, ) '].
But then <x1x;l,(x1x;1)ﬂ> = pi centralizes Yy, SO

that y € P;, a contradiction.

Hence |K/P | = p*.

If P is not a characteristic subgroup of KX, 3 a

1

subgroup S # P, of K with S = P,.
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Since P, and S are self-centralizing in K,

P1 ns = Z(PIS).
If P,S is A-invariant then Q (P, N B) = Q, (z(p))
since otherwise we can choose an A-invariant subgroup

X of 2Z(P,S) such that X, N 7z{(P) = 1 and

0

Cp(X,) = P,;S #P,.

Thus |2,(P, n 8)| = p.
Now |p, : P, ns|=1|p,s: P | <p’ so
o, () : 9,(P, n 8)| < p?.

Hence |9,(P,)| < p°.

If P,S is not A-invariant, we must have K = Pl.S.Sa

where o = T or T.
But then as above Z(K) =P, N S N s* and so
lp, = 2(K)| < p?.

1

Since Q,(z2(K)) = Q,(z(P)), this again yields
‘Ql(Pl)liépa.
It fqllows that if |Q,(P,)|=>p*, P, is a characteristic

L

subgroup of K. d

LEMMA 1.18 Let P be a p-group, p a prime different

from 3, admitting a f£.p.f. group of automorphisms A = S,

such that CP(H) = 1. If P - Z(P) contains an element

of order p then P contains an A-invariant subgroup

b 1Y b b
PROOF
Let Q (2(P)) = Z,.
1f |z,| > p? then [2,] > p* by lemma 1.3(2) since

m acts f.p.f. on Z,.



The result then follows.

Suppose |Z, |
Suppose that
Then (xZo)T
But (xTTZo)T

Thus

If [x,xT] =

i

1

= p? and suppose 3Ix € P - 2, of order
xx ' € Z, and x"x"" € z,-
(XZO)_l and (xﬂzo)T = x-“ZO.
x2) "™ = (x2,) " = (x2)"" = "z,
centralizes x_ﬂZO, a contradiction.
We may therefore assume w.l.o.g. that xx' £ Zge
, (xxT) " = XX .

Thus 3y € P - Z

Then <y,yﬂ>

by lemma 1.2(5) and W = 2z, x <y,y >

group.

. of order p such that yT

is an A-invariant group of order

If [x,xT] # 1, we have [x,xT] =z € Z(P)

has class 2 by the result of Frobenius in [2],

section 66.
Furthermore,
Thus <x,xT>

exponent p.

Y-

is the required

z has order p by [9], lemma 2.2.2.

is a non-abelian group of order

. . T T
Since T normalizes <x,x >, dy € <x,X >

Yy =Y by

Now 2 = X X

Thus y £ Z,

W=72, X% <y,y1T>

[

9], theorem 10.1.4.

==kl T T -T.—-1_T -1
X X X = 2 a'

XX so zZ =X
and it then follows as above th

is the required group.

since P

p® and
such that
at
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pP-

The next result is a simple application of Shult's

theorem which will be used extensively later.
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LEMMA 1.19 Let K be a finite soluble groupgadmitting

a £f.p.f. group of automorphisms A = S,. If 7 acts

f.p.f. on F(K) then

PROOF

By theorem 1.11

K = CK(TT) .F(K) -

K' is nilpotent, so K' < F(K).

Thus K/F(K) is abelian. Thus K/F(K) = CK/F(K)(ﬂ) X KO/F(K)

where K, /F(K) is an

f.p.f. by lemma 1.3(1).

A-invariant group on which 1w acts

It follows from [9], theorem 6.2.2, that

CK/F(K)(“)

on Ko'

N CK(n).F(K)/F(K) and that 1m acts f.p.f.

Hence K, is nilpotent by theorem 1.2(4) and since

K <4 K we have K, < F(K).

0

It follows that K = CK(W).F(K). a

Finally, we conclude this section with two

results which are well-known but which are not readily

found in the literature.

1.20 LEMMA If ©

A and B, and AB

is an automorphism of the groups

is a group with A N B = 1 then

CAB(O) = CA(O).CB(O).

PROOF

1

g(ab) = o(a)o(b) = ab iff a_‘o(a) = ba(b ).

As A and B are

bo(b~') € B.

Thus o(ab) = ab @ o(a) = a and o(b)

The result follows.

g Bl -1
g-invariant, a o(a) € A and

l
o
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1.21 LEMMA TLet R be a p-group and M a non-cyclic

abelian qg-group of automorphisms of R, where Pp
and g are distinct primes.

Then R = <C_(B)|M/B is cyclic>.

PROOF

A minor modification to the proof of [9], theorem
3.3.3 will suffice to prove the above result when R
is elementary abelian. The proof of the general result

is then analogous to that of [9], theorem 5.3.16.
0
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CHAPTER TWO

MAXIMAL V-INVARIANT {p,q}-GROUPS

Tn this chapter we present the results obtained
by Martineau and Glauberman on the maximal V-invariant
{p,q}-subgroups of a minimal counter-example to the
general conjecture, using the technique pioneered by
Martineau in [15]1. In order to maintain as much
generality as possible, we assume only that G 1is a
finite group admitting a group of automorphisms V

with the following properties:

(A) If H is a V-invariant subgroup of G then V
leaves invariant a unique Sylow p-subgroup of

H for all prime divisors of [H].

(B If H is a soluble v-invariant subgroup of G
then for all factorizations [H| = mn with
(m,n) =1, V leaves invariant a unique Hall

m-subgroup of H.

(c) If H is a soluble v-invariant subgroup of G
then for all prime divisors p of |H],
H = Op,(H).CH(Z(S)).NH(J(S)) where S 1is a

Sylow p-subgroup of H.

It is well known that (A) and (B) hold when

V is a f.p.f. group of automorphisms of G with
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(|G| ,|v]) =1, and (C) holds in this case by [61,
corollary 2. By theorem 1.6 and lemmas 1.7 and 1.9,
(a), (B) and (C) hold also when V = S; acts f.p.f.

on G and (|G|,3) = 1. Furthermore, Ward ([20])

has investigated hypotheses other than Vv acting f.p.f.
on G which will enable him to deduce the results of
this section, although he omitted mention of (B).

We adopt the notation that if L is a V-invariant
soluble group and ¢ a set of primes dividing |L|,
then L, denotes the V-invariant Hall o-subgroup of
L. We first prove some preliminary results from the
hypotheses above which will be fundamental in our

later work.

2.1 LEMMA Suppose G and V are as above. Then

we have the following:

(i) If H is a V-invariant subgroup of G, then
for all prime divisors p of |H|, every
v-invariant p-subgroup of H 1is contained in

the unique V-invariant Sylow p-subgroup of H.

(ii) ITf H 1is a V-invariant subgroup of G, then
Hp =34 NP where P is the unique V-invariant

Sylow p-subgroup of G.

(iii) If H 1is a V-invariant soluble subgroup of G,
then for all factorizations |H| = mn with

(m,n) = 1, every V-invariant subgroup of H of
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order dividing m is contained in the unique

V-invariant Hall m-subgroup of H.

(iv) If L and M are v-invariant subgroups of G

then (LN M) =L N M.
P p p

(v) A vV-invariant subgroup H of G is soluble iff
the V-invariant Sylow subgroups of H are pair-

wise permutable.

PROOF

(i) (The proof given here is taken from [9], theorem
6.2.2 but is reproduced for the sake of completeness).
Let T be a V-invariant p-subgroup of H, and
let P be a maximal V-invariant p-subgroup of
H containing T.

Then NH(P) is V-invariant, and hence contains a
unique Sylow p-subgroup R by (A).

But P < R since P J NH(P), so P =R by

our maximal choice of P.

Mow certainly P is contained in a Sylow p-subgroup
Q of H, and if P CQ then P C NQ(P). Thus

P=0Q is a Sylow p-subgroup of H.

(ii) Since Hp is a V-invariant p-subgroup of G, by

(i) H_ < P. Thus H <HNP, so H_ =HNP.
P b p

(iii) Let T Dbe a V-invariant subgroup of H with
|T||m, and let M be the V-invariant Hall

m-subgroup of H.
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If p is any prime dividing |T|, M contains

a unique V-invariant Sylow p-subgroup by (A),

and this is clearly the V-invariant Sylow
p-subgroup P of H. By (ii), T_=TNP <P <M

P
It follows that T < M.

(iv) Since (L N M)p is a V-invariant p-subgroup of
L LM < L b i).
PR )p - (i)
Similarly (L N M)P < Mp, so that
(LN M) <L _0OM.
p b p
But now Lp N Mp is a V-invariant p-subgroup of
L NM so L "M < (LM b i).
' p p ( )p y (i)

Hence (LN M) =L_ N M.
b - P p

(v) Suppose H 1is soluble, and let P and Q be
respectively the V-invariant Sylow p- and
g-subgroups of H of order pu,qs.

By (B), H contains a unique V-invariant Hall
pan—subgroup S, and by (iii) we have P,Q < S.
It follows ‘that S = PQ = QP, so that P and Q
permute.

The reverse implication follows from P. Hall's

characterization of soluble groups ([11]).

For the remainder of this section, we make the

following additional assumptions:

(D) (1) G contains no non-trivial normal V-invariant

subgroups.
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(ii) Every proper V-invariant subgroup of G

is soluble.

These are clearly the hypotheses which would be

satisfied by a minimal counter-example to a conjecture
of solubility of a group G admitting a group of
automorphisms V such that (A), (B) and (C) are satisfied.
In particular, we will most commonly use (D) to deduce
that if H is a V-invariant proper subgroup of G then
NG(H) is soluble.

Now let p and g be any two primes dividing
|G|, and let P and Q be the respective V-invariant
Sylow subgroups of G. If C and D are V-invariant
subgroups of P which are permutable with Q, then
so is <C,D>. Hence we can define X to be the largest
V-invariant subgroup of P which is permutable with Q,
and similarly define Y to be the largest V-invariant
subgroup of Q to be permutable with P.
Then PY and QX are maximal V-invariant {p,ql-subgroups
of G, and PY = QX iff Q=Y and P = X.
We now define K to be the set of all maximal V-invariant
{p,q}-subgroups of G, and define =K - {PY,QX!.
Our aim is to derive information about the elements of
¥, and to a lesser extent K, and to utilize these results
in Chapter 3 to prove that |¥| < 1 when V =8S; and

(lGll3) = 1.
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We begin with a result on the structure of certain
elements of K, which is a consequence of our

hypothesis (C).

2.2 LEMMA (Martineau, [15]). Suppose 2(Q) <H € K.

Then H N P = OP(H).(H N X).

Similarly the symmetric statement holds.

PROOF

Suppose the lemma is false, and let Qi1 = Q N H,
the V-invariant Sylow g-subgroup of H.

By (C), H = 0_(H)C,(Z(Q:1))N,(I(01)).

Hence H N P = Op(H).C (Z(Ql))'Nan(J(Ql))'

HNP
Now Z(Q) <HNNQ=01<Q, so Z(Q) <1z(Q1).

Thus CG(Z(QI)) < CG(Z(Q))-
By hypothesis CG(Z(Q)) is soluble, and as can(Z(Ql))

is a V-invariant p-subgroup of CG(Z(Q)) it is contained
in C_(Z .
in C(2(Q),
< .
But Q CG(Z(Q))p,q, so it follows that Can(Z(Ql))
is contained in a V-invariant p-subgroup of G which
is permutable with Q.
Thus Can(Z(Ql)) < X.
Since we are assuming the lemma to be false, we therefore
have N, (J(Q:)) £ X.
Now choose Q* < Q maximal subject to the following:
o* is V-invariant, z(Q) < Q* and N_(J(Q*)) ¥ X.
NG(J(Q)) is soluble, and clearly NG(J(Q))p’q = NP(J(Q)).Q

Thus NP(J(Q)) < X, so that Q* C Q.



44,

Let P* and Q Dbe respectively the V-invariant Sylow
p- and g-subgroups of NG(J(Q*)), and let K = P*Q.

By (€), K = 0,(K).C/(2(3)).Ny(J(Q).

Thus P* = K N P* = 0_(K).Cp, (2(Q)) Ny, (3(D).
Now Z(Q) < Q* < Q, so 2Z(Q) < z(Q*) < J(Q*) < Oq(K)-
It follows that OD(K) centralizes Z(Q).
Thus OP(K) < CG(Z(Q)), so that as above we get

<
OP(K) X.
Now Q* < N_(J(Q*)), so Q* < Q.
Therefore Z(Q) < Q* <0 <0Q, so 2(Q) < z(Q).

Hence C,,(2(Q)) < C,,(2(Q)) < C,(2(Q)).

Cp
so €., (z2(Q) < X.
Now Q* < Q, so Q* < NQ(Q*).
Thus Q* < N,(Q*) < Ny (J(Q%), so Q* < Q.
Then we have Z(Q) <0, Q is V-invariant and Q* < Q,
so by the maximality of Q%, NP(J(Q)) < X.
Since P* < P, this gives NP*(J(Q)) < X, and hence

P* < X,

This contradiction completes the proof. O

Before proceeding to the next main result, we
require the following lemma, which has been attributed

to Bender:

2.3 LEMMA Let t be a prime and K a t-constrained

group. If T 1is a t-subgroup of K then

O+ (M (T)) < O, (K).
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PROOF

We proceed by induction on |K].
If Ot,(K) + 1 then by induction Ot,(NR(@)) < Ot,(i)
where K = K/Ot,(K) and T is the image of T in K.
But O ,(K) =1, so 0., (Ng(T)) = 1.
Thus Ot'(NK(T)) < Ot,(K) as required.
Hence we may assume that Ot,(K) = 1, so that
Ot (K) # 1 by the definition of t-constraint.
Now Ot,(NK(T)) x T is a group of automorphisms of

0,(K), and [0, (N (T)),C (T)] < 0, (N (T) N O, (K)

0, (X)
Thus by [9], theorem 5.3.4, [Ot(K),Ot.(NK(T))] = 1.
But K 1is t-constrained, so CK(Ot(K)) < Ot(K)-

Hence Ot,(NK(T)) = 1 as required. O

We now prove a sufficient condition for two
members of K to be equal. Surprisingly, we need

only a condition on the Fitting subgroups.

2.4 LEMMA (Martineau, [13]). Let H € K and

suppose that M is a V-invariant subgroup of F(H)

with OP(M) + 1 and Oq(M) £ 1. Then if M < K € K,

We show first that the lamma holds for 2z = Z(F(H))
in place of M.
Suppose that ZP and Zq are non-trivial.

As NG(ZP) is V-invariant and soluble and contains H,
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N_(Z = H.
G( P)Prq

H 7 < 0 (N.(2Z S
ence q q( G( p)p'q)

Since N (2 ) < N _(z we have Z < O (N_(Z.)).
((2) S N(Z) o S Og (N (Z)))

9
Now K 1is soluble and hence p-constrained by [91,
theorem 6.3.3.
H by 1 2.3 abo 0 (N _(Z < 0 _(X).

ence by lemma above, q( gt p)) q( )
Thus 2Z < O _(K}.

q g
But then O_(K) < C_(Z < H.
P( ) G( q)p,q_

Similarly Oq(K) < H, so F(X) < H.
Now Oq(K) ¥ 1 since Zq < Oq(K), and similarly
0] :

p(K) £ 1
As F(K) < H, certainly Z(F(K)) <H so by the same
argument as above with H and K interchanged we
obtain F(H) < K.

Now OP(H) = OP(NG(Oq(H)) ), so OP(H) < OP(NK(Oq(H))).

p.,q
Applying lemma 2.3 again, this gives OP(H) < OP(K).
Similarly Oq(H) < Oq(K), so F(H) < F(K).

Now by interchanging H and XK and applying the same
argument we get F(K) < F(H), so that F(H) = F(X).
But now H = NG(F(H))p’q = 1_\IG(}:"(K))p'q = K, so the
lemma holds for the particular case M

Z(F(H)) .
Now let M be an arbitrary V-invariant subgroup of
F(H) with OP(M) # 1 and Oq(M) + 1.
Since CG(Mq) is V-invariant and soluble, and

< <
Z(F(H)) CG(Mq), we have CG(Mq)p, H.

q

T™h M € 0 (C.(M .
us P P( G( q)P:q)
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Now C,.(M ) < C.(M
x (Mg) LR

By lemma 2.3 again, this gives MP < OP(K).

so Mp < OP(CK(Mq)) < OP(NK(Mq)).

P P./Q
Similarly OP(K) < H, so F(K) < H.

Thus Oq(K) < CG(M ) < H since Z(F(H)) < CG(MP).

Now OP(K) $# 1 since Mp < OP(K), and similarly
o_(K) # 1.

q( )
Thus we can apply the first part of the proof to K

to derive K = H and we are done. O

We now prove a result about the Fitting subgroups

of members of ¥.

2.5 LEMMA (Martineau, [15]). Suppose H € I,

Then Op(H) + 1 and Oq(H) + 1.

PROOF

Note that since H 1is soluble, we must have at
least one of OP(H)' Oq(H) non-trivial (see [91],
theorem 2.4.1).

W.l.0.9., suppose OP(H) = 1., Then Oq(H) #_l, and
since NG(Oq(H)) is V-invariant and soluble, we have
7(Q) < N (O_(H), _ = H.

Thus by lemma 2.2 H N P =H N X, so that H < QX,

a contradiction. O

Using lemma 2.2, we can now say a great deal about

the structure of elements of ¥.

2.6 LEMMA (Martineau, [15]1). If H € ¥, then

z(P) <H, 2(Q) <H and H=F(H.HONX).(HNO Y).
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PROOF

From lemma 2.5 we have Oq(H) + 1. Applying the
same argument as in the proof of that lemma,

< N = .
Z(Q) NG(Oq(H))p’q H. Similarly 2(P) < H.
Hence by lemma 2.2 we have H N P = OP(H).(H N X) and
HnNnQ = Oq(H).(H NnY).

So H (HNP)Y.(HN Q)

O (H).0 (H).(H n X).(H N Y)
p q

F(H).(H N X).(HNY). o

2.7 LEMMA (Martineau, [15]). If H € &, then

X NFMHE =YnFH =1.

PROOF

Suppose X N OP(H) £ 1.

AN

Then M = (X N Op(H)).Oq(H) < XQ and M < F(H) H.
Clearly OP(M) and Oq(M) are non-trivial by lemma 2.5.

So by lemma 2.4 we have XQ =H, a contradiction. a

We can now give a refinement of lemma 2.4 for

elements of .

2.8 LEMMA (Martineau [151). If H € X and M is

a non-trivial V-invariant subgroup of F(H) with

M< KE€E WX, then K = H.

PROQF

If pqgl|M| then OP(M), Oq(M) are non-trivial
since M is nilpotent, so we can apply lemma 2.4 to

deduce that H = K.
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So w.l.0.g. assume that M is a g-group.

Let Qi1 = [Z(P) M1,

By lemma 2.6, 7(P) <H so Z(P) normalizes Oq(H).
But M < Oq(H), so Q1 < Oq(H) and hence is a g-group.
also z(P) < K by lemma 2.6, so Z(P) < Z(P N K}.

Now by [9], theorem 6.3.3, (P N K) < Oq,p(K), so

zZ(P) < Oq,p(K).

But M < K, so Qi1 = [z(P) ,M] < Oq,p(K)'

As 0O; is a g-group, this implies that 1 < Oq(K).
Suppose Qi1 = 1. Then M < CG(Z(P)p’q < PY, so M< Y.
But then Y N Oq(H) £ 1, contradicting lemma 2.7.

Thus Q1 # 1. Let M* = CF(H)(Q1)°

Then M* is a V-invariant subgroup of F(H) with
Oq(M*) +1 (as 2(Q1) *# 1) and OP(M*) = OP(H) £ 1.
But M* < CG(Ql)p,q so by lemma 2.4, CG(Qx)P,q < H.

As Q1 < Oq(K), this implies OP(K) < H.

Thus N = OP(K).Q1 is a nilpotent subgroup of H N F(K),

so that by lemma 2.4, H = K. a

The results listed thus far, and in particular
lemma 2.8, are sufficient to obtain our desired result
in the next section viz. to show that || < 1 for a
minimal counter-example to the special case of the
conjecture when V = S3 acts f.p.f. on G and
(lc|,3) = 1. However, it is possible to gain

further information about the structure of
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PY and OX and their relationship with elements of
#. Most of the results listed below are due to
Glauberman and Martineau ([8]). We begin by showing
that the factorization of lemma 2.2 holds for PY

and OX (this does not follow from lemma 2.2 as we do

not have 2(Q) <Y and 2Z(P) < X).

2.9 LEMMA (Glauberman and Martineau, [8]).

P = OP(PY).X and Q = Oq(QX).Y.

PROOF

If O (PY) *# 1, Z < 0O (PY PY.
LPY) # 1, 2(Q) < NG (0, (BY))
Then by lemma 2.2, P = OP(PY).X.
Thus we may assume that Oq(PY) = 1.
Then OP(PY) +# 1 and P = OP(PY).CP(Z(Y)).NP(J(Y))
by hypothesis (C).
Now NG(Z(Y))P’q < H for some H € K, and as
Y < N_(Y) < Z(Y H # PY.
o () S N (Z(D) o
If H = QX, then NP(Z(Y)) < X.
Suppose H # QX so that H e ¥ and 2Z(Q) < H. by
lemma 2.6.
N < < QX.
ow Q< CL(z(Q), o, S0 Colz(@), ;<0
In particular CP(Z(Q)) < X.

Since X N OP(H) =1 by lemma 2.7, it follows that

Cy () (2(Q) = 1.

P
Thus OP(H) o

C p(H)(Z(Q)).[OP(H),Z(Q)] by [91, theorem

5.3.5.
i.e. OP(H)

[OP(H),Z(Q)].
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Let Y; = Z(Q)Oq(H) n Y.
By lemma 2.2, Q N H = Oq(H).(H ny)= Oq(H).Y as
Y < H.
Hence Z(Q).Oq(H) = Y1Oq(H).
Now [Y:,Y] < [Z(Q)Oq(H),Y] < [Oq(H),Y] < Oq(H).
Also [Y,,Y¥Y] <Y and since Y N Oq(H) =i "1 ; [Y:,¥Y] =
i.e. Y < Z(Y).
But 2Z(Y) < Op’q(PY) by [9], theorem 6.3.3, so that

Y €O PY).
! qu( )

Thus OP(H) [OP(H),Z(Q)] B [Op(H),Z(Q)Oq(H)]

[0 (H) ,¥,0, (1]

[o,(H),¥,] < [PY,¥,] 0 P < O_(PY).
Hence NP(Z(Y)) <SHNP= OP(H).(H N X) < OP(PY).X.
A similar argument yields NP(J(Y)) < OP(PY).X, SO
P = OP(PY).X as required.

The other result follows by symmetry. (]
An easy consequence of lemma 2.9 is the following:

2.10 COROLLARY If P and Q do not permute,

OP(PY) + 1 and Oq(QX) + 1.

The next lemma highlights the difference between

PY, QX and elements of i (refer to lemma 2.5).

2.11 LEMMA If P and Q do not permute, at least

one of Oq(PY), OP(QX) is trivial.

PROOQF

Suppose that both Oq(PY) and Op(QX) are

non-trivial.
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Then Z(P) < NG(OP(QX))p,q = QX, so 2(P) s X.

But OP(PY) £ 1 by corollary 2.10, so OP(PY) N Z(P) * 1.
Thus T = OP(PY) N X *+ 1.

Then TO(JPY) < F(PY) N QX, so that DPY = QX by

lemma 2.4.

This contradiction completes the proof. ad

The next lemma is a special result which will be

used to find a characteristic property of PY and QX.

2.12 LEMMA (Glauberman and Martineau, 81).
Let H € K and suppose there exists a vV-invariant
subgroup W of HN OP(PY) such that W £ X and

XY normalizes W. Then XY < H.

PROOF

Since W € X, H # QOX.
If H = PY the result is trivial, so we may suppose
that H € X.
Let H* = <X,Y,Oq(H)>. Then H* < 0X and WH* = H*W.
So H*W is a V-invariant {p,q}-subgroup of G.
Therefore H*W < K for some K € K.
As W £ X and OcﬁH) €Y, K% PY or QX. Thus K € .
But then Oq(H) <K so H =K by lemma 2.8.

Hence XY < H, as required. g

We can now prove that PY is the only member of

K which contains OP(PY), and similarly for QX.
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2.13 LEMMA (Glauberman and Martineau, [81).

Suppose that P and Q do not permute. Then

(1) If H € K contains OP(PY) then H PY.

(2) If H € K contains Oq(QX) then H OX.

PROOF

(1) Supvose OP(PY) < H for some H € K.
By lemma 2.9, OP(PY) g€ X.
Since OP(PY) a4 PY, XY normalizes Op(PY).
So by lemma 2.12 we have XY < H.
Hence XOP(PY) = P < H, so that H = PY.

(2) Follows by symmetry. ()

2.14 COROLLARY (Glauberman and Martineau, 81).

Let H € K - {PY}.

Then OP(H) N Z(P) OP(H) N CP(OP(PY))

OP(H) n Z(OP(PY)) =1,

and similarly for the symmetric statement.

PROOF

Let D = OP(H) N CP(OP(PY)). It is sufficient to
show that D = 1. Suppose D # 1.
Now Oq(H) +1 if H e K by lemma 2.5 or if H = QX
by corollary 2.10.

As DOq(H) < NG(D)P H is the unique maximal

q'
V-invariant {p,g}-subgroup of G containing NG(D)p s

by lemma 2.4.

< < ) < q =
But OP(PY) CP(D) ‘\IG(D)p,q H, so H PY by
lemma 2.13.

This contradiction completes the proof. O
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The next two lemmas give some information about
the relationship between the centres of Op(PY) and

Oq(QX), and members of X,

2.15 LEMMA (Glauberman and Martineau, ([81]).

Suppose H € # and let 2Z, = Z(OP(PY)) and ZQ = Z(Oq(QX)).
Then ZP NH*1, ZQ NH 4+ 1 and ZP N H centralizes

ZQ N H.

PROOF

As Z_ 4P, ZP N z(pP) +# 1.

Thus 2z, N H #* 1 by lemma 2.6. Similarly ZQ NH + 1.

Since ZQ is normalized by Q and X, ZQ N H 1is

normalized by Q@ " H and H N X.
Now by lemma 2.6, H = OP(H).(H N X).(HNQ), so

OP(H).(ZQ N H) < H.

Similarly Oq(H).(Z N H) < H.

P

Let I = OP(H).(Z N H) N Oq(H).(ZP N H).

Q
Then I 1is V-invariant, so by lemma 2.1 (iv),

Ip = OP(H) N (ZP N H) = 1 by corollary 2.1l4.

Similarly Iq =1, so I =1.

< =
Thus [OP(H).(ZQ N H), Oq(H).(ZP N H) 1 I 1, so
that in particular [ZQ N H, ZP N H] = 1 as required.

a

2.16 LEMMA (Glauberman and Martineau, [8]).

Suppose H € X and let 1Z Z be defined as in the

P’ “Q
previous lemma. Then we have the following:

N N
(1) ZP H < X, ZQ H < Y.



55.

(2) OP(H) = [Op(H), ZQ N H] and Oq(H) = [Oq(H), ZP N H].

(3) OP(H) < OP(PY) and Oq(H) < Oq(QX).

PROOF

(L) As in the proof of the preceding lemma, ZP N z(P)
and ZQ N %2(Q) are non-trivial. Since
<
P CG(ZP N Z(P))p,q' we must have
< N < Y.
CG(ZPOZ(P))p'q PY, so that cQ(zP z(P)) Y
Now ZP N z2(P) < ZP N H, so by lemma 2.15 we have

7 N H < N < Y.
0 CQ(ZP Z(P)) Y

Similarly Z, N H < X.

(2) Since ZP N z(P) < H, we have by [9], theorem
5.3.5 that

Oq(H) = C (ZP N Z(P)).[Oq(H),ZP nz(P)].

0o (H)
But CQ(ZPqﬁ Z(P) <Y, and since Y N Oq(H) = 1
by lemma 2.7, we have
Oq(H) = [Oq(H),ZP N zZ(p)] = [Oq(H),ZP N H].
The other result follows by symmetry.

(3) By (1), ZP Nn zZ(P) < X, so that ZP N Z(P) < Z2(X).
But Z(X) <O p(Qx) by [9], theorem 6.3.3, so

qr
that ZP N zZ(P) < O (0X) .
q-p
H I e N < e )
ence Oq(d) [Oq(H),ZP Z(P)] [oX q’p(QX)]
< .
OQ:P(QX)
Tt follows that Oq(H) < Oq(QX).

By symmetry we also have OP(H) < Op(PY). a

We show next that the result of lemma 2.16(3) can

be extended to elements of K.
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2.17 LEMMA (Glauberman and Martineau, 81).

; S . < Y d O () <O X) .
Let H K Then OP(H) OP(P ) an q( ) q(Q )

PROOF

We show OP(H) < OP(PY); the other result follows
by symmetry. |
If H = PY the result is trivial, and by lemma 2.16(3)
it holds if H € X.

Hence we may assume that H = 0OX.

As OP(H) a4 QX, XY normalizes OP(H).

But by lemma 2.9 we have P = OP(PY).X, so that
PY = OP(PY)XY.

It follows that OP(PY).OP(H) 4 PY, so
OP(PY).OP(H) < Op(PY),

In particular OP(H) < OP(PY). a

Our final result for this section shows that we
can deduce a certain amount of information about PY

and OX when ¥ is non-empty.

2.18 LEMMA (Glauberman and Martineau, [81).

Suppose ¥ # ¢ and let Zp = Z(OP(PY)) and

Z
Q

Z(Oq(QX)). Then

(1) OP(QX) = Oq(PY) = 1.

(2 zZ(p) <ZP<X and 2(Q) < z_ < Y.

PROQF

(1) Suppose Oq(PY) £ 1.

By corollary 2.10, OP(PY) £ 1.
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Since OP(H) < Op(PY) by lemma 2.16(3), Oq(PY)
centralizes OP(H).

. i x 0 (PY
Thus H NG(Op(H))p,q contains OP(H) q( ),

so by lemma 2.4 we have H = PY, a contradiction.

Hence Oq(PY) 1, and similarly OP(QX) = 1.

Since Oq(PY) 1, by [9], theorem 6.3.3,
Z(P) < OP(PY).

Thus Z(P) < Z(OP(PY)) = ZP'
Now OP(H) < OP(PY) by lemma 2.16(3), so 2
centralizes OP(H).
Hence Z, < NG(Op(H))p,q = H.

But by lemma 2.16(1), ZP = ZP N H< X, so the

result follows.

Similarly Z(Q) < ZQ < Y. a
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CHAPTER THREE

INFORMATION ABOUT A COUNTER-EXAMPLE

In this section we consider the following
theorem (we are justified in calling this a theorem
rather than a conjecture by corollary 7.3 of [7],

mentioned in the introduction) :

THEOREM I

il
'—l

Let G be a finite group with (|G[,3)
admitting a f£.p.f. group of automorphisms A = 53.

Then G is soluble.

Now let G be a minimal counter—-example to the
theorem. As was indicated in chapter two, theorem 1.6
and lemmas 1.7 and 1.9 imply that the hypotheses (A),
(B) and (C) of that section hold, and the hypotheses
of (D) are certainly satisfied for our minimal counter-
example. By lemma 2.l(§5, there exist primes p and
g dividing |G| such that the corresponding
A-invariant Sylow subgroups P and Q are not
permutable. Using the notation and results of chapter

two, we intend in this chapter to show that x| < 1.

We begin with some relatively easy results.

3.1 LEMMA For H € ¥, NO (H)(Q N H =1=N H)(P N H).

P 04 (

PROOF

Suppose Nop(H)(Q N H) *# 1.
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As NG(Q N H) is A-invariant and soluble,

N N H < L for some L € K.
G(Q )p'q

Since OP(H) NL %1 and (OP(H) N L).Oq(H) < F(H) N L,
we have H = L by lemma 2.4.
But NQ(Q NH) >QNH , a contradiction.

Thus Nop(H)(Q N HY = 1.
Similarly Noq(H)(P N HY = 1. O

3.2 COROLLARY If HE X, cH(n) £ 1.

PROQF

If CH(W) =1, H is nilpotent by lemma 1.2(4),
so that OP(H) normalizes Q N H, contradicting

the lemma. O

3.3 COROLLARY If He€ ¥ and CF(H)(“) =1,

CXnH(ﬂ) + 1 and CYnH(ﬂ) + 1.

PROOF

Suppose C (m) = 1.

XNH
Then CXmH.op(H)(ﬂ) =1 by lemma 1.20, so that

PN H.Oq(H) is nilpotent by lemmas 2.2,1.20 and
1.2(4).

Thus Oq(H) normalizes P N H, again contradicting

the lemma.

Hence C, . (m)#1 and similarly Cynglm #* 1. O

To prove that |¥| < 1, it is necessary to first

examine those elements of ¥ for which CF(H)(W) = "
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and to find a small bound for the number of these.
Accordingly, we define ¥; = {H € MICF(H)(ﬂ) = 1}.

We will prove that |¥#;| < 1, but for the sake of
clarity the argument will be carried out in a sequence
of four lemmas. We first dispose of the case where

p or q is even:

3.4 LEMMA If p or g 1is even, ¥ = ¢.

PROOF

If H € ¥, anH(ﬂ) £ 1 and Cynﬁ(ﬂ) +# 1 by
corollary 3.3.
Tt then follows from lemma 1.1(2) that both p and

g are odd. O

Thus we may assume for the remainder of the
argument that p,qg are odd and w.l.0.g. p < q.

Then we have:

3.5 LEMMA |cop(H)(r)| >p VH E ¥
PROOF
Let Ti1 = Cy (g, (7).
p
Then Ti1 # 1 by lemma 1.2(2). Suppose |Ti| = p.

As T must centralize some element of Q1(Z(OP(H)))
by lemma 1.2(3), it follows that Ti < Ql(Z(OP(H))).
But then A is a regular group of automorphisms of
Op(H)/Ql(Z(Op(H))), so that Op(H) = Ql(Z(Op(H)))

is elementary abelian (by lemma 1.2(3) again).
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Now by lemma 1.3(2), OP(H) has order p?.

But H N Y is a g-group of automorphisms of OP(H),
and as p < q it follows that H N Y centralizes
o _(H).

p( )
But then OP(H) normalizes H N Y.Oq(H) =HNAQ,
contradicting lemma 3.1.

Thus |Ti1| > p as required. O

We show next that every element of I, contains

a subgroup of P which has a certain property.

3.6 LEMMA N ¥, contains an A-invariant subgroup

M of P with either CM(N) =M and M elementary

abelian of order at least p? or CM(W) £ M.

PROOF

et 1 C %, C Z, C ... €CP be the upper central
series of P, and let H € #1 Dbe arbitrary.

We show first that if Zj is centralized by 1w then

Since Zj char P, ZjOP(H) is an A-invariant p-group.
Then by lemma 1.4(2), Zj normalizes OP(H)°
Thus 2, < N_(O_(H = H
J G( P( ))qu
Now let i be the smallest integer such that Z. is

1
not centralized by T.
If i =1, Z(P) 1is not centralized by m and
7(P) < H by lemma 2.6.

Thus we may assume 1 > 1.
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Hence Z.,_, is centralized by m and Z,_; <H by

the above comment.

Since Zi—l is abelian by lemma 1.1(2), we may assume

that Q1(Zi_l) is elementary abelian of order at most

p?. Suppose first that [9.(Z. ;)| = p*.

Then we can write Q;(Zi_ ) = <v> X <w> where V € 72(P).

1
By lemma 1.2(2), C, (t) # 1 and hence
i

c, (m cTI= {x € Zile = x '} by lemma 1.5.

1
Choose t € I - CZi(ﬂ).
Then t normalizes Qi(Z;_;), SO t lwt € Q1 (2;_,)

and hence is inverted by Tt by lemma 1.1(2).

i.e. e ltT = 2 e

Thus t2%, and hence t, centralizes w.

) .

So t centralizes (2, ,

But now Ql(Zi_l) is a non-cyclic abelian group of

automorphisms of O (H), so O (H) = I C (x)
' . 4 x€Qy (Zj. 1) Oq (H)

by [9], theorem 5.3.16.

Thus 3y € Q1 (Z;_ ) such that C (y) # 1.

1 04 (H)

i.e. C Nn o _(H) # L.
L-e G(Y)Prq q( )
Since y € HN P and Z(H N P) N OP(H) ¥ 1,
c N o _(H) *= 1.
G(Y)P:q P( )
So by lemma 2.4 C < H.
o. by lemma p G(y)P’q
In particular, t € H.

Now if M is the smallest A-invariant subgroup of P

containing t then clearly CM(ﬂ) + M and M < H.
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Thus we may assume that |®:(Z;_ ;)| =p i.e. Z; ,
is cyclic.

Let Z;_; = <z>. Since 32Z;

1 and OP(H) normalize

-1

each other and intersect trivially (since CO (H)(ﬂ) = i

P
by definition), they must centralize each other.

. . _ 2
As Zi/zi-l is abelian, Zi/zi-l CZ () S/Zi—l

where S/Zi

i/Zi-1

is A-invariant and C (r) = 1 by

-1
lemma 1.3(1).

S/Z;. .1

By [9]1, theorem 6.2.2(iv), CZMZi.l (m) = Czi(ﬂ)/zi_l,
so that S/Zi-l is non-trivial and by the same theorem
applied to 8/Z;_; we have Cg(m =12, ,-

By [9], theorem 10.4.1(i), S = CS(T).I where
IT={xeslx"=x"}.

Now CS(T) + 1 by lemma 1.2(2), so 2, , = Cs(ﬂ) cI

by lemma 1.5.

Choose s &€ I - Z, :
i-1
Then sZi_l * Zi—l'

that tZ; _

so we can choose t € <s> such

1 has order p.

Clearly t €I - C, (m).

1
Since t normalizes Zi- = <z>, t_lzt is inverted
by T.
i.e. tz et = T2 e

Thus t2, and hence +t, centralizes z.

Now define W = {y-lyt|y € T,"} where T; = S, (H)(T).
4
As t € Zi' y_lyt = zX for some k such that
1<k < |z| = p* say.
t k

i.e. Yy =Yz .
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Now tF € z, and y € O_(H) so yt =vy.
i-1 P
p
t k
y=y =yz° .
o o-1
Hence p°”|kp, so that k = mp for 1L<m<op

It follows that [w]| < p.

But by lemma 3.5, |7y"| > p, so 3u,v € Ty such that

u % v and

u—ﬂ(uﬂ)t - V—W(Vﬂ)t
(va™H)™ = [(vuH ™"
i.e. t centralizes (Vu_l)1T = x" say.
Thus t° = '  centralizes x'' = xTTTZ
= x1T2 as x = Vu"1 € T;.
Hence t centralizes x“z.
But x € OP(H), so xTTZ = x 'x™™ by [9], theorem
10.1.1.
Thus R = <x“,xﬂ2> = <x,x“> is an A-invariant abelian
subgroup of Op(H) (by lemma 1.2(5)) which is centralized
by t.

As C_(R > RO_(H by lemma 2.4 we have
G( )p’q q( )y Yy
C.(R < H.
'G( )Prq
Hence t € H. Again take M to be the smallest
A-invariant subgroup of P containing t, soO that

M <H and CM(W) + M.

As H € X, was arbitrary, the result follows. O
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With the aid of this lemma, we can now complete

the proof of our first main result:

3.7 LEMMA |7, | < 1.

PROOQF

Suppose first that 3H € ¥, with R =MDnN OP(H) £ 1.

As N, (R) > ROq(H); by lemma 2.4 we have

P,q

N _. (R < H.
G( )Prq

Now if K € ¥;,, M<K n P and since Z(K N PpP) N OP(K) + 1,

COp (K) (M) += 1.

Thus OP(K) N NG(R)p - + 1 so by lemma 2.8 we have H = K.

Hence |#;| = 1.

Thus we may assume that M N F(H) =1 VHE Hy

Now by theorem 1.11, H' is nilpotent, so that

H' < F(H).

Thus H/F(H), and hence MF (H) /F (H), is abelian.
But MF(H)/F(H) = M/M N F(H =M so M is abelian.
Suppose first that CM(N) ¥ M.

Since M 1is abelian, M = CM(ﬂ) x N where N is

A-invariant and CN(W) =1 by lemma 1.3(1).
Then NOq(H) is an A-invariant group on which © acts
f.p.£.

Thus NOq(H) is nilpotent by lemma 1.2(4), soO that
Oq(H) centralizes N.
But N < HNP and Z(H N P) N OP(H) £+ 1, so

C (N) # 1.

Op(H)
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Hence by lemma 2.4, H 1is the unique maximal A-invariant

{p,q}-subgroup of G containing CG(N)P’q.
It follows that |¥;| < 1.

Now suppose that 1w centralizes M and M is elementary

abelian of order at least p°.

Let H,K € ¥;. Then M 1is a non-cyclic abelian group

of automorphisms of Oq(H) and Oq(K), sO

Oq(H) = <coq(H) (B) | (M:B] = p> by lemma 1.21, and

similarly for Oq(K).

Thus there exist subgroups B,C of M of index P

such that Coq(H)(B) +# 1 and Coq(K)(C) ¥ 1.
Let u€ B NC.
Then C_{(u) <L for some L € K
G P,q
> .
But Coq(H)(u) Coq(H)(B) + 1 and COP(H)(u) # 1 since
OP(H) N zZ(HNP) £ 1. So by lemma 2.4, H = L.

Similarly K = L, so that H =K and [ <1. O

We are now in a position to prove the main result

of this chapter:

3.8 THEOREM

7| < 1.

PROOF

Let H,K € ¥ with H # K.
By lemma 3.7 we must have one of the following (w.l.o0.g.)

I }ﬂ) # 1 and C (m) # 1.

F (K)

(mr) =1 and CF(K)(W) # 1.

CF(H

II CF(H)
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Suppose first that I holds, and assume w.l.0.g. that

PO = COP(H)(W) £ 1.

Then CG(PO) is A-invariant and soluble and

>
CG(PO)p,q = PO.Oq(H).

Thus by lemma 2.4, H - is the unique maximal A-invariant

{p,q}-subgroup of G containing CG(Po)p,q'

But CG(ﬂ) is abelian by lemma 1.1(2), soO

F (K)
Thus F(XK) N H # 1, so by lemma 2.8, H =K after all.

c (m) < CG(PO)P _

Suppose next that II holds, and assume w.l.0.9g. that

COP(K)(W) ¥ 1.
Let N = CQnH(ﬂ). Then N # 1 by corollary 3.3.
As CG(N) is A-invariant and soluble, CG(N)p . <L
for some L € K.

, . . < i
Since CG(ﬂ) is abelian, Cop(K)(“) CG(N)P,q

Thus OP(K) NI +1 so that L * QX by lemma 2.7.

Also Z(Q n H) N Oq(H) ¥ 1, (N) # 1. Hence

SO coq(H)
Oq(H)r\I.#l, so that L * PY (again by lemma 2.7).
Thus L € X, and now H =L Dby lemma 2.8 because
Oq(H) NL +# 1, and similarly XK =1L because

OP(K) NL % 1. Thus H = K.

This contradiction completes the proof.
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CHAPTER FOUR

FURTHER INFORMATION ABOUT A

MINIMAL COUNTER-EXAMPLE

As mentioned in the introduction, the approach
pioneered by Martineau to deduce the solubility of a group
¢ admitting a f.p.f. group of automorphisms from information
about maximal A-invariant {p,gql-groups does not appear
to be a fruitful way of atterpting a solution in the
case when A = S;, despite the fact that in Chapter 3
we were able to show that there were very few such sub-
grours in a minimal counter-example.

As it happens, the approach which eventually
proved to ke successful in leading to a solution in this
case was to examine the structure of A-invariant
maximal subgroups of a minimal counter-example using
Glauberman's results ([5]), and in this Chapter we
present some preliminary results which will be used
in the main argument presented in the following chapters.

We consider the following theorem:

THEOREM TI

Let G be a finite group of order coprime to
¢ which admits a f.g.f. group of automorphisms A = S5i.

Then G 1s soluble.

Throughout this chapter (and succeeding chapters) we
assume that G 1is a minimal counter-example to this

theorem, so that as in Chapter Three the hypotheses
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(a), (B), (C) and (D) of Chapter TwO are satisfied. We
show first that the normalizer of an A-invariant
Sylow subgroup of G 1is a maximal A-invariant sub-

group of G,

LEMMA 4.1 If M is a maximal A-invariant subgroup
of G such that NG(ZJ(P)) <M for a Sylow p-subgroup

P of G then P 9 M,

Let K = N,(2J(P)) and suppose that p||M/FM)|.
Then p||KF(M)/F(M)|, so that pl||K/K N FQD) |,
Now by theorem 1.11 M/F(M) is abelian, so K/K N F(M)
is also abelian. Thus OF(K) # K. e B

Hence by Corollary 2.2 of [5] oP(G) # G, a contradicticn.

Thus P < F(M) so that P 9 M, O

The next three lemmas provide information about
maximal A-invariant subgroups of G which have non-

trivial intersection.

LEMMA 4.2 If H and M are distinct maximal
A-invariant subgroups of G such that F(M) < E then

HNM=F(M),

PROOF

Let K=HNM and suppose that F(M) < K.
Now ([K,F(M)] # 1, else K < F(M) by [9], theorem 6.1.3.
Thus 3 a prime p such that OP(M) # 1 and

[K,OP(M)] =P, #1.
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As F(M) « K, K a4 M by thecrem 1.11. Eence P, 4 M.
And P, <K' <H', s0 P, < F(H) by the same theorem.
Therefore Op,(H) < CG(Pz) < NG(Pz) = M,

It follows that Op,(H) <MnNnH=K, so that

Op.(H) <Op,(K)-

If K, = [K,op,(K)] # 1 then Ko < F(H) N Op,(K) < Op,(H).
As K 4 M, Kj < M and since OP(H) < CG(KO) <M we
have OP(H) < K.

Thus F(H) < K, so that K < H.

But then E = NG(K) = M, a contraciction.

Therefore we must have K, =1 1i.e. OP,(K) < Z(K).
Let P; be the A-invariant Sylow p-subgroup of K.
Then F (M) < F(K) < Plop,(K), SO Plop,(K) 4 K.

It follows that P; ¢ K, sc Fp 9 M.

Thus M=NG(P1), so that NH(PI) < HNM-=K,

Hence P; must be a Sylow p-subgroup of H.

Thus F(H) < Pl.Op,(H) < K, so that again K < H,

This contradiction completes the proof. o

LEMMA 4.3 Suppose that H and M are distinct

maximal A-invariant subgroups of G with F(M) < H.

Then F (M) is abelian, 2Z(H) = F(H) n F(M), H = F (M) .F(H)
and F(H) = Z(H) x Hy where Hy is an A-invariant

group of order coprime to [F ) |.

PROOF

Let g be a prime dividing |F(M)| and let
Qo = Oq(M).

Then NH(QO) = F(M) by lemma 4.2,
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Thus Q, 1is a Sylow g-subgrcup of H.
Now Q,.F(H) <« H by theorem 1.11, so by [9], theorem

1.3.7, we have H

N, (Q0) .QoF (H)

F (M) .F(H).
If Q' #1, Q) <H <F(H).
Thus [Qa,Oq,(F(H))] =1, so Q! d NH(QO).F(H) = H.
But QS 4 M, so we must have Q! = 1.

Thus F (M) is abelian.
Let r be a prime dividing |F(H) n F(M)| and let R,
be the A-invariant Sylow r-subgroup of F(H) N F(M).
Then as above Or(M) is a Sylow r-subgrcup ocf H, so
R, is a Sylow r-subgroup of F(H).
Since R, and F(M) are abelian, R, < Z(H) .
Now Z(H) centralizes F(H) and F(M), so
72 (E) < F(H) n F(M) by [9], theorem 6.1.3.

Hence Z(H) = F(H) n F(M).

We have shown above that if gq 1is a prime dividing

|F (M) |, Oq(M) is a Sylow g-subgroup of H,
Since 2Z(H) = F(H) n F(M), it follows that
(|Fa)/z (®H) |, |2()]) = L.

Thus we can write F(H) = Z(H) x Hy; where Hy is
A-invariant and clearly (|FM)|,|E,]) = 1. 0

LEMMA 4.4 Let g be a prime dividing |G|, Q the
A-invariant Sylow g-subgroup of G and M = NG(Q).
If Q is contained in another maximal A-~invariant
subgroup H of G then Q 1is abelian, H has a

normal g-complement and Q N F(H) < Z(H).
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PROOF

By theorem 1.11, Q.F(H) 9 K.

So by [9], theorem 1.3.7, H

NH(Q).F(H)

N, (Q) .0, (F (B)) .

Now Q' « NH(Q) and Q' < F(H) by theorem 1.11 so
that [Q',Oq‘(F(H))] = 1. Hence Q' 9 H,

But Q' < M, so we must have Q' =1, i.e. Q 1is
abelian.

Clearly we can write H = Q.B where B 1is a g'-group,

so if Q n F(H) =1, [Q,B] < F(H) < B,

Thus H has a normal g-complement E and Q N F(H) < 2 (H).

If QN F(H) #1, FM <N, QDN F(H)) < H, so
HNM=F(M) by lemma 4.2.

Thus N (Q) = H N M= F(M).

But [Q,F(M)] =1, so NH(Q) = CH(Q).

Thus by [9], theorem 7.4.3, H has a normal g-complement.
Finally, (@ N F(H),Oq,(H)] =1 and Q is abelian so

Q0 n F(H) centralizes Q.Oq,(H) = H., i.e. Q N F(H) < Z(H).

The next lemma will be used frequently in
conjunction with lemma 1.16 to show that for any A-

invariant Sylow p-subgroup P of G, CP(W) c CP(CP(W)).

LEMMA 4.5 Let p be a prime dividing |c|] and let P
pe the A-invariant Sylow p-subgroup of G. Then

CP(ﬂ) c P.

O
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PROOF

Suppose CP(W) = P and let G* = G.<m>, the semi-
direct product of G by <m>.
If CG(P) = NG(P), ¢ has a normal p-complement by
[9], theorem 7.4.3.
Thus we may assume that CG(P) < NG(P).
Hence <> < CG*(P) c NG*(P) and NG*(P) = NG(P).<ﬂ>
is soluble.
By [9], theorem 1.3.7, NG*(P) = L.CG*(P) where

ILL = N (P)(<1T>) = N

LI N, (P

Hence NG*(P) = Lai.CG*(P) where L

)(<TT>).<TT> -

a0 = Ny, (p)

< CG(ﬂ) < CG(P).

(<m>) < G,
But [La,,<n>] <£Ggn<mw>=1, so L,,

This contradiction completes the proof. O

The next twc lemmas exhibit conditions under which
certain A-invariant subgroups of G are contained in

specific maximal A-invariant subgroups of G.

LEMMA 4.6 Let T be an A-invariant subgroup of G
and suppose that T contains a non-abelian Sylow

p-subgroup P of G for some prime p. Then T < NG(P).

PROOF

Suppose T < M*, a maximal A-invariant subgroup
of G.
Then P < M*, so by lemma 4.4 M* = NG(P). O

LEVNMA 4.7 Let p be a prime dividing |g|, P the
A-invariant Sylow p-subgroup of G and K a subgroup

of P containing 2Z(P). Then NG(K) < NG(P).
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PROQF

Since %(P) < K, VYg € N (K) we have Z2(P)® < K<P
thus z(P)¥ = z(P) Dby [5], Corollary 2.1(a).

Hence g € NG(Z(P)) = NG(P), =Teo) NG(K) < NG(P). ]

The next lemma, which is really a corollary of

lemma 4.7, will be used frequently.

LEMMA 4.8 Let p be a prime dividing ||, P the
A-invariant Sylow p-subgroup of G and V a subgroup

of P. Then CP(V) is a Sylow p-subgroup of C,(V).

PROOF

Let P* be a Sylow p-subgroup of CG(V)
containing CP(V)'
Since Z(P) s CP(V) we have NG(CP(V)) < NG(P) by
lemma 4.7.
In particular NP*(CP(V)) < P, so that NP*(CP(V)) = CP(V).
Hence P* = CP(V) i.e. CP(V) is a Sylow p-subgroup

of CG(V). o

The final two lemmas of this chapter are technical

results which are necessary for our later argument.

LEMMA 4.9 ©Let p be a prime dividing lc|, P the
A-invariant Sylow p-subgroup of G and M = NG(P).
Suppose that M = CM(ﬂ).F(M) and that 2 a subgroup
p* of P such that CM(P*) £ F(M) and CP*(T) # 1.
Then for some prime t||M/F(M)|, 1if T dis the A=

invariant Sylow t-subgroup of G we have:
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3x € Cp (™) - F(M) such that p||CG(x)|.
If B is a maximal A-invariant subgroup of G
containing CG(x) then 1 # CTnB(ﬂ) #Z T N B

and CPnB(ﬂ) # P N B.

As CM(P*) £ F(M), 3Jy € M - F(M) such that vy

centralizes P¥*,

W.l.0.g., We may assume that y is a t-element for

some prime t]||M/F(M)].

(1)

(2)

By theorem 1.11, T N M.F(M) <« M so by I[9],

theorem 1.3.7, M NM(T n M).F(M).

Thus (T nM)' <« M, so if (T N M)' #1 we

have T N M = T.

But t||M/F(M)|, so M # N,(T).

Hence T is abelian by lemma 4.4, a contradiction,
Thus (TN M'=1, i.e. T NM is abelian.

Now 3g € M such that yg €ETNM and by lemma

1.3 we can write y¥ = xz for x € C, . (m) and

M
z €T N F(M).
But then y? andé z centralize (p*)9, so x

must also.

Hence p||C,(x) 1.
Since x € CT(W), CT(x) > CT(ﬂ) by lemmas 1.16
ancé 4.5.

Hence 1 # C (mr) # T N B,

TnB
Suppose that CPnB(ﬂ) = P N B.

Now (P*)¥ <cC.(x) <B, so (p*)® < P n B.
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Thus (P*) 9 < CP(ﬂ), so 3v € P* such that
vt = v and (vH' = (vg)_l.
But then ng—1 inverts v, a contradiction

since |G| 1is odd.

Hence CPnB(ﬂ) # P N B as required. O

LEMMA 4.10 Let p be a prime dividing |c|, P the

A-invariant Sylow p-subgroup of G, M = N, (P) and
P* = ZJ(CP(T)). If M= CM(ﬂ).F(M) and CM(P*) < F(M)

then CG(T) has a normal p-complement.

PROOF

Let P, = CP(P*).

By lemma 4.7, NG(ZJ(PO)) < M and hence
NG(ZJ(PO)) n CG(P*) < F(M) and so has a normal p-
complement.
Now by lerma 4.8 P, is a Sylow p-subgroup of CG(P*),
so by (5], theorem D, CG(P*) has a normal p-complement.,
As P, is a Sylow p-subgroup of CG(P*) and

* * k) = * *
C,(P*) < N, (P*), NG(P_) (N, (Pg) N N, (P )).C, (B*) by
[9], theorem 1.3.7.

< *) = * *

But by lemma 4.7 NG(PO) M so NG(P ) NM(P ).CG(P ).
I+ now follows from [9], thecrem 6.2.2 that

* = * *
NG(P )y n CG(T) (NM(P )y N CG(T)).(CG(P ) N CG(T)).

Clearly N, (P*) 0 Cy(1) < F(M, so
N, (B%) N Co(r) = [Np(R*) x O, (F(M))] 0 Colr).

But Op,(F(M)) </CG(P*), so we have
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N, (P¥) 0 Co (1) = (N, (B¥) 0 Cq(T). (Cg(P*) N Eo(T)

Il

(N, (%) 0 C (1)) .0, (Co(B*) A Cq (D)

I

Thus NG(P*) n CG(T) has a normal p-complement.
Therefore by [5], theorem D, CG(T) has a normal

p-complement. O
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(N, (P*) N CG(T))'Op' (N, (P*) N Co(m)).



CHAPTER FIVE

PRELIMINARY REDUCTION

In this chapter we commence the proof of the
main theorem by demonstrating that the structure of
maximal A-invariant subgroups of a minimal counter-
example is restricted in certain ways. Throughcut,

G will be a minimal counter-example to Theorem II,
and for the sake of clarity the argument is presented
in a series of lemmas.

We begin with a lemma which provides some basic
information from which the argument in this chapter is

derived,

LEMMA 5.1 Let p bLe a prime dividing [G|, P the
A-invariant Sylow p-subgroup of G and M = NG(P).

Suppose there exists a maximal A-invariant subgroup

H#M such that P, = PN H#1l, Let P, =P n F(H).
Then:
(1) P, 1is abelien,

(ii) If P, # 1, P, 1is self-centralizing in P and

0

o
I
o

L % 0L, (Cq (R,

(iii) If P 1, N, (P,) <M.

b S N

(iv) If P 1, 0, ) =0, (NG (P,)) = 0_,(Co(P1)) .

(v) If P "

N

(vi) If Z(P) <P, #P, q is a prime dividing |E|
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and Q, 1is the A-invariant Sylow g-sukbgroup of

H then Z(P) < NG(Q1)°
(vii) if 2(P) <P, # P, q is a prime dividing |1 |,

Q, is the A-invariant Sylcw g-subgroup of H
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and Q, = Q, N F(H) then Q, =C 1(Z(P)).Q0°

Q

(viii) If in addition to (vii) we have P, # 1

(ii)

(iii)

and O_,(M) =1 then C (z(P)) = 1.
P Qo

By thecrem 1.1l PIF(H) a4 H, so by [9], theorem
1.3.7, H = NH(PI).F(H).

Since P] < P,, we must have P; 4 H.

1f P} # 1, this gives NG(P;) = K so that P, = P.
But then P 1is abelian by lemma 4.4, so in either
case P, is abelian.

Since CP(Px) < NG(Po) = H, we must have

CP(Pl) =P, i.e. P, is self-centralizing in P,
The second asserticn then follows from [9],
theorem 7.4.3.

If P, = P the result is trivial, so assume that
P, # P.

Then P, = NP(Po) > Py

Suppose NG(PI) < M*, a maximal A-invariant
subgroup of G.

Let P* be the A-invariant Sylow p-subgroup

of M*,

Then as above M* = NM*(P*).F(M*) and so P*' a4 M¥,
If M* # M, it follows that P*' = 1.

But then NP(PI) is abelian by (i), contradicting
(ii).

Thus M* = M i.,e. NG(Pl) < M,
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(iv) By lemma 2.3, Op,(NM(Pl)) < OP'(M)°
It follows from (iii) that N (P;) = N,(P,),
so Op'(NG(P1)) < Op,(M).
But Op,(M) < N, (BP)) <M, sO Op,(M) < op,(NG(Pl)).
Thus Op,(M) = Op'(NG(Pl))° .
Clearly Op,(NG(Pl)) < CG(PI) so that
Op'(NG(Pl)) = Op'(CG(Pl))'
Thus Op,(M) = Op,(NG(Pl)) = op,(cG(Pl)).
(v) Clearly we may assume that P, # 1 and we have
P

o < N,(Py) =P,.

Then by (ii), Z(P) <P Suppose that P, N Z(P) # 1.

1.
Then CG(P0 N Z(F)) > F(H).P, > F(H) so by lemma
4.2, N (P, n Z(P)) < H.

But CP(P n z(P)) = P, a contradiction.

0
Thus P0 n z(p) = 1.

(vi) As above, H = NH(QI).F(H).
If P, =1, 2(P) <P, <N_(Q).
Thus we may assume that P, # 1.
Now NG(P1) <M by (iii), and since

= = ] < .

M = N, (P) N, (Z(F)) we have NQl(Pl) N, (Z (P))
Thus [NQI(PI),Z(P)] < Z(P) N F(E) =1 by (V).
Now H = N (P,).F(H), so Q, = Ng, (By) Q. N F(H).
Clearly Z(P) normalizes Q, 0 F(H), so Z(P)
normalizes Q.

(vii) Since H = NH(Pl).F(H), 3 an A-invariant Sylow

g-subgroup Q, of NH(P1) such that Q, = QZ.QQ.
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Now [Q,,Z(P)] <P, N F(H) = P,.
And Q, < N.(P,) <M by (iii), so Q, normalizes
Zz(F).

Thus [Q,,Z2(P)] <P, n Z2(P) =1 by (v) .

0

Hence Q, = CQI(Z(P))'Qo'
s S e
(viii) Sugpose CQQ(Z(P)) # 1. Then CQo(Z(P)) M NG(P).
< E <
As CQo(Z(P)) E, CQO(Z(P)) NG(Pl)
[CQO(Z(P)),Pll <Q, NP =1.
Hence CQO(Z(P)) < Op,(CG(Pl)) by (ii)
= Op,(M) by (iv).
The result follows. O
5.2 Let p be a prime dividing |G|, P the

LEMMA

A-invariant Sylow p-sukgroup of G and M = NG(P)°

Suppose 2 a maximal A-invariant subgroup H of G

such that 1 # P, =P N F(H) <P, =P N H<P. Then

(1) F(E) N M=P,.

(ii) If X is any A-invariant subgroup of
Z(P) x Op,(M), CG(X) n OP,(F(H)) =1,

(iii) (lop,(F(H))\, lop,(M)l) = 1.

(iv) Either Z(P) X Op'(M) is cyclic and centralized
by m™ or Z(P) X Op,(M) =1z X Z for some
integer n and 1w acts f.p.f. on Z(P) X Op,(M).

PROOF

(1) Let Q, be a Sylow g-subgroup of M N F(H) for

some prime q # Pp.
Then [Q,,P,] <P n O (H) =1, so

Qo < Op,(CG(Pl)) by lemma 5.1 (ii)
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= Op,(M) by lemma 5.1 (iv).

Thus [Q,,P] = 1.

Since P, = CP(PI) < P, P is non-abelian.

2 (Q,) < M.

It follows that Q, = Oq(H), so that Q, < H,

Thus by lemma 4.4 N

a contradiction.
Hence M N F(H) = P,.

(ii) Suppose X 1is an A-invariant subgroup of
z(P) x Op,(M) with CG(X) N Op,(F(H)) # 1.

As P < CG(X), NG(X) < M by lemma 4.4.
But then F(H) N M > P, a contradiction.

(iii) Suppose aql(\op,(F(H))l, IOP,(M)l), and let Q,

be the A-invariant Sylow g-subgroup of H.
Then Oq(H) #1 and X = 2(Q,) n Oq(H) # 1,
Eut Op,(M) < CG(PO) < K, so Oq(M) < cG(x),

contradicting (ii).

(iv) Since Op,(M) < CG(P ) < H and Op,(M) nrF(H) =1
by (i), it follcws that Op,(M) is abelian by
theorem 1.11.

Thus T = 2(P) X Op,(M) is an abelian group of
automorphisms of Op,(F(H)).

If 1 # CT(W) < T, we can choose minimal
A-invariant subgroups X and Y of T such that
X < CT(w) and [Y,<m>] = 1.

But then lemma 1.14(c) implies that 3 an
A-invariant subgroup X, of T such that

CG(Xo) n Op,(F(H)) # 1, contradicting (ii).
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Thus either CT(W) = T or CT(N) =1,

If CT(W) =T and T is non-cyclic then some
Sylow g-subgroup of T 1is non-cyclic. But then
lemma 1.14 (a) yields a contradiction as above,
Similarly if CT(ﬂ) =1 lemma 1.14(b) yields

that each Sylow subgroup of T 1is isomorphic to

Z i X Zqi for some prime g, so that T = Z X Z

q
fcr some integer n. O

n

LEMMA 5.3 Let p be a prime dividing |G|, P the
A-invariant Sylow p-subgroup of G and M = NG(P).
Suppose 2 a maximal A-invariant subgroup E of G
such that 1 # P, = P N F(H) < P, =P N HC<P, Then

CZ(P)('”') 7£ 1.

PROOF

Suppose that m acts f.p.f. on z(P).
We show first that CG(W) < H. Suppose CG(ﬁ) £ H.
Now by lemma 5.2(ii), Z(P) acts f.p.f. on Op,(F(H))
and by [9], theorem 6.1.3, Op,(F(H)) # 1,
Thus 3x € CG(ﬂ) n Z(Op,(F(H))) by lemma 1.2(4). It
follows that CG(x) £ H,
Suppose CG(X) < M* where M* is a maximal A-invariant
subgroup of G different from H.
Then F(H) < M*, so CH(x) = F(H) by lemma 4.2 and
M* = F(H).F(M*) and F(H) is abelian by lemma 4.3.
Let Y = CPO(W) and suppose Y # 1.

Then CH(Y) > F(H).P, > F(H), so by lemma 4.2 CG(Y) < H,
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But then CG(ﬂ) < H, a contradiction.
Hence 1 must act f.p.f. on P,.

Now P N M* =P by lemma 4.2, and as CG(ﬂ) < M*

0
we must have CP(ﬂ) = 1,

Let L be an A-invariant Sylow g-subgroup of M,

q # p, with [L,P] # 1 (L must exist else OF (M) # M,
contradicting [5], Corollary 2.2).

Then L, = CL(ﬂ) #1, L, <M* and (L,,P] # 1.

0
Thus [LO,PO] S F(M*) N P < P,.
Hence L, < NG(PO) =H, so L, <M*NH-= F(H).
Now [P ,L,] <P 0 F(H) = P,, sO [P;,Lo,Lol < [Py,L,] = 1.
Thus by (9], theorem 5.3.6, (p,,L,] = 1.
But then by lemma 5.1 (ii), L, < Op'(cG(Pl)) = Op.(M)'
a contradiction.
Hence CG(ﬂ) < H.
Choose L as above, and let Q be the A-invariant
Sylow g-subgroup of G. Let Q, = QN H and suppose
that Q, % L.
By lemma 5.1(vii), Q, = CQI(Z(P)).Q0 where Q, = Q, N F(H).
If Q, =1, Q, <M so that L =2 Q,, a contradiction.
Thus Q, # 1.
Now clearly CQI(Z(P)) <LNEHE, and
(L NH, Z2(P)] <Z(P) N F(H) =1 by lemma 5.1(v).
Thus ch(Z(P)) =L NH and Q, =L N H.Q,.
Let M* = N.(Q).

Then 2Z(P) < NG(Q1) < M* by lemma 5.1(vi) and (iii).

Hence Z(P) normalizes NQ(QI)/QI.
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Thus by [9], theorem 5.3.5,

NQ(Ql)/Ql /QI(Z(P))'[Z(P)' NQ(QI)/Qll.

= Cnglar)
Since CG(ﬂ) <H and QN H=2¢Q,, 7w acts f.p.f. on
NQ(QI)/Ql.

Hence [2(P), NQ(Q1)/Q1] =0, by lemma 1.2 (4).

It follows that N,(Q,) y (2(R)).Q,

= Crgla

N, (@,) N Cq(Z(P)).Q,

Ny (@,) 0 L.Q,

since [NQ(QI) nNL, Z2(P)] <Q, nz() =1
= NQ(QI) n L.Q,
since 0, = L N H.Q,.
But then L N NQ(QI) < NG([Z(P), Q,1) = N,(Q,) as
c,(z(P)) nQ, =1 by lemma 5.2 (ii)
i.e. L NN Q) <E.
Thus NQ(Q1) < H, so that Q, = Q.
If M* = H, [P,,L] <QnP=1.
Thus L < Op,(CG(Pl)) e Op,(M) by lemma 5.1(ii) and (iv).
But then [L,P] = 1, a contradiction.
Thus M* # H,
Now Q = CQ(Z(P)).Q0 by lemma 5.1 (vii) and Q, < Z (H)
by lemma 4.4.
Thus Q centralizes Z(P), so that Q < M and hence
Q = L. Contradiction.
It follows that Q N H < L,
As above [L N H, Z(P)] = 1.
Now I 1is abelian by lemma 5.1(i), so L = C (m) X [L,<m>]

by lemma 1.3.
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Since w acts f.p.f. on Z(P), [L,z(P)] = [CL(ﬂ),Z(P)].
Eut CG(w) < H, so CL(ﬂ) < L N H.
Thus [L, Z(P)] < [L n H, Z2(P)] = 1.

We show next that 2(P) < M* = N,(Q).
Let K be a maximal A-invariant subgroup of G
containing NG(L).
Then Z(P) < K so we may assume K # M¥,
If K=M, L = NQ(L) so that Q = L. Hence Z(P) < M*¥,
If K#M, KNPC<P since P is non-abelian.
But then by lemma 5.1 (vi) Z(P) normalizes K N Q so
we may assume that K N Q < Q.
If QNF((K) =1, KNQs CQ(Z(P)) by lemma 5.1 (vii)
so that K N Q < M,
Thus K N O < L and hence L = Q as above, sO again
7 (P) < M*,
Finally, if Q n F(K) # 1, NG(Q n K) < M* by lemma
5.1(iii).

Thus Z(P) < M*,
It follows that Z(P) normalizes NQ(L), and since
Co(m < QN HSL, acts f.p.f. on N (L)/L and Z (P).
Thus [NQ(L)/L, Z2(P)] =1 by lemma 1.2(4).
Therefore [NQ(L), Zz(P)] < L, so that [NQ(L), z(P), 2(P)] = 1.
It then follows from [9], theorem 5.3.6 that

[N (L), 2(P)] = 1.

Q
Hence NQ(L) <M so NQ(L) =L i.e. L = Q.
Next, let R, be an A-invariant Sylow r-subgroup of

M* with [R,,Q] # L.

As [P N M¥, Q1 SPNQ=1, r#p and M* # M,
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Thus Z(P) < NG(RO) by lemma 5.1(vi) (P N M* # P
else P 1is abelian by lemma 4.4).
Now R, is abelian by lemma 5.1(i), sco

R,

Cp (Z(P)) x [z (P), R,].

But [Z (P), Ro] < R, N F(M*), so [Z2(P), RO] centralizes
Qi

Thus [CR

However, CRO(Z(P)) < M, so I[C

0(Z(P)), Q] # 1.
RO(Z(P)). Ql < QN FM) < Z(M)
by lemma 4.4.

Thus [C 0(Z(P)), Q] =1 by [9], theorem 5.3.6,

R

This contradiction completes the proof. 10|

LEMMA 5.4 Let p be a prime dividing |G|, P the
A-invariant Sylow p-subgroup of G and M = NG(P).
Suppose 3 a maximal A-invariant subgroup H of G

such that 1 # P, = P N F(H) < P, =P 0 HZC< P.

Then Op,(M) =1 and if E is an A-invariant complement
to P in M then [P,E] =P and either E < CG(ﬂ)

or [E, <mn>] = E.

PROOF

By lemmas 5.2(iv) and 5.3, Z(P) X Op.(M) is a
cyclic subgroup of CG(ﬂ).
Let r be a prime dividing |Z(P) X Op,(M)l and let R
be the A-invariant Sylow r-subgroup of Z(P) x Op,(M).
If R 2ZM), 3 a minimal A-invariant t-subgroup T

of M for some prime t # r such that [T, R] # 1.
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Thus by [9], theorem 5.2.4, (r, @, (R)1 # 1. Since
CG(W) is abelian, clearly T is non-cyclic.
But @, (R) is cyclic of order r and hence has a
cyclic automorphism group. Contradiction.
Hence R < Z(M), so that 2Z(P) X Op,(M) < z(M).
Suppose that Op,(M) #1 and let Q, be the A=
invariant Sylow g-subgroup of Op,(M) for some prime (g.
Let O be the A-invariant Sylow g-subgroup of G.
Since Q, <zZM), Q, #Q, =0QnNM else Q, = Q and
G has a normal g-complement by [9], theorem 7.4.3.
Now Z(P) < CG(QI), so Z(P) < Oq,(M*) where M* = NG(Q)
by lemma 5.1(ii) and (iv).
Thus [Z(P), Q1 = 1, so that Q<M i.e. Q, = Q.
Since 1 # Q, 9 M, Oq,(M*) < M,
Thus M = F(M*).F(M) by lemma 4.3.
Since [2(P), Q1 =1, Z(P) < M* N M = F(M*).
If P* is the A-invariant Sylow p-subgroup of M*,
P* < M N M* = F(M*) so that P* < M*,
Thus P*¥ = P, so M* =M, a contradiction.
It follows that Op,(M) = 1.
Hence F(M) = P and so E is abelian by theorem 1.11.
Now P = CP(E).[P,E] by [9], theorem 5.3.5, so
E.[P,E] < M,
Thus [P,E] = P by [5], Corollary 2.2.
Suppose next that E contains an A-invariant
Sylow qg-subgroup Q of G for some prime (.
Then [Q, Z(P)] =1 as Zz((P) < Z(M), and now a

contradiction is obtained as in the last paragraph of
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lemma 5.3.

It follows that 3 a minimal A-invariant g-subgroup
C of E with CG(C) £ M.

Suppose that E = CE(ﬂ) x [E, <m>] where CE(ﬂ) # 1
and [E, <m>] # 1.

Then we can choose a minimal A-invariant subgroup D

of E such that 1 #C (r) # C x D,

CxD
As P = F(M), CM(P) <P by [9], theorem 6.1.3.

Let P = P/®(P), so that P = Cs(D) x (P,D].

If P = Cﬁ(D), D centralizes P by [9], theorem
5.1.4, a contradiction.

Thus P* = [P,D] # 1.

Hence CP*(C) # 1 by lemma 1.14(c), so that ¢, (C) # 1
by [9], theorem 6.2.2.

Clearly [D, CP(C)] # 1

Let CG(C) < M*, a maximal A-invariant subgroup of G.

Now [D, CP(C)] < P N F(M*)

p*, so P* # 1.
And since M* # M, P* <P} =P DN M*,

Also P} # P, else P would be abelian by lemma 4.4.

Thus by lemma 5.2(ii), CG(Z(P)) n F(M*) = P% i.e.
M N F(M*) = Pt.
Hence E n F(M*) = 1,

Let Q be the A-invariant Sylow g-subgroup of G,
L=QNE, Q =0NM and Q, =QN F(M*) .

By lemma 5.1 (vii), Q; = CQ1(Z(P))‘Q0 = L.Q, since
L = CQ(Z(P)) <0Q,.

Since CG(C) £ M Dbut CG(C) < M*, we must have Q, # 1.

And Q, # Q, or else Q, < 2(M*) by lemma 4.4

(M* # NG(Q) because E n F(M*) = 1) and then [Q,.2(P)]

L.



90.

Thus by lemma 5.1(ii) and (v), 2(Q) n Q, = 1.
It follows from lemma 5.2(ii) that CG(Z(Q)) n F(M*) = Q.

We show next that [Z(Q),E] = 1.
Let r be a prime dividing |E|, r # g, and let R,
be the A-invariant Sylow r-subgroup of M¥,
By lemma 5.1(vi), 2Z(Q) < NM*(RI) SO
[E N R,, 2(Q)] < R; N F(M*),
But clearly E normalizes Q; = L.Q, and as z2(Q) < Q,,
[ENR;, Z(Q)] <Q,.
Thus [E N R,, Z(Q)] =1 and it follows that [E, 2(Q)] = 1.
Let 2, = 2,(Z2(Q)) (z (Q) 1is cyclic by lemma 5.2 and
5.3) and take E, to be either C or D so that
acts f.p.f. on E,.
Then Z, x E, normalizes P} and CPﬁ(ZO) = 1 since
CG(Z(Q)) n F(M*) = Q,.
Therefore by lemma 1.14, [E,,P¥] = 1.
Now by [9], theorem 5.3.6, it follows that
[E,,P*] = [E,,P%,P}] < [p*,P*] = 1.
Thus E, < Op,(CG(Pﬁ)) by lemma 5.1(ii)

= Op,(M) by lemma 5.1(iv)
= 1 by the first part of this lemma.

This contradiction completes the proof. g

LEMMA 5.5 Let p be a prime dividing |cl, P the
A-invariant Sylow p-subgroup of G and M = NG(P).
Suppose that M = P.E where [E, 7] = E and 3 a

maximal A-invariant subgroup H of G such that



1 # P,
(i)
(ii)

(iii)

(iv)

(v)

(ii)
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=PﬂF(H)<P1=PﬂH<P. Then:
Cylm) = Cp(m.
vVx € CP(W) such that x # 1, CG(x) < M,

If q is a prime dividing |E| and L 1is the
A-invariant Sylow g-subgroup of E then CP(L)
is cyclic.

3 a maximal A-invariant subgroup M* of G
such that M* = CM*(ﬂ).F(M*), CM*(W) n rMm*) =1,
Op(M*) =1 and E = Z(M*).
H = CH(H).F(H) where 7 acts f.p.f. on F(H),
Op,(H) # 1 and is a Hall subgroup of G and

(lop,(H)l,lF(M*)l) =1,

Since m centralizes Z(P) by lemmas 5.2 (iv)
and 5.3, CG(n) < CG(Z(P)) < M,

But CE(W) = 1 by assumption, so CG(ﬁ) < P.
Suppose 3Ix € CP(ﬂ) such that x # 1 and
CG(X)'% M. W.l.o.g. we may assume that =x has
order p.

Now CG(X) < H* for some maximal A-invariant
subgroup H* # M.

If P n F(H*) =1, CF(H*)(W) = 1 so that

H* = CP(ﬂ).F(H*) by lemma 1.19.

Thus CP(ﬂ) is a Sylow p-subgroup of H¥.
But CP(ﬂ) < CP(CP(ﬂ)) < CG(x) by lemmas 1.16

and 4.5, a contradiction.
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Hence P N F(H*) # 1.
Clearly P N H* # P, else P would be abelian
by lemma 4.4.
Thus w.l.0.g. we may assume that CG(x) < H, so
that CP(W) < H.

Let X be a minimal A-invariant subgroup

of P, such that X N Z(P) =1 and let

z, = QI(Z(P)). Let q # p be a prime dividing
|F(H) |.

Then X X Z, normalizes B =M N Oq(F(H)) and

D =N B).
0 (F(x)) B
Hence X x Z, normalizes D/B, so by lemma 1l.14

3 an A-invariant sugroup X, of X X Z, such
that C, p(X,) # B.
Thus CD(XO) £ B so CD(Xo) £ M i.e. CH(Xo) £ M.
If CP(X) # P, then CP(Xo) # P, so that
Co(X4) < M*, a maximal A-invariant subgroup of
G such that M* # H,M,
But then P N M* is abelian by lemma 5.1(i),
contradicting lemma 5.1(ii). Hence CP(X) = P,.
It now follows from lemma 1.17 that
N, () /Py = p> since C,(m) < P,.
Since P, is abelian, P; = CPl(ﬁ) x [P, ,<m>]
by [9], theorem 5.2.3.

Now x € P, - Z(P), and <X,2,> < Ql(cpl(”))'

It follows that IQI(CPl(w))l > pZ.
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And P, is self-centralizing in P, so by
lemma 1.16 CPl(ﬁ) < P,.
Thus [P,,<m>] # 1, so that |, ([P,,<7m>1) | > p2.
Hence |Q,(P,)| > p".
Thus by lemma 1.17, P, is a characteristic
subgroup of P.
It follows that E < NG(PI) and [E,P] < P,
since m 1is f.p.f. on E and P/P,.
Since P = CP(E).[P,E] by [9], theorem 5.3.5,
CP(E) is not centralized by m. Let u € CP(E)
be an element which is not centralized by .
Let q be a prime dividing |E|, let Q
be the A-invariant Sylow g-subgroup of G, and
let L =Q N E.
Suppose NG(L) < M* where M* is a maximal

A-invariant subgroup of G.

Let Q* =Q N F(M*), Qf = Q n MY, Py =P N F(M)

and Pf P N M*,

Now u € P N M* = P*¥ and since M* # M, P* is
abelian by lemma 5.1(i). It follows that u is
contained in an A-invariant group U on which
T acts f.p.f., and since 7 also acts f.p.f. on
Op,(F(M*)),Ilcentralizes F(M¥*) .

Thus u € P} # 1 and clearly P¥ < P* # P.

By lemma 5.2(ii), CG(Z(P)) n Op,(F(M*)) = 1,

And by lemma 5.1l(vii), Qf = CQ*(Z(P)).Qg = L.Q%.
1
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Suppose that Q% = Q.
If Qt # 1, Q: < Z(M*) by lemma 4.4, contradicting
lemma 5.1 (viii).
if o* =1, Q= Q% = L.
But then NG(Q) < M* so Q <9 M*, a contradiction.
Hence Q* # Q and as L # NQ(L) < Qf, Q* # 1.
But then by lemma 5.3 CQ(n) #1, a contradiction.

Hence CG(x) < M,

(iii) Suppose that CP(L) is not cyclic.

Since T centralizes Z(P) and acts f.p.f. on
L, 2(P) normalizes L by lemma 1.4(2).
Thus [Z2(P),L] < Z(P) N L =1 i.e. Z(P) < CP(L).
Choose x € CP(L) such that <x,z> is not cyclic,
where <z> = Q,(Z2(P)).
Suppose that NG(L) < M*, a maximal A-invariant
subgroup of G.
If x £ CP(ﬂ), we can derive a contradiction as
above (replacing u by X). Thus we may assume
that x € CP(W).
If Op,(F(M*)) <M, [<x,z>, Op,(F(M*))] < PN Op,(F(M*))=
Thus OP(F(M*)) # 1 by [9], theorem 6.1.3, and
clearly P N M* # P.
But then CG(z) n Op,(F(M*)) =1 by lemma 5.2(ii),
a contradiction.

Hence Op,(F(M*)) £ M,
But by [9], theorem 6.2.4,

Op,(F(M*)) = <C (a) |o € <x,z>>

Op.(F(M*))

<M by (ii).
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This contradiction completes the proof that
CP(L) is cyclic.

(iv) Again let g be a prime dividing |lE], L the
A-invariant Sylow g-subgroup of E and
NG(L) < M*, a maximal A-invariant subgroup
of G.
If OP(M*) # 1 we derive a contradiction as
above.

So OP(M*) =1, and hence C =1,

F(M*)(“)
Conseguently M* = CM*(N).F(M*) by lemma 1.19,
so that Oq(M*) = Q, the A-invariant Sylow
g-subgroup of G.

It follows that V - primes r||E|, M* = N, (R)
where R is the A-invariant Sylow r-subgroup
of G.

Furthermore, [C (7)), L] <P N F(M*) = 1.

M*
Thus [L,M*] < Q' and hence LQ'/Q' < Z (M*/Q').
If L £ Q', o%*/Q') # M*/Q' by [9], theorem
7.4.4.

Hence O%(M*) # M*, contradicting [5], corollary
2.2.

Thus L < Q' < Z(Q) Dby [2], section 66.

It follows that E < Z(F(M*)).

Now Vx € CM*(W), CG(x) N F(M*) < M N F(M*) = E.
Since [x,E] <P n F(M*) =1, this yields

Z (M*) = E,
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(v) If CPo(ﬂ) £ 1, CG(x) <M Vx € CPo(ﬂ) such
that x # 1 by (ii).
Thus F(H) < PIF(H) < M, contradicting lemma 4.2.
Hence CPo(n) =1, so that m acts f.p.f. on
F(H) and H = CH(ﬂ).F(H) by lemma 1.19.
Clearly Op,(H) #1 (else F(H) =P < Z(H) by
lemma 4.3), and since H/F(H) 1is a p-group,
Op,(H) must be a Hall subgroup of G.
Finally, if v is a prime divisor of \op, (H) |
and |F(M*)| then H = NG(V) = M* where V |is
the A-invariant Sylow v-subgroup of G.

But then [P,,E] = 1, contradicting (iii).

Hence (|op,(H)|, |F (M%) |) = 1. O

LEMMA 5.6 Let p be a prime dividing lc|, P the
A-invariant Sylow p-subgroup of G and M = NG(P).
Suppose that 3 a maximal A-invariant subgroup H of
G such that l;‘P0=PﬂF(H) <P1=PﬂH<P.

Then if E is the A-invariant complement to P in M,

E < CG(n).

PROOF

Suppose that E ¥ CG(ﬂ). Then by lemma 5.4 7
acts f.p.f. on E and hence the results of lemma 5.5
hold. Let M* be the maximal A-invariant subgroup of
described in (iv) of that lemma.
Let r # p be a prime dividing |F(H)|, let R be
the A-invariant Sylow r-subgroup of G, RT = CR(T)

(# 1 by lemma 1.2(3)) and R* = ZJ(RT).



97.

By lemma 5.5(v), H = NG(R) CH(ﬂ).F(H).
Now Vx € CH(ﬂ) such that x # 1, CG(x) < M by lemma
5.5(ii) and r f M| as E < F(M*) and
(lOp,(H)l, |F(M*)|) = 1 by (v) of the same lemma.
Thus by lemma 4.9, CH(R*) < F(H).
It then follows from lemma 4.10 that CG(T) has a
normal r-complement.

Next, let g be a prime dividing |F (M*) |
and let Q. = CQ(T) where Q 1is the A-invariant
Sylow g-subgroup of G.
Then we may assume w.l.o.g. that R_ normalizes Q_.

T
* =

Let Q CQ(QT)°

Then Z(Q) < Q*, so NQ(Q*) < M* by lemma 4.7.

But Q* is a Sylow g-subgroup of CG(QT) by lemma

4.8, so by [9], theorem 1.3.7,

NG(QT) = (NG(QT) n NG(Q*))'CG(QT)
Now R_<N.(Q) and r f |M*| by lemma 5.5(v) so
w.l.o.g. R < CG(QT).

Take a € Z(R) N RT, so that CH(a) = F (H)
by lemma 5.5.
Now R is a Sylow r-subgroup of CG(a) and
H = NG(ZJ(R)) so N(zZJ(R)) N CG(a) = F(H) has a normal
r-complement,
Hence by [5], theorem D, CG(a) has a normal
r-complement.
Suppose that R contains an A-invariant subgroup

W= Erq and let Q be an R-invariant Sylow
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g-subgroup of CG(a) (Q exists by theorem 6.2.2 of
9.

Then by lemma 1.15 3 an A-invariant subgroup W,

of W such that CQ(WO) # 1.

Let NG(Wo) < K, a maximal A-invariant subgroup of G.
Then by lemma 1.2(4) Cp(m) # 1 and hence el |K]|.

If PNF({K) =1, 7 acts f.p.f. on F(K) and hence

T centralizes P N K by lemma 1.19.

But P, < NG(WO) < K and CPo(ﬂ) = 1 by lemma 5.5(v).
Thus P N F(K) # 1. Since r } [M|, K # M. Thus

P N K is abelian by lemma 5.1(i), so that P 0 K #P
by lemma 5.1(ii).

It now follows from lemma 5.5(v) that q [ [K|,
contradicting CQ(Wo) # 1.

Hence R contains no such subgroup W, sO by lemma
1.18 there is no element of order r in R-Z (R) .

Now if Q is abelian take x € (Q - QN E) N Q. and
if Q 1is not abelian take x € (Q - Z(Q)) n Q. (both
sets are non-empty by lemma 1.2(3) and [9], theorem
6.2.2 because 7w acts f.p.f. on Q/Q N E and Q/7(Q)).
In the first case it follows at once from lemma 5.5
that CM*(X) = F(M*), so CM*(X) has a normal g-
complement.

In the second case, suppose CM*(X) £ F(M*),

Then 3y € M* - F(M*) such that vy centralizes X,

and w.l.0.g9. we may assume that y is a p-element.
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Since P N M*(m) is a Sylow p-subgroup of M¥*,

3g € M* such that yg € CP(ﬂ).

But CG(yg) <M by lemma 5.5(ii), so x9 < Q N M < 2(M*).
As g € M*, this implies x € Z(M*) so that x € Z(Q),

a contradiction.

Hence CM*(x) < F(M*) and so CM*(X) has a normal
g-complement in this case as well.

Now CQ(x) is a Sylow g-subgroup of CG(x) by lemma
4.8, and NG(ZJ(CQ(x))) < M* by lemma 4.7.

Thus NG(ZJ(CQ(X))) n CG(x) < CM*(X) and so has a

normal g-complement.

Hence by [5], theorem D, CG(x) has a normal g-complement.
Let R be a <Q,T>-invariant Sylow r-subgroup of
Oq,(CG(X)).

Then Ql(z(ﬁ)) < Q,(2(R)) since there is no element of

order r in R - Z(R).

Clearly |2,(z(®R))| = r?, so if |, (Z(R)) | = £? we

must have @,(Z(R)) = ,(Z2(R)).

But then qllNG(Ql(Z(R)))l i.e. q||H|, a contradiction.
Hence |Q,(Z2(R))| = r, so that Q,(2(R)) = <a>.

Thus Z(Q) normalizes <a>, If [Z(Q),<a>] #1, 3w € H
such that a" = ak for some integer k # 1 by [5],
Corollary 2.1(a).

Since H = CPnH(W).F(H) and F(H) centralizes a, we
may assume that w € CP(W), so that a" = (a") ' = aw—l.

But then w?, and hence w, centralizes <a>.
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Thus [2(Q),<a>] = 1, which yields <a> < M*.

This contradiction completes the proof. a

LEMMA 5.7 Let p be a prime dividing |G|, P the

A-inﬁariant Sylow p-subgroup of G and M = NG(P).

Suppose 3 a maximal A-invariant subgroup H of G

such that 1 # p, =P n F(H) < P, =P N HCP, and

let E be the A-invariant complement of P in M.

Then we have:

(1) vx € E such that x # 1, CP(x) = CP(E).

(ii) E 1is cyclic.

(1ii) CP(E) is cyclic and CP(E) = CP(W), so that
CG(ﬂ) = E.CP(ﬂ) is cyclic.

(iv) Vy € CP(ﬁ) such that vy # 1, CG(y) < M.

(v) Let g be a prime dividing |[E|, Q the A-

invariant Sylow g-subgroup of G and M* = NG(Q).

Then:
(a) M* = CG(N).F(M*).
(b) Vvx € CG(w) - F(M*), CQ(x) = CQ(W).

(c) Vy € CQ(W) such that vy # 1, CG(Y) < M*.

(1) By lemma 5.6, E < CG(w).
Let g be a prime dividing |E| and take x € E
of order gq. Suppose that CP(E) < CP(x).
Let L =QnNE where Q is the A-invariant
Sylow g-subgroup of G.

= <
Then L CQ(ﬂ) as CG(W) M.



Thus by lemmas 1,16 and 4.5, CQ(L) # L so that
CG(x) £ M,
Let H* Dbe a maximal A-invariant subgroup of

G containing CG(x).

Now E < CG(x) and [E, CP(x)] # 1 by assumption.

Thus P% = P n F(H*) # 1.

And P¥ =P N H* # P, else M= P.E < H¥*,
Let Q"; = Q N F(H*) and Q"l‘ = Q n H*.
Since L <C_,(z(P)) <MNnQ=1L, we have

QY
CQ?(Z(P)) = L.

By lemma 5.1(vii), Q% = CQ¥(Z(P)).Q3 = L.Q*
and as L < CQ(L) < Qf we have Q% # 1.

And by lemma 5.1(viii), Q% # Q.

If Qt = Q, Qt < Z(H*) by lemma 4.4.

But then Q% centralizes Z(P), contradicting
lemma 5.1 (viii).

Thus 1 # Qg < Q¥ < @Q, and it then follows from
lemmas 5.2, 5.4 and 5.6 that 2%(Q) is cyclic,
M* = N,(Q) = Q.E* where E* 1is centralized by
m and Oq,(M*) =1,

Now by lemma 5.1(ii), CQ(Qt) = QF.

Let Y be a minimal A-invariant subgroup of
Q* with Y 0 z(Q) = 1 and suppose that

CQ(Y) # Q7.

Then CG(Y) < M*, since otherwise CQ(Y) is

abelian by lemma 5.1(i), contradicting CQ(QT) =



102.

Now by lemma 1.14, 3 an A-invariant subgroup
Y, of Y x 0, (Z(Q)) such that CP%(YI) #Z 1.

If Y, = Q,(2(Q)), CG(YI) < M*,

But then [CP§(Y1), Z(Q)] < Pg ngQg=1, so

Cpy (Z(Q)) # 1.

This contradicts lemma 5.1 (viii), so we must

have Y, # 0, (2(Q)).

Thus CQ(YI) e CQ(Y), so that as above

C,(Y,) < M*,

But then [Z(Q), CPt(Yl)] < OP(M*) =1, so
CPt(Z(Q)) # 1, again contradicting lemma 5.1(viii).
It follows that CQ(Y) = Qf.

Now C_ (m) =1L < Q%, so by lemma 1.17 we have

Q

N, (%) = 0% | = q”.

Q
By [9], theorem 5.2.3, Q* = CQ(W) x [Qt;<ﬂ>]

1

and since CQ(H) # 1 and [QT,<W>] #1,

lﬂl(Qt)l > q’.

CIf @, (%) | = g then |Ql(Qt)| = g?> since
Q.’;ﬂL=lg

As Z(P) acts f.p.f. on Ql(Qg) by lemma 5.1 (viii),
we have plg? - 1.

If \Ql(Qf)l > q?, 0* is a characteristic
subgroup of Q by lemma 1.17.

Thus [Q/Q*| = gq® and as CQ(Z(P)) =L<Q,

7 (P) acts f.p.f. on Q/Q,. Hence again plg® - 1.
Now by the symmetric argument applied to Z(Q)

and P we derive that gql|p? - 1.
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(iii)

As p,g are odd this is a contradiction, so
that CP(x) = CP(E) after all.

Now if v 1is an arbitrary element of E* and
q is a prime dividing |v|, C,(v) < Cy
some element x of order (g.

Thus CP(E) < CP(v) < CP(x) = CP(E), so that
CP(V) = CP(E) vv € E*.

I1f E is non-cyclic, P = <CP(V)|V € E*> by
[9], theorem 6.2.4.

Thus P = CP(E) by (i), contradicting lemma 5.

Hence E is cyclic.

Suppose that either CP(E) is not cyclic or
Cp(E) # Cp(m).

Let g be a prime dividing |E|, and again
lJet L =QNE where Q 1is the A-invariant
Sylow g-subgroup of G.

Then CQ(L) # L by lemmas 1.16 and 4.5, sO

C, (@) # M.
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(x) for

4.

Let CC(L) < H*, a maximal A~-invariant subgroup

of G, and suppose that H* # M* = NG(Q).

Now 1 # P n H* # P else P would be abelian
by lemma 5.1(i).

So by lemma 5.1(vii) we have

Q n H* = (z(P)).Q N F(H*),

CQﬂH*
Thus if Q N F(H*) =1, Q N H* < CG(Z(P)) < M,
a contradiction.

So Q n F(H*) # 1.
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If QN H* =Q, QN F(E*) < Z (E*) by lemma 4.4.
But then Z(P) centralizes Q N H*¥ = Q so
Q < M, a contradiction.

Thus 1 # Q N F(H*) < QN H* # Q.
Now by lemmas 5.2 and 5.3, %z (Q) 1is cyclic and
by (ii) M* = NG(Q) = Q.E, where E, is cyclic.
Thus C,(E) < C,(Z(Q)) < M*, soO c,(E) < E; <Cqlm,
yielding a contradiction in both cases.
Hence CG(L) < M* = NG(Q).
Since M* #M, P N M* # P else P would be
abelian by lemma 5.1 (i).
If P n F(M*) # 1, by lemma 5.1(viii) Co(z(P)) =1,
a contradiction.

Hence P N F(M*) = 1.
Suppose that P N M* contains an A-invariant
subgroup Y of order p” such that m acts

f.p.f. on Y,

Let 2, = 2, (Z(P)).
Since [L,Y] <Q AP =1, C(¥) >L =CylZ,).
Now by [9], theorem 5.3.5, Q/2(Q) = [2,,0/2(Q)] X

“a/8(q) o)

As 2, acts £f.p.f. on [Z, Q/®(Q)], ™ must
also act f.p.f..

Hence Y centralizes ([Z,, Q/2(Q)] Dby
lemma 1.2(4).

Since also CQ(ZO) < CQ(Y), Y must centralize

Q/2(Q) .
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Thus by [9], lemma 5.1.4, Y centralizes Q.

If r # q is a prime dividing |F (M*) | we may

apply the same argument to Or(M*) since

CG(Zo) n Or(M*) < E and

[E N Or(M*), Y] < Or(M*) np=1, toyield

ly, Or(M*)] = 1.

Thus [Y, F(M*)] =1 so that Y < P n F(M*) by
(9], theorem 6.1.3.

This contradiction proves that P 0 M* < C_(m).

P
In particular CP(E) < CP(ﬂ), so that CP(E) =C_(m).

P

It remains to show that CP(E) is cyclic.
Suppose not, and take x € QI(CP(E)) - Z(P).
As above, let 72, = Ql(Z(P)). Then CQ(ZO) = L,
Since <x, Z,> 1is a non-cyclic group of auto-
morphisms of Q, by [9], theorem 5.3.16
Jw € <x, Z,> such that CQ(w) # L.
As P N M* < CP(ﬂ), CP(w) £ M* by lemmas 1.16
and 4.5.
Let CG(w) < H* for some maximal A-invariant
subgroup H* of G. Then we have shown that
H* # M,M*,
Now [CQ(w), 2,1 #1 and is a g-group since
Z, S M*,

Thus Q N F(H*) # 1.
It then follows as above from lemma 4.4 that

Q N H* # Q, so we have 1#QnNnF(H*) <QnN H* # Q.

But then by (ii) M* = Q,E; where E, 1is cyclic,
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so CP(E) < E, 1is cyclic after all.

(iv) Since CP(ﬂ) is cyclic, QI(CP(W)) = Q,(Z2(P)) = <z>
say.
Now Vy € CP(w), yn =z for some integer n.

Thus CG(y) < CG(z) < M,

(v) If there exists a maximal A-invariant subgroup
H* of G with 1 #Q n F(H*) < Q n H* # Q then
the results follow from lemma 5.6 and (i), (iii)
and (iv) of this lemma.

Thus we may assume that no such maximal A-
invariant subgroup exists, and it then follows
as in (iii) that CG(L) < M* where L = QN E
and P N M* < CP(Tr)o Hence Z(P) < P N M* # P,
If r #p is a prime dividing |M*| and R

is the A-invariant Sylow r-subgroup of G, by

lemma 5.1(vii) we have

R N M* = CRnM*(Z(P)).R n FM*) < CR(n).R n F(M*).

Since CG(W) < CG(L) < M*, it follows that
M* = C.(m).F(*).
Next, let r # g be a prime dividing
|M*/F (M*) | and let x be an element of order r
in CG(ﬂ) - F(M*),
If r = p the result (b) follows from (iv), so
we may assume Ir # p.
Let CG(x) < H*, a maximal A-invariant subgroup

of G, and suppose that CQ(W) < CQ(x).
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Since r # p, RO M= CR(ﬂ) where R 1is the
A-invariant Sylow r-subgroup of G.

Thus CR(x) £ M by lemma 1.16, so that H* # M

and hence P N H* # P,

Now % (P) normalizes Q N H*¥ by lemma 5.1 (vi)

and since Q@ N M < QN H*, [QN H*, Z(P)] # 1.

Hence Q N F(H*) # 1.

If H* # M*¥, we must have Q < H* by assumption.
But then O 0 F(H*) < Z(H*) by lemma 4.4, so

that by [9]1, theorem 5.3.6, [Q, z®)] = [Q,Z2(P),Z(P)]

< [Q n F(HY), Z(P)]

1, a contradiction.
Thus H* = M¥.

But clearly M* # NG(R) so by the same argument

we have 1 # R N F(M*) < R N M* # R,

Thus by lemma 5.6 NG(R) = R.E, where E, < CG(n).

But then by (iv), C,(x) < NG(R), so

G

CQ(x) QN NG(R) = CQ(W).
Thus CQ(x) = CQ(N), and it follows that
CQ(V) = CQ(W) Vv € CG(ﬂ) - F(M*).

Finally, take y € CQ(W).
If y € z2(Q), CG(y) = M* as M* = CG(ﬂ).F(M*).
If y £ Z(Q), suppose CG(y) < H* for some
maximal A-invariant subgroup H* # M* of G.
Now CQ(y) # CQ(ﬂ) by lemmas 1.16 and 4.5, so
[z (P), CQ(y)] # 1.
Hence O N F(H*) # 1, so that Q < H* by

assumption.
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But then Q is abelian by lemma 4.4 so

y € 2(Q), a contradiction.

Thus CG(y) < M*¥, a

We are now in a position to show that a maximal
A-invariant subgroup H of the type mentioned in

lemmas 5.2 to 5.7 cannot exist.

LEMMA 5.8 Let p be a prime dividing |G|, P the
A-invariant Sylow p-subgroup of G and M = NG(P).
Then there does not exist a maximal A-invariant subgroup

H of G such that 1 # P, = P N F(H) <P, =P NHC<P,

PROOF

Suppose that such a subgroup H exists, so that
the results of lemma 5.7 hold.

Let r # p be a prime dividing |H|, R the A-

invariant Sylow r-subgroup of G, R R n F(H) and

0

R1=RﬂH.

Then by lemma 5.1 (vii) and (viii), R C 1(Z(P)).R0

1 R
and C, (z(p)) = 1.
0
But Z(P) < CP(ﬂ) by lemmas 5.2(iv) and 5.3.
Thus by lemma 5.7 (iv), CR (z (P)) < M.
- 1
It follows that C_. (z2(P)) < C,(m) and C (m) = 1.
Ra G Ro
Suppose that CPo(ﬂ) # 1.
Then for x € CP (), CG(x) <M by lemma 5.7 (iv).
0
But then F(H) < Pl.F(H) < CG(X) < M, contradicting
lemma 4.2,
Hence C_ (w) = 1.
Py
It follows that CF(H)(F) = 1 and therefore 1

centralizes H/F(H) by lemma 1.19.
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By lemma 4.2, 3 a prime gq # p such that
Q, =QnF(H) #1 where Q Iis the A-invariant Sylow
g-subgroup of G. Let Q;, = QN H and suppose first
that Q, < Q,.
If Q, =Q, Q, < Z(H) by lemma 4.4, contradicting
lemma 5.1 (viii).
So Q, < Q and hence the results of lemma 5.7 hold for
q, N,(Q) and H.

Let X be a minimal A-invariant subgroup of
P, such that X 0 Z(P) = 1 and suppose that P, < CP(X).
If CG(X) £ M, CP(X) is abelian by lemma 5.1 (i),
contradicting (ii) of that lemma.

So CG(X) < M,
Now X x Q, 6 (Z2(P)) normalizes Q,, so by lemma 1.14
3 an A-invariant subgroup X, of X x Q,(z(P)) such
that CQO(Xl) # 1.
As X, # 9,(z(P)) by lemma 5.1(viii), we have
C,(X;) = C (x).

Thus C (Xl) < M also.

G
But CQO(Z(P)) = 1 by lemma 5.1l(viii), so
[z (P), CQo(Xl)] # 1.

Thus Op,(F(M)) # 1, contradicting lemma 5.4.

Hence P1 e CP(X).

!

Since CP(PI) =P, <P by lemma 5.1(ii) and Z(P) is

cyclic by lemma 5.2(iv) and 5.3, we may apply lemma 1.17

to derive that |NP(P1)/P1l =p or pZ>.
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If lNP(Pl)/Pll = p, N (P)) Pl)(ﬂ).PO and so

= CNP(
P, 9 N, (P,).

Thus NP(Pl) < NG(PO) = H, a contradiction.

Hence INP(PI)/PII = p?.

Now clearly |@,(P )| > p> and lgl(cpl(n))l = p by
lemma 5.7 (iii).

If lQl(PO)I = p?, since CPO(Z(Q)) = 1 by lemma

5.1 (viii) we have gql|p? - 1.

If |9, (@) > p*, by lemma 1.17 N, (P,) = P.

But then Z(Q) normalizes P since 2(Q) < CQ(W) < M,
so 2(Q) normalizes P/P,.

Now C (z2(Q)) = CP(Z(Q)).Pl/P1 and CP(Z(Q)) = C_(m)

P/P;, P

by lemma 5.7 (i) and (iii).

Also CP(ﬂ) <P, else P = CP(Tr),P0 and P, <4 P,

Thus Z(Q) acts non-trivially on P/P,, so again glp?® - 1.
By the symmetric argument plq2 -1 and as p and ¢

are odd we have a contradiction.

Hence we may assume that Q, = Q,, so that Q, = Q

i.e. H=N,(@Q) for all primes q # p dividing |F (K)
Now let r # p be a prime dividing |F(H)|, so that
H = NG(R) where R is the A-invariant Sylow r-
subgroup of G.

Let R* = ZJ(C,(1)).
If CH(R*) £ F(H), by lemma 4.9 for some prime
t||H/FH) |, 3x € Cpqy(m) - F (H) such that r\lCG(x)l
where T is the A-invariant Sylow t-subgroup of G.
By lemma 5.7 (v), CG(x) < NG(T) = CG(n).F(NG(T)).

But T acts f.p.f. on R, so that RN NG(T) < F(NG(T)).
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Hence R N NG(T) = R so that NG(T) = NG(R) = H, a

contradiction.

Thus CH(R*) < F(H) and so by lemma 4.10 CG(T) has

a normal r-complement.

Next, let g be a prime dividing |E|], Q the A-
invariant Sylow g-subgroup of G and M* = NG(Q) as
in lemma 5.7 (V).

By lemma 4.5 CQ(W) < Q, so CQ(T) # 1.

Let Q* = ZJ(CQ(T)), and suppose that CM*(Q*) £ F (M*).
Now F(M*) < Cuy(C,0y(T))s SO if Cyigy (D) # 1 we
must have F (M*) = CM*(CZ(Q)(T)) by lemma 5.7 (v) (b).
But CM*(Q*) < CM*(CZ(Q)(T)), SO CZ(Q)(T) = 1.

Hence Z(Q) is centralized by T, and since CQ(ﬂ)

is cyclic, QI(CQ(H)) = Q,(2(Q)).

Choose x € Q% of order gq. Then Cy, (x) £ F (M¥) .

Now by hypothesis 3y ¢ F(M*) such that vy centralizes
x, and w.l.o.g. we may assume that y is an s-element
for some prime s # q. Let S be the A-invariant
Sylow s-subgroup of G.

Since Cs(n).OS(F(M*)) is a Sylow s-subgroup of M¥*,
Jg € M* such that y? = ab where a € CS(H) and

b € OS(F(M*)).

Now ab and b centralize xg, so a must also.

If a € Cy(m - F@*), Dby lemma 5.7 (v) (b) x° € Cqm .
But then x9 € QI(CQ(H)) e Ql(Z(Q)), so x € Z(Q).
Contradiction.

Thus a € F(M*), and hence y? € F(M*).
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But it then follows that y € F(M*), a contradiction.
Hence CM*(Q*) < F(M*),

Thus by lemma 4.10, CG(T) has a normal g-complement.

Let R‘T = cR(r), Q. = cQ(r) and W = C,(1).

Then RT is a Sylow r-subgroup of W by [221,

theorem 4.3.

As RT < Oq,(W), W= NW(RT)‘Oq'(W) by [9], theorem 1.3.7.

Thus Q? < NW(RT) for some x € W,

It follows that Q’Tc < N (R) NO_, (W, so that

[R_, Q71 = 1.

In particular, q\\CG(RT)\ and rllCG(QT)|.

(t)).

Now choose an element a € QI(CZ(R)
Clearly F(H) < CH(a), so if CH(a) # F(H) we can
choose x € CH(ﬁ) - F(H) such that x centralizes a.
Ww.l.0.g. x 1is a t-element for some prime t.
Now by lemma 5.7 (v), CG(x) < NG(T) = CG(W).F(NG(T)),
where T is the A-invariant Sylow t-subgroup of G.
Thus a € NG(T), so that rl\NG(T)l.
Since m acts f.p.f. on R, it follows that
RN NG(T) < F(N.G(T)).
Thus R N NG(T) =R and R < NG(T) = H, so that
x € F(H), a contradiction.

Therefore CH(a) = F(H).
Now R is a Sylow r-subgroup of CG(a) and
H = NG(ZJ(R)) so N(zJ(R)) N CG(a) = F(H) has a

normal r-complement.
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Hence by [5], theorem D, CG(a) has a normal r-
complement.
Suppose that R contains an A-invariant subgroup
W= Erq and let Q be an R-invariant Sylow
g-subgroup of CG(a).
Then by lemma 1.15 3 an A-invariant subgroup W,
of W such that CQ(WO) # 1,
Let NG(WO) < K, a maﬁimal A-invariant subgroup of G.
Then p||K| because [P, ,R] = 1.
Suppose first that P N F(K) # 1.
Now K # M since r f |M|, so we must have p| |X/F (K) |.
And P N K#P, else P would be abelian by lemma 4.4,
contradicting the fact that P, 1is self-centralizing
in P (lemma 5.1 (ii)).
Thus by the argument at the beginning of this proof
applied to K we have K = CK(W).F(K), so that
RN K<X<FI(EK).

Hence RN K=R and so K =N (R) = H.
Thus CQ(Wo) < H and centralizes a.
But then CQ(WO) < CH(a) = F(H), contradicting lemma
5.2(iii).
Thus we may assume that P N F(K) = 1.
Since P, < K and P, N F(K) =1, we must have
CF(E)(H) # 1 by lemma 1.19.

Choose a prime s||F(K)| such that C (r) # 1,

sSNF(K)

where S is the A-invariant Sylow s-subgroup of G,
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Then s||E|. so if § < F(K) we have

K = NG(S) = CG(ﬂ).F(K) by lemma 5.7(v) (a), a contradiction.
So 1 #SNF(K) <sSnZK=S8,, andby lemma 5.1 (1)

S, 1is abelian.

Thus for x € C F(K) < SI.F(K) < CG(x) < NG(S)

snr(x) (M e
by lemma 5.7 (v) (c).

Eence F(K) < KN NG(S), contradicting lemma 4.2.

It follows that R cannot contain such a subgroup W,
so that by lemma 1.18 there is no element of order r
in R - Z(R).

Finally, choose an element b € Q such that b #1

and b € CZ(Q)(T) if 2 (Q) 1is non-cyclic or Db € CQ(T)
if 2z(Q) is cyclic.

In the first case CM*(b) = F(M*) by lemma 5.7 (v) (b).
Suppose in the second case that CM*(b) £ F (M*).

Then by lemma 4.9, for some prime t]|M*/F (M%) |,

ix € CTnM*(ﬂ) - F(M*) such that if B 1is a maximal
A-invariant subgroup of G containing CG(x) then
CQnB(ﬂ) # Q N B,

Now by lemma 5.7 (v), CG(x) < N (T) = CG(W).F(NG(T)).

Hence QN NG(T) < CG(x), so that CQ(W) < CQ(x),
contradicting lemma 5.7 (v) (b).

Thus in both cases CM*(b) < F(M*), and CG(b) N CQ(W) # 1.
Let Q, = CQ(b). Then Q, 1is a Sylow g-subgroup of

C.(b) by lemma 4.8.

G
As Z(Q) < 2J3(Q,), N,(2J3(Q,)) < M* by lemma 4.7.



115.

Thus N(ZJ(QZ)) n CG(b) has a normal g-complement.

It then follows from [5], theorem D, that CG(b) has

a normal g-complement.

Let R be a <Q,,T>-invariant Sylow r-subgroup of

0, (Cq b)),

Then R9 < R for some element g € CG(T) by [91,

theorem 6.2.2,

Thus Ql(Z(ﬁg)) < @, (Z2(R)) since there is no element

of order r in R - Z(R).

Clearly |0, (Z2(R))| = r?, so if |2, (Z(R9)| = r’

we must have 0, (Z(RY)) =, (Z(R)).

Hence q||NG(91(Z(R)))| i.e. qllH]|.

Since q [ |F(H)| by lemma 5.2(iii), this yields

Qz < CQ(W), a contradiction.

Hence |QI(Z(§9))| = r, so that QI(Z(ﬁ)) = <a9 > = <a >
say.

Thus for y € CG(b) n CQ(W), y—laly = a? for some
integer 1i.

Applying 1, we get yaly—1 = af since a, = a’ € C,(1).
Thus y?, and hence vy, centralizes a,.
But then a; € CG(y) <.M* by lemma 5.7(v) (c).

So r||M*|, a contradiction which completes the proof. U
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CHAPTER SIX

PROOF OF THE MAIN THEOREM

In this chapter we complete the proof of
theorem II which was commenced in the previous chapter.
Thus we continue to examine a minimal counter-example
G to theorem II, and the argument is again presented
in a sequence of lemmas. We have shown in Chapter
five that if p 1is a prime dividing |G| and
H # NG(P) is a maximal A-invariant subgroup of G
such that P n F(H) # 1 where P 1is the A-invariant
Sylow p-subgroup of G then P < H. We show next
that in fact there cannot exist a maximal A-invariant
subgroup H # NG(P) of G with P N F(H) # 1 and
then use this result to complete the proof.

We first prove a result which will be used in

both of these sections of this chapter.

LEMMA 6.1 Let p be a prime dividing |G|, P the
A-invariant Sylow p-subgroup of G and M = NG(P).
If H#M is a maximal A-invariant subgroup of G

containing F(M) then at least one of the following

does not hold:

(1) m acts f.p.f. on M/F(M).
(2) |F(M) | and |M/F(M)| are coprime.
(3) Cqlm) & M.

(4) CG(ﬂ) < H.
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(5) If K is a maximal A-invariant subgroup of G
such that K # H or M then m acts f.p.f.
on F(K), K= Cy(m.F(K) and (JF(x) |, B, [) =1
where H, is the complement of Z(H) in F(H).

(6) Vx € CG(n) such that x # 1, CG(x) < H.

Suppose to the contrary that all six properties
hold for H and M.
Then by lemma 4.3 F(M) is abelian, H = F(M) .F(H),
7z(H) = F(d) n F(M) and F(H) = z2(H) x H, where
(g, |, |[FM) ) = 1.
Let g be a prime dividing |H,| and let Q be the ~
A-invariant Sylow g-subgroup of G.
Let r be a prime dividing |M/F(M)| and let R be
the A-invariant Sylow r-subgroup of G and N = NG(R).
Since N # H or M, N = CN(ﬂ).F(N) by hypothesis (5).
Let R* = ZJ(CR(T)) and suppose that CN(R*) % F(N).
Then by lemma 4.9, for some prime t |N/F(N) |,
Ix € Cpop(m) - F(N) such that r||CG(x)|, where T

T

is the A-invariant Sylow t-subgroup of G.

But by hypothesis (6), CG(X) < H so tﬁat r||H , a
contradiction.

Thus CN(R*) < F(N).
It then follows from lemma 4.10 that CG(T) has a normal

r-complement.

Thus we may assume w.l.o.g. that RT = CR(T) normalizes
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Q. = CQ(T), since R_ and Q_ are Sylow subgroups of
CG(T) by [22]., theorem 4.3.

~

Let 0 =C (QT)'

Q
Then 2Z(Q) < Q, so NG(é) < H Dby lemma 4.7.
But O is a Sylow g-subgroup of C.(Q ) by lemma 4.8,

so by [{9], theorem 1.3.7,
N.(Q.) = (N, () N NG(Q».CG(QT).

< < .
Now R_ < N,(Q) and r 4 |H], so R_<C, Q)
Suppose first that R contains an A-invariant

subgroup W = Erq and take x € C )(T).

z(R
Then by hypothesis (6), CN(x) = F(N) .
Now R is a Sylow r-subgroup of CG(x) and

N = N,(23(R)) .

So N(zJ(R)) h CG(X) = F(N) has a normal r-complement.
Thus by [5], theorem D, CG(x) has a normal r-complement.
Let Q* be an <R, T>-invariant Sylow q-subgroup of

CG(x) and suppose w.l.o.g. that C_ < Q*.

Then W N RT centralizes QT, so by lemma 1.15 3 an
A-invariant subgroup W, of W such that CQ*(WO) # 1.
Let NG(WO) < K, a maximal A-invariant subgroup of G.
since r f |#| and q f [M|], K#H or M.

Thus by hypothesis (5), K = CK(W).F(K).

Since 7w acts f.p.f. on R we must have R < F(K) and

hence K = N.

Thus CQ*(WO) < N and centralizes X.
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But then CQ*(Wo) < CN(x) = F(N), contradicting hypothesis
(5).

Thus R cannot contain an A-invariant subgroup W = Erq.
It follows from lemma 1.18 that R - Z(R) contains no
clement of order r, and since |9,(2(R))]| =1r® R,
must be cyclic.

Let R, = <r,> = QI(RT). Then @,(Z(R)) = <r2,rg> i

If the Sylow r-subgroup of CG(QT) is not cyclic, we
must have ,(Z(R)) < CG(QT)'

But then QT < CG(Q1(Z(R))) < N, vyielding a contradiction
as above.

So CG(QT)r is cyclic, and since R, < CG(QT) we

have R_ = CG(QT)r'

By [9], theorem 1.3.7, N.(R,) (N, (R,) N N, (R)).C,(R,)

NN(RZ).CG(RZ).

Clearly F(N) < NN(RZ), and if y € CN(W) normalizes
R, we must have R, < CG(Y) since T inverts y and
centralizes R,.

But then R, < H by hypothesis (4), a contradiction.
so N (R,) = F(N) and hence Ny (R,) = C4(R,).

let t # r be a prime dividing |C,(Q)|.

Then (CG(QT) n N(RT))t is an r'-group of automorphisms
of RT and hence of R, = Qx(RT)‘

So (CG(QT) n N(Rr))t centralizes QI(RT), and hence

centralizes RT by [9], theorem 5.2.4.

Since RT is an abelian Sylow r-subgroup of CG(QT),
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this yields R_ < Z(CG(QT) n N(RT)) so that by [9],
theorem 7.4.3, CG(QT) has a normal r-complement.
Thus RT normalizes a Sylow g-subgroup of CG(QT)'
and since é ='CQ(QT) is a Sylow g-subgroup of
C,(Q,) Dby lemma 4.8, r||NG(6)|.

But NG(é) < H by lemma 4.7, so rf|H].

This contradiction completes the proof. O

We show in the next six lemmas that the hypotheses
(1) to (6) of lemma 6.1 hold for a maximal A-invariant

subgroup H of G such that 1 #Z P N F(H) <P NH=P.

LEMMA 6.2 TLet p be a prime dividing |G|, P the
A-invariant Sylow p-subgroup of G and M = NG(P).
Suppose I a maximal A-invariant subgraup H of

G such that 1 # P0 =P N FH <PNH-=P.

Then = acts f.p.f. on M/F(M).

PROOF

By lemma 4.4, P is abelian and P, < Z (H) .
Thus F (M) < CG(Po) < H, so by lemma 4.2, HN M= F(M).
And by lemma 4.3, F(M) is abelian, H = F(H) .F(M),
Z(H) = F(H) n F(M) and F(H) = 2(H) x H, where
(|H, |, |[F(M) ) = 1.
Suppose 3x € M - F(M) such that x € CG(n).
If CZ(H)(N) #1, X € CG(CZ(H)(ﬂ)) = H and so

x EENM= F(M), a contradiction. Thus CZ(H)(W) = 1.
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Let Q be an A-invariant Sylow g-subgroup of F(H)
for some prime gq such that g A |FM)| (such a
subgroup must exist or else F(H) < Z(H), contradicting
[9], theorem 6.1.3).
Suppose first that CZ(Q)(N) = 1.
Iif CF(M)(“) =1, [2(Q),F(M)] =1 and then 2(Q) < Z(H),
a contradiction.
So CF(M)(H) # 1 and hence CG(n) <M by lemma 4.2.
It follows that CQ(ﬂ) =1 and CF(H)(W) = wil s
Hence T centralizes H/F(H) by lemma 1.19.
But then P, = [P,<7>] is normalized by CM(ﬂ), s0
X € CM(H) < H, a contradiction.
Hence we may assume that CZ(Q)(H) # 1.
Suppose Iy € CF(M)(ﬂ) with y # 1.
Then y £ 2(H) since CZ(H)(H) = 1, so that F(H) < F(H).<y>
< CG(CZ(Q)(n)).
It follows from lemma 4.2 that CG(CZ(Q)(H)) < H, and
in particular CG(ﬂ) < H.
But then <x>.F(M) < M n H, contradicting the same lemma.
So CF(M)(ﬂ) - 1 and therefore M/F(M) is centralized by .
Take vy € CZ(Q)(N) and suppose CG(y) < M* where M*
is a maximal A-invariant subgroup of G.
Then clearly M* # M and M* # H.
But F(H) < M*, so by lemma 4.3 M* = F(H) .F(M*).
Now if Z(H) < F(M) n M*, F(H) < M* n H since
z(H) = F(M) n F(H).

Thus F(M) n M* = Z(H).
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Let s be a prime dividing |IM/F(M) | and S the

A_invariant Sylow s-subgroup of G. Then CsnM(ﬂ) # 1.

Thus [Z(H),CsnM(w)] < F(M) N M* = Z(H).

Hence CsnM(ﬂ} < H and so F(M) < M n H, a contradiction.
It follows that m acts f.p.f. on M/F(M) by

[9], theorem 6.2.2(iv). O

LEMMA 6.3 ©Let p be a prime dividing lc|, P the
A_invariant Sylow p-subgroup of G and M = NG(P).
Suppose 3 a maximal A-invariant subgroup H of G
such that 1 # Po =pPnFH) <P NH=P.

Then |F(M)| and |M/F(M)| are coprime.

PROOF

Suppose that 3 a prime s such that
1#sSn0nFM <sNM=S where S is the A-invariant
Sylow s-subgroup of G. Let M* = NG(S).

Then by lemma 6.2 m acts f.p.f. on M*/F(M*) and by
lemmas 4.2, 4.3 and 4.4 M = F(M*) .F(M) .

Thus (r) # 1, and since T acts f.p.f. on

Cp(u*)
M/F(M) and F(M*) n F(M) = 7z(M) by lemma 4.3 we must
have CZ(M)(“) #Z 1.

Thus CG(W) < F(M).

It follows that 1m must act f.p.f. on Hy where H,
is the A-invariant complement of Zz(d) in F(H).
Suppose that 1m doesn't centralize H/F(H).

Since F(M) is abelian, 3 an A-invariant subgroup

vy < F(M) such that Y ¥ Z(H) and CY(ﬂ) = 1.
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But then Y centralizes H, by lemma 1.2(4), and so
Y centralizes H,.Z(H) = F(H), contradicting [9],
theorem 6.1.3.

Hence 1 centralizes H/F(H), and it follows that
CZ(H)(H) # Z(H) or else F(M) = CG(W), contradicting

lemma 4.5.

Clearly P_ = c_(t) < z(H), so if gq 1is a prime

P
dividing |H,] and O is the A-invariant Sylow
- <
g-subgroup of H;, Q CG(PT)'
Thus by [9], theorem 1.3.7, NG(PT) = NNG(PT)(Q)'CG(PT)
= H'CG(PT) = CG(PT).

Since S 1is abelian by lemma 4.4, we can take an

A~invariant subgroup Y, = ZS X Zs of S such that

Y, % F(M) and CYl(ﬂ) = 1.

Let Y, = <y,yﬂ> where y € CS(T).
2
Then P* = CP(y) X CP(yﬂ) X CP(y1T ) is a <Y1,A>—invariant

p-group.

Clearly y normalizes PT, SO PT < CP(y).

2
But then for x € PT, 1 # xx"x" is centralized by A.

This contradiction completes the proof. O

LEMMA 6.4 Let p be a prime dividing lc|, P the
A-invariant Sylow p-subgroup of G and M = NG(P)’
Suppose 3 a maximal A-invariant subgroup H of G
such that 1 # P, = P N F(H) < P N H=P.

Then CG(ﬂ) £ M.
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Suppose to the contrary that CG(W) < M.
Then CG(n) < F(M) by lemma 6.2.
et r be a prime dividing |IM/F(M) |, R the A-
invariant Sylow r-subgroup of G, M* = NG(R) and
R1 = R N M.
Then clearly = acts f.p.f. on R.
since F(M) is an abelian Hall subgroup of G, it
follows that if F(M) n F(M*) # 1 then F(M) < M*.
But then RI.F(M) < M N M*, contradicting lemma 4.2.
So F(M) n F(M*) = 1.
In particular, 7 acts f.p.f. on F(M*) and so
centralizes M*/F(M*).
Thus [CM*(N),RI] < F(M) n R = 1.
Let NG(Rl) < N where N 1is a maximal A-invariant
subgroup of G and suppose that N # M*.
Let M = M,.F(M) where M; 1is the A-invariant Hall
subgroup of M such that M, 0 F(M) = 1.
Then M, is abelian by theorem 1.11, so M, < N.
1f r||F(¥)|, we must have 1 # RN F(N) < RN N = R.
But then R is abelian by lemma 4.4 and so R, < z2(M*).
It follows that NG(RI) = M*, a contradiction.
Hence we may assume that r f |F(N)].
Since m acts f.p.f. on R, 3 a prime s||F(N) |

such that C N)(Tr) # 1 where S 1is the A-invariant

sNF (
Sylow s-subgroup of G.

Hence S < F(M), so 1 # S n F(N) <S80 N = S.
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But then F(M) < CG(S n F(N)) < N, so M = Ml.F(M) < N,
a contradiction.

Thus we must have NG(R1) < M* = NG(R).

Thus [Cp, (). M, ] < F(M) N F(M*) = 1, so Cylm
centralizes M .F(M) =M i.e. CM*(W) < z(M).
Let v be a prime dividing \CM*(ﬂ)l and V the

A—invariant Sylow v-subgroup of G.

Then V < F(M) and so V 1s abelian.

since V N z(M) # 1, by [9], theorem 7.4.4(ii) M # 0" (M) .
But then by [5]1, Corollary 2.2, G # 0V (G).

This contradiction completes the proof. g

LEMMA 6.5 ©Let p be a prime dividing lc|, P the
A-invariant Sylow p-subgroup of G and M = NG(P).
Suppose 3 a maximal A-invariant subgroup H of G
such that 1 # P, =P n F(H) < P NH-=P.

Then w.l.0.g. CG(ﬂ) < H.

PROOF

Suppose that CG(ﬂ) £ H, so that CZ(H)(ﬂ) = 1.

Choose x € C (m). Then CG(x) < H* for some maximal

F(M)
A—invariant subgroup H* of G.

Clearly CG(W) and F(M) are contained in H¥*, 80O
H* # H Dby hypothesis and H* # M by lemma 6.4.

By lemma 4.3, H* = F(M) .F(H*).

Suppose that F(M) N F(H*) = 1.

Then F(H*) is a Hall subgroup of G.
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Now choose minimal A-invariant subgroups X < CF(M)(W)
and Y < Z(H).

* =
If Cpgsy(Y) #1, F(H*) N H# 1. But H H, .F (M) where

F(H) = H X Z(H) and (rHol,lz(H)l) =1, so F(H*) n H .# 1.

Since H, 1is a Hall subgroup of G by lemma 4.3, it
follows that H = H*. Thus CF(H*)(Y) = 1.
Now by lemma 1.1l4(c), X must centralize F(H*),

contradicting (9], theorem 6.1.3.

Thus F(M) N F(H*) # 1, so 3 a prime t such that

M = NG(T) where T is the A-invariant Sylow t-subgroup
of G and 1 # T N F(H*) < T N H* = T.

W.l.o.g., we may take t = p and H* = H. a

LEMMA 6.6 Let p be a prime dividing |G|, P the
A-invariant Sylow p-subgroup of G and M = NG(P).
Suppose 3 a maximal A-invariant subgroup H of G
such that 1 # P, =P F(H) < PN H=P.

Let K be a maximal A-invariant subgroup of G such

that K #H or M. Then 1w acts f.p.f. on F(K),

K = C(m.F(K) and (|[F(K) |, |H,|) =1 where F(H) = H x Z(H).

PROOF

If (|F(K)|,|H|]) = 1, the result follows
immediately from lemma 6.5.
So we may assume that (|F(K)|,|H[]) # 1.
Suppose first that 3 a prime qf(|F(K)|,|H;]) and let
Q be the A-invariant Sylow g-subgroup of G.

Then Q < H and so 1 #ZQ N F(K) <Q N K =29Q.

0
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Thus by lemma 6.3, |F(H)| and |H/F(H) | are coprime,

a contradiction.

Hence (|F(K)|,[H |) =1 so that F(K) N H < F(M).

Let t be a prime dividing ([F(K) |, |F(M) |) and let

T be the A-invariant Sylow t-subgroup of G.

Then T < F(M) by lemma 6.3, so 1 #TnF(EK) <TnK-=T.
Thus by lemmas 4.3 and 4.4, K = F(M) .F(K) and

Z(K) = F(M) N F(K) .

If CZ(K)(W) #1, CG(H) < K.

But then by lemmas 6.4 and 6.5, H, n F(K) # 1, a

contradiction.

So cZ(K)(ﬂ) =1, andciearlyw:Ko(ﬂ) = 1 where K, 6 1is

the A-invariant complement of 7Z(K) in F(K).

Hence CF(K)(ﬂ) =1 and so 1 centralizes K/F(K) Dby
lemma 1.19. ‘ O
LEMMA 6.7 Let p Dbe a prime dividing |c|. P the

A-invariant Sylow p-subgroup of G and M = NG(P).
Suppose 31 a maximal A-invariant subgroup H of G
such that 1 # P, =P n F(H) < PnH="P. Then

¥x € CG(ﬁ) such that x # 1, CG(x) < H.

PROOF

et g be a prime dividing lCG(ﬂ)l and let Q
be the A-invariant Sylow g-subgroup of G. Choose
1 # x € Cy(m) and let F(H) = H x z(H) where (IH | ,1Z(H)I)
Suppose first that Q < H, and that CG(x) < H*, a

maximal A-invariant subgroup of G different from H.
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If 1 #0Q N F(H*) < QN H* =Q, by lemma 6.3 | F(H) |

and |H/F(H)| are coprime, a contradiction.

Hence Q N F(H*) = 1.

Now H* # H,M so by lemma 6.6 m acts f.p.f. on F(H*)
and T centralizes H*/F(H*).

In particular w centralizes Q 0 H* e

But CQ(W) < CQ(CQ(H)) < CQ(x) by lemmas 1.16 and 4.5,

a contradiction.

Suppose next that Q < F(M).

Then F(M) < CG(x), so if CG(x) < H* for some maximal
A-invariant subgroup H* of G we have H* = F(M) .F(H*)

by lemma 4.3 (H* # M since 1 # C 0(Tr) < CG(x)).

H

since 1 # Cy (m) < H* and (|H,|,|FM)|) =1 by lemma

H

4.3, we must have H; n F(H*) # 1.
It follows that H* = H, so that CG(X) < H. The result

follows. O

We can now derive the main intermediate result of

this chapter.

LEMMA 6.8 ©Let p be a prime dividing |G|, P the
A-invariant Sylow p-subgroup of G and M = NG(P).
If H 1is a maximal A-invariant subgroup of G such

that H# M and p||H| then P N F(H) = 1.

PROOF

Suppose that P, = P n F(H) # 1, so that

P, <PNH=P by the results of chapter five.
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Then the hypotheses (1) to (6) of lemma 6.1 hold by
lemmas 6.2 to 6.7 respectively, and since P, < Z(H)
by lemma 4.2 we have F(M) < H.

But then lemma 6.1 yields a contradiction, completing

the proof. O

our results thus far show that for any maximal
A-invariant subgroup H of a minimal counter-example
G, F(H) is a Hall subgroup of G. We analyze this
situation in the second half of this chapter to ultimately

derive a proof of theorem II.

LEMMA 6.9 Let H be a maximal A-invariant subgroup
of G and let H = H .F(H) where H, is an A-invariant
subgroup of H such that (lg,], |F®E|) =1. If K

is a maximal A-invariant subgroup of G, K # H, then

[H1 n K, F(H) n K] = 1.

PROOF

By theorem 1.11, [H, 0 K, F(H) n K] < F(H) n F(K) = 1.0

LEMMA 6.10 Let H be a maximal A-invariant subgroup

of G and let H = Hl.F(H) where H, is an A-invariant
subgroup of H such that (|g,], |F@E)|) = 1. Suppose

that 1 # C_. (m) < H,.

Hi
Then if Y is any minimal A-invariant subgroup of H,,

<
CG(Y) H.

PROOF

Suppose H, contains a minimal A-invariant
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subgroup Y with CG(Y) £ H, and let K be a maximal
A-invariant subgroup of G containing CG(Y).
et p be a prime dividing |F(H)| and let P be

the A-invariant Sylow p-subgroup of G.

Then by [9], theorem 5.2.3, P/®(P) = cP/@(P)(Y) x [p/®(P),Y].

Now choose a minimal A-invariant subgroup X of H,
such that [X,<m>] = X 1if Y < CG(ﬁ) and X < CG(W)
if [Y,<m>] =Y.

Since H, 1is abelian, H, < CG(Y) < K.

Thus [Hl,CP(Y)] =1 by lemma 6.9.

In particular [X,CP(Y)] =1, so that X centralizes
CP/@(P)(Y) = CP(Y)Q(P)/Q(P).

But X centralizes [P/®(P), Y] Dby lemma 1.14, so X
centralizes P/®(P).

Hence by [9], theorem 5.1.4, X centralizes P.

It follows that X centralizes F(H), contradicting

[9], theorem 6.1.3. O

COROLLARY 6.11 Let H be a maximal A-invariant

subgroup of G and let H = H,.F(H) where H, is an
A-invariant subgroup of H such that (|H |, [F(H)]) = 1.
Suppose that 1 # Cy (m) < H,.

1

Then H, is a Hall subgroup of G and CG(ﬂ) < H.

PROOF

Let r Dbe a prime dividing |H,|, and let Y
be a minimal A-invariant r-subgroup of H,;. Let R

be the A-invariant Sylow r-subgroup of G.
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Then by lemma 6.10, Z(R) < CG(Y) < H.

But then if W is a minimal A-invariant subgroup

of Z(R), R < CG(W) < H by lemma 6.10.

It follows that H, is a Hall subgroup of G.

Since C 1(Tr) # 1, it follows at once from lemma 6.10

H
that CG(W) < H. 0

LEMMA 6.12 Let H Dbe a maximal A-invariant subgroup

of G and let H = H .F(H) where H, 1is an A-invariant

subgroup of H such that (lg, |, |r@E[) = 1.

Then either w centralizes H, or T acts £.p.f. on

Suppose that 1 # CHl(w) < H,.
Let r be a prime dividing |H,|, R the A-invariant
Sylow r-subgroup of G and M = NG(R).
We show that the hypotheses (1) to (6) of lemma 6.1 hold
for M and H.
Let M = M,.F(M) where M, is an A-invariant subgroup
of M such that (|M,|,|F(M][) = 1.
Hypothesis (2) holds trivially.

If 7w centralizes M M, < H by corollary 6.10.

ll
Hence [M,,R] =1 by lemma 6.9, so that R < Z(M).
But then G has a normal r-complement by [9], theorem

7.4.3, a contradiction.

If 1 # CMl(ﬂ) < M,, by corollary 6.11 M, is a Hall
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subgroup of G and CG(ﬂ) < M.

Since 1 # CHl(n) < H, CF(H)(N) # 1.

Hence 3 a prime p||F(H)| such that CP(ﬂ) # 1
where P is the A-invariant Sylow p-subgroup of G.
But then p||M|, so that P < M.

Since H. <M, we have [H,,P] =1 by lemma 6.9.

1

But then P < Z(H), yielding a contradiction as above.
Hence 1w acts f.p.f. on M,, so that (1) holds.

Now by lemma 6.10, CG(R) < H so F(M) s H.

and since H, < M we must have H, = F(M).

Thus F(M) < H i

1
Clearly if K 1is any maximal A-invariant subgroup

of G different from H and M, wm must act f.p.f. on

F(K) and so must centralize K/F(K). And (|F(x) |, |F®@|) =1

since F(K) and F(H) are Hall subgroups of G. Hence

(5) holds. CG(ﬂ) < H by corollary 6.11, and since

1 #C )(ﬂ) # 1 and so

H CF(H
CG(ﬂ) £ M. Thus (3) and (4) also hold.

(m) < H —we must have
1

Finally, let t be a prime dividing |H| and let T

be the A-invariant Sylow t-subgroup of G.

We shcow that Vx € CT(w) such that x # 1, CG(x) < H.

If T < F(M) = H,, the result follows from lemma 6.10.
So we may assume that T < F(H) .

Let X € CT(H) such that x # 1 and suppose that CG(x) % H.
Let K be a maximal A-invariant subgroup of G
containing CG(x).

Then K # H, so T ¥ F(K).

Hence T centralizes T N K.
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But CT(ﬂ) < CT(CT(W)) < CG(x) < K by lemmas 1.16
and 4.5.

This contradiction proves that CG(x) < H, and it

follows that (6) holds as well.

Thus all of the hypotheses of lemma 6.1 hold for M

and H, yielding a contradiction which completes the

proof. [

LEMMA 6.13 Let H be a maximal A-invariant subgroup

of G containing CG(W).

Let H = Hl.F(H) where H, 1is an A-invariant subgroup

of H such that (|H,|,|F(#)|) = 1. Then 7 centralizes
Hl.
PROOF

Suppose that m doesn't centralize H,, 8O

that by lemma 6.12 m acts f.p.f. on H,.
Thus CG(N) < FP(H), so that if K 1is a maximal
A-invariant subgroup of G different from H, m must
act f.p.f. on F(K) and nm must centralize K/F(K)
by lemma 1.19.

. Choose a prime q dividing |[H,|, let Q be
the A-invariant Sylow q-subgroup of G and let
K = NG(Q)'
Since T acts f.p.f. on Q, we must have NG(H1 n Q) <K
and in particular H,; < K.

Let K = Kl.F(K) where K, 1is an A-invariant subgroup

of K such that (|K,|,|F(K)]) = 1. Clearly K; < F(H).



1f Q < C,(K,), O0%(K) # K and hence o%(e) # G
[5]1, Corollary 2.2.

Thus Q % C,(K ).
Choose a prime p dividing |k, | such that [P 0
where P is the A-invariant Sylow p-subgroup of
By [9], theorem 7.5.2, QNG =0nHK'.
Thus Q = Q N [K, K] = [K 0,Q].

Let 0 = 0/z(Q) and K, = K,2(Q)/2(Q).
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by

K,,0] # 1

G.

Now it follows from (2], section 66, that Q has class

e
Q] = Q.

< 2 and so [Q,01 =
= [
Hence Cp(K,) =2(Q) i.e. C (K,) < z(Q) .
Thus by lemma 6.9 H, N Q < z(Q) .

z(Q
K,Q,

ot

Therefore [Rl,é

Now take Xx, € H, n Q such that xf = X,

and X, has order (.

m , . .
Then Q* = <x,,X,> 1§ an A-invariant subgroup of

Z(K) of order q?.

Let P* = CP(xl).

We show first that K, N P < P*.

lLet P =P/P".

Then by [91, theorem 5.2.3, B = cp(Q*) ~ [P,Q*].
Clearly CP(Q*) = K, N P, and as in the proof of
lemma 1.14 we have, w.l.o0.g., C[ﬁ,Q*](xl) # 1.

It then follows from [9], theorem 6.2.2(iv) that

Ky

np < CP(xl) = P*.
We prove next that P* is inverted by T.

Let [P,0Q*] = 52.
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2

x C= (x" )

m
) Py 1

i is an A-invariant

- X —
Then CPZ(xl) CPZ(X

subgroup of P, and if y € Cﬁz(x1) is centralized
by T. §§ﬂ§nz is centralized by A, a contradiction.
Since Cﬁz(x1) is t—invariant, it follows that it must
be inverted by T.
As CG(Q*) < K, CP(Q*) <PN Kl. Thus ClS(Q*) is
inverted by T, so that Cﬁ(x1) = C§(Q*) X CFz(xl)
is inverted by T.
Now by applying the same argument to each factor of the
derived series of P and then applying [9], theorem
6.2.2(iv) to each in turn in the reverse order we have
that CP(xl) is inverted by T.
Hence P* 1is abelian.
Now CP(P*) is a Sylow p-subgroup of CG(P*) by
lemma 4.8, so by [9], theorem 1.3.7,
N, (P*) = N, (P*) 0 N(CP(P*)).CG(P*).
But 2(pP) < CP(P*), so N(CP(P*)) < H by lemma 4.7.
Now CG(P*) < CG(x) for x € K, NP, and since
CP(x) > CP(CP(W)) > CP(ﬂ) by lemma 1.16, CG(x) < H
by lemma 6.12.

Thus NG(P*) < H.
If P, is a Sylow p-subgroup of CG(xl) containing
p*, the same argument as above yields NG(PI) < H so
that P1 < P.

Thus P = p* ji.e. P* 1is a Sylow p-subgroup of CG(X1)'

= *
Let N NG(P ) N CG(Xl)'
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Then H, < N so P* N Z(N) centralizes H

Lo

Hence P* N Z(N) < K,.

But [P* n K,,H;] = 1 by lemma 6.9, and since P* is

an abelian Sylow p-subgroup of N, P* n K, < Z(N) .
Thus P* N Z(N) = P* N K,.

Thus by [9], theorem 7.4.4(ii), 3 a subgroup Y, of

CG(X1) such that CG(xl)

(P* N K)).Y,.

Repeating this argument for all prime divisors of |K,]|.
we get CG(xl) = K,.Y where Y d CG(xl) and Y N K, =1.
Now N(2J(Q)) n Y = F(K) has a normal g-complement,

so by [5], theorem D, Y has a normal g-complement.
Hence by [9], theorem 6.2.2(i), Y contains a Q-
invariant Sylow p-subgroup P,.

Then by [9]. theorem 1.3.7, NCG(xl)(Po) B NK(PO).NY(PO).

Now NC (P,) contains a Sylow p-subgroup of

olxy)
CG(xl) and P N K, 1is a Sylow p-subgroup of K

contained in CG(xl).

Since NK(PD) covers NCG(xl)(PO)/NY(PO)’ it follows

that 3y € K such that (P n K,)Y <N (p,).

CG(xl)
Thus (P N K )Y. P is a Sylow p-subgroup of N (Py) -
1 0 CG(xl)

-1
Now CP(XI) is abelian, so [P N KI,PZ ] = 1.

Since O normalizes P, and y € K =N.(Q), Q

-1
normalizes Pf .

Let P = P%_l.

Then ([[K, n P,P],0l = [1,0] =1 and

([P,0],k, n P] < [P,K, nP] =1.

Thus by [9], theorem 2.2.3, [k, N P,Q],E] = 1.

But by assumption Q, = [K, N P,Q] # 1, so P < CG(Qo)-
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Now if NG(QO) <H Q,<H N9Q<1z(Q and then
PN KI.F(K) < H, contradicting lemma 4.2.
Hence NG(QO) £ H, and so we must have NG(QO) < K

since T centralizes T/F(T) for every maximal A-

invariant subgroup T # H.

In particular P < K and hence P, < K and CP(xl) =P N K,.

0

This contradiction completes the proof. O

LEMMA 6.14 CG(T) is nilpotent.

PROOF

Let t be a prime dividing |G|, T the A-

invariant Sylow t-subgroup of G and M

where M, 1is the A-invariant complement of F(M) in

If CF(M

Oon the other hand if CQ(W) # 1 for some A-invariant

Sylow g-subgroup Q of G contained in F(M), teke
€ C .

X Q(Tr)

Then by lemma 1.16 CQ(n) < CQ(x), so it follows from

lemma 6.12 that C,(x) < N,(Q) = M.

Hence CG(W) < M, so by lemma 6.13 we again have that
M, 1is centralized by .

Let T* = ZJ(CT(T)) and suppose that CM(T*) £ F(M) .
Then by lemma 4.9(1), for some prime p dividing |M1|
3x € M, N P such that tl|CG(x)l where P is the A-
invariant Sylow p-subgroup of G.

It follows from lemmas 1.16 and 6.12 that CG(x) < NG(P)

and so by lemma 4.9(2) we have 1 # C
TNN (

NG(T) = M, .F(M)

M.

)(ﬂ) =1, 7 must centralize M, by lemma 1.2(4).

P)(ﬂ) Z T N NG(P).
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Thus by lemma 6.12 T < F(NG(P)) i.e. NG(P) = M.

This contradiction yields that CM(T*) < F(M).

Now by lemma 4.10 CG(T) has a normal t-complement,
and since t was arbitrary it follows that CG(T)

is nilpotent. ]

We are now in a position to complete the

PROOF OF THEOREM TII

Let H be a maximal A-invariant subgroup of
G containing CG(ﬂ).

Let H = H .F(H) where H is an A-invariant subgroup

1
of H such that (|H |,|F(H)]|) = 1.

Then by lemma 6.13, 1m centralizes H,.

Let g be a prime dividing |H,|, Q the A-invariant
Sylow gqg-subgroup of G and K = NG(Q).

Let K = K,.F(K) where K, 1is an A-invariant subgroup
of K such that (|K,|,|F(K)|) = 1.

Clearly Q N H, = CQ(H), so by lemmas 1.16 and 6.12 we
must have NG(Q n H,) < K.

It follows that CG(W) < K, so that K, 1is centralized
by 7 by lemma 6.13.

Suppose that for some prime t]||H,|, T n H, is non-cyclic
where T is the A-invariant Sylow t-subgroup of G.
Then by [9], theorem 5.3.16, applied to each Sylow

subgroup of F(H) we obtain F(H) CF(H)(X).

B Il
x€TNH,
But by lemmas 1.16 and 6.13 CG(X) <K Vx € TnNH, so

that F(H) < K, a contradiction.
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It follows that H, is cyclic, and similarly K,; 1is

cyclic.
Hence CG(W) is cyclic.
Let p be a prime dividing |K,|, P the A-invariant

Sylow p-subgroup of G and assume w.l.o.g. that
H = NG(P).
Choose a € CP(T) and suppose that CH(a) £ F(H) .
Then by lemma 4.9(1), for some prime s||H | 3x € S N H,
such that p||CG(x)| where S is the A-invariant
Sylow s-subgroup of G.
It follows from lemmas 1.16 and 6.12 that CG(x) < NG(S)
and from lemmas 4.9(2) and 6.12 that NG(S) = H, a
contradiction.

Thus CH(a) < F(H).
Let P, = CP(a). Then P, is a Sylow p-subgroup of
CG(a) by lemma 4.8.
As Z(P) < zJ(P,). NG(ZJ(PZ)) < H Dby lemma 4.7.
Thus NG(ZJ(Pz)) n CG(a) < F(H) and so has a normal
p-complement.
Hence by [5], theorem D, CG(a) has a normal p-complement.
By the symmetric argument we also have that CG(b) has
a normal g-complement Vb € CQ(T).
Now suppose that P contains a characteristic non-cyclic
abelian subgroup W.
Then W = Cw(ﬂ) x [W,<m>] and since CG(W) is cyclic

(W,<m>] # 1.



140.

If |Q,([w,<r>1)]| = p*, [W,<m>] contains an A-invariant
subgroup E* = qu.

Take x € CW(T), so that E* < CG(x) and E* normalizes
a Sylow g-subgroup Q0 #1 of CG(x) (CQ(T) < CG(x)

by lemma 6.14).

Then by lemma 1.15, CQ(PO) # 1 for some A-invariant
subgroup P, of E¥*.

Since m acts f.p.f. on P, we must have CG(PO) < H.
But CQ(PO) < CG(x) and as CH(x) = -F(H) we must have
CQ(Po) < F(H), a contradiction.

Hence |Q,([wW,<m>])| = p* and as H, N Q acts f.p.f.

on , ([W,<m>]) we have alp? - 1.

Now if Q also contains a characteristic non-cyclic
abelian subgroup we have p]q2 -1, a contradiction.
Hence we may assume w.l.o.g. that P does not contain

a characteristic non-cyclic abelian subgroup, and that
either Q does not contain such a subgroup either or
that plg? - 1.

In particular, Z(P) 1is cyclic.

Thus by [9], theorem 5.4.9, P 1is the central product

of an extra-special group E and a cyclic group R.
Clearly R < Z(P) and so R 1is A-invariant.

Thus we may assume w.l.o.g. that E is also A-invariant.

Now E/Z(E) E = CE(W) x [E,<m>].

It

Since H, N Q acts f.p.f. on [E, <m>], if |[E,<ﬂ>]| =p

1

we have ql|p? - 1.

Thus by lemma 1.3 we may assume w.l.o.g. that I[E,<ﬂ>]l Z p

2

"
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But now it follows as in the proof of (9], theorem 5.5.2,
that E is the central product of non-abelian groups

of the type <y, v, z> where v € CP(T) and <z> = Z(E).

Thus CP(V) is non—abgllan, and so 3y € CCP(V)(T)
such that y £ Z(CP(V)).

Now y has p conjugates in P, and hence in CP(v).
As <y,z> d CP(V), the conjugates of y are contained

in <y.,z>.

Now CP(V) is a Sylow p-subgroup of CG(V) by lemma
4.8, and since CG(V) has a normal p-complement we
can select a Sylow g-subgroup Q of CG(V) which is
invariant under <CP(V),T> py [9]1, theorem 6.2.2(1) .
Let 1 =2, <2, < ... < Z, = 6 be the upper central

series of 0O, and let i be the least integer such

that Zi+1 is not inverted by T.
Then Zi is inverted by 1, and since 2 normalizes
Zi and 2z is inverted by T, 2 centralizes Zi'

Hence 7. < C.(z) < H.
i G

Now CZi+1(T) # 1, so clearly Zi+1 £ H.

Since Zi+1/Zi = CZi+1/Zi (z) x [z, Zi+1/zi] by [9].

theorem 5.2.3, and C, (z) < H, it follows that
“i41

w /2, = Lz, 2., /2] # Z;-

Since y normalizes W /Z., W,/Z; = CWo/Zi(Y) x [y, W,/2;]
by the same theorem.
If y centralizes Wo/Zi, so will each conjugate of ¥y

in CP(v).
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But then <y,z> centralizes Wo/zi' a contradiction.
Hence [y, Wo/Zi] # Z, -

Now [y, Wo/zi] is invariant under <71,2z> and since
z acts f.p.f. on WO/Z-i we have C[y, Wo/Zi](T) # 1
by [9], theorem 5.3.14(iii).

Since 6 is Tt-invariant, by [9], theorem 6.2.2,

Ja € CG(T) such that CQ(T)a < Q.

But CQ(T)G = CQ(T) by lemma 6.14.

< = .
Thus CWO(T) CQ(T), so that [y, Cwo/Zi i

so that C
[y

Hence (1) < ¢C

c .
W, /%3 Wy /2y Y

This contradiction completes the proof. O
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ERRATA SHEET

For 'klein-four group' read

'Klein four-group'
For 'OP(G)' read 'G/OP(G)'
Add '(see [9], theorem 10.1.5)"

Include in the hypothesis that

|Gl is coprime to 6

For 'xP N H' read "x(P N H)'

For 'lemma 1.14' read 'lemma 1.20°'
For 'or' read 'of'

Add XO # 1

For 'A' in the proof of the lemma

read 'D'

Include in the hypothesis that |[K|

is coprime to 6
For ‘'lamma' read 'lemma’
For x read x

For x read x





