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Synopsis

For realistic modeling of a groundwater system, to problems namely: (1) the forward
problem (simulation) and (2) the inverse problem (calibration) must be solved. The
forward problem predicts the unknown system states given the known system parameters
and . boundary conditions. The inverse problem determines the unknown physical
parameters of the system by fitting observed system states. The inverse probléem must first
be solved to determine the appropriate model structure and model parameters in order to
obtain reliable results from the forward solution. Solution of an inverse problem or a
management decision problem requires the use of optimisation techniques. For the past
two decades, the techniques that have been used for such problems have been blocked by
several inherent difficulties. Firstly the solution of the inverse problem may be nonunique
and unstable as a result of observation errors. Secondly, the quality and quantity of
observation data are insufficient. Thirdly, the model structure error which is difficult to
estimate, dominates other errors. Within the inverse model itself, the computation of
derivatives as required by the gradient-based techniques also introduce the problem of ill-

conditioning and instability for highly nonlinear problems and very sensitive parameters.

The present research study was initiated with the objective of using evolutionary
techniques instead of the gradient-based methods to solve the optimisation problems
embodied in both management and inverse models. The research study was completed in
two phases. The work accomplished during the first phase of the study included the
development of an inverse model for the identification of groundwater flow and solute
transport parameters through the use of the shuffled complex evolutionary technique with
finite element models developed to solve two- and three-dimensional problems. The
resulting inverse model was tested extensively with field pumping test, synthesised data

and corrupted synthesised data. The results of the test indicated that the shuffled complex
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evolutionary technique of optimisation was robust, efficient, and effective, and could serve
as a useful alternative to the more traditional gradient-based methods. The attractiveness
of the technique lies in the fact that it performs its search without the need for
computation of derivatives; a feature that makes the shuffled complex evolution superior
to the gradient-based methods in the event of highly nonlinear problems and parameter
sensitivity and. interaction. A critical test carried out to investigate the weakness of the
shuffled complex evolutionary technique indicated that the population of points in the
search space must be well selected in order to achieve a more reliable and cost effective

solution.

The second phase of the research study was the development of management- de01510n
model for the optimisation of pollutant extraction from contaminated aquifers usmg the
genetic algorithm evolutionary technique. Once again, this optimisation technique was
linked with a finite element numerical model. An additional technique developed and
incorporated into the standard genetic algorithm model was a time-variation approach that
allowed the location and numbers of pumping rates to vary as the contaminant plume
- moves along with time. This precaution was taken to avoid redundancy of extraction wells
(an hence excessive remedial costs) as the plumes move away from their original location
with the progress of time during the forward simulation process. A theoretical analysis
using both the standard genetic algorithm and the time-variation technique indicated that
the latter was more efficient resulting in about 27% and 16% cost savings respectively, for

both one- and two-dimensional potential arrangements of extraction wells.
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Chapter 1 \ e

Introduction

1.1 Why this Research Project

Groundwater constitutes an important component of many water resource systems;
supplying water for domestic use, for industry and for agriculture. Management of a
groundwater systeni, or a system of aquifers means making such decisions about the total
quantity of water drawn annually, and if remediation is required, the optimum number,
pumping rate, and location of extraction wells for a cost effective clean up operation. Also
equally important are decisions related to the quality of groundwater being used for
domestic and industrial purposes. In fact, the quantity and quality problems can not be
separated.

In many parts of the world, the increased withdrawal of groundwater has caused
continuously deteriorating quality, causihg much concern to both suppliers and users. In
addition to the general groundwater quality aspects, public attention has been focused on
groundwater contamination by hazardous industrial waste, by leachate from land fills, by oil
spills, and agricultural activities such as the use of fertilisers, pesticides, and herbicides, and
by radioactive waste in repositories located in deep geological formations. In all these cases,
management means making decisions to achieve goals without violating specified
constraints. In order to enable the planner, or the decision maker, compare alternative

models of a management decision and to ensure that constraints are not being violated, a
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tool is needed that will provide information about the response of the system (the aquifer)
to various alternatives. Good management requires the ability to forecast the aquifer's
response to planned operations such as pumping, recharging, extraction of contaminants
etc. This response may take the form of changes in water level, changes in water quality, or
land subsidence.

Any planning, mitigation, clean up operation, or control measures, once contaminanf
has been detected in the saturated or unsaturated zone, requires the prediction of the path
and the fate of the contaminants in response to the planned activities. Any monitoring or
observation network must be based on the anticipated behaviour ‘of the system. The
necessary information about the response of-the system is provided by a model that
describes the behaviour of the system under consideration in response to excitation. Such
anticipated behaviour can be predicted if parameters governing the response of the systém
can be estimated. The model required for such predictions may take the form of a well
posed mathematical problem, that could be reduced to a set of algebraic equations using
numerical formulation techniques. Such tools are referred to as numerical models.

During the past thirty years or so, the techniques of numerical modelling have been
extensively uséd in the study of groundwater resources management, seawater intrusion,
aquifer remediation, and other problems related to groundwater. To build a model for real
groundwater systems, two problenis, the forward (simulation) and its ihversé (calibration)
must be solved. The former predicts unknown system states by solving appropriate
governing equations, while the latter determines the unknown physical parameters and other
conditions of the system by fitting observed system states. To solve the forward problem,
one must first find the appropriate model structure and parameters. Unfortunately, studies
on these two problems have never been in balance. The study of the forward problem has
developed rapidly. While one can accurately simulate three-dimensional multicomponent
transport in multiphase flow without any essential difficulties, the study on the inverse

problem is still limited to consideration of very simple problems. The model quality can not
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be improved by increasing the accuracy of the forward solutions alone. The progress of the
inverse solution techniques is blocked by several inherent difficulties. First, the inverse
problem is often ill-posed, implying that its solution may be non-unique and unstable with
respect the observation errors. Second, the quantity and quality of observation data are
~usually insufficient. Third, the model structure error, which is difficult to estimatg, often
ddnﬁnates other errors. Therefore in the presence of all these difficulties a more robust,
efficient and effective technique of solving the inverse problem is required.

Part of the success of modelling the forward problem is due to the advancement of
modern technology in computers. Today even complex coupled three-dimensional problems
of flow and solute transport can be accurately simulated on.modern computers within some
few seconds. Sophisticated numerical models have been designed that could predict
respoﬁses such as head, pressure, temperature, velocities, concentration etc. in groundwater
systems. However, management decision processes are not just the mere prediction of these
response parameters. In as much as decision-makers are eager to know the extent to which
an aquifer has been polluted, they may also be interested in knowing the efficient and cost
effective method of cleaning up (or extracting) the contaminated aquifer. Some of these
efficient and cost effective methods of cleaning up a contaminated aquifer requires the
optimum seleption of the number, location, pumping rate, time of operation of extraction
wells etc. This information is usually missing from most sophisticated groundwater

numerical models of flow and solute transport available today.
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1.2 Research Objectives

From the above introduction, development of any numerical model for groundwater
system management must include facilities that will repder the model applicable to the
féﬂowing casés: (1) identiﬁcaﬁon of the system formation parameters for the forward model
simulation and (2) identification of optimum extraction well locations and pumping rates for
possible clean up of a contaminated aquifer. The second of these two, although very
important in decision-making, is rately embodied in flow and solute transport numerical

models. In view of these the objectives of the research study are as follows:

¢ To design a methodology based on the shuffled complex evolutionary process rather
than gradient-based techniques, for the identification of aquifer formation parameters in
the context of both two- and three-dimensional flow and solute transport numerical

models.

¢ To develop a management model for optimum design of a system clean up operation
with respect to the number, location, and pumping rates of extraction wells using the

genetic algorithm evolutionary technique of optimisation.
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1.3 Thesis Format

The thesis is structured in the following form:

Chapter 2
A comprehensive review of the techniques that have been adopted to date for the inverse

problems of parameter identification and management decision models.

Chapter 3

A brief introduction of the methodology adopted for the executjon of the proposed research

work.

Chapter 4
Presentation of the governing equations of the flow and solute transport models, their
formulation into a system of algebraic equations by the finite element method, and the

appropriate solution techniques used to solved the algebraic equations,

Chapter 5

Presentation of the genetic algorithm technique for the optimisation of extraction processes

and the shuffled complex evolution for the inverse problem of parameter identification.

Chapter 6
Tests of the accuracy of the inverse model using analytical models with field data and
synthetic data. Evaluation of the predictive accuracy of the two- and three-dimensional

solute transport numerical models using appropriate analytical models.



Chapter 1  Introduction

Chapter 7
Application of the inverse model to the identification of aquifer formation parameters using
both synthetic and corrupted synthetic data in the context of two- and three-dimensional

numerical flow and solute transport.

Chapter 8

Application of the extraction management model to a hypothetical field-scale problem.

Chapter 9
Presentation of the conchisions, recommendations and research contributions from this

research project.
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Chapter 2

Review of Inverse and Management
Decision Models

2.1 Introduction

This chapter reviews inverse and forward techniques that have been adopted in
water resources management in the past. In this regard such issues as strengths and
weaknesses of the various methodologies are addressed where necessary. The review also
mentions some current modelling techniques that have been used. The two evolutionary
techniques (1) the genetic algorithm and (2) the shuffled complex evolution proposed to be

used in this research project are briefly introduced.

2.2 The Inverse Problem

The problem of parameter estimation in distributed parameter systems has been
studied extensively during the last two decades. The term distributed parameter system
implies that the response of the system is governed by a partial differential equation and
parameters embedded in the equation are spatially dependent. The inverse problem of

parameter estimation (or identification) concerns the optimal determination of the
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parameters by observing the dependent variable collected in the spatial and time domains.
The number of observations are finite and limited whereas the spatial domain is continuous.
For an inhomogenous aquifer the dimension of the parameter is theoretically infinite. In
practice, spatial variables are approximated by a finite difference or finite element scheme
while the aquifer system is subdivided into several sub-regions with each sub-region
characterised by a constant parameter. The reduction of the number of parameters from the
infinite to the finite dimensional form is called parameterisation.

Two types of errors are associated with the inverse problems: (1) the system
modelling error; as represented by a performance criterion, and (2) the error associated with
parameter uncertainty. An increase in parameter dimensions (the number of unknown
parameters ‘associated with parameterisation) generally improves the ‘system modelling
error but increases the parametér uncertainty. The optimum level of parameterization

depends on the quality and quantity of observed data.

23 Classiﬁcaﬁon of Inverse Methods

Various techniques have been developed to solve the inverse problem of parameter
identification. Neuman [1973] classified the techniques as either direct or indirect. The
direct aﬁproach treats the model parameters as dependent variables in a formal nverse
boundary value problem. The indirect approach is based on an output error criterion where
an existing estimate of the parameters is iteratively improved until the model response is
sufficiently close to that of the measured output. In a survey paper by Kubrusly [1977] on
distributed parameter system identification, he classified the identification procedures into
three categories : (1) direct method, which consists of those methods that use optimisation

techniques directly to the distributed (infinite dimensional) model, (2) reduction to a lumped
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parameter system, which consists of those methods that reduce the distributed parameter
system to a continuous or discrete-time lumped parameter system which is described by
ordinary differential equations or difference equations, and (3) reduction to an algebraic
equation, which consists of those methods that reduce the partial differential equation to an
algebraic equation.

There are only two types of error criteria that have been used in the past in the
formulation of the inverse problem for a distributed parameter system. Chevant [1979b]
classified the identification procedures into two distinctive categories based upon the error
criterion used in the formulation. His classification is intrinsically consistent with- Neuman's
[1973]. Therefore the inverse solution methods in this literature survey are classified as that
giveh by Neuman [1973] : (1) direct method (or equation error criterion) and (2) indirect

method (output error criterion)

2.3.1 Equation Error Criterion

If the head variations and derivatives (usually estimated) are known over the entire
flow region and if measurement and model structure errors are negligible, the original
governing équations becomes a linear first-order partial differential equation of the
hyperbolic type in terms of the unknown parameters. With the aid of boundary conditions
and flow data, a direct solution for the unknown parameters may be possible. In practice,
observation wells are sparsely distributed in the flow region and only a limited number of
observation wells are available. Therefore missing data has to be estimated by interpolation
(which contains errors in interpolation) in order to formulate the inverse problem by the
equation error criterion. If the interpolated data along with observations (which also
contains noise) are substituted into the governing equation, an error term results. The error

is then minimised over the proper choice of parameters.
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Among the available techniques of the equation error criterion, mention may be
made of the energy dissipation method [Nelson, 1968]; linear programming [Kleinecke,
1971]; the use of flatness criterion [Emsellem and de Marsily, 1971]; the multiple objective
decision process [Neuman, 1973]; the Galerkin method [Frind and Pinder, 1973]; the
algebralc approach [Sagar et al., 1975]; the inductive method [Nutbrown, 1975] linear
programming and quadratic programming [Hefez et al. , 1975]; minimisation of a quadratlc
objective function with penalty function [Navarro, 1977]; and the matrix inversion method

with kriging [Yeh et al., 1983].

232 Output Error Criterion

The criterion used in this approach is generally the minimisation of a norm of the
difference between observed and calculated heads at specified location. The major
advantage of this approach is that the formulation of the inverse problem is applicable to
situations where the number of observations is limited, and it does not require
differentiation of the measured data. A disadvantage of this approach is that minimisation is
usually nonlinear and nonconvex. In general, optimisation starts with a set of initial
estimates of the parameters and improves it in an iterative fashion until the system model
response is sufficiently close to that of the observations.

Control-oriented techniques, stemming from the concept of quasilinearization of
Bellman and Kalaba [1965], have been developed for aquifer parameter identification.
Among the published works, mention may be made of the following: quasilinearization [Yeh
and Tauxe, 1971; DiStefano and Rath, 1975]; minimax and linear programming [Yeh and
Becker, 1973]; and the maximum principle [Lin and Yeh, 1974; Yakowitz and Noren, 1976].
Vermuri and Karplus [1969] formulated the inverse problem in terms of optimal control

and solved it by the gradient procedure. Chen et al. [1974] also treated the problem in an

i0
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optimal control approach and solved it by both a steepest decent method and conjugate
gradient method. Kalman filtering techniques have also been proposed in the literature for
parameter identification [McLaughlin, 1975; Wilson et al., 1978)]. Kitanidis and Vomvoris
[1983] used the technique of maximum likelihood estimation and kriging.

Mathematical programming techniques developed in the field of operations research
have been utilised for solving the inverse prdblem of parameter .identiﬁ'cation in
groundwater hydrology and in the field of petroleum engineering. Among the published
reports, mention may be made of the following: gradient search procedures [Jacquard and

- Jain, 1965; Thomas et al., 1972]; decomposition and multilevel optimisation [Haimes et al.,
1968]; linear programming [Coats et al., 1970; Slater and Durrer, 1971; Yeh, 1975a,b]; |
quadratic programming [Yeh, 1975a,b; Chang and Yeh, 1976); the Gauss-Newton Method
[Jahns, 1966; McLaughlin, 1975]; the modified Gauss-Newton method [Yoon and Yeh,
1976; Yeh and Yoon, 1976; Cooley, 1977, 1982]; the Newton-Raphson method [Newman

and Yakowitz, 1979] and the conjugate gradient method [Neuman, 1980].

2.4 Parameter Dimension and Parameterization

Parameters such as transmissivity, are continuous functions of the spatial variables.
For identification purposes, a continuous function must be approximated by a finite
dimensional form. The reduction of parameter dimensions is done by parameterization and
the two techniques available in the literature are : (1) zonation method, and (2) interpolation

method.

11
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2.4.1 Zonation Method

In this approach, the flow region is divided into a number of subregions, or zones,
and a constant parameter value is used to characterise each zone. The unknown
transmissivity function, for example, is then represented by a number of functions which is
equal to the number of zones. The dimension of parameterization is then represented by the
number of zones times the number of parameters in the model under estimation. The
zonation technique has been adopted by among others, Coats et al., [1970], Emsellem and
de Marsily [1971], Yeh and Yoon [1976], and Cooley [1977,1979].

2.4.2 Interpolation Method

If finite elements are used as the interpolation method, the flow region is divided
into a number of elements connected to a number of nodes. Each node is associated with a
local basis function. Then the unknown transmissivity, for instance, is approximated by a
linear combination of the basis functions, where the parameter dimensions corresponds to
the number of unknown nodal transmissivity values. Here the works by DiStefano and Rath
[1975], Yoon and Yeh [1976], and Yeh and Yoon [1981] are worth mentioning. In the
context of interpolation, other schemes such as spline [Sagar et al., 1975; Yakowitz and
Noren, 1976]; polynomial method [Garay et al., 1976] and kriging [Clifton and Neuman,
1982], have been used to approximate the parameter distribution. The reduction of the
number of unknown parameters by representing the parameters by a geostatistical structure
as suggested by Kitanidis and Vomvoris [1983] is also classed under the method of
interpolation.

However, one problem that still remains is how to determine the shape of zones in

the zonation case or how to optimally determine the location of nodes in the interpolation

12
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case. Most of the published work on this issue relies on trial-and-error approach or

hydrological mapping.

2.5 Inverse Solution Techniques

A typical groundwater flow equation is used to illustrate some typical techniques
that have been used to solve the inverse problem. Consider an unsteady flow in an

inhomogeneous, isotropic and confined aquifer for which the governing equation can be -

represented by
—é’—(Té) +i(T@) =Q+S—éh— (2.1)
&\ & I\ & A

subject to the following initial and boundary conditions:

h(x,,0) = 1y (x, ), x,y €Q
h(x,y,t) = hy(x,, 1) x,y € XY, (2.2)
T—Z—=h2(x,y,t). x,y € X2,
where:
h(x,y,t) hydraulic head [L],
T(x,y) transmissivity [ LT '],
S storage coefficient [ L°],
O®x.y) volumetric rate of source-sink term per unit area [LT],
X,y space variables [L],
t time (77,

13
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Q flow region
17.9) aquifer boundary (X2, W &2, = x2),
O cn normal derivatives, and

hy,h,,h, specified functions [L]

For illustrational purposes it is assumed that the étorage coefficient is known and the
parameter chosen for identification is the transmissivity function, 7(x,3), which is assumed
to be time invariant. In general a numerical scheme is required to obtain solutions of 2.1)
subjéct to conditions (2.2), provided the parameter values are properly estimated. Various
finite difference methods (FDM) or finite element methods (FEM) have been developed for
numerlcal simulation studies. However, whether one chooses to formulate (2.1) ‘with either
the FDM or the FEM, the eventual system of algebraic equations that must be solved for

the hydraulic heads, A(x.y,0), is always of the form

CH=F (2.3)
where:

C coefficient matrix, a function of T,

H unknown hydraulic head vector containing values at all grid points, and

F column vector containing head values.

In general, two methods are available in the literature for the inverse solution of T given
known values of heads in the simulation region : (1) generalised matrix method based upon
the equation error criterion, and (2) Gauss-Newton minimisation based upon the output

error criterion.

14



Chapter 2 Review of Inverse and Management Decision Models

2.5.1 Generalised Matrix Methods

The generalised matrix methods is based upon the equation error criterion. When
the equation error criterion is employed for parameter estimation, it requires an explicit
formulation of the unknown parameters. Suppose head observatlons are available at each of
the grid points and these observations are substituted into (2 3), then the system of

equations to be solved can be written as

AT, =b, +g, ; : (24)
where:

A, coefficient matrix, a function of A,

T, unknown transmissivity tensor containing values at all grid points,

£, resulting equation error, and

b, column vector.

In a more compact matrix form, (2.4) becomes

AT,=b+e 2.5)

where:
A=[A1T,A2T,...,ANT]T

b::[bf}sz,.“,bNT]T

T T 7
t= (a6 ]

T'is a transpose operator when used as a superscript. When the FEM or FDM is used as the

forward solution method, the resulting equation error, £, will always be of the form of

15
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(2.5). The advantage of this equation is that (2.5) is linear, and 7, can be determined by

minimising the equation error, £. From (2.5), the least squares error (or residual sum of

squares) can be expressed by

¢7e=(AT, - b) (AT, -b) (2.6)

Minimising the least square etror, the transmissivity vector can be obtained as

T,=(474)" 4"b s @.7)
Solution (2.7) implicitly assumes homoscedasticity and lack of correlation among residuals.
The solution is also highly dependent on the level of discretization used in the nunierical
solution of the governing equation. Another disadvantage is that the solution of (2.7) is

generally unstable in the presence of noise.

2.5.1 Gauss-Newton Minimisation Methods

The Gauss-Newton method is based on the output error criterion. The objective is
to determine 7(x,y) from a limited number of observations of h(x,y,1) scattered in the field
so that a certain criterion is optimised. If the classical least squared error is used to

represent the output error, the objective function to be minimised is

min Jyy, =[hp ~ho"| 1o —p'] 2.8)

where h,, is the vector of calculated heads at observation wells, based upon some values of

estimated parameters, and k" is the vector of observed heads. For identification purposes,

le
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T(x,y), can be parameterized by either the zonation or interpolation method mentioned
earlier.

The Gauss-Newton algorithm has proven to be an effective algorithm for performing
minimisation. The original and modified version of the algorithm has been used by many
researchers in the past in solving the inverse problem, eg., Jacquard and Jain [1965]; Jahns
[1966], Thomas et al., [i972], Gavalas et al. [1976], Yoon and Yeh [1976], and Cooley
[1977, 1982]. The popularity of the algorithm stems from the fact that it does not require
the calculation of the of the Hessian matrix as required by the Newton Method and the rate
of convergence is superior when compared to the classical gradient searching procedures.
The algorithm is basically developed for unconstrained minimisation. However, constraints
such as upper and lower limits are easily incorporated in the algorithm with minor
modifications. The algorithm starts with a initial estimates of parameters and converges to
a local optimum. If the objective function is convex, the local optimum would be the global
optimum. However, due to the presence of noise in the observations, the inverse problem is
usually nonconvex, and hence only a local optimum can be assured in the minimisation.

If T is a vector that contains parameters [7;,7,,...,T; ], the algorithm generates the

following sequence for an unconstrained minimisation problem :

=kl ko

T =T -ptd* 2.9)
with

A*dF = g" (2.10)
where:

4* =[JD(T")]T[JD(T")],
gt = [JD(T")]T[hD(T") - h,;]

J,  Jacobian matrix of heads with respect to T [ML]

17
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p step size [ L'],
d* Gauss-Newton direction vector [L],

M number of observations, and

b~

parameter dimension.

Occasionally the direction matrix [J,"J] may become ill-conditioned and correction must

be made in order for the algorithm to continue. The elements of the Jacobian matrix are

represented by the sensitivity coefficients,

LN
T
ay dy Ay
Jpy=|dn a, " e, @.11)

where M is the total number of observations, and L is the total of parameters. The
transpose of the Jacobian matrix , J " is obtained by switching respective row and column

elements of the Jacobian matrix, J,, to obtain

dy dy, Dy
a, o, " ar,
d A Ay
I =) =\ T (2.12)
a, h, Ay
_éTL a, ﬂL-

18
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In solving the inverse problems, efficient methods are required for the calculation of the
sensitivity matrix. In general three methods are available in the literature. These methods are

presented in the next section.

2.6 Computation of Sensitivity Coefficients

Sensitivity coefficients, the partial derivatives of head with respect to each of the
parameters under -estimation, play an important role in the solution of the inverse problem.

In the Gauss-Newton algorithm, elements of the Jacobian matrix are represented by the

sensitivity coefﬁcients,%, i=1..,M, I=1,...,L. A literature survey indicates that three

methods: (1) influence coefficient method, (2) sensitivity equation method, and (3)

variation method have been used in the past for the calculation of sensitivity coefficients.

2.6.1 Influence Coefficient Method

The influence coefficient method [Becker and Yeh, 1972] uses the concept of
parameter perturbation where the /th row of the J 7 is approximated by

ﬁgh’(ﬂ“’e’)—h‘m i=1,...M, I=1...,L 2.13)
a, AT,

where A7, is the small increment of T;, and e, is the /th unit vector. The values of h(T)

and h(7’+ AT,e,) are obtained by solving the governing equation (simulation), subject to

the imposed initial and boundary conditions. The method requires perturbing each

parameter one at a time, If there are L parameters to be identified the governing equation

19
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has to be solved L+1 times for each iteration in the nonlinear least square minimisation to

numerically produce the sensitivity coefficients.

2.6.2 Sensitivity Equation Method

In this approach, a set of sensitivity equations are obtained by taking the partial
derivatives with respect to each parameter in the governing equation and initial and
boundary conditions. After taking the partial derivatives, the following set of sensitivity

equations are obtained

&
0‘(%) __] q  o(aam\ o
—[~——~‘] —[ 1= ’H—-—[——]——(——]] (2.14)
¥ ¥ a &\l &) y\oI, &
I=1,..,L
The associated initial and boundary conditions are
HEXD o gL
I,
BEID) g -, L
I
12)
T,
e, i I=1,...,L (2.15)
h I, h

The number of simulations required to generate the sensitivity coefficients per iteration is

L+1, which is the same as the influence coefficient method.

20
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2.6.3 Variational Method

The variational method was first used for solving the inverse problem of parameter
identification by Jacquard and Jain [1965] and then by Carter et al. [1974,1982]
associated with the finite difference schemes. Sun and Yeh [1985] extended the method to
the case of finite element schemes. Following Carter et al., [1974], the sensitivity

coefficients can be computed by the following equation:

=1 _(Vq'(x, y,t = 7)Wh(x,y, 1)dudxdy j=12,..,N, i=12,..,N, (2.16)
o’ @)
where:

Q) exclusive subdomain of node i,

\Y gradient vector,

h(x,y,1) solution of the governing equation,

N, number of observation wells,

N, total number of nodes used in the numerical solution, and

q'(x,y,t) time derivative of g(x,y.2).

Comparing the above three methods in the calculation of sensitivity coefficients, the

variational method is advantageous if L > N,, the case where the number of parameters to
be identified is greater than the number of observations. On the other hand if N, > L, the
influence coefficient and sensitivity methods are preferred. To avoid instability when the
data contains noise, the number of parameters to be identified is usually less than the
number of observation wells. DiStefano and Rath [1975] pointed out that in order to obtain
a set of sensitivity coefficients with acceptable accuracy, much smaller time steps are

required. The need for an efficient method for calculating the sensitivity coefficients in

21
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solving the inverse problem has also been pointed out by Dogru and Seinfeld [1981],
McElwee [1982], and Skyes et al., [1985].

2.7 Uncertainty and Optimum Parameter Dimension

In field practice, the number of observations is limited and observations are
corrupted with noise. Without controlling parameter dimension , instability often results
[Yakowitz and Duckstein, 1980]. Instability in the inverse problem results in parameters
becoming unreasonably small (sometimes negative) and/or large if parameters are not
constrained. In the constrained minimisation, instability is characterised by the fact
parameter values keep bouncing back and forth between the upper and lower bounds. By
reducing the parameter dimensions, the instability can be reduced or eliminated. It has
generally been understood that as the number of zones increases, the modelling error
decreases while the parameter uncertainty increases.

Emsellem and de Marsily [1971] were the first to consider the problem of optimal
zoning pattern. Yeh and Yoon [1976] suggested a systematic procedure based upon a
statistical criterion for the determination of an optimal zoning pattern. Shah et al. [1978]
showed the relationship between the optimal dimensions of parameterization and
observation in a considerable depth. The need to limit the dimension of parameterization has
been further studied by Yoon and Yeh [1976), Yeh et al. [1983], and Kintanidis and
Vomvoris [1983]. These authors have shown that the dimension of parameterization is
directly related to the quantity and quality of observation data. The error in parameter
uncertainty can be represented by a norm of the covariance matrix of the estimated
parametérs [Yoon and Yeh, 1976; Shah et al., 1978]. The covariance matrix of the

estimated parameters is defined by the expression
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Con(T*) = E{(T —7)(T - T“‘)T} @2.17)

where:
T*"  estimated parameters,
true parameters,

mathematical expectation, and

N I N

transpose of a vector when used as a superscript.
The covariance matrix of the estimated parameters also provides information regarding the
reliability of each of the estimated parameters. A well established parameter is generally

characterised by a small variance as compared to an insensitive parameter that is associated

with large variance.

2.8 Bayesian Estimation

Bayesian methods that incorporate prior information have also been applied to
parameter identification [eg., Gavalas et al., 1976]. The geological information required for

Bayesian estimation includes the mean and covariance of the parameters. These are given by

(2.18)
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The value of T, is considered to be known and the prior information can be obtained

from geological measurements in the field. Gavalas et al. [1976] have shown that Bayesian
estimation reduces to a quadratic minimisation problem, provided the parameters and the
measurement etrors are normally distributed and the model is linear in the parameters.
When these conditions are not satisfied, a rigorous application of Bayesian estimation is

impractical.

2.8.1 Composite Objective Function

Gavalas et al. [1976] proposed the following practical approach (which is similar

to the least squared minimisation) where the objective function is given by

M

J=z;13—(hi -n"Y +A(T—TM)TR"(T—TM) (2.19)

i=1

where A is a weighting factor (0<A<1)and ¢, i=1, 2, .., M is the variance of the

measured error which is considered known and R is correlation matrix of the estimated
parameters. The second term in the objective function is the Bayesian term which penalises
the weighted deviation of the parameter from their mean values. Shah et al. [1978] have
demonstrated that if reliable prior information is available, Bayesian estimation will lead to a

smaller variance of the error of estimation.
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2.8.2 Kalman Filtering

The technique of Kalman filtering was originally developed in the field of optimal
control [Kalman, 1960]. It has been successfully applied in acrospace engineering for the
problem of optimal estimation and control of vehicle trajectory. The application of Kalman
filtering to parameter estimation in groundwater requires expressing the groundwater model
in terms of a state-space formulation that consists of a vector state equation and a vector
observation equation. For parameter estimation, the state vector is augmented to include the
parameter vector as another state variable. If the errors in the state and observation
equations have zero mean and are of Gaussian process with known covariance matrices ,
Kalman filtering can be applied for simultaneous, recursive state, and parameter estimation.

Since prior information is generally required in the application of Kalman filtering, it
can be classified in the Bayesian estimation category. Wilson et al. [1978] used an extended
Kalman filter for parameter estimation in groundwater. Their approach permits the
utilisation of prior information about the parameters and information taken from input-

output measurements to improve estimates of parameters as well as the system state.

2.9 Other Statistical Methods with Prior Information

Neuman and Yakowitz [1979] proposed a statistical approach to the inverse problem
of parameter estimation. Their approach differs from the Bayesian estimation of Gavalas et
al. [1976] in that prior information may include actual values of transmissivity determined
from pumping tests or other measurements at specific locations in the aquifer, or it may be
based on statistical information about the spatial variability in other aquifers consisting of
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similar materials [Neuman and Yakowitz, 1979]. The composite objective function proposed

by Yakowitz and Newman is similar to that of Gavalas et al. [1976] and can be expressed

as
[h -f(T] v, [h - ]+,1T T) v, (1" -T) (2.20)
where:
T"  prior estimate of 7T,
Vf known symmetric positive definite matrix,
v, known matrix, symmetric and positive definite,

A unknown positive parameter,
f(T) model solution, and

h’ observed head.

Neuman and Yakowitz proposed two methods called cross-validation and comparative
residual analysis, to _select the optimum value of 1. Neuman [1980] developed an efficient
conjugate algorithm for performing the minimisation of (2.20). He extended the variational
mefhod developed by Chevant [1975] for calculating the gradient with respect to the
parameter in the case of the generalised nonlinear least square.

The composite objective function presented by A4bufirassi and Marino [1984b] is
again conceptually similar to Gavalas et al. [1976]. They used kriging to estimate the
missing values of head and the value of the error covariance matrix, while cokriging
[Abufirassi and Marino, 1984a] was used to estimate T" and the associated error

covariance matrix. Cokriging [Journel and Huijbregts, 1978], an extension of kriging to
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two or more variables, can be used to improve the accuracy of estimation of a variable that
is not sufficiently sampled by considering its spatial correlation with other variables that are
better sampled.

Cooley [1982] proposed a method to incorporate prior information on the
parameters into the nonlinear regression model he developed [1977]. The primary purpose
of Cooley's work was the incorporation of prior information of uhknown reliability. A
secondary purpose of Cooley's work was to incorporate Theil's [1963] model into Cooley's
[1977] nonlinear regression model where at least some prior information of known
reliability is available. The approach is non Bayesian in the sense that no prior distribution of
the parameter is assumed. The approach also differs from the method proposed by Neuman
and Yakowitz [1979] and Neuman [1980] primarily in two ways : (1) the prior information
in Cooley's workl is considered to consist of a general nonlinear combination of several
types of parameters as opposed to the direct estimate of a single type of parameter and (2)
the way in which the covariance structure of the model is determined.

Kitanidis and Vomvoris [1983] proposed a geostatistical approach for solving the
inverse problem. Their method consists of two main steps : (1) the structure of the
parameter field is identified and (2) kriging is applied to provide minimum variance and
unbiased point estimates of hydrogeological parameters using all available information. In
their approach, it is assumed that several point measurements of head aﬁd tfansmissivity are
available. In effect, parameterization is achieved by representing the hydrogeological
parameters as a random field which can be characterised by the variogram and trend with a
small number of parameters. Hoeksema and Kitanidis [1984] have applied the geostatistical
approach to the case of a two-dimensional steady state flow. A finite difference numerical
model of groundwater was used to relate the head and transmissivity variable and cokriging
was used to estimate the unknown transmissivity field. Dagan [1985] has also considered
the geostatistical technique using an analytical and Gaussian conditional mean in place of

Kriging. Hoeksema and Kitanidis made a comparative study of Dagan's approach and
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Kriging estimation. In using the geostatistical approach, it is implicitly assumed that

transmissivity has a low variability.
2.10 Summary of the Inverse Problem Survey

From the foregoing, it is clear that parameter estimation in groundwater modelling
has been completely dominated by the gradient-based techniques; it is also clear that
considerable attention has been given to parameter estimation of flow models. In essence,
parameter identification of solute transport models has received little attention. In the
context of performance a considerable success of the gradient-based techniques has been
achieved. However, the problem of parameter instability and ill-conditioning of the
sensitivity matrix (in some problems) has not yet been resolved. .All the three techniques
available for the computation of the sensitivity matrix have their advantages and
disadvantages. For example, it is known that if the number of parameters under estimation
is greater than the number of observation points, the influence coefficient and the sensitivity
equation methods may not work properly while the variational method is bound to produce
unreliable results when the number of observations points is greater than the parameters
under estimation. The problem with parameter uncertainty and optimum parameter
dimensions also limits the application of the gradien_t-based methods to relatively simplified
cases of groundwater parameter estimation since one has to reduce the dimensionality of the

problem in order to avoid instability .
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2.11 The Shuffled Complex Evolution

A recent study by Duan et al. [1992] on a six-parameter model using synthetic data
to identify the nature of difficulties usually encountered in the calibration of conceptual
rainfall-runoff (CRR) models uncovered five major problems that complicate the solution
process of model calibration (or the inverse problem) : (1) there may be several major |
regions of attraction into which the search strategy may converge, (2) each major region of
attraction may contain numerous local minima which may occur both close to and at various
~ distances from the best solution, (3) the objective function surface in the multiparameter
space may not be smooth and continuous, and the derivatives may be discontinuous and
vary in an unpredictable manner through the parameter space, (4) the parameters may
exhibit varying degrees of sensitivity and a great deal of interaction and compensation, and
much of the interaction can be highly nonlinear, and (5) the response surface near the true
solution is often nonlinear. An optimisation algorithm that deals with the problems
enumerated above must possess the following qualities : (1) global convergence in the
presence of multiple regions of attraction, (2) abilify to avoid being trapped by 'pits' and
'bumps' over the objective function surface, (3) robustness in the presence of differing
parameter interdependencies, (4) nonreliance on the availability of an explicit expression for
the objective function or the derivatives, and (5) capability of handling high parameter
dimensionality. All these qualities are possesséd by the Shuffled Complex Evolution (SCE)
methodology. The SCE methodology was developed by Duan et al. [1992,1993] purposely
for the calibration of difficult and complex CRR models.

The SCE is based on the synthesis of four concepts that has been proved to be
successful in the past : (i) combination of deterministic and probabilistic approaches, (ii)
systematic evolution of a complex of points spanning the parameter space, (iii) competitive
evolution, and (iv) complex shuffling. The synthesis of these four concepts makes the SCE

method not only effective and robust but also flexible and efficient. The use of deterministic
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strategies permit the SCE algorithm to make effective use of the response surface
information to guide the search. Robustness and flexibility are taken care of through the
inclusion of random elements. Concentrating a search in the most promising region of the
search space is guided by the implicit clustering strategy. The use of systematic complex
evolution strategy helps to ensure a relative robust search that is guided by the structure of
the objective functioﬂ. The present literature survey bas indicated that no attempt has been
made to extend the SCE methodology to parameter estimation (or the inverse problem) in
the context of groundwater modelling. Therefore in this aspect of the current research
work, an attempt is made to achieve this objective. The SCE methodology is described in

detail in section 5.3.

2.12 Groundwater Resources Management

In the past two decades, the field of groundwater hydrology has turned toward
numerical simulation models to help evaluate groundwater resources. The application of the
finite difference and finite element methods to groundwater equations have permitted
complex, real world systems to be modelled. Numerical simulation models have enabled
hydrogeologists to develop a better understanding of the functioning of regional aquifers
and to test hypotheses regarding the behaviour of particular facets of groundwater systems.
Additionally, simulation models are often utilised to explore groundwater quality and
quantity management alternatives. In such cases a model is executed repeatedly under
various design scenarios in an attempt to achieve a particular objective, such as isolating the
plume of contaminated groundwater, preventing saltwater intrusion, dewatering an
excavated area, or obtaining a sustainable water supply. This aspect of the literature review

concerns the joint use of simulation models and optimisation methods designed for
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management decision purposes. Only those management models which simulate
groundwater hydraulics or groundwater solute behaviour by solving the partial differential

equation are mentioned.

2.13 Groundwater Quantity Management

Studies which combine aquifer simulation with management models in the context
of groundwater quantity may be grouped into two categories : (1) groundwatei hydraulic
management and (2) groundwater policy evaluation and allocation. In the first category,
models are aimed at managing groundwater stresses sﬁch as pumping and recharge, wherein
the stresses and hydraulic heads are treatéd directly as management model decision
variables. The second category involves models that can be used to inspect complex
economic interactions such as the influence of institution upon the behaviour of an
agricultural economy or complex groundwater-surface water allocation problems. In both
categories, the models. employ the optimisation techniques of linear or quadratic
programming, which attempt to optimise an objective such as minimisation of costs or
maximisation of well production; and are subject to a set of linear algebraic constraints
which limit or specify the values of the decision variables such as local drawdowns,
hydraulic gradients, and pumping rates.

In both categories the simulation model component of the management models is
based upon the equation of groundwater flow in saturated porous media [Cooper, 1966;
Pinder and Bredehoeft, 1968; Remsen et al., 1971]. For a nonsteady two-dimensional,

heterogeneous , and anisotropic case, the equation is expressed as

7 cH H

AT =85 +W i, j=12 2.21
636,-[ "ékjj N i,j (2.21)
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where:
T,  transmissivity tensor [ LT,
H hydraulic head [L],
W volumetric flux per unit area [ LT '],
S storage coefficient [ L°],
x;,x,; cartesian coordinates [L], and

e N

time [7]

2.13.1 Groundwater Hydraulic Management Models

Groundwater hydraulic management models incorporate the simulation model of a
particular groundwater system as constraints in the management model. Management
decisions as well as simulation of groundwater behaviour are accomplished simultaneously.
Two techniques namely : (1) embeddihg method and (2) the response matrix approach have
been derived to accomplish this. In the embedding method, finite diﬂ'erencé 6r finite element
approximations of the governing groundwater flow equations are treated as part of the
constraint set of a linear programming model. Decision variables are hydraulic heads at each
node as well as local stresses such as pumping rates and boundary conditions. In the
response matrix approach, an external groundwater simulation model is used to develop
unit responses. Each unit response describe the influence of a pulse stimulus upon hydraulic
heads at points of interest throughout the system. An assemblage of the unit responses, and
a response matrix are included in the management model. The decision variable in a linear,
mixed integer, or quadratic program include the local stresses such as pumping or injection
rates. It -may include hydraulic heads at the discretion of the modeller.
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2.13.1.1 Embedding Method

The embedding method for the hydraulic management of aquifers uses linear
programming formulations that incorporate numerical approximations of the groundwater
equations as constraints. This technique was initially presentéd by Aguado and Remsen
[1974] for groundwater hydraulic management where they demonstrated with one- and
two-dimensional examples that the physical behaviour of the groundwater system could be
_included as an integral part of an optimisation model. They used finite difference
approximations in both steady and transient problems for confined and unconfined aquifers.
In all examples, physical objective functions maximised hydraulic heads at specified
locations and constraints were placed upon heads, gradients, and pumping rates. For the
confined case, the governing equation was linear, and the resulting finite difference
approximations were treated as linear constraints. For the unconfined case the steady state
equation was treated as linear with respect to the square of the hydraulic heads.

Aguado and Remsen [1974] presented a real world example for determining the
optimal steady state pumping scheme to maintain groundwater levels below specified
elevations for a dry rock excavation site. The solution to the dewatering problem indicated
that the minimum total pumping could be accomplished by developing the maximum
number of wells as close to the excavation as the finite difference grid will allow. In a later
study [Aguado and Remsen, 1980], set up costs were included by reformulating the
problem as a fixed charge problem where costs due to pumping plus fixed costs due to well
installations were considered. When penalties were assessed for well installation and
development, the solution lost its strong dependence on the finite difference grid.

Alley et al. [1976] presented a report on aquifer management under transient
conditions using the embedding technique and treating the finite difference form of the

confined aquifer as constraints in a linear problem. Their illustrative example sought to
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maximise hydraulic heads while obtaining specified flow rates from wells within the system.
The transient behaviour was treated by creating successive management models; one for
each time step. The optimal solution for one time step was treated as initial conditions for
next management model. In comparison, the transient management approach of Aguado
and Remsen [1974] was to lump all time step models as constraints in one linear program.
This approach enabled short-range aquifer management goals to be included in the context
of long range management goals but could result in a very large matrix. The method of
Alley et al. [1976] required optimisation of several smaller single time step models. The
deficiency in this latter approach is that management decision on the short range term may
contradict long range management requirements.

Schwarz [1976] suggested incorporating as linear programming constraints a series
of mass Balances among cells which comprise an aquifer. Schwarz [1976] noted that the
transformation model represents properties of the aquifer by water level transformation
equations for discrete cells. The transformation equation approach of Schwarz is essentially
the same as the embedding approach in that a model which was discretized over space and
time was included as linear programming constraints. The difference is that the
transfbnhation model depended on a multicell aquifer model, while the embedding models
employed finite differences or finite elements.

| The embedding technique has been demonstrated. for cases involving hydraulic
gradients control using injection and pumping wells. Molz and Bell [1977] applied the
technique to a hypothetical case involving the steady state control of hydraulic gradients to
insure the stationarity of a fluid stored in an aquifer. Their linear program contained
constraints which consisted of the confined groundwater flow equation in finite difference
form. They constrained gradients to fixed values in the region of their five-point well
scheme.. The objective function was to minimise the total of pumping plus injection.
Solutions were achieved for their 81 node model with minimal computational requirement.

Remsen and Gorelick [1980] demonstrated the embedding approach to control hydraulic
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gradients in order to contain a plume of contaminated groundwater. This was done in the
context of other regional management goals, including the dewatering of two excavation
areas and obtaining water for export from the system. The objective was to minimise
pumping. The solution selected those nodal locations where either pumping or injection
wells should be located. Furthermore, it determined the optimal pumping rates, and gave the
resulting steady state hydraulic head solution for 99 active nodes. o

Although management models have been solved successfully, it is noted that no
large-scale application of the embedding approach has ever been reported. It seems that
numerical difficulties are likely to arise for large-scale problems if linear programming
solution techniques are utilised. Commercial codes try to maintain the sparsity of the matrix
upon which linear programming operations are performed. Numerical difficulties usually
occur with lower-upper basis factorisation when banded matrices are involved. The
discretization of groundwater flow equations using finite differences or finite elements
yields a banded matrix. Elango and Rouve [1980] have experimented with the finite element
and linear programming method and hypothesised that problems may arise when a large

number of equality constraints are considered.

2.13.1.2 Response Matrix Approach

The second technique in groundwater hydraulic management is the response matrix
approach. Incorporation of a response matrix into a linear program was initially proposed in
the petroleum engineering literature by Lee and Aronofsky [1958]. They developed a linear
programming management model which sought to maximise profit from oil production. A
response matrix was used to linearly convert pumping stresses into pressure changes in the
petroleum reservoir. The pressure response coefficients were developed using an analytic

solution of the flow equation. Constraints ensured that reservoir pressures were maintained

35



Chapter 2 Review of Inverse and Management Decision Models

above one atmosphere, limited total production to the reservoir capacity, and guaranteed
that oil purchased from an outside source did not exceed the pipeline capacity. Their
solution gave optimal production rates for each of five potential sources during four time
periods of two years each. Aronofsky and Williams [1962] extended this work to the
scheduling of drilling operations.

Watténbarger [1970] presented a method to maximise total withdraws from a gas
reservoir. He noted that for any number of wells in the reservoir, it is necessary to know
only each well's own drawdown curve and interference curves for each pair of wells in a
reservoir. The pressure behaviour at each well can be calculated through superposition for
any rate schedule. He formulated his problem as a linear programming management model
wherein his objective was to maximise well production. Constraints based upon the matrix
résponse served to maintain pressures above critical values at each well. Additional
constraints established the maximum reservoir withdrawal rate by forcing the total
production rate not to exceed projected gas demand. Wattenbarger made one final
important comment. A constraint matrix which includes the response matrix relations will
generally be extremely dense for linear programming problems. If off diagonal entries of
the response matrix are extremely small, they may be neglected and set to zero thereby
decreasing the matrix density. This technique can make large-scale problems much more
manageable. |

The response matrix soon became established in the groundwater literature.
Deninger [1970] considered maximisation of water production from a well field where he
proposed that drawdown responses be calculated using the nonequilibrium formula of Theis
[1935]. The linear programming formulation sought to maximise total well discharge.
Constraints were written to limit drawdowns and account for pump and well facility
limitations. Of greater significance, Deninger also presented a management formulation to

minimise the cost of water production. Both discharge rates and lifts were unknown prior to
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solution. The use of quadratic programming was suggested to solve this problem but no
solutions were presented.

Maddock [1972a] solved the nonlinear problem of minimising pumping costs. A
constraint set which he called algebraic technological function was developed as a
response matrix. The response coefficients showed drawdown changes induced by pumping
at each well. He used a quadratic objective function that minimised the present value of
pumping costs. In an example, he considered a complex heterogeneous groundwater
system in which discharge from three wells was scheduled for 10 seasons. Constraints
guaranteed meeting semiannual water targets and set upper limits on the pumping capacity
of each well. A standard quadratic package [Karash, 1962] was used to solve the problem.
Maddock [1974b] developed a nonlinear technological function for the unconfined aquifer
case in which saturated thickness varies with drawdown. The solution of the nonlinear
partial differential equation was given by an infinite series of solutions to linear partial
differential equations. Drawdown was treated as a finite sum of a power series. With this
technique, a quadratic program was formulated in which all the nonlinearities appeared in
the objective function with constraints remaining linear.

Mixed integer programming has been used in conjunction with a response matrix to
determine the optimum locations of wells. Rosenwald [1972] and Rosenwald and Green
[1974] identified the best location for a specified numbe1; of wells so that the production
demand curve is met as closely as possible. An external finite difference model was used to
generate a transient response matrix which described pressure changes caused by pumping.
This response matrix was used to develop constraints identical in form to those of
Wattenbarger [1970]. However, integer constraints were added which specified the
number of wells that were permitted to enter the solution. The management model
maximised production within the demand constraints by selecting the best wells among the
potential well sites. Optimal well selection was also the subject of Maddock [1972b], who
developed a mixed integer quadratic programming model that minimised pumping costs plus
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fixed costs for well and pipeline construction. The quadratic portion of the objective was
made separable by a transformation that enabled solution by a combination of mixed integer
and separable programming. Their study illustrated the sensitivity and error analysis to
evaluate the effects on planning activities of uncertainty in economic and hydrologic factors.

Rosenwald and Green [1974] described a gas reservoir management case. The
governing equation was nonlinear, and linear superposition (required in the response matrix
approach) did not yield an adequate approximation. Attempts were made to develop
iteration procedures which utilised the information from the linear programming
management model to improve the solution. In the first method adjustments were made to
the allowable drawdown. A revised linear program was executed, but validation with the
nonlinear simulation model indicated that the revised permissible drawdowns were
overcorrected. Increased pressure drop limits were used and a new management model
executed. Solution verification indicated a better agreement, but some significant errors
remained. Rosenwald and Green [1974] mentioned that one should be able to repeat the
routine until closer agreement is obtained. The second iterative method used the results of
the linear program to adjust the response matrix. The unit pumping rates used to generate
the response matrix were revised and a new response matrix developed. Again, the updated
linear programming management model results did not satisfy the nonlinear flow equation
but did improve the .solution. |

Variations of the response matrix approach have been applied to the management of
aquifer-stream systems. Taylor [1970] demonstrated with a very simple small problem how
the conjunctive use of groundwater and surface water along the Arkansas river in Colorado
could be managed using linear programming. A set of approximate response curves was
developed which showed the average effect of aquifer stresses upon streamflow. The
response curves were averaged over large cells which were roughly parallel to the river and

extended along the entire stream reach. The objective was to minimise stream depletion
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during two summer months. Constraints limited pumping in each cell, and specified the
demand during each month from each cell.

Morel-Seytoux [1975 a,b] presented various linear programming formulations and
solutions involving conjunctive surface-groundwater management. The response coefficient
generator of Morel-Seytoux and Daly [1975] was used to develop response matrix
constraints that predicted the reduction in return flow along a river reach due to pumping.
Models were used to explore four management strategies. The first was to maximise total
pumping during a growing season subject to a restriction that flow to the stream could not
fall below a specified rate. A second model added a constraint that pumping during all
weeks must be equal. A third model sought to minimise the need for water storage to meet
demand with available supplies. Finally, a stochastic storage strategy used sequential
solution which minimised the need for storage. Weekly updates of actual rather than
expected river flow were used to calculate conditional expected flow for the remaining
weeks. Illangasekare and Morel-Seytoux [1982] have linked response coefficient
approaches for an aquifer and for a stream using a linear stream-aquifer interaction
relationship. They concluded that the resulting stream-aquifer simulation model could be
incorporated into a mathematical optimisation problem.

. Applications of the response matrix approach to groundwater hydraulic management
involving a large number of decision variables for regional aquifers have been demonstratéd.
Larson et al. [1977] constructed a management model to determine the safe yield of a
groundwater system near Carmel, Indiana (referred to as the Carmel aquifer). Their
management model maximised the steady state pumping rate by selecting from 199 potential
well sites. Restrictions placed a lower limit on the pumping rate at each active well site and
limited the number of permissible active wells. These restrictions led to a series of integer
variables which specified whether a well exits at a particular well site. Other constraints
forced pumping rates below design capacity and limited drawdown to one half the initial
saturated thickness. The Carmel aquifer is unconfined and therefore was described by the
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nonlinear Boussinesq equation. To linearize the system, steady state drawdowns for a
confined aquifer were simulated and adjusted for unconfined conditions. The linear response
matrix was created using the U.S. Geological Survey aquifer simulation model of Trescost
et al. [1976]. Aquifer parameters calibrated by Gillies [1976] for the Carmel aquifer were
used. In the solution, 26 well sites were selected and the distribution of pumping rates was
determined. Drawdowns predicted at the well sites using a nonlinear simulation model
compared favourably well with the results using the linearized and adjusted drawdowns. It
was concluded that the linearization did not seriously affect the results.

Willis [1983] applied the response matrix approach to the agricultural Yun Lin
basin, Taiwan. The linear programming problem was to determine the optimal pumping
scheme for three consecutive periods in order to meet agricultural water demands. The
objectives were to maximise the sum of the hydraulic heads and minimise the total water
deficit. Constraints were placed on local groundwater demands, hydraulic heads, and well
capacity. Of key interest was the use of quasilinearization to solve the equation describing
transient unconfined flow. This yielded a linear approximation which required iteration to
achieve a solution to the original Boussinesq equation. The iterative procedure used the
head distribution from one linear programming solution to update the linearized response
constraints for the next solution. The simulation model used a finite element network
containing 101 nodes.-

The response matrix approach has been applied to groundwater hydraulic
management in the Pawnee Valley of south-central Kansas by Heidari [1982]. A
groundwater model for the area was developed in prior studies by Sophocleous [1980] and
the aquifer parameters were used in conjunction with the computer program of Maddock
[1969] to generate the response matrix. As an approximation, the unconfined system was
treated as a confined aquifer and drawdowns were corrected using Jacob [1944]. The
response matrix was utilised in a linear program which maximised pumping rates over time.
The total pumping during each time period was forced to meet demands and each pumping
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rate was limited by water rights. Drawdown at any time was constrained to a fraction of the
total saturated thickness. Different solutions were obtained under maximum drawdown
fractions which ranged from 0.1 to 0.25. To reduce the number of decision variables, wells
were clustered into 61 well fields. Models were run for a 5-year planning horizon and a 10-
year planning horizon. In each case, the time horizon was broken down into five equal
management time units of 1 and 2 years, respectively. By considering various sets of
constraints in several model runs, Heidari [1982] was able to demonstrate that the
response matrix is applicable to real world systems and is a valuable tool for evaluating

groundwater management systems.

2.13.1.3 Comparison of Hydraulic Management Methods

In the embedding approach, the discretized flow equations are included in the linear
programming as constraints and a complete simulation model is solved as part of the
management model. Hydraulic heads throughout the entire spatial domain and at each time
step are treated as decision variables. The embedded simulation model yields a great deal of
information regarding the aquifer behaviour. However, it will rarely occur that management
involves all the hydraulic heads over space and time. Therefore, many of the decision
variables and constraints will be unnecessarily contained in the linear programming model.
For computational economy and avoidance of numerical difficulties, application of the
embedding approach is limited to small steady state problems.

In the response matrix approach, solutions of the flow equations serve as linear
programming constraints. This approach yields incomplete information regarding system
functioning but is generally a more economical method. Development of the response

matrix requires the solution of one external simulation model for each potentially managed
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well or other excitation, such as local boundary condition. This may require a large initial
expenditure of computational effort. However, the resulting response matrix is a more
efficient, condensed simulation tool. Constraints are included only for specified locations
and time. Unnecessary constraints or decision variables are not incorporated into the linear
management model. Therefore, the response matrix approach can handle large transient

systems in an efficient manner.

2.13.2 Groundwater Policy Evaluation and Allocation

Groundwater policy evaluation and allocation models are valuable for complex
problems where hydraulic management is not the sole concern of the water planner. These
models inspect water allocation problems involving economic management objectives. Such
models have been applied to large-scale transient problems which study behaviour of an
agricultural economy in response to institutional policies and to optimisation of conjunctive
water use. Three types of models are available in the literature for groundwater policy
evaluation and allocation problems : (1) hydraulic-economic response models, (2) linked
simulation-optimisation models, and (3) hierarchical models. Hydraulic-economic response
models are a direct extension of the response matrix approach to problems in which
agricultural and/or surface allocation economics play a role. Linked simulation-optimisation
models use results of an external aquifer simulation model as input to a series of subarea
economic optimisation models. Information and results from each planning period are
utilised for management during the next period. Because the simulation and economic
management models are separate, complex social, political, and economic influence can be
considered. Hierarchical models use subarea decomposition and a response matrix
approach . Large and complex systems can be treated as a series of independent subsystems,
and multiple objectives can be considered.
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2.13.2.1 Hydraulic-Economic Response Models

The hydraulic response matrix has been extended to include agricultural-economic
or surface water allocation management components. Each of these models is formulated as
a single optimisation problem in which hydraulic and other controllable activities are
considered. The first such combination of groundwater and economic management models
was presented by Maddock [1974a]. A conjunctive stream-aquifer simulation model using
finite differences was used to develop an algebraic technological function (response matrix).
The planning. model was developed for a hypothetical water management agency with the
objective of minimising discounted expected value of water costs supplied by the stream
aquifer system. Constraints included expected water demand, downstream water rights,
water spreading for aquifer recharge, and stream-aquifer water transfers. Within the context
of a quadratic programming problem, water demand was considered a stochastic process. A
single planning model solution provided operating rules for groundwater withdrawals,
stream diversions, water spreading, and return flow to the stream. Sensitivity of the model
to variation in parameters, such as demand variance, was demonstrated.

Maddock and Haimes [1975] used the response matrix approach along with
agricultural-economic considerations to study a tax-quota system for groundwater
management to a hypothetical farming region. The scheme employed a quota in which each
user was assigned an annual draft (resulting from the optimisation model) and a tax which
would be assessed if this draft limit was exceeded. Farmers using less than a quota could be
entitled to a rebate. A quadratic programming problem was formulated which sought to
maximise combined net revenues on the farms and thereby determine pumping quotas.

Linear constraints restricted drawdown and pumping rates using a hydraulic response
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matrix. Additional linear constraints limited the acreage planted and guaranteed that
irrigation water requirements were met. Response coefficients were developed and the
optimisation model was solved for a 5-year planning horizon. The optimal solution gave the
pumping quotas for each well in the system.

Economic management of an aquifer-stream system was the topic of Morel-Seytoux
et al. [1980]. In an approach similar to Maddock [1974a], they demonstrated a link between
an economic model and a hydrologic model in one quadratic programming formulation. In a
hypothetical system, water for irrigation was supplied from groundwater and a river
diversion. The objective of the model was to minimise the total cost of water. Constraints
were placed upon water availability, water rights and land availability for each crop.
Optimal crop yield as well as crop prices were known, and each crop yield was assumed to
vary with the degree of irrigation. Pumping costé §vere related to groundwater drawdown.
The model consisted of a quadratic objective function relating to water costs and a series of
linear constraints. No solutions were presented; however, the authors noted that the

solution could be achieved using existing techniques.

2.13.2.2 Linked Simulation-Optimisation Models

Linked simulation-optimisation models were developed to study the impact of
institutional changes upon groundwater use. The study of Bredehoeft and Young [1970]
explored the effect of two policy instruments (a tax and quota) upon groundwater basin
management. A complex hypothetical basin was considered for the temporal allocation of
groundwater to agricultural users. The management objective was to maximise the net
agricultural economic yield of the basin. An economic management model was formulated
as a series of linear programming problems where crop acreage and the annual quantity of
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water pumped were decision variables. One such model was formulated for each
agricultural subarea, and separate models were solved for each 5-year management interval.
An external numerical surface model provided input to the linear program as estimated
annual cost of pumped water for each subarea. The finite difference model simulated
transient unconfined flow for the regional aquifer. A sequential computational link was
developed between the economic models and the groundwater simulation model.
Preliminary subwater demands were computed using the linear program. Then calculations
and checks were made regarding the profitability of reinvestment in wells, well life limits,
and economic failure for each subarea. Pumping requirements were adjusted and the aquifer
simulation rerun. The resulting hydraulic heads were used to compute estimated future
pumping costs for the next 5-year interval in the economic linear programming models. The
procedure was repeated for the next 50-year time horizon.

The linked model approach was further extended to the management of
groundwater and surface water systems by Young and Bredehoeft [1972]. They studied an
80-km reach of the South Platte river in Colorado in which all groundwater ultimately came
from the river. Their study considered an institutional framework which would tend to
minimise the impact upon river flow of groundwater pumping for irrigation through
examination of the policy implications of a basin authority for partial centralisation of
control, allowed for the development of new water supplies. In this context, a model was
developed which linked economic management with numerical simulation. As in their
former studies, numerous linear programming models and periodic groundwater simulation
models were executed. The goal of the basin authority was assumed to be maximisation of
the average annual economic yield. A linear program was developed which maximised net
revenues at the beginning of the simulation season. Constraints considered water
acquisition, and irrigable land limitations. A sequence of computations then determined
irrigation return flow, flow diversions, and crop acreages. Monthly subarea operating

models were formulated as linear programs in which surface water use and groundwater use
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were decision variables. The constraints related to irrigation requirements and local net
revenues were maximised. After each subarea operating model was solved, an aquifer was
executed for nongrowing seasons. The planning model was then run for the next irrigation
season and the process repeated for a 10-year time horizon.

Bredehoeft and Young [1983] updated their 1972 model by considering the
influence of certain surface water supplies. Their study was again patterned a reach of the
South Platte River in Colorado , and the linked model approach was employed. In addition
to maximising net revenue, they argued that farmers countered variance in income caused
by short water supplies. Farming economics in the study area were such that reliance upon
uncertain surface water supplies was unwise. Increasing well capacity so that all acreage
could be irrigated by wells significantly reduced the variance of income. As in this study, the
management modelling approach illustrates quantitatively that the development of the
groundwater systems may be motivated by the desire to insure against periodic short water
supplies. The study provided a more comprehensive framework to evaluate management
institutions.

The linked simulation-optimisation approach was used by Daubert and Young
[1982] to evaluate the influence of two groundwater management schemes along the lower
South Platte River in Colorado. Their model was similar to that of Young and Bredehoeft
[1972] but used the aquifer-stream response model of Morel-Seytoux [1975b] and
contained a legal submodel which distributed surface water rights and groundwater with
respect to assumed management policies. The management model was first concerned with
a groundwater policy that effectively prohibited groundwater use during drought periods.
The second policy regarded groundwater as a common property and limited pumping only
by the well capacity. Results showed that while unrestricted groundwater use resulted in
enhanced net income from irrigated farming, it imposed large external costs on surface

water users who must cope with declining flows.
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2.13.2.3 Hierarchical Models

The hierarchical approach was developed to model and optimise large scale water
resource systems. The general approach has been described by Haimes [1977]. Yu and
Haimes [1974] first employed this approach to optimise a complex regional groundwater
allocation problem. They reasoned that a decomposition and multilevel approach breaks
down a complicated regional resource management problem into smaller local level
problems, each of which is optimised before attempting to optimise the overall regional
problem. The process is iterative and requires coordination and feedback from the solution
of the higher-level (overall) problem to local level optimisation.

They were concerned with planning to improve the allocative efficiency of the
regional water resources, particularly groundwater. The regional problem was decomposed
into subproblems, one for each subregion. Each subregion was formulated as a nonlinear
mathematical programming problem which minimised net water supply costs, which were
considered to be functions of water importation, pumping, and water levels. The aquifer
model was a two-dimensional asymmetric polygonal finite difference system [MacNeal,
1953]. Subregional model solutions were fed to a second level representing coordination by
a regional authority. The authority dealt with assuring consistent water levels across the
individual polygonal regions, determined tax rates, and determined the optimal artificial
recharge operation rate to minimise regional water supply costs. The interaction between
the regional authority and subregions was accomplished using an iterative decision-making
process. By structuring the model in this manner, decentralised decisions were tied together
to solve a complex regional groundwater allocation problem by imposing a regional

pumping tax to provide revenue for artificial recharge.
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A multilevel management model for a complex groundwater-surface water system
was presented by Haimes and Dreizen [1977]. It uses both the response matrix approach
and a multilevel structure to optimise a complex, conjunctive system. Their strategy was to
solve a series of optimisation models which employed response matrices. In the first stage,
optimisation models were executed which maximised each water users net benefit. The
problems were formulated as quadratic fnodels m Which decision variables were local
pumping quantities, artificial recharge activity, and surface water use. Constraints specified
water requirements, lift and pumping limitations for each well, recharge facility capacity,
and surface water allocation. Response matrices were developed with the aquifer simulation
program of Maddock [1969]. In their study, individual subarea models were solved using
- the multicell simulation technique by. Dreizen and Haimes [1977].

The second stage of the multilevel optimisation scheme determined drawdowns
throughout the system and flows induced from the river into the aquifer. This process was
accomplished by summing the influences resulting from the solutions obtained for each area
from the first stage in the optimisation. Net streamflow to the reservoir was calculated,
reservoir overflow was checked, and reservoir operation costs were determined. These
factors were then entered into an optimal surface water allocation program in which the
reservoir capacity and periodic allocation limits served as constraints. A sample solution
was presentéd over a 6-year planning horizon. The optimal solutioﬁ indicated a well-
pumping plan, recharge plan, and surface water use plan.

A hierarchical model has been developed by researchers at the World Bank to study
groundwater and surface water policies for the Indus Basin in Pakistan using the structure
of the hierarchical and multilevel programming model by Bisschop et al. [1982]. The
solution model employed the transformation matrix approach with 53 irrigated polygonal
regions.- The original model consisted of 20,000 constraints , but various simplifications
reduced the problem to less than 8,000 constraints. A method was developed to this Indus

Basin model as a two-level programming problem. One level concerned the farmers and
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their individual objectives. The individual farm level objectives were summed and the
aggregate farm income was maximised. The second level concerned the government which
must account for long-term consequences of water allocation decisions. The solution
procedure involved creation of an augmented linear program that served to fix certain

policy variables that pertain to government taxes and subsidies.

2.14 Groundwater Quality Management

The joint use of numerical simulation and linear programming has been applied to
grbundwater pollutant source managemeht.' The underlying management ﬁroblém here is the
use of an aquifer for both waste disposal and water supply. Combined groundwater
simulation and management models have been developed to contend with these problems.
Simulation models in the case of groundwater pollutant source management involve
solution of the advective-dispersive equation. For the general linear case of a two-
dimensional transport with decay and sorption of a single dissolved chemical constituent in

saturated porous media, the governing equation may be expressed as

RE_lp X\ 2 cy)-E¥ v 2.22)
a &, b

concentration in the dissolved chemical species [ ML ],

C
D, dispersion tensor [ L*T™'],
|4 average pore water velocity in the direction i [ LT !

saturated aquifer thickness [L],
effective aquifer porosity [ L°],

-
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C’ solute concentration in a fluid sink or source [ ML),
w volumetric flux per unit area [ LT ™' ],

R, retardation factor [LO 1

A first order kinetic decay rate [T~ ],

Cartesian coordinates [L], and

t time [77].

Different types of management models have been developed for steady state pollution
distribution which often represent a worst-case pollution scenario, and for transient. cases

involving solute redistribution.

2.14.1 Steady State Management Models

The first model aimed at managing the .disposal-of waste in aquifers was that of
Willis [1976a]. In this study, the aquifer was considered as a component of a regional waste
treatment system. The objective of the model was to minimise the cost of surface waste
treatment considering both dilution cost and treatment plant cost. The treated effluent
would be injected into an aquifer at predetermined sites. Restrictions were place upon water
quality at supply wells and recharge wells.

A solute transport model served as a series of linear constraints in the planning
model. In the simulation model, no temporal variations could occur in either the hydraulic
head or solute distribution. Solute transport simulation proceeded in two steps. First, the

steady state form of (2.22) was solved using the finite difference method. The second step
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involved determining the steady state solute distribution for each constituent. Willis [1976a]
chose to neglect dispersion, and modelled on advective transport and adsorption. The finite
difference method was again used to discretize the resulting equation for each constituent,
and water quality constraints were then based upon these discretized equations. The solute
transport simulation model was first formed as a finite difference coefficient matrix. The
inverse of this matrix was then computéd, and relevant portions were included in the
management model as constraints. The management model was demonstrated for a
hypothetical case involving two injection wells and two pumping wells. The model
“ considered several unit processes for waste treatment plant that ihvolv’ed primary,
secondary, ‘and various forms- of advanced waste treatment system. The solution
determined the optimal unit treatment process and the most cost-effective volume of
imported dilution treated. .

Incorporating the discretized solute transport equation as constraints in a linear
programming management model was the topic of Futagami et al. [1976]. This study
considered the general problem of large surface water body pollution and not specifically
groundwater pollution. Different models were constructed using finite difference and finite
elements to solve for the steady state solute distribution. Their linear programming model
sought to maximise total waste disposal under local waste load restrictions. The physical
behaviour of the system was accounted for by embedding the finite difference or finite
element equations into the linear programming model. The greatest significant of this work
was in the linear programming solution algorithm; wherein the author was able to take
advantage of the special structure of the constraints represented by the discretized transport
equation to develop a more efficient computation algorithm using the simplex method. An
initial basic feasible solution was developed without the introduction of artificial variables.
However, the primary problem of treating each concentration in space and time as a

decision variable still remains, even with their special simplex method implementation.
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Gorelick and Remson [1982a] and Gorelick [1980] employed the embedding
approach using the steady state finite difference form of (2.22) to maximise waste disposal
at two locations while protecting water quality at supply wells and maintaining an existing
waste facility. Both concentration and waste disposal fluxes were treated as decision
variables. After achieving the solution, the model was subjected to sensitivity analysis using_
parametric programming. In this way, waste dispdsal tfadeoffs at the various facilities could

be inspected.

2.14.2 Transient Management Models

Pollutant source management problems may frequently involve the migration of
plumes of contaminated water. In such cases, water quality must be protected over long
time frames. A waste disposal decision today may not manifest itself as polluted
groundwater at down-gradient wells or streams for many decades. Methods to contend with
the dynamic manage;ment of groundwater pollutant sources have therefore been developed.

Both Willis [1976b] and Futagami [1976] suggested that the embedding method be
employed using the finite e.leﬁlent formulation of the solute transport model to solve the
transient management problem. Willis [1976¢] employed the embedding method to
determine effluent disposal standards for food processing waste using spray irrigation. His
finite element model considered one-dimensional advective and dispersion for five disposal
cycles for a 24-element configuration. For such small system, the embedding method is
applicable. However, for a general transient case, the embedding method will result in an
extremely large constraint matrix making the embedding approach unsuitable.

Gorelick et al. [1979] considered the management of a transient pollutant source.
Their model determined the maximum permissible concentration in a river which lost water

to an aquifer. They recognised the problem of storing and manipulating a large time- and
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space-discretized matrix when using the embedding approach and developed an alternate
method. This method did not require linear programming. By taking advantage of the
mathematical structure of the transient constraints matrix, a recursive pollutant source
management problem was developed. Concentration throughout the system was expressed
as a function of the river water quality. The management solution was quite different and
provided valuable information regarding the effect of successive water quality constraints,
as well as travel times of the solute plume peaks from the source to the location of the
supply wells. This method is however, limited to situations in which the concentration of the
system can be expressed as a function of a single parameter.’

Willis [1979] considered a model for aquifer management involving waste injection
control. He considered the groundwater problems associated with the well injection of
waste waters in a groundwater aquifer system conjunctively managed for supply and
quality. The planning problem was broken into groundwater hydraulic management, and
pollutant source management components. By decomposing the problem in this manner, the
hydraulic heads as determined from the hydraulic management solution, were used to
generate the groundwater velocity field required for the groundwater quality management
model. The two component problems were formulated and solved as separate linear
programming problems. In an illustrative example, hydraulic heads were managed at
extraction and injection wells while a water target within each planning period was met and
pumping and injection rates were limited. The water quality component maximised the
lowest of the waste injection concentrations while meeting a waste disposal load and
preserving water quality at all wells during the operational cycle. The example considered
four 120-day management periods. Decisions regarding pumping and injection were made
at the beginning of each period. Transient hydraulic simulations were avoided by using an
average groundwater velocity field over the 480-day operational cycle for the water quality

simulation-management model.

53



Chapter 2 Review of Inverse and Management Decision Models

Each of the two management models predicted the system's behaviour using
numerical simulation. To handle the question of dimensionality associated with transient
problems, Willis [1979] began by constructing finite element models for the flow and solute
transport models. Rather than discretizing the time derivatives, the system was discretized
over space alone. Analytic _solutions to these systems of space-discretized ordinary
differential equations were obtained [Bellrﬁan, 1960] :and the solutions were entered into
the linear programming models as constraints. For the water quality subproblem, there are
some difficulties with this approach. First, evaluating concentrations at the beginning and
end of a planning period does not suffice. In-transient problems, decisions are made
regarding levels of waste water disposal at potential sites. The optimal selection of sites and
waste disposal strengths are unknown, and therefore the arrival time of contaminant plume
peaks at water supply wells remains unknown. Contaminant plumes will not arrive at each
supply well at the beginning or end of a planning period. Second, numerical problems may
arise when solving the solute transport equation as a system of ordinary differential
equations. This is because the space-discretized equations for a nonsymmetric matrix are
difficult to solve using the matrix exponential.

Gorelick and Remson [1982b] approached the dynamic management of
groundwater pollutant sources by the use of a constraint response matrix. They considered
an illustrative one dimensional case involving multiple sources of groundwater pollution and
‘the maintenance of water quality at water supply wells over all time. They were concerned
with the problem of managing waste disposal activities for several years in such a way that
solute concentration at supply wells never exceed water quality standards, even after waste
disposal activities had ceased. An external finite difference model was used to construct a
unit source concentration response matrix. The matrix served as linear programming
constraints and converted solute injected fluxes at potential disposal locations into
concentration histories at water supply wells. Any linear solute transport simulation model

could be used to generate the concentration response matrix. The linear programming

54



Chapter 2 Review of Inverse and Management Decision Models

solution was subjected to parametric programming to analyse the influence upon the
optimal solution of various waste injection strategies.
Gorelick [1982] utilised the U.S. Geological Survey method of characteristics solute
transport model [Konikow and Bredehoeft, 1978] as a component in a groundwater quality
_ management model applied to a complex hypothetical regional aquifer. The concentration
response matrix was used in conjunction with linear programming to maximise waste |
disposal at several facilities during 1-year planning periods. A limit on solute concentration
at observation wells was enforced from the first arrival of groundwater pollution until the
polliutant plumes cleared the observation wells. ‘He found that by formulating the problem
as a dual linear programming problem and by using a numerically stable. implementation of
the revised simplex method [Saunders, 1977], a large field-scale problem could be solved.
The results of the pollutant source maximisation problem indicated that the waste disposal
was enhanced by pulsing rather than maintaining constant disposal rates at various sites.
Solutions to problems with successfully greater numbers of waste disposal periods were
compared. The marginal impact of the water quality standard imposed at the supply wells
was greater for short management horizons than for extended management horizons.
Gorelick and Remson [1982b] and Gorelick [1982] were concerned with managing
disposal decisions until the pollutants essentially cleared the system. This differs from the
water quality problem of Willis [1979] in which the disposal cycle and the time during
which groundwater pollution was of concern were synonymous. Furthermore, ‘the
advantage of solving the space-discretized form of the solute transport model using an
analytic solution lies in the ability to obtain a solution at any arbitrary time rather than at
successive discrete times. If analytic solutions are obtained over discrete time intervals in
order to ensure water quality at supply wells over the entire problem time frame, then the
primary benefit of the analytic solution technique is lost. In addition, incorporating transient
field flow variations would require numerous evaluations of matrix exponentials at discrete

times. In the case considered by Gorelick and Remson [1982b] and Gorelick [1982],
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pollutant plume peaks arrived over a span of years and at different unknown times at the
various supply or observation wells. Temporal flow field variations could be incorporated
by the sequential solution of the flow and transport models when developing the
concentration response matrix and use of the concentration response matrix is not restricted
to a particulap simulation model. Any simulation model may be used to generate the

concentration response matrix, as .demonstrated by Gorelick [1982].

2.14.3 Some Current Groundwater Management Studies

Dougherty and Marryott [1991] showed that simulatedl annealing. can be applied
effectively to optimise problems in groundwater management. Simulated annealing is a
probabilistic optimisation method that can work well for large scale optimisation problems
that are cast in discrete or combinatorial form. The basic simulated annealing algorithm uses
a random search technique for locating candidate solutions (or configurations) and a
probabilistic criterion for accepting or rejecting those solutions that will not lead to
improved configurations. The method derives its name from an analogy with the way solids
anneal into a highly ordered (ie., optirhal) structure. Their objective was to formulate the
problem in terms of a discrete number of decision variables, each with a discrete number of
possible values. Simulated annealing was then .app]ied to the resulting combinatorial
problem. The combinatorial problem has a finite, though potentially large, number of
possible solutions. A solution that results in the ‘best' or globally optimal value of the
objective function is nonunique. They indicated that in theory simulated annealing can
guarantee a global optimum but noted that in practice, computational limitations leads to
the search for nearly optimal solutions.

Marryott et al. [1993] used simulated annealing to analyse alternate design

strategies for a groundwater remediation at a contaminated field site through a combination
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of the simulated annealing optimisation algorithm with a field-scale flow and solute
transport simulation model for an unconfined aquifer. Their objective was to determine
nearly optimal pumping schedules for a pump-and-treat remediation system at a proposed
Superfund site in central California. They presented a series of demonstration problems
using two different optimisation formulations. The results of their experiment indicated that
the simulated annealing method can be applied to realistic groundwater management
problems. However, they also noted that the computational expense of simulated annealing
technique is large but comparable to other nonlinear optimisation techniques. They finally
provided a practical empirically based strategy for selecting and adjusting the parameters
necessary for successful optimisation.

Andricevic and Kintanidis [1990] presented the approximate dual-control method in
which the policy improves the estimation of system parameters as well as manages the
system to meet the specified objectives of minimal cost (remediation). Using small
perturbation theory, the objective function was divided into a deterministic and stochastic
components. Differential dynamic programming was used to compute the Ideterministic
control. The solution for the stochastic part of the objective. function was obtained by
analytic qalculation. Because of this feature, computation requirements did not exhibit the
dimensionality problem associated with the conventional discrete stochastic dynamic
programming. For on-line parameter identification, the extended Kalman filter was used to
update the staté estimates and state covariances. The methodology was applied to a
hypothetical one-dimensional bounded aquifer system and did not account explicitly for
inequality constraints.

Convinced that it is practically impossible to specify processes and parameters
precisely in a remediation design program, Lee and Kitanidis [1991] presented the method
of optimal estimation and scheduling in aquifer remediation with incomplete information.
Their methodology combines computer simulation models of solute transport and fate,

descriptions of spatial variability, probabilistic analysis of uncertainty, and optimisation.

57



Chapter 2 Review of Inverse and Management Decision Models

Their objective was to identify the most cost effective management policy. They noted that
the advantages of their technique included : (1) utilisation of measurements in real time, (2)
simultaneous estimation of aquifer parameters and decisions for remediation, and (3)
provision of a more diversity in cost-effectiveness and decisions for aquifer remediation.
Subject to constraints and for a given reliability of me_eting water quality standards, their
method minimises the expected value of the cost in the remaining periods. Because of
incomplete information about the site, the cost of decontamination strategy is not known a
priori. Hence, their objective minimises the cost weighted by the probability that it will be
incurred.

The optimal aquifer management policy is expressed as the sum of the deterministic
and a stochastic control term. The former is obtained by solving a deterministic optimisation
problem through constrained differential dynamic programming, and the latter is obtained
by a perturbation approximation to the stochastic optimal control problem. Extended
Kalman filtering is incorporated into the optimisation method to improve the accuracy of
the estimated state and parametric variables using available measurements. A hypothetical
contamination case with two-dimensional unsteady flow and transport for a persistent solute
w_as_used to illustrate the applicability of their methodology. The cost effectiveness and
reliability of the proposed method was studied under various conditions aﬁd then compared
with the cost and reliability of the deterministic feedback control method through Monte
Carlo simulation. They noted that their methodology, which posed as an extended case of
Andricevic and Kitanidis [1990] in two-dimensional aquifer with spatial variability in
parameter and various constraints, was superior to the deterministic feedback control.

McKinney and Lin [1994] used a genetic algorithm to solve a mixed integer
nonlinear program optimal remediation design problem that included fixed and variable
treatment and well field costs. They noted that their formulation of the problem with
genetic algorithm was straightforward and provided solutions which were as good or better

than those obtained by linear and nonlinear programming. Their technique however, did not
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account for the possibility of extraction well redundancy as a contaminant plume moves
along with time. Accounting for the possibility of extraction well redundancy is important
since over-estimation of remedial design cost can be avoided as contaminant plume move
from the operating extraction wells. They indicated in their work that complicated
problems, such as transient pumping and multiphas_e remediation Iwhich have proved
difficult for the embedding and response matrix approaches of linear and quadratic
programming could be readily formulated and solved without essential difficulties.
Constraints could be easily incorporated into the formulation and computation of
derivatives with respect to the decision variables (as in nonlinear programming) were not
required. However, they mentioned that the computational time required for the solution of
genetic algorithm groundwater management models increases with the complexity of the
problem. They noted that for such complicated problems, the computational time could be
dramatically reduced on massively parallel computers.

Ritzel and Eheart [1994] have also employed the genetic algorithm technique to
solve a multiple objective groundwater pollution containment problem. Their purpose was
to investigate the ability of the genetic algorithm to. solve a multiple objective groundwater
pollution problem. Their method involved operating a set of wells so that the polluted water
could be hydraulically contained and can be pumped for subsequent freatment. Their
.decision variables were how many wells to install, where to install them, and how much to
pump from each well. To achieve this, they formulated two methods with the genetic
algorithm: a vector-evaluated genetic algorithm and a Pareto genetic algorithm. However,
since their model was only concerned with steady-state groundwater pollution containment,
and not groundwater remediation, contamination transport was not considered in their
studies. They concluded in their work that genetic algorithms are capable of generating
trade-off curves for a multiple objective groundwater containment problem and mentioned
that one great advantage of the genetic algorithm over conventional optimisation lies in its

ability to handle highly nonlinear complex problems that accurately reflect the real world.
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2.15 Approach in Present Research

In the second part of this research work, a _complete _groundwater optimisation
model has been proposed for remediation of polluted aquifers. A comprehensive literature
survey has presented a numerous number of previous and current techniques that have been
used for such exercises. The previous techniques mostly deal with linear and nonlinear
methods that employ embedding and response matrix deterministic methods. The
disadvantages of these methods lie in their inability to handle large and complex real
| problems. Not Surprisingly, such methods are not .adopted in the techniques of the '90s
where more sophisticated methods such as simulated annealing, stochastic, and a
combination of deterministic and stochastic techniques are now in use.

Nonlinear programming techniques have been used to solve groundwater
management problems for the past two decades. These methods employ the gradient-based
algorithms to adjust decision variables so as to optimise the objective function of a
.management model. These algorithms require the computation of sensitivities of state
variables, eg., head or concentration, at certain locations to decision variables. Sensitivities.
are obtained either by adjoint sensitivity or perturbation methods. These sensitivities are
difficult to program, in the case of adjoint sensitivity method, or computationally expensive
to generate, in the case of perturbation methods, and in general are not robust [McKinney
and Lin, 1994]. The problem is complicated by the fact that cost functions may either be
discontinuous or highly complex. Additionally, groundwater management problems tend to
be highly nonlinear and nonconvex mathematical programming problems, especially in the

case of aquifer remediation design with mass transport constraints. Hence, there is no
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guarantee that a global optimum of a groundwater remediation design will be found by
gradient-based nonlinear programming methods.

Genetic algorithms are search algorithms based on the principle of the mechanics of
natural selection which are capable of finding several near-optimal design alternatives that
are different from each other - giving the decision maker several alternatives to compare
and select from. Therefore in view of the several inherent -difﬁculties associated with the use
of nonlinear programming methods to the design of groundwater remediation schemes, the
genetic algorithm technology has been selected as the suitable method for application in the
proposed remediation model of the second phase of this research work. The details of this
technique and the extent to which it is formulated to suit the needs of this research study is
presented in chapter five. It is apparent from the literature survey, that the shuffled complex
evolutionary (SCE) method has nevef been used in the history of groundwater modelling for
parameter estimation. This technique has proved very successful in the past for the
calibration of conceptual surface runoff models. In the light of its success, it has been
selected as the technique to be adopted in the inverse problem of parameter estimation.

Details of the SCE methodology is presented in chapter five.
2.16 Summary

This chapter has presented a comprehensive review of the various methodologies
used in the optimisation of groundwater management and aquifer parameter identification
problems. The topics discussed range from the application of deterministic (gradient-based
methods) through a combination of deterministic and stochastic methods (shuffled complex
evolution) to completely stochastic methods (simulated annealing and genetic algorithms).
Current research studies have shown that gradient-based methods have difficulties in

locating the global optimum of the objective function of groundwater management
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problems. However, they have indicated that techniques like the genetic algorithm and the
shuffled complex evolution methods are robust enough to handle most of the difficulties
associated with real-world complex optimisation problems. In view of this, the genetic
algorithm and the shuffled complex methodology have been selected as the appropriate
optimisation techniques for proposed aquifer remediation and the parameter estimation in

this research study.
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Chapter 3

Research Methodology

3.1 Introduction

Based on the comprehensive literature survey presented in chapter 2, two appropriate
evolutionary techniques have been selected to handle the two-phase research study
proposed in the introductory chapter. The first phase of the research study deals with the
identification of aquifer formation parameters using the shuffled complex evolutionary
methodology, while the second phase considers the optimisation of extraction processes in
contaminated aquifers using the genetic algorithm optimisation technique. The shuffled
.complex evolution and the genetic élgorithm are both evolutionary optimisation techniques
that employ the principles of natural selection. The outstanding difference between the two is
that the genetic algorithm uses entirely stochastic (or probabilistic) methods in its
optimisation procedures while the shuffled complex evolution combines both stochastic and
deterministic methods. In both phases of the research study, numerical finite element models
are embedded in the optimisation models for the forward problem part of the analysis. This
chapter briefly addresses the approach adopted in the development of the desired models for

each phase of the proposed research.
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3.2 Parameter Identification - Phase 1

In order to design a more practical tool for field scale problems, numerical
formulation techniques are adopted to solve the governing equations of flow and solute
transport. Two stand-alone models (one for flow and the other for solute transport) each with
the optioﬁ to handle fluid flow in both tW(;- and three-dimensions are designed for the inverse
problem of parameter identification. The optimiser used in this model is the shuffled complex
evolutionary technique. The shuffled complex evolution (SCE) performs the entire parameter
estimation operation through two major operations: (1).complex shuffling, and (2)
competitive complex evolution. Importance is attached to the estimation of the following

parameters:

Two-Dimensional Flow model

¢ hydraulic conductivity in the x-direction [k, ],
¢ hydraulic conductivity in the y-direction [ £,, ],

¢ anisotropic hydraulic conductivity [ £, = k,, ], and

¢ aquifer storage coefficient [S]

Three-Dimensional Flow model

¢ hydraulic conductivity in the x-direction [ k,, ],

¢ hydraulic conductivity in the y-direction [£, ],
¢ hydraulic conductivity in the z-direction [ £, ], and

¢ agquifer storage coefficient [S].
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Two- and Three-Dimensional Transport Models

¢ longitudinal dispersivity [« ],
¢ transverse dispersivity [ ], and

¢ aquifer porosity [ ¢ ].

Nonuniformity and nonhomogeneity are accounted for in groundwater modelling via:
(1) zonation method, and (2) interpolation method. In the zonation approach, the simulation
region is divided into a number of subregions (or zones) and constant parameter value are
used to characterise each zone. In the finite element context therefore, all elements within the
same zone exhibit common parameter values corresponding to that zone. Parameter
identification numbers are used to parameterize the region into zones. Therefore elements
identified by the same numbers are known to belong to the same zone and hence have
common parameter values. In the interpolation approach, the simulation region is divided into
a number of elements connected to a number of nodes. Each node is associated with a chosen
local interpolation function. The unknown parameter is then- interpolated by a linear
combination of the interpolating function. Because of its ease of application, the zonation
method is adopted in this research work to account for nonuniformity and nonhomogeneity
of the .aqui-fer formation parameters. |

The decision to use the SCE for the inverse problem of parameter identification is
based on the considerable amount of success which some surface hydrologists have reported
on its use for calibration of conceptual rainfall-runoff (CRR) models. Recently, Tanakamaru
and Burges [1996] and Kuczera [1997] compared the efficiency of the SCE technique in
the context of CRR modelling with the genetic algorithm and other optimisation techniques
and reported the SCE as having the best performance. Yapo et al. [1996] used a 39 water-
year period in conjunction with the SCE to estimate the optimal parameters of a given

watershed. They performed ten independent runs and concluded that all the ten runs
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converged to the same parameter values. Additionally Professor H. Gupta - the leader of the
team that developed the shuffled complex evolutionary technique - has mentioned in a
personal communication that the methodology has never been extended to groundwater
modelling. Therefore the primary objective of the use of the SCE in the inverse problem of
parameter identification is to investigate its pqrformance_ 1n the context of groundwater

modelling.

3.2 Optimisation of Extraction - Phase 2

This model comprises a flow and solute transport model embedded in the genetic
algorithm optimisation model. The flow model is required for the computation of element
centroidal velocities which is subsequently used in the transport model for the computation of
dispersion coefficient parameters. In addition to handling anisotropy and homogeneity, the
numerical models in this context are designed to model fluid transport processes in confined
and unconfined aquifers. The major task of the optimisation is performed by the genetic
algorithm model through the four genetic processes of selection, crossover, mutation, and
inversion; after receiving nodal concentration values from the transport model. The nodal
concentration values are required by the genetic algorithm for the evaluation of the objective
function. The outf)ut of the entire optilnisétion process is (1) the optimum number, locations,
pumping rates, and pumping regime of extraction wells and (2) the optimum cost of the

extraction operation associated with the entire remediation scheme in (1).
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3.4 Assumptions

Since mathematical models are not completely capable of simulating the realities of
nature, assumptions are usually required in some cases to reduce the complex natural
phenomena to situations that can be readily modelled. In view of this, the following
assumptions are observed by the flow and solute transport governing equations adopted in

this research work.

3.4.1 Major Assumptions of the Flow Models

¢ Flow of the fluid is considered isothermal and governed by Darcy's law,
¢ fluid under consideration is slightly compressible and no separation phase occurs, and

¢ the daughter products of any decayed material do not affect the density of water.

3.4.2 Major Assumptions of the Transport Models

¢ Diffusion of transport in the porous medium is governed by Fick's law,

¢ the hydrodynamic dispersion is defined as the sum of the coefficient of mechanical
disperSion -aind molecular diffusion,

¢ adsorption and decay of the solute may be described by a linear equilibrium isotherm and
a first-order decay rate, and

¢ decay rate is the same in both the solid and the liquid phase.
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3.5 Formulation and Numerical Approximation

In the usual finite element context, the steps involved in the formulation and numerical

approximation consist of:

¢ Discretization of the simulation region into a network of finite eleménts. For simple
rectangular simulation regions, subprograms have been designed and incorporated for
automatic generation of element connectivity and nodal coordinates (mesh design).

¢ Formulation of a matrix equation describing the behaviour of individual elements (element
stiffness matrix). The weighted residual of the advective-dispersive transport is performed
using asymmetric weighting functions (instead of the basis functions normally used in the
standard Galerkin formulation). This measure is effected to take care of numerical
dispersion when the advective components of the transport model dominate over their
dispersive counterparts. This upstream-weighting technique is adopted in the management
model_.

¢ Assembly of the element equations into a system of global algebraic equations and
incorporation of boundary conditions.

¢ Solution of the resultiﬁg S);stem of algebraic equations using a direct symmetﬁc solver for
the flow model and a direct ésynnhetric solver for the transport model of the management
model. An iterative solution technique is used for the inverse problem of parameter
identification for fast solution process since some problems require a large number of

objective function evaluations.
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3.6 Summary

A brief methodology of the proposed research study has been presented in this
chapter. The entire research work comprises two phases. The first phase involves the
development of a model for the inverse problem of parameter identification using the shuffled
complex evolutionary methodology. The second phase deals with tile development of al
management model for the optimisation of extraction processes in polluted aquifers using the
genetic algorithm as the optimisation technique. Within each of these optimisation models, is
embedded a flow and/or solute transport model. These models are formulated by the finite
element method into a system of algebraic equations which are solved appropriately by direct
and iterative solution techniques. Details of the optimisation models mentioned in this chapter
and the extent to which they are formulated to handle the proposed problem presented in
chapter five. The governing equations, their numerical formulation into a system of algebraic
equations, and solution techniques used to solve these system of algebraic equations are

presented in much more detail in chapter four.
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Chapter 4

Governing Equations, Finite Element
Formulation, and Solution Techniques

4.1 Introduction

This chapter addresses the equations governing flow and solute transport in
porous media, their subsequent formulation into a system of algebraic equations by the
finite element method, and the appropriate solution techniques employed to solve the
system of algebraic equations. From the methodology presented in chapter three, a total
of four governing equations are presented. These are namely: (1) a two-dimensional flow
equation, (2) a three-dimensional flow equation, (3) a two-dimensional solute transport
equation and (4) a three-dimensional soluté tfansport equation. In the proposed
extraction process, a flow model is required for the computation of velocities to be used
by the solute transport component. of the extraction model. The presentation of these
equations are followed by their transformation into a system of algebraic equations using

the finite element method.
4.2 Governing equations for the Flow Models

The generalised anisotropic and nonhomogenous form of governing equations for

a two-dimensional flow model may be expressed as:
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OB O L A I
where:

k. hydraulic conductivity in the x-direction [ LT 1,

k., anisotropic hydraulic conductivity in xy-direction [LT™'],

K, anisotropic hydraulic conductivity in the yx-direction [LT],

k, hydraulic conductivity in the y-direction [LT™],

h(x,y,t) hydraulic head at a point (x,y) at time # [L],

t a particular simulation time [77],

volumetric rate of extraction/injection per unit area [ LT ], and
S aquifer storage coefficient [ L’].

The three-dimensional from of equation (4.1) may be expressed as:

2k, @)J(,, @_)+_f9_(kz @) _s% .0

& &) I\"y) & & a 4.2)
kx'y=k}“=kyz= zy=k#=ka=0'

where:

k, hydraulic conductivity in the vertical (or z) direction [LT'].

All other terms in equation (4.2) have meanings as previously defined in equation (4.1).
In the finite element formulation, it is rather convenient to have equations (4.1) and (4.2)
in their Cartesian tensor notation form. Using this notation, equations (4.1) and (4.2) may

be represented in a more compact form as:
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i[k,ﬂ _s?,0
CAGE-7 a (4.3)

i,j =12 (for 2 - dimension) or i,j=1,2,3 (for 3 - dimension)

where:

k. hydraulic conductivity tensor [LT).

k, contains the diagonal elements k. and k,, and the off-diagonal terms £, and k, for

the two-dimensional model or k., k,,, and k,, for the three-dimensional model (where

all other elements of hydraulic conductivity tensor are zero). In accordance with the
standard definitions, transmissivity may be obtained from the hydraulic conductivity

tensor by the expression:

T, =kH (4.4)
where:

/o transmissivity tensor [ L*T '], and

H saturated thickness of the aquifer [L].

For unconfined flow, H corresponds to the hydraulic head above the base of the aquifer.
The initial and boundary conditions to which equatidn (4.3) may be subject to are

expressed as:

h(x,,t =0)=h, (4.5)

h(x,,t)=h on boundary B, (4.6)
o -

—k; Eni =q on boundary B, @.7)
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where:
h, initial hydraulic head [Z],
h specified hydraulic head on boundary portion B, [L],
q specified flux on boundary portion B, [LT'], and
n, outward unit normal vector.

4.2 Governing equations for the Transport Models

The two-dimensional governing equation for solute transport in a porous medium

may be represented by the mathematical expression:

i(DH§+DAyé) +£(DWQ+DW§) —vxé—vyé=
& & &) & 173 & & & 38)
Ré + RAc+ —QL(C' - c)
gm
where:
D, hydrodynamic dispersion coefficient in the x-direction [ LT~ ],
D,, hydrodynamic dispersion coefficient in the xy-direction [I’T™],
D, hydrodynamic dispersion coefficient in the yx-direction [ Ty,
D, hydrodynamic dispersion coefficient in the y-direction [I’T™],
cxy,t) trace concentration at the point (x,y) in time # [ ML™],
Ve Y, pore water velocities in x- and y-directions, respectively [LT™],
R retardation coefficient [ L°],
A decay constant [T7'],
O injection (or extraction) rate per unit area [LT™],
c trace concentration in injected fluid [ ML™1,
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@ aquifer porosity [L°], and

m aquifer saturated thickness [L].

The hydrodynamic dispersion components are evaluated according to the following

constitutive relations [Istok, 1987]:

_ av,’ +av,’ D “9)
xx v ¢
a v 2 +a,v 2
D, =—1*—=2 4D (4.10)
v
(aL'_‘aT)va
D,=D, = : Y 4.11)
where:

y= |1fvx2 + Vy2‘|
a, longitudinal dispersivity [L],
a, transverse dispersivity [L], and

D' coefficient of molecular diffusion [ LT ].

The three-dimensional form of the solute transport model in equation (4.8) may be

expressed as:

—é,—(Dxxé+D &+D —) 5(D +D, &+D é)
a\ & 24 I\ Yy Ta
L 24
4

(4.12)
E(D32+D +D, é]—xé"—— . —R—@+R,1c+g’i(c‘—c)
a\l & "o & & Ty a gm
where:

D.  hydrodynamic dispersion coefficient in the xz-direction [ LT~ ],

xz

D hydrodynamic dispersion coefficient in the zx-direction [L*T7'],

pas
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SR N

<

N

hydrodynamic dispersion coefficient in the yz-direction [(’1'1,

hydrodynamic dispersion coefficient in the zy-direction [ L’T™'],

hydrodynamic dispersion coefficient in the z-direction [ L’T '], and

pore water velocity in the z-direction [ LT'].

All the other parameters in equation (4.12) have the same meaning as those defined in

equation (4.8). The expressions for the coefficients of mechanical (or hydrodynamic)

dispersion in three-dimensional notation may be obtained by the following expression

[Istok, 1987]:

D_=
D, =
D, =
D, =D, =
D_=D, =
D),ZA =D, =
where

_ 2 2 7]
v—|\[vx +v, +v,

(4.13)

(4.14)

(4.15)

(4.16)

4.17)

(4.18)

In Cartesian tensor notation equations (4.8) and (4.12) may be expressed in a more

compact form as:
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el B o X R Rrae- i o)
a\ &) & a mé

1

(4.19)

i,j =12 (2 -dimension) or i,j =1,2,3 (3 - dimension)

where:

D.  hydrodynamic dispersion tensor [ r’rt'].

i

The elements of D, are the hydrodynamic dispersion coefficients defined in equations

(4.9) to (4.11) and in equations (4.13) to (4.18) for the two- and three-dimensional
models, respectively. The initial and boundary conditions associated with the solution of

equation (4.19) may be expressed as:

c(x,,t =0) = c, (4.20)

c(x,t)=c on boundary B, 4.21)
vnce—k; ;Ci n,=q;c, on boundary B, (4.22)
J
where:
¢, initial tracer concentration [ ML™},

c specified concentration at boundary portion B, [ML™], and

q,c, specified concentration flux at boundary portion B, [MLZT™].

The compact forms of the governing equations discussed so far for the 2- and 3-
dimensional flow and solute transport models are shown in equations (4.3) and (4.21),
respectively. These equations are in partial differential equation form, therefore for the
dependent variables to be evaluated, they must be reduced to a system of algebraic

equations by one of the known numerical formulation techniques.
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4.3 Numerical Formulation Techniques

Numerical formulation techniques are methods used to reduce the governing
equations (containing partial differential expression) to a system of solvable algebraic
equations. Numerical methods do not require such restrictive assumptions as those
required by the closed-form solutions of analytical models. For example, it is possible to
obtain numerical solutions for the case of anisotropic and nonhomogenous aquifer
properties and for problems with complex and time-dependent boundary conditions. In
using numerical methods, one seeks a discrete approximation for the solution, ie.,
computed values of the field variable at a set of specified points within the aquifer at a set
of specified times. The number and locations of the points and the number and choice of
time steps are determined in advance by the analyst. Several types of numerical methods
have been used to solve groundwater flow and solute transport problems in the past. The
two principal ones are the Finite Difference Method (FDM) and the Finite Element
Method (FEM).

The FDM was initially applied to groundwater flow of fluids in petroleum
reservoirs as far back as the early 'S0s [Bruce et al., 1953, Peaceman and Rachford,
1962], and later to problems of groundwater flow and solute transport in the mid-1960's
[Remson et al., 1965; Freeze and Whitherspoon, 1966; Pinder and Bredehoeft, 1968].
The FDM has a number of advantages that has contributed to its continued widespread
use and popularity: (1) for simple problems, the mathematical formulation and computer
implementation are easily understood by those without advanced training in mathematics
or computer programming, (2) efficient numerical algorithms have been developed for
implementing the FDM on computers, (3) the accuracy of solutions to steady-state and

transient groundwater flow problem is generally quite good, and (4) several case histories
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have been published that describe successful application of the method to the solution of
practical problems. Unfortunately the FDM has some disadvantages: (1) the method
works best for rectangular or prismatic aquifers of uniform composition; it is difficult to
incorporate irregular or curved aquifer boundaries, anisotropic and heterogenous aquifer
properties, or sloping soil and rock layers into the numerical model without introducing
numerous mathematical and computer programming complexities, and (2) the accuracy
of the solution to transport problems is lower than can be obtained for the FEM (which is
now widely used in place of the FDM for this purpose).

The FEM was first used to solve groundwater flow and solute transport in the
early 1970's [Zienkiewicz et al., 1966; Javadel and Witherspoon, 1968; Zienkiewicz and
Parekh, 1970; Pinder and Frind, 1972]. Some of the advantages of the FEM are : )
irregular or curved aquifer boundaries, anisotropic and heterogenous aquifer properties,
and sloping soil or rock layers can be easily incorporated into the numerical model, (2)
the accuracy of solutions to groundwater flow and solute transport problems is very good
(exact in some cases), (3) solutions to the solute transport equation are generally more
accurate than those obtained by the FDM, and (4) the FEM lends itself to modular
computer programming wherein a wide variety of problems can be solved using a small
set of identical computer procedures. The FEM however has certain disadvantages: (D
for very simple problems, the FEM requires a greater amount of mathematical and
computer programming sophistication than does the FDM (although this disadvantage
disappears for more complicated problems), and (2) unlike the FDM which can be
represented using Taylor's series, the theory behind the FEM is relatively abstract and
difficult to understand by beginners. However, the advantages of the FEM appears to
outweigh its disadvantages especially in the event of complex anisotropic and
nonhomogenous aquifers with irregular boundary geometry. In view of the capabilities of

the FEM to handle such complex problems, it is has been selected as the appropriate

78



Chapter 4 Governing Equations, Finite Element Formulation, and Solution Techniques

numerical formulation technique for the governing equations of flow and solute transport

presented in section 4.2.

4.3.1 FEM Formulation of the Flow Model

FEM formulation techniques such as the Galerkin method and the variational
principle have been used in the past to formulate governing equations into a system of
solvable algebraic equations. The variational principle, which uses the concept of energy
dissipation, works only for some particular equations (for example, it is incapable of
handling the solute transport model because of the advective component in the governing
equation). The standard Galerkin FEM is general for all governing equations since it
derives its methodology from the method of weighted residuals. Because of its generality,
the Galerkin FEM is employed in the formulations of the governing equations discussed
previously. The formulation presented below is applicable to both two- and three-

dimensional governing equations. The first step is to define an approximate or trial

solution h,(x,,f), as a series summation in terms of the unknown head h(x;,f) and an

interpolating function, N,(x;) , such that,

hrr(xi’t)=NJ(xi)h(t)s J=1929"5n (4.23)

where n is the number of nodes in the entire finite element network. Substitution of the
trial solution into a given governing equation results in residuals (or errors) at each nodal
point. If a particular average of the weighted residual is forced to vanish, the nodal heads
are obtained as the solution of the system of algebraic equations - this is the basis of the

Galerkin FEM formulation. The details of the technique can now be applied to equation
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(4.3).  Substitution of the trial solution into equation (4.3) yields the residual

&(x,,#) which may be expressed as:

o, &) Py , _
E—(kijék) SE -0, = &) (4.24)

i J

The residual &(x,,t)is forced to vanish by weighting it with a weighting function w, and

summing over the entire simulation domain. In the Galerkin formulation technique, the

weighting function w, is considered as the interpolating (or shape) function N,(x,). This

weighting operation results in the expression:

o h oh s -
N,&(x,,0dQ = [N —{k,. ”}—S—L—Q Q=0 (4.25)
J ! (! ][o’}c. I, a }J

: 7
where Q represents the simulation region over which the integration (or summation) is
performed. Using Green's 2nd identity, the spatial terms in equation (4.25) can be

integrated by parts to yield the expression in equ_atiori (4.26) (after substituting for
.h, using equation (4.23))

Ik'@/_,dv,
I a

J

A, a
dQ+ £SN,N17dn+ (!N,QdQ— JN,(ky_. dc”)n,d}?=0 (4.26)

J

where B represents the boundary of the simulation region. The integral expression

representing the sink or source term in equation (4.26) may be evaluated using the

expression:
Q=2q,(x;)8(x; = x;) (4.27)
I=1
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where:
q, volumetric rate of injection/extraction per area at node / [L'T],

n number of wells, and

w

o Dirac delta function.

Using equation (4.27) the integral expression representing the sink or source term 0, in

equation (4.26) may be evaluated as:

[N,0d2 =g, (4.28)
Q ) ' '

The use of equation (4.27) implies that the right hand side of equation (4.28) is zero if
node I is not a sink or source node. The boundary integral expression in equation (4.26)
may be evaluated by invoking the flux boundary condition defined for the flow governing

equation, ie.,

h
"‘k!-,- Ejni =4q, ) (4.29)

Using equation (4.29) the flux boundary integral term in equation (4.26) becomes

h
—|N,| k,—~|n,dB= |N,q,dB 4.30
Ef 1( if (%_j} i ! [qn ( )

Incorporating equations (4.28) and (4.30) into (4.26), one obtains the following system of

differential equations:

Ik dvl dVJ
if

J ey

i I

h,dQ + [SN,N, %dﬂ +q,- [N,q,dB=0 (4.31)
Q B
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Equation (4.31) can be expressed in a more compact form as:

oh
Hh, + P, j =F (4.32)

where:
N, N Ny 4
if & . e

J

P, = Z ISN,NJdQe
e Q,

U=

_F} = —[q, +Z ijqndB]
e B

Q¢ is the element subdomain with boundary B°, N, and h,are interpolating functions

and nodal values of head, respectively, and the summation is performed over the total
number of elements. To complete the FEM formulation, a time integration is performed
on equation (4.32) using the difference method. This procedure leads to the following

system of algebraic equations:

k

P P, |
(HH,J vy )h o= ﬁh} +(6-DH b, + B (4.33)
k . . .

where:

kk+1 previous and current time levels, respectively, and

At,  the kth time step.

@ is a time-weighting factor that lies between 0 and 1. In particular, 6 = 1 leads to a

fully implicit scheme while @ = 0.5 results in the Crank-Nicholson scheme which has the
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advantage of a second order accuracy. Equation (4.33) is the final system of algebraic

equations that must be solved to obtain the dependent variable 4, . The solution technique

adopted to obtain 4, is presented in section 4.4. The above formulation applies to both the

two- and three-dimensional flow governing equations presented previously.

4.3.2 FEM Formulation of the 2-D Transport Model

Due to the occurances of high fluid velocities at some stages of the simulation
process,l there is the fikelihood of solute transport beihg donﬁnated by advecfibn. It is
known that the doﬁﬁnating character of the advgctive components of thé_transport model
over their dispersive counterparts usually causes numerical dispersion [Huyakorn and
Nilkuha, 1979; Konikow and Bredehoeft; 1978]. One common but expensive technique of
overcoming numerical dispersion is the use of a sufficiently refined mesh. To alleviate
this difficulty without the use of excessive refined mesh, Huyakorn and Nilkuha [1979]
adopted the upstream-weighting function technique for one- and two-dimensional finite
elements. This technique is used in the two-dimensional finite element formulation of the
solute transport equation of the management model.

The upstream weighting function differs from the standard Galerkin technique by
the fact that special weighting functions W, are used to weight the spatial terms in the
advective-dispersive equation .while thc; remaining terms are weighted by the usual
interpolating functions N,. To start the FEM formulation, let the domain be subdivided

into a number of finite elements and let the trial solution to equation (4.22) ¢, (x,,f) , be

approximated by the expression:

¢, (x,,6)=N,(x,)c, (1), i=12, J=12,..n (4.34)
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The upstream-weighting finite element procedure is executed by substituting the trial

solution (equation 4.34) into equation (4.19) to generate the residuals. These residuals are

forced to zero by weighting the spatial terms with the upstream-weighting function, W,

and the remaining terms with the interpolating function N, and performing a summation

(integration) over the entire simulation domain. Execution of these steps results in the

following expression:

R o & 9 _
IW[ ‘_( ”;’k—j v;&]dﬂ E!N,[Rd+Rﬂc (e c)}dQ—O 435)

!

Application of Green's 2nd identity and substitution for ¢, using equation (4.34) results in

the following system of differential equations:

| yﬁVLON N, L do+ jNNR@idQ+jNN(,1R+g—]c,dQ
A7 A o, T, a

i

(4.36)

J.

_[N, ¢dQ jW,[ j{”n,}a’B

The boundary condition term in equation (4.36) can be evaluated directly using the

speciﬁed flux equatibn (ie., equatioh (4.22)) of the transporrt.model as follows:

IW( JndB——jW,qf(c +c/)dB, q,=-vm, - (4.37)

Substituting equation (4.37) into (4.36), a system of differential equations in a more

compact form may be obtained as:

&
Aye, +Ey—L=F, (4.38)
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where:

4,=3 (D,.j W, N, +v. W, ONJ]+ jN,NJ(,lRJr&) Q
e &, &, &, ) 4 m

J J

E, =Y [N,N,RdQ
e 0

F, =Z{ INI Qyc 40— .[W,qf(c,, —cf)dB}
e |\of m¢ B

4.3.3 Upstream-Weighting Functions and Derivatives

For a typical rectangular element shown in Figure 4.1, the upstream-weighting
function may be written in terms of the local isoparametric coordinates (r,s) as in

equations (4.39) to (4.42) [Huyakorn and Nilkuha, 1979]:

¢ ; > 3
r

blT ? ). 5 W %2

L

o 1_> .

Figure 4.1 Quadrilateral element
-1<r<l1
~1<s<1
W, = %[(1 +5)(3a,5 —3a, —2) +4] [(1+7)(3b,r ~3b, ~2) + 4] (4.39)
W, = i%[(1 +5)(-3a,s +3a, +2)] [(1+7)(3byr - 35, —2) +4] (4.40)
W, = %[(1 +5)(=3a,s +3a, + 2)] [(1 + r)(~3b,r +3b, + 2)] (4.41)
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W, = %[(1 +5)(3a,5 —3a, —2) + 4] [(L+7)(-3b,r +3b, + 2)| (4.42)

where a,, b,, a,, and b, are the upstream weighting factors associated with sides 1-2, 2-
3, 4-3, and 1-4 of an element, respectively. For satisfactory results, Huyakorn and
Nilkuha [1979] recommended that the derivatives of the upstream weighting functions
must be evaluated in a manner that when differentiation is taken with respect to one
particular coordinate, the value of the upstream parameters along the remaining

coordinate must be set to zero, ie.,

M, (a. b.) = M, (a,.,O)

& '
- (4.43
W, “.43)

(0.6,)

®

For the typical element in Figure 4.1, the derivatives of the upstream-weighting functions
may be expressed in terms of the local isoparameteric coordinates as follows [Huyakorn

and Nilkuha, 1979]:

%(a,,O) = %(Il ~r)(3a;s-1) (4.44)
OZZ (a,,0)= %(1 ~r)(3a,;5-1) (4.45)
%(a,.,O) = -%(1 +r)(3ays—1) | (4.46)
%(ai,O) = %(1 +r) (3a,5 -1) (4.47)
%(o, b,)= %(1 —5)(3b,r - 1) (4.48)
OZZ (0,6,) = :11-(1 +5)(3b,r -1) (4.49)
7:3 (0,5,) = -%(1 +5)(3byr —1) (4.50)
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P (0.6,) = (1= 5)3brr -1 @.51)

Performing time integration on equation (4.38) using the difference method, the final

system of algebraic equations to be solved may be obtained as:

E E
(aA,, +—At£) =(0-1)4,c,* A;J c,f+ EF (4.52)
k

k

The left-hand side matrix of equation (4.33) is symmetric while that of equation (4.52) is
asymmetric. The asymmetric nature of equation (4.52) is the result of the advective
component in the governing equations of the solute transport model. The appropriate
solution techniques that conforms to each of these two sets of algebraic equations are

presented in section 4.4.

43.4 FEM Formulation of the 3-D Transport Model

By substituting W, with N, and setting i,j = 1,2 to i,j = 1,2,3 , the finite element
formulation of the three-dimensional transport model becomes identical to the procedures
adoptcd for the two-dimensional Galerkin upstream-weighting technique. In fact the only
difference between the FEM formulatlon of the two- and three- dlmensmnal solute
transport models, is the use of the special upstream-weighting functions and derivatives
in the two-dimensional scenario. Such upstream weighting functions and derivatives are
not available in the three-dimensional case. Therefore replacing W, by N, and setting i,j
= 1,2 to ij = 1,2,3 reduces the two-dimensional formulation to the standard Galerkin

finite element formulation in three-dimension; and the resulting system of asymmetric
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algebraic equations are the same as in equation (4.52). The FEM formulation of the three-

dimensional solute transport model is thus not repeated here.

4.4 Solution Techniques

The resulting system of algebraic equations to be solved for the flow and solute
transport models are depicted in equations (4.33) and (4.52), respectively. The left hand
side matrix of equation (4.33) is symmetric but that of equation (4.52) is asymmetric. In
view of this a common solution technique is not applicable to both. However, an iterative
solution technique can be used to solve the system of algebraic equations for both flow
and solute transport without any modification. Three solution techniques : (1) Cheloski
method for symmetric matrix (for the flow model), (2) Cheloski method for asymmetric
matrix (for the transport model) and (3) a generalised iterative solver (applicable to both

symmetric and asymmetric systems) are briefly presented.

4.4.1 Cheloski Method for Symmetric Matrix
Representing the left hand side matrix of equation (4.33) by M, the unknown head

vector by H and the right hand side vector by B the resulting system of algebraic

equations to be solved becomes:

[M]{H} = {B] (4.53)

88



Chapter 4 Governing Equations, Finite Element Formulation, and Solution T echniques

The Cheloski method is a direct method for solving a system of linear algebraic equations

which makes use of the fact that [M] can be decomposed into a product of an upper

triangular matrix [U], and its transpose, ie.,
[M]=[U]'[U] (4.54)
where the entries of [U] are given by:

i1 7!
u; =(m,.j —Zuk,.z] , I=j (4.55)
k=1

i-1
m!-]» — uk,.u,g-
k=1

i<j (4.56)

uij B uii
u, =0, i>j (5.57)
where:

u, = entries of [U], and

m, = entries of [M].

Rewriting equation (4.53) as:

[U)[U){H} = {B} (4.58)

and defining a vector {Z} as:

[U{H} ={Z} (4.59)
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equation (4.58) can be expressed as:
[U]"{Z} = {B} (5.60)

from which the values in {Z} can be obtained by the expression

(bi - i ukizk)
k=1

z, = , i=12.,n (4.61)
uii
where:
b, = entries of {B},
2 = entries of {Z} , and
n = number of unknown nodes in the finite element network.

Once the entries of {Z} have been evaluated, the entries of {H} (the nodal hydraulic

heads) are obtained from equation (4.59) using the expression:

i—1
Zyi-i Z un+1,n+l—khn+l—k
' k=1

Uu

h =

n+l—r

n+l—in+l-i

4.4.2 Cheloski Method for Asymmetric Matrix

The Cheloski method as an asymmetric solver makes use of the fact that any
square matrix [M], as in equation (4.53) can be expressed as the product of a lower

triangular matrix [L] and an upper triangular matrix [U], ie.,
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[M]=[L][U] (4.62)

M is said to have been decomposed or factored into the product of two triangular matrices
and this step of the Cheloski method is sometimes referred to as the triangular

decomposition of [M]. The entries of [L] and [U] are given by:

j-1
L=m, =Y L, i2] (4.63)

k=1

u, = ——’Z'— i<j (4.65)
u, =1, i=j (4.66)-
u, =0, i>j - (4.67)
where:

| l. - entries of [L]

Equation (4.53) can now be expressed as

[L][U] {C} ={B} (4.68)

where:
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{cy = vector containing unknown concentration values
If a vector {Z} is defined as:
[Ul{C} ={Z} | (4.69)
then equation (4.68) may be written as:
[L){Z} = {B) | (4.70)

from which the values of {Z} , z;, may be obtained as:

i~1
(bi - zlikzk)
k=1 5
7z =— 1

i

12,..n 4.71)

- With the values of {Z} computed, the concentration values (the entries of {C}) can now

be obtained through a backward substitution step in equation (4.69) as:

-1

Covimi = Zp1-i — Z Upiicinr1-kCni1-k 4.72)

k=1

4.43 Gauss-Siedel Iteration

Even with the storage savings in direct solution methods presnted above, the
storage requirements are still large for problems of large finite element network.

Therefore the use of iterative methods have become very important in groundwater
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modelling since they generally need much less storage space, solves the problems faster,
and are applicable to both symmetric and asymmetric solvers without modifications.
Because of the considerable number of times that the objective function (and hence the
forward problem) is evaluated in the inverse analysis, a much faster method of solving
the system of equations is required. Hence, the use of the Gauss-Siedel method in the
inverse problem of parameter identification. |

The theory of the method can be found in many text books on numerical analysis

[eg. Carnahan et al., 1969]. The system of linear equations is written as:

ﬁ:}{P(LJ) * F(J)} = G() (4.73)
where N is the number of nodes in the finite element network, P may be a symmetric or
asymmetric matrix, F may be a vector of unknown heads or concentration values, and G
is the right hand side load vector. In the Gauss-Siedel method, an initial estimated
solution is continuously updated by correcting the Ith equation by modifying variable 1.
The initial estimate may be arbitrary, for example F(I) = 0 for all unknown values of F().
Altefnativély one may make some reasonable guess for the unknown variable. In general
equation (4.73) will not be satisfied by the estimated solution on substitution of the initial
guesses. The variable F(I) is now corrected, by an amount DF (1), such that equation I is.
satisfied. If the estimated solution is denoted by FA(D), it means that

N

> {P(I,J)* FA(J)+ P(I,1)* DF(D)} = G(I) (4.74)

1,J=1

From equation (4.74), the unknown correction DF(I) can be determined from the

equation:
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{G(D - i {PU,N)* FA(J)}}

1,J=1

SRS P(IT)

(4.75)

The Gauss-Siedel algorithm now consists of a repeated execution of equation (4.75) for
all values of 1. That the process must be repeated follows from the fact that, by
application of equation (4.75), the Ith equation is satisfied, but this is distributed later by
updating other values. It can be shown that the Gauss-Siedel procedure converges,
provided that the matrix P is positive-definite. Convergence is reasonable fast if the main
diagonal of the matrix is dominant. Rate of convergence is further improved by
multiplying the correction in each updating step by the so-called over-relaxation factor R.
R lies between 1 and 2. If R is chosen too large (ie., R > 2), the iterative scheme will
diverge.

In many physical applications, a large proportion of the elements of matrix P are
zero , which means that a considerable amount of computer memory and computation
time is wasted by storing zeros, and by multiplications by zero. In fact it can be expected
that only a few eélements of P are different from zero. This property can be used to save
computer time and memory by separate storage of the precise locations of the nonzero
coefficients in P through the use of the concept of pointer length and pointer matrix.
Details of this concept can be found in Kinzelbach [1986]. The entire flow chart for the
ﬁnit'e. element analysis of either flow or solute tfanspbrt with direct solution techniques is
shown in Figure 4.2. In the inverse analysis, the two solvers in Figure 4.2 are replaced
with a generalised iterative solver which uses the concept of pointer length and pointer

matrix.
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Figure 4.2 Schematic representation of the analysis of flow or solute transport .

4.5 Summary

This chapter has presented the governing equations, the finite element formulation

and solution techniques to be employed in the two evolutionary optimisation techniques
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proposed in this research work. The governing equations involve the flow and solute
transport models in both two- and three-dimensional systems. These governing equations
are reduced to a system of solvable algebraic equations using the finite element
formulation technique. The solution techniques for system of algebraic equations have
been presented using the Chelosk_i method for symmetric matrices (for the flow model)
and Cheléski method for asymmetric matrices (for the solute transport model) and a
generalised iterative solver applicable to both symmetric and asymmetric systems. These
models are eventually interfaced with the evolutionary optimisation techniques presented

in chapter five.
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Chapter 5

Optimisation Techniques

5.1 Introduction

The parameter estimation and the remediation design (or contaminant extraction)
processes are both pursued via optimisation techniques. The genetic algorithm and the
shuffled complex techniques are all evolutionary optimisation processes that are to adopted
in the remediation design and the parameter estimation models, respectively. This chapter
presents the following (1) a brief introduction to genetic algorithm, (2) formulation of the
genetic algorithm with respect to remediation design, and (3) presentation of the shuffled
complex evolution (SCE) and its forrﬁulation for the inverse problem of parameter

identification.
5.2 Genetic Algorithm - Introduction

This introductory section on genetic algorithm (GA) is based on the realisation of
Ritzel et al. [1994]. These authors define GA as a search technique that is designed to
mimic some of the most salient features of natural selection and natural genetics in order to
find the near-optimal solution in a search space. According to these workers, the GA has
the capability to search complex multimodal decision spaces and can efficiently handle
nonconvexities that cause difficulties for traditional gradient-based optimisation methods.

As stated by Goldberg [1989], the structure of genetic algorithm differs from the more
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traditional gradient-based methods in four major ways : (1) the genetic algorithm typically
uses a coding of the decision variable set , not the decision variables themselves; (2) the
genetic algorithm searches from a population of decision variable sets, not a single variable
set; (3) the genetic algorithm uses the objective function itself , not derivative information;
and (4) the genetic algorithm uses probabil_istic, not deterministic, search rules.

A GA operates on a population of decision variable sets. These decision variable
sets are called strings, or by an analogy to biological model, chromosomes. Each string is
made up of a series of characters, or analogous to biology, genes. The characters represent
a coding of the decision variable set. The coding can be binary, integer or real. However,
Goldberg [1989, pp. 80-82] has suggested that the performance of a GA is optimal when a
binary coding is implemented, although construction with real or integer numbers is more
directly representative of the actual decision variables. The genetic coding of a string is
called its genotype while the decoded decision variable set is referred as the string's
phenotype. The values of the genes are chosen initially at random. The number of strings in
a GA operation may vary but it is typically within the range 30-100 [Goldberg, 1989]. After
a population of strings are initialised, the .optimisation operates through a repeated
evaluation of four major genetic operators : (1) selection, (2) mutation, (3) crossover, and
(4) inversion. The GA terminologies string, parent, and chromosome are used to represent
decision variables in the optimisation process. Therefore unless otherwise stated, .they may

be used interchangeably to represent the same phenomenon.
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5.2.1 Selection

This procedure is implemented to select the appropriate strings or parents for
reproduction. The selection procedure is based on comparison of fitnesses. To determine
fitness, each string's is first decoded into the decision variables. These are then used to
determine the value of the objective function. The objective function value is usué,lly used to
represent the string's fitness. The mechanism relating a string's fitness to its probability of
selection is a subject of considerable research. Goldberg [1989] has presented several
selection techniques. Among these, the binary tournament selection is the most popular. The
binary tournament selection begins by picking two strings at random and comparing their
fitnesses. The string with a better fittness wins the tournament and enters a temporary
mating pool to await mating. The binary tournament selection is repeated until a mating
pool, as large as the original population is generated.

A more generalised selection procedure is the s-member tournament selection which
involve the selection of s (where s represents a number parents participating in the
competition and lies in.the between 2 and the population size) parénts for the impending
crossover operation. The fitness of each parent is obtained as explained previously. Parents
with better fittnesses are transferred into a pool of eligibles to await mating. The number of
victors or winners , nwin , from the randomly selected s parents, who find their way into
the mating pool range between 1 and s, inclusive. The s-member tournament selection
process is repeated until the expected number of the population of parents in the mating
pool is achieved. For the remediation problem, the simplest case of tournament selection (s
= 2 and nwin = 1) is employed. This involves two parents competing against each other

with one winner entering the mating pool.
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5.2.2 Crossover

The mating pool represents the population of parents that survive to create a new
generation. Children are created in a process known as crossover. A simple crossover
operation begins by selection of two strings from the mating pool. A crossover site is
randomly selectéd for the two strings. Then the genetic material after the crossover site 1S
exchanged between the two selected strings. The two new strings formed are considered
children and they form members of the new generation. The genetic operation of crossover
is performed on each mated pair with a certain probability referred to as the probability of
crossover, p_cross. In most analysis, the probability of crossover is set so that the crossover
operation is performed on most, but not all, of the population. The end result of the
crossover operation is the creation of a new population consisting of children strings whose
parents no longer exist and a minority of the parents who are lucky enough to enter the new
population unaltered. This new population of children form the parents of the next
generation.

In summary, crossover permits parents in the mating pool to form the children (who
become the parents in the next generation). It is considered as the central feature in GAs. It
results in different varieties of decision variables and hence ensures that each child in the
new population is unique and thus has the capability of generating a unique objective
function value (the measure of the fitness of a parent or chromosome). In a more
generalised crossover operation, a randomly selected number of parents (n_par) from the
mating pool who have not yet participated in the mating exercise is first made. In this case
n_par is usually greater than 2, Comparing a generated random number to the probability of
crossover p_cross, a change in genetic material of the n_par parents selected is executed in
a cyclic fashion at a number of randomly selected crossover sites (n_site), if the generated
random number is less than or equal to p_cross. The value of n_sife must range between 1

and the total number of genes (n_genes) on a parent. A generalised crossover event with
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n_par = 4, n_genes = 10 and n_site = 2, is shown in Figure 5.1. This illustration assu I
that the randomly selected sites are after the 4th and 9th gene locations. The simplest case
of crossover operation (point crossover) is achieved when n_par = 2, and n_site = 1. The
point crossover operation is illustrated in Figure 5.2 where it is assumed that the crossover

site is randomly selected after the 5th gene.

Creasaves Crorsaver
site | site
i |
Parenta
parent | A Az | A Ae | A3 A Al As A Ao
parent 2 i By B ll B B Bs Ba B B | B» B 10
i parent 3 | ci c: | c» | cu Cs Il Cs ct c [ cs | cuw
| patest | o1 | D1 J D3 ps [ Ds | @ D | ps | Do D
After Crossover operation
Children
[ child 1 l A A A3 2% i b D D1 ‘ D Ds Aw
| child 2 | B n: By | Ba | As I A A A B w0
i child 3 | C c: | c1 | ca | B B« B B4 I Bs | cow
| child D1 | Dz D) i D4 1 cs | cs c1 ce | C» D10
= - : | - e =

Figure 5.1 Representation of a cyclic crossover operation

Crossover
slte

Parents l
_oprew 1 | Ay | As | _M_\_ Be | Ay | Be | oAy | Ae L Ar | Ak
parent 2 B1 B2 By | B Bs B B | B Bw B 1o

After Crossover operation

Children
[ s | av | a3 | ms f as | A | Be } B7 ] Ba | By | Buw
! child 2 B1 By Ba B By As % A A A 10

Figure 5.2 Representation of point crossover operation

For n_site = n_gene - 1, a uniform crossover operation is exccuted. If the generated random
number is greater than p cross, the crossover operation is omitted. In the design of the

proposed remedial optimisation program the simplest (or point) crossover operation is

employed.
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5.2.3 Mutation

Mutation is a single chromosome operation that is employed to alter the binary bit
(gene) value on the children reproduced from crossover. Mutation of genes introduces
diversity into the new generation which in turn reduces the possibility of premature
convergence of the optimisation operation onto a local optimum. In the mutation operation,
a random number is first generated for the chromosome in question and compared to a
value called the probability of mutation, p_mute. If the generated random number is less
than p_mute, the mutation operation is executed otherwise it is omitted. If mutation must be
executed, a binary bit on the chromosome is randomly selected and its value is changed

from O to 1 and vice versa.

5.2.4 Inversion

Similar to the mutation operator, inversion is a single chromosome operation that
reverses the order of the binary bits within two randomly selected locations based on a
" decision value called the probability of inversion, p_invrs.. For inversion to occur, the value
of a generated random number must be less than or equal to p invrs. The inversion
operation begins by the random selection of two locations along the chromosome in
question. The binary bits within the selected locations are subsequently reversed. The
objective of inversion is to introduce unique chromosomes and hence prevent the formation
of species of the same kind. Goldberg [1989] has mentioned that formation of species of the
same kind tend to produce low performance offsprings (which he calls lethals). The process
of inversion is illustrated in Figure 5.3 with a randomly selected locations after the 4th and

9th genes for a chromosome with n_genes = 10.
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location 1 lecitlon 2
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Figure 5.3 Representation of single-chromosome inversion

5.2.5 How the GA Works

Every optimisation model requires a function to optimise. Such functions are usually
called the objective (or criterion) function. Depending on the nature of the problem, the
objective function may be a complex management decision model with a given number of
parameters and constraints. In conceptual rainfall runoff calibration or aquifer parameter
estimation, the objective function may usually be expressed as a standard least squared type.
The work of the GA is the repeated evaluation of the objective function till a certain
convergence criterion is met. This involves the automatic variation of the decision variables
through the execution of the four genetic operators described previously. In a population
comprising m parents for example, the objective function is evaluated m times (using the
decoded value of each string), resulting in m unique children (who become parents in the
next generation). The objective function value for each parent become the fitness in GA
context, which is subsequently used in the tournament selection procedures.

The new parameters (or decision variables) for each generation are obtained through
the four genetic steps of selection, crossover, mutation, and inversion using the previous
computed values of their fitnesses. The entire communication between the GA and the
objective function is the passage of fitness values corresponding to each parent from the
from the objective function to the GA, or the passage of decoded parameter values from the
GA to the objective function. This back and forth passage of information may go on for a

certain number of generations or until a convergence criterion is met. At the end of each
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generation the best values of the objective function is saved. This allows the comparison of
n (where n is the number of generation set for a given problem) best values from which the
optimum best solution is selected. The next section illustrates how the GA is formulated to

solve a specific problem - the proposed optimisation model for contaminant extraction.

5.2 Application of GA to a Remediation Scheme

The genetic operators presented in the previous sections are the standard steps in
any optimisation program based on GAs. In fact, for any specific optimisation scheme, the
GA technique will have to be formulated to suite the purpose of the scheme in order to yield
the desired results. In remediation scheme, the most important steps are the representation
of the decision variables and their incorporation into the objective function. The objectives
are: (1) how many extraction wells to install, (2) where to install them, (3) pumping rate of
each extraction well, and (4) the cost of the entire installation and extraction operation. The

remediation scheme requires the optimisation of all these objectives.

5.2.1 Representation of Decision Variables

The present program is designed in a manner that allows all the parameters under
optimisation to be determined simultaneously at the end of each run. In view of this, the
decision variables (extraction wells) are represented as binary bits on each string. To present
four possible pumping rates at each well for the GA to optimise from, two binary bits are
used to represent the status of each extraction well. Since a binary bit can be 1 or 0, each
extraction well can have 4 (2?) possible pumping rates. The status of seven extraction

wells, for instance, is shown in Figure 5.4. Each of these wells may have four possible
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pumping rate options. If at the start of a remedial scheme, pumping rates of 25 m’>d " and
50 m>d " are allocated to each binary bit location, then the four possible pumping options

may be :

0 0 = inactive (or 0m’d™")

01=25md™’
10 =50md"
11=75md"

well 1 well 2 well 3 well 4 well 5 well 6 well 7

[of1fofofotfzizfofalot0]1i0]

Figure 5.4 Representation of wells as decision variables along a string

This coding configuration is applied to all extraction wells represented by binary bits
along the entire length of the population of strings. The use of the scheme shown in Figure
5.4 indicates that the status of a string (hence extraction wells) will remain constant in the
entire time step of the numerical model, once this string is in use. The location of
contaminant plumes however, varies throughout the time span of the embedded numerical
forward model. Therefore the use of Figure 5.4 may render some of the extraction wells
redundant as the contaminant plume moves with time. To account for this redundancy, a
time-variation scheme is incorporated as an alternative to the coding configuration shown
Figure 5.4. The time-variation scheme is shown in Figure 5.5. In this scheme, the number
of simulation time steps set for the numerical model is partitioned into distinct sub-time
interval and a string allocated to each sub-time interval. In this research study, only three

sub-time intervals T;, T,, and T, are used. This particular number of sub-time interval has

been selected to match the available computer memory resources. On large machines one
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can consider the use of more than three sub-time steps. If T is the entire number of time

steps set for the numerical model, then =1, + T, + T;.

well 1 well 2 well 3 well 4 well 5 well 6 well 7
nfoi1foi0 (0 0l 1 oitloiof1i0]
LT i1fo 00 i1 oi0ofrf0i0]1i0]

a) time-variation technique

well 1

Tl ‘ 0 1 l well 1
Tzl_og_li—?|’ 0 1] 0! 1] 11
n[1i1] E & E

b)  An alternative for the time-variation technique

Figure 5.5 Representation of wells in the time-variation scheme.

After initialisation of the population of parents (or strings), the time-variation
scheme follows the basic four genetic operators: (a) selection, (b) crossover, (c) mutation,
and (d) inversion. The crossover operation for the time-variation and non time-variation
coding configuration are shown in Figure 5.6. The next section addresses the objective

function which is referred to as the cost function in this research study.
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Figure 5.6 Schematic representation of a cross over operation

522 Cost Function for the Remediation Scheme

The optimum design for the remedial action is the most economic method of

reducing the concentration of the pollutant to acceptable levels. This requires the following

factors to be considered: (1) number of extraction wells to be installed, (2) the location of

the extraction wells, (3) rate of pumping at each well , (4) period of pumping, and (5)

treatment of the polluted water. The cost associated with the setting up of each well, and

the pumping and treatment cost are lumped together in two parameters namely: (a) the

initial cost of setting up the well, and (b) the cost per unit volume of pollutant extracted.

Several options exist to reclaim or control a contaminated aquifer. These include in-situ

bioremediation, slurry walls, pump-and-treat etc. The pump-and-treat is relatively

inexpensive and accommodates all types of pollutants, whether biodegradable or not. It is
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therefore assumed that the pump-and-treat strategy is adopted, and that the method of
treatment has already been determined. Furthermore, it is assumed that the physical and

hydraulic properties for both flow and solute transport are known with certainty. The cost

to be optimised c,, , for the entire extraction operation is expressed as:

op?

Cop(WysWyses W, )= AR, + By, + Zp,,(c—c",) + pv (5.1

i=1
where:

initial cost per well installed [$]

B cost of treatment per volume of water extracted [$],
v,  volume of fluid treated [ L’],
n,, ~ number of extraction wells installed,

nn number of nodes in the discretized simulation domain,

c nodal concentration at time ¢ [ ML™]

Cut permitted concentration level in the simulation domain [ ML™],
w, extraction well 7,

D, nodal penalty factor if ¢ > ¢,, [$], and

pv global penalty value [$] if ¢ > ¢,, anywhere

The values of ¢ at the right hand side of equation (5.1), the nodal concentration in the

simulation region at any time level of the extraction operation. These values are obtained

from the numerical transport model already presented and formulated in chapter four.

108



Chapter 5 Optimisation Techniques

5.2.3 Penalty

Because of the possibility that concentration levels evaluated during extraction may
exceed the permitted concentration level (c,,) within the aquifer, it is necessary to impose
penalties for sensible determination of the fitness of each string. To differentiate between
trial solutions with the same number of pumps and volumes extracted, a penalty function
which is proportional to the concentration excess over the permitted concentration (c,,) is
imposed at each node. In an event where c < ¢, (where ¢ the concentration of a node at any
time 7), the nodal penalty function is zero. A further penalty value of pv is imposed if at any
node the concentration is above c,at the end of the simulation time. In this regard, the
penalty value is zero if the concentration levels everywhere within the simulation region is
below c, at the end of the simulation time. This is to ensure that a solution that has
unacceptable contaminant levels is not more acceptable, from cost considerations, than a
solution that reduces the contaminant levels to below the maximum acceptable levels but at
a greater cost. Imposing penalties for violation of the permitted concentration prescribed by
management is analogous to the use of constraints in traditional gradient-based optimisation

problems. A flow chart showing the remedial clean up operation is shown in Figure 5.7.
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Figure 5.7 Flow chart of a remediation scheme

5.3 Parameter Estimation (Inverse Problem)

To build a model for real groundwater system, two problems, the forward problem
(simulation) and its inverse (calibration), must be solved. The former predicts unknown
system states by solvmg appropriate governing equatlons (as presented and formulated in
chapter four), while the latter determines unknown physical parameters and other conditions
of the system by fitting observed system states.

The progress of the inverse solution techniques have been hampered by several
inherent difficulties. First, the inverse problem is often ill-posed (ie., its solution may be
non-unique and unstable with respect to observation error). Secondly the quality and
quantity of observation data are usually insufficient. Thirdly, the model structure error,

which is difficult to estimate, often dominates other errors. Therefore to obtain reliable
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results at all costs, a more robust, efficient, and effective search technique is required to
handle these problems. For the past three decades various forms of the gradient-based
techniques have been used to handle groundwater inverse problems. Although some
considerable amount of success have been reported, the problems of ill-conditioning
(singularity of the normal matrix) and instability of parameters under gstima_tipn (as a result
of data quality and qﬁantity) have not yet been resolved.

Recently, a study by Duan et al. [1992] on a six parameter model using synthetic
data uncovered five major broblems that characterise the major solution difficulties of
calibration processes: (1) the presence of several regions of attraction into which a search .
strategy may .converge, (2) presence of numerous local minima in each major region of
attraction, (3) non-smoothness and discontinuous nature of the objective function in the -
multiparameter space (with possible discontinuous derivatives which may vary in an
unpredictable manner through the parameter search space), (4) exhibition of varying
degrees of sensitivities by the parameters of the model under consideration, and (5)
nonlinearity of the solution response surface near the true solution. _

An optimisation algorithm that deals with the above mentioned problems must
possess the followi_ng qualities [Duan et al., 1994]: (a) ability to converge globally in the
presence of multiple regions o.f attraction, (b) ability to avoid being trapped by 'pits' and
'Bumps' over the objective function surface, (c) ﬁuﬂ be robust 1n the presence of differing
‘parameter sensitivities'and parameter interdependencies, and-(d) must possess the power to
handle a model with high parameter dimensionality. With all these qualities embedded in the
shuffled complex evolution (SCE) optimisation technique, it has been selected as the best
technique to be adopted in the present research study for solving the inverse (or parameter
estimation ) problem proposed in this research study.

The SCE methodology was developed by Duan et al. [1992,1993] at the University
of Arizona for the calibration of difficult and complex conceptual rainfall runoff (CRR)

models. The literature survey has indicated that the technique has never been extended in
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the history of groundwater modelling to solve the inverse problem of parameter
identification. It is based on four concepts namely: (i) combination of deterministic and
probabilistic concepts, (i) systematic evolution of a complex of points spanning the
parameter space in the direction of global improvement, (iii) competitive evolution, and (iv)
complex shuffling. The synthesis of these four concepts make the SCE algorithm not only
effective and robust but also flexible and efficient. The use of deterministic strategieé permit
the SCE algorithm to make effective use of the response surface information to guide the
search. Robustness and flexibility is taken care of by tﬁé use of random elements.
Concentrating a search in the most promising region of the search space is guided by the
implicit clustering strategy. The use of systematic complex evolution strategy helps to
ensure a relatively robust search that is guided by the structure of the objective function.
The entire optimisation algorithm comprises two procedures : (a) the shuffling of complexes

and (b) the competitive complex evolution (responsible for the generation of offsprings).

53.1 SCE Algorithm

The SCE methdd combines the strengths of the éimplex procedﬁre of Nelder and
Mead [1965] with : (i) the concept of controlled random search [Price, 1987]; (ii)
competitive evolution [Holland, 1975]; and (iii) the concepts of complex shuffling [Duan et
al., 1992, 1993]. Essentially the method begins with a population of points sampled
randomly from the feasible region. The population is partitioned into communities (or
complexes), each of which is allowed to evolve (generate offsprings) independently on the
basis of a statistical reproduction process that employs the complex geometric shape to
direct the search in a refined direction. In the course of the evolutionary process, the entire
population is shuffled and points are reassigned to complex or communities to allow for

sharing of information from the individual communities. A continuous repetition of this
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process forces the population to converge towards the neighbourhood of the global
optimum if the initial size of the population is sufficiently large [Duan et al., 1994]. From
the realisation of Duan et al. [1992,1993], the SCE algorithm is enumerated below and its
flow chart is shown schematically in Figure 5.8. The use of the term function in the

algorithm below typically refers to the objective function posed in equation (5.4).

1) Initialise the number of complexes p and the number of points in each complex m.

Compute the sample size s as s = pm.

2) Generate a sample of x points x,,Xx,,...,,in the feasible space Q c R"and compute the
function value £ at each point x,; using uniform sampling distribution in the absence of

prior information.

3) Sort the s points in order of increasing function value and store them in array

D= {x,, fisi= 1,2,...,s} such that i = 1 represents the function with the smallest function

value.

4) Partition D into p complexes A', A%,...,A”, each containing m points, such that

gk _ [k pk| b _ Y S R
4 —{xj ’f} ‘xf —xk*'P(j—l)"/} _ﬂ+p(j'—l)3j_19---:m}-

5) Evolve each complex A*,k=1,...,p using the competitive complex evolution (CCE)

algorithm described in section 5.3.2.

6) Shuffle the complexes by replacing A',...,A?into D such that D = {Ak,k =1,..., p} and

sort D in order of increasing function value.

7) Check for convergence. If convergence criteria are satisfied, stop; otherwise continue.
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8) Check the reduction in the number of complexes - if the minimum number of complexes

required in the population , p,,, . is less than p, remove the complex with the lowest ranked

points; set p=p—1 and s=pm and return to step 4. If p_. =p return to step 4

without reducing the size of p.

e

(START

| Input : ; |
n = dimension, p = number of complexes

. . 'm= number of points in each complex 1
evaluate:
sample size s = pim |

Sample s points at random in parameter space R
and compute the function value at each point

- ]

ort the s points in order of inceasing functign
. value. Store them in D

R B

partition D into p complexes of m points i.e |
X |
D= {A k=1 ---r}p |

. k
Evolve each complex A, k=1, ..., p

[
h CCE  ALGORITHM

< ,
I : |' '
. into D
Replace A = , k=1, ..., minto |

l O (' Is convergence criteria™,

T - * satisfied 2
_I_ _YES
(st )

Figure 5.8 Schematic repfesentation of the SCE algorithm
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5.3.2 CCE Algorithm

The CCE algorithm is the major component of the shuffled complex evolution
methodology. It employs the Simplex downhill search method of Nelder and Mead [1965]
in the generatlon of offsprings. This scheme is not sensitive to nonsmoothness of the
response surface. ThlS property of the Sunplex scheme allows the entire SCE algorithm to “
take full advantage of the response surface information to guide the search towards an
improved direction. The algorithm is prescnted below from the realisation of Duan et al.,
- [1992, 1993] where the. object is to minimise the objective function. A schematic

representation of the flow of the CCE algorithm is shown in Figure 5.9.

1) Select g, wand B; where q is the number of subcomplexes ,® is the expected number

of times that an offspring is generated, and S is the number of times each complex is

expected to evolve.

2) Assign a triangular probability distribution p; to A* using the expression

~ 2(m+1-i)

i 1 =1,.....m ' 52
" om(m+1) (52)

where the point x,* has the highest probability of p, = 2/(m +1) and the point x,* has the
lowest probability value of 2/(m(m +1))

3) Randomly choose g distinct points u,...,u, from a complex A* to form a subcomplex

using the probability distribution specified in (2). Store them in array
B= {ui,vi,i = 1,...,q} , where v, is the function value associated with point ;. Store the

locations of A which are used to construct B in L.
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4) Generate offsprings according to the following procedure:

a. Sort B and L so that the g points are arranged in order of increasing function value

and compute the centroid g of the best g-1 points using the expression:

)

1 -1
= q——l— uJ (53)
- |

~
1

b. Execute a reflection step by computing a new point r as r =2g—u,, where u, is the
worst point in the search space.
€. If r is within the feasible parameter space Q compute the function value f, and go to

step d; otherwise compute the smallest hypercube H c 9" that contains 4*, randomly

generate a point z within H, compute the function value f,,setr=zandset f, =f,

(mutation step)

d. If £< f,replace u by r, go to step £ otherwise perform a contraction step by
computing a point ¢ as ¢ = 0.5(¢ + u,) and calculate i
e. If f, <f,, replace. u, by c, go to step f; otherwise randomly generate a point z within

H and compute £, (mutation step). Replace u, by z.

f. Repeat stepsa-e o times.

5) Replace parents by offsprings by putting the contents of B into A* using the original

locations stored in L. Sort A*in order of increasing function value.

6) Repeat steps 2-5 S times.
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Figure 5.9 Schematic representation of the CCE algorithm
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The SCE method considers the global search as a natural evolution process where a
population is partitioned into several communities (or complexes); each of which is
permitted to generate offsprings independently. New communities are formed through a
process of shuffling after a certain number of offspring generations. The shuffling process
permits the sharing of information gained indep_endeptly by each co_mmunity during the
evolutionéry process. A competitive evolution process is guaranteed through a recognition
of the fact that parents with higher probabilities contribute more to the generation of
offsprings than those with lower probabilities. Such competitiveness is ensured by the use of
triangular probability distribution. Generation of an oﬁ‘spfhlg from a subcomplex is-
anélogous to the crossover dperation of genetic algorithms. However, the major difference
between the two is that while all parents of a subcomplex are allowed at least once to take
part in the generation of offspfings in the context of the SCE methodology, some parents
with low fitnesses, in the context of GAs, may not be permitted to take part in the
generation of offsprings. Therefore while the GA looses some information contained in the

sample space, the SCE does not.

53.3 Selection of Algorithmic Parameters

The number of input parameters to the SCE algorithm is relatively few. However,
the choice of these parameters is required to be made with care in order to obtain optimal
results from the algorithm. The required parameters by the SCE methodology are : (1) m,
the number of points in a complex, (2) ¢, the number of points in a subcomplex, (3) p, the

number of complexes, (4) Pum, the minimum number of complexes required in a

population, (5) @, the number of consecutive offspring generated by each subcomplex, and

(6) B, the number of evolution steps taken by each complex. In fact for some problems the

proper selection of these parameters can be difficult. In view of this, Duan et al. [1994]
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presented a comprehensive report on the proper selection of the SCE optimisation

parameters and recommended the following:

m=2n+1

g=n+l,

p=m, _ (5.4)
i . ;

P = Prin

where 7 is the number of parameters being estimated (or problem dim.ensi‘o.n). The use of
these recommended values reduces the burden of parameter selection to only p - the number
of complexes - as input to the SCE model in the present research work. Duan et al. [1994]
pointed out the right value of p depends on the degree of difficulty and the dimensionality

of the problem under consideration.

5.3.4 ~ Objective Function (or Calibration Criterion)

A number of different techniques have been proposed for-the estimation of the
parameters of a model given limited observed data. All these techniques have one goal in
common. The goal of any ca}_ibration model is to identify those values of the model
parameters that minimise (or maximise, if appropriate) some specified function relating the
measured data and the corresponding simulated results by the model. A measure of the fit
between the simulated and the observed data through the adjustment of the parameters of
the simulation model is called the objective function or the calibration criterion.

Traditionally, adjustment of the model parameters have been pursued through a
trial-and-error technique that requires the experience and expertise of the hydrologist or the

practicing engineer on the model under consideration. In the SCE methodology the
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adjustment of parameters is done automatically through the competitive complex evolution
algorithm through replacement of the weaker members of the subcomplex with healthier
generated offspring. Once the objective function attains its optimum value, the
corresponding parameters are considered as the optimum estimated parameter values with
respect to the observed data provided.

The objectivle function to be minimised in this work is the sum of the least squared
error between the observed and the corresponding simulated data. This may be expressed

mathematically as:

. . nobs .
f(x,,..,x,) = minimize (;(hk"’” - hks"")z) 5.5)

subject to X,

where
f objective function,
X, ‘model parameter i ,
nobs number of data points (observed or measured data),
h,**  measured or observed data value at node £,

h,™  corresponding simulated data value at node k,

x,  lower limit of parameter x,,
x,  upper limit of parameter x,, and
n total number of variables being estimated.

Two- and three-dimensional finite element models have been designed for the simulation of

the values of 4,"". The governing equations of the two- and three-dimensional finite

element models, including their formulation, and solution techniques have been presented in
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chapter four. The objective function presented in equation (5.4) is in fact general and any of
the flow or solute transport models presented in chapter four (be it two- or three-

dimensional) can be used for the evaluation of h,*" in the inverse problem of parameter

identification.
5.4 Summary

This chapter has presented two evolutionary techniques: (1) genetic algorithm and
2) shuffled complex evolution, and their subsequent - formulations foir the two projects
proposed .in this research work. The genetic algorithm is designed to be linked with a two-
dimenéional finite element model of flow and solute transport in nonhomogeneous confined
or unconfined aquifers for the optinﬁsation of extractioﬁ of contaminants in polluted
aquifers. The shuffled complex evolution is designed as a stand-alone inverse model that can
link up with analytical models, and two- or three-dimensional flow and solute transport
finite element for aquifer parameter estimation. These techniques are tested with analytical

models (before their implementation with numerical models) in chapter six.
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Chapter 6

Evaluation and Verification of Models

6.1 Introduction

Good-programming practice requires a thofough testing or evaluation of developed
models before their apphcatlon to field-scale problems Therefore this chapter deals with the
evaluation of the developed models using some simple pumping test and synthetic data. The
models designed may be categorised into: (1) a parameter estimation program based on the
theory of the shuffled complex evolution (SCE), and (2) a remediation design program
based on the theory of genetic algorithm. In each of these models, is embedded the
numerical flow and/or solute transport model. However, for the purposes of evaluation of
the strengths of the optimisation routines, analytical models of flow and solute transport
have been substituted for the numerical models. The analytical models are utilised for this
initial testing as the run times are many orders of magnitude less than for numerical models.
The specific tasks accomplished in this chapter include: (1) evaluation of the SCE inverse
mode! using analytical solute transport models with synthesised data, (2) evaluation of the
SCE inverse model using Theis analytical flow model and field pumping test data, and (3)
evaluation of the two- and three-dimensional solute transport models using appropriate

analytical solute transport models.
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6.2 The Analytical Models

This section briefly introduces the definitions of the analytical models used in place
of the numerical models for the SCE evaluation exercise. Three analytical models in the
~ context of solute transport and one in the context of flow are used in this exercise. The
three scenarios simulated in the context of the solute transport ére shown Figure 6.1. These
three models are governed by the following two-dimensional equation:

with D, =q,u, Dp=oam, u>0

where
«, longitudinal dispersivity [L],
a, transverse dispersivity [L]
D, longitudinal dispersion coefficient [I*T]
D, . transverse dispersion coefficient. [*T1,
R retardation factor [ L°],
A degradation rate of pollutant [ T 1,
X,y horiiontal coordinates [L], |
t time [77],
u unidirectional velocity in the x-direction [LT™'], and

c(x,y,t) concentration of pollutant [ ML™].
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Figure 6.1 Models used in the evaluation of the SCE algorithm

The aquifer is assumed to extend to infinity in both positive and negative x- and y-directions

and the x-axis is aligned with the direction of constant velocity. The analytical solution to
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equation (6.1) is obtained for each of the three different solute transport situations shown

in Figure 6.1 based on their boundary and initial conditions and the type of source input.

6.2.1 Analytical Solution to Model 1

Model type : A continuous point-source of constant rate M, .

Initial and boundary conditions :

M,
2 5(x)6 : -
R (x)6(») 62)

cs(%o0,100,) =0

cs(x,y,t =0)=

where M, is the constant injection rate, ¢ is the effective aquifer porosity, m is the aquifer

_thickness, and the Dirac-functions 5(x) and 6(y) are defined as:

5(x)=8()=0 for x=0, ?5(x) =:‘]‘5(y) =1 | (6.3)

Closed-form analytical solution [Kinzelbach, 1986]:

4o ut

M, oy (1 ¢f r 2{ 4 R}
c(x,p,0)=——F—— | —exp|——= 1+ L= % d 6.4
R0 drpusja o, J S p[g 4{2aL} u ¢ ©4)

with r= ’xz +y2(gi]
ay
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where ¢ is an integration parameter.

Parameters estimated . ¢, a,, and a .

6.2.2 Analytical Solution to Model 2

Model type : Time-varying specified line concentration source

Boundary condition:

Kt

c(0,y,0)=c,e™ for -b<y<b

(6.5)
¢(0,y,1) =0 elsewhere

where x is the specified concentration decay factor. For x =0, the first equation in (6.5)

reduces to a specified constant concentration ( or Dirichlet's boundary condition) of value

¢, - The length of the line source is 2b.

Closed-form analytical solution [Cleary and Ungs, 1978]:

o

R 2 2 3

CoX ux u x -

c(x,y,t) = ex —xt| lexpl| W AR—kR+ T— T2
ey ) p(sz )OJ p[{ 4DL} 4DLrj

(o e

(6.6)

where ¢, is a constant concentration value , 7 is an integration parameter and erf is the

error function.
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Parameters estimated © x, a,, and a ;.

6.2.3  Analytical Solution to Model 3

Model Type : 2-dimensional continuous injection source with a constant rate of M.

Initial and boundary conditions: same as in model 1

Closed-form analytical solution [Kinzelbach, 1986]:

My, [ x-ug-oyR | [r-a,-u@-o/R
3= ke a, J{e’f {2 aLu(t—T)/R} erf{z a,uG—1)/R H

P y+0.5a, y+0.J5a, At 4
e/ 2Jau(t—1)/R —erf 2 Jau(t—1)/R exp(— (_T)) ‘

where a, and a, are the horizontal and lateral extents, respectively of the rectangular input

™

source.

Parameters estimated : ¢, o, and a;

It is important to emphasise that each of the analytical models defined above are used in the
evaluation of the least squared objective function defined in chapter five and which will be

recalled once again as

f(u,,..,u,) = minimize ('f(ck"’“ ~ c,:"'")z) (6.8)
k=1

subject to u,

i — i = Tuio
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where :

f objective function,

u model parameter 7 ,

nobs number of data points (observed or measured data),

¢,” measured or observed concentration value at node & | ML?],
c,”™ corresponding simulated concentration value ét node k[ ML™],
u, lower limit of parameter u,,

u, upper limit of parameter u,, and

n total number of variables being estimated.

‘Simulated ¢,*™ 'values are evaluated by the analytical solute transport models discussed

above.

6.3 Presentation of Tests and Results

The first three tests with the solute transport models are executed using synthesised
concentration data for the three solute transport scenarios shown in Figure 6.1. Synthetic
concentration data is considered to be noise-free and therefore appropriate for testing the
strength of an optimisation algbrithm . The objective of all the three tests is to estimate the
'global optimum' using the synthesised data as observed system states. In other words if
=025, a, =250, and ¢, = 5.0 are used to generate the observed data, then these
parameters values are the 'global optimum' that must be sought for with the generated
observed data (or system states). Only the upper and lower limits of the parameters under

estimation are required as input to the model, and the final estimated parameters will always
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lie within the upper and lower limits provided. Each of the test on the three solute transport

models are considered in the following section.

6.3.1 Test of the SCE technique with Model 1

A noise-free concentration data is synthesised for the model shown in Figure 6.1a
using the following parameter values : «, =200, a, = 5.0, and ¢ = 0.15. Synthesised
data is evaluated at the point [1.0m,1.0m] of the simulation region for t =100, 200....,3000
days. The use of a noise-free data implies that the global optimum of the objective function
(or the criterion value) in equation (6.8) must be zero; when this happens the optimum
estimated parameters must be the same as those used to synthesise the observed data. This
zero value is hardly achieved owing to the precision (machine dependent) of the values of
the parameters estimated. Therefore an alternative convergence criterion for ending the

simulation requires the simulation to stop if the value of the objective function does not

change within a given percentage y , for a certain number nf , of successive function
evaluations. ¥ and nf are user specified values. The other fixed input parameters required
‘by the analytical models (and not estim;':lted with the SCE) are shown in Table 6.1. |

The SCE input parameters which include the number of complexes p; the number of

points in a complex m; the number of points in a subcomplex ¢; the minimum number of

complexes required in a population, p, ., ; the number of consecutive offspring generated by

each subcomplex @ ; and the number of evolution steps taken by each complex, £ are fed

in as input using the expression in equation (5.4) as follows:

m=7, q=4,w=13ﬁ=7aw=1and Poin= P

From equation (5.4) it can be observed that when the number of parameters under

estimation » is known, the SCE parameters m, ¢ , and f can be evaluated. However, the
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number of complexes must be carefully selected in order to initialise the appropriate number
of the population of points in the parameter search space. For simple analytical models (and
homogeneous situation for numerical models) where the number of parameters under
estimation are relatively few, p = 2 , have always been found to be adequate to solve the
problem. Thus in this and the subsequent analyses to follow the same values of SCE input
parameters defined above are used.

Four runs, each with a different but reasonable parameter limits are performed to
demonstrate the search power of the SCE technique for different starting parameter ranges.
The parameter limits are shown in Table 6.2. The results obtained for the four runs are
summarised in Table 6.3., which contains the final estimated parameters and the mean
concentration error (mcerr) for each run. The 'mcerr is the measure of the average absolute
deviation between the observed and the corresponding predicted concentrations values
(using the final estimated parameters).

Considering the parameter ranges used in Table 6.2 one can conclude from the
results in Table 6.3 that the SCE search technique is efficient and robust. The ranges of
parameter values used to estimate the parameters in Model 1 indicates that the technique
has the capability to search for the optimum solution irrespective of parameter limits set for
the problem. It is appropriate to mention that for all the ranges of parameters used in Tablq
6.2, only two complexes were required to yield the desired results for each of the runs. This
is due to the fact that the number of parameters under estimation is only three. For a higher

dimensions problem, two complexes may not be enough to yield the desired results.
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Table 6.1 Values of other parameters used in the analyses
Parameter Value
Specified concentration [ mg/ M 1.0
Decay coefficient (A ) [1/day] 1.65e-5
Retardation coefficient (R) 1.0
Lateral extent of solute source (2bor a,) [m] 0.5
Horizontal extent of solute source (da, ) [m] 0.5
Aquifer thickness [m] 1.0
Unidirectional velocity (u) [m / day] 1.0
Table 6.2 Parameter limits used in testing Model 1
RUN 1 RUN2 - RUN 3 : RUN 4
Parameter lower upper lower upper lower upper lower upper
. limit limit limit limit limit limit limit limit
a, (m) 1.00 100.00 1.00 20000  1.00 35000 | '1.00 500.00
a (m) 1.00 100.00 1.00 200.00 1.00 350.00 1.00 500.00
¢ 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
Table 6.3 Results of the Estimated Parameters for Model 1
' Expected RUN'1 RUN 2 RUN3 RUN 4
Parameter Values mcerr = meerr = mcerr =  mcerr =
8.96E-8 1.13E-8 3.04E-8 5.06E-8
a, (m) 20.0000 19.9873 19.9821 20.0146 20.0269
a . (m) 5.0000 5.0004 5.0003 5.0006 5.0014
¢ 0.1500 0.1500 0.1501 0.1499 0.1499

6.3.2 Test of the SCE technique with Model 2

To test the SCE method with Model 2, synthesised concentration data for the

scenario shown in Figure 6.1b is created using the following parameter values:

a, = 20.0, a, =5.0, and x = 0.0015. Synthesised data is computed at the same location

of the simulation region and simulation times as in model 1. The upper and lower limits of
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the parameters to be estimated are as shown in Table 6.4. The SCE parameters namely the

number of complexes, the number of points in a complex, the number of points in a

subcomplex, the number of consecutive offsprings generated by each subcomplex, and the

number of evolution steps taken by each complex are the same as those used in Model 1.

Once again four runs are performed using different parameter ranges in each run.

The results of the four runs are shown in Table 6.5. It can be seen that the parameters

estimated using the different initial ranges in Table 6.4 are all very close to the expected

values. The values of 'meert' in each of the tests also support the fact the final concentration

values predicted with final estimated parameters are almost the same as the corresponding

observed data.

Table 6.4 Parameter limits used in testing Model 2
RUN 1 RUN 2 RUN 3 RUN 4
Parameter lower upper lower upper lower upper lower upper
limit limit limit limit limit limit limit limit
a, (m) 1.00 100.00 1.00 200.00 1.00 300.00 1.00 500.00
a ;(m) 1.00 100.00 1.00 200.00 1.00 300.00 1.00 500.00
x (1/d) 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
Table 6.5  Results of the Estimated Parameters for Model 2
Expected RUN 1 RUN 2 RUN 3 RUN 4
Parameter Values mcerr = mcerr = mcerr = mecerr =
- 1.32E-9 3.2E-10 8.44E-9 4.7E-10
a, (m) 45.0000 45.0278 44.9921 45.0682 44,9887
a (m) 30.0000 29.9951 30.0031 29.9997 30.0034
Kk (1/d) 0.0015 0.00149 0.00150 0.00150 0.00150
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6.3.3 Test of the SCE technique with Model 3

Synthesised concentration data for this analysis is generated for the scenario shown
in Figure 6.1c using the following values : a, =60.0, a, = 25.0, and ¢ = 0.35; for the
same location and simulation times as in the two previous models. The SCE parameters are
the same as those use(i in the preﬁous two analyses. The parameter boundary limits for four
runs are shown in Table 6.6 and the final estimated parameters for the runs are shown in
Table 6.7. Again the final estimated parameters are very close to the expected values in
column 2 of Table 6.7, despite the range of parameter limits used in Table 6.6. This
conclusion is also supported by the small values of ‘mcerr' shown in Table 6.7. In all the
three tests various initial starting ranges have been used to demonstrate the robustness of
the search power of the SCE. For the third model in particular, one can observe the very
wide range with regard to the initial parameter values; yet the SCE technique was able to

locate approximately the same values of the optimum parameters for all the four runs

considered in this model.

Table 6.6 Parameter limits used in testing Model 3
RUN 1 RUN 2 RUN 3 RUN 4
Parameter lower upper lower uppet lower upper lower upper
' limit * limit limit limit limit limit limit limit
a, (m) 1.00 100.00 1.00 500.00 1.00 750.00 1.00  1000.00
a ;(m) 1.00  .100.00 1.00 . . .500.00 |. 1.00 . 750.00 1.00  1000,00
¢ 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
Table 6.7 Results of the estimated parameters for Model 3
Expected RUN 1 RUN 2 RUN 3 RUN 4
Parameter Values mcerr = objv = mcerr = mcerr =
1.65E-11 1.46E-8 7.60E-9 1.72E-8
a  (m) 60.0000 59.9960 60.0335 60.0337 60.0202
o (m) - 25.0000 24.9999 24.9874 24.9905 24.9893
¢ 0.3500 0.3500 0.3500 0.3500 0.3500
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6.3.4 Evaluation of the SCE Using Analytical Flow Model
with Field Data

In the fourth evaluation, the Theis analytical flow model is employed in conjunction
with a. field experimental pumping test conducted in South Australia. The analytical model
allows the assumption that the specified drawdown at an infinite location from the point of
pumping is zero. It also permits the assumption that the initial drawdown within the area in
which the pumping test was carried out is zero. This model may be expressed in radial

coordinates as [Kinzélbach, 1986] :

Sa& 1 &

e 6.

T & r ( 0’)’) (69)

Initial and boundary conditions :

s(t=0,r)=0
s(t,r =) =0 (6.10)

(ZﬂTr é)
o

where

=Q for t>0

r=0

radial coordinates [L],

storage coefficient,

transmissivity [ L’T '],

time [7],

s drawdown [L], and

(0] withdrawal rate starting at time 1 = 0

~ N Uy Y

Combining equations (6.9) and (6.10), the Theis analytical solution is expressed as

[Kinzelbach, 1986]:
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Q Sr? u’
L ww), u="— W@u)=-05771-1 —
aar L @) v =g @) n@)+u =5 5

s(t,r)= +o.. (6.11)

Parameters estimated : SC and TS

The SCE model was tested on a field pumping test experiment conducted in South
Australia, together with two other models, GALG and GNEW. GALG is a parameter
estimation model whose principle is based on the theory of genetic algorithms presented in
chapter five while GNEW is based on the Gauss-Newton gradient-based technique. These
two models have been designed in the course of this research study for the evaluation of the
experimental pumping test data with respect to parameter estimation. Hence, thg_ secondary
objective in this section in particular, is to investigate how the results of the evolutionary
models compare with those of a traditional gradient-based method. Three series of data are
used. For convenience they are referred to as TESTI, TEST?2, and TEST3. Data TEST1
were collected with the production well operating at the rate of 21 Is™" and the observation -
well located at a radial distance of 25 m from the production well; data TEST2 were
collected with the production well operating at the rate of 91s™' with the observation again
at a radial distance of 25 m from the production well; and data TEST3 had the observation
well located at 65 m from the production well, with the latter operating at the rate of 9Is".

All the three experiments were‘ conducted on different occasions but using the same
pumping well with the observation or test wells in the same straight line. Using these three
data sets and assuming a homogenous isotropic aquifer, three inverse analyses were
performed for each of the three data sets using the Theis analytical flow model discussed
previously. The parameters estimated are the effective storage coefficient (SC) and the

effective transmissivity (7S).
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The lower and upper limits of these parameters used in each of the three models for
the three data sets are shown in Table 6.8. It is apparent in this table that the limits used is
model-dependent. Each model has its unique range for which meaningful results could be
obtained. While the GNEW model could search within a wider range (at the expense of
excessive computational time), the GALG model required a smaller range to perform its
search. The final range for the GA was determined after initial analyses with larger ranges
which did not produce adequate convergence. The range of the SCE model depends on the
number of complexes. In this particular problem the use of 2 complexes required the
appropriate range shown in Table 6.8 for a more meaningful results. It is appropriate to
mention that the SCE has the capacity to accommodate a wider range if required (this has

been illustrated in the previous examples with the solute transport models).

Table 6.8 Parameter limits used in all the three tests

SCEV GNEW GALG
Parameter lower upper lower upper lower upper
SC 1.0e-10 1.0 1.0e-10 1.0 0.1e-3 0.1e-4
TS [m2s'1] 1.0e-10 1.0 1.0e-10 100.0 0.5e-2 0.5¢-4

Table 6.9 Final Estimated Parameters

TEST1 TEST2 TEST3
Model SC TS[mZS_l] SC TS[m2S.—lj SC TS[mZS-_I]

SCEV 0.2377e-4  0.20639e-2 0.1475e-4 0.21530e-2 0.3889¢-3 0.19045e-2
GNEW | 0.2373e-4  0.2063%¢-2 0.1487e-4 0.21500e-2 0.3893¢-3 0.19041e-2

GALG 0.1871e-4  0.21258e-2 0.1342¢-4 0.21265¢e-2 0.3668¢-3 0.20180e-2

Table 6.10  Comparison of models performance using coefficient of correlation

Model TEST1 TEST2 TEST3

SCEV 0.996502 0.982865 0.999131
GNEW 0.996528 0.982721 0.999130
GALG 0.996486 0.982679 0.999101

The final estimated parameters obtained from each of the three models based on the
three pumping tests data are summarised in Table 6.9. The results reveal that the final

optimum parameters obtained from SCE and GNEW are fairly close to each other. The
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results of the GALG model deviated from the other two but compared favourably well with
the observed data. This indicates that the estimated effective parameters may be truly
representative of the aquifer formation with respect to the space and the time at which the
pumping test experiment was carried out. ~ The efficiency of the models are compared
through the evaluation of the coefficient of correlation between the observed and predicted
drawdowns (using the final estimated parameters shown in Table 6.9) for each of the three
tests. As shown in Table 6.10, the SCE and the GNEW models have almost the same level
of efficiency with respect to the three sets of data used.

Generally, the results obtained indicate that the evolutionary techniques can in fact
perform as equally well as the deterministic gradient-based techniques. The added strength
of the evolutionary techniques is the fact that they perform their search without the
computation of derivatives of the dependent variable with respect to the parameters under
estimation; making them more robust and efficient under conditions of high nonlinearity,
and parameter sensitivity and interaction. The visual comparison of the three tests
_ performed using each of the three models against the observed data is shown in Figures 6.2
t0 6.4. It is clear from these three figures that results from all the three models are in good
agreement with the observed data. However, SCE and GNEW models predicted better and
closer to each other than the GALG model.

137



Chapter 6 Evaluation and Verification of Models

Drawdown (m)

Drawdown (m)

35 4
# B — ,:—‘::t:'?&—_.'___!,___ 8 |i
3 ] a0 & & =B it ]
| ‘ﬁ,@f“”"‘ |
25 | Vi |
2 |
l —®— obsw
) | —— scev
| galg |
1 |
‘ | —o— gnew |
05 4 l
0 ! 1 I : ; I | |
’ 2000 0000 15000 20000 25000 : X
Time (secs) 5000
Figure 6.2 Comparison of the efficiencies of the three techniques using data TEST1
1.8 N ) - - - . |
16 |
14 -
1.2
1
0.8 +
06 +
0.4
0.2
0 : ; ; i { | |
o 1 1 20000 25000 30000 35000
Time (secs)
Figure 6.3 Comparison of the efficiencies of the three techniques using data TEST2

138



Chapter 6 Evaluation and Verification of Models

NI S S =—=0-0

—%— obsv

Drawdown (m)

| ——0-— scev
1 5.
—+~ gaig ‘ ‘

| —o—— gnew |
10000 20000 30000 40000 50000 60000 70000 80000 90000
Time (secs)

w
o ———TsEErT:

Figure 6.4 Comparison of the efficiencies of the three techniques using data TEST3

6.4 Evaluation of the 2-D and 3-D Transport Models

The chapter is completed with the test of the numerical accuracy of the two- and
three-dimensional finite element solute transport numerical models presented and
formulated in chapter four. Because of the restrictions and assumptions imposed in order to
obtain closed-form analytical solution, only simplified cases of the numerical models are
tested. The analytical models chosen for this exercise are : (1) a two-dimensional model for
an aquifer .of inﬁrﬁte width.witil ﬁnite;\)\ridth solute source, and 2) .';1 fhree-dﬁnensional
model for an aquifer of infinite width and height with finite-width and finite-height solute
source. The governing equations and analytical solutions to these models are presented

subsequently.
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6.4.1 Two-Dimensional Analytical Model

The two-dimensional analytical model for an aquifer of infinite width with finite-
width solute source is governed by the equation:
X 5C sc &

S =D+ D, oy -V 5 -G with D, =a,V, D, =a,V (6.12)

subject to the following boundary and initial conditions:

Boundary conditions:

C=C,, x=0andY <y<l,
C=0, x=0andy<Yory>Y, (6.13)
C

,é‘—:()aty=i00, C’§=Oatx=00
@y &

Initial conditions:

C(x,y,t=0)=0at 0 <x <owand -0 <y <+ (6.14)

where:
C solute concentration [ ML™ ],
v fluid velocity in the x-direction [ LT ],
D,  longitudinal dispersion coefficient [ L*T '],
D,  transverse dispersion coefficient [ r’rt'],
«, longitudinal dispersivity [L],
«a, transverse dispersivity [L],

A first-order solute decay coefficient [ T7'],

Y, y-coordinate of lower limit of solute source at x=0 [L],
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Y, y-coordinate of the upper limit of solute source at x=0 [L], and

X,y Cartesian x- and y- coordinates of the simulation region [L].

The analytical solution to equation (6.12) subject to the boundary and initial conditions in
equations (6.13) and (6.14) is obtained through the recognition of the following
assumptions: (1) fluid is of constant density and viscosity, (2) solute may be subjected to
first order chemical transformation (for a conservative solute, 2=0), (3) flow is in the x-

direction only and velocity is constant, and (4) the longitudinal and transverse dispersion

coefficients (D, and D)) are constant. The analytical solution is given by Wexler [1993] as:
C,ox 7 S y? x’
Cx,y,1) = —— ex( j 2 ex —( +l]r— *
e N U5 IOT p[ 4D, 4D
| h-y AR
erfc —erfc dr
{ f[z /D},r} ﬁ’[z,/p‘,z

(6.15)

where erfc is the complementary error function and 7 is an integration parameter. Wexler
[1993] suggested that the accuracy of the numerical integration can be improved by making
a variable transformation of the form 7 =r*. This transforms equation (6.15) to a final

form:

Cyx e )" 1 & x>
e G 2 T e { -]
0= 5 ™M 2D, IO e eXp[ ap. )" Taps”

A computer program was written to evaluate equation (6.16) using the Gauss-Legendre

method of numerical integration. A simple input data was constructed for the purposes of
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comparing the results of equation (6.16) to those obtained from a two-dimensional
numerical solute transport model presented in chapter four.

The region simulated is shown in Figure 6.5. The region is discretized into 31 nodes
along the x-direction and 15 nodes along the &-direction using the following spatial

discretization scheme: x = 0.0, 100.0, 200.0,...,3000.0m and y = 0.0, 100.0, 200.0,...,

1500.0m. A constant concentration source (C,) at x = 0 and along the range ¥, <y <1,
(where Y, = 400m and Y, =1000m ) is specified at a value of 100mgl ™' ; leading to the set
up of a symmetrical problem. The simulation is performed for the times t = 10.0,
20.0.,...,300.0 days.

The contours of spatial concentration distribution for both models at time t = 1000
days are shown in Figures 6.6 and 6.7. From these figures, it can be observed that the
results for these two models compare favourably well. A more detailed comparison of the
results from these two models on a point-by-point basis are illustrated by the breakthrough
curves shown in Figures 6.8 to 6.10 for the three observation points shown in the simulation
region. Once again, it can be observed from these two figures that the comparison between
the results of the two models is excellent. It is appropriate to mention that the observation
nodes 2 and 3 were chosen such that the two nodes could pose as mirror images of each
other. This situation is confirmed both in the analytical and numerical results shown in
Figures 6.9 and 6.10 by the fact that the same magnitudes of concentration values are

obtained with regard to the breakthrough curves at nodes 2 and 3.
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6.4.2 Three-Dimensional Analytical Model

The three-dimensional analytical model governing an aquifer of infinite width and
height with finite-width and finite-height solute source may be expressed as:
& . Fc FC IC &

+D +D +D -V—-AC=0 6.17
a x &2 ¥y @’2 z &2 é&' ( )

subject to the following boundary and initial conditions:

Boundary conditions:

C=0C,, x=0and Y, <y</,
and Z, <z<Z,
C=0, x=0and Y >y ory>},
and Z, >z orz> 2,
C,£=0, y =
&
C,éC—=0, Z =t (6.18)
&
C,£=0, X =0
&

Initial condition:

C(x,y,z,t=0)=0, 0<x<o, —00<y<+w, —00<z<+0 (6.19)

where:
Z z-coordinate of the lower limit of the solute source at x = 0 [L],

zZ, z-coordinate of the upper limit of the solute source at x =0 [L], and
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D,  vertical transverse dispersion coefficient [ L’ T

All the other parameters in equation (6.17) have the same meanings as those defined in the
two-dimensional case. The analytical solution to equation (6.17) subject to (6.18) and
(6.19) also recognises the assumptions stated for the two-dimensional analytical model in

the previous section. This solution may be expressed as [Wexler, 1993]:

C Vx
| oXXP\op )k 2 . .
C(x,y,Z,t)= : j.Tz expl - ——= +Alr——|*
_ T

87D,
- I/l_y | Yz_y | ZI_Z' ) ZZ—Z' -
{fLJD—]f[zJD—H e oA Fi

Again the transformation 7 = r*is applied to equation (6.20) for accuracy of numerical

620y

integration. This results in the final expression:

Vx |
C,xexp| — 0.25
: p(sz) 7

2J7D, ;i"‘—sexp :
Koy |l By ol 2oz ) ol 2o
o s e 4

A computer program was written to evaluate equation (6.21) using the Gauss-Legendre

C(x,y,z,t) =

(6.21)

numerical integration technique. The three-dimensional evaluation problem handled is
similar to the two-dimensional case except for the inclusion of a vertical axis. The entire
simulation region is shown in Figure 6.11. The region comprises a five layered system with

the horizontal specified boundaries given by Y, <y <Y, at x=0.0 , where Y, = 400m and

1

Y, =1000m. The vertical extent of the specified boundaries are given by Z, <z < Z,, at
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x=0.0, where Z, =20mand Z, = 40m; resulting in the set up of a three-dimensional

symmetrical problem. The value of the concentration (C,) at these specified locations is
100mgl™' . The observed breakthrough points are specified within the third layer at the

same locations as in the two-dimensional case.

3

' SEEEE specified concentration boundary
Y, @ breakthrough observation points

1 Flow direction
SIMULATION DATA
A —- | ° : : i —13

solute concentration at specified points. = 100 mg/l
groundwater velocity in the x-direction =1.0 n/d

1 longitudinal dispersivity =100 M
“3 transverse dispersivity . = 20|m
® vertical transverse dispersivity = 20m
first order solute decay coefficient = 0.0 1/d
}
Om 3000m
a) Areal plane of 3-dimensional simulation region
Y S J S PR
- L o T T 8 50 m
7 1 1 ¢
L o ] ]
b) Vertical section (through A-3) of 3-dimensional simulation region
Figure 6.11 Simulation tegion used for the evaluation of the 3-dimensional numerical model

The results of the concentration values at times t = 10, 20, 30,...,300 for the analytical
model are compared to those of the three-dimensional model at corresponding locations.
The nodal spatial discretization scheme employed is as follows: x = 0.0, 100.0,
300.0,...,3000.0m; y =0.0, 100.0, 200.0,300.0,...,1500.0m; and z = 10.0, 20.0, ..., 50.0 (the
bottom of the aquifer is assumed to be at an elevation of 10.0 above some given datum).

The results of the spatial concentration distribution in the top layer of the

simulation region at time t = 1500 days for both the analytical and numerical model is
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shown in Figures 6.12 and 6.13, respectively. One can observed that the contours of the
concentration distribution for both models compare favourably well. A critical comparison
of the solutions from both model is shown by comparing the graphs of the breakthrough
curves at the observation nodes in the third layer of the simulation region. A good
agreement can be o__bserved with regard to the results from the two models. The expected

symmetrical results for observation nodes 2 and 3 can be observed in Figures 6.15 and 6.16.
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Figure 6.12 Results of spatial concentration distribution at t=1500 days from the 3D analytical
model

149



Chapter 6 Evaluation and Verification of Models

Y-DISTANCE (m)

o ! . 1 L === | ! )
0 500 1000 1500 2000 2500 3000

"X-DISTANCE (m)

Figure 6.13 Results of spatial concentration distribution at t=1500 days from the 3D numerical
model '
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Figure 6.14 3-Dimensional model evaluation using breakthrough data at observation node 1 in
layer 3
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Figure 6.16 3-Dimensional model evaluation using breakthrough data at observation node 3 in
layer 3
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6.5 Summary

The application of the SCE technique has been extended to groundwater modelling
using analytical models. The performance of the SCE technique with regard to analytical
solute transport models have been tested and excellent results have been achieved. The
technique was further tested togéther with a genetic algorithm method using the Theis
analytical flow model and practical pumping field test data. In this regard, the performances
of the evolutionary techniques were compared with a Gauss-Newton gradient based
technique; in which the results-of the evolutionary techniques matched favourably well with
those of the traditional gradient-based Gauss-Newton method. The chapter concluded with
the evaluation of two- and three-dimensional finite element solute transport models using
some selected analytical models. The results of the numerical models were found to
compare favourably well with those of the analytical for the simple cases of data considered.
With the confidence that the developed models are giving the expected results, the analyses
are extended to field scale scenarios through the use of numerical models. This is

presented in chapter seven.
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Chapter 7

Application to Field-Scale Problems

7.1 Introduction

The application of the inverse model of parameter- identification to field-scale -
problems is presented in this chapter. In the previous chapter, this model was tested using
analytical solute transport models with synthetic data and an analytical flow model with
practical field pumping test data. In a field-scale analysis, analytical models lack the ability to
handle nonhomogeneous and anisotropic problems. This limitation is usually surmounted in
groundwatef modelling through the use of numerical models. Numerical flow and solute
transport models in both two- and three-dimensions are now embedded in the shuffled
éompléx 6ptimisati0n (SCE) model to solve the inverse problem of parameter identification.
The following problems are considered in this chapter: (1) estimation of aquifer formation
parameters under different flow conditions, (2) estimation of aquifer formation parameters
using the transport model, and (3) a parametric analysis to study the weakness of the SCE

inverse model.
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7.2 Parameter Estimation by the Flow Model

In this context, 4" in equation (5.4) is obtained by solving the system of algebraic
equations in (4..3_3) subject to the initial and boundary conditions in equations (4.5) to 4.7)
fof both the two- and three-dimensionai models. IIn the two-dimensional mode, the
parameters estimated are hydraulic conductivity in the x, y, and xy-directions and storage

coefficient (ie. k., kw, kxy (= kw ), and §) while £, kyy, k_and S (where k_is the

vertical hydraulic conductivity) are estimated in the three-dimensional model. Parameters
such as k,,, k,,, k,, and S are continuous function of the spatial variables. For parameter
identification purposes, a continuous function must be approximated by a finite dimensional
form. Two methods that have been proposéd in the literature are : (1) zonation method and
(2) interpolation method. In this research, the method of zonation has been used for its
simplicity. In the zonation method, the flow region is divided into a number of subregions
called zones, and constant parameter value(s) is/are used to characterise each zone. In the
finite element context, therefore, all elements falling Wlthln the ..same zone have the same
parameter values. The dimension of parameterisation is represented by the product of the
number of parameters.under estimation and the number of zones into which the entire
simulation region is subdivided. For example, if one seeks to estimate k., k. k, and S
(four parameters) and ‘the simulation region is parameterised into two zones, then the
parameter dimension of the problem is eight .

Analyses are performed using both synthesised and corrupted synthesised data. The
synthesised observed data is achieved by using known (or true) parameters to solve the
forward problem in order to generate data for a number of observation points. The corrupted
data is achieved by the random incorporation of noise in the synthesised data using the

following expression:
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he = h* (1t * rand), i=1,2,...,nobs (7.1)

!

where h,“is the generated corrupted data from the synthesised data h**; rand is a random

number, nobs is the number of observation nodes, and @ is a fractional small parameter
whose value must be reasonably selected in order to achieve sensible corrupted data. The
rational behind the use of corrupted data is to test the strength of the SCE methodology with
regard to field data which is known to contain observation errors or noise. The performance
of the optimisation is evaluated by the computation of a parameter called the mean drawdown
error. The mean drawdown error is the average of the absolute deviations of the predicted
drawdown (using the final estimated parameters) from their respective observed values. In
the case of the use of synthesmed data the computed mean drawdown error must be quite
close to or equal to zero for the final global optimum parameters. In the two-dimensional
flow model, the analysis performed include parameter estimation in : (1) a homogeneous
anisotropic aquifer, (2) an inhomogeneous and anisotropic aquifer with the axes of the
hydraulic conductivity tensor aligned with those of the global axes, and (3) inhomogeneous
and anisotropic with the axes of the conductivity tensor non-aligned with those of the global
axes.

It is important to mention that modelling errors are not considered since the same
mesh used to generate the data are used to determine the coefficients in the inverse problem.
For tﬁis reason a unifonh mesh was used; however a graded mesh could alsb have been used.
In all analyses, the aquifer is assumed to be of the confined type. The results of these tests are

presented and discussed in the sections that follow.
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7.2.1 Homogeneous and Anisotropic Aquifer-Analysis 1

The simulation region whose parameters are to be estimated is shown in Figure 7.1
with its associated boundary conditions. An extraction well is located at the centre of the
simulation region and observed data is synthesised at the four observation nodes shown in the
figure. The observation and production wells are numbered aécording to the hode numbers
generated in the numerical model. The true parameters used in the synthesis of the observed
data as well as the upper and lower limits of the parameters to be estimated are shown in
Table 7.1. The simulation region is discretized into 14-nodes in the x-direction and 9 nodes in
the y-direction in order to generate a total of 126 nodes and 104 -elements. The nodal
coordinates are generated using the following spatial increment scheme
Ax = 40.0m and Ay = 40.0m. A constant time step of Af =1.0days is used and a forward
simulation is performed for a total of 10 time steps to obtain the synthesised data for each of
the observation nodes. The generated drawdowns for both synthesised and corrupted data
are shown in appendices 1a and 1b, respectively.

With regard to the SCE input parameters, two complexes - each containing a total of
9 sampling points - were r.equir:ed to solve this problem. The total number of population of
points is equal to the product of the number of points in each comple); and the nun'lbe'r of
complexes. Thus the entire number of initial population of points in the parameter search

space was 18.
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Figure 7.1 A single-zone simulation region showing wells and boundary conditions

Intermediate parameters values required to repeatedly compute A, *™ by the numerical model
for the evaluation of the objective function in equation (5.4) are generated in the optimisation
model using the competitive complex evolution (CCE) in the SCE previously presented in
chapter five. The parameters estimated in this analysis are Kxx, Kyy, Kxy (=Kyx), and S. The
final estimated parameters for the two analyses (with both synthesised and corrupted data)

including their associated mean head errors are shown in Table 7.2.

Table 7.1 True and boundary parameter values used in analysis 1

Ko [m/d] | Kpy[md] | Koymd] | S
True parameters used to generate observed data
50.0 | 35.0 | 2.50 [ 0.0005

Upper limits of parameters under estimation

200.00 | 200.00 | 50.00 [ 1.0000

Lower limits of parameters under estimation

0.00 | 0.00 | -50.00 | 0.0000
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As it can be seen in Table 7.2, the final estimated parameters are almost the same as the true
or expected parameters. This is indicated by the value of the mean drawdown error, which is
the measure of the average absolute deviation of the simulated drawdowns from the observed
drawdowns at the respective observation nodes. The results for the corrupted data is equally
impressive. The nearness of the final estimated parameters, in the context of the corrupted
data, to those of the true parameters indicate the potential strength of the SCE methodology
in a real field-scale data analysis. It is appropriate to mention that because the aquifer is
homogeneous, the need to parameterise the simulation region into zones was not necessary.

In the subsequent applications, the technique is subjected to a region with more than orié

Zone.
Table 7.2 Summary results of analysis 1
Kx[m/d] | Kpy[md] | Ky[md | S
Expected or true parameters
50.0 | 35.0 | -2.50 | 0.0005

Estimated parameters with synthetic data, mean head error = 1.43E-10

50000 | 35.000 | -2.499 | 0.4999E-03

Estimated parameters with corrupted data, mean head etror = 1.67E-08

49988 . | 35.028 | 25059 | 0.50073E-03

7.2.2 Inhomogeneous and Anisotropic Aquifer with Kxy =0
-Analysis 2

In this analysis, the simulation region is parameterised into four zones with elements
in a particular zone having the same values of aquifer formation parameters. Parameters Kxy (
= Kyx) are zero and hence not estimated in this analysis. In other words it is assumed that the
global axes are aligned to those of the hydraulic conductivity tensor. The simulation region is

shown in Figure 7.2. Once again both synthesised and corrupted data are used. The

158



Chapter 7 Application to Field-Scale Problems

simulation domain is a square region discretized into 11 nodes in both x- and y-directions.
This results 121 nodes and 100 elements in the finite element network. The nodal
coordinates of the discretized simulation region is generated using the following scheme:
Ax = 100.m and Ay = 100.m . Observation and production wells are numbered in accordance
with the node numbering system generated in the numerical model. The true parameters used
in each zone for the generation of the synthesised and corrupted observation data, including
the boundary limits of the parameters under estimation are shown in Table 7.3. The resulting
generated data (using the same time stepping scheme as analysis 1) are shown in appendices
2a and 2b. |

5 complexes each contalmng 25 samplmg pomts - and leading to a total of 125
sampling points in the entire parameter search space - were required by the SCE to solve the
above problem. The total number of points in each complex (e, 25 in this analysis) is
obtained from the expression 2n+1, where n is the parameter dimensionality or the total

number of parameters under estimation (ie, 12 (3 for each zone) in this analysis).
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Figure 7.2 A 4-zone simulation region showing zones, wells, and boundary conditions
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The final estimated parameters for the synthesised and corrupted data are summarised
in Table 7.4. In the case of the synthesised data, one can observe a very good agreement
between the estimated and the expected parameters. This observation is supported by the
small value of the mean drawdown error; which indicates that the predicted results obtained
using the final estimated parameters are almost the same as the corresponding observed data
shown in appendix 2a. The values of the final estimated data in the case of the corrupted data
is equally good from the point of view of the fact that the data is assumed to be collected in
the field (and therefore corrupted with noise). The present analysis has demonstrated that the
SCE methodology has the potentiél to be used in simulation scenarios usually adopted in the
context of the gradient-based techniques, ie, parameterisation of the simulation region into
zones. In the final analysis of the t‘wo-dimensional flow model, the parametef identification
model is applied to the estimation of the formation parameters for an inhomogeneous and

anisotropic aquifer, where the global axes of the simulation region are not aligned with those

of the hydraulic conductivity tensor (ie, k,, =k, #0).

Table 7.3 True and boundary parameter values used in analysis 2

Kox [m/d] | Kyy [m/d] | S

Zone True parameters used to generate observed data

1 60.00 50.00 0.001

2 45.00 35.00 0.002

3 30.00 20.00 0.003

4 20.00 10.00 0.004
Zone Upper limits of parameters under estimation

1 100.00 100.00 1.0000

2 100.00 100.00 1.0000

3 100.00 100.00 1.0000

4 100.00 100.00 1.0000
Zone Lower limits of parameter under estimation

1 0.00 0.00 0.0000

2 0.00 0.00 0.0000
.3 0.00 0.00 0.0000

4 0.00 0.00 0.0000
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Table 7.4 Summary results of analysis 2

Koex [m/d] | Kyy [m/d] | S
Zone Expected or true parameters
1 60.00 50.00 0.001
2 45.00 35.00 0.002
3 30.00 20.00 0.003
4 20.00 10.00 0.004
Zone Estimated parameters with synthetic data, mean head error = 3.751E-10
1 59.994 50.007 0.99967E-03
2 45.000 35.000 0.20000E-02
3 29.998 19.998 0.30002E-02
4 20.000 10.000 0.40001E-02
Zone Estimated parameters with corrupted data, mean head error = 1.093E-05
1 60.782 48.689 0.11059E-02
2 44.959 34.894 0.20019E-02
3 29.641 20.723 0.28807E-02
4 20.087 10.056 0.40073E-02
7.2.3 Inhomogeneous and Anisotropic Aquifer-Analysis 3

The simulation region, spatial and temporal discretization, and location of production
and observation wells are the same as those used in analysis 2. As shown in Figure 7.3, the
only difference here is the parameterisation of the region into three zones and the inclusion of
anisotropic conditions (ie, k,, =k, # 0) in the parameter estimation analysis. The observed
drawdowns in the context of both the éynthesised and the corrupted data are shown in
appendices 3a and 3b, respectively. The parameters used in the generation of the observed
data as wells as the upper and lower limits of the parameters under estimation are shown in
Table 7.5. The number of complexes, number of points in each complex, and the total number
of initialised points in the entire search space used in the SCE algorithm are respectively, 10,
25, and 250. The total number of parameters estimated is 12. It is interesting to note that

these SCE parameters increase in magnitude as the problem becomes more complex and

difficult to solve.
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Table 7.5  True and boundary parameter values used in analysis 3

Ko (mid] | Ky(mid] | Key(w/d] | S

Zone True parameters used to generate observed data

1 40.00 30.00 1.50 0.002

2 30.00 20.00 1.00 0.003

3 50.00 35.00 1.75 0.001
Zone Upper limits of parameters under estimation

1 150.00 150.00 5.00 1.0000

2 150.00 150.00 5.00 1.0000

3 150.00 150.00 5.00 1.0000
Zone Lower limits of parameters under estimation

1 _ 0.00 0.00 0.00 0.0000

2 0.00 0.00 0.00 0.0000

3 0.00. 0.00 . 0.00 0.0000

The results of this analysis for both the synthesised and corrupted data after 182 and
100 cycles respectively, are shown in Table 7.6. The analyses with the synthetic data
required a total of 62581 objective function evaluations to complete the analysis while in the
use of the corrupted data, the analysis was completed the solution with 35144 objective
function evaluations. Comparing the results of both analyses to the expected values in Table
7.6, a very good agreement can be observed. This is also supported by the values of the mean
drawdown error for both the synthesised and the corrupted data. The values of the
anisotropic hydraulic conductivity (ny=ny) parameters for the corrupted data appear to
have deviated from their corresponding expected values. But considering the fact that only 4
observations wells are used against a problem of a parameter dimensionality of 12, and the
relative magnitudes of Kxy (and Kyx) compared with Kxx and Kyy, the performance of SCE

methodology in this regard may be considered as efficient.
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Table 7.6 Summary results of analysis 3
Komd | Kpywd | Kgmwd | 5
Zone Expected or true parameters
1 40.00 30.00 1.50 0.002
2 30.00 20.00 1.00 0.003
3 50.00 35.00 1.75 0.001
Zone Estimated parameters with synthesised data, mean drawdown error = 2.929E-10
1 40.075 29.993 1.5777 0.20036E-02
2 30.000 20.000 0.9916 0.30000E-02
3 49.927 35.994 - 1.8454 0.99764E-03
Zone Estimated parameters with corrupted data, mean drawdown error = 1.060E-05
1 43.408 30.684 4.9974 - 0.21103E-02
2 30.022 19.978 22148 0.30082E-02
3 49.708 34.665 3.4501 0.99213E-03

Although they are not required to be the same, the deviation of the anisotropic
parameters from those of the expected values in the case of the corrupted data is very
significant. This indicates the extent of sensitivity of these parameters to small changes in
drawdown values. But from such data assumed to be collected from the field, the primary

objective of the analyst is the determination of the aquifer formation parameters that will
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predict drawdowns to match the observed data as closely as possible. Hence, with a mean
drawdown error value of 1.060E-05, any analyst will be convinced enough to consider the
estimated parameters as true representatives of the aquifer formation from which the
pumping test data was obtained. Nonetheless, the other parameters (Kxx, Kyy, and S) have
compared favourably well with their respective true parameters. The performance of the SCE
methodology, is tested against a three-dimensional flow model for the estimation of the

parameters of an inhomogeneous aquifer in the following section.

7.2.4 3-D Inhomogeneous and Anisotropic Aquifer-Analysis 4

The three-dimensional simulation domain is shown in Figure 7.4. The region
comprises a three-layered aquifer where the top and middle layers are of the same material A,
and the bottom layer of material B. The region is therefore parameterised vertically into two
zones and for each zone the parameters Kxx, Kyy, Kzz, and § are identiﬁed. This results in a
parameter dimensionality of 8 for which data from four observation wells are used for the
parameter estimation. The synthesised and the corrupted observed data are shown in
appendices 4a and 4b, respectively. The true parﬁmeters used in the generation of the
observed data are shown in Table 7.7 together with the upper and lower limits of the
parameters under estimation.

In order to solve the forward problem, the simulation region is discretized into 11,
11, and 4 nodes in the x-, y-, and z-directions, respectively. This leads to a total 484 nodes
and 300 elements. The numbering of the well nodes in Figure 7.4 is made in accordance with
the node numbering system generated for the three-dimensional region in the numerical
model. The coordinates of the nodes in the simulation region are generated using the

following spatial increment scheme : Ax=50.m, Ay =50.m, and Az =20.m. The time

stepping scheme is the same as that used in the previous analyses. With regard to the SCE
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input parameters , the number of complexes, number of sample points in each complex, and

the total number of points initialised in the entire search space are respectively, 10, 25, and
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Figure 7.4 Three-dimensional simulation region with wells and boundary conditions

The results of the final estimated parameters for both synthesised and corrupted data
are shown in Table 7.8. The results for the synthesised data were achieved after a total of
104 cycles and 37814 objective function evaluations while those of the corrupted data were
achieved with a total 88 cycles and 27184 objective function evaluations. Note that these
figures are far lower than those obtained in analyses 3 in the two-dimensional case. This
indicates that the SCE input parameters for the two-dimensional analyses (analysis 3) may
have been over-selected. In particular, the SCE methodology is forced to loop through a

large number of cycles and perform a large number of objective function evaluations if the
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input SCE parameters are inadequate. As in the two-dimensional case, these results compare
favourably well with the expected parameters. This observation is supported by the mean
drawdown values also shown in the same table. This is a very significant achievement by the

SCE methodology considering parameter dimensionality of the problem (8), the limited

number of observation wells (4) and the scale of the problem (3-dimensional problem).

Table 7.7 True and boundary parameter values used in analysis 4

Kx[mid] | Ky[mid | Kez[md] | S

Zone True parameters used to generate observed data

A 50.00 30.00 15.00 0.001

B 40.00 20.00 10.00 0.003
Zone Upper limits of parameters under estimation

A 100.00 100.00 100.00 1.0000

B 100.00 100.00 100.00 1.0000
Zone Lower limits of parameters under estimation

A 0.00 0.00 0.00 0.00

B 0.00 0.00 0.00 0.00

Table 7.8 Summary results of analysis 4
Ko [mid] | Kpymd] | Kez[wd] | S

Zone . Expected or true parameters

A 50.00 30.00 15.00 0.001

B 40.00 20.00 10.00 0.003
Zone Estimated parameters with synthesised data, mean drawdown error = 3.428E-10

A 50.103 29.989 15.003 0.10002E-02

B 39.903 19.984 9.9833 0.29985E-02
Zone Estimated parameters with corrupted data, mean drawdown error = 1.118E-05

A 47.319 29.788 14.072 0.94916E-03

B 58.936 14.872 14.685 0.33295E-02

The question regarding the relationship between parameter dimesionality L, and the number
of observation wells N, has been a very sensitive issue in the gradient-based parameter
identification techniques. In fact, in the gradient-based context, all the three known
techniques (influence coefficient method, sensitivity equation method, and variational

method) available for the evaluation of the sensitivity matrix have limitations. Yeh [1986]
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pointed out that instability owing to the use of any one of these techniques can be avoided (if
the data contains noise) if the condition N, > L,, is satisfied. Therefore, with regard to the
parameter dimensionality and available number of observation wells relationship, the SCE
technique appears to be superior to the gradient-based techniques because the former
performs its search without need for computation of derivatives; making it more robust in
terms of parameter sensitivity and interaction, and the extent of nonlinearity of the problem

under consideration. It is interesting to note that with the exception of analysis 1 where

N, = L,,, the SCE method has been able to solve all the other problems considered so far
with Ny <L,.

7.3 Parameter Estimation- Transport Model

Application of the SCE methodology to parameter identification in a solute transport
numerical model is similar to the case of the analytical models (presented in chapter Six)
except for two major differences : (i) evaluation of the objective function in equation (5.4)
requires the solution of the system of algebraic equations in (4.38) to obtain ¢ ,‘"’f' and (ii) the
simulation region is allowed to be parameterised into zones to account for nonhomogeneity
of the aquifer. In the context of nonhomogeneous aquifers, the simulation region is
subdivided int(; zones wherein all elements falling into the same.zone‘ have common values of

aquifer formation parameters. In the solute transport context, the parameters estimated by the

inverse model are the longitudinal dispersivity (« , ), the transverse dispersivity (« ), and the
aquifer porosity (¢) for homogeneous and nonhomogeneous aquifers.

To demonstrate the potential strength of the SCE technique in solving practical field-
scale problems, the synthesised data is further corrupted with random noise to emulate field

data. A second simulation is then performed with the corrupted data as it was done in the
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flow model. Synthetic data are obtained by using known (or true) aquifer parameters to

generate the observed data ¢, through the solution of the forward problem only.

Subsequently, the corrupted data ¢,”, are obtained from the expression:

¢ =¢,”(1+ o *rand), i=12,....nobs . _ (7.2)

!

where rand, @ , and nobs have meanings similar to those defined in equation (7.1). The mean
concentration errof (meerr) is evaluated as a measure of the efficiency of the solution. The
two numerical problems that are used to test the strength of the SCE in the two-dimensional
context are the parameter estimation of a : (1) homogeneous aquifer, and (2)

nonhomogeneous aquifer. The results of these tests are presented in the following sections.

7.3.1 Homogeneous Aquifer-Analysis S

The two-dimensional region of the homogenous aquifer whose parameters are under
investigation is shown in Figure 7.5. The simulation region is discretized into 9 nodes along
the y-axis and 15 nodes along the x-axis; resulting in a total of 135 nodes and 112 elements
in the entire finite element network. The nodal coordinates of the discretized region are
computed using the following spatial increment scheme : Ax =25.0m and Ay = 25.0m . Using
a constant time step of A7 =10.0 days, a forward simulation is performed for a total of 10
time steps to generate the synthesised and corrupted data for each of the observation nodes.
The synthesised and corrupted data are shown in appendices Sa and 5b, respectively. In the
SCE model, only 2 complexes are required for the analysis. Each of these complexes has 7
sample points leading to a population of 14 points initialised in the entire search space. The

other input parameters required by the SCE are the lower and upper bounds of the
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parameters under estimation. The values of these limits in addition to the true parameters

used to generate the observed data are shown in Table 7.9.
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Table 7.9 True and boundary parameter values used in analysis 5

a, [m] | a, [m | ¢
True parameters used to generate observed data
50.00 | 30.00 | 0.1500

Upper limits of parameters under estimation

200.00 | 200.00 | 1.00

Lower limits of parameters under estimation

0.00 | 0.00 | 0.00
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Table 7.10 Summary results of analysis 5

a; [m] | ar [m] ¢
Expected or true parameters
50.00 | 30.00 | 0.1500

Estimated parameters with synthetic data, mcerr = 1.040E-10

50.000 | 30.0000 | 0.1500E-+00

Estimated parameters with corrupted data, mcerr = 1.700E-02

50.483 | 30.063 | 0.1505E+00

The final estimated values of the parameters including their expected values are
shown in Table 7.10 for both synthesised and corrupted data. These values appear to be in a
good agreement with the expected parameters in the context of both the synthesised and
corrupted data. In the context of the synthesised data, the SCE estimated parameters whose
values are the same as the expected values. One should therefore expect the mean
concentration error value for this analysis to be zero. This is not the case in this analysis
because the results of the final estimated parameters have been printed to only four decimal
places. However, considering the nearness of the estimated parameters to the expected
parameters, it suffices to say that the SCE search technique is robust and efficient.

From the corrupted data perspective, the values of the final estimated parameters are
not expected to be too close to the true values because the observed data is corrupted.
However, the true parameters could serve as a standard measure to determine how
reasonable the parameters estimated with the corrupted data are. This is because the
corrupted data are minor random deviations from the synthesised data. With this in mind, one
can observe from Table 7.10 that the final estimated parameters with regard to the corrupted
data are sensible. Compared to the flow models, the mean concentration error appears to be

very large (ie. 1.70E-02) although the final estimated parameters are quite close to the
expected parameters except for the longitudinal dispersivity value (e, ). The explains the
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extent of sensitivity of the solute transport parameters to small changes in the concentration

data compared to the flow parameters.

7.3.2 Nonhomogeneous Aquifer-Analysis 6

The simulation region for this problem, the spatial discretization, boundary
conditions, and locations of observation wells are the same as those for the analysis 1. The
time stepping scheme is set at Ar=5.0days and the rumerical forward simulation is
performed for a total of ten time steps to generate the synthesised and corrupted data shown
in appendices 6a and 6b, respectively. As it can be seen in Figure 7.6, the major difference
between the present and previous analysis is the parameterisation of the region into four
zones each with its distinct parameter values of «,, a,, and ¢. The parameter dimensions
is 12 (the number of parameters under estimation in each zone multiplied by the number of

zones into which the entire region is parameterised) and 4 observation nodes are used to

identify the parameters in each zone. It is noted here that L, >N, in this analysis (ie.

L, =12, N, =4). The true parameters used in the generation of synthesised data (and

subsequently corrupted data) including the upper and lower limits of the parameters under

estimation are shown in Table 7.11.
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Because of the complexity of the problem with regard to the number of zones, the
search space is partitioned into 10 complexes. Each complex has a sample size of 25
members; leading to a population size of 250 points in the entire search space. The final
results of the analyses with regard to both synthesised and corrupted data are shown in Table
7.12. From the results of this table, one can observe a very good agreement between the
expected and the estimated parameters in the context of the synthesised data despite the fact
that- L, > N,. This indicates the capability of the SCE technique in handling simulation
scenarios usually adopted in the traditional gradient-based techniques (ie., reduction of
continuous parameters to finite dimensional form via zonation) . The wide range between the
upper and lower limits used as a starting base for the SCE model and the fact that the
parameter dimensionality is far greater than available number of observations, supports the
robustness of the technique in its search procedures. Considering the values of the true
parameters in Table 7.12, the estimated parameters in the context of the corrupted data are

very reasonable. The mean concentration error (mcerr) of 6.664E-06 indicates the potential
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strength of the technique in the handling of parameter instability in noisy data and under
conditions where the parameter dimensionality of the problem is greater than the available

number of observation nodes or wells.

Table 7.11 True and boundary parameter values used in analysis 6

a, [m ., [m] l ¢

Zone True parameters used to generate observed data

1 150.00 120.00 0.2500

2 135.00 105.00 0.1500

3 125.00 100.00 0.3500

4 145.00 115.00 0.4500
Zone Upper limits of parameters under estimation

1 250.00 250.00 1.0000

2 250.00 250.00 1.0000

3 250.00 250.00 1.0000

4 250.00 250.00 1.0000
Zone Lower limits of parameters under estimation

1 0.00 0.00 0.00

2 0.00 0.00 0.00

3 0.00 0.00 0.00

4 0.00 0.00 0.00
Table 7.12 Summary results of analysis 6

a, [m a, [m] | y

Zone' Expected or true parameter :

1 150.00 120.00 0.2500

23 5 135.00 105.00 . 0.1500

3 125.00 100.00 0.3500

4 145.00 115.00 0.4500
Zone Estimated parameter values with synthesised data , mcerr = 2.471E-10

1 150.01 120.00 0.25001

2 134.99 104.99 0.14999

3 125.00 99.998 0.34999

4 145.09 115.03 0.45016
Zone Estimated parameter values with corrupted data , meerr = 6.664E-06

1 150.04 119.81 0.24978

2 136.80 106.23 0.15195

3 124.42 99.748 0.34767

4 135.15 110.72 0.43046
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Compared to analysis 5, the mean concentration error of 6.664E-06 portrays a very good
performance of the SCE model for zonal transport problems. Perhaps the difference between
the present analysis and analysis 5 may be due to the large number of zones that calls for the
use of large values of complexes, and hence a greater number of population of points
initialised in the entire search space: The effect of the number of complexes on the values. of
the parameters estimated is considered in section 7.5.

The two problems handled in the three-dimensional scenario are (1) a simple
nonhomogeneous aquifer, and (2) a 'tricky' nonhomogeneous aquifer. The ‘tricky'
nonhomogeneous aquifer is used to test the robustness and versatility of the SCE search

procedures in a three-dimensional numerical model.

7.3.3 A Simple 3-D Nonhomogeneous Aquifer - Analysis 7

The three-dimensional simulation region is shown in Figure 7.7. The aquifer region
comprises three distinct layers each of which has its unique material properties. This leads to

the recognition that elements within the same layer have common material properties.

Considering the fact that «,, a,, and ¢ are to be estimated for each layer, the parameter

dimensionality is 9 and the available number of observation wells are 4.
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Figure 7.7 Three-dimensional simulation region showing wells and boundary conditions

The simulation region is discretized into 7 nodes in the x-direction, 5 nodes in the y-direction,
and 4 nodes in the z-direction. This leads to a total of 140 nodes and 72 elements in the entire
finite element network. The nodal coordinates are generated using the following spatial
increment scheme : Ax = Ay = 25m, and Az =10m. A constant time step size of Ar= 20
days is used and the numerical forward problem is peﬁorﬁed for 10 thﬁes steps to generate
the observation data for the nodes shown in Figure 7.7. The specified concentration nodes
and observation wells shown in Figure 7.7 are numbered in accordance with the node
numbers generated in the finite element network. The true parameter values of each layer
used in the generation of the synthesised and corrupted data (see appendices 7a and 7b),
including the lower and upper limits of the parameters under estimation are shown in Table
7.13. In the SCE model, 10 complexes, each containing 19 sampled points is required to
solve the problem. This results in a total population of 190 points initialised in the search
space. The results of the analysis for both the synthesised and corrupted data are shown in

Table 7.14.
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Table 7.13 True and boundary parameter values used in analysis 7

a, [m a; [m) | ¢
Zone True parameters used to generate observed data
1 85.00 50.00 0.2500
2 100.00 60.00 0.3500
3 75.00 45.00 0.1500
Zone Upper limits of parameters under estimation
1 250.00 250.00 1.0000
2 250.00 250.00 1.0000
3 250.00 250.00 1.0000
Zone Lower limits of parameters under estimation
-1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.00 0.00 0.00

One can observe that the estimated parameters in the context of both the synthesised and the
corrupted data agree very well with the expected parameters. This again indicates the
strength of the SCE technique in handling the inverse problem of parameter identification in a
three-dimensional transport model and in a particular case where the parameter
dimensionality (9) is far greater than the number of observations (4). A situation like this has

been documented to create problems of parameter instability in context of the traditional

gradient-based techniques [Yeh, 1986].
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Table 7.14 Summary results of analysis 7

a, [m] l a; [m] | ¢

Zone Expected or true parameters

1 85.00 50.00 0.2500

2 100.00 60.00 0.3500

3 75.00 45.00 0.1500
Zone Estimated parameter values with synthesised data, mcerr = 1.569E-06

1 84.600 49.643 0.25081

2 100.00 60.069 0.34954

3 75.013 45.010 0.15022
Zone Estimated parameter values with corrupted data, mcerr = 2.221E-04

1 88.790 49.789 0.25128

2 99.814 57.928 0.34509

3 72.017 43.011 0.15022

7.3.4 The 3-D 'tricky' Nonhomogeneous Aquifer - Analysis 8

The three-dimensional simulation region is shown in Figure 7.8. As it can been seen in
the figure, layers 1 and 3 have the same aquifer material properties. However, this issue is
hidden from the SCE algorithm by identifying layei' three with a unique material identification
number of 3 (instead of 1). The material identification numbers are used to parameterise the
region into zones. Elements in the same zone have common aquifer material properties and
hence are identified by the same material number. The objective of identifying the third layer
with a different material identification number is to investigate whether the SCE ‘is robust
enough to estimate the same parameters for layers 1 and 3. The simulation region is
discretized to contain 9 nodes in the x-direction, 7 nodes in the y-direction, and 4-nodes in
the z-direction This leads to a total of 252 nodes and 144 elements in the entire finite element
network. The spatial discretization parameters used in the evaluation of the nodal

coordinates, and time stepping scheme are the same as those used in analysis 7.
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Figure 7.8 Three-dimensional simulation region showing wells and boundary conditions

The true parameters used in the evaluation of the synthesised and corrupted data, as
well as the lower and upper limits of the parameters under estimation are shown Table 7.15.
The synthesised and corrupted data generated for this analysis are shown in appendices 8a
and 8b. It must be noted in Table 7.15 that the upper limits of the material zone 3 has been
given different values from the other two layers to further conceal the fact that layers 1 and 3
have the same material properties. Although generation of parameter values are done
randomly (and hence similarities of limits are not important), the use of different upper limits
is applied to ensure that any bias towards the achievement of the same parameter values for

layers 1 and 3 is removed from the analysis.
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Table 7.15 True and boundary parameter values used in analysis 8

a, [ml ] ay [m] l ¢

Zone True parameters used to generate observed data

1 80.00 50.00 0.2500

2 100.00 60.00 0.3500

3 80.00 50.00 0.2500
Zone Upper limits of parameters under estimation

1 250.00 250.00 1.0000

2 250.00 250.00 1.0000

3 200.00 200.00 0.8000
Zone Lower limits of parameters under estimation

1 0.00 0.00 0.00

2 0.00 0.00 0.00

3 0.00 0.00 0.00

As in analysis 7, 10 complexes , with 19 points in each complex, are required for a
successful completion of the analysis. The results of the analysis for both the synthesised and
corrupted data are shown in Table 7.16. One can observe that under such difficult conditions,
the SCE methodology has not only been able to estimate the correct parameters but also to
reveal the fact that the material properties of layers 1 and 3 are the same in the context of the
synthesised observed data. Compared with the values of the expected parameters, the results
of the estimated parameters with the corrupted data are also equally impressive. These
excellent results obtained in the present analysis is also supported by the values of the mean
concentration errors (mcerr) also shown in the Table 7.16. This particular analysis has again
confirmed the robustness, effectiveness, and efficiency of the- SCE search scheme. It must be
emphasised that the use of the same parameter lnmt values is not a requirement since initial
and intermediate computation of parameters required for evaluation of the objective function
(where necessary) are performed stochastically (ie. on a random basis). However, common
values have been used in almost all problems that require the subdivision of the simulation
region into zones in order to demonstrate the effectiveness and robustness of the SCE search
procedures in cases where the parameters being sought for have different magnitudes for

each zone.
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Table 7.16 Summary results of analysis 8

a, (] | ay (m] ¢

Zone Expected parameters

1 80.00 50.00 0.2500

2 100.00 60.00 0.3500

3 80.00 50.00 0.2500
Zone Estimated parameter values with synthesised data, mcerr = 3.052E-10

1 79.981 49.986 0.24993

2 100.05 60.028 0.35017

3 79.993 49.996 0.24998
Zone Estimated parameter values with corrupted data, mcerr = 8.961E-05

1 81.005 50.176 0.24938

2 99.183 59.833 0.35275

3 79.935 49.901 0.24903

7.5 Where the SCE Fails

A number of flow and solute transport examples have been used in the previous

sections to demonstrate - in terms of numerical modelling - the performance and efficiency of

the SCE optimisation method of the inverse problem of parameter identification. In this

section, particular attention is given to the identification of the weakness of the SCE

optimisation technique. In this regard, it is appropriate to demonstrate with some examples,

for situations where the SCE methodology is likely to fail. This objective is achieved through

a parametric study of the sensitivity of the basic input parameter to the SCE model - the

number of complexes p.

If the number of parameters under estimation » is known, such input parameters as

the number of points in a complex m, the number of points in subcomplex ¢, and the number

of evolution steps taken by each complex S, are evaluated as [Duan et al., 1994]:
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m=2n+1
g=n+l (7.3)
B=m

Therefore the only input parameter whose value requires the judgment of the analyst is the
number of complexes p. Using the data for analysis 3 of the flow model a series of 13 runs
are performed, each time changing the value of p, to determine the performance of the SCE
technique. The basic SCE input parameters used in this parametric for the entire 13 runs is

shown in Table 7.17.

Table 7.17  SCE input parameters used in the parametric stud
par run run run run run run ran run run run run run run
1 2 3 4 5 6 7 8 9 10 11 12 13
3 4 5 6 8 10 12 15 20 25 30 35 40
25 25 25 25 25 25 25 25 25 25 25 25 25
13 13 13 13 13 13 13 13 13 13 13 13 13
25 25 25 25 25 25 25 25 25 25 25 25 25

75 100 | 125 | 150 | 200 | 250 | 300 | 375 | 500 | 625 | 750 | 875 | 1000

2 e 3

In Table 7.17, par stands for parameter and #s for total number of population of points
initialised in the search space. The total number of population of points fs, is obtained by
multiplying the number of complexes p set for each run by the corresponding number of
points in a complex, m. Since the number of parameters under estimation #», remains constant
at 12, the SCE input parameter values m, g, and B remain the same for all the 13 runs
performed in the sensitivity analyses. The lower and upper limits of the parameters under
estimation, including the expected parameters for each zone are reproduced in Table 7.18.
With all the input parameters set, the objective of the sensitivity analysis is to study the
efficiency of the SCE methodology in estimating the parameters under consideration as the
number of complexes p, vary from as low as 3 to as high as 40.

The results of the estimated parameters including the efficiency of performance eff,

for each run are shown in Tables 7.19a to 7.19c. The measure of efficiency of the SCE for
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each run is evaluated by computing the average deviations of the predicted results - using the
final estimated parameters - from the synthesised data. The synthesised data used in this
parametric study are the same as those used in analysis 3 (appendix 3a). For efficient results,
the value of eff must be as close as possible to zero. In other words the larger the value of eff,
the poorer the values of the final estimated parameters.

The summary results shown in Table 7.19a indicate that none of the number of
complexes set for the problems (ie, with p =3, 4, 5, 6, and 8) could generate final parameters
as close as possible to the true or expected parameters in Table 7.18. However, it is
interesting to observe from Table 7.19a that the efficiency of the solution improves as the
number of complexes increase. From Table 7.17 it can be observed that the total number of
initialised population points , #s , in the sample space increase as the number of complexes
increase. It may thus be concluded that the ability of the SCE to solve a problem successfully
depends on the number of sample points initialised in the search space. Forp=3,4,5, 6, and
8, the total number of population points (ts = 75, 100, 125, 150, and 200) initialised in the
search space are inadequate for the SCE to optimise from. The sample space may therefore
be considered as 'sparsely populated ' for these number of complexes. The fact that the
solution improves from one run to the next as the number of complexes (and hence the total
number of initialised points, fs) increase clearly confirms the rationale behind the assertion
that the inadequate total number of initialised population points in the search space may be
responsible for the inefficient performance of the SCE.

On the other hand, one can observe that the efficiency of solution in Tables 7.19b and
7.19¢ converge to the same values for the number of complexes considered in these runs.
Comparing the estimated parameters for each of the runs in these two tables to the expected
parameters in Table 7.18, it can be observed that the estimated parameters agree favourably
well with the expected parameters for all the number of complexes set for these runs. It also
interesting to note that the level of performance of the SCE for each run is the same for all

the results in these two tables. The revelation here implies that the use of a very large number
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of complexes may yield the appropriate results but the solution may not be cost effective
since it will require a greater number of objective function evaluations and hence a
considerable length of time to arrive at the final optimum parameters. For these solutions
Table 7.20 indicates that the best solution with respect to cost effectiveness is RUN 5 since
the problem in question is solved with a larger number of cycles but smaller number of
objective function evaluations.

In general the plot of the graph of efficiency of the number of complexes used in a
problem (see Figure 7.9) indicates that the SCE's solution is likely to fail if the number of
complexes used - and hence the population of points in the search space - is inadequate.
However, the use of unreasonably high number of complexes only results in a solution that is
rather expensive with regard to computational time. In this parametric study, it may be
concluded that the optimal number of complexes required for an efficient and cost-effective
solution is when p = 10. This is because the solution process requires a large number of
cycles but small number of objective function evaluations as compared to the other solutions
in Tables 7.19b and 7.19c. Experience in this work has however shown that a more efficient
and cost-effective solution can be achieved if the optimum number of complexes or

communities p,, , is selected such that: n—2<p,, <n+2; where n is the number of

parameters under estimation.
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Table 7.18 True parameters with their corresponding upper and lower limits

Koo[wd] | Ky[md] | Ky[wd] | S
Zone True parameters used to generate observed data
1 40.00 30.00 1.50 0.002
2 30.00 20.00 1.00 0.003
3 50.00 35.00 1.75 0.001
Zone Upper limits of parameters under estimation
1 150.00 150.00 5.00 1.0000
2 150.00 150.00 5.00 1.0000
3 150.00 150.00 5.00 1.0000
Zone Lower limits of parameters under estimation
1 0.00 0.00 0.00 0.0000
2 0.00 0.00 0.00 0.0000
3 0.00 0.00 0.00 0.0000
Table 7.19a Estimated parameters for p=3,4, 5, 6, and 8
Kocm/d] | Kyy[wd] | Ko [md] | S
Zone RUN 1, number of complexes, p_= 3, simulation efficiency, eff = 0.2790E-05
1 0.23108E+02 0.27934E+02 0.21369E+01 0.10707E-02
2 0.30055E+02 0.19987E+02 0.49419E+01 0.30057E-02
3 0.65828E+02 0.38419E+02 0.31720E+01 0.18587E-02
Zone RUN 2, number of complexes, p = 4, simulation efficiency, eff = 0.9477E-06
1 0.35059E+02 0.28580E+02 0.67120E+00 0.16054E-02
2 0.30036E+02 0.20057E+02 0.36632E+01 0.29992E-02
3 0.51796E+02 0.36230E+02 0.35538E+01 0.13559E-02
Zone RUN 3, number of complexes, p = 5, simulation efficiency, eff = 0.7265E-07
1 0.42864E+02 0.30561E+02 0.24516E+01 0.21219E-02
2 0.29998E+02 0.19978E+02 0.37373E-03 0.30012E-02
3 0.49393E+02 0.34915E+02 0.10186E+01 0.89458E-03
Zone RUN 4, number of complexes, p = 6, simulation efficiency, eff = 1.4690E-07
1 0.41278E+02 0.30366E+02 0.50318E+00 0.20723E-02
2 0.29997E+02 0.19994E+02 0.38413E+00 0.29999E-02
3 0.49370E+02 0.34745E+02 0.16834E+00 0.91786E-03
Zone RUN 5, number of complexes, p = 8, simulation efficiency, eff = 0.1672E-08
1 0.39261E+02 0.30015E+02 0.44779E+00 0.19840E-02
2 0.30000E+02 0.20002E+02 0.11056E+01 0.30000E-02
3 0.50458E+02 0.35026E+02 0.75208E+00 0.10000E-02

184




Chapter 7 Application to Field-Scale Problems

Table 7.19b Estimated parameters for p = 10, 12, 15, and 20

Kec[md] | Kyy[md] | Key[md] | S
Zone RUN 6, number of complexes, p = 10, simulation efficiency, eff = 0.2929E-09
1 0.40075E+02 0.29993E+02 0.15777E+01 0.20036E-02
2 0.30000E+02 0.20000E+02 0.99159E+00 0.30000E-02
3 0.49927E+02 0.34994E+02 0.18454E+01 0.99764E-03
Zone RUN 7, number of complexes, p = 12, simulation efficiency, eff = 0.2930E-09
1 0.40078E+02 0.29994E+02 0.15801E+01 0.20037E-02
2 0.30000E+02 0.20000E+02 0.99098E-+00 0.30000E-02
3 0.49926E+02 0.34993E+02 0.18464E+01 0.99755E-03
Zone RUN 8, number of complexes, p = 15, simulation efficiency, eff = 0.2929E-09
1 0.40075E+02 0.29993E+02 0.15783E+01 0.20035E-02
2 0.30000E+02 0.20000E+02 0.99206E+00 0.30000E-02
3 0.49926E+02 0.34994E+02 0.18464E+01 0.99773E-03
Zone RUN 9, number of complexes, p = 20, simulation efficiency, eff’= 0.2929E-09
1 0.40071E+02 0.29993E+02 0.15743E+01 0.20035E-02
2 0.30000E+02 0.20000E+02 0.99228E+00 0.30000E-02
3 0.49929E+02 0.34994E+02 0.18421E+01 0.99772E-03
Table 7.19¢ Estimated parameters for p = 25, 30, 35, and 40
Koo[md] | Kyy[md] | Key[wd] | S
Zone RUN 10, number of complexes, p = 25, simulation efficiency, eff = 0.2929E-09
1 0.40075E+02 0.29993E+02 0.15790E+01 0.20035E-02
2 0.30000E+02 0.20000E+02 0.99172E+00 0.30000E-02
3 0.49928E+02 0.34994E+02 0.18465E+01 0.99770E-03
Zone RUN 11, number of complexes, p = 30, simulation efficiency, eff = 0.2929E-09
1 0.40077E+02 0.29993E+02 0.15820E+01 0.20036E-02
2 0.30000E+02 0.20000E+02 0.99116E+00 0.30000E-02
3 0.49926E+02 0.34994E+02 0.18487E+01 0.99770E-03
Zone RUN 12, number of complexes, p = 35, simulation efficiency, eff = 0.2929E-09
1 0.40072E+02 0.29993E+02 0.15738E+01 0.20035E-02
2 0.30000E+02 0.20000E+02 0.99224E+00 0.30000E-02
3 0.49928E-+02 0.34994E+02 0.18417E+01 0.99769E-03
Zone RUN 13, number of complexes, p = 40, simulation efficiency, eff = 0.2929E-09
1 0.40074E+02 0.29993E+02 0.15781E+01 0.20035E-02
2 0.30000E+02 0.20000E+02 0.99205E+00 0.30000E-02
3 0.49927E+02 0.34994E+02 0.18462E+01 0.99770E-03

185




Chapter 7 Application to Field-Scale Problems

Table 7.20  Summary results of the efficient solutions

Run Number of Number of No of objective
Number complexes cycles function evaluations
6 10 181 62581
7 12 165 68386
8 15 144 75303
9 20 135 94985
10 25 147 133466
11 30 131 137040
12 35 147 173590
13 40 146 206189
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Figure 7.9 Graphical representation of simulation efficiencies
7.6 Summary

This chapter has presented the application of the developed inverse model to field-
scale problems. The specific tasks executed include : (1) identification of aquifer formation
parameters using two- and three-dimensional flow models; and (2) identification of aquifer
formation parameters using two- and three-dimensional solute transport models. Both

synthesised and corrupted synthesised data were employed in all analyses. The corrupted
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data used in an attempt to emulate data collected from the field in a pumping test
experiment. The chapter concluded with a parametric study on the weakness of the SCE
methodology by varying the number of complexes over a range of values.

The results obtained in the context of the inverse analysis and with regard to both
synthesised and corrupted data were excellent. This does not only indicate the efficiency of
the shuffled complex evolution technique but also its potential ability to solve field-scale data.
A particular note about the technique is its ability to handle a problem with a parameter
dimensionality higher than the number of observation wells. The parametric analyses
indicated that the performance of the SCE relies on the proper selection of the number of
complexes that controls the entire functioning of the SCE optimisation operation. For more
complex problems the parametric study indicated that the SCE fails to find the solution when
the number of complexes used in solving the problem is inadequate. However, it is also
noted that the use of very large number of complexes result in a solution that is not cost-
effective since more computer time is required as a result of the large number of objective

function evaluations; but will result in a sensible convergence onto the correct values.
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Chapter 8

Designation of a Remediation Scheme

8.1 Introduction

This chapter deals with the application of the management model developed in the
second phase of this research work for the economic design of the number, location, pumping
rates, and time of operation of extraction wells in aquifer remediation. As already mentioned,
this aspect of the study combines the genetic algorithm (GA) optimisation technique with the
finite element method. The entire model cc;mprises (1) a numerical flow model, (2) a
numerical sohite transport model, and (3) the genetic algorithm optimiser. The numerical
model predicts the steady-state hydraulic heads and computes the velocities required by the
transport model for the evaluation of the dispersion parameters in the transport governing
equation. Given the appropriate parameters, the transport model can be used to determine the
extent of contamination of the aquifer before the commencement of the extraction operation.
The same transport model also functions as an extraction model when used during the
extraction process. The optimiser receives information of concentration levels from the solute
transport model during the extraction operation for the optimisation of the number, location,

and pumping rates of extraction wells.
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1t is assumed in the analysis that follows that the parameters used in both the flow and
solute transport models are available or could well have been identified by the inverse model
of parameter estimation discussed in sections 7.2 and 7.3. Several options exist to reclaim or
control a contaminated aquifer. These include in situ bioremediation, slurry walls, pump-and-
treat techniques etc. The pump-and-treat technique is relatively  inexpensive and
accommodates all types of pollutants, whether biodegradable or not. It is therefore assumed
that the pump-and-treat strategy is adopted, and that the method of treatment has already

been determined.

8.2 Problem Statement

A theoretical example is used to illustrate how the management model works. A toxic
waste of a specified source strength 100mg/l has caused part of an aquifer to become
polluted over the past 1000 days. The objective is to determine the extent of the pollution and
design a remedial scheme that will reduce the polluted aquifer to acceptable concentration

levels most economically.

8.2.1 Solution to the Problem

To solve this problem, the hydraulic heads and concentration levels within the aquifer
are first predicted using known initial and boundary conditions, and the physical and
hydraulic properties of the aquifer. The boundary conditions for both flow and transport
models including the spatial discretization of the simulation region are shown in Figure 8.1.
The flow model determines the velocities required by the transport model. Heads of 1.5m
and 0.0m are specified at the western and eastern boundaries of the aquifer, respectively. The

boundary conditions of the transport model are specified as zero concentration on all
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boundaries of the simulation region. The other parameters required for execution of the

problem are:

Flow Model: value
hydraulic conductivity in x-direction, &, [md ] 20.0
hydraulic conductivity in y-direction, &, [md ] 20.0
aquifer thickness [ m] 20.0
Transport model : value
longitudinal dispersivity, &, [m] 150.0
transverse dispersivity , a, [m] 75.0
effective porosity, ¢ [m’m™] 0.10
decay constant, A [d™'] 0.00
coefficient of molecular diffusion [m*d "] 0.00
retardation coefficient, R [-] 1.00
GA model value
cost setting up a well, 4 $7000.0
cost of treating a unit volume of water extracted, B $5.0
number of individuals per generation 25
number of generations 25
probability of crossover, P, 0.90
probability of mutation, £, 0.01
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penalty cost for residual pollutant above specified level, pv $1,000,000.00

penalty cost for nodal contaminant levels above the specified level, p, $100.0
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Figure 8.1 Discretised simulation region showing boundary conditions

The relatively low setting up cost of each well means that the optimisation is
effectively to minimise the volume of contaminant water extracted. The concentration levels
at the end of 1000 days with a time step of 100 days is shown graphically in Figure 8.2. To
design a remedial scheme, a contaminant limit must first be proposed. For the current
pollution problem, the constraint measure is to ensure that the concentration levels anywhere
within the simulation region will not exceed Smgl ! after the extraction period. The
extraction process employs the final concentration levels of the predicted pollution process
(Figure 8.2) as its initial input . In a real situation the potential locations of extraction wells
would be based on the contaminant distribution of the predicted pollution process (see Figure
8.2) and upon the political and topographical environment. The one- and two-dimensional

arrays of potential extraction well locations selected in this exercise are shown in Figures 8.3a
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and 8.3b. These locations have been selected on the basis of the concentration distributions

shown in Figure 8.2
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Figure 8.2 Aquifer concentration distribution before commencement of extraction

For the one-dimensional well arrangements, a time step of 200 days is set for the
numerical model performing the extraction operation and the extraction process is set for a
maximum of 20 time steps (4000 days). The pollution must be reduced to below 5 mg/l at
the end of this extraction period. If this objective is not achieved, the time length set for the
extraction operation is increased and the extraction process repeated. In the time-variation
scheme, the 20 time steps is partitioﬁéd into 6,7, and 7 (the closest approximation to equal
partitioning of integer values of the total number of time steps set for the numerical
simulation) for subtime periods 7;, 7,, and T;, respectively. This implies that for the first six
time steps in the numerical model of the time-variation technique, the string allocated to T, is
active in the extraction operation while between time steps 7 and 13 and 14 and 20 strings
allocated to 7, and T, respectively, become active (see Figure 5.5). For the two-dimensional
well locations, a maximum of 25 time steps and time step size of 200 days is employed. The
sub time intervals for T;, T,, and T; are respectively 8, 8, and 9 . Using the contaminant
constraint condition set by management (ie. the fact the concentration level at each node must

not exceed 5 mg/l ) the optimal number, location, and pumping rates of extraction wells are
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predicted by the GA model. This operation is executed by a repeated exchange of information
between the numerical solute transport extraction model and the GA optimiser. This
information requires a passage of concentration levels from the numerical model to the GA
model; the latter uses the information to identify the optimum number and locations of
extraction wells from a population of strings and then passes this information back to the
extraction model for the prediction of the nodal concentration levels for the next GA trial.
This back and forth passage of information continues until the best optimal solution is found.
To determine the effect of allowing pumping rates to vary with time each of the problems
was solved with constant pumping rates and the results compared the varying pumping rate
solution.

A summary of the solutions generated to remove the contaminant for the one--and
two-dimensional potential well arrangements are shown in Tables 8.1 and 8.2 respectively.
The concentration distribution for the one-dimensional array at the end of the total extraction
period is shown in Figure 8.4 for the nontime varying extraction (constant pumping rates).
For the time-varying extraction, the concentration levels at the end the three subtime periods
are shown in Figure 8.5. For the two-dimensional array of wells, the concentration
distributions are shown in Figure 8.6 for the nontime varying extraction and in Figure 8.7 for
the time varying extraction. In these figures, it can be observed that the requirement of
reducing the concentration values to below the threshold value of Smgl " set by management
has been achieved. However, the summary results in Tables 8.1 and 8.2 indicate the results
obtained from the time-variation technique used in this study is more economical than the
nontime variation technique. A graphical representation of the least cost per generation

obtained from the GA model shown in Figure 8.8 clearly reveals this fact.
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Figure 8.3 Potential location of extraction wells based on predicted concentration distribution
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Table 8.1 Summary Results of the Extraction Operation with one-dimensional
potential extraction well arrangements

Constant pumping - one dimensional well arrangements

pumping well numbers 1 2 3 4 5 6 7 8 9 10 11
pumping rates [ m>d ™} 25 0 0 75 0 25 0 0 0

remedial cost in § 1,521,000.00

total extraction time [d] 2400

Time variation technique - one dimensional well arrangements

pumping well numbers 1 2 3 4 5 6 7 8 9 10 11
pump rates within 7} [m’d '] 0 0 0 25 0 o o 0 0

pump rates within 7, [m’d™"] 0 o 0 0o 0 25 0 0 O

pump rates within 7 [m’d™] 0 o 0 (U o o o 25 0 0
costin § 1,104,700.00

total extraction time [d] 2800

Table 8.2 Summary Results of the Extraction Operation with two-dimensional
potential extraction well arrangements

Constant pumping - _two dimensional well arrangements
pumping well numbers 1 2 3 4 5 6 7 8 9 10 11
pumping rates [ m3d_1] 0 0 0 50 0 0 25 25 0 25 0
remedial cost in $ 1,828,000.00
total extraction time [d] 2400

Time variation technigue - two dimensional well arrangements

pumping well numbers 1 2 3 4 5 6 7 8 9 10 11
pump rates within 7, [mad_' ] 0 0 0 25 0 0 0 o o 0 0
pump rates within 7, [m*d™"] 0 0 0 o 25 0 0 0 0
costin $ 1,535,000.00
total extraction time [d] 2200

It can be seen that in both one- and two

technique yielded a better results.

_dimensional arrangements, the time variation

From cost considerations, the one-dimensional

arrangements of the extraction wells appears to be the better of the two alternatives. It is
recognised, however, that there can be no guarantee that a GA solution is the global optimum
but that the generated solution is of reasonable efficiency which may be used as a starting
point for further investigation. The fact that the time-variation scheme generates a more

efficient solution than the nontime variation scheme greatly assists in achieving an eventual

195



Chapter 8 Designation of a Remedial Scheme

solution of high efficiency. The improvement in cost savings results from a reduced
redundancy effect of the extraction wells as contaminant plumes move along during the
numerical simulation process.

The study has demonstrated that a better remedial design for pollutant extraction can
be achieved if the pumping sequences of active wells are permitted to vary with time.
Dividing the extraction period into three sub periods produced a 27% and 16% savings in
costs for the one- and two-dimensional arrangements of extraction wells, respectively, over
their respective fixed pumping regimes. However, irrespective of any of the conclusions
drawn, it is the judgement of the engineer/hydrologist in selecting possible well positions
(using the predicted concentration contour map derived from the analysis, ie., Figure 8.2), for
the GA to optimise, that is critical if any hope of a realistic solution is to be achieved with an

acceptable amount of computer effort.
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Figure 8.4 Concentration distribution at the end of extraction period for nontime-variation with well
arrangements in one-dimension.

196



Chapter 8 Designation of a Remedial Scheme

1500 [~

1000 |~

Y-DISTANCE (m)

a
o

1
500

1500

1000
X—DISTANCE (m)

2000

Figure 8.5 Concentration distribution at the end of time interval T3 of the time-variation scheme
with well arrangements in one-dimension.
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Figure 8.6 Concentration distribution at the end of extraction period for non-time variation
scheme with well arrangements in two-dimension.
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Figure 8.7 Concentration distribution at the end of time interval T3 of the time-variation scheme
with well arrangements in two-dimensions.
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8.3 Summary

This chapter has demonstrated the application of the management model to the
extraction of contaminants in a polluted aquifer. Two techniques namely (1) nontime
variation and (2) the thﬁe variation in fhe'cdntext of both one- and two-dimensional botential
arrangements of the extraction wells have been used to demonstrate how the management
model works . More importantly, the demonstration has shown that a better remedial design
for pollutant extraction can be achieved if the active wells are permitted to vary with time by
dividing the total extraction period into a number of sub time periods. The analyses
performed in the context of one- and two-dimensional potential arrangements of the
extraction wells, have both indicated that the time variation technique produces a more
economic cost than the nontime variation technique. However, irrespective of any of these
conclusions drawn, it is the responsibility of the engineer/hydrologist in selecting possible
potential well positions (using the predicted concentration contour map derived from the
analysis) for the GA to optimise, that is cﬁtical, if any hope of a realistic solution is to be

achieved.
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Chapter 9

Research Conclusions, Recommendations,
and Contribution

9.1 Conclusion

The research was initiated with the objective of improving the state of the science in
the inverse problem of parameter identification and contaminant remediation design schemes
through the use of modern evolutionary techniques. The specific task that were accomplished
are: (1) the formulation and designation of a model for the inverse problem of parameter
identification using the shuffled complex evolutionary technique for two- and three-
dimensional . flow and solute transport models; (2) the formulation and designation of a
management-oriented model using another evolutionary technique called genetic algorithm
for remediation design schemes in contaminant extraction processes, and (3) evaluation and
application of these models to field and hypothetical data. Several important conclusions can

be drawn from the results of this research study.

& The present inverse model was used to test a variety of problems from the analytical
and the numerical point of view using field, synthesised, and corrupted synthesised
data. The results of all the analyses indicated that the shuffled complex evolutionary
technique is robust, efficient, and effective; and works not only for the calibration of

conceptual rainfall and runoff models but also for inverse problem of groundwater
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modelling as well. The technique can thus serve as a very useful alternative to the
traditional gradient-based techniques that has been used for the inverse problem of

parameter identification in the past three decades.

L) Some major problems that have still not been resolved in the use of the gradiént-based
methods for the inverse problem of parameter identification are the effects of
singularity and ill-conditioning (near singularity) of the sensitivity matrix. These
problems usually happen when the inverse of the sensitivity matrix ceases to exist (ie.
when its determinant becomes zero or very close to zero) or when the problem under
consideration is highly nonlinear. The shuffled complex evolution performs its search
for the optimal solution through the use of random elements. It requires no
computation of gradients (or sensitivity matrix). Therefore in the context parameter
sensitivity and interaction and problem nonlinearity, the shuffled complex evolution

may be considered to be superior to the traditional gradient-based methods.

* Another major problem with the gradient-based method of parameter identification is
the inStability of the parameters under estimation in the course of the optimisation
process. It has been documented that such problems are caused by a smaller number
of observation nodes or wells as compared to the parameter dimensionality of the
problem. In fact, in all but analysis 1 and analysis 5 of the problems solved in chapter
seven, the number of observation wells or nodes have always been smaller than the
parameter dimensionality of the problem under consideration. Therefore, in the event
of a situation where the available number of observation wells or nodes are smaller
than the number of parameters to be estimated, the shuffled complex evolutionary

technique may be a suitable candidate for the problem.
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L) One area in the inverse problem of parameter identification that has received relatively
little attention is the estimation of solute transport parameters in the numerical
modelling context. This may be attributed to the potential problems expected in the
use of the solute transport model - which even in its forward mode only, posses
numerical problems in some analysis. The versatility, flexibility, robustness, and
efficiency of the shuffled complex evolutionary technique used in this research study
has permitted the estimation of solute transport parameters not only in the two-

dimensional context but in three-dimensions as well.

) It was however, detected that the shuffled complex evolutionary technique fails when
‘the population of points initialised in the parameter search space are inadequate. The
number of population of points initialised in the search space is controlled by a
parameter which determines the number of complexes or communities p, required to
solve a given problem. If p is too small, a sparsely populated parameter search spaced
is 1mt1ahsed leaving the optimiser with an insufficient number of points to optimise
from. On the other hand, if p is selected to be too large, a densely populated
parameter search space is initialised, leaving the optimiser with too many points (and
hence too many objective function evaluations) to optimise from. Although, the latter
case will always converge to the right solution, it does so. with excessive amount of
computational time and effort; resulting in a solution that is not cost-effective.
Experience in this research has however shown that, with known number of

parameters under estimation n, a convergence and cost-effective solution can be

achieved if an optimal number of complexes p,,, is selected such that:

n—-2<p, <n+2.

) In the context of the management model, results have indicated that the genetic

algorithm approach is suitable for extraction operations. Because of the structure of
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its design, the optimisation of more parameters (such as location, pumping rate,
number of extraction wells, and above all the cost of the entire scheme) could be
accommodated within a single run. The two extraction methods adopted - time
variation and nontime variation technique - were all capable of yielding the desired
optimum solution. However, the time variation technique yielded a better economic
results. This better performance of the time variation technique is attributed to the
fact that the effect of well redundancy as contaminant plumes move along could be
effectively nullified by partitioning the entire simulation period into smaller subtime
periods and allocating a string (or decision variable) to each. Althoﬁgh solutions
obtained from each of these techniques can not be guaranteed to be the global
optimum, they can serve as initial starting points for further investigations or can be

implemented without further investigation.

L) Because natural processes cannot be accurately modelled by physical or mathematical
mod_els, it is appropriate to mention that the judgment of the analyst in selecting
appropriate potential well locations for the. management model to use in the
optimisation is a very crucial factor in the use of this model. This burden has been
feduced in the present management model by the fact that the contaminant
distribution of the area under consideration can first be predicted - given a knowledge
of the physical, hydraulic, initial, and boundary conditions - before commencement of
the extraction process. The contours of the concentration distribution - which serve as
input to the extraction operation - can then be used as a guide for the analyst in the

selection of the appropriate potential well locations.
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9.2 Recommendations

The following improvement and extensions to the present work are recommended in

future research:

v In the context of the inverse problem of parameter identification, the only field data
used in parameter estimation was applied to the Theis analytical model. This was due
to the lack of sufficient information (eg boundary and initial conditions, and the areas
extent of the .aquifer) regarding the area 1n which the field pumping test data was
collected. Although corrupted synthetic data have been used in all parameter
estimation applications in this work to emulate field pumping test data, the need to
apply the model to real field pumping test data is required to boost up the confidence
in the use of shuffled complex evolution for future parameter identification programs

in the context of numerical groundwater modelling.

v One major problem with the application of the shuffled complex evolutionary
technique in parameter estimation analysis is the length of time required to complete .
more difficult and complicated problems. For very simple homogeneous problems,
though, simulation can be completed within a matter of seconds. The large amount of
time required for complicated problems is due to the large number of objective
function evaluations that are performed in the course of the optimisation process. In
this regard, it is recommended that the shuffled complex technique of parameter
estimation in numerical models be extended onto parallel computers, where the large
number of function evaluations could be shared among the available multiprocessors.

This will produce a dramatic reduction of computational time.
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v The finite element method used in this research work is a domain approach, wherein
the region to be modelled is divided into a large number of nodes, resulting in a large
number of equations that require a great amount of computational effort, time,
storage, data preparation and handling. The boundary element method of numerical
analysis is based on integral equation formulation of boundary value problems and
requires discretization of only the boundary and not the interior of the region under
consideration. This lessens the computational burden and increases computational
efficiency by virtue of the fact that the order of geometrical dimensionality reduces by
one. Fuithermore, the boundary element technique allows the analyst to simulate only
areas of interest in the simulation region - making it more suitable for the solution of
the inverse problem where only a few predicted nodes of the observation wells are
required for the inverse analysis. Therefore in the absence of parallel computers it is
recommended that the shuffled complex evolution technique of solving the inverse
problem of parameter identification be interfaced with the boundary element method

for savings of computational time in future research.

v Tt turned out that the time ‘variation technique used as an alternative to the nontime
variation technique yielded a better results by partitioning the entire number of
simulation times to three subtime intervals. This number of time partitioning were
used for the sake of computational storage. Future research studies should consider
the use of more subtime intervals or the use of the more advanced messy genetic
algorithm whose method of 'cut' and 'splice’ method of generating offsprings (or
decision variables) can be used as an alternative method that can be used to vary the
pumping regimes of the chromosomes or strings instead of the time variation method

used in this research work.
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v Like the numerical part of the inverse model, only a theoretical example has been used
to demonstrate the performance of the management model. It is recommended that
future continuation of this work should consider applying the model to practical field
work. It is only through this that the performance of the management model can be

assessed.

9.3 Research Contribution of this Project

For the first time in the inverse problem of parameter identification in groundwater
modelling an entirely new evolutionary technique that promises to be very robust, effective,
and efficient has been used. The shuffled complex evolutionary technique was developed by
Duan et al. [1992,1993] at the University of Arizona and used exclusively for the calibration
of complex conceptual rainfall-runoff in surface modelling. Realising that the method has
beeh uSed by several researchers with considerable success in the calibration of surface runoff
models, it was decided to modify and extend the methodology into groundwater modelling
for the inverse problem of parameter identification. Unexpectedly, the methodology does not
only work in groundwater modelling but works very well.

Special credit goes to its ability to handle three-dimensional models which in the past
have been given relatively little attention. This is not because they are too difficult to handle
but rather the problems associated with the various forms of the traditional gradient-based
methods that are used to solve inverse problem. It is hoped that further research in the area of
the shuffled complex evolutionary technique with regard to the inverse problem of parameter
identification could result in a more efficient optimisation tool that could help handle the

solution difficulties encountered in the use of the gradient-based techniques.
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Chapter 9 Research Conclusions, Recommendations, and Contribution

It was identified in the literature survey that the major problems associated with the
traditional gradient-based method of groundwater management was the inability of the
models to handle more constraints owing to the resultant formulation of large response
matrices. The current genetic algorithm technique used in the optimisation model does not
handle the optimisation problem with matrix computation. All its optimisation processes are
stochastical (the use of random elements). The time variation method was a technique used in
this work after realising that the movement of contaminant plumes as simulation time
progress could render some of the operating extraction wells redundant if their locations and
rates of extraction aré permitted to vary with time. The sample simulation presented in
chapter eight has confirmed (in both one- and two-dimensional potential arrangement of
extraction wells) that the time variation technique was more effective than the nontime
variation technique. The revelation here may serve as a useful gateway as to the need to vary
the status of the decision variables represented on the strings or chromosomes in dynamic
simulation modelling with genetic algorithm for a better optimum results in future research

studies.
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Appendices

Appendix 1a Synthesized data for analysis 1

Synthesized drawdown data [m]

Time [days] node 21 node 53 node 93 node 107
1.00 0.11831 0.21115 0.30613 0.08494
2.00 0.13600 0.23621 0.34113 0.09623
3.00 0.13777 0.23857 0.34402 0.09728
4.00 0.13799 0.23911 0.34456 0.09740
5.00 0.13812 0.23957 0.34497 0.09747
6.00 0.13823 0.23996 0.34531 0.09752
7.00 0.13831 0.24030 0.34558 0.09756
8.00 0.13838 0.24059 0.34581 0.09760
9.00 0.13845 0.24084 0.34601 0.09763

10.00 0.13850 0.24106 0.34617 0.09766
Appendix 1b Corrupted data for analysis 1
Synthesized corrupted drawdown data [m]

Time [days] node 21 node 53 node 93 node 107
1.00 0.11810 0.21305 0.30493 0.08683
2.00 0.13597 0.23518 0.34208 0.09307
3.00 0.13769 0.23956 0.34321 0.09410
4.00 0.13798 0.23996 0.34400 0.09537
5.00 0.13812 0.24035 0.34525 0.09623
6.00 0.13807 0.23980 0.34575 0.09827
7.00 0.13827 0.24087 0.34641 0.09835
8.00 0.13832 0.24099 0.34768 0.09851
9.00 0.13836 0.24180 0.34779 0.09554

10.00 0.13832 0.24295 0.34806 0.09843
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Appendix 2a  Synthesized data for analysis 2

Synthesized drawdown data [m]

Time [days] node 50 node 60 node 62 node 72
1.00 1.19621 0.79348 0.83391 1.11820
2.00 1.51050 1.08494 1.14077 1.54705
3.00 1.60665 1.17842 1.24312 1.69004
4.00 1.64066 1.21206 1.28139 1.74215
5.00 1.65319 1.22456 1.29598 1.76147
6.00 1.65848 1.23004 1.30242 1.76933
7.00 1.66005 1.23164 1.30432 1.77162
8.00 1.66131 1.23302 1.30594 1.77342
9.00 1.66238 1.23423 1.30734 1.77489
10.00 1.66330 1.23530 1.30857 1.77612

Appendix 2b  Corrupted data for analysis 2
Corrupted synthesized drawdown data [m]

Time [days] node 50 node 60 node 62 node 72
1.00 1.21635 0.75297 0.84405 1.15870
2.00 1.55059 1.09461 1.10081 1.49634
3.00 1.61754 1.16776 1.21328 1.67025
4.00 1.63209 1.20201 1.29151 1.75211
5.00 1.64329 1.23519 1.31556 1.76167
6.00 1.64819 1.24048 1.32352 1.76824
7.00 1.66556 1.24186 1.35430 1.76995
8.00 1.66878 1.24525 1.37543 1.77552
9.00 1.67037 1.24714 1.38776 1.77822

10.00 1.66743 1.24965 1.41896 1.77994
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Appendix 3a  Synthesized data for analysis 3

Synthesized drawdown data [m]

Time [days] node 50 node 60 node 62 node 72
1.00 0.40659 0.17182 0.17187 0.40658
2.00 0.81984 0.49258 0.49351 0.81988
3.00 1.08372 0.71045 0.71367 1.08391
4.00 1.26129 0.86239 0.86924 1.26174
5.00 1.38792 0.97202 0.98331 1.38865
6.00 1.48140 1.05313 1.06914 1.48239
7.00 1.55174 1.11405 1.13462 1.55292
8.00 1.60517 1.16016 1.18487 1.60649
9.00 1.64591 1.19516 1.22344 1.64730
10.00 1.67777 1.22306 1.25448 1.67919

Appendix 3b Corrupted data for analysis 3
Corrupted synthesized drawdown data [m]

Time [days] node 50 node 60 node 62 node 72
1.00 0.43673 0.16131 0.16201 0.41707
2.00 0.83992 0.48222 0.51355 0.83917
3.00 1.06459 0.72979 0.70382 1.07412
4.00 1.25271 0.87235 0.85935 1.25170
5.00 1.39802 0.98265 0.97289 1.36885
6.00 1.46111 1.03357 1.08024 1.49229
7.00 1.57225 1.12427 1.12460 1.54225
8.00 1.59564 1.16939 1.19436 1.59659
9.00 1.65590 1.18057 1.23385 1.65762

10.00 1.69790 1.24440 1.26488 1.69902
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Appendix 4a  Synthesized data for analysis 4

Synthesized drawdown data [m]

Time [days] node 200 node 240 node 248 node 288
1.00 1.91152 0.76258 0.75156 1.85971
2.00 2.98138 1.73702 1.72674 2.93661
3.00 3.48803 2.23882 2.23405 3.47996
4.00 3.77473 2.53366 2.53557 3.80642
5.00 3.95026 2.71840 2.72695 4.01658
6.00 4.06319 2.83882 2.85288 4.15602
7.00 4.13691 2.91801 2.93667 4.24934
8.00 4.18632 2.97123 2.99326 4.31244
9.00 4.22044 3.00975 3.03222 4.35579
10.00 4.24198 3.03113 3.05753 4.38417

Appendix 4b  Corrupted data for analysis 4
Corrupted synthesized drawdown data [m]

Time [days] node 200 node 240 node 248 node 288
1.00 1.85167 0.75310 0.65170 1.86721
2.00 2.99147 1.83736 1.74677 2.91735
3.00 3.58895 2.13949 2.13421 3.45988
4.00 3.76622 2.55361 2.33568 3.82637
5.00 3.96036 2.77905 2.70738 4.00679
6.00 4.05349 2.81927 2.75401 4.12593
7.00 4.14745 2.95842 2.95665 4.23004
8.00 4.17682 2.96203 2.89378 4.33255
9.00 4.20043 3.01785 3.07265 4.33614
10.00 4.25211 3.02252 3.08794 4.37399
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Appendix 5a  Synthesized data for analysis 5

Synthesized drawdown data [m]

Time [days] node 50 node 60 node 62 node 72
10.00 20.63188 12.71832 7.88860 6.93689
20.00 28.00738 19.95068 14.36957 13.36723
30.00 30.50647 23.13350 17.90091 17.17352
40.00 31.41902 24.47695 19.56609 19.07175
50.00 31.77680 25.04752 20.30989 19.95297
60.00 31.92421 25.29346 20.63660 20.35069
70.00 31.98698 25.40108 20.78012 20.52869
80.00 32.01427 25.44861 20.84335 20.60834
90.00 32.02630 25.46977 20.87138 20.64406
100.00 32.03167 25.48935 20.90401 20.66016

Appendix 5b  Corrupted data for analysis 5
Corrupted synthesized drawdown data [m]

Time [days] node 50 node 60 node 62 node 72
10.00 20.76795 12.60842 7.69075 6.90090
20.00 28.10103 19.84586 14.46327 13.48489
30.00 30.58704 23.23423 17.89359 17.28906
40.00 31.41762 24.58604 19.59113 19.03686
50.00 31.77599 25.09083 20.19001 19.96156
60.00 31.96417 25.35668 20.69858 20.34100
70.00 31.97650 25.41423 20.80785 20.53431
80.00 31.98840 25.45500 20.83474 20.56421
90.00 32.00360 25.46678 20.88798 20.61978
100.00 32.24773 25.48428 20.89621 20.68654
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Appendix 6a  Synthesized data for analysis 6

Synthesized drawdown data [m]

Time [days] node 50 node 60 node 62 node 72
5.00 11.64825 6.94897 3.94806 3.34257
10.00 17.13160 11.79601 8.08330 7.18624
15.00 19.66686 14.56718 11.03398 10.11704
20.00 20.96420 16.15485 12.91674 12.07092
25.00 21.68560 17.09066 14.07845 13.31660
30.00 22.11019 17.65954 14.79747 14.10533
35.00 22.37223 18.01837 15.25461 14.61235
40.00 22.53803 18.24842 15.54844 14.94160
45.00 22.64463 18.39761 15.73913 15.15696
50.00 22.71630 18.49908 15.86930 15.30273

Appendix 6b Corrupted data for analysis 6
Corrupted synthesized drawdown data [m]

Time [days] node 50 node 60 node 62 node 72
5.00 11.75833 6.84622 4.05110 3.14112
10.00 17.02965 11.69459 8.18153 7.19999
15.00 19.56059 14.66810 11.00864 10.10156
20.00 20.76373 16.26445 13.01780 12.04937
25.00 21.68632 17.10544 14.00656 13.30947
30.00 22.12402 17.64113 14.70894 14.11930
35.00 22.32857 18.00326 15.26479 14.62403
40.00 22.49644 18.25654 15.65642 14.83947
45.00 22.61661 18.38972 15.70893 15.12472
50.00 22.78263 18.51106 15.89754 15.31621
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Appendix 7a  Synthesized data for analysis 7

Synthesized drawdown data [m]

Time [days] node 48 node 56 node 88 node 96
20.00 26.83890 1.24140 0.65688 46.84318
40.00 28.13749 3.75310 1.16032 55.56329
60.00 28.31579 5.25457 1.36259 58.35655
80.00 28.37079 6.01221 1.43500 59.36422
100.00 28.39262 6.37823 1.46144 59.74749
120.00 28.40184 6.54952 1.47148 59.89908
140.00 28.40618 6.62715 1.47569 59.96452
160.00 28.40819 6.66246 1.47751 59.99280
180.00 28.40918 6.67902 1.47839 60.00655
200.00 28.40962 6.68611 1.49877 60.01249

Appendix 7b  Corrupted data for analysis 7
Corrupted synthesized drawdown data [m]

Time [days] node 50 node 60 node 62 node 72
20.00 26.64212 1.13990 0.65739 46.72297
40.00 28.11430 3.69964 1.16107 55.68999
60.00 28.30977 5.36454 1.36193 58.59994
80.00 28.37116 6.08579 1.43405 59.25661
100.00 28.39186 6.39375 1.46073 59.79527
120.00 28.40261 6.59382 1.47292 59.88840
140.00 28.40453 6.60917 1.47668 59.97655
160.00 28.40714 6.62968 1.47727 59.99522
180.00 28.41011 6.65098 1.47864 50.00580
200.00 28.42004 6.70321 1.47864 60.12534
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Appendix 8a Synthesized data for analysis 8

Synthesized drawdown data [m]

Time [days] node 96 node 104 node 152 node 160
20.00 36.11600 4.41404 0.09457 27.94942
40.00 39.49862 7.31205 1.94628 34.85157
60.00 40.26950 8.99200 3.65153 38.43368
80.00 40.59460 9.98476 4.84773 40.59979
100.00 40.77600 10.59684 5.62922 41.97280
120.00 40.88826 10.98886 6.13209 42.86011
140.00 40.96082 11.24702 6.45598 43.44103
160.00 41.00879 11.42015 6.66615 43.82492
180.00 41.04091 11.53760 6.80371 44.08043
200.00 41.06258 11.61775 6.89444 44.25128

Appendix 8b Corrupted data for analysis 8

Corrupted synthesized drawdown data [m]

Time [days] node 96 node 104 node 152 node 160
20.00 36.23162 4.51317 0.08660 27.93739
40.00 39.53638 7.42161 1.83207 34.86308
60.00 40.17909 9.09000 3.75047 38.33368
80.00 40.58815 10.02773 3.94622 40.69979
100.00 40.88074 10.62142 5.61922 41.89309
120.00 40.90105 10.99247 6.23477 42.98133
140.00 40.95747 11.18449 6.48813 43.46088
160.00 41.01837 11.39863 6.65786 43.79741
180.00 41.03564 11.52669 6.79699 44.00281

200.00 41.17234 11.58524 6.87679 44.35077
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