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Abstract
When linear equations are solved using a computer, factors such as ill-conditioning and

numerical stability should be considered. These factors determine the reliability with which

a solution to the linear equations may be computed.

This study considers the conditioning of some linear least-squares methods which are

applied in the earth sciences. Most attention is directed towards Wiener filtering, emphasis

being placed on seismic deconvolution. Two geostatistical techniques, Ordinary Kriging

and Co-kriging, are also considered.

The occurrence of ill-conditioned autocorrelation matrices are seen to be related to the

fact that deconvolution is a mathematical problem which may have nosolution. lt is shown

that intermediate results of the Wiener-Levinson algorithm provide a measure which can

be employed to recognize ill-conditioned normal equations, and that prewhitening always

has a beneficial efFect on conditioning.

lntermediate results of the Wiener-Levinson algorithm are demonstrated to be use-

ful for determining when that algorithm is over-come by rounding errors. lt is seen that

the Wiener-Levinson and Conjugate Gradient algorithms, which are employed in geophys-

ical practice to solve the normal equations, introduce more error than classical solution

algorithms when solving ill-conditioned problems. lt is demonstrated that there is no gen-

eral guarantee that the Conjugate Gradient algorithm produces solutions to ill-conditioned

problems with less error than does the Wiener-Levinson algorithm,

Results obtained for deconvolution are extended to apply to Ordinary Kriging and Co-

kriging. lt is shown that conditioning of both these methods depends upon properties

of covariance and cross-covariance functions, and also that a scaling eftect occurs due to

the presence of unbiasedness constraints. Via numerical experiments, it is seen that this

scaling efFect is primarily of importance when covariance and cross-covariance matrices are

ill-conditioned.
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fntroduction

Linear deconvolution has received significant attention in geophysical literature. Pro-

cesses of Wiener filtering and frequency domain deconvolution have been discussed in a

number of texts. The Wiener-Levinson algorithm has been frequently described as a tool

for solving the normal equations to obtain deconvolution filters. Despite an extensive dis-

cussion of formulation and implementation of deconvolution, there has been little attention

towards aspects such as numerical stability of the Wiener-Levinson algorithm, or condition-

ingofdeconvolution. Bothoftheseaspectsrelatetothereliabilityof numericallycomputed

solutions to the normal equations. This lack of attention in geophysical literature has been

in spite of the fact that there has been substantial discussion in mathematical literature for

a number of years. A statement of a similar nature may also be made concerning Fourier

series-for example Gibb's phenomenon is rarely mentioned in geophysical literature despite

being a fundamental observation in texts on Fourier analysis. Some authors in geophysical

literature have noted efFects which relate to stability, conditioning, and related limitations

of least squares deconvolution or Fourier transforms, and have either made a statement

to the ef[ect that "more theoretical development is needed in this area" or called for an

explanation.

This thesis addresses a number of issues in the closely connected fields of conditioning

and linear stability, focusing on linear least squares methods in the earth sciences. Ef¡ects in

conditioning relate to the mathematical structure of the methods, and a significant portion

of the theory discussed here owes its origins to mathematical literature and texts. The

basic aim of discussion is to identify carrses of ill-conditioning, methods for recognizing

ill-conditioned systems in practice, whether or not this ill-conditioning results in numerical

1



INTRODUCTION

difficulty or sensitivity to perturbations, and approaches which may be employed when

ill-conditioning is encountered. Case studies using simulated data are performed to assess

these concepts.

Chapter 1 introduces the basic theory of linear least-squares methods. The basic aims

are to establish notation used in later chapters, and to demonstrate the relationships be-

tween methods considered in this thesis, and their relationship to standard linear regression

techniques. An early and brief discussion of linear and multiple regression is given. Wiener

(least-squares) filtering is then introduced. Discrete convolution is defined, the autocorre-

lation function is introduced, and spiking and predictive deconvolution are discussed. Fre-

quency domain deconvolution is introduced briefly, together with a brief account of FFT's.

Basic geostatistical theory is presented, focusing on Ordinary kriging and Co-kriging. The

inter-relationship of the simple linear regression techniques and methods being considered

in this thesis is discussed.

Chapter 2 introduces various aspects of linear systems, focusing on those with a square

coefficient matrix. Various matrix classes (Toeplitz, symmetric, persymmetric, etc) are

defined in an early section, and properties of their inverses are given. A number of solution

algorithms, both direct and iterative (for general and Toeplitz matrices) are described.

Eigenvalues and eigenvectors of matrices are introduced because of their importance in

later chapters. Some aspects of algorithms for numerically evaluating eigenvalues and

eigenvectors are discussed.

Chapter 3 discusses a number of aspects related to conditioning and numerical stability
of the solution of linear equations. The concept of ill-conditioning of numerical problems

is described, and aspects such as computational errors (rounding, etc) are introduced. The
concept of ill-conditioning of linear equations is discussed. Vector and matrix norms are

defined, and used to define condition numbers. A few symptoms of ill-conditioning, other
than norms, are described, and limitations of approaches for recognizing ill-conditioned sys-

tems are considered' The chapter concludes with a discussion of conditioning of eigenvalue

problems.

Chapter 4 begins with a survey of causes of ill-conditioned autocorrelation matrices

2



INTRODUCTION

from a mathematical point of view. The Wiener-Levinson algorithm is discussed and it is

seen that intermediate results of the algorithm may be employed to recognise circumstances

in which rounding errors have a significant efFect on the computed solution of the normal

equations. Finally, an explanation of the efFects of prewhitening on conditioning of the

normal equations is given.

Chapter 5 is directed towards examples which illustrate some of the concepts of Chap-

ter 4, and determine their usefulness in recognizing and avoiding ill-conditioning. Examples

also show the efFect of ill-conditioning in the normal equations on deconvolved outputs.

Stability of solution algorithms, which was mentioned only as a footnote in Chapter 3, is dis-

cussed and used to account for observations that the Wiener-Levinson algorithm produces

substantially poorer quality solutions than does the classical Gaussian elimination.

Chapter 6 extends results of previous chapters to apply to conditioning of some geo-

statistical methods. The topic of robustness, which has received some attention in geo-

statistical literature, and is closely related to the topic of conditioning, is discussed briefly.

The ef[ect of conditioning of the stationary covariance matrix on conditioning of the krig-

ing matrix is described, and conditioning of covariance matrices are considered in light of

the discussion of Chapter 4, Results relating to kriging matrices are extended to draw

conclusions about conditioning of co-kriging.

Chapter 7 examines, via numerical experiments, some concepts of Chapter 6. lt is seen

that the unbias constraints of ordinary kriging and co-kriging have a significant efFect on

the condition number of the respective coefficient matrices. When the equations are solved

using a stable algorithm, like Gaussian elimination, this efFect does not significantly af[ect

quality of computed solutions unless the stationary covariance matrix is ill-conditioned.

3



INTRODUCTION

This thesis examines the behaviour of a number of linear methods, when solution is

performed on a computer. The basic motivation may be summed up by the following quote

from an interview of Milo Backus, which appeared in Geophysics : The Leading Edge of

Exploration, 5(9), September 1986 :

"How much time is invested today in checking the calculations of the
com puter?

Not nearly enough. One of th,e main things I try to teach my stud,ents
is to neuer belieae what cornes out of the computer unless they can i,nd,e-
penilently corne up with tlte san1,e ûnswer within an order of magnituile
without the computer. I haue more trouble getting them to question the
machine than anything else. Tlte fact is that the computer output can be

erceeilingly rnislead,ing, and, there's a real danger in thi,nking that since
it's out to fiae decimal places it must be right. It's not that th,e comqtuter
rnalces mistakes, but that, not infrequently, a particulør progrûnx is inap-
propriately used, for a, problem, and the rna,chine can't figure out whetl¿er
the programs it has are applicable to what you're trying to resolae."

Computers to displace interpreters? Never! says Milo Backus

4



Chapter 1

Linear Methods

1.1- Introduction and preliminaries

A common problem of statistics is the estimation of a function Y(X) at locations X.
This estimation is performed by making use, in some way, of a number of samples y¿ which

have been obtained at locations x¿. ln such a situation, the function Y has a distribution

dependent upon the location X at which it is observed. This distribution is generally

unknown, and observations !¿ are subject to error, so the nature of the function Y can

not be described in an entirely deterministic way. ln the earth sciences, the determining

variable X is often a location (e.g. latitude and longitude), and the response variable y
is some quantity such as ore grades at that location. ln linear methods, the statistical

estimation is performed (either implicitly or explicitly) as a weighted sum of a number of

sampled values which occur within a given area A :

a*(x,):uot D *oa(*o) 1r.r;
xd€'4

Linear least squares methods perform such estimations which minimize the average squared

error between the true (unknown) value and the estimated value i.e. the techniques perform

statistical estimations in an attempt to reduce the spread of error, as measured in a least

squares sense, of the estimated values.

This chapter introduces some linear methods which are applied in the Earth Sciences.

5



CHAPTER 1. LTNEAR METHODS

Before introducing these methods, simple linear regression will be introduced in some

detail to demonstrate the above concepts. The extension of linear regression to multiple

determining variables will then be introduced to facilitate the comparison of other linear

methods with simple linear regression. Later sections introduce methods which are more

usually applied in the Earth Sciences, and are the main focus of this thesis. lt will be

demonstrated that these methods may be considered as extended versions of the well

known linear regression model, and it will be shown how they are interrelated.

1-.1.1- Some statistical language

This section introduces some statistical concepts which are exercised, implicitly or

explicitly, in discussion in the remainder of this chapter.

Definition 1.1 A random uariable, Y, is a rneasurable quantity which ltas a statisti,cal

nature. The ualue of any one rneasurernent tnay not be predicted, in aduance. Howeaer,

if a number of measurements are performed,, th,e rleasurenLents will haue a d,istribution

which mag be clt,aracterized,.

Definition L.2 A ranilom Íunclion Y(x) is a set of rand,om uariables Y(*.), d,efined,

at each point xo witltin an a,rea of interest.

For example, Y(x): {Y(*.),V*o € ?}, where T may denote a time interval over which

seismic amplitudes are measured, or may represent the area of a mineral deposit, over

which grades are sampled.

Definition 1.3 Particular measured,, or n'Leasurable, ualues g(x) of the rand,om func-
tion Y(x) are realizations.

Under this definition, the true value at any location (which is generally unknown, but may

be measured) may be interpreted as a realization. Similarly, any sample value may be

interpreted as a realization.

6



CHAPTER 1, LINEAR METHODS

A set of k realizations, from difFerent locatiohs x¿, of the random function Y may be

denoted by:

{Y(*'), Y (*r),. . ., Y(**)}

and characterized by a k-variable distribution function :

¡L1,x2,...,x¡ (yt,yr,. . .,Un) : Prob{y("r) 1 y1,Y(x2) < yr,. . ., Y(**) < yk}

Definition 1.4 A random function is said, to be stati,onûry i,f the d,istri,bution function
is inaariant und,er translation :

¡11,x2,...,x¡ (yr, yr, . . ., U *) : ¡l1ah,x2 ah,...,x¡ah( Ur ¡ Az ¡ . . ., A *)

Stationarity is essentially the assumption, commonly made in statistical theory, that the

set of realizations (e.g. measurements) y(x¿) are drawn from the same population, and

may be grouped, so statistical inferences about that population may be drawn from them.

L.2 Simple Linear Regression

Suppose that the values yi are values which are measured corresponding to levels r¿

of the determining variable. ln this case, the vectors x¿ have only one element and are

therefore scalars. The aim of linear regression is to fit a straight line :

U:a*br

7

(1.2)

where a and ó are constants (the intercept and slope of the line respectively). The constants

a and ó are chosen so that the positive quantity

n

d:Ð(yo_o_6*o),
i=7

is minimized. The quantity d is referred to as the Resid,ual Sum of Squares

The quantities a and ó may be obtained by the following approach :

1. From the raw data five quantities may be calculated :



CHAPTER 1. LINEAR METHODS

(a) totals

*r:i'o ar:iat
i:r i:t

(b) raw sums of squares and products

5,, :i"f S,a :i*oro Soo :ir?
i=l i=\ i=I

2. From these five quantities, three more may be calculated :

8

,
R: Sr" - 

eT

n
,-sw--#

)('- r+")
ug:0

wi: (

Q:Soo-YTn
3, The estimates may then be obtained :

(a) Slope , b: #.

(b) lntercept : a: @*Ð

(c) Residual Sum of Squares : d: e ,;

An estimate of y corresponding to any value of z may be calculated by applying Equa-

tion 1.2.

Linear regression may be expressed as a linear weighting scheme, as described in Sec-

tion 1'1, by manipulating the above formulae to obtain the following values for the weights

of Equation 1.1 :

rT
ùz

n
lu

It should be noted that the weights obtained are dependent upon the location of the point

where a value is being estimated, and on the location of the data points i.e. the weights

applied are dependent upon the data configuration.

+
n

L.3 Multiple regression analysis

Linear regression is a method whereby a least-squares "best" fit of a set of observations

of a dependent variable g and an independent variable ø may be obtained of the form :

U:a*br



CHAPTER 1. LINEAR METHODS

Similarly, multiple regression is a method used to obtain a least-squares "best" fit of a

set of observations of a dependent variable y and of a number of independent variables

rj)j:L.'.m of theform: 
m

a:a*\b¡r¡ (1.8)
j=L

To obtain the values of ø and bj,j:I...m on the basis of n samples:

(al, *',.,;, t2,i,¡. ., r^,ã), i : 7 . . .n

1. Calculate average values

rTL

2' The coefficients b¡ can be obtained by solving the following set of simultaneous

equations, which are referred to as the normal equations :

å{ Ð@0l -q)(r¿,, -7-,) ó¿ : D (*¡,, -r¡)(a, -Ð j : I...n1 (1.4)

3. The value ¿ can be obtained as

9

the fo lowing procedure, which is analogous to that followed in Section !.2, may be used

rj-

:ä,,

*.ä.'" j:r
T:

n ÌL

t=1 t=1

J

The values of ø and b¡ j :7...n thus obtained are those which minimize the quantity :

2
TL rn

E:Ð Ut - ¡1- \b¡r¡,t
t=I j=l

which is the total deviation between the (multi-dimensional) plane surface described in

Equation 1.3 and the various sample points.



CHAPTER 1. LINEAP" METHODS 10

L.4 Seisrnic Deconvolution

The aim of an exploration geophysicist in the petroleum industry is to determine, on

the basis of a number of methods, whether or not it is viable to drill for oil and/or gas

at a given location. There are a number of methods used for such a reconnaissance, for

example gravity and magnetic methods are employed to determine depth to basement, and

hence the possible thickness of the sedimentary sequences in which hydrocarbons will be

found. A frequently used method, after such initial reconnaissance has been performed, is

the reflection seismic method. Although this method introduces the greatest cost into the

exploration efFort, the resolution of the method and the information it provides more than

justifies this cost.

ln the reflection seismic method a source is used to generate an acoustic wave which is

filtered by the earth (dispersion, reflection, and transmission through various stratigraphic

layers). The returned waveform is then measured by geophones at the surface. The aim of

the method is to gain information about the structure of the earth. This structure is then

used to determine where (and if) it is viable to drill.

ln order to obtain this structure, it is necessary to have a model relating the input

waveform, the earth filter, and the output waveform. Because the seismic method more

commonly makes use of digital as opposed to analog data, the following discussion will

refer to the digital filtering process.

The digital filtering process may be described by the discrete convolution formula :

Ur : tt * e¿ : Aú t rt€r_t (1.b)
t

where ø¿ is the input, e¿ is the filter, y, is the output, and Aú is the sampling increment.

No loss of generality occurs if we assign Aú: 1, and this will be assumed in all that follows,

unless otherwise stated. The output y, of Equation 1.5 is a weighted sum of values of the

input, r¿, in the same fashion described in Equation 1.1. ln terms of seismic theory, the
input r¿ represents the seismic source wavelet, the filter e¿ is the "earth filter", which is

intimately related to geological structure, and y¿ represents the measured seismic trace.
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ln the field there is often a boundary with a sharp velocity andf or density contrast at

or near the surface. On land this boundary can result from the presence of a "low velocity

layer", which results in a significant reflection coefficient at the boundary between this layer

and the higher velocity layers below. The surface of the earth also has a high reflection

coefficient. At sea, high reflection coefficients occur both at the sea surface and at the

sea bed. Because of these highly reflecting boundaries, the acoustic wave is continually

reflected between them, the amplitude only gradually decreasing with time, and the seismic

section thus obtained takes on a reverberatory nature. These reverberations, or multiples,

of the initial reflection event, conceal later primary reflection events which may be of much

smaller amplitude. ln order to detect these reflection events, it is necessary to remove the

efFects of the reverberations.

The predictive deconvolution technique aims to remove contaminating ef[ects of mul-

tiples. lt amounts essentially to determining a filter r.r.r¿ which, when convolved with the

seismic trace, removesthe efFects of multiples. Deconvolution techniques are also employed

to remove contaminating efFects of the seismic wavelet to improve temporal resolution and

aid seismic interpretation.

This section is primarily concerned with least squares deconvolution, which is also

referred to as Wiener filtering, The section concludes with a brief discussion of frequency

domain filtering. Most of the following theory is described by Peacock and Treitel (1969),

Rice (1962), Robinson (1967b), Robinson (1983), and Yilma z (1987). Notation has been

altered from that in the above texts to enable comparison of deconvolution with other

methods discussed in this chapter. The primary purpose here is the introduction of Wiener

filtering as the solution of a linear system. The theory described here is implicitly based on

a number of assumptions :

o source and receivers are coincident,

o geological boundaries are horizontal, and wave paths are strictly vertical (perpendic-

ular to the boundaries),

o the seismic disturbance is stationary (i.e. it does not change form with time),
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o data is free of noise

ln practice, these assumptions are not strictly true

o geophones are generally spread in an array, or along a line, separate from the source

of the seismic disturbance.

o geological boundaries are not, in general, horizontal,

o a loss of amplitude occurs due to spherical divergence and inelastic absorption,

o random noise occurs in experimental dala e.g. instrument error, back scattering

These aspects are discussed more extensively in geophysical literature, e.g. Yilmaz (1987).

ln practice, deviations from the assumptions being made are minor, unless the geology is

quite complex. A numberof additional approaches in processing (e.g. common depth point

(CDP) stacking, correction for spherical divergence, migration) are employed, either before

or after deconvolution, to correct field data to conform, in at least an approximatefashion,

to assumptions being made in theory.

t.4.L'Wiener Filtering

The Wiener filter, u.r¿, is a particular filter which minimizes the mean_square error :

I:E{e"-y)'} (1.6)

where :

t z, is some arbitrary desired output,

o y, is the actual output, obtained by convolving the input sequ€hcê, /¿, with the

Wiener filter :

!'v : r¡ *1L¡
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The n-length Wiener filter results from the solution of the normal equations '.

n-l

lol-.)

D-rr,-, : g, Vr: 0, 1, . . . ,n - I (1.7)
f=0

where

o r" is the autocorrelation of the input

r, : E {*t*r+r} (1.8)

It may also be shown, by a change of variables, that r_r:rr

o g, is the cross-correlation between the desired output and the input

gr : fi {rr*r+") (1.e)

o u;¿ is the Wiener filter

The expressions given here for the autocorrelation and cross-correlation functions may be

seen to be identical in form to convolution given in Equation 1.5, except for a sign change

in one term. and the use of E{...} (the mathematical expectation) instead of summation

terms. ln fact, one may write :

g'(r) : z(t) * *(-t) : t Ztrt+¡
t

where gt(r)diflersfrom g(")bvonlyascalefactor. Thefirstformiscommonlyexpressedin

seismic literature (e.g. Rice (1962), Robinson (1967a), Kulhanek (1976)) whilst the second

is consistent with the definition of convolution and correlation between functions (e.g.

Bracewell (1978)). This difterence of definition will be ignored in all that follows-the
autocorrelation and cross-correlation functions will be expressed as either expectations or

convolutions as is more convenient to the discussion in hand. ln particular, autocorrelations

which occur in examples of Chapter 5 are computed as summations :

D
t

rtrt+¡



CHAPTER 1, LINEAR METHODS 74

rather than as expectations
1-

6+rtrt+r
where n(r) is the number of pairs contributing to the summation. Claerbout (1976) has

noted that dividingby n(r) to obtain an expectation may introduce difficulties in practice

when n(r) is not constant (e.g. due to end efFects).

Equation 7.7 may be expressed in matrix form :

Tg T1

T1 T'g

Tn-l

Tn-2

LDg

1/')1

9o

9t

Tn-7 Tn-2 Tg Un-!

n-l

9n-t

( 1.10)

( 1.11)

(1.12)

or more compactly as :

Rw: B

The resulting minimum mean-square-error is :

Io: ro - 'taor.- - Ð-rr.*O
j=l

Robinson (L967a, p. 43) has stated that the coefficient matrix, R, referred to as the

autocorrelation matrix, is Toeplitz, symmetric, and positive indefinitel. Throughout this

thesis, except where stated otherwise, the autocorrelation matrix is considered to be positive

definite. More properties of this matrix will be discussed in Section 4.4.L.

1.4.1.1 The prediction operator

lf a¿ is the prediction operator, with prediction distance a, then the output gr" will be

an estimate of the input z¿ at a future time f *a :

U, : Ðrtú¡-t : r|+o (1.1g)
t

An error series may then be defined as the dif[erence between the true value r¿.,uo and the

estimated value øf*o :

€t+o : x+o - rI+o (1.14)
lThe terms Toeplitz, symmetric, positive definite, and positive indefinite, are defined in Chapter 2
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This prediction error series is the non-predictable part of the series r¿. lt is of interest to

the geophysicist because it represents information contained within the seismic trace which

is not contaminated due to reverberations-the non-predictable component of the trace

may be attributed to primary reflections, which are due to geological boundaries, while the

predictable component represents multiple reflections.

The cross-correlation between the input and desired output is :

gr:fl{*rrr+o+r}:rr+o

therefore the Wiener prediction filter, ø¿ is obtained by so ving the inear system

T'g T1

T1 T6

Tn-l Tn-2

Tn-l

Tn-2

O,g

A1

Td

Ia*1

Tcrln-l

(1.15)

L.4.L.2 The spiking operator

The spiking operator, s", produces, as output, a unit spike :

(7 if r:Q.
Ur:Ðttsr-t: { 

-

¿ ( 0 otherwise.

This operator is also known as the inuerse oqterator, and may be employed to compress

the seismic wavelet.

As for the prediction operator, the Wiener spiking operator may be obtained by solving

a linear system :

Tg

Tg dn-L

Tn-l

Tn-2T1 Tg

Tn-I Tn-2

T1 Sg

S1

rg

0

0ro Sn-l

This means that there is little mathematical diflerence between Wiener prediction filtering

and Wiener spiking filtering.
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L.4.2 FYequency domain deconvolution

Previous sections have been primarily concerned with time domain deconvolution, with

an emphasis placed on Wiener filters. ln this section, deconvolution in the frequency

domain is considered.

The Fourier transform of a continuous function r(ú) is defined as :

x(r): [* r(t)e-¿-tdt (i:,/i¡.
r'_æ

provided that certain conditions are met, for example :

o The integral

t: lr(t)ldt

exrsts

o Any discontinuities in r(ú) are finite.

ln cases where no Fourier transform in the ordinary sense exists, the transform may be ex-

pressed in a limiting sense by means of generalized functions. More details on conditions for

existence are provided by texts on Fourier analysis, e.g. Arsac (1966) and Bracewell (1g78).

For example if the function r(ú) is such that

l*-'"rqro,
exists (in which case z(ú) is referred to as "square integrable" in this thesis) the Fourier

transform is defined as above.

The Fourier transform is a reversible process i,e. given the function X(u), r(f) may

be reconstructed

r(t): * l:x(u)ei-td,u
lf u(t) is represented by discrete samples (with sampling interval aú:1)

{XO¡íXt¡...Tn_L
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then the discrete Fourier transform may be wrrtten :

n-t
X(r): Ð rte-i't

ú=0

Frequency domain deconvolution is based on the fact that convolution in the time domain

corresponds to multiplication in the frequency domain :

r(t) * e(t) *-+ X(a)E(u)

which means that Equation 1.5 may be expressed in the frequency domain as:

Y('): X(u)E(a)

and spiking deconvolution may be expressed as a division in the frequency domain

E(u\ : Y (?)\ / x(r)

L.4.2.L Fast Fourier Tyansforms

ln practice, the Fourier transform of the discrete series :

lO¡fl¡...fn_l

may be represented by n values in the frequency domain corresponding to :

2nj
n

This is possible without loss of information because the discrete Fourier transform is peri-

odic :

H(r) : H(w -t 2r)

and the discrete time series may be reproduced from these discrete Fourier values. This

does nol mean that the function r(ú) may be reproduced from either the discrete time

series or discrete Fourier series-if the function r(t) contained frequencies higher than
rlLt (the aliasing frequency), then these higher frequencies will be mapped to other parts

of the spectrum. This eftect is known as aliasing.

j:0...n-I
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The discrete Fourier transform may be performed quite readily on a computer. The pro-

cess is, however, relatively inefficient, requiring approximately n2 multiplications. For cer-

tain values of n, the algorithm may be rearranged to calculate the Fourier transform much

more rapidly, using the order of nlogn multiplications. Such algorithms were originally

introduced by Cooley and Tukey (1965) and have been discussed further by Tukey (1967)

and Nussbaumer (1982). These efficient methods are referred to as "Fast Fourier Trans-

forms" or more briefly as FFT's. The most common FFT routine employed in seismic

processing is the radix2 form, in which the length of the series, n, is a power of 2.

L.4.2.2 Tþuncation of the series

One consideration which often arises in practice is the computation of a spectrum from

a small part of a computed autocorrelation. Truncating the series causes the computed

spectrum to be an erratic function of frequency. For this reason a weighting operation

which results in a smoother computed spectrum is often applied to the computed autocor-

relation. This consideration is covered quite extensively in literature e.g.Jenkins (1961),

Parzen (1961). A number of difFerent weighting schemes are applied in practice, and there

are difFerent advantages to be ofFered by each scheme. Examples of weighting, or window-

ing, schemes include :

o the Triangular weighting function

1-ltlMl t<M
0 ltl> M

¡ the Hamming weighting function :

Ut:
0.54 + 0.46 cos(nt lM) t < M
0 ltl> M

1-.5 Geostatistical techniques

Geostatistical techniques aim to estimate values of some measurable attribute of a

phenomenon (e.g.grades of ore or concentrations of pollutants), either at unsampled
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po¡nts, or averaged over a region R (".g.a mining block), on the basis of a number of

samples which occur in the neighbourhood of the point or region being estimated. This

section introduces two geostatistical techniques, Ordinary Kriging and Co-kriging. Most of

the theory is discussed by Journel and Huijbregts (1978), David (L977), and Rendu (1981).

To facilitate comparison with other methods described in this thesis, notation and symbols

have been changed from those given in these texts.

1.5.1 Stationarity of order 2

Stationarity, defined in Section 1.1.1, requires that the spatial law, -t', is invariant under

translation. However in linear geostatistics, which is being considered here, stationarity of

ord,er 2 is sufficient and this constraint may be reduced to :

1. the mathematical expectation .Ð{Y(x)} exists and is independent of factors such as

size of samples (e.g. length of the drill core) or methods employed to obtain samples

(e.g. type of drilling). Thus :

E{Y(x)} : rr¿ (1.17)

2. for any pair of random variables {y(*),},(x * h)} the covariance function exists

and depends exclusively on the separation h :

c(h) : E{Y(x + h)tz(x)} - m2 vx (1.18)

L.5.2 Linear Kriging

All linear kriging techniques use a linear estimator to give estimates of the form

Yä("):ü;0-¡Ð-.xy(x.)
n

a=L
(1.1e)

(c./. Equation 1.1) where

. Y;(x) is the estimate of the mean value of the random variable Y(x) over a region

R' The random variable Y(x) is either the variable of interest (e.g. ore grade) or

some appropriately transformed version of it.
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. g(x,), Q. :7,,..)n are the sample values being used to make this estimate (x, g l{).

o r.uo is the weight being applied to the sample, y(x,), at location xo.

The estimator chosen is the particular one which minimizes the expected squared error

(also called the estimation variance) between the true (unknown) values and the estimated

values, which is denoted by E{lYp(") -7ä(*)]'}. Note the similarity between Equa-

tions 1.19 and 1.1-the estimates provided by these equations are both weighted sums of

sample values.

1.5.3 Non-bias conditions

An estimator is said to be globally unbiased if the expected value of all the estimates

is the same as the expected value of the true results. Mathematically this is :

E{7;(")} : E{Tn(*)} (1.20)

This condition can be enforced in a number of ways. One way is to satisfy the following

conditions :

D.,
N

d
(1.21)

Ug

1

0

Journel and Huijbregts (1978, pp. 560-561) describe other non-bias constraints, which ap-

ply to non-stationary systems. The constraint given above is the only one considered in

this study, as attention is being directed towards ordinary Kriging.

L.5.4 Ordinary Kriging

The Ordinary Kriging procedure is one of finding a linear estimator, as given in Equa-

tion 1.19 which minimizes the expected squared error of the estimated results, subject

to the nonbias constraints given in Equation 1.21. lt may be shown using Calculus of
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Variations that the weights 'tro¡e - 1,...,n satisfy the following system of simultaneous

eq uations :

Ð.uxC(x,,xù-p C(x", R) Vcr: 7..n
n

þ=7
(7.22)

(1.24)

D-*
n

o=1
1

where

where

o ¡-r is a Lagrange multiplier applied to the system

¡ the function C(*.,xB) is the covariance between points xo and xB which are sepa-

rated by a vector h: Xo -xB. This is defined as :

c (*o,,xB) : E{[)z(x.) - -(*,)] Ly (*ù - *(.y.ùl] (1.23)

where :

- m(x") and m(xfi are the expectations of the random variable Y(x) at locations

xo and xB respect¡vely

- if the covariance is available for any possible combination of xo and xB the

bivariate distribution of Y(x,) and y(xB) is totaily described.

. C(xo,-rR) denotes the mean value of the covariance function, evaluated between the

location xo and all locations within the region _r?.

Equation 7.22 may be expressed in matrix form as :

1 'tI1

C c

1 1

1

0

wn

- l.r 1
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o C is the covariance matrix with elements CoB: C(*orx1) orþ :7...n. This

matrix is symmetric and positive indefinite in general, meaning that all its eigenval-

ues are non-negative. Throughout this thesis, except where stated otherwise, the

covariance matrix is implicitly assumed positive definite, and therefore non-singular.

o c is a vector of mean covariance values with elements co : C(x"rR)

It is apparent from Equation 1.23 that in order to make statistical inferences it is

necessary, in general, to have a large number of realizations of random variable pairs

{Y(*,), }Z("B)} as the covariance is dependent upon both the location of the aggregate

of two data points xo and xB, as well as on their separation. ln practice, this difficulty is

relieved by assuming stationarity of order 2, which means that the covariance function of

Equation 1.23 depends only upon the separation h: xo -xB.

1.5.5 Ordinary Kriging with the sernivariograrn

The semivariogram function, which is one characteristic of the bivariate distribution of

Y(x) and Y(x * h), may be defined as :

1

z(h) : Un1¡vçx+ h) - Y(")l'Ì

The semivariogram may be rewritten in terms of the covariance function

z(h):c(o)-C(h)

(1.25)

(1.26)

(1.27)

Under an assumption of stationarity, this may be substituted into Equation t.22 to obtain

an equivalent set of simultaneous equations :

D.B x T(xo, xò -f tt 7(x,,R) Vo:7...n
n

13=l
fL

Ð-* 1

a=l
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T

which may be expressed in a matrix form similar to Equation 1.24

1

1 'tI1

'lJ)n

23

(1.28)
oð

1

0 p1 1

where :

o g is a vector of mean semivariogram values with elements go : T(xr,Ã)

The estimation variance associated with the weights produced may be expressed in

terms of semivariograms as :

oI :21(R,") -7(R,, R) - 7@,,u) (i.29)

where :

o ,R is the region for which the estimate is being calculated

o u denotes the set of sample points used to perform the estimation

.7(ArB) represents the mean value of the semivariogram as measured/evaluated

between the two sets of points (or regions) A and B.

ln practice, the experimental semivariogram (or covariance) is fitted with some form

of analytical function. This modelling is of vital interest, and is discussed further in Sec-

tion 1'6. Modelled semivariograms which depart significantly from the underlying (un-

known) semivariogram can be expected, intuitively, to give lower quality results (".g. 
^

larger spread of error in kriged estimates) than would a model which does not depart

significantly from the underlying semivariogram. However, it will be seen in Chapters 6

and 7, that models which fit the experimental data relatively well may still result in poor

quality results, because certain models may result in a non-robust2 kriging system andfor
2 The topic of robustness is discussed in Section 6.1
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numerical difficulty obtaining kriging weights. This means that it is possible to obtain a

model which does not depart significantly from the underlying situation, but numerical

errors introduced when solving the kriging equations may still mean kriged estimates are

of little value.

1.5.6 Positive-definite conditions

Equation 1.29 provides the estimation variance in terms of the semivariogram function

Z(lt), if stationarity is assumed. However this form will not necessarily ensure a non-

negative predicted estimation variance. However, an estimation variance must always be

non-negative. This means that semivariogram functions must be chosen in such a way

that a negative result in Equation L.29 is impossible. This is a far from trivial problem.

Armstrong and Diamond (19Sab) give an account of the problems involved, and present a

method which may be used to test if a given model provides a non-negative estimation vari-

ance. This constraint may be related to the positive indefiniteness of the covariance matrix,

C. Functions which ensure non-negative estimation variances are said to be conditionally

positive definite.

ln geostatistical practice, the covariance is usually modelled as a monotonic (decreas-

ing) function of lag, lh,l (or, conversely, the semivariogram is modelled as a monotonic

(increasing) function). This consideration is not necessary to satisfy the positive definite

constraint. lt relates back to the observation that the correlation between data values

can often be expected to decrease as the distance between them increases. However, this

assumption is not generally true, e.g. Journel and Huijbregts (1978) describe the "hole ef-

fect" in which the covariance model does not monotonically decay. Frequently, in practice,

natural variability observed within an ore body causes hole efFects to be associated with

other structures, which result in a dampening of the hole efFect. Therefore, hole efFects

are often ignored in geostatistical practice, and experimental covariances are modelled as

monotonically decaying functions, All discussion of geostatistical methods in this thesis

assrJmes that covariances are positive valued functions which monotonically decay towards
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zero, and corresponding covariance matrices are positive definite, as is often assumed in

geostatistical practice. However, it must be noted that, in practice, the assumption of a

monotonically decaying function may only be an approximation to a more general situation.

L.5.7 Co-kriging

Co-kriging is a method which was developed for situations where samples of two or more

correlated variables exist (e.g. uranium and gold). The method uses values of a number

of variables to estimate one of them, making use of correlation between variables. For

example, a better estimate of gold content may be made by using both gold and uranium

data to make the estimate, rather than using only the gold values. The method was

primarily directed towards the case in which one variable has been undersampled relative

to the other variables, and estimation of this undersampled variable is desired.

Mathematically, Co-kriging may be considered as an extension of Ordinary Kriging-it
is a procedure which produces a linear estimator consisting of a weighted sum of sample

values of a number of variables or attributes :

4.,*(*): 'uon X Un(x.*¡ (1.30)
k=l an=l

where

¡ /{ is the number of sampled variables being used to perform the estimate e.g. il
a Co-kriging approach is employing samples of gold and uranium to estimate gold

grades, then K :2

o n¡, is the number of samples available of the variable y¡

o yn(x,) denotessamplevalues at locations x",o of y¿ which are being used to perform

the estimation

o ks denotes the variable whose average value is being estimated over the region .R

. 'tran is the weight applied to the sample y(x.u)

KnhÐt
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The weights are chosen to minimize the expected squared error between true (unknown)

values and estimated values of the particular variable, ks, of interest. As in Section 1.5.2

a set of equations may be obtained :

tn Br,C x,n(r p¡,, r ..¡,) - þL* C¡o¡r(Rrro^) Ya¡, : 7r..nk, Vk : 7r... rK
K nht

ÐD
Ict=I þil=l

(1.31)

vk+ko

where C¡,¡,is the cross-covariance between variables lctand k, defined (c./. Equation 1.23)

C¡"'¡,(xo,xB) : E{lY¡,(x.) -rn¡,(xo)][y*("B) - mn(xò]] (1.82)

where *r(*) denotes the expectation of the random variable h at the location x.

Note the presence of non-bias conditions in the system of Equations 1.3l-in order to

satisfy the global non-bias conditions of Equation L.20, the weights applied to the variable

being estimated must add to unity and the weights applied to all other variables must add

to zero for each variable.

lf stationarity may be assumed, this system may be expressed in terms of cross-

variograms as follows :

as

K ntel

I D .Br,'ypr(*p*,,x.,r) I l.t* lno*(R,,x.,) Yan - 7,'.frk, Vlc :7,..1(
k,:t þil=L

9no 1 (1.33)

nk

Ð uþr o vk+ko
þn=7

where the cross-variogram function is defined, in a similar fashion to the semivariogram

function of Equation 1.25 :

nkot
þoo

?1)

=f

uwn(h) : !n{[Y¡,(* + h) - y*,(*)] [y¡(* + h) - y*(*)]] (1.34)
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Equations 1.31 and 1.33 may be expressed in matrix forms similar to those given in Equa-

tions 1.24 and 1.28 for Ordinary Kriging. The estimation variance associated with the

Co-kriging weights thus produced may be expressed in terms of variogram functions as :

o'ø:É Ë {..r7non(R,x.*)} - 7nono(,R,lB) ittto (1.gb)
À=1 or¡=1

But, what happens if all available data sets are sampled at every sample location, so

that one is not undersampled relative to the others? Journel and Huijbregts (1978) state

that if all variables coexist at all sample locations and coregionalization is intrinsic (i.e.

all semivariograms and cross variograms are proportional to one basic model), Co-kriging

provides no advantage over Ordinary Kriging, as the estimation variance obtained using

Ordinary Kriging will be identical to that obtained using Co-kriging. However it has been

shown by Journel (1984) that if coregionalization is not intrinsic then Co-kriging will always

provide a smaller estimation variance. This in turn implies a smaller spread of error in the

results.

1.5.8 Properties of the cross-variogram and cross-covariance

ln the foregoing discussion, the Co-kriging system was expressed in terms of cross-

covariance functions, and then converted into an expression involving cross-variogram func-

tions in an analogous way to that presented in Section L.5.2for expressing the kriging sys-

tem in terms of semivariograms. ln the case of Co-kriging, however, the cross-variogram is

symmetricin(k',k)and (h,_h),whilstthisisnotnecessarilytrueforthecross-covariance:

1n,n(h) : 1nn,(h) and 1n,n(h) : 7¡,¡,(-h) (1.36)

Cn,n(h) : Cnn,(h) and Cr'*(h) # C*,n(-h) (1.82)

The cross-covariance may be asymmetric if one variable lags behind another (e.g. rich lead

grades maylag behind rich zincgrades in a given direction dueto replacement phenomena).

This lag efFect will not appear on the cross-variogram, but it will on the cross-covariance.

However, in many cases, it is sufficient to assume that the cross-covariance is symmetric,

and to use the co-kriging system expressed in terms of cross-variogram functions. This is
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assumed throughout this thesis in discussion of Co-kriging. As this efFect does not occur

in the covariance, no such consideration is required for Ordinary Kriging.

1-.5.9 The linear model for a coregionalization

The linear model for a coregionalization is a mathematical model which enables the es-

tablishment of a matrix of cross-variograms, [Z**,(fr;1 (or more generally cross-covariances,

lC¡,¡,(x,h)]) which is positive definite to ensure that the variances of all finite linear com-

binations of the random functions y*(*) are non-negative. The model consists of defining

all direct and cross-variograms for all variables k,lc' : Lr..rR as linear combinations of rn

basic variogram models :

m

yn*'(h): 
Ð 

a¡¡,,¿ X z;(h; (1.38)

For combinations of the i'À basic model, 7,(h), this may be expressed in the form :

7rr,;(h) yrc¡(h) art,i ctrtK,i 7,(h) 0

(1.3e)

a,Kl,¿ aKI<,i 0 7;(h)
A

For each component i, the coefficient matrix A must be positive definite-all its eigenvalues

must be real and positive. The following K conditions may also be applied (refer to
Bellman (1960, Chapter 4)) :

att,¿ a,LK,¿

)(

all,¿ ) 0,
a4r,i

a,2L,i

a,r2,i

azz,¿
>0 >0 (1.40)')

a,Kl,¿ O,KK,¿

It may be seen that the matrix A is symmetric because 7r¿,(h) :7¡¡,,(-l'¡:7¡,¡(h).
When samples of two difFerent regionalized variables, say l'1(x) and Y2(x), are available

(i'e. K: 2) and both will be used to produce estimates of one of them (say y1), the
positive definite constraints reduce to the following :

ayryr¡ ) 0

ay"yr,¿ ) 0

ay1y1,i X clyryz,i - aytyz,i
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1-.6 The inter-relationship of rnethods

There is fundamentally little difFerence between multiple regression, Wiener filtering,

and Ordinary Kriging. lnformation provided by the autocorrelation function for Wiener

filtering, in Equation 1.7, is given by the covariance or semivariogram functions for Ordinary

Kriging, in Equations L.22 and t.27. Terms on the left hand side of Equation 1.4 provide

the same information for multiple regression.

Multiple regression fits a planar surface based on all data locations. Wiener filtering

and Ordinary kriging use information provided by the autocorrelation or covariance in

performing estimation i.e. the surface fitted to perform an estimate is dependent upon

the data. Geostatistical practice often involves imposing a functional model, examples of

which are employed in Chapter 7, to the covariance or semivariogram. This modelling is

performed because geostatistical estimates are often desired for arbitrary locations andf or

averaged over a region, -R. Referring to Equation t.22, this means that it is necessary

to have some form of knowledge of the covariance or semivariogram function at lags, h,

for which there is no experimental estimate, and a model of some type is required to

provide these values. Predictive deconvolution, as applied in seismic processing, involves

estimation using regularly spaced data along a seismic trace to predict values at locations

which also occur on the trace. This means that experimental autocorrelation values provide

all the information needed in Equation 1.15, and no model of the autocorrelation function

need be invoked. The nature of the selected covariance or semivariogram function afFects

the behaviour of Ordinary Kriging estimates. For example, the geostatistical practice of

assuming that a covariance function is a monotonically decaying function obviously has

some bearing on results of Ordinary Kriging. Ordinary Kriging also imposes the nonbias

constraint to ensure that the mean value of estimates is the same as the mean of the data.

It must be noted that all the linear techniques discussed in this chapter implicitly assume

a linear model with the aim of making useful inferences. No claim may be made, in general,

that the linear model describes reality. For example, no claim is made in geostatistical

theory that grades in any given deposit are randomly distributed-the theory of random
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variables is utilized because any deposit with a given set of properties (e.g. mean grade, or

covariance structure, etc.) may be considered as one possibility (i.e. a realization) of all

possible deposits which could give rise to those properties.

1.6.1 Relating the correlation and covariance functions

It may be seen that Equations 1.7 and L.22, are of similar form, except for the presence

of nonbias conditions in Equation L.22. Both methods being described attempt to mini-

mize an average squared difFerence, but Equation 1.10 is described in terms of correlation

functions while Equation L.22 is described in terms of the covariance function.

stationarity is assumed so the covariance function is described by:

C(h) : C(h) : C*,(h) - rh - (E{"})' (r.42)

where r¿ denotes the autocorrelation function, defined in Section J,4.L. This equation is

simply a re-exPression of Equation 1.18, establishing the relationship between the covariance

and autocorrelation functions. Similarly, the cross-covariance may be written as:

C,"(h):9h-E{"}xE{a} (1.43)

The relationship between these various functions allows the conclusion that Ordinary

Kriging and Co-kriging are extended (e.g. multi-dimensional) deconvolution processes. Al-

ternatively, the weighting process used by kriging may be described as an extended con-

volution process. This concept has been mentioned by Dietrich (1939), who focused on

conditioning of one-dimensional kriging matrices. The mathematical relationship between

autocorrelation and covariance functions is described by Robinson and Treitel (1980) and

Robinson (1981). lt should also be noted that if data is regularly spaced along a line (as

is the case in seismic deconvolution), then the kriging operator is applied via a discrete

convolution process, in the fashion of Equation 1.5.



Chapter 2

Linear Equations

The solution of a set of equations of the form

where A is a known n by n coefficient matrix, and b a known right hand side vector, is

central to linear least squares methods described in Chapter 1. This chapter presents a

number of aspects appropriate to linear systems with square coefficient matrices. A descrip-

tion of some important matrix classes, and their inverses, is presented, and a number of

computational methods for solving linear equations are introduced. The chapter concludes

with a brief description of numerical techniques for calculations of eigenvalues of a matrix,

because of the importance of eigenvalues to error analysis. The aim is to identify concepts

and techniques, rather than to discuss them in exhaustive detail. Appropriate references

are given. Chapter 3 introduces concepts related to conditioning of linear equations.

2.t Different matrix classes

The linear methods considered in this project result in linear systems, in which the

coefficient matrices exhibit various properties. These properties often have important con-

sequences because they may be exploited by various methods to solve a given linear equation

more efficiently. This section introduces a number of these properties, their relationships,

bAx

31
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and consequences. More details, including proofs of results, are provided by Cornyn (197a).

Table 2.1 defines a number of matrix classes of interest, and states which class the

corresponding inverse matrices belong to. Knowledge of the matrix class to which the

inverse of a given matrix belongs is useful because this information can often be used to

significantly reduce the number of operations and memory locations required to invert a

matrix, or, equivalently, solve a linear equation. For example, the inverse of a symmetric

matrix may be stored i" 9Ð elements, where n is the order of the matrix. lt may also

Symmetric(iï\ ù
a¿j: ri+jHa n kel

Persymmetric
(ï

b

a,

e

f

c
b

a,

d
c
b

ea,

aij: r¿-jToeplitz

Centrosymmetric

ft

bc
fssr
cb ù

a¿j : Ctrn_7_i,n_L_jCentrosymmetric

Persymmetric(',iiilaij: an-t-i,n-t-iPersymmetric

a
b

c

d

c

efs
f hp Symmetrico,ij: a,ji, or A: A"Symmetric

lnverse classClass Property (A: [¿ij]) 4x4 matrix example

Table 2.1: Square Matrix Classes and Inverses

be seen that the classes are not exclusive-a matrix may appear in two or more classes. ln

particular, it should be observed that :

o all Toeplitz matrices are persymmetric and all Hankel matrices are symmetric.

o the class of centrosymmetric matrices includes (but not exclusively) all matrices which
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are both persymmetric and symmetric i. e. symmetric Toeplitz matrices, persymmetric

Hankel matrices, and their inverses are centrosymmetric.

Although Hankel matrices are not examined in this thesis, they are mentioned here because

of their close relationship with Toeplitz matrices.

2.2 Solution of linear systems

There are a number of numerical methods for solving linear systems, both for general

coefficient matrices and for coefficient matrices which exhibit forms of symmetry. These

methods fall into two distinct classes-direct and iterative. This section introduces methods

in each of these classes. Some available methods for solution or inversion of Toeplitz

equations (both symmetric and asymmetric) are then introduced.

2.2.L Direct rnethods

Direct methods for solving a linear system (or equivalently inverting a matrix) evaluate

the exact solution (or inverse) in a finite number of steps if no errors are incurred in the

process. lf errors, such as rounding errors are incurred in the process, the resultant solution

can not be expected to be exact. Gaussian and Gauss-Jordan elimination may be applied

to general linear systems, whilst the Cholesky Decomposition is applicable to symmetric

positive definitel matrices. Other methods are available, but are not considered further in

this thesis,Examples are: Crout elimination, which is described by Robinson (1981); rank

annihilation, a method of matrix inversion described by Wilf (1960).

2.2.L.L Gaussian Elimination and Gauss-Jordan elirnination

Gaussian elimination is by far the most commonly used direct method for solving a

general linear system. The procedure involves reduction of the coefficient matrix to an

upper triangular form by means of row operations-exchanging rows and pivoting. ldentical
lPositive definiteness and indefiniteness of a matrix are defined in Section 2.3.2
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operations are performed on the right hand side matrix, b. The solution is then obtained

by back substitution. This method, and its variations (e.g. different pivoting schemes)

is described by most elementary texts e.g. Kreyszig (1988), Gerald and Wheatley (198a).

Solutions computed using Gaussian elimination are presented for most examples of this

thesis. Except where stated otherwise, the variation employed is (partial) pivoting on the

maximum non-zero element, for both single and double precision results.

Gauss-Jordan elimination is a method which is closely related to Gaussian elimination,

the only real difFerence being that the coefficient matrix is reduced to the identity matrix

instead of to an upper triangular form. Back substitution is unnecessary because, in reduc-

ing the coefficient matrixto the identity matrix, the right hand side vector is reduced to the

solution of the linear equation. This method has the added property that the operations

performed on the coefficient matrix may be performed simultaneously on a matrix which is

initially the identity matrix. This matrix then yields the inverse matrix. Computationally,

this method is not as commonly used as is Gaussian elimination because it involves more

arithmetic operations and therefore requires more computation time and is, in addition,

more sensttlve to error

2.2.L.2 Cholesky Decornposition

This method is based on the observation that a real, symmetric, positive definite matrix,

A may be written as the product :

where L is a lower triangular matrix

solving the system :

A : LLr (2.r)

The system Ax: b may then be solved by first

Lz: b (2.2)

and then solving the system :

Lrx: z (2.8)

Both Equations 2.2 and 2.3 are rapidly solvable using the back-substitution procedure

which is employed by Gaussian elimination. More details on this method are provided by
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Martin et al. (1971b)

2.2.2 fterative methods

Iterative methods choose an initial solution, either arbitrarily or by some other solution

method, and it is altered in such a way that it approaches the true solution. The choice

of change at each step is one which causes an optimal (measured in some sense) change

in the estimated solution. lterative methods are of use for improving the solution obtained

using a direct method whose result has been afFected by rounding errors. Another impor-

tant use is in the solution of sparse matrix systems (i.e. the coefficient matrix contains

many zero elements). Unlike direct methods, iterative methods can be infinite-they may

continually converge on a solution but never quite reach it. For this reason iterative meth-

ods are performed by fixing the maximum number of iterations allowed andf or allowing a

tolerance-when an error criterion, usually an expression in terms of vector norms2 which

will be zero at the true solution, is nearly enough satisfied, the method completes. lterative

solution of linear equations is discussed in more detail by Varga (1963).

2.2.2.L The Conjugate Gradient rnethod

The Conjugate Gradient method is an n-step iterative one. When it is applied to a

linear equation Ax : b, where A is a nby n matrix, then a solution, if it exists, is obtained

in n or less steps of the algorithm if computations are done with complete accura cy.

The method aims to obtain an estimate, x," such that the length of the residual vector

rz, : b - Axn is minimized. Various aspects of this method are given by Beckman (1960),

Hestenes and stiefel (1952), Ginsberg (1971), and Strikwerda (1981).

The basic algorithm assumes a symmetric, positive definite coefficient matrix. Ex-

tensions for real, asymmetric coefficient matrices are described by Beckman (1g60) and

Strikwerda (1981). Wang and Treitel (1973) have reported that, for applications in seis-

mic deconvolution (involving a symmetric positive definite Toeplitz coefficient matrix), the
2Vector norms are defined in Section 3.3.
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conjugate gradient method can be programmed to work more efficiently on an array pro-

cessor, with subsequent reductions in processing time (this will be true only for large order

systems because of overhead in communicating with the array processor).

ln practice, computational errors often prevent the exact solution of the linear equation

being obtained in n or less steps, particularly when the system is poorly conditioned (refer

Chapter 3). This problem may be remedied by simply allowing the algorithm to proceed

for a greater number of steps, and terminating when some error criterion is satisfied. This

approach suggests that better results could be obtained by a judicious selection of the initial

estimate of the solution. The simplest way of obtaining a better initial estimate is to solve

the equation using a direct method to obtain an initial solution and iterate to improve it. ln

another approach, which is applicable if a large number of systems with similar coefficients

are being solved, the solution of one system is used as the initial estimate of the solution

to the next. lt has been reported by Wang and Treitel (1973) that such an approach gives

convergence in a very small number of iterations.

2.2.2.2 Other iterative rnethods

The Gauss-Seidel method is an iterative method which is described, amongst others, by

Norton (1960), Kreyszig (1988, pp. 810-813). lt produces, after rniterations, an estimated

solution x^ from which a residual r: AX- - b may be calculated. lt is referred to as a

relaxation technique because, at each sta ge, the estimated solution is modified (relaxed)

to reduce one component of the residual to zero. Although not considered further in this

thesis, this method is of interest because, as stated by Norton (1960), it will converge for

any initially estimated vector, if the coefficient matrix is symmetric and positive definite.

Two other methods, which are very closely related to the Gauss-Seidel iteration, are

the Jacobi iteration, discussed briefly by Kreyszig (1988), and over- or under-relaxation

techniques, which are based on the Gauss-Seidel technique, but instead multiply the change

in the solution so that, respectively, the appropriate element of the residual vector passes

zero, or does not reach it.

There are a number of other iterative methods e.g. Monte-Carlo methods, described
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by Oswald (1960). The major dif[erences between iterative methods is in the criterion

used to determine a "good" solution, and how they change the estimated solution. For

example, the Conjugate Gradient method alters all components of the estimated solution

in each step, whilst the Gauss-Seidel method alters only one component in each step.

It may be expected that such characteristics will afFect the numerical properties of the

methods. Some methods also require that the coefficient matrix satisfy special conditions,

which may be difficult to satisfy in general. For example, the Monte-Carlo method given

by Oswald (1960), and the Jacobi iteration mentioned in the last paragraph, require that

all eigenvalues of the matrix I - A, where I is the identity matrix, have a magnitude less

than unity.

2.2.3 Methods for Toeplitz matrices

There are a number of direct methods available for solving linear systems involving

Toeplitz matrices, or equivalently inverting a Toeplitz matrix. Related methods also exist

which are applicable to Hankel matrices, and these methods can, in some cases, be ex-

tended to apply to Toeplitz matrices. Details on some of these approaches are provided by

Cornyn (1974).

The two main approaches which will be considered in this thesis, are the Wiener-

Levinson algorithm, and Trench's algorithm. Some related methods are discussed in litera-

ture e.g. Bareiss (1969) describes a method of inversion of Toeplitz matrices. "superfast"

algorithms (e.g. Ammar and Bragg (1988), Bitmead and Anderson (1980), Hoog (1987)),

based on the use of Fast Fourier Transform (FFT) techniques, provide a more rapid solution

than the "standard" techniques, when the matrix system is of large order.

2.2.3.L The'Wiener-Levinson Algorithrn

The Wiener-Levinson Algorithm is a very simple one which was, in fact, trivialized

by it's author (refer, for example, to Levinson (1946)). lt is an algorithm for solving

a system involving a symmetric Toeplitz coefficient matrix. Computationally, it requires
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storage proportional to n (n being the order of the system being solved) and computer time

proportional to n2. This is a marked advantage over general methods which require storage

proportional to n2 and computer time proportional to n3. This algorithm has found wide

use in seismic deconvolution. The major constraint required for the system to be solved is

that all principal sub-matrices of the system are non-singular (this constraint is a function

of the algorithm-it is not true that a Toeplitz matrix is singular if one of its principal

submatrices is). The discussion here is essentially that given by Claerbout (1976).

The Wiener-Levinson Algorithm is based on the recursive property by which, given the

values aL>d2t. . . ¡cli and u¿, for the system of order i, such that :

?.g

T'i a,,i

the corresponding values ctrt'raz',,...,,ai' and u¿¡1for the system of order i +7 may be

obtained by calculating : 
L

€:Ti+t+Ðajri+r-j
j=l

Defining c: -å the desired values may then be calculated :

1

d1

U¿

0

0

u¿+t

a,j

u¿lce

a¡lca¡¡t-¿j:l rL

ai+t c

The algorithm thus has a recursive property in the sense that results for a system of order

i are used to calculate results for a system of order i +7. This approach may be readily

extended to obtain a solution vector for any given right hand side vector. The quantities

ui are discussed further in Section 4.4.1 where they are referred to as prediction error

vana nces
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2,2.3.2 Trench's Algorithm

Trench's Algorithm, presented by Trench (1964) and improved by Zohar (1969), is a

method for inverting a general Toeplitz matrix, rather than for solving a linear system

directly. The approach also has a similar advantage in computer time and storage to

that of the Wiener-Levinson Algorithm-namely, it requires storage proportional to n and

computer time proportional to n2. However, the basic algorithm does not produce the

inverse directly. lt produces two vectors of length nfrom which the inverse may be obtained

by simple recursion relations (similarly to the Wiener-Levinson Algorithm these vectors are

also produced by recursive relations). The method may be simplified if the coefficient

matrix is symmetric. As for the Wiener-Levinson Algorithm, this algorithm also requires

that all principal sub-matrices be non-singular. The computer algorithm used in this study

is based on that given by Cornyn (L974).

2.3 Eigenvalues and Eigenvectors

As will be seen later in Sections 3.3 and 3.4, eigenvalues of a matrix are important to

discussions about conditioning of linear systems. Eigenvalues will also be important for

some developments in later chapters. This section summarises some properties of eigenval-

ues and eigenvectors, which may be obtained from most basic texts, e.g. Kreyszig (1988).

Conditioning of the eigenvalue problem is discussed in Section 3.6.

Consider a system of linear equations :

Ax: Àx (2.4)

where A is a known n by n matrix, À is a scalar, and x is a non-null vector. There are n

vectors x¿ for which Equation 2.4 is true, referred to as eigenuectors or characteristic uec-

tors or inuariant directions. The corresponding values l¿are referred to as the eigenaalues

or chara,cteristic ualues.

It may be shown that the eigenvalues À¿ are the roots of the characteristic (polynomial)
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eq uatron :

det(A-À/):s (2.5)

where I is the identity matrix and "det" represents the determinant.

Eigenvalues of a real, symmetric matrix are real (Parlett (1980)). ln this case, the

eigenvalues may be considered, without loss of generality, to be ordered :

2.3.t Eigenvalues of the inverse matrix

<1.Àr(Àr(

Each eigenvalue of the matrix A-1 is the reciprocal of an eigenvalue of the matrix A :

À,(A-t): -l^ Q'6), À*_¿(A)

The matrices A-1 and A also have the same set of eigenvectors :

xi(A-l) : x,-¿(A) (2.7)

2.3.2 Positive definite and indefinite matrices

A real positive definite matrix, A, is defined as one for which the scalar quantity x"Ax
is positive for all non-zero vectors, x :

x"A*>ovxlo (2.8)

An equivalent condition, discussed by Bellman (1960), is that the real component of all

eigenvalues of the matrix A are positive i,.e. all eigenvalues appear in the right half-plane

of the complex number coordinate system. The eigenvalues of a real, symmetric, positive

definite matrix are real and positive.

ln a similar fashion, a positive indefinite matrix is one for which :

x"A*>oVxlo

The eigenvalues of a real, symmetric, positive indefinite matrixare non-negative. A positive

indefinite matrix may also be referred to as a positive semidefinite matrix.
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Analogous definitions hold for definitions of negative definite and negative indefinite

matrices. The term "indefinite matrix" without qualification is used to describe a matrix

which does not belong in any of the above classes e.g.lhe eigenvalues of a real, symmetric,

indefinite matrix may be either positive or negative.

2.3.3 Further properties of eigenvalues

Further properties of eigenvalues of a real matrix are as follows

o the sum of all eigenvalues of the matrix A is equivalent to the trace of A, the sum

of its diagonal elements : rL n

ÐÀo: ¿r(A) :Ðon
it,

o the product of all the eigenvalues of A is equivalent to the determinant of A

fI À, : det(A)

2.4 Nurnerical evaluation of eigenvalues

The standard eigenvalue problem may be posed very simply as the determination of

non-trivial solutions of Equation 2.4. Unfortunately, the numerical determination of these

solutions is a far from trivial task, usually requiring significantly more effort than does

the solution of the corresponding linear equation. Many algorithms are required to deal

efficiently with the wide range of problems which are encountered in practice, for example :

o Eigenvalues and/or eigenvectors may be required,

o The complete set of eigenvalues and/or eigenvectors may be required, or a compar-

atively small number, e.g. the k largest or smallest eigenvalues,

o The coefficient matrix A may be symmetric or asymmetric.

The purpose of this section is to identify some of the more commonly used methods of

evaluation of the eigenvalues of a matrix, with little emphasis being placed on evaluation
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of the eigenvectors. lt is not the intention to present a comprehensive description of

such methods. More details may be found in literature, for example Greenstadt (1960),

Wilkinson (1965), Martin et al. (197la), Rutishauser (1971), and Parlett (1980).

2.4.L Jacobi methods

Jacobi methods are amongst the most elegant devised for solving the complete eigen-

problem. The basic algorithm produces all eigenvalues and (optionally) eigenvectors of a

symmetric matrix. The algorithm is essentially a repetition of the process :

An"- : P-1AP (2.e)

where P is non-singular and referred to as a permutation matrix. This process has the

feature that the matrix A,,u- has the same eigenvalues as the matrix A. The most common

permutation matrix employed is one representing a plane rotation in the form :

10
0 '.

cos(0)

-sin(0)

sin(0)

cos(0)

0

0

01

1

1

1

1

0

Jacobi algorithms make a judicious choice of plane rotations so that each step annihilates an

ofl-diagonal element (i.e. that element in An"* will be zero), the aim being to annihilate

all ofF-diagonal elements as far as possible. When all ofF-diagonal elements have been

annihilated, the eigenvalues are found on the main diagonal. The algorithm is essentially

iterative because, when annihilating one ofF-diagonal element, a previously annihilated
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element may be made non-zero. For this reason, the process is either repeated for a fixed

number of iterations, or until the ofF-diagonal elements are acceptably small.

Eigenvectors may be found by applying the same sequence of plane rotations to the

identity matrix as are applied to the original coefficient matrix A. The algorithm has the

advantage that it is simply formulated, and all eigenvalues and eigenvectors may be obtained

to working accuracy reasonably efficiently, regardless of the existence of any multiple or

pathologically close eigenvalues. Extensions for asymmetric matrices also exist, described

by, for example, Eberlein and Boothroyd (1971).

2.4.2 Power methods

Power methods are based on the observation that the sequence

x¿+r : Ax¿

repeated indefinitely with an appropriate non-zero starting vector x¡ will produce a sequence

of vectors in which the situation :

)r¡¡1 : cX¡

will be approached for large j. That is, the situation will eventually be reached where

consecutive vectors in the sequence will eventually be a scalar multiple of each other.

The value c thus produced will approach the eigenvalue of largest magnitude and the

corresponding x¡ will approximate the corresponding eigenvector. When the matrix A is

real and complex eigenvalues may occur, it is necessary to choose the starting vector xs to

have some complex component so that the largest magnitude eigenvalue can be obtained,

even if it is complex. This approach requires some modification if a number of eigenvalues

all have maximum magnitude.

From this simple formulation more powerful methods, such as the LR and QR al-

gorithms, have been developed. The basic algorithms apply to general square matrices,

although various forms are available for difFerent special cases, and approaches which result

in more rapid and/or reliable evaluation of the eigenvalues. Algorithms exist for evaluating
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all eigenvalues of a matrix(e.g. Martin et al. (1971a), Bowdler et al.

of the eigenvalues of smallest magnitude (e.g. Martin et al. (1971c))

(1971)), or a number

2.4.3 Eigenvalues of Toeplitz matrices

There are a number of efficient algorithms for the solution of linear systems with Toeplitz

coefficient matrices, which exploit the Toeplitz structure. However, this is not true for

the problem of determining eigenvalues. Algebraic properties of eigenvalues of Toeplitz

forms have been discussed by, for example, Grenander and Szego (1958), Nevai (1980),

Grunbaum (1981a, b), Bini and Capovani (1983), and Trench (1985). However, to the

authors knowledge, no efficient computational methods for calculation of eigenvalues of

Toeplitz forms, which exploit their structure, currently exist. For this reason general meth-

ods, such as the QR-algorithm or Jacobi plane rotations, must be applied.

44



Chapter 3

Errors in Linear Systerns

A number of classes of linear equations of the form

Ax:b (3. 1)

were introduced in Chapter 2. A number of numerical methods for solving linear equations

were also discussed.

The concern of this chapter is the efFect of the difFerence Xd : x - y where y is the

solution of the disturbed system :

(A+A¿)y:b*b¿ (3.2)

where A¿ and b¿ are matrices of perturbations in the matrix A and vector b respectively.

Some causes of these perturbations are discussed in Section 3.1. The errors in the solution

of such a perturbed system will afFect any later results or interpretations made using this

solution.

Any perturbations A¿ or b¿ will cause an error in the solution. What is important,

however, is not that the error in the solution will occur, but rather how significant that

error will be i.e. does a small perturbation result in a small or large error in the solution,

or in later results calculated using it? This problem may be considered in two ways :

1. do small perturbations, A¿ and bd result in a solution vector y which is significantly

(in some sense) in error relative to the true (desired, but generally unknown) solution

45
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vector x ? lf the vector y is significantly in error, any results calculated using it may

be expected to have significant error.

2. Do small errors in the solution vector y cause significant errors in any quantities

calculated later using it ?

These two problems are closely related-both refer to how any errors produced at any

stage in a series of calculations propagate through into the final results. The remain-

der of this chapter is directed towards the first of these problems-namely, the defini-

tion of ill-conditioning in linear systems-and any use of terminology will be considered

as it applies to linear systems. However, the term "ill-conditioning" can apply to any

stage in any series of computations. Any computational problem may be described as

ill-conditioned if a small error at any stage manifests as a more significant error at a later

stage. The theory which follows is provided by a number of texts, e.g. Barnett (1979),

Ralston and Rabinowitz (1978), Deif (1982), Householder (1964), and Press et al. (1986)

but is mainly due to Wilkinson (1961, 63, 65).

3.1- Errors and computer arithrnetic

The perturbations described in Equation 3.2 may arise in a number of ways

1. The elements of A or b may be measured quantities subject to observation error

(a) noise

(b) the blunder - a gross human error

2. elements of A andf or b may be estimated. Examples are

(a) in predictive deconvolution, the autocorrelation is estimated from the data,

afFecting both the coefficient matrix and right hand side vector,

(b) in kriging, the covariance or semivariogram is estimated from the data. A

model is also imposed. This afFects both A and b when kriging estimates are
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point locations. When kriging a mean value over an area, b may, in addition, be

poorly known because the fitted function may not be mathematically integrated.

The gaussian function, which occurs in examples of Chapter 7, is a function

which can not be analytically integrated, and which is employed in geostatistical

practice.

3. The elements may be known exactly, but when stored in a computer they can only

be stored to a fixed number of decimal places. For example, I may be stored (to 5

decimal places) as 0.33333 which is not exact. The difFerence between the true and

actual values is referred to as rounding error. More details are given in Section 3.1.1.

4. The elements may be a result of prior computations, hence subject to rounding errors,

which will be described in Section 3.1.1. That is, previous errors will have an ef[ect

on the results of the current calculation, which may also introduce a component of

error.

3.1.1 Floating point arithmetic

Errors may arise in a number of ways in floating point arithmetic. The first of these is

adding two numbers of dif[erent orders of magnitude. For example, consider a hypothetical

comPuter which carries seven significant figures in it's calculations, and assume there are

two numbers ¿ : 234.5372 and ó: 0.0002848905 from which it is desired to calculate

a' + b. The computer will return the result a,+ b :234.5375 instead of the true result

a + b:234.5374848905, which represents a loss of significant figures in the result.

Errors may be magnified by dividing by small numbers. Consider a number a/ which is

the current value in storage representing a number ¿, so a,' : a.*A¿ where Aø is the error

introduced by storing the value in finite computer storage. lf, at some time, the operation

c : a,lb is performed where ó is small in magnitude, the result c obtained will have a much

larger absolute error than did the value ø'. When the calculated value of c is used in later

calculations, large errors may result-an initial error can propagate through the solution.
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Because small numbers are often produced during a series of calculations (e.g. subtracting

two very close values), this type of error occurs frequently.

ln a series of calculations, the errors introduced may be positive or negative, therefore

an error in one calculation may cancel out, or significantly reduce, the efFect of an error

produced by an earlier calculation. For this reason, final results will not necessarily be as

inaccurate as may be expected from the above discussion. However, in general, it may be

expected that an error at any stage in a series of calculations will manifest itself in the

final results. More details of the efFects of this type of error, together with considerations

applicable to this study, may be found in Appendix A.

3.2 Ill-conditioned Linear Systerns

Definition 3.1 A matrir equation is said lo be ill-cond,itioned when a small relatiae

error, in the coefficient matrir, the right hand, sid,e, or tlt,e solaing process, proiluces a

much larger relatiue error in the solution.

A matrix equation which is not ill-conditioned is said to be "well-conditioned"

lll-conditioning may be considered in a number of related ways :

1. An approach towards singularity. Conventionally, matrices are divided into two

groups-non-singular and singular (meaning respectively those having an inverse and

those which do not). However, this classification does not fully describe the situation

when the system is solved on a computer. lll-conditioned systems fall into a class

which are, by definition, analytically solvable. However, their solutions often can not

be numerically obtained because the ill-conditioning manifests itself by a loss of sig-

nificant figures during computation, making it difficult to obtain an accurate solution.

Conversely, singularity may be considered as a very severe form of ill-conditioning.

2. One definition of singularity is that at least one of the rows (columns) of the coeffi-

cient matrix is a linear combination of the others. An ill-conditioned system may be



CHAPTER 3. .ÐRRORS I¡\r II¡\rEAR SYSTÐMS 49

regarded as an approach to this situation : at least one of the rows (columns) of the

coefficient matrix is "very nearly" a linear combination of the others.

Figure 3.1 illustrates the contrast between an ill-conditioned and a well-conditioned

system of two linear equations in two unknowns. The pairs of lines in each case are the

lines which may be defined by the respective system, with the point of intersection being

the desired solution. lf the system is ill-conditioned, the lines are "almost parallel", whilst

this is not true for a well conditioned system. Analogous results hold for systems with more

u n knowns/eq uations.

(")
r

(b)

Figure 3.1: (a) Well Conditioned and (b) ill-conditioned system of two linear equations
in two unknowns

The following sections introduce some concepts and methods of use for recognizing

ill-conditioned systems.

3.3 Vector and matrix norrns

ln order to recognize an ill-conditioned system, it is necessary to have a measure of
some characteristic of vectors and matrices which can be used to compare difFerent systems.

va

r



CHAPTER 3. ERRORS I]V ¿I]VEAR SYSTEMS 50

Norms give a measure of the "size" (in some sense) of vectors and matrices, which can be

used for this purpose.

3.3.1 Vector norms

The introduction of vector norms is the process of associating a scalar with a vector,

this scalar being a measure of the magnitude or length of that vector in some sense-in an

identical waythat a non-negative real number lcl is defined as the magnitudeof a complex

number a. This measure can then be used to compare difFerent vectors.

Deffnition 3.2 A norm of a aector x € Cn (compler aectors), denoted bU ll"ll, is any

non-negatiue real scalar function whiclt, satisfies the following :

1. ll"ll> 0 if xlo (positiuity)

2. llo"ll : lal llxll /or any scalar a (homoseneity)

3. llx+vll< ll"ll+ llvll for alluectors x,y € C* (triangular i,nequatity)

One of the most frequently used vector norms is the HöIil,er norrn which is given by :

(3 3)

where p is a positive integer, and æ¿ is the ith component of the vector x. ln practice, the

most widely used values of p are 1 and 2. The 2-norm (which is also referred to as the

Euclidean norm, or the length of the vector x in the space C") is a well known measure of

the size or magnitude of a vector.

3.3.2 Matrix norms

Vector norms provide a measure, in some sense, of the magnitude of a vector. ln a

similar fashion, matrix norms can be defined which provide a measure of the magnitude of

a matrix.

x,:(å ",")t
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Definition 3.3 A norm of a square matrir A, denoted áy lllll, is any non-negatiue

real scalar function which satisfies the followzng :

.llAll>orlL+o
o llaAll : l"l llAll/or any scalar a

. llA + Bll < llAll + llell for any A.,B e C""

o llABll< llAll llBll

There are many matrix norms which satisfy the above relations, of which one of the

most important are matrix Hölder norms subordinate to Hölder vector norms :

llAll- : max llAxllo (8.4)' *#0 ll*ll,
One advantage of using the Hölder matrix norm is that :

llA"ll, < llAll, ll*llo for all A. € Cnn and x e C" (3.5)

The most widely used Hölder matrix norms are :

o The 1-norm :

llAll, - maxllAxll' : 'l* il.,o,lx ll*llt j o=,

o The 2 norm, or spectral norm :

ilAil, : max llAxll,
x ll"ll,

¡ The oo-norm ;

llAll- - max Iltxll'" : ';* Ð lro, I

ll--llcÐ " j=7

3.3,2.L The Spectral Norm

The spectral matrix norm of a general matrix A may be expressed using the maximum

magnitude eigenvalue of the matrix A"A :

llAll, : ,.*/l\(A'A)l (3.6)

Usmani (1987, pp. 167-168) gives a proof of this result.
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3.4 The Condition Nurnber

Deffnition 3.4 The cond,ition number of a matrir A is giuen by

"r(A) --
max lll"ll

ll.'llo : ll.rllo: 1 (3.7)
min 

I
4rllo

The condition number is the maximum possible ratio of Hölder norms of transformed

vector lengths, given that the untransformed vectors had a Hölder norm equal to unity.

The minimum possible value for a condition number is unity.

The condition number, given in Equation3.7, may be rewritten using Equation 3.5 as:

oo(A) : llAll,llA-'llo (3.8)

which expresses the condition number in terms of Hölder norms of the matrix of interest

and of its inverse.

3.4.I LJse of the condition number

The usefulness of the condition number arises from

lA b
(3.e)

(A proof of this result is given by Deif (1982, pp. 202-20\) i.e. the relative change in the

solution vector, introduced by errors A¿ and b¿ and defined in terms of the appropriate

Hölder vector norm, has an upper limit which is directly related to the condition number,

defined in terms of the corresponding Hölder matrix norm. A large condition number

implies that the linear system may be ill-conditioned (as in Definition 3.1), whilst a small

condition number excludes this possibilityl. A large condition number does nol imply that

a linear system is ill-conditioned-only that it may be. As described in Section 3.1.1, errors

incurred in solving the linear equations may cancel each other out, therefore the errors in
lstrictly speaking, a small condition number does not exclude the possibility that the linear system is ill-

conditioned, as in Definition 3.1. The discussion throughout this chapter implicitly assumes that the solution
algorithm exhibits some form of stability. The topic of stability will be examined more closely in Section 5.2.

ffi<,,,(o)(
llb¿ll,llA,llo +

p p
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the final result may not be as great as expected. As a result, condition numbers may be

u n necessarily pessimistic.

It is well known, e.9. Wilkinson (1961, 63, 65), that in the error analysis of elimination

methodsfor positive definite matricesthat the condition number is characteristic of possible

amplification of single round-of[ errors.

3.4.2 The Spectral Condition Number

The value of llAll, the spectral matrix norm, has been given in Section 3.3.2.t. ln

order to be able to make use of Equation 3.8 in the case p : 2 to obtain a spectral

condition number it is necessary to have a value for llA-tllr. This value may be obtained

from Equation 2.6 :

llA-'ll,: 1

lÀ-i,(A"A)l
(3.10)

where the notation À-¿r,(M) represents the eigenvalue of the matrix M with minimum

magnitude. ln a similar fashion, the notation )-o,(M) will be used to represent the

eigenvalue of the matrix M with maximum magnitude. The matrix A"A is real and

symmetricfor all real matrices, A, therefore all eigenvalues of ATA are real (Section 2.3).

Substituting Equations 3.6 and 3.10 into Equation 3.9 (with p : 2), the spectral

condition number, for a general matrix A, may be written as:

rc2(A) : ll-",(A"A)l (3.11)
lÀ-i,(A"A) |

It is common practice to describe a matrix with a large spectral condition number as "ill-

conditioned". This practice will be followed throughout this thesis, although it should be

noted that an "ill-conditioned" matrix does not necessarily imply an ill-conditioned linear

system, as defined in Definition 3.1. This is discussed further in Section 3.5.

Throughout the remaining chapters of this thesis, unless otherwise stated, the term

"condition number" will be used to refer to the spectral condition number. The expres-

sion rc(A) will refer to the spectral condition number of the matrix A, which has been

represented in this chapter as rc2(A).
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3.4.2.L Spectral results for syrnrnetric rnatrices

lf the matrix A is symmetric, the spectral norms and condition numbers may be sim-

plified as follows :

1. Equation 3.6 for the spectral matrix norm may be rewritten as:

llAllr: lÀ*",(A)l (3.12)

2. Equation 3.10 may be reduced to :

1llA-'ll,: A (3.13)
\^¿n )(

3. The spectral condition number given in Equation 3.11 simplifies to

,cz(A): 1ì-"Í1ìl' l\^¿"(L)l
(3.14)

3.5 Rrrther considerations

lll-conditioning as in Definition 3.1 is qualitative rather than quantitative-the defini-

tion of an ill-conditioned system is subjective. Several measures of ill-conditioning have

been proposed (of which the condition number is one) but common usage is still qualitative.

Some other symptoms of ill-conditioning are described by many texts on numerical anal-

ysis (e.g. Young and Gregory (7972), Ralston and Rabinowitz (1978), Kreyszig (1988)).

These could be used to define quantitative measurements. Some examples are:

t. lf ldet Al is small in comparison with the maximum magnitude of the elements a¿¡

of the matrix A or the elements ó¿ of the vector b, then the system Ax : b will

often be ill-conditioned.

2. lf the magnitudes of elements of A-1 are large in comparison with the magnitude of

elements of the solution, the system will often be ill-conditioned.
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3. lf the principal diagonal elements are large in comparison with the ofF-diagonal ele-

ments (i.e. the matrix is diagonally dominant), the system is usually well-conditioned,

or at least less ill-conditioned than a similar system which is not diagonally dominant.

Unfortunately, no symptoms or measurements are totally indicative of whether or not

a given system is ill-conditioned. Cases may be found for each which one or more of these

tests indicate the linear system to be ill-conditioned, when it is, in fact, well-conditioned.

This is because difFerent matrix systems have difFerent properties (e.g. symmetric vs. non-

symmetric, positive-definiteness, band nature, etc) which afFect the results of some of these

tests. More significantly, difFerent solution or inversion algorithms have difFerent numerical

properties. No symptom or measurement of ill-conditioning should be used alone, unless

the numerical properties of a given matrixclass are known when solution is attempted with

a given algorithm.

ln practice, a number of the quantities used to indicate ill-conditioning are difficult

to extract numerically. For example, the condition number, defined in Equations 3.L1

and 3.14, involves calculation of the maximum and minimum magnitude eigenvalues of

a symmetric matrix. Calculation of these eigenvalues, discussed briefly in Section 2.4,

involves a significant computational efFort, so performing this test will increase computing

costs. Also, small magnitude eigenvalues, which will often occur when the system is ill-

conditioned and may occur even if it is well conditioned, are often difficult to extract

numerically due to the accumulation of rounding errors in the process (Parlett (1980)).

Because of the problems outlined above, a complete package to test for ill-conditioning

is not feasible in practice. However, other, more approximate, tests may be feasible if their

results provide an indication of ill-conditioning at a reasonable cost. Case studies may also

be performed. These can give valuable insights which may be applied in practice.

DifFerent solution methods have difFerent numerical properties, even though they are

attempting to solve the same problem. For example, Gaussian elimination, which reduces

the coefficient matrix to triangular form, introduces less numerical error than Gauss-Jordan

elimination, which reduces the coefficient matrix to the identity matrix. As discussed in

Section 2.2.t, both these methods are based on the same row reduction and pivoting tech-
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niques. However, because Gauss-Jordan elimination requires more arithmetic operations

to achieve its aim, solution time and the ef[ect of numerical rounding errors is increased.

Other methods are also available-for example, in the seismic deconvolution problem, the

Conjugate Gradient Method has received attention (Treitel and Wang (1976)) as a method

having desirable numerical properties, in addition to reducing processing costs under certain

circumstances. These examples demonstrate that ill-conditioning must also be expressed

in terms of the solution algorithm used.

The matrix equation may be altered in some way so that the resultant system is less

ill-conditioned. Pre-whitening, discussed in Section 4.5, is one such method. Whilst the

solution of a pre-whitened system dif[ers from that of the original system, the pre-whitened

system is substantially less ill-conditioned.

3.6 Conditioning of the eigenvalue problern

The spectral condition number of a general real matrix A is expressed in Equation 3.11

in terms of the eigenvalues of maximum and minimum magnitude of the square matrix

A"A. This section considers how reliably these eigenvalues may be computed.

Parlett (1980) has shown that the eigenvalue problem for symmetric matrices is always

well conditioned in the sense that eigenvalues obtained numerically for a symmetric matrix

B will always be those of a matrix :

B+H
where llHll, is small in comparison with llBllr. He also demonstrated that eigenvalues of

small magnitude are difficult to evaluate accurately due to round-ofF. This is essentially

because the smallest eigenvalue of B may be small in comparison with llHllr. Evaluating

the largest magnitude eigenvalue(s) to working accuracy may hinder, or even prevent, the

calculation of eigenvalues of small magnitude to an acceptable accuracy.

These conclusions do not hold for general matrices-the process of calculating eigenval-

ues of a general matrix may be ill-conditioned-computed eigenvalues of a general matrix

B are not necessarily those of B *H where llHll, is small in comparison with llBll,
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Conditionirtg of deconvolution

Treitel and Wang (L976) observed that autocorrelation matrices, used for time-domain

design of digital deconvolution filters, are ill-conditioned in certain cases. They present an

example, in which the solution of such a system of linear equations results in significantly

difFerent filter points, when the solution is performed on difFerent computers.

This chapter addresses a number of aspects relating to conditioning of autocorrelation

matrices, and is an extension of work published by the author, O'Dowd (1990). Early sec-

tions present a survey of causes of ill-conditioning from a mathematical point of view. Later,

properties of Toeplitz determinants are employed to derive a lower bound for the spectral

condition number of symmetric positive definite Toeplitz matrices. This result means that

the Wiener-Levinson Algorithm is capable of providing an indication of whether or not it

is severely afFected by rounding errors when solving the normal equations. Prewhitening

is then discussed in detail, and it is seen that prewhitening will always result in a less ill-

conditioned autocorrelation matrix. Chapter 5 is devoted towards case studies to illustrate

concepts discussed in this chapter and to examine the performance of tests of conditioning

which may be formulated from them.

57
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4.L Spectral Properties

As observed in Section 1.4.1, the autocorrelation matrix, R, is symmetric, Toeplitz,

and positive definite in most practical cases. Treitel and Wang (1976) noted that the

spectral condition number of a matrix is a measure of conditioning, but did not discuss its

physical meaning. The physical meaningof the condition number, rc(R) may be determined

by considering the meaning of the maximum and minimum eigenvalues. lt was proved

by Grenander and Szego (1958, Chapter 3) that, defining p and P, respectively, as the

smallest and largest values of the power spectrum, we have :

p1\^¿n1)*o, 1P (4.1)

where \,n¿n and ),^o* are, respectively, the smallest and largest eigenvalues of the autocor-

relation matrix, R. From this it may be seen that :

rc(R) : (4.2)

Related results are given by Ekstrom (1973). Korvin (1978) has also given a derivation of

Equation 4.1 using much simpler arguments than are used by these previous authors.

These results indicate that small values of the power spectrum, in comparison with

the maximum value, for certain frequencies, may be expected to result in ill-conditioning

of the deconvolution problem. Such a conclusion is consistent with the fact, described in

Section t.4.2, that deconvolution in the time domain may be expressed as a division in the

frequency domain. This means that zeros in the power spectrum will be an indication that

exact deconvolution must fail. Using arguments of continuity, it may be expected that small

power values will result in numerical difficulty due to ill-conditioning in the time domain

(conversely, extremely large peaks in power, which may be associated with resonance in

a wave guide, may also be expected to result in ill-conditioning). Furthermore, aliasing

results in an increase in observed values of the spectrum due to additive mapping of higher

frequencies to lower values in the discretely obtained spectrum. This allows the interesting

conclusion that a poor sampling, which may result in a greater degree of aliasing, may

result in an inherently less ill-conditioned autocorrelation matrix than will a much better

P
-p

À*ot

^**.
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sampling. lt w¡ll be noted in later sections that this efFect means that striving for higher

resolution by increasing sampling may result in numerical difficulty when deconvolution is

performed, thereby ofFsetting gains provided by the higher resolution.

4.2 Fledholm integrals

A Fredholm integral equation of the first kind is an equation of the form

y(r) : r(r,t)f(t)dtYr"lr 1r" (4.3)

lf the functions y(r) and æ(r,,t) are known, the problem is to find the function /(t) To

solve the problem numerically, the interval [ú",ú"] may be subdivided into n points and

the interval lr",r"l may be subdivided into m points. Equation 4.3 may therefore be

approximated as :

n-l
y(rr) = Ð r(r*,t)q¡f(t¡) V0 < k 1 rn - 7 (4.4)

j=o

where the values qj are a set of appropriate quadrature weights. Equation 4.4 may be

written in vector-matrix form as :

Xw : y (4.b)

where y* : V(rx), nkj : r(r¡,t¡), and u¡ : q¡T(t¡).

4.2.L Linear Dependence of Columns

Hunt (1972) has shown that as the function r(r,f) becomes smoother (in the sense

that it can be reasonably approximated by a finite Taylor series expansion), or (equivalently)

more continuoLts, that the (k + t)tt'r row of X becomes more nearly a linear combination

of rows k and k - 7 for k Il :2...n¿- 1. As described in Section 3.2, this means that

Equation 4.5 may be expected to become progressively more ill-conditioned as the function

r(r,t) becomes more continuous. lt may also be expected that as the order of the matrix

system is increased and Equation 4.4 becomes a better approximation of Equation 4.3,
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the matrix system becomes progressively more ill-conditioned. This is an efFect noted by

Rust and Burrus (L972).

These results may be applied to deconvolution described previously by noting that the

convolution of functions ø(z) and /(r) may be written as :

y(r):r*f - [* r?- Ðf!)dt V-oo(r(oo (4.6)
J-æ

where the "*" is the standard notation for convolution. By setting the function /(¿) to be

zero outside the range [ú",ú"] this reduces to:

aG):r*f- n(r-t)f(t)dt Vr"( r1r" (4.7)

(4.8)

The right hand side of this equation is a special case of Equation 4.3. The coefficient

matrix X of Equation 4.5 reduces to the form :

rs0 0

X

0

frgfrm-l

0

0 rm-r

This matrix is a Toeplitz n by m matrix. Furthermore, it may be seen that R", the

autocorrelation matrix with values for all possible lags, may be written as :

R": B)K'X

where B is simply a constant scale factor. The autocorrelation matrix R employed in

deconvolution is simply a principal submatrix of R". Equation 1.5, given for digital convo-

lution, may be obtained by a discrete sampling of Equation 4.7. Therefore, a continuous

seismic trace is more likely to result in an ill-conditioned autocorrelation matrix than one

which is not as continuous.

0
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4.2.2 Deconvolution is incorrectly posed

The solution of Fredholm integral equations of the first kind, as given in Equation 4.3,

would be said to be correctly posed if :

o for every function y(ú) there corresponds a solution /(") to the problem

o the solution /(s) is unique for any given y(ú).

o the solution /(s) is continuous with respect to y(ú).

As stated by Tihonov (1963a), it is not generally true that a solution /(s) may be produced

for any given y(ú) for equations of this type. So there may be no function,-f("), which,

when convolved with a given filter, s, will yield a desired output y(f). This means that the

solution of Fredholm integral equations, and therefore deconvolution, is incorrectly posed.

This has also been observed by Rice (1962) in relation to inverse filtering. ln the language

of that paper, /(s) and y(ú) would be termed "incompatible" if any of the above conditions

do not hold.

lf the left hand side of Equation 4.7 is only known to a finite accuracy, the difFerent nu-

merical methods to solve Equation 4.7 lead to quite erratic results. Phillips (L962) presents

some interesting numerical examples, and attributes this phenomenon to the fact that the

integral operator with kernel æ(t,s) generally has no bounded inverse. Franklin (1970)

noted these efFects, and discussed the use of stochastic processes to provide information

about ill-posed linear problems.

The phenomenon, in which it is not necessarily true that a solution is able to be

produced, may be understood by converting Equation 4.6 into the frequency domain :

Y(r): x(u)F(u)

lf the kernel r(ú) is such that X(rr) is zero for some frequency ø1, whilst the chosen

function y(ú) is such that Y(rt) is non-zero, then F(rt) can not exist, and the function

/ also can not exist. Geophysical inverse theory, discussed in Appendix D, may be used to

account for this phenomenon in a physical sense.
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4.3 Rernark about ill-conditioned autocorrelation

matrices

Previous sections have given a survey of a number of causes of ill-conditioned matrices

from a mathematical point of view. lt must be noted that ill-conditioning of an autocorre-

lation matrix may be regarded as an approach towards some limit in the properties of that

matrix. For example, ill-conditioning of the autocorrelation matrix may be associated with

the occurrence of relatively small values in a power spectrum for some frequencies. This is

an approach towards a limit in which zeros occrJr in the power spectrum. Alternatively, an

ill-conditioned autocorrelation matrix is symptomatic of the case when rows of the matrix

X are approaching linear dependence.

All discussion so far has ignored cases in which the autocorrelation matrix is posi-

tive indefinite because, in practic, (".g. Robinson (1967a)), the autocorrelation matrix is

assumed to be positive definite, and the possibility of positive indefinite autocorrelation

matrices is not considered. However, it must be noted that a positive indefinite (singular)

autocorrelation matrix is the limit which is being approached when ill-conditioning is being

observed. Korvin (1978) gives a proof that the autocorrelation matrix is positive indefinite

in general.

4.4 Prediction Error Variances and Conditionittg

The Wiener-Levinson algorithm is commonly employed to solve the normal equations

arising in seismic deconvolution. Numerical errors may be expected to occur due to finite

word length provided by a computer. This section focuses on an approach for detecting

cases in which the autocorrelation matrix may be sufficiently ill-conditioned to produce

significant errors in computed Wiener filters, when solution is performed using the Wiener-

Levinson algorithm.

62
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4.4.t Toeplitz deterrninants

Properties of the autocorrelation matrix, R, were discussed in Section L.4.L. This

section introduces properties of the determinant of the autocorrelation matrix, which are

given by Robinson (L967a, pp. 133-144), and will be used in later sections.

The (k + 1)th principal sub-matrix of the autocorrelation matrix may be written as :

Tg T1

T1 ?^g

rk

Tk-t
R(k) : (4.e)

rk Tk-t f'g

and its determinant as :

D(k): det(R(k)) (4.10)

Consider the case where the right hand side of the (lc + t)th order Wiener equation is

a positive spike :

fg T1

T'1 fg

Í'¡,

rk-t

1

"',(k)

uh

0
(4.11)

I'lç r k-t ?'s ak(k)

where un ) 0, is the corresponding pred,iction error uariance. As discussed in Sec-

tion 2.2.3.1, these terms are fundamental to the workings of the Wiener-Levinson algo-

rithm). On solving Equation 4.11, it may be seen that :

0

D(k)
D(k - 1)

(4.12)

Therefore, the determinant of the n by n coefficient matrix of Equation 1.10 may be

expressed as :

. n-I
D("-I):llu¡

lc=0

for n ) 1 and where it may be seen that :

(4.13)

utc:

us: D(Q) - 7, (4.74)
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As seen in Section 2.2.3.L prediction error variances are fundamental to the solution of

linear equations involving symmetric Toeplitz coefficient matrices. Specifically, prediction

error variances are intermediate results of the Wiener-Levinson algorithm.

4.4.2 Condition numbers and prediction error variances

As noted in Section 3.6, eigenvalues of small magnitude may be difficult to evaluate

to working accuracy due to round-ofF. This means that the spectral condition number

(which may be defined in terms of the maximum and minimum magnitude eigenvalues of

a symmetric matrix) may exhibit quite large error, even though the eigenvalue problem

is well conditioned. lt may be reasonably expected that any computed upper bounds for

the spectral condition number will also exhibit large error. For this reason, this section

has a difFerent emphasis - a lower bound to the spectral condition number will be evalu-

ated. This lower bound ofters the advantage that it is written in terms of prediction error

variances, which are intermediate results of the Wiener-Levinson algorithm.

lf the autocorrelation matrix, R is symmetric and positive definite, the determinants

of all principal submatrices are positive :

D(k)>0Vk:0,...,n-7

(Bellman (1960)), from which it may be concluded that :

u¡r)0Vlc:0,...,n-7

Properties of eigenvalues of a matrix, described in Section 2.3.3, may be used to show

that:

D(n - t) : II r* (4.1b)
lc=1

n

_ì ^- 
: TLT'o (4.16)

where À¿ are the eigenvalues of R, which are real and positive, as discussed in Section 2.3.2.

Properties of prediction error variance, provided by Claerbout (1976, pp. 55-57), may be
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used to show that :

To:r.to>.u1 )...>

Considering, without loss of generality, the eigenvalues to be ordered

lrr ) )"r-r > .. .

the spectral condition number may be written :

rc(R):þ:þ
' À^'in Àr

and from Equation 4.16 it may be seen that :

0(À1 (rs

bÐ

(4.17)

(4.18)

(4.1e)

The lower bound in this equation arises directly from the last inequality in Equation 4.18.

The upper bound may be obtained using a contradiction argument. Substituting an as-

sumption that 11 ) rs into Equation 4.16 gives :

Ë^*<(n-1)rs
Ic=2

There are ?? - 1 terms in the summation of the left hand side of this equation. This means

that at least one of the eigenvalues, other than )1, must be less than ro, violating the

assumption of Equation 4.18. Arguments of a similar nature also give rise to :

rs ( À, lnrs (4.20)

The vector on the left hand side of Equation 4.11 for the case k+7: n may be expressed

as a linear combination of eigenvectors, v¡, of the autocorrelation matrix :

1

or(r)
Ð ",ur

n

lc=l

a"(n)

Examining the first element of this vector, it may be seen that :

)- c¿u¿, - 1

f¿

Ic=l
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Substituting into Equation 4.11 gives :

66

n fL fL

t/n-r: IÀ¿"¿r¿, > t )1c¿u¿r: Àt D c¿u¿r: ),1 (4.21)
k=1 k=l k-l

Equations 4.19 to 4.2L may be combined to obtâin :

Àn) us: ro 2 un-1 ) ),1 (4.22)

from which a lower bound for the spectral condit¡on number, o(R), may be written :

o(R):þ, uo 
e.%)' À1, - l/n-l

This means that intermediate results of the Wiener-Levinson Algorithm may be employed to

give an indication of the conditioning of the autocorrelation matrix, R. From Equation 4.17,

the lower bound of Equation 4.23 will increase with the order of the matrix. This is

consistent with (but is not a proof of) a result proven by Bunch (1985) : a positive

definite symmetric matrix is at least as ill-conditioned as any of its principal submatrices.

This lower bound is sharp in theory, being attained trivially for the nby n identity matrix, I.

This result means that small prediction error variances, in comparison with the maximum

prediction error variance, may be considered an indication of ill-conditioning. lt must be

noted, however, that, for general symmetric, Toeplitz, positive definite matrices, this lower

bound may be extremely conservative.

Referring to Equation 4.L7, it may be seen that all prediction error variances should

be positive. lll-conditioning may be associated with the presence of eigenvalues of rela-

tively small magnitude, in comparison with the eigenvalue of maximum magnitude. As

noted in Section 3.6, numerical errors may cause negative computed eigenvalues to occur

(this ef[ect was, in fact, observed by Treitel and Wang (1976)). Equation 4.23 indicates

that ill-conditioning may, in addition, be associated with the occurrence of prediction error

variances of relatively small magnitude, in comparison with the one of maximum value.

Just as negative computed eigenvalues may be considered indicative of ill-conditioning, the

occurrence of prediction error variances which are negative, due to accumulated round-of[

error, may be considered a symptom of ill-conditioning. This means that any prediction
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error variances, computed in the course of the Wiener-Levinson Algorithm, which are nega-

tive provide an indication of ill-conditioning (or, more precisely, that the computed solution

may be severely afFected by rounding error).

The use of intermediate results of a solution algorithm to gauge efFects of round-

ofl error is not unique. The implementation of the Cholesky Decomposition given by

Martin et al. (1971b) tests whether or not the numerically obtained determinant of the

matrix is positive, and indicates an error if it is not. The results of this section indicate

that a similar test may be applied in the Wiener-Levinson Algorithm (and, by extension,

other related Toeplitz algorithms) when solving a linear system with a symmetric, positive

defi nite, Toeplitz coefficient matrix.

Cybenko (1980) obtained bounds for condition numbers, defined in terms of the 1-

norms of Section 3.3.2, of symmetric, Toeplitz, positive definite matrices. These bounds

are written in terms of "partial correlation coefficients" (which are referred to as reflection

coefficients in seismic theory) and prediction error variances.

4.4.3 uses of the error bound

From Equation 4.17 it may be seen that prediction error variances are positive valued

and decrease monotonically towards zero. lt was shown in Section 4.4.2that ill-conditioning

of the normal equations may be associated with prediction error variances of relatively small

value. lt was also argued that numerical errors may cause small prediction error variances

to be computed with negative values. This means the Wiener-Levinson algorithm may be

considered to be severely afFected by rounding error when :

o computed prediction error variances are negative,

o computed prediction error variances increase with order of the matrix.

The recursive nature of the Wiener-Levinson algorithm, described in Section 2.2.3.7, also

allows the observation that a computed filter f¡r, of length Ic + 7, is dependent upon

prediction error variances L/i)i : 0... k, which correspond to solutions of order i :7...k+
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1, but is unafFected by values u¿,i : /ú+1... which arise when obtaining solutions of higher

order systems. Furthermore, the prediction error variance z¡ is computed prior to elements

of the filter f¿. This means that, if a filter fn for some arbitrary n, is desired, intermediate

results of the Wiener-Levinson algorithm may be employed in two possible approaches,

which are fundamentally very similar :

o provide an indication that the filter f,, may be adversely afFected by rounding error

An algorithm of this nature is listed in Appendix C.

o stop computation after a filter fx (k < n) has been computed, and the prediction

error varian ce u¡¡l exhibits one of the above forms of behaviour which would indicate

that rounding error would significantly affect the computed filter f¡a1.

Another possible approach would be to correct computed prediction error variances, in

some way, when an indication occurs that significant rounding error may occur. The major

difficulty which would occur with this approach may be illustrated using the fact that each

element of a computed filter f, which is a solution of the normal equations (Equation 1.11),

may be written in the form :

f¿
lB¿l

lRl
where

o R is the autocorrelation matrix,

o B¿ is a matrix which is equivalent to R, except that g, the right-hand side of

Equation 1.11, is substituted for the ith column.

This form of the solution is an expression of Cramer's rule, described in most elementary

texts e.g. Kreyszig (1988). lt means that a significant error in a computed determinant of

R may be expected to indicate significant error in the computed solution to the normal

equations. From Equation 4.13, this determinant may be written as the product o,f all
prediction error variances. This means that any correction of prediction error variances may

be expected to significantly aflect the computed value of the determinant, and therefore
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afFect the computed solution. For this reason, it may be considered that the main value of

Equation 4.23 would be in recognition of cases in which rounding error may significantly

af[ect computed solutions, rather than in trying to correct for efFects of rounding error.

Once this recognition has occurred, other approaches (".g.diflerent solution algorithms,

or treatments such as prewhitening) may be preferred.

4.5 Prewhitening

Prewhitening is a process which is commonly employed in seismic processing (e.g.

Yilmaz (1987)) for the purposes of improving numerical stability. Mathematically, it

amounts to the replacement of rs, the diagonal element of the autocorrelation matrix,

R, by the quantity rs(1 * e) where e is a small positive constant, in practice generally of

the order of 0.01.

4.5.L Prewhitening and Conditioning

Treitel and Wang (1976) observed, without proof, that prewhitening significantly re-

duces the spectral condition number of the coefficient matrix, with subsequent gains in

numerical stability.

The linear system being solved after prewhitening is :

(R+dl)w:g (4.24)

(where d, : roe) instead of :

Rw: B

as given in Equation 1.11. As discussed in Section 2.3, the eigenvalues )¿ i : 7...n of

the matrix R are the solutions of the determinantal equation :

det(R- ÀI): g
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ln a similar fashion, the eigenvalues )¿' of the matrix R + dI are solutions of the determi-

nantal equation :

det (R + drl - l'r) : 6

which may be rewritten as :

det(R - }'- dlI) : o

which results in the conclusion that :

\l:\¿-fd

When R is symmetric and positive definite the condition number for the prewhitened

coefficient matrix is therefore :

rc(R*dr): *# @.25)

This function is a monotonic decreasing function of d, for positive d, resulting in the

conclusion that any level of prewhitening will result in a decrease in the spectral condition

number.

This is not, however, a sufficient reason to make d arbitrarily large. ln particular,

Equation 4.24 may be rewritten, for positive d as :

(å". Ð

ln practice, R and g have elements which are finite. lt may therefore be seen that w --+ 0

as d --+ oo. This means that information is lost by the deconvolution process if the

prewhitening level is too high.

Any level of prewhitening, however small, will result in a less ill-conditioned autocorre-

lation matrix. lt is interesting to note that prewhitening will have a much smaller (relative)

eflect on the maximum eigenvalue than on the smallest eigenvalue (this is, in fact, the

reason why the condition number monotonically decreases with prewhitening level). This

means that the beneficial effect of an arbítrarily small level of prewhitening will increase as

the autocorrelation matrix becomes more ill-conditioned. For this reason, it is not possible

to identify an "optimal" level of prewhitening to reduce the efFects of ill-conditioning.

1*:dg
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4.5.2 Smoothing the 'Wiener filter

After prewhitening, the linear system being solved has a difFerent solution to the original

system. This leaves open the question of what thesolution of a prewhitened system actually

represents. ln this section, we consider the prediction problem, with prediction distance a

and filter length n. A derivation of the normal equations is given by Robinson (1967a).

Here, we simply start with the prewhitened normal equations and perform the reverse of

that derivation. The approach for other desired Wiener filters is identical to that for the

prediction filter.

The prewhitened normal equations, given in matrix form in Equation 4.24 may be

written as :

n-L

Dur¡-; + du¡ : r."rj (Vf : 0,. .. , " - 7) (4.26)
i=O

where rj : E{r+jrt} is the autocorrelation function of the seismic trace, r¿. These

equations may be expanded to obtain :

E frt+o -
n-lt
i=0

lDi T íttj +du:¡:0Vi-0...n-1 (4.27)

Multiplying each side of each equation by 2, integrating, and combining the results, it may

be seen that prewhitening may be interpreted as the minimization of an expression :

r':E{@,*,-u,)')+,1î,,,', (4.28)
l=O

where 
n-r

a': Dlloir.i
j=o

is the estimate obtained of x¡¡" . The first term on the right hand side of Equation 4.28 is

the error variance which is being minimized by the Wiener filter without prewhitening, and

the second term is a (discrete) "regularizing functional" in the sense of Tihonov (1963a, b).

This regularizing functional has the efFect of imposing a "smoothing constraint" on the

computed filter, reducing the class of possible filters which may be produced as a solution

of the normal equations i.e. prewhitening results in the production of a smootherfilter. As

noted by Treitel and Wang (1976), an ill-conditioned system may be expected to produce

t-i
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a set of filter elements which vary widely in magnitude. Such a smoothing of the filter, as

discussed here, may be expected to alleviate this problem. lt should also be noted that the

regularizing term is equivalent to the introduction of a filter energy constraint, as discussed

by Treitel and Lines (1982).

4.5.3 Prewhitening in the frequency domain

It is noted in a number of geophysical texts, e.g. Yilmaz (L987), that zero values in

an amplitude spectrum (which would cause frequency domain deconvolution, discussed in

Section L.4.2, to fail) are unlikely, due to efFects such as uncorrelated noise in the data, and

that prewhitening has the effect of improving numerical stability when solving the normal

eq uations.

Prewhitening is mathematically equivalent to the addition of uncorrelated white noise,

n¿ with the following properties :

E {æ¡n¡} 0

0

¡r2< E{"'r}:ro

This means that the autocorrelation of q * n¿ is represented by

t*0
f:0

This autocorrelation function is identical to the replacement of rs by the quantity ro(1+e)

with e - N2
rO

It is well known (e.g. Bracewell (1978)) that an impulse function, expressed mathemat-

ically as the delta function :

E{"
E {"?

,lr¡
":l'"(r+f)

)

)

ó(¿) :

has a constant valued Fourier Transform

1 ifú:0,
0 otherwise

ó(t) <-+ A(r) : k(> 0)
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This means that prewhitening in the time domain has the efFect of adding a constant to all

values of the power spectrum, decreasing the ratio of maximum to minimum in the power

spectrum. As observed in Section 4.1, this means that the autocorrelation matrix must

become less ill-conditioned.

4.6 Conclusions

Causes of ill-conditioned autocorrelation matrices are intimately related to the fact that

digital deconvolution is a discretization of a physical/mathematical problem which, in gen-

eral, may have either no solution or multiple solutions, Properties of the underlying system

must have an efFect on the least-squares approach. Numerical difficulty in time domain

deconvolution may be related back to small (or zero) values in the frequency domain.

Obtaining more data, therefore better approximating the underlying physical system, may

result in an ill-conditioned deconvolution problem, ofFsetting any gains produced by higher

resolution.

The Wiener-Levinson algorithm is commonly employed to solve the normal equations

which aPPear when performing least-squares deconvolution. lt has been shown here that

intermediate results of the algorithm may be used to provide an indication of when the

computed Wiener filter may exhibit significant error. When the computed intermediate

results indicate that the computed filter has been adversely afFected by rounding errors, a

more reliable approach (".g.computing in higher precision, an more numerically reliable

solution method, or a moderate level of prewhitening) may be desirable. Another approach

suggested is a reduction in the length of the filter computed, in which intermediate results

may be employed to determine when rounding error may significantly afFect computed

filters of a greater length.



Chapter 5

A study of deconvolution

A number of causes of ill-conditioning of autocorrelation matrices were discussed in

Chapter 4. This chapter examines examples of ill-conditioned and well-conditioned auto-

correlation matrices. The objective is to determine which, if any, concepts may be employed

to recognize the occurrence of an ill-conditioned autocorrelation matrix. Results obtained

when solving the normal equations via difFerent algorithms are discussed. To determine

whether or not prediction error variances may be employed to recognize ill-conditioning of

the autocorrelation matrix, condition numbers of all principal submatrices of the autocor-

relation matrix, and corresponding prediction error variances, are examined.

5.L 4n ill-conditioned autocorrelation matrix
ln this section, a theoretical example is considered. A sequence of 128 uniformly

distributed random numbers between 0 and l was generated. ln order to ensure that a

number of small values, in comparison with the maximum, occur, each odd numbered

value, as determined by the number of calls to the random number generating function,

was multiplied by 10-6 ¡f it was greater than the next value in the sequence. The 64 odd-

numbered values were considered, for the purposes of this study, to represent a "synthetic

power spectrum" and converted to a "synthetic autocorrelation" using the cosine transform

described by Robinson (1967a). By reapplying the cosine transform, computed power

74
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spectra were obtained from the synthetic autocorrelation. These computed powers were

obtained using both single and double precisionl, for the purposes of determining whether or

not a computed power spectrum may be employed to gain an indication of ill-conditioning.

Spiking filters produced using difFerent solution algorithms are also examined.

The synthetic autocorrelation, synthetic power spectrum, and computed power spec-

tra are illustrated in Figure 5.1. lt may be observed that the computed power spec-

tra, in single or double precision, show a similar form to that of the synthetic power

spectrum. Unfortunately, referring to Table 5.1, it may be seen that the power spec-

trum computed using single precision exhibits 12 values which are non-positive, a result

which (apparently) violates the condition that all values in the power spectrum be pos-

itive (Ford and Hearne (1966), Robinson (1967a), Usmani (1987)). The negative values

are of a very small magnitude so they are not resolved in Figure 5.1. One zero value also

-8.598 x 10-7

0.8234

0

0.8234

oo

L2

1.159 x 10-8

0.8234

1.159 x 10-8

0.8234

7.702 x 107

0

7.762 x 10-8

0.8234

7.762 x 10-8

0.8234

4.674 x 107

0

Minimum value

Maximum value

Minimum magnitude

Maximum magnitude

Max:min magnitude

f of values ( 0

Single prec.Double prec.Simulated

Table 5.1: Comparison of different precision power spectra.

occurs, so the ratio of maximum to minimum magnitude values in the power spectrum

(which, as discussed in Section 4.1, is an upper bound for the spectral condition number)

is infinite. This would also have bearing in frequency domain deconvolution, as discussed

in Section L.4.2. ln the power spectrum computed using double precision, the smallest

magnitude value exhibits a relative error of the order oÍ 50T0, so the computed ratio of

maximum to minimum power also exhibits a similar error. Whilst it is true that such a

range of power values may be indicative of ill-conditioning, it also demonstrates that the
lThe meaning of single and double precision, as it applies in this study, is discussed in Appendix A
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Synthetic autocorrelation Synthetic power

Computed power (single precision). Computed power (double precision).

Figure 5.1: Synthetic autocorrelation and computed power spectra (random sequence)

08

0.6

04

o
(!
()
Ho
o
ã

-10

o2

-20

I

0808

0606

0404

o2o2



CHAPTER 5. A STUDY OF DECONVOLUTION II

bound on the condition number provided by computed power spectra may be very pes-

simistic. This is so even if computations are performed in higher precision, due to the error

involved when estimating small power values. The observed error in small power values

may be attributed to Gibb's phenomenon, described in most texts of Fourier analysis (e.g.

Bracewell (1978)), but rarely discussed in geophysical literature, MeyerhofF (1968a, b, c)

being a notable exception. Gibb's phenomenon is an efFect in which computed large values

in a discrete spectrum, exhibiting a discontinuous nature, may be larger than actual val-

ues, and small computed values may be less than the actual values, due to an overshoot

associated with discontinuities. This efFect may result in numerical difficulty in computing

relatively small values of a spectrum, in a fashion analogous to the difficulty encountered

when computing small magnitude eigenvalues of a matrix, as discussed in Section 3.6.

Ford and Hearne (1966) previously noted, without explanation, this difficulty with calcula-

tions of Power spectra, and stated that it may be alleviated by prewhitening. This statement

is supported by arguments of Section 4.5.3.

The condition number of the 64by 64 autocorrelation matrix has been computed to a

value of 9.905 x 106.

5.1.1 Results from different solution algorithrns

A number of difFerent algorithms may be employed to compute least squares filters.

This section compares the quality of results produced by solving the normal equations

when the right-hand side is a unit impulse :

Tg T1

T'1 T'g

Tn-l

Tn-2

A¡

S1

1

0

Tn-l Tn-2 ?^g Sn-]. 0

For the purposes of comparison, a solution was obtained using Gaussian Elimination in

double precision. This solution will be referred to as the "double precision filter". This filter

is not necessarily exact-it is merely guaranteed correct to a larger number of significant
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3ÊA

78

figures, as discussed in Appendix A. The following algorithms, discussed in Section 2.2,

are considered :

o Gaussian elimination

o Wiener-Levinson algorithm

o Conjugate Gradient algorithm. For the purposes of comparison, the number of it-

erations chosen was 64, which is the order of the coefficient matrix. The initially

selected starting vector was the 64-length zero vector.

o Trench's algorithm. This is an algorithm which inverts a Toeplitz matrix. For the

purpose of comparison, the first column of the inverse matrix was chosen (which is

the right-hand side of the linear system of interest).

The double precision filter is illustrated in Figure 5.2, and filters produced by the difFerent

algorithms are shown in Figure 5.3. Comparing the graphs in these two figures, it may be

2H

20

.2EA

-384

tBl

IEA

Figure 5.2: Double precision filter produced from "synthetic autocorrelation".
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Conjugate Gradient. Trench's algorithm.

Figure 5.3: Filters produced by various algorithms working in single precision.
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observed that the filter produced by Gaussian elimination is visually the most similar to the

double precision filter. This is a strong indication that Gaussian elimination has produced

a filter with less error than have the other algorithms. The filter produced by Trench's

algorithm also closely resembles the double precision filter, although there are observable

difFerences. Visually, the conjugate gradient algorithm has produced poorer quality results,

which exhibit a more erratic variation in amplitude, than have Gaussian elimination or

Trench's algorithm. This ef[ect may be expected because the Conjugate gradient method

is an iterative scheme which minimizes an error norm. Therefore, in this ill-conditioned

example, this algorithm may be expected to produce a filter exhibiting significant error.

However, the most disturbing result is that produced by the Wiener-Levinson algorithm,

which exhibits a more erratic behaviour, and a much larger apparent error relative to the

double precision solution, than have solutions produced by the other approaches, despite

the fact that the Wiener-Levinson algorithm is a direct method, and is most frequently

employed in seismic processing. These observations also apply to summary statistics given

in Table 5.2. ln this table the following conventions are employed :

ll...ll denotes the Euclidean norm, defined in Section 3.3.1,

o fo denotes a spiking filter produced by a given solution algorithm, ø. The elements

of this vector are denoted as /¿.

o f¿ denotes the "double precision filter" i.e. fo produced by Gaussian elimination in

double precision.

Most interesting of these statistics is the norm of the computed error relative to the norm

of the double precision solution. ln terms of observed quality, the difFerent methods may

be ranked in the same order as that determined previously by a visual examination of the

filters. The Wiener-Levinson algorithm, which produced a solution exhibiting an error of

the order of 264Y0, has performed very poorly in comparison with the other methods. ln

this example, as in all later examples, spiking filters computed using double precision have

been confirmed to be minimum phase by checking that zeros of the z-transform lie inside
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7.765 x 104

6.019 x 104

2.694

-2.339 x 104

2.503 x 104

2.864 x 104

7.042 x 104

0.4665

-7087
8301

3.436 x 104

2.L7L x 104

0.9716

-1.035 x 104

7.226 x 104

2.681 x 104

5196

0.2326

-728ó
8067

2.234 x 104

0

0

-5631
6783

llf"ll
llf, - frll
llf"-f¿ll

llf¿ll
minf,
max f,

W-LTrenchC-GGaussDouble prec

Algorithm, ø

Table 5.2: Summary statistics for filters of Figure 5.3.

the unit circle. This check has not been performed for spiking filters computed using single

precision because of their associated error.

5.L.2 Condition numbers and prediction error variances

It has been shown in Section 4.4.2that prediction errorvariances, which are intermediate

results of the Wiener-Levinson algorithm, may be used to provide a lower bound for the

spectral condition number of a symmetric, positive-definite Toeplitz matrix. Because the

Wiener-Levinson algorithm has a recursive nature, described in Section 2.2.3.L, it is of

interest to discuss condition numbers and prediction error variances for systems as the

order of the matrix is increased.

Figure 5.4 illustrates condition numbers for principal submatrices of the autocorrelation

matrix, computed using a variant of the QR algorithm described by Martin et al. (1971a).

This algorithm assumes a upper Hessenberg matrix. For this reason, the autocorrelation

matrix was balanced using the procedure of Parlett and Reinsch (1971) and reduced to

Hessenberg form using the procedure of Martin and Wilkinson (1971). Condition num-

bers computed using the Jacobi-type approach described by Rutishauser (1971) show little

difFerence to those computed using the QR algorithm.

Observations which may be made concerning these condition numbers are as follows :

o as the order of the submatríx increases there is little discrepancy between results
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produced using single precision and those produced using double precision

o for larger order sub-matrices (> 54) the condition numbers show significant discrep-

ancy between single and double precision.

The condition numbers computed using single precision at higher order are associated with

the occurrence of negative computed eigenvalues, which do not occur in the corresponding

double precision results. This difFerence may be attributed to difficulty associated with

computation of eigenvalues of small magnitude.

Figure 5.5 illustrates computed prediction error variances. A similar (but reversed)

efFect to that noted for condition numbers is observed for prediction error variances:

o the dif[erence between prediction error variances computed for lower order systems,

in difFerent precision, is negligible.

o prediction error variances, computed using single precision for higher order systems,

exhibit a much larger relative discrepancy relative to their double precision counter-

parts. Some prediction error variances, computed using single precision are negative,

an efFect which also (apparently) violates the condition that the matrix is positive

d efin ite.

These results indicate that values of prediction error variances may be employed to provide

an indication of when the Wiener-Levinson algorithm is overcome by rounding errors. As

prediction error variances are computed as intermediate results of the algorithm, they may

be extracted at little additional cost when solving the linear system. This is in contrast

with a scheme involving explicit extraction of eigenvalues of a matrix, which involves a

much greater computing cost.
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Figure 5'5: Prediction error variances calculated using different precision arithmetic.

5.1.3 The effect of prewhitening

It has been seen in previous sections that an ill-conditioned autocorrelation matrix

may cause difficulties when computing a power spectrum, or when solving the normal

equations. This section considers the efFect o'f 0.7Y0 prewhitening on computed result s-i.e.
the diagonal element, rs, of the autocorrelation matrix is increased by 0.7%. As discussed

in Section 4.5.3, this treatment is equivalent to the addition of a constant positive value

to all values in the power spectrum.

5.1.3.L Power spectra

Powerspectra, computed after prewhitening, are illustrated in Figure 5.6. Visually, there

is little difFerence between these spectra and those illustrated in Figure 5.1. DifFerences

5010



0808

060ó

04o4

o2o2

CHAPTER 5, A STUDY OF DECONVOLUTION 85

Computed power (single precision). Computed power (double precision)

Figure 5.6: computed prewhitened po',¡/er spectra (random sequence).

between the spectra are more apparent in summarystatistics for Figures 5.1 and 5.6 which

are given in Table 5.3. Significantly, spectra for the prewhitened autocorrelation show little

difFerence between single and double precision. Prewhitening has had little efFect on the

maximum computed power value, but has had the efFect of eliminating the negative value

which arose when computing the spectrum in single precision. This may be interpreted as

a consequence of increasing the minimum power value.

The condition number of the prewhitened 64 by 64 autocorrelation matrix has been com-

puted to a value of 3762, which is a significant improvement over the value of g.ggb x 106

reported previously.
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Table 5.3: Comparison of power spectra with prewhitening.

6.L.3.2 Results frorn different solution algorithms

Figures 5.7 and 5.8 illustrate the spiking filters computed using different approaches,

after prewhitening. These filters do not appear significantly difFerent to each other, in

contrast with results of Figures 5.2 and 5.3. This efFect is also apparent in summary

statistics of Table 5.4, where it may be observed that all algorithms have produced solutions

with small error. The Conjugate Gradient scheme has produced results exhibiting the least

error, in terms of norms.
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Table 5.4: Summary statistics for filters of Figure b.Z.
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Gaussian Elimination. Wiener- Levinson Algorith m

Conjugate Gradient. Trench's algorithm.

Figure 5'7: Filters produced by various algorithms working in single precision after
0.1% prewhitening.
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Figure 5.8: Double precision filter produced with 0.1% prewhitening.

5.2 stability of direct methods for linear systems

Results of Section 5.1 indicate that Gaussian elimination with partial pívoting, Trench's

algorithm, and the Wiener-Levinson algorithm possess dif[erent stability properties. Con-

cepts of stability of an algorithm, and conditioning of a matrix, as discussed in Chapter 3,

are intimately involved with the works of Wilkinson (1961, 63, 65). There has been dis-

crepancy in literature relating to stability of direct algorithms for Toeplitz systems, with

some authors (e.g. Cornyn (1974), Cybenko (1930)) claiming that various algorithms are

stable, and others (e.g. Tukey (1962)) claiming they are unstable. Bunch (1985) has ob-

served that algorithms based on partitioning of the matrix, are unstable when applied to

any linear system involving a Toeplitz coefficient matrix which is either not symmetric

or not positive definite. Cybenko (1980) claimed that the Levinson-Durbin algorithm (a

term which refers to the basic approach applied by the algorithms of Levinson (1946),

5

4

5

a
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Trench (1964), and Zohar (L974) (not discussed further in this thesis)) is stable for the

class of symmetric, positive definite, Toeplitz matrices, allowing the conclusion that related

algorithms are also stable. However, a backward error analysis, in the sense of the works

of Wilkinson, was not given. This resulted in some controversy, which has been addressed

by Bunch (1987), whose approach will be summarized in the remainder of this section.

5.2.L 'Weak and Strong stability

Given that there is controversy surrounding the stability of direct algorithms for solution

of linear equations involving Toeplitz coefficient matrices, it is necessary to define concepts

of stability. The definitions given here are those of Bunch (1987).

Definition 5.1 An algorith,m for soluing linear equations is weakly stable for a class

of rnatrices A if for each well-conditioned, matrir A, e A and for each right-hand, sid,e

aector b the computed solution x. to Ax : b is such that ll* - *"ll/ll"ll is smalL

This definition means that an algorithm is described as weakly stable if, when applied to

solve a linear system with a well-conditioned coefficient matrix, it computes a solution

exhibiting little error. lf an algorithm is not weakly stable for a given matrix class ,4, then

it is unstable. For example, Gaussian elimination performed without pivoting may produce

a solution exhibiting large error, or fail entirely to produce a solution, even if the coefficient

matrix is well-conditioned. Examples of this type of behaviour are given in many basic texts,

e'9. Gerald and Wheatley (1984), as a justification for the use of pivoting. This means that

Gaussian elimination without pivoting is unstable, unlike Gaussian elimination with partial

or complete pivoting. An unstable algorithm introduces an exception to the statement,

made in Section 3.4,1, that a small condition number excludes the possibility of numerical

instability. A linear system may be described as ill-conditioned, as in Definition 3.1, even for

a well-conditioned matrix, if the solution algorithm is unstable. The discussion throughout

Chapter 3 relates primarily to the efFect of perturbations in either the coefficient matrix or

the right hand side vector. The use of condition numbers for determining whether or not a
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numer¡cally computed solution exhibits a large error implicitly assumes that the algorithm

is at least weakly stable.

Definition 5.1 is weaker than the definition of stability of Wilkinson (1961,63,65),

given in Definition 5.2 :

Definition 5.2 An algorithm for solaing linear equations is stable for a class of ma-

trices A if for each matrir A. e A and for each right-hand, side aector b tl¿e computed,

solution x. to Ax : b satisfies an equation .L*" : Ê uher" Ã, it close to A, and, Ê is

close to b.

ln this definition "Â ¡, close to A" means that llÂ- All is small, for some matrix norm

of interest (e.g. the spectral norm). An analogous meaning applies to "Ê is close to b".
The vector x" is a solution of an infinite number of possible equations of the form

Âx": i. Definition 5.2 requires that, in at least one of those systems, the matrix Â is

close to A and the vector Ê is close to b. lf an algorithm is stable it is also weakly stable.

This definition of stability does not require that the matrix Â U" in the matrix class ,4., to

which A belongs. For example, if A is a Toeplitz matrix, there is no requirement that Â
also be Toeplitz. Therefore Definition 5.2 may be restricted even further :

Deffnition 5.3 An algorithm for soluing linear equations is strongly stable for a class

of matrices A if for each matrir A e A and for each right-hand sid,c uector b the

computeil solution x" to Ax : b satisfies Â*" - È where L e A, -Ã, is close to A,, and,

Ê is close to b.

lf an algorithm is strongly stable for a given matrix class ,4, it is also stable (and therefore

also weakly stable) on that matrix class. Definition 5.3 is equivalent to the definition for

stability given by Stewart (1973).

Weak stability is desirable because it guarantees that a reasonably accurate solution

is produced when the matrix A is well-conditioned. However, weak stability allows no

assurances as A becomes more ill-conditioned. Stability and strong stability are more

desirable properties for a solution algorithm to possess because they guarantee that large
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error can occur only when the condition number is large, but a large condition number

does not necessarily imply large errors in the solution.

5.2.2 Stability of different algorithms

Given the definitions of Section 5.2.L, the following results, stated by Bunch (1987),

may be proven :

Gaussian elimination, with partial or complete pivoting, is strongly stable on the class

of non-singular matrices.

o Gaussian elimination, with partial or complete pivoting, is stable on the classes of

symmetric matrices, and of symmetric positive definite matrices

The distinction between the two statements of stability of Gaussian elimination with piv-

oting is subtle. lf the class of non-singular matrices are considered, Gaussian elimination

is strongly stable. However, by restricting the class of matrices further to symmetric, or

symmetric positive definite, matrices, Gaussian elimination is stable, This is because, for

matrices in these classes, the approximate matrix Ârnry be non-singular, but not neces-

sarily symmetric or symmetric positive definite. lt does not follow from error analyses that

Gaussian elimination is strongly stable on these symmetric matrix classes. Note that this

does not imply that Gaussian elimination is not strongly stable on these matrix classes, it

is merely an indication that current error analyses are unable to determine whether or not

it is.

5.2.3 Stability of Toeplitz algorithms

We now reach the conclusion of Bunch (1937) which motivated this discussion. ln

terms of the above definitions, Cybenko (1980) proved that the Levinson-Durbin algorithm,

the Wiener-Levinson algorithm, and Trench's algorithm are ueakly stable on the class of

symmetric, positive definite, Toeplitz matrices. This result does not exclude the possibility

O
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that any of these algorithms are stable (or even strongly stable), but such results remain

to be proven or disproven.

This discussion allows some light to be thrown on observations made in Section 5.1.1.

The ranking of quality of results observed indicates that, of the direct algorithms, Gaus-

sian elimination has behaved in the most stable fashion, followed in order by Trench's

algorithm, and the Wiener-Levinson algorithm. The results for Gaussian elimination and

Trench's algorithm may indicate that these algorithms have conformed with a more re-

strictive definition of stability than has the Wiener-Levinson algorithm, on the class of

symmetric positive-definite Toeplitz matrices. The filters produced by these algorithms

exhibited measurable error, which may be attributed to the ill-conditioning of the problem,

rather than to limitations in the algorithms themselves. lt must be stressed that this merely

supports the possibility that these algorithms may be stable on this matrix class, and in no

way constitutes a proof that they are.

Any algorithm may produce a solution with significant error if the coefficient matrix

is sufficiently ill-conditioned. The observed poor quality results produced by the Wiener-

Levinson algorithm may, in addition to indicating ill-conditioning of the autocorrelation

matrix, be an indication that it conforms to a weaker form of stability on the class of

symmetric, positive definite, Toeplitz matrices than do Gaussian elimination or Trench's

algorith m.

The Wiener-Levinson algorithm is weakly stable, therefore it is guaranteed to produce

a reliable solution if the coefficient matrix is well-conditioned, symmetric, and positive

definite. Results of Section 5.1 indicate that reliable solutions are not necessarily produced

if the coefficient matrix is ill-conditioned. ln relation to Wiener filtering, this means that

the Wiener-Levinson algorithm is guaranteed to produce filters exhibiting small error when

the autocorrelation matrix is well-conditioned. However, when the autocorrelation matrix

is ill-conditioned, the filters produced may not be reliable, as exhibited in the example of

Section 5.1. A test, which involves examination of prediction error variances, is of value

because an indication may be provided when numerical difficulties are encountered.

Observations of this section indicate that poor results of the Wiener-Levinson algorithm
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may be due to limitations of that algorithm. The comparatively higher quality results

of the conjugate gradient algorithm, observed in Section 5.1, and noted previously by

Treitel and Wang (1976), may be interpreted as being due to limitations of the Wiener-

Levinson algorithm when applied to ill-conditioned problems, rather than to virtues of the

conjugate gradient algorithm, which was the conclusion of Treitel and Wang (1976).

5.3 A synthetic vibroseis cross-correlation

Results of Section 5.1 provide insights into the manifestations-in terms of computed

power spectra, prediction error variances, and accuracy of computed Wiener spiking filters-

which are introduced when the autocorrelation matrix is ill-conditioned. However, the

previous example provides no indication of the behaviour of computed prediction opera-

tors, and no indication of efFects introduced when erroneous operators are applied in the

com putation of deconvolved traces.

A synthetic vibroseis cross-correlation with a 4 millisecond sampling increment, is illus-

trated in Figure 5.9. lt was generated, from the wavelet and impulse response described in

Appendix B, as follows :

1. the minimum phase wavelet of Figure B.1 was convolved with the impulse response

of Figure 8.3 to produce a synthetic trace.

2. the trace produced in Step 1 was convolved with a linear vibroseis sweep signal

of constant amplitude, which was employed as a 25-85 Hertz chirp wave form

(Kulhanek (1976)) with a four second duration.

3. the vibroseis trace produced by Step 2 was cross-correlated with the vibroseis sweep

signal. This procedure is in accordance with common practice, as described by

Yilmaz (1987).
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Figure 5.9: First 1000 millisecond window of the vibroseis cross correlation (25-85 Hz,
4 second sweep).

The first 1000 millisecond window of the normalized autocorrelation of the vibroseis

cross-correlation is illustrated in Figure 5.10. The most striking feature of this autocorre-

lation is that it exhibits an approximately periodic nature, with little loss of amplitude at

larger lags. Such a form of behaviour indicates that the frequency content of the auto-

correlation is dominated by a small number of frequencies, which means that the power

sPectrum contains values which are significantly difFerent in magnitude. Such an eflect

is observed in the computed power spectra of Figure 5.11. This figure illustrates spec-

tra obtained by applying cosine transforms to autocorrelation functions. Two cases are

considered here :

o the spectrum is computed using the entire autocorrelation function

o the spectrum is computed using the first fifty lags of the autocorrelation function.

This function has been presented with the purpose of determining whether or not a

94
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Figure 5.10: First 1000 millisecond window of the normalized autocorrelation function

cosine transform on the first 50 lags may be employed to determine when the 50 by

50 normal equations are ill-conditioned. lt was noted in Section L.4.2.2 that some

windowing function is desirable when truncating a series to compute a spectrum.

The truncated spectra illustrated in this chapter have had no such window applied.

Results werefound to exhibit similar efFects, whether or not such a window is applied,

therefore results obtained for difFerent window schemes are not reported here.

For comparison these two spectra were computed using single and double precision arith-

metic. lt is interesting to note that the spectra computed using the first fifty lags exhibit

negative values in both single and double precision. The peaks which occur in the spectra

computed using 50 autocorrelation values are significantly wider than those computed us-

ing the complete autocorrelation. This behaviour would be afFected by choice of window

fu nctions.

Summary statistics for the difFerent spectra are given in Table 5.5. lt may be seen that

negative values occur in both spectra computed using single precision, and zeros occur in
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Figure 5.11: Computed power spectra of the signal of Figure 5.9.
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Table 5.5: Summary statistics of porv\¡er spectra of the synthetic cross-correlation

both spectra computed using double precision. As in Section 5.1, this behaviour may be

interpreted as being due to ill-conditioning of the autocorrelation, but a test based on this

result may be too pessimistic.

The condition number of the autocorrelation matrix of order 50 is approximately

7.053 x 106. The fact that the ratio of maximum to minimum magnitude values com-

puted from 50 lags of the autocorrelation, in single precision, is less than either of these

condition numbers violates the condition of Section 4.1. However, the occurrence of a

number of negative values of significant magnitude in the spectrum, in this case, means

that this ratio has little real meaning.

5.3.1 Predictionfilters

ln order to compare results produced by difFerent solution algorithms, prediction fil-

ters for a prediction distance of 3 lag values, which corresponds to the first zero crossing

of the autocorrelation, are given using the same algorithms as in Section 5,1.1, with the

exception of Trench's algorithm. The filters computed using difFerent approaches are il-

lustrated in Figure 5,12. lt may be observed that, as for the example of Section 5.1,

the conjugate gradient algorithm and the Wiener-Levinson algorithm have produced fil-

ters which difFer significantly (e.g.larger range of values, more oscillatory behaviour) from



50

40

30

20

10

0

-10

-20

-30

-40

50

40

30

20

10

0

10

20

30

40

CHAPTER 5, A STUDY OF DECONVOLUTION

10 30 10

10

98

5040504020

Double precision solution
20 30

50

40

30

20

10

0

-10

-2r

-30

-40

50

40

30

20

10

U

10

t^

30

40

Wiener- Levinson Algorith m

20 30 40 50 10 20 30

Conjugate Gradient. Gaussian elimination

Figure 5.12: Filters produced by different approaches.
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the double precision solution, whilst Gaussian elimination has produced a filter which ex-

hibits little difFerence from the double precision solution. ln this particular example, the

Wiener-Levinson algorithm has produced a filter which appears to be of similar accuracy

to that produced by the conjugate gradient scheme, in contrast to the observation of Sec-

tion 5.1 that the conjugate gradient scheme produces a significantly more accurate filter

than does the Wiener-Levinson algorithm. Summary statistics of Table 5.6 allow the ob-

servation that the Wiener-Levinson algorithm has produced results which are slightly more

accurate than those of the conjugate gradient scheme. Both exhibit a relative error in

terms of norms of the order of 1000% which means they have produced a much poorer

solution than has Gaussian elimination, which exhibits an error of slightly less than 1%.

Treitel and Wang (1976) presented an example in which the conjugate gradient algorithm

produces more accurate filters than does the Wiener-Levinson algorithm. This observation

is not supported here, and means that, whilst the conjugate gradient algorithm is capable

of producing solutions superior to those of the Wiener-Levinson algorithm when solving

ill-conditioned normal equations, there is no general guarantee that it will do so. The

observation that the Wiener-Levinson algorithm produces a filter of much poorer accuracy

than does Gaussian elimination lends support to the possibility that the Wiener-Levinson

algorithm may not be stable, in the sense of Definition 5.2, as is Gaussian elimination, on

the class of symmetric, positive definite Toeplitz matrices.
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Table 5.6: Summary statistics for prediction filters
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5.3.2 Prediction error variances

Table 5.7 lists computed prediction error variances, obtained as intermediate results

of the Wiener-Levinson algorithm. The occurrence of negative prediction error variances,

the first of which is /3s (corresponding to a system of order 31), indicates that condition-

ing of the normal equations may be afFecting the accuracy of computed Wiener filters of

greater order. ln cases where negative prediction error variances occur when solving the

1
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Table 5'7: Some computed prediction error variances for the previous example.
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normal equations, other, more reliable, approaches (e.g. Gaussian el tmtnatron, igher

precision solutions) may be desirable. Alternatively, prewhitening, which produces a coef-

ficient matrix which is less ill-conditioned than the original autocorrelation matrix, may be

employed.

5.3.3 Deconvolved outputs

Deconvolved outputs, produced by applying prediction error filters, obtained from pre-

diction filters of Section 5.3.1, are illustrated in Figure 5.13. lt may be observed that

prediction error filters produced from the prediction filters of the Wiener-Levinson and con-

jugate gradient algorithms have been much less efFective than that of Gaussian elimination.

This means that ill-conditioning in the normal equations may be expected to propagate

through computations, resulting in a relatively poor quality deconvolved output.

5.3.4 The effect of prewhitening

It was observed in Section 5.1.3 that prewhitening significantly improves the condition-

ing of an autocorrelation matrix, with subsequent improvement in quality of solution of the

normal equations, and beneficial efFects with computations of power spectra. The purpose

of this section is to examine the efFect of a moderate level of prewhitening (0.01%) on

results obtained for the synthetic vibroseis cross-correlation, in a similar fashion to the dis-

cussion of Section 5.1.3, and to examine the eflect of prewhitening on deconvolved outputs.

The condition number of the 50 by 50 autocorrelation matrix in this case is approximately

7.437 x 105 which is an improvement of an order of magnitude over the condition number

without prewhitening. This demonstrates the fact that any level of prewhitening results in

a less ill-conditioned autocorrelation matrix.
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Figure 5.13: First 1000 millisecond window of the deconvolved outputs
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5.3.4.L Power spectra

Figure 5,14 illustrates power spectra, computed in the same fashion as those in Fig-

ure 5.11, after prewhitening. lt may be observed that spectra computed using the first 50

lags of the autocorrelation still exhibit a number of negative values with significant mag-

nitude, and that the magnitude of negative values has not been significantly afFected in

comparison with graphs in Figure 5.11. This means that qu¡te a large level of prewhitening

would be necessary to eliminate negative values in this spectrum, and that the spectrum

computed from the first 50 lags of the autocorrelation function has provided little indication

about of conditioning of the 50 by 50 normal equations. ln order to gain any useful infor-

mation about conditioning of the normal equations from a power spectrum, it is necessary

to consider the entire computed autocorrelation.

Table 5.8 gives summary statistics for all the spectra. lt is interesting to note that the

power spectrum computed from the entire autocorrelation exhibits a zero in double preci-

sion, but none in single precision. This behaviour could be related to the ill-conditioning

of the normal equations. However, it w¡ll be seen in later sections that the prewhitened

normal equations in this case appear reasonably well-conditioned.

These results mean that power spectra may be employed to gain an indication of ill-

7.597 x 10-5

272.4

7.597 x 10-5

272.4

2.798 x 106

0

-7.725
25.47

7.527 x 10-3

25.47

7.674 x 104

25

0

272.4

0

272.4

oo

1

-7.725
25.47

0

25.47

oo

25

Minimum

Maximum

Minimum magnitude

Maximum magnitude

Max:min magnitude

f of values ( 0

com plete50complete50Length of sequence

SingleDoublePrecision

Table 5.8: Summary statistics of po'ü/er spectra of the synthetic cross-correlation after
prewhitening
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Figure 5.14: Computed po\Mer spectra of the signal of Figure 5.9 after prewhitening.
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conditioning in the normal equations, although this indication is unnecessarily pessimistic.

Based on the fact that values in the power spectrum provide an upper bound for the

condition number, this is a result which may be expected. The occurrence of negative or

zero values in the computed spectra, in single or double precision may, as in Section 5.1,

be attributed to Gibb's phenomenon.

6.3.4.2 Prediction filters

Figure 5.15 illustrates prediction filters obtained by the difFerent algorithms being con-

sidered. lt may be observed that the filters produced by all algorithms, other than the

conjugate gradient algorithm, show strong agreement with each other and with the dou-

ble precision solution. The filter produced by the conjugate gradient algorithm exhibits

more error than those produced by the other approaches. This observation also applies to

summary statistics of Table 5.9.
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9.543 x 10-a

-2.236
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0.5157

-1.959
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4.461x 10-4
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2.980

0

0
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min fi
rnax f¿

Algorithm, a
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Ga ussia n
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Gradient

Wiener
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Table 5.9: Summary statistics for prediction filters after prewhitening.

The spurious behaviour of the conjugate gradient algorithm may be related to the

fact that the autocorrelation matrix in this case, with a condition number ol I.487 x 105,

may still be considered somewhat ill-conditioned. This example shows that the conjugate

gradient algorithm may be significantly aflected by rounding error, even in cases where the

Wiener-Levinson algorithm is not. As noted in Section 4.5, the spectral condition number
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Figure 5.15: Filters produced by different approaches after prewhitening
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is a monotonically decreasing function of prewhitening levels. This means that a higher

level of prewhitening than considered here may be expected to reduce the error encountered

when solution is performed with the conjugate gradient algorithm.

5.3.4.3 Prediction error variances

It was noted in Section 5.3.2 that some prediction error variances, produced as inter-

mediate results of the Wiener-Levinson algorithm, were negative. ln this case, in which the

computed prediction filter exhibited little error, no negative prediction error variances were

observed, and the values decreased monotonically from zo : 1.0007to uas:7.767 x 10-3.

This means that Equation 4.17, describing the behaviour of prediction error variances, is

satisfied. This is a result which may be expected because the Wiener-Levinson algorithm

produced filters exhibiting little error.

5.3.4.4 Deconvolved outputs

Deconvolved outputs, produced by applying prediction error filters obtained from pre-

diction filters of Section 5.3.4.2, are illustrated in Figure 5.16. lt may be observed that the

deconvolved outputs in this case all show a much stronger similarity to each other than do

the outputs illustrated in Figure 5.13. Additionally, these deconvolved outputs, particularly

at lower lags, show a resemblance to the deconvolved outputs obtained using double pre-

cision without prewhitening (Figure 5.13). This means that, for interpretation purposes,

the results produced by the conventional Wiener-Levinson algorithm, after prewhitening,

may be considered to be as useful as those produced by using Gaussian elimination (which

introduces more cost) without prewhitening.
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Figure 5.16: First 1000 millisecond window of the d.econvolved outputs after prewhiten-
irg.
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5.4 The effect of interpolatittg to a smaller sarnple

increment

It was noted in Section 4.2.1 that a smooth trace will result in a more ill-conditioned

autocorrelation matrix than one which is not as smooth. This section examines the efFect

of interpolating a synthetic trace from a 4 millisecond sampling interval to a 2 millisecond

sampling interval. The trace examined in this section is illustrated in Figure 5.17. lt was

generated by convolving the trace of Figure 8.1 with the impulse response of Figure B.3. For

the purposes of this study, this trace was interpolated to a two millisecond sampling interval

using a Newton-Gregory interpolating polynomial of degree 5. The procedure employed

is that given by Gerald and Wheatley (1984, pp. 212-213). As discussed in Section 4.2.L,

results similar to those presented here may be expected for any interpolation technique.

The normalised autocorrelation for the interpolated trace is illustrated in Figure 5.18. The

Figure 5.17: Synthetic trace.
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Figure 5.18: Autocorrelation of the interpolated trace.

condition numbers of the autocorrelation matrices of order 50 have been computed to a

valueof 2.738 x lOafortheoriginal trace,andtoavalue of 7.072 x 1011 foritsinterpolated

counterpart. The relatively small value of the condition number in the uninterpolated case

means that it may be considered relatively well-conditioned, and little error would be

expected in computed prediction filters. This is, in fact, what occurs. For this reason, this

section focuses exclusively on prediction filters obtained for the interpolated trace.

5.4.L Prediction filters

Prediction filters of length 50 elements have been computedfor a prediction distance of

12 milliseconds, corresponding to 6 sampling increments. Computed prediction filters for

the dif[erent approaches are illustrated in Figure 5.19 and summary statistics are presented

in Table 5.10. lt may be observed that, in this example, the Wiener-Levinson algorithm has

110
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Figure 5.19: Prediction filters produced by different approaches
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produced a filter which exhibits larger error than have the other approaches. The conjugate

gradient algorithm has produced a filter which exhibits larger error than has Gaussian elim-

ination, but less error than has the Wiener-Levinson algorithm (compare, for example, filter

elements 20 to 30). This is in accordance with observations of Treitel and Wang (1976)

but not with results of Section 5.3. The large errors in the prediction filters may be expected

to result in poor quality deconvolved outputs, as occurred in Section 5.3.3.

156.0
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Conjugate

Gradient

Gaussian

Elimination

Double

precision (d)

Algorithm, a

Table 5.10: Summary statistics for prediction filters for the interpolated trace.

5.5 Discussron

Examples have been presented which demonstrate a number of factors which affect

conditioning and numerical stability. lt has been seen that very small values in a power

spectrum, relative to the largest value, may be expected to result in an ill-conditioned

autocorrelation matrix. However, a test based on performing a cosine transform on the

autocorrelation to obtain a power spectrum may be expected to be of little value because of

the behaviour of computed power spectra, which may be attributed to Gibb's phenomenon.

Truncation of an autocorrelation series may also be expected to affect a test of this nature.

ln the ill-conditioned examples presented, the Wiener-Levinson algorithm and conju-

gate gradient algorithm produced Wiener filters of much poorer quality than did Gaussian

elimination. The poor quality results produced by the Wiener-Levinson algorithm suggest

that stability properties of that algorithm are inferior to those of Gaussian elimination.
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This demonstrates that the use of the Wiener-Levinson algorithm, in preference to Gaus-

sian elimination, involves a trade-ofF between computer times (e.g. n2 vs. n3 arithmetic

operations) and accuracy of the solution which may be obtained using Gaussian elimina-

tion. ln this chapter, solutions obtained by the conjugate gradient scheme were produced

by applying rz iterations to solve normal equations of order n. Treitel and Wang (1976)

applied an error criterion to determine when the conjugate gradient scheme had converged

on a solution, obtained convergence after a smaller number of iterations than employed

here, and observed that the conjugate gradient scheme had produced solutions exhibiting

less error than had the Wiener-Levinson algorithm. ln examples presented in this chapter,

it was observed that the Wiener-Levinson algorithm may produce filters superior to those

produced by the conjugate gradient algorithm, but there is no general guarantee that it

will do so. This means that no general statement may be made comparing the errors

in solution computed using the Wiener-Levinson algorithm with those computed by the

conjugate gradient scheme.

It is interesting to note that the example of Treitel and Wang (1976) was based on a

vibroseis cross-correlation which had been interpolated from a 4 millisecond to a 2 mil-

lisecond sampling increment for static correction purposes. Results of this chapter and of

Treitel and Wang (1976) could be used to suggest that, when a trace is interpolated to

a smaller sampling increment, the Wiener-Levinson algorithm may produce Wiener filters

which are inferior to those produced by other approaches, such as the conjugate gradient

algorithm. However this can not be considered to be a general result, and more numerical

experimentation would be warranted in this area.

Prediction error variances, which are produced as intermediate results of the Wiener-

Levinson algorithm, may be employed to detect when the Wiener-Levinson algorithm pro-

duces Wiener filters exhibiting significant error. Results of this chapter suggest that such

a test may be expected to provide a more reliable indication, at insignificant cost, than

would a test involving computed power spectra. When error is indicated using prediction

error variances, a more reliable algorithm such as Gaussian elimination may be desirable,

or a treatment such as prewhitening may be preferred.



Chapter 6

Conditionitrg of Geostatistical

Methods

The determination of kriging or co-kriging weights involves the solution of a set of linear

equations. Because a significant number of points (10-25 say) are often used to perform

the estimation, some computational approach is often employed to obtain the operator.

Consequently, the kriging approach may be susceptible to rounding errors in the solution

process. Co-kriging, which uses an even larger coefficient matrix, also may be susceptible

to computational error. The major aim of this chapter is to extend discussion of Chapter 4

to apply to ordinary kriging, where the kriging equations are considered to be written in

terms of the covariance function. Results for ordinary kriging are extended to apply to

co-kriging.

6.1- Robustness

Some attention (e.g. Brooker (1977), Cressie and Hawkins (1980), Armstrong (1984),

Bardossy (198B), Posa (1989)) has been directed towards the topic of robustness in geo-

statistics. "Robustness" is a statistical term which, rather ambiguously, refers to insensitiv-

ity to small perturbations in data, assumptions, or models (e.g. Huber (1982)). Comparing

this concept with Definition 3.1, it may be seen that conditioning and robustness are closely

774
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related.

Some approaches and case studies have been presented, in geostatistical literature,

which either examine robustness in some sense, or some transformation of data which

introduces robustness. Examples include :

o the change in estimation variance introduced by a change in variogram parameters

e.g. Brooker (1985, 86),

r changes in dispersion variances due to inaccurately modelled semivariograms e.g

Brooker (1988)

o the efFect of extreme values on the experimental semivariogram e.g. Journel (1984),

Sullivan (1984),

This section describes one form of robustness, defined by Armstrong and Diamond (1.984a),

which is based on conditioning of the kriging matrix.

6.1.1 The neighbourhood of a semivariogram

Let 5 denote the set of valid semivariogram functions, in the sense that conditions of

Section 1.5.6 are satisfied. Also let l(h) e 5 be the function which truly describes some

phenomenon of interest, and let g(h) € 5 be a model which has been fitted to an exper-

imental semivariogram in order to characterize that phenomenon. Let x be the solution

vector obtained 'for {h) from Equation L.27, and Ax be the error vector introduced by

using the model g(å) instead of the true function 7(h).
The relative difference between the true function 7(å) and the estimating function g(h)

may be written as :

a(å) : lz(¿) - l(¿) |' | 'v(h) 
I

The ó-neighbourhood of the semivariogram function.y(h) may be defined as :

ilh) - g(h)Ats(1): s€E:
7(h)

<6 Vh (6.1)
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lf the most desirable situation is that the relative error in the solution vector is less than

some value e :

ll"ll
it is desirable to know the neighbourhood of semivariogram modelr, yVo(Z), in which this

will occur. Armstrong and Diamond (198aa) have shown that this neighbourhood is the

one for which :

e

Ax
e

ó (6.2)- (2 + e)rc(A)
where A is the coefficient matrixfor the kriging system and rc(A) is its condition number.

A larger value of ó represents a larger neighbourhood for which the solution is considered to

be valid, and is therefore indicative of a more robust semivariogram model in this sense. lt

may be seen in Equation 6.2 that a large condition number indicates that the system is more

sensitive to error (as would be expected from discussion in Chapter 3), and that the kriging

system is less robust in the sense that a small relative error in the semivariogram model

can produce a large relative change in the computed kriging operator which is obtained as

the solution to Equation L.22.

ln geostatistical practice, models are fitted to experimental semivariograms (or, equiv-

alently, the covariances). This notion of robustness is important-if a fitted model does

not adequately describe the phenomenon of interest, results from kriging may not be re-

liable. The condition number, because it provides a direct (albeit pessimistic) indication

of sensitivity of the kriging process to errors, is also an important consideration in a study

of robustness. Even if a semivariogram or covariance model is accurately modelled, the

respective kriging system may be very sensitive to errors if the condition number is large.

6.2 l{riging

This section focuses attention on the conditioning of kriging matrices which may be

obtained when kriging is performed using covariance functions. A number of properties of

the kriging matrix are discussed, and the eflect of conditioning of the covariance matrix on

the kriging matrix is discussed.
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6.2.L Kriging matrices

The coefficient matrix of Equation t.24 may be written in partitioned matrixform as

C v

K (6.3)

vT 0

where :

o C is the n by n covariance matrix. Elements of this matrix are values of the covariance

function, C(h) : Q;i : C(l"r-*¡l), where x¿ and x¡ denote locations of data points,

o v denotes the n-length vector with all elements equal to 1

ln a similar fashion, the coefficient matrix in Equation 1.28, may be written as :

r v

(6.4)

T 0

where I will be referred to as the "semivariogram matrix". The elements of this matrix

are values of the semivariogram function 7(ä) : C(0) - C(h). l¿j Z(1"¿ -x¡l). The

value C(0) is referred to as the sill.

Under an assumption of stationarity the solutions of Equations 1.24 and 1.28 are identi-

cal. This means that the matrices K" and K" could both be referred to as a kriging matrix.

Throughout the remainder of this thesis, unless specified otherwise, the term "kriging ma-

trix" refers to the matrix K". The remainder of this chapter considers properties of K". lt
will be observed in Chapter 7 that K,, exhibits some efFects of a similar nature.

6.2.2 Effects of Data Configuration

Using dif[erent data configurations to obtain a kriging estimate, assuming a particular

semivariogram or covariance model, will afFect elements of the kriging matrix, and therefore

c

K.y

v
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afFect conditioning. This section introduces some simple considerations which will be

applied throughout the remainder of this thesis.

6.2.2.L The effect of ordering data

Given that n fixed data locations are to be employed to obtain a kriging estimate, one

question which may be posed is whether or not changing the order in which data points are

employed has any beneficial eflect on conditioning, For example, given three data locations

in a line at locations t1 : 0, x2 - 1, and rz:2, the kriging matrix may be expressed as :

where C(h) denotes the covariance function. The question being posed is whether or not

any af[ect on conditioning occurs if the data is ordered difFerently, for example 11' :1,
r2t:0, n3':2. The kriging matrix which would be obtained with this new ordering is :

c(0)

CG)

c(1)

l

c(0)

c(1)

c (2)

1

c (1)

c(0)

c(1)

1

c(1)

c(0)

c(2)

1

c(2) 1

c(\) 1

c(o) 1

10

c(L) 1

c(2) 1

c(o) 1

10
Such difFerent ordering may be applied because difFerent solution algorithms may take

advantage of any properties of the coefficient matrix to produce a solution more rapidly.

The actual weights produced when solving the linear equations provided by these difFerent

orderings will be the same (neglecting efFects such as rounding error).

The ef[ect of changing the order in which two data points are employed is mathemat-

ically represented as the swapping of respective rows and columns of the kriging matrix.

ln the above example, rows 1 and 2 are swapped and columns 1 and 2 are swapped. On

general kriging matrices, the operation of swapping rows i and j, then columns i and j,
may be expressed as :

K," - P-IK"P
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where P is a permutation matrixobtained by swapping rows i and j of the identity matrix,

I. As noted in Section 2.4.L, such a relationship between K'" and K" means that both

have the same eigenvalues, and therefore the same condition numbers. This means that

the spectral condition number is not afFected by changing the order of data used to perform

the kriging estimate. Therefore any advantages (e.g. more rapid solution) ofFered by an

algorithm which requires a special ordering of data are not ofFset by an effect in which the

condition number increases. Any differences in computed kriging weights will be due to

properties of respective algorithms, and not because the linear system being solved becomes

any more or less ill-conditioned. Additionally, only one possible ordering of data needs to

be considered in a discussion of conditioning of kriging matrices.

6.2.2.2 The effect of changing data configuration

Whereas diflerent ordering of data has no efFect on the conditioning of kriging matrices,

changing the configuration of data may have a more serious efFect.

Duplication of data locations results in a singular kriging matrix, having an infinite

condition number, because the respective rows/columns are duplicated. Using arguments

of continuity, it may then be expected that as data spacing is reduced towards zero,

there must eventually be an increase of the condition number. Data which contains some

samples which are close to each other may be described as clustered. This means that
data containing clusters is more likely to result in an ill-conditioned kriging matrix than is
data not containing clusters.

Another important consideration is the effect of adding or removíng a data point. lt
has already been shown than permutations of the data have no efFect on conditioning. This

means that, without loss of generality, the covariance matrix may be permuted so that a

data point to be removed is represented only in the last row and column of the covariance

matrix' The covariance matrix obtained after removing this data point is simply a principal

sub-matrix of the original. Bunch (1985) used the Cauchy interlace theorem, described

by Wilkinson (1965) and Parlett (1980), to show that the spectral condition number of a

symmetric, positive definite matrix is at least that of any of its principal submatrices. This
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means that the removal of a data point results in an equally ill-conditioned or a less ill-

conditioned covariance matrix. lt will be shown in Section 6.2.4 that a stationary kriging

matrix is at least as ill-conditioned as the corresponding stationary covariance matrix.

Therefore the kriging matrix may be expected to become more ill-conditioned as more

data is employed to perform the kriging estimate.

6.2.3 Indefiniteness of the Kriging Matrix

Davis and Grivet (1984) observed that the kriging matrix, K", is not positive definite,

and inferred that this results in numerical instability when solving the kriging equations. The

argument employed used the fact that an indefinite matrix has a non-positive eigenvalue,

while other eigenvalues are positive, and this was taken to mean that one eigenvalue may

be zero, or close to zero, which will result in numerical instability when solving linear

equations. However, an observation that an eigenvalue of a matrix is not positive, while

other eigenvalues are, is insufficient reason to conclude that any eigenvalue of that matrix

is almost zero. lf an eigenvalue is not close to zero, the possibility of numerical instability

is discounted, unless the solution algorithm being applied is unstable, in the sense of

Section 5.2.1, on the class of matrices to which the coefficient matrix belongs. This means

that the observation that the kriging matrix is not positive definite is insufficient to explain

any observed numerical instability. The fact that an indefinite matrix need not be ill-

conditioned is demonstrated by the fact that the condition number of Equation 3.14 is

dependent upon the magnitudes of the extreme eigenvalues, and not on their sign.

Posa (1989) has shown that the kriging matrix, K., is non-singular and indefinite,

with exactly one negative eigenvalue, when the covariance matrix is assumed to be pos-

itive definite. The issue of indefiniteness vs. ill-conditioning has also been mentioned by

Jiahua and Xinxing (1987). A lack of positive definiteness of a matrix does not imply thar

it is ill-conditioned, unless the matrix is known in advance to be positive definite, and

numerical results indicate otherwise e.g. the implementation of the Cholesky Decomposi-

tion given by Martin et al. (1971b) assumes a real positive definite symmetric matrix and
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indicates an error if this is not true. As the kriging matrix is known to be indefinite, the

kriging system can not be solved using algorithms, such as the Cholesky Decomposition,

which assume positive definite coefficient matrices.

6.2.4 Conditioning of the Kriging Matrix

By case study Posa (1989) illustrated that the type of semivariogram or covariance

model may dramatically af[ect the conditioning of the kriging matrix. ln particular, it was

demonstrated that the Gaussian model gives much larger condition numbers than do the

exponential or spherical models. This is an indication that properties of the covariance

matrix may afFect the conditioning of the kriging matrix.

The kriging matrix, K", is real, symmetric and indefinite, with one negative eigenvalue.

There is no reason, in general, to believe that the negative eigenvalue is the one with either

maximum or minimum magnitude, so it is not possible to directly draw conclusions about

the conditioning of K". However, the matrix Kl is real, symmetric and positive definite

as:

ro(K3) : r?(K")

The matrix Kl may be written, as in Section 6.2.!, in partitioned form :

C2 +vTv Cv

vTc v?v

where the matrix

v

is simply an n by n matrix in which all elements are unity.

Kl is real, symmetric and positive definite, so the matrix C2 + IJ must also be

positive definite (Bellman (1960)), and the eigenvalues of both these matrices must be

real and positive. Applying the Cauchy interlace theorem, described by Wilkinson (1965)

Kr"

vTU
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and Parlett (1980), it may be seen that :

\^0"(K'.) <

\^o,(Kr") >

from which it may be seen that :

"(K?) 
> o(c" + u) (6.5)

As noted in Section 1.6.1, ordinary kriging may be viewed as an extended form of

deconvolution, and the autocorrelation and covariance functions are closely related. As a

result of this relationship, the covariance function in one dimension may be expressed as a

convolution :

C(h): "(-h) * æ(h)

where r(å) represents data with zero mean. The autocorrelation of the covariance function

may be written as :

q(h) : C(-h) * C(h) : n(h) + r(-h) * r(h) * r(-h)

Elements of the matrix C2 are values of the function q(h,), in the same fashion as the

discrete autocorrelation may be expressed as a matrix multiplication. Applying a Fourier

transform, these convolutions may be expressed as multiplications in the frequency domain.

These arguments, which apply to one-dimensional data, may be readily extended to apply

to more general cases by considering concepts such as multi-dimensional Fourier transforms,

described by Bracewell (1978), amongst others.

The matrix C2 + U has elements which are values of the function :

q(h) + 1

Converting into the frequency domain it may be seen that :

q(h) +7 ++ Q(a) + ó(ø)

where
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. Q(h) is the Fourier Transform of q(h) (i.e. the square of the spectrum ol r(h)),

o ó(ä) is the delta, or impulse function, described in Section 4.5.3

Dietrich (1989) notes that, in geostatistical practice, fitted covariance functions are square

integrable and monotonically decay towards zero as lag, h, increases. This means that

the corresponding spectra also decay towards zero. Therefore, the maximum value of the

function Q(r) + ó(ø) is greater than the maximum value oÍ Q@), while all other values

of these functions are identical. Results given in Section 4.1 allow the conclusion that :

n(C2 -f U) > o(C') (6 6)

Combining Equations 6.5 and 6.6 allows the conclusions that the kriging matrix is at least

as ill-conditioned as the corresponding stationary covariance matrix :

o(K") > "(C) (6.7)

and that an ill-conditioned stationary covariance matrix implies an ill-conditioned kriging

matnx

The observation that an ill-conditioned stationary covariance matrix results in an ill-

conditioned kriging matrix means that numerical difficulty may be observed when solving

the kriging equations if the covariance matrix is ill-conditioned. From the perspective

of robustness, kriging may be expected to be non-robust if the covariance matrix is ill-

conditioned,

6.2.5 Conditioning of covariance matrices

Discussion given in Sections 1.6.1and 6.2.4 meansthat all results discussed in Chapter4

may be applied, with some extension, to conditioning of covariance and kriging matrices.

When data is acted upon by a kriging operator to produce a kriged estimate, the kriging

operator is applied as a (generalized) convolution process. Kriging, as commonly practiced,

introduces two factors not present in deconvolution : the unbias constraint and the fact
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dh h=O
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that the experimental covariance ¡s f¡tted with some functional form. This modelling of

the covariance (or semivariogram) constrains the type of function employed.

It was noted in Section 6.2.4that, in geostatistical practice, fitted covariance functions

are square integrable and monotonically decay towards zero. This means that the corre-

sponding spectra also decay towards zero. As discussed in Section 4.1, small values in a

power spectrum, in comparison with the maximum value, may be expected to result in

ill-conditioning of autocorrelation matrices. By analogy, a similar efFect may be expected

to occur with the covariance matrix. This means that the covariance matrix may be ex-

pected to become more ill-conditioned as the spectrum of the covariance function decays

more rapidly to zero. Dietrich (1989) considered kriging operators as the discretization

of integral operators, and noted that the Fourier transform of a Gaussian function is also

a Gaussian function. Therefore, the eigenvalues of the corresponding integrable operator

decay exponentially towards zero. Behaviour of this nature may be compared with that

which occurs when the kernel of the integral operator is a Green's function (i.e. the inverse

of a dif[erential operator), in which the eigenvalues can only decay algebraically, as is the

case with the spherical model, which occurs in examples of Chapter 7. More information

on integral operators is provided by texts such as Anselone (1971), Hochstadt (1973), and

Zabreyko et al. (1975).

Extending arguments of Section 4.2it may be seen that, if a given covariance model

is a function which is the covariance of a smooth function Z, in the sense that it may

be reasonably approximated with a finite Taylor's series expansion, then the corresponding

covariance matrix mayexpected to be ill-conditioned. This is also indicated byargumentsof

Dietrich (1989). Another measure of smoothness which could be employed is the derivative

of the covariance function at zero lag :

dc(h)

For example, a Gaussian covariance function may be written in the form

c(h): e-h"
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has a derivative of 0 at ä:0, while a spherical covariance function may be written in the

form :

which has a non-zero derivative at h:0. The Gaussian function may be considered to

represent a greater degree of smoothness than does the spherical function, in this sense.

Therefore, covariance matrices derived from a Gaussian model may be expected to be more

ill-conditioned than covariance matrices derived from a spherical model, as will be observed

in examples of Chapter 7.

The process of prewhitening of autocorrelation matrices amounts to the addition of

uncorrelated white noise. ln geostatistical texts, e.g. Journel and Huijbregts (1978), the

addition of uncorrelated white noise is referred to as the addition of a nugget efFect to

covariance models. The arguments applied for prewhitening of autocorrelation matrices in

Section 4.5 may therefore be applied to account for observations by Dietrich (1939) and

Posa (1989) who noted that the presence of a nugget ef[ect results in less ill-conditioned

covariance and kriging matrices.

C(h\ : !n" - Ln\/22
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6.3 Co-kriging

ln this section, conditioning of co-kriging using two variables will be considered. The

coefficient matrix produced in this case, when co-kriging is performed using cross-covariance

functions may be expressed as :

Crr Cn Ynt orrr

Ynz
(6.8)

oT, 0 0

where

o v, denotes a n-length vector whose elements are all unity,

r 0,, denotes a n-length vector whose elements are all zero,

r n¿ is the number of samples of variable number i,

. Cü is the cross-covariance matrix between variables number i and j. The elements

of this matrix are written in terms of the corresponding cross-covariance function.

The covariance matrices C¿¿ are in general symmetric and positive indefinite. ln

all following discussion, unless otherwise stated, the covariance matrices will be as-

sumed positive definite, removing the possibility of singular covariance matrices. The

matrices C¿¡ i # j are, in general, rectangular.

o the matrix K"¡ will be referred to as the "co-kriging matrix".

The co-kriging matrix may be readily seen to be indefinite, because it has two zero values

on the diagonal. The matrix may be permuted to place these values on the upper left of

the matrix, in which case the determinants of the 1 by 1 and 2 by 2 principal submatrices

CT,
K.t

0vî,

vT"

0oT,,

OnzCzz
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are not positive, violating a condition of positive-definiteness given by Bellman (1960). lt

must also be noted that the positive definite constraints of Section 1.5.9 imply that the

matrix :

Crt cn

CT, Czz

is positive definite.

The co-kriging matrix, K"¡, is indefinite. Using arguments similar to those of Sec-

tion 6.2.4, it may be seen that the matrix :

C?t -l CttCTr l vnrvT., CrrCTr l CnCzz Cuvr,, CtzYn"

CzzYn,

UT,C,,

uT,CT, UT,C," 0

(6.e)

is positive definite.

The focus of Sections 6.3.1 and 6.3.2 is the case in which all variables are sampled at

all locations. Such a scenario is employed in probability kriging, a non-parametric method

discussed by Journel (1984), Sullivan (1984) and lsaaks (1934). ln this câs€ n1 : nz(: n)

CTrCrt + C22CT2
K2,

0

172

Tr1,T,C,,

CTrnn,CTrCr, -f C|r lvn"vT."
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and the matrix C12 is symmetric. Equation 6.9 may then be rewritten as

c?,, -r c?2 +u CrrCrz * C:r-Czz Crrv Crzv

CrzCrr * CzzCn Czzv
(6.10)

v"Crr 0

vTcn vTCzz 0 n

where IJ: vv? is an n by n matrix with all elements unity. Section 6.3.3 extends results

of Sections 6.3.1 and 6.3.2 towards more general cases in which all data is not necessarily

sampled at all locations.

6.3.1- Intrinsic co-regionalization

lntrinsic coregionalization of two variables may be described as a situation in which :

Crr:C

Cn : knC

C2z : Ie22C (k22 > lkr"l)

The condition on k22 ensures that the positive definiteness conditions of Section 1.5.9 are

satisfied. ln this case, the matrix Klr may be written as :

(k?r+1)c'?+u krr(kr, + 1)C2 Cv lcpCv

l*rr(kr, + 1)C2 kzzCv
(6.11)

v"c

K?r

KZn:

0

Tt

nvT cn

Cnvc?, -r c72 + u

rzkpvT C

kpCv(k?,+kï)c'+u

kevr C IcrrvT C 0
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This matrix is positive definite, which means that the Cauchy interlace theorem may be

applied, as in Section 6.2.4, to show that the condition number of any principal submatrix

is at least that of any other principal submatrices of lower order. Therefore it may be

concluded that :

"(K?ò>"(l*?,*1] c,+u)
By rearranging rows and columns, it may also be seen that :

"(K'.ò > " (lr?,* t'3,)c, + u)

Using arguments similar to those of Section 6.2.4 it may therefore be seen that

o(K"¡) > ,n(C)

i'e' the co-kriging matrix in this case is at least as ill-conditioned as the covariance matrix

of interest.

6.3.2 More general co-regionalizations

It was concluded in the previous section that, when all variables are sampled at all

locations and co-regionalization is intrinsic, the coefficient matrix of co-kriging is at least

as ill-conditioned as the underlying covariance matrix of interest. Unfortunately, as noted

in Section L'5'7, this case is of little interest in practice because co-kriging produces no

more information than does ordinary kriging. ln this section, we consider the efFect of more

general co-regionalizations, still focusing on the scenario in which all variables are sampled

at all locations.

The matrix K"¡ ma! be permuted (by changing the location of rows and columns for



K'"n:
CT,

6" 0 VT 0

which may be expressed more simply as

K"(1) A

A K"(2)

where K"(i) represents the kriging matrix which would be obtained when ordinary kriging

is performed on variable i, and A is given by :

CHAPTER 6. CONDITIO]VTVG OF GEOSTATISTICAL METHODS

the unbias constraint in Equation 6.8) into the form :

Crt v cn o

VT

0

gT 0

Using this representation, it may be seen that

K:(1) + 
^2

K"(1)A

K,'"t :
AK"(1) Kr"(2) + 

^2

Using arguments of Section 6.2.4 it may therefore be seen that

0

v

130

K'"r

C,,

A

o(xj)¿"

Czzo

gr0

(n?fo> + A') i:7 2 (6.12)
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These bounds arise because the condition number of a positive definite matrix is at least

that of any of its principal sub-matrices. lt may be seen that K3(1) + A2 may be written

in partitioned matrix form as :

c?, * c?2 +u Crrv

Crrv" n

The matrix K?(2) +Á.2 may also be expressed in a similar fashion.

Elements of the cross-covariance matrix, C12, âr€ values of the cross-covariance func-

tion. The only difference between the covariance and cross-covariance functions is that the

cross-covariance function may either be positive or negative. ln all other respects, how-

ever, the cross-covariance function has an identical character to a covariance function-it

is square integrable in most practical cases and its spectrum decays towards zero. The

above partitioned matrix form is independent of the sign of the cross-covariance, and sign

of the cross-covariance therefore has no efFect on conditioning of the co-kriging matrix.

Minimum and maximum values in the spectra of C2o¡ may be denoted respectively as

rn¿¡ and M¿¡. Using results discussed in Section 4.Lfor values of the power spectra, it may

be seen that :

y¡tri 1 l^o^ (cl,) 3 \^o, (":,) S M¿¡ (6.18)

were l-¿,0 and \*",0 denote eigenvalues of minimum and maximum magnitude respec-

tively. As all covariance and cross-covariance models decay towards zero, it may be seen

that:

mntmtzl 
^*o*(c?r¡c?r) 

1\,no, ("?, * c?r) sMni Mn (6.14)

Combining Equations 6.13 and 6.14 ¡t may then be seen that :

" (c?, a ci,) 2 min (' ("?,) ," (c?,))

As rc(M2) : rc2(M) for any symmetric matrix M, arguments similar to those of Sec-

Lion 6.2.4 may be employed to see that :

r (K"*) ) min (" (ctt) , rc (crz))
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Similar considerations may be made concerning the matrix K?(2) +42 to observe that

n (K"¡) ) min ("(Crr), rc (Crz))

which means that the co-kriging matrix is more ill-conditioned than at least one of its

com pon ent station a ry cross-cova ria n ce matrices.

The arguments of this section may be readily extended to the case when a larger number

of variables are employed to obtain a co-kriging estimate, when all variables are sampled at

all locations. ln these cases it may be concluded that at least one of the condition numbers

of component cross-covariance matrices provides a lower bound for the condition number

of the co-kriging matrix.

6.3.3 More general data configurations

ln this section the previous assumption that all variables are sampled at all locations

is abandoned. ln the general case, the covariance matrices C11 and C22 are of difFerent

orders, n1 and fl2, ãîd the matrix C12 is rectangular. However, similar arguments to those

of Section 6.3.2 may be applied to show that :

" 
(K"¡') >

o (K"¡) >

which means that properties of all covariance and cross-covariance matrices and, their

transposes af[ect the conditioning of the co-kriging matrix. The need to refer to transposes

of cross covariance matrices arises from the fact, described by Equation 3.L1, that the

spectral condition number of a general matrix A is expressed in terms of the eigenvalues

of A"A.
One additional lower bound on the o(K.n) may be obtained by permuting to place the

two last rows and columns of Equation 6.9 in the upper left positions. lt may then be seen

that:
max(n1rn2)o(K"¡) >
min(n1,n2)
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which means that, if the numbers of samples of dif[erent variables are significantly difFerent,

conditioning may be afFected. Thisfinal constraint has little bearing in practice-in orderto

raise the possibility of significant ill-conditioning or non-robustness of co-kriging the relative

numbers of data points must be much larger than would normally be seen in practice. This

constraint is included here mainly for completeness.

The constraints of this section may also be extended to apply to cases in which a larger

number of variables are used to perform the co-kriging estimation.

6.4 Discussion

It has been shown that the kriging matrix is at least as ill-conditioned as the corre-

sponding stationary covariance matrix. lt must be stressed that this result depends on the

assumption of covariance models of the type most commonly employed in geostatistical

practice-the experimental covariance is modelled as a monotonic decreasing, square inte-

grable function. There is no guarantee that a kriging matrix derived from a more arbitrary

covariance matrix will be more ill-conditioned than that covariance matrix. Similar results

have been derived for co-kriging matrices. What has not been examined closely in this

chapter is the efFect of the presence of unbias constraints upon conditioning-the results

of this chapter allow only observations relating to eflects of properties of the covariance

and cross-covariance on conditioning of ordinary kriging and co-kriging.

Properties of covariance and cross-covariance functions/matrices which have been as-

sumed throughout this chapter are :

¡ functions, which are fitted to experimentally obtained covariances and/or cross-

covariances, are square integrable and monotonically decay towards zero,

¡ covariance matrices are positive definite. Cross-covariance functions/matrices are

chosen to ensure that the positive definiteness conditions of Section 1.5.9 are satis-

fied.

When elements of the coefficient matrices (other than elements introduced by the presence
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of unbias constraints) solved in ordinary kriging and co-kriging are values of covariance or

cross-covariance functions, properties of these functions affect conditioning of the coeffi-

cient matrices in the fashion described in this chapter.

Chapter 7 examines, via numerical experiments, a number of efFects of model param-

eters on conditioning of ordinary kriging, considering cases in which the kriging system is

expressed in terms of either covariance or semivariogram functions. Observed behaviour,

when semivariogram functions are employed, is of a similar nature to that which occurs

when covariance functions are employed. Examples of co-kriging systems are also consid-

ered.



Chapter 7

A study ln geostatistics

A number of theoretical aspects relating to conditioning of kriging and co-kriging,

performed using covariance and cross-covariance functions, were examined in Chapter 6. ln

this chapter a number of these theoretical aspects are examined via numerical experiment.

The experiments also consider the conditioning of kriging and co-kriging performed using

semivariogram and cross-variogram functions, which were not examined in Chapter 6.

7.L Conditioning of l{riging \l/ith a Pure Nugget

Effect

ln Section 6.2.4, it was shown that an ill-conditioned stationary covariance matrix

results in an ill-conditioned kriging matrix. ln this section, it is demonstrated that this is a

sufficient, but not a necessary, condition-the kriging matrix may be ill-conditioned, even

if the stationary covariance matrix is not. The conditioning of kriging performed with a

a

135
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pure nugget efFect is considered

K"

0

K,Y

c ... c 0 1

1 ... 1 1 0

where c ) 0 is referred to as the sill. Results in this section are independent of data

configuration (other than assuming that duplication of data is avoided, in which case the

above equations do not apply). lt is also important to note that the condition number

of the covariance matrix obtained from a pure nugget efFect is always unity. Thus efFects

described in this section relate to the efFects of scaling the model when the covariance

matrix is well-conditioned. Conditioning of the coefficient matrices obtained when kriging,

using either covariances or semivariograms, are considered.

To evaluate the eigenvalues of K" consider the matrix :

1

1

A STUDY TV GEOSTATISTICS

1

1

0

0

0

C

c

0

0

1

0

c

C

1

0

1

1

c

1

C

c

0

1

óK. - cI:
1

I-c
and note that the first n rows are all the vector (0,0...,0,1), where n) I is the number

of data points being used to perform the kriging estimation. lt may therefore be seen that

K.-clhasrank2or,equivalently, n_ 7of itseigenvaluesarezero. Non-zeroeigenvalues

may be obtained by expanding :

r1

(K" - cI)

ûnIl
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to obtain

rn+t : \fri Vi:7...n

Ð*, - crn!7: \rn+t
j=l

It may then be seen that tt : 12: . . . : fin and :

À2 + cl -n:0

and the non-zero eigenvalues of K" - cI are

c2*4n

737

-cl -c- c2+4n
2'2

therefore, the eigenvalues of K" are :

.+r/4+n c-\/A +4n
c)

2 2

where the eigenvalue c is repeated n - 7 times.

ln a similar fashion, by considering the matrix K,, * cI, it may be shown that the

eigenvalues of K,.,, are :

(n-1)c* (n - t)2cz ¡ 4n (n - 7)c - (n_ 7)2c2¡4n
-c) 2 2

with the eigenvalue -c being repeated n - l times.

From the above results, the spectral condition numbers may be written

o(K")

"(K'):{f,ffi:

lt-""(K.)l
ll-i,(K.)l

n-l c2¡4n
2c

(n-t)2 c2 +zn+(n-t)afrì$ 
"z 

¡an

ifc<7.
iÍ c) 7.2n

These condition numbers allow some interesting conclusions

o for a sill, c, large in comparison with the number of data points, n, the condition

numbers of both types of kriging matrix are approximately quadratic with c ;

o(K") È *
o(Kr) È ncz 

(7'1)

n-1
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o as the sill decreases to zero, the condition number increases. This may also be readily

seen by noting that both I{" and K., are singular for c:0. As eigenvalues of a

matrix are continuous functions of its elements, so is the spectral condition number.

ln the case being considered here, the covariance matrix is a scaled version of the nby n

identity matrix. Therefore, the condition number of the covariance matrix is unity, which, as

stated in Section 3.4, is the minimum possible value for a condition number. The results

of this section indicate that the presence of the unbias constraint introduces a scaling

efFect on the spectral condition number, demonstrating that the kriging matrix may be ill-

conditioned even when the corresponding stationary covariance matrix is well-conditioned.

Similar efFects are indicated for coefficient matrices defined in terms of semivariogram

functions. This means that kriging is not guaranteed to be robust, even if the covariance

matrix is well-conditioned.

7.2 Data configuration to be considered in later

sections

The remainder of this chapter is devoted to numerical experiments in kriging and co-

kriging. For these purposes, one particular data configuration will be employed, this being

illustrated in Figure 7.1. This data configuration consists of 25 points on a square 5 by 5

grid, where the grid spacing is considered to be one unit of distance. ln examples which

involve solving kriging equations to obtain kriging weights and Lagrange multipliers, it is

considered that kriging is being employed to estimate the mean of the block at the centre

of the grid (i.e. the block is centred on the origin in Figure 7.1).

Two semivariogram model types are considered at various times in this chapter. The

first is the spherical function :

0 h:0
0<h1a

h> a

co * ct (t* - å(*)')sph(h) :
colct

(7.2)
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2

1

0

1

-2

-2 -1 0 1 2

Figure 7.1: Data configuration employed in examples.

where

o û, represents the range,

o cs represents the nugget ef[ect,

. c: col ct represents the sill,

o ço represents the relative nugget,

o the corresponding covariance function is sph.(h):.- sph(h)

The second function considered is the Gaussian :

( o h:o
gauss(h) : \ /- ¡¡.r-r2\ (7.3)r ---'--\ "'/ 

I "o 
-t- 

", (t - "-Ø/")'z) h > 0

These equations define semivariogram functions of interest, which will be used to define

elements of semivariogram and covariance matrices.
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Examples in co-kriging are restricted to the scenario in which two variables are being

employed to perform the co-kriging estimate, and both variables aresampled at all locations

of Figure 7.1. Co-kriging weights and Lagrange multipliers are computed. For simplicity,

the data sets are indexed l and 2, where data set number 1 is the data set being estimated

using the co-kriging process (i.e. variable k6 in Section 1.5.7) and data set number2 is being

used to provide more information for the purposes of performing the co-kriging estimation.

Parameters, such as cross-variogram models/matrices and Lagrange multipliers, are indexed

in a similar fashion e.g. the covariance matrix for data set number 1 will be referred to as

C11 and the cross-covariance matrix between the two data sets referred to as C12, This

notation is consistent with that employed in discussion of Section 6.3.

7.3 The effect of model parameters

ln this section, spherical semivariogram models, having a range not greater than ten

sampling units, are considered. Posa (1989) has demonstrated that the spherical function

results in relatively well-conditioned kriging matrices, in comparison with other models

such as the Gaussian. lt may then be concluded that eflects observed in this section are

an extension of results of Section 7.1.
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Figure 7.2: n(K") vs. sill (a : 2,co : 0)

1.47

A graph of rc(K") vs. sill is given in Figure 7.2. The semivariogram function has a

range of two units, and no nugget efFect (i.e. cs - 0). Similar effects are observed when

models with diflerent range and relative nugget values are considered. lt may be observed

that the condition number is approximately quadratic with sill, as was seen in Section 7.1.

The observed behaviour of rc(K,r) is similar to that of rc(K").
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ln Figure 7.3, the focus is placed on smaller values of sill, and it may be seen that o(K")

increases sharply as the sill approaches zero, as was found in Section 7.t i.e. extremely

small values of sill result in a ifl-conditioned kriging system. Again, the observed behaviour

of rc(Kr) is similar to that of rc(K").
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Figure 7.3: rc(K") vs. sill for small sill values (a:2,c0 : 0)

k
ú)

-c)
E

z
o
Ë
o
U

I
sill

0.5 ,,



CHAPTER 7. A STUDY I¡\T GEOSTATISTICS

10.0

8.0

743

The ef[ects of range and relative nugget on rc(K.) are illustrated in Figure 7.4. lt
may be seen that o(K") decreases with relative nugget and increases with range. Similar

behaviour is exhibited at difFerent sill values, although the magnitude of values changes

markedly.
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Figure 7.4: rc(K.) vs. range and relative nugget (sill:1O).
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As seen in Figure 7.5, when the sill value is 1, rc(I(.r) behaves similarly to rc(K")-it
increases with range and decreases with relative nugget. However, when the sill is larger,

as in Figure7.6, this efFect is reversed i.e. n(K.r) decreases with range and increases with

relative nugget. This efFect illustrates the strong scaling efFect on the condition number

introduced by changing the sill value.
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Figure 7.5: rc(K.,) vs. range and relative nugget (sill:1)
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Figure 7.6: rc(K.r) vs. range and relative nugget (sill:f;.

ln addition, the bounds

o(K") 1I0c2

"(Kr) 125c2

were observed for all values of relative nugget in 10,1] when the range was less than 10

units and the sill, c, was at least 1. This suggests that the value nc2 given in Equation 7.1

is an upper bound for both o(K") and rc(Kr) for spherical models with range not exceeding

10 units.

From the preceding results, it may be seen that the spectral condition numbers of

kriging matrices, derived from a spherical model, and written in terms of either covariance

or semivariogram functions, are dependent primarily on sill. A "large" condition number
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implies possible non-robustness or numerical instability when solving the kriging system.

This means that it is desirable to avoid large condition numbers. Large condition numbers

may be avoided by a simple scaling. There are two possible approaches. The first is

to scale the model, to make the condition number small enough to avoid difficulty. For

example, most computers provide floating point values in single precision with six to eight

decimal places (or, more precisely, about 20 to 30 binary places), which means that a

condition number of the order of 106 to 108 may be interpreted as an indication of ill-

conditioning k.g.Appendix A). Scaling the spherical model so that it has a sill value in

the range 1 to 1000/ 1/n will reduce the condition number to tractable levels, when spherical

semivariogram models with range not exceeding 10 units are employed. By noting that the

sill efFect is equivalent to the variance of the data, it may be seen that this treatment has

the same ef[ect as scaling the data. Scaling the covariance or semivariogram model so it

has a sill of 1 is equivalent to expressing the kriging system in terms of the correlogram

function, described by Journel and Huijbregts (1978), rather than the covariance function.

The second approach is to replace the 1's of Equations L.24 and L.28 by a value, B,

such that the ratio of B to the sill value is within the range 0.007\/n to 1. The coefficient

matrices produced by this approach dif[er from those produced in the previous paragraph

only by a scale factor.

A large condition number (for discussion here, greater than about 106) implies only the

possibility of numerical instability. Scalings described here ensure that this possibility is

removed without resorting to the more expensive approach of working in higher precision.

The above approaches will have an eflect on the computed kriging weights, or the Lagrange

multiplier, unless similar changes are made to the vector on the right hand sides of the linear

equations. The scalings given here assume a regular data configuration, and a spherical

model with a range not exceeding 10 units. lt will be seen in Section 7.4 that large values

of range, or close spacing of the data, have a significant additional efFect on conditioning

which the scaling procedure given here may not totally remove. Scaling efFects, of a

similar nature to those discussed here, may be expected to have beneficial efFects relating

to conditioning when difFerent semivariogram models (e.g. a Gaussian function), or more
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general data configurations, are employed.

As noted in Section 5.2.L a large condition number does not necessarily imply numerical

instability because properties of a solution algorithm must be taken into account. This

means that efFects introduced by changing the sill of a covariance model, which can result

in a large condition number, will not necessarily afFect the accuracy of the computed kriging

weights or Lagrange multiplier.

Past case studies in geostatistical robustness (e.g. Brooker (1985), Posa (1989)) have

assumed models with a fixed sill value and have examined the effect of changing other

model parameters. The results of this section and Section 7.1 indicate that values of sill

have a dramatic efFect on condition number of the respective coefficient matrices. This in

turn implies the possibilily of non-robustness.

The efFects observed here may be related directly to optimal scaling, which is discussed,

amongst others, by Bauer (1963), Evans and Hatzopoulos (1979). Essentially, an optimal

scaling involves multiplying rows or columns by constants chosen in such a fashion as to

obtain a relatively small condition number. Elements of the solution vector obtained after

such a scaling procedure difíer from those of the unscaled solution by only a scale factor.

Scaling procedures are easily applied to linear systems because they involve only a trivial

transformation of the coefficient matrix.

7.4 The effect of data spacing in kriging

This section focuses on the observation made in Section 6.2.2.2 that ctose spacing of

data may result in ill-conditioning of both K" and Kr. An alternative approach is to fix

the range and examine the ef[ect of data spacing. This alternative means that behaviour

which occurs when the range of a spherical model is large, and data spacing is fixed at

one unit, provides information about behaviour when data spacing is small for a fixed

range. ln Section 6.2.2.2 it was noted small data spacings may be expected to result in

ill-conditioned kriging matrices. This in turn means that it may be expected that 
"(K")

and rc(Kr) will exhibit an increase with range, when the data spacing remains at one unit.
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ln Figure 7.7, n(K.) is plotted as a function of range of a spherical function for larger

range values than those considered previously. lt may be seen that, for large range, o(K")

increases approximately linearly with range. A similar behaviour is exhibited by rc(Kr).

This means that values of range which are large in comparison with the data spacing result

in a large condition number, and illustrates arguments of Section 6.2.2.2. The contradiction

of these results with those of Figure 7.6, where "(Kr) decreases with range, appears to

be attributable to the behaviour of "(Kr) with sill. The behaviour demonstrated here is

a limiting efFect, and the interaction of values of sill and relative nugget may cause the

conclusions here not to hold for certain choices of model parameters.

It should be noted that the values of range studied in this section are extremely high

in comparison with data spacing and, as such, would generally be unrealistic in practice.
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Figure 7:7: rc(K") vs. range for large range values (c: 1,co :0)
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They are presented here because they provide a simple means of examining some ef[ects of

data spacing on conditioning. A large range in a semivariogram model is representative of a

smoother set of data values than is a smaller range. Therefore, these results are consistent

with those of Section 6.2.5.

7.5 \Mhen is conditioning of krigirtg rnatrices im-

portant ?

Observations so far indicate that ill-conditioning of kriging matrices may be caused by :

o an ill-conditioned covariance matrix.

o a "scaling efFect" introduced by the presence of the unbias constraint. This ef[ect

can result in an ill-conditioned kriging matrix, even when the covariance matrix is

well-conditioned.

A question which may now be posed is : When do any of these eflects influence accuracy of

computed kriging weights, the Lagrange multiplier, or any other quantity computed from

them? ln previous discussion, conclusions were drawn assuming that a large condition

number results in numerical instability andf or a non-robust kriging system. However, it

has been noted in Chapter 5 that properties of the solution algorithm must be considered

when determining whether or not a large condition number results in numerical instability,

whilst in Section 6.1 ¡t has been noted that the condition number provides only an upper

bound as a measure of robustness.

ln examples which follow, Gaussian elimination with pivoting is employed to solve the

kriging equations. This means that a small condition number excludes the possibility of

large errors in the computed solution, and large errors in a computed solution may arise

when the condition number is large. The purpose here is to determine cases in which

Gaussian elimination produces significant error, as measured in terms of error norms, in

the solution vector, which incorporates both the desired kriging operator and the Lagrange

multiplier.
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Table 7.1 compares the quantities obtained from the kriging equations when the sill of

a spherical variogram model is varied, and relative nugget and range are kept constant.

The kriging equations solved here were those in which elements of the kriging matrix and

right hand side vector were written in terms of semivariogram values (i.e. these results are

numerical solutions of Equation 1.28). Results of a similar nature are also observed for the

solution of kriging equations written in termsof covariance values. lt may be observed that

the quantities computed using Gaussian elimination, with the sill values considered exhibit

little visual difFerence from the corresponding double precision solutions. This observation

also applies to quantities ll.ll/ll"llwhich are reported in this table. The vectors e and x

are defined as follows :

o x denotes the solution of Equation 1.28, computed using double precision,

o if x" denotes the solution of Equation 1.28 computed using single precision, then

e:X-Xs

ln this fashion, the quantity llell/ll*ll denotes a relative error, in terms of norms, with

respect to the double precision solution.

The kriging solutions presented in Table 7.1 exhibit little error for all sill values shown,

in spite of the fact that the condition numbers corresponding to both the small and large

sill values are much larger than that obtained when the sill is one. Because of the data

configuration, illustrated in Figure 7.1, it may also be expected that the values of the

kriging weights, .(i, j), chosen to correspond to locations (i, j) in Figure 7.1, would show

symmetry relations of the form w(i, j) : -(lil, Ul) : -(Ul,lil). This symmetry is observed

in this example, apart from slight changes in the last reported significant figure in the single

precision solutions. The value of the Lagrange multiplier is afFected by a scaling due to

diflerent sill values.

Table 7.2 presents kriging weights and Lagrange multipliers computed by kriging with

a Gaussian semivariogram model. Unlike the spherical function, the Gaussian function

can not be analytically integrated. For this reason, the values T(xo,Ã) which appear in

Equation 1.28 were approximated using a simple numerical integration, in which the region



CHAPTER 7. A STUDY I¡\T GEOSTATISTICS 151

Zero nugget Range : 5

Double precision results (sill : 1)

rc(I) : 724.4

Lagrange multiplier : -3.007 x 10-4

Sill : 10-a "(K") 
:3.780 x 105

Lagrange multiplier : -3.009 x 10-8 ll"ll/ll"ll : I.240 x 10-a

Sill :1 rc(Kr):134.9

Lagrange multiplier : -3.007 x 10-a ll"ll/ll*ll : 1.862 x 10-a

Sill : 104 
"(K.r) 

: 7.220 x 10e

-0.002997

-0.004630
-0.007346
-0.004631

-0.002997

-0.004630
0.02611

0.1019

0.02611

-0.004630

-0.007346
0.1019

0.5665

0.1019

-0.007347

-0.004630
0.02611

0.1019

0.02611

-0.004631

-0.002998
-0.004630

-0.007346
-0.004631

-0.002997
Lagrange multiplier : -8.009 ll.lllll*ll : e'246 x 1o-a

Table 7'1: Effect of sill on computed solutions of kriging equations (spherical semivar-
iogram function).

-0.002999
-0.004629
-0.007347

-0.004629
-0.002999

-0.004629
0.02611

0.1019

0.02611

-0.004629

-0.007347
0.1019

0.5665

0.1019

-0.007347

-0.004629
0.02611

0.1019

0.02611

-0.004629

-0.002999
-0.004629
-0.007347

-0.004629
-0.002999

-0.002998
-0.004630
-0.007346
-0.004630
-0.002998

-0.004630
0.02611

0.1019

0.02611

-0.004629

-0.007346
0.1019

0.5665

0.1019

-0.007348

-0.004630
0.02611

0.1019

0.02611

-0.004629

-0.002998
-0.004629
-0.007348
-0.004629
-0.002999

-0.002999
-0.004629

-0.007347
-0.004623
-0.002999

-0.004629
0.02611

0.1019

0.02611

-0.004629

-0.007346
0.1019

0.5665

0.1019

-0.007346

-0.004629
0.02611

0.1019

0.02611

-0.004629

-0.002999
-0.004629
-0.007346
-0.004629
-0.002999
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Zero nugget. Range : 3

Double precision results (Sill

rc(I):2.510 x 107

1)

Lagrange multiplier : 5.570 x 10-5

Sill : 10-a 
"(K.r) 

: 1.001 x 1011

Lagrange multiplier : 7.022 x 10-8 ll"lllll"ll : 1.033

Sill : 1 rc(Kr) :2.868 x 107

Lagrange multiplier : 6.844 x 10-5 ll"lllll*ll : 0.14e0

Sill : 104 Æ(Kr) :9.527 x 108

0.01654

-0.04927
0.05651

-0.04571
0.01408

-0.04813
0.1456

-0.1210
0.1345

-0.04033

0.05472

-0.1183
0.9978

-0.1024
0.04294

-0.04363
0.1318

-0.1015
0.1 196

-0.03513

0.01361

-0.04024
0.04392

-0.03613
0.01073

Lagrange multiplier : 0.3698 ll.lllll*ll : 0.4708

Table 7 '2: Ðffect of sill on computed solutions of kriging equations (gaussian semivar-
iogram function).

0.001113

-0.003028
-0.0047789

-0.0030281
0.0011126

-0.003028
0.01087

0.05731

0.01087

-0.0030281

-0.004779
0.05731

0.7662

0.05731

-0.0047789

-0.003028
0.01087

0.05731

0.01087

-0.0030281

0.001113

-0.0030281

-0.0047789
-0.0030281

0.0011126

-0.02232
0.06652

-0.09805
0.06446

-0.02095

0.07113

-0.2091
0.3526

-0.2030
0.06710

-0.1102
0.3703

0.3456

0.3621

-0.1048

0.07701

-0.2277
0.3773

-0.2271
0.07306

-0.02602
0.07785

-0.1136
0.07586

-0.02470

-0.01008
0.02937

-0.04628
0.02474

-0.006963

0.03002

-0.08419
0.7782

-0.06936
0.02008

-0.04865
0.7827

0.6080

0.161 1

-0.03427

0.02823

-0.07793
0.1684

-0.06118
0.01705

-0.008958
0.02545

-0.04072
0.01960

-0.005061
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-R was divided into a 16 by 16 grid. The solutions computed using single precision for

difFerent sill values show little resemblance to each other. This observation is sufficient to

conclude that at least one of these computed solutions exhibits significant error. These

solutions may be assessed more rigorously by comparing them to solutions computed using

double precision. lt may be seen that none of the single precision results closely resemble

the corresponding double precision results, and the relative errors, measured in terms of

norms, are significantly Iarger than the relative errors in the example of Table 7.1. This

means that, in this case, numerical errors have a significant efFect for all sill values. The

difFerent behaviours exhibited when kriging using spherical or Gaussian covariance functions

has been considered in Section 6.2.5.

These examples illustrate that, when the kriging equations are being solved using Gaus-

sian elimination, the computed solution, which consists of the kriging operator and La-

grange multiplier, does not necessarily exhibit targe error if the covariance matrix is well-

conditioned, even if the kriging matrix is ill-conditioned due to the sill value. However,

when the covariance matrix is ill-conditioned, the efFect of sill may become significant. ln

practice, this gives further support to the conclusion of Posa (1989) who advocated fitting
of functions to experimental covariances or semivariograms which result in well-conditioned

covariance matrices, in preference to functions which result in ill-conditioned covariance

matrices, especially if (as is currently the case in practice) there is no prior information

indicating that the function which gives the ill-conditioned covariance matrix is most suit-

able. The ef[ects given here relate only to Gaussian elimination with pivoting, an algorithm

which was noted in Section 5.2 to be one with quite good stability properties. There

can be no general guarantee that the efFect of sill on condition number will not afFect

kriging weights if they are computed using a difFerent algorithm, because the type of be-

haviour described here is dependent upon properties of the respective solution algorithms.
Posa (1989) also demonstrated that the use of functions which introduce a nugget effect

result in less ill-conditioned kriging matrices than those with no nugget efFect, an efFect

discussed in Section 6.2.5.
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7.6 Conditioning of co-kriging

It was seen in Section 6.3 that the minimum value for the condition number of all

cross-covariance matrices provides a lower bound for the condition number of the corre-

sponding co-kriging matrix. This efFect is analogous to the fashion in which the stationary

covariance matrixafFects the corresponding kriging matrix. lt has been observed previously

in this chapter that the presence of unbias constraints in kriging has a significant eflect

on conditioning of the kriging matrix, but that this efFect does not necessarily result in

significant error in computed kriging weights or Lagrange multipliers. lt may be expected

that observed efFects in co-kriging will be analogous to those observed for kriging :

1. il aII covariance or cross-covariance matrices are ill-conditioned, the co-kriging matrix

may also be ill-conditioned. However, if at least one is not ill-conditioned, co-kriging

may be expected to be substantially less ill-conditioned.

2. scaling ef[ects introduced by unbias constraints mayalso be expected to occur. Multi-

plying any of the covariance/cross-covariance models by a constant may be expected

to afFect the condition numberof the co-kriging matrix. However, this ef[ect will not

necessarily af[ect computed co-kriging weights or Lagrange multipliers.

It was observed in Section 6.2.5 that the presence of a nugget efFect in the covariance

model substantially improves conditioning of the covariance matrix. This means that if

any of the (cross-)covariance models exhibit a nugget eflect, a substantial improvement

in conditioning of co-kriging may be expected. Posa (1989) advocated the modelling of

experimental covariances by functions which result in well-conditioned covariance matri-

ces. On the basis of results of Section 6.3, it may be expected that fitting functions to

experimental covariance and cross-covariances which result in well-conditioned covariance

or cross-covariance matrices will be desirable in co-kriging.

Table 7.3 presents solutions to co-kriging equations in which all semivariogram and

cross-variograms are spherical with range 5 units, and no nugget efFect. Table 7.4 exhibits

corresponding results obtained after the introduction of modest nugget efFects to the two
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Co-kriging using cross-variograms

Semivariogram and cross-variogram sills i crr - 100, cp:50, czz:700
Range of all cross-variograms : 5

Zero nugget eflects. rc(I) : 724.4 o(K"n) :2.746 x 105

Double precision solution

Weights applied to data set f 1

Weights applied to data set S2 are all zero

Lagrange multiplier ff1 : -3.006 x 102 Lagrange multiplier ft2 : -7.503 x 10-2

Weights applied to data set ff1
-2.999 x 10-3

-4.629 x 10-3

-7.347 x 10-3

-4.629 x 10-3

-2.999 x 10-3

-4.628 x 10-3

2.611x 10-2

0.1019

2.611x 10-2

-4.629 x 10-3

-7.347 x 10-3

0.1019

0.5665

0.1019

-7.347 x 10-3

-4.628 x 10-3

2.677 x 10-2

0.1019

2.677 x 10-2

-4.629 x 10-3

-2.999 x 10-3

-4.628 x 10-3

-7.347 x 10-3

-4.629 x 10-3

-2.999 x 10-3

Weights applied to data set ff2
-7.242 x 10-s

0

0

-9.070 x 10-e

1.072 x 10-8

-7.086 x 10-e

-1.334 x 10-e

7.038 x 10-10

-3.727 x 10-e

-8.783 x 10-e

-3.575 x 10-e

2.095 x 10-8

-1.970 x 10-e

1.468 x 10-8

2.989 x 10-e

-3.598 x 10-e

7.743 x 10-e

-7.674 x 10-8

0

-4.477 x 10-10

8.597 x 10-s

-7.297 x 10-8

-6.825 x 10-10

0

-3.327 x 10-e
Lagrange multiplier f 1 : -3.007 x 102 Lagrange multiplier ff2 : -1.503 x 10-2

ll"lllll*ll : 6'301 x 1o-6

Table 7.3: Computed solutions of the co-kriging equations (spherical cross-variogram
functions, no nugget effects).

-3.000 x 10-3

-4.628 x 10-3

-7.348 x 10-3

-4.628 x 10-3

-3.000 x 10-3

-4.628 x 10-3

2.677 x 10-2

0.1019

2.671x 10-2

-4.628 x 10-3

-7.348 x 10-3

0.1019

0.5665

0.1019

-7.348 x l-0-3

-4.628 x 10-3

2.677 x 10-2

0.1019

2.6LI x 10-2

-4.628 x 10-3

-3.000 x 10-3

-4.628 x 10-3

-7.348 x 10-3

-4.628 x 10-3

-3.000 x 10-3
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Co-kr n ust cross-va ra ms

Semivariogram and cross-variogram sills i c11:100, c12 : 50, czz: I00
Range of all cross-variograms : 5

Relative nugget efFects '. cor,,/ctt:0.01, cor"/ctz:0, cs"rf c22 : 0.01.

rc(frr) : 117.3, rc(Irz) :724.4 rc(K.n):2.758 x 105

Double precision solution

Weights applied to data set f 1

Weights applied to data set ff2

Lagrange multiplier fiI : -4.763 x 10-2 Lagrange multiplier ff2 : -r.462 x r0-2

Sinsle precision Gaussian elimination, pivotine on maximum element

156

-3.902 x 10-3

-4.653 x 10-3

-6.632 x 10-3

-4.653 x 10-3

-3.902 x 10-3

-4.653 x 10-3

2.896 x 10-2

0.1053

2.896 x 10-2

-4.653 x 10-3

-6.632 x 10-3

0.1053

0.5424

0.1053

-6.632 x 10-3

-4.653 x 10-3

2.896 x 10-2

0.1053

2.896 x 10-2

-4.653 x 10-3

-3.902 x 10-3

-4.653 x 10-3

-6.632 x 10-3

-4.653 x 10-3

-3.902 x 10-3

4.479 x

-6.422 x

-3.780 x

-6.422 x
4.479 x

-6.422 x 10-6

-1.391 x 10-3

-7.567 x 10-3

-1.391 x 10-3

-6.422 x 10-6

-3.780 x 10-a

-1.568 x 10-3

1.160 x 10-2

-1.567 x 10-3

-3.780 x 10-a

-6.422 x 10-6

-1.391 x 10-3

-7.567 x 10-3

-1.391 x 10-3

-6.422 x 10-6

4.479 x

-6.422 x

-3.780 x

-6.422 x
4.479 x

10-4

L0-6

10-4

10-6

10-4

10-4

10-6

10-4

10-6

10-4

Weights applied to data set f 1

-3.903 x 10-3

-4.653 x 10-3

-6.632 x 10-3

-4.653 x 10-3

-3.902 x 10-3

-4.653 x 10-3

2.896 x 10-2

0.1053

2.896 x 10-2

-4.652 x 10-3

-6.632 x 10-3

0.1053

0.5424

0.1053

-6.633 x 10-3

-4.653 x 10-3

2.896 x 10-2

0.1053

2.896 x 10-2

-4.652 x 10-3

-3302 x 10-3

-4.652 x 10-3

-6.633 x 10-3

-4.653 x 10-3

-3.902 x 10-3

Weights applied to data set ft2
4.485 x 10-a

-7.757 x 10-6

-3.777 x 10-a

-6.996 x 10-6

4.485 x 10-a

-7.047 x 10-6

-1.390 x 10-3

-7.567 x 10-3

-1.390 x 10-3

-7.244 x 10-6

-3.777 x 10-a

-7.567 x 10-3

1.160 x 10-2

-1.567 x 10-3

-3.775 x 10-a

-7.073 x 10-6

-1.390 x 10-3

-7.567 x 10-3

-1.390 x 10-3

-7.098 x 10-6

4.486 x 10-a

-7.209 x 10-6

-3.775 x 10-a

-7.087 x 10-6

4.485 x 10-a
Lagrange multiplier f1 -4.762 x 10-2 Lagrange multiplier ff2 : -I.462 x I0-2

ll"lllll*ll : 1.438 x 10-5

Table 7 '4: Cornputed solutions of the co-kriging equations (spherical cross-variogram
functions, moderate nugget effects).
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semivariogram models. lt may be observed that, in both these examples, the single precision

solutions show a strong resemblance to their double precision counterparts and relative

errors in terms of norms, denoted bV ll"ll/ll*ll are small.

The addition of nugget efFects has had little effect on the weights applied to data set

number 1, but the weights which apply to data set number 2 have changed substantially.

This change is not a result of ill-conditioning. Employing spherical cross-variogram models,

which all have no nugget efFect, means that intrinsic coregionalization, described in Sec-

tion 1.5.7, occurs. ln the scenario being considered, in which all variables are sampled at

all locations, this means that co-kriging provides no more information than would ordinary

kriging because the weights being applied to data set number 2 are zero. The computed

weights for data set number 2, computed using single precision, are extremely small, and

may be considered as (machine) zero. The addition of moderate nugget efFects to the

two semivariogram models being considered in this example means that intrinsic coregion-

alization no longer occurs, and weights which apply to data set number 2 are no longer

zero.

Table 7.5 illustrates co-kriging weights and Lagrange multipliers obtained using single

precision when all semivariogram and cross-variogram models are Gaussian functions with

range 3 and no nugget efFect, meaning that coregionalization is intrinsic in this case. lt

is interesting to note that there is little apparent similarity between results produced by

solving the co-kriging equations using two difFerent variants of Gaussian elimination. This

means that conditioning of the coefficient matrix, in this case, results in significant error

in at least one of these computed solutions. Comparing relative errors, in terms of norms,

of these single precision solutions with the double precision results illustrated in Table 7.6,

it may be seen that the results computed using Gaussian elimination with pivoting on

the maximum element exhibits significantly less error than those computed using Gaussian

elimination with pivoting of the first non-zero element.
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Semivariogram and cross-variogram sills 1 ctt - 700, c12: 50, czz: !00
Range of all cross-variograms : 3

Co-kriging using cross-variogra ms

rc(I):2.570 x 107 o(K"¡):7.577 x107

Algorithm : Gaussian elimination, pivoting on maximum element

Weights applied to data set f 1

Weights applied to data set ff2

Lagrange multiplier ff|:3.825 x 10-3 Lagrange multiplier ff2: r.rgï x 10-3

ll"lllll*ll : 0.245e

Algorithm : Gaussian elimination, pivoting on first non-zero element.

Weights applied to data set f 1

0.2449

-0.7374
0.9815

-0.7056
0.2234

-0.7643
2.302

-3.025
2.272

-0.7028

1.063

-3.762
5.105

-3.048
0.9854

-0.8040
2.429

-3.208
2.353

-0.7518

0.2704

-0.8189
1.099

-0.7964
0.2548

Weights applied to data set ff2
6.858 x 10-7

-2.180 x 10-6

3.090 x 10-6

-2.335 x 10-6

7.884 x 10-7

-2.734 x 10-6

6.767 x 10-6

-9.589 x 10-6

7.246 x 10-6

-2.45I x 10-6

3.009 x 10-6

-9.532 x 10-6

1.350 x 10-5

-1.020 x 10-5

3.449 x 10-6

-2.295 x 10-6

7.257 x 10-6

-1.027 x 10-5

7 .754 x 10-6

-2.678 x 10-6

7.897 x 10-7

-2.498 x 10-6

3.532 x 10-6

-2.667 x 10-6

8.957 x 10-7
Lagrange multiplier S1 -3.726 x 10-2 Lagrange multiplier f2

ll"lllll"ll : 11.b6

Table 7.5: Computed solutions of the co-kriging equations (Gaussian cross-variogram
functions with no nugget effeci).
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-1.863 x 10-2

9.085 x 10-3

-2.664 x 10-2

2.771x 10-2

-2.646 x 10-2

8.964 x 10-3

-2.770 x 10-2

8.202 x 10-2

-3.875 x 10-2

8.146 x 10-2

-2.673 x 10-2

2.790 x 10-2

-3.924 x 10-2

0.8965

-3.844 x 10-2

2.737 x 10-2

-2.685 x
8.724 x

-3.765 x
8.063 x

-2.644 x

8.928 x 10-3

-2.675 x 10-2

2.642 x 10-2

-2.593 x 10-2

8.782 x 10-3

10-2

10-2

10-2

10-2

10-2

7.329 x 10-7

-4.268 x 10-7

6.118 x 10-7

-4.687 x 10-7

1.609 x 10-7

-4.246 x 10-7

7.352 x 10-6

-1$25 x 10-6

7.467 x 10-6

-5.022 x 10-z

6.110 x 10-7

-1.931 x 10-6

2.734 x 10-6

-2.072 x 10-6

7.057 x 10-7

-4.774 x 10-7

1.480 x 10-6

-2.084 x 10-6

1.570 x 10-6

-5.377 x 10-7

I.627 x 10-7

-5.089 x 10-7

7.126 x 10-7

-5.341 x 10-7

7.797 x 10-7
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Weights applied to data set f1
3.443 x

-1.010 x
4.877 x

-1.010 x
3.443 x

-1.010 x 10-2

3.237 x 10-2

2.806 x 10-2

3.237 x 10-2

-1.010 x 10-2

4.877 x 10-3

2.806 x 10-2

0.8061

2.806 x 10-2

4.877 x 10-3

-1.010 x 10-2

3.237 x 10-2

2.806 x 10-2

3.237 x 10-2

-1.010 x 10-2

3.443 x 10-3

-1.010 x 10-2

4.877 x 10-3

-1.010 x 10-2

3.443 x 10-3

10-3

70-2

10-3

70-2

10-3

Weights applied to data set ff2 are all zero.

Lagrange multiplier f1 : 5.156 x 10-3 Lagrange multiplier ft2:2.578 x 10-3

Table 7.6: Double precision counterparts of Table 7.b.

It is also of interest to note that changing the sills of the Gaussian semivariogram

functions to c11 :104 and c22:1, and not changing any other model parameters, causes

both Gaussian elimination and Gauss-Jordan elimination, with pivoting on the first non-

zero element and working in single precision, to return an error code indicating a zero

determinant, and not to produce a solution at all, when elements of the co-kriging matrix

are considered to be written in terms of semivariogram and cross-variogram functions.

Condition numbers of cross-covariance, cross-variogram, and co-kriging matrices for this

example are illustrated in Table 7.7. The condition numbers which occur when c11 :10a
and c22:1are significantly larger than those which occur when c11 : c22:100. ln this

example, scaling of the models significantly af[ects the conditioning of coefficient matrices

of co-kriging, the quality of computed solutions, and even whether or not difFerent numerical

approaches produce any solution.

7.838 x 107

3.484 x 1011

2.664 x 1077.577 x 107

3.368 x 1011

2.570 x 107c1l : I00, c22: 100

cr!: !04, c22:1

rc(K"¡(c))"(c)"(Kd,(t))"(r)Model

Table 7.7: Effect of sills on conditioning of co-kriging matrices (Gaussian function,
range 3, no nugget effects).
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Table 7.8 illustrates solutions to the co-kriging equations, obtained using single preci-

sion, produced after the introduction of moderate nugget efFects to gaussian semivariogram

functions of Tables 7.5 and 7.6. Corresponding double precision results are illustrated in

Table 7.9. lt may be observed that the addition of even these moderate nugget eflects has

resulted in solutions exhibiting less error than those, illustrated in Tables 7.5 and 7.6, which

were computed without a nugget ef[ect. This may be attributed to a significant reduc-

tion in the condition number of the co-kriging matrix ("(K"r) has a value oÍ 7.577 x 107

without nugget efFects, and L.972 x 105 after the addition of nugget eflects).

It must also be noted that relative errors, in terms of norms, reported in Table 7.8 are

significantly larger than those reported in Table 7.3, which considered spherical functions.

On the basis of this example, it may be concluded that, from a perspective of numerical

accuracy, it is desirable to fit spherical functions to experimental cross-variograms instead

of Gaussian functions. This supports a more general conclusion that it is desirable to

fit cross-variogram and cross-covariance models which result in well-conditioned cross-

covariance matrices in preference to models which result in ill-conditioned cross-covariance

matrices. EfFects which occur for ordinary kriging were noted in Section 7.5 to be of a

similar nature, independently of whether the kriging equations being solved were expressed

in terms of covariance or semivariogram functions. ln an analogous fashion, similar efFects

are observed in co-kriging independently of whether elements of the coefficient matrix are

expressed in terms of cross-covariance or cross-variogram functions.
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Co-kriging using cross-variograms

Semivariogram and cross-variogram sills 1 c.¡. - 700, cp - 50, czz:700
Relative nuggets : csrrf c11: 0.01, cor"/ctz:0, cs""f c22:0.07
Range of all cross-variograms : 3

rc(Itr) : rc(lzz) : 1273 rc(Irz) : 2.570 x 107 rc(K.n) : 1.972 x 105

Algorithm : Gaussian elimination, pivoting on maximum element

Weights applied to data set f 1

Weights applied to data seT ff2

Lagrange multiplier ffI : 0.3477 Lagrange multiplier fi2 : 0.1455

ll"lllll*ll : 7'877 x 1o-3

Algorithm : Gaussi,an elimination, pivoting on first non-zero element

Weights applied to data set f 1

5.479 x 10-a

-2.875 x 10-2

-1.746 x 10-2

-2.875 x 10-2

5.524 x 10-4

-2.875 x 10-2

7.665 x 10-2

0.1676

7.665 x 10-2

-2.876 x 10-2

-7.746 x 10-2

0.7676

0.2967

0.1676

-1.145 x 10-2

-2.874 x 10-2

7.662 x 10-2

0.7676

7.659 x l-0-2

-2.873 x 10-2

5.470 x 10-a

-2.874 x 10-2

-1.148 x 10-2

-2.870 x 10-2

5.206 x 10-a
Weights applied to data set ff2

9.735 x 10-3

-5.277 x 10-3

4.358 x 10-5

-5.288 x 10-3

9.713 x 10-3

-5.272 x 10-3

-7.032 x 10-2

4.636 x 10-3

-7.026 x 10-2

-5.204 x 10-3

4.761x 10-5

4.707 x 10-3

2.564 x 10-2

4.725 x 10-3

-1.339 x 10-4

-5.350 x 10-3

-7.023 x 10-2

4.684 x 10-3

-1.033 x 10-2

-5.150 x 10-3

9.785 x 10-3

-5.367 x 10-3

7.047 x 10-a

-5.336 x 10-3

9.776 x 10-3
Lagrange multiplier ff1 0.3477 Lagrange multiplier ff2 : 0.1457

ll.lllll"ll : 0.030s7

Table 7.8: Computed solutions of the co-kriging equations (Gaussian cross-variogram
functions with moderate nugget effects).
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5.396 x 10-a

-2.874 x 10-2

-1.146 x 10-2

-2.874 x 10-2

5.416 x 10-a

-2.874 x 10-2

7 .664 x 10-2

0.1676

7 .664 x 10-2

-2.874 x 10-2

-1.146 x 10-2

0.1676

0.2967

0.1676

-7.746 x 10-2

-2.874 x 10-2

7.665 x 10-2

0.1676

7.665 x 10-2

-2.874 x 10-2

5.410 x 10-a

-2.876 x 10-2

-7.146 x 10-2

-2.875 x 10-2

5.473 x 10-a

9.739 x 10-3

-5.281x 10-3

4.784 x 10-5

-5.281 x 10-3

9.740 x 10-3

-5.287 x 10-3

-1.031 x 10-2

4.618 x 10-3

-1.030 x 10-2

-5.287 x 10-3

5.547 x 10-5

4.620 x 10-3

2.585 x 10-2

4.619 x 10-3

5.507 x 10-5

-5.288 x 10-3

-1.030 x 10-2

4.620 x 10-3

-1.030 x 10-2

-5.287 x 10-3

9.740 x 10-3

-5.281 x 10-3

4.609 x 10-5

-5.280 x 10-3

9.739 x 10-3



5.563 x l-0-4

-2.876 x 10-2

-7.144 x 10-2

-2.876 x 10-2

5.563 x 10-a

-2.876 x 10-2

7.665 x 10-2

0.1676

7.665 x 10-2

-2.876 x 10-2

-L.744 x 10-2

0.1676

0.2967

0.1676

-1.1,44x 10-2

-2.876 x 10-2

7.665 x 10-2

0.1676

7.665 x 10-2

-2.876 x 10-2

5.563 x 10-a

-2.876 x 10-2

-7.744 x 10-2

-2.876 x 10-2

5.563 x 10-a
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Weights applied to data set f 1

Weights applied to data set ff2

Lagrange multiplier ffI : 0.3476 Lagrange multiplier ff2 : 0.1455

Table 7.9: Double precision counterparts of Table 7.8.

7.7 Discussion and conclusions

This chapter has examined a number of efFects,relating to conditioning of geostatistical

methods, which were discussed in Chapter 6. Some extensions have also been discussed.

EfFects relating to conditioning of ordinary kriging, discussed in these two chapters, may

be summarized as follows :

o when the covariance matrix is ill-conditioned, so are corresponding stationary kriging

matrices, whether their elements are written in terms of covariance or semivariogram

functions. EfFects discussed in Chapter 6, which apply to kriging expressed in terms

of covariances, also aPpear to occur in a similar fashion when the kriging equations

are expressed in terms of semivariograms,

o a scaling efFect maycause kriging matricesto be ill-conditioned, even if thestationary

covariance matrix is well-conditioned. This scaling is primarily dependent upon the

sill of the semivariogram function.

9.734 x 10-3

-5.280 x 10-3

5.017 x 10-5

-5.280 x 10-3

9.734 x 10-3

-5.280 x

-1.030 x
4.616 x

-1-.030 x

-5.280 x

5.017 x
4.616 x
2.585 x
4.616 x
5.017 x

-5.280 x 10-3

-1.030 x 10-2

4.616 x 10-3

-1.030 x 10-2

-5.280 x 10-3

9.734 x 10-3

-5.280 x 10-3

5.017 x 10-5

-5.280 x 10-3

9.734x l-0-3

10-3

70-2

10-3

10-2

10-3

10-5

10-3

10-2

10-3

10-5
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. when solution of the kriging equations is performed using Gaussian elimination, ill-

conditioning of the kriging matrix has a significant efFect only when the stationary

covariance is ill-conditioned (e.g. the Gaussian model). When the stationary covari-

ance is well conditioned (e.g. the spherical model), the scaling efFect introduced by

changing sill has little bearing on the quality of computed solutions to the kriging

eq uations,

o the introduction of a nugget efFect dramatically improves conditioning of the covari-

ance matrix. This has beneficial efFects when an experiinental covariance is fitted

with a function which results in an ill-conditioned covariance matrix.

ln practice, these results mean that it is desirable in practice tofit experimental covariances

with functions which result in well-conditioned covariance matrices. ln conjunction with

this, the use of functions incorporating a moderate nugget efFect is preferable to the use

of a function which introduces no nugget efFect. These considerations also apply, with

extension, to co-kriging. The use of functions which result in well-conditioned covariance

and cross-covariance matrices is supported here.

It must be stressed that properties of covariance or semivariogram models in kriging

have the most important efFects on conditioning of kriging matrices. This corresponds

to past observations in geostatistical literature. ln a similar fashion, properties of cross-

covariance and cross-variogram models have the most significant efFect upon conditioning

of co-kriging. lt has also been demonstrated here that scaling efFects have a damaging

eflect, on solutions obtained numerically using Gaussian elimination, when the stationary

covariance or cross-covariance matrix is ill-conditioned. lt must also be noted that, if
dif[erent solution algorithms are to be employed, scalings discussed in this chapter may

have even more important consequences.



Chapter 8

Conclusions

Linear least squares methods involve the solution of a set of linear equations. The ac-

curacy of a computed solution for a linear system is dependent upon a number of factors,

including conditioning of the linear system, and stability properties of the algorithm em-

ployed to compute the solution. This thesis has examined conditioning of deconvolution,

which is employed in seismic processing, and two geostatistical methods, ordinary kriging,

and co-kriging. Causes of ill-conditioning have been discussed, and tests of use for recog-

nizing when ill-conditioning occurs have been considered and assessed. Stab¡lity properties

of some solution algorithms have been considered.

lll-conditioning in deconvolution may be readily explained in terms of properties of the
seismic trace, and the fact that deconvolution is a mathematical problem which may, in
general, have no unique solution. Small values in a power spectrum, in comparison with
the maximumvalue, may be expected to result in an ill-conditioned autocorrelation matrix.
A consequence of this fact is that negative values ìn a comTtuted, power spectrum may be

expected to be indicative of ill-conditioning. However, tests based on this result have been

seen to be overly pessimistic.

The Wiener-Levinson algorithm, which is commonly employed to solve the normal equa-
tions which arise in seismic deconvolution, computes a solution more rapidly than do classi-
cal methods such as Gaussian elimination. When the normal equations are ill-conditioned,
solutions computed using the Wiener-Levinson exhibit significantly more error than those

764
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produced by the classical Gaussian elimination. Behaviour of this type may be accounted

for by considering stability properties of these two algorithms. This computational error

may have a significant efFect on deconvolved outputs, which may, in turn, be expected to

afFect any interpretations of those deconvolved outputs. lntermediate results of the Wiener-

Levinson algorithm can be employed in a test to determine when a computed filter may

show significant error. The conjugate gradient algorithm is an iterative scheme which has

received some attention in geophysical literature, with the claim being made that solutions,

which exhibit less error than those of the Wiener-Levinson algorithm, may be produced in

a relatively small number of iterations. The small number of iterations means that the

computational cost associated with this scheme is less than for classical methods. lt has

been demonstrated in this thesis that, while the conjugate gradient scheme may produce

solutions exhibiting less error than those produced using the Wiener-Levinson algorithm,

this is not a general result. This means that using either the Wiener-Levinson algorithm or

the conjugate gradient algorithm amounts to a trade-of[ between low computational cost

which may be associated with these methods and the accuracy of solutions which could

be produced by Gaussian elimination, when solving ill-conditioned normal equations. No

general claim can be made comparing the accuracy of solutions produced by the Wiener-

Levinson algorithm with those produced by the conjugate gradient scheme.

Conditioning of ordinary kriging may be considered in terms of properties of the co-

variance or semivariogram functions of interest. Properties of these functions have been

discussed in light of the relationship between these functions and the autocorrelation func-

tion which is employed in Wiener filtering. lt has been shown that an ill-conditioned

stationary covariance matrix causes the corresponding kriging matrix to be ill-conditioned.

An additional ef[ect, due to the presence of unbias constraints employed with these geo-

statistical techniques, means that a kriging matrix may exhibit ill-conditioning, even if the

covariance is well-conditioned. This ef[ect is directly related to concepts of optimal scaling.

Examples have illustrated that solutions to the kriging equations, computed using Gaussian

elimination, show little error due to this scaling efFect, unless the stationary covariance ma-

trix is ill-conditioned. This means that the use of semivariogram and covariance functions
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which result in well-conditioned covariance matrices is desirable in practice. Co-kriging has

been seen to exhibit behaviour analogous to that observed for ordinary kriging, and the use

of models which result in well-conditioned cross-covariance matrices is supported.

It is important to draw a distinction between efFects in conditioning of linear equations

which arise due to properties of the equations or due to properties of the particular algo-

rithm being employed to solve them. Depending upon properties of the solution algorithm

employed, a computed solution of an ill-conditioned linear system may exhibit little error.

This thesis has demonstrated that the Wiener-Levinson algorithm produces a solution, to

ill-conditioned normal equations, exhibiting significantly more error than do classical tech-

niques such as Gaussian elimination, and discussed this phenomenon in terms of stability

properties of these algorithms. This is a particularly disturbing result in light of the fact

that the Wiener-Levinson algorithm is commonly employed in seismic processing. A sim-

ple approach, which introduces no extra cost, has been identified to determine cases in

which the solution to the normal equations, computed using the Wiener-Levinson algo-

rithm, may exhibit significant numerical error. Solutions to examples of Ordinary Kriging

and Co-Kriging equations have been obtained using Gaussian elimination, which is a stable

method, and large errors were observed in the computed solutions in some cases, indicating

that the properties of the linear equations in question were having a significant efFect on

the solutions being obtained.



Appendix A

Operational details

ln any numerical study, the capabilities of the computing system being employed must

be considered. All numerical values presented throughout this thesis were obtained on a

VAX/VMS system, and programmingwas performed using VAx FORTRAN. The VAx FoRTRAN

compiler provides a number of diflerent types of real number variables, each of which

provides a number, f, of significant binary digits. The definition of what constitutes an

ill-conditioned matrix depends upon the condition number, the number of binary digits

provided by the computer, and the accuracy desired in the solution. Table 4.1 presents

the difFerent types of floating point variables provided by vAX FORTRAN.

325.792 x 1033tL2

REAL*16 (Quad)

H-floating

L6

15

3.603 x 1016

4.504 x 1015

55

52

REAL*8 (Double precision)

D-floating (default)

G-floating

78.387 x 10623REAL*4 (Single precision)

Approx. f decimal digits2ttData type

Table 4.1: Significant digits provided by VAX FORTRAN for floating point data types

r67



APPENDIX A. OPERATIONAL DETAILS 168

4.1- Defining an ill-conditioned linear systern

lf the spectral condition number of a matrix A, rc(A), is approximately 2* for some

value rn, then the accuracy of a solution x of the system :

can only be guaranteed to be accurate to within approximately 2t-*. This means that

the solution may be accurate to only t - m binary places. lf the solution is desired to an

accuracy of greater than ú - m binary digits, then the linear equation may be considered

to be ill-conditioned. For example, if rc(A) > 2¿ then inaccurate results are possible as

the solution can not be guaranteed correct to any level of accuracy (Wilkinson (1961)),

even when solution is performed with a stable algorithm. This does not mean that greater

accuracy is unobtainable, merely that it can not be guaranteed.

4.1.1 Precision of numerical results

Numerical results have been presented in this thesis. In order to assess the various

approaches, reported results have been computed using difterent precision floating point

variables, as follows :

o where condition numbers are quoted without referring to precision, they have been

calculated using double precision (D-floating) arithmetic to evaluate the eigenvalues.

o all solutions of linear equations, performed for the purpose of studying the difFerent

methods, have been produced using single precision arithmetic. This means that a

linear system may considered ill-conditioned if rc(A) is at least of the order of 106 or

107, depending upon the accuracy which may be desired in a solution.

o the "correct" or "double precision" results for the purposes of assessing the linear

system have been produced using double precision (D-floating) arithmetic. lt must

be noted that these results are guaranteed to be correct to a higher level of accuracy

bAx
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than are those computed using single precision. They are not, in fact, necessarily

exact solutions.

Results computed using higher precision ofFer the advantage of greater accuracy than those

computed single precision. However, the cost, in terms of computer storage and execution

times, is greater.

4.2 Checkirg precision of solution

Throughout this study, the performance of dif[erent solution algorithms are measured

by comparing solutions computed using diflerent algorithms with solutions obtained using

Gaussian elimination and double precision floating point variables. Comparisons are based

upon a visual comparison of single precision and double precision solutions, and/or by

means of error norms. When norms have been employed, results reported are of the form :

ll*, - *" ll

ll"r l I

where

o xo denotes the solution computed using an algorithm of interest, with computations

being performed in single precision,

o xd denotes the solution computed using Gaussian elimination, working in double

prectston,

o the vertical bars denote the Euclidean norm

A large value for this ratio is taken to signify a large error, while a small ratio denotes a

small error.

One other comparison which could be employed is based on an examination of residuals.

The residual associated with a computed solution, xo, of the system

bAx
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is defined to be the quantity :

r:Axo-b

The norm of the residual, llrll, will be zero if xo : x, and small error may be associated

with small values of the quantity :

ll"ll
ilbil

Unfortunately, when A is ill-conditioned, a small value of this ratio does not guarantee that

the computed solution xo exhibits smalt error relative to x. For all examples presented in

this thesis, the residuals have all being small :

llrll
i'i'ui'i 

< to-"

which means that, in all examples, residuals have indicated small error.



Appendix B

Synthetic traces

Synthetic seismic traces used in the study of Chapter 5 were generated using the approx-

imately minimum phase wavelet illustrated in Figure B.L. The reflection coefficient series

illustrated in Figure 8.2 was used to generate an impulse response series (i.e. a multiples

plus primaries version of Figure 8.2) of two second duration, illustrated in Figure 8.3. The

trace employed throughout Chapter 5 is the convolution of this impulse response function

and the wavelet. Amplitude values for the wavelet and reflection coefficient series are

tabulated in Tables 8.1 and 8.2 respectively. Sample intervals are considered to be four

milliseconds throughout the figures and tables of this appendix.

The procedure used to compute autocorrelations of traces is discussed in Section 1.4.1.

Power spectra were comPuted using the cosine transform described by Robinson (1967a).

Considerations made in computation of power spectra are discussed in Section S.3. The

powerspectra of thewavelet and the impulse response are illustrated in Figures 8.4 and 8.5
respectively. lt may be readily observed that the impulse response does has a number of
peaks, and is not white, due to its finite length.

177
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Figure B.1: Synthetic wavelet (approximately minimum phase).
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Figure 8.2: Reflection coefficient series.
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Figure 8.3: Impulse response
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25 50 100 125

Figure 8.4: Power spectrum of the wavelet
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Figure 8.5: Power spectrum of the impulse response.
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Table B.1: Approximately minimum phase wavelet.
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420
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CoefficientTime (msec)

Table B.2: Reflection coefficient series.



Appendix C

Testittg of prediction error
avarlances

The routine listed on the following pages is a modified version of the subroutine EUREKA,

given by Robinson (1967a), and is presented to illustrate approaches discussed in Chap-

ters 4 and 5. lt solves a set of linear equations involving a symmetric, positive definite,

Toeplitz coefficient matrix, returning an error code indicating whether the coefficient ma-

trix is positive definite, indefinite and non-singular, or singular. This test is performed by

examining computed prediction error variances. When solving normal equations, in which

the coefficient matrix is known to be positive definite, an error code which does not cor-

respond to a positive definite coefficient matrix may be taken as an indication that the

computed solution is significantly affected by rounding error. Similar tests, using properties

of prediction error variances described in Section 4.4, may also be readily implemented.
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OF PREDICTION ERROR UARIANCES

suBRouTrNE EUREKA(R, LR, c,F, A, IER)

This subroutine finds the solution of the single-channer normal
equations of the forn :

RF=G

¡¡here R is a syrnmetric Toeplitz array

Arguments

178

c

c
c
c
c
c
c

c

c
c
c
c
c
c
c
c
c
c
c

R

LR

First row of Toeplitz array = (R0,R1,...Rm)
Dimension of R (= ¡41¡
RHS of above Toeplitz system = (GO,C1,...Gm)
Solution of above system = (fO,fl,...Fn)
Prediction error operator = (1,41,...4n)
Error condition

0 No error and R is positive definite.
1 No error and R is not positive definite.

This is an indication of i1t-conditioning
if R is kno¡rn to be positive definite.

2 n is singular (zero prediction error
variance).

Error codes 0 and 1 are not ter¡ninal (i.e. a
solution is produced). Error code 2 is terminal

G

F

A

IER

REAL R(1),c(1),F(1),A(1)
IER=0
V=R(1)
D=R(2)
rF(v.LE.0. 00oEo) rER=1
rF(ABS(V) .m.O.ooooEo) coro o

F(1)=G(I)lv
A(r)=1.000080
Q=F(1)r,R(2)

D0 5 I=2,LR
A (I) =-Dlv
L=(r-2) /2+7
DO 2 J=2,L
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HOLD=A(J)
K=I-J+1
A(J) =A(J)+A(I) *.4(K)
A(K) =A(K) +A(I) *HOLD

2 CONTINUE

IF(2x (r/2).NE. I) A(L+l)=A(L+1)*(1. 000E0+a(r) )
V=V+A (I) *D
rF(v.LE.0. 000E0) rER=l
rF(ABS(V) .rs.0.0000E0) G0T0 6
F(I)=(c(I)-a)/v
D0 3 J=l,I-1

F ( J) =¡ ( J) +F (I) *A (I-J+1)
3 CONTINUE

rF(r.EQ.LR) Goro 5

D=0.0000E0
Q=D

D0 4 J=1, I
K=I-J+2
o=D+A(J) *R(K)

Q=Q+F (J) *R(K)
4 CONTINUE

5 CONTINUE

GOTO 7
6 IER=2
7 RETURN

END
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