
1^nr

SCHEDULING TASKS WITH CONDITIONAL AI\D

PREEMPTIVE ATTRIBUTES ON A PARALLEL AND

DISTRIBUTED SYSTEM

Lin Huang, M.Sc

A THESTS SUBMITTED FOR THE DEGREE OF

DocroR oF PHILoSoPHY

IN THE DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF ADELAIDE

January 1999

Abstract

Parallel programming aims to make maximal use of computing resources in parallel

and distributed systems. It is concerned with a number of issues which are not

encountered in its sequential programming counterpart. To list a few, these include

task partitioning, task communication and synchronization, task scheduling and system

performance. Such issues must be effi.ciently handled in order to achieve high system

performance.

This thesis discusses the scheduling problem and concentrates on its various forms

in parallel processing. It is concerned with the distribution of the tasks of a paraliel

program onto the underlying available processors. The objective is the optimization of

parallel program execution time.

This thesis studies a variation of the task scheduling problem, termed conditional

task scheduling, which is charact eúzed by conditional task spawn and intertask

communication events within the parallel program. The corresponding program is

denoted a cond,itional parallel progranx.In conditional task scheduling, the production

of a task model which represents the corresponding parallel program is practically

impossible to precisely obtain prior to program execution, and may vary between

different executions. A scheduling policy which achieves high performance in one

execution does not necessarily result in the same efficiency for other executions.

I

The strategy by which this thesis deals with conditional task scheduling takes such

factors into consideration. A revised conditional task model is introduced to reflect

the conditional spawn and conditional communication between tasks. Approaches

to the construction of the task model prior to program execution is also presented.

A new sched.uling algorithm, C ET, is proposed which takes as input a statically-

constructed task model and produces a scheduling policy by which the tasks of

the conditional parallel program can be efficiently distributed onto the underlying

processors. Simulation is utilized to show the performance and properties of the

strategy.

This thesis examines another variation of the task scheduling problem, namely,

preemptive task execution and preemptive task scheduling. Preemption may occur

when the communication between parallel tasks is permitted to occur at any point

within the tasks, rather than restricted to the beginning or the end of the task.

Strategies are ploposed in this thesis to guarantee performance improvement in

preemptive task execution over non-preemptive task execution. \ /ith regard to

preemptive task scheduling, a preemptive task model is presented to illustrate the

preemption between parallel tasks. This thesis also puts forward a preemptive task

scheduling algorithm, P ET, to deal with the distribution of parallel preemptive tasks.

The construction of the preemptive task model prior to program execution adopts a

similar method to that of the conditional task model. Experiments indicate significant

performance improvement when considering preemption in task scheduling.

This thesis also investigates support for parallel programming, in particular, those

aspects involved with conditional task spawn and conditional intertask communication'

This is termed cond,itional parallel prograrnm,ing. A runtime library is presented and

made available to programmers to simplify the development of parallel programs'

ll

This thesis introduces an environment, called ATME, which realizes the

automation of the (conditional and preemptive) task scheduling process. AT M E

provides explicit support for conditional parallel programming. Using AT M E's

self-contained runtime library, the programmer is relieved of the need to consider

operational issues which have little to do with the application problem itself.

Taking as input the user-partitioned tasks of a parallel program which employs the

AT M E runtime primitives , tbe AT ME environment instruments the user tasks to

collect runtime task information. AT M E also automatically generates the task

interconnection structtre. ATME then constructs the task model prior to execution,

and statically generates a scheduling policy. After the program completes its execution,

AT M E collects the runtime-generated trace frles which contain task information

and uses them to predict the task model for the forthcoming program execution.

In addition, ATME aims to provide tuning suggestions for both the appiication

programmers and AT M E itself, so as to improve the parallel program design.

lll

Declaration

This is to certify that this thesis contains no material which has previously been

accepted for the award of any degree or diploma in any University. To the best of

my knowledge and belief it contains no material previously published or written by

another person, except where drle reference is made in the text of the thesis.

If this thesis is accepted for the award of the degree, permission is granted for it to

be made available for loan and photocopying.

Lin Huang

January 1999

1V

Acknowledgments

I wish I could thank all the people who kindly offer me help and concern during my

study as a Ph.D candidature. First of all, I am deeply indebted to my supervisor,

Dr. Michael J. Oudshoorn, for his invaluable advice, guidance and full support. I also

wish to thank to Dr. Jiannong Cao, who acted as a joint supervisor before leaving

The University of Adelaide, for his bright instruction and kind encouragement in the

early stages of my study. I would like to thank University of Adelaide, for granting me

a University of Adetaide Scholarship (UAS) and an Overseas Postgraduate Research

Scholarship (OPRS), so that I could complete my study without any financial difficulty.

I would like to show my heartful gratitude to Department of Computer Science, headed

by Prof. Chris Barter, for providing me with a good research environment and strong

financial support to attend conferences, in particular, those overseas such as in The

United States.

Others whose comments, technical and academic assistance contributed to shape

this work to varying degrees include Dr. Hesham El-Rewini, Dr. Weiping Zhu, Bob

Fang and Stuart Beck.

Many thanks to all my friends who are always ready to extend their hearts to share

with me the difficulties and the happiness. Special thanks are presented to Dr. Puquan

Ding and Mrs. Gu Xu who initially encouraged me to apply for the highly competitive

v

OPRS scholarships, and offered me parenthood love and concern' Thanks also are

given to my fellow postgraduates, Zhengyi Wu, Hendra Widjaja and Kevin Lew, with

whom I share the joys and pains of study and work'

I wish I could express all my gratefulness to my dear parents, Mr' Kun Huang and

Mrs. Bin Zou, who have dedicated themselves to a career in education in China for

more than 85 years. I thank them for their bringing me up, and for their understanding,

instruction and support through all these years. I wish I could say that I have fulfilled

the dream which they held when they were my current age, but which they were unable

to realize due to various reasons beyond their own control then.

vl

Contents

Abstract

Declaration

Acknowledgments

1 Introduction

1.1 Context

1.1.1 Systems and APPlications

I.1.2 Task Scheduling Process

7.2 Problem Statement

I.2.1 Conditional Task Scheduling Problem

1.2.2 Preemptive Task Execution and Scheduling Problem

1.2.3 Conditional Parallel Programming Support .

1.3 Contribution .

I.4 Thesis Organization .

2 Background And Related \ilork

2.I Parallel and Distributed Systems

2.L.1 Tightly and Loosely Coupled Systems

lv

v

1

Ð

5

t

9

10

t2

t4

16

t7

19

20

20

vll

2.L.2 Other Taxonomies

2.2 Speedup of the Parallel SYstem

2.2.I SpeeduP Functions

22

24

25

28

30

31

33

36

39

39

41

44

46

49

bl)

56

58

60

62

63

66

67

69

70

2.3

2.4

2.2.2 Overhead in Parallel Processing

Scheduling Algorithms . .

2.3.1 Scheduling AsPects

2.3.2 Task Allocation Algorithms

2.3.3 Task Scheduling Algorithms

Parallel Programming SuPPort . . .

2.4.I General ApProaches

2.4.2 Scheduling Tools

3 Conditional Task Scheduling

3.1 Processor Model

3.2 Conditional Task Model

3.3 Examples of Conditional Task Scheduling

3.S.lAdjustingSchedulingPolicyBetweenExecutions

3.3.2 Signifrcance of an Accurate Task Model '

3.4 Strategy for CTS: AT M E

3.5 Task Model Construction .

3.5.1 Linear Regression Model

3.6 Conditional Task Scheduling Algorithm

3.6.1 Notation

3.5.2 Estimation of Task computation and communication Time

3.5.3 Estimation of Task Execution Probability

vlll

3.6.2 Scheduling Algorithm C ET

4 Preemptive Task Execution and Scheduling

4.I Preemptive Task Model

4.2 An Example of Preemptive Task Execution

4.3 Preemptive Task Execution

4.3.1 Two Generic Strategies For Preemptive Execution

4.3.2 Processor Performance 0(P)

4.3.2.1 The Two Aspects of 0(P)

4.3.2.2 Three Situations in Performance Variation '

4.3.3 Performance Achievement PA"

4.3.4 Performance Achievement PA" and PAo

4.3.5 Performance Achievernent PA¿ and PAt

4.3.6 Preemptive Execution vs. Non-Preemptive Execution

4.4 Preemptive Task Scheduling

5 Conditional Parallel Programming Support

5.1 Parallel Virtual Machine (PV M)

5.1.1 PV M Models

5.I.2 PV M Library

5.2 New Challenges

72

77

79

83

84

85

87

87

88

90

93

95

96

98

101

103

103

105

106

106

108

109

110

rtz

5.2.t

5.2.2

5.2.3

5.2.4

Task Scheduling Automation .

Conditional Task Spawn

Conditional Data Transmission

Conditional Data Reception

5.3 ATME Library

1X

5.4

5.3.1 Extensions to PV M

5.3.2 User Input

5.3.3 ATME Primitives

Execution Monitor

5.4.t

5.4.2

5.4.3

User Task Preprocessing

Execution Events

Design and Implementation

tt2

rt4

116

r22

r22

128

r29

r32

135

L37

t4r

t43

t46

t47

154

158

161

r62

163

of the EM

t24

130

5.5 Implementation of AT M E Primitives

5.5.1 Processing of tme-sPawn

5.5.2 Processing of tme-send

5.5.3 Processing of tme-recu

6 ATME: A Tool For Conditional Parallel Programming

6.1 ATME Framework

6.2 Target Machine DescriPtion

6.3 Program Preprocessing

6.4 Program Analysis

6.4.I Control Flow GraPh

6.4.2 Task Instrumentation .

6.4.2.1 Instrumented Probes

6.4.2.2 Probe Reduction

6.5 Task Model Construction

6.6 Task Scheduling

6.7 Runtime Data Collection .

138

155

6.7.I Trace Files .

x

t64

6.7.2 Task Attribute Calculation

6.7.3 Program Databases

6.8 Other ComPonents

7 Simulation and ExPerimentation

7.L Simulation

7.2

7.L.1 Simulating the Target Machine

7.1.2 Simulating the Parallel Program

7.I.2.1 Task Interconnection Structure

7.I.2.2 Task Attributes

7.t.2.3 Program Usage Pattern

7.1.3 Simulating Task Execution

Experiments Dealing with conditional Task scheduling Issues

166

167

169

170

T7T

t7r

172

173

t73

175

t76

177

178

18i

183

186

188

L92

t92

. 198

7.2.L System Performance Under AT M E

7.2.2 C ET vs. Random Distribution Strategy

7.2.3 C ET vs. Round Robin Algorithm

7.2.4 Execution Probability in Conditional Task Scheduling

7.2.5 Responsiveness of AT M E

T.g Experiments Dealing With Preemptive Task Execution and Scheduling

Issues

I Conclusions and F\¡ture Work

8.1 Conclusions

8.2 Future Work

184

A AT M E Execution Monitor

xl

202

4.1 Data Structures in EM

A.2 Implementation of EM

B A Preprocessed ATME Parallel Task

8.1 The Original Code

8.2 The ATMF-Generated Code

8.3 Functions Employed

202

205

223

223

224

228

xu

List of Tables

2.L Speedup of the parallel system.

4.1 Performance comparison between non-preemptive and preemptive

executions. .

5.1 ATME runtime primitives

7.L Simulation parameters and their experimental values.

28

97

TL7

176

179

r82

184

185

187

190

190

7.2

7.3

7.4

Application program performance by employing AT M E.

The performance of AT M E versus RD I ST .

The performance of C ET versus the round-robin scheduling algorithm.

7.5 Performanceof ERT vs. CET

7.6 The responsiveness of AT M E

7.7 Performance comparison between preemptive task execution and non-

preemptive execution. .

7.8 Performance comparison between preemptive task scheduling and non-

preemptive scheduling.

xlll

List of Figures

1.1 The procedure of solving a task scheduling problem. .

1.2 Segment of pseudo code of task A in Figure 1.1

1.3 Segment of pseudo code of task E in Figure 1.1

2.1 Major issues in the task scheduling problem

2.2 Hypertool: (a) framework and (b) program synthesis and optimization

2.3 Framework of Pyrros. .

3.1 Parallel system with 3 processors

3.2 (a) Conditional task model and (b,c) potential actual task models in

particular executions

3.3 Performance of Figure 3.2 (b). . . .

3.4 Performance of Figure 3.2 (") when (u) considering and (b) not

considering the variation of the task models in different executions. 57

3.b Performance difference when execution probabilities are not accurately

estimated

3.6 ATME framework (outline)

Predicted value under linear regression model against averaging model

4state finite state machine to predict execution probability

The preemptive task model.

I
10

10

31

42

42

47

53

56

3.7

3.8

4.r

59

61

65

68

80

xlv

4.3

4.4

5.1

4.2 Performance of Figure 4.1 when preemption is (a) prohibited and (b)

permitted during execution.

(a) Non-preemptive execution and (b) a-preemption on a processor p.

Two tasks on processor p with 1 processor idle time.

Layers of software in supporting parallel programming in PV M. . - -

5.2 Conditional task sPawn.

5.3 Conditional data transmission' .

5.4 Conditional data recePtion.

5.5 The host file.

6.1 Framework of ATME.

6.2 The target machine description file.

93

84

91

r04

109

110

111

TT4

r42

5.6 The scheduling policY file 115

5.7 Code of conditional task spawn.

5.8 Code of conditional data transmission

118

5.9 Code of conditional data reception. r2l

5.10 Preprocessing of user tasks into ATME tasks. 723

5.11 Processing between the user task and the execution monitor' 129

r20

139

6.3 Layers of software. t44

6.4 An example of (a) a task and (b) its corresponding control flow graph. I49

6.5 The data structure of a C FG node. 150

6.6 Data structures for the scheduling policy file. . . . 163

7.I The actual and ideal execution trme. 178

7.2 AT M E performance with various ratios of task number to processor

number

xv

180

Chapter 1

Introduction

Advances in computer architecture have been dramatic in recent decades: from the

original uniprocessor system to various types of parallel systems. Such a change

is promoted by both the technology of computer hardware and the requirements of

practical applications. On one hand, new parallel and multiple processor architectures

are continuously designed, such as the iPSC from Intel, Sequent Balance & Symmetry,

Ncube/ten, and CM-5 from Thinking Machines [65, 180]. Furthermore, with the swift

development of low-cost computers and high-bandwidth, low-latency communication

networks, it has become commercially viable to connect a number of computers together

to form a parallel and distributed system. New architectures and systems, with the

aim of increasing both system (machine) and application program performance, have

broken the monopoly held by sequential computer architectures since they were initially

put forward by Von Neumann in 1946. These parallel systems make it possible to

efficiently pursue solutions to complex and large-scale problems, which may take several

magnitudes of time longer if computed on a sequential machine.

The other factor propelling the advancement of computer architectures is that

more and more applications emerge with a demand for efficient processing. Such

1

applications can be found in areas including scientific computation, image processing,

modeling, analysis and simulation [80]. Applications in other areas, such as office

automation and resource management, also demand highly efficient processing of their

requirements [65]. The application programs are becoming increasingly complex and

require a number of components to cooperate with each other to solve a specific

problem. Parallel systems and associated software appear to suit this demand. In

these circumstances, a program is partitioned into a number of tasks which are then

scheduled onto the underlying available processors and executed in parallel. During

execution, tasks communicate and synchronize with one another to pass necessary data

between themselves.

Motivated by both widely available parallel systems, and demands for efficient

processing, parallel programming has become a straightforward solution to complex

(especially large-scale) problems, with the objective of maximizing system and program

performance. Scientific computation and image processing are two examples which

significantly benefit from parallel programming'

By introducing parallelism into programming, it is possible to make great use of

computing resources. However, parallel programming also raises new issues which must

be efficiently solved before it is put into widespread practice. This thesis is concerned

with two of these issues:

o the performance enhancement of parallel systems; and

o the support for programmers in parallel program development.

There is no doubt that parallel processing brings about performance improvement

of application programs and parallel systems; however, at the same time, it also incurs

additional overheads. The overhead may come from a variety of sources, including

2

the improper design of parallel algorithms, execution delay due to communication and

synchronization between tasks, and competition for shared resources. As a result,

linear speedup in terms of system performance can not be practically achieved in a

parallel system. That is to say, an increase in the number of processors in the system

is not directly proportional to the magnitude of system performance improvement.

As the number of processors comprising the parallel system increases, overheads

associated with parallel processing increase correspondingly. This offsets the benefit

brought about by the parallel system and parallel algorithm. This is illustrated as the

"saturation effect" by Chu [42]. Consequently, effort is required to make in order to

extract all potential benefits of the parallel system, so as to enhance overall system

performance.

It is commonly regarded that parallel programming is intrinsically difficult, in

comparison to its sequential counterpart, owing to the complexity of the partitioning

of a program into tasks, task scheduling, task communication and synchronization [52].

Writing a high-performance parallel program demands expert knowledge of both the

system and relevant programming techniques. It is claimed that parallel programming

environments or tools can significantly reduce a programmer's workload and increase

system performance by automating tedious chores [179]. At present, a number

of programming support tools and environments have been presented to relieve

programmers of the complexities of parallel programming. Parallel algorithms have

also been examined to help solve these practical problems on parallel systems.

The task scheduling problem in parallel processing is related to both issues

mentioned above, i.e., parallel system performance and parallel programming support.

On one hand, the appropriate scheduling of parallel tasks onto underlying processors

can result in signiflcant improvement in system performance. It can also reduce the

3

runtime overhead by decreasing the communication overhead between tasks on different

processors. An efficient task scheduling policy can distribute two communication-

intensive tasks onto the same processor, thereby reducing extra runtime overhead by

eliminating the need to wait for data arrival, and consequently upgrading system

performance. On the other hand, task scheduling is a critical step in parallel

programming. Each task must be allocated onto a particular processor before it can

be physically executed. The process of task scheduling can be automated so as to

Iargely free application programmers from the complexities associated with parallel

programming [52].

This thesis studies two types of task scheduling problems: the conditional scheduling

problem and the preemptive scheduling probiem. Briefly, conditional task scheduling

examines the scheduling of parallel tasks in which runtime operations (primarily task

spa\ryn, data transmission and data reception) can be associated with conditional

branches. This case is commonly encountered in appiication programs, but has

drawn little attention to date [51]. Preemptive task scheduling, on the other hand,

concentrates on the scheduling of tasks in which communication operations are not

necessarily restricted to the start or the end of the task. This problem has been

commonly neglected by most current scheduling research, which mainly focuses on

non-preemptive task scheduling, as reviewed in Chapter 2. Preemption in program

execution is also investigated in this thesis. Both research topics aim to improve the

performance of the parallel system through an adequate distribution of parallel tasks,

i.e., task scheduling.

This thesis examines support for parallel program development. An environment,

named AT M E, is developed to automate the scheduling of conditional and preemptive

parallel tasks. The environment also realizes appropriate support for parallel program

4

development, through a runtime library.

Section 1.1 of this chapter explains the context of the work, within the broader

picture of parallel and distributed computing. The problems addressed by this

thesis are stated in Section 1.2; this is followed by Section 1.3 which discusses the

thesis contribution. Chapter 1 is concluded in Section 1.4 which describes the thesis

organization.

l. L Context

This section describes the context of the thesis. Detailed background and related

work is presented in Chapter 2. Section 1.1.1 illustrates parallel systems, as well as

application programs, on which this thesis is developed. Section 1.1.2 discusses the

process involved in the general task scheduling problem'

1.1.1 Systems and Applications

This thesis bases its study on a multiple processor architecture in which plocessors

are loosely-coupled, run in parallel and communicate with each other via explicit

message-passing through networks. Such systems are also categorized as loosely-coupled

parallel and, distributed systems [109]. With the development of high-speed, low-latency

communication networks, and the low cost of computer hardware, such a multiprocessor

architecture has become practically viable to solve application problems cooperatively

and efficiently.

This thesis deals with the tasle-leuel parallel processing of application programs. A

parallel progra¡n is regarded as composed of a number of interrelated tasks. Each task is

an independent (sub)program which realizes relatively complicated functionality (part

Ð

of the application requirements). The execution load of a parallel task is not necessarily

the same across different program executions. Similarly, the communication pattern

and volume of data communicated between tasks is not necessarily the same across

different executions. Each component task in the parallel application is regarded as

an atomic action and an atomic scheduling unit. Such parallel applications can be

either fined-grained or coarse-grained, depending on the granularity value which is

defined as the average ratio between task computation and inter-task communication

magnitude of the parallel program [180]. The ratio is denoted as AuePM&atio

in this thesis. Correspondingly, parallel applications can be categorized into three

groups: computation-intensive (AuePMRatio > 1), neutral (AuePMRatio x 1) and

communication-inten sive (Au e P M Ratio < 1).

This thesis focuses on the study of the static scheduling (i.e., the scheduling policy

by which to distribute parallel tasks onto underlying available processors is produced

prior to program execution) of parallel tasks onto the loosely-coupled paraliel and

distributed system. The problem is formally stated in Section 1.2. The scheduling

problem has been proved to be NP-complete [168], i.e., no optimal solutions are

available within polynominal computation complexity. Heuristics have been proposed

to address different variations of the task scheduling. For instance, with and without

attention to task precedence relationships, and restrictions on the program and systems,

such as 2-processors, l-unit of execution time etc [51]. A detailed review of related work

is found in Chapter 2.

This thesis assumes that there is only one parallel and distributed program

exclusively utilizing the resources of the underlying parallel system. That is to say,

the work discussed in this thesis excludes the consideration of the multi-user task

scheduling.

6

L.L.z Thsk Scheduling Process

This section explains the general process involved in task scheduling. The scheduling

problem can be described as a "resource-consumer" problem [52], where it assumes a

set of resources (processors) and a set of consumers (parallel tasks of an application

program) served by available resources according to a certain scheduling policy. The

objective of the scheduling problem is to search for an efficient scheduling policy by

which consumers can utilize resources at hand to optimize the desired performance

measure, such as the minimal processing time.

The task scheduling problem can be decomposed into three major functional

components: the tasle model (which portrays the constituent tasks and intertask

relationships within a parallel program), the processor model (which describes the

configuration of the parallel and distributed system), and the sched,uling algorithm

which produces a scheduling policy by which tasks of a parallel program are distributed

onto available processors and arranged into execution commencement order for tasks

assigned to the same processor. All of these three components are determined by the

scheduling objecti,ue which is the performance measure to be optimized.

In this thesis, the task model is depicted by a DAG (Directed Acyclic Graph) in

which graph nodes represent parallel tasks, and directed arrows represent inter-task

precedence relationships. Two tasks with such a precedence relationship is named

a parent and a chilil task, respectively. In this thesis, a parent task has a static

relationship to its child task. The term parent taslc does not necessarily mean that

it actually spawns the child task at runtime. It is possible for a task to have more

than one parent tasks as shown in Figure 1.1. Here it is seen that task .E has as

parent tasks, the tasks A and C. Tasks and task interconnections in such a graph are

I

associated with attributes representing task behaviour such as computation time and

communication time. The formal definition of a DAG is given in Section 3.2. Other

task model representations are discussed in detail in Chapter 2.

The processor mod,e/ abstracts over the architecture of the underlying parallel

and distributed system on which the parallel program is to be executed. Such a

processor model is usually illustrated by a undirected graph, with associated attributes

representing the processing speed of processors as well as the data transfer rate along

communication networks. Section 3.1 gives the formal definition of the processor model.

The scheduling algorithm aims for an efficient scheduling policy to optimize the

desired performance measure (scheduling objective). Here, fficiency is discussed in

terms of the effect of the scheduling policy on system performance, rather than the

processof achieving the policy. This thesis adopts parallel execution time ol the program

(abbreviated as PT) as its scheduling objective.

An example of the entire process of task scheduling is illustrated in Figure 1.1. The

scheduling algorithm takes as input a task model and a processor model, and generates

a scheduling policy to distribute user tasks. Suppose the parallel and distributed

system is composed of identical processors which are fully connected by identical

networks. In the task model, the superscript to the task name represents the execution

time of that task on a processor. Values along the edge between two tasks indicates

the communication time if these two tasks are allocated on separate processors; it is

assumed that the communication time is 0 if the two tasks are assigned onto the same

processor. The scheduling policy is represented by a chart - with tlne processor axis

showing all processors available in the parallel system, and the time axis illustrating

the execution order of tasks assigned to each processor. Tasks execute concurrently,

but communicate with each other at specific points to transfer data. Communication

8

T¡skModel

Processor Model

pl p2 p3 P¡oæsso¡

l0

20

30

40

50

60

Scheduling

Aþorithm

--->

PT=f)Tìn¿
@arallel Execution Time)

Figure 1.1. The procedure of solving a task scheduling problem.

between tasks on two separate processors incurs runtime overhead which may delay the

execution of the task. The system and program performance is measured by parallel

etecution time which is the wall-clock completion time of the last task of the parallel

program.

L.2 Problem Statement

The thesis studies the task scheduling problem in parallei and distributed systems,

particularly focusing on two practical cases: conditional task scheduling, and

preemptive task execution and scheduling, which have not been investigated extensively

to date. These problems are stated in Section 1.2.1 and Section L2.2, respectively. The

thesis also investigates robust support for parallel program development, as introduced

9

s

c
D

B G

A

E
F

H

void A o
{

if (conditiort rrarr is satisfied) {
if (task E has not Yet sPawned)

spawn task E;

send data to task E;

)

)

Figure 1.2. Segment of pseudo code of task A in Figure 1.1.

void E o
{

if (task A exists and has transnitted data to ne)

wait for the arrival data fron task A;

if (task C exists and has transnitted data to ne)

wait for the arrival data fron task C;

Figure 1.3. Segment of pseudo code of task E in Figure 1.1.

in Section 1.2.3

L.z.L Conditional Tâsk Scheduling Problem

With respect to conditional task scheduling, application programs with which this

thesis deals have the following common characteristics: runtime operations (i"

particular, task spawn, data transmission and data reception) in each task of a parallel

program may be associated with conditional branches. The value of the conditions

on a branch is not determined until runtime, depending on, say' initial parameters

an¿ user interaction. Such a parallel program is termed a conditional parallel progranx

Ì

10

in the thesis. Figures 1.2 and 1.3 present fragments of pseudo code for a pair of

communicating parent and child tasks (task A and E), as displayed in Figure 1.1.

Here, it is supposed that conditions are associated with the interaction between tasks

A and E, as well as tasks C and E, in Figure 1.1. It can be observed that applications

in which no conditional branches are associated with task runtime operations (i.e.,

deterministic task execution, in which task behaviours can be precisely determined

prior to execution) are a special case of the applications addressed in this thesis.

The study on the conditional parallel program and conditional task scheduling in

this thesis is stimulated by actual user requirements. If the application software is

regarded as a "black box", then for each program execution, the program receives a set

of inputs and returns a set of outputs. Each set of inputs to the program represents a

"usage pattern" of the software. During the lifetime of the application, different users'

or even an individual user, may have different usage patterns, that is to say, different

ways of interacting with the application program. Consequently, the tasks involved in

interactions at runtime may not be identical across all executions. In addition, all task

interconnections may not be fully exercised in every execution either. This situation

is reflected in the program source code as the conditions (including loop conditions)

associated with task runtime operations.

Conditional programming is not an outstanding issue in many areas of scientific

computing because their communication patterns are mostly fixed and the processing

of each task is normally statically well specifi,ed. However, it is quite a common and

interesting problem in other areas where parallel tasks vary from each other (i.e., not

all tasks are identical) and are relatively large in terms of computation magnitude.

Each task may be conditionally invoked by a number of other tasks, and may also

conditionally communicate with other tasks.

11

Conditional task scheduling, following the pattern of the general task scheduling,

needs to address four aspects: the scheduling objective, the task model, the processor

model and the scheduling algorithm, as stated in Section 1.1.2. In addition, it is

assumed that task runtime operations only take place at the beginning and end of the

task, i.e., a task does not commence its execution until it receives desired data; it runs

until completion and then transmits all data to its succeeding child tasks. That is to

say, in the study of conditional task scheduling, the parallel program is assumed to

be non-preemptive. Conditional task scheduling is concerned with more complicated

issues than its deterministic scheduling counterpart. These include two aspects: prior

to program execution, the construction of a task model which approximates the actual

model in the forthcoming program execution; and a scheduling algorithm which deals

with the conditional task model. Due to variations in the task model between different

executions, the scheduling policy adopted should vary accordingly, with the aim of

achieving good system performance in most executions. Extensive research has not

been undertaken on the conditional task scheduling problem. At present, there is a

lack of scheduling algorithms or tools to tackle this form of task scheduling.

L.2.2 Preemptive Thsk Execution and Scheduling Problem

The second problem studied in this thesis is preemptive task execution and preemptive

task scheduling. The preemption problem in parallel processing occurs when message-

passing operations, as well as task spawn, are permitted to take place at any point

in the task. Such operations are no longer restricted to the start or the end of the

task as is commonly assumed in most current non-preemptive scheduling research'

Consequently, the child task may commence execution prior to the completion of its

parent task(s).

t2

The thesis divides the preemption problem into two sub-problems: preemption task

execution (denoted as PTE) and preemptive task scheduling (denoted as P7^9). The

preemptiue tasle execution problem is concerned with performance achievement merely

through the occurrence of preemption at runtime. It supposes all tasks have already

been scheduled onto processors via a particular scheduling algorithm (irrespective of

whether it conside¡s preemption or not during the distribution of tasks). Intuitively,

PT E may either improve or degrade system performance; the thesis intends to propose

an approach to guarantee a performance gain.

On the other hand, the preemptiue task scheduling problem is basically involved

with the study of the scheduling algorithm itself. The algorithm takes preemption into

consideration when distributing parallel tasks onto underlying available processors.

Other issues, such as task model construction, are also addressed, with the aim of

assisting the scheduling algorithm to produce an efficient scheduling policy for the

preemptive parallel program. This thesis proposes a new scheduling algorithm to deal

with preemption in program execution. This thesis also analyzes system performance

gained through preemption.

It may be argued that the preemptive task scheduling problem can be converted into

the non-preemptive task scheduling case, after which current algorithms can be applied

and thus solve the problem. A straightforward solution may partition the original

(preemptive) parallel task into a number of sub-tasks, in each of which communication

occurs only at the beginning and end of the sub-task. As a result, all sub-tasks are

non-preemptive, and therefore the scheduling algorithms for non-preemptive parallel

programs can be applied. However, new problems are raised by this approach' To list

a few, firstly, further task partitioning introduces more precedence relationships and

communication among tasks and sub-tasks, over and above the original task model.

13

Therefore, it can be forseen that additional overhead is incurred at runtime. Secondly,

additional constraints (such as sub-tasks of the same task are best distributed onto the

same processor in order to reduce interprocessor communication) must be considered by

the scheduling algorithm. Subsequently, modifications to current scheduling algorithms

are still required in order to meet these new criteria. Finally, the partitioning of a task

into a group of sub-tasks is not always feasible. For instance, when message-passing

operations are incorporated into branches with other computation, the separation of

communication from computation is not easy to practically deal with. New approaches

must be investigated so ar to efficiently tackle the preemptive task scheduling problem.

When discussing the preemption problem, for the sake of clarity, the thesis assumes

that a "deterministic task model" is available. That is to say, when studying the

preemptive problem, no consideration is given to the situation in which conditional

branches are associated with task runtime operations. This thesis proposes strategies

for the conditional scheduling and preemptive scheduling problems respectively. The

proposed strategies can be combined together to solve the mixed problem of conditional

and preemptive scheduling, as realized in the environment ATME (discussed below).

L.2.3 Conditional Parallel Programming Support

On the basis of the research conducted on the conditional task scheduling problem, as

well as the preemptive task execution and scheduling problem, the thesis introduces

ATME, a parallel program development environment, to realize the automation of

task scheduling processes. Moreover, ATME assists the process of program design

and implementation, through a set of runtime primitives, with an awareness of the

new challenges encountered in conditional and preemptive parallel programming.

t4

Consider the example of the message-passing operations in a conditional parallel

program, as illustrated in Figures 1.2 and 1.3. It is clear that an extra burden has been

imposed on application programmers who must deal with issues which are beyond

the scope of the application problem itself. The extra work deals predominantly with

conditional task spl,wn arrd conditional message-passing operations.

Task E, in Figure 1.1, is conditionally spawned by its two parent tasks A and C.

When task A spawns task E, which may also be spawned by its other parent task C,

task A is required to check whether task E has already been spawned or not, since task

E can be spawned once, and only once. With current programming support such as

PVM [69], the parent task A has no straightforward way of knowing the status of its

child task E. Extra work for application programmers is therefore incurred through

conditional parallel programming. As observed, these issues are mostly related to

program implementation. This thesis believes that application programmers should

focus on the functionality of the program, rather than tedious protocol enforcement.

The programmer therefore demands support with respect to conditional spawning of

tasks.

Furthermore, task E conditionally receives data from its parent tasks A and C. In

the case where task A is not spawned by its parent task ^9 (Figure 1.1), task E should

not wait for data from task A since it will clearly never arrive. Existing programming

support does not provide task ,Ð with facilities to detect the status of its parent tasks.

Application programmers have to build their own functions to realize such behaviour.

At present, application programmers are provided with a number of environments or

tools, as well as runtime libraries, which aim to ease the difficulties of the development

of parallel applications, as reviewed in Chapter 2. However, so far there is no direct

and powerful support available for conditional parallel programming.

15

Such support must be easy to use and flexible. It is necessary to cater for the various

needs of programmers so that those who wish to tackle low-level issues in programming

have appropriate support, as do those who wish to have the process automated as much

as possible.

1-.3 Contribution

This thesis proposes a practical strategy to tackle conditional parallel task scheduling

problem. The thesis introduces a conditional task model to represent the application

program in which task runtime operations may be attached with conditional branches.

The approach does not incur significant runtime overhead, since most of the work is

undertaken statically prior to program execution. The approach is composed of two

primary aspects: the construction of the task model for the forthcoming execution,

based on execution profiles; and a conditional scheduling algorithm to deal with the

conditional task model and produce an efficient scheduling policy for the application

program. The thesis develops detailed discussion and presents experimental results,

regarding the conditional task scheduling problem'

This thesis studies the preemption problem in parallel programming by focusing

on two aspects: the preemptive task execution and the preemptive task scheduling

problem, as stated in Section I.2.2. The thesis presents a strategy to guarantee

a performance gain through preemptive task execution. The thesis also proposes

a preemptive task model to illustrate preemption in the parallel program. A

preemptive task scheduling aigorithm is presented to generate a scheduling policy

for the preemptive task model. The thesis further investigates the performance

improvement brought about by the preemptive task execution and preemptive task

16

scheduling.

This thesis examines the support for parallel program design and implementation.

The thesis presents the application programmer with an environment, named ATME,

which automates the task scheduling process and explicitly supports conditional

parallel programming. The programmer, therefore, does not have to deal with

operational issues outside of the application problem itself. AT M E is an open

environment, and all its functional components are deliberately designed with a clear

user interface. Consequently, the latest research on any aspect of AT M E can be easily

plugged in to provide more powerful support for application programmers'

L.4 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 briefly states the

background of this work and reviews the related work. The conditional task scheduling

Qf S) problem is studied in Chapter 3. A conditional task model is formally defined,

with the virtue of describing the conditional task runtime operations. Chapter 3 also

presents a conditional task scheduling algorithm, named C ET, to schedule conditional

tasks onto the underlying parallel and distributed system. Chapter 4 studies

the preemptive task execution and preemptive task scheduling. The performance

achievement of preemptive execution is addressed in detail. In addition' an algorithm,

named P ET, is proposed to deal with the preemptive task scheduling problem'

Conditional parallel programming support (CPPS) is studied in Chapter 5, where

a runtime library is introduced and design issues are discussed. Chapter 6 presents the

framework of the ATME, which aims to automate task scheduling and support the

(conditional) parallel program development. The combination of. CET ar'd PET in

L7

ATME provides a solution to the conditional and preemptive scheduling problem.

Design and implementation details are also discussed. Chapter 7 describes the

simulation undertaken in the work, and experimental results regarding conditional and

preemptive task scheduling problems discussed. The thesis is concluded in Chapter 8

where the work is summarized and future directions are presented.

18

Chapter 2

Background And Related Work

Parallel and distributed systems have gained wide acceptance due to their virtues

such as high system performance, high reliability and efficient system utilization'

Application areas include simulation, engineering modeling, scientific computation,

image processing, artificial intelligence and financial analysis etc., where execution

efficiency and/or response time are essential.

This chapter reviews the research work with rega,rd to parallel systems, in particular,

the task scheduling problem. Section 2.1 classifies current parallel and distributed

systems, under various taxonomies. Section 2.2 concentrates on the performance issue

in parallel processing and states several speedup functions adopted in current research.

It has been shown, both theoretically and experimentally, that achievement of linear

speedup is impossible in a real parallel system; that is to say, doubling the number

of processors does not necessarily result in a doubling of system performance. The

discussion of the speedup issue also examines factors which incur various overheads in

parallel processing and subsequently reduce the performance of the entire system.

This thesis regards task scheduling as a key step to improve the performance of the

parallel and distributed system. Section 2.3 reviews scheduling algorithms which are

19

presented to deal with various forms of the scheduling problem. Programming support

for the design and implementation phases of parallel program development aims to

relieve programmers of the burden in developing highly efficient parallel programs.

Section 2.4 studies general approaches for such programming support, and focuses on

the scheduling tools to examine the presently available aids for task scheduling.

2.L Parallel and Distributed Systems

Early parallel and distributed systems were realized by modifying the CPU in

traditional computer architectures, or simply by placing additional CPUs into an

existing system [109]. Advanced VLSI technology and the development of design

automatior, tool in the seventies and eighties have removed fundamental architectural

constraints and made it possible to work on a single problem via the cooperation of

multiple (possibly thousands) processors [80].

This section reviews current parallel and distributed systems (Section 2.Ll),

according to whether constituent processors (computers) are loosely or tightly coupled,

and the communication mechanism employed by the system. At preseni, there lacks a

consistent agreement in terms of taxonomy by which to categorize all existing systems.

Researchers have proposed a number of taxonomies to classify parallel and distributed

systems, as discussed in Section2.L.2.

2.!.L Tightly and Loosely Coupled Systems

A parallel and distributed system can be conjectured to be composed of a number of

computers or processors interconnected for the purpose of parallel processing. Here,

a computer, or computer system, refers to an integrated device which is capable of

20

accepting input data, applying a sequence of processes to the data, and producing

execution results; while a processor generally refers to a CPU, but not excluding the

existence of I/O processors, which deal with data communication between processors.

Therefore, in this thesis, the two terms, processor and computer, are synonymous.

On the basis of whether computers are tightly-coupled or loosely-coupled within

the distributed system and the communication mechanism employed, most existing

parallel and distributed systems can be classifred into two major groups: tightly-

coupled systems with shared memory (as a communication mechanism) and loosely-

coupled systems which utilize message-passing. In a tightly-coupled system with

shared memory, processors are interconnected with at least one common memory

address space which makes intimate interactions possible among processors [109].

Processors normally communicate and synchronize via shared variables. Such parallel

systems include IBM 370/168, CDC 7600, Honeywell 60/66 and SEQUENT Balance

& Symmetry [65, 109].

In a loosely-coupled system using a message-passing communication mechanism,

processors are coupled via a communication network, either over a wide-area or local-

area network. Each processor has its own dedicated memory, therefore' processors can

run in parallel without interference. The most commonly used communication mode

between processors takes place via message-passing. The processors may be formed into

a number of topologies, such as linear, star, ring, mesh, hypercube, pyramid, butterfly

and fully-connected (clique) [65, 180]. A typical example of a loosely-coupled system

is one composed of processors interconnected by networks, as seen in ARPANET, DCS

and DCN. The SAGE system (duplicated processing system), and the dynamic data

flow machine Irvine (a network of multiprocessors) also fall into this category [109].

2T

In addition, there are some existing machines which do not fall into either category

mentioned above, and are therefore termed "hybrid" architectures. For instance,

ELXSI 6400 [132] and the Virtual Port Memory research machine at New Mexico State

University [98] are tightly-coupled systems but adopt a message-passing mechanism to

deal with data communication and synchronization. Some loosely-coupled systems can

also use a shared-variable mechanism to handle processor interactions. An example of

this is the BBN Butterfly [47].

2.L.2 Other Taxonomies

Several other taxonomies of parallel and distributed systems have been presented as

well. One of the early classifrcations originates with Flynn [61], who classifies all

computer systems via two streams: instruction stream (a sequence of instructions

processed by a computer) and data stream (a sequence of data supplied to an

instruction stream). Four types of systems are therefore proposed: SISD (Single

Instruction Single Data), SIMD (Single Instruction Multiple Data), MISD (Multiple

Instruction Single Data) and MIMD (Multiple Instruction Multiple Data). SISD

actually refers to sequential machines, as proposed by Von Neumann. MISD is not

of great practical signiflcance, due to severe application restrictions with respect to

parallel processing. SIMD and MIMD are forms of parallel architectures. Illiac IV and

OMEN 64 are SIMD machines, while the common message-passing parallel system can

be regarded as MIMD. There is a new type of parallel systems originating from MIMD,

SPMD (Single Program Multiple Data), which applies the same program (rather than

instructions as in MIMD) onto different data sets.

Anderson et.al. 16l base their classifrcation on three hardware archetypes: PEs

(Processing Elements such as Processors or computers), paths (a medium by which a

22

message is transferred between PEs) and switching elements (an entity which affects

the destination of a message, between the message sender and receiver). The MERIT

system [13] is classifred as a complete interconnection DDC type, indicating "Direct

transmission" (regarding processing elements), "Dedicated connection path" (regarding

communication path), and "Complete interconnection" (regarding switching elements).

Johnson [97] divides parallel machines, according to their memory structure and

data communication mechanism, into four groups: GMSV (Global Memory - Shared

Variables), GMMP (Gtobal Memory - Message Passing), DMSV (Distributed Memory

- Shared Variables) and DMMP (Distributed Memory - Message Passing). Johnson's

taxonomy, as claimed, fills in a category which has not been touched by Karp [100]

and is more complete than that of Howe [87], through its new category GMMP which

includes systems like the ELXSI 6400 [97' 132].

Furthermore, based on the buffer (address space) type, Kutti [109] classifies parallel

systems into "multiprocessor" in which processors share common memory and utilize

shared memory to conduct processor interactions, and "multicomputer" where each

processor has its own dedicated memory; requests, processes, data and control messages

are carried via the "moving buffers" [109]. According to Kutti's taxonomy, a system,

in which processors/computers are linked by a network such as the internet, belongs

to the "multicomputer" type. A list of existing parallel systems in each category is

provided in [109].

As stated in Chapter 1, this thesis bases its discussion on parallel and distributed

systems, and focuses on task scheduling issues in parallel processing as well as

support for parallel programming. Therefore, this thesis assumes a homogeneous

computer system in which processors are identical and fully connected with identical

communication networks. However, as seen from the remaining discussion, the study

23

and results can be smoothly extended into heterogeneous systems.

2.2 Speedup of the Parallel SYstem

The development of VLSI and various parallel system architectures have provided

application programmers with the opportunity of pursuing an efficient and cost-effective

solution to many complex application problems. The meastre, speedup,, is widely

used to evaluate the performance of the parallel system. Examples of performance

measurement on parallel systems can be found in147,50,60,75,81,83,84, 125,,13I,

r47, t661.

At present, there is no standard mathematical definition for the speedup function.

Researchers have proposed a number of speedup functions, based on their own

experience and work. A detailed study of the speedup function is beyond the scope of

this thesis. This thesis intends, through the available speedup functions, to state that

the performance improvement of parallel and distributed systems is generally not as

great as expected, and therefore that effort is required to realize the full potential of a

parallel and distributed system'

Section 2.2.1 gives a formal definition of the speedup function. It also reviews and

compares several variations of the speedup function used in the literature, with the aim

of illustrating a characteristic of parallel systems, viz., non-linear speedup. Section2.2'2

analyzes reasons why linear speedup is impossible to attain, and discusses the runtime

overheads which degrade the performance of parallel systems.

24

2.2,L SpeeduP F\rnctions

The speedup function ,S of the parallel system is formally defined in [65] as:

T"
s(") : E (2.1)

where n is the number of processors incorporated into the parallel and distributed

system, ?i is the time of the most efficient sequential algorithm employed in solving a

certain application problem, and To is the computation time of the parallel algorithm

addressing the same problem.

The term linear speedup refers to the best performance which an n-processor

parallel system can expect, i.e., ^9(n) : n [65]. Such an ideal paraliel system can

produce the solution \n lth the time of that of an individual processor (supposing

that processors here are identical, and a uniprocessor can simulate the operations

of an n-processor system). However, researchers have shown that increasing the

number of processors in the system does not result in a directly proportional

improvement of system performance. Chu [a2] proposes a "saturation effect" to

demonstrate such a phenomenon in a parallel and distributed system. He points

out that system performance increases signifrcantly only for the first few additional

processors that are added to a parallel system, and then begins to decrease with each

newly incorporated processor (as compared to a linear increase), due to excessive

interprocessor communication. That is to say, the increased overheads incurred

in parallel processing somehow, to some extent, offset the benefi.ts gained through

parallelism. The saturation effect can occur when the number of processors is as few

as three or four if the system or the algorithm is inappropriately designed' Examples

can be found in [41, 95].

25

As can be seen, it is practically impossible to precisely calculate the speedup of

a parallel system from Equation 2.1, since there is no guarantee that the adopted

sequential algorithm is the "most efficient" one.

The formal definition of the speeilup of the parallel and distributed system has

a number of variants, which are more practical than the original definition. Such

variations are summarized as follows, numbering each function with a subscript to the

speedup function S. This thesis compares these speedup functions against the linear

speedup function, to show that linear speedup is far beyond any parallel system.

r The speedup function ,S proposed by Amdahl et.al' l5l

^9r

where / is the fraction of sequential operations which can not be parallelized

(0 < / < 1). It can be seen that ,sr a i. Ar indicated, Amdahl et.al. believe

that the size of the sequential segments in a parallel program critically affects the

performance of the parallel system.

o ,9 as proposed by Minsky et.al.ll22]

^92
: log n

That is to say, the speedup of the parallel system is merely limited by the log of

the number of processors.

26

o .9 by Kuck et.al.lí4l:

&:J-
log 7¿

This is an empirical result obtained by analyzing 86 Fortran programs. IIO

and control unit timing have been neglected. It is claimed that, when rz (10,

the performance of the parallel system is better than the linear speedup level.

However, later experiments from the Parafrase system [139] on 1500 Fortran

programs have proved that this function over-estimates the performance of the

system, and that the speedup should be within [log n' d;l'

o
^9 by Haynes et.al. l80l:

1
S+:

fL
P+H+Q

where P and Q is the parallel and serial segment respectively, of the parallel

program (obviously P + Q : l); H is the overhead on each processor due to any

additional steps required by the parallel algorithm. 11 H is ignored, i.e., 11 : 0,

then this speedup function is the same as that of Amdahl's'

o .9 by Gustafson [76]

Ss :,f + (1 - /)n

where / has the same meaning as that in Amdahl's speedup function. It is

claimed to be a reevaluation of Amdahl's law [5]. It presents an almost linear

27

Speedup
f\rnction

Number of Processors
Conditions10 LO" 10ó 10" 10"

Sr 3.57 4.81 4.98 4.99 4.99 f :0.2
Sz 1 2 3 4 D

Sg 10 50 333 2,500 20,000

S¿ 3.57 4.81 4.98 4.99 4.99 Q :0.2,P : 0.8,// : 0

Ss, 8.2 80.2 800.2 8,000.2 80,000.2 f :0.2
Linear 10 100 1,000 10,000 100,000

Table 2.1. Speedup of the parallel system.

function for parallel system speedup

All the above speedup functions are derived from various researchers' experience

or experimental results. They have been used to measure the performance of parallel

and distributed systems. Compare these speedup functions against the linear speedup

function. Table 2.1 shows the results in the case when the number of processors in the

parallelsystemisl0, 102, 103, 10aand105. FromTable2.l,itcanbeobservedthatthe

speedup of the parallel system is not a linear increase as ideally desired. The results

all appear to be less than linear speedup: the more processors in the parallel system,

the greater the difference from linear speedup. This is due to the runtime overhead

incurred in parallel processing. Section 2.2.2below contains a more detailed discussion.

2,2.2 Overhead in Parallel Processing

With an increase in the number of processors incorporated into the parallel and

distributed system, it is expected that the directly proportional improvement in system

performance can be achieved. However, from the analysis in Section 2.2.L, it is

observed that linear speedup of the parallel system is impossible. This section discusses

three major factors which affect the achievement of linear speedup in a parallel and

distributed system.

28

The first factor that influences system performance is the parallel algorithm itself.

Generally speaking, the algorithm partitions the whole program into a number of

interrelated tasks, which can be run in parallel on processors and synchronize with

each other for desired data. Even within a task, instructions can be partitioned as well

to achieve further parallelism. However, in reality, parallelism does not apply to each

aspect of the application program. Complete parallelism is practically unattainable.

In some situations, sequential processing is required by the application problem itself.

This is because there usually exists some precedence relationships between parallel

tasks within the program. Consequently, parallel algorithms are typically unable to

fully parallelize the computation. Therefore, even provided with sufficient processors'

linear speedup of system performance is still generally impossible.

The second factor affecting system performance is the runtime overhead incurred

by inter-task (or inter-processor) communication. Parallel tasks in an application

program work cooperatively to solve a single problem. Subsequently, interprocessor

communication (presuming the interprocess communication on the same processor

can be ignored) and data synchronization is very common in parallel computation.

Improper arrangement of tasks onto processors can incur excessive interprocessor

communication, and thus significantly delay the execution of the program. In addition,

further overhead can come from task scheduling and load balancing, if conducted

dynamically at runtime. As a result, these overheads offset the advantages brought

about by the parallelism.

The final factor which degrades system performance comes from hardware

restrictions. When more than one task is intending to use the same resource

simultaneousl¡ competition for the shared resource occurs. Consequently, the

processing of at least one task of the parallel program is delayed. Such resources may

29

be common main memory and shared variables, computer networks, and input/output

devices etc.

In summary linear speedup of parallel systems is unrealistic and impossible

to attain on practical systems. When the number of processors increases in the

system, the consequence may outweigh the advantage gained through the parallelism.

Subsequently, actual system performance decreases, rather than increases as expected.

This has been shown in [42].

It is desirable that increasing the number of available processors improves the whole

system performance. Various strategies have been developed which allow the actual

speedup to approach, as much as possible, the linear function. An appropriate task

scheduling strategy (or policy) is one of the aspects which can be pursued so that

the additional overhead incurred by parallelism is reduced to the minimum; this is

discussed in the following sections.

2.3 Scheduling Algorithms

This section reviews current practices in task scheduling in parallel processing.

Fundamentally speaking, the solution to the scheduling problem is an algorithm by

which a scheduling policy can be produced so that the tasks of the parallel program

are distributed onto available processors and arranged into an execution order for

tasks which are assigned to the same processor. On the whole, there is the same set of

constituent aspects involved in study of all scheduling algorithms. Section 2.3.1 explains

in detail these aspects and their relationships. In this thesis, scheduling algorithms

are divided into two broad categories: tasle allocation algorithms all'd tasle scheiluling

algorithms, reviewed in Section 2.3.2 and Section 2.3.3 respectively. Detailed surveys

30

Task
Model

Scheduling
Algorithm

Scheduling
Objective

hocessor
Model

Figure 2.1. Major issues in the task scheduling problem.

can also be found in Casavant et.al. [35], Coffman [43], Graham et. al. [73], Lawler eú

al.llal and Norman et.al. [128].

2.3.L Scheduling Aspects

As aforementioned in Section 1.L.2, the task scheduling problem is composed of four

major aspects: the scheduling objectiue which is normally the performance measure to

be optimized regarding the parallel system or parallel programs; the task model which

portrays constituent tasks and possibly the precedence ¡elationships among the tasks

of a parallel program; the processor model which abstracts over the architecture of the

underlying available parallel system on which the parallel programs can be executed;

and the scheiluling algorithm which produces a scheduling policy to distribute tasks

onto the available processors.

The relationships among the major factors in the task scheduling problem is

illustrated in Figure 2.1. Generally, a scheduling algorithm aims to optimize the

desired performance measurement, and it determines aspects required in dealing with

parallel task scheduling. The two most widely-used performance measures in scheduling

research are parallel execution time of the parallel program (or schedule length) and

31

total cost of communication ilelay ønil loail balance. Examples of scheduling algorithms

in each category are provided in the next two sections. These two scheduling objectives

result in two main streams of scheduling algorithms: task allocation algorithms and

task scheduling algorithms [53], respectively. 'lhe tasle allocation algorithms concentrate

on the assignment of tasks onto available processors. On the other hand, the task

scheduling ølgorithms consider more factors than those of task allocation. Such factors

include precedence relationships between the tasks of a parallel program (determined

by the program itself), and the execution commencement order between tasks assigned

to the same processor. Note that, here ú¿sk scheduling and taslc allocation refer to

difierent types of algorithms, while the term scheduling algorithrn is used to refer to

the general algorithm for the scheduling problem in parallel processing.

Figure 2.1 also indicates that the scheduling algorithm (as well as the scheduling

objective) adopted in a parallel system determines attributes of the tasks and processors

to be considered in the task and processor model, respectively. Broadly speaking, the

task model is normally portrayed as a weighted undirected graph in the task allocation

algorithm, since the precedence relationships are of no interest in this situation. In

the task model, tasks are represented as nodes and weighted by computation cost,

and intertask communication is represented as eilges and weighted by communication

delay. While, on the other hand, the task scheduling algorithm normally requires a

weighted directed acyclic graph (DAG) to describe the task model, in which tasks are

representedby nodes (the same as in that of the task allocation algorithm), but edges

illustrate precedence relationships and the communication time between interconnected

tasks. Therefore, the typical distinction between a task allocation algorithm and a task

scheduling algorithm lies in the illustration of the task model provided to the algorithm,

e.g., whether or not the precedence relationships between parallel tasks are taken into

32

account

The processor model is assumed, in this thesis, to be the same when investigating

both task allocation algorithms and task scheduling algorithms. The parallel and

distributed system is regarded as composed of identical processors which are fully

connected through identical communication networks.

In summary, the task scheduling problem can be described by the same set of

scheduling aspects, which are strongly interrelated: a scheiluling objectiue determines

the style of. a scheduling algorithm which itself influences the necessary attributes and

structure of the taslc mod,e/ and the processor moilel. However, different scheduling

objectives require different methods to illustrate the task model and the processor

model, and therefore results in different categories of scheduling algorithms. In the

following two sections, scheduling algorithms are discussed in detail as two separate

groups: task allocation algorithms and task scheduling algorithms.

2.3.2 Tâsk Allocation Algorithms

This section examines the related work on task allocation research. Task allocation

algorithms aim to minimize the total computation and communication cost of the

parallel program. Precedence relationships between parallel tasks are generally

neglected by these algorithms. Other objectives adopted by the task allocation

algorithm, may also exist, though rare. For instance, such additional objectives include

minimal system hazard lL42), and smallest processor and time lower bound [58, 94, 113,

144]. They are not discussed in this section.

Task allocation algorithms usually follow traditional approaches, which are

elaborated in this section: graph theory, mathematical programming and enumerative

search. Other approaches utilized in this area have also been proposed, such as the

33

Hopfield neural network [taS] and queuing theory [39, 127, 138].

The grøph theory approach employs algorithms over the graph, such as the min-

cut algorithm [78] and its improved variations 177,99,1591, to distribute tasks onto

processors, as done in various algorithms Í42, 68,161]. Other graph theories as applied

to allocation algorithms can be found in [16, 19, 117, 160]. This approach can generate

efficient solutions when the number of processors in the system is relatively small;

otherwise it is excessively computationally intensive to obtain a scheduling policy [161].

The mathernatical progrl,nxrning approach converts the task allocation problem into

the pursuit of a solution to a mathematical equation with a number of constraints. It

illustrates the total computation and communication cost of the parallel program (i.e.,

the scheduling objective) through a mathematical function as follows:

C ost(S P) : !fø(t,p)C (t,p) * t M(tr,prtt2,p,"¡ (2.2)
pt Vttltz

where C ost(S P) represents the total computation and communication cost of the

corresponding scheduling policy S P; t¿ and p¡ represents a parallel task and

processor respectively; C(trp) is the computation cost of task ú on processor p'

a¡,ð. M(t1,pt'tz,pt") is the communication cost between interrelated tasks fi and t2,

denoted as ú1 { f2 (task ú2 is preceded by task ú1), when they are distributed on

processors pl, and p¿2 respectively. The function q in Equation 2.2 is defrned as:

q(t,p) : (2.3)

Constraints to Equation 2.2 may include a limited memory environment which can

be represented by:

1 if task ú is allocated onto processor p

0 otherwise

34

! s(t)q(t, p) S &
trP

where s(ú) denotes the amount of storage size required by task ú, and ,R is the total

available memory on processor p. Each constraint imposed by the application problem

to the desired scheduling policy is illustrated by an equation similar to that above.

As seen, the scheduling problem is therefore transformed into a number of

mathematical equations. The most commonly used method in this category is

linear programming [12, 57, L40, 156, 158, 169]. Allocation algorithms adopting this

mathematical programming approach include lII,17 , t8, 42, 62,66,118, 120, I27 ,,143,

1701.

The enumeratiue search method generates a task allocation policy by thoroughly

searching the solution space which is composed of parallel tasks, processors and

constraints. This strategy forms a set of scheduling policies by considering every

possible combination of the constituent tasks onto available processors. Each policy

is evaluated in terms of the performance measure, and then selects the policy with

the best system performance among all possible candidates. This approach guarantees

the optimal solution. However, it is also obvious that this method is computationally

expensive. In the case where the number of parallel tasks and processors is large, the

solution space to be searched is so huge that identification of the best scheduling policy

is impractical. Some algorithms have proposed a compromise and seek a sub-optimal

scheduling policy. Examples include [142] and [153].

In theory, each of the three approaches stated above can obtain an optimal

scheduling policy for the scheduling problem. However, an optimal scheduling solution

can only be achieved under restricted situations, such as a two-processor system,

(2.4)

35

restricted task models, or a small number of tasks within an application program [51],

due to the computational cost.

The allocation of parallel tasks to processors is usually undertaken prior to program

execution. Thus, both the task model and the processor model are assumed to be

available statically, and the pursuit of the scheduling policy does not, as a result, delay

the execution time of the application program itself.

2.3.3 Thsk Scheduling Algorithms

This section reviews current task scheduling algorithms, which represents another

stream of scheduling algorithms. The scheduling objective mostly adopted in the task

scheduling algorithms is the minimization of the parallel execution time, also known as

schedule length or makespan. The task model provided to the task scheduling algorithm

is usually illustrated by a directed acyclic graph (DAG), as stated in Section I.1.2.

Task scheduling algorithms can be further divided into two categories: dynamic and

static, according to when they produce the scheduling policy. The dynamic approach

generates the scheduling policy on the fly, i.e. as the program is executing. Algorithms

presented in [7, 20, 36, 40, !07,126, 138, 162, 178] are examples of the dynamic

approach. For applications, such as those with aperiodic task arrival, and those in which

task attributes can not be determined until runtime, dynamic scheduling algorithms

are usually adopted to achieve good system performance as well as good load balancing.

However, the dynamic approach unavoidably results in extra runtime overhead - the

process of task distribution in dynamic scheduling places demands on the shared CPU

resources which were originally reserved for the application tasks'

This thesis studies the static task scheduling problem, which aims to produce a

sched.uling policy prior to program execution. The task model and processor model are

36

generally assumed to be available in advance. Since it has already been proved that the

task scheduling problem is NP-complete, a heuristic approach is normally adopted to

achieve the sub-optimal solution within acceptable computation complexity. Two main

strategies have been used to statically deal with the task scheduling problem: cluster

sched,uling and líst scheduling. The cluster scheduling method first gathers user tasks

into "clusters", assuming a unbounded number of identical processors are available,

with the objective of minimizing the parallel time; then it assigns these clusters onto

the underlying parallel architecture. Further clustering may be involved, due to the

limitation of available processors. Sarkar's algorithm [150], Yang's DSC [1S0], and

algorithms in [101, 102] are examples of cluster scheduling algorithms.

With list scheduling, each task is first assigned a priority value. Whenever there

is an idle processor, the schedulable task with the highest priority is allocated to

the available processor. On the whole, the list scheduling method considers the

particular characteristics (such as processing capability) of underlying processors while

distributing parallel tasks. The list scheduling approach and its variations are in

widespread use, as in ERI [115], ETF [93], MH [53] and algorithms from [8, 89, 179].

Variation to the above two categories of task scheduling algorithms include the

gang scheduling strategies [55, 96,L52,,171, 184] and other time and/or space sharing

schemes [3, 71, 165].

Most of task scheduling algorithms presented to date focus on a deterministic task

model, i.e., the task model is assumed to be precisely known prior to program execution.

In addition, such a task model is further assumed not to change between program

executions. Consequently, most of the present scheduling results neglect conditional

branches associated with task runtime operations (task spawn, data transmission and

data reception).

r)f

Consideration of conditional branches is termed conditional task scheduling in this

thesis. This is regarded as a variation of the scheduling problem mentioned above.

Little research has been undertaken in conditional task scheduling. El-Rewini et.al.lSIl

propose an algorithm which tackles this problem through simulation. The algorithm

works as follows. Prior to execution, a number of simulations of possible task models

(according to the execution probability of tasks) which may occur in the next execution

are conducted. From these simulations, a scheduling algorithm, MH [53], is then

employed to obtain a corresponding scheduling policy for each possible task model.

These policies are then combined to generate a policy to distribute tasks and arrange

the execution order of tasks allocated to the same processor. The algorithm also

theoretically addresses the selection of representative task models, so as to reduce the

computation overhead.

This thesis focuses on a static strategy to address the conditional and preemptive

task scheduling problems. This problem may also be solved by adopting a dynamic

approach, in which the scheduling policy is determined based on the task attributes

obtained on the fly, as done in 17,,20, 40, L07 , 162].

Preemptive task scheduling has been largely neglected, as compared to its

counterpart non-preemptive task scheduling which assumes that data reception occurs

at the beginning of the parallel task, while data transmission occurs at the end of the

task. A large number of non-preemptive task scheduling strategies have been proposed,

such as those mentioned above. An example of the work undertaken in preemptive

scheduling can be found in [86].

This thesis focuses on the study of task scheduling algorithms, since the task

allocation problem has been extensively discussed. In the remainder of the thesis,

there is no distinction between the task scheduling algorithm and scheduling a'lgorithm,

38

unless explicitly addressed.

2.4 Parallel Programmittg Support

Parallel processing has been regarded as a very promising solution to deal with

increasingly complex software requirements [163]. With extensive research into the

computation model, parallel algorithms and machine architectutes, large demands

have emerged in the translation of the computation model and parallel algorithms

into operational programs. Parallel programmers desperately require support to deal

with the complexity invoived in parallel program development.

This section first examines general approaches of providing parallel programming

support (Section 2.4.1). Section 2.4.2 illustrates several existing scheduling tools and

analyzes the gap between what is required by the application parallel programmer and

what is provided by current environments'

2.4.L General Approaches

From the perspective of transparency of support for parallelism, existing support tools

and environments for parallel program design and implementation can be broadly

divided into three classes. The first class leaves the programmer completely unaware of

the existence of parallelism, and allows them to simply develop the sequential code for

the application. In this case, a special compiler, or other additional software, is required

to automatically extract the parallelism and restructure the sequential program into

parallel code [139]. Program analysis and transformation must be applied to the user-

provided sequential code, as done in [9, 38, 59, 134, 135, L72]. Related work in the

automatic extraction of parallelism from sequential programs include 148,64,88, 1341.

39

The automatic extraction of parallelism from the sequential program should

completely relieve the programmer of the burden of dealing with the complexity of

parallel programming. However, since the compiler (or similar utility software to

perform the transparent extraction) is typically designed for general purpose use, it is

unlikely to achieve high efficiency for all types of application programs. Consequently,

the parallelism is almost impossible to fully extract, and the efficiency of the generated

parallel program is largely restricted by the algorithm employed in the sequential

program which is provided by the application programmer [179].

The second category of parallel programming support takes an opposite perspective:

the programmer is typically facilitated with a set of basic primitives and the parallelism

is completely handled by the programmer. Such runtime libraries usually sit upon

existing procedural languages, such as C or Fortran, and allow the programmer

to explicitly specify the intertask communication and synchronization, as well as

task generation and termination. This approach provides flexibility, efficiency, and

portability to the generated parallel program. PV M (Parallel Virtual Machine) [69,

164] is a typical runtime library providing such programming support. Other examples

include MPI [121], P4 Î271, corba 1L23,I29,,130, 133, 177, 181] and PORTSO [45].

The third class of parallel programming support combines the above two extremes,

i.e., parallel compiler and runtime library. High-level languages either implicitly or

explicitly dealing with parallelism fall into this category. Functional prograrnming

languages do not require the explicit specification of parallelism in the program, but

programmers are required to address issues such as task partitioning. Ada [21, 26],

PLl [149], Concurrent Pascal [79], and CC++ [63] are languages which present specific

constructs to specify parallelism which is then realized by the compiler. An example

includes the par construct in CC**.

40

Apart from high-level programming language support stated above, graphical

parallel programming environments have been developed to support parallel

programmers in various development phases. VPE [22], CODE 122,1741, HeNCE [15]

and Linda 12, 34] belong to this kind of parallel programming support. Other

environments include PTOOL [4], COIN from the INCAS project 124,251, PEDS [183],

Express [104], CAMP [1a1] and POKER [155]. The programmer, facilitated with a

graphical parallel programming environment, typically is provided with assistance in

both the design and implementation phases. In these graphical environments, the

program constructs are usually similar to those in the sequential language. Therefore,

program development can be undertaken in the same way as in sequential programming.

An example of this is the interface node in VPE, which is very similar to function

parameters in C. Through a graphical interface, the environment can also perform

automatic code generation to further reduce the burden on the programmer [180].

Visualization is introduced into parallel programming to assist the development

of parallel programs, as well as assist the programmer in understanding the parallel

algorithm. Xab [1a] is a tool for monitoring the execution of PVM programs. Related

work is undertaken in [10,30,33,31,49, 119, 182]. A good survey with regard to the

visualization of parallel systems can be found in [106, 137, 176].

2.4.2 Scheduling Tools

It is stated that the task scheduling process can be automated so as to relieve

application programmers from this complex and time-consuming programming

work [52]. This section reviews current scheduling support and environments provided

at the application program level.

Most existing tools for scheduling support concentrate on efficient scheduling

4t

START

EI{D

(a)

Figure 2.2. Hypertool: (a) framework and (b) program synthesis and optimization

C program + task dependence ñle

Figure 2.3. Framework of Pyrros.

(b)

Algorithm Design

Coding

USER
Program

Synthesis and
Optimization

Perfonnance
Estimation

Quality Measures

Explanation Facility

Not Satisfied

C Source
Code

Lexer

Pa¡ser

Macro Dataflow
Graph Generation

Code Generation

Target
Machine Code

Graph DisplayerTask Graph Language Parser

Scheduler Displayer
Program Scheduler

lcñ;'ul
Mapping to Processors Mapping data/program

Optimizing
memory.

Code Generator

þrros

42

algorithms to achieve good application and system performance. Hypertool [179]

(Figure 2.2) is oriented toward a message-passing system, and is used throughout the

whole program development cycle with comprehensive support for task scheduling.

The user program (C source code) is first analyzed to generate a task model to be

offered to the self-contained scheduling algorithm; new code is generated to relieve the

programmer from the need to consider task scheduling issues. Another environment

Pyrros [1S0] (Figure 2.3), developed by Yang et.al., adopts a similar approach

to Hypertool, but concentrates more on scheduling support and automatic code

generation. Moreover, the environment Parallax [116] employs a different mechanism

to tackle the scheduling problem. Parallax applies several scheduling algorithms to the

same application program, and selects the most efficient scheduling policy to distribute

tasks onto processors. Other research groups focus on parallel programming support

by incorporating a very simple scheduling algorithm, as done in HeNCE [15] which

provides integrated graphical support for parallel program development in both design

and implementation phases, and a tool developed by Cai and Tuner [fZ] which realizes

process scheduling and program visualization.

All the environments mentioned above assume that task information is known

precisely prior to execution, and the incorporated scheduling algorithms do not consider

any variation in the task model between executions. This assumption is oniy valid

when the parallel tasks are utilized in exactly the same \ryay across different program

executions, and the attributes associated with tasks and parallel systems remain

constant. This is termed deterministic task sched,uling. The task information can

be precisely obtained prior to a particular execution by running the program a number

of times first. As stated in Section 2.3.3, conditional task scheduling algorithms have

received little attention, and software tools to support conditional task scheduling are

43

still in demand

44

Chapter 3

Conditional Task Scheduling

This chapter studies a variant of the task scheduling problem in parallel processing,

termed conditional task sched,uling.

In task scheduling research, a parallel program can be graphically illustrated by

a taslc moilel. In this thesis, the task model illustrates taslc runtime operations

between parallel tasks, which include task spawn, data transmission and data reception

operations.

Fundamentally, there are two types of task models applied to the task scheduling

research. One is the d,eterministic task moilel in which there are no conditions

associated with task runtime operations, and the task model can be precisely

determined prior to program execution. Such a task model does not vary between

program executions, no matter how the parallel program is invoked. The other model is

referred to as the conditional taslc modelin this thesis. It allows task runtime operations

to be guarded by conditions or placed inside loops (loops are a special case of conditional

branching), hence the model is not identical across different executions. In addition,

such a model is almost impossible to determine precisely prior to execution, due to the

unpredictable nature of conditional branches attached to task runtime operations.

45

According to which task model is involved in describing the execution of a parallel

program (i.e., either deterministic or conditional), the task scheduling problem, which

takes the task model as input, can be consequently divided into two categories:

d,eterministic tasle scheduling (denoted as Df S) and conditional task scheiluling

(denoted as CTS). Most current research on task scheduling, such as that reviewed in

Chapter 2, is undertaken on a deterministic task model, thus the tasks and intertask

communication involved in every program execution are assumed to be identical. In

fact, a precise task model is a fundamental requirement in these existing algorithms.

Furthermore, the analysis of the scheduling algorithm is also based on the existence of

aprecisetaskmodel,asconductedinl23,37,44,72,89,92, 145]. Intheanalysis,the

best, if not optimal, performance achieved by these deterministic scheduling algorithms

takes place when the task model of the parallel program is precisely available prior to

execution.

Existing deterministic scheduling algorithms and approaches can not be modified

in a straightforward manner to deal with conditional task scheduling. At present, there

is a lack of extensive study in the area of conditional task scheduling. An approach

identifi.ed in the literature addressing the CTS problem is proposed in [51], which is

reviewed in Chapter 2.

This chapter presents a strategy to tackle the conditional scheduling problem,

by adaptively constructing the task model of a conditional parallel program prior

to execution, and modifying task distribution across program executions. A new

algorithm, named C ET, is proposed to generate a scheduling policy for conditional

parallel programs. Distinguishing it from current scheduling algorithms, C ET

considers one additional factor while scheduling the tasks of the program: namely,

the execution probability which represents the possibility of communication between

6

two interconnected tasks.

The objective of conditional task scheduling adopted in this thesis is to minimize

the parallel task execution time (abbreviated as P?) which refers to the completion

time of the final task of the parallel program. This criteria is also known as sched,ule

lengthand used in related work [51,53, 151, 179, 180]. In this thesis, such an objective

is achieved by producing an efficient scheduling policy statically by which to distribute

tasks of the parallel program onto the underlying available processors and, at the same

time, arrange the execution commencement order of tasks assigned to the same host

processor.

This chapter is organized as follows. Section 3.1 formulates the plocessor model

which describes the topology of the target machine. The conditional task model is

formally defined in Section 3.2. Examples are given in Section 3.3 to illustrate the

significance of conditional task scheduling and its related issues. A brief outline of

the environment, named ATME, to deal with the conditional task scheduling problem

is presented in Section 3.4. The strategy is elaborated in Section 3.5 for task model

construction and section 3.6 for the scheduling algorithm c ET.

3.1- Processor Model

The topology of a parallel and distributed system is represented by a (weighted)

undirected graph, in which nodes denote processors and edges represent processor

connections (networks). The parallel and distributed system, PDS, is characterized

by a quadruple PDS : (PrLrll,,o), where:

o P: the set of processors comprising the parallel and distributed system PDS.

¡ ,t: the set of networks linking the processors in P'

47

20

l0

Figure 3.1. Parallel system with 3 processors.

o ¡.r: the set representing the processìng speed of each processor in P . ¡t(p) indicates

the processing speed of a particular processor p.

o ø: the set of unit message transfer rates of each network in,[. o(pt,pz) indicates

the unit message transfer rate between a particular pair of processors p1 and p2.

o(h,pz) : o(Pz,,Pt)'

By varying the value
"1

p(p) and o(p¿,pr.) (where p, p¿ andpi ar.e processors), the

above processor model can characterize both homogeneous and heterogeneous parallel

and distributed systems. In addition, different network topologies in the system can

also be represented, for instance, a fully-connected system, a local area network, a

mesh or a hypercube. Processors with no direct network links can communicate via

other processors.

Figure 3.1 shows an example of the processor model of a parallel and distributed

system. Three processors comprise the system, each of which is associated with a

value (superscript to each node) representing its processing speed p¿(p). Attributes are

attached to each edge between processors, representing the data transfer rate of the

unit message along the network o(p¿,p¡).

In the study of the task scheduling problem, attributes associated with the processor

model are actually determined by the adopted scheduling algorithm. For instance,

some algorithms take more system characteristics into account than other algorithms.

48

Such system characteristics include the network contention [53] or resource availability

constraints [a2]. A detailed summary is found in [128].

In order to focus on the study of the task scheduling strategy, this thesis imposes

a few assumptions on the processor model. It is assumed that an ideal target machine

is available; that is to say, processors are assumed to be fully-connected (clique

architecture) with identical communication networks. Each processor p executes one

task at a time and is featured by its processing speed ¡.r(p). The value of p(p) for all

processors is assumed to be the same. Therefore, it can be assumed that all p(p) : 1.

Communication of data between tasks which are assigned to different processors

is through packets transferred over the networks. Task computation and data

transmission operations can be performed almost simultaneously, i.e., the thesis

assumes the existence of I/O processors. While dealing with data reception operations,

the task is suspended and waits for the required data to arrive before it continues

its execution. The network link between each processor pair is assigned a value,

i.e., o(p¡,,p¡), which represents the communication time per data packet. under

the assumption of identical communication networks across the system, the value of

o(p;,p¡) for any two processors is further assumed as 1. The communication cost

between tasks scheduled on the same processor is presumed to be 0. It is also assumed

that the network is communication contention free, i.e., the communication time of

tasks on two processors simply depends on the data transfer rate over the network and

the volume of data communicated between tasks.

With respect to the problems addressed in this thesis, the attributes of processors

and networks are used to calculate computation time and communication data time of

the task model (discussed in Section 3.2 below). Atl processor attributes are simply

assumed to be 1, and the measurement of the processing speed and data transfer rate is

49

assumed to be identical. With these assumptions, the representation of task attribute

values is largely simplified. Therefore, the thesis is not distracted by various features

of a particular type of parallel and distributed system. It can then concentrate on

the discussion of the strategy dealing with the conditional scheduling problem and its

related issues. However, these assumptions do not affect the results and strategies

delivered in this thesis and their application to heterogeneous systems. A refinement

of the proposed approach in the case of heterogeneous systems is briefly discussed in

Section 3.2.

9.2 Conditional Task Model

In scheduling research, a parallel and distributed program can be described by a task

model which is represented by a weighted directed acyclic graph, DAG. Such a DAG

representation for the parallel and distributed program is widely used [53, 151, 179,

180]. The task model is conjectured to be a critical input to the scheduling algorithm

for the generation of the scheduling policy. In the DAG, tasks are represented by graph

nodes, while task precedence relationships are represented by graph edges. Owing to

the existence of conditional branches and loops within parallel tasks (especially those

associated with task runtime operations), the statically-estimated attributes associated

with nodes and edges of the DAG are unlikely to precisely represent the task model

in every actual execution. This is termed a conditional tash model in this thesis and is

formally defined as G : (T, ErC,,C^,T",7.), where:

o ?: the set of partitioned tasks of the parallel application program.

o E; the set of task interconnections (representing precedence relationships and

communication between tasks) in the application program.

50

o Cu; the set of the computation times of tasks in T, i.e., the execution time

required by each task, in the program, should it run. Task computation time is

an important task attribute considered by most scheduling algorithms.

Generally speaking, the task computation time is concerned with two aspects:

the volume of task source code to be executed and the processing speed, p(p)', of

the processor p, on which this task runs. In this thesis, it is assumed that the

processing speed of all processors is identical (as stated in Section 3.1), therefore,

the task computation time is regarded as simply depending on the task source

code size.

In the case of heterogeneous systems, where the processing speed and/or the

architecture of processors in the parallel and distributed system is not identical,

the computation time of a task can then be represented by a vector, rather than

a scalar value as above. Each cell of the vector describes the computation time

of the task on a particular processor. As a result, in the heterogeneous system,

Cu is a rnxn-matrix, where rn is the number of tasks and n is the number of

available processors.

Furthermore, if there exists a performance ratio between processors, the

representat ron Cu can be simplifred into the product of two matrices: one

representing the computation time of each task on the selected "standard"

processor, while the other represents the processing speed ratio between each

processor against this ttstandard" processor.

o C^; the set of communication attributes of each task interconnection (between

a parent task and a child task) in E. Task models required by different

scheduling algorithms are predominantly distinguished from each other by the

51

communication attributes used. In the conditional task model introduced

in this thesis, each task communication attribute is decomposed into a pair

(comrnunication time, erecution probability), which is further discussed below.

- The communication time of a pair of communicating tasks represents the

time taken to transfer data between a parent and its child task, if there is

such communication.

It is assumed that the network is contention free and processors of the target

machine are fully connected with identical networks. It is also assumed

that the overhead involved in message formation, routing and propagation

is small and can be ignored. Therefore, the communication time can be

approximated by multipling the communication data size by the network

data transfer rate. The size of the transferred data is measured by, for

instance, the number of packets used by the communicated data. It is

assumed that one unit of data is transferred in one unit of time and all

networks within the system are identical (Section 3.1), hence the magnitude

of data transferred between tasks is directly proportional to the time taken

for communication.

In the case of heterogeneous systems, the communication time between a

pair of interconnected tasks, similar to the taslc computation time, can be

represented by a matrix: each row and column of which represents the

processors on which these two tasks may be allocated, and each cell of which

represents the communication time of a pair of tasks that are resident on

particular processors. Therefore, C^ is then a set of matrices, rather than

a set of scalar values. This merely adds the complexity of the calculation

52

and representation of this communication attribute, while not affecting the

result and conclusions made later in this thesis'

- The execution probability of a pair of interconnected tasks represents, in

general, the probability that the parent task spawns, or attempts to spawn'

a child task and communicate with it. This attribute portrays conditions

associated with task runtime operations. A higher value of the execution

probability indicates the higher probability that conditional operations are

taken at runtime. It deserves to be pointed out that, for a particular

program execution, the execution probability is either 1 or 0, reflecting that

the operations are either taken or not taken, respectively. The execution

probability attribute is introduced in this thesis, and is an important task

attribute in the task model.

o 7i: the set of start tasks in the parallel program. It is assumed, with no loss of

generality, that each parallel program has a unique start task.

o T": the set of exit tasks. Similar to ?", it is also assumed that each parallel

program has a unique exit task.

In the task model stated above, a task does not commence its execution until it

is scheduled to run and it receives all input data from parent tasks. Once submitted

to run, a task executes to completion without interruption, and frnally transmits its

output d.ata, in parallel, to child tasks. Therefore, task execution within the study

of conditional task scheduling is assumed to be non-preemptive. The problem of

preemptive task scheduling is studied in Chapter 4'

Figure 8.2(a) shows an example of a conditional task model, illustrating a general

case across a number of program executions. Each task is represented by a node which

3

(10,0.6) (6,1) (10,1) (8,1)

l)

I

i (lo,o)

(3,1

1) r) (20,1) ,(30,1)
(20,1) (15, l)

(a) (b) (c)

Figure 8.2. (a) Conditional task model and (b,c) potential actual task models in
particular executions.

is a circle labeled with the task name. The superscript to the task name represents

the computation time of that task. Task precedence relationships are represented by

directed edges, to which communication attributes are attached. In Figure 3.2(a)'

tasks A and C depend on the successful completion of task ^9, but task C has a

40% probability (due to conditions guarding the communication between ,S and C) of

executing after ^9 completes whereas task A is always spawned by S. A task, such as

C, which is not executed will have a "ripple effect" in that it cannot spawn any of its

dependent child tasks such as B and D -

In a particular program execution, the actual task model is similar to those shown

in Figure 3.2(b) and (c). As observed, attribute values attached to nodes and edges in

the conditional task model (Figure 3.2(a)) are merely estimates and may, therefore, be

different in each actual task model. Moreover, note that execution probabilities along

communication edges are either 0 or 1 for a certain program execution. For the sake

of clarity, when the communication between tasks has an execution probability of 1,

it is represented by a solid arrow, whereas if it has an execution probability of 0, it

is represented by a dashed arrow. A dashed node (such as task D in Figure 3.2(c))

54

describes a task which does not execute at runtime'

The conditional task model proposed here depicts the execution of the

corresponding conditional parallel program in the general situation. As seen, for a

certain program execution, the task model is actually a deterministic model which is

similar to that in deterministic task scheduling. In this thesis, the conditional model

is utilized as the foundation for the estimation of the task model in the forthcoming

execution (in order to produce a scheduling policy for the conditional parallel program).

Furthermore, the conditional task model, which is analyzed and summarized from

program profiles, can also provide tuning suggestions for the parallel programmer

to improve program design and implementation. Suggestions can be related to task

partitioning, inter-task communication patterns as well as task scheduling, which is

discussed in detail in ChaPter 6.

The union o1 Cu and. C^ is the task attribuúes which portray the behaviour of the

tasks. This thesis introduces the concept of usage patterns of the parallel program'

defrned as the set of factors which uniquely determine the behaviour of the program

(i.e, the set of task attributes). Correspondingly, the usage pattern of a paraliel

task (within the program) is defined as the set of factors uniquely determining the

attributes of the task. In this thesis, the usage pattern (of both the program and the

task) is represented,by input parameters which are assigned values when the program

(or the task) commences to execution. The value of input parameters, which may

include actual parameters and global variables used by tasks, influences the behaviour

of parallel tasks and determines attribute values of the tasks.

The thesis further assumes that each task has one input parameter which is assigned

when the task is spawned, and represents the usage pattern of this task' As seen from

the discussion below, the approach proposed in this thesis to deal with the conditional

55

task scheduling problem can also be applied to the situation where more than one input

parameter is necessary - by introducing a more advanced regression model.

A task model, which adequately reflects task requirements (such as the time

needed for task computation and communication), is critical in the production of a

good scheduling policy for the efficient execution of the parallel tasks. Most current

scheduling research assumes a priori, knowledge of the task model. Nevertheless, in

reality, it is generally impossible to achieve a precise task model for a conditional

parallel program prior to execution.

In the following sections, two examples are presented to illustrate two typical issues

relevant to the conditional task scheduling problem. Then, this thesis describes its

approach to deal with the C?S problem, through a preliminary framework (which is

further elaborated in Chapter 6). Detailed discussion of the strategy applied to the

CT,9 problem is delivered in Sections 3.5 and 3.6.

3.3 Examples of Conditional Task Scheduling

In this section, an example of a parallel program is used to illustrate the significance of

two important issues in conditional task scheduling: (a) that the scheduling policy

should be adjusted between consecutive program executions (i.e., there should be

difierent policies at different times when the program is invoked and executed), and (b)

that the task model should be adequately (not necessarily precisely) estimated prior to

program execution, in order to achieve satisfactory system and program performance.

The parallel program is represented by its conditional task model as in Figure 3.2(a),

while Figure 3.2(b) and (c) show two corresponding actual task models in two program

executions. The scheduling algorithm used is C ET (elaborated in Section 3.6). The

bb

PI n. p3 Processor

l0

20

30

40

50

60

Processor Idle

PT=58

Tíme

Figure 3.3. Performance of Figure 3.2(b).

scheduling policy is represented by a chart with two axes, as shown in Figure 3.3.

The entire task scheduling process follows that stated in Section I.I.2. The processor

model is discussed in Section 3.1, which states that the underiying system is assumed

to be a fully-connected network of homogeneous processors. The performance of the

application program is measuredby parallel erecution ti,me gf).

3.3.1 Adjusting scheduling Policy Between Executions

Unlike the scheduling policy for a parallei program in deterministic scheduling which is

an invariant across all executions of a program, the scheduling policy in conditional task

scheduling should be adjusted for each program execution, according to the variation

in the task model, in order to achieve improved performance.

In this example, suppose there are two sequential executions of a program, which

follow different actual task models. In the first execution, presume that the actual task

ðl

t0

20

30

40

50

60

l0

20

30

40

50

ó0

p2 p3 Processor

Task not nrn

PT:58

pl p2 p3 Processor

PT:38

Tíme Tíme
(b)(a)

Figure 3.4. Performance of Figure 3.2(c) when (a) considering and (b) not

considering the variation of the task models in different executions.

model is accurately estimated as shown in Figure 3.2(b), i.e., all tasks and intertask

communications are executed. Consequently, the corresponding scheduling policy is

shown in Figure 3.3. The performance has PT : 58'

The second program execution follows the task model as shown in Figure 3.2(c) in

which task D does not execute. If presuming that the scheduling policy in the second

execution remains unchanged, then the performance of the second execution, under

the same scheduling policy as the frrst one's, will be PT :58, shown in Figure 3.a(a).

Now if the task model in the second execution can be predicted, then a new scheduling

policy can be generated and performance of PT: 38 can be achieved, as displayed in

Figure g.4(b). As observed, in this example, the performance improves by 34To (i'e.,

(5S - g8)/5S) by adjusting the scheduling policy to correspond to the change in the

task model.

It is true that the variation in the model cannot be precisely known a priori;

S

A

c

E

58

however, it is possible that the model can be predicted with adequate accuracy, based

on past execution profiles. Nevertheless, the variation of the task model between

executions should not be neglected and the scheduling policy should be adjusted across

a series of program executions.

3.3.2 Significance of an Accurate Task Model

In deterministic task scheduling research, it is typically assumed that a precise task

model is available prior to program execution. However, owing to the presence of

conditional branches in tasks of parallel programs, this assumption is not valid for the

study of conditional task scheduling. Estimating attribute values of the task model is

a significant step in establishing the task model for a parallel program' This section

shows the influence of an accurate task model on the scheduling policy, and hence to

the system and program performance.

Consider two task models which are predicted prior to program execution, one

of which is precisely the model executed at runtime while the other is not. The

two estimated task models are provided to the scheduling algorithm to obtain a task

distribution and determine system performance, PT,, for each distribution. Assume

that the inaccurate task model of Figure 3.2(c) is predicted prior to program execution,

Figure 3.5(a) shows the corresponding scheduling policy (for the time being, ignore the

shaded part representing task B which reflects the actual situation at runtime). At

runtime, however, task D is actually executed while task B is not, that is to say, the

predicted task model is inaccurate. The performance under this scheduling policy is

PT :86, as shown in Figure 3.5(a).

Consider now the accurate task model and its influence on system performance.

With the accurately-estimated task model (that is, the task model which predicts that

59

P2 P3 Processor pl p2 p3 P¡ocesso¡

PT:86 PT :47

(a)
(b)

Figure 8.5. Performance difference when execution probabiiities are not accurately

estimated

task D runs and task B does not), the scheduling policy of Figure 3.5(b) is achieved, and

the system performance is PT :47. As seen, in this case, a 45% (i'e', (36 - 47)186)

performance improvement is achieved by providing an accurate task model to the

scheduling algorithm.

Examples such as those above indicate that strategies, which can achieve high

efficiency in solving the deterministic task scheduling problem, may not provide

the same performance efficiency for conditional task scheduling. It can be seen

that cond.itional task scheduling must, by its nature, consider more factors than its

deterministic counterpart. The scheduling policy should be adjusted between program

executions according to variations in the task model. Furthermore, accurate prediction

of the task model can assist in producing a good scheduling policy which helps

approximate optimal system performance. Research effort is needed to propose new

l0

20

30

40

50

60

l0

20

30

40

50

ó0

70

80

90

Tíme Tíme

60

approaches to tackle the conditional task scheduling problem.

3.4 Strategy for CTSz ATME

Various heuristic approaches have been proposed to efficiently deal with task scheduling

within acceptable computation complexity. However, it is difficult to isolate one

heuristic which achieves better performance than any others in all cases. Little

attention has been paid to conditional task scheduling until recently. Heuristics need

to be determined to fill this gaP.

This thesis studies the conditional scheduling problem from two perspectives:

the scheduling algorithm and the task model. This section presents a preliminary

framework of AT M E, an environment aimed at dealing with the conditional and

preemptive parallel programming.

Figure 3.6 briefly describes the major functional components which comprise

ATME. The pre-erecut'ion processing component of ATME receives partitioned

parallel tasks of a (conditional) parallel program, as well as the information regarding

the underlying parallel and distributed architecture. This component analyzes parallel

tasks and produces instrumented tasks for the purpose of generating runtime data

related to parallel tasks and task communication patterns. TL.e pre-execution processing

component also produces the processor mod,elfor the target machine to be used in task

distribution.

The strategy for the conditional task scheduling Qf Ð problem is implemented

through two steps in AT M E The frrst step involves the construction of the task model

for the forthcoming execution on the basis of past program execution profiles and model

estimates. This is realized by the tasle model construction component. Once a task

61

Processor
Model

SchedulingPre-Execution
Processing

Parallel
Progrart

Task Model
Construction

Task
Model

Results
Post-Execution

Processing
Program

Figure 3.6. ATME framework (outline).

model is established, the second step then provides this estimated model to a scheduling

algorithm, named CET, to produce a scheduling policy. This is implementedin the

task s cheduling comPonent.

The strategy stated here works efficiently in the case when usage patterns of the

parallel program are relatively stable, i.e., input parameters provided for each task

when it is spawned do not change radically between consecutive executions, in which

case the task model can then be estimated beforehand with reasonably high accuracy.

This is strongly supported by the experiments presented in Section 7 '2'5'

In the remaining sections of this chapter, effort is made to practically deal with

the conditional task scheduling problem. Sections 3.5 and 3.6 discuss in detail the two

main steps of the AT M E strategy. The design and technical details of the developed

environmerft ATME is presented in Chapter 6. Experimental results regarding the

performance and features of the proposed strategy are given in Chapter 7'

The post-eaecution processing component of ATME collects all runtime-generated

data regarding the program as well as the distributed system as a whole, and retains

them as program profiles, which acts as input to the task mod,el construction for the

62

estimation of the task model in the forthcoming program execution.

3.5 Task Model Construction

With respect of conditional task scheduling, the task model consists of the following

components: task interconnection structure, and the task attributes which refers to

the task computation time, communication time arrd. erecution probability betweetr

tasks. The task interconnection structure contains all the possible tasks that compose a

parallel program and all the possible interconnections between the tasks. That is to say,

it describes task precedence relationships in the program when ali conditional branches

associated with task communication are assumed to be taken. The task interconnection

structure can be established through static program analysis (discussed in Chapter 6).

Therefore, this section only studies task attribute estimation.

preparatory work must be undertaken prior to program execution in order to

profrle the parallel program. In this thesis, static program analysis (in addition to

task instrumentation) is performed on the user source code (discussed in Section 6.4),

to generate task runtime data. This is handled by the pre-erecution processing

component in Figure 3.6. The runtime information to be captured is related to the

computation time of each task, communication time between any two interconnected

tasks, execution probability (either 1 or 0 at runtime) between communicating tasks.

For each application, if there is a factor which is known beforehand that determines

task attribute values, i.e., the input parameter, then this fator is captured too, for use

as a regressor to predict task attributes.

The prediction of task attributes is based on what is captured during previous

executions a, method which is commonly adopted in predicting runtime

63

attributes [154]. The number of past executions retained is specified by the user.

Two techniques are utilized in the construction of the task model (specifically, for the

estimation of task attributes): one is the linear regression mod,el to estimate continuous

task attributes including computation time and communication time of tasks, while the

other is based on a finite state rnachine to predict discrete task attributes, such as the

execution probability.

Section 3.5.1 explains the linear regression technique adopted to undertake the

prediction for task attributes, followed by a discussion on estimating task computation

time and communication time in Section 3.5.2. The estimation of task execution

probability is examined in Section 3.5.3.

3.5.1 Linear Regression Model

This section describes the process and results of the linear regression model, by which

the task model construction component in Figure 3.6 can predict the value of task

computation time and task communication time of a conditional parallel program.

Linear regression has been extensively studied in the mathematical and statistical

area [46, 74,, L03,157, 173]. It has been widely adopted in many applications [82].

Suppose there ate n executions, each of which captures two data values r and y.

The value of r and y in the iúä execution is denoted as ø¿ and yi respectively. The

objective is to predict the value of the sample y in the (rz * 1)üä execution, based on

the ø and y values collected in the past n executions and a given value of xn¡y.

The linear regression model is represented as follows.

ai:a*0n¿*e¿

64

where a, B are regression coefficients and e¿ is the error term (shock or disturbance)

which can usually be neglected. y represents the data whose value is to be predicted,

and r is caJled the regressor in the regression model. It is assumed that the value of

y caî be determined through that of ø. In the situation where there is more than

one sample involved in deciding the value of y, a more advanced regression model is

required [74, 103], which is beyond the scope of this thesis'

The linear regression aims to determine the value of o and B, based on the collected

values of ¿ and y in the past rz executions. Therefore, in the (n * L)th execution, with

the availability of the value of xn1.t and calculated values of o and B, the forthcoming

value of yn+t can be predicted as close as possible to the actual value'

Parameters o and B can be achieved by the least squares method [1a8]. Let

Í (", þ) : Ðlp- (o * þ"n)l'
n

i=1

The value of a, and B must be determined to minimizethe function l@,þ)' Thus,

solving the equations:

#: -zDi=rlu; - (o * þ*,)):0

ffi: -2D!=rly; - (o * Br¿)læ¿: Q

it is determined that:

ta yaoi- yi ti2

r ø.) -"Di=,',"

ti-n yita

-fL

a

p: ui

rÚí

65

t ua2

*
*

**

linear regtession

*

averagrng

xl YA xn xn+l X

Figure 8.7. Predicted value under linear regression model against averaging model.

Therefore with the availability of o and B, as well as the value of an+t,, Unar can then

be obtained by:

An*r: aI þtn+t

The linear regression model introduced above is suitable for the prediction of the

future value of a variable which changes continuously (as compared to a discrete

variable). Therefore, the linear regression model is adopted in this thesis to estimate

the task computation time and the communication time between tasks. Section 3.5.2

below provides a detailed discussion.

As seen, the regression model takes consideration of the tendency of the past

experiment history. Figure 3.7 graphically illustrates how the model works- In the

past n, experiments, sample values (rt,yt), (rz,Az), "'', (*n,Un), arc collected' \Mith

this data, a line of best fit (the "solid line" in the figure) is drawn to best approximate

these n-pairs of values. With a given regressor value, fin+t) the corresponding value on

the line, i.e., An+r, can then be estimated (marked by letter A). This method considers

the tends visible in the previous recorded values. On the other hand, the averaging

model estimates An+t according to the average value of At, Uz, . . . , Un' In Figure 3'7,

Y

66

this y,,..,.-1 value from the averaging model is marked by letter B. It is clear that the

averaging method ignores the relationship between ø¿ and !;, and therefore fails to

consider any trends apparant in the historic data'

Section 7.2.5 demonstrates the experiment results regarding the accuracy of the

linear regression model.

3.5,2 Estimation of Tâsk Computation and Communication

Time

Task computation and communication attributes of the task model in the (n + l)tä

execution are estimated by analysis of corresponding data values collected in the

previous n executions (the exact value of r¿ is user-defined). The input parameters

of each task are also assumed to be captured in the previous n executions.

In the situation when attributes of a task is determined by the task's i'nput

parameter, such a parameter can be used as the regressor in the regression modei

(shown in Section 3.5.1). Consequently, the estimation of task computation time and

communication time is divided into two steps: flrst the value of the task input parameter

is estimated; and then the task attribute is predicted. In both steps, the estimation is

undertaken by the linear regression technique.

In the first step the value of the task's input parameter in the (n * l)úh execution is

estimated (that is, denoted bV y). This thesis takes the task enecut'ion nurnber as the

regressor r in the regression model. For instance, in the first execution, the value of rr

is 1, in the second execution, z.2is2, and so on. In each execution, the input pararneter

is captured and recorded. With the regression model and least squares method, the

value of o and B is then calculated. In the (rz * 1)úä execution, with the regressorur¿+l

ol

as (r¿ + 1), and with the value of o and B which is calculated according to the formula

stated in Section 3.5.1, the value of the input pararneter of a task in the (rz * 1)'å

execution is then achieved. This process is generally described in Section 3.5.1.

In the second. step of predicting the task attribute, the input parameter value acts

as the regressor c, while the attribute to be predicted (i.e., either the task computation

time or task communication time) is g in the regression model. A new set of o and

B values is then determined. Since the input parameter of the task in the (n + 1)'n

execution is available in the first step, with the equation:

Unrr:a*þrn+t

the value of the task attribute in the forthcoming (n + l)tn execution is obtained.

In the circumstance when the input parameter of tasks is not explicitly stated or is

difficutt to analyze, the two steps stated above are combined into one. The attributes

to be predicted, i.e., y in the regression model, is still either the task computation

time or the task communication time. The regressor, ø, utilizes the execution number,

illustrated as in the first step above. That is, the estimation of the input parameter is

skipped. In this way, the estimation strategy avoids the complexity of determining the

input parameters of tasks or the parallel program'

3.5.3 Estimation of Task Execution Probability

Actual task models collected in each user's execution profile are employed to predict

the task model in subsequent executions by that user. Each interconnection in the

actualtask model is labeled with either 1 or 0, representing the actual value of the task

attribute, execution probøbility. This task attribute indicates whether task spawn and

68

Execution between two tasks is
predicted as "not-tâken".

Execution betwe€n two tasks is
predicted as "takgn".

I

0

0i

Slart
@ : State

I : Execution between two tasks takes place at runtime.

0 : Execution between two tasks does not occr¡r at runtime.

Figure 8.8. 4-state fi.nite state machine to predict execution probability.

communication along that route occurs or not at runtime (1 for occurrence).

In this thesis, the execution probability of an interconnection in the task model is

predicted by applying the corresponding values captured in previous executions into a

rn-state finite state machine (FSM). Figure 3.8 provides an example of such a FSM,

where m : 4. Starting at the start state (state 1 in this case), the FSM is navigated

using the execution probability values for that interconnection from n previous actual

task models (in the time order of program execution). For instance, in the first

execution, the 0 value of the recorded execution probability (of that interconnection)

brings the state back to State 0; while the 1 value moves the current state to state 2.

The FSM eventually reaches a state when the last recorded value of that interconnection

is applied. Therefore, a "01110" recorded sequence of a certain task interconnection in

the past frve executions finishes at state 2 in the FSM'

There is a threshold state in the FSM which is used to predict whether the execution

path along the interconnection will, or will not, take place. In Figure 3.8, if the number

of the final state is equal to or greater than that of the threshold state (State 2), then

the execution path between this pair of tasks is predicted to be "taken", otherwise it

is assumed to be ttnot-takentt.

The prediction accuracy of the execution probability depends on the number of

00

69

states, the initial and threshold states in the FSM, as well as the relative stability of

the usage patterns of the application and the number of values retained in the execution

history.

In the above Sections 3.5.2 and 3.5.3, the estimation of task attributes requires

initial data stored in program databases (Figure 3.6) so as to provide a basis for task

model construction in subsequent executions. This can be achieved through a smali

number of initial runs which requires no knowledge of the task model'

In general, the task model of a conditional parallel program is conditionøl. However,

when parallel tasks are distributed onto the underlying processors, the task model is

regarded as d,etermined,, since task attributes in the model have all been estimated and

have concrete, rather than statistical, values'

Based on the predicted task model for the forthcoming program execution, the next

step in the strategy to tackle conditional task scheduling is an algorithm to realize task

distribution among underlying available processors. This is elaborated in Section 3.6.

3.6 conditional Task scheduling Algorithm

This section proposes an algorithm, named c ET, for the purpose of producing a

scheduling policy by which tasks of the application program can be allocated onto

the underlying available processors and to define the execution order of tasks assigned

to the same processor. C ET is different from existing scheduling algorithms in two

respects:

o C ET takes more factors of the task model into consideration: not just task

attributes such as task computation and communication time, but also the

execution probability which portrays the possibility of communication between

70

interconnected tasks, due to the existence of conditions associated with task

runtime operations.

o C ET is provided with a task model which is estimated each time the program is

executed. This is based on the fact that a scheduling policy which is efficient for

one execution may not achieve the same performance for the other executions in

conditional task scheduling.

Section 3.6.1 summarizes the notation used in the scheduling algorithm, CET,

which is discussed in Section 3'6.2.

3.6.1 Notation

Before formally introducing the scheduling algorithm C ET, the notation adopted in

C ET is presented and summarized as follows.

o ?: the set of all tasks in the application; f : a specifrc user task.

o P: the set of all available processors in the system; p: a specific processor.

o <: the precedence relationship between a pair of directly-related tasks in the task

model. tt!<tz indicates that task Ú1 potentially spawns task Ú2.

. ll ^9 ll: the number of elements in set ,S.

c W: the set of unscheduled tasks which have no parent tasks or whose parent

tasks have already been allocated to processors. That is to say, the tasks in W

are schedulable.

o W": a subset o1 W, in which tasks are predicted to run by the taslc model

co nstru cti on comPonent.

7t

o wn: a subset o1w, in which tasks are predicted not to run. Initially,

w.uw* - w.

o U(t,,p): the computation time of task ú on the processor p'

o F(t,p): the execution finish time of task f on the processor p'

o M(fi,f2): the data transmission time between task f1 and Ú2, which are resident

on the processors p1 and p2 respectively. If p1 : p2, then M(tt,ú2) is assumed

to be 0; If the execution probability between ú1 and f2 is estimated as 0, then

M(tr,ú2) is also regarded to be 0.

o R(fi,ú2): the execution probability between task f 1 and t2'

o G(t): a function returning two values related to the distribution of task f: the

allocated processor p and the execution order of task t on p, respectively'

o D(t): the processor onto which task f is distributed'

o N(p): the current tasks allocated to processor p

o A(p): while tasks are being scheduled, A(p) represents the earliest time when the

processor p is available to execute a new task.

o Q(f): the number of unscheduled parent tasks of task ú'

o .gs(ú,p): Among all the schedulable tasks and the available processors, task ú has

the smallest "earliest start timett, and its resident processor is p.

o S1(ú,p): the earliest possible start time of task f on processor p' ignoring the

earliest available time of p (i."., Aþ)).

72

. S2(trp): the earliest start time of task f on processor p, considering p's earliest

available time.

o Y: a set of tasks with the same earliest start time'

o coleuel(t): the co-level number of task ú in the task model. The co-level of a task

is defined as the length of the longest path from the start task to the task Ú in

the DAG. The path length is counted by the number of vertices passed'

3.6.2 Scheduling Algorithrn CET

This section presents the scheduling algorithm developed in this thesis, C ET

(Conditional Earliest Task), to tackle the conditional task scheduling problem. The

C ET algorithm is given as follows:

1. Initialization:

Vt¿ € T,Qþù -- the number of parent tasks of Ú¿

Vp¡ e P, A(P¡) : 0

Vt¿ € T,G(ti) : (NuII, Null)

2. Select a task to be scheduled and its host processor, denoted as t¡ and p¡

respectively: Let W be the set of tasks, each of which has not been scheduled

yet or whose parent tasks have all been allocated:

W : {t I t e T,Q(t) : O,G(t) : (Null, Null)}

If ll W ll : O, then the task scheduling procedure completes; otherwise, split W

into two subsets W. and Wn

t.)

W": {t I t eW,1\ € 7,fi <t, R(t1,ú) : 1}

Wn:W -W.

(a) If ll I4l" ll> 0, select a task in W" and a processor in P with the "earliest

start time": for Vú¿ € W", andVp¡ e P, assume task ú¿ is allocated onto

processor P¡, arld calculate:

S{t¿,p) : max{(F(ú¿uPit) * M(t¡,ti) * R(tí,ti)) |

Vtn ,.t;, D(t¿1) : Pjr¡ D(to¡ : ot¡

Sz(t¿,P) : max{S1(f¿,P¡), A(P¡)}

where, if the execution probability between task t¿1 and f¿ is predicted to be

0, i.e, R(tor,ú¿) : 0, then the expected communication time between these

two tasks is regarded as 0; if the two tasks f;1 and Ú¿ are allocated onto the

same processor, then M(t¡1,t¿):0; if f¿1 is predicted not to be executed at

runtime, then F(f¿1,p¡t) I M(tor,f¿) : 0.

Evaluate ,S2 among all schedulable or free tasks (i.e., in the set 17") on all

available processors:

,So(ú¡,rr) : min{ Sr(t¿,p¡) lVt¿ çW",Vp¡ e P}

f¡ is then selected. as the next to be scheduled task, if it is the unique task

which has "earliest start time" (i.e., Ss).

Let Y represent the set of tasks with an identical "earliest start time":

Y : {t¿ | t; e W,,So(ú;, D(¿;)) : ,So(f*, ¿(¿¡))}

74

If ll y ll> t, choose a task ú¡, with the minimumvalue of F(ú¡, D(Ú¡))' and let

p¡ : D(t*). If more than one task has this minimum value, then randomly

select one.

(b) If ll W" ll: 0, select a task from the non-executed task set Wn by its co-

level number: for Vt¿ €. Wn., and Vp¡ € P, choose a task with the minimum

coleuel value [1] as:

coleuel(t¡) : min{col euel(t¿) lVt¿ e W"}

Then, assuming the execution between ú¡ and all its parent tasks occurs,

select the allocating processor p¡ by the earliest start time stated above.

In this step, regardless of which of the above two cases occurs, the processor p¡

is chosen on which the selected task Ú¡ is to be distributed.

3. Update the state variables:

N(p,):N(p¡) *1

G(t*): (p,,N(pr))

A(p,):A(pt)*u(t¡,p¡)

W:W -{úr}
For any child task ú; of task tt, Qþ¿) : Q(t;)-1. If Q(t¿) :0, then W : W U{¿¿}'

4. Go to step 2.

From the above algorithm, it can be observed that, at any moment, each schedulable

task, or free iask, (that is, a task such that all its parent tasks have been distributed

onto processors) in the application program is assigned a priority value as its "earliest

75

start time". The free task set W is divided into two subsets: W" in which tasks are

expected to execute andWn in which tasks are not expected to execute. Only whenW"

is empty, is there a task in Wn to be distributed. In the end, all user tasks, including

those predicted not to run, are scheduled onto the underlying processors and arranged

in the order of execution.

C ET distributes tasks in two steps. The frrst step is simply that for any task which

is ready to be scheduled and predicted to run in the task model construction, C ET

calculates its
^92

for all available processors. The processor on which the lowest value

of Sz is obtained and its corresponding task are then selected. In the second step,

among all schedulable tasks, CET selects the one with the smallest value of 52, and

distributes this task onto the processor which has been chosen in the first step.

With regard to those tasks which are not expected to execute at runtime,the coleuel

measure is adopted to select the task and determine a processor for distribution. The

coleuelis wid.ely used in constructing the priority table in list scheduling [1' 53]. In this

way, all tasks are individually scheduled onto the underlying available parallel system.

In the C ET algorithm, the major job undertaken is to, at a certain point of time,

select an available processor for a schedulable task. This is realized through calculating

and comparing either tbe earliest start tinte of. all schedulable tasks among ali available

processors, or the coleuel of all schedulable tasks (predicted not to run). The upper

time limit of such a procedure is O(mn) where rz is the number of tasks of a parallel

program and rn is the number of processors in the system. This procedure is repeated

whenever the distribution is conducted for a parallel task. Therefore, the overall time

complexity of the algorithm C ET is O(mn2).

As seen, the algorithm C ET follows the list scheduling approach, which has been

adopted by a number of existing scheduling algorithms to distribute parallel tasks [90].

76

This thesis does not focus on the "most efficient" algorithm to deal with the conditional

task scheduling problem. What this thesis contributes lies in the strategy to tackle the

conditional scheduling problem, and moreover, the practicality of the strategy. The

strategy is designed with a distinct interface between the task model construction and

the scheduling algorithm. Therefore, future results and development in any part of the

strategy can be easily incorporated in so that the parallel computation can be enhanced

immediately.

II

Chapter 4

Preemptive Task Execution and

Scheduling

In deterministic non-preemptive parallel applications, the task model is assumed to be

precisely known prior to program execution. As mentioned in Section 3.2,, at runtime,

a task does not commence its execution until it receives all its required data from its

parent tasks. It then executes to completion, and transmits data to its succeeding child

tasks. Therefore, communication between tasks are restricted to the beginning and the

end of each task. However, in reality, task spawn and message-passing between tasks

do not necessarily only occur at the start and end of a task.

This chapter concentrates on the study of "preemptive task execution and

scheduling", and related issues. In this thesis, preemption refers to the fact that the

execution of a task is interrupted by another task and resumes later on, thus the

commencement or completion time is altered as compared to that would otherwise

occur in the non-preemptive situation. The preemption is regarded as the consequence

of permitting task runtime operations to occur at any place within the task. The

outcome of task preemption is that the child task may commence its execution before

78

the completion of its preceding parent tasks. The motivation of the task preemption

study originates from the intuitive belief that the ea¡lier a task (within a parallel

program) commences its execution, the earlier its child task(s) can start to run,

and therefore, the higher system performance will be. This belief is supported by

experimental results presented in Chapter 7.

The study in this chapter includes two aspects: preernptiue tasle erecution

(abbreviated as PTE) and preemptiue tasle scheiluling (PTS). Preemptivetask execution

investigates the performance improvement due to the occurrence of preemption at

runtime. All tasks have already been scheduled onto the underlying available processors

(by u certain scheduling policy). Such preemption can take place on either the

same or different processors. Preemptive execution may either improve or degrade

system performance. This chapter proposes an approach by which system performance

improvement can be guaranteed. On the other hand, preemptive task scheduling

concentrates on not only the scheduling algorithm itself, but also on issues which relate

to that algorithm, such as the task model. This chapter introduces a "preemptive task

model" to illustrate preemption between tasks. It also presents a ne\4r scheduling

algorithm, named PET, to deal with the preemptive task modei.

In this chapter, the underlying parallel and distributed system is captured by

the processor model, as stated in Section 3.1. That is to say, the target machine

is regarded to have the identical processors fully connected through identical networks.

The scheduling objective is the same as that in Chapter 3, i.e., the parallel execution

time P?.

Parallel program execution is assumed to be t'deterministic"; that is, it is assumed

that no conditions are associated with task runtime operations (task spawn, data

transmission and data reception). The behaviour of the parallel program is the same

79

across different program executions. Consequently, the task model can be determined

precisely prior to execution by running the program a number of times. Chapter 6

addresses the case which mixes the preemption and conditional branches in parallel

programming. These assumptions simplify the task model in the study of preemptive

execution and scheduling in this chapter so as to allow its properties to be examined

and compared to non-preemptive scheduling.

This chapter is organized as follows. Section 4.1 illustrates the preemptive

task model. An example of preemptive task execution is presented in Section 4.2.

Preemptive task execution is discussed in Sections 4.3. A preemptive task scheduling

algorithm, PET, is presented in Section 4.4.

4.! Preemptive Task Model

The task model of a preemptive parallel program is represented by a weighted directed

acyclic graph as shown in Figure 4.1. It can be observed that the preemptive task

model is similar to the conditional task model which is presented in Section 3.2.

The d,istinction lies in different task attributes applied to the task model, required by

different scheduling algorithms. The preemptive task model can be formally defined as

G : (7,, E, Cu, C*rT"r?"), where:

o ?: the set of tasks in the parallel program.

o E: the set of task interconnections in the program.

o Cu: the set consisting of the computation time of each task in ?. A detailed

explanation is found in Section 3.2. The discussion of task computation time

regarding the heterogeneous system is also undertaken in Section 3.2.

80

(e,0.2)

(20,0.4)

(4,0.8)

(8,0.s) (10,0.4)

(20,0.5) (30,0.s)

Figure 4.1. The preemptive task model.

o C^: the set of communication attributes of each task interconnection (between

a parent task and a chitd task) in E. Each communication attribute is a pair

(communication time, preemption start point), discussed as follows:

- The communícation ti,me represents the total time taken to transfer data

between a parent and its child task. Refer to Section 3.2 for details.

- The preemption start point represents the point at which message

transmission within a parent task to a child task may first commence at

runtime. It is defined as a ratio given by the following formula:

v(*,0:uffi@.

where:

* n'L) cr a parent task, rn, and its child task, c.

* CT(t): the execution commencement time of task f .

* U(t): the computation time of task Ú.

81

,* V(m,c): preemption start point at which messages within a (parent)

task rn are transmitted to its child task c. The extreme values of such

a preemption start point occurs at two locations. One takes place at

the beginning of the parent task rn, i.e., the child task, c, commences

its execution at the same time as its parent task, rn. Consequently,

V(*,c) : 0. The other extreme value of.V(m,c) occurs when the child

task c does not commence execution until the completion of the parent

task rn. Therefore, V(*',c) : 1.

o T": the start task set. It is assumed that each program has a unique start task.

o ?": the exit task set. It is assumed that each program has a unique exit task.

It is assumed that all future communication between the parent and child task (after

the child task is spawned) takes place synchronously with no delay in either task. This

simplifies the model in the case where the communication takes place within a loop,

and therefore takes place several times between the two tasks. It also simplifies the

model when the communication between a pair of parent and child tasks is scattered

across several locations within the parent task.

An example of how to calculate the preemption start point of a typical intertask

communication is presented here. Arrange the execution of all tasks along a unified

time axis, each task commences and completes at some point along this axis. The

execution of two tasks may overlap due to the existence of multiple processors and

the communication embedded in the middle of the (parent) task. Suppose a parent

task commences its execution at time ú : 10 and its computation time is 20 units.

Therefore, the parent task completes at f : 30. If the child task commences execution

at time f : 16, then the preemption start point of the child task within its parent

82

task is tu#o : 0.3. That is, the child task commences execution when the parent

task is 30% the way through its execution. This attribute makes sense only when data

transmission does not merely occur at the end of the parent task execution. When

this attribute is omitted from the task model, it implies the assumption that task

execution is non-preemptive - data reception occurs at the beginning of a task while

data transmission takes place at the end of a task, i.e.,V(m,c) for all interconnected

tasks rn and c is 1.

Within the preemptive task model, message-passing (transmission and reception)

may occur at any location within the task. For the sake of simplicity, it is still assumed

that data reception takes place before any task processing actually begins. That is, a

task does not commence execution until it receives all required data; however, it can

transmit data at any time before its execution completes.

The scheduling algorithm employed must choose how to deal with the preemptive

task model. The preemptive task model, on one hand, can be supplied to an existing

scheduling algorithm without change, thereby resulting in a distribution of tasks onto

processors assuming that the tasks exhibit non-preemptive behaviour. On the other

hand, a ne$/ scheduling algorithm can be developed based on the preemptive task

model to take preemption into consideration. A preemptive task scheduling algorithm,

P ET, is presented in Sectiot 4.4.

As stated, the preemptive task model assumes no variation between program

executions. Such a model can, therefore, be precisely built by executing the program

a number of times and capturing task runtime data for task attributes such as task

computation time, task communication time and preemption start point' In the case

where task runtime operations may take place conditionally, as discussed in Chapter 3

and [g1, 136], each task interconnection requires one more attribute known as erecution

83

probability. Consequently, the model becomes a conditional and preemptiue taslc model.

This is addressed in ChaPter 6.

4.2 An Example of Preemptive Task Execution

This section compares, through an example, the system performance between

preemptive task execution (PTE) and non-preemptive task execution (NP?E). It

is assumed that, on the same processor, a task occupies computing resources until

it completes its execution, i.e., no interruption of tasks takes place during execution.

However, it is possible that a child task commences its execution prior to the completion

of its parent task (when they are distributed on different processors).

The preemptive task model is illustrated by Figure 4.1. The parallel tasks are

scheduled onto three fully-connected identical processors, as shown in Figure a.2@).

The processor idle time during program execution is generated due to waiting for data

to arrive. Such a policy is obtained by applying ERT [115] which does not consider

the preemption between tasks. Runtime performance under this I/P?E situation is

therefore PT :59.

On the other hand, suppose communication (as weil as task spawn) is permitted

to occur at any point of the task (i.e., preemptive task execution). The preemption

start point of each child task within its parent task is shown in the preemptive task

model (Figure 4.1). In this PTE situation, using the same scheduling policy as that

employedin the NPTE situation in Figure 4.2(a),, the performance is PT :49, as

displayed in Figure 4.2(b).

As seen, in this example, the performance is improvedby LTTo ((59 - a9)/59) by

allowing task preemption to occur (i.e., in PTE situation), though under the same

84

l0

20

30

40

50

60

l0

20

30

40

50

60

p2 p3 hoc¿ssor

PT=59

pl pZ p3 hoc¿ssor

PT=49

Processor Idle

Time Time
(b)(a)

Figure 4.2. Pefi.ormance of Figure 4.1 when preemption is (a) prohibited and (b)

permitted during execution.

scheduling policy as that in the non-preemptive execution. This illustrates that better

performance can be achieved if intertask communication is triggered as early as possible

in the parent task. It remains to be seen (Section 4.4) how a customized preemptive

scheduling algorithm can further improve performance.

4.3 Preemptive Task Execution

In preemptive task execution, tasks of the parallel program are distributed and arranged

in execution commencement order on the underlying available processors, according to

the incorporated scheduling algorithm (no matter whether it considers the preemption

factor when distributing tasks). When tasks are actually submitted to execute,

preemption is permitted both on the same and on different processors, depending on

the strategy used for task management.

85

As seen, a typical feature of preemptive task execution is that the pre-determined

task assignment policy is not altered while the program is executing. Only the execution

sequence and commencement time of tasks (or task segments) on each host processor

may vary due to variations in the time at which messages are actually transmitted.

This section investigates whether there is any performance improvement achieved

through PT E, and furthermore, how to guarantee such an improvement. Section 4.3.1

illustrates two categories of preemptive task execution, and the strategies to handle the

corresponding preemption. Performance gains brought about by the two strategies are

elaborated in Sections 4.3.2 through 4.3.5. The efficiency discrepancy between PTE

and non-preemptive task execuiion (NP?E) is studied in section 4.3.6.

4.3.L Two Generic Strategies For Preemptive Execution

Recall the normal definition for the "non-preemptive task execution", as adopted

in [53, 1bl, 179, 180]: a task does not commence execution until it receives all required

data; the task then executes without interruption until its completion; the task finally

transmits all necessary data to its child tasks. That is to say, all data communication

occurs either in the beginning or at the end of each task. Correspondingly, this chapter

interprets "preemptive task execution" as encompassing the following two aspects:

o The execution of a task maybe interrupted by another task which is distributed

onto the same processor. This is termed a - preenxption in this thesis.

o Message-passing, as well as the task spawning, operations may take place at

any point in the task. Consequently, the commencement of a child task may be

different from that in the N PT E case, since it is not necessarily delayed until all

its parent tasks complete execution. In this thesis, it is termed B - preemption.

86

Therefore, the o -preemptionis related to the interruption in task execution, while

B - preemption brings forward or delay the execution commencement time.

It is assumed that the job scheduling algorithm of each host processor is identical.

It is also assumed that an executing task can only be interrupted at the point of data

transmission by another task which is ready to execute on the same processor. It is

further assumed that all data reception operations occur at the beginning of the task,

that is, a task does not start to execute until it receives all required data. In addition,

all data transmission operations of a parent task to its child tasks are gathered together,

rather than scattered throughout the whole task.

Generic strategies are proposed in this thesis to manage task execution where

preemption is allowed, namely aP and. BP. The oP strategy allows the occurrence

of preemption on the same processor, while the NaP strategy does not. The

concrete processing of the oP strategy can be found in the literature dealing with

job scheduling [43, 70,I12), and no further discussion is presented here.

The BP strategy allows the child task can commence execution prior to the

completion of its parent tasks, while the NBP strategy does not. Briefly, BP aliows

the child task to commence execution once it receives all desired data and the host

processor is in the idle state (i.e., no task is being executed)'

Generally, the oP strategy results in o-preemption, and BP strategy' results in

the B-preemtion. However, both the oP strategy and the BP strategy may lead to the

other form of preemption if the preemption is permitted by the corresponding strategy.

The BP strategy may cause a-preemption in the case where the execution start time

of a task is advanced signifi,cantly so that this task may acquire CPU resources from

the task currently being executed on the same processor. Converselyrthe aP strategy

may cause B-preemption in a similar way: the variation in execution sequence among

87

tasks (segments) on the same host processor changes the actual data transmission time

within a task.

4.3.2 Processor Performance d(P)

System performan ce PT of the parallel program is measured by the completion time of

the exit task. Similarly, define the processor performance, 0(p), of a processor p as the

execution completion time of the last task distributed onto p, then system performance

PT is formally represented as:

PT : maxo6p{d(p)}

where P is the set of all available processors in the system. Improvement in processor

performance orr a particular processor does not necessarily incur a gain in system

performance of the entire parallel program, which is the maximum value among ail

d(p). On the other hand, the system performance can be improved only via enhancing

processor performance 0(p) within the parallel system. In this thesis, preemptive

task execution gains system performance by improving the processor performance d of

available processors (especially those with maximal task completion time). Therefore,

this chapter investigates the influence of PTE on processor performance 0(p).

4.3.2.! The Two AsPects of 0(P)

For each processor in the parallel system, its performance 0 is measured by the sum

of the tasle erecuti.on time of all tasks assigned to this processor and the processor id,le

time d;¡e to delays in waiting for data to arrive. It is assumed that the task erecution

time is merely determined by the task's source code (since all processors have identical

88

processing speed). Therefore, once a task is distributed onto a processor' the execution

timeof. this task is fixed. No efiort in this thesis is made to further reduce the task's

erecution time. On the other hand, the processor iille timeis determined by the time

each task on the processor awaits incoming data (so as to commence execution). This

can be reduced by an appropriate scheduling policy and execution strategy.

On each processor, two strategies, i.e., aP and BP as stated previously, can result

in a change in system performance of a parallel program through altering the idle

time of each processor. In this chapter, it is conjectured that a-preemption incurs

context switching overhead between tasks (or task segments). a-preemption also

causes a variation in data transmission time. On the other hand, the BP strategy

is regarded as changing the commencement time of the child task, as compared to that

for non-preemptive task execution. This is owing to the ¡elaxation of the constraints

on where communication operations may take place. The BP strategy may also trigger

o-preemption.

4.3.2.2 Three Situations in Performance Variation

On the whole, the following situations may lead to a change in the processor idle ti'me,

thus processor performo,nce on each processor, and subsequently sysúem performance,

if both aP and BP strategies apply to program execution'

o .y1: the execution of a task, I;, it interrupted by another task, Ç, when fr is

dealing with data transmission. The .y1 situation reflects a-preemption taking

place between T¿ and T¡. In this case, the start time of Ç must be earlier than

the finish time of task T;, and there is no processor idle time between T¿ and T¡.

89

The performance variation in this situation is denoted as PA"(p,T;rT¡),

indicating that execution of task 4 is interrupted by another task ?, on the

processor p. It depends on the overhead incurred by context switching between

tasks.

The performance achievement is always relative to tasks and a processor. For a

certain processor p, PAr(p) denotes the total performance variation of p in the

.y1 situation. Such a convention is also followed by the remaining performance

achievement notation stated below.

o .¡,2: the execution start time of a task fl is advanced due to early transmission

of data from a parent task Q, as a result of o-preemption and/or B-preemption.

Correspondingly, the performance achievement of the processor is represented by

P A"(p, T¿, T¡) and P A"(p, T¿, T¡) respectively.

o 73: the execution start time of a task fr is postponed due to the delayed arrival

of required data from parent task ?r1. This is caused by B-preemption; however,

o-preemption may also result in delayed data transmission. The performance

variation is denoted as PA¡(p,T¿,T¡), PA¿(p,,T¿,T¡), respectively'

From the above discussion, the performance variation caused by the c-preemption

strategy on a processor is composed of three parts: PA",, PA" and PA¡ The B-

preemption causes PAo and PA¡ performance variation.

The performance change on a processor p, denoted as Lî(p)' is measured

as the difference in processor performance between non-preemptive execution and

preemptive execution. A positive value of Ad(p) indicates that preemptive execution

performs better than non-preemptive execution. Similarly, a negative value indicates

90

performance degradation compared to the non-preemptive case. The performance

gain/loss on a processor p can be calculated by:

Ll(p): PA"(p) + PA"(p) + PA¿(p) + PA"(p) + Ph('p)

The following notation is introduced prior to a discussion on processor performance

gain/loss in various situations:

. H(p) is the context switch time of processor p. It arises when task execution is

interrupted by another task on the same processor, and the processor needs to

change context. It is assumed that f/(p) is identical among all processors and

tasks.

o PA(p,t¿rt¡) is the general performance achievement on processor p owing to

preemptive task execution between task Ú¿ and ú¡'

There are three other symbols which are used in this section. They are ^91(Ú,p),

F(t,p) and u(t,,p), the definition of which can be found in section 3.6.1.

In Sections 4.3.3 through 4.3.5, the performance achievement caused by the

situations 1t¡ .yz and ,y3 is elaborated, when both c-preemption and B-preemption

are permitted to take place during task execution. That is to say, both aP and BP

strategies function at runtime. The discussion is followed by a performance comparison

between different strategies in controlling preemptive task execution.

4.3.3 Performance Achievement PA'

As aforementioned, for each processor p, PA"(p) is attained when the aP strategy is

permitted to take place on p, i.e., the execution of a task can be interrupted by another

91

Tiz ïr TjzT¡ Tir

Tir lr T¡z TjzT¡

(a)

(b)

Figure a.3. (a) Non-preemptive execution and (b) a-preemption on a processor p.

task on p. P A,(p) is measured as the difference in the completion time of the final task

on processor p when comparing the preemptive execution against the non-preemptive

execution.

Figure 4.3 shows the task execution on a processor p when a-preemption is not

permitted (Figure a.3(a)) and is permitted (Figure 4.3(b)) between tasks 4 and Ç on

the same plocessor. Suppose task 4 is divided into two segments, fr1 and fr2, by its

data transmission operations, similarly for task f . In preemptive task execution, if

the execution start time of task Qr is earlier than the execution start time of T¿2, the

first part of task T¡ mal acquire CPU resources from the execution of task fr, when 4

is transmitting data.

Considering the various possible relationships between the earliest start time of task

segments, T¡, T¿zr 4r and T¡2, there are five possible preemptive execution sequences

between task 4 ar'd T¡ discussed below:

1. (T;r, T¡r, T;2,42) when St(4t) < St(T¿r) and '91(Q2) > Sr(42):

PA"(p,T¿,T¡): -2H(p)

i.e., two additional context switches are incurred in this task execution sequence

(due to task preemption on the same processor). In addition, this execution

92

sequence results in early data transmission from task T¡, iÎ the data transmlsslon

from task ?r1 is undertaken at the end of 4r. The performance enhancement thus

achieved is discussed in Section 4.3.4.

2. (T¡,T¡,T;z,,Trz) when ^9r(4t) <,St(4t) and,9r(42) > '9r("'z):

PA"(p,T¿,T¡): -H(P)

Furthermore, such preemptive execution causes delayed data transmission from

task 4 and early transmission from T¡, the consequence of which is discussed in

Sections 4.3.4 and 4.3.5.

3. (4r, T¡,, Tiz,4z) when Sr(4r) < St(T¿r) and Sr(42) < Sr("'z):

PA"(p,T¿,T¡): -H(P)

This execution sequence also results in the early transmission of data from task

T¡.

4. (Tn,T;1,,T¡2,?,2) when St(4t) < ^9r(4r) and Sr(T,r) < St(4r) < Sr(T,z):

PA"(p,T¿,,T¡): -2H(P)

Late data transmission from task ?; and early transmission from T¡ rnay occur

in this case.

93

rT¡

Processor p:

Figure 4.4. Two tasks on processor p with 1 processor idle time.

5. (T¡, T¡2,, Tt, T;z) when S{T¡z) < '9r(4r):

PA,(p,T¿,T¡) : g

Processor performance may vary due to the late transmission from task 4 and

early transmission from Ç.

Whichever situation above occurs at runtime, the magnitude of P A"(p) is

determined by the number of context switches between neighbouring tasks on the

same processor. P Ar(p) is always less than or equal to 0. That is to say, the processor

performance d is not improved by o-preemption in the "¡'1 situation. However, in the

case when the context switch time of a processor is so small that it can be ignored,

PA"(p) can be regarded as approximately 0. In addition, a byproduct of the "y1

situation is that early/late data-transmission may occur and therefore bring about

further performance benefits/disadvantages as discussed in Sections 4.3.4 and 4.3.5

below.

4.3.4 Performance Achievement PA" ar¡.d PAa

Processor performance may vary when a task I receives its required data earlier

than predicted and permits an earlier start time than would otherwise occur in non-

preemptive execution. This is the 12 situation as stated in Section 4.3.2. This may

I

94

be caused by either o-preemption or B-preemption. PAz is used to represent the

sum of PA" a¡id PA,: PA2 : PA" + PA,. Figure 4.4 shows two tasks, T; and T¡,

assigned to the same processor p. I represents the processor idle time, due to task f 's

waiting for data. Denote GR(Tj) as the variation in start time of task Ç gained by

the early arrival of data. GR(Tj) is always greater than 0, indicating an advancement

in execution commencement time of task Ç. Depending on the relationship between

GRgj) and 1, PAr(p,T;,T¡) is analyzed as follows:

1. When GR(T¡) < I:

PAz(p,T¿,T¡): GR(T¡)

There is a gain in terms of processor performance in this situation. Processor

idle time still exists between task 4 andT¡, however, the idle time is less than

that which occurs in non-preemptive execution.

2. When GR(T¡) > I

PAz(p,T¿,,T¡): ¡

That is to say, in this case, the time saved due to early data arrival in task Q

is 1 (i.e., the idle time in non-preemptive execution). Therefore, the idle time

between task fr and, T¡ is completely removed. As a consequence, it may also

result in further o-preemption between I and ?, through task interruption: the

execution sequence between these task segments is determined by the start time

of task segments T¡, T;2,4r and T¡z (as discussed in Section 4.3.3).

95

From the discussion, it can be observed that P A2(f) is positive due to the eariy

arrival of data to task T¡ in any case. That is to say, a performance gain can be

guaranteed in preemptive execution situation 12.

4.3.5 Performance Achievement PAa and PA¿

In situation ,/3 of preemptive task execution, the execution start time of a task may

be delayed due to the late arrival of data. Both a-preemption and B-preemption

can result in this situation. Actually, the message-passing delay in B-preemption is

originally caused by o-preemption. Simply put the communication in the middle of a

parent task will not postpone the commencement of a child task. That is to say, under

the Nc,P and. BP strategy, PA¡ should be 0. Take PAs as the sum of PA¿and PAt'

Figure 4.4 also illustrates this situation. Denote GS(T1) as the advancement in

execution start time due to late data arrival. A positive value of GS(T¡) indicates a

gain in terms of execution time. Therefore,

PA"(p,T¿,T¡): -GS(!r) < 0

Processor performan ce of. p in situation ?s is non positive. This implies performance

Ioss on processor p.

In summary, the above Sections 4.3.3 through 4.3.5 examine the variation of

processor performance under three situations ('Yt, ''1, and 'y3). Processor performance

varies, depending on the sum of all these variations. These three situations are brought

about by two preemptive execution strategies, i.e., aP and BP. The next section

compares the performance between preemptive and non-preemptive execution so as

to derive a strategy which guarantees performance enhancement in preemptive task

96

execution over the non-preemptive case.

4.g.6 Preemptive Execution vs. Non-Preemptive Execution

This section summarizes processor perfornl,a,nce achieved through preemptive task

execution, and compares such achievement against the non-preemptive task execution'

Depending on whether oP andf or BP strategy is permitted at runtime, there are,

in general, different strategy combinations which control the execution of preemptive

tasks, as shown below:

1. NaP*NBP: neither aP rror BP strategy is applied at runtime. Data reception

takes place at the start of the task, and data transmission at the end.

Furthermore, the execution of the task is not interrupted. This is equivalent

to non-preemptive task execution and has been adequately addressed in other

work [128].

2. N6'P*BP: a task can start before the completion of its parent tasks due to

internally-positioned data communication operations (i.e., communication is not

restricted. to the start or end of the task), but it is not permitted to interrupt the

execution of other tasks on the same processor. That is to say, once a task gains

access to the CPU resources, it executes until completion'

J. 6"P*BP: the execution of a task can be interrupted by another task on the same

host processor, d.ue to o-preemption, B-preemption or both. Data transmission

is permitted in the middle of task execution.

The combination of strategies oP and N B P is not practical. On one hand, the study

of preemptive task execution assumes that o-preemption occurs at the point of data

97

PA p) Na NPP a, N BP
P 0 <0 0

PA. 0 >0 0

PA¿ 0 <0 0

PAo 0 >0 >0
PAt 0 <0 0

L0t 0 ?0 >0

Table 4.1. Performance comparison between non-preemptive and preemptive

executions.

transmission. It is only meaningful if the data transmission is placed in the middle

of the task, where interruption may occur. On the other hand, the NBP strategy

restricts data communication to the two ends of the task (reception in the beginning

and transmission at the end). Consequently, aP*NBP is excluded from the strategies

employed in handling preemptive task execution.

Table 4.1 compares processor performanceof an available processor across different

preemptive strategies against non-preemptive task execution. Recall that A0(p) is the

sum of all performance variations. According to the definition, sgstem performance

of the parallel program, PT, is the maximum value among all these processor

performances, 0(p).

From Table 4.!, it is observed that, for any available processor p in the parallel

system, processor performance 0(p) in No.P*BP preemptive execution is guaranteed

to be better than that in non-preemptive execution. On the other hand, aP*BP

does not always provide superior performance to NaP*NBP, because of possible

delays in data-transmission due to a-preemption, thus a question mark is placed in

the corresponding Ad(p) row. In summarY, bY merely applying BP to parallel task

execution, it is expected that system performance is improved' in comparison to non-

preemptive execution.

98

4.4 Preemptive Task Scheduling

In addition to preemptive task execution, another aspect studied in this chaper is the

preemptive task scheduling problem. This is realized through the construction of the

preemptive task model and a preemptive task scheduling algorithm.

Preemptive task scheduling stresses that the scheduling algorithm should consider

the existence of preemption among task execution; this has been largely ignored in

previous work. The task model in preemptive task scheduling is illustrated with one

additional attribute, named preemption start point, as well as the standard attributes

of task computation time and communication time between tasks as addressed in many

other algorithms such as [53, 115, 128, 151]. Such a task model more accurately reflects

the execution of parallel tasks than those currently used. The construction of the

preemptive task model, if required, for a parallel program follows the same strategy as

that d.iscussed in Section 3.5. In particular, the estimation of the attribute preemption

start point adopts the linear regression model, similar to the task computation time

and inter-task communication time attributes.

A new preemptive scheduiing algorithm, PET,, is proposed to deal with the

preemptive task model. At any instant, each schedulable task or free task (i.e., those

tasks for which all parent tasks have been distributed onto processors) in the parallel

program is assigned a priority value based on its "earliest start time". The PET

algorithm is outlined as follows. Notation is found in Section 3.6.1.

1. Initialization:

Vt¿ € T,Q(t;) : the number of parent tasks of ú¿

Yp¡ € P,, A(P¡) -- 0

Vt¡ € T,G(ti) : (Null, N ull)

99

Set current time ú : 0

2. Task Scheduling:

o Let W be the set of all tasks that have not yet been scheduled and whose

parent tasks have all been scheduled. That is to say,

W : {t lt eT,,Q(t):0,G(¿) : (Null,NuIl)}

r If ll W ll :0, then exit from the scheduling process'

¡ select a task, t¡,inw and a processor, p¡ in P, so that the task Ú¡ on p¡ has

the smallest value of the "eariiest start time" which can be calculated by:

Sr(t¿,pi) : max{,S1(f¿, p¡), A(p¡)}, where

Sr(t¿,pj) : max{(F(ú¿up¡t) - U(tn)x(1 - V(t,r,¿¿)) + M(tnt,ú¿))}, for

every f¿'s parent task, f¿1, on its host p¡r.

Evaluate the smallest "earliest start time" of task Ú¡ on processor p¡' among

all tasks ready to be scheduled on all available processors, by:

,90(ú¡,Rr) : min{ Sr(t¿,p) lVt¿ ç W"',Vp¡ € P}

Task f¡ is then assigned onto processor p¡

3. Update the following variables:

N(p¡):N(pr)+1

G(tn): (pt,¡rþ,))

A(pt) : A(pt) * u (t¡,, P¿)

100

W:W-{¿r}
For any child task ú¿ of task tn, Q(t;) : Q(t¿)- 1. If Q(tr) :0, then W : W U{¿¿}'

4. Go to Step 2.

The complexity of the P ET algorithm is O(mn2) where rn is the number of

processors in the parallel and distributed system and n is the number of tasks of

the parallel program. The derivation procedure is the same as that undertaken in

Section 3.6.2.

The experimental results regarding preemptive task scheduling, as well as

preemptive task execution, can be found in Section 7.3. Generally, the preemptive

task scheduling strategy, cooperating with the preemptive task execution strategy,

can achieve better system performance than the non-preemptive scheduling and task

execution management policy. That is to say, prior to program execution, the

PET algorithm schedules parallel tasks, with consideration for task preemption.

Furthermore, at runtime, the job scheduling policy of each available processor adopts

the lúaP* BP strategy to handle the task execution so that, on the same processor' a

running task executes to its completion, without being interrupted by other tasks.

101

Chapter 5

Conditional Parallel Programming

Support

A large number of parallel algorithms, computational models and machine architectures

have been proposed to realize parallel processing [163]. It is highly desirable to translate

such algorithms or theoretical research into operational programs on physical parallel

and distributed syste through parallel programming.

This chapter presents work undertaken for the support of parallel program

development. In particular, this chapter focuses on the support for conditional parallel

progrún-¿nxing; that is to say, the runtime operations between parallel tasks of an

application program may be associated with conditional branches. Therefore, the

behaviour of parallel tasks may not be determined untii runtime. Static precedence

and communication relationships may not be fully exercised in particular program

execution.

Support for parallel program development has been studied for some time and a

number of environments or tools have been proposed. These include HeNCE [15]'

code [22], PTOOL [4], Linda 12,34l,,coRBA [129, 130], MPI [121] and P4 127,281. A

r02

detailed review is given in Chapter 2. Application programmers are, to some extent,

relieved of various aspects of tedious and complex parallel program development.

Nevertheless, support for conditional parallel prograrnrning has been largely ignored.

It is basically the application programmer who must deal with the new challenges

arising from conditional parallel programming.

The programming support discussed in this thesis is provided through a library of

primitives, referred to as ATME primitiues (or the ATME library). The AT M E library

is a set of routines which are embedded in user tasks to utilize the service provided

by the AT M E environment. AT M E utilizes PV M (Parallel Virtual Machine) as

a basis, and more significantly, extends PV M so as to support conditionai parallel

program development and automatic task scheduling. Through the availability of the

ATME primitives, the application programmer is able to concentrate on the design

of algorithms to solve the problem, without having to address subtle operational issues

(i.e. implementation details) in conditional parallel program implementation'

The parallel program is represented by a task model, as illustrated in Section 3.2,

composed of a number of interrelated tasks. Each task of the program realizes certain

behaviour with respect to the application, and communicates with other tasks for

required data. This thesis assumes that each task is an atomic execution unit.

Furthermore, the communication between interrelated parallel tasks is presumed to

be implemented via message-passing operations.

This chapter is arranged as follows. Section 5.1 briefly describes the major points of

PVM,which is widely adopted to realizeparallelprocessing and acts as thebasis for

advanced programming support (such as ATME). New issues in conditional parallel

programming are discussed in detail in Section 5.2. The AT M E primitives and related

issues are presented in Section 5.3. Section 5.4 illustrates the core of the AT M E

103

primitives implementation, i.e., the execution monitor. Section 5.5 discusses the work

flow of three typical AT M E primitives: conditional task spawn,. conditional data

transmission and conditional data reception, with a focus on their communication

with the eaecution monitor.

S.L Parallel Virtual Machine (PV M)

This section briefly summarizes the Parallel Virtual Machine (PVM), a software

package for assisting in the development of parallel programs in a (heterogeneous)

distributed computing environment. PV M is the fundamental infrastructure on which

AT M E realizes its support for conditional parallel programming and the automation

of the conditional task scheduling process.

Section 5.1.1 illustrates the PVM computation and system models, as well as the

mechanisms facilitated within PVM. Section 5.1.2 presents the PVM user interface,

i.e., a runtime library which can be embedded within application programs.

5.1.1 PV M Models

PV M emulates a generalized distributed memory multiprocessor in (heterogeneous)

networked environments. PV M presents the user with a virtual parallel machine,

through which the programmer can regard all processors in the system as identical

and fully connected. The user is therefore able to concentrate on the design of parallel

programs and algorithms while not paying excessive attention to system architecture

details.

From PV M's perspective, an application program, written in either C or Fortran, is

composed of a number of partitioned tasks, among which exist precedence relationships,

104

Task Model

Application parallel programs

(Represented by the task model shown right)

P¡o4rummer Inlerløce
ilr

PVM Virtuøl Machíne Model PVM Líbrary

Primitives for:

- Task initiation and termination.

- Message-passing.

- Dynamic configuration.

- System information (virtual machine and tasks).

- etc.

Physícal archítecture of parøllel ønd dísttíbuted systems

Components include:

- Processors (computers or hosts).

- Networks.

- Operating systems & other system software.

- etc.

Legend: f: processor O: task

Figure 5.1. Layers of software in supporting parallel programming in PV M.

and which communicate with each other via message-passing. A PV M task is assigned

to a host (processor). Each task is an independent execution unit.

Figure 5.1 shows the computation model and the architecture view of PVM. As

seen, PV M makes the underlying system transparent to the user and simply presents

a uirtuøl machine model. Functionally, PV M contains two parts: the ilaemon and the

Iibrary (discussed in Section 5.1.2). The user is required to provide ahost f/e which

lists all participating hosts in the virtual machine. PV M sets up a daemon process on

Ertension to PVM library

105

each host included in the host file in order to construct a parallel computing system

and manage the communication between hosts. The PV M application program can

be started from a shell command line on any of registered hosts.

6.L.2 PV M Library

PV M provides a library of primitives for the programmer's disposal. Primitives enable

a user task to dynamically add and delete hosts from the virtual machine, spawn and

terminate other tasks, synchronize with and send messages to other tasks allocated on

the same or different hosts. In addition , PV M provides facilities to gather a number of

cooperating tasks together into a "task group". Primitives exist which allow a task to

dynamically register with and leave a task group. Furthermore, the programmer can

obtain information about the virtual machine configuration and active PV M tasks.

The detailed PV M routines are found in Appendix B of the user manual of PV M 1691.

With regard to distributing spawned tasks onto the underlying available hosts,

PV M (version 3.3) employs a round-robin algorithm (more discussion is undertaken in

Section 5.2). ActuaIIy, PVM (version 3.3) does not specifically strivefor an efficient

task scheduling policy through which high performance is achieved from the underlying

parallel and distributed system. It allows for further extension.

The conditional programming support provided in this thesis is based on PV M

version 3.3, which is the latest version when the project commenced in 1995. In

the following sections, new issues arising from conditional parallel programming are

examined. The ATME library, which is established on top of PVM structure, and

technical details are also presented.

106

5.2 New Challenges

In conditional parallel programming, when conditional branches can be associated

with task runtime operations, application programmers face more challenges than ever.

From the user's perspective, these new issues have no direct and efficient solution in

support tools available to date.

This section highlights the new challenges involved in conditional parallel program

development, with a focus on the processing required to enable conditional task

scheduling automation, conditional task spawn, conditional data transmission and

conditional data reception. Approaches to solve these problems are stated in

Section 5.3.

5.2.L Tâsk Scheduling Automation

Task scheduling is one of the most complicated and tedious issues in parallel

programming. According to El-Rewini et. al. 1621, the process of task scheduling

should be automated in order to free the application programmers f¡om this tedious and

unnecessary complexity, while still attaining high system performance. In this thesis,

this objective is achieved mainly through automating the task scheduling algorithm to

efficiently distribute parallel tasks onto the underlying available processors.

In version 3.9, PV M adopts a round-roåin algorithm to schedule parallel tasks

onto the underlying machine. This algorithm places a free processor in a F I FO (First

In First Out) queue once it completes the execution of its assigned task. When a

task is spawned and a processor is required , PV M selects the head of the queue

and assigns the task to it. The round-robin algorithm has its advantages: it is

simple and little computation is involved in its implementation. In addition, such

107

an algorithm makes dynamic task distribution þossible, without incurring excessive

runtime overhead. However, this scheduling algorithm does not consider the special

requirement of tasks and processors, and therefore generally does not achieve high

system performance (as manifested in the experiment performed in Section 7.2.3). For

example, two communication-intensive tasks (say, successively spawned) are prone to

be allocated to difierent hosts according to the round-robin algorithm, and therefore

incur extra communication overhead at runtime.

This thesis focuses on static task scheduling and believes that task scheduling is

an integrated process which requires the cooperation of a number of factors. The

study of the scheduling algorithm itself is not enough. A task model and a processor

model, which adequately reflects the actual requirements of the parallel program and

distributed system, are basic factors demanded by the scheduling algorithm in order

to produce an efficient scheduling policy.

In the case of conditional parallel programming, the task model of the program

in different executions is not identical, due to conditional branches attached to

task runtime operations. As a consequence, the task model is not precisely known

prior to execution. This brings more challenges to the automation of the task

scheduling process. In this thesis, Chapter 3 studies the scheduling problem in the

presence of conditional branches and provides a practical approach to deal with this

problem. The estimation of the task model of the conditional parallel program can

expect high accuracy when the task model, particularly the task attributes, does not

vary significantly between program executions. Experimental results, presented in

Chapter 7, reveal that the proposed strategy can generally achieve much higher system

performance than a random distribution strategy and the round-robin algorithm, both

of which do not consider the subtle requirements of tasks and processors.

108

This chapter puts into practice the theoretical research conducted on the conditional

task scheduling problem (in Chapter 3) through an ATME runtime primitive, i.e.,

tme-spøun discussed in Section 5.3.3.

5.2,2 Conditional Tâsk SPawn

Conditiono,l task spo,un refers to a spawn operation which is associated with conditional

branches. As a result, it can not be determined, prior to execution, whether such a

task spawn actually takes place at runtime or not. A task may not necessarily run in

euery program execution.

With respect to the coding of a conditional parallel program, it should be noted that

even an unconditional spawn of a task is not guaranteed to result in a new task. This

is because the parent or spawning task may itself be conditionally spawned. Figure 5.2

illustrates this situation through three tasks: task C and its two parent tasks A and B.

Since tasks A and B may also be conditionally initiated by their parent tasks, it is not

known until runtime which task (A or B) actually executes. Therefore, it is necessary

that both ,4. and B be responsibie for spawning task C. However, at runtime, only

one of either task A or B can actually spawn task C, or else two instances of task C

will be generated; this does not meet the requirements of the application described in

Figure 5.2.

New issues are consequently raised in conditional task spawn as mentioned above.

Suppose in the example shown in Figure 5.2, task A attempts to spawn C. In order

for the program to execute properly, it should detect whether or not task C has

already been spawned by C's other parent tasks (i.e., task B). However, PVM

has no mechanism to determine whether a task (say C) has been spawned or not'

Furthermore, there is no primitive available which can provide information regarding

109

t1

(Spøwn)

B)

(Spawn)

Figure 5.2. Conditional task spawn.

whether a task (say C) is being spawned by its parent task(s). Hence, it is the

programmer's responsibility to capture and keep such information for later reference

while the program executes. The detection and management of such task information

is not only complicated and tedious, but also presents an additional challenge to the

application programmer. Moreover, the programmer should guarantee that task C is

uniquely spawned by either A or B. In the case of large parallel applications, this

additional work is considerable.

Fortunately, all the above issues in conditional task spawn are related to the

irnplementation of. the parallel program. Such issues are encountered by all conditional

parallel programs, and can be automated.

6.2.3 Conditional Data Transmission

Conditional d,ata transmission refers to a data transmission operation associated with

conditional branches. Conditional data transmission may also be involved with task

spawn operations, as explained through an example below.

Figure 5.3 portrays conditional data transmission between task A and C. C has

another parent task B which may or may not spawn C at runtime. Before actually

sending data to task C, task A must detect whether C has been spawned or not. If not,

task A needs to first spawn task C and then perform data transmission. If, on the other

110

ta
B ,

(Send) ,/ ¡spøwn)

Figure 5.3. Conditional data transmrssron.

hand, task C has already been spawned by another parent task, B, task .4. still needs to

obtain the unique identification of task C so as to be able to transmit the data, since

task identification is required by PV M's point-to-point data communication. Such

processing has no direct support in the PV M runtime library when task C is spawned

by tasks other than A. As a consequence, additional communication (on top of what is

required by the application) between user tasks is needed to obtain such information,

before task A can actually pass messages to its child task C.

6.2.4 Conditional Data RecePtion

Owing to conditional branches associated with the data transmission operations, data

reception may also be conditional. In the case of synchronized data reception, a child

task is suspended to wait for the arrival of the required data from its parent task.

Figure 5.4 portrays conditional data reception. When task C (suppose it has other

parent tasks as well) tries to accept data from its parent task B, C should know

beforehand whether B has been spawned or not, as well as whether or not B has

transmitted, or will send, data to it. With such information, task C can then determine

whether to skip such a data-reception operation and its related operations. Such

evaluation relies on the runtime task state information, which, similar to conditional

task spawn and data transmission, is mostly related to operational issues, rather than

111

1'
B)

(Send &
Receìve)

Figure 5.4. Conditional data reception.

application specific requirements. In addition, there is no support with the PV M tool

for this problem.

From the discussion in Section 5.2, it can be seen that the new issues raised in

conditional parallel programming stem from permitting conditional branches to be

associated with task runtime operations. Furthermore, all these issues are generally

related to program implementation (operational aspects) and not generally concerned

with the design (functional aspects) of algorithms and programs. An environment, or a

support tool, can provide assistance so that the programmer is freed from considering

these cumbersome issues.

There are a variety of approaches which may be adopted to provide support for

conditional parallel programming. There are basically three types of strategy, as

examined in Section 2.4.1. Briefly, they are compiler modification, a graphical and

user-friendly environment, and a runtime library. This thesis provides the user with

a set of runtime primitives, considering its virtues of being easy and flexible to use.

An environment is also presented (Chapter 6) to provide complete support. Primitives

can be embedded into tasks in a straightforward way, and thus significantly reduce the

work load on the programmer.

trz

5.3 ATM E Library

This section discusses the AT M E library which is designed to tackle the challenges

stated in Section 5.2. The contribution of the ATME library is presented through

three major primitives, namely, task spawn, data transmission and data reception,

respectively. These three AT M E primitives are similar in form to their counterparts

within the PV M runtime library, but incorporate more complex functionality.

Section 5.3.1 states the enhancement of ATME primitives over those of PVM.

Section 5.3.2 iltustrates the information required from the programmer in order to use

ATME primitives. The ATME library is elaborated in section 5.3.3.

5.3.1 Extensions to PV M

It is well known that PV M has achieved wide acceptance. PV M has been adopted in a

number of projects, such as groundwater research and atmospheric modeling [16a]. One

important motivation for the use of PV M, as summarized by PV M developers, is the

cost-effective performance of cluster computing systems [163]. It has been revealed that

"generally, clusters are about 10 times as cost-effective as supercomputers for a given

performance capability, for several classes of applications" [164]. Other reasons for the

increasing use of PV M rest in its high degree of portability and its straightforward

and robust user interface (primitives) which meet application requirements. PV M has

incorporated more and more machine architectures in its recent releases. Consequently,

PV M can be employed to construct a transparent virtual machine, based on a large

variety of architectures. So far, PV M can run on, to list a few, CM-5 (introduced in

PVM version 3.2), UXPM (Fujitsu M780 UXP/M, version 3.3.4), Pentium (version

3.3.6), IBM SP-2 (version 3.3.S) and WIN32 (version 3.4.0) [110]. A detailed list of

113

PVM supported architectures and operating systems is found in [111].

The AT ME library enriches PV M functionality in two ways. One is the extension

of the PV M task spawn primitive to tackle the issue of conditional task spawn.

The ATME library cooperates with other ATM E functional components (elaborated

in Chapter 6) to realize task scheduling automation. The AT M E environment

adopts an efficient scheduling algorithm which produces a scheduling policy prior to

program execution, based on the estimated task model of the program. Currently,

AT M E utilizes the algorithm C ET (Section 3.6.2), which deals with the conditional

task scheduling problem and its efficiency is verifred through extensive simulated

experiments (Chapter 7). The ATME-generated policy file can be dynamically

accessed by AT M E primitives inside user tasks. As a result, AT M E can read the

scheduling policy file to allocate newly-spawned tasks, and thus realizes automated

conditional task scheduling of a parallel program.

The other extension of AT M E over PV M relates to data transrnission and data

reception primitives . AT M E provides more functionality than PV M does, in order

to deal with conditional message-passing between tasks. At present , AT M E simply

deals with point-to-point communication, and leaves the study of the multicasting and

broadcasting communication to future work which can make use of the mechanisms

presented in this thesis.

The contribution of AT M E stated above is reflected in three major primitives:

spau/n, point-to-point data transmission and reception, denoted as tme-spawn),

tme-s end, () and tme-recu () rcspectively.

rt4

Avaûløble Processor

rabbit

magpies

woozle

Figure 5.5. The host file.

6.3.2 LJser Input

This section identifies the information required from the user who utilizes the AT M E

services. This section distinguishes between the ATME primitiues and the ATME

enuironmer¿ú which in most cases can be distinguished from each other through context.

The former refers to a set of the runtime subroutines (functions) which are incorporated

in the program source code, while the latter refers to the whole environment presented

to a programmer who utilizes the AT M E primitives to deal with, say, parallel task

communication. User information directly employed by the independent AT M E

primitives (i.e., those used in isolation in most of the components of the ATME

environment) and lhe ATME primitives embedded in the ATME environment may

not be identicai.

The application prograrq which utilizes either the AT M E environment or AT M E

primitives, is a mandatory input. The program is partitioned into tasks, each of which

is a stand-alone sub-program and incorporates intertask communication. The program

is written in C, as supported by ATME and the underlying PVM architecture. The

application program is represented by a task model, as discussed in Section 3.2.

In addition to the program itself, a host f/e which lists all available processors

comprising the parallel and distributed system (virtual machine, from the user's

perspective) is required by the AT ME environment. An example of the host file

is shown in Figure 5.5. The name of processors or machines (as recognized by the

115

Parallel Task
Scheduled
Processor

Executìan
Sequence

{task S}

{task A}

{task C}

{task B}

{task D}

{task E}

{rabbit}
{rabbit}
{magpies}

{magpies}

{woozle}
{woozle}

Figure õ.6. The scheduling policy frle.

system and the network) is presented in the host file. When starting PV M, pumil

(PV M daemon) is generated on each processor, as listed in the host file, establishing

the virtual machine as well as managing inter-processor communication.

Depending on whether the user program employs AT M E primitives separately or

not, there are two types of target machinefiles which are directlyutilized by ATME

primitives. If, on one hand, only the AT M E primitives are used in the user program,

the host file directly accessed by the AT M E primitives is identical to that provided

by the user (i.e., as shown in Figure 5.5). In this situation, issues in conditional

parallel programming (as presented in Section 5.2) are largely addressed by the AT M E

primitives. However, the programmer must be satisfied with the default round-robin

scheduling algorithm supplied by PV M.

If, on the other hand, tbe AT ME primitives are utilized in conjunction with

the other functional components of the ATME environment, then the programmer

provides the hostfle (Figure 5.5) to the entire ATME environment. Such a host file

is transparently converted into a scheduling policy fileby the ATM,Ð environment,

as shown in Figure 5.6, which is then directly accessed by the AT M E primitives.

Tbe scheiluling policy fite \ists the tasks of the program, available processors and the

allocation strategy of the tasks onto processors. The execution sequence of tasks

1

2

1

2

1

2

116

assigned on the same processor is also illustrated. With this scheduling policy frle,

the programmer is offered automated task distribution by the scheduling algorithm

through the ATME environment, on top of the support in conditional spawn and

communication (provided by the ATME primitives).

5.3.3 ATM E Primitives

AT M E provides the programmer with a set of primitives to handle task runtime

operations in conditional parallel programs. Such operations include task spawn and

exit, data transmission and reception, and information requests regarding active tasks

and system configuration.

Prior to a formal discussion of the AT M E primitives, the unique task identification

mechanism employed within AT M E merits some explanation. This is needed by both

application problems and the underlying PV M platform. On one hand, user-provided

parallel tasks must be uniquely identified within AT M 8,, in order to realize point-to-

point communication. ATME, as the programmer interface, manages all tasks within

a table. Each task is uniquely identifred by the task inder number (tidrno) within the

table. On the other hand, PV M, the environment on which the user tasks are to be

physically executed, dynamically assigns each spawned task atask identification number

(ttdno) and utilizes it throughout program execution. In AT M E, the conversion from

tasle indeu number into task identifi,cation number is completely automatic and hidden

from the user.

Table 5.1 shows a few typical ATME primitives with respect to task spawn and

message-passing. The initiation of a task is realized by the primitive tme-spawn. A.

user task, at this point, is marked with its tasle name. ATME returns a unique task

index number tidxno (later translated into the tidno usedby PV M) to the user, which

LL7

ATME runtime primitive Brief Explanation
Spawn a task with the name as tnamel ATME
returns an integer as this task's index
number tidxno used within ATM

tme-spawn argv

tme-exit0 The task leaves AT M E, but still exists as a
process in the system.

tmejnitsend (int encoding) Prepare to send data with encoding scheme
identified by encoiling.

tme-send(int tidxno, int msgtYPe) Send data to the task identified by tidxno. The
message is distinguished with msgtype.

tme-recv(int tidxno, int msgtYPe) Receive data from the task tidxno. The message

is marked by msgtype.

tme-pk?(? *dp, int nitem, int stride) Pack an array of the given data type ? into the
message sending buffer. Different types of data
can be packed in the same message buffer. T can
be int, float and byte etc.

tme-upk? (? *dp, int nitem, int stride) Unpack data in message receiving buffer into the
corresponding data array (according to type ?.)

Table 5.1. ATME runtime primitives.

is utilized as the unique identification of the user-spawned task.

The same source code can have several instances within AT M E at runtime,

which are distinguished by the tidrno. The phenomenon of multiple task instances

is frequently encountered in applications such as scientiflc computation. Matrix

multiplication is a typical example. In such computation, each of the two matrices

is partitioned into several sub-matrices. Multiplication is first conducted between

sub-matrices, from the original matrix respectively, the results of which are used to

do further computation, if required. The multiplication of each pair of sub-matrices

can be done independently, since synchronization of data can be largely avoided by

proper partitioning of the matrix. This indicates that parallelism can be achieved

in such a calculation. Furthermore, the multiplication of sub-matrices can be realized

through the same task (say, named MU LT), by providing it with different sub-matrices.

Consequently, a number of Mtl LT tasks are spawned in the system, each of which

118

/*------- -----------*
User code to call tne-spawn: task A spawns task B.

{<-------- ----------+ /
/ | condLO sirnulates conditions associated with the task spawn

// operation.
if (condlO == 1) {

/* Spawn task B, no need to worry about duplicated task
* initiation, since ATME does the transparent check.
+ ATME returns an integer value as the unique index nunber
* of this task.
*/

nunt = tne-spawn(ttB", para);

if (nurnt -= 0) t
error-handling("error in sPawn. . . ") ;

Ì

)

Figure 5.7. Code of conditional task spawn

executes in parallel to the others.

During the spawn of a parallel task, parameters can be transferred to the child

task. AT ME automatically selects a processor on which this task is to be distributed,

either from the scheduling policy fiIe or from the host file (discussed in Section 5.3.2),

depending on whether or not the ATME primitives are employed along with other

functional components of AT ME environment. An example code fragment illustrating

conditional task spaïvn is given in Figure 5.7. The corresponding task model is shown

in Figure 5.2. As seen, there is little to be done by the programmer. It is AT M E (not

the programmer) that guarantees a task is uniquely spawned by only one of its parent

tasks. Related technical details are discussed later in Section 5.5.1.

119

The termination of a spawned task is undertaken via the primitive tme-e,xiú. This

primitive tells the local deamon process (pumd) that this task is exiting AT M E as well

as PV M. However, this task still exists in the system, as a process, within PV M.

Prior to data transmission, the task invokes the primitive tme:initsend to clear

the message buffer attached to the task and to specify the encoding scheme of the

communicated messages. This encoding scheme must be known to both the sending

and receiving tasks, in order to properly rccognize the data transmitted.

Primitives tme-send and tmetecu realize point-to-point asynchronous blocking

transmission and reception. In AT M E, data is packed into the sending buffer before

it is sent off (also known as "marshalling") and is unpacked after it is accepted by

the receiuing buffer (also known as "unmarshalling"). The asynchronous blocking d,ata

transmission refers to the fact that the sending operation returns as long as the sending

message buffer is free, irrespective of whether the receiving task is ready or not. On the

other hand, the asynchronous blocking data reception returns when the data is in the

receiving message buffer, regardless of the state of the sending task. In this way, the

communication can take place concurrently with computation. Data of different types

require different pack/unpack primitives, hence AT M E provides primitives tmeqkT

a¡Ld tmet"pk?, where T represents data types which are permitted in C. Within a

transmitted message, it can mix data of different types. A message from a task is

identified by the nxessage type (an integer value) in order to distinguish it from other

messages sent/received by the same task.

Examples of conditional data transmission and conditional data reception are shown

in Figures 5.8 and 5.9, respectively. As seen, the programmer can simply send a series

of data values in the same message, unconcerned about the state of the receiving task,

since AT M.Ð automatically detects the receiving task and spawns it if the target task

r20

/*-'----- -----------*
User code to call tne-send: task A sends data to B.

,F-------- --'-------*/

/* Get the task index number of the target (receiving) task;
* getchdtidxnoO is an ATME-specific function.
*/

chdtidxno = getchdtidxno(nytidxno, "B", -1);

/ / cond2O sinulates condítions associated with the following data
/ / trartsmission operation.
if (cond2O == 1) {

/* pack the to-be-transnitted data into the message buffer.
* Note that different types of data can be packed into the
* same nessage buffer.
+/

strcpy(f-str, "A to B");
trne-pkstr(f-str, 1, 1) ;

tne-pkint(f-intp, 1, f) ;

tne-pkdbl(f-dbP, 1, L) ;

/*, The progrârüner is freed fron considering whether or not
* task B exists, since ATME inplements such checks and

* issues the task-sPalrn operation if B has not been spawned

* yet.
*/

f-ret = tne-send(chdtidxno, MSGTYpE2) ;

(f-ret -= -1)
error-handling("error in sending. . . ");

if

Ì
)

Figure 5.8. Code of conditional data transmission.

tzr

/*--'---- -----------*
User code to caII tne-recv: task B receives data from task A.

't -------- ----------*/
/* Get the task index nu¡nber of the sending task;
* getpartidxnoO is an ATME-specific function.
*/

partidxno = getpartidxno(nytídxno, nytidno, partidxno) ;

/* ltl,tE skips the following receiving operation and related
* statements afterwards, if it detects that nothing is transnitted
* fron its parent task A.
*/

f-ret = tme-recv(partidxno, MSGTYpU2) ;

if (f-ret -= -1) {
error-handling("error in receiving.

)
n)

/ / tJnpacX received message into original data type
tne-upkstr(f-str, L, f) ;

tne-upkint(f-intp2, 1, f) ;

tne-upkdbl (f-dbp2, 1, f) ;

Figure 5.9. Code of conditional data reception.

has not been started. In data reception, ATME automatically skips the reception as

well as related operations, if it detects that the data is not going to be transmitted by

its parent task. Technical details are elaborated in Section 5.5.2 and 5.5.3 respectively'

With respect to other primitives such as the dynamic addition and deletion of hosts

and the obtaining of the active task and system information, AT M E employs similar

forms to those in PV M. These can be found in Appendix B of [69].

t22

5.4 Execution Monitor

A core mechanism which realizes conditional parallel programming support is the

design of an AT M E self-contained task, named the execution monitor. This task

runs concurrently with user-provided tasks and supplies runtime information to enable

ATME to solve the difficulties raised in conditional programming. This section

addresses the design and implementation issues in the eaecution monitor task.

Section 5.4.t illustrates the translation of a user-provided parallel program

(represented by the task model) into AT M E tasks. Messages transmitted between

the execution monitor and user tasks, are called *events" in this thesis, and are

introduced in Section 5.4.2. Section 5.4.3 presents design and implementation details

of the execution monitor.

6.4.L lJser Tâsk Preprocessing

The user-provided application program is preprocessed before it is actually executed on

the underlying target machine. Preprocessing of user tasks is conducted transparently

to the user by the ATME environment (discussed in Chapter 6). ATME wraps each

user-supplied task in code which deals with the conditional communication to other

tasks on the PV M platform. In addition, AT M E introduces additional tasks and

establishes parameters, which are used by AT M E itself in order to implement the

programming support.

Program analysis, which focuses on the instrumentation of the program' is

conducted on the parallel tasks. The aim is to capture task runtime information so that

it can be used in generating a scheduling policy for the conditional parallel program.

This is discussed further in Chapter 6.

t23

è'Èì(¡
Ee<->

User Tasks ATME Tasks at runtime

Figure 5.10. Preprocessing of user tasks into ATME tasks'

Figure 5.10 graphically illustrates the transformation of the user-supplied tasks

into AT ME tasks. The shaded parts in the figure represent AT M E extensions

to the user tasks . AT M E changes neither the precedence relationships between

tasks defined by the application programmer, nor the source code with respect to its

functionality. ATME merelyextends the user code to handle conditional task spawn

and communication.

AT M E introduces two tasks for its own purposes. One task is the initial task,

Ss, which starts the user program by distributing the start task in the program, i.e.,

,S in Figure 5.10, onto a predefined processor (according to either the host file or the

scheduling policy file). The task ,So also sets up the necessary system parameters and

tasks used by ATME.

The other task that ATME employs is the erecution monitor, which is spawned by

^90
and communicates with user tasks at runtime to accept requests (from user tasks)

and provide responses (to the user task) in order to handle conditional task execution.

t24

The execution monitor exists until the completion of the tser eút task (task E in

the example). The interaction between the user task and the execution monitor is

implemented by AT M E through the passing of "events" (Section' 5.4.2) and is entirely

transparent to the user.

5.4,2 Execution Events

This section describes all events transmitted to and from the etecution monitor task.

Events from the user task to the erecution monitor include the detection of whether

one of its chitd tasks has been spawned, whether a parent task has transmitted data,

an{ whether it is this task's turn to commence execution on the allocated processor.

Events also include the detection of the state of a user task (spawned or not spawned)

and data communication (transmitted or not) between user tasks, and the termination

of a task's execution.

The responses from the erecution rnonitor task to the user task include the task

identification nurnber of a user task, the communication state between user tasks, and

the execution start signal of an active task (i.e., whether this task has commenced its

execution or not).

The events and responses between the erecution monitor task and the user task are

elaborated as follows. The eæcution moni,tor is abbreviated as EM below.

¡ Event eul-iletchds[)o,wni sent from a parent task to the EM task, when the

parent task intends to spav\¡n its child task. This event detects whether or not

the child task has been spawned by its other parent tasks. If the child task is

being spawned, or such information is unavailable, the EM holds this request

until either one of the two signals can be determined: t'not-spawned" or the task

t25

identification nurnber (allocated by PV M indicating that the task has already

been spawned, by one of the other parent tasks).

¡ Event eul-detparsend: sent from a receiving (child) task to the EM,, detecting

whether or not its parent task has transmitted a message. The response ftorrr EM

is either "sent" (i.e., the data has already been transmitted.) or "never-sent" (i.e.,

the data is not to be transferred by the parent task, due to, say, the conditions

associated with such transmission not being satisfied). The EM retains the

request until a definitive answer can be obtained. With such a response, the

receiving (child) task can then determine whether or not to suspend and wait for

the data a¡rival.

o Event eul-deteæcready: sent from a task to the EM, detecting whether or not

it is its turn to commence execution on its assigned processor. As previously

stated, each task on the resident host has an execution commencement sequence,

which is pre.determined by the scheduling policy (stored in the scheiluling policy

fr\"). At runtime, such a sequence should not be violated, in order to achieve

the system performance expected by the incorporated scheduling algorithm. The

EM ¡ansmits this response if the task is the next to run on its assigned processor;

otherwise, it holds this request until this task's turn arrives. With a definitive

response from the E M , the task can then commence its computation.

¡ Event eul-spawn: sent from a spawning (parent) task to inform the EM that it

has spawned a child task, so that this child task will not be spawned repeatedly

by its other parent tasks, unless required to do so by the application itself. Recall

that in conditional parallel programming, a child task can be spawned by one

(and only one) of its parent tasks. Such information is retained in the EM lor

t26

future consultation by other tasks. The i,dentification number of the spawned

child task is also transferred to the EM for later reference (say, the request sent

by the eul-detchilspaun event).

o Event eul-nospawn: sent from a parent task to inform the EM that it will not

spawn a certain child task owing to the fact that the associated conditions are

not satisfied. If this child task is not spawned by any of its parent tasks, the

EM marks this child task as "not-spawned" (i.e., not running) at runtime, so

that future inquiries from other tasks regarding the status of this child task can

be confirmed and all operations (statically defined) related to this child task can

be ignored. The EM also checks the existing requests (retained inside the EM)

regarding the status of this child task, and replies to the sender of the request.

The EM detects the "not-spawned" child task via an integer counter, which

is initialized as the total number of its parent tasks and reduced by one each

time one of its parent tasks does not spawn it. A "not-spawned" task sends

events to the E M, to indicate that no data transmission and task spawning is

conducted inside it. Therefore, succeeding (child) tasks of the "not-spawned"

task (as illustrated in the static task model) do not have to wait for data from

this "not-spawned" parent task, which may otherwise have been sent by this task.

o Event eul-send,; transmitted from a parent task to inform the EM that it has sent

data to another task (i.e., child task, identified by its task i,dentifi,cation number).

This information is later acquired by this child task, in order to determinewhether

or not the corresponding data reception operations are exercised at runtime.

r Event eul-nosend: transmitted from a sending task to indicate to the EM that

it does not send data to the specified child task. Such information is used to

r27

tell the receiving task (statically-specified) not to wait for a message from this

sending task.

¡ Event eul-neaterec: sent for a task to indicate to the EM that the current task

has terminated its execution and that the processor is ready for the next task to

commenceexecution. Therefore, a task, which previously sends the EM the event

eul-d,etexecready, accepts a confirmed answer from the EM and commences its

execution.

o Event eul-terec: sent from a task to inform the EM that a parent task attempts

to spawn a child task which has already been spawned by one of its other

parent tasks. This event is used to capture the execution probability between

interconnected tasks.

o Event eu7-erit: only sent by the eaituset task (in the task model), informing the

EM that the application program has completed so that AT M E can terminate

gracefully.

The design and implementation detail of the execution monitor is discussed in

Section 5.4.3. All events and responses are transmitted as messages between user

tasks and the erecution monitor task. The workflow of the above events is detailed in

Section 5.5. All event messages and response messages share the same data structure,

respectively. Such messages just contain a few integer values, indicating information

such as task id,entification number ot euent type, as seen in Section 5.4.3. Therefore,

the magnitude of such messages is relatively small, compared to the application-related

data sets (which are normally large) transferred between user tasks.

L28

5.4.3 Design and Implementation of the E M

The eæcution monitor (EM) task, spawned by the AT M E-generated task ,S¡, monitors

the execution of user parallel tasks, and exists until the completion of the exit task in

the parallel program. It manages a number of data structures which retain information

such as the status of user tasks (e.g., spawned or not-spawned) and the communication

between a pair of interrelated tasks. The main data structures employed by the

execution monitor are listed in Appendix A. All events to and from the execution

monitor task are encapsulated within the in-msg and out-msg, respectively, structures.

Different events may have different associated parameters, which share the same space

(defined by union in both structures). The euentlype field in the in-msg structure

indicates the event type, as presented in Section 5.4.2.

Waiting lists and queues created and maintained by the execution monitor

are: Iist-tiilno, list-commmarlc, list-terec, wqueue-tidno, uqueue-con-¿mmarle and

uqueue-erecready. An explanation of these data structures is inciuded in Appendix A.

Pointers to each of these lists and queues are globally managed in the structure pointers.

The major processing of the execution monitor takes place within a loop: waiting

for an event to come from the user task, dispatching the event to its corresponding

function (implemented inside the execution monitor), responsing to the user task or

holding the request, and then awaiting the next request from the user task.

The processing of each event received by the execution monitor basically follows

the steps illustrated in Section 5.4.2. The full source code of the execution monitor is

found in Appendix A.

r29

c5 c6l c

'J

#
,a

I

CAe4

I

v//)

Task B

TaskA

Task C

Execution
Monitor@M)

a3.

d3

al

(time)
Execution

Legend:

l. Processing within the task:

l-l , p.o""rring on user tasks. l-l
'

,ro processing on EM. : processing on EM.

Ñ
'
tar¡ spawn. ffi : data transmission. I : data reception'

2: Message passing operations between tasks:

- -l> : spawn operation. + : communication between user tasks and EM.

å : data transmission. [a-d][1-5]: sequence ofoperations.

Figure 5.11. Processing between the user task and the execution monitor.

5.5 Implementation of ATM E Primitives

This section describes the processing of three major AT M E primitives ,i.e., tme-spawn,

tme-send and tme-recu, in the following three sub-sections: Sections 5.5.1 through 5.5.3.

The implementation details of the AT M E primitives are illustrated via a task model

as shown in Figure 5.10, with the focus on three tasks A, B and C.

Figure 5.11 illustrates the communication between user tasks (.4., B and C) and

the eæcuti,on monitor task. This figure depicts views ftorn XPVM 169l on which the

AT M E-preprocessed program is executed. The communication pattern between the

three tasks (namely A, B and C), as illustrated in Figure 5.11. It is supposed that

130

task B is spawned by either A or C; data is actually transmitted between A and B

but not between C and B.

In Figure 5.11, each task which is involved in the execution is represented

by horizontal line. The length of the line illustrates the execution span of the

corresponding task. The fiIl-in background of the line describes the kind of processing

within the task (say, task spawn or data transmission), as indicated by the Legendin

the figure.

Message-passing between an AT M E task and the execution monitor, as well as

between any two ATME tasks, is depicted by an arrorvv in Figure 5.11. All the events

are time-stamped and ordered accordingly. Different types of arrows represent different

kinds of message-passing operations, as presented in lhe Legend in the figure. Each

message-passing operation is marked by a two-charactered label, for instance, ø1. The

Ietter in the label distinguishes between communication events. The digit in the label

represents the sequence of events within each operation'

As observed in Figure 5.11, whenever a user task intends to invoke a message-

passing operation or to spawn another task, the corresponding AT M E task needs to

communicate with the eæcution monitor before and after the operation. Only after

acquiring a definitive response from the execution monitor task does the task go on to

its next statement. This can be seen from the following discussion.

5.5.1 Processing of tme-sPawn

This section takes an example of a task-spawn operation and illustrates the processing

of the AT M E tme-spaun primitive. The processing is undertaken by AT M E, and is

completely transparent to the programmer. Labels (such as "ø1") in each step listed

below refer to those marked in Figure 5.11.

131

Concentrating on the three tasks A, C and. B of Figure 5.10, suppose both tasks

A and C may spawn B at different times when the program executes, however, B

can not be spawned by both A and C at runtime (presuming this is required by the

application). As seen, communication between task A and EM,, as well as between

task C a¡rd EM can guarantee that B is uniquely spawned by either Aor C. The

following processing depicts the communication between AT M E tasks (A and C) and

EM.

1. When one task (A or C in the example) intends to spawn another task (task B),

the parent task sends the event eu1-detchdspawn to the EM task (Label ø1 or ó1,

respectively), to detect the state of the to-be-spawned child task B. The parent

task then waits for the response from the EM task.

There are two possible responses: the child task has not been spawned by any of

its parent tasks (marked as "not-spawned") or the child task has been spawned

(recognized by the task identification number, i.e., tidno of the child task). The

given example assumes that task A attempts to spawn task B, before task C

intends to do so. Therefore, it can be realized that task A will have the "not-

spawned" response from the E M , while task C will have the "tidno" response

from the EM (since at that time task B has already spawned by task A).

Depending on different responses from the EM task, AT M E employs the

following two approaches, respectively, to manage the execution.

2. If the response ftom EM is "not-spawned" (task A has this response, since B

does not exist when A intends to spawn B,as shown by step ø2 in Figure 5.11),

then AT ME arranges the spawn operation, within task A, of the child task via

the PVM primitive pun¿-spo,un (step ø3). In addition, task 14. sends EM the

t32

"task identifrcation number" of the newly-spawned task (i.e., B) (step ø4) for

later consultation (by task C in this example).

3. If the response is a "task identification number" (task C has this response, since

B exists when C tries to spawn B), as referred to by step b2 in Figure 5.11,

then this parent task (C) skips its task spawn operation, and sends EM at event

eul-texec to indicate that the communication does occurs between this pair of

tasks, i.e., C and B (step b3).

As seen, AT M E realizes the conditional task spawn support through several

interactions between user tasks and the erecution monitor task. It is the AT M E

environment, not the programmer, that retains all the runtime information, fulfills all

these interactions and makes sure that task B is spawned by one, and only one, of its

parent tasks.

Appendix B presents an example of a user-provided parallel task, and its translated

AT M E task. The example includes all three task runtime operations: conditional task

spawn, conditional data transmission and conditional data reception.

5.5.2 Processing of tme-send

Conditional data transmission in conditional parallel programming is complex in

comparison to its PV M point-to-point data transmission counterpart, in that it may

be involved in operations other than mere data transmission. As stated in Section 5.2.2,

it is suggested that all parent tasks in the conditional parallel program are responsible

for the spawning of its child task(s), due to the unpredicatable nature of the conditional

branches associated with the task spawn operation. In this situation, the target

child task can be guaranteed to exist when the communication is triggered, since the

133

communication between each pair of tasks is always preceded by a spawn operation

of the child task. However, this may not be true as the actual program is developed.

That is to say, it is likely that a parent task realizes that the child (receiving) task

may not exist when it prepares to transmit data. These additional issues have to be

addressed in conditional data transmission.

There are two situations (explained below) which must be dealt with in conditional

data transmission, depending on whether the data transmission actually takes place or

not at runtime. If data is actually transferred between tbe sending and receiuing task,

say A and B in Figure 5.10, the following occurs:

1. The sending task (A) sends an event eul-detchdspt,unto EM in order to obtain

the task identif,cation nurnber of the receiving task (B), as indicated by step c1

in Figure 5.11.

According to the response returned from the E M , one of the following two steps

is taken.

2. If the response from the EM task is "not-spawned", then ATME issues a task

spawn operation inside the parent task for the receiving task, following the process

stated in Section 5.5.1. This is not illustrated in Figure 5.11, since, in this

example, it is assumed that the receiving task (B) has already been spawned by

the sending task (A) at the time when data transmission is processed.

3. If the response from the EM task is the "task identification number" (step c2 in

Figure 5.11), i.e., the receiving task B has already been spawned, then the sending

task (A) issues a PV M send primitive (by pum-send) in which the destination

is recognized by the "task identification number" just obtained ftorr. the EM

(representing the receiving task) (step c3). In addition, the sending task (A)

134

also informs the EM of the occurrence of such communication (step c4). Note

that step c3 is undertaken regardless of the state of task B, this is referred to as

"asynchronous blocking data tranmission" in PVM (Section 5.3.3).

4. The remaining part of the sending operation, i.e., the data reception, is realized

by the receiving task (i.e., step c5 to step cZ), which is discussed in Section 5.5.3.

Another situation in conditional data transmission occurs when there is no data

communication between two interrelated tasks, due to a false condition associated

with the communication (between C and B in the example). In this case, the following

steps are followed:

1. The parent task (C) sends an event eul-nosend,to EM, informing it that no data

is to be communicated between the two interrelated tasks C and B. This step is

marked by dI in Figure 5.11. This step actually sets an indicator inside the EM

task, for any later inquiry from the receiving task B.

2. The remaining part of the sending operation, i.e., data reception, though actually

not taking place, is processed by the child task B (i.e., step d2 to step d3), which

is discussed in Section 5.5.3.

As seen, conditional data transmission is not simply involved in transmitting the

data, but may involve the spawning of a task as well. AT M E provides the primitive

tme-send,,, which frees the programmer from considering these extra issues.

Appendix B illustrates the original user-written code regarding (conditional) data

transmission and its translated AT M E code.

135

5.5.3 Processing of tme-recu

Data transmission and data reception are an inseparable pair of operations in terms of

message.passing. Data reception may also be conditional. Depending on whether or

not there is any data sent from the parent task, the child (receiving) task can decide

whether or not to suspend itself and wait for the arrival of the data. The following

steps in conditional data reception are undertaken:

1. The child (receiving) task (B in the example) checks with the EM throttgh the

event eul-detparsend to see whether there is any message transmitted from a

sending task, i.e., task B's parent tasks A and C. This is marked by step c5 and

d2, respectively, in Figure 5.11.

There are two possible answers from the EM lask, and ATM'E takes one of the

following directions, accordingly.

2. If there is a message from the sending task (i.e., A, indicated by the step c6),

then the receiving task B is blocked waiting for the data to arrive in the message

receiving buffer of B (step c7). Here it is assumed that the identification of the

message matches both the sending and the receiving tasks. In other words, it is

the message required by this receive operation.

The receiving task also arranges related operations such as unpacking data to

decompose the message into its original format to be used within the task itself'

The data transmission and reception (between A and B in the example) is then

regarded as complete.

3. If, on the other hand, there is no message sent from the parent task (C in the

example), as indicated by step d3, the receiving task (B) skips the receiving

136

and all related (such as unpacking data) operations, and continues with its

computation.

Appendix B also presents the implementation of the conditional data reception in

a user task.

As observed from the implementation of the three AT M E major primitives

(Sections 5.5.1 through 5.5.3 above), the ATME-introduced execution monitor task

realizes AT M E support for conditional parallel programming and the automation of

the conditional task scheduling process. The application programmer, equipped with

the AT ME primitives, is largely freed from considering ne\ r issues which arise in

conditional parallel programming. Furthermore, system and program performance is

enhanced due to the efficient task scheduling policy which is generated according to

special requirements of parallel tasks and processors. It has been experimentally shown

that CET, which is employedby ATME as its scheduling algorithm, is generally

superior to the round-robin algorithm adopted by the PV M tooI.

L37

Chapter 6

ATME: A Tool For Conditional Parallel

Programming

This chapter presents the design and implementation of a programming environment,

named ATME. The contribution of ATME is built upon the research discussed in

Chapters 3, 4 and 5. This chapter discusses in depth the functional components of

the ATME environment, and highlights the cooperation of the ATME components

to realize support for parallel programmers. Section 6.1 presents the framework of

AT M E and the work flow between the AT M E components. The construction of the

processor model (i.e., target machine topology) is discussed in Section 6.2. Sections 6.3

and 6.4 examine the preprocessing and the analysis of the user program, in order to

ensure it executes on the PV M platform and captures task runtime information. Such

information is employed in the incremental construction of the task model discussed in

Section 6.5. The generated task model and the processor model are two essential inputs

into the scheduling algorithm which produces a scheduling policy prior to program

execution. This aspect of the work is discussed in Section 6.6. Section 6.7 focuses

on the collection of the runtime task information and its retention in the program

138

databases (for use in task model construction). Section 6.8 describes the remaining

components in AT ME, which includes post-execution analysis and report generation.

6.1- ATM E FYame\Mork

This section presents the framework of AT M E and briefly states the functionality of

each AT ME component and the relationships between them.

ATME is developed atop the PVM platform [69]. As requiredby PVM, an

application parallel program is partitioned into parallel tasks, each of which realizes

some sub-functionality of the application problem. Tasks are physically mapped onto

the target machine connected by PV M before they commence their execution. Tasks

on different processors (computers) in the target machine can run in parallel, unless

synchronization is required between tasks.

Given a virtual parallel machine, an AT M E user remains unaware of the technical

details of the underlying parallel and distributed system, and simply assumes that

the target machine is composed of fully-connected identical processors. This allows

the underlying platform to be modified with minimal interruption to the application

programmer, and ensures that AT ME achieves maximum portability. Furthermore,

with the availability of a set of AT M E runtime primitives, the programmer is relieved

of the need to be concerned with subtle characteristics of the parallel system, and

more signifi.cantly, new issues related to conditional parallel programming, as stated in

Section 5.2.

Figure 6.1 provides the framework of ATME. ATME takes as input a processor

topology speci,fication and user-defineil parallel tasks. The target machine description

component presents the user with a general interface to specify the available processors

139

hasklnterconnection l.
Süuctu¡e\,

Tuning
Suggestions

Programmer

-F------->t.l

l.
l'

laJ

0q
É
r.t
o
P
!'
H¡l'
tr,
Þ
o
€oñ
Þl
ol+l

!I
t5

HÈo

ATME Program E:<ecution

Legend:

f
=O*

: ouPuteitheroftheinPuts : Functional component in ATME

: File generated/accessed by ATME

: Component outside the environment

- ->

i_ _ _
j : Possibly required

: Derna¡cation line

tffil
Combine two inputs

OuÞuldisplay from the environment

Results

Compilatior¡ Linl
Execution

Scheduling

TaskModel

Program
Database

I

!
I

I

I

Pofl-Ex¿a¿tíon

P¡e-Executíon

I

¡

I

I

Processor
Model

Instnmented
ATME Tasks

Interconnection
Sûucture

Tuning
Suggestions

Analysis Files

Reports

Target Machine

User Tasks

---:>
+

and the topology of the underlying parallel and distributed system. It accepts as user

input a processor topology specification, and generates the processor model for use by

other ATME components.

The user-provided parallel program is analyzed, preprocessed and instrumented by

the prograrn preprocessing and analysis component in order to enable it to execute on

the PV M platform and capture appropriate information at runtime. Such information

is used to construct the task model of the program (as required by the conditional

scheduling algorithm, i.e., C ET and P ET, employed by AT M E). Currently, AT M E

supports parallel programming in C. AT M E provides explicit support, through AT M E

primitives, for conditional parallel programming.

Task runtime information in every program execution is retained within AT M E

(discussed shortly). Based on the information captured in previous executions , the taslc

model construction component predicts the actual task model prior to the forthcoming

program execution. With the task model from the tasle model construction component

and the processor model from the target rnachi,ne description component, the task

scheduling component, which mainly incorporates a scheduling algorithm, statically

generates a policy by which the user tasks are distributed onto the underlying

processors. The task model and the processor model employed in this thesis are adopted

from the large number of existing scheduling algorithms. Therefore, other scheduling

algorithms can be easily plugged into AT M E.

At runtime, the runtime data collection component collects traces produced by the

instrumented tasks. Trace information is stored, and after the execution completes,

dumped into program d,atabase.s which are used as input by the task model construction

to predict the task model for the next execution. The post-eaecution analysis and

report generation provides analysis, various reports and tuning suggestions to the user,

t4L

as well as T,o ATME itself, with the aim of enhancing system performance.

As observed, a cycle exists in the ATME environment, as seen in Figure 6.1:

commencing with lhe task mod,el construction, through task scheduling, runtime data

collection and back to the tasle model construction. This process makes AT M E an

adaptive environment in that the task model offered to the scheduling algorithm is

incrementally established to gradually reflect changes in task behaviour, with the

expectation of improving the distribution strategy on the basis of past usage patterns

of the application. This process depicts the strategy employed in this thesis to tackle

task scheduling issues for conditional parallel programming. Accurate estimation of

task attributes can be obtained for relatively stable usage patterns and consequently

admits an improvement in execution efficiency.

6.2 Target Machine DescriPtion

With the user-specifi.ed processor topology, AT M E establishes a processor model of

the target machine, which is required by the scheduling algorithm employed in AT M E.

AT M E also presents the user with a uirtual parallel machine (through PV M) so that

the user is unaware of the architectural and performance details of processors and

networks. This is realized by the target machine ilescription component of ATME.

The tørget machine descri,ption component allows the user to specify the

available processors, processor interconnections and their associated attributes such

as processing speed and network bandwidth. It is realized that different scheduling

algorithms may emphasize different processor and network modeling factors. For

instance, with respect to processor network modeling, most of the task scheduling

algorithms consider the network bandwidth (i.e., data transfer rate) [93, 115, 151, 180],

r42

/*** File Structure: Processot ¡c+*/

struct processor {
int procidxno;
char procnn INAMELEI'¡] ;

double Psr;
double initti¡ne;
int Pconnun;
struct proccon {

int Procidxno;
int linkidxno;

) procconsIMAXPRoCNUM]

Ì;

/+** pilg Structure: Network Link ***/
struct netlink {

int linkidxnot //
int procidxnol; / /
int procidxno2; / /
char linknn[NAMELEN]; //
double bandwidthi //
double contlinit; //
double prolongt //
int busY;
double occuPYsize;

);

l/ Processor index nurnber.
// Processor name.

// Processing speed.
/ / ltessage-sending overhead.
// Nunber of outgoing links.

/ / See "Network Link" belor¡.

Processor link index number
One end of the link.
The other end of the link.
Link nane.
Date transfer rate.
Contention limit.
Message-sending overhead.

Figure 6.2. The target machine description file.

while others may be also concerned with network contention and initiation of message

passing [52]. Therefore, lhe target machine d,escription provides a general interface

which covers processor attributes commonly required by scheduling algorithms.

The output of the target rnachi.ne ilescription is a processor model which is regarded

as one of inputs to the tasle scheduling cornponent. The processor model adopted by

AT M E is formally defined in Section 3.1.

The processor model is kept in two files: the processor file and the network linle

file, the structure of which is given in Figure 6.2. The design of the processor model

r43

provides the facility to describe a heterogeneous system. The research undertaken in

this thesis on homogeneous systems can be extended to heterogeneous systems in a

straight-forward manner. Futhermore, the processor model retains more information

than it is currently used by AT M E's incorporated algorithms (CET and PET'). These

factors, such as message-sending overhead and network contention limit, are intended

to be used by scheduling algorithms which may be embedded in the future.

Apart from the construction of the processor model for the target distributed

system, the tørget machi,ne description component establishes a virtual parallel

machine, through underlying PV M mechanisms, by linking all participating processors

via existing networks. ATME (through PVM) starts a daemon process on each

available processor to handle the interprocessor communication.

With respect to a specific application, the underlying target machine, on which the

application program executes, can generally be assumed to be stable. That is to say,

the parallel and distributed system is not likely to change along with the program.

Therefore, the processor model of the target machine, once established, does not need

to be reconstructed each time an application program is executed. The target machine

description provides the physical foundation on which the user program is executed,

and makes the actual system transparent to the user. A user may be unaware of the

physical characteristics of processors and communication networks, while concentrating

merely on the parallel program and its algorithms.

6.3 Program Preprocessing

This section and the following section focuses on the processing of the parallel program'

which is realized by the ATME progranx preprocessing and analysis component.

L44

Layer4 Application program

ATME

Parallel Virtual Machine (Pvlvf)

Physical processors and networks

I-ayeß

Layer2

I-ayerl

Figure 6.3. Layers of software.

In order to implement a software package efficiently and productively and to enhance

its reusability and portability, it is desirable to build software in layers. Figure 6.3

gives an example of a software hierarchy within a parallel and distributed system.

The application program sits on top of the ATME environment, which itself is

located above the PV M layer. Software layers beneath PV M manage the physical

parallei and distributed system. The application programmer is equipped with services

provided by lower layers while not being concerned about implementation details

underneath. The user-provided progtam (with AT M E primitives) is first translated

into the corresponding PV M program before it is actually submitted for execution on

the underlying target machine. Such transformation is automatically undertaken by

the ATME progrt,nx preprocessing and analysis component.

This section discusses the issues involved in program preprocessing, and defers the

program analysis to Section 6.4. In AT M E, the preprocessing of the parallel program

is involved with four major issues. Firstly, it ties the user-provided parallel tasks to

two AT ME-specifi.c tasks: the start task ^96
and the execution monitor task. The task

,So establishes appropriate parametets, loads files (such as the task interconnection file,

processor topology file and task scheduling policy file), triggers the execution monitor

task and distributes the first (start) task in the user program. The execution monitor

145

task is mainly responsible for the runtime management of task and task communication

information. The design and implementation details about the execution monitor task

and the start task ,90 are presented in Chapter 5.

Secondly, the program preprocessing in ATME interprets Ihe ATME runtime

primitives (incorporated in the user-provided tasks). The output of such preprocessing

is C code mixed with PV M primitives. The preprocessing also includes the interaction

between the translated PV M tasks and the execution monitor task, which realizes the

support for conditional task spawn and conditional message-passing at runtime. The

workflow of the three major AT M E primitives (i.e., task spawn, data transmission and

data reception) is illustrated in Section 5.5. An example of a user-provided parallel

task, and its corresponding ATME-translated task (i.e., PVM task), is presented in

Appendix B.

Thirdl¡ the AT ME preprocessing of the program inserts new source code into

the user-provided program, for the management of execution. The scheduling policy

generated by other AT M E components specifies the task distribution strategy and the

execution order of tasks assigned to the same processor. With AT M E, the application

programmer can completely ignore issues involved in task scheduling. It is AT M E that

generates the scheduling policy, and dynamically accesses the policy fiIe to control the

task execution. This is implemented through the functions getproc and det-ex,ecready

embedded within ATME. An example can be found in Appendix B.

Finally, the program preprocessing in AT M E extracts the task interconnection

structure of the parallel program that portrays the precedence relationships between

tasks. The interconnection structure is a vital component of the task model. Such a

structure can be obtained by detecting task runtime operations within the program.

A "spawn" or "send" operation in the task indicates a precedence relationship in the

146

task model. The programmer can provide his/her own task interconnection file, which

may be the product of other program design tools, such as HeNCE [15].

From Appendix B, it can be observed that there is outstanding difference, in terms

of program size, between the AT M E program (written by the application programmer)

and the corresponding PV M program (generated by AT M E from the user program).

For instance, when sending data from task A to task B, about 10 lines of source code

needed to be written by the application programmer. In order to make the user-

provided task physically execute on the underlying PV M virtual machine, such code

is expanded into more than 40 lines. This excludes the preparatory work undertaken in

the beginning of the program. Furthermore, the extended code also includes a number

of ATME-developed functions, such as det4arsend and put-n'exteuec, which handle

the communication between the user task and the execution monitor in AT ME. This

means that a significant amount of work dealing with conditional data transmission is

hidden inside provided AT M E library routines. All such processing would be imposed

onto the programmer, if it were not for AT M E.

6.4 Program Analysis

This section studies the analysis of the user supplied application programs. The aim

of such analysis is to insert probes into the program so as to capture task runtime

information, convert it into task attributes and retain them as program profiles, upon

which the scheduling policy for the conditional parallel program can be produced.

The types of task attributes concerned with scheduling tasks varies from one

algorithm to the next. For example, the scheduling algorithm C ET (Section 3.6)

takes three factors into account, namely, task computation time, task communication

r47

time and execution probability, while the algorithm P ET (Section 4.4) considers the

preemption start point, instead of the execution probability used in C ET. This section

concentrates on the acquisition of these four attributes.

The strategy to undertake program analysis is outlined as follows. For each parallel

task, a control flow graph is generated to describe the rêlationship between statements

within the task: related statements are gathered into a node in the control flow graph

while an edge in the graph represents the control dependence between nodes. Then,

the task is instrumented with probes in order to gather the runtime information. Each

node is regarded as an atomic instrumentation unit. Consequently, at runtime, probes

generate node attribute values which are collected by ATME's runtime data collection

component. Such node attributes are summaized into task attributes, for the use of

the task model construction component in AT M E.

Section 6.4.1 illustrates the mechanism to build the control flow graph for an

ATME task. Task instrumentation is discussed in Section 6.4.2, which presents the

type of probes inserted into ATME tasks. Methods to reduce the number of probes

instrumented in the program are also studied, with the aim of eliminating the impact

of probe perturbation on task behaviour.

6.4.L Control Flow GraPh

The execution of a task is encapsulated in a control fl,ow graph [168] (abbreviated

as C FG), in which each node represents a source code fragment within the task,

and each edge describes the control dependence between the task fragments. A

formal definition of the C FG is given below. The aim of introducing the control

flow graph is to determine the value of task attributes (including task computation

time, communication data time, execution probability and preemption start point)

148

and provides a basis for task instrumentation. The use of the control flow graph is

widely employed in parallel processing [59, 105, 167]. No further discussion on the

control flow graph itself is developed here.

With the focus being the extraction of attributes of the parallel task, AT M E

presents a simplified control flow graph, which is formally defined as a n-tuple:

G: (N, LrN",N",A), where:

¡ N: the set of nodes, each of which is composed of a source code fragment in

the corresponding task. The partitioning of nodes within a task is based on

the node type, as discussed below. A node is regarded as an atomic unit from

the perspective of instrumentation (as seen in Section 6.4.2). Virtual nodes are

employed to describe the branch and loop structure.

o tr: the set of directed links between nodes. It portrays precedence (control flow)

relationships between nodes.

o ÄL: the start node of the control flow graph. With no loss of generality, it is

assumed that each task has a unique start node.

o ÀL: the exit node of the control flow graph. It is assumed that there is only one

exit node for each task.

o A: the set of node attributes. Each node is associated with node attributes

(elaborated below) which are either extracted through static program analysis or

obtained through runtime execution profiling.

An example of a task and its corresponding control flow graph are shown in

Figure 6.a (a) and (b), respectively. Nodes are delimited by rectangles, while directed

arrows illustrate the control flow between nodes. In Figure 6.4 (a), three typical

L49

mainQ

{
¡ttuot"Declarationsl

[Code 1: sequential code fragment]

while (condition a)

{
if (condition b)

{
[Code 2: sequential code fragment]

)
else

{
[Code 3: sequential code fragment]

)
[Code 4: sequential code fragment]

)
[Code 5: sequential code fragment]

)

Figure 6.4. An example of (a) a task and (b) its corresponding control flow graph.

kinds of programming statements are illustrated, that is, the sequential processing

statement, the loop statement and the conditional branch statement. The mapping of

the statement fragment in Figure 6.a (a) and the corresponding node in Figure 6.a (b) is

manifested by the code label, shown as Codel and Code2 etc. Loop and Branch. nodes

represent the opening of the loop and branch structures in Figure 6.4 (a), respectively'

End-loop and End-branch are virtual nodes introduced into the control flow graph, to

indicate the closing of the loop and branch structure, accordingly.

The data structure representing a node is illustrated in Figure 6.5. As seen, each

node in the control flow graph is uniquely identified by a number blleno. Basically, the

structure aims to portray node attributes (such as the node execution time etime) and

node inter-relationships (such as nextblknol}. "Related node" items in Figure 6.5 are

designed for indirect reference between nodes, with the purpose of reducing the number

Start

Code 1

Code2 Code 3

End branch

Code 4

Code 5

End

150

/¡r+* A node in the control flow graph ***/
struct node {

int blkno; // t'lode identification nunber.
int blktype; // Node tYPe.

int levelno; // Leve1 number.

int nextblknun; // l¡unUer of successive nodes.

int nextblkno[MlXt{gXfglKNuM] t // AL]- successive nodes.

int prevblknun; // Nunber of preceding nodes.

int prevbrkno[MlxNnxrglKNUM i //
^LL

preceding nodes'
int stine; // Related node (for node's

/ / Execution start tine).
int ind-stinet // Related node indicator.
int ftine; // Node finish tine.
int etine; // Actua1 node execution tine.
int count; // Related node (for node's

/ / Execution frequency) .

int ind_count; // Related node indicator.
int ecount ; / / Actual node repetition count.

Ì;

Figure 6.5. The data structure of a CFG node'

of instrumentation probes, as discussed in Section 6.4.2.2.

Major node attributes defined in Figure 6.5 are elaborated as follows. They

are required by the calculation of task attributes, which play a crucial role in the

construction of the task model. These node attributes include node type, node level,

node execution time and node execution frequency.

o nodetype: the type of the node.

Each statement within a task has associated with it a type which can be

assign (assignment statements), branch (selection statements), Ioop (repetition

statement s), commenú (comments), opening and closing brackets (which indicate

the beginning and the end of a structured construct). The control flow graph

illustrates the most common and generic constructs in programming languages.

151

Each node of the graph contains consecutive statements of the same kind (except

for embedded branch and loop statements) in the task. Nodes are typed,

according to the constituent statements. Three generic node types are considered

here: the basic node (usually labelled with a "node name" such as Codel in

Figure 6.4 (b)) represents a sequence of assignment statements where the control

flow enters at the beginning and exits at the end without the possibility of

branching; the Branch arrd Loopnodes represent the beginning of the selective and

iterative constructs respectively. Data declarations are assumed not to require

any CPU time, thus there are no particular node types dealing with them (recali

that nodes in the graph are used to determine task runtime attributes).

Several virtual nodes are introduced to a task's CFG: the Start and End nodes

represent the beginning and end of a task respectively, while the End-branch

and End-loop nodes denote the end of the selective and iterative constructs

respectively. Such virtual nodes allow embedded structures (such as an embedded

Branch or Loop) to be easily distinguished in the graph. Furthermore, there are

no backward edges in the graph for a repetitive structure. Its start and finish

is distinguished by the pair of Loop and End-loop nodes. Therefore, the control

flow graph is easily understood and implemented.

o leuel: each node is assigned a leuel number to indicate its level of nesting within

the graph. The Start node and lhe End node of the control flow graph have a

level number of 0. Entering a conditional branch or a loop increases the level

by 1, while the end of the branch or loop decreases the level by 1. Note that

nodes of the same level number (such as Codel and CodeS in Figure 6.a(b)) may

have the same repetition count at runtime. That is to say, they may be visited

t52

exactly the same number of times. Such properties can be exploited to eliminate

unnecessary probes inserted in the task, as discussed in Section 6.4.2.2.

o etime: the execution duration of the node. It is also simply called "execution

time". etime is calculated as the differencebetween the start time (stime) and

the finish time (ftime) of the node.

o ecount: the execution frequency of the node at runtime, i.e., the number of times

this node is visited when its encapsulating task is executed. This attribute, along

with the attribute etime, is gathered at runtime and profiled into the trace files

at the end of task execution.

The extraction of the control flow graph from the task's source code is performed

as follows.

1. Initially, only lhe Startvirtual node is placed in the control flow graph CFG. Set

the current node leuel vahrc to 0. Set the start node as the "last-visited" (LV)

node. Start from the first statement in the task.

2. Depending on the statement type of the current statement in the task, different

approaches are employed:

o If the current statement is typed as assign,, then amalgamate the subsequent

statements of the same statement type and the sarne leuel value into a single

node. Add this node in the CFG. A directed link is attached between the

LV node and this node. Assign node attributes, such as bllcno and leuelno,

to the newly-generated node. Note that such node attributes are initialized

whenever a new node is generated and placed into the C FG. The new node

is set as lhe LV node.

153

o If the current statement is typed as branch,, then create a Branch node in

the CFG with two outgoing directed links, for the two possible directions

(named as 'il and e/se directions) of the conditional branch.

Suppose both sub-blocks of the branch statement are delimited by brackets,

even though it may include only one statement. This is for simplicity of

discussion. Link this node to the LV node. Set this node as the LV node.

o If the current statement is typed as loop, then create a Loop node in the

C FG with an outgoing link. It is also assumed that statements inside a

loop are bracketed. Link this node to the LV node. Set this node as the

LV node.

o If the current statement is an opening bracket (which indicates the beginning

of either a selective or a repetitive structure), increase the current node leuel

value by 1.

o If the current statement is a closing bracket of an i/ direction sub-block

(i.". its statements are executed when the conditions associated with the

previous branch statement are satisfied), then decrease the leuel value by 1,

and start dealing with the else alternative of the same branch statement.

The current IV node is set as the ttbranchtt node.

¡ If the current statement is a closing bracket of an else alternative of a branch

statement, then decrease the node leuel value by 1, create an End-branch

node and connect it with two nodes which are the branch's two sub-blocks.

Set the Enil-brancå node as the LV node.

o If the current statement is a closing bracket of the previous loop statement,

then decrease the leuelvalte by 1, put an' End,-loopnode in the CFG,link

t54

it to the LV node. Set this node as the LV node.

o If the current statement is a closing bracket representing the end of a task,

then an Enil node is placed in the C FG, link it to the LV node. The

generation of the task's control flow graph completes. The node leuel valte

becomes 0 again.

3. The above step is repeated until the end of the source code is encountered

On the whole, the control flow graph discussed here deals with the basic constructs

of a programming language. Specifically, these constructs include assignment,

conditional branch and repetition. The control flow graph does not take into account

procedure/function calls and recursive procedures. To tackle these more complex

situations, additional nodes and relationships are required in the control flow graph.

This is left to future work.

The control flow graph of a task constitutes a foundation for probe instrumentation

and task attribute calculation, while the actual control flow between nodes of this task

is of little interest. Hence, no attempt is made to introduce a complex graph structure

which aims to describe the complete control dependencies within the task, as done

in [59, 105, 167].

6.4.2 Thsk Instrumentation

Based on the control flow graph, the task is instrumented to capture values of node

attributes at runtime. Such task runtime information is dumped into trace files, and

retained permanently as execution history

Section 6.4.2.I discusses the difierent kinds of probes inserted into the user program.

Since the instrumented probes affect task behaviour and prolong task execution time,

155

Section 6.4.2.2 examines strategies to eliminate the probe perturbation.

6.4.2.1 Instrumented Probes

Task instrumentation can be realized on different levels. On one hand, probe insertion

can be conducted at the compiler or operating system level, through modifying the

compiler itself or incorporating additional system calls. Thus, there is no need to

develop additional environments or tools to accomplish task instrumentation. However,

such an approach affects all parallel programs and requires the modification of system

software.

On the other hand, probe insertion can also be undertaken at the application

program level, an approach which this thesis adopts. Whichever approach is followed,

the principles are the same: the process of probe insertion should be transparent to the

application programmer as much as possible; and the inserted probes should impact

on the task itself as little as possible. This section studies probe insertion in AT M E,

and Section 6.4.2.2 discusses approaches to minimize the impact of the probes.

In order to determine the values of task attributes for each executable user task,

the following information needs to be collected. The determination of task attributes

is based on the control flow graph of the task, as discussed in Section 6.7.2. The data

collected includes:

¡ the computation time of each node in the control flow graph (in order to calculate

the task attribute of computation tirne for the corresponding task),

o the volume of data transmitted to dependent child tasks (to obtain the task

attribute of communication time),

¡ the execution probability between potentially communicating tasks,

156

o the preemption start point between parent and child tasks, and

o task precedence relationships of the parallel program.

Correspondingly, the following types of probes are employed to extract values

relating to node and task attributes. These are:

o timing probe:

This probe is set to gather the execution start and finish time of nodes within

a task's control flow graph. The timing probe is inserted at the beginning and

at the end of each composite node of the task. For a basic node, if the node is

processed more than once during program execution, then the start and finish

time of such a node is collected just once. The assumption made is that the

execution time of a basic node in different visits is the same throughout the same

program execution. This strategy is intended to reduce the probe impact on

task execution by reducing the amount of CPU time used. In addition, after a

data-transmission operation within the task, the timing probe can also be used

to detect the preemption start point between a parent and its dependent child

task.

o counting probe:

The counting probe is inserted to determine the execution frequency of the node

in the control flow graph. With the information produced by the timing probe,

the total execution time of a node within the task in a program execution can

then be determined.

t57

. size probe:

The size probe aims to detect the magnitude of data transferred between tasks.

The data size is measured in data packet units, the size of which is defined by

the user according to the actual network. In AT M E, the size probe is inserted

after each data packing or marshalling primitive in the task. All data sent to the

same target task from the parent task is accumulated by the same size probe.

Therefore, such a size probe determines the magnitude of data transmitted (and,

therefore, the communication time) between interconnected tasks. Furthermore,

the size probe can also be used to capture information about whether there is any

interaction between a parent and a dependent child task (i.e., the task attribute

of execution probability).

o destination probe

This probe is utilized to build task precedence relationships if the task structure

is not provided by the application programmer. For each data transmission

primitive in the task, this probe records to which task data is transmitted. That

is, the destínation probe is inserted after the data-transmission primitive.

o input parameter probe:

As stated in Section 3.5, the behaviour of a parallel task is assumed to be

determined by the input parameter applied to the task when it is spawned.

AT M E provides a switch, named incps, which allows the user (programmer) to

set the value of "on" or *off", according to whether, in reality the task behaviour

is uniquely determined by the input parameter. If the incps switch is set as "on",

then the input parameter probeis inserted (i.e., the value of the input parameter in

a certain program execution is recorded); otherwise, no instrumentation regarding

158

the task input parameter is performed. The task model construction also depends

on the value of the incps switch to determine its strategy in estimating the task

attribute values, as seen in Section 6.5.

In AT M E, probes are automatically inserted into user tasks at the application

program level. Therefore, there is no necessity to modify an existing compiler or

operating system. The inserted probes produce runtime information which is captured

and stored for the purpose of constructing a task model representing a future execution

of the program.

6.4.2.2 Probe Reduction

Along with the benefit brought about by the probes, the probes also incur additional

runtime overhead by competing with the user-provided parallel tasks for the CPU time.

Such probe perturbation is inevitable [106]. Various techniques have been proposed

to minimize the impact of inserted probes, such as the logical clock [30], but none

completely eradicates it. There exists a tradeoff between the advantage which task

instrumentation provides and the overhead which it incurs. This section proposes

several strategies to reduce the probe perturbation.

The control flow graph, proposed in this thesis as the basis for task instrumentation,

is one of the strategies for reducing the magnitude of probes required to generate the

desired data. In the graph, the "instrumentation grain" is extended from the individual

statement to the node (a group of statements), which significantly reduces the number

of probes inserted into user tasks.

Apart from the control flow graph, two other strategies aimed at reducing the

number of probes inserted into tasks are presented in this section. The first strategy is

to statically extract as much semantic information as possible regarding the task. Such

159

information includes the number of iterations in each loop, or a predetermination of

the branch to be chosen in a selection statement. Therefore, related probes inserted in

order to determine such information can be removed. The information may be obtained

when analyzing and generating the control flow graph for each parallel task. However,

in general, this kind of information can only be determined in very limited cases, since

such runtime information is generally not available at compile time.

The second strategy is to make use of node relationships in the control flow graph.

The following approaches are adopted in AT M E:

o Share the probe between nodes:

From the control flow graph, it can be observed that consecutive nodes (in terms

of control flow) can partially share the tirning probe, based on the fact that the

finish time of a node is identical to the start time of the successive node. For

instance, in Figure 6.4 (b), the start time of the loop node is equivalent to the

finish time of node codel. With respect to the implementation, the ind-stime

field (Figure 6.5) of the node Loop is set to 1, indicating that that the field

stime references the node (i.e.,Codel) where the value for its start time can be

found. If the ind-stime is 0, then the stime field contains the actual execution

commencement time of the node.

o Node reference

From the control flow graph, it can also be detected that nodes at the same leuel

may have the same "execution frequency". Therefore, only one counting probe is

required for such a group of nodes. For example, the counting probe for the node

codeS in Figure 6.4 (b) is unnecessary, since it has the same execution frequency

as the rrode coileL As for the implementation in Figure 6.5, when the ind-count

160

is set as 1, the count field refers to the node with which it shares the execution

frequency value; otherwise, the countfield records the actual execution frequency.

o Attribute value deduction:

There is no need to establish counting probes for each branch in a conditional

structure. For a branch node, the control flow graph is constructed to include all

possible branches of the conditional statement. Therefore, the sum of execution

frequencies of all branches is equal to that of the branch node (which indicates

the beginning of the selection statement). As a result, for an i/statement which

has at most two options, this approach may reduce the number of probes by 50%

through attribute value deduction. Figure 6.4 (b) also illustrates this situation

with the branch node and its two child nodes, Code2and Code?. The counti,ng

probe for the Codeg node is not required.

Using the strategies presented above, the number of node attributes to be collected

can be dramatically reduced. Attribute references between nodes can be achieved while

generating the control flow graph via static program analysis.

Further probe reduction can be achieved in specific circumstances. For instance,

if the target processors attributes (including architecture and processing load etc.)

remain constant across different executions of the same parallel program, it is

reasonable to assume that the execution time of a basic node (i.e., the processing time

of such a node in once visit) is constant from one execution to the other. Therefore, in

the initial run, information relating to the execution time of each basicnode is collected;

then, these probes can be removed in subsequent runs and future compilations.

161

6.5 Task Model Construction

The task model representing the parallel program is an important input to a scheduling

algorithm. It reflects the precedence relationships between the parallel tasks. It also

encapsulates the behaviour of tasks by way of its task attributes. Such information

assists in producing an efficient scheduling policy by which the program can be executed

with high performance. The construction of the task model for the application program

is realized by ATME's task model construction component.

AT M E undertakes the task attribute estimation on the basis of the program's

execution profile. The construction of the execution profile is discussed in Section 6.7.

The strategy to construct a task model is presented in Section 3.5. Continuous

attributes such as taslc computation time,, communication time and preemption start

point adopt the linear regression model, as given in Section 3.5.2. Different approaches

are employed to predict such task attributes, depending on the value of the incps

switch (presented in Section 6.4.2.1). When the incps switch is set to "on", i.e., the

task attributes are uniquely determined by the task's input parameter, the task model

construction first estimates the input parameterfor the task; then, using the estimated

input parameter as the regressor, the above three task attributes are estimated. \Mhen

the incps switch is turned "off", the above three attributes are directly predicted via

the linear regression method, with the execution number as the regressor.

With regards to the erecution probability attribute, this thesis proposes a finite state

machine method to undertake the prediction, as discussed in Section 3.5.3. Simulation

results presented in Chpater 7 indicate that AT M E can predict the values with high

accuracy, providing that usage patterns of the program are relatively stable across

consecutive executions.

t62

The compotenl tasle model construction produces the complete task model (i.e., the

task interconnection structure as well as task attributes), which is provided to the ú¿sfr

scheduling component in order to generate a scheduling policy.

6.6 Task Scheduling

The AT M E task scheduling component takes as input the processor model and the task

model (generated from the target machine d,escription and taslc model construction,

respectively). It starts the incorporated scheduling algorithm, and produces a

scheduling policy with the aim of optimizing the performance measure. The scheduling

policy is retained in a file, which is accessed at runtime to distribute the tasks. The

algorithm currently adopted in AT M E can deal with conditional and preemptive task

scheduling (note that deterministic task scheduling is just a special case of these two).

The performance measure employed in ATME is parallel erecution time, i.e., the

schedule length of the entire parallel program.

The scheduling policy is illustrated by a chart: the horizontal axis is the list of

all underlying available processors, while the vertical axis represents tasks allocated

on each processor and the execution order of tasks assigned to the same host. The

completion time of lhe eait task is the parallel execution time of the program. A

graphical representation of the scheduling policy is found in Figure 1.1.

Within the AT ME environment, the incorporated scheduling algorithm is a

combination of the C ET and P ET algorithms, as proposed in Sections 3.6 and 4.4.

As observed, C ET and PET are similar: both algorithms aim to choose a schedulable

task and an idle processor, so that the selected task can commence its execution on the

chosen processor at the earliest possible time. The difference between C ET and P ET

163

struct
int
int
int

);

policy-file-format {
taskidxno;
procidxno;
execseqno;

// tne task.
// tne allocated processor.
// "t¡e execution order.

Figure 6.6. Data structures for the scheduling policy file.

is the different ways adopted to calculate lhe earliest start time, S1(t¿,Pj),of the task

f¿ on processor pr. (Section 3.6.2). Therefore, ATME modifies the algorithm CET so

that it can incorporate the processing of preemptive tasks scheduling, as follows:

s{t¿,p) : max{(F(r¿upjt) - u(tot,pjt) * (L -v(t¿r,t¿))¡

M(trr,t¿) * R(t¿1,¿i)) | Vúil 1t¿, D(t¿1) : Pjr, D(to¡ : ,o¡

Sz(t¡,p¡) : max{S1(ú¿ ,p¡), A(p¡)}

where Sz(t,p) represents the earliest start time of task ú, considering the available time

of its resident processor p.

The structure of the scheduling policy file is given in Figure 6.6. The policy

file records the allocation of tasks onto processors, and the execution sequence of

tasks resident on the same host. Such an AT M E-generated policy file is accessed

by the ATME task spawn primitive tme-spawnQ, to distribute tasks onto available

processors. In this way, AT ME automates conditional task scheduling.

6.7 Runtime Data Collection

AT M E designs a functional component referred to as runtime data collection to capture

and retain traces generated by the probes embedded in parallel tasks. This section

examines issues addressed by this component.

164

It is node attributes of the control flow graph that are captured and stored in trace

files at runtime. After execution, node attributes are used to calculate task attributes,

which are retained for later use. The AT M E runtime d,ata collection component

collects the runtime information relating to parallel tasks and processors, calculates the

task attribute values, and stores such values into progrl,rn databases as an execution

profile.

Section 6.7.1 lists all trace files generated at runtime. The calculation of task

attributes, based on the control flow graph and the captured information, is presented

in Section 6.7.2. Section 6.7.3 illustrates the program databases employed in ATME.

6.7.L TYace Files

When a task is executed at runtime, the inserted probes capture runtime data

with regard to node attributes of parallel tasks, which are dumped into trace f'les.

Corresponding to probes presented in Section 6.4.2.I, traces include the execution

time of task segments, the volume of data communicated, the execution probability

indicating whether or not the execution between two interconnected tasks actually

takes place, and the preemption start point of data transmission operations. The trace

file may also contain the information regarding the input parameter of the task. The

following trace files are designed for the collection of node attributes in AT M E:

o tracesl

Each task has a tracesl file, which captures the execution time and execution

frequency of nodes in the control flow graph for that task. This file collects

task runtime information which is used to calculate the task computation time

attribute of the task model, as discussed in Section 6'7.2.

165

o tracesÙ;

Each task produces a traces? frle. This file captures the volume of data

communicated between this task and other interconnected tasks. Such

information is used to calculate the communication time attribute of the task,

since it is assumed that the communication volume is directly proportional to the

communication time. Furthermore, the traces2 file also notes the location within

the source file of where the data communication takes place. The preemption start

pointbetween a parent task and its dependent child task can then be determined.

o traces?:

All user tasks of the parallel program share a traces? frIe. The file records

the spawn and attempt-to-spawn relationships between interrelated tasks in the

program. Subsequently, the execution probability between tasks can be obtained

from this file.

o tracesy':

When the incps switch is set as "on", this file gathers the value of the input

parameter to the task. The collection of such information is used to predict the

task model in subsequent program executions, as stated in Sections 3.5 and 6.5.

Trace files are by-products of program execution. After the program has

been executed, trace files produced at runtime are transformed and dumped into

corresponding "program databases" which profile the execution history of the parallel

program.

166

6.7.2 Thsk Attribute Calculation

This section examines the calculation of task attributes, on the basis of attributes of

nodes which are recorded in the trace frles, as discussed in Section 6.7.1.

The basic attributes required to construct the task model include task computation

time, task communication data time, execution probability and preemption start point

between parent and child tasks. Among these task attributes, the communication tirne

between interrelated tasks can be directly derived from the communication volume,

which is presented in the frIe traces2. The erecution probability is also directly obtained

from the trace file traces?. Therefore, only tasle computation time and the preemption

start point need to be calculated by referring to the corresponding control flow graph

and trace files.

Armed with the trace files generated at runtime and the attribute references

extracted from the static program analysis, the execution time and execution frequency

of each node in the control flow graph can be achieved. The computation time of the

task can then be calculated by:

U(i,p) : D (etime¡ * ecount¡)
jenodes¡

where U(i,p) is the computation time of the task i on processor p; nodes¿ is the set

of nodes of task i's control flow graph etime¡ arrd ecount¡ are the execution time and

execution frequency, respectively, of node j in the graph.

With the availability of the task computation time, the preemption start point of

its child task can then be achieved by:

t67

v(i) -v(j)PSP(i, j): u(i)

where V(i) is the execution commencement time of task i (which is noted in the trace

frle traces?). U(i) is the task's computation time which is just calculated.

6.7.3 Program Databases

In ATME, program databases are designed to supply history values oftask attributes

to the task model constructior? component, which can then predict the task model in

the forthcoming execution. AT M E employs the following five program databases:

o program database pd,-comp

This database is utilized to store the computation time of parallel tasks in

previous executions. In ATME, the task computation time is not directly

captured at runtime. The calculation of computation time, based on captured

node attributes in the task's control flow graph, is presented in Section 6.7.2.

o program database pd-comm:

The magnitude of data transmitted between tasks is stored in this database. Such

information is directly captured at runtime by probes and stored in the trace file

traces2. With the availability of network bandwidth, the communication time

between interrelated tasks can be achieved.

o program database pd-prob

The occurrence of communication between interconnected tasks is retained in the

database pd,prob. Such information is directly generated by probes, stored in the

trace file traces?, and used to predict the value of the task attribtte,, enecution

168

probøbility. Due to conditional branches attached to task runtime operations, the

data communication may not take place in certain program executions . Erecution

probability, is defined to capture the likelyhood of such communication.

o program database pd-psp:

This database reco¡ds the preemption start point of communicating tasks.

As stated, in the case where preemption is permitted among parallel tasks,

preemption can enhance system performance, as seen in Chapter 4. Furthermore,

preemption can also affect the scheduling policy. It is suggested that the

scheduling algorithm take this factor into account, as done in PET. The

task attribute, preemption start point, is proposed in this thesis to model

preemptive task scheduling and execution. The probe timing inserted after a

data-transmission operation within a task can assist in obtaining the preemption

start point between this parent task and its dependent child task. The calculation

of the preemption start point is discussed in Section 6.7.2.

o program database pd-incp:

If the input parameter probe is inserted in the user task (i.e., the user sets the

ttincpst' switch to t'on"), then the corresponding trace frIe,, tracesf, dumps its

content to this program database.

Together, the program databases collected by ATME provide execution history

values of task attributes to other AT M E functional components. In particular, such

profiles are mostly used by the task model construction component to predict task

attributes in the forthcoming execution. In addition, such profile information is also

utilized by the post-erecution analysis component (Section 6.8) to supply performance

reports as well as tuning suggestions to the application programmer.

169

6.8 Other Components

The remaining componènts in AT M E are post-erecution analysis and report

generation These two components are designed to provide tuning suggestions to the

application programmer, as well as to AT M E itself. For instance, tuning suggestions

might include "the volume of data communicated between these two tasks is excessive",

which may result in network congestion, so that the combination of tasks can be

considered. The objective, in general, is to improve program performance.

Tuning suggestions can also be derived from the conditional task model. Equipped

with the various program databases, a conditional task model can be determined:

directed edges illustrate precedence relationships between parallel tasks, and task

attributes describe task behaviour. For example, task communication time correlates

to the magnitude of data communicated between interrelated tasks, in particular,

execution probability illustrates communication patterns of the parallel program.

From the conditional task model, the user can either define constraints to guide

the distribution of parallel tasks onto underlying available processors, or adjust task

partition by, say, splitting a task into two sub-tasks so as to improve the parallelism.

Tuning suggestions and performance reports may vary, since different application

programmers may have different expectations of their parallel programs. At present,

the components post-execution analysis and report generation are mainly adopted to

produce experimental results, as presented in Chapter 7. Performance analysis in

parallel processing is an active research area which has attracted much attention in

recent years. Results can be found in [29, 56, 67, 85, 108, I24,,146,,175]. Promising

results can be incorporated into ATME at a later date.

170

Chapter 7

Simulation and Experimentation

This thesis, through the ATME environment, realizes efficient scheduling polices and

high system performance for both the conditional task scheduling and the preemptive

scheduling problem. In particular, two task scheduling algorithms, namely, C ET and

PET, are proposed and implementedin ATME. This chapter presents experimental

results regarding AT M E and its adopted algorithms.

Section 7.1 illustrates the mechanisms used to simulate parallel programs, and the

underlying parallel and distributed system. Section 7.1 also discusses the simulation

of task execution and the framework for the experiments.

Section 7.2 presents experimental results regarding the features of AT M E and

the conditional task scheduling problem. The experiments illustrate the performance

of ATME and comparc ATME against both a random scheduling strategy and a

round-robin scheduling algorithm. The experiments also reveal the significance of the

eaecution probability task attribute in influencing the efÊciency of conditional task

scheduling. In addition, Section 7.2 examines the responsiveness of AT M E to an

abrupt change in program usage patterns.

L7L

Section 7.3 gives experimental results on preemptive task execution and preemptive

task scheduling. It compares the discrepancy in terms of system performance under

different preemption strategies. Specifically, a comparison between preemptive and

non-preemptive task execution, as well as preemptive task scheduling versus non-

preemptive task scheduling, is undertaken.

7.L Simulation

The simulation of parallel programs, the parallel and distributed system, and the

execution of parallel tasks involves the mimicing of a "practical" problem and a

t'practical" multiprocessor architecture, on which experiments can be undertaken to

capture experimental results regarding AT M E and related issues. Objects to be

modeled in the task scheduling problem include: the target machine (via a processor

model), the parallel program (via a task model) and execution of the program (via

program usage patterns). Such simulation is presented in Sections 7.1.1, 7.I.2 and 7.1.3,

respectively. The simulation results have been validated by spot checking results

against actual distributed applications.

Parameters are adopted to simulate each "object". For the sake of clarity, in this

section, all simulation parameters are written in Italics beginning with a capital letter,

while other parameters are shown in bold font.

7.L.L Simulating the Target Machine

The target machine is portrayed by a processor model, as introduced in Section 3.1.

It is assumed that tasks of a parallel program can execute in parallel on their host

processors and communicate with each other through the message-passing mechanism,

172

The parameter, ProcNum, describes the number of available processors in the

underlying parallel and distributed system. For any particular processor, the

parameter, LinkNum, indicates the number of network links from this processor to

other processors. The interconnection between a pair of processors in the system

is illustrated by the parameter ProcConProb, where the value of 0 indicates no

connection exists between the two processors while 1 represents a direct connection

exists. Consequently, among all possîble connections from a particular processor, the

number of links (emitting from this processor) on which the value of ProcConProb is I

must be equal to the value of LinkNum lor this processor'

As stated in Section 3.1, this thesis assumes an "ideal" processor model available.

That is to say, all processors are identical and are fully interconnected with identical

communication networks. \ /ith respect to the simulation of the target machine, the

parameter LinkNum of any processor is equal to (ProcNurn - l) and ProcConProb for

all links between any two processors is 1 (i.e., connected). Consequently, ProcNum

uniquely determines a processor model, and thus a target parallel and distributed

system, with respect to this thesis.

7.L.2 Simulating the Parallel Program

The simulation of the parallei program is conducted through the description of the task

mod,el presented in Section 3.2. Such simulation involves a number of aspects: the task

interconnection structure, tasle attributes and progranx usl,ge patterns. Each aspect is

governed by a number of simulation control parameters discussed in Sections 7.L2.1

through 7.1.2.3.

L73

7.L.2.1 Task Interconnection Structure

The taslc interconnection structure is established to reflect the task precedence

relationships in the application program. It is defined by three parametersz TaskNum,

TasksuccNum and TasksPLul. The TaskNurn parameter determines the number of

tasks in the parallel program. TaskSuccNurn is the maximum number of child tasks

which may be spawned by a task. When constructing (simulating) the task model, this

thesis adopts a method in which all tasks of the program are arranged in a hierarchical

structure. The parameter TasksPLuldescribes the maximumnumber of tasks permitted

at each level of the hierarchy. During the simulation, task interconnections are

generated randomly between any two levels in the model, to simulate communication

and precedence relationships between parallel tasks.

Note that the task interconnection structure generaled above illustrates all possible

message-passing operations between tasks. The occurrence of a task interconnection

relationship at runtime depends on the value of the eaecution probability which is

associated with it. Therefore, the task interconnection structure can be regarded as

invariant between different program executions.

7.1.2.2 Task Attributes

The second aspect to be simulated for a parallel program is the task attribzúes, which

deflne the behaviour of the tasks within the program. In this thesis, the task attributes

include task computation time, communication time and execution probability, as

stated in Section 3.2. The task attribute also includes the preemption start point

to illustrate the preemptive task model as presented in section 4.1.

t74

The values of all attributes of a parallel task are assumed to be determined by

an input parameter, denoted as incp, for the task. incp is not a simulation control

parameter per sq but represents factors which determine the behaviour of the task. As

seen in Section 7.I.2.3,, the experiments simulates the change of task attributes (between

different program executions) through the task's incp vaIte, which itself is controlled

by a set of simulation control parameters (as seen below). The introduction of incp for

each parallel task largely reduces the number of simulation control parameters in the

experiments, thereby reducing the complexity of the simulation process; otherwise, each

task attribute requires a set of simulation control parameters, to manipulate (simulate)

the variation of each attribute between program executions. However, simplification

by no means results in loss of generality with respect to the experimental results.

The task attributes, in reality, may not be uniquely determined by the task's

input parameter, this thesis therefore introduces four simulation parameters, namely,

CornpDistb, CommDistb, ProbDisúó and PreemptDistb, to represent the factors, apart

from the input parameter incp, which affect task behaviour with regard to task

computation time, task communication time, execution probability and preemption

start point between the tasks, respectively. In the following experiments, all of these

parameters are presumed to have value 0, in order to simplify the simulation system

and focus on the problems addressed by this thesis.

For a parent task, and its child task, the preemption start point (PSP) is simulated

in the range of PreemptstLB and PreemptstUB. As mentioned in Section 4.1, when

PSP :1, it indicates that there is no preemption between the interrelated tasks.

For any generated task model, only the task attributes are assumed to vary between

program executions, while the number of parallel tasks and the task interconnection

structure are regarded as static across the various executions of the parallel program.

175

The parameter AuePMfuatio defrnes the ratio between the average computation

time to the communication time of a parallel task. It simulates different kinds of

parallel applications: a high value of. AuePMRøtio (e.g.,20.0) models computation-

intensive applications, while a low value (e.g., 0.01) represents communication-intensive

applications. The simulation covers a variety of different types of parallel programs.

7.1.2.3 Program Usage Pattern

The final aspect in simulating a parallel program is the prograrn usúge pattern.

This is realized by defrning the usage pattern of each constituent task as the factor

which uniquely determines the behaviour of the task, i.e., the input parameter incp.

Practically, incp can be replaced by a vector or a matrix which describes more than

one factor affecting the task behaviour.

For a parallel task in a conditional parallel program, the value of incp varies across

different program executions, simulating variation in the task's usage pattern. In a

program execution, difierent tasks in the program may have diferent values of incp.

The variation in incp for a task is modelled by a periodic function (such as "sine").

Such a variation of incp models the changing interaction with, and usage of, the task

by human users under normal actual use of the parallel program. The amplitude of

the periodic function is defrned by two simulation parameters, RegLB to RegUB, which

model the lower and upper bound value of incp, respectively. The frequency with

which the value of incp varies between program executions is determined by the range

FreqLB to FreqUB. Therefore, the variation of a task's usage pattern is portrayed by

four simulation control parameters: RegLB,, RegUB, FreqLB and FreqUB. Both the

magnitude and frequency of change in incp are defined for each task when generating

the task interconnection structure, and may vary from one task to the other. The set

L76

Control Parameter Values Used in the Experiments
ProcNum 2 r3 r4,,5 16 r8 19,,L0,,15 r20 r25

LinkNum ProcNum-1
ProcConProb 1.0

TaskNum 5,10,20,30,40,45

TaskSuccNum min(S,TaskNum/2)
TasksPLvl TaskNum/2
RegLB, RegUB 5,10

FreqLB, FreqUB 15,20

PreemptstlB, PreemptstUB 20, 100

CompDistb 0.0

CommDistb 0.0

ProbDistb 0.0

PreemptDistb 0.0

AvePMRatio 0.1,0.5,1.0,5.0,10.0
InitRuns 5

Runs 20

Sets 5

Table 7.1. Simulation parameters and their experimental values

of usage patterns for each task constitutes the entire program's usage pattern.

7.L.3 Simulating Task Execution

The program execution is categorized according to the value of three simulation control

parameters: AuePMfuatio, TasleNur¿ and ProcNum. Correspondingly, experimental

results are analyzed and examined by each category as determined by these three

parameters. Within each category, a number of task models and processor models are

generated (with different task interconnection structures or task attribute values). The

simulation parameter ,9eús represents the number of different task models generated in

each category. All experimental results for each category are averaged to collect an

unbiased result.

With respect to the simulation of program execution, for any simulated program

and processor model (i.e., a specific set of values of. AuePMRatio, TaskNurn, ProcNum

L77

and a certain parallel program), InitÈuns number of executions are undertaken to

capture initial task runtime data. The same parallel program then executes Runs

times (with different usage patterns, i.e., with different task attributes) to collect and

achieve average performance data.

All simulation parameters and their values used to gather experimental results are

listed in Table 7.1.

7.2 Experiments Dealing \Mith Conditional Task

Scheduling Issues

This section presents the experimental results with respect to the performance of

ATME and issues related to conditional task scheduling Qf Ð. Section 7.2.1

compares the performance of AT M E to the case where the task model is precisely

known prior to runtime (which is regarded as the "ideal" situation in CfS).

Sections 7.2.2 and 7.2.3 compare the performance of the conditional task scheduling

algorithm, C ET, against a random scheduling strategy and a round-robin scheduling

algorithm, respectively. Section 7.2.4 manifests the signifrcance of the execution

probability attribute in influencing the efficiency of program execution. Section 7.2.5

shows the responsiveness of AT M E in the case when the usage pattern of the parallel

program undergoes a sudden change. The accuracy of AT M E estimates on task

attributes is also given in this section.

178

Schedule Execution
task athibutæ

execution

task attributes
taskmodel CET Actual

execution time

task model Schedule Ideal
execution time

Ideal (actual)
task attributes

Figure 7.1. The actual and ideal execution time.

7.2.L System Performance Under ATME

The performance of a parallel system employing AT M E for parallel programming

support is measured by the performance difference between ATME (i.e., the actual

execution time) and the ideal execution time. Figure 7.1 illustrates how the two types

of execution time (actual and ideal) are determined.

Prior to program execution, using the predicted task model, a scheduling algorithm,

such as CET, is used to distribute tasks onto available processors, and thus the actual

erecution time (AT M E Exec. Time) is obtained.

After program execution, the actual task attributes (which were captured at

runtime) are used to construct the "ideal" task model. In other words, task attributes

of the "ideal" task model are assigned values equal to what was achieved at runtime.

The execution is (virtually) repeated with the ideal task model and the same scheduling

algorithm. The the ideal execution tirne is then obtained.

The term, AIR, is introduced:

ATME Erec. Tirne - Ideal Enec. Time

Idr"t E*.:Ir*,

A negative value of AIR indicates that AT ME outperforms the ideal situation;

while a positive A.IA shows the opposite. The ideal erecution time, tather than the

optimal schedule length, is chosen for comparison against the performance of ATME,

t79

AvePMRatio AIR<O AIR=0 AIR> O

ExecYo Ave.DiftYo ExecYo ExecYo AveDiftYo
0.1 L4 7.2 45 4I 15.1

0.5 t2 3.8 50 38 7.6

1.0 I 2.7 50 4l 7.7

5.0 8 3.2 53 39 6.1

10.0 I 3.7 55 36 4.9

Table 7.2. Application program performance by employing ATME.

owing to the computational impracticality of determining the optimal scheduling length

of a parallel program.

The experimental results are grouped by the three major simulation parameters

AuePMRatio,TasleNum and ProcNurn. Table 7.2 shows the diflerence between the

performanceof ATME and the ideal, categorized by the AuePMRatiopararneter. For

a fixed value of AvePM&atio, execttions are divided into three groups, depending on

the value of AIR. The first and third groups of AI R values have two sub-columns,

representing the percentage of simulated executions falling into this category, and the

average difference between AT M E execution time and the "ideal execution time",

respectively. The second group of AI Rvalues just indicates the percentage of execution

in this category, since the average performance difference is 0.

For each category of AuePM&atio,it is possible that the performance of ATME is

better than that of the ideal (i.e., the AI R (0 column in Table 7.2). This implies that

the ideal performance mentioned in this thesis does not necessarily mean the optimal

performance of the program. It merely represents the "best" solution anticipated by

the scheduling algorithm. Nevertheless, the scheduling algorithm may not produce an

optimal distribution solution based on the precise task model.

From Table 7.2, it can be observed that the majority of executions using an

inaccurate task model (i.e., predicted by ATME prior to program execution) do

not perform as well as the corresponding executions which employ the precise task

180

AvePMRatio
0.1

0.5

l:B
10.0

I:2 l:1 2:l 5:l 10:l

Ratio of task number and processor number (TN:PN)

20:l

Figure 7.2. AT ME performance with various ratios of task number to processor
number.

model (i.e., the ideal case). This indicates that the accuracy of the task model,

not surprisingly, directly affects the performance of the system. As seen, AT M E

performs, at worst, around 15% worse than the ideal case when AuePMRaúio is 0.1 (i.e.,

communication-intensive applications), while 59% QaTo in AIR (0 column ar'd 45To

in AI R: 0 column) executions under AT M E achieve better or the same performance

as the corresponding ideal case. In computation-intensive applications (AuePMRatio

equal to 10.0), the performance difference between AT M E and the ideal strategy gets

even closer: only 36% of executions under AT M E show slightly inferior performance

to the ideal case (a mere 4.970 petformance discrepancy).

Figure 7.2 shows the difference between the average ATME performance and the

ideal performance, under various ratios of task number and processor number. As seen,

0\

ñl
c>€
0)

q

t¡l

H

x()
É
ñl

B
LoØ
€
c)

Éo

oox()
o
d
!
ñt
È

20

l5

0I

5

181

for the same type of applications (i.e., when AuePMRatio rcmains constant), when

the number of available processors is greater than the number of parallel tasks, such

as ?N : PN - L:2, the performance discrepancy between ATME and the ideal case

is minimal.

There is a signifrcant gap between the results when AuePMfuatio:0.1 and

the other values of AuePMRatio in Figure 7.2. This indicates that communication-

intensive applications are more sensitive to the accuracy of the task model than the

other types of applications. Since it is impossible to estimate the task model with 100%

accuracy prior to execution, due to the fact that conditional branches and loops within

parallel task can not be determined until runtime, this performance difference between

a practical environment (such as AT M E) and the ideal case can not be avoided.

Nevertheless, from later experiments in this chapter, it can be observed that AT M E

performs generally better than the other practical scheduling algorithms.

7.2.2 CET vs. Random Distribution Strategy

A comparison between the performance o1 C ET and that of a random distribution

strategy (denoted as RDIST) is conducted in this experiment. The ÄD1.9T strategy

randomly distributes the parallel tasks onto the underlying available processors. It

approximates what a naive user (or a user concentrating more on parallel computation

algorithms than on the task scheduling issue) might attempt if distributing tasks by

hand. For each group of simulation parameters (i.e., AuePMRatio, TaskNum and

ProcNum), a number of task models are simulated to represent different kinds of

parallel programs. For each program, C ET is used to obtain a scheduling policy

(based on previous program executions) and a measure of execution time; and then a

random distribution policy is used with the same task model to distribute tasks onto

t82

AvePMRatio NAR<O RAR=0 RAR> O

ExecYo AveDiflZo ExecYo ExecYo AveDiftTo

0.1 2 2 1 98 L24

0.5 2 3 1 97 46

1.0 3 4 2 95 35

5.0 4 3 2 94 22

10.0 3 3 2 95 20

Table 7.3. The performance of AT M E versus RD I ST .

processors. The parallel execution time of each program under these two scheduling

strategies is compared.

The term RAR\s introduced to compare the execution time achieved by the random

strategy RDI ST against C ET:

RDIST Exec. Time - CET Erec. Tirnetrttt: cTr E-"". ri*"

A positive value for RABindicates that C ET performs better than the random strategy

RDIST, while a negative value of RAR shows the opposite.

Table 7.3 shows the results of this experiment. It follows a similar format to

Table 7.2. As seen, AT M E significantly outperforms -RD1^9T for almost all types

of applications - not only in terms of system performance (the AveDiffTo column in

the rightmost RAR) 0 category), but also in terms of the percentage of executions

in that category (the Exec% column within the RAR > 0 category). For instance,

when AueP M Ratio is 0.5, that is, the application is slightly communication intensive,

97To of applications show as much as a 46To performance gain when utilizing AT M E

to schedule tasks.

From Table 7.3, it can also be seen that the performance of applications with

an intensive communication load are more sensitive to the scheduling policy than

other kinds of parallel applications. A strategy specifically dealing with conditional

183

communication-intensive applications becomes more crucial. ATME addresses this

concern. For example, when AuePMRatiois0.l, RDIS?performsI24To worse than

AT M E in 98% of executions.

7.2.3 CET vs. Round Robin Algorithm

This experiment aims to compare the efficiency of the C ET scheduling aigorithm used

by AT M E and the round-robin task assignment strategy (abbreviated as ßßA) which

is employedin PV M to distribute parallel tasks onto the virtual parallel machine [69].

For a task model and a processor model generated, at first, the C ET scheduling

algorithm is used to produce a scheduling policy by which parallel tasks are allocated

onto available processors. Therefore, the efficiency of the C ET algorithm, measured by

the parallel execution time (P?), is obtained after the completion of program execution.

Secondly, with the same task model and processor model used by the C ET

algorithm as above, the round-robin algorithm, RRA,, is employed to undertake task

distribution. Following the same manner as above, the parallel execution time of RRA

is then determined.

The term RC R is introduced in this thesis to evaluate the efficiency difference

between RRA and C ET algorithm.

RRA Exec. Time - CET Etec. TimeI)t1U _
CET Exec. Time

A positive value for RCR indicates that the CET algorithm performs better than the

round-robin scheduling strategy. A negative value of RCR shows the opposite.

The experimental results are presented in Table 7.4. According to the value of

RC R, the performance comparison between C ET and RRA is analyzed into three

184

AvePMRatio RCR<O RCR= 0 RCR> O

ExecYo AveljrttTo ExecYo ExecYo AvellittYo
0.1 1 2 0 99 161

0.5 6 3 2 93 44
1.0 8 4 2 90 26

5.0 27 4 5 68 8

10.0 32 4 4 64 5

Table 7.4. The performance of C ET versus the round-robin scheduling algorithm.

groups. As observed, the C ET algorithm generally outperforms RRA in all types of

applications. For instance, when AueP M Ratiois 0.5, 93% of applications show as much

as 44To performance gain when utilizing C ET to schedule tasks. The C ET algorithm

is significantly superior to the round robin algorithm especially in communication-

intensive applications. As seen, when AuePMfuatio : 0.L, 99To executions under

RRA performs on averagel6lTo poorer than those under the CET. It can be seen

that, for the benefit of system performance, it is important to utilize a scheduling

algorithm which is specifically oriented to the conditional parallel programming.

7.2.4 Execution Probability in Conditional Tâsk Scheduling

This section reveals the significance of the task attribrte,, erecution probability, in

terms of its influence on system performance. In Chapter 3, a conditional task

model is presented to describe conditional parallel programs in which message-passing

operations may be guarded. The attribrte, erecution probability, is introduced into

such a task model and plays a critical role in producing a scheduling policy with the

conditional task scheduling algorithm C ET.

This experiment compares the efficiency of the scheduling policy when the

scheduling algorithm first considers and then ignores the factor of execution probability.

These two algorithms are C ET (Section 3.6.2) and ERT [115] (which is based on the

deterministic task model), respectively.

185

AvePMRatio R<0
A

ECR:0 ECR> O

Exec%o ExecTo AveDiffTo
0.1 10 7.L 53 37 16.1

0.5 5 4.9 49 46 9.9

1.0 3 2.3 46 50 9.5

5.0 3 2.9 47 50 7.5

10.0 3 3.3 48 49 7.L

Table 7.5. Performance of ERT vs. CET.

The experiment is conducted as follows. Prior to program execution, the conditional

task model is predicted, based on the previous execution profile. With the anticipated

task model and processor model, the algorithm C ET is applied so that the performance

under the C ET policy is determined; this is termed CET erecution time. The above

procedure is replayed with the algorithm ERT employed with the same estimated task

model to obtain the ERT enecution time. ERT treats the conditional task model as

a deterministic one, i.e., it does not consider the attribute execution probabiliúy when

determining the scheduling policy, and simply assumes that execution probability is I.0

on all task interconnections.

The comparison between the execution time achieved under C ET and Er?? is

defined below, via the term ECR:

D/1D _ ERT Etec. Time - CET Eæc. Tirne
lJ\JIL

- CET Erec. Time

A positive value of EC R indicates that the algorithm C ET performs better than

ERT, since it indicates that the execution time of the program with ERT-generated

scheduling policy is longer than that with the C ET policy.

Experimental results are displayed in Table 7.5. When the AuePMfuatio is 1.0, 50To

of the executions show, on average , 9.5% less efficiency under E RT when compared to

C ET.

186

In some cases, ERT performs better than C ET. When AuePM Ratio is 0.1, 10%

executions can achieve around 7.LTo peúormance gain when adopting the algorithm

ERT to distribute the parallel tasks, as compared to that under C ET. However, in the

same application category (i.e., the same AuePMRatio value), it can also be observed

that C ET performs better than ERT in 37To of executions, with the performance gain

around 16.I%.

This experiment indicates that the factor of execution probability is important and

should be considered by a scheduling algorithm. C ET takes this factor into account,

and consequently enjoys a performance improvement ovet ERT.

7 .2.5 Responsiveness of AT M E

When the usage pattern of a parallel program is stable, i.e., the input parameters

provided into the program are almost the same over a number of program executions,

AT M E adaptively achieves an accurate task model, thus gradually approaches the

performance of the ideal situation. When the usage pattern varies, AT M E needs

to collect a new set of execution histories regarding the task model so that it can

re-establish a new model in order to reflect the parallel program. This experiment

evaluates ATME's performance with respect to how many executions ATME needs

in order to achieve ideal performance, after a sudden change in the usage pattern.

The experiment is conducted as follows. For a fixed set of AueP M Ratio, T ask Num

and ProcNurn values, Sets number of task models are established, each of which is

different from the others in terms of task interconnection structure and task attributes.

For each task model, Runs times of program executions are simulated, in which

the initial few executions utilize exactly the same task model and the same usage

pattern; then the usage pattern of the program is abruptly and sharply changed

187

AvePMRatio TN PN Eaec AIR AcuComp AcuComm AcuProb
1.0 459 I 0.00 0.90 0.91 1.00

2 0.00 0.99 0.99 r.u0
3 0.00 1.00 1.00 1.00
4 0.00 1.00 1.00 1.00
5 U.UU 1.00 1.00 I.00
6 0.00 1.00 1.00 1.00
7 U.UU 1.00 1.00 r.00
8 0.00 1.00 1.00 r.00
I 0.00 1.00 1.00 1.00
1U 0.0u 1.00 r.00 1.00
11 0.94 0.52 0.50 0.34
T2 0.14 0.86 0.87 0.67
13 0.25 0.63 0.81 0.67
t4 0.00 1.00 1.00 1.00
15 0.00 1.00 1.00 1.00
16 0.00 I. UU 1.0u r.00
T7 0.00 r.00 1.00 1.00
1E 0.u0 r.u0 r.UU r.00
19 0.00 1.00 1.00 1.00
20 0.00 1.00 1.00 1.00

Tâble 7.6. The responsiveness of AT M E.

(simulating a change in task attributes, in particular, the execution probability between

interconnected tasks); the new task model is adopted in the remaining of test runs to

identify the rate at which AT M E tends to the ideal performance.

Table 7.6 displays the experimental results when AuePMRatiois 1.0, and there

are 45 parallel tasks (7N column) in the parallel program and 9 processors (PN

column) available in the parallel system. 20 (Erec column) test runs takes place

for each fixed task model. Half way through (the ttth run), the task model is

radically changed and then remains the same for the remaining runs. The AIR

column shows the performance discrepancy between AT M E and the ideal situation.

AcuComp, AcuComm and AcuProó represents the accuracy of AT M E estimates on task

computation time, communication time and execution probability respectively. When

the task model suddenly changes, AT M E needs to re-collect the task information

and re-build the task model. With only one sharp drop in AT M E performance (94To

188

from the ideal performance), and two cases of performance fluctuation (L4% and 25To

respectively), ATME quickly recovers and adapts to the ideal situation. After three

program executions from the pattern change, AT M E achieves ideal performance, and

the accuracy of ATM.E estimates of task attributes tend to 100% also.

Small continuous variations to the usage patterns result in small incremental

changes to the task model and task attributes as AT M E continues to strive for higher

performance. The responsiveness of AT M E depends on the fluctuation of the usage

patterns of the parallel program and the amount of execution history retained by

AT M E in order to predict and construct the task model. The more stable the usage

pattern, the quicker AT M E adapts. When the pattern is reasonably stable, the shorter

the execution history required, the faster the adaption is. In the experiment, 3 past

executions are utilized to predict the task model in the future execution. The user

of the parallel program should know how to use the program (i.e., sharp or gradual

usage pattern change between executions), therefore, the number of execution histories

adopted in the task model construction is left to the user to determine. If sharp

changes in usage patterns are expected, then the execution history should be fairly

short; however, if gradual changes are expected, then a more detailed execution history

may be maintained.

7.3 Experirnents Dealing With Preemptive Task

Execution and Scheduling Issues

Experiments conducted in this section show the performance improvement of

preemptive task execution and preemptive task scheduling. In this section, it is

assumed that task runtime operations are not associated with any conditions or loops.

189

In preemptive task execution, the NaP * BP sftategy is applied to task execution,

i.e., data transmission from a task is permitted to take place before the task completes

its execution, while task execution on the same processor is non-preemptive. A large

number of parallel programs are simulated by simply extracting their task attributes

regarding task computation time, intertask communication time and preemption start

point. The experimentation is undertaken in the same manner as previous sections.

Parallel applications are classifred according to AuePMfuatio. A range of experiments

with varying values of AuePMfuatio are undertaken with different task numbers,

different task interconnections and various numbers of processors to obtain the average

performance for each situation.

Three kinds of experimental results for each simulated parallel program are studied

and compared. The first type of results are related to system performance in the

non-preemptive program execution. That is, ignore the preemption in all constituent

tasks, undertake the scheduling procedure (by employing the ERT algorithm [115])

to distribute tasks onto processors. The "non-preemptive" performance is therefore

obtained.

The second type of experimental results deals with preemptive task execution

(PTE). That is, when the tasks are allocated (prior to execution), ignore the existence

of task preemption. At runtime, the strategy NaP * BP is adopted to direct program

execution. Therefore, system performance using PT E is determined.

Finally, system performance of preemptive task scheduling (PTS) is examined.

The scheduling algorithrn P ET (provided with the preemptive task model) is used to

generate a scheduling policy to distribute tasks. Thus, "preemptive task scheduling"

performance results can be captured.

The term G/úr? is introduced to measure the parallel execution time difierence

190

AvePMRatio GN.R > O GN,R: O GN.R < O

Exec7o AveDiffTo Exec%o ExecYo AveDiffZo
0.1 0 0 2 98 4

0.5 0 0 1 99 10
1.0 0 0 2 98 10

5.0 0 0 I 91 7
10.0 0 0 I 91 7

Table 7.7. Performance comparison between preemptive task execution and
non-preemptive execution.

AvePMRatio PN.B > O PN^R: 0 PN.B < O

ExecYo AveDiflZo Exec%o ExecTo AveDiffTo
0.1 5 10 4 91 6

0.5 1 1 1 98 T2

1.0 3 1 1 96 I4
5.0 2 1 2 96 L7

10.0 1 1 1 98 20

Table 7.8. Performance comparison between preemptive task scheduling and
non-preemptive scheduling.

between preemptive task execution efÐ and non-preemptive execution (NPTQ:

A positive value for G/[rB indicates that PTEis inferior to NPTE; while a negative Glúr?

shows the opposite. In the same way, PNR is defined as the performance discrepancy

between preemptive task scheduling (PTÐ and the non-preemptive case:

/1^rD _ PTE Erec. Time - NPTE Euec. Time
LTrvrL - NPTE 8r"". T"r*"

D^rD _ PTS Esec. Time - NPTS Erec. Time

NPTS Esec. Time

Tables 7.7 and 7.8 list experimental results of the performance comparison between

PTE and NPTE,, as well as between PTS and tr/PTS, respectively. Each table

contains experimental data of three groups, depending on the value of GNr? and

191

PNR accordingly. For each group and value of AueP M Ratio, the table displays the

percentage of applications (Exec%) falling in this group and the average value of GNR

orPNr?(AveDiffZo),respectively. Inthemiddlegroupof bothTables 7.7 and,7.8,the

AveDiffTo value for both GNR and PN^R is 0, therefore, it is not listed in the table.

The context switch time between tasks on the same host is ignored in the experiments.

From Table 7.7, in over 90% of all simulated parallel applications, preemptive task

execution shows better performance than non-preemptive execution. In all executions,

PT E performs better than, or equal to, the N PT E strategy. This is also theoretically

proved in Section 4.3.6.

As observed in Table 7.8, when AueP M Ratio is 10.0, preemptive scheduling

can achieve up to 20% better performance than non-preemptive scheduling in 98%

executions.

In a very limited number of cases, P?^9 performs worse than I/PTS, due to the

non-deterministic characteristics of the task scheduling problem. For instance, when

AuePMRatio : 0.1 (communication-intensive applications), though P?S can be

inferior to NPTS by as much as 10%, note that only 5To of all executions fatl in

this category.

In general, both the theoretical discussion and extensive experiments indicate that

consideration of preemption in task execution and scheduling can improve system

performance quite dramatically.

r92

Chapter 8

Conclusions and Future 'Work

As stated in Chapter 1, two objectives of this thesis have been identified: the

performance enhancement of parallel and distributed systems, and the support for

application programmers in parallel program development. This thesis realizes the first

objective through the proposed task scheduling strategies, and the second objective is

implemented through the AT M E environment.

Section 8.1 summarizes the study conducted in this thesis. It also proposes

directions for the future wo¡k in Section 8.2.

8.1 Conclusions

This thesis studies three major problems: conditional task scheduling, preemptive

task execution and task scheduling, and conditional parallel programming support.

The thesis presents an environment, named ATME, which practically implements

the theoretical research regarding these three problems and efficiently serves parallel

application programmers.

193

As reviewed in Chapter 2, task scheduling has been conjectured to be a critical step

in parallel processing, since it significantly influences the performance of the parallel

and distributed system. The task scheduling problem has been studied for quite some

time, and can be traced back to as early as 1960s. It has been theoretically proved

that this problem has no optimal solution within polynominal computation time [168].

A compromise must be made between the performance improvement brought by an

efficient scheduling policy and the cost of achieving such a scheduling solution. Many

heuristics strive to obtain a generally "good" scheduling policy within acceptable

complexity. To date, most heuristics are based on a priori knowledge of the task model

of the program being precisely available when the scheduling policy is generated, on

the assumption that the task model does not vary between program executions (such

as the case in deterministic task scheduling). Furthermore, current research generally

focuses on non-preemptive task scheduling in which a child task can not commence its

execution until all its parent tasks complete. Extra effort is required to develop task

scheduling research so that general application problems can be efficiently dealt with.

It is stated in Chaptet 2 that the task scheduling process in parallel program

development should be automated, in order to relieve the burden on the application

programmer who can therefore concentrate on program design [52]. In addition, with

the vast efiort put into scheduling algorithms, such automation can make use of the

most efficient algorithm available and thus achieve high system performance.

Under these circumstances, Chapter 3 studies the scheduling problem within

conditional parallel programming, i.e., conditional task scheduling. Conditional

branches may be associated with task runtime operations (in particular, task spawn,

data transmission and data reception). Deterministic task scheduling (which is handled

by most of current scheduling research) is a special case of conditional scheduling. In

t94

conditional scheduling, the task model, which reflects task runtime operations, can

not be precisely known prior to program execution, since values of the associated

conditional branches can not be determined until runtime. Furthermore, a good

scheduling policy for an individual execution does not guarantee the same efficiency for

other executions. At present, little effort has been made in conditional task scheduling.

Chapter 3 proposes a conditional task model to reflect the behaviour of parallel

tasks which may be conditionally spawned and communicate between each other.

In particular, a new task attribute, erecution probability, is introduced to describe

the conditional execution between tasks. On the whole, the strategy to tackle the

conditional task scheduling problem is composed of two aspects: the construction of

the task model and a conditional task scheduling algorithm named C ET which is

applied to the conditional task model. Task model construction is based on execution

profiles of the program, which are captured at runtime and retained. Two techniques

are employed in the task model construction. They are: linear regression model and

the finite state machine.

This thesis also examines the problem of preemptive task execution and preemptive

task scheduling in Chapter 4. Preemption between parallel tasks at runtime indicates

that data communication is permitted to occur at any point within tasks, rather than

being restricted to the task's beginning (in the case of data reception) and end (in the

case of data transmission). Chapter 4 studies in detail preemptive task execution and

its influence on system performance. It is demonstrated that preemptive execution

does not always result in system performance improvement. A strategy is proposed to

guarantee the performance enhancement in preemptive execution.

Another issue studied in Chapter 4 is preemptive task scheduling. A preemptive

task model is introduced to describe preemption between tasks. Chapter 4 presents a

195

scheduling algorithm, P ET,, to deal with preemptive task scheduling. The construction

of the preemptive task model follows the same strategy as that of the conditional task

model, as presented in Section 3.5.

Chapter 5 in this thesis discusses programming support for the development of

(conditional) parallel programs, which is widely accepted as intrinsically tedious

and complex for an application programmer to manually deat with. Programming

support is established over PV M, with the focus on operations of conditional task

spalryn, conditional data transmission and conditional data reception. The support

is demonstrated through a set of AT M E runtime primitives. It is shown that

the work-load on the programmer is significantly reduced, through the assistance of

AT M E primitives. The programmer can therefore focus on program design, rather

than be distracted by operational issues raised in conditional parallel programming.

Furthermore, the AT M E task spawn primitive dynamically accesses the scheduling

policy file generated by ATME. In addition,, ATME realizes the automation of the

task scheduling process, so that the programmer is freed of the need to consider this

complex issue in parallel processing.

On the basis of the research work undertaken, this thesis presents an environment,

named ATME. Chapter 6 illustrates the ATME envi¡onment and elaborates each

AT M E functional component in detail. Taking as input a user-developed parallel

program (with ATME runtime primitives), ATME can then be invoked to analyze,

instrument and preprocess the user-provided program, so that the resultant program

is ready to run on the PV M platform and gather runtime information with respect

to parallel tasks. AT M E also establishes a processor model to reflect the underlying

parallel and distributed system. Through a few initial test runs, AT M E accumulates

knowledge, possibly incomplete, of attributes and precedence relationships of parallel

196

tasks, and then establishes the task model for the next program execution. The

AT M E self-contained scheduling algorithm (a combination of C ET and PE?) is

triggered with the inputs of the task model and the processor model, and generates a

scheduling policy which arranges the allocation of parallel tasks onto the available

processors, and manages the execution order of tasks assigned on the same host.

Probes inserted into user tasks capture task runtime information which is retained in

program databases for the construction of the task model in later program executions.

As the program is continuously invoked and executed, the adaptive task model

is accurate enough to reflect the configuration and behaviour of the application

problem, i.e., precedence relationships illustrated by the task model can describe the

configuration of the program, and the value of task attributes mirrors the behaviour and

communication among parallel tasks. Therefore, the scheduling algorithm, provided

with an increasingly accurate task model, can produce an efficient scheduling policy.

The environment is ready to assist in the development of conditional parallel

programs. It imposes no extra burden on the user of ATME. Each functional

component within AT M E has designed with a clear interface, and can be easily

replaced as future advances occur. Therefore, new research work can be efficiently

incorporated into AT M E in order to further improve system performance.

Chapter 7 presents experimental results to manifest the properties and efficiency of

the strategy presented in this thesis to deal with the conditional task scheduling as well

as preemptive task execution and scheduling problems. Experiments are undertaken in

simulating various parallel applications and systems, for instance, from computation-

intensive applications to communication-intensive applications. The performance of

AT M E is compared to the "ideal" system performance achieved when it is assumed

that the task model is precisely known prior to execution. AT M E is shown to achieve

197

high system performance when usage patterns of the parallel program are relatively

stable, owing to the fact that the task model can be estimated with high accuracy, as

compared to the actual task model at runtime. AT M E is also experimentally compared

to a random scheduling strategy (RDI SZ). The results indicate that AT ME is largely

superior to RDI ST. An comparison between the C ET and the round-robin scheduling

algorithms is undertaken, and the results verify that C ET can achieve much higher

system performance than the round-robin algorithm used by PV M in communication-

intensive applications.

Experiments show that the newly-introduced task attribute, namely erecution

probability, is critical to the efficiency of the scheduling policy, and to system

performance. It can be concluded that a scheduling algorithm which considers this

attribute, such as C ET, generally performs better than other options do. The

responsiveness of AT M E to radical change in program usage patterns is tested. AT M E

establishes the task model in the forthcoming program execution, on the basis of a

number of previous executions. This ensures that AT ME responds to evolving usage

patterns but not at such a rapid rate that a single execution which does not fit the usual

user profile forces a radical change in the scheduling policy. AT M E demonstrates a

quick "recovery" in the case of abrupt change in usage patterns.

Section 7.3 provides experimental results with respect to the performance

achievement of preemptive task execution a¡rd preemptive task scheduling, respectively.

It is shown that the NaP * BP strategy directing preemptive task execution can result

in performance enhancement. Furthermore, considering preemption between tasks can

alter the scheduling policy which is obtained by non-preemptive scheduling algorithms,

thus improve system performance further.

198

8.2 F\rture Work

The work discussed in this thesis has a number of directions which may be pursued as

future research.

The scheduling algorithms proposed in this thesis, i."., CET and pET ror

conditional task scheduling and preemptive task scheduling, respectively, can be

extended, in order to pursue even better system performance than currently achieved.

One possible direction is to int¡oduce more factors to be considered by the algorithm.

Intuitively, the more factors taken into consideration by a scheduling algorithm, the

more efficient the generated scheduling policy may be. For instance, in this thesis, two

attributes, er,ecution probability and preernption start point, are introduced into the

task model to illustrate the conditional and preemptive parallel program. Experimental

results presented in Chapter 7 demonstrate benefits (in terms of system performance)

brought about such consideration.

As seen, this thesis adopts an "ideal" parallel and distributed system model,

in which all constituent processors are regarded as identical and fully-connected by

identical communication networks. In general, processor heterogeneity should be

considered and reflected by the scheduling algorithm. Further, more attributes are

required by the processor model than proposed in Section 3.1, in order to adequately

describe such a system. The design of the AT M E environment has provided interfaces

for such extension.

A task model utilizing two task attributes, i."., computation time and

communication time, has been widely adopted in current scheduling research. This

thesis introduces two more attributes, i.e., execution probability and preemption

start point, to describe parallel task behaviour. Experiments have indicated that

199

the conditional (and preemptive) task model presented can achieve better system

performance than a model which merely describes task computation time and

communication time. However, it has not yet been proved that such task attributes are

sufficient to authentically reflect the requirements of a parallel program. It is possible

that other attributes must be introduced into the task model to obtain a more accurate

reflection of the parallel tasks and their relationships.

This thesis employs two techniques, the linear regression model and the finite

state machine, to predict task attributes in the forthcoming execution, on the basis

of corresponding values in past execution profile. Alternative techniques, such as fitzzy

logic and statistical analysis, may be utilized to replace the current ones, in order to

estimate the task model with even greater accuracy than what can be achieved at

present.

The dynamic approach can be adopted to tackle the conditional task scheduling

problem. In this case, the estimation of task attributes can be expected to be more

accurate than in the static approach. Although runtime overhead will be incurred, the

dynamic approach is still a valuable direction to achieve system performance in parallel

processing.

The discussion of the conditional parallel programming support presented

in this thesis concentrates on three major primitives: conditional task spawn

(tme-spaun0), conditional data transmission (tme-send,Q) and conditional data

reception (tmetecu()). More primitives can be incorporated into the AT M E runtime

library to better assist the program development. In particular, the distinction of

multiple task instances (multiple processes corresponding to exactly the same source

code) requires more attention. This problem becomes prominent when managing

the point-to'point data communication in which the unique identification of the

200

communicating task is necessary. At present, this problem is basically left to the

application programmer to deal with. Additional effort can be made to relieve the

programmer of this tedious work.

A graphical interface can be built to present the application programmer with

improved conditional programming support. The recognition of multiple task instances

(as mentioned above) can make use of such a graphical interface to describe and

automatically establish task configuration of the parallel program. Code generation

can also be undertaken, with the information provided through the graphical interface,

as done inVPE and HeNCE.

The current control flow graph used by ATME to describe the program flow inside

a parallel task merely deals with typical constructs in a programming language, i.e.,

assignment, conditional branch and repetitive loop. Additional mechanisms can be

introduced to illustrate other constructs in a language, so that AT ME becomes more

practical than that at present. As stated in Chapter 6, the inserted probes, for the

purpose of runtime capture of task information, can alter a task's behaviour to some

extent. Techniques for probe impact elimination should be examined, over and above

those proposed and realized in this thesis.

Two AT M E components, post-euecution analysis and report generation! are

basically adopted for experimental purposes in this thesis. They can do much more

in terms of providing tuning suggestions to the application programmer and even to

AT M E itself. Performance analysis is an area which attracts significant research

attention recently, with the aim of developing high performance parallel programs.

AT M E is deliberately designed to accept new and advanced techniques without

delay. All future work discussed above, once realized, can be immediately incorporated

into the AT M E environment, so that the user is more efficiently and quickly assisted

20r

in the development of parallel programs.

202

Appendix A

ATME Execution Monitor

This chapter presents the design and implementation of the execution monitot (EM)
of the ATME environment. Section 4.1 introduces the data structures adopted in
EM. The full code is listed in Section 4.2.

4.1- Data Structures in EM
/*------- ----*

Incorning message structure: event (request) fron the user task
to the EM.

________ ___/
struct in-nsg {

int tidxno; // Event sender,s task index number.
int tidnot // Event sender's task id nunber,

/ / ít arry.
int event-type; // Event type, deternining which

// structure below to be used.
un10n

int
int
int
int

) u1;
union

int
int
int
int

\ u2;
// Execution sequence of the task.

{

{

partidxno;
tidno;
chdtidxno;
procidxno;

chdtidxno;
partidxno;
tidno;
execseqno;

// tíaxno of the parent task.
// tiano of the sending task.
// tíaxno of the child task.
// Processor id.

203

);

/+--'--'- ----*
Outgoing ¡nessage structure: event (response) fron the EM to the

user task.
+-------- ---*/

struct out-nsg {
union {

int tidno t // Task id nunber.
int execready i / / Mark of "ready to run".

) u1;
union {

int conm-nark t / / Mark of rrcommunication occurs".
I u2;

);

/*------- ----*
List "tidno": retain spawning status of user tasks, to provide

______________:::_::::::__::_::::_:tï:__:::ltiÏ____ ___/
struct list-tidno {

int rec-mark; / / Mark for the record in the list.
int tidxno;
int tidno;
int curparnu¡nt // Current number of parent tasks.
int execreadyt // t'lhether it is its turn to run.

)
struct list-tidno ltidnoIMAXTASKNIIM];

/*------- ----*
List rrco¡nmmark": retain the conmunication status of a pair of

interrelated tasks.
*-------- ---+/

struct list-co¡nnmark {
int partidxno;
int chdtidxno;
int conm-nark;

);
struct list-connnark lconmnark[mXfASfUuM * MAXSUCCNUM];

204

/+'------ ----*
List "texec": retain the execution status of user tasks, for the

__-___--_____-ï_"iït:_::__::::::t::_ï::::t1t:1__:::::::_:::: "_- _ /
struct list-texec {

int partidxno;
int chdtidxno;

Ì;
struct list_texec ltexec[MAXTASKNUM * MAXSUCCNUM];

/ '*------- ----*
I'laiting queue trtidnorr: hold the event which is waiting f or the

task identification nunber of a user task.
*________ ___+/

struct wqueue-tidno {
int used-nark;
struct in-nsg innsgt // Hold off the entire nessage.

);
struct wqueue-tidno wqtidno[MAXTASKNUM *, MAXSUCCNI]MI;

/*------- ----*
l{aiting queue rrcommmark'r: hold the event which inquiries the

cornmunication status between a parent
and a child tasks.

+-------- ---*/
struct r¡queue-connmark {

int used-nark;
struct in-nsg innsg;

Ì;
struct wqueue-connmark wqconmnark[MAXTASKNUM * MAXSUCCNUM];

/*------- ----+
Haiting queue "execready": hold the event which asks for whether

a task is ready to execute or not on
its resident processor.

:*-------- ---*/
struct wqueue-execready {

int used-nark;
struct in-nsg innsg;

);
struct wqueue-execready wqexecready IMAXTASXUUM] ;

205

/*------- ----*
Pointers to all lists and waiting queues used by the EM task

-------- ---/
struct pointers {

int ltidno;
int lconmnark;
int ltexec;
int wqtidno;
int wqconmnark;
int wqexecready;

Ì;
struct pointers ptr;

^.2
Implementation of E M

This section presents the implementation of the execution monitor (EM), which is
the core component of the conditional parallel programming support in AT M E. The
interaction between the execution monitor and the user task is studied in Chapter 5.

/*------- ----*
Execution nonitor process: recording down the execution path of
the dynamic task execution of the application; providing the
inquiries from user processes regarding whether a task has spawned
or sent data to another one.
Receivíng the requests fron user processes, and returning the
results.

-------- ---/
#include (stdio.h)
#include <stdlib.h)
#include (string.h)
#include (errno.h)
#include 'rpvm3 . h"

#include
#include
#include

nain(int argc, cha¡ **argv)
{

int f-end, f-tidno;
struct in-nsg innsg;

I'atme-Oext.h"

'ratne-0g1obaI. h"
rratme-0es-g1obaI

. h"

206

struct out-nsg outnsg;
int f-count = 0;
int i;

initializationO;
f-tidno = pvn-nyti¿O;

f-end =
while

innsg
end == 0) {
get-nql O ;

switch (innsg.event-type) {
case EV1-DETCHDSPAWN: r

evproc-detchdspawn (irunsg) ;

breah;
case EV1-SPAWN:

evproc- sp¿ern (innsg) ;

break;
case EV1-TEXEC:

evproc-t e¡çsç (innsg) i
brealr;

case EV1-NOSPAtrlN:

evproc-no spawn (inrnsg) ;

break;
case EV1-SEND:

evproc-send (innsg) ;

break;
case EV1-NOSEND:

evproc-no send (innsg) ;

breaJ<;
case EV1-DETPARSEI'ID:

evproc-detparsend (innsg) ;

break;
case EV1-DETEXECREADY:

evproc-detexecready (innsg) ;

breal<;
case EV1-NEXTEXEC:

evproc-nextexec (innsg) ;

break;
case EV1-EXIT:

f-end = 1;
breal<;

]

0;
(t-

207

)

dunptexecO;
pvn-exit O ;

exit(1);
Ì

/*------- ----*
Initialization

-------- ---/
initializationo
{

int i, j, f-taskidxno;

loadtasksO;
loadpolicyO ;

for (i=0; i<MAXTASKNUM; i++) {
Itidno[i] .rec-nark = NOT-PROCESSED;

ltidno[i] .ti¿xno = tasks[i] .taskidxno;
ltidno[i].tidno = 0;
ltidno [iJ .curparnun = tasks [iJ .parnun;
ltidno [i] .execready = N0T-EXECREADY;

if (tasks[i].chdnum == 0) brea];
)
ptr.ltidno = i+1;

for (i=O; policy[iJ.procidxno!= MAXNUM; i++) {
if (policy[iJ.execseqno != 0) continue;
f-taskidxns = policy[iJ .taskidxno;
for (j=0; j<Ptr.ltidno; j++)

if (f-taskidxno == ltidno[j].tidxno) break;
ltidno [jJ .execready = EXECREADY;

)

for (i=0; i<MAXTASKNUM * MAXSUCCNUM; i++) {
lconmmark[iJ .partidxno = 0;
lconnnark[i] .chdtidxno = 0;
Icomnmark[i] .conn-nark = 0;

Ì

for (i=0; i<MAXTASKNUM * MAXSUCCNTTM; i++) {

208

Itexec[iJ .partidxno = MAXNUM;

ltexec[i] .chdtidxno = MAXNUM;

)

for
for

(i=0; i<MAXTASKNIIM; i++) wqtidno[i] .used-nark = 0;
(i=0; i<MAXTASKNUM * MAXSUCCNUM; i++)

wqcon¡unark[i] .used-nark = 0;
for (i=0; i<MAXTASKNUM; i++) erqexecready[iJ.used-mark = 0;

ptr.Iconnnark = 0; ptr.wqtidno = 0; Ptr.llqcornmnark = 0;
ptr.wqexecready = 0; ptr.ltexec = 0;

Ì

/***** ****+***i<{<+'F*{<{<{<{<*****
Event Processing

******************{<******'F*************¡1.*********************** ****/

/*------- ----*
Event Processing: evl-detchdspawn:
- This event cones in when the user process tries to detect whether

the task (indicated by 'taskidxno') has been spawned or not.
- If the record is locked, i.e., this task is currently spawned by

sone other task, its 'taskidxno' will be put into the list
'spawn' in a short tine. So, put the event into waiting queue

'wq-tidno'. l,laiting for other events to wake it up.
- If the record is found, i.e., this task has been spawned by sone

other task, then return its 'taskidxno'.
- If there is no exact record, check list 'not-spawn', if still

can not find it, i.e., this task has not been spawned yet, put
a nerr record into list 'spawn'with the 'rec-mark'field set
to 'locked'.

*-------- ---+/
evproc-detchdspawn(struct in-nsg innsg)
{

int i, f-tid;
struct out-nsg f-outnsg;

f-outnsg.u2. conm-na¡k = 0;

f-tid = get-list-tidno(innsg.u2. chdtidxno) ;

switch (f_tid) {

209

case NOT-PROCESSED:

nod-Iist-tidno(t OCfnO, inmsg.u2. chdtidxno, TO-BE-AVAIL) ;

f -outrnsg . ul . t idno = NOT-SPAÍíN ;

put-nqO (innsg.tidno, f-outnsg) ;

break;

case L0CKED:
put -wqueue-t idno (inmsg) ;

break;

default:
f-outnsg.ul.tidno = f-tid;
put-nqO(innsg.tidno, f-outnsg) ;

break;

/*------- ----*
Event rro.""":.g; ";-;;;;- this event occurs when a task has been spawned by one of its

parent tasks.
- record the 'tidno' of the newly-spawned task into list

'spawn'.
- if there are tasks in the waiting queue 'tidno', and waiting

for the 'tidno' of the newly-spawned task, wake it up, and
return 'tidno'.

- Put a record into list 'texec': indicating the occurrence of
cornrnunication between parent and child task, for the purpose of
collecting runtine infornation regarding execution probability
for use by the scheduling algorithn CET.

-------- ----/
evproc-spawn(struct in-nsg inmsg)
{

int i;
struct out-nsg outnsg;

/++* pg1 INT0 LIST tidno && CHECK }IAITING QUEUE wqtidno ***/
nod-Iist-tidno (SPAI,ÍNED, innsg. u1 . chdtidxno, innsg. u2. tidno) ;

/*** Pg1 TNTO LIST texec, INDICATING THE HAPPENING OF EXECUTION

BETI{EEN TI'IO TASKS --- FOR THE USE OF CALCULATING EXECUTION

PROBABILITY ***/

Ì
)

2t0

put-list-texec(inmsg.tidxno, innsg.ul. chdtidxno) ;

)

/+------- ----*
Event Processing: evl-nosPawn :

- Substract 1 from the child task in list 'parnun', representing
the nunber of parents which nay spawn this child task has been
reduced by 1. l,lhen the 'parnun' of this child task becones 0,
i.e., there are no tasks that spawn this child task, the 'tidxno'
of this child task will then be put into the list 'notspawn'.

- If the not-spawned task is the parent task for other child tasks,
then the grand-child task nrill be affected as weII.

- If some task is not spawned by any of its parent tasks, its
execution sequence should be skipped and set the next task after
this task to be 'execready'.

-------- ---/
evproc-nospawn(struct in-nsg innsg)
{

int i, f-taskptr, f-taskptr2, f-chdnun, f-found, f-taskidxno;

/*+* SUBTRACT 1 FROM TASK REFERED BY inmsg.u2.chdtidxno IN LIST

Parnun *i'*/
i = 0;
while ((i < ptr.ltidno) au

(ttiano [i] .tidxno ! = inmsg.r¿2.chdtidxno)) i++;
It idno [iJ . curparnun-- ;

f-taskptr = i;

/*** PUT A RECORD IN LIST commmaTK && CHECK hIAITING QUEUE

conn-nark ***/
put-l ist-con¡nnark (innsg . u1 . part idxno , innsg . u2 . chdt idxno , NO-COMM) ;

/*** MoDIFY LIST tidno *+r./
if (ltidno[f-taskptr].curparnun == 0) {

if (tti¿no[f-taskptr].execready == EXECREADY) {
f-taskidxno = nexttask-torun (ltidno [f-taskptr] . tidxno) ;

if (f-taskidxno != NO-NEXTTASK)

nod-list-tidno2 (f-taskidxno, EXECnUADY) ;

Ì

2Lt

f-taskptr2 = innsg.u2.chdtidxno;
f-chdnun = tasks [f-taskptr2] . chdnun;
for (i=0; i(f-chdnun; i++) {

innsg.ul .partidxno = f-taskptr2;
innsg.u2.chdtidxno = tasks [f-taskptr2] .chds [i] .taskidxno;
/* other fields in "innsg" are of no use */
evproc-nospawn (innsg) ;

Ì

/*-----'- ----*
Event Processing: evl-texec
- Put into list 'texec' the occurrence of execution between

two tasks: the spawn attenpt (intending to spawn a child task
which has already been spawned by one of its other parent tasks).

-------- ---/
evproc-texec(struct in-nsg innsg)
{

put-list-texec(innsg.ul.partidxno, inmsg. u2. chdtidxno) ;

Ì

/*------- ----*
Event Processing: evl-send
- Put a neúr record into list 'commmark'
- Check waiting queue 'wqconmark'

-------- ---/
evproc-send(struct in-nsg innsg)
{

put-list-co¡onnark (innsg . u1 . part idxno, innsg. u2 . chdt idxno, COMM) ;

Ì

/*------- ----*
Event Processing:
- Put a new record into list 'semmm¿¡l¡r
- Check waiting queue 'wqconnnark'

¡t-------- ---* /

)
)

2L2

evproc-nosend(struct in-nsg innsg)
{

put-list-conrn¡nark(innsg.u1 .partidxno, inrnsg. u2. chdtidxno, Ì'10-C0MM) ;

)

/*------- ----*
Event Processing: ev-detparsend
- Detecting whether a parent task 'partidxno' has sent data or

will not send data or tnay send data to the child task
'chdtidxno' .

- Check list 'commmark' to see whether the parent task has sent
data to child task.

- If found, issue the sent response to the user Process.
- If not found, put into the waiting queue)wqcomnnark'.

-------- ---/
evproc-detparsend(struct in-nsg innsg)
{

int f-commm¿¡¡;
struct out-nsg f-outnsg;

f-commmark = get-list-comrnmark(innsg. u2. partidxno,
innsg.ul.chdtidxno) ;

switch (f -conm'nark) {
case N0T-FOUND:

put -wqueue- commm art< (inrnsg) ;

break;

default:
f-outnsg.ul .tidno = get-list-tidno(innsg.u2.partidxno) ;

f -outnsg.u2. cornm-nark = f -connnark;
put-nqO (inrnsg. tidno, f-outnsg) ;

break;

/+------- ----*
Event Processing: ev-detexecready
- Detect whether the current task (indicated by 'tidxno' in

'inmsg') is ready to run, in terms of execution sequence which

Ì
)

2L3

is deternined by the scheduling policy.
- Check list 'tidno' to see whether this current task is set on

'execready'.
- If yes, return, using the field 'tidno' in 'outnsg'.
- If nor put it into the waiting queue 'wqexecready', waiting for

another event 'nextexec' to activate it.
-------- ---/

evproc-detexecready(struct in-nsg innsg)
{

struct list-tidno f-ltidno;
struct out-msg f-outnsg;

f-Itidno = get-1ist-tidno2(innsg.tidxno) ;

switch (f-tti¿no.execready) {
case EXECREADY:

f-outnsg.ul.execready = 1;
f-outnsg.u2.comm-mark = f-nothing;
put-nqO (innsg.tidno, f-outnsg) ;

break;

case NOT-EXECREADY:

nod-list-tidno2(innsg. tidxno, EXECREADY-IüAIT) ;

put -wqueue-execready
(innsg) ;

breal<;
default:

break;

/+------- ----*
Event Processing: ev-nextexec
- Accept a message which says the current task has finished, the

next task which is assigned on the same processor as the
current task and innediately following the current task can go.
The execution sequence is decided by the scheduling policy
generated by the scheduling algorithn.

- Check 'policy' to get the next-go task.
- Check whether 'execready' in list 'tidno' is execready-wait: If

it is, activate the corresPonding record in 'wqexecready'; if
not, go on to the next step.

- Set field 'execready' in list 'tidno'.

Ì
Ì

2t4

- Each task (uniquely identified by 'tidxno') has only one
possible task which is just in front of this task in the
'gantt' chart. Therefore, the 'execready' of the next task nust
be either execready-wait or not-execready. It cannot be
execready.

-------- ---/
evproc-nextexec(struct in-nsg innsg)
{

int i = 0, j = 0, f-taskidxno;
struct out-nsg f-outnsg;
struct list-tidno f-ltidno;

/* TUTS ACTION IS NOT NECESSARY, HERE JUST KEEP ALL DATA FIELDS

',CLEANr' */
nod-list-tidno2(innsg.tidxno, EXEC-END) ;

f-taskidxno = nexttask-torun(innsg.tidxno) ;

if (f-taskidxno == N0-NEXTTASK) goto out-10;
/* IHTs IS THE LAST TASK ON THE SAME PROCESSOR AS THE CURRENT

TASK +/

f_ltidno = get_list_tidno2(f-taskidxno) ;

switch (t-tti¿no. execready) {
case N0T-EXECREADY:

nod-list-tidno2(f-taskidxno, EXECREADY) ;

break;
case EXECREADY I{AIT:

j = o;
while ((j < ptr.Ìrqexecready) &&

(wqexecready[jJ . innsg.tidxno ! = f-taskidxno))
wqexecrea¿ytjl .used-nark = 0;

f-outnsg.ul.execready = EXECREADY;

f-outmsg. u2. conn-¡ûark = f-nothing ;

put-nqO (wqexecready [ji . innsg.tidno, f-outnsg) ;

nod-list-tidno2(f -taskidxno, EXECREADY) ;

bred<;
default z /,*** coulD NoT BE ilEXECREADYtÌ ++*/

break;

j ++;

)

215

out_10:
i++; /+** null ***/

Ì

/ **+**:t*'****'*****+*'ß*******+
Operations on Message Queues

**********************+******************+*+***{.*+*****+***'*:t** **+* /

/*----"- ----*
Get nessage fron the inconing nessage queue

-------- ---/
struct in-nsg get-nqlo
{

struct in-nsg innsg;

pvn-recv(-1, MSGTYPE1) ;

pvn-upkint(&innsg.tidxno, 1, 1)
pvn-upkint(&innsg.tidno, 1, f) ;

pvrn-upkint (&inmsg . event-type , 1

pvn-upkint (&innsg . u1 . partidxno,
pvn-upkint (&innsg. u2 . chdtidxno,

, 1);
!, f);
t, f);

return innsg;
)

/*------- ----*
Send the nessage out on outgoing nessage queue

:*-------- ---* /
put-nqO(int tidno, struct out-nsg outnsg)
{

pvn- init send (ENCoDf NG) ;
pvn-pkint(&outnsg.ul.tidno, 1, f) ;

pvn-pkint(&outnsg.u2.conm-nark, 1, f) ;

pvn-send(tidno, MSGTYPEO) ;

Ì

216

/***********************+*************+*************++********+**+**
Operations on lists and waiting queues

**************+** **** /

/*------- ----*
Get a record fron list 'tidno', return 'tidno'

-------- ---/
int get-list-tidno(int tidxno)
{

int i=0,f-tid;

while (tti¿no[i] .tidxno != tidxno)
switch (ttidno[i].rec-nark) {

case LOCKED:

f-tid = LOCKED;

break;
case N0T-PROCESSED:

f-tid = NOT-PROCESSED;

break;
case SPAWNED:

f-tid = ltidno'[iJ .tidno;
break;

Ì
return f-tid;

i++;

)

/*------- ----*
Get a record fron list 'tidno', return 'execready'

-------- ---/
struct list-tidno get-list-tidno2(int tidxno)
{

int i=0;

while
return

(Iti¿no[i].tidxno != tidxno) i++;
Itidno [i] ;

)

/*------- ----*
Get a record fron list 'commrnark'

2r7

-------- ---/
int get-list-conn¡oark(int partidxno, int chdtidxno)
{

int i=0,f-connnark;

while (((lcomtnmark[i].partidxne r= partidxno) I I

(lconnnark[i] .chdtidxno != chdtidxno))
(i < ptr.lcommnark)) i++;

if (i)= ptr.lconnnark)
f-comnnark = NOT-F0UND;

else
f_commmeû'k = Icon¡omark[i] . comn-nark;

&,&,

return f-comnmark;
)

/*------- ----*
- The calling functions could be: det-chdspawn, sPawn

- Modify the record of 'tidxno' --- only three fields actually:
rec-nark, tidxno, tidno; The last field 'curparnun' is only
nodified by the event 'nosPawn'.

- If there is a new task spawned (i.e. get the 'spawn' event),
check the waiting queue 'wqtidno', to see whether there are
other tasks waiting for this newly-spawned task.

-------- ---/
nod-list-tidno(int rec-mark, int tidxno, int tidno)
{

int i, f-taskptr;
struct in-nsg f-innsg;
struct out-nsg f-outnsg;

i = 0;
while (ttidno[i] .tidxno l= tidxno)
f-taskptr = i;

i++;

/**+ MoDIFY INTo LIST Itídno **+/
ltidno[i] .rec-nark = rec-nark;
ltidno [i] .ti¿xno = tidxno;
ltidno[i] .tidno = tidno;

2t8

/*** IF THIS IS THE NEIILY SPAIdNED TASK, CHECK I'IAITING QUEUE

wqtidno ***/
if (rec_nark == spAt{NED) { /*** oNLy EVENT: spawn ***/

i = 0;
while (i<ptr.wqtidno) {

if (wqtidno[i].used-nark == 1) {
f-innsg = wqtidno[i] .innsg;
if (f-innsg.u2.chdtidxno == tidxno) {

wqtidno[i] .used-nark = 0;
f-outmsg.ul.tidno = tidno ;

f-outnsg.u2. comm-nark = f-nothing;
put-nqO (f -innsg.tidno, f -outnsg) ;

Ì
)
i++;

)
)

Ì

/*-----'- ----*
Modify the field 'execreadY'

-------- ---/
nod-list-tidno2(int tidxno, int execready)
{

int i;

i = 0;
while (ttidno[i] .tidxno != tidxno)
ltidno[i] .execready = execready;

i_++;

)

/*------- ----*
- Affected events: send, nosend' nosPawn

- Put one record in list 'commmark' to express whether two tasks
(parent and child) connunicate or not.

- Check waiting queue 'wqcommnark' to see whether there are any

tasks r¡hich wait for messages fron this parent task.
-------- -----------/

put-list-connnark(int partidxno, int chdtidxno, int conn-nark)

2t9

{
int i;
struct
struct

in-nsg f-innsg;
out-nsg f-outnsg;

/*** PUT INTO LIST lconnmark *+*/
f or (i=0 ; i<ptr. lcomrnmark; i++)

if ((lcornrrark[i] .partidxne == p?trtidxno) 8r,&,

(lconnmarktil .chdtidxno == chdtidxno)) break;

/*** no such record in list connnark ***/
if (i)= ptr . Icornrnnark) {

i = ptr.lcom¡nmark++;
Iconmnark[iJ .partidxtto = partidxno ;

Iconmnark[i] .chdtidxno = chdtidxno;
lconnmark[i] . com¡n-rnark = conn-nark;

)

/*+* CHECK I.IAITING QUEUE wqconrnnark ***/
i = 0;
while (i<ptr. wqcornnnark) {

if (wqconrnnark[i] .used-nark == 1) {
f -innsg = wqconnna¡k[i] ' innsg;
if ((t-irunsg.u2.partidxno == partidxno) &&

(f-innsg.u1.chdtidxno == chdtidxno)) {
rrqcommmarkti] .used-nark = 0;
f-outnsg.ul.tidno = get-list-tidno(partidxno) ;

f-outnsg.u2. conm-nark = conm-nark;
put-nqO (f-innsg. t idno , f-outnsg) ;

Ì
Ì
i++;

Ì
Ì

/*------- ----*
Put event into waiting queue 'tidno': such an event aims to detect
the 'tidno' of a task, but 'tidno' has not been put into 'spawn'
list yet.

-------- ---/

220

)

put-wqueue-tidno(struct in-nsg innsg)
{

int i = 0;

while ((wqtidno[i].use¿-nark == 7) e,e, (i < ptr.wqtidno)) i++;
wqtidno[i] .used-nark = 1;
wqtidno[il .innsg = innsg!
if (i)= ptr.wqtidno) ptr.wqtidtto = I + 1;

/*------- ----*
Put event into waiting queue 'comnmark' such event ains to get
the infornation about whether a task has sent or has not sent data
to another task, so that a 'recv' operation can be issued.

-------- ---/
put-wqueue-commnark(struct in-nsg innsg)
{

int i = 0;

while ((wqco.rrark[i] .used-mark == 1) && (i (ptr.wqco'n¡ntark))
i++;

wqcomrunark[i] .used-rnark = 1;
wqco¡unmark ti] . innsg = innsg;
if (i >= ptr.wqconnnark) ptr.wqcomnnark = i + 1;

/+---'--- ----*
Put event into waiting queue 'execready': such event ains to get
the infornation about whether a task is ready to go or not ---
according to its execution sequence order deter¡nined by the
scheduling policy. Although some of the scheduling algorithns do

not care about the execution sequence of tasks residing on the
sâme processor, however, execution sequence does have significant
ínfluence on the task execution efficiency.

'F-------- ---* /
put-wqueue-execready(struct in-nsg innsg)
{

int i = 0;

((wqexecready[il .used-mark == 1) &tt' (í < Ptr.wqexecready))

]

while

22t

)

i++;
wqexecready[iJ .used-mark = 1;
wqexecready[iJ . innsg = innsg;
if (i)= ptr.wqexecready) ptr.wqexecready = i + 1i

/*------- ----*
Next task which is assigned on the sane Processor as the current
task, and right after this current task.

*-------- ---'f /
int nexttask-torun(int curtaskidxno)
{

int i, f-procidxno, f-execseqno, f-curtaskidxno, f-found;
struct list-tidno f-ltidno;

for
if

(i=0; policy[iJ .procidxno!=MAXNUM; i++)
(policy[i].taskidxno == curtaskidxno) break;

if (policy[iJ.procidxno == MAXNUM) {
error-handling("nexttask-torun") ;

exit (1) ;

Ì

f-procidxnq = po1ícy[iJ .procidxno;
f-execseqno = policy[iJ .execseqno;
f-execseqno++ i

f-found = 0;
while (f-found -= 0) {

for (i=0; policy[iJ .procidxno!=MAXNUM; i++)
if ((policy[iJ.procidxno == f-procidxno) ¿a

(policy[i].execs€eno == f-execseqno)) break;

if (policy[i].procidxno == MAXNUM) return NO-NEXTTASK;

f-curtaskidxno = policy [i] .taskidxno ;

f-ltidno = get-list-tidno2(f-curtaskidxno) ;

if (f-lti¿no.curparnum != 0)
else f-execseqno++;

return f-ltidno.tidxno;

)

222

)

/*------- ------------*
Put record into list 'ltexec', for keeping the record of task
execution in the current run.
- only the starting task having the 'partidxno' equal to

'chdtidxno', and this record does not have to be put into the
Iist.

-------- ---/
put-list-texec(int partidxno, int chdtidxno)
{

if (partidxno != chdtidxno) {
ltexec[ptr.ltexec] .partidxnq = partidxno;
ltexec[ptr.Itexec] .chdtidxno = chdtidxno ;

ptr. ltexec++;
)

)

223

App"ndix B

A Preprocessed AT M E Parallel Task

This appendix provides an example of a user-provided parallel task, and its
corresponding AT ME preprocessed task. The user-provided task contains all three

typical runtime operations: data reception, task spawn and data transmission. The

code generated by AT M E is delimited with comments, for the sake of clarity. The task

model reflected in the program is given in Figure 3.2(a). Be aware that there exists

an erecution monitor which retains task runtime information and controls the task

execution. Functions such as det4arsend, det-chdspaun and put-spartn are explained

afterwards.

8.1- The Original Code

/*------- ----*
A user-provided paralle1 task

This task is named "Art, úIhich receives data fron task "S", and

spawns and sends data to tasks rrBrr and rrDrr.

+-------- ---*/
#include (stdio.h)
#include <stdlib.h>
#ínclude "atne-Og1obal.h"

nain(int in-argc, char **in-argv)
{

int i, f-tidxno;
char f-strh0Ol;

/* Initialize the out-argv array (storing spawning parameters);
* The first three argunents are reserved for ATME use. */
for (i=O; i<OUT-ARGV-NUM; i++)

out-argv[i] = (char *)naIIoc(sizeof (char)*'ARGV-LEN) ;

/* Receive data from task "s". The "tidxno" of task s is in

224

* in-argv[3], assigned when this task A is spawned by task S.
* Recall the first three input paraneters are reserved by ATME. */
tne-recv(in-argv[3], MSGTYPE2) ;

tne-upkstr(f-str, 1, f) ;

/* Do sonething */
do-sonething(100) ;

/* Spawn and send data to task ilB", if the condition is true.
* condlO simulates the conditions associated with the task spawning
* operation between task A and B. */
if (condlO == 1) {

f-tidxno = tme-spalrn(ttgtt, out-argv) ;

if (cond2O == 1) {
tne-initsend(0);
strcpy(f-str, "A to B"); // fne nessage is "A to B".
tne-pkstr(f-str, 1, f) ;

tne-send(f -tidxno, MSGTYPE2) ;

Ì
Ì

/*. Spawn and send data to task rrDrr, if the conditions sinulated by
* cond3O :.s true. */
if (cond3O == 1) {

f -tidxno = tme-spawn(ttptt, out-argv) ;

if (cond4O == 1) {
tne-initsend(0) ;

strcpy(f-str, "A to D") ; / / tne nessage is "A to D"

tne-pkstr(f-str, 1,1) ;

tne-send (f -tidxno, MSGTYPE2) ;

Ì
Ì

/* Exít ATME, but still exist as a process */
tne-exit O ;

)

8.2 The ATME-Generated Code

/*---'--- ----*
ATME-translated Code

This task is naned "Atr, which receives data fron task I'S", and

225

spawns and sends data to tasks rrBrr and rrDrr.

-------- ---/
#include (stdio.h)
#include <stdlib.h>
#include "atne-Ogloba1.h"

/*** ATME code begins ***/
#include "pvm3.hil
#include "atne-Oext.h"
#include "atne-0pa-g1oba1.h"
#include "atne-0tmc-g1oba1.h"
/*** ¡1Yg çeds gnds ***/

nain(int in-argc, char *+in-argv)
{

int i, f-tidxno;
char f-strh0Ol;
struct detect-info detinfo; / / I.tlttt, structure

/*** ATME code begins. *+*/
mytidno = pvn-nyti¿O;

estidno = stoi(in-argvhl) ;

nytidxno = stoi(in-argvlZl) ;

// ín-argv[o]: task nane.

/* Load the task nodel, the Processor nodel, and the scheduling
* policy generated prior to program execution. */

loadtasksO;
loadprocs O ;
loadpolicyO ;

/* Detect whether it is this task's turn to run, i.e., the control
* of the execution conmencement order of tasks distributd onto
* the sane processor. */

detinfo = det-execready(nytidxno, nytidno) ;

/* Atl,tE-used variabLes */
spawnno = 0;
sendno = 0;
recvno = 0;

226

detinfo = det-execready(nytídxno, nytidno) ;

/*** ¡1Yg code ends. *+*/

/* Initialize the out-argv array (storing spawning parameters);
* The first three argunents are reserved for ATME use. */
for (i=O; i<0UT-ARGV-NUM; i++)

out-argv[i] = (char *)nalIoc(sizeof (char)*ARGV-LEN) ;

/*** ATME-translated code begins. +'**/
/* Receive data fron task "s'r. The "tidxno" of task s is in
* in-argv[3], given when this task A is spawned by task S.

+ Recall the first three input parameters are reserved by ATME. */
partidxno = in-argv[3] ;

/* Ask the I'execution nonitor" for the infornation about whether
* there are any data transrnitted fron the parent task. */

detinfo = det-parsend(mytidxno, nytidno, partidxno) ;

/* tt there is data sent off from its parent task S. */
if (detinfo.conm-mark == COMM) {

pvn-recv (det info . t idno , MSGTYPE2) ;

pvn-upkstr(f-str, 1, f) ;

printf("4 receives from S: %s\n", f-str);
Ì
else

printf("4 doesn't receive from S \n");
/*** ATME-translated code ends. ***/

/* Do sonething. */
do-sonething(100) ;

/*** AMTE-translated code begins. ***/
/* Spawn and send data to task'rBil, if the condition is true.
* condlO sinulates the conditions associated with the operations
* between task A and B. */

/* Detect and spawn task B. */
/ / Cet the task index uumber of the child task "8".
chdtidxno = getchdtidxno(nytidxno, rrBrr, spawnno++) ;

if (condlO == 1)

{

227

detinfo = det-chdspawn(nytidxno, nytidno, chdtidxno) ;

/* tt the child task has not yet been spawned... */
if (detinfo.tidno == NOT-SPAïíN)

{
/* Read the scheduling policy file to obtain the processor,
* which is pre-defined by the ATME scheduling algorithm,
* on which this task "Bil can be allocated. +/

strcpy(procna¡ne, getProc(chdtidxno)) ;

/* Prepare parameters for spawning the child task. The
* first three parameters are reserved by ATME. Note that
* the out-argv[2J stores the task index number of the
* current task, i.e., the parent task of its to-be-spawned
* child task. */

strcpy(out-argv [o], itos(estidno)) ;

strcpy (out-argv hl , itos (chdtidxno)) ;

strcpy(out-argv [2], itos (nytidxno)) ;

nunt = pvn-spawn("B", out-argv, 1, procnarne,
NTASK1, &tidnol) ;

if (nunt < NTASKI)
error-handling(" [A] : error in spawn B . . . ") ;

tasks [chdtidxno] .tidno = tidnol ;

/* Inforn the I'execution nonitor" about current status of
* task rrArr and rrBrr. */

put-spawn(chdtidxno, tidnol) ;

printf("4 spawns B \n");
)

else
tasks [chdtidxno] .tídno = detinfo.tidno ;

/* Send data to task B. */
if (cond2O == 1)

{
pvn-init sen¿ (Etlc0DING) ;

strcpy(f-str, I'A to B");
pvn-pkstr(f-str, 1, f) ;

pvu-send (tasks [chdtidxno] . tidno , MSGTYPE2) ;

put-send(nytidxno, chdtidxno) ;

228

printf ("4 send to B: l/.s\n", f-str);
Ì

else
{

put-nosend (nytidxno , chdt idxno) ;

printf("4 doesn't send to B\n");
Ì

)
else

{
put -nospawn

(nyt idxno , chdt idxno) ;

printf("4 doesn't spawn B\n");
Ì

/* spawn and send data to task "D", if the condition is true. */
// Detect and spawn task D.

/* Follow the same steps as those when spawning task B.
(listed above) */

// Send data to task D.

/* Follow the sa¡e steps as those when sending data to task B.
(tiste¿ above) */

/* Inforn the "execution ¡nonitorrr that this task conpletes its
* execution, and the next task allocated on the same Processor
* can conmence to execute. */

put-nextexec(nytidxno, in-argv[3J , **in-argv[aJ) ;

pvn-exit O ;

exit(1);
/*** ATME-translated code ends. ***f
Ì

8.3 F\rnctions Employed

Functionality of sone functions enployed above:
error_handling: pronpt fatal systen error and stop the program.
condo: a function sinulating condition(s) associated with

the task runtine operations.

229

do_sonethingO: sinulating the functionality behaviour of a task.

getchdtidxno:
getpartidxno:
det-execready
det-chdspawn:

det-parsend:

Pvn_sPawn:
pvn-initsend:
pvn-pkstr:
pvn-upkstr:
pvn-send:
Pvn_recv:

put_spawn:

put_nospawn:

put-send:
put-nosend:

PVM prinitive
PVM prinitive
PVM prinitive
PVM prinitive
PVM prinitive
PVM prinitive

get the I'task index nunber" of the child task.
get the "task index nunber" of the parent task.
detect whether it is the turn of this task to run.
send an "ev1-detchdspawn" event to the "execution
nonitor" task.
send the event "evl-detparsend" to the "execution
nonitor" .

handling task spawn.
to initialize data transmission.
to pack data into the sending buffer.
to unpack received nessage.
to underta,ke data transnission.
to receive a message fron a task.

send an "ev1-spawnl event to the rrexecution

monitor" task.
send the an "ev1-nospawnt' event to the rrexecution

nonitortt task.
send the "ev1-sendrr event to "execution nonitor".
send the "ev1-nosend" event to "execution monitor"

230

Bibliography

[1] Thomas L. Adam, K. M. Chandy and J. R. Dickson. A comparison of
list schedules for parallel processing systems. Communications of the ACM,
Volume 17, Number 12, pages 685-690, December 1974'

[2] Shakil Ahmed, Nicholas Carriero and David Gelernter. A programming building
tool for parallel applications. Technical Report UT-CS-205, Department of
Computer Science, Yale University, 1993.

[3] Kento Aida, Hironori Kasahara and Seinosuke Narita. Job scheduling scheme for
pure space sharing among rigid jobs. In D. G. Feitelson and L. Rudoiph (editors),

Job Scheduling Strategies for Parallel Processing, Lecture Notes of Computer

Science, Volume 1/¡59, pages 98-121. Springer-Verlag, 1998.

[4] R. Allan, D. Baumgartner, K. Kennedy and A' Porterfield. PTOOL: A
semiautomatic parallel programming assistant. In Proceedings of International
Conference on Parallel Processing, pages L64-I70, August 1986'

[5] G. M. Amdahl. Validity of the single-processor approach of achieving large scale

computing capabilities. In AFIPS Conference Proceedi.ngs, Volurne 30, pages

483-485, Atlantic City, N.J., April 1967.

[6] George A. Anderson and E. Douglas Jensen. Computer interconnection
structures: Taxonomy, characteristics, and examples. ACM Computing Surueys,

Volume 7, Number 4, pages 197-213, December 1975.

[7] G. R. Andrews, D. P. Dobkin and P. J. Downey. Distributed allocation with pools

of servers. In ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, pages 73-83, August 1982.

[8] F. D. Anger, J. J. Hwang and Y. C. Chow. Scheduling with sufficient loosely

coupled processors. Journal of Parallel and Distributed Computing, Volume 9,

Number 1, pages 87-92, 1990.

[g] W. F. Appelbe and C. McDowell. Anomaly detection in parallel fortran
programs. In Proceedings of Worlcshop on Parallel Processing Using HEP, May

1985.

23t

[10] R. A. Baeza-Yates, G. Quezada and G. Valmadre. Visual debugging and

automatic animation of C programs. In Peter Eades and Kang Zhang
(editors), Software Visualisation, Series on Software Engineering and Knowledge

Engineering, Volume 7, pages 46-58. World Scientific, 1996.

[11] J. A. Bannister and K. S. Trivedi. Task allocation in fault-tolerant distributed
system. Acta Informatica, Volume 20, Number 3, pages 261-281, December 1983.

[12] Mokhtar S. Bazaraa, John J. Jarvis and Hanif D. Sherali. Linear prograrnming

and network fl,ows. John Wiley and Sons Inc., second edition, 1990.

[13] William D. Becher and Eric M. Aupperle. The communications hardware of
the merit computer network. IEEE Transactions on Communications, Volume

COM-20, Number 3, pages 516-526' June 1972.

[1a] Adam Beguelin. Xab: A tool for monitoring pvm programs. In Workshop on

Heterogeneous Processing, pages 92-97, Los Alamitos, California, April 1993.

IEEE Computer SocietY Press.

[15] Adam Beguelin, Jack Dongarra, Al Geist, Robert Manchek, Keith Moore,

Peter Newton and Vaidy Sunderam. HeNCE: A user's guide (version 2.0).

Technical Report UT-CS-205, Department of Computer Science, The University
of Tennessee, 1993.

[16] F. Berman and L. Synder. On mapping parailel algorithms into parallel

architectures. In International Conference on Parallel Processinc, pages 307-

309, August 1984.

[17] A. Billionnet, M. C. Costa and A. Sutte. An efficient algorithm for a task

allocation problem. Journal of the Associ,ation for Computing Machinery,

Volume 39, Number 3, pages 502-518, 1992.

[1S] S. Bokhari. A shortest tree algorithm for optimal assignments across space and

time in a distributed processor system. IEEE Transactions of Software Engineer,

Volume SÞ7, Number 6, pages 583-589' 1981'

[19] S. H. Bokhari. Dual processor scheduling with dynamic reassignment. IEEE
Transactions on Software Engineering, Volume SE-5, Number 4, pages 326-334,

July 1979.

[20] Altan Borodin, Nathan Linial and Michael E. Saks. An optimal on-line algorithm

for metrical task system. Journal of the Association for Computing Machinery',

Volume 39, Number 4, pages 745-763, October 1992.

[21] David C. C. Bover, Kevin J. Maciunas and Micha,el J. Oudshoorn. Ada: A

First Course in Programming and Software Engineering. International Computer

Science Series. Addison-Wesley, Sydney, 1992.

232

[22] James C. Browne, Syed I. Hyder, Jack Dongarra, Keith Moore and Peter Newton.

Visual programming and debugging for parallel computing. IEEE Parallel anil

Distributed, Technology, Volume 3, Number 1, pages 335-355, Spring 1995.

[23] J. L. Bruno. Deterministic and stochastic scheduling problem with treelike
precedence constraints. In M. A. H. Dempster, J. K. Lenstra and A. H.

G. Rinnooy Kan (editors), Deterministic and Stochastic Scheduling, pages 367-

374. Reidel, Dordrecht' 1982.

[24] Peter Buhler. The COIN model for concurrent computation and its
implementation. Microprocessing and Microprogrl,rnnxirzg, Volume 30, Number

1-5, pages 577-584, August 1990.

[25] Peter Buhler and Dieter Wybranietz. Tools for distributed programming in the

INCAS project. Microprocessing and Microprogro,rnnxing, Volume 27, Number

1-5, pages 199-206, 1989.

[26] Alan Burns and Andy Wellings. Concurrency in ADA. Cambridge University

Press, Cambridge, New York, 1995.

[27] Ralph M. Butler and Ewing L. Lusk. User's guide to the P4 parallel programming

system. Technical Report ANL-92/i7, Argonne National Laboratory, Argonne,

IL., t992.

[28] Ratph M. Butler and Ewing L. Lusk. Monitors, messages, and clusters: the P4

parallel programming system. Parallel Computing, Volume 20, Number 4, pages

547-564, April 1994.

[29] Luis-Felipe Cabrera, Edward Hunter, Michael J. Karels and David A. Mosher.

User-process communication performance in networks of computers. IEEE
Transactions on Software Engineering, Volume 14, Number 1, pages 38-53,

January 1988.

[80] W. T. Cai, W. J. Milne and S. J. Turner. Graphical views of the behaviour of
parallel programs. Journal of Parallel and Distributed Computing, Volume 18,

Number 2, pages 223-230,, L993.

[31] W. T. Cai, H. K. Tan and S. J. Turner. Visual ptogramming for parallel

processing. In Peter Eades and Kang Zhang (editors), Software Visualisation,

Series on Software Engineering and Knowledge Engineering, Volume 7, pages

119-140. World Scientific, 1996.

[32] W. T. Cai and S. J. Turner. Process scheduling and program monitoring on

transputers. In S. Atkins and A. S. Wagner (editors), Transputer Research

and, Applications, NATUG-6, Proceedíngs of the 6th Conference of the North

American Transputer Users Group, pages 290-305. ISO Press, 1993.

233

[33] W. T. Cai and S. J. Turner. An approach to the run-time monitoring of parallel
programs. The Computer Journøl, Volume 37, Number 4, pages 333-345, 1994.

[34] N. Carriero and D. Gelernter. Linda in context. Communications of the ACM,
Volume 32, Number 4, pages 444-458, April 1989.

[35] Thomas L. Casavant and Jon G. Kuhl. A taxonomy of scheduling in generai-

purpose distributed computing systems. IEEE Transactions on Software

Engineering, Volume 14, Number 2, pages I4l-I54, February 1988'

[36] L. M. Casey. Decentralized scheduling. Australian Computer Journal,
Volume 13, pages 58-63, May 1981.

[37] N. F. Chen and C. L. Liu. On a class of scheduling algorithms for multiprocessor

computing systems. In T. Y. Feng (editot), Lecture Notes in Cornputer Science,

pages 1-16. Springer, New York, 1975.

[38] Jong Deok Choi, Ron Cytron and Jeanne Ferrante. On the efficient enginerring

of ambitious program analysis. IEEE Transactions on Software Engineering,

Volume 20, Number 2, pages 105-114, February 1994.

[39] T. C. K. Chou and J. A. Abraham. Load balancing in distributed systems. IEEE
Transactions on Software Engineering, Volume SÞ8, Number 4, pages 401-472,

July 1982.

[40] Y. C. Chow and W. H. Kohler. Models for dynamic load balancing in a

heterogeneous multiple processor system. IEEE Transactions on Computers,

Volume C-28, Number 5, pages 354-361, May 1979.

[41] W. W. Chu, D. Lee and B. Ifla. A distributed processing system for naval data

communication networks. In AFIPS Conference Proceedings, Volume /f7, NCC,
pages 783-793, 1978.

[42] Wesley W. Chu, Leslie J. Holloway, Min-Tsung Lan and Kemal Efe. Task

allocation in distributed data processing. Cornputer, Volume 13, Number 11,

pages 57-69, November 1980.

[43] E. G. Coffman Jr. Computer and Job-Shop Scheduling Theory. John Wiley, New
York, 1976.

[44] E. G. Coffman Jr. and R. L. Graham. Optimal scheduling for two processor

systems. Actø Informatica, Volume 1, Number 3, pages 200-213,,1972.

[a5] The PORTS Consortium. The PORTS0 interface. version 0.3. Technical Report
ANL/MCS-TM-203, Argonne National Laboratory, February 1995.

[46] Greg Costello. Some applications of regression anølysis Jor the purpose of real

estate marleet research. Curtin University of Technolog¡ Perth, West Australia,
1993.

234

[47] W. Crowther. Performance measurements on a 128-node butterfly parallel
processor. In Proceeilings of the 1985 International Conference on Parallel
Processing, pages 531-535, 1985.

[aS] Ron Cytron, Michael Hind and Wilson Hsieh. Automatic generation of dag

parallelism. In Proceedings of the 1989 SIGPLAN Conference on Programming

Language Design and Implementation, pages 54-68, Portland, Oregan, USA,
J:rrre 2L-23 1989. SIGPLAN, Volume 24, Number 7, July 1989.

[49] C. R. Dow, S. K. Chang and M. L. Soffa. Visual transformation specifications.

In Peter Eades and Kang Zhang (editors), Software Visualiso,tion, Series on

Software Engineering and Knowledge Engineering, Volume 7, pages 14l-162.

World Scientific, 1996.

[50] T. H. Dunigan. Performance of the intel ipsc/860 and ncube 6400 hypercube.

Technical Report ORNL/TM-I1790, Oak Ridge National Laboratory, TN, 1991.

[51] Hesham El-Rewini and Hesham H. Ali. Static scheduling of conditional branches

in parallel programs. Journal of Parallel and Distri,buted Computing, Volume 24,

Number 1, pages 4I-54, JanuarY 1995.

[52] Hesham El-Rewini, Hesham H. AIi and Ted Lewis. Task scheduling in
multiprocessing systems. Cornputer, Volume 28, Number 12, pages 27-37,

December 1995.

[53] Hesham El-Rewini and Ted G. Lewis. Scheduling parallel program tasks onto

arbitrary target machines. Journal of Parallel and Distributed Computing,

Volume 9, Number 2, pages 138-153, June 1990'

[54] D. J. Kuck et.al. Measurement of parallelism in ordinary Fortran programs. In
Proceedings of Sagamore Conference on Parallel Processing, pages 23-36, 1973.

[55] Dror G. Feitelson and Larry Rudolph. Gang scheduling performance benefits

for fine-grain synchronization. Journal of Parallel and Distributed Computing,

Volume 16, Number 4, pages 308-316, 1992.

[56] Norman Fenton. Software measurement: A necessary scientific basis. IEEE
Transactions on Software Engineering, Volume 20, Number 3, pages 199-206'

March 1994.

[57] Robert O. Ferguson and Lauren F. Sargent. Linear progr0,nLrni,ng: Funilamentals

anil applications. McGraw-Hill Book Company, Inc., 1958.

[5S] E. B. Fernandez and B. Bussell. Bounds on the number of processors and time

for multiprocessor optimal schedules. IEEE Transactions on Computers, Volume

C-22, Number 8, pages 745-751, August 1973'

235

[59] Jeanne Ferrante, Karl J. Ottenstein and Joe D. Warren. The program

dependence graph and its use in optimization. ACM Transactions on

Programming Lamguages and Systerns, Volume 9, Number 3, pages 319-349,

JuIy 1987.

[60] Horace P. Flatt and Ken Kennedy. Performance of parallel processorc. Parallel
Computing, Volume 12, Number 1, pages 1-20, October 1989'

[61] Michael J. Flynn. Very high speed computing systems. Proceedings of the IEEE,
Volume 54, Number L2, pages 1901-1909, December 1966. Special issues on

Computer.

[62] J. A. B. Fortes and F. Parisi-Presicce. Optimal linear schedules for the parallel
execution of algorithms. In 1981 International Conference on Parallel Processing,

pages 322-329, August 1984.

[63] Ian Foster. Compositional C**. In Design and Building Parallel Prograrns

(Online), Chapter 5. Addison-Wesley Inc., Argonne National Laboratory
and the NSF Center for Research on Parallel Computation. URL:
http : / /www. mcs. anl. gov/dbpp/ ax.

[6a] Ian Foster. Automatic generation of self-scheduling programs. IEEE
Transactions on Parallel and Distributed Systems, Volume 2, Number 1, pages

68-78, January 1991.

[65] B. Furht. A contribution to classifrcation and evaluation of structures for parallel

computers. Microprocessi,ng and Microprogro,rnrning, Volume 25, pages 203-208,

1989.

[66] A. Gabrielian and D. B. Tyler. Optimal object allocation in distributed
computer systems. In Proceedings of lth International Conference on Distributed
Computing Systems, pages 84-95, May 1984.

[67] D. Gannon and J. Van Rosendale. On the impact of communication complexity
in the design of parallel algorithms. Technical Report 84-4L,ICASE, 1984.

[68] J. L. Gaudiot, J. I. PI and M. L. Campbell. Program graph allocation in
distributed multicomputers. Parallel Computing, Volume 7, pages 227-247,,1988.

[69] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek and

Vaidy Sunderam. PVM: Parallel Virtual Machine. A User's Guide and Tutori'al

for Networkeil Parallel Computing. The MIT Press, Cambridge, Massachusetts,

L994.

[70] T. Gonzalez and S. Sahni. Flowshop and jobshop schedules: Complexity and

approximation. operations Research, volume 26, Number 1, pages 36-52,

January-February 1978.

236

[71] Brent Gorda and Rich Wolski. Time sharing massively parallel machines. In
Proceed,ings of 1995 International Conference on Parallel Processing, Volume 2,

pages 214-217, L995.

[72] R. L. Graham. Bounds on multiprocessing time anomalies. SIAM Journal on

Applied Mathematics, Volume 17, Number 2, pages 416-429, March 1969.

[73] R. L. Graham, E.K.Lawler, J. K. Lenstra and H. G. Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey. In P. L.

Hammer, E. L. Johnson and B. H. Korte (editors), Discrete Optimization II,
Volume 5, pages 287-326. L979.

[74] Peter J. Green. Nonpararnetric regression and generalized linear models: &

roughness penalty approach. Chapman and Hall, London, 1994.

[75] Anne Greenbaum. Synchronization costs on multiprocessors. Parallel
Computing, Volume 10, Number 1, pages 3-I4,, March 1989.

[76] J. L. Gustafson. Reevaluating amdahl's law. Communication of the ACM,

Volume 31, Number 5, pages 532-533' May 1988'

l77l J. Hao and J. B. Orlin. A faster algorithm for finding the minimum cut in a graph.

In Proceedings of the Trd ACM-SIAM Symposium on Discrete Algorithms, pages

165-L74. ACM New York, January 1992.

[78] F. Harary. Graph theory. Addison-Wesley' New York, 1969.

[79] Alfred C. Hartmann. A Concurrent PASCAL Compiler for Minicornputers,

Volume 50 of Lecture Notes in Cornputer Science. Springer-Verlag, New York,
Berlin, 1977.

[80] Leonard S. Haynes, Richard L. Lau, Daniel P. Siewiorek and David W. Mizell.
A survey of highly parallel computing. Computer, Volume 15, Number 1, pages

9-24, January 1982.

[81] Ulrich Herzog. Performance evaluation principles for vector- and multiprocessor

systems. Parallel Computing, Volume 7, Number 3, pages 425-438, September

1988.

[82] Ronald R. Hocking. Methods and, applications of linear models : regression and

the analysis of uariance. John Wiley, New York, 1996.

[83] R. W. Hockney. (r*,ny¡2,s1¡z) meatnrements on the 2-CPU CRAY X-MP.
Parallel Computing, Volume 2, Number 1, pages 1-14, March 1985.

[84] Roger W. Hockney and Ian J. Curington. fr¡r, A parameter to characteúze

memory and communication bottleneck. Parallel Computing, Volume 10,

Number 3, pages 277-286,, May 1989.

237

[85] R. Hofmann, R. Klar, B. Mohr an A. Quick and M. Siegle. Distributed
performance monitoring: Methods, tools and applications. IEEE Transactions
on Parallel and Distributeil Systems, Volume 5, Number 6, pages 585-598, June

1994.

[86] Atsushi Hori, Hiroshi Tezuka and Yutaka Ishikawa. Overhead analysis of
preemptive gang scheduling. In D. G. Feitelson and L. Rudolph (editors), "Ioó
Scheduling Strategies for Parallel Processing, Lecture Notes of Cornputer Science,

Volume 1459, pages 217-230. Springer-Verlag, 1998'

[S7] C. D. Howe and B. Moxon. How to program parallel computers. IEEE Spectrum,

Volume 20, Number 9, pages 36-41, September 1987.

[88] Wilson C. Hsieh. Extracting parallelism from sequential programs. Technical

report, Massachusetts Institute of Technology, May 1988.

[89] Y. C. Hu. Parallel sequencing and assembly line problems. Operations Research,

Volume 9, pages 841-848, 1961.

[90] Lin Huang and Michael J. Oudshoorn. An approach to distribution of
parallel programs with conditional task attributes. Technicai Report TR97-06,

Department of computer science, university of Adelaide, August 1997.

[91] Lin Huang and Michael J. Oudshoorn. ATME: A parallel programming

environment for applications with conditional task attributes. In Andrzej

Goscinski, Michael Hobbs and Wanlei Zhot (editors), 1997 ?rd International
Conference on Algorithms and Architectures for Parallel Processing, pages 275-

282, December 1997. Melbourne, Australia.

[92] Jing Jang Hwang. Deterministic Sched,uling in Systems with Interprocessor

Communication Times. Ph.D. thesis, Computer and Information Sciences

Department, University of Florida, 1987.

[93] Jing Jang Hwang, Yuan Chieh Chow, Frank D. Anger and Chung Yee Lee.

Scheduling precedence graphs in systems with interprocessor communication
times. SIAM Journal of Computing, Volume 18, Number 2, pages 244-257, April
1989.

[94] Kamal Kumar Jain and V. Rajaraman. Lower and upper bounds on time for
multiprocessor optimal schedules. IEEE Transactions on Parallel and Distributed
Systerns, Volume 5, Number 8, pages 879-886, August 1994'

[95] C. J. Jenny. Process partitioning in distirbuted systems. Digest of Papers

NTC'77, Number 31, pages 1:1-1:10, 1977.

[96] Morris A. Jette. Expanding symmetric multiprocessor capability through gang

scheduling. In D. G. Feitelson and L. Rudolph (editors), Job Scheduling Strategies

for Parallel Processing, Lecture Notes of Computer Science, Volume 1459, pages

199-216. Springer-Verlag, 1998.

238

[97] Erice E. Johnson. Completing an mimd multiprocessor taxonomy. Computer
Architecture News, Volume 16, Number 3, pages 44-47, June 1988.

[98] Erice E. Johnson. A prototype virtual port memory multiprocessor. Technical

Report NMSU-ECF-88-003, New Mexico State University, Las Cruces, 1988.

[99] D. Karger and C. Stein. An õ(n2) algorithm for minimum cuts. In Proceedings

of the 25th ACM Symposium on the Theory of Computing, pages 757-765. ACM
New York, May 1993.

[100] A. Karp. Programming for parallelism. Computer, Volume 20, Number 5, pages

43-57, May 1987.

[10i] Dongseung Kim and Joonyoung Park. Two-way dominant sequence clustering

for processor scheduling. InJormation Processing Letters, Volume 49, Number 4,

pages 203-208, February 1994.

[102] S. J. Kim and J. C. Browne. A general approach to mapping parallel computation
upon multiprocessor architectures. In Proceedings of International Conference on

Parallel Processing, Volume 9, pages 1-8, 1988.

[103] David G. Kleinbaum and Lawrence L. Kupper. Applied regression analysis and

other multiuari.able rnethods. Duxbury Press, North Scituate, Massachusetts,

1978.

[104] A. Kolawa. The Express programming environment. In Workshop on

Heterogeneous Network-Based Concument Cornputing, Tallahassee, October
1991.

[105] Venkat Konda and Anup Kumar. A systematic framework for the dependence

cycle removal in practical loops. Journal of Parallel and Distributed Computing,
Volume 27, Number 2, pages 157-171,, June 1995.

[106] E. Kra,emer and J. T. Stasko. The visualization of parallel systems: An overview.

Journal of Parallel and Di,stributed, Computing, Volume 18, Number 2, pages 105-

117,1993.

[107] Phillip Krueger and Niranjan G. Shivaratri. Adaptive location policies for global

scheduling. IEEE Transactions on Software Engineering, Volume 20, Number 6,

pages 432-444, June 1994.

[108] Sukhamay Kundu. The call-return tree and its application to program

performance analysis. IEEE Transactions on Software Engineering, Volume SD
12, Number 11, pages 1096-1098, November 1986.

[109] Swamy Kutti. Taxonomy of parallel processing and definitions. Parallel

Computing, Volume 2, Number 4, pages 353-359, December 1985.

239

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[11e]

[120]

[121]

Oak Ridge National Laboratory. Listing of new features in PVM 3.4.0 and

changes in past versions. URL: http://www.epm.ornl.gov/pvm/changes.html,
Computer Science and Mathematics Division.

Oak Ridge National Laboratory. PVM supported architectures/OSs.

URL: http:l lwww.epm.ornl.gov/pvm/pvmArch.html, Computer Science and

Mathematics Division.

B. J. Lageweg, J. K. Lanstra and A. H. G. Rinnooy Kan. Jobshop scheduling
by implicit enumeration. Management Science, Volume 24, Number 4, pages

44t-450, t977.

S. Lam and R. Sethi. Worst case analysis of two scheduling algorithms. SIAM
Journal of Computing, Number 6, pages 518-536' 1977.

E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan. Recent development in
deterministic sequencing and scheduling: a survey. In M H' Dempster, J. K.
Lenstra and A. H. G. Rinnooy Kan (editors), Deterministic and Stochastic

Scheduling, pages 367-374. D. Reidel, Dordrecht, the Netherlands, 1982.

Chung Yee Lee, Jing Jang Hwang, Yuan Chieh Chow and Frank D' Anger'

Multiprocessor scheduling with interprocessor communication delays. Operations

Research Letters,, Volume 7, Number 3, pages L4l-I47, June 1988.

Ted Lewis and Hesham El-Rewini. Parallax: A tool for parallel program

scheduling. IEEE Parallel and Distributeil Technology, Volume 1, Number 2,

pages 63-73, May 1993.

V. M. Lo. Heuristic algorithms for task assignment in distributed systems. In
Proceedings of lth International Conference on Distributed Computing Systems,

pages 30-39, May 1984.

V. M. Lo. Task assignment to minimize completion time. In íth International
Conference on Distributed Computing Systems, pages 329-336, May 1985.

J. E. Lumpp, T. L. Casavant, J. A. Gannon, K.J. Williams and M. S. Andersland.

Trace recovery for debugging parallel and distributed systems. In The ?rd

ACM/ONR Workshop on Parallel and Distributed Debugging, pages 208-210,

San Diego, May 1993.

P. Y. R. Ma, E. Y. S. Lee and J. Tsuchiya. A task allocation model for distributed
computing systems. IEEE Transactions on Computers, Volume C-31, Number 1,

pages 4I-47, January 1982.

Message Passing Interface Forum. MPI: A message-passing interface standard.

URL: http://www.mcs.anl.gov/mpi/mpi-report, May 5 1994.

240

lr22l

[123]

lr24)

[125]

[126]

lr27l

[128]

[12e]

[130]

[131]

[132]

[133]

[134]

M. Minsky and S. Papert. Associative information techniques. In E. J. Jacks

(editor), On Some Associatiue, Parallel and Analog Computations. Elsevier, New

York, 1971.

Thomas J. Mowbray and Ron Zahavi. The Essential CORBA: System Integration
Using Distributed Objects. John Wiley & Sons and the Object Management

Group, July 1995.

Dieter Mülter-Wichards. Performance estimates for applications: An algebraic

framework. Parallel Computing, Volume 9, pages 77-106, 1989.

Randolph Nelson, Don Towsley and Asser N. Tantawi. Performance anaiysis

of parallel processing systems. IEEE Transactions on Software Engineeri,ng,

Volume 14, Number 4, pages 532-540, April 1988'

L. M. Ni and K. Abani. Nonpreemptive load balancing in a class of local area

networks. In Proceedings of Computing Networking Symposiwn) pages 113-118,

December 1981.

L. M. Ni and K. Hwang. Optimal load balancing for a multiple processor system.

In Proceedings on International Conference on Parallel Processing, pages 352-

357, 1981.

Michael G. Norman and Peter Thanisch. Models of machines and computation
for mapping in multicomputers. ACM Computing Surueys,, Volume 25, Number 3,

pages 263-302, September 1993.

Object Management Group. The common object request broker: Architecture
and specification (CORBA). Object Management Group (OMG), Framingham,

MA., Revision 1.2, Draft 29, December 1993'

Object Management Group. The common object request broker: a¡chitecture
and apecification (revision 2.0). Object Management Group (OMG),
Framingham, Massachusetts, July 1995.

Matthew T. O'Keefe and Henry G. Dietz. Static barrier MIMD: Architecture and

performance analysis. Journal of Parallel and Distributed Computing, Volume 25,

Number 2, pages I26-L32, March 1995.

Robert Olson. Parallel processing in a message-based operating system. IEEE
Software,, Volume 2, Number 4, pages 39-49, July 1985.

Randy Otte, Paul Patrick and Mark P;oy. Understanding CORBA. Prentice-Hall,
1995.

K. J. Ottenstein. Data-Flow Graphs as o,n Intermediate Program Form. Ph.D.

thesis, Computer Science Department, Purdue University, Lafayette, Indiana,

August 1978.

24r

[135]

[136]

[137]

[138]

[13e]

[140]

[141]

lt42l

[143]

lt44l

[145]

[146]

K. J. Ottenstein. An intermediate program form based on a cyclic data-

dependence graph. Technical Report CS-TR 81-1, Department of Computer

Science, Michigan Technological University, Houghton, Michigan, October 1981.

July 1982 errata.

Michael J. Oudshoorn and Lin Huang. Conditional task scheduling on loosely-

coupled distributed processors. In The 1|th Internøtional Conference on Parallel
and Distributed Cornputer Systems, pages 136-140, October 1997. New Orleans,

USA.

Michael J. Oudshoorn, Hendra Widjaja and Sharon K. Ellershaw. Aspects

and taxonomy of program visualisation. In Peter Eades and Kang Zhang
(editors), Software Visualisation, Series on Software Engineering and Knowledge

Engineering, Volume 7, pages 9-26. World Scientific, 1996.

J. Ousterhout, D. Scelza and P. Sindhu. Medusa: An experiment in distributed
operating system structure. Communi,cation on ACM, Volume 23, Number 2,

pages 92-105, Feburary 1980.

D. A. Padua, D. J. Kuck and H. Lawrie D. High-speed multiprocessors

and compilation techniques. IEEE Transactions on Computers, Volume C-29,

Number 9, pages 763-776, September 1980.

Michael J. Panik. Linear programming: mathematics, theory and algorithms.

Dordrecht; Boston: Kluwer Academic, 1996.

J. K. Peir and D. D. Gajski. CAMP: A programming aid for multiprocessors. In
Proceedings of International Conference on Parallel Processing, pages 475-482,

August 1986.

Dar Tzen Peng and Kang G. Shin. Optimal scheduling of cooperative tasks

in a distributed system using an enumerative method. IEEE Transactions on

Software Engineering, Volume 19, Number 3, pages 253-267, March 1993.

C. C. Price and S. Krishnaprasad. Software allocation models for distributed

computing systems. In Proceedings of lth International Conference on

Distributed Computing Systems, pages 40-48, May 1984.

K. V. S. Ramarao and S. Venkatesan. The lower bounds on distributed shortest

paths. Information Processing Letters, Volume 48, Number 3, pages 145-149,

November 1993.

V. J. Rayward-Smith. UET scheduling with unit interprocessor communication

delays. Internal Report C80-06, School of Information Systems, University of

East Anglia, Norwich, 1986.

Celso Ribeiro. Performance evaluation of vector implementations of

combinatorial algorithms. Parallel Computing, Volume 1, Number 3-4, pages

287 -294, December 1984.

242

ll47l J. B. G. Roberts, J. G. Harp, B. C. Merrifield, K. J. Palmer, P. Simpson,

J. S. Ward and H. C. Webber. Evaluating parallel processors for real-time
applications. Parallel Computing, Volume 8, pages 245-254, L988.

[laS] Enders Anthony Robinson. Least squares regression analysis in terms of linear
algebra. Houston, Texas, Goose Pond Press, 1981.

[149] James Snowdon Roper. PLl in Easy Stages: A Programmed Learning Teúbook.

Elek Science, London, 1973.

[150] Vivek Sarkar. Determining average program execution times and their variance.

Proceed,ings of 1989 SIGPLAN Notices, Conference on Programming Language

Design and Implementation, Volume 24, Number 7, pages 298-3L2, July 1989.

[151] Vivek Sarkar. Partitioning and Scheduling Parallel Programs for Execution on

Multiprocessors. The MIT Press, Cambridge, MA, 1989.

[152] Uwe Schwiegelshohn and Ramin Yahyapour. Improving first-come-first-serve job
scheduling by gang scheduling. In D. G. Feitelson and L. Rudolph (editors), "Ioó
Scheduling Strategies for Parallel Processing, Lecture Notes of Computer Science,

Volume 1159,, pages 180-198. Springer-Verlag, 1998.

[153] Chien Chung Shen and Wen Hsiang Tasi. A graph matching approach to optimal
task assignment in distributed computing systems using a minmax criterion.
IEEE Transactions on Computers, Volume C-34, Number 3, pages L97-203,

March 1985.

[154] Warren Smith, Ian Foster and Valerie Taylor. Predicting application run times

using historical information. In D. G. Feitelson and L. Rudoiph (editors), "Ioó
Sched,uling Strategies for Parallel Processing, Lecture Notes of Cornputer Science,

Volume 1159, pages L22-I42. Springer-Verlag, 1998.

[155] L. Snyder. Parallel programming and the POKER programming environment.
IEEE Computing, pages 27-36, July 1984.

[156] V. A. Sposito. Linear and nonlineol programming. The Iowa State University
Press, AMES, 1975.

[157] James H. Stapleton. Linear statistical moilels. Wiley, New York, 1995.

[i58] Robert Stansbury Stockton. Introduction to linear prograrnming. Allyn and

Bacon Inc., Boston, second edition, 1963.

[159] Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. Journal of the

Association for Computing Machinery, Volume 44, Number 4, pages 585-591,

July 1997.

[160] H. S. Stone and S. H. Bokhari. Control of distributed processes. Computer,

Volume 11, pages 97-106, 1978.

243

[161]

[162]

[163]

[164]

[165]

[166]

[167j

[168]

[16e]

[170]

[171]

lr72l

Harold S. Stone. Multiprocessor scheduling with the aid of network flow
algorithms. IEEE Transactions on Software Engineering, Volume SD3,
Number 1, pages 85-93, January 1977.

Tony T. Y. Suen and Johnny S. K. Wong. Efficient task migration algorithm
for distributed systems. IEEE Transactions on Parallel and Distributed, Systems,

Volume 3, Number 4, pages 488-499, July 1992.

V. S. Sunderam. PVM: A framework for parallel distributed computing.
Concurrency: Prøctice and, Eaperience, Volume 2, Number 4, pages 315-339'
December 1990.

V. S. Sunderam, G. A. Geist, J. Dongarra and R. Manchek. The PVM concurrent

computing system: Evolution, experiences and trends. Parallel Computing,

Volume 20, Number 4, pages 531-545, April 1994.

Kuniyasu Suzaki and David Walsh. Implementing the combination of time
sharing and space sharing on AP/Linux. In D. G. Feitelson and L. Rudolph
(editors), Job Scheduling Strategies for Parallel Processing, Lecture Notes of
Cornputer Science, Volurne 1459, pages 83-97. Springer-Verlag, 1998.

Clive Temperton. Further measurements of (r*,nt/z) on the CRAY-I and CRAY
X-MP. Parallel Computing, Volume 11, Number 1, pages 107-111, July 1989.

Ten H. Tzen and Lionel M. Ni. Dependence uniformizat\on: A loop
parallelization technique. IEEE Transactions on Parallel and Distributed
Systerns, Volume 4, Number 5, pages 547-558, May 1993.

J. Ullman. NP-Complete scheduling problems. Journal of Computing System

Science, Volume 10, Number 3, pages 384-393, June 1975.

Steven Vajda. Linear Programmi,ng: Algorithms and Applications. Chapman
and Hall, London, 1981.

R. A. Wagner and K. S. Trivedi. Hardware configuration selection through
discretizing a continuous variable solution. In Proceedings of 7th IFIP Syrnposium

on Computing Perforrno,nce Modelling, Measurement and Eualuation, pages 127-

142, 1980. Toronto, Canada.

D. Walsh, B. B. Zhou, C. W. Johnson and K. Suzaki. The implementation of
a scalable gang scheduling scheme on the 4P1000*. In Proceedings of the 9th

International Parallel Computing Worlcshop, Singapore, pages Pl:Gl - P1:G6,

September 1998.

R. C. Waters. Automatic analysis of the logical structure of programs. Technical

Report TR-492, AI-Lab, Massachusetts Institute of Technology, Cambridge,

Massachusetts, December 1978.

244

[173]

lt74l

[175]

[176]

lr77l

[178]

[17e]

[180]

[181]

[182]

[183]

[184]

Sanford Weisberg. Applied linear regression. Wiley, New York, 1980.

John Werth, James C. Browne, Steve Sobek, T. J. Lee, Peter Newton and Ravi
Jain. The interaction of the formal and the practical in parallel programming
environment development: CODE. Technical Report TR-91-09, Department of
Computer Sciences, University of Texas at Austin, Austin, Texas 78712-1188,

April 1991.

S. White, A. ålund and V. S. Sunderam. Performance of the NAS parallel
benchmarks on PVM-based networks. Journal of Parallel and Distributed
Computing, Volume 26, Number 1, pages 6I-7L, April 1995.

Hendra Widjaja. Visor**: A software visualisation tool for task-parallel object-
oriented programs. Master's thesis, Department of Computer Science, University
of Adelaide, March 1998.

Steven C. Wohlever. ConcurrencA Control i,n a Dynamic Real-Time Distributed
Object Cornputing Enui,ronment. Ph.D. thesis, Computer Science Department,
University of Rhode Island, 1997.

Yaron Wolfstahl. Mapping parallel programs to multiprocessors: A dynamic
approach. Parallel Computing, Volume 10, Number 1, pages 45-50, March 1989.

Min You Wu and Daniel Gajski. Hypertool: a programming aid for message-

passing systems. IEEE Transactions on Parallel and Distributed Systems,

Voiume 1, Number 3, pages 330-343, July 1990.

Tao Yang. Scheduling and Code Generation for Parallel Architectures. Ph.D.
thesis, Department of Computer Science, Rutgers, The State University of New
Jersey,1993.

Zhonghua Yang and Keith Duddy. CORBA: A platform for distributed object
computing. ACM Operating Systems Reuiew, Volume30, Number2, pages 4-31,
April 1996.

D. Q. Zhang, K. Zhang and J. Cao. Visual programming for heterogeneous
distributed systems. In Peter Eades and Kang Zhang (editors), Software
Visualisation, Series on Software Engineering and Knowledge Engineering,
Volume 7, pages 163-182. World Scientific, 1996.

Da Qian Zhang and Kang Zhang. A visual programming environment for
distributed systems. In Proceedings VL'95: llth IEEE International Symposium
on Visual Language, pages 310-317. IEEE Computer Society Press, September
1995. Darmstadt, Germany.

B. B. Zhoq R. P. Brent, D. Walsh and K. Suzaki. Job scheduling strategies

for networks of workstations. In D. G. Feitelson and L. Rudolph (editors), "Ioó
Scheduling Strategies for Parallel Processing, Lecture Notes of Cornputer Science,

Volume 1459, pages I43-t57. Springer-Verlag, 1998.

245

[185] Weiping Zhu, Tyng-Yeu Liang and Ce'Kuen Shieh. Optimal task clustering
using Hopfield net. In Andrzej Goscinski, Michael Hobbs and Wanlei Zhou
(editors), Proceeilings of 1997 ?rd, International Conference on Algorithrns and
Archi,tectures for Pørøllel Processing, pages 45I-464, December 1997.

246

