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Abstract
The complexity of modern digital systems, particularly VLSI systems,

continues to grow quickly. Simulation has become entrenched as a vital

technique for dealing with this complexity, in a variety of ways. In simulation

there is a perennial tradeoff between the conflicting goals of accuracy of the

results and speed of simulation (turnaround). It is highly desirable that

simulation tools exhibit some variability in this regard.

This thesis details the design, implementation and performance of Loge-

a simulation tool which while developed for MOS VLSI is quite adaptable

to related technologies and digital systems generally. The core of the design

philosophy of Loge is that it support a fast moving investigative style of

development, where turnaround receives greater emphasis than fine points of

accuracy (good simulators with the opposite emphasis are readily available).

Loge is a mixed-mode, variable speed/accuracy system. The modes im-

plemented form a continuum of abstraction, from a functional level (based on

a powerful hardware description language which allows the specification of

generic modules), through a choice of hybrid modes, down to a conventional

analog device modelling mode. All modes interface cleanly with each other

within the limits imposed by different levels of abstraction. Flexibility and

responsiveness to user control are featured throughout.
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Chapter 1

Introduction

l.L Simulation

Among the attractions of VLSI design over previous technological paradigms

is that it gives the designer great freedom. Freedom to directly build inter-

esting new structures and to solve problems with an elegance approaching

that of mathematical proofs. . . but for the inevitable intrusion of technolog-

ical details and practical limits such as die size. Throughout all engineering

disciplines such a gap exists between the theoretical world of the provably

correct and the practical world of the flawed implementation. Simulation is

a major technique used to bridge this gap in the field of VLSI, and indeed

in digital systems generally.

Simulation is useful throughout the entire process of design, in a variety

of roles-

Design Implementation For the present, the most intensive simulation

effort tends to occur in excitation of models of a system under active

development where the model has been extracted from an independent

implementation representation. Here, the role of the simulator is to

1



2 CHAPTER 1. INTRODUCTION

reveal errors in functionality.

Speculative Investigation Alternately, a simulator can be a model build-

ing tool- models may be created in some abstract format with no

direct connection to an implementation. These models are then be re-

fined and experimented with in a exploratory fashion. This role could

be labelled- "simulator as whiteboard'. It is the theoretical comple-

ment to the practical design implementation role.

Functionality Investigation Given a model, the addition oL instrumenta-

tion to support studies of its internal operation- perhaps to identify

bottlenecks, collect performance statistics, or for exhaustive checking

of special cases. This role embraces the previous two- the system

being simulated could equally be an extracted implementation or a

speculative model.

Comparison Many models of the same logical system are possible, either

as independent abstract representations or extractions of different im-

plementations. Some may be correct and others faulty- comparison

of their behaviour under identical test conditions is likely to be instruc-

tive. This is a special case of functionality investigation.

Unsurprisingly, most existing simulators focus on the demands of simu-

lation for design implementation. There is however good reason to desire a

wider ranging simulation system, as the following experiences suggest.

1.1.L The Tbansform and Filter Brick

The Transform and Filter Brick (or TFB for short) [Eshraghian+85] was an

innovative signal processing architecture developed in the mid-eighties by a
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team of academics, postgraduates and undergraduates lead by Dr. Kamran

Eshraghian at the University of Adelaide, Department of Electrical and Elec-

tronic Engineering (the author's principal responsibility in the project was

in design and implementation of the memory subsystems).

The TFB architecture is quite complicated, due to the inherent demands

of the problems it was designed to solve, which require multiple functional

units (ALUs and memory) operating in parallel on a shared but segmented

ring bus. Thus TFB encountered the design tradeoffs common to other

multiple functional unit systems, such as the VLIW (Very Long Instruction

Word) processors [Cohn+89].

From the beginning of the project, it was realized that a serious obsta-

cle to its progress was the conceptual barrier that complexity imposes on a

design and implementation group. The research of one TFB team member

directly tackles this problem- Alex Dickinson's thesis Cornplexity Manage-

rnent and Modelling of VLil Systems [DickinsonSS]. Amongst the results in

this thesis is a discussion of the modelling tool Pink, which is derived from

an earlier system called TICTOC, which was developed in parallel with the

development of TFB. It was intended that an extensive overall simulation of

the TFB architecture be made- to convince the design team of its correct-

ness, and to provide a more precise semi-formal specification of the system

than could be supplied by a simple written report.

Unfortunately, for various resource and manpower-related reasons the

overall simulation was never fully realized [SchomburgkS4]' which was cause

for some discouragement. With the benefit of hindsight, it appears that the

TFB group erred in placing to much emphasis on implementation at the

expense of simulation.

Even in the implementation of subsystems, complexity was a major ob-

stacle. However, here quite strenuous efforts were being made to overcome it.

3



4 CHAPTER 1. INTRODUCTION

Some difficulties with the subsystems were imposed by the constraints of the

implementation technology. TFB was conceived to be a CMOS single chip

ptocessor, which could be collected together in large arrays to attack prob-

lems of interest to the signal processing researchers in the group. Given that

the TFB architecture (figure 1.1) included four ALUs (including divider),

four small memory blocks, an Input and an Output processor, a large pro-

gram memory, decoder, plus considerable routing and control, the problem

of squeezing the required functionality onto the die was an ambitious project

for the time. Certainly it was the largest and most complex VLSI design

and implementation project attempted by our department, albeit a logical

development from participation in a number of multi-project chip designs

IClarke82].

The subsystems of TFB, although mostly simple in structure, were nev-

ertheless sizable objects. The combination of a growth in module size with

a fairly static set of software tools and a fixed small amount of computing

capability resulted in badly degraded tool performance, sometimes to the

point of failure. In particular, one of the most adversely affected tools was

an analog simulator [Int87]. This was the main tool used to check the cor-

rectness of implemented designs, thus the resulting reduction in the amount

of simulation that could practically be performed damaged the credibility of

much of the implementation work.

Nevertheless, subsystem implementation proceeded to completion of lay-

out. At this point we could conclude that-

o The subsystems worked in isolation for a small test set.

o No one had noticed anything in the specification of the overall archi-

tecture that was obviously wrong.

However we were unable to draw any stronger conclusions, such as, for
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Figure 1.1: TFB Basic Architecture



6 CHAPTER 1, INTRODUCTION

example- that an ALU would be able to read data from its local memory

over the ring bus under microcode control if everything was connected to-

gether. Clearly the existing simulation systems \ryere unlikely to be able to

reassure us given that they were struggling to handle problems ten times

smaller than the situation being contemplated. In particular, it was esti-

mated that the time to create the extracted description of the whole system

would exceed the mean time between shutdowns of the computing facilities

available to us. Yet it was important to investigate such details as-

o How tolerant was the architecture to control signal skew?- particu-

larly on control lines that lead to the isolating gates between different

sections of the bus.

¡ How accurate were our estimates of the ring bus capacitance? Would

a series of iterations of resizing the bus drivers be necessary?

o How accurate were our estimates of subsystem power consumption? -
specifically with respect to concern about metal migration and number

of supply rail pins necessary.

- for which we had no answers that seemed (at least to the author) to

be any better than folklore.

Thus once the task of integrating the subsystems was reached the in-

adequacy of the simulation strategy taken to that point became very clear.

There remained the possibility that a dedicated person could hand-edit a net

list, leaving only the interface logic- but this was recognized to be a very

time consuming and error prone option, to be avoided if possible. It was

perhaps merciful that at this point the TFB project wound down through

lack of funding- the last stages would have been both tedious and difficult,

due to the earlier compromises.
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L.1.2 Communications Link

The lessons of the TFB project were reinforced in an unrelated commercial

project, but with a brighter outcome. Briefly, the problem was to devise and

implement an interface between a bidirectional two-megabit per second serial

data link (connected to microwave hardware) and a bidirectional sixteen bit

parallel port. The system would be configured identically at both ends of

the link as shown in figure 1.2. The two-megabit link was to be considered

unreliable, but no data entering through the parallel ports was to be lost.

t6 8 76

Microwave Ha¡dware and Link

Figure 1.2: Communications Link

Following a fairly conventional path, the system was built from a com-

modity microprocessor, memory, communications controller and checksum

generate/check hardware. The controlling software provided a simple packe-

tizing scheme (a remote relative of the widely implemented Kermit protocol

[da Cruz87]). Development proceeded relatively smoothly, but stalled at a

point where the system worked most of the time, but would occasionally

unexpectedly lose packets.

Happily, simulation saved the day. The errors were too infrequent and

ill-defined to be caught in the physical system, so a high levei language simu-

lation of the hardware/software system was quickly developed. This allowed

arbitrarily flexible tests to be performed, and in a short time a few marg-

inal special case failure conditions were identified and corrected, resulting in

ta
I

8
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8 CHAPTER 1. INTRODUCTION

a reliable link, and a conviction that one should have done the simulation

sooner.

1.1.3 Lessons and concluslons

The experience of the TFB project heavily emphasized the importance of

both adequate initial investigative simulation, and high quality implementa-

tional simulation. One noticed a feeling of paralysis when designing with the

knowledge that testing would be difficult to impossible.

The communications link project highlighted the advantages a flexible

simulation model has over a less malleable physical piece of hardware or

VLSI design representation. In particular it brought home-

o The relative ease with which one can instrument a computer model for

functionality investigation.

o The usefulness of comparative simulation, particularly in comparing a

steadily refined reference model with a near complete but fault-ridden

implementation.

¡ Attention to accurate modelling is extremely important- each time

one increased the level of detail of simulation, another level of marginal

error could be found.

The last item above exposes the great weakness of relying extensively

on simulation to find errors and characterize performarrce of a system- one

must trust the simulator and models to some degree. Such trust can never

be absolute outside the domain of proofs of correctness, and develops under

stimuli of rather mixed quality. Comparative simulation is a good method of

improving confidence in a model or group of models, but with the dilemma
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that if two models disagree, which is wrong? - is there a mistake in the

high level specification of the reference model, or a simple miswiring of the

implementation, an error introduced by the extraction process' or are both

models wrong?

These concerns notwithstanding, the main conclusion reached from the

preceding experiences is that to design and build systems of significant size or

novelty it would be most helpful to be able to use a wide ranging simulator

capable of acting in all roles listed in section 1.1 (the speculative role in

particular is of interest to the author for the purpose of investigating novel

computer architectures). Development of such a simulator thus became the

goal of this research.

Having decided to develop a simulator, one must consider the question of

what it should simulate. Despite the VLil Systems of the title, in practice

the scope of the project broadened towards technological independence- the

final result is almost technology neutral, making it suitable for the simulation

of general purpose digital systems. Similarly while it was initially intended to

apply the classic approximation that signals are mainly restricted to the set

{Hi, Lo} (the digital mod,el), in practice this attempted narrowing of scope

failed to hold- analog phenomena are quite capable of compromising the

digital model, therefore analog quantities are modelled everywhere (although

the digital model is more readily apparent to the user). Nevertheless, there is

no intention or capability to compete with highly detailed analog simulators

(at the level of SPICE [Nagel75]).

Another intentional limitation is that parallel operation was not consid-

ered a major design criterion. Interestingly though, several practical consid-

erations arose that resulted in a surprisingly parallelizable design. This is

clearly an area for future work. The original limitation was due to practical

constraints such as the then relative scarcity of parallel hardware, and be-

I



10 CHAPTER 1. INTRODUCTION

cause in a cost-conscious world, uniprocessor systems are likely to persist as

hosts for simulations for a considerable period of time.

L.2 Overview

Having introduced the background and motivation for this thesis in this chap-

ber, chapter two continues with a combination of literature review, philosoph-

ical discussion and development of more specific design criteria than those

given so far. A taxonomy of simulation modes and clarification of general ter-

minology appears. Chapter three is a detailed description of the design, im-

plementation and operation of the general purpose digital simulator- Loge.

In chapter four performance is summarized and case studies presented. Con-

clusions appear in chapter five.

Finally, in what way is this work a novel contribution to the field? Briefly,

the notable features of Loge include

¡ Clean by design inter-mode interfaces- existing simulators are prone

to restrictions introduced by loss of information at mode and/or moduie

boundaries.

o A concise, powerful and extremely flexible hardware description and

functional modelling language- specified modules may be generic.

¡ Variable accuracy simulation modes.

o Fully event-drivetr operation throughout.

- resulting in a high quality digital simulator and architectural modelling

tool



Chapter 2

Literature Revle!\¡

2.L Introduction

The overall intention of this chapter is to steadily clarify the requirements

for a good digital simulator through a review of the extensive literature on

simulation of integrated circuits from the major and more accessible confer-

ences and journals. As important design criteria arise they will be noted in

the form-
Design for (some significant design criterion) (0)

2.2 Taxonomy of Modes

The most logical way of decomposing the field of integrated circuit simulation

is by sirnu lation mod,e. Each sirnulation mode (or level) is charactcrized by

the assumptions made in abstraction from reality. There are many modes,

forming a continuum of abstraction.

Unfortunately, the names of the modes vary from researcher to researcher.

Figure 2.1 clarifies the terminology of this document, defining the main sim-

a

11



I2 CHAPTER 2. LITERATURE REVIEW

ulation modes in decreasing order of abstraction. Synonyms and submodes

are not shown, but will be discussed under their parent mode.

ProcessDevice

Analog

Digital

Functional

Structural

Architectural

Timing Analysis Fault

lÌû

{l r,L

Figure 2.1: Mode Hierarchy

2.2.L Architectural

Archibectural mode simulation is the abstract mental process of design. It is

often associated with analysis of requirements, for example "This device is

intended to compute inner products- therefore the arithmetic unit/s need

addition and multiplication, but not division." In other words, architectural

mode is concerned with the broad functionality of the system.

Modelling this type of conceptual process is an open problem in artificial

intelligence, and beyond the scope of this research, which is concerned with

less abstract modes. However the very fluidity of architectural simulation

presents a major challenge to the lower levels in abstraction- which must

be highly expressive and variable.
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2.2.2 Structural

Structural level is the point of abstraction where a hierarchy of specific mod-

ules are decided upon, and function assigned to them. Connectivity between

modules is also a structural issue. A module corresponds to the classical

engineering idea of the blacle bor- its function and connections are known,

but details of its internals are hidden, or equivalently to use of the technique

of. information hiding. Methodologies for partitioning have been discussed

at length in both computer science [Yourdon+75] and circuit design contexts

[Mead+80], in particular with respect to the top-down style of design.

ALU

Arithmetic
Unit

logic Unit

Multiplier Adder

Figure 2.2: Structural Decomposition

Describing a structural decomposition as a simulation mode may appear

initially to be rather odd. The justification is this- given that there ex-

ist more specific modes, it is possible to simulate a module which contains

submodules as the aggregation of the simulations of its submodules in their

various modes.
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2.2.3 Functional

Functional mode is often known perhaps more descriptively, as behavioural

or algorithmic mode. This stage deals with detailed specification of the

behaviour of each module.

In developing a multi-mode simulator, functional mode is probably the

point at which the greatest "design stress" occurs. On the one hand, it is

desirable that the functional description to be simple, elegant, easily com-

prehendable, and short- attempting to match the architectural abstraction

in the designer's mind. On the other hand, it is necessary that the func-

tional mode be able to adequately duplicate all the special case conditions

of lower level simulation modes or the technologies that they model. Where

the line between these two requirements should be drawn is always likely to

vary from design to design- it is to be hoped that both aims are not totally

mutually exclusive. The approach eventually taken here is reminiscent of the

spirit used in the development of the X Windowing System [Scheifler+S6]-

to provide functionality but to avoid dictating policy, as summarized by the

dictum "Tools not Rules".

It is natural to develop functional descriptions for modules derived from

the structural decomposition. Cases where the structural hierarchy (chosen

for the purposes of construction) and the functional hierarchy (chosen for the

purposes of simulation) are not well matched are rare, and indeed in the field

of VLSI such a situation would tend to be viewed as an act of perversity on

the part of the designer ([Sussman+80] discusses a system for handling non-

isomorphic hierarchies). Because of this close relationship these two modes

will be considered together from here on.

The functional level introduces the question of communication between

modules. In most cases there is no better solution than to directly model
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reality, and provide communication with nodes. Every distinct connection

between at least two modules defines a node. Each node has an associated

value, which may be accessed or modified in various \¡/ays by the modules

connected to it, depending on the structure and/or function of the module-

see figure 2.3. Links between modules and nodes may be directional.

Module

Node

Figure 2.3: Modules and Nodes

Alternately one may think of the nodes as registers- which gives rise to

a specific submode commonly known as Register Transfer Leuel (RTL). RTL

is a subset of functional level as RTL-mode modules typically perform only

Read and Write operations on the nodes. A fully general functional mode

may plausibly define arbitrarily many other types of interactions.

2.2.4 Digital

The general digital model makes the characteristic assumption that the nodes

take on a highly constrained set of values- "High" and "Low" ot Hi f Lo or

1/0, in the purest form of the digital abst¡action. This is a highly efÊcient

choice for systems whose function is easily expressed in terms of boolean

¡
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logic- hence the common but imprecise use of the term Logic simulation.

Starting from this basic abstraction, much variation is possible. One

of the most common extensions is to allow a third value (often called X)

which indicates that the node is in an intermediate state between Hi and

Lo- in support of the threshold voltages defined for logic families such as

TTL. A well known submode is gate-Ieael simulation, in which the system is

dominated by simple logic gates. Another submode is switchJeuel simulation,

where decomposition has reached the underlying devices which are simulated

as switches.

Ain

Bin

Figure 2.4: Gate Level

2.2.5 Analog

Analog modes abandon the abstraction of the digital model, and deal in

continuous quantities. By this stage of modelling accuracy one is dealing with

real voltages, currents, resistances and capacitances, rather than an abstract

concept of "value". Similarly, the modular decomposition has progressed

down to the raw devices. Common terms for this level are circuit and timing



2.2. TAXONOMY OF MODES 17

Figure 2.5: Switch Level

mode.

Diversity of features within analog mode is large. Physical devices have

many varied and interesting special case modes of behaviour, resulting in

a busy and productive field of research. In the literature one senses a drive

towards ever greater modelling accuracy competing against a desire for simple

computationally efficient models. At the extreme end of the scale, the horizon

collapses to the size of a single device

2.2.6 Device

-leading 
to the esoteric field of device simulation. Here the engineer and

computer scientist give way to the physicist, and consideration of the overall

system is lost, therefore device simulation is beyond the scope of this thesis'

A related area is process simulation, where the input to the simulator is

in terms of fabrication equipment parameters, and the output is the device

characteristics required by a device simulator.

I
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2.2.7 Timing

Apart from referring to a type of analog simulation, the word timing is

attached to the mode of simulation best described as Timing (or Delay)

Analysis. In this mode, the object is to determine delays along signal carrying

paths within the system without recourse to complete knowledge of node

values. Given a mode-specific algorithm to determine delay, Timing Analysis

can interface to Functional through Analog modes, and is thus orthogonal to

the main mode hierarchy.

2.2.8 Fault

Fault simulation is likewise orthogonal. This is another rich field that studies

the effects of errors in a system and how to minimize or efficiently test for

them. While fault simulation primitives could be added to Loger they have

been omitted for the time being, as has detailed consideration of the fauit

simulation literature.

2.2.9 Mixed and Hybrid

Many simulators are said to be mixed mode. The common meaning of this

is that they are capable of simulating individual modules in different modes.

In some cases, however, the use of the term "mixed" is intended to imply

the use of a mode that contains features from two other common modes (for

example, a mode that reports only digital values, but which uses an internal

analog representation). Such modes are better described as hybrid. One

must observe that while many excellent individual modes exist, the problem

of cleanly interfacing Functional, Digital and Analog modes has rarely if at

1A node controllability/observability statistic generator is a future project'
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all been achieved with elegance.

Design for Multiple interchangeable modes (1)

2.3 Functional and Structural Modes

2.3.L Introduction

It is difficult to say what is the first instance of functional simulation of in-

tegrated circuits. Is a subroutine library for a common high level language

sufficient? Or the capability to build "macros" of simple AND/OR type gates

into larger groupings within a simple gate-level boolean evaluator? Progress

in functional simulation has been incremental, but growing steadily in am-

bitiousness with advances in programming language design and computing

capacity. The origin of structural mode simulation is similarly obscure.

Does functional simulation justify its existence? Or, to quote the seminal

ISzygenda+73]-

The past work on functional simulation can be characterized as

generally inadequate. Questions, such as: "can functional sim-

ulation accurately reproduce circuit behaviour?", "Ir there any

savings realized, in time and storage, when using functional sim-

ulation?", or ,,can we have gate-level and functional descriptions

of a module and interchange them during simulation?" have not

been answered.

One would hope that nearly two decades later we are in a position to answer

these questions. Sadly however, while it is fairly clear that there are real

benefits available from functional simulation, and that systems exist that

allow on-the-fly interchange of simulation modes, the question of accuracy is

still open amongst some commentators- notably amongst critics of VHDL'
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Design for Fidelity of modelling (2)

2.3.2 Hardware Description Languages

The central focus in functional and structural simulation is on the represent-

ation language or languages- the Hardware Description Language (HDL)'

An important design choice immediately arises- either to develop a special

purpose circuit modelling language (as indeed appears in [szygenda+73]),

or to embed simulation capability into an existing language, as in [Hill+79]

where the base language was Pascal.

What are the tradeoffs? Special purpose languages allow the developer

to retain tight control of language features, they can be carefully optimized

for the simulation task and avoid excess syntactic or executional baggage,

but must be built from scratch. On the other hand, embedded languages are

often easier to develop and write models with, since a rich existing framework

is already provided.

Embedded simulation languages are typically implemented with a pre-

processor that emits base language code, which is linked with a special pur-

pose library- thus compilation and linking may take significant time, and

executable code may be large. Alternately, either type of language may

be interpreted- trading speed for flexibility or ease of implementation and

extension. Indeed there is a continuum between pure compiled and inter-

preted approaches- an example of an intermediate case is [Armstrong+81]

and [ArmstrongS4] in which functional behaviour is described in an assem-

bly language (GSPASM), which is compiled into a microcode form, to be

interpreted by the simulator.

Some simulators are of such scope as to allow both approaches- an espe-

cially obliging system appears in [Doshi+84] which supports both a specific
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RTL, and functional models in C, Fortran, Pascal and PL/1! The external

language models must of course be compiled, but the RTL is semi-compiled

to an interpreted RPN form- giving considerable freedom of choice to its

users.

compiling an entire system is tedious, and makes the addition of new

modules rather a chore. In FUNSIM [Des Marias+82] some work is saved

by implementing dynamic loading of compiled module object code. The lan-

guage FML is difficult to categorize as either special purpose or FORTRAN-

embedded, as the intent appears to be that native FML constructs be used

almost exclusively, despite FORTRAN code being produced as an interme-

diate step.

Language theorists have commented on the phenomenon whereby lan-

guage may affect thought plocesses. A facetious computer-language illus-

tration of which is to recast the proverb "When all you have is a hammer,

everything looks like a nail." as "When all you have is FORTRAN' every-

thing looks like an array." The relevance of this to functional simulation

is in highlighting a pitfall of embedded languages- does the base language

constrain the thinking of the implementor (and thus the functionality of

the simulation system), and/or the process of developing functional models?

[Pilotny+82] describes the CONLAN project- in which a family of languages

are derived from Standard Pascal. The adequacy or otherwise of Standard

Pascal for general purpose programming has been a source of controversy-

in the case of CONLAN one is left with the impression that something of

a struggle with the limitations of Pascal occurred. [Maissel+82] is a similar

case, using APL.

Real hardware is inherently parallel, thus for uniprocessor simulation a

non-procedural language could be thought to be a natural choice, as for exam-

ple in [Sakuma+83]. Another example is [Brown+83], for which the functional
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specification is rule-based, supporting an exploratory style of development at

the expense of performance.

An even more appropriate choice of software technology for functionai

and structural simulation is object-oriented design [Booch90]. The most im-

portant decisions in the use of object-oriented design is the choice of the

object partitioning. In the case of functional simulation, a one-to-one corre-

spondence between the module hierarchy and the object partitioning is an

easy, natural solution. A fine example of this style is [Lathrop+85] (with

some extra objects, such as buses). This functional simulator shows con-

siderable generality, largely derived from the base language (Lisp/Flavors

[Weinreb+81]). A notable feature is the use of uersional blocks- several ver-

sions of the same module, which receive the same input, and whose outputs

are compared to detect errors or modelling inconsistencies (an approach fa-

miliar from fault-tolerance/reliability). [Wolf89] is a similar system where

object-oriented Lisp was used in prototyping, as preparation for a C** pro-

duction version.

No survey of functional simulation can credibly avoid mention of VHDL

[Lipsett+86], [shahdadS6], [Ins88]. This u.s. Department of Defence backed

HDL will doubtless become the standard that it is intended to be, which

is certainly desirable for reducing fragmentation and isolation amongst the

development community. The technical merits of VHDL (as a whole or indi-

vidual features thereof) have been hotly debated by many experts, however

it is revealing that it has been criticized both for being too closely associated

with Ada, and also for not including enough Ada features [Nash+86]. Cer-

tainly VHDL does not lack features in comparison with other HDl/simulator

systems of its vintage [Aylor+86]. One can not help feeling that having gone

a long way along the road to Ada that it was regrettable for the design of

VHDL that it stops short of full integration therein. Similarly, proponents
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of small languages criticize VHDL for creeping featurism, which is at least

partially attributable to the influence of the large Ada language.

More detailed discussion of the implications of various base languages can

be found in [Katzenelson+86] which compares the use of Pascal, Simula, CLU,

and Enhanced C as hosts. Overall it appears that there is pressure to provide

an expressive and powerful HDL, and that the more power there exists in

a base language, the easier the embedding process and the development of

models.

Design f.or Fleúble, powerful HDL (3)

Having provided the HDL to define the system, there is still a require-

ment for a means of controlling a simulation of it. This control language

is often built into the functional HDL, or relegated to a one-off command

line interpreter type interface. This is a minor point, however [Terman83]

comments positively on the utility of having a powerful language (Lisp) with

which to write test programs and directly process results.

As a note of caution, one must not become distracted by the intricacies

of HDLs from the fact that they are merely a means to an end. Perhaps the

most important design criterion for an HDL is that it be easy to read and

write.

Design f.or Easy to use HDL U)

2.3.3 Low Level Modelling

A subsidiary concern of functional simulation is its provision for detailed

modelling of low level effects. This issue is sometimes deliberately ignored in

published systems- for if a rigid top-down design style is assumed then the

functional level has no theoretical reason to model small scale behaviour. Re-

grettably however, if a higher level mode provides excessively coarse models

23
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with respect to the next level down, verifying the equivalence of two represen-

tations at these levels is severely complicated. One must beware of allowing

the simulator to dictate methodological policy.

Taking the remarks above to the extreme, it would be desirable for all

modes to be closely integrated, allowing faithful comparison of equivalent

designs in arbitrary modes. The specific practical upshot of which is- high-

level modes like functional mode must interface cleanly to the very lowest-

level modes, such as analog mode. This requirement strongly suggests a

common communication strategy is required.

Design lor Clean interfacing between all modes (5)

Modules interact by communication through nodes. Nodes driven by

an analog mode will contain analog voltage waveforms. How then do func-

tional modes deal with analog waveforms read from their input nodes? As

functional modes usually make the digital assumptions, analog inputs are

converted to digital levels by thresholding. Well behaved implementations

attempt the courtesy of returning non-trivial analog outputs (for example

by providing an exponential waveform spanning a change in logic level), but

many simply convert logic outputs directly back to analog levels, resulting in

a discontinuous signal. Assumption of the digital model for functional simu-

lation has potential implementational benefits such as high level abstraction

of module input/output ports as integer-valued variables, reduction in code

complexity, and reduction in storage requirements. On the debit side, the

ability to model unusual or explicitly analog modules (for example a sense-

amplifier such as appears in a well known static RAM design ([weste+85],

page 364), has been lost. Ideally, one would hope that both types of be-

haviour were available.

Given that some scheme has been devised to convert between time varying

analog quantities and discrete digital changes, one must consider the timing
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of digital outputs- how long from change of input does it take to produce

output? Once again there are various approaches- in FML [Des Marias+82]

delays are assignable with constructs such as-

I,ÍHEN CLOCK RISES MAKE A = A + 1 I'JITHIN 10 NSEC;

Similar notations abound, such as in [FoysterS6]'

Another approach is to make delay a property of the links between mod-

ules (especially in systems that assume top-down design). There is wonderful

potential for chaos here if links are allowed to have zero (or negative!) delay.

A zero delay link between the terminals of an inverter is the functional sim-

ulation equivalent of an infinite loop. In defence of the decision to allow zero

delay links, [Lathrop+85] states "It is possible to write an infinite loop in any

programming language. . ." Despite this hazard, in a purely prototyping sit-

uation with no catastrophic positive feedback, universal use of non-delaying

links is analogous to the situation within common clocked systems where-

the clock phase changes, much circuit activity follows, eventually stabilizing

before the next clock cycle. In this situation a link is effectively a contract

that modules can perform arbitrary amounts of communication and stabilize

within single clock cycles. Such omissions may be acceptable in early stages

of development to avoid the overhead and trouble of making the clock control

explicit. A similar case occurs where all delays a¡e unitary, which implies

synchronous communication between neighbouring modules'

Because digital transitions can be said to occur at a specific time instant,

they are often referred to as euents or messages. Highly efficient simulation

can be achieved within a message-passing paradigm. Unfortunately, there

are some serious traps hidden in the semantics of event scheduling and de-

livery, which are clearly explained in [Luckham+86] from which the following
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example is drawn.

Design for Speed è euent d,riuen sirnulation (6)

Consider a digital inverter, with tro-+ Hi delay of 10ns, Hi--+Lo delay of

14ns. If it receives a pulse of width 3ns, the correct pure digital behaviour

would be for the output to remain Hi as the Hi-,Lo transition will not

complete before the inverter is driven .[/f again. In event driven terms, two

events will be generated from the input events- output+tr o at t : to * 14

and Outpu t-+ Hi at t : úo*3* 10. With a simple minded event scheduler that

merely executes events in time order, these events will become transposed

resulting in a erroneous final output state of Lo- as shown in figure 2.6.

Hi-" Hi

Lo

Hi

30
LoLo -¡

Correct Output
03 74

Probable Output

Figure 2.6: Event Scheduling

To prevent events "catching-up" like this, the scheduler must adopt pre-

emptive semantics- when an event for a particular node is scheduled for a

time ú¡, then if there are other event/s scheduled for that node at timef st¡

where t; 1 t¡ then the later events are preempted (that is, cancelled). Sadly

this approach while safe, may be unnecessarily pessimistic- the cancelled

event/s may actually have been quite correct. In particular, preemption

constrains functional descriptions to generate events in strict chronological

order, which may be an unnatural restriction.

The compromise presented in [Luckham+86] is to qualify the event tran-

sition over an interval, for example-

03
Input
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when inport=Ios =)

outport := high after 10;

when inport=high during 4 =>

outport := Iow after 10;

-protecting 
the simulator from generating a transition to Lo unless suf-

ficient time has passed that no transition to Hi could preempt it.

The solution above is quite sensible, but one wonders whether it was

worth the effort. The source of the event catchup problem is the attempt

to enforce the strict digital model. If the functional mode was capable of

analog output, the events could be directly scheduled in time order, with the

result shown in figure 2.7. Thus both an event scheduling problem and an

interfacing problem can be simplified by introducing the design criterion-

Design lor Communication with analog uoltages (7)

Hi"'

Lo ... .r. .. 1... .. .

0303
Input Analog Output

Figure 2.7: Analog Event Scheduling

An impressive approach to the modelling of digital events in time appears

in [Heydemann+88]. Here the use of a rigorous mathematical formalism

allows high efficiency modelling of modules as state-machines, with achieved

performance of the order of 50,000 events/second per MIPS.

Lo
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2.3.4 Timing Analysis

It is appropriate at this point to consider the subfield of timing analysis.

The'goal of timing analyzers is to estimate the propagation time of a signal

through some network, which in the general case can include diverse ele-

ments such as raw devices through logic gates up to behavioural models-

covering the spectrum of circuit simulation primitives. Timing analysis is a

useful adjunct to analog simulation, particularly as a tool for directing per-

formance optimization, however another important application is in hoisting

the abstraction level of a circuit, (especially from out of the analog domain

and into the digital)- the analyzer is run to estimate the delays that char-

acterize a low-level network, the results of which are then used in an explicit

delay specification at a higher abstraction level (figure 2.8). This method-

ology is strongly advocated in [Newton8l]. Of course, overall performance

of a high level system with specified delays is also of interest- an early

example is [McWilliamsSO] which analyzes synchronous clocked systems of

logic gates and blocks with assigned delays. Practical experience gleaned

from [Elder+84] suggests that good delay estimation tools, applied from the

start of the design cycle result in swifter delivery of systems performing to

specification.

In general terms, timing analyzers must enumerate paths through the sys-

tem under test, looking for the critical path between a specified input event

and the arrival of its consequent outputs. Clearly, circuits with large branch-

i¡g (and reconnect) complexitics will exhibit swift growth in the number of

paths with respect to circuit size, making exhaustive enumeration costly' The

review [HitchcockS2] notes this fact, and suggests that the user should guide

the search by labelling paths with tags such as "critical", "marginal", "n'or-

mal,, and ,,trivial", Alternately, [Nomura+82] argues that excessive searching
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Figure 2.8: The Role of Timing Analysis

can be avoided with reference to the hierarchical structure of the system-

for example to avoid checking several instances of bitwise equivalent paths

[Jouppi83a].

A practical point made in [Bening+82] is that just finding the one worst

path is probably a wasteful approach- a more useful form of output would be

the .l{ worst paths in the system, with the ability to mark paths for omission

once the user is satisfied that no further improvement can be made on them'

Another concern is that there are other statistics of interest apart from just

"maximum time to traverse a path"- the average time, and the minimum

time are as relevant if one wishes to check clocle sleew- see [Dagenais+86] for

an implementation. A potential time saving measure is rather than analyzing

for path delays, attempt to prove that minimum clock periods and duty cycles

are met ([Cherry88])- allowing early termination on violation.

As usual, feedback configurations are a complication. The immediate

practical question is how does one avoid looping when there are cycles be-

tween inputs and outputs? The easy detection of cycles has been cited as

a reason for using a depth-first search for path enumeration [AgrawalS2]'

29
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However if the number of cycles is small, depth-first search may be slower

then breadth-first search, which in the seminal TV [JouppiSSa], [Jouppi83b]

is projected to be linear in the number of devices. This is a controversial

point, as another influential timing analyzer, Crystal [Ousterhout83], uses

depth-first on the grounds that the paths are short, thus backtracking is

nominal and justified by the algorithmic simplifications.

Perhaps as a consequence of breadth-first searching, TV includes much

analysis of the circuit with the aim of finding the purpose of each device-

see figure 2,9. With such knowledge and the assumption that devices have

unidirectional information fl.ow, many invalid paths can be eliminated from

consideration. In [Jouppi87], this analysis reaches an impressive accuracy of

around 99.9Yo.

4.

3. Bus 5.

1

2.

1. Internal tull-Up
2. Internal Pull-Down
3. Bus Pull-Down

4. Bus Pult-Up
5.Input l-atch

Figure 2.9: TV Device Labelling

The important result in Crystal, is introduction of delay sensitivity to the

shape of the input signal and its interaction with loading effects (in detail in

[OusterhoutSS]). The Crystal model is refined in [Matson85] where the con-

sequences of different sized devices are included, and further in [Hwang+86],

and again in [Overhauser+88] which allows for dynamic loads (nodes that are
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partially charged, overlapping inputs, etc). The delay analysis methods in

Crystal have been used to extract circuit parameters from SPICE waveforms

[RathmellS6].

It is well known that many technologies show different delay character-

istics for rising and falling signals. For a complete analysis then, a separate

accounting must be kept of delays for a rising input and a falling one' Fur-

thermore, given the system under test contains objects such as functional

mode modules or gates, the "unateness" (the inversion characteristics) of

these objects must be known [Ng+81].

Like other modes, timing analysis has tracked technological develop-

ment, changing focus from gates to devices- a typical timing analyzer

allows user specified block delays, and includes an RC-tree model- for

example [Murphy+85]. Accurate models of gates appear in [okazaki+83],

[Etiemble+84] with the specific case of inverters treated in [SakuraiSS]. Much

work on RC-tree analysis has occurred, flowing from the seminal [Penfield+8l]

and its refinement [Rubinstein+83], which present useful upper and lower

bounds on delay for RC networks. Refinements such as [Chu+87] (for charged

shared networks) and [Martin+88] (cyclic networks) continue to appear, but

are showing a trend towards accuracy at the expense of computation time.

This trend appears likely to be unavoidable in the case of very fast systems-

where large buses begin to resemble transmission lines rather than simple

nodes or wires. A simple, efÊcient transmission line model is a difficult

problem- see [Canright86].

The explicit split between RC-tree (or general low level element) and

high level block models is a blemish that may weaken timing analyzer per-

formance. Attempts to unify these submodes appear in [Brocco+88] and

[Wallace+88]- u very general system with no explicit notion of time or de-

luy.
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An important theoretical paper is [Lin+84], which details a general and

comprehensive model for delays through a system of two-port modules char-

acterized by parameters -B (series resistance), C (total capacitance), D (in-

ternal delay), Q (stored charge), D* (internal delay due to stored charge),

and how this extends to the general RC tree case' Notably, the rules for

combining the parameters of characterized modules imply that it is possible

to continue to rise up through the structural hierarchy, accumulating delay

information.

Thus to summarize, timing analysis is a useful simulation tool applicable

to the main primitive elements found in digital systems. Good estimates of

average, upper and lower bounds on delay times through a system can be

found. These estimates are useful in the development of higher level models,

which provides justification for the delay modelling system used in many

functional and gate-level simulators.

2.3.5 Goals

Some mention must be made of the goal of automatically synthesizing hard-

ware from a functional description- the point where simulation and compila-

tion meet. Silicon compilation, and general hardware synthesis (for example

[McFarlandS6]) are busy fields in both research and development, and de-

servedly so. Possibly the most desirable development in VLSI design tools

would be a system in which a single high level description can be both reliably

compiled to hardware and subject to simulation that adequal,ely reflects the

behaviour the compiled version, rather than the more conventional case where

the simulator operates on an extraction of the compiled hardware- see fig-

ure 2.10. Such systems are considered unlikely to appear for at least another

two years according to [Murphy9Q]. The reverse operation of "decompiling"
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a hardware description into a functional description ([Blaauw+89]) appears

to be more immediately tractable, especially for simple boolean modules and

cases where regularity and/or hierarchy can be detected and exploited.

Common HDL Compiled-Extracted HDL

Figure 2.10: Simulation and Compilation

2.4 Digital Modes

2.4.L Introduction

Anyone attempting to generate random numbers by deterministic

means is, of course' liuing in a state of sin.

- John Von Neumann

Digital simulation of integrated circuits began in earnest at roughly the

same time as the introduction of TTL. See [Seshu+62] for a venerable exam-

ple. From the start, the digital simulation literature has been dominated by

Results Net-List

Simulator Compiler

HDL

Results Net-List

Simulator

Extractor

Compiler
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attempts to broaden the digital model to faithfully handle special cases, the

most prominent of which are unknown states, delays, bidirectionality and

feedback. It appears that adopting the digital assumptions is something of

a state of sin similar to the use of pseudo-random numbers.

The development of the field is clearly documented in review papers such

as [Bening79], [Ruehli8l], [Breuer+8l], [d'Abreu85] (gate-level), [smith86],

[BryantS7a] (switch-level), and [soulé+88] (parallel algorithms). For an ex-

ample of an early seminal system, see [Szygenda72]. [Breuer+81] observes a

notable feature of logic simulators- the steady proliferation of logic states

and strengths.

There is something of a discontinuity between gate and switch level

simulators- simulation of gates whose inputs uniquely determine their out-

puts is inherently simpler than simulation of devices which (being modelled

as switches) may either connect or disconnect nodes. The heart of the prob-

lem is that the direction of flow of information across a switch is ambiguous.

2.4.2 Logic States

A circuit consisting of logic gates connected such that no two gate's outputs

are connected together and with no cyclic connections' can be adequately

simulated using the pure digital model of node values being either High

or Low. Breaking the non-cyclic connection requirement allows unstable

positive feedback as mentioned previously, but more importantly it allows

the creation of a simple static memory element- the flip-flop. Once flip-

flops are present, the question arises as to what their initial state is- the

unsatisfactory nature of assigning either Hi or Lo to such nodes lead to the

introduction of an "Unknown" state- often abbreviated U, or I specifically

for unknown initial states (as in [Hirakawa+82])' or X.
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Similarly, if outputs of gates may be connected, the possibility exists that

two such gates will attempt to drive in opposite directions- creating another

use for the unknown state, or perhaps even a distinct confl,ict state. Usually

though, these different distinct motivations for separate states are combined,

leaving the states Hi, Lo and X- the Ternary Logic model.

Introducing a new state requires consideration of its semantics as an in-

put. In gate-oriented systems this is fairly clear- for example a two input

AND gate with an unknown input will have unknown output unless the other

input is Lo. Nevertheless, [Breuer72] presents a telling example where the

semantics of a specifr,c X state is sufÊciently different from "eithet Hi or

tro" such that erroneous simulation would occur. The same example is still

likely to cause recent digital simulators problems. Fortunately this evidence

of the theoretical inadequacy of the digital model is not a serious practical

difficulty- the problem of unknown initial states can be trivially avoided

by assigning all initial states to a specific value (probably requiring more

effort from the designer). Alternately, if the system under test is designed

sufficiently robustly, X states may be tolerated during simulation, but their

continued presence at the end of the test (or at important checkpoints such

as the end of a clock period) can be considered as evidence of a design error-

this is in fact a useful test.

Thus the X state is a relatively benign addition to a gate-level simulator.

Its impact on the simulation of switch-lìke networks of transistors is rather

more severe. Firstly, X is much more likely to be generated since -ll'i and Lo

node values collide more frequently in transistor networks (often by design).

Secondly, the implications of. a X on a MOSFET gate node is much less

obvious than for logic gates. Thirdly, no simple conflict resolution strategy

exists- when an X is connected to a Hi or Lo, there are two obvious choices,

either ignore the X (which is hopelessly optimistic) or allow the X to over-
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ride the other value (which has the disasterous property of "polluting" the

system with unwanted X states). These difficulties can be resolved only by

complicating the digital model further- for example [Flake+83] uses a fifteen

state logic algebra with the specific goal of arresting pessimistic propagation

of X states.

Further criticism appears in [Bryant84], where the practice of assigning

X to unknown initial nodes is deprecated for not obeying the Law of the Ex-

cluded Middle to which real systems are subject. In [Stevens+83] a practical

attempt to improve this practice is made- the initial system is labelled with

two special tagged X values which retain inversion information (that is, if

one type of X is the input to an inverter, the other type will be placed on

its output)- thus whole strings of X states may be removed if any one of

them is identified (this is a simple example of the use of symbolic simulation

[Bryant9g]). Useful though this heuristic may be, Bryant remarks further

bhat rigorous modelling of a valid-but-unknown state is equivalent to the

problem of boolean satisfiability- an NP complete problem [Chang+87].

The AtP completeness proPerty provides a strong motivation for the use of

higher level descriptions- see [Chandra+89].

A common idiom in digital design is the use of a bus to allow read/write

communication between several modules. Each module with write capability

must be able to "disconnect" itself from the bus 2- or more precisely to set

its bus connection to a sufficiently high impedance so as to pass negligible

current. With additional control logic it is possible to design well-behaved

systems wherein only one module at a time attempts to write to the bus'

When simulating such systems it is highly desirable to distinguish cases where

two or more modules are contending for the bus from the case where a single

2Commonly known as the lrislo,l,e condition
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module is overwriting the data placed on the bus by a previous module which

has relinquished its connection. Another issue is that if the bus data is not

written for some time it may decay and become unreliable. These concerns

lead to the introduction of the Z or High Impedance state, to be used for

nodes that are "undriven", as for example in [McDermottS2].

Z exisls in various forms-

o As a transistor state. An "off" transistor is sometimes labelled Z.

o As a value specifically for decayed undriven nodes.

¡ In three subforms, 20, Z1 , ZX indicating a node with a particular logic

value which is qualified as undriven.

The semantics of a basic Z ate similar to its unqualified form X' For the

more precise model with Z[01X], these state's semantics are similar to their

unqualified forms.S In both cases the difference is that driven forms take

precedence over undriven forms. One could say that the driven forms have

greater strength.

Some other states have been proposed- for example [Jea+79] includes

[/ and D for nodes undergoing upward and downward transitions lespec-

tively. These have in general not found much favour as they introduce more

complexity than they return in improved fidelity of modelling'

2.4.3 Logic Strengths

The previous section on logic states showed how the various Z states were

introduced to handle cases where correct operation of a system could be

achieved if some states were considered stronger than others' In fact, there

3The plain Z is equivalentto ZX
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is no real reason to consider Z et al as logic states, but rather to return to

the earlier Hi, Lo and X logic state space' with an independent strength

attribute.

Strength has a more important use than for high impedance modelling.

Returning to the question of the X state, it is clear that generation and

propagation of X conditions will be reduced by using multiple strengths-

since many logic state conflicts will be resolved by a difference in strength.

Notably in the case of nMOS networks, multiple strengths are necessary to

have any hope at all of successful simulation.

vdd

Vss

Figure 2.11: nMOS Inverter

For the simple nMos inverter of figure 2.11, the upper "pull-up" device

(depletion mode FET) is always "On", continually driving the output node

to Hi. without a strength model, the lower "pull-down" device (n-type

enhancement mode FET) will be unable to change the output to anything

but X. If however the depletion mode device is considered to propagate a

"weaker" Ili than the Lo propagated by the enhancement mode device, then

the inverter can be adequately modelled'

The example of the nMOS inverter illustrates the physical significance

of the strength abstraction. The strength of a logic state is a measure of

o

=
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the current driving capacity supporting the logic value of the node. An

undriven bus has no supporting current maintaining its state, therefore it has

the minimum strength. An externally supplied voltage rail has a probably

unknown but presumably very large supporting current capacity, giving it a

very high strength.

Node strength then is either an implicit property of a node (in the case

of voltage rails, and perhaps other external connections), or derived from

the device/s connected to the node. Indeed it appears that devices too

have strength. Some quantitative modelling of device strength is necessary

to clarify situations where several devices are competing- supposing the

nMOS inverter had another pull-up in parallel with its existing one- are

their combined strengths sufficient to overcome the pull-down? This leads

to the complication of different device sizings- in the case of MOSFETs

identical parallel devices are logically equivalent to a single device with gate

region width to length ratio equal to the sum of the ratios of the original

devices.a In systems using ratioed logic therc will be multiple device strengths

present.

The difficult question about strengths that it asked of every digital simu-

lator designer is- "How many strengths is enough for accurate modelling?"'

[Sangster+83] uses three, [Int87] four, [Stevens+83] five, [HodgsonS4] seven'

[Adler86] thirty-two. Axiomatically, given N + 1 types of devices, each

with different driving capacities, it is possible to construct a simple net-

work that witl defy accurate simulation by a simulator which can model up

to N strengths. Here we have a theoretical objection to digital simulation

with non-trivial practical implications. The simulator designer must make

a choice for N, which can never be guaranteed to be completely adequate,

aThis is only approximately true, but adequately so for most purposes under

simulation

digital
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and which may even result in inefficient simulation if the bulk of simulated

systems require significantly fewer distinct strengths.

Bryant estimates that for most circuits a mere two strengths are adequate

[BryantSlb]. Nevertheless, the presence of ratioed logic is a justification for

requiring arbitrary many devices of different current driving capacity. An-

other supporting complication is the property of some devices to propagate

different logic states with different strength- for example an n-type enhance-

ment MOSFET passes .Lo well, but Ili in an attenuated form. Certainly, the

general trend in reported simulator implementations has been for increasing

numbers of strengths.

Little mention has been made so far of any systematic procedure for

propagating logic states and strengths throughout a system. This was in

deliberate attempt to evade consideration of certain problems, of which bidi-

rectionality is the most dire. To delay this reckoning a little longer, assume

that all devices have an unambiguous direction of information fl,ow, or equiv-

alently, that the sign of the difference in strength of the nodes on opposite

sides of a switch can be determined by static analysis. As an example con-

sider a simple cMos Dynamic shift Register cell (figure 2.12), in which

the devices can be unambiguously labelled as transferring information in one

direction, (and often with an easily computable range of (state, strength)

pairs).

This circuit could be trivially simulated by analyzing each device's gate

input to determine whether it is conducting or not, and if conducting then

propagating the source state to the drain state. There is however some

ambiguity in strength propagation- does a device propagate the strength of

the source node or its own strength or some combination thereof?
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Figure 2.12: CMOS Dynamic Shift Register Cell

2.4.4 Digital Simulation Algebras

Several researchers have proposed algebras for modelling switch and gate level

systems. [Brzozowski+79] is a general mathematical treatment of ternary

logic, while [Jea+79] formulates the problem in terms of allowable state tran-

sitions. Hayes has been particularly influential in this area- with connec-

tor/switch/attenuator networks in [Hayes82], a detailed treatment of ternary

logic with strengths in [Hayes86a], and with greater refinement in [Hayes86b]

which allows for discretized node voltages and bidirectionality. General

mathematical equivalence between various modelling techniques is shown in

IBarros+83].

Particularly important papers in this field are those by Bryant, in which

switch-level simulation was first given definitive form (with the simulator

MOSSIM and its descendants). Bryant uses Hasse diagrams (figure 2.13) to

define logic state and strength algebras [Bryant8la], [BryantSlb], [Bryant84]'

The diagrams define a precedence of states and strengths, with collisions

resolved using a least upper bound operation- for example nodes with same

strength and different state generate X at the same strength, but where the

strength differs, the corresponding state prevails'
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(State)

Hi Lox

(Strength)

51 (input node)

Sn (charged node)

il

Figure 2.13: Hasse diagram of an arbitrary strength logic algebra

2.5 Bidirectionality

One of Bryant's complaints about digital simulators is that they often artr-

ficially assign a direction of information flow to fundamentally bidirectional

devices- see for example [SherwoodSl]. Modelling bidirectionality has al-

ways caused trouble to simulators, and has given rise to complex special case

solutions that are often inefficient. One of the better alternatives is seen

in [Holt+81] which models bidirectional elements as two oppositely directed

unidirectional elements- the resulting overhead is considered acceptable as

it is asserted that true bidirectionality is rare in real systems.

MOSSIM is claimed to be more natural- devices are modelled purely as

inherently bidirectional switches, which is a good match to MOS technology'

Internally MOSSIM determines the stron gest rooted path to each node- the
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path through the network of switches and nodes with the greatest strength

according to the strength algebra. No special case consideration of bidirec-

tional effects is needed- however bidirectional configurations (DC connected

devices/devices connected together source to drain) may require a number

relaxation steps to stabilize.

MOSSIM was an impressive system, lending weight to the arguments of

its supporting papers. Nevertheless, some subsequent work has continued to

use unidirectional devices. An obvious reason is efficiency. Examples include

[sangster+83] (which has an explicit model for a common digital idiom-

the "wired" bus), and [Almeida+84] which uses an eight-valued algebra in

bidirectional areas which reduces to a five-valued case elsewhere, with bidi-

rectional devices modelled as cross-coupled AND gates.

Similar to MOSSIM is [Stevens+83], where on an input event' a \ryave-

front of change is propagated through the system, with wavefronts combined

according to the least upper-bound algebra. Another MOSSIM derivative

is [Adler86] which extends MOSSIM to handle stages driven by gate-level

primitives, adds an RC delay model (requiring an event scheduier), and uses

a thirty-two strength algebra.

[Dumlugöl+83] presents a system that takes the common step of parti-

tioning the system into its DC groups. A strong O(n) relaxation algorithm

is applied to produce a steady state configuration free of X states. This sys-

tem is refined in [Dumlugöl+87] to perform the partitioning dynamically at

boundaries defined by non-conducting devices. Special handling of feedback

loops is required.

When considering the difficulty caused by bidirectionality and feedback,

the question arises- "Are they worth supporting?" In [RamachandranS3]

only well d,esigned, systems are considered- for which the control graphs

must be acyclic in sections delimited by clocks (allowing explicit ordering of
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the devices), and race conditions may not occur at any of the nodes (that

is, data values may not vary with delay). In return for adopting this design

discipline, the designer is promised a faster simulator with the ability to

reliably detect hazards.

2.5.L Delay Modelling

Digital mode shares many of the delay modelling concerns of functional mode'

(mainly as both share the digital assumptions, but also due to the correspon-

dence between a gate and a functional module). Delay models have often

been added as an afterthought to existing simulators, with all the problems

this approach implies.

Many delay systems have been proposed- [Jea+79] provides a range of

delay services- zero or unit delay, rise/fall, min/max, min/max rise/fall

(for instance, rise and fall times have distinct minima and maximu). A more

electrically based, but thorough, case is [Hirakawa+82] in which the delay

model includes handling of fanout.

[Bryant83] is a system for race detection. It makes the point that ana-

log simulation does not show that a circuit will work correctly independent

of delays. Delay sensitivity can be proven with a two-phase ternary logic

simulation- in phase one all Hi or Lo to X transitions are performed, then

in phase two all X to Hi or Lo transitions. If any X states remain a race is

present.

2.5.2 Other Features

In the absence of connecting themes, this discussion of digital simulators

continues with an arbitrary collection of useful features. The list is by no

means exhaustive. A miscellaneous paper is [Miyoshi+85], which details sev-
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eral methods for speeding up gate-level simulators- such as merging gates,

ignoring gates that can not change (equivalent to the constant propagation

stage in an optimizing compiler), and using zero delay elements wherever it

is safe to do so.

Node discharge Nodes in MOS systems have the property of slowly dis-

charging through the substrate. This effect is provided in [Sherwood8l]

via a "node time-out" event.

Latency [LeinwandSl] takes a high view of a system, considering localized

.,processes"- whereby events in different modules are isolated from

each other (each module has its own event list and clock). This has the

desirable properties of increasing locality of reference, reducing event

queue operation overhead, and making the simulator more amenable

to multiprocessor oPeration.

Demand driven An alternate method of avoiding doing unnecessary work

is given in [smith+8T], where requests for signal values are propagated

backwards through the system- avoiding evaluating gates whose out-

puts are ignored. [Subramanian+90] is a recent system of this type

adapted for multiprocessor operation.

Flexibility It is undeniably desirable for there to be available some ability to

vary the severity of modelling. [Hodgson84] for example allows several

stages of algebraic complexity up to six-state seven-strength.

Technological applicability In a rare departure from the dominance of

MOS, [d'Abreu+84] is capable of handling bipolar devices'

Analog compatibility In section 2.3.3 the event catchup problem was pre-

sented, with the simple solution of using analog waveforms' Diverse
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systems such as [Jea+79] and [SchaeferSS] use analog ramps to model

transitions.

Incremental operation First generation algorithms would usually revalt-

date their state at each iteration. Second generation algorithms pre-

serve a modicum of state, and only propagate changes thereto, gaining

impressive speed improvements. An incremental algorithm appears

in [Bryant84], and a variant in [Adler88]. similarly, the system of

[Dumlugöl+83] is reworked for incremental operation in [Sundblad+87]'

A continuation of the trend to trade state space for speed is the use

of. waueform relaxation techniques, as in [Dumlugöl+87]. In for exam-

ple [Salz+89], incremental changes of the structure of the circuit are

treated similarly, which yields up to three orders of magnitude reduc-

tion in total simulation during that phase of design where a circuit is

tested and modified until correct.

Low Overhead [Appel88] exploits hierarchy to reduce the amount of state

. 
per node down to one bit. This is an impressive achievement, to which

one can only jealously comment that perhaps other parts of the de-

sign suffered as a result. Obviously this feature is in conflict with

those in the previous paragraph, and with the backward propagation

in [Smith+87].

Compilation Recently, several systems have appeared that statically an-

alyze switch networks and compile them into an efficient form that

executes typically orders of magnitudes faster than previous simula-

tors. The literature shows a steady increase in the amount of work

done in compilation- from the early [cerny+85], through [wang+87]

and [Bryant+87b] (in which the preprocessor emits c code, the compi-
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lation of which takes 70% of the total translation time) to [Hansen88]

and [Choi+88]. Compilation to a high level language is a common ap-

proach, although [Barzilai+88] compiles direct to assembly language

(doing a coarse granularity MossIM ll-style evaluation). Incremen-

tal capability is added in [Beatty+88], and hierarchical incremental (a

threaded-code implementation) in [Lewis89].

Parallelism Digital simulation tasks are reasonably amenable to parallel

implementation- as shown by the results of [Frank86] where simu-

lations of a 64-processor dataflow machine for switch-level simulation

showed a speedup of 16 to 24. In [Bryant88], multiple parallel simu-

Iations with varying data are performed, either by exploiting bit level

parallelism of logic operations on uniprocessor machines, or using fine-

grained parallel hardware- yielding overall improvements in the range

20-30 and then another 2-3 orders of magnitude respectively. See also

[Kravitz+89].

Partial Ordering The technique of ordering strengths has been very suc-

cessful, but there are pathological circuits where it is difficult to assign

strengths automatically- user intervention is needed to resolve ambi-

guity. Another problem with strength ordering is that large numbers

of distinct strengths can adversely impact simulator performance. In

[Agrawal+88] these problems are tackled by only requiring partial or-

d,ering of sets of strengths, and by minimizing the total number of

strengths required to correctly simulate a particular circuit.

In [Chamberlain+86] [wong+86] the authors study the behaviour of a

switch-level simulator which has been instrumented to allow data to be col-

lected about its performance and notably the distribution of work amongst
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various simulation stibtasks- the results here are rather surprising- it ap-

pears that for their system, the event-queuing, functional evaluations, net-list

operations and other task are quite well balanced with no one task predom-

inating in general.

So, to summarize, digital simulation is in wide use and is unquestionably

a useful technique despite a number of pitfalls and theoretical inadequacies.

2.6 Analog Modes

2.6.L Introduction

Pure analog simulation is the most honest and mathematical of the modes

seriously considered for Loge. It is concerned in the main with real analog

quantities, avoiding the quirks of the digital model. Much research in ana-

iog simulation is driven by the ambition to model lower level effects, which

steadily leads into detailed models of specific device types (see reviews such

as [Engl+83], [Sheu+88]) and finally into device simulation itself. This is ob-

viously a worthy aim, but the price is heavy- progressively decreased simu-

lation turnaround for the designer, and increased technology dependence. It

is a conscious decision that Loge should not take this approach- the engi-

neering tradition is to avoid full mathematical rigour where it is found not

to be cost-effective. Additionally, much analog simulation research is suf-

ficiently advanced so as to require its practitioners to be expert numerical

analysts.

2.6.2 Analog Circuit Equation Formulation

Before discussing the literature, this section presents a formulation of the

classic analog network equations derived from the comprehensive review in
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[Newton+8a]. The terminology herein will be followed in later sections even

where it conflicts with that presented in the papers being discussed.

Firstly, some simplifying assumptions-

¡ There exists a reference node, of constant voltage and measurable ca-

pacitance to all other nodes.

o All circuit elements can be modelled as current sources' where the

current is a function of the node voltages U : f V)).

o Inputs to the system are in the form of an applied voltage with respect

to the reference node

Applying Kirchhoffs Current Law to a system of .lü nodes yields-

G(v(t))v(t)+c(v(tDw+t1(v(¿)):0 (2.r)

-where 
V(t) is the vector of node voltages at time t, G(V(t)) an ,ðl/ x N

matrix of internode conductances, C(V(t)) an N x N matrix of internode

capacitances and ! I is a vector dependent on the node voltages which con-

tains the sum of the currents charging each node at time ú. (Note that the

diagonal terms of the capacitance matrix represent capacitance from a node

to the reference node.)

Some obvious simplifications suggest themselves- it is highly desirable

to minimize the effect of the dependence of. G and C on V(ú). Therefore

these matrices may be split into constant and varying parts-

C (V (t)) : C.onst + C,",y(V (t)) (2.2)

- or a further restriction placed on acceptable circuits, such that these time

varying elements are disallowed. The practical result of this restriction is
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often a significant reduction in simulator code complexity, and thus improved

performance.

A second simplification is to disallow "floating" elements- all internode

conductances and capacitors connected between nodes other than the refer-

ence node. Obviously this seriously restricts the types of circuit topologies

that can be simulated, however for VLSI systems where deliberate piacement

of such capacitors is very rare (legitimate cases would be bootstrapping cir-

cuits, attempts to model device inter-terminal parasitics and bus crosstaik)

the simplification is more justifiable. Similarly, internode conductances are

not usually present by design as circuit elements, but are usually included as

part of the device modelling process- thus the choice is sometimes made to

encapsulate the effect of G within the calculation of /(V(t)). These reduc-

tions result in a null G matrix and diagonal C matrix, allowing the equations

to be rewritten such that-

u, ndV Ivt'w;-EïD4(7):0 (2'3)

Thus it can be seen that the critical issues in analog simulation

o The choice of approximation ror dv\ldt (a numerical analysis problem).

o Finding models for the individual components of /(v(ú)) (a device mod-

elling problem).

¡ Efficiently solving the overall system of equations (a mathematical and

computer science problem).

The next step is to discreti ze lhe system of equations in time, such that

analysis begins at a time point úo : 0, and proceeds in discrete steps from

ú¡ to f;.,.1. At each time point, previous information is used to predict a

new solution (thus it is assumed that 7(O) is known). Several techniques
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have been used to perform the discretization- the Backward Euler and the

Trapezoidal Rule integration methods are common examples. The intention

is to reduce the system to the form-

V(t^+) : l(V(t"),V(t^-r),.. .) (2.4)

----or alternately as far as-
s(Iz(t)) : 0 (2.5)

- (being a system of nonlinear, algebraic equations).

For example, if all simplifying assumptions are made such that the capac-

itance matrix is diagonal, and the most direct of integration formulas applied

(Forward or Explicit Euler-
dn(t") _ ø(ú"+r) - x(t")

tn+t - tn
(2.6)

dt

) then the system reduces to-

v(t,+r) : v(t^) * än,I¡,;(v(t*))Lt^ (2.7)

- for each node i. For most nodes the 1¡,¿(7(t,,)) terms are almost all zero,

except where node j is connected to node i through a device'

At this point it is appropriate to return to the literature, where the vari-

ations on this overall theme will be cited.

2.6.3 SPICE

High accuracy analog simulation in VLSI is nearly synonymous with SPICE

[Nagel75]. Since its development in the early seventies, SPICE has become

accepted as the standard by which the accuracy of other analog simulators

tends to be judged. Similarly, it is a popular choice for performance com-

parison, perhaps partially due to the fact that SPICE is guaranteed to be

slower than newer systems!
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The relatively slow response of SPICE is inevitable on the following

grounds-

¡ SPICE is an extremely general tool, containing models for all manner

of analog componentry, from resistors to transformers to junction field-

effect transistors. Thus its modelling techniques are subject to a low-

est common denominator effect. Additionally, SPICE performs other

forms of analysis than the time domain transient analysis beloved of

the integrated circuit designer.

o SPICE is now an old program, which although it has been carefully

revised and improved, inevitably reflects design decisions made when

integrated circuit device counts were of the order of hundreds rather

than millions. There is no easy solution to this problem- SPICE is a

captive of the bugbear of software development- Backward compati-

bility.

How then does SPICE and its descendants work? [White+87] describes

a four step process (which follows the general formulation presented in sec-

tion 2.6.2)-

i) An extended form of the nodal-analysis technique to con-

struct a system ¡rf the differential equations from the circuit

topology.

ii) Stifly stable implicit integration methods, like the back-

ward-difference formulas, to convert the differential equa-

tions which describe the system into a sequence of non-

linear algebraic equations.

iii) Modified Newton methods to solve the algebraic equations

by solving a sequence of linear problems.
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iv) Sparse Gaussian elimination to solve the system of linear

equations generated by the Newton method.

- and continues by making the observation that for systems containing

n devices, the process quickly becomes limited by the speed of the matrix

solution, which is of O(n"), with ¿ observed to be generally in the range

L.2 < a 11.4, depending on the individual circuit and quality of the sparse

matrix routine implementation'

This description exposes another reason for the success of SPICE- it

uses conservative but robust techniques, which have undoubtedly lead to it

being trusted by its users.s Another revealing comment from [White+87] is-

. . . at one major IC house SPICE is run more than 10,000 times

per month. At another major IC house, more than 70To of an

IBM 3090 is devoted to circuit simulation. circuits containing as

many as 10,000 active devices have been simulated with circuit

simulators. For some of these circuits, running times on the order

of one hour of IBM 3081 CPTJ per time point (t) have been

reported.

With such a demand, it is not surprising that considerable research and

commercial effort has been expended on the development of more computa-

tionally efficient analog simulators. Unfortunately, for some time the pure

complexity of integrated circuits has outstripped the ability of the best ana-

log simulators to cope with thcm, even though simulators benefit from being

run on ever faster machines built of the very components they struggled to

model in the previous generation.

sThe other main force behind the widespread adoption of SPICE is that it costs

nothing to educational institutions.

almost
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2.7 Speedittg up SPICE'

The easiest way to build a faster SPICE is to abandon its generality and

tune performance for a particular technology. This has been done very often

for MOS technology, especially as MOS systems have two highly desirable

properties-

o MOSFETs have minimal coupling between their gate node and both

Source and drain nodes- In, x Isa x 0.

o Partially as a consequence of the above, except in exceptional cir-

cumstances the capacitance between a circuit node and the ground

node is much greater than any other of its internode capacitances

(C;,sn¿Þ C;,i+sn¿) (figure 2'I4)'

Drain

Gate
Cds

Cs,gnd

Cd,gnd

cgs

ï
Source

Figure 2.14: MOSFET Capacitances

The use of the ground node as reference node is so obvious and widespread

as to need no comment. The capacitance property has the useful consequence
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that the general capacitance matrix C(V(t)) is almost certainly diagonally

dominant, which mercifully implies the existence of a bounded inverse.

The first optimized MOS analog simulator was the influential MOTIS

[Chawla+75]. The above properties allow efficient use of relaration methods,

which resulted in a dramatic increase in the speed accuracy product of MO-

TIS with respect to its contemporaries- essentially by substituting SPICE's

direct attack on the system of equations with an iterative solution. In recog-

nition of the performance boost, MOTIS was designated a "timing" simu-

lator, as it now allowed detailed verification of the time domain properties

of a system previously unavailable under gate-level simulators, and allowed

swifter analysis of large systems than provided by the direct techniques used

in "circuit" simulators like SPICE.

MOTIS uses a Backward Euler method for discretization (

W _ x(t") - x(t"-t) (2.8)
dt tn - tn-t

). Backward Euler is perhaps the natural choice for this application, âs-

o It is A-stable rather than merely convergent like Forward Euler.

o It is quite simple to implement.

o It requires littleoverhead per node- only V(f") andV(t^-r) need be

stored, while other methods tend to need more "history". (Admittedly

Forward Euler requires only V(1")).

Certainly Backward Euler is very commonly used in other simulators.

Another useful technique in MOTIS was the use of look-up tables to

contain the analog device models- this optimization is still highly useful on

hardware where the arithmetic performance is relatively weak. The obvious

disadvantage of look-up tables is that their memory requirements grow with
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the power of the number of variables as accuracy is increased- thus simple

MOSFET tables which typically model Id": f (Vn",Va") exhibit square law

growth.

In [Agrawal+80] the early MOTIS became part of a mixed-mode simu-

lator. The name lives on in later systems- [Lo+83], [Chen+84], [Tsao+85].

A related simulator, EMU (from the Mulga design suite [Ackland+81]) has

served as the basis of work into application of parallel techniques to analog

simulation [Ackland+85], and in [Ackland+86] where the circuit is partitioned

onto a multiprocessor with one coroutine per drain-source connected region.

Having presented time discretized equations, one must consider the ques-

tion of the choice of time points. If the discretization method is convergent

then arbitrarily accurate solutions may be obtained by making the differ-

ence between successive ú,, small enough. However the smaller the time step,

the greater the amount of computation to simulate a desired interval 7i;-.

Thus the problem is to choose the t,n as large as possible while retaining an

acceptable bound on accuracy. This is the reason why A-stable integration

methods are particularly desirable- A-stability guarantees that the error

due to discretization decays independently of the size of the time step (even

in stiff systems of equations such as are typically present in MOS circuit

formulations [Sakallah+85b]), whereas a non-A-stable method must place an

upper bound on the time step or the results will become unstable.

Given that an A-stable method is used, the time step can be chosen with

a granularity that closely matches the activity within the circuit. Especially

in clocked MOS systems, the amount of switching within the system rises

dramatically at a clock transition, then decays to a steady state, until the

next transition. By simple heuristics that detect the amount of current flow-

ing in the system the time step can be dynamically altered such that during

switching transients a high degree of precision is maintained but as the sys-
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tem quietens down the time step is extended, avoiding much unnecessary

computation. This is a major optimization, an early case of which appears

in [Rabbat+79].

2.7.L A Philosophical Digression

Research in analog simulation is characterized by mathematical rigour and a

conservative attitude towards simplifications that may reduce accuracy. This

tendency always to emphasize accuracy ([Vogel85]) is a design choice from

which the author must beg to differ- just as the digital model assumptions

appear to be too generous on the one hand, on the other much work on

analog simulation appears too precise given the great desirability of fast

turnaround. In support of this doubly heretical position, here are a few

philosophical remarks. . .

In [Newton+84], Newton makes the fair comment-

,,4 circuit designer soon loses confidence in a program that occa-

sionally gives an incorrect answer!"

However in reply, I contend that there exist many such programs in com-

mon use, which continue to be used despite being known to contain faults.

A trivial example is almost any compiler for a moderately complex high level

programming language- take for example a compiler descended from the

Portable C Compiler (pcc) [Johnson+78]. Pcc based compilers now boast

more than ten years of evolution involving widespread access to the source

code and an enormous user community- and a correspondingly steady yield

of newly discovered errors. One might argue that pcc was only tolerated in

the absence of readily available yet less error prone competition, but this

fails to explain the acceptance recently achieved by the GNU C Compiler

[Stallmang0]. Gcc has been widely adopted by users and manufacturers as
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a replacement for pcc based compilers, for although gcc demonstrably con-

tains more errors, it produces faster object code. A more directly simulation

relevant example can be found in any analog simulator which allows con-

trol of the default time step- giving coarse control over the speed/accuracy

tradeoff, with the result that excessive speed is often chosen despite the less

accurate results.

(Aside: One might perhaps argue that simulators should not allow their

users to specify unstable configurations. Unfortunately this requirement may

not be efficiently realizable as instability is a complex phenomenon, depend-

ing heavily on system under test, simulation algorithms used, input data,

and so on. More practicable, and desirable from the users point of view,

is that such instability induced errors be detected and some action taken-

such as printing a warning. This issue is an instance of a very common

dilemma in applications programming design- should the program "hold

hands" and prevent the presumably naive user from making mistakes, or

should it assume that the user knows best and do exactly as it is toid? Of-

ten, a combined approach is taken, by which Programs have both "Novice"

and "Expert" modes. One must add that human users are, much more flexible

than computer progra this mismatch suggests that writing unnecessarily

restrictive programs is ill-advised.)

User confidence then is not necessarily lost through the mere presence of

errors, regrettable though they are. Consider the following classes of errors-

Undetected Error: Cases where the user is presented with incorrect results

that are consistent with expectations and which are then trusted. The

error may be discovered at some later time, at which point it becomes

one of the following-

Unexplained Error: An error is detected but the cause is not clear. If,
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subsequently the cause is discovered, the error is norrv a-

Clear Error: An error is detected, and its cause is evident.

I believe that confidence is most seriously shaken by the discovery of

a previously undetected error, particularly as these may potentially under-

mine a large body of accumulated results. Unexplained errors are much less

unpleasant by comparison, and may often degenerate to clear errors. In con-

trast, users are reasonably tolerant of clear errors- provided there is some

means to correct them. To clarify further, here are some simulation related

examples of these types of error-

Undetected: A functional simulator that occasionally loses an event (for

example see section 2.3.3)- perhaps concealing potentially serious

glitches.

Unexplained: A digital simulator which is unable to model circuits that

depend on charge sharing effects.

Clear: An analog simulator which produces wildly unstable output wave-

forms if the user increases the default time step too far'

-obviously 
the undetected error is unacceptable, the clear error is regret-

table but simple to recover from, and the unexplained error while initially

serious may be converted to a clear error once the user is aware of the phe-

nomenon.

Now if the above three simulators were separate products available to a

group of designers, and assuming the turnaround available was in the normal

inverse order of accuracy, one would predict that after a period of familiar-

ization the functional simulator would be used rarely if at all, the digital

simulator would be used most, with the analog simulator in use only where
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the digital mode was inadequate, and then often driven very close to the

point of instability for most of the simulations it performs. In other words,

experienced designers will search for the fastest turnaround for which errors

are at least detectable.

Such observations, coupled with evidence of massive computational loads

(such as White's quote), lead one to suggest a style of simulation practice

in which high-speed modes are employed initially, and as the design is re-

fined, greater accuracy is gradually introduced. Even within the confines of

analog simulation such a methodology has been strongly supported in the

SPECS system [Nguyen+89], for which it is recommended that the user per-

form training simulations with detailed parasitic modelling disabled, with

the intention of both revealing gross errors of functionality and highlighting

areas where detailed modelling would be appropriate. The authors note that

surprisingly often training simulations are sufficiently accurate that further

simulation is unjustified. SPECS is notable for providing an accuracy mea-

sure as feedback to the I believe such features have strong positive

benefit in establishing user confidence in a simulation.

what then is the likely error-interaction with this methodology? one

must recall that in VLSI simulation most errors encountered are due to gross

functional flaws in the system under test- in an analogous manner to syntax

errors in a computer program. These are encountered early in the design

process, and thus there is a major benefit in using the highest available speed

at this point- which is entirely practical as the gross errors are unlikely

to be unnoticed. High accuracy can then be reserved for the very final

characterization stages- where there is no substitute for SPICE or a relative

thereof.

Having presented some reselvations about the emphasis of much work

in analog simulation, we now return to the discussion of the literature, but
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with new terms of reference derived from the general methodology presented

above. Such a shift in thinking allows a narrower consideration of this wide

field.

2.7.2 Alternative Analog Approaches

The field of analog simulation is dominated by a long stream of papers and

simulators originating from the Department of Electrical Engineering and

Computer Sciences at the University of California, Berkeley. Roughly one

third of the work cited in this section originates therefrom, and of the re-

mainder, secondary connections often exist, such as in the case of MOTIS'

as a second generation MOTIS called MOTIS-C appears in another Berkeley

paper [Fan+77]. MOTIS-C was notable for exposing interesting variations in

accuracy depending on the order the equations Ìvere solved in- (the Gauss-

Seidel relaxation method iterates over 7, such that at a particular point in

(real) time some V; will be in their fr-th iteration and some in their k + l-th

iteration at (simulation) time ú. If nodes are operated on in ascending order,

a particular 14 is then is solved for in an environment where-

vf i>i
vf*' i <i

). This effect is unsurprising given the implicitly ordered nature of many

circuits- for example chains of directional gates. One would expect that at

the very least that there should be variation in speed of convergence depend-

ing on equation ordering. Systems for finding optimal device and/or equation

orders in both digital and analog domains have appeared- a matrix-level

example is [Yang85].

Event-driven equation ordering was an innovation of the SPLICE simu-

lator [Newton79], which with improvements in numerical methods evolved

Yr: 
{

(2.e)
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into a system described as performing Iterated Timing Analysis. SPLICE

also avoided unnecessary integration of inactive nodes [Newton+84]. See also

[De Micheli+S3] for algorithm analysis and [Deutsch+84] for parallel solu-

tions.

A most interesting result was the discovery that relaxation techniques are

applicable over a waveform of non-trivial length. In [Lelarasmee+82b] and

[Lelarasmee+82a] the resulting Waueform Relaxation rnethod is described.

Unfortunately, despite being encouragingly faster than SPICE, early simula-

tors of this design tended to converge slowly on certain circuits. In [Saviz+88]

it is observed that slow convergence is usually due to tight coupling- leading

to a system which avoids uses Newton/Raphson iterations in such places and

waveform relaxation elsewhere, giving the best of both worlds.

Another problem with waveform relaxation is that the storage require-

ments to retain long waveforms quickly become prohibitive with large cir-

cuits.

[White+85] shows some ways of improving waveform relaxation perfor-

mance, notably again with careful choice of step size, and use of parallelism.

Waveform relaxation has attracted much attention, for example being

adapted for incremental operation in [LeBlanc+85]. However, a particularly

useful adaptation appears in [Hennion+85], where by rearranging the order of

the loops in the waveform relaxation algorithm such that the "time" loop is

outermost, the desirable properties of reduced storage requirement and inter-

ruptability are provided. (Because standard waveform relaxation gradually

improves a whole waveform towards correctness, if the process is interrupted

the intermediate result is usually not useful- whereas if the time loop is

outermost, an interrupted simulation will yield results valid to the point of

simulation time at which the interruption occurred.) A recent promising

variant appears in [Brdman+89].
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Returning to the simpler matrix based techniques- given the non-linear

growth of matrix solution time, a sound procedure for speeding up this task is

to reduce the size of the matrix- a classic application for diuide and conquer

algorithms. [Engl+82] and [Zwolinski+84] give a strong recommendation to

use of modularity to achieve this goal.

However, modular partitioning may not be enough in the presence of

strong intermodule coupling according to [Mokari-Bolhassan+85]- in which

instead of treating modules as black boxes, the partitioning overlaps the

extremities of a module. Overlapped sections are repeatedly solved as long

as they are sensitive to relaxation of other modules that may drive them.

A notable series of simulators appears under the name SAMSON' SAM-

soN2, ... [sakallah+85b]. The aim of these simulators is to allow a more

event driven approach to traditional analog simulation- the system is parti-

tioned into blocks of varying activity for which the solution time points (the

events) are independently chosen. Much emphasis is placed on the accu-

rate modelling of the system in its dormant state between event time points

(where it is described as alert) (the dormant model is refined in [SakallahSSa]

to remove a theoretical inadequacy). Time step control is managed with a

priori estimates which are then accepted or rejected on the basis of a pos-

teriori estimates of the local truncation error. In contrast, [Cox+88] returns

to using a single time step for the whole system, but continues to place

strong emphasis on dormancy as the important feature from whiòh improved

performance can be obtained. The independent time step feature probably

appeared first in [Chen+8a].

As an indication of the state of the art of analog simulators, consider

XPSim [Bauer+88]6 , which is reported to be only 4-5 times slower than the

6xPsim is diffrcult to unambiguously categorize- it is perhaps better

hybrid simulator

described as a
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timing analyzer Crystal [OusterhoutS3]. This system employs both static and

dynamic partitioning of the circuit, allows floating capacitors and leakage

resistors, and models waveforms as exponential curves. A design goal of

XPSim was to allow simulation of "whole" circuits- a 100K device example

is mentioned- requiring 70 Megabytes of memory for representation'

The device/memory figures above reveal a important practical detail

about integrated circuit simulation. Because of the large numbers of objects

(nodes, devices) being modelled, vast amounts of memory may be consumed

by large simulations. For example- consider a hypothetical minimal analog

simulator, where the modelling requirement for a node is only a voltage and

a capacitance (floating point quantities), and for a device only pointers to

up to three nodes and a device type field, then a lower bound on storage

requirement is-

2 x sizeof(float) x N*4 x sizeof(pointer) x D(bytes)

-where 
-ð{ is the number of nodes and D is the number of devices. Then

on a conventional thirty-two bit processor with, say 100K nodes and 150K

devices this results in a memory bill of at least four megabytes. As a compar-

ison, at the medium-abstract gate level, a survey of commercial simulators

showed that gate element records consume around 2040 bytes [VLS85]' and

the timing analyzer TV takes 80 bytes per device and 104 bytes per node')

Sophisticated systems such as XPSim trade storage for speed and have

greater requirements than such a minimal representation. In all cases how-

ever, eventually these storage requirements will become a significant burden

to the computing facilities available. In the common current case, where

a reasonable sized compute server has around thirty-two megabytes of main

memory and a virtual memory system,large simulations become significantly

impacted by the speed of the paging subsystem.
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These practical considerations suggest several design criteria-

o High storage management overheads militate against the desirability

of simulating a whole circuit at analog level. Hierarchical capability is

again shown to be highly desirable.

o The payoff in reduced overhead from adopting a concise circuit repres-

entation is more and more significant with increased circuit size.

o Paging should be minimizedby using a circuit representation that max-

imizes locality of reference. (Unfortunately, although the interconnec-

tions between devices and nodes may appear to exhibit a fair degree of

locality, in practice the sheer weight of device and node numbers tends

to spread the representation out across available memory.)

Design for Hierarchical capability

Design lor Concise circuit representation

Design for Locality of reference

(8)

(e)

( 10)

2.8 Mixed Modes

This section discusses issues specific to mixed-mode simulators- by defini-

tion those where at least two distinct modes of simulation are simultaneously

possible.

Early work in this freld is dominated by cases of existing systems being

extended to handle an extra mode- for example [Thompson+80] where hard-

coded models were added, or [Nash+80] where an RTL level was added, in

both cases to a previously designed gate-level simulator. This sub-optimal

implementation method has become less common as the freld matures. There

is general agreement that all modes provided by a simulator should be equal
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partners, present by design, which is a "difficult, but comprehensive" goal

([Chadla+88]).

Since functional and digital modes are more closely compatible than any

pairing with analog mode, the bulk of simulators that qualify to be called

mixed-mode under the preceding definition possess these two modes- see

[Raeth+g1], [Hirchhorn+81], [sakai+82], etc. Therefore the DIANA simulator

[Arnout+78], which is the first analog and digital mode simulator, is partic-

ularly noteworthy. At the other extreme is [Mayaran+88] which details a

mixed analog and device level tool.

The task of interfacing analog outputs to digital inputs has lead to various

thresholding techniques. The simplest of these uses two fixed absolute analog

voltage levels Vtou -thr e sho¡¿ and Vhis h -t h, 
""ho¡¿ 

where-

V", l Vou-thresho[ 1Vh;sn-threshold 1 V¿¿

-and-

Vosi.:

Lo Vonolos 1 Vou-threshold.

Hi Vnobs ) Vh;sh-thr."hotd

X otherwise

(2.10)

This simple solution presents little computational overhead, however it

suffers from a tendency to either sustain X conservatively if the thresholds

are wide apart, or to smooth noisy signals if the thresholds are relatively close

(of course, this may actually be desirable in some cases). A more sophisti-

cated thresholding method appears in [Agrawal+80] (notable for presenting

possibly the first analog, digital and functional simulator)- here further

parameters V"ro"" and ?""¿¿¡"7 are introduced, where V"" l Vout-threcho¡ 1

V",or" lVhish-thr"rhou 1Va¿ andTr"¡¡¿" > 0. The result is redefined to be-

TThe nomenclature used here differs from that in the original paper
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(2.11)Vos;"

Lo

Hi

else

X

X

else

Lo

Hi

Vonolos 1 Vout-threchold

Vonolos ) Vhish-thr""hold

Votu-threshold 1 Vnoton 1Vn;nn-rhr."hou fot ) Tsettle

ot if. d\noros f dt changes sign

Vlot t-threshold. 1 Vønatog 1 Vro""

V"ro"" 1 Wnobs 1 Vh;sh-tl"r""hold

-which 
has the desirable property of suppressing the generation of x

in normal Hi + Lo and Lo è lli transitions where Vno6g passes quickly

through the region lVo--th,."hord.,Vhigh-thr"shot,t] without changing the sign of

its derivative. The consequences of X-pollution are sufficiently severe to

justify the extra computational burden of this method. Unfortunately, it

is somewhat unnatural- consider the simple exponential signal shown in

figure 2.15, and its possible output for a particular choice of parameters.

The sequence of logic transitions Lo, Hi, X, Hi includes at least one

spurious state- either the first Hi, or both it and the X. Assuming the input

is sufrciently slow that generation of X is desirable, attention focuses on the

first I1,i. This transition comes about due to the algorithm predicting that the

input will swiftly reach Vhish-th,""ho¡¿, whereas in practice this proves not to

be the case. This is an awkward problem, when one considers the ubiquity of

exponential analog signals. Fortunately, it seems to be possible to minimize

its occurrence by careful choice of the four threshold parameters. Interesting

approaches available to an event-driven system include not propagating X

states until they are resolved, or using an event-unrolling procedure to remove

spurious states.
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High

Cross

Low

Analog Input

Tsettle DigitatOutput

Figure 2.15: Thresholding Problem

That the analog + digital interface should be troublesome is hardly sur-

prising as there is a loss of inforrnation travelling across this boundary. The

converse case is simpler, with the main alternatives shown in figure 2'16'

Digital values can either be directly converted to analog levels (1), or treated

as defining linear current sources ([Arnout+78] introduced this technique as

boolean controlled, switches) with X state outputs corresponding to a zero

current (2), or even to insulate the raw logic levels with a layer of real device

modelling- for example by inserting a simple buffer circuit (3).

A common practice in mixed-mode simulation is to decouple the struc-

tural information from the functional by implementing distinct languages

for the two- for example [Sasaki+80]. Reasons for this split include the

possibility of separate compilation, and also because isolating the structural

information allows it to be quickly accessible to other tools (such as a cell-

builder) without requiring extra parsing. In opposition to this technique is

the desirability of keeping all the info¡mation on a module in one place- an-

Hi

x

Lo
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noying mistakes can arise if the structural and functional descriptions become

inconsistent.

Feedback and bidirectional elements continue to cause trouble in mixed-

mode. It is common to place restrictions on the system under simulation-

such as in [LieberherrS3] which requires all cyclic paths to be clocked and

bidirectionality not to be visible at the structural level- that is, all bidirec-

tional elements must be hidden inside leaf modules. Such restrictions have

been found to be widespread in commercial simulators (see [Walker88]). How-

ever, the alternatives are similarly unpleasant- for example in [Borrione+83]

feedback is handled at the expense of much special case scheduling and mod-

V=Vdd
V = (Vdd +Yss) / 2?

= unchanged?

Digital to Analog Voltage Conversion
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VssV

Hi
x
Lo

Hi
X

Lo

I=I+
I=0

I=I-

Digital to Analog Cu¡rent Conversion

V=Vss I=Ion

I=Ioff

Digital to Inverse Analog Voltage,
then analog device models

V=V

Hi
X

Lo

I=?

Figure 2.16: Digital to Analog Interfaces
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elling complexity, The IDSIM2 system of [Overhauser+89] is exceptional in

its dynamic handling of feedback- IDSIM2 categorizes modules as either

analog or digital on the basis of several tests, one of which is for feedback

configurations. Because feedback is often conditional on input data, IDSIM2

is able to dynamically reclassify modules during simulation, as feedback paths

are made or broken- the intention is to automate the choice of the instan-

taneously most efficient simulation mode.

The major attraction of mixed-mode is the promise of being able to test a

whole large system, with areas of particular interest simulated in great detail,

with other areas handled by more effi.cient modes. The main method for

achieving this goal is exploitation of the hierarchical structure of the system

under test, with the provision that one must always trust the functional

simulation of a parent composition module to accurately reflect the aggregate

behaviour of its child modules. (The importance of using the hierarchy is

stressed in [Saab+88], which reports a successful development of a functional

model for a Màtorola MC68000 microprocessor). Satisfying this constraint is

a major design goal of the hierarchical simulator presented in [Chen+83] (and

its derivative [Lin+86]), in which a uniform representation of the interface

mechanism at all levels of modelling is cited as the key factor.

The general problem of verifying absolute equivalence of supposedly func-

tionally identical descriptions prohibitively difficult. A more practical goal is

to attempt to measure equivalence between the run-time behaviour of mod-

ules under a particular set of input test vectors. Again this suggests use of

a mode-uniform event-based interface representation- as a means to limit

the amount of information that would need to be analyzed. Verification is of

course a large field- detailed consideration of various verification strategies

is beyond the scope of this review.
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2.9 Hybrid Modes

The previous sections on digital and analog modes have mentioned problems

with each. Several researchers have therefore attempted to extract the best

features of both modes and produce a superior hybrid. A typical early efort

appears in [Nham+80], where from analysis of analog device characteristics

and load capacitances, a distinct rise and fall time for each device is cal-

culated. This analog-derived parameter controls the rate of propagation of

digital state changes through each device.

A related approach is the seminal RSIM [Terman83], which treats devices

as a variable resistor- with a precomputed "on" values (two dynamic val-

ues for Hi + Lo, Lo + Hi transitions, and a static value for steady state

calculations), infinite resistance when "off" and when the device is driven

by a X takes the unusual step of using interval arithmetic- modelling the

resistance as the range [Æ,,, æ]. This abstraction proves to be quite power-

ful in terms of reducing algorithm complexity and thus delivering simulation

speed, while accuracy mainly remains within 30% of SPICE. Unfortunately,

charge-sharing effects (especially in networks of pass-transistors) are handled

poorly, requiring special treatment.

An interesting generalization of the hybrid-mode paradigm is given in

[Dewilde+85]. Here the state of a node is controlled by an approximating

spline function, and the process of simulation thereby becomes a matter of

propagating changes in node function parameters (figure 2.17). This model

is clearly attractive for event-driven implementation. Another benefit is that

with a rich set of function control events, it becomes straightforward to pro-

vide multiple simultaneous simulation modes.

As was shown in the section on analog simulation, many simulators oper-

ate by discretizing time, and solving for voltages. Inevitably, the dual method
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V

Interconnection Network

Figure 2.17: Parametric Simulation

of discretizing voltage and solving for time was tried (the first instance being

[de Geus84])- leading to some impressive systems. Once voltage is dis-

cretized one is firmly on hybrid ground, as the digital model embodies the

ultimate (useful) voltage discretization.

If one solves for time rather than for voltage, event-driven operation of an

otherwise basically analog simulator become practical almost for free. Given

that a discrete set of voltages has been chosen, the basic simulation algorithm

at fr involves solving for the time fi11 at which a given node currently

with voltage V¡ will reach an adjacent voltage V¡+t- such occurrences define

the events (figure 2.18). Equally fortuitous is the property that by limiting

calculation to inter voltage-set steps, excessive voltage variations that can

occur in conventional simulators that allow the time step to become too

large are automatically prevented.

A direct and effective implementation of this technique appears in the

CINNAMON system of [Vidigal+86]. Here voltage-change events (changes

above a supplied threshold) give rise to solution of the few device equations

t
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Figure 2.18: Discretized voltages and event generation

relevant to that node, or in the case of simple uncoupled node/device con-

figurations an exponential approximation for the expected voltage character-

istic is substituted. User control of the voltage-change threshold provides a

turnaround/accuracy tradeoff. The basic response with a threshold of 100mV

shows two orders of magnitude improvement over SPICE. Similar techniques

are used in [Odryna+86] (iteration is introduced by scheduling events to re-

evaluate neighbouring nodes) and in [Kim+89] where group of algorithms

are presented under the collective name Elogic. Elogic is an adaptation

to hybrid-mode of the lessons learned in previous simulators from the Uni-

versity of California, Berkeley, and shows typical thoroughness in modelling

awkward analog effects. Event-EMU ([Acktand+89]) reverses the trend of

such systems to schedule node transitions and returns to the proven technol-

ogy of static partition into tightly coupled regions with scheduled periods of

iteration.

[BeckettS6] presents another high performing system based on voltage

discretization but with the simplification that the inter event behaviour of

voltages is assumed to be piecewise linear. The advantage of the linear ap-

proximation is that it reduces the complexity of the event-time calculation-
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12

Ids

which is now the main area of numerical overhead. Interestingly, the result-

ing discontinuous voltage waveform data is accumulated, and used as input

to a curve fitting procedure!

Further evidence for the general usefulness of voltage discretizing simu-

lators is given by [Kao+88] which models ECL/CML devices, however some

performance issues remain to be addressed, particularly regarding tightly

coupled configurations- see [Visweswariah+89].

Having discretized voltages successfully, one is lead to ask "What else

can be discretized?" In [Ruan+85], it is the turn again of device currents-

however rather than considering devices to be resistors as in RSIM, devices

are limited to producing only three currents Izr Ir,/o : 0 as determined by

the general device characteristics shown in figure 2.19. In this formulation,

the event points are given by the time that the terminal voltages of a device

require a change of current region. Obviously choice of the critical voltages

and currents is crucial to the accuracy- the approach taken in [Ruan+88]

optimizes for two common modes of device operation.

Ids
t2

I1 I1
IO

-V -I1

-t2

Figure 2.19: Discretized Current Characteristics

'vdd
Vds

v01 v12 Vdd
vgs

These systems all provide positive evidence for the benefits of an hybrid
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simulation mode. In fact, so impressive are the results that one is lead to

the conclusion,that hybrid mode simulation is sufficiently powerful to replace

separate analog and digital modes.

Design fot Hybrid mode (11)

2.tO Summary

To summarize the review, assembled below is the list of major design criteria

identified in this chapter

1. Multiple interchangeable modes

2. Fidelity of modelling

3. Flexible, powerful HDL

4. Easy to use HDL

5. Clean interfacing between all modes

6. Speed t event driven simulation

7. Communication with analog voltages

8. Hierarchical capability

9. Concise circuit representation

10. Locality of reference

11. Hybrid mode
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-these 
criteria determined the shape of Loge, and underpin all the dis-

cussion of the following chapter. The list could easily be much longer- so

many criteria and useful techniques arise from the literature that decisions

of what to omit were frequent and vexing.



Chapter 3

Design of Loge

3.1- Introduction

The structure of this chapter loosely follows the order of the development pro-

cess. Broadly speaking discussion proceeds from a preparatory investigation

of functional simulation through scheduling issues to detailed examination of

the primitive simulation objects, which leads to hybrid mode simulation and

finally some examples. Concern for mode interfacing, fidelity of modelling

and HDL issues is interwoven throughout.

3.2 Structure

The broad specification for a simulator is that it should accept models written

in a ha¡dware description language or languages, and be able to simulate the

time behaviour of these models in a controllable environment. Loge follows a

conventional pattern of user interaction that arises from this specification-

7. loge l<input-files>l

77
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loge) input comrnands

output results

loge) (quit)

T

- that is, a simple command interpreter. The basic user interface to

Loge is thus quite spartan- and deliberately so, the intention being to of-

fload the burden of a more powerful interface onto special purpose programs

that either invoke Loge or are themselves invoked through HDL expressions.

This relatively easy decision focuses attention on a more difficult problem of

specifying the HDL.

3.2.L HDL issues

The matter of model representation and HDLs has been previously discussed

in section 2.3.2. Given the requirement for a powerful HDL, then of the two

main HDL implementation techniques of embedded language and special

purpose language it appears that building onto an existing language is both

less work and can guarantee a known minimum degree of expressivity. Thus

the question for Loge became- "Which host language?" -

This issue is complicated by the different style of input to the simulation

modes- the input to most analog, logic or hybrid mode simulators is simply

a list of electrical elements- capacitors, devices, etc, in a format such as

EDIF or a SPICE "deck", whereas functional mode simulator input tends to

be mostly modelling code. Nevertheless it was decided to build one unified

language for all modes, as this is less restrictive to the user.
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Prototypes

Build, one to throw auay. . .you will anyway.

- Fred Brooks

choice of the Loge host language was aided by a prototyping phase, as

were the resolution of many other initially unclear language-related design

lssues-

signal typing can strong typing of signals be enforced (for example, pre-

venting the connection of two "Write-Only" signals), and if so is it

useful?

Genericity How difficult is it to implement generic modules- modules

whose structure is to some degree variable and not fully known until

the module is instantiated?

Connections A common problem with functional simulators is that speci-

fying connections between modules is tedious. Can this be improved?

Hierarchical construction How does one construct a hierarchy of mod-

ules? What are the tradeoffs between amount of storage, efficiency of

access, locality of reference and genericity?

A functional and structural mode prototype was written in Franz Lisp,

using a Flavors package to provide an object oriented environment, while

prototype hybrid and analog modes were developed in Pascal and C** as

extensions to an existing simulator ([Int87]). The main conclusions were-

1 That signal typing was useful and could be checked easily
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2. Generic modules were possible, but required the full flexibility of Lisp.

Simplified forms (such as allowing variable width bus connections)

would be necessary if a less flexible implementation language was used.

3. Specifying connections between modules is inherently tedious. Generic

modules help, but one must expect a specification of complex wiring

to look complicated.

4. Hierarchical systems must strive hard to minimize storage. With the

exception of device-level systems, it is difficult in general to improve

locality of reference beyond that already supplied by the module bound-

aries. Control of layout of simulation objects in memory is necessary

in either event.

Conclusions 2) and a) typify the conflicting requirements of structural ver-

sus hybrid modes- to provide both generic modules and efficient memory

layout requires a very wide ranging implementation language. In character-

istic fashion for this project, the solution was to provide a system that is a

hybrid of two languages- Lisp and C** [StroustrupS6] (it was subsequently

heartening to note the work of [Wolf89] in which these languages individu-

ally proved to have strong features applicable to digital systems simulation).

C** is a particularly appropriate choice as its development was triggered

by a desire for high performance successor to Simula67 [Dahl+70], which has

given long service to the simulation community.

Loge is thus a C** program, which manipulates simulation-specific ob-

jects. In particular, computationally expensive tasks such as event scheduling

and hybrid mode evaluations are pure Cf* code. The actual HDL however

is an interpreted Common Lisp subset with simulation-specific extensions,

which allows specification of generic modules with arbitrarily complex inter-

connections.
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The performance penalty inherent in the use of an interpreter is only

significant when building a module instance hierarchy and when running

functional code. The first case is unavoidable, but the second may be too

great a burden in cases where Loge is used for top-down specification of

experimental architectures, in which modules will only operate in functional

and structural modes (as in the case study of section a.4). To allow efficient

simulation in these cases an interface to user-supplied object code is provided,

giving the best of both worlds.

3.3 Scheduling

Loge is an event driven simulator, using a single central event scheduler. The

basic functions of the scheduler are-

Enqueue Schedule an event for an object at some later time.

Dequeue Fetch the object with the earliest pending event

Preempt Cancel a pending event.

The general algorithm for event driven simulation with a central scheduler

ls-

Algorithm 3.1 Euent Driaen Simulation

Enqueue initial eaents

repeat

Dequeue an euent

Run euent-specifi,c seruice routine

(possibly enqueues or preernpts more euents)

until out of eaents or erplicitly terminated
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For efficient simulation it is important that the scheduling functions be

reasonably inexpensive, as they are pure overhead to the real work of simu-

lation which occurs in the event service routines.

Implementation Note: Time The representation of time is vitally im-

portant to a scheduler. Given a discrete event paradigm, it is natural and

efficient to represent time as an integer quantity. Unfortunately, the most

natural size of integer available on most contemporary computers is only

thirty-two bits, giving a range of nine orders of magnitude. Since one may

conservatively expect a simulator for VLSI systems to be able to resolve pi-

cosecond events over a total run time of seconds, twelve orders of magnitude

is a minimum time range requirement- thus an integer time representation

can not be used directly, although it is still possible if one is prepared to

use scaling and time-origin shifts or expensive long integer formats. Eventu-

ally larger fast integer formats will become more readily available, however

for the present Loge uses floating point quantities with time origin shifts to

represent time, following the example of [Sakallah+85b].

3.3.1 Scheduling Algorithms

What is the most suitable algorithm for an event scheduler in a general

purpose digital simulator? Algorithms may be compared on the basis of

their best, average and worst case performances' but for such comparisons

to be relevant, some knowledge of the event time distribution is necessary.

Regrettably, event time distributions vary widely across the simulation modes

and systems under test. In very broad terms, some typical cases are-

o Low level simulation of circuits with analog behaviour: Difficult to

predict, especially if feedback is present, but often characterized by
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continuous large numbers of closely spaced events'

¡ Low level simulation of digital systems: High densities of events fol-

lowing a clock input change, decaying fairly quickly to some minimal

level.

o Functional simulation of simple digital primitives: Event times are rel-

atively sparsely distributed, with a tendency to cluster onto specific

time points (again this is related to the clocking used).

o Functional simulation of complex modules with user supplied code:

Often similar to the previous case, but potentially the most wildly

varying situation of all.

With such variability it is highly unlikely that one single algorithm will

be optimal for all cases.

Timing Wheel

The classic timing wheel [UlrichS0] (or "temporal hashing") it perhaps the

most frequently used algorithm in schedulers for analog simulators. In terms

of the number N of events in a timing wheel, and the number of slots M itt

the wheel the enqueue and preempt operations require an average of- Nl2M

comparisons, while dequeue requires only a single test when the event density

is high. Unfortunately, under sparse event times, the average cost of dequeue

rises towards M comparisons and if clustering is present the worst case cost

of enqueue and preempt tends towards N comparisons (some of the effects

of clustering can be reduced by placing distant events on a simple list, while

the imminent events continue to be placed on the wheel, and at intervals

the events on the list are resubmitted for potential placement on the wheel,

however this procedure is not without overhead)'
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Timing wheels are indeed well suited to analog simulation, but degrade

under conditions characteristic of a class of functional simulations.

Simple Heap

Performance of a simple heap [SedgewickSS] of events (embedded in a fixed

array) has the advantage of being less sensitive to variations in event dis-

tribution. Heap operations appear to have the advantage of asymptotically

superior performance (O(lg N)) to those of a timing wheel if enqueue and

dequeue events occur in similar numbers, however this superiority will only

occur under a very high event density unless M is quite small.

Nevertheless, the heap algorithm is a robust choice for a general purpose

simulator. It is the default in Loge, with the option of using a timing wheel if

the user sees fit. The particular heap implementation in Loge is optimized in

favour of the common situation where an event is preempted and immediately

reinserted at a slightly later delivery time- rather than fully removing and

replacing such events, they may be directly moved down the heap (typically

requiring a very small number of steps).

3.3.2 Event Suppression

Although it is worth taking care in the design of the event scheduler, the best

opportunities to improve overall simulator performance are in application

of techniques that reduce the total number of events required for accurate

simulation. Many event suppression techniques are specific to the objects

under simulation and will be discussed in later sections. However, a generally

applicable technique is to order events at the same time point. Consider

a functional module M, connected to node N and many other nodes and

modules, for which both M and N have events due at time T (figure 3.1).
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If servicing an event can cause messages (dashed lines) to be generated,

and the receipt of messages can trigger further messages (ricochets), then the

total number of events and messages can fluctuate wildly between different

event orderings, notably depending on the fanout of the components. To

illustrate this more concretely, assume a hypothetical event/message scheme

where_

o When servicing an event or receiving a message a module sends "Cur-

rent" messages to nodes, and then schedules its next event'

Modules then nodes Nodes then modules
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Figure 3.1: Events between module M and node N
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o When servicing an event a node sends "Voltage" messages to modules,

and then schedules its next event.

o when receiving a ,,current" message a node may preempt its next

event, but sends no ricochet messages.

- in such configurations it is always worth servicing nodes before mod-

ules, for if the module is serviced first it may shortly require extra processing

should it receive a ,,voltage" message from a neighbouring node.

To accommodate such optimizations, the event scheduler is supplied with

an analysis function which compares two time equivalent events and returns

indication of which should take priority in the queue. An extension of event

ordering is the rejection of duplicate events, which may occur in functional

simulations of bus structures (figure 3.2)'

Bus Nodes

I

- -,

Figure 3.2: Bus events

Supposing the event discipline is changed such that nodes instead of send-

ing "Voltage" messages, schedule events for the modules that are connected

to them at time points when the node is expected to be stable' In such cases

a write lo a I( bit bus by module M1 results in .Il events (dotted lines) being

generated for the modules M2, M3, and M4 that are capable of reading the

bus. If the bits of the bus are identical (as they are prone to be in top down
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functional investigations where no electrical parameters have been specified),

then all events will be scheduled at the same time. By simply rejecting the

duplicates the number of events to be serviced is reduced from 3.I( to 3 -
very good value from a trivially implemented optimization.

Bus structules ale so common that it is almost certainly worth mak-

ing a similar optimization available in the case where the bus nodes generate

somewhat different event times from the same write. Consider a module that

reads from a /( bit bus, and computes a complicated function of the bus bit

values which is written to an output node- if all input nodes change state at

different times, 1( computations could be performed where one would possi-

bly suffice. Worse still, if preemptive semantics are applied to events queued

for modules, later events may be incorrectly ignored. What is needed is a

means to structure nodes into a single entity at the module interface (while

still allowing nodes to have separate electrical parameters for the purposes of

analog simulation), such that the module is only contacted when all nodes in

the bus have been stable for some period- a hysteresis effect. This can not

be done purely by the event scheduler, but is easy to implement by defining

a new type of object- a node concentrator, or port, which isolates modules

and nodes (figure 3.3).

3.4 Simulation Objects

This section describes the four main simulation objects- modules and ports

(specific to functional mode), devices (specific to low level modes) and nodes

(common to all modes). In each case, one must consider what physical

quantities the object is expected to model, and whether the quantity is a

unique property of each 'instance of the object, or a property of a class of.

object- for example, the instantaneous voltage at a node is the private
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Port

Figure 3.3: Modules, Ports and Nodes

property of that node instance, but there may be a large number of nodes

that all take an initial voltage of 0V - perhaps defining a class of nodes.

As there will generally be considerably more object instances than classes,

to avoid high storage costs it is vital to minimize size of the per instance

properties.

There are some properties shared by all objects. Firstly, an object in-

stance must contain a reference to its class. Secondly, the requirement for

a hierarchical representation means that each instance of an object is part

of a tree of instances- the leaves will be nodes, ports and devices, while

the trunk will contain modules. It is fundamentally important to be able to

traverse this tree, thus modules must contain a list of their child instances,

and all objects must contain a link back to their parent instance.

Other properties shared by all object instances are its local time, and

a pointer to any currently scheduled event- allowing quick invalidation of

events when preemption is required. The structure thus far is shown in fig-
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ure 3.4. A less tangible property of the simulation objects is the set of mes-

sages they send and/or receive. The discussion that follows aims to derive

a broad representative set of message types for use in various specific algo-

rithms. Note that in the discrete event/message passing paradigm adopted

for Loge, the terms t'event" and "messagett are used semi-interchangeable-

strictly an event occurs on execution of a service routine when a object

reaches the head of the scheduler queue, while a message is an instantaneous

(small) data transfer between objects. However in many cases sending a mes-

sage causes similar activity in the recipient object to servicing an eventl, so

the distinction is blurred. A convenient piece of terminology used hereon is

that when an object receives an event or message it is said to be awalcened-

Parent Instance

Child Instances

Class

Local Time

Event List

Figure 3.4: Simulation object instance common internals

3.4.L Nodes

One of the design criteria for Loge requires analog voltages as fundamental

quantities. Since voltages are properties of circuit nodes, we recall the per

node form of the simplified nodal analysis equations, equation 2.3-

adu+Ð1i(7):o"'dtIZ

lOr even for the recipient object to preempt and schedule itself for immediate service.
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This equation is in terms of per node (i) quantities C;,, dU I dt and I I¡(V),

where 7 is the vector of the U.V and dVld,ú are clearly per node variables

and belong to the node instance, although their initial values need not. While

C¡ is constant and may be common amongst several nodes, and thus poten-

tially a class-level property, capacitance figures heavily in the procedure for

updating node voltages, therefore it too is stored in every node' The current

term is not a property of any one node- it belongs collectively to those

elements that are connected to the node i.

Implementation Note; Many object properties are subject to numeric

computation. While it is desirable to use integer arithmetic if possible, the

decision to adopt a floating point representation of time defeats most of the

potential speedup afforded by integers, as time is present in many if not

most of the computations performed by Loge. Therefore, with considerable

regret, all physical analog properties such as voltage, current, resistance, etc

are stored and manipulated in floating point'

Another property of a node instance is the set of other objects (such as

ports) that are connected to it as part of the physical "wiring" of the sys-

tem. There is a useful duality here between modules and all other objects

including nodes- because modules can not be leaves of the object instance

hierarch¡ their connections are all hierarchical - being either parent-to-

child or child-to-parent. On the other hand, nodes et al are always leaves,

with a single hierarchical child-to-parent link, but no parent-to-child con-

nections. These leaf objects do however have "wiring" connections between

themselves, whereas modules do not. Figure 3.5 illustrates this difference,

showing in abstract form the instance tree of a non-inverting buffer module

which consists of two cascaded inverter modules.

Implementation Note; The practical upshot of this non-overlap of con-

nection type is that the same slot in the general object structure can be used
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Inverter
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Structural/ Hierarchical Connection

Module instance boundary

Physical (Wi¡e) Connection

Conceprual link between similar ports

Figure 3.5: Simulation object connections

for leaf object interconnections as is used for module parent-to-child links.

A more general name for this slot is the fanout property. The properties of

a complete node instance appear in figure 3.6.

Implementation Note; At present Loge represents voltage internally in

normalized lotm Vnor^ : Vo"tuotlV"upprs¡ thus all voltages are the range

[0.0,1.0]. This allows a number of useful optimizations and internal con-

sistency checks, at the expense of complicating detailed simulation of mixed

technology systems (those with multiple V"ureq).

Having collected the tangible properties of a node, the following sections

focus upon the event and message interactions of nodes in both hybrid and

functional modes, and show why it is useful for local time to be a property

Inverter
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u
duldt

C;

Parent Module

Fanout

Class (Node)

Local Time

Event List

Figure 3.6: Node instance

of nodes and other simulation objects.

Hybrid Mode

A commonly encountered feature of many hybrid simulation modes is that

the time rate of change of node voltage is constant over the interval between

events for that node. AIso common is the restriction of voltages to a finite

set- Voltages : {Voltage¡

-where-

Vi,j e [0,N]; i < j + Voltage; 1 Voltase¡

Under these assumptions there are a number of feasible calculation and

messaging disciplines, such as that of algorithm 3.2 and figure 3.7 which

could be called broadcast-and-sum.

Algorithm 3.2 Broadcast-and-sum

On awalcening at time tr

V + W.,t
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Send, V;(t¡) messages

Receiue I ¡,;(t*) rnessages

dw(t h) I dt : äD ¡ I ¡,;(t ¡)
Giuen V(t*) - Voltagej

(

,, _l Voltase¡a1 dV(tk)ldt>0
vnett - \

I Voltase¡4 dW(tk)ldt <0
tnext : t* * (w""t - v(tr)) I dv(tÈ) ldt
Schedule waleeup at tn rl

Awaken node

93

\
\\

Broadcast V

\
Request I \\\

1

Schedule next event

Figure 3.7: Node event/messages

This method is potentially workable, but as stated deliberately contains

some instructive flaws. Firstly, given that current is only sampled occasion-

ally, serious inaccuracy may result if a large current change occurs between

awakenings of the node- an all too plausible example of which could be

\
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with a CMOS inverter that is changing state and sampling occurs during the

short period when the total current into the output node is small (giving

a small du(tk)ldt which implies a long wait till tn",t), by which time the

devices could be fully on/off again (worse still, dI{(tx)ld't may actually be

zerc). These difrculties may be avoided by requiring that there be an inter-

val t"¿"0, which serves as an upper bound on the rescheduling time. Sadly,

this means that truly inactive nodes will still require regular processing. A

better approach is to notify nodes of important changes in current when they

occur, rather than waiting for the node to reawake¡- þer¡rsvsr this raises a

second difficulty.. .

The broadcast-and-sum scheme arises out of an aggressive attempt to

minimize storage consumption- an implementation could reduce the per

node information to a number j which implies v(t*) - voltage¡ and a num-

ber r € {-1,0,1} which implies Vne't : Voltage¡a'. Unfortunately, this

is at the expense of recalculation of dfi(t¡,)ldf (a potentially lengthy com-

putation if node i is part of a well-connected bus) and the restriction that

nodes are only ever awakened in response to self-scheduled "awaken for volt-

age transition" events. This inflexibility prevents nodes being awakened by

current change messages, as a node may receive such messages while it is in

transition between Voltage¡ and Voltagei+"- at which point the node does

not necessarily contain enough inforrnation to d,eterrnine its instantaneous

uoltage.

Clearly, this is unacceptable. Nodes, and indeed all simulation objects

should not rely on assunl,ptions about the messaging discipline to preserue

internal information.

Certainly in the case of nodes, the most natural semi-minimal set of the

information necessary for a hybrid mode simulation is 14, d\ldt, and the

local time at the node t;. With these, if a node is "unexpectedly" awakened
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at time t^"s,, ã simple recovery procedure can be applied-

Algorithm 3.3 Node aoltage recoaerY

If t^"n ) t; then

V*V*(t*"0-ti) dfildt

IÍU < Voltages thenV + Voltages

If U> Voltage¡¡ thenV e Voltage¡¡

t; + t^"n

-establishing 
an invariant condition for the node. In fact, a local time

property is useful in varying degree to all the simulation objects, usually for

this same purpose of maintaining information independently to the event *
message discipline.

A significant advantage of retaining the per node d,fi,ldÚ value is that

rather than completely recalculating it at every event, it may be updated

incrementally- if fanin objects send A/¡,i messages containing the change

in current along the object's branch to node i. This scheme is now better

named broadcast-or-receive (algorithm 3.4).

Algorithm 3.4 Broad'cast-or-receiue

On awakening at time t¡

Recoaer uoltage

If message is from oneself then

Send, V(tx) messages

Else a LI¡,¿ message has arriued

Receiue L,I ¡,i

dUldt +- dV,ld,t * þLI¡,;
(giuen Voltage¡ <V < Voltage,)

IfdWldt)ethen
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tneú : ¿; * ( Voltageu - V) I dVl dt

EIse if d\ldt 1-e then

tneot : ¿; * ( voltage¡ - v) I dul dt

EIse

tnext: neaef

Schedule wakeup at tn"r¡

Note a slight refinement of broadcast-or-receive- nodes are considered

quiescent when (-e < dvldt ( e where e is "small") and are not scheduled

to be reawakened. Implementation Note: In Loge, e is under user control,

allowing quiescence to be matched to the properties of a specific simulation-

one could for example set e to mean "less than lmV change in a clock period" '

Broadcast-or-receive represents the middle ground in node messaging ac-

tivity. Reductions in the number of broadcasts of v(tx) may be trivially

achieved by reducing the size of the Voltages set- or possibly by discarding

Voltages completely arrd neuer sched,uling self-awaleening euents for nodes.

For this extreme scheme to work, nodes must still do some broadcasting of

the value of dV;ldt whenever it changes. These events are noted by all a

node's fanin and fanout objects, which use the information to schedule self

awakenings- further consideration of this method will be postponed until

the structure of these objects has been discussed.

In summary, having considered various hybrid mode event/message pass-

ing schemes, the following message types have arisen-

<Aualee> Received by nodes, from themselves, after a time interval.

4l/-y Broadcast by nodes to node fanout objects, stating the current node

voltage.
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<dVf dt:> Broadcast by nodes to node fanout objects, stating the current

node time rate of change of voltage.

<1?> Broadcast by nodes to node fanout objects, requesting an <-r: > be sent

to the node at once.

41:¡ Received by nodes, from their fanin objects, stating the current from

object to node.

<A.I:> Received by nodes, from their fanin objects, stating that the current

from object to node has changed by this amount.

<dvldt?> Received by nodes, from their fanin objects, requesting that a

<dV f dt: > be sent at once.

Functional Mode

The events and messages required for functional mode are relatively straight-

forward. Functional models must read and write digital (and perhaps even

explicit analog) values from/to a module port. Reading will require a "re-

quest for voltage" message, unless node voltage broadcasts can be relied upon

and be cached in the module/port structure. Writing can be performed with

either a1-¡ or <41:Þ messages, but for full generality it is desirable that

node properties be directly modifiable by modules (this allows, for example,

experimental analog device models to be written as functional modules).

AIso, to support event driven functional modelling, provision must be

made such that a module can be awakened when a node changes logic state-

specifically when its voltage crosses a logic threshold. This may be trivially

achieved in a system where nodes broadcast 4r/-¡ messages by placing the

logic thresholds in the Voltages set, or more specifically to use a simplified

97
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Voltages set {LorVout-thresho¡¡Vhich-threshol¿t¡Ilz}' Such a node would gener-

ate <V:Þ messages of greater average relevance to functional components.

Furthermore, there exist hybrid-mode algorithms that do not require nodes

to generate 4l/-¡ messages at all- equivalent to the case where the Voltages

set is empty. Similarly, there are nodes (notably the supply rails) that have

constant voltage and need never broadcast. These requirements are met be

defining node subtypes where algorithmic differences occur' and by making

the Voltages set a node class property (allowing for example a very frne grain

set to be used in vital sections of a circuit).

Thus the additional messages from functional mode are-

<V?> Received by nodes, from fanin objects, requesting that a <y:Þ mes-

sage be sent at once.

<v+-> Received by nodes, from fanin objects, assigning the node voltage.

<d,vldt+-> Received by nodes, from fanin objects, assigning the node time

rate of change of voltage.

Miscellaneous extensions

A trivial extension applicable to all node types is to model the substrate leak-

age culrent -I¡,6. Two techniques of contrasting speed and accuracy suggest

themselves-

1. For all nodes receiving insufficient supporting current schedule two

events- one that degrades a Hi to X, and one that degrades x to

Lo (after [SherwoodSl] ).

2. Explicitly model 4,¡ by modification to av;ldt- modelling accuracy is

now dependent on the Voltages set.
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A far more demanding problem is that of the breakdown of the assump-

tion that a node is a atomic uniform object, as is becoming increasingly

common in high speed interconnect nodes, particularly in aggressive tech-

nologies such as gallium arsenide. When transmission line effects begin to be

significant, the computation necessary for accurate modelling becomes very

heavy- an experimental node model based on techniques in [Canright86]

was partially developed, but abandoned mainly due to discouragingly poor

performance.

The other hindering factor was the immaturity of the available circuit

extraction technology. What is needed are extractors that recognize nodes

likely to exhibit transmission line effects, and emit some concise represent-

ation its the parameters- which is an awkward problem when typical bus

nodes may have tens of arbitrarily shaped taps and corners.

Good modelling of fast distributed nodes is an open problem. The obvious

scheme that may give good performance is to replace a distributed node by

small nodes at each connection point, connected through a special multi-

port module which contains a matrix of characteristic delays between each

terminal node (figure 3.8), by analogy with the S parameter matricies of

field theory. These delays would be used to schedule events that effectively

determine when a current change at point A on the distributed node begins

to be felt at point B. How the elements of such a matrix are to be extracted

and indeed whether such an approximation is reasonable is however unclear

at this point.

Node Class

To summarize consideration of nodes, the node class-level properties are

listed in figure 3.9.
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Dedicated Transmission Line
Modelling Module

Distributed Node

Figure 3.8: Distributed node model

14(0)

du(o) ldt
Voltages

Matrix

Figure 3.9: Node class
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3.4.2 Ports

Ports are a combination of node concentrator' message filter, and a conve-

nient "handle" for modules to read from and write to. The most important

property of a port is its connections- both from port to parent module, and

from port to connected nodes. Connections are per instance properties which

are stored in the same manner as for nodes.

Unlike nodes however, the number of connections a port can have is fixed

at its point of specification- this is the port width property. Port width could

potentially be a class-level property, but this would be rather inefficient as

there are many operations on ports of the form "for all bits of the port,

d.o... ", thus width is best placed within the port instance for swift access.

Signal typing

Ports are the obvious place to implement signal typing, as at a port there are

information is transferred between modules and nodes with a cleat direction.

An information flow property leads to four fundament aI port types-

Null No information may flow through a null port.

Input Node-rModule transfers allowed.

Output NodeeModule transfers allowed.

Ioput Information may flow through an ioput port in either direction'

With every port instance tagged with one of these types, all functional

mode operations on ports can be checked- for example attempts by a mod-

ule to write to an input port can be disallowed. Connections too may be

checked- for example, when constructing nodes it is simple to check that

every node is connected to at least one input-capable port and exactly one
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output-co,pable port.z This check could be described as "Kirchhoff's Informa-

tion Law", following a similar usage in [JouppiS3b]. However this initial form

of node connection checking is too rigid, as although disallowing more than

one output-capable port connection will help identify potential mistakes in

functional models, it also disallows the common idiom of the bus with l{
writers. In practice such configurations are made safe by making tt -,rl-
tiple output ports conditionally disconnectable with tristate circuitry. Loge

follows this practice by adopting Tristate as a port type qualifier (that is, a

port may be of type Output-Tlistate- see figure 3.11), and the connection

check becomes-

Every node must have connections to-

o At least one input-capable port (information sink)

o At least one output-capable port, either-

- Exactly one pure Output port (unconditional infor-

mation source).

- Or at least one Output-Tristate port (conditional

information source).

It is also worth performing some trivial checks on port connections-

every bit of a non-Null port should be connected to a node, while no bits of

a Null port should be connected. This makes a useful guarantee to the run-

time system, and strengthens the value of Null ports as markers for "Not

Yet Implemented" sections of models'

2These rules can be simply extended to allow for devices
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At least one input

Either one pure

Or multiple tristate-outputs

Figure 3.10: Kirchhoff's Information Law

Before considering other port properties an important restriction must

be made. Ports are intended to provide a module with a uniform bitwise

interface to potentially many nodes- it is assumed that the properties of

this interface are the same for all the bits with the exception of the "value"

of each bit. Thus, while it is possible to write Hi to bit 0 and ,Lo to bit

I of a two bit port, it is not possible that bit 0 be of ioput type and bit I

of output with tristate type- the type property applies to the whole port'

,ffi

@

Input

Input
Tristate

Output

Tristate

Ioput

Ioput
Tristate

Output

Figure 3.11: Port tYPes
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This restriction (while suggested by implementation considerations of time

and space efficiency) intentionally strengthens the type system to impress

upon the model author that ports should consist of physically similar bits-

if the properties of two bits are significantly dissimilar then they should be

placed in separate ports.

Current modelling

Since nodes contain voltage information it is natural that ports should con-

tain current information. Detailed analog current modelling is supported

with primitives to assign a specified current to a particular bit of a port-

although such modelling would be better done at the device level. For the

more common digital applications, the following simpler model is adequate-

a read-only port is defined to draw no current (a reasonable assumption in

the case of MOS implementation technology), while the currents generated

by output ports are constrained to a set of constant currents corresponding

to the standard logic states {I¡y¡,1¡o,Iy,,IZ}. Of these, I7 isttivially zero

amps, while I¡¡¡ and I¡o are user specified constants supplied through the

port class.

1¡ is inherently awkward- one might choose to implement it as a ran-

d.om current 16 < Iy < IH¿. However for the purposes of functional

simulation this is rather unusual- functional models tend to write specific

quantities. Therefore Loge disallows writes of X, (without loss of function-

ality, as the same result can be achieved with the explicit use of a random

number generator within a functional model).

In some cases, notably when parameters of the implementation technology

are known, it is more convenient to specify the data-driving currents in terms

of. port resistances &r, Aro where-
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Int

ILo

In¡

ILo

: (V¿¿ - V"")lRot

: (V"" - V¿¿)lRto
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-following 
the example of [Terman83]. A further simplification is the

case where Aor : Aro : r?, where ,R is an average resistance for the port.

Indeed this will probably be more the rule than the exception in functional

simulation where the physical structure of the port is unknown.

In functional mode, a more natural method of deriving these currents

is by specifying the maximum delay between logic transitions on a typical

node. Given that logic levels are defined by thresholds (equation 2.10) and

assuming that modules are notified of changes in logic state when attached

node voltages cross the thresholds I4o--¿ hresholit and V¡;o¡-threshotdt then the

currents

= C¿"tou(Vnish-threshotd - V"") lTot

: C¿"tou(Vou-th¡eahotd, - V¿¿) lTrc

-where 
cd,"tov is a ,,typical" or worst-case node capacitance, and the 7ì,*

are the desired maximum delays. For functional mode models this is superior

to the previous scheme as it focuses on the transition points where message

generation can occur.

Ports and events

Given the mapping of logic level to current, writes to ports are translated

to currents at the individual bits. A tradeoff occurs here between simply
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sending <1: > messages on every write, or retaining enough state information

to detect non-zero changes in currents, which give rise to <A,I: Þ messages.

The inefficiency of <1: > mechanisms have been demonstrated, but the state

overhead (which must be an instance-level property) is non-trivial (width

x sizeof(current) bytes), although this only applies to output-capable ports.

The balance is decisively tipped towards the state-retaining approach by the

extra opportunity it gives for event suppression- for example if the current

numeric output of an .fy' bit port is 0 . . .002, if this is changed to 0. . ' 012 then

the resulting message generation may be reduced from .lr/ a/: p messages to

a single <41: Þ message from bit 0.

A similar filtering is possible in the opposite direction. Functional mod-

ules are usually intended only to be sensitive to changes in logic level, thus

while input-capable ports may receive <V:> messages, they need only notify

their parent module of events that cross a logic threshold. Once again there

is a storage overhead (applicable to input-capable ports only), and a counter-

argument on the basis of message suppression. In this case it was decided to

conserve storage as these messages can be suppressed by using the modified

nodes of page 98.

Bven more events can be suppressed, if whole ports can be dynamically

ignored. Consider the case of the module M in figure 3.12, which has one

quickly varying input I, an "enable" input E, and an output O that mirrors

I only when the module is enabled. During the long periods when E disables

O, the value of I is irrelevant to the function of the module- O can not

change until E is asserted, therefore it is highly wasteful for the port I to be

continually notifying M of transitions. Thus if it is possible for M to advise

port I to cease notification until further notice (an ignore operation), the

next event the module will receive will correspond to the eventual assertion

of E, at which point port I may be watched again.
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Figure 3.12: Dynamic event watching

The consequence of this is that port instances must contain a watch /
ignore flag. This handles the case of logic transitions, which are communi-

cated to the port by 4l/:v messages. Some lower level modules may also

need to selectively receive notification of <dVldú: Þ messages (for example a

module which monitors a node and plots its waveform in time- which thus

requires notification of changes in the slope of the node voltage).

Section 3.3.2 mentions the desirability of collapsing several closely occur-

ring node logic transitions into a single event at the module interface. This

can be achieved by the port preemptively scheduling an event for itself after

a short delay whenever a non-ignored transition occurs on one of its bits.

The preemption effect will allow further transitions within the delay (known

as the hysteresis d,elay) to cause the port event to be repeatedly rescheduled

until finally no transition occurs before the event arrives (in the form of a

<Awalce> message to the port). On receiving this message, the port's parent

module is at last notified of a change of input' Note that if the module is

awakened by some other means during a sequence of transitions on a port,

any reads from the port will be almost certain to find some bits in the X

107
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state- this condition can be trivially detected, revealing a potential data

hazard.

Modules and ports

A deliberate ambiguity in the discussion so far is the communication method

between modules and their ports. The obvious technique of defining more

message types exclusive to this pair of simulation objects is quite workable,

but at least for a uniprocessor implementation this is unnecessary as all

module-to-port and most port-to-module communication is inherently in-

stantaneous (a port is very much a part of its parent module, unlike nodes

and devices). Therefore no interaction with the scheduler is required, and

the portemodule communication reduces to a procedure call.

The complete list of moduleerport interactions is-

¡ Module changes port watch/ignore state.

¡ Module writes a number to the port. The number is disassembled into

bits and may give rise to <41: > messages.

o Module writes to a single port bit (-uy generate <A/:>)'

¡ Module disconnects from the port- enters tristate mode (*uy generate

<A.I: >).

¡ Module writes an analog current to a single port bit (-uy generate

<A/: >).

o Moduie writes the analog voltage or its derivative of the node beyond

a port bit (generates <V<- > or <dVf dút-o).

¡ Module reads a number from the whole port in response to awakening

(oV?, messages unless voltage caching is present)'
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o Module reads a number from a port bit (a <V?> message)'

¡ Module reads an analog current value from a single port bit.

¡ Module reads the analog voltage or its derivative of the node beyond a

port bit (generates <v?> or <dvf dt?Þ messages and replies).

o Port awakens a module with new data'

Summary

To conclude the discussion of ports, the structure of port instances and classes

is shown in figures 3.13 and 3.14.

width

Output Curcents

Input Voltages

Watch/Ignore Flags

Parent Module

Fanout

Class (Port)

Local Time

Event List

Figure 3.13: Port instance

3.4.3 Modules

Instances of modules have two roles, corresponding to the functional and

structural modes. Their functional role is as the focus of all HDL execution,
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Null/ Input / Output / Ioput

Tristate?

1or, lro

Hysteresis Delay

Figure 3.14: Port class

while structurally a module is the container object that forms the trunk

of the instance hierarchy tree. Module definitions are likewise split between

HDL code definition, and specification of how to construct the module's child

instances. However there is considerable blurring between these categories-

for example it is desirable for functional models to contain per module local

variables, the declaration and storage of which is a structural issue; and

again- when making a structural specification of the ports, nodes and other

objects that a module contains, it is useful to give each object a distinct name

for functional code to refer to it by. Interdependent issues like these helped to

prevent the Loge HDL from splitting into inelegantly distinct functional and

structural sublanguages and justify the initial decision to provide a unified

HDL.

From the point of view of a module instance, the progress of a simulation

is a succession of executions of functional code within its private context,

interspersed with periods of inactivity while other modules execute, This

is recognizable as a coroutine or continuation [Abelson+85] paradigm- al-

though in the case of Loge, context switching is perhaps the most appropriate

description, where a module's context is its set of instance properties'
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Implementation Note: Modules v Lisp

There are a number of places where a Lisp-based HDL can lead to perfor-

mance degradation beyond that purely due to interpretation. Consider the

module instance level properties, which fall into three main categories-

o The module's connections, to its parent (if any) and to contained in-

stances.

o Such module local variables as the functional model declares- for ex-

ample a counter module must have somewhere to store its current

count.

o Simulation related variables, such as the module local time.

Of these, only the local variables present any difficulty when context

switching- because they are Lisp variables a series of interpreter internal

symbol un/bindings must be made. Effort has been taken to make this

operation quick (in particular, to avoid consing on context switch- otherwise

garbage collection becomes a major overhead).

Functional modelling code must be able to refer to the components of

the module, such as its ports. This can be most simply implemented by

Lisp extensions whereby the four main simulation object types are also Lisp

object types, whereupon the internal instances of a module may be handled

the same as any other module local variable'

Unfortunately, this would bring the instances within the clutches of the

Lisp garbage collector. As garbage collection causes Lisp objects to be moved

around in memory-

o Any locality of reference that derives from the module hierarchy would

be progressively diluted.
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o Simulation objects are implicitly highly interconnected. Therefore ev-

ery time an object is moved, a potentially large number of pointers

would need to be updated (objects with large fan-in such as bus nodes

are a pathological case).

- which leads to the conclusion that a direct equivalence of simulation

objects and Lisp objects is impractical.

The problems with garbage collection of instances do not apply to class

objects as they are relatively few, and not highly interconnected. Thus the

HDL includes extended Lisp types for class definitions of nodes, ports, mod-

ules and devices.

The hierarchy of simulation object instances should be "compiled" into

one place and left there for the duration of a simulation. If so, a Lisp object

to simulation-object correspondence can be supplied by a special reference

Lisp object that simply contains a constant pointer to a fixed simulation

object, or better still, to a group of related objects- such as a vector of

modules or array of nodes, all of which are referred to together through a

single named Lisp symbol. See figure 3.15. The reference object can of

course be garbage collected cheaply- although given that module instances

may contain pointers to Lisp objects (local variables, child instance refer-

ences, parent class) some secondary collection must occur (only once per

module instance though). what has been lost is a quick means to perform

the reverse mapping from simulation object to Lisp object- the need for

which is minimal.3

3Currently only in the "find Lisp name of this object" routine'
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Simulation object classes

Simula tion object instances

Figure 3.15: Lisp class types, fixed object instances

Building modules

Highly flexible module construction requires parameterized models- ranging

from a simple integer parameter ,f{ used to define port widths, on through

parameters containing module type specifiers, to even more exotic cases'

Since parameterization causes module definitions to resemble functions, this

leads to the forms-

(defmodul e <no,rne> <lambda-list> lforms>.. . )

(instanti ate <module-defn> <number> larguments>' " )

113

-which 
are somewhat analogous to Lisp's DEFUN and fUNCAtt.
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In fact, INSTANTIATE also accepts port, node and device class definition

objects as its second parameter- it is the fundamental primitive that com-

piles simulation object instances from their defining class objects' Typically,

INSTANTIATE is called once to create the top level module instance, and

indirectly some arbitrary number of times as submodules are recursively cre-

ated, using depth first traversal (depth first instantiation combined with a

simple sequential placement of instances in memory preserves such locality

of reference that the module hierarchy supplies)'

when instantiating a port, lhe <arguments) it expects are a list of nodes

to connect to, and the list must be the right length. Devices are similar'

The <numóer> parameter to INSTANTIATE is a special case, it may either be

NIL, a number N, or a list of two numbers (N1 N2), which indicates a single

instance, a vector of N instances' or an array of Nl x NZ instances is to be

created respectively. Ports are an exception- ports should always have a

specified width, and as vectors and arrays of ports do not appear to be very

useful, only the number N form is accepted where N is the port width rather

than a vector length.

Still unspecified are the <forms> accepted by DEFMODULE. There are at

several pieces of modelling code that must be supplied-

Build code The code that controls instantiation of all internal objects of

the module.

Init code Code to run every time a simulation is started- this is useful,

for example, to initialize module local variables'

Run code The actual code that models the run time behaviour of the mod-

ule. This is usually the most complicated section'
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Done code Code to run when a simulation is finished- for example, code

to close module specific log files.

Thus with the addition of a little syntactic sugar' a two input AND gate

can be specified as-

(d.efmodule and2 (40 A1 0)

(buiId
(Ro t-port 1 A0)

(Rt I-port 1 A1)

(O O-port 1 0) )

(init
(watch-ports A0 A1)

(ignore-ports 0) )

(run

(port-write 0

(logand (port-read AO) (port-read A1))

))
(done)

)

BUILD is currently a macro that effectively converts its argument lists-

From:

(<narne> ldefn> <number) <args>)

To:

(setq
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<name> (instantiate <defn> lnumbert <args))

...)

- such that at build-time instantiations occur sequentially within the

module, and preorder overall. Some simple type checking is performed, in-

cluding checking that <name> is present on the module's lambda list.

Note the convention of using the parameters A0 A1 0 to module AND2 to

do double service- on instantiation they are single member lists of nodes,

but as the build code executes, the gate ports are instantiated with each

parameter in turn first serving as an argument list and then being rebound

to the instantiated port (where it may later be used for port read/write

operations in the run code). This convention is not mandatory- separate

parameters AO-PORT and AO-NODES could have been supplied- however it

is a simple trick to reduce the length of argument lists, and will be used

frequently in later examples.

Modules and events

Real systems exhibit a variety of functional behaviour, but can be broadly

classified as asynchronous, synchronous, self-timed and mixtures thereof.

This section contains simple example modules which manipulate the event

system to achieve these modes of operation.

The AND gate is an example of a purely asynchronous model- new data

arrives at a port, the module is awakened and executes its run code which pos-

sibly generates new output. Interestingly, purely synchronous models have

similar run code- consider an N bit pre-loadable clocked counter model-

(defmodule counter (n out clk count &aux lin)
(buiId
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(out O-port n out)

(c1k l-port 1 c1k))

( init
(watch-ports clk)
(ignore-ports out)

(setq lim (1- (ash 1 n))))
(run

(it (= (port-read clk) 1)

(port-write out

(setq count (if ()= count li¡n) 0 (1+ count)))

)))
(done)

Many purely synchronous modules are recognizable by init code of the

form

)

. . . (watch-ports <cloclc-ports))

(ignore-ports <¿// other ports.. '))

The run code similarity between the AND gate, the counter and indeed

any fully synchronous module is due to the fact that the function of these

modules as specified by the run code is insensitive to the activity of its ports-

the AND gate "does not care" which of its ports caused it to be awakened,

while the synchronous modules can only ever be awoken by theia clock port'

If however it was known that the inputs to the AND gate would change at

vastly different rates (as was the case with the system of figure 3'12) the

following is a more efficient implementation-
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(defmodule fast-slow-and-2 (fast slow out)

(buiId
(fast l-port 1 fast)
(slot¡ l-port 1 slow)

(out O-port 1 out))
( init

(watch-ports fast slow)

(ignore-ports out))
(run

(let (

(slow-in (Port-read stow))

(fast-in (Port-read fast)))
(if (equalp slow (the-Port))

(it (= O slow-in)
(ignore-Ports fast)

; else
(watch-Ports fast)))

(port-write (logand slow-in fast-in))))
(done)

)

This illustrates the more typical case, where the function of a module

varies with the port that awakened it- as supplied by the function THE-PoRT'

Modules may also need to be self timed- implying that the module

performs its own scheduling. For example, here is a modification to the Iú

bit counter such that it produces output at regular intervals without recoulse

to a clock input.
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(defmodule counter-source (n out count period &aux lin)
(build

(out O-port n out))
( init

(setq lim (1- (ash t n)))
(ignore-ports out)

(awaken-after 0) )

(run

(write-port out

(setq count (lt ()= count lim) 0 (t+ count))))

(awaken-after period) )

(¿one)

)

Notes: (awaken-after <time interaal>) is the preemptive scheduling

primitive. This modelling mode can be combined with the general multi-

port style as THE-PORT returns NIL when a module is awoken by a self-

scheduled event. The &AUX form defines LIM to be a module local non-

parameter variable.

Hierarchical construction

The examples so far are all semi-leaf modules containing nothing but nodes

and ports. Submodules are specified with a similar syntax- here is a four

bit AND gate, using the two input AND gate of page 115 as a submodule-

(defmodule and4 (Ao A1 0 &aux m0 nl n2 no)

(build
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(40 l-port 2 A0)

(lt l-port 2 A1)

(O O-port 1 0)

(no node 2)

(rnO and2 o
(tist (node Ao o) (node A1 O) (node no 0)))

(ml and2 o
(tist (node A0 1) (node A1 1) (node no 1)))

(m2 and2 o
(list (node no O) (node no 1) (node 0 0)))

)

( init )

(run)

(done)

Notes: The connections of the AND2's ports are specified from the over-

lying alias ports of AND4 through explicitly constructed parameter lists for

each submodule. The NoDE form extracts a node from node references, lists

of nodes, or by tracing port connections.

Implementation Note: Parameter passing

The parameter passing from parent to child module instance in the four bit

AND example is quite straightforward, but there only single submodule in-

stantiations are performed. When instantiating a vector of modules a list

(or vector) of argument lists must be supplied, and for an array of mod-

ules, a list of lists (or array) of argument lists. These complete submodule

)
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parameter expressions can easily become excessively tedious to write- fortu-

nately the underlying interpreter allows the definition of helper macros such

as M0DULE-VECTOR-

(module-vector lindex uariable>

at (n) <argument list>

over 1n1) 1n2> <argument list>

...)

The form of M¡DULE-VECTOR is intended to exploit the regularity of con-

nection usually seen in vectors of modules. Often it is possible to write a

general expression in terms of an index variable for the connections of most

if not all of the submodules instantiated as a vector. Even for quite com-

plicated module types, the most common case is that only the first and last

module instances have special case connections. A characteristic example of

this effect is an .l{ bit adder with carry chain. Assuming an adder cell type-

(defmod,ule adder-cell (INo IN1 cIN SUM cou)

(build
(INO l-port 1 INO) ; data inPut

(IN1 l-port 1 IN1) ; data inPut

(CIN l-port 1 CIN) ; carry inPut

(SUM O-port 1 SUM) ; data outPut

(COU O-port 1 COU) ; carry outPut

...)

-then an N bit adder built of ADDER-CELIs is specified-
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(defmodule adder-N (n IO 11 CI 0 C0 &aux vn a)

(buitd

(IO l-port n I0) ; data inPut

(tt l-port n 11) ; data inPut

(CI t-port 1 CI) ; carrY iuPut

(O O-port n 0) ; sum outPut

(cO O-port 1 C0) ; carry outPut

(vn node (r- n)) ; internal nodes

(a adder-cell n (module-vector i
at 0 ( ; LSB with carrY in

(node IO i) (node 11 i) (node CI)

(node 0 i) (node vn i))
over 1 (1- n) (; General case

(node IO i) (node 11 i) (node vn (1- i))
(node 0 i) (node vn i) )

at (1- n) ( ; MSB ¡¡ith carry out to port

(node Io i) (node 11 i) (node vn (1- i))
(node 0 i) (node C0))

)))
...)

Note how the special case first and last cells correspond to an AT clause

of the MODULE-VECToR form, while the general middle case is covered by the

oVER clause. There is an analogous form for arrays of modules.
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Module modes

In the four bit AND gate example, the module run code was null- just

(run). This is effectively an admission that this module is purely a structural

module- it is inherently never a leaf module as it contains submodules,

which are to be used in aggregate to provide the functional behaviour of this

module, which is one way of stating that AND4 always operates in structural

mode.

Implications of structural mode on port connectivity An unsophis-

ticated method of realizing structural module operation would be to detect

cases of null run code and internally replace it with awakenings of the un-

deriying submodules. This technique is flawed firstly in that the order that

submodules are awakened may introduce undesirable artifacts into the sim-

ulation, and secondly in that it requires that submodule ports be somehow

prevented from receiving events- either by the existence of an extra level

of connection between parent port and submodule port (figure 3.16), or by

a disabling mechanism.

The internal port connection method of figure 3.16 above stems from a

misguided attempt to strictly enforce hierarchical encapsulation such that no

submodule is connected beyond the boundary of the parent module except

through a parent port. A more natural solution is for module and submodule

ports to always be connected directly to their nodes (figure 3.17)' but to

use the mode of each module to actiuate / ileactiaaúe its child ports. Purely

structural modules such as AND4 never need be awakened (indeed it is wasteful

if they are), therefore a structural mode module always deactivates its ports,

causing them to ignore all events. Active functional modules such as the

AND2 instances will always activate their ports'

L23
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Figure 3.16: Submodule port internal connection

Of course, modules with submodules need not be purely structural- they

may have run code allowing them also to operate in functional mode. For

example-

(defnodule and4 (lO lr 0 &aux nO rn1 m2 n)

(build

...)
( init

(watch-ports A0 A1)

(ignore-ports 0) )

(run

(port-write 0

(it (= 3 (Iogand (port-read AO) (port-read A1)))
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Figure 3.17: Submodule port direct connection

1 0)))
(¿one)
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The simulation wavefront

With the existence of modules capable of multi-mode operation some prim-

itives to manipulate the mode are required. There ale now three modes to

distinguish between- structural, functional and the state of being an inac-

tive child module to an active functional parent module- such modules are

labelled inactive or non-structural (as it would make no difference whether

the child is present or not). Hybrid mode fits neatly into this set as a special

case of functional mode if one considers a device to be a predefined module'

Thus in any valid simulation, within the module instance hierarchy there will
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be a (possibly empty) layer of structural mode modules, above a (non-empty)

layer of functional modules, above a (possibly empty) layer of non-structural

modules. The layer of active functional modules is known as the simulation

wauefront-figure 3.18 shows an instance hierarchy for an eight bit AND gate

built from AND4 and AND2 modules, operating in an assortment of modes'

Strucrural mode
modules above
the wavefront

Functional mode
modules along
the wavefront

Non-stmcrutal mode
modulesbelow
the wavefront

Figure 3.18: Module modes and the simulation wavefront

There are constraints on the possible set of modules that may make up a

valid simulation wavefront. One way of expressing these constraints is that-

Root The root of the module instance tree must be either in structural

mode, or functional mode (a degenerate case).

Structural If a module is in structural mode, its child modules must be in

either structural or functional mode, and there must exist at least one

such child.

(Consequence to Structural: If a module is in structural mode, its parent

if any is also in structural mode')
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F\:nctional If a module is in functional mode, its children if any must be in

non-structural mode.

(Consequence to Structural and Functional: If a module is in functional

mode, its parent if any is in structural mode')

Non-structural If a module is in non-structural mode, its children if any

must be in non-structural mode.

(Consequence to Functional and Non-structural: If a module is in

non-structural mode, its parent is either in functional mode or non-

structural mode.)

(General consequence: The leaves of the module instance tree are in func-

tional or non-structural mode).

The constraint set allows the definition of rules by which the simulation

wavefront set may be changed. Note that the rules fire recursively up and

down the module instance tree stopping only when either no change need be

propagated or a previously encountered instance is reached'

When set Structural Fail if this module has no children. Otherwise set

all children to functional mode, set parent to structural mode.

When set Functional Fail if this module has null run code. Otherwise set

all children to non-structural mode, set parent to structural mode'

When set Non-structural Fail if this module has no parent. Set all chil-

dren to non-structural mode. Set parent to functional mode.

With these rules, the act of changing one of the non-structural AND2

modules of figure 3.18 to functional mode would cause its parent to become

structural, and thus for the other non-structural AND2 to become functional.
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With simulation mode thus firmly entrenched as a module instance prop-

erty, its access and modification are built into the HDL as a Lisp SETF-able

form-

(setf (module-node lmodule))

[ :structural | :functional | :inactive ])

As an added precaution, pure structural modules can use the function

(structural-module-only) as run code, which will cause an error when

executed, trapping a poor run time placement of the simulation wavefront.

Module modes may be changed "on the fly" during simulation.

Init and Done

Typical tasks performed in the init code of a module are-

o Set module mode

¡ Set Watch/Ignore status of Ports

o Write an initial output value to a port

o Self driven modules queue their initial event

o Initialize local variables

Of these, setting the module mode can cause difficulties if there are many

such attempts from various places in the instance hierarchy- the best solu-

tion is often to only set module modes in the init code of the root instance.

Nevertheless, if multiple mode settings are desired, the process will at least

be deterministic given that initialization occurs on preorder traversal of the
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instance tree. To complement the init code, done code is executed via depth

first traversal.

Done code is less frequently used. It can be thought of as a module's pri-

vate version of the Lisp UNHIND-PR0TECT form, and thus has similar applica-

bions, such as guaranteeing files are closed, and other general postprocessing

tasks.

Instance and class contents

The properties of module instances and classes are now complete in fig-

ures 3.19 and 3.20

Mode

Lisp variables

Parent Module

Fanout

Class (<type>-Module)

Local Time

Event List

Figure 3.19: Module instance

3.4.4 Devices

The final type of simulation object is the device. There are several subtypes

of devices, which are subdivided firstly by simulation algorithm, and secondly

by technological differences. Devices may be thought of as hard-coded spe-

cial purpose modules with their ports retracted inside the module periphery,
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Lambda list

Build code

Init code

Run code

Done code

Figure 3.20: Module class

thus they connect only to nodes (figure 3.21). MOS technology is assumed

throughout this chapter, however as will be seen in section 4.3 much of the

discussion is relevant to gallium arsenide technology too'

Device

Figure 3.21: Device connections

Devices interact with the simulation wavefront exactly as if they were

modules, except that as devices must be leaves of the instance tree they will
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never be in structural mode. Thus, devices become active (that is, effectively

in functional mode) when their parent module enters structural mode.

Device Properties

Since devices subsume the functions of ports, they must contain inter-node

current information. In MOS technology the strong isolation of the FET

gate reduces this requirement to the single current.I¿"' If <a-I:> events

are generated, similar opportunities for message suppression are available as

applied to ports- sufficiently small changes in current may be ignored.

Implementation Note: Also common between ports and devices is the

question of whether to cache node voltage values that arrive in <V: Þ mes-

sages. In this case the tradeoff is clearer- in a system containing devices,

they are likely to occur in large numbers, and as extra storage for just three

voltages would approximately double the size of a device instance it is thus

far better for devices to rely on <V?> messages to access terminal voltages.

The other property common to all devices is "width"- not in the sense

of a number of bits as was the case with ports, but a measure of the physical

shape of the device where this is relevant to its current driving capacity'

Implernentation Note: Width could be a class level property, but as it is

likely to be deeply embedded in current calculations it is implemented as an

instance level property for efficiency.

Each of the algorithmic subtypes of devices have their own specific in-

stance and class level properties. These subtypes will now be individually

discussed.
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Evaluated Devices

Evaluated devices are straightforward models that implement the standard

hybrid-mode algorithm as revised from the flawed form of algorithm 3'2'

They are further subdivided by technology and technology-specific class level

parameters (for example a CMOS circuit may contain devices of a class

evaluated-pMOS- 1 . 5u).

AII evaluated devices respond lo <v:Þ messages by gathering the new

instantaneous values of their external voltages, and performing some calcu-

lation of. I¿" as a function of the voltages. If the new value of I¿" has changed

sufficiently, <4.[:Þ messages are sent to the drain and source nodes' Events

are never directly scheduled for evaluated devices- they rely entirely on

41,/-y traffic to awaken them. Thus the speed/accuracy of an evaluated de-

vice is largely a function of the Voltages set of its terminal nodes- voltage

waveform detail can be increased semi-arbitrarily with finer thresholds, with

a proportional cost in generated events'

The exact details of the -I¿" calculation are technology dependent, and

also vary within particular instances of a technology. This variation is

achieved by hard-coded routines for each specific type of device (for example

lsimple nMOS>) wherein some of the parameters of the calculation are class

level properties of the device (for example, one type of nMos device may

have a different threshold voltage to another).

MOS The baseline device technology used in Loge is MOS, particularly

CMOS. A convention that subsequently proves useful is to treat the gate

as the reference node in the device equations- this simplifies the inherent

ambiguity between source and drain nodes that bedevils the simulation of

MOS devices. Thus the standard first-order MOS equations-
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(3.1)Id, : V¿"(2(Vs,-Vn)-V¿")

(Vn" -Vn )'

Vo" - Vn 10
0 1V¿" 1Vn" - Vn,

0 < Vs" - Vn, 1V¿"

0

g-

2

p.
2

become-

V"s" ) 0

) V"n" 1V¿s. 10 (3.2)

V"s" 10 1V¿n"

-where 
V"s" : V" - (Vn - Vn,) and V¿0. - V¿ - (Vn - Vn )'

Assuming constant Vn, and $, a ca\culation of simple MOS 1¿" costs

two or three tests (% > V", V¿s" ) 0, V"n. > 0), two to four subtractions,

and zero, two or three multiplications (ignoring the effects of device size),

which still amounts to a significant computational load when applied to large

numbers of devices.

Evaluated devices therefore provide accuracy that is ultimately limited

only by the fidelity of the device equations implemented, at the expense of

slow turnaround even for the above simple MOS equations'

Explicit Regional Devices

Use of %s and V¿n suggests that the operation in time of MOS devices can

be visualized as a pointer drawing dots on the (%g, v¿n) plane. In a pure

time-step based simulator the path would be nearly continuous, while in an

event driven simulator larger jumps are made. At every point in this plane

(except the impossible region " 
Vao - V,s ) 1 and Vss - V¿s > 1) there wiil be

a characteristic value oî. I¿, (figure 3.22)- thus the pointer may alternately

be visualized as following the contours of a three dimensional surface defined

by points (V,n,Van,I¿,: f (V"n,V¿o)).
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Ids = f(Vsg, Vdg)

1.0 v

vsg
1.0-1.0

-1.0

Figure 3.22: 'lheV"n,V¿n Plane

For most .I¿" functions there will be regions in the plane where 1¿, has

common behaviour- for example the saturation, linear and cut-off regions

defined in the MOS 1¿" equation (figure 3.23)'

The MOS device has regions within which /¿" varies considerably' For

sufficiently complex 1¿" equations, evaluation may be simplified or expedited

if each device records which region it is currently operating in' Changes of

region can be handled by explicitly scheduling an <Awalee> event for a device

that is approaching a region boundary. For this procedure to be worthwhile,

the speedier access to I¿" must outweigh the overhead of handling region

changes, thus there is strong pressure for regions to be geometrically simple'

This technique is not immediately applicable to evaluated Mos devices, as

it would amount only to replacing three tests by an eight-way branch- this

type of regional mode will in general only benefit technologies with an I¿"

Vse>Vds+1

Vdg>Vsg+1
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-1.0

Ids +ve

135

1.0 v

vsg
1.0

-1.0

Ids -ve

Figure 3.23: nMOS evaluated device regions

equation whose computational requirements vary wildly across its regions.

If however, one is prepared to divide the (%g,I/¿r) plane into regions

in which variation in ,I¿, is ignored such that a single, precomputed value

for 1¿, may characterize the whole region, then the region technique be-

comes much more generally applicable. This is effectively the method used

in [Ruan+85], where the basic I¿, fot each device is constrained to the set

I¿, -- {-h,-å,0, Ir,h};\ 1 12, depending on the terminal voltages. In

terms of the (V"n,V¿) plane, this amounts to the five region system of fig-

ure 3.24 (translated from figure 2.19). Similarly the single orrf off current

model of [Terman83] is a effectively a three region scheme'

With the assumption of constant current within regions, the procedure to

calculate the time when a device leaves a particular region is now independent

of. I¿,, except inasmuch as /¿" will influence dv¿f d,ú and dv"ldt. In general,

if a device is in region r defined by n edges in the form-

Vss>Vds+1

Sat

/ Linear

Linear
.a

Sat

VdpVsg+1

Cutoff
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vsg
1.0-1.0

1.0 v

-1.0

Figure 3.24: Five current region explicit model

lerJ,jV¿s*lc,,z,jV"s *k",s,j:0 (3'3)

-then 
the time at which the device next reaches a region boundary ú,,"'¿

ls-

(lc,,t,jV¿s I le,,z,j * k",s,i)
(3.4)tn.rt = úl * 4in- -

r€[1'n¡ (le,r,¡d,V¿s dt ¡ k,,2,¡dV,n dt

In practice it is seldom necessary to do more than two calculations of

this form- usually a quick test of the signs of. dv¿n f d,t arld dv"n f dt will

uniquely identify one or two potential boundaries. Computation can also

be short-circuited if the composite dvldt values (the denominator term) has

too small an absolute value, implying quiescence and a ridiculously long

delay to tn""¡. Another simplification is that it is unnecessary to test for the

possibility of leaving the encompassing (-1.0 < Vss ( 1'0, -1'0 < V¿s < l'0)

region or entering impossible regions. Also, the k coefficients defining region

I

12 1,,
l¿-

-t2

Ids=0

-I1

I1
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boundaries are often degenerate-

V66{r,2,3} ler,',i € {0' +1}

-thus the complexity of ã tn",t calculation is typically around three

add/subtracts, two multiplications and (sadly, unavoidably) one division.

Only the division separates the complexity of ã tn.xt calculation from that of

a MOS .f¿" evaluation.

Note however that tn¿s¡ ffrã! be invalidated by changes in dvnf dt, dvdldt

or dV"f dt- a region-based device should recalculate its region crossing time

on receipt o1 <d,vf dt:Þ messa8es. Nevertheless, since a dvldt changes in

response to changes in an 1¿", which in turns requires that somewhere a de-

vice has changed region, such reschedulings should not be significantly more

frequent than region changes except where node fanout is high. Implemen'

tation Note: An effective practical technique is that when an explicit device

receives a <d,V f dt:Þ message, it preempts any distant events and reschedules

itself to be awakened after some fixed short delay (a class level property).

On awakening, it will discover that it is still in the same region so no <A'I: >

messages need be sent, but the normal region exit calculations may proceed'

This scheme provides damping against pathological situations where storms

of <dVf dt:> events appear on one or more device terminals (this is com-

mon when interfacing to sections of circuit composed of analog devices, for

example).

Assuming constant .I¿" across a region clearly reduces simulation accuracy,

usually in near direct proportion to the size of the region. In return, event

traffic is aggressively minimi zed, to a similar degree. Indeed it is difficult

to see how any further reduction is possible beyond that achievable with

explicit regional devices with very small numbers of regions- in figure 3'25

the a brief simulation of a cMos inverter composed of explicit six-region
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devices is shown. This simulation is functionally correct, in seven device

events-

1. t:0: The pull-up device enters its high current region'

2. t:!.25ns: The pull-up switches off, having pulled the output voltage

high.

3. t:2.05ns: The input began to rise at 2.0ns, so norff the pull-down enters

its low current region'

4. t:2.06ns: With the continued rise in input the pull-down enters its

high current region'

5. t:2.09ns: By now the output has fallen a little, but as the input is still

fairly low the pull-up device returns to its low current region.

6. t:2.l4ns: The input is now high, so the pull-up switches off again.

7. t:3.07ns: The output is now low, and the pull-down switches off.

(,Bucket-Brigadett Oscillation Unfortunately, restriction of -I¿" exacer-

bates the the difficulties caused by bidirectional devices. For example in the

CMOS NOR gate of figure 3.26, consider the event sequence when initially

input B is high (thus nodes N and o are low), and input A changes from

high to low, switching on device Pl. Node N will begin to rise, and soon

the device P2 will switch on and current will flow through to the output

node. unfortunately, with simple device regions, it is now likely that node

O is rising faster than node N, and as soon as Vo - V¡v device P2 will

switch ofi again, whereupon only node N will continue to rise, causing P2

to switch on. . . This oscillatory "bucket-brigade" effect can occur wherever
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drain-source connected groups of devices occur, and is an inevitable conse-

quence of the combination of gross explicit regions and bidirectional devices.

(In [Ruan+8S] a palliative scheme where connected node groups are "col-

lapsed,' together is used. unfortunately such schemes require extra storage

in the node and/or device instances')

Despite this oscillatory flood of events, these simple modes still give quick

yet functionally correct results for a wide range of circuits. Circuits that rely

on precise charge sharing effects are the most likely to fail, but this is hardly

surprising, since the degree of modelling abstraction is approaching that of

E rt'tv:PRoBE

Figure 3.25: cMos Inverter simulation (explicit six region devices)
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v2
o

N2

P1

N

Vss

AB

Figure 3.26: CMOS NOR gate

digital simulation where such failures are inevitable'

Fortunately, bucket-brigade oscillation may be reduced significantly by

dynamically shifting the region boundaries such that the edges of the cur-

rent region seem to recede by some amount (effectively by changinE k,,s,i)-

causing all tn",¡ values to increase. This adds a degree of oaershooú such that

region changes are noticed some time after they actually occul' The practi-

cal upshot of this is to reduce the frequency of bucket-brigade oscillations,

at the expense of spurious superimposed node voltage oscillations of greater

amplitude. For example in the NOR gate simulation (figure 3.27) 223 device

events occurred, 175 of which were for device P2(!)' with the voltage over-

shoot parameter set to lOmV. Increasing overshoot to 20mV decreased the

p2 events to g2 (in 138) without discernible effect on the output waveform'

In nMOS logic the presence of continually conducting load devices can

cause an active pull down device to exhibit bucket brigade oscillation. Once

again, the amount of oscillation can be reduced, but unlike the previous case'

the current being transferred does not cause any change in external condi-

tions which eventually allow the oscillation to cease. Without a solution to

this problem, applicability of hybrid device algorithms to such technologies
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is seriously red.uced. Unfortunately, all solutions require yet further per ob-

ject storage and inelegant subclassing of nodes and/or devices (for example

one could have a separate model for explicit six region devices connected to

%, and a node with pull up). Worse still, this subclassing is insufficiently

general- convert the inverter to a NAND gate and the problem reappears'

One of the less ugly solutions is to create another speciai type of node-

a clarnped, nod,e. This node differs from other nodes in that it "lies about

its voltage" to some devices- the node voltage never appears to fall below

a clamped value sufficiently above the %" rail to keep explicit devices from

E ÍÌ'|OB:PROBE

Figure 3.27: cMos NoR simulation (explicit six region devices)
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switching off. With some care in the choice of this value, many devices can

be persuaded to cease oscillating between regions, although event generation

may still be fairly high.

Six region devices While much of the preceding discussion has referred

to the five-region model of figure 3.24, the presented simulations are all of a

six region model. The reason for this procedure is that there is a practical

flaw in five region devices- without meticulous attention to accuracy in tn.,¿

calculations, five region devices are prone to oscillate between the adjacent

regions of positive and negative current without ever passing through a state

where current is zero, producing nonsensical results. There are two leasons

for this problem-

o In general with regional devices it is wise not to allow great variations

in 1¿, between adjacent regions. The larger the difference in -I¿" across

a boundary, the greater the chance of oscillations developing there.

o when calculating ú,,""1 with the aim of exactly reaching a region edge,

it is possible that due to the approximations inherent in floating point

arithmetic the tn",¡ value will be slightly too small- thus on the next

awakening the region will not quite have changed (so an event has been

wasted), and the distance to the region edge is now very small, such

that the difierence between the local time t¡ and a newly calculated

ú,,"r¿ will be ertremely small, stretching the adequacy of floating point

yet again. . . and so on until ú,,"r¿ is equal to Ú¡. To avoid this numerical

collapse, a simple, robust solution is to insist that some small but non-

zero amount of overshoot is used.

Thus five region devices have boundaries with high variation of -I¿", and

are absolutely guaranteed to overshoot from one to another in a robust im-
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plementation. This prompted the development of a six region model, where a

narrow diagonal region o1 I ¿": 0 is added to separate the regions of opposite

current (figure 3.28).

1.0 vd

-1.0

vsg
1.0

-1.0

Figure 3.28: Explicit six region devices

The width of the new region is a class level property of the explicit de-

vice. In the simulations presented so far it slightly more than 20mV' Clearly

this region is an inherently fictional construct- real MOS devices do not

botally cease to conduct when 0 < I Vr, | < 10mV although 1¿" need not be

Iarge. A sad consequence of this inaccuracy is that it may potentially cause

voitage drops of up to 10mV across devices where no difference is expected-

therefore this parameter should be small. On the other hand, the width of

this region is an efiective upper bound on the amount of overshoot that may

be used to combat bucket-brigade oscillations- for example in the CMOS

NOR gate example, increasing the overshoot to be greater than the width of

the diagonal region causes device P2 to "punch through" between positive

-I1

,'r' -12

t2

I
I
I
I
I
I

It

I1
- Ids=0
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and negative current regions- exactly what was to be avoided. So, for good

control of oscillations, a wide diagonal region is desirable. There is no clear

optimal solution to this conflict- therefore overshoot and region boundaries

are user-controllable.

Summary Explicit region devices are computationally cheapest of all hy-

brid mode d.evices, and the least accurate. While capable of extremely low

event generation, the combination of heavy approximation and bidirectional

devices can cause event storms, although these may be controlled to some

extent. An important point in favour of explicit devices is that they con-

centrate the scheduling and current calculations purely within the scope of

the device, rather than relying on regular messages from external nodes as is

the case with evaluated devices. They are also quite adaptable to alternate

technologies- events may be minimized by carefully choosing the shape of

the device regions.

Sampled Devices

Evaluated and explicit regional devices are the speed and accuracy extremes

of hybrid mode simulation. Sampled devices provide semi-continuous varia-

tion between these two extremes. Given an I¿" equation as used in evaluated

devices, the (%g,I/¿r) plane is divided into a mesh, samples of I¿" taken

at each mesh intersection, about which square (or rectangular) regions are

constructed- figure 3.29 shows a sampled device only slightly more compiex

than a explicit six region device.

As sampled devices still use regions of constant I¿r,, simulation follows

exactly the same algorithm as for explicit devices (stated shortly as algo-

rithm 3.5), except in the routine for determining the instantaneous device

region- with explicit devices this can usually be most efficiently determined



3.4. STMULATION OBJECTS 145

1.0 vdg
0r 0¡ 0r 0¡ 0r0l

llllll

;-i;l-71-;i ;-i-;ì

,^oo'/ /'/ro¡or

0

o vtg
_ 1.0

0

-1.0

Figure 3.29: Current samPling

with a series of absolute tests of %s and v¿n,btt with sampled devices the

quickest method is to test whether the v"n and. v¿n boundaries of the region

the device is currently operating in have been crossed.a With regional devices

the customary test for a significant change in 1¿" can leasonably be reduced

to an equality test- note how many adjacent regions have equal characteris-

tic I¿"in the arrays for devices of a (fictitious, scaled voltage) cMos process

shown in figures 3.30 and 3'31.

These /¿, arrals have a secondary use in suggesting good choices of region

geometry for explicit regional devices. They are generated (at semi-arbitrary

degrees of sampling) bV a simple companion utility'

Although the arrays have 256 regions, they contain only 29 distinct values

aMethods involving division of voltages by the grid spacing require

slower

Iess storage but are
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Figure 3.30: Sampled pMOS device current array
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Figure 3.31: Sampled nMOS device current array
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of I¿". Performance of 256 region sampled devices is still quite good with

respect to six region explicit devices, and the smaller steps between regions

reduces the potential for oscillation- but not entirely as it is once again

possible to oscillate between regions of opposite current across the line V¿s :

%s. Therefore sampled devices may also need certain regions to be deformed

to accommodate an explicit Id.":0 diagonal region as shown. in figure 3'32'

This is of course unnecessary if sampling is sufficiently fine that the V¿n - Vss

diagonal is "insulated" on at least one side by I¿": 0 regions'

L47

1.0

l¡-t- - -'Í -
l¡
l¡

-t----t-
l¡
l¡

J----¡-
l¡ vsg

1.0

Figure 3.32: Corrected sampled device region geometry

More extreme sampling methods are possible- for example for technolo-

gies where 1¿" varies rapidly in particular places one could contemplate a

secondary sampling of the relevant regions- thus the I¿" arcay becomes a

quadtree.

To conclude consideration of devices that use regions of constant 1¿", here

is the regional device algorithm-
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Algorithm 3.5 Regional Deuice

On awakening at time t¡

Determine region

If region has changed, then

Il I¿",n"- f I¿",o¿¿ then

Send <L'I:> rneEsages to source and' drain

Upd,ate region

Eramine dV"o f dt, dvds ldt and if approaching a region bounilary then

Calculate tn"r¿

Else tn.r¡ : neuer

Schedule waleeup at tn.,¡

3.4.5 Analog Devices

By way of contrast Loge includes quasi-analog device models. These resemble

evaluated devices in calculation method, but rather than relying on 4l'/:v

messages they follow algorithm 3.6.

Algorithm 3,6 Analog Deuice

On awaleening at time t*

Calculate I¿, (using detailed equation)

Calculate L,I¿" - Id",n'- - Id",otd

Il I LId,l> I, then

Send <L,I:> nxesso,ges to source and, drain

Find, LV^øø: rnâX dvsf dt,dV¿f dt,dV"ldt

never (AV-" - g¡

t; I t,t.p x l(LV^",) otherwise

Scheilule wakeup o,t tn"'1
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This is essentially a "parallel"-analog mode, where instead of a character-

istic single central time-step mechanism, each device controls its own local

time step, where the minimum time step is ú¡¿¿p and f (LV^"') is a inte-

ger valued function that returns a number loosely inversely proportional to

LV*or'

3.4.6 ExamPle

First, device classes must be defined with MAKE-DEVICEDEF-

(def constant *std-explicit-Pmos* (make-devicedef

: explicit ; subtYPe

:pnos ; t'technologY"

1.0 ; base width

#e50p ; hYsteresis delaY

0.010 ; Vdiag

0.014 ; v01

0.4 ; YL2

0.01 ; Vovershoot

, (#eo.Ou *e15.0u #e7.50u #eO.0u #e-7.50u #e-16'0u)

Ids

))

A simple form to switch between device subtypes is-

(set-device-subtYPe I

:ANALOG I :EVALUATED I :EXPLICIT I :SAMPLED

l)
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Note: This form binds standard symbols ENN and ENP to the appropriate

<ileaice-ilefn>. With these primitives in place, a device-level model of a

CMOS inverter can be defined as-

(defmodule CMOS-inverter (I O &aux de dp)

(buiId
(de enn O '(1 ,I ,0 ,vss))
(dp enp O '(1 ,I ,o ,vdd))

)

( init )
( st ructural-¡nodule-onIY)
(¿one)

)

Notes: Standard symbols vDD and vss are assumed to be bound to ap-

propriate constant nodes. The parameters to a device instantiation are a

width, and three nodes in the order gate, drain' source'

3.4.7 SummarY

Device classes vary considerably depending on the basic device subtype they

define, however device instances are identical, (save that non-regional models

do not use the device region field). Note that despite the considerable variety

in Loge node and device subtypes, they may all be reliably intermixed, with

the sole proviso that evaluated devices will need to be connected to nodes

that broadcast <V: Þ messages sufficiently often' Implementation Note: The

flexibility this provides is at some cost in code complexity- care must be

taken to prevent messaging loops between interconnected objects (the usual
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technique is to temporarily mark a message sender inactive, so that "rico-

chet" messages are damPed).

I¿"

Device width

(Device region)

Parent Module

Fanout

Class (Deuice)

Local Time

Event List

Figure 3.33: Device instance

Figure 3.34: Device classes

3.5 Simulation

This section provides further examples of Loge modules and features, by way

of introducing a lightweight verification strategy.

:ANALOG :EVALUATED :EXPLICIT SAMPLED

Technology

Hysteretic delay

p

Vn

I

Region (e,,r,j 
I Region V"nrV¿n

Region .I¿'

Overshoott step
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3.5.1 Simulation control

control is transferred from the HDL interpreter to the simulator proper by

the SIMULATE function-

(simulate <module-reference> <time))

-which 
implements algorithm 3.7-

Algorithm 3.7 simulate

Run connection tYPe checles

Set t :0, enable euent queue

Schedule f,nal eaent if anY

Erecute all init code

Run euent driuen simulation

Execute all done code

Clean up

R eturn <mo dule- referencÈ

A simulation may be interrupted, its parameters modified, and continued

at will. It is also possible to run open ended simulations where the duration

is not specified. A simulation may be concluded at any time by calling

(t erminate- s imulat ion).

3.6.2 Tools

Experience with Loge has lead to a simple methodology for module develop-

ment, simulation and testing summarized in figure 3.35' whenever a module

M is developed, one or more test bed modules (M-tester) are created, along

with an HDL wrapper which initiates simulation of. an M-tester' The tester
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module must obviously contain a submodule of type M, which will require

nodes to connect to its ports, which in turn require soltrce and sink modules

to provide test I/O and satisfy the node connectivity rules. Note that a tester

module has no ports.

(defun test-? (...)

(simulate (instantiate ?-tester ...) ...)

. ..)

"Tester" Module

Module under test.
Input Nodeq Nodes

Source Modules Sink Modules

Submodules
Ports,
Nodes,...

Figure 3.35: Loge methodologY

Source

Some source-type modules have already been presented in section 3'4'3'

The main sources in the Loge toolkit are a constant source' a counter (see

page 119), and the general source-

(defmodule source (n0 0 period Pattern &aux q)
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(build
(0 O-port n0 0))

( init
(ignore-ports 0)

(setq q (apply #'nake-queue pattern))
(awaken-after 0))

(run

(let ((x (dequeue q)))
(setf !0 x)

(enqueue q x))
(awaken-after Period) )

(done) )

(defun clock-pattern (n)

; Return source pattern for N-phase clock

; e.g. '(o 10 2) for N=2

...)
(defun count-patteru (frorn to &optional (uy 1))

; Return source pattern for counter that

; counts from FR0M to T0 bY stePs BY

...)
other patterns

Usage:

(def¡nodule M (... input-vectors ... )
(uuit¿ ...

(cI source O (Iist ; 2 phase non-overlap 10ns

2 (nodes cn) *e10n (ctock-pattern 2)))
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(co source O (tist ; count down 15-)0 and repeat

4 (nodes xn) #e4on (count-pattern 15 0 -1)))
(so source O (tist ; inPut vectors

g2 (nodes input-bus) *e+On input-vectors) )

...)

Notes: By choice of pattern a genelal source can act as a constant,

counter, clock, etc source (albeit inefficiently in some cases). The gen-

eral source uses a hard coded Lisp extension, a queue type which allows

swift enqueue and dequeue operations to source code again pfoves

useful! This example also introduces the convenient shorthand whereby

(port-write <port> <ualue>) can be written in the abbreviated form-

(setf llporÞ <ualue)) and (port-read <porÞ) becomes llporÞ.

Sink

The dual of the source is the sink. The main types of sink are a nuli

sink (provided merely as an alternate way of satisfying connection rules), a

clocked (sampled) sink, and the general asynchronous sink-

(d.efmodule sink (nI I state

&optional (func #'sink-print-fn))
(buiId

(I l-port nI I))
( init

(watch-ports I)
(setq state (funcall func state I)))

(run

(setq state (funcall func state I)))
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(done

(setq state (funcall func state I)))

(defun sink-print-fn (na¡re port)

(for¡nat t "At -A: -A = -$-/.tr

(tineprint) name (port-read port))

name)

(defun analog-sink-print-fn (na¡ne port)

(format t "At -A: -A = -$-/.tt

(timeprint) nane (port-analog-read port))

name)

Usage:

(build . ..

(op nodes 16) ; outPut bus

(si sink O '(16 , (nodes no) r'Outrr

#' analog-sink-Print-tn) )

...)

Notes: The obvious application for the general sink is to provide a tra-

ceprint facility for monitoring system nodes.

Output

A general sink is alas a somewhat clumsy output primitive' Apart from in-

terpreter overhead, it is somewhat awkward to connect and disconnect sinks

at arbitrary points in the module hierarchy, especially when the simulation
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is running. A better solution to the overall problem of observing the simula-

tion is to yet again modify the port instances to include a probe flag, which

when set causes the port to emit trace output on receipt of- <V:Þ messages'

which a¡e decoded and converted to output on a standard bitmapped dis-

play by an independent output daemon xplot. The probing primitive is

(probe-ports <port..>), which will often be found in module init code

with its relatives like I'IATCH-PORTS. Alternately an explicit probe module

may be used-

(defmodule probe (nI probe)

(uuit¿

(probe I-port nI probe) )

( init
(ignore-ports probe)

(probe-ports Probe) )

(run)

(done)

)

3.5.3 Verification

Verification is a large topic beyond the scope of this thesis, nevertheless this

section presents an example of light-weight verification tools realized with

Loge.

Versional Blocks

In [Lathrop+85] the term uersional blocles was introduced in the description

of a verification technique using multiple modules which provide implemen-
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tations of the same function. Each versional module receives the same input

and their output is compareds with the intent of showing that the blocks are

functionally identical or not as the case may be.

In Loge, every module has the potential to act as its own versional block,

as functional and structural mode operation provide distinct implementations

of what is intended to be the same function- figure 3.36. This hierarchical

verification should be a fundamental step in the development of a multi-mode

Loge module.

M(functional) M(structu¡al)
a

Figure 3.36: Loge hierarchical comparison

Analog comparator

To compare versional blocks, an N bit analog comparator is required-

(defurodute comparator (n I0 I1 0)

(uuit¿

(to t-port n I0)
(tt I-port n 11)

(O O-port n 0))

50ne ,,trusted,' output may be connected to the rest of the system.
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( init
(watch-ports I0 I1)
(analog-watch-ports I0 I1)

(ignore-ports 0)

(awaken-after 0) )

(run

(loop for j from 0 below n doing

; V = L/2 ít no difference
(setf (port-bit-analog 0 j)

(/ (- (Port-bit-analog 11 j)
(port-bit-analog Io j) -1.0) 2'0))))

(done) )

Notes: (setf (port-bit-analog...) ...) operates directly on the

attached node by sending a <V<-Þ message. ANAL0G-Ì'ÍATCH-P0RTS and con-

sequent receipt of. <dv f dt:> messages allows the comparator to output cor-

rect values at the point where the current into input nodes changes' A more

accurate version would also modify the slope of the comparators output node

voltages with the PORT-BIT-CURREI'IT function.

"Figure of Merit

A central property of any verification strategy is the amount of information

required as input from the user, and similarly the amount of information

output by the verifier which the user must scan to detect problems' Either

category can easily become burdensome, perhaps unavoidably' For example,

the comparator of the previous section could be improved by adding another

input which defines when the input data is valid- during invalid periods the
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comparison is ignored, thus any comparator output fluctuation is more likely

to indicate a legitimate problem. This refinement increases the accuracy of

the verification method, at the expense of greater user input.

Some method of summarizing verification information is required. In a

large system with many comparator-based tests in progress the user may be-

come overwhelmed. A direct heuristic is to integrate the comparator outages

over a complete simulation, using this value to generate a "figure of merit"

for a module instance. If many modules are present, the user may then home

in quickly on the worst problems by detailed examination of modules in order

of lowest merit. A module to calculate figures of merit is the FOM-sink-

(defmodule FOM-sint< (nI I name &aux fo¡n tin)
(uuit¿

(I l-port nI I) )
( init

(analog-watch-Ports I )

(watch-ports I)
(setq fom 0.0 tim 0))

(ro¡,t-run)

(done

(FOM-run)

(for¡nat t "FÍgure of Merit for ¡nodule -A is -F-'/."

name (- 1.0 (/ tom n (run-time))))))

(defun F0M-run o
(tet ( (x o. o) )

(loop for j from 0 belor¡ n doing

(setq x (+ x (r' z (abs (- 0.5
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(port-bit-analog I j)))))))
(setq

fom (+ ¡o^ (* x (- (simulation-ti¡re) tim)))

tim (simulation-time) ) ) )

Notes: FoM-sink finally provides an example of use of the done code.

Verification sink

Figure of merit verification can be simplified slightly with the following struc-

tural module.

(defmodule verification-sink (name

mof ; functional mode module

mos ; structural mode module

nI fI sI &aux nfm cmP fom)

(uuit¿
(nfm nodes nI)
(cmp comparator O (tist nI fI sI nfm))

(fon FOM-sink O (list nI nf¡n name)))

(init (setf
(module-mode mof) :functional
(module-mode mos) : structural
(module-mode cmP) :functional
(module-mode fom) :functional

))
( st ructural-module-on1Y) )

(done) )
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Notes: Unfortunately it is difficult in general to avoid requiring indepen-

dent instantiation of the two module under comparison- although it would

be more elegant to include them in the verif ication-sink this would re-

quire some awkward argument passing.

Example

At last, all the submodules necessary for to give an example of the test and

verification methodology have been defined. The module under test will be

the following two input exclusive OR gate-

(d,ef¡nodule xor (I O &aux de dP no)

(uuita
(n node O)
(de enn 3 '(

(t , (node I 0) ,ro ,vss)
(t ,(node I 1) ,0 ,no)

(t ,ro ,(node I 1) ,0)))
(dp enp 3 '(

(1 , (node I 0) ,ro ,vdd)

(r ,(node r 1) ,o ,(node I o))

(r ,(node I O) ,(node I 1) ,0)))
(I l-port 2 I)
(0 O-port 1 0)

)

( init
(watch-ports I)
(awaken-after 0))

(run
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(tet ((in lI))
(ir in (setf to (it (or (= 1 in) (= 2 in)) 1 0)))))

(¿one)

163

)

-for which the tester module is-

(def¡nodule xor-tester (&aux pow nin nou xra sou tst ver)

(build
(pow power O)
(nin node 2)

(nou node 2)

(sou source O '(2 ,nin #e2n

(0t2302r32031)))
(tst xor 2 '(

(,nin ,(node nou 0))

(,nin ,(node nou 1))))
(ver verif ication-sink O r (rrXor'

, (first tst) , (second tst) 1

(,(node nou O)) (,(node nou 1))))
(xra probe O '(4 (,onin ,@nou)))

)

(setf (module-mode (the-¡nod'ule)) :structural)
(st ructural-modul e- onIY )

(done)

)
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Note the double instantiation of xor, sharing input from a general source

and feeding output through two nodes to a verification sink. With the fol-

lowing commands-

7. Ioge xor-test
Loading (xor-test). . .

loge) (set-device-subtype :explicit)
: EXPLICIT

loge) (defvar x-t (instantiate xor-tester))

X-T

Ioge) (simulate x-t #e26n)

Figure of Merit for module Xor is 0.9136909

NIL

- a simulation is run, with the FOM-sink reporting 91% agreement be-

tween the functional and device-level models. Given that the quick but

inaccurate explicit device subtype was used this figure suggests good corre-

spondence between the models. This is confirmed by inspection of a trace of

the input and output voltages (figure 3.37), which reveals that the 9% dis-

agreement occurs in some sizable glitches synchronized with input changes,

much as one would expect.
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El fxFA:PBoBE

Figure 3.37: Xor tester simulation
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Chapter 4

Results

4.L Introduction

This chapter is divided between performance tests, a detailed investigative

functional simulation case study, and an illustration of adaptation of Loge

to an alternate device technology, in this case GaAs'

4.2 General Performance Tests

Loge definitions of some typical or theoretically interesting circuits have been

developed, and their behaviour under simulation is presented in this section'

Wherever possible, generic modules have been specifred where the module

definition accepts a problem size parameter N. This allows comparisons of

mode performance over wide ranges of number of simulation objects with a

minimum qualitative variation in the composition of the system under test

(simulated time is held constant). Wherever possible, tests were run on a

Sparcstation 1* with twenty four megabytes of memory and as little other

load as possible.

167
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since the general emphasis in Loge is more toward simulation turnaround

time than accuracy this is reflected in the data presented in this chapter'

Correctness of simulation is checked either by visual inspection, automati-

cally by comparison with a reference module, or in selected (simple) cases by

comparison with SPICE outPut.

some simple performance improvements are possible over those quoted

here. Firstly, the version of Loge used is itself highly instrumented for

debugging and statistics generation- this overhead adds at least 10% to

turnaround. Another few percent is lost in an unnecessarily inefficient out-

put interface, and yet more in places where the overhead of object oriented

procedure calls is unwarranted. overall, it must be admitted that the code

is not of production qualitY.

4.2.L Ring Oscillator

Inevitably some digital simulation tasks are difficult or impossible to some

simulation modes, for example it is inherently difficult (and misguided, but

not quite impossible!) to write a functional model for a transmission gate-

detailed analog behaviour is the casualty of abstraction' A ring oscillator

provides a good stress test to illustrate the general nature of the idiosyn-

cratic modelling inaccuracies of each modes. In figure 4.L a ring of seven

inverters is simulated in (reading from top to bottom in decreasing order of

abstraction) functional, explicit device, sampled device, evaluated device and

analog device modes. All modes correctly produce the expected oscillatory

pattern, but there are some instructive differences'

o Predictably there is considerable similarity between the waveforms pro-

duced by analog and evaluated devices, with the more conservative ana-

log algorithm being more accurate. The evaluated devices operate on
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twenty distinct voltages, which results in an only very slightly jagged

output, masked here by the pixel granularity of the display format.

o The waveform produced by the sampled devices is similar, but the effect

of the regional approximation can be seen in a more piecewise wave-

form. The sampled d,evices used in these tests are the 256129 region

versions of figures 3.30 and 3.31, which are sampled from the same equa-

tions and parameters used. by the analog and evaluated models- the

intention is to maintain as good a correspondence as possible between

devices in each mode. The general behaviour of other granularities of

sampling is that, much as one would expect, there is a rough propor-

tionality of accuracy and number of samples- although this rule of

thumb fails when there are few distinct currents'

Note that the period of oscillation is shorter than that of the analog

devices. Due to the rêlatively few regions of distinct current, these

sampled devices tend to switch on more quickl¡ resulting in steeper

transitions. In the case of the ring oscillator this difference accumu-

lates at each inverter stage, multiplying the individually small errors

by the number of stages, producing a noticeable change in period. This

effect naturally implies that precise timing information should not be

taken from simulations of sampled devices, especially in this type of

asynchronous system where the error can accumulate (as distinct from

conventional clocked digital circuits).

o The explicit device parameters have been deliberately ill chosen, with

the result that the output tends to ring at the rails. Currents for the

explicit model were arbitrarily chosen at the peak and half peak values

used by the sampled model- thus the total current driven through the

explicit devices is relatively high, giving a yet shorter period of oscilla-
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tion. choice of explicit model region currents is somewhat arbitrary-

a superior scheme was presented in [Ruan+88]'

o The functional mode (after an initial bout of transient confusion) settles

down bo oscillate at the predictableT x 2NRpo,tCnod''

A rough measure of the relative turnaround of the submodes can be

gleaned from event counts for the various device types (table +.t).

9733402047363215150

ModulesExplicitSampledEvaluatedAnalog

Table 4.1: Ring oscillator event counts

This is a very rough measure as it ignores node events which will be

significantly more frequent in the evaluated device submode. Naturally, much

better performance is available from explicit devices if more care is taken

with the device parameters. The event count for modules includes that of

the probing sink.

4.2.2 Shift Register

As implied in section 2.4.3 the CMOS shift register cell of figure 2'L2 is

relatively easy to simulate as there is little scope for bidirectionality related

problems. Therefore a shift register built of N such cells is a minimally

difficutt yet variable size simulation problem. Results are given in table 4'2,

and turnaround summarized in figure 4.2. The table shows total node and

device events, counts of the number of times an event was preempted, and

the real turnaround time from the start of execution of init code to the
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completion of done code. The number of simulation objects is æ 6N, and

simulated time 256ns in all cases.

Allowing for slight variations in response due to system load, simulation

turnaround. time, preempt, device and (where applicable) node event counts

scale near linearly in /ü- apart from the occasional artifact where an unusual

combination of event or preempt arrival times causes large enough variations

in the scheduler performance to be noticeable. The surprise of this test is the

consistent superiority of sampled devices to explicit devices as N increases,

despite this time taking care to suppress explicit device oscillation'

4.2.3 Adder

An elegant design for a CMOS exclusive OR gate is built around a transmis-

sion gate (see page 317 in [weste+85] and section 3.5.3). Without care, this

design may cause difficulties to switch-level simulators [Svensson+88], and

as such is a interesting test for Loge. The raw gate itself will be examined

in section 4.2.4, but its effects are felt from within a Loge N bit adder def-

inition, built from N half adder cells each containing an exclusive OR gate,

four transmission gates and five inverters- for a total of x 25N simulation

objects.

Encouragingly, Loge has no difficulty correctly simulating this system,

and once again sampled devices provide superior performance- see figure 4'3

(tabular form omitted in this case). One begins to suspect that sampled

devices are particularly well suited to highly directional systems.

For this test a functional model of the adder cell was also developed but

as turnaround times were È N/4 seconds these do not appear on the graph'

shown in figure 4.4 is an eight bit sampled device simulation of a number of

additions, with the effects of carry propagation showing clearly.
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252 3384

287 4605

309 5702

337 6789

373 7889

406 8860

422 9729

433 10530

449 rr275

468 12022

2580

3955

5320

6522

7690

8866

9806

10728

11489

r2249

12878

2

3

4
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Ð

7

7

8

8

9

l0

3547

5545

7617

9323

10960

12607

t4L25

15453

17074

17600

18558

Explicit

L74 2443

209 3854

236 5456

259 6723

277 7935

292 9139

322 10261

337 t1287

352 12536

359 13012

373 L37L4

2

3

Ð

6

4
l

8

I
10

12

t2

13

2

3

4

5

6

I

8

9

10

11

1.2

22

33

43

53

63

73

83

93

100

107

146

Analog

r44 19079

r45 293L4

t44 39055

t45 48351

145 57328

145 65910

r45 74073

144 81701

r44 89029

146 95819

r44 102327

23190

36892

47487

57723

69550

79520

93278

101044

104731

119409

124421

7

10

13

16

19

22

24

27

27

29

30

Evaluated

2265 3959

2836 6123

3360 8181

3868 10183

4321 12050

4749 13834

5137 15478

5504 17077

5822 18536

6129 19986

6387 21287

5703

8736

1 1607

14588

L7L97

19657

2L9tg

24083

26020

28315

29838

N r(')Events

Node Device PreemPt

r(')Events

Node Device PreemPt

Table 4.2: Shift register simulation results
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Figure 4.1: Ring oscillator in functional, explicit, sampled, evaluated and

analog modes
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Figure 4.4: Sampled device eight bit adder simulation
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4.2.4 BinarY Tlees

All tests so far have involved problems where the number of simulation ob-

jects is linear in N. A harder simulation task is that of a binary tree of two

input logic gates with results rising up through the tree to a final value at

the root. The Loge definition of the variable sized binary tree structure used

for these tests is perhaps interesting

(defmodule tree-2-N (N gate I 0 &aux no ¡no)

(Iet* ((n-inputs (ash f n)) (n-modules (1- n-inputs))

(n-internal (ash n-modules -1)))
(buiId

(no node (- n-inPuts 2) )

(rno gate n-mod,ules (module-vector j ; heap

at0(
(nodes no 0 2)

0)

over 1 n-internal (

(nodes no (ash j 1) 2)

(node no (1- j)))

over n-internal n-modules (

(nodes I (ash (- j n-internal) 1) 2)

(node no (1- j)))

(setf (module-mod.e (the-module)) :structural)

( structural-module-onlY)

))))

o)
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Note that the type of module to be instantiated within the tree is supplied

as the parameter gate- NAND, NOR and (transmission gate) exclusive OR

gates were used.. While no explicit feedback is yet present, the NAND and

NOR gates include configurations prone to bucket brigade oscillation'

Also present in this test are purely functional models of the gates, and

a functional model for a complete variable sized tree for each of the subject

gates. The full tree models are used as reference models for comparison with

the output of device based trees- the integrated differences are given under

the headin g Err% in the tables of results. This streamlining of result gen-

eration, although it removes the necessity to inspect all output waveforms

(one need only scan for unusually large integrated errors once the reference

model is correct), introduces a complicating factor to the me¿Iriurement of

turnaround- simulation is slowed by the calculations of the integrator mod-

ule. The integrator must operate every time one of its input voltages changes

slopel- thus the induced performance penalty is proportional to the accu-

racy of the output waveform, disproportionately penalizing analog and eval-

uated modes. some measure of this penalty can be grasped with reference

to the event counts for modules, which is dominated by those specific to the

integrator.

Tabulated results follow in tables 4.3 through 4.5, and turnaround sum-

marized in figure 4.5 through 4.7. The number of simulation objects for

the device-based versions is = 8 x 2N . Err% grows steadily with N as the

extra delays in the device based simulation result in an output waveform

that diverges further and further from the reference functional model- the

main interest of Err% apart from detection of errors of functionality is in

comparison with the values produced by the accurate analog mode.

llntegrator overhead has been reduced by recoding in C**
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o

Device
Module
Preempt
ErrYo
T

568231
703

64784L
3.85
965

16418

894
20649
2.9r
73

70335
311

80473
3.36
tzl

r4r775
298
159076

3.45
232

284559
323
323404
3.80
462

134

36913

922
43810

3.05
103

1137316

337

1295938

3.94
1869

I 4 1
Analog

N
Device
Module
Preempt
Err%o

T

868

25lr
502

4030
2.6r
62

11132
414

12516

4.94

t77

19842

73023
362
93263

5.48
1581

1650

551 1

476

6548
4.23
99

22428
381

24L30
5.08

332

44965

386
46622
5.26

709

49270

179226

382

184886

5.74

3701

7L 124

Device
Module
Preempt
Ert%o
T

300
4405
192
4610

3.02
24

17965
160

17510

3.67
67

36102
r62
34800
3.85
r32

i54
1954

204
231 1

2.90
18

573

8978
T7T

8947

3.47
38

442L

7229L
T7L

69575
4.05
247

8827

144772
165

138960
4.23
493

11 1

Sam

N
Device
Module
Preempt
E;trTo
T

2t0
3973
136

11766
2.98
22

7887
103

22602
2.82
34

15409
95

44582

3.09
63

30061
88

88850
3.29
r32

3057

60286
98
143447
3.39
295

119478
110

351763
3.36
624

110

2025
25r
5981

2.59
2L

I 85
t

ode

Module
Preempt
ErrTo
T

368

1638

2.96
46

3t74
3.06
90

6977

2467

t24r2
3.23
343

105

296
3.41

10

226
t42
484
2.79
l4

44r
2t4
863
2.89
25

3492
1269
6257

3.13
186

811 t74
667

Functional

N
N 2 5 6 7 8

D
34

Table 4.3: NAND tree simulation results



180 CHAPTER 4. RESULTS

o,
I

t8

7

,t
,3

t,tt
a'a

ttat
6

t
/

5
Log
Turnaround
Time

4

/

3

2

1

2 4 6 I
N

aaaa-¡ Analog
Evaluated
Sampled
Explicit
Functional

Figure 4.5: NAND tree log turnaround



4.2. GENERAL PERFORMANCE TESTS 181

Node
Device
Module
Preempt
ErcTo
T

240
341 15

779
41379
2.43

93

17952
1304

23979
3.38
97

66952
495

79516
3.39
L29

132928
460

155201

3.70
233

526060
445
607102
4.10

896

r049254
493
1209213
4.16
1782

L745
263272
535
306314
3.78
454

Node
Device
Module
Preempt
ErrTo

T

3018
582

7360
4.38

65

L767

5888
410

t2532
4.48

96

42769
120

86909

6.02
(õl

1t479
381

2375r
4.82

169

22590
376
46342
5.06

334

t2779
44556

346
90772
5.15

690

88850
377
180426

5.48

1798

161 651 5804 11
Ev

Node
Device
Module
Preempt
ElrTo
T

612
10484
t29
10316

3.33
35

2324
4L264
130

39946
3.50
r28

4593

82316
134

79391

3.77
264

194

2638
264
31 18

3.82
2r

5321

191

5484
3.24
24

1178

20763
130

20190

3.49
65

163703

134

r57829
3.91
502

32 103
pled

N
Device
Module
Preempt
ErrTo
T

1879

32147
104

40407

2.81
t25

2775
302
3482
2.2L
23

254
4363
189

5885
2.90
24

479

8271
100

10553

2.64
33

t6277
149

20591
2.88

66

64086
141

80236
3.06
274

127884
106

160029

3.11
518

143

cit

Node
Module
Preempt
Ðl¡To
T

r27
118

329

3.45
9

135

465

2.75
13

4t7
203
824
2.83
24

349

1559

2.88
45

r627
632
3015
2.96

88

3244
1202
5938

3.01
180

2336
1r773
3.09
334

2l 64

N
N 2 3 6 8I

R
45

Table 4.4: NOR tree simulation results
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No
Device
Module
Preempt
ErcTo
T
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36052
1971

44163
1.45
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129808

8r87
187654
2.02

643

259327
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378625
2.75

932

32836

520444
749r
738501
3.92
1063

1.06e6

6239

1.48e6

5.32
1660

1.91e6

6186

2.56e6

6.98
2754

4.05e6

5861

5.44e6
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4261l173 7620 15
Analog

Node
Device
Module
Preempt
Err%o
T

3081

430

6667
1.75
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12296

654
23300
2.84
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54330

942
95258
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r22
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47466
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1657
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6.15
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400166
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Device
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Preempt
ErcTo

T
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151256
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4540
28r
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2.74
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17436
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72241
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80068
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248409
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447076
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472793
10.1

473

1t 6
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Preempt
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1 188

31850
381

43853

3.72
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337
5760
2.93
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8563
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12643

3.28
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16403
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23023
4.03
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4.84
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4474
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2075L6
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Module
Preempt
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I
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t24
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Table 4.5: Bxclusive OR tree simulation results
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After the first few points, in most cases the relevant event counts and

turnaround times approximately double with each increment of N as ex-

pected. The main exception appears to be that for NAND and NoR trees,

evaluated mode performs relatively poorly with a slightly parabolic increase

in values of log turnaround time.

performance of the NAND and NOR trees shows considerable quantita-

tive similarity, which was also predictable. What is interesting is that the

gap between sampled and explicit mode has narrowed somewhat, and that

the evaluated mode is now significantly slower than analog mode. A lim-

ited investigation of this unexpected change showed that some analog nodes

were oscillating between rail voltages and their nearest neighbouring discrete

voltage- the iterations whereby av * 0 ; v : vo;t +. LV were requiring

a significant number of steps. The rail voltage was always that connected

to two series devices in the subject gates- one is forced to conclude that

this problem is characteristic of the evaluated device implementation used,

and that it had not previously been noticed until this test- where the high

proportion of vulnerable devices revealed it.

The exclusive OR gate simulations return to the pattern of previous re-

sults. There is a simplification in the functional model of this gate and that

of the NAND and NOR cases- thus the improved functional model perfor-

mance is not unexPected.

4.2.5 Barrel Shifter

A barrel shifter is a worthwhile test since it consists completely of cascaded

bidirectional devices- the cMos version is composed purely of transmission

gates. The Loge model of the barrel shifter structure is pleasantly concise-

(defmodule barrel-shifter-N (n L I R &aux tga)
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(build
(tga tgate '(,n ,n) (nodule-arraY x Y

over (o n) (o n) (

(node ¡ (+ y x)) (nodes t (+ x x) 2) (node n y))

)))
(setf (module-mode (the-¡nodule)) :structural)
( structural-module-onIY)

o)

Turnaround is graphed in figure 4.8- the number of simulation objects rs

¡¡ 3N2 + 5N. Explicit devices are the clear winner here- unlike the previous

examples containing transmission gates this time there are no associated

inverters to impart some specific direction of information flow.

4.2.6 MemorY

The preceding simulations have all been rather small- of the order of thou-

sands of simulation objects at the maximum. This is of course not at odds

with the underlying philosophy to Loge that only a few small modules should

be simultaneously simulated in low level modes. Nevertheless some larger ex-

amples are called for.

Another point in which the examples presented so far are atypical is that

many exhibit unusually high levels of circuit activity. In contrast, the circuit

activity of an ¡{ bit address by M bit word memory (using a six device

static cell ([weste+85], page 353)), can never greatly exceed L00l2N% for

sufficiently large N and M. Note that the memory cell is dependent on

feedback for correct oPeration.

This time, the figure 4.9 shows turnaround plotted against total number of
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simulation objects, for various sizes of memories, and for three cases extracted

from fixed physical layout - a data-path, ALU and block of registers, a large

state machine incorporating a PLA and some assorted gates, and a multiplier'

Reasonable proportionality between number of objects and turnaround is

seen, once again with some variations in mode performance on different test

systems. These simulations \ryere performed on a larger machine (the 2tr0 x a

element memoly reached a peak size of 12 Megabytes and the next test began

to thrash).

4.2.7 Simulator Performance

A measure of simulator performance in the form of events serviced per unit

time (ElT) and events plus preemptions per unit time ((E + P)lr) appears

in table 4.6. only the smaller systems are shown, as they are homogeneous-

each exemplifies a significantly different type of circuit (except for the adder

and exclusive oR tree), whereas in the larger, more heterogeneous systems

the efficiency converges towards the average'

The order of magnitude variation across this small sample of test circuits

is a telling illustration of the awkward conditions a general purpose simulator

must accommodate. Given such variation, one must be wary of the trap of

tuning simulator performance for a limited set of input configurations.

one might expect that number of events per unit time be proportional

to the level of accuracy. This appears to hold true across the various modes,

except for evaluated mode, which gives good accuracy from a relatively low

rate of events. This is true in part because only in evaluated mode are

node events frequent and computationally of the same order of difficulty as

device events. Thus there is scope for further optimization of evaluated mode

performance, and it is clearly the most event-efficient mode.
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4.2.8 SummarY

These performance tests fail to show a sustained superiority of any one mode

over all inputs. While this is disappointing, the provision of the different

modes is thus an advantage of Loge.

The analog mode is quite robust and reliable, as expected from this more

conservative algorithm. The waveforms it produces diverge only slightly from

those of SPICE- usuallY within 2%.

Apart from a marginal implementation problem, the evaluated mode pro-

vides good accuracy and reasonable turnaround- with the benefit that the

469 1050Average

745

r27

595

393

35

1670

319

1160

905

8l

Analog

Evaluated

Sampled

Explicit

Functional

Each mode

973

890

303

188

787

1350

2r70

1880

657

406

1785

3910

Shift Register

Adder

Nand-Tree

Nor-Tree

Xor-Tree

Barrel

Each test

Elr @ + P)lrCase

Table 4.6: Events and preempts per unit time
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speed/accuracy tradeofi is now easily variable. Evaluated mode is qualita-

tively different from other modes in that the nodes take a more active role-

this is an advantage in terms of being able to guarantee a certain degree of

precision, and a disadvantage in that it somewhat artificially shifts respon-

sibility away from the devices, which are the seat of modelling complexity.

Sampled mode is less variable than evaluated mode, as the process of gen-

erating sampling arrays requires more steps than changing the Voltages sel'

Nevertheless, once a good sampling has been chosen this mode is frequently

the fastest means of studying the basic functionality of a system.

Explicit modes are only variable in parameters, like analog modes. They

are however possibly the most aggressive method of device modelling' The re-

sults are somewhat mixed- abstraction related problems such as the bucket

brigade oscillatory effect are most noticeable with explicit devices. The topol-

ogy of the regions chosen (and hence the computational load of region transi-

tion tests), is the most important influence on explicit mode performance-

the simplicity of the rectangles of sampled mode are difficult to improve

upon. Nevertheless, sometimes explicit mode triumphs'

Functional mode interacts cleanly with the other modes, but it can not be

meaningfully compared to the hybrid modes- they are too fundamentally

dissimilar. More typical tests of the functional mode appear in the case study

of section 4.4.
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4.3 GaAs technology

Gallium Arsenide devices while generally similar to MOS devices, are signif-

icantly more complicated to design with, process and model. This section

illustrates inclusion of GaAs depletion and enhancement mode metal semi-

conductor field-effect transistors in Loge. The abstract nature of Loge device

submodes makes this a perhaps surprisingly straightforward task.

4.3.L MESFET current models

In very general terms, the MESFET 1¿" equation [EshraghianSS] can be

expressed in the form-

0 Vs" - Vn' 10

þ((Vn" - Vn )k o 1V¿, <Vs, - Vn'

+À(%" - Vn )^V¿")tanh(oV¿") (4'1)

þ((Vn"-Vn,)t 0 <Vs"-Vn' 1V¿'

¡ À(Vn, - Vn,)^V¿, ) tanh(oV¿, )

Continual evaluation of these equations in their full generality is pro-

hibitive. This is recognized in the literature, where simplifications such as

[: f [Goyal+87] and k :rn:2 [Statz+87] reduce the above system to-

0 Vnr-Vn 10

þ(Vn" - Vn,)'(L + ìV¿")tanh(aV¿") Vn" - Vn ) 0

A further computational simplification is to replace tanh(av¿") with 1 -
(l - av¿"f n)" ;n : 2 or 3 [statz+87]. The final computation cost for an

active device is thus seven multiplications, an addition, a subtraction, and

the hyperbolic tangent (approximated as two subtractions and two or three

Id":

I¿, (4.2)
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multiplications), which is rather costly compared to the equivalent MOS

.I¿, equation. Indeed it suggests that the performance of Loge analog and

evaluated mode MESFET simulations based on this equation will be at least

three times slower than the equivalent MOS cases'

Such complexity is fortunately irrelevant to the sampled submode, as all

.I¿" evaluations are done in advance- this freedom from modelling complexity

is one of its significant advantages. With the parameters (subsequently scaled

where necessary) þ¿ :2I3uAlV', Vh,d: -0'545V', À : 0'03, o : 1'5,

0, : 362.8uAlV', Vh,," : 0.2lgv, sampling equation 4.2 results in the

arrays of figures 4.10 and 4.11.
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Figure 4.10: Sampled DMESFET current array

The distribution of currents in the BMESFET array is sufficiently similar

to that of the n-channel enhancement mode MOSFET that the same type of

six region explicit model may be used. The DMESFET can also be modelled

given a slight shift of boundaries (figure 4'L2).
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Figure 4.11: Sampled EMESFET current array
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4.3.2 Simulations

Depletion and enhancement mode MESFETS are the devices used in the

direct coupled FET logic (DCFL) class of GaAs logic circuits. This design

idiom is very similar to nMOS, with EMESFETs and DMESFETs replacing

enhancement mode and depletion mode MOSFETS- a DCFL inverter is

shown in figure 4.13.

vdd

o

Vss

Figure 4.13: DCFL inverter

As in the case of nMOS, the depletion mode device acts as a resistive

load. Once again, this means that whenevel a hybrid mode pull down device

switches on and pulls the output low, as soon as it switches off the output

will drift high again causing the pull down to switch on, etc - the bucket

brigade effect. This can be seen in the "thick" low values in figure 4'14,

which is a simulation of seven DCFL inverters configured as a ring oscillator,

in functional, explicit, sampled, evaluated and analog modes (listing from

top to bottom). sampled mode is especially badly affected, with secondary

ripples appearing.

In this case, clamped nodes (section 3.4.4) may be used to improve mat-

ters considerably- figure 4.15 shows the same simulation with the sampled

and explicit mode BMESFETs connected to nodes that appear clamped to

I
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a minimum voltage just above that at which the devices would enter their

diagonal Id" :0 region. This modification reduces the number of device

events for these modes by an order of magnitude'

In the simulation of figure 4.15, evaluated devices did not share the benefit

of connection to clamped nodes, and their performance was degraded almost

to the level of analog devices. This effect is reproduced in simulation of a

DCFL D flip-flop primitive (figure 4.16, input D is sampled whenever input

Clk is low).

Even over a short (10ns simulated time) simulation the dramatic change

in evaluated device performance is clear (table 4'7)-

39

34

2

1

17048

1 1646

tL22

349

15293

18700

1258

467

134

3338

103

62

Analog

Evaluated

Sampled

Explicit

r(')Events

Node Device PreemPt

Submode

Table 4.7: DCFL flip-flop event counts

Bvaluated device performance is also of course worsened by the relatively

complex MESFET equations. A simulation appears in figure 4.17, the wave-

forms from top to bottom being Q, Clk and D. An equivalent nMOS version

is between 3,5 to 4.5 times slower in evaluated and analog mode.

sampled mode however shows gratifyingly similar performance between

ciosely equivalent DCFL and cMos circuits. simulation of a tree of DCFL

NOR gates (instantiated exactly as in section 4.2.4) produces the results

shown in table 4.8-
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Table 4.8: Sampled mode DCFL NOR gate results

while there are major qualitative differences in event distribution, in all

but one case, turnaround is within 5To of. CMOS NOR tree performance. on

reflection, this is unsurprising- the pull down devices act almost identically,

while the event traffic generated by a DMESFET is likely to be equivalent

to that of the two pMOS device pull up chain acting as a bucket brigade'

on the other hand for a NAND gate tree the GaAs version is at least twice

as slow, as this time the DMESFET replaces two parallel pull up devices

which are not prone to bucket brigade behaviour. The error grows steadily,

and event counts roughly double with successive N as expected. Figure 4'18

shows a simulation of the three level tree, with an input period of lns.

Similar behaviour is seen in explicit mode, albeit with a greater tendency

to spurious oscillation- indeed the six region explicit model appears to be

too gross an approximation to be used consistently in the presence of load

devices- more robust results are available if the six region model is converted

into an eight region model (characterized by three rather than two distinct

non-zero currents). As with MOS, absolute fastest turnaround goes to either

Sampled

Node

Device

Module

Preempt

ErcTo

T

107

1169

203

1844

1.69

18

288

2428

L52

3278

1.68

22

631

4860

111

6123

2.56

34

1304

9655

107

11943

2.8ó

61

2631

19242

104

2354r

2.90

124

5272

38457

109

46925

2.95

224

10534

76835

LIz

93480

3.00

484

DCFL NOR
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explicit or sampled mode depending on circuit configuration.

4.3.3 SummarY

Existing Loge device models can be relatively easily adapted to handle MES-

FETs. Unsurprisingly however, in cases whete I¿, must be evaluated the

greater complexity of GaAs device modelling equations with respect to MOS

imposes performance penalties. With MESFETs, simple circuits of the

DCFL logic family can be successfully modelled, however hybrid mode algo-

rithms will perform poorly unless the tendency of the depletion load devices

to induce semi-permanent bucket brigade oscillation is suppressed. The not

entirely satisfactory clamped node technique is one such solution.

I

I

I

I

L
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Figure 4.14: DCFL inverter simulation
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Figure 4.15: DCFL inverter simulation with clamped nodes

-a a
vdd

Vss
D
ctk

Figure 4.16: DCFL fliP-floP
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Figure 4.17: DCFL D flip-flop simulation, with evaluated devices

20L
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El fcMP:PRoBE g

Figure 4.18: DCFL NOR tree simulation
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4.4 Design of a Combinator Engine

4.4.L Introduction

This section is a case study of simulation of a non-trivial architecture from an

otherwise unrelated research project. The intention is to illustrate flexibility

in composition and operation, and the investigative capability provided by

the functional mode of a highly general simulator such as Loge'

The following matter falls into two main divisions- an introduction to

the architecture to be simulated, and details of the simulation itself. In both

cases, some detail/space tradeoffs have been made in the interest of brevity.

4.4.2 Functional Programming and combinators

current research in computer programming and languages is particularly ac-

tive in the area of functional programming. Pure functional programming

languages have many advantages [Backus78], notably with regard to their

suitability for parallel execution. unfortunately these advantages are often

difficult to realize with conventional sequential processors' Therefore' some

investigation of special purpose architectures for functional programming ap-

pears worthwhile.

A notable implementation technique for functional languages is the use

of cornbinaúors [Turner79]. Expressions without side effects or assignments

may be transformed to a lambda calculus form, and thence to combinator

form by application of a set of simple transforms-

Àx. e1 e2 + S (Àc' e1) (\æ. e2)

Àx.c + Kc
Àr.x + I

c*a
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Combinator compilation is illustrated in section 4.4.3 which contains a

excerpted trace of the compilation of a simple applicative Lisp expression. In

addition, there are some simplifications that can be made to some common

patterns of combinators- giving rise to optimizatioz rules. Note that some

optimizations generate new higher-order combinators'

s(rcp) (rcq) + KPq
S(,Cp) U + p

S(rcp) q + BPq,

5p(rq) + CPq,

5(Bpq) r + 5'Pqr
5(,(p) (Bq') + 6*Pqr
S(Bpq) (rr) + C'Pq,

Various sets of combinators have been proposed [Peyton JonesST]- the

pair S and K is the theoretically minimum useful set.2 A combinator expres-

sion is "executed" or reduced by applying the transforms-

.Sfgx + fx(gx)
Kcx + c

lx + x

Bfsx + f(s*)
Cfgx + f*g
5'cfgx + c(fx) (gx)

6xcfgx + c(f(gx))
C'cf.gx + c(fx)g

A vital property of combinator expressions is that their final reduced

form is independent of the order in which individual combinators are pro-

cessed (from the Church-Rosser theorem). This property makes combinators

2The identity combinator T can be expressed in terms of S and '('
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particularly attractive, as it allows almost arbitrary distribution of a reduc-

tion of a combinator expression amongst multiple parallel processors. These

processors need merely be implementations of the preceding reduction rules,

and "fite" the rules opportunistically.

Pseudo-Combinators

Extra pseudo-combinators are introduced to support programming idioms of

higher level than can be simply provided by raw combinators' For example-

ïIf <test> SPro <then) SPro lelse) + <then) ot lelse)

-where 
$ff is a conditional operator pseudo-combinator, and SPro an-

other pseudo-combinator which suppresses reduction of the following expres-

sion (supporting lazy evaluation). More pseudo-combinators for list process-

ing and arithmetic appear in tables 4.9 to 4.12.

A distinguishing feature of pseudo-combinators is that t'hey have type-

specific firing conditions. At the very least they are constrained not to oper-

ate on expressions of true combinators- $ff can not be fired until <úest> is

reduced to a boolean value.

4.4.3 Combinator Compilation Example

Consider the Lisp definition-

(defun fact (x) (it (<= x 1) 1 (* x (fact (- x t)))))

This expression declares the symbol f act to represent a function taking

one parameter x. fact computes x factorial (assuming ø to be a positive

integer) by recursive self-application. As the syntax of Lisp is already a rough
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approximation to lambda calculus, the computational part of this definition

may be transcribed as-

^x. 
(8Il ($< x 1) ($Pro 1) ($Pro (S*'x (FACr ($- x 1)))))

Now by repeated application of the compilation and optimization rules

(partiatly shown in figure 4.19) this is converted to a combinator expression-

(s (s (s
(K 8rr) (s ,$s (K 1)))

(,C ($Pro 1)))

(s (rc SPro) (S $*

(s (rc FACr) (.s s- (K 1))))))

4.4.4 Basic Architecture

A straightforward hardware implementation of a combinator engine has been

proposed in [DickinsonSg], and is shown in figure 4.20.

The system consists of a large number of combinator processors inter-

spersed with buffers, connected along a unidirectional ð,ata stream. Data

flows down the stream subject to handshaking signals- a processor may

need to locally block the stream, causing upstream sites to retain their data

until the blockage is cleared. There is a special null token which has no

meaning as data, and may be overwritten arbitrarily. At regular intervals

all stream elements emit a token- nulls are to be written if no other useful

information is available. These nulls give the stream a limited amount of

elasticity- for when a processor blocks and there are nulls in the stream

buffer immediately upstream, the effect of the blockage is localized until the

space taken by the nulls is filled (the stream buffers are essentially FIFOs).
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From Rule

^x. 
(8Il (,$< x 1) (.$Pro 1) L

($Pro (,9,* X (FACT (.$- X

1)))))

^x.6If 
(SS x 1) ($Pro 1)) g

To

5 (Àx. ($// ($S x 1) (,$Pro 1)))

()x. (($Pro (8* x (FACr ($- x
1))) )) )

,s (Àx. $Ir (,$< x 1))) (Àx.

(($Pro t)))

s ()x. ($ff)) (Àx. (($r x 1)))

K 8rÍ

s (Àx. ($s x)) (Àx. (1))

.s (Àx. ($s)) (Àx. (x))

K8<
î
.9<

KI
(rc ($Pro 1))

s (Àx. ($Pro)) ()x. ((,$* x
(FACr ($- x 1)))))

207

^x. 
$rr (.$< x 1)) a

^x. 
8rl L

Àx. ($< x 1) g
Àx. (ss x) g
tx. .'< L
ìX.X L
(s (rc 8s) r) =
)x. 1 L
).X. (íPro I) I
\X.ïPro L
Àx. 1 L
(s (rc SPro) (rc 1)) =

^X. 
(ïPro ($* X (FACT a

(.$- x 1))))

KT

s (Àx. ($Pro)) (Àx. (1))

K SPro

Note: The lines marked; denote optimizations.

Figure 4.19: Compilation of f act
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(Data Stean)

(Handshaking)

Figure 4.20: Combinator Engine Architecture

Additionally, each processor has a secondary buffer known as its siding fot

storing temporary values.

This architecture calls for a minimalist design philosophy. The utility of

the combinator processor derives not from any inherent sophistication but

from using a large number of them- generally speaking, the combinator

processor should be as small and uncomplicated as possible.

4.4.6 Tokens

Given the combinator processol operates on a stream of tokens, what then

are these tokens? The useful tokens can be divided into several categories-

TYue Combinators: 5, K are mandatory. I is a trivial addition' The other

optimizing combinators (6, C, S',6x and C') arc optional'

Siding Buffer

I

Buffer
Combinator
Processor Buffer

Pseudo-Combinators: Constructs such as .ff (section 4'4'2)'
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Symbolic Constants: Tokens representing constant objects- such as the

boolean false (N/tr) and boolean true (?) values, and potentially others.

Functions: Function tokens are effectively a combination of constant and

pseudo-combinator. A function token stands for a constant combinator

expression- this replacement occurs subject to conditions similar to

those for firing pseudo-combinators. In section 4.4.3, FACT is an ex-

ample of a function token'

Numbers: Numbers are fundamentally useful.

Cons: A token to allow data to be structured into lists. (Existence of

SCONS suggests some more pseudo-combinators to do car and cdr

("first" and "rest") typ" operations.)

Meta-Tokens: Very special tokens that have no real significance as opera-

tors or data, but are necessary to the operation of the system, perhaps

to act as helpers to evaluation. For example the elasticity of the stream

requires the existence of the null token 8NULL.

Note: This document shows true combinators in a calligraphic font,

pseudo-combinators in mixed case italic with a prepended $, constants and

functions in upper case italic, and everything else in upper case italic with a

prepended $ except numeric tokens which have a prepended f '

Given the above set of tokens, tables 4.9 through 4.I2 show an extended

set of true and pseudo-combinators. The pseudo-combinators are chosen to

support compilation of a restricted Lisp-like language with no side effects,

and some list processing and numeric capability. Each combinator has its

firing preconditi an associated minimum argument count (Argc^¿n) and'

types for a number of following arguments. The designation Terminaf is the
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least specific type restriction- it implies an argument which is incapable

of being reduced further, and thus does not consist of combinators of any

description, (tokens of Constant, Number or Cons type a,re acceptable).



4.4. DES/GN OF A COMBINA?OR ENGINE

Table 4.9: True Combinators

2TT

c

fx(sx)

x

r(s")
f*g
c(fx) (gx)

c (f (s x))

c(fx) s

Dont care

Dont care

Dont care

Dont care

Dont care

Dont care

Dont care

Dont care

3

,
I

3

3

4

4

4

Sfgx
K cx
Ix
Bfgx
C f gx
5'cfgx
B*cfgx
C'cLgx

RHSArgument TypesArgc^;nLHS

{t,e}
{NIL,, T}

{NIL, T}

{NIL, T}

{NIL, T}

(car x)

(cdr x)

{NIL, T}

Terminal

Terminal

Terminal

Terminal

Terminal

Cons

Cons

Terminal

Dont care

Terminal

3

1

I
I

1

1

1

2

9If cte
$Noú x

SSymbolp x

SNurnberp x

SConsp x

SCar x

SCdr x

9Eq ab

RHSArgument TypesArgc^;nLHS

Table 4.10: Pseudo-Combinators
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{NIL,, T}

{NIL, T}

{NIL, T}

{NIL, T}

{NIL, T}

{NIL, T}

nI+n2
nl-n2
nlxn2
nIln2
nI mod n2

n*I
n-l

Number

Number

Number

Number

Number

Number

Number

Number

Number

Number

Number

Number

Number

Number

Number

Number

Number

Number

Number

Number

Number

Number

Number

Number

2

2

2

2

2

2

2

2

2

2

2

I
1

S: nl n2

8l nl n2

.9> n1 n2

S< nl n2

S) n1 n2

,$( n1 n2

$+ n1 n2

$- n1 n2

.$* nl n2

8l nI n2

$Mod n1 n2

81+ n

$/- n

RHSArgument TypesArgc^;nLHS

Table 4.11: Arithmetic Pseudo-Combinators

n

nlandn2

nlorn2

nlxorn2

Number

Number

Number

Number

Number

Number

Number

I

2

2

2

SLogNot n

SLogAnd nl n2

SLogIor nl n2

SLogXor nl n2

RHSArgument TypesArgc*¿nLHS

Table 4.L2: Logical Pseudo-Combinators
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4.4.6 Argument Countin

The use of ( and ) to convey grouping information is inefficient as a stream-

based processor can not determine whether to fire (for example) an 5 until

three complete arguments have been read (and presumably stored for pro-

cessing). A superior scheme is for the number of arguments available to each

token to be embedded in the token, allowing firing decisions to be made be-

fore any arguments need be read. The transformation is a simple "flattening"

of the list structure-

(s (5 (5

(K 8Ir) (s .$< (,C 1)))

(rc ($Pro 1)))

(5 (rc SPro) (5 .$*

(s (rc FACr) (s .$- (rc 1))))))

becomes-

S:2 S:2 S:2

K:I Îlf :0 5'2 .$<:0 K:1 1:0

K:l SPro:I L:0

E:2 K:l SPro:O 5't $*:0

S:2 K:I FACT:0 .S:2 .9-:0 K:1 1:0

In this form a processor can recognize argument boundaries with the

following algorithm-

Algorithm 4.L Argument counting

(giuen current toleen is the combinator or at end of argument)
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n:L
while (n > 0)

Get next toleen

n: n - 1+ tolcen argument count

(current token is now the end of the next argument)

-which 
may be repeated as necessary to read multiple arguments.

4.4.7 Combinator Execution Example

Following this paragraph is a trace of the execution of a combinator expres-

sion interpreter as it evaluates combinators corresponding to the lisp expres-

sion (fact 2). It contains two instances of a replacement of the function

token FACT.
FACT:1 f2:0
5:3 5:2 S:2 K:\ 8If :0 S:2 S<:0 K:1 ffI.O K:l SPro:L ffI:0 S:2 K I SPro:o

5'! ,$*:0 S:2 K:l FACT:0 5:2 $-:0 K:l ftl:O ff2:0
S:4 S:2 K:l LIf :0 5'2 $<:0 K:l fil:0 K:L SProl f 1:0 S2:0 E:3 K:I

$Pro:O,S:2 $*:0 S:2 K:L FACT:O 5:2 $-:0 Kl ffI:O ff2:0
5:5 K:1 LIf :0 S:2 $<:0 K:1 ffL:o ff2:0 K:2 SPro:I SI.0 ff2:0 K:3 SPro:o

ff2:0 E:3 .$*:0 5:2 K:1 FACT:O 5:2 $-:0 K:1 Sl:0 ff2:0
K:5 LIf :0 f2:0 5:3 $(:0 K:l ffl:O ff2:0 SPro:l ffl:o SPro:L 8*:2 #2:0

5:3 K:l FACT:O S:2 8-:0 K:l ffI:0 ff2:0
\If :3 8<:2 S2:0 K:2 ffl:0 fr2:0 SPro:L ffL:0 SPro:l 8*:2 ff2:0 E:3 K:l

FACT:O 5:2 $-:0 K:l fiI:O fi2:0
8If ß 8<:2 ff2:0 ffI:0 SPro:L ffL:O SPro:I 8*:2 ff2:0 S:3 K:1 FACT:O 5:2

$-:0 K:l ffl:O ff2:0
\If ß NIL:0 SPro:L ffI:o SPro¡l $x:2 ff2:0 S:3 K:1 FACT:0 5:2 $-:0 K:1

ftL:0 fi2:0
8*:2 ff2:0.S:3 K:1 FACT:O S:2 .$-:0 K:7 {I:0 $2:0
8*:2 ff2:0 K:3 FACT:0 fi2:0 5:3 .$-:0 K:1 f;I:O ft2:0
$*:2 #2:0 FACT:1 8-:2 f;2:0 K:2 f;l:O f;2:0
$*:2 ff2:0 FACT:I 8-:2 fi2:0 ffl:0
8x:2 #2:0 FACT:1 f 1:0
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$*:2 ff2:0 5:3 5:2 S:2 KzL gIf :0 S:2 $<:0 K:1 ffLo K:L SPro:L f;l:o S:2

K:I SPro:0 5'2 $x:0 S:2 K:I FACT:0 5:2 .$-:0 K:l fil:O ffI:O
8+:2 ff220 S:4 S:2 K:L ïIf :0 5'2 $<:0 K:I frl:o K:L SPro:l f 1:0 f 1:0

5:3 K:1 SPro:O 5:2 $*.:0 E:2 K:l FACT:0 5:2 $-:0 K:L ffL:O ffL:0
$*:2 ff2:0 5:5 K:1 ïlf :0 S:2 $<:0 K:1 fiL.0 {l:0 K:2 SPro:l f 1:0 f 1:0

K:3 $Pro:o f 1:0 5:3 $*:0 5:2 K:1 FACT:0 5:2 $-:0 K:1 fiI:o fil:o
$*:2 ff2:0 K:5 $ff:O f 1:0 5:3 $<:0 K:1 fil:O ffI:o $Pro:l ffI:0 $Prozl

8*:2 ffL:0 5:3 [:1 FACT:0 5:2 .9-:0 K:I ffI:0 fflO
8*:2 ff2:0 llf :3 8<:2 ffI:O K:2 f 1:0 f 1:0 SPro:l ffI:0 SPro:l 8*:2 ffL:O

.S:3 K:1 FACT:O 5:2 .$-:0 K:I fiI:0 fiI:O
$*:2 fi2:0 ïIf :3 8<:2 f i:0 f 1:0 SPro1 ffL.O SProl $*:2 f 1:0 5:3 K:1

FACT:0 S:2 $-:0 K:I ffI:O fil:O
$*:2 ft2:0 ylf :3 T:0 SPro:I SL:0 SPro:l 8*:2 fl:0 .S:3 K:1 FACT:O 5:2

$-:0 K:1 f 1:0 f1:0
8*:2 fr2:0 ffI:0
fi2:o

4.4.8 Stream

Given the token types in section 4.4.5,, enough information is present to

design the stream. As the stream must carry data and argument counts,

and a likely execution bottleneck is the test for combinator readiness, it is

probably unwise to use a complex bus encoding or transfer data and argument

count sequentially. Similar reasoning applies to type information, as it is also

implicated in the readiness test. Thus the obvious design for the stream bus

is three parallel fields for argument count, raw data and tag (Type) bits.

With regard to sizings, tradition and general usefulness requires that the

data be at least eight bits wide, with thirty-two a sensible value if seri-

ous arithmetic capacity is required- eight bits is chosen here for simplicity'

There are seven basic token types,3 thus the type part requires at least three

3Some freedom is desirable here as it may prove efficient to combine some types (for

example, constants and functions), or add extra encodings (for example, represent SNULL

as a distinct type so as to make it more easily recognizable by the buffers).



2t6 CHAPTER 4. RESULTS

Data
(16)

Figure 4.21: Stream

bits. The width of the argument count part defrnes an upper bound on the

number of arguments a combinator or function may have. The choice of a five

bit field gives a reasonably generous maximum argument count of thirty-one'

4.4.9 Control

Although this architecture is well suited to the use of asynchronous logic

[Sutherland8g], we assume the use of a conventional N-phase non-overlapping

clock. The operation of combinator processors may depend on whether the

downstream module is able to accept data, thus some care is necessary in

assigning phases. Buffers do not have this sensitivity, thus the following order

of. logical phases is practical-

. Buf f er-l{rit e-Control

Pro ce s s or-Read-ControI

Pro ce s s o r-l{rit e-Cont ro I
Buffer-Read-ControI

Buf f er-l'lrite-Data

Processor-Read-Dat a

Pro ce s s or-lJrit e-Dat a

TyPe

Argc (s)

(3)

(8)
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Buffer-Read-Data. ..

It is interesting to note that while data flows downstream, control flows

upstream!

For control purposes, no distinction is made between stream and siding

buffers, or between any different type of processor attached to the stream.

All stream elements are either buffers or processors, and a buffer must always

be surrounded by processors, and vice versa.

4.4.LO Combinator Processor Design

Design of the combinator processor requires some analysis of the implemen-

tation requirements for execution of each combinator-

¡ K and z must be able to pass a complete argument from input to

output. This requires arithmetic accumulation of the argument count

field of successive tokens using algorithm 4.1.

o K must be able to nullify a complete argument by writing SNULL to

the stream until the input argument is exhausted.

o 5 must be able to duplicate an argument, as it produces two copies of

o 5 must be able to interchange successive arguments, as g becomes

interchanged with one Í.

¡ An $ff requires the processot to test its first argument, and either

ignore the whole .$ff expression if the firing condition fails, or replace

it with the lthen) or lelse) argument.

T
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o $Pro requires that the processor pass both its arguments and lhe $Pro

itself unevaluated. SCONS is similar.

o SCar and SCdr require a similar test-and-replace operation to $f .

o SNot, SSymbolp, $Nurnberp and SConsp ate also test-and-replace type

operations, but the replacement token is always either T or NIL. Com-

parison operations are similar but are type specific in two arguments.

¡ The arithmetic and logical operations are mostly two argument type

specific functions which return a number to the stream. Calculating

the number may require significant circuitry.

o Function application is conditional on tests of potentially many argu-

ments.

Good practice in processor design suggests that the choice of which com-

binators to directly implement should be driven by their relative frequency

of occurrence in typical programs. Without extensive testing, a rough indi-

cation of these frequencies can be found by examining compiled combinator

expressions produced for a number of simple quasi-Lisp expressions (some of

which appear in section 4.4.16) used in the development and testing of the

combinator compiler, interpreter and Loge model of the combinator engine-

the results of which are summarized in table 4.13.

The most striking feature of this simple measurement is that true com-

binators account for more than three-quarters of all tokens, even though

all instances oT I were optimized away.a Other classes of operations ïvere

within a factor of two of each other, except for function application which is

noticeably less frequent.

aOnly S, Æ and Z are generated by the complier used for this test
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Operation f To

Application

Arithmetic

List Processing

tlf ,, SPro

T

K.

5

Stream

2I9

3

I

11

13

0

30

36

Table 4.13: Rough Combinator Frequencies

Given the combination of relative infrequency and large functional re-

quirements of arithmetic combinators and function application, these oper-

ations will be split off into separate or external processors. This leaves the

combinator processor to execute only combinators that are at most type spe-

cific in the first argument- which can be expedited if a processor has access

to the type bits of the leading token of its first argument. (Similarly, an

arithmetic plocessor will require two token type lookahead- figure 4.22.)

t t Stream

ALU Processor

Figure 4.22: Arithmetic processor
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To implement the other processor requirements listed above, some rni-

cro in stru cti o ns ar e defi ned-

'Wait Pass tokens from the stream input to stream output, checking for

combinators that are readY to fire.

Pass Pass a complete argument from stream input to stream output.

Blot Nullify a complete argument- ernit |NULtr while reading from the

stream input.

Copy Copy an argument from stream input to both the stream output and

to the siding buffer.

Hold Read an argument from stream input into to the siding buffer only,

while writing tNULL to the stream output.

Dump Empty an argument out of the siding buffer to the stream output,

while blocking stream inPut.

Skip Nullify a single token onlY.

-with which the combinators may be broadly defined as microprograms.

For example one might naively consider 5 to be-

pass ; pass /
hold ; save g in siding

copy ; duplicate c

dump ; emit saved I
dump ; emit coPY of ø

Grouping causes a minor complication- the architectural implication of

the parentheses in f x (9 r) is that the argument count of the first token of I
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must be incremented to allow it to capture the following c. This refinement

actually simplifies the 5 program to only require one Dump microinstruction.

Similarly the argument counts for the / of an 5 and the c of a K need mod-

ification, as these inherit any other arguments of the firing combinator. As

this process increases argument count fields, it often causes new combinators

to become ready to fire- one may visualize this as combinators arising out

of a morass of parentheses, thus the effect will be called raising.

$f potentially takes either of two paths of execution, which is decided by

testing its first argument for equality with Nltr. This suggests an optimiza-

tion (adopted from common Lisp), that NIL be of a distinct type, allowing

the branch choice to be decided as part of the firing condition analysis. An

implementation that allows the alternate paths of execution is to cause the

basic .$ff to metamorphose into either flf ,,u" or 9If ¡o¡"", with the resulting

microprog

8If r,u. 8IÍ alse

blot

skip

pass

blot

; forget <test>

; strip $Pro

; enable lthen)

; omit lelse)

; forget ltest)

;omit <then>

; strip $Pro

;enable lelse)

blot

blot

skip

pass

-and similarly for the predicates and list processing combinators

4.4.LL combinator Processor: A Loge Functional De-

scription

The preceding sections have clarified the design requirements sufficiently to

allow the development of a Loge HDL description of a simple combinator

processor implementation.
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Conventions Some common conventions are adopted in all the following

descriptions of modules which connect to the stream. Firstly, in all cases

stream modules will have a stream input port called Streaml, and a stream

output port called Stream0. Similarly, blocking information will be trans-

ferred through ports named StreamBl and Strea¡rBO. As an additional dis-

cipline, the blocking ports are accessed solely through the access predicate

getblock and update function setblock.

All stream modules will also have an input port Phase, which will be set

to successive stream phases as defined in section 4.4.9. This is the sole port

on any stream module which need be watched for events- all other inputs

are to be sampled at the start of the appropriate phase.

Some inconsistencies in syntax may appear- these are due to layout

editing and omissions in the interest of brevity. However, since a secondary

goal of this section is to show the conciseness of representation available in

Loge models it should be noted that at least in the case of the Combinator-

Processor model, the only excisions are large blocks of comments.

Combinator-Processor: Declaration

(defmodule combinator-Processor (
Streaml Strea¡n0 StreamBl StreamB0
Sidingl SidingO SidingBI SidingB0 Phase

&aux dataln dataOut blockage
proc-type proc-state Proc-argc Proc-raise)

Notes: Declare the stream and siding ports, plus variabies local to this

model

Combinator-Processor: Build

(uuit¿
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(Strea¡nI
(StreamO
(StreamBI
(StreanB0
(SidingI
(SidingO
(SidingBI
(SidingB0
(Phase

I-port
0-port
I-port
0-port
I-port
0-port
I-port
0-port
I-port

stream-width
stream-width
1

1

stream-width
stream-width
t
1

phase-width

Strea¡rl )
StreanO)
StreanBI)
StreamB0)
S idingl )
Siding0)
SidingBI)
SidingB0)
Phase) )

Notes: Build the stream and siding interface. Note the siding ports follow

similar conventions to the stream ports.

Combinator-Processor: Init

( init
(ignore-ports Streaml Strea¡n0 StreanBl StreamB0

Sidingl SidingO SidingBl SidingBO)
(watch-ports Phase)
(setq

proc-state wait-u
proc-type nil
proc-argc 1

proc-raise 0

dataln stream-null
data0ut strea¡n-null
blockage (cons nil niI) ) )

Notes: Establish watch/ignore strategy, and initialize all the following

internal variables-
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The current microinstruction

The combinator currently being fired (irrelevant

when waiting)

The current argument count (when waiting this

may be any non-zero value)

The amount that the next argument must be

raised

The most recently read token, used for type looka-

head

The token under consideration for output

Scratch variable to contain blocking inputs

Combinator-Processor: Run (Control)

proc-state

proc-type

Proc-argc

Proc-ra1se

dataïn

dataOut

blockage

(cond
((on Phase B-l{rite-Control)

; Il out of arguments, change state.
(lr ((= proc-argc O) (step-comuinator)))

( (on Phase P-Read-Control)
(setq blockage (cons (getblock Strea¡nBl)

(getblock sidingBl) ) ) )
( (on Phase P-l{rite-Control) (cond

((= proc-state wait-u)
(setq blockage (car blockage) )
(setblock StreamBO blockage)
(setblock SidingBO t))

((= proc-state pass-u)
(setq blockage (car blockage))
(setblock StreanBO blockage)
(setblock SidingB0 t))

((= proc-state blot-u)
(setq blockage nit)
(setblock StreamB0 nil)
(setblock SidingBO t))
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((= proc-state copy-u)
(setq blockage (or

(car blockage) (cdr blockage)))
(setblock Strea¡nB0 blockage)
(setblock SidingB0 t))

((= proc-state hold-u)
(setq blockage (cdr blockage))
(setblock Strea¡nBO blockage)
(setblock SidingB0 t))

( (= proc-state dump-u)
(setq blockage (car blockage) )
(setblock StreamB0 t)
(setblock SidingBO blockage))

( (= proc-state skip-u)
(setq blockage (car blockage) )
(setblock StreamBO blockage)
(setblock SidingBO t))))

Notes: When the processor is awakened, operation depends on the sys-

tem Phase. During the Read-Control phase a simple sampling of the blocking

inputs is made. Write-Control is more complex, with the writing of the up-

stream buffer and local siding buffer block control outputs depending on

the current microinstruction and the input blocking values. Note that with

this version of the combinator processor model, once the siding is full, the

assertion of its blocking output will prevent further operation of microin-

structions that write to the siding. The blockage variable will be true if

external conditions will prevent useful work this cycle.

As an optimization, the processor changes internal state in response to

exhaustion of an argument list during the buffer Write-Control phase- this

could be done at other times, however this phase is appropriate as the pro-

cessor is otherwise inactive at this point. The details of the state change are

handled by the function step-combinator.
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Combinator-Processor: Run (Data)

((on Phase P-Read-Data)
(if blockage

(setq dataOut stream-null)
;else
(cond

((= proc-state wait-u)
(setf data0ut dataln dataln lstreaml))

((= proc-state pass-u)
(setf dataOut dataln dataln lstrea¡nI))

((= proc-state blot-u)
(setf dataOut dataln dataln ! Streaml) )

( (= proc-state copy-u)
(setf dataOut dataln datafn I Strea¡nl) )

((= proc-state hold-u)
(setf dataOut dataln datafn lstreaml))

((= proc-state dump-u)
(setf dataOut I Sidingl) )

((= proc-state skip-u)
(setf data0ut dataln dataln lstreaml)))

(setq dataOut (examine-data dataOut))))
( (on Phase P-l{rite-Data)

(cond
((= proc-state wait-u) (setf

!StreamO dataOut lsidingO stream-null))
((= proc-state pass-u) (setf

lStream0 dataOut !SidingO stream-null))
((= proc-state blot-u) (setf

!Stream0 dataOut lsidingO stream-null))
((= proc-state copy-u) (setf

I StreamO dataOut I SidingO dataOut) )
( (= proc-state hold-u) (setf

lstreamO strea¡n-null !Siding0 dataOut))
((= proc-state dump-u) (setf

!Stream0 dataOut lsidingO stream-null))
((= proc-state skip-u) (setf

! StreamO stream-null ! SidingO stream-nu[) ) ) )
(t nil)))
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Notes: During the processor Read-Data phase, the appropriate port (if

any) for the current microinstruction is read into datalu while the previous

value of dataln is processed (in function examine-data) and transferred to

d,ataOut. The dump state is exceptional in taking input from the siding

rather than the stream. Then in Write-Data, dataOut is written to the the

appropriate port.

Combinator-Processor: examine-data

(defun examine-data (data)

; Run the processor on new data, return "outputt' aalue

(mu1tiple-value-bind (arg argt argc)
(unpack-stream-data data)
(if (not (= argt $nuI-t))

(cond
((= proc-state wait-u)

; Waiting for a readY combinator...
(if (and

(or (= $com-t argt) (= $sym-t argt))
(db-fireable-p arg argc (1ist dataln)))

; ...got one!
(setq data (load-combinator arg argc data

(stream-type-part ¿ataln) ) ) )

) ;else just Pass the data on

((= proc-state skip-u)
; Skip operates on one tolcen onlY
(setq data stream-null

proc-raise 0

proc-argc 0))
( (= proc-state blot-u)

; Blot alwaYs destroYs d'ata

(setq data stream-null
proc-raise 0

proc-argc (+ proc-argc argc -1)))
(t ; (standard behauiour)
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(setq data (pack-stream-data arg argt
(+ proc-raise argc) )

proc-raise 0

proc-argc (+ proc-argc argc -1))
))))

data)

Notes: Always provided the data is not null, the usual action of an active

processor is to return data with a count field increased by the current value

of proc-raise (which is then zeroed), and to continue the usual argument

counting operation. If however the processor is waiting it must test the data

to see if it is a combinator which is ready to fire- this case is handled by

the function load-combinator. Another variation is that when skipping

the data is nullified, and proc-argc is zeroed to force an immediate change

of state. Similarly in a blot instruction the data is nullified, no raising is

performed, but normal argument counting continues'

Combinator-Processor: Ioad-combinator

(d,efun load-combinator (arg argc data auxt)

; The processor is to f're combinator ARG

; Return the data to be Passed-
; usually null, or the result of a pred'icate.

; Set proc-type, proc-state, proc-argc and proc-raise

; [Jse type lookahead, in AUXT as required.
(setq proc-type arg)
(cond

((= proc-type $S) (setq
proc-state Pass-u Proc-argc 1

proc-raise (1- argc)
data stream-null))

((= proc-type $K) (setq
proc-state Pass-u Proc-argc 1

proc-raiss (- argc 2)
data stream-null) )
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((= proc-type $I) (setq
proc-state Pass-u Proc-argc 1

proc-raise (1- argc)
data strea¡n-nuII) )

((= proc-type $pro)
(setq ; Pass Spro

proc-state Pass-u Proc-argc 1 proc-raise 0))
( (= proc-type $cons)

(setq ; Pass Scons
proc-state Pass-u Proc-argc 2 proc-raise 0))

((= proc-type $not) (setq
proc-state blot-u Proc-argc 1 proc-raise 0

data (if (= auxt $nil-t) strea¡t-t stream-niI)))
((= proc-type $consp) (setq

proc-state blot-u Proc-argc 1 proc-raise 0

data (if (= auxt $cns-t) stream-t stream-nil)))
((= proc-type $symbolp) (setq

proc-state blot-u Proc-argc 1 proc-raise 0

data (if (= auxt $sy¡n-t) strea¡n-t stream-nil)))
((= proc-type $numberp) (setq

proc-state blot-u Proc-argc 1 proc-raise 0

data (if (= auxt $nu¡n-t) strea¡n-t strea¡n-nil)))
((= proc-type $car) (setq

proc-state skip-u Proc-argc 1 proc-raise 0

data stream-null) )
((= proc-type $cdr) (setq

proc-state skip-u Proc-argc t proc-raise 0

data strea¡n-nulI) )
((= proc-type $if)

(it (= auxt $nif-t)
(setq proc-type $nil

proc-state blot-u Proc-argc 2 proc-raise 0

data stream-nulI)
(setq

proc-state blot-u Proc-argc 1 proc-raise 0

data stream-nu1l) ) )
(t (setq proc-argc 1 proc-raise 0)))

data)

229
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Notes: This function initializes the processor for a firing of a particular

combinator. The data to output this cycle is returned- it is often null, ex-

cept in the case of predicate functions which may be immediately evaluated.

Unrecognized functions are simpiy ignored by failing to emerge from the wait

microinstruction.

Combinator-Processor: st ep-combinator

(defun combinator-done o
( setq

proc-state wait-u Proc-argc 1

proc-raise 0 proc-tYPe 0))

(ifndefun step-combinator o
; The processor has used up o,n argument- change state

(cond
((= proc-type $S) (cond

((= proc-state pass-u)
(setq proc-state hold-u proc-argc 1

proc-raise 1) )
( (= proc-state hotd-u)

(setq proc-state coPy-u proc-argc 1

proc-raise 0))
((= proc-state copy-u)

; one dump only- the siding has been raised
(setq proc-state dump-u proc-argc 1

proc-raise 0) )
((= proc-state dump-u)

(combinator-done) )
(t nir) ) )

((= proc-type $K) (cond
((= proc-state pass-u)

(setq proc-state blot-u proc-argc 1

proc-raise 0) )
((= proc-state blot-u)

(combinator-done) )
(t nil) ) )
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((= proc-type $I) (cond
( (= proc-state pass-u)

(combinator-done) )
(t nir) ) )

((= proc-type $pro) (cond
( (= proc-state pass-u)

(combinator-done) )
(t nil) ) )

((= proc-type $if)
; lif nil -+ $nil, but 9if t -' 9if, then 8t
(setq proc-type $t proc-state skip-u Proc-argc 1

proc-raise 0) )
((= proc-type $nil) (cond

((= proc-state blot-u)
(setq proc-state skip-u proc-argc 1

proc-raise 0) )
((= proc-state skip-u)

(setq proc-state Pass-u proc-argc 1

proc-raise 0))
( (= proc-state pass-u)

(conbinator-done) )
(t nir) ) )

((= proc-type $t) (cond
( (= proc-state skip-u)

(setq proc-state Pass-u proc-argc 1

proc-raise 0) )
((= proc-state pass-u)

(setq proc-state blot-u proc-argc 1

proc-raise 0) )
((= proc-state btot-u)

(combinator-done) )
(t nil) ) )

((member proc-tYPe
(t:.st $not $consp $symbolp $numberp) ) (cond

((= proc-state blot-u)
(combinator-done) )

(t nir)))
((= proc-type $cons) (cond

231
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((= proc-state pass-u)
(combinator-done) )

(t nir) ) )
((= proc-type $car) (cond

((= proc-state skip-u)
(setq proc-state Pass-u proc-argc 1

proc-raise 0) )
((= proc-state pass-u)

(setq proc-state blot-u proc-argc 1

proc-raise 0) )
((= proc-state blot-u)

(combinator-done) )
(t ni.r) ) )

((= proc-type $cdr) (cond
( (= proc-state skip-u)

(setq proc-state blot-u proc-argc 1

proc-raise 0))
((= proc-state blot-u)

(setq proc-state Pass-u proc-argc 1

proc-raise 0))
((= proc-state pass-u)

(combinator-done) )
(t nir) ) )

(t
(error "Step: Type -S not supported-7." proc-type))))

Notes: This function handles transitions between microinstructions de-

pending solely on the currently executing combinator type and current state

(a slight infelicity in the handling oI 8lf makes this possible). At each tran-

sition proc-argc is set to the number of arguments to be processed in this

state. proc-raise is also set, usually to zero'
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4.4.L2 combinator Processor: Flardware Partition-

itrg

Derivation of the Combinator-Processor model required a non-trivial amount

of thought, refinement and testing. However this effort yields benefits such

o Identifying errors, optimizations and generally troublesome areas'

o Building confidence in the practicality of the architecture.

¡ Clarification of the design.

o A starting point for further specification.

As an illustration of the last point, given the preceding functional descrip-

tion, it is possible to directly transcribe a hardware partitioning, using simple

heuristics such as dedicating a register to each processor local variable. After

a modicum of consideration, the structure of figure 4.23 is reached.

Registers s, T, c, R, I correspond directly to local variables- proc-state,

proc-type, proc-argc, proc-raise and dataln. Variable dataout is dis-

tributed over the 0* registers.

The block labelled Control contains the basic state machine. It is more

highly interconnected with other blocks of the processor than it is possible

to show clearly. The Fire? block contains the complicated expression for

combinator readiness and provides a qualified data path from register I to

register T.

Two arithmetic units are shown. The upper one is simply an adder which

adds the contents of R to the argument count field of a stream token' R may

need to be loaded with constant values {-2, -1,0, l}, and also to accumulate

the result of an addition (to allow arguments of 5 and K to be raised)'
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Streamln StreamOut

Null

Consts

Block Block

Block Sidingln Sidingout

Figure 4.23: Combinator Processor Design

The lower arithmetic unit is always used to accumulate argument counts'

Its precise function is add-with-decrement and accumulate. It has a zero

detection output Z.

Register 0i may accept data from I or direct from the data siding. 0o

usually accepts data from 0i and the raised argument count, however it may

also be set to certain stream constants, such as |NtlLL,, ? and N/tr (when

blotting or firing a predicate). Data from 0o is passed to independently

nullifiable registers 0u and 0d connected to the stream and siding outputs

respectively.
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4.4.L3 Other stream elements

The ALU processor is a straightforward stream element that accumulates

three tokens. If the leading token is a ready arithmetic or logical combinator

and the second and third tokens are numbers, the combinator is fired and

the result output to the st¡eam. Otherwise, the tokens are simply passed

through the processor. Note that this processor does not respect $Pro tokens,

thus protected arithmetic expressions may be unexpectedly executed' Its

functional description is similar (but shorter) than that of the combinator

processor and is omitted. Also omitted is the specification of the buffers-

these are multiple registers configured as a FIFO which ignore 9NULL, and

are thus relatively trivial.

4.4.t4 Stream GrouP

Given buffers, ALU and combinator processor definitions, the next level of

hierarchy is a stream of N processors' interspersed with buffers, and con-

cluding with an ALU processor. Omitted is an intermediate stage in which

modules Processor-Group and ALU-Group are defined- these consist of a

buffer preceding a processor, with a siding buffer for a combinator processor'

Buffer Buffer Buffer ALU

Processor Processor

Figure 4.24: Stream GrouP

(defmodule stream-group (n
Streaml Stream0 StreamBl StreamB0 Phase
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&aux nbl nst pgr agr xxx)
(buiId

(Streaml l-port stream-width Streanl)
(StreamO 0-port strea¡n-width Strea¡n0)
(StreanBl l-port 1 Strea¡rBl)
(StreamB0 O-port 1 Strea¡nBO)
(Phase l-port Phase-width Phase)
(nbl node '(,n 1))
(nst node '(,r , stream-width))
(pgr processor-group n (module-vector i

at0(
(nodes Streaml)
(nth O nst)
(nth O nb1)
(nodes Strea¡rBO)
(nodes Phase) )

overln(
(nth (1- i) nst)
(nth i nst)
(nth i nbl)
(nth (r- i) nbl)
(nodes Phase))))

(agr alu-group O (tist
(nth (1- n) nst)
(nodes StreamO)
(nodes StreamBl)
(nth (1- n) nbr)
(nodes Phase)))

)
(setf (module-mode (the-module)) :structural)
( st ructural-module-onlY )

o
)
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4.4.L5 Top Level

The top level tester module instantiates a Stream-Group of a specified size,

which is connected in a loop through a Stream-Circle module (figure 4'25)'

A Stream-Circle is a combination of stream source and sink- given an ini-

tial combinator expression at initialization, this is written to the input of

the Stream-Group, while any output is accumulated into a result expres-

sion. Once the Stream-Group has completely processed the input expression

(detected by using an "end of stream" meta-token), the input and output

expressions are compared- if they are identical then there is no further

possibility of reduction and the simulation is terminated, otherwise a new

stream cycle is begun, using the previous result as the new input to the

Stream-Group. The Stream-Circle also scans expressions for functions which

are ready to fire, replacing them with their combinator expression where

possible.

Buffer Buffer Buffer ALU

Circle

Figure 4.25: Stream-Group, with Stream-Circle

Processor Processor
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Stream-Group-Tester

Stream{ircle Stream-Group

Processor-
Groups

ALU-Group

Stream-
Buffers

ALU-Processor

Combinator-
Processor

Stream-
Buffer-
Registers

Figure 4.26: Complete Stream-Group-Tester module partitioning

4.4.t6 Simulations

Four processor simulation of (fact 2)

The test-strean-group function produces the same final result as the inter-

preter of section 4.4.7. Not surprisingly however, the intermediate stages are

somewhat different. To closely monitor an N processor simulation, stream

monitoring modules are connected to the output of each stream processor.

The gist of these Stream-Sink modules is simply to sample the stream dur-

ing the buffer's Read phase and output a triple of (<clock tick> <node index)

lstream ualue>)- this data can then be post-processed with a trivial filter,

producing the following trace-

Four Processor Stream-Group (fact 2)
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Input 1 2 3 4
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ALU

5:3
S:2
S:2
K:T
8If :0
E:2
,$S:o
K:L
fir:o
K:I
SProzl
f 1:o
E:2
K:T
$Pro:0
E:2
$x:0
S:2
K:L
FACT:O
E:2
,$-:0
K:T
fil:o
ff2:o

5:4
S:2
K:l
tlf :0
S:2
$(:0
K:T
f 1:o
K:l
$Pro:l
f 1:o

ff2:o
5:3
K:T
SPro;0
E:2
S+:0
S:2
K:I
FACT:O
S:2
.9-:0
K:T
ffr:o
ff2:o

$// :o

S 2
$<:0
K:l
ffl:o

K:5
8If :0

5:5
K:1

K:3
SPro:O

ff220
.5:3
.$<:0
K:L
fil:r
fi2:o

SPro:l
f 1:o

8If :3

$<:2

fi2:o
K:2
f 1:o

fi2:o

ïIf :3

$1:2

ff2:o
K:2
SPro;I
f 1:o

ff2:o

ff2:o
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K:2
ffl:o
ff2:o

SProzl
S1:o
SProzl

fr2:o
5:3
.$*:0
E:2
K:l

S:2
.$-:0
K:I
frr:o
ff2:o

$Pro:L

$*:2

$Pro:l
SL:o
$Pro:I

8*;2
T:0FAC

8*:2

fiZ:o
.S:3
K:L
FACT:O
S:2
.$-:0
K:I
ffr:o
ff2:o

fi2:o
5:3
K:T
FACT:O
S:2
$-:0
K:L
ffr:o
fi2:o

fi2:o
5:3
K:L
FACT:O
S:2
S-:0
Kzl
f 1:o

fi2:o

$f :3

8<:2
fi2:o
K:2
f 1:o

{2:o
SPro:l
ffL:o
SPro;I
8*;2
fi220
5:3

tlf :3

81:2
fi2:o

fir:o

8lf :3
83:2
fi2:o $ff:3

8<:2
ff2:oSPro:L

fiL:o
SPro:l
8*:2

fir:o

SPro:I
f 1:o

$IÍ23
$1:2
ff220f 1:o

îIf :3
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K:7
FACT:O
S:2
S-:0
K:l
ffL:o
fi2:o

ff2:o
,S:3

K:l
FACT:O
S:2
$-:0
K:I
ff1:o
fi2:o

SPro:L
8*:2
ff2:o
5:3
K:T

S:2
$-:0
K:1
ffr:o
ff2:o

SPro:I
ffL:o
SPro:l
8*:2
fi2:o
5:3
K:l
FACT:O
S:2
$-:0
K:l
f 1:o

ff2:o

ffl:o $1:2
{2:o

ffr:o

FACT:O

SPro:l
fir:o
SPro:I
8*:2
fi2:o
.S:3
K:1
FACT:O
S:2
.$-:0
K:l
f 1:o

f;2:o

SPro:L
ffl:o
SPro:l
$'¡:2
fi2:o
5:3
K:I
FACT:O
S:2
.$-:0
K:l
ffl:o
fi2:o

8If :3

$1:2
fiZ:o
ffl:o
SPro:1
f 1:o
SPro:I
8*:2
ff2:o
5:3
K:l
FACT:O
S:2
.$-:0
K:T
ffL:o
ff2:o

8If :3

8<:2
ff2:o
ffro
8Prol.
f 1:o
SPro:I
8*:2
ff2:o
5:3
K:T
FACT:O
S:2
S-:0
K:1
f 1:o

frZ:o

SPro:I
f 1:o
SPro:I
8*:2
fi2:o
5:3
K:L
FACT:O
S:2
.$-:0
K:l
S1:o
ff2:o

8If :3
8<:2
ft2:o
S1:o
SPro:I
f 1:o
SPro:I
8*:2
fi2:o

8If z3

ff<:2
fi2:o
f 1:o
SPro:L
frr:o
SPro:I
8*:2
fr2:o
5:3
K:l
FACT:O
S:2
$-:0
K:L
f 1:o

$If :3
NIL:0

8If :3
$1:2
ff2:o
fiL:o

5:3
K:I
FACT:O
S:2
$-:0
K:L
fir:o
ffZ:o

SPro:I
S1:o
SPro:l
8*;2
ff2:o
5:3
K:l
FACT:O
S:2



242

ff2:o

8*:2
fr2:o

8*:2
FACT:1 fi2:0

FACT:1

fi-:2

ff2:o

f 1:o

8-:2

ff220

ff1:o
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$-:0
Kzl
S1:o
ff2:o

8If :3

NIL:0
$Pro:l
S1:o
$Pro:L
8*;2
ft2:o
5:3
K:I
FACT:O
E:2
S-:0
,C:1

f 1:o

ff2:o

8+:2

ff2:o
5:3
K:l
FACT:O
E:2
,$-:0
Kzl
S1:o
ff2:o

8*:2
fi2:o

K:3
FACT:O

ff2:o
5:3
$-:0
K:l
f;r:o
ff2:o

$*:2
ffZ:o

FACT:1

8-,2

fi2:o
K:2
f 1:o

$2:o

$*:2
fi2:o
FACT:1
8-:2

8*:2
ft2:o
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ff220
f 1:o

FACT:1
8-:2
fi220
f 1:o

8*:2
ff2:o

Sz4
E:2
K:L
8If :0
S:2
$<:0
K:L
ftr:o
K:T
SPro:I
fir:o

8*:2
ff2:o
FACT:1
8-:2
ft2:o
frr:o

8*22

ff2:o
FACT:1
8-:2
fi2:o
f 1:o

8*22

fr2:o
FACT:1
8-:2
fi2:o
Sl:o

$*:2
fi220
FACT:1
f 1:o

8*:2
ff2:o
5:3
S:2
S:2
K:L
8If :0
E:2
$(:0
K:l
fiL:o
K:l
SPro:L

f 1:o
S:2
K:I
SPro:O
E:2
$*:0
E:2
K:T
FACT
S:2
,$-:0
K:L
f 1:o

f 1:o

8*:2
ff2:o

ò:D
K:I
sf :o

S:2
$(:0
K:l
f 1:o

8*:2
fi2:o

K:5
,$f :o

8*:2
ff220

8Il:3

8*:2
f;2:o

8Il:3

0

f 1:o
5:3
K:T f 1:o
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$<:2

SPro:O
E:2
S*:0
S:2
K:L
FACT:O
E:2
$-:0
K:l
f 1:o

#L:o

K:3
SPro:0

fiLz0
5:3
$<:0
K:1
fil:o
S1:o

SProzl
f 1:o

SPro:I

8*:2

$1:2

8*:2

K:2
SProzl
$L:o
S1:o

f 1:o
5:3
.$*:0
E:2
,C:l
FACT:O
Ez2
.$-:0
K:L
S1:o
f 1:o

fiL:o
K:2
ff1:o
f 1:o

SPro:L
f 1:o
SPro:l

fir:o
Kz2
S1:o
fil:o

SPro:l
ffr:o
SPro:l

8*:2

f 1:o
5:3
K:l
FACT:O
S:2
$-:0
K:T
ffL:o
f 1:o

f 1:o
5:3
K:l
FACT:O
E:2
$-:0
K:L
f 1:o

ff1:o

K:l
CT:0

#r,
,S:3

FA
Sz2
$-:0

IK
#
#

01

1:0

0
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$*:2
ff2:o
8Il:3
8<:2
fir:o
K:2
f 1:o

ffr:o
SPro:7

f 1:o
SPro:I
8*:2
ffl:o
5:3
K:T
FACT:O
S:2
.$-:0

$*:2
f;2:o
8If :3
8<:2
fil:o
ff1:o
SPro:I
fil:o
SPro:L
8*:2

8*:2
fr2:o
9If :3

$1:2
ff1:o

SPro:l
ffL:o
$Pro:I
8*:2
ffr:o

0 ,S:3
K:l
FACT
S:2
$-:0
K:1
f 1:o

f 1:o

8*:2
fi2:o
ïIf :3

8<:2
fir:o

f 1:o

SPro:I
f 1:o

SPro:I
$+:2

f 1:o
0 S:3

K:T
FACT:O
3:2
,$-:0
K:l
ffr:o
ffL:o

$*:2
ff2:o
8If :3

81:2
fir:o

#1:o

SPro:I
ffl:o
SPro:l

$*:2
fi2:o
.$1/ :3

81:2
f 1:ofir:o

SPro:1
ffL:o
SPro:L
8*:2
frr:o
5:3
K:I
FACT:
S:2
.9-:0
K:T
fit:o
fft:o

ffr:o
8*:2
fi2:o
$f:3
8<:2
ffl:o

f 1:o

K:T
ffr:o
ffl:o

8*:2
f 1:o
S:3
K:T
FACT:O
S:2
$-:0
K:L
fil:o
f;r:o

SPro:I
Sr:o
SPro:I
8*:2
frL:o
5:3
K:l
FACT:O
S:2
.$-:0
K:l

1:0
1:0

#
#

8+:2

fi2:o
9If :3

$1:2
ffl':o
f 1:o
SPro:L

f 1:o

8*:2
ff2:o
.$ff:3
$1:2
ffL:o
ffl:o

8+:2

fi2:o
8If :3

$1:2
8*:2
ff2:o
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fil:o
5:3
KzL
FACT:O
S:2
$-:0
K:L
f 1:o

ffL:o

$Pro:L
8*:2
filo
.9:3
K:I
FACT:O
S:2
$-:0
K:I
frl:o
fil:o

$Pro:I
f 1:o
SPro:l
$*:2
f 1:o
5:3
K:T
FACT:O
S:2

f 1:o

$L:o
SPro:I
f 1:o
SPro:L
8*:2
ffl:o
5:3
K:T
FACT:O
E:2
$-:0
K:l
f 1:o

f 1:o

8If :3
81:2
f 1:o

firz0
SPro:L
SL:o
SPro:l
8*22

S1:o
5:3
Kzl
FACT:O
E:2
.$-:0
K:I
f 1:o

ffl:o
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$*:2
ff2:o
ïIf :3
1:0

$-:0
K:l
f 1:o

fir:o

SProzl
ffIz0
SPro:l
8*:2
fir:o
5:3
K:T
FACT:O
S:2
,$-:0
K l
f 1:o

ff1:o

8+:2

fiZ:o
8If :3
T:0
SPro:L

f;L:o
SPro:l
8*:2
ftr:o
5:3
K:l
FACT:O
S:2
$-:0
K:7
fir:o
frr:o

$*:2
ff2:o

f;\,:0

8*:2
f;2:o

f 1:o

$*:2
fi2:o

frl:o

8*:2
ff2:o

ffL:o

$*:2
S2:o

ffl:o
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$*:2
ff2:o
ffL:o

fr2:o

8*:2
fi2:o
fiL:o

S2:o

8*:2
ff220
fflo

fi2:o

8*:2
f;2:o
f 1:o

ff2:o

8*:2
ff2:o
f 1:o

ff2:o

fr2:o

ff2:o

Input 1 2 3 4 ALU

It can now be seen that there is some failure to fire otherwise ready combt-

nators due to the injection of SNULL between arguments, causing argument

type checks to fail. This effect also interacts adversely with the provision of

only a single ALU to cause whole stream cycles where only one combinator

is fired (in the ALU), suggesting that the processors be redesigned to wait

for all typed arguments to be non-null. Exposure of this type of previously

overlooked problem is the fundamental reason for functional simulation.
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Relative performance with compiled models

It is undeniable that the overhead imposed on a simulator by an embed-

ded Lisp interpreter is considerable. Tabl e 4.I4 shows the performance of a

stream-Group ar¡ successive stages of it are rewritten in cf*.

3788

2060

1765

691

633

531

None

Stream-N-Buffer

and Stream-Sink

and Combinator-Processor

and AlU-Processor

and 90% of Stream-Circle

r(')C++ Modules

Table 4.14: Functional mode lisp v C** performance

In all cases the system unde¡ test was an eight processor Stream-Group,

simulating (f act 8). Turnaround includes the build time in this instance'

Miscellaneous quasi-Lisp simulations

Table 4.15 shows some performance parameters extracted from simulations

of an eight processor stream-Group, using various simple source quasi-Lisp

inputs. All parameters are collected by the stream-circle module, which is

ideally placed to monitor the system performance'

The parameters are-

cyc: The number of stream cycles needed to fully reduce the input to the

correct ans\ryer.

clo: The number of stream clock ticks from start to finish
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15

16

10

2t

8

17

10

8

1783

1820

1644

6716

617

L4t4

386

406

2.889

2.844

3.151

3.184

2.3t6

2.r43

1.085

2.811

(reduce - '(3 1) 0)

(sun '(t t))
(map nurnberp '(t 1 (o 1)))
(me¡nber 1 '(t 1(0 1)))
(append '(1) 'Q))
(reverse ' (2 1) )

(fact 2)

(gcd 2 4)

Cy" Clo ParaInput Lisp

Table 4.15: Quasi-Lisp performance

Para: The average parallelism throughout the simulation- this is measured

by accumulating the number of processors doing useful work (that is,

not in the Wait microinstruction, or handling SPro) each clock tick,

and dividing the total by the number of ticks.

Interestingly, (f act 2) appears to be atypically sequential. These results

add weight to the conclusions of section 4.4.16 that the performance of the

factorial function could be significantly improved.

For completeness, here are the definitions of the functions used above.

Note that NULL compiles to flNot, and that EQL is a macro that combines

8Not,, $:, and SEg.

(defun append (x y)
; append two lists
(ir (nuII x) y

(cons (car x) (append (cdr x) y))))

(defun member (x 1)
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; is t a member of l?
(it (nuII 1) nil

(if (eql x (car 1))
(nember x (cdr 1))

(defun reverse (x)
; reuerse a list
(ir (null x) nil

(append (reverse (cdr x)) (cons (car x) nil))))

(defun map (t x)
; rnap the function unarA f oaer the list a
(it (null x) nil

(cons (app1y f (car x)) (maP f (cdr x)))))

(defun reduce (f x i)
; apply the binary function f to the list x such thøt

; the result is: (f ,1 (f 12 ... (f m t)))
(it (nuII x) i

(apply f (car x) (reduce f (cdr x) i))))

(defun su¡n (x)
; sunn the elernents ol list x
(reduce + x 0))

(defun gcd (a b)
(it (= 0 b) a (gcd b (ren a b))))

(defun fact (x)
(if (<= x 1) 1 (* x (fact (- x t)))))

CHAPTER 4. RESULTS

t
)))



Chapter 5

Conclustons

There are many difficult problems in VLSI systems simulation. No single

system can be expected to solve all equally effectively. The simulator de-

scribed in this thesis is in many ways the dual of SPICE in that it abandons

the focused rigour of precise analog device modelling in favour of a wider

range of higher abstractions.

In the battle with complexity, abstraction is the last weapon left after

all other techniques are overwhelmed. Provision of a variation in level of

abstraction at arbitrary points in the module hierarchy is the characteris-

tic feature of mixed-mode simulators. The improved turnaround available

from the most aggressive abstractions is considerable, but this benefit car-

ries with it a correspondingly heavy burden of responsibility for modelling

accuracy. Full verification of the equivalence of pairs of models is as yet an

open problem.

The simulator, Loge, has been developed without reference to any spe-

cific methodological policy. Flexibility is a key attribute, with the intention

of providing a rich, non-dictatorial modelling capability. This goal leads

to the choice of interpreted Lisp as the basis of the functional mode hard-

a

25r
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ware description language, and to the provision for highly generic modules-

generic not only in simple numeric parameters but also in shape, composition

and behaviour of submodules, as illustrated by example throughout the later

chapters.

While functional models are highly flexible in construction, within every

module instance tree all connections are strictly required to follow port typ-

ing rules. Similarly, while the Lisp level definitions of a system may roam

throughout memory, actual instances are strictly placed in a compact se-

quential block. These issues illustrate how the demands of high performance

simulation oppose those of modelling freedom. Nevertheless, Loge succeeds

in providing a firm framework for lower level modes simultaneously with a

functional mode with which all manner of synchronous, asynchronous or self-

timed systems may be modelled. Additionally, the ability to insert arbitrary

instrumentation into a functional model should not be underrated.

Pure digital simulation is easily corrupted by analog phenomena, which

can only be absolutely avoided by restricting the range of systems capable of

being simulated. Loge operates internally on analog quantities, while turning

a primarily digital face to the world. Continuous calculation at regular time

intervals is avoided in favour of purely event-driven algorithms.

Given internal analog modelling, hybrid device models are a natural route

to swift simulation turnaround without too great a loss of accuracy. While

sometimes prone to unnecessary oscillation, explicit, sampled and evaluated

device submodes each have useful roles to play in simulation of the wide

variety of design idioms and technologies encountered at the device-level.

Particularly interesting is the good turnaround achievable with sampled de-

vices in comparison with the more aggressively simplified explicit devices-

it seems that the six region explicit devices are sometimes represent too great

an approximation. Another key feature of the hybrid modes is the ability
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to control the turnaround/accuracy tradeofi- responsive systems are often

preferred by experienced users.

Perhaps the most pleasing feature of Loge is that the interfacing between

all modes is clean, efficient, transparent to the user, and free from a,rbitrary

restrictions. This goal was the first design criterion chosen, and is therefore

a basic test of the success of Loge.
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