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Abstract

This thesis addresses the structure from motion (SFM) problem in computer vision.
We study recursive algorithms for eflicient shape and motion recovery at each frame of
a sequence of images. In real-time applications where image data is extensive, efficiency
of an SFM method becomes very important for estimating shape and motion at each
frame. The proposed recursive method in this thesis improves the efficiency, both
in computational cost and in storage, of a class of innovative SFM methods — the

factorization methods (FMs).

Our work in this thesis may be viewed as an extension of the original [71], the se-
quential [55] and the paraperspective [60] factorization methods. A critical aspect of
these factorization approaches is the estimation of the shape space, and their computa-
tional complexity is dominated by their shape space computing algorithms. If P object
feature points are tracked through a sequence of F' frames, the shape space updating
complexity at each frame is O(P) in the recursive least-squares (RLS) method proposed
in this thesis, while that in the sequential FM is O(P?). In contrast, the batch-mode
original and paraperspective FMs, which are not intended to be used frame by frame,
compute the shape space at a cost of O(F P?) after all F' frames are tracked. Further,
the RLS shape space updating algorithm is an adaptive data driven algorithm. Hence
it does not require storage of a large measurement or covariance matrix, while other

FMs usually do.

The proposed recursive method uses the general affine camera model, while the orig-
inal and the sequential FMs assumed an orthographic model. Like the paraperspective
FM, we give Euclidean shape and motion recovery from the estimated shape space
under one of the three specific affine camera models — orthography, weak perspective

and paraperspective, in order to apply the recursive method to a wider camera motion
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range. .

We also extend the recursive method to accommodate the situation in which some
feature points are occluded or leave the field of view during the sequence. The extended
recursive method still retains the low computational complexity of O(P) and is simpler

than the occlusion solutions proposed in other FMs.

Experiments with real and synthetic image sequences confirm the recursive method’s
low computational complexity and good performance and indicate that it is well suited

to real-time applications.
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