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Abstract

This thesis addresses the structure from motion (SFM) problem in computer vision'

We study recursive algorithms for efficient shape and motion recovery at each frame of

a sequence of images. In real-time applications where image data is extensive, efficiency

of an SFM method becomes very important for estimating shape and motion at each

frame. The proposed recursive method in this thesis improves the efficiency, both

in computational cost and in storage, of a class of innovative SFM methods - the

factori,zation methods (FMs).

Our work in this thesis may be viewed as an extension of the original [71], the se-

quential [55] and the paraperspective [60] factorization methods. A critical aspect of

these factorization approaches is the estimation of the shape spacq and their computa-

tional complexity is dominated by their shape space computing algorithms. If P object

feature points are tracked through a sequence of .F frames, the shape space updating

complexity at each frame is O(P) in the recursive least-squares (RLS) method proposed

in this thesis, while that in the sequential FM is O(P2). In contrast, the batch-mode

original and paraperspective FMs, which are not intended to be used frame by frame,

compute the shape space at a cost of O(FP2) after all .F frames are tracked. F\rrther,

the RLS shape space updating algorithm is an adaptive data driven algorithm. Hence

it does not require storage of a large measurement or covariance matrix, while other

FMs usually do.

The proposed recursive method uses the general affine camera model, while the orig-

inal and the sequential FMs assumed an orthographic model. Like the paraperspective

FM, we give Euclidean shape and motion recovery from the estimated shape space

under one of the three specific affi.ne camera models - orthographY, weak perspective

and paraperspective, in order to apply the recursive method to a wider camera motion
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range

We also extend the recursive method to accommodate the situation in which some

feature points are occluded or leave the field of view during the sequence. The extended

recursive method still retains the low computational complexity of O(P) and is simpler

than the occlusion solutions proposed in other FMs.

Experiments with real and synthetic image sequences confirm the recursive method's

low computational complexity and good performance and indicate that it is well suited

to real-time applications.
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Chapter 1

Introduction

'lhe structure from motion (SFM) problem - recovering object shape and object or

camera motion from a given sequence of images - is one of the main problems in

computer vision. It has wide applicability in many areas such as robot navigation,

non-tactile parts inspection, manipulation, and CAD. In the last decade, a class of

innovative methods called factorization methods (FMs) has been proposed and has

attracted much attention in the vision community. The FMs have advantages over

the traditional nonlinear methods by their simplicity, accuracy and robustness. This

thesis studies some novel recursive FMs based on several previously presented FMs.

Our new methods can estimate 3D shape and motion at each frame efficiently by using

the recursive least squares (RLS) technique. This study is therefore useful for real-time

applications.

1



CHAPTER 1. INTRODUCTION

1.1 Structure from Motion

Given a sequence of images taken by a moving camera viewing a three-dimensional (3D)

scene, the question arises: can 'ñ/e extract simultaneously the 3D shape of the scene

and the relative motion between the camera and the scene? This question involves

two fundamental problems in computer vision. The first is called correspondence,

which decides how points (or other features) "fl.ow" between consecutive images in

the sequence. The secon d is structure-from-motion, which determines the 3D shape

and motion from matched points (or other features) in the images. Therefore, solving

the SFM problem assumes the correspondence problem has first been solved; that is,

the feature points (or other features) have already been tracked throughout the image

sequence

The SFM problem has been extensively studied in the last two decades. Approaches

to this problem differ in the numbers of images being processed, the camera projection

models they use, and the assumptions they make about the objects (or the scene) and

the motion. They may require different types of tracked features as input primitives,

and produce different forms of output structure and motion.

Early research on this subject 146,75) focused on computing structure and motion

from a small set of points matched in two frames. Longuet-Higgins [46] presented a

closed-form solution to the problem using eight corresponding points in two frames.

Tsai and Huang [75] present similar work, but in addition consider the uniqueness issues

in the determination of the motion parameters. Others have extended the essential

parameter approach to lines [19, 64], performed more detailed error analyses [81, 83, 49],

and developed non-linear least squares algorithms for the two-frame problem [82].

2

Recent research focuses on estimating shape and motion from longer image sequences



CHAPTER 1. INTRODUCTION

l4I, L7, 16, 71, 14, 60, 55, 44, 18] by taking advantage of the redundancy of measure-

ments to obtain better accuracy. Among these long-frame approaches, some are based

on batch mode and process the whole sequence only after all the frames are available

ll7,4I,T!,14,60], while others use incremental methods which process a new frame

on-line as it becomes available 129,51, 16, 6, 55, 44,66,31, 48].

Although there are some SFM methods that address the most general problems in

real applications, many existing approaches are based on various assumptions about

the scene, the motion, and the imaging model. For example, lots of the existing work

assumes that the scene contains only a single rigid objec|l74,75,7I,55, 60,44], while

others process multiple independently moving objects in the scene 179,5,14, 15]' As

to themotion assumptions, there are assumptions of pure translation [51,29], smooth

motion [6], constant motion [17], and one of the motion components being known [70],

etc

SFM approaches also differ in the camera projection model they assume and the

form of output (recovered structure and motion) they produce. In Ullman's original

proof of existence of a solution 177, 78] for the structure from motion problem, the

orthographic camera model was used under a world coordinate system. However, after

that, most computer vision researchers prefer using the perspective camera model and

a camera-centered coordinate system 175,4,64,29,51, 6]. At the same time, although

some previous work employed a calibrated camera to recover 3D Euclidean structure,

in more recent research, emphasis has been on the use of uncalibrated cameras [25, 8] to

compute projective structure (Euclidean structure up to a projective transformation)

under a perspective camera model [20, 68, 26,73,3, 30, 76,32,48], or an affine structure

(Euclidean structure up to an affine transformation) [35, 62, 36,63] under an affine

camera model (a linear approximation to perspective projection)' In quite a lot of

applications, projective structure or affine structure provides enough information. In

3



CHAPTER 1. INTRODUCTION

the case that Euclidean structure and motion recovery is required, projective structure

or affine structure can be transformed to Euclidean structure when suitable constraints

on the camera, the motion or the scene are given [3, 76, 86].

On the other hand, most SFM approaches are feature based. They assume that there

exists a set of features on the objects that are trackable throughout the image sequence

and the correspondence problem of extracting features and establishing the required

correspondences between images have been accomplished beforehand. This assumption

enables the SFM methods to focus on geometric considerations and ignore all of the

image processing tasks. Object shape is then represented by the 3D locations of its

features with respect to a reference system. Object (or camera) motion is represented

by the rotation and translation of the object (or camera) with respect to this reference

system. The image sequence means simply the coordinates of the projected features in

the images. Essentially, three types of features have been used in solving SFM problem,

namely points, straight lines and line segrnents. Points are the most frequently used

features in the SFM methods [46, 75,20,71,60,44]. Lines and line segments are also

used in some work [64, 68,26,69,62] because they are easier to track than points and

provide valuable constraints for shape recovery. However, the reconstruction process

using lines is more sensitive to noise and being trapped by local minima than that using

point features. As a compromise, some algorithms use both point and line features

llg, 27,56, 59].

L.2 Factorization Methods and our Motivation

Among the numerous approaches to SFM over the last two decades, the factorization

method presented by Tomasi and Kanade [70, 71] is both elegant and useful because

of its simplicity, accuracy and robustness. In the method, under the assumption of

4



CHAPTER 1. INTRODUCTION

an orthographic projection model and using an object centered world coordinate sys-

tem, the SFM problem is formulated as a simple bilinear relationship between the

image measurements and the motion, shape parameters. The powerful singular value

decomposition (SVD) technique is then used to compute shape and motion recovery

after all the frames are tracked. Due to the numerical stability of SVD and the even

treatment of every frame and every point in the algorithm, the Tomasi-Kanade factor-

ization method is normally more stable than other nonlinear SFM algorithms. At the

same time, it permits a large number of points and frames to be processed so that the

redundancy of the measurements in the image sequence can reduce the effects of noise

a.nd provide more accurate and robust results.

The emergence of the Tomasi-Kanade original factorization method has inspired ex-

tension and generalization in several research directions. For example, the projection

model was extended from orthography to paraperspective [00,0t], and then to per-

spective 173,671; the features used were extended from points to lines 162,63,36, 59],

line segments and planes [56]; the number of objects was generalized from one to mul-

tiple independently moving objects [14, 15]; and the original batch-mode method was

extended to sequential and recursive algorithms 155,44,3L,32,66, 48].

The key feature of the class of FMs is their bilinear formulation which relates the

image measurements with the shape and motion parameters [37]. This is captured

schematically as:

image measurements ê motion x shape

The images are assumed to be due to two factors: the relative moti,on between the

camera and the object, and the object shape. They are composed in a bilinear form

such that if either motion or shape is constant, then the image measurements will be a

linear function of the other. The motion parameters refer to the extrinsic parameters

5



CHAPTER 1. INTRODUCTION

given by the relative orientation and translation between the object and the camera,

as well as the intrinsic parameters that are interval to the camera. These parameters

may vary frame by frame in the sequence? but are the same for all features in a single

frame. Object shape is represented by the 3D locations of the features on the object

(usually on the object surface) relative to each other. Under an object-centered world

coordinate system, which is used in the FMs, the shape of a rigid object (assumed in

the FMs) is constant over the sequence.

The general affine projection (GAP), a linear approximation to perspective projec-

tion, can be used to model the camera projection when the object size is small compared

to its depth from the camera. FMs that use the GAP model generally consist of two

steps. The first step computes affine shape and motion. From the subspace viewpoint,

this step can be viewed as the estimation of a subspace associated with object shape,

namely shape space (see Chapter 2). It is performed via a number of techniques in-

cluding SVD. After shape space is estimated, affine shape and motion can be derived

directly from it. The second step recovers Euclidean shape and motion from the results

of the first step. It is implemented by using an appropriate affine model (orthography,

paraperspective or weak perspective) to determine the affine transformation matrix.

Although the original FM is useful and powerful, it is not applicable to real-time

applications for the following reasons. First, it is a batch-type method and so shape

and motion can only be recovered after all the frames in a sequence are given. Second,

the key SVD procedure in the method requires O(FP2) operations to compute the

shape space from P feature points in f' frames. It is very expensive when P and F

are large. Third, it needs to store a 2F x P measurement matrix (its size therefore

increasing with the number of frames) prior to computing structure from motion. To

overcome these drawbacks, Morita and Kanade developed a sequential FM [55] that

enables shape and motion to be estimated at each frame. Under their scheme, shape

6



CHAPTER 1. INTRODUCTION

space is updated with each incoming frame at a cost of O(P2) via a power iteration

technique. A P x P covariance matrix is updated and stored as part of the processing of

each frame. However, in the applications where P (the number of features) is large, the

shape space updating cost of the sequential method is still very high and the storage of

a large covariance matrix is also required. Therefore, investigating some more efficient

(both in computation and in storage) shape space updating algorithms so as to improve

the efficiency and applicability of the factorization methods, is of practical importance

in real-time applications. This is the main motivation of this thesis'

Estimating shape space at each frame is actually a subspace tracking task' There

are two classes of techniques for deriving subspace tracking algorithms. The first class

consists of using standard algorithms of numerical analysis to compute an exact or

approximate subspace decomposition of a time-varying sample covariance matrix or a

corresponding data matrix when a new column or row is added. The second class is

based on formulation of a cost function for optimization in terms of a weight matrix.

The weight matrix yields useful subspace information at its optimum. The traditional

SVD of a data matrix (used by the batch-mode FMs) and EVD or power method of a

covariance matrix (used by the sequential FM) belong to the first class. Since the first

class algorithms are normally computationally expensive to update the subspace when

new data arrives, and they require storage of a large data or covariance matrix, the

SVD or EVD is not well suited for real-time subspace tracking. The second class of

techniques usually involves two steps for deriving subspace tracking algorithms. The

first step is to formulate the determination of the desired subspace as the optimization

of a certain cost function in terms of a weight matrix. Various cost functions have been

proposed, including the mean-square errors (MSE) minimization [85], the constrained

output variance maximization [40], and the novel information criterion maximization

[53]. \Mhile the second step is to derive data-driven recursive algorithms, where the

7



CHAPTER 1. INTRODUCTION

optimization is carried out adaptively via different stochastic search techniques, such as

the conjugate gradient method l22l,fhe Gauss-Newton method [50], and the recursive

least-squares (RLS) method [28].

On the other hand, the assumption of the orthographic camera model in the original

and the sequential FMs limits the range of motions they can accommodate. Orthogra-

phy can only be used to model image projection when the object size and the camera

translation is small compared to the object's depth from the camera. If the cam-

era motion involves significant translation, then using orthography-based methods will

cause deformed shape and motion recovery because several perspective effects cannot

be ignored. Instead, other forms of affine camera can be used in such situations to

closely approximate perspective projection. For example, weak perspective projection,

also called scaled orthography, can be used instead of orthography to account for the

perspective scaling effect caused by the depth changes when the camera has large trans-

lation along depth direction between images. Also paraperspective projection, which

models the perspective position effect as well as the scaling effect, can replace orthog-

raphy when the camera motion involves significant translation across the scene. Since

the bilinear form of the factorization methods holds under the GAP model (see Chap-

ter 3), extension of the orthography-based factorization methods to weak perspective

and paraperspective model is possible. Although Poelman and Kanade have presented

a FM under these two models [60], it stilt uses batch-type SVD to estimate the shape

space like the original method. Thus it is essentially a batch method and not applicable

to real-time applications.

In this thesis, \rye overcome some drawbacks of the previously described FMs and

propose a new efficient recursive FM under the GAP model. In this new method, the

shape space estimation is formulated as the minimization of an MSE cost function.

We show that this cost function provides the desired affine shape space at its global

8
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minimum. By using the standard RLS technique, an RLS algorithm is developed for

the MSE minimization that uses as input the coordinate vectors of feature points at

each image frame. Shape space is computed with complexity O(P) per frame. Since

it is a data-driven algorithm, the method proceeds without computing and storing

any large matrices. After the shape space is estimated, Euclidean shape and motion

can be recovered from it under one of the three forms of affine camera models -
orthography, weak perspective, and paraperspective - according to the motion pattern

of the carnera.

Also the occlusion issue will be addressed. Some feature points cannot be tracked

in some frames of the sequence because they are occluded or leave the field of view.

The RLS shape space updating algorithm is extended to accommodate the occlusion

case. We show that the computational cost for shape space updating in the extended

algorithm is still O(P).

The performance of the new recursive method and a comparison with other FMs are

also covered in the thesis. We show that the recursive method attains the same accuracy

as those FMs, while the computation time is far less. Experiments with synthetic

data and real image sequences confirm the recursive method's accuracy and efficiency'

Euclidean reconstruction results oforthography, weak perspective, and paraperspective

camera models are compared for a wide range of camera/object motions'

1.3 Outline of the Thesis

Chapter 2 serves to review several related factorization methods, including the original

TomaslKanade method, the sequential Morita-Kanade method, and the paraperspec-

tive Poelman-Kanade method. The bilinear formulation in these methods is reviewed

I



CHAPTER 1. INTRODUCTION 10

along with the techniques they used to estimate the shape space, whose definition is

given in the chapter. The first step of these FMs (estimation of the affine structure)

is characterized as shape space tracking. The second step (Euclidean reconstruction

from the affine structure under the camera models assumed by individual FM) is then

discussed in detail.

Chapter 3 proposes an MSE minimization formulation for the shape space tracking

under the GAP model. The GAP model and the bilinear formulation is first introduced.

Then an MSE cost function is formulated for tracking the shape space. Finally the

properties of the MSE cost function are studied.

Chapter 4 first reviews the standard RLS technique and the matrix inversion lemma,

then derives a recursive algorithm for the MSE minimization, i.e., shape spâce estima-

tion, by using the RLS technique. Initial conditions of the RLS shape space tracking

algorithm are discussed. It is shown that the computational complexity of updating

shape space at each frame is only O(P) for the RLS method. Advantages of the RLS

algorithm over the shape space computing algorithms in the other FMs are discussed'

Simulation results on synthetic data compare the performance of the RLS algorithm

with that of the original and sequential FMs. The actual processing time of the three

shape space algorithms is also compared'

Chapter 5 gives Euclidean reconstruction of object shape and camera motion under

orthographic, weak perspective, and paraperspective projection models respectively.

Metric constraint equations, in terms of the affine transformation matrix under each

model, are derived and solved using a linear least squares (LLS) technique. Then the 3D

shape a.nd motion are recovered from the estimated shape space by the affine transfor-

mation. Experiments on synthetic data show the performance of Euclidean reconstruc-

tion under each model over a wide range of translation and initial depth conditions.
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Real image reconstruction also confirms the accuracy of the recursive method'

Chapter 6 extends the RLS algorithm to accommodate the occlusion situation. The

image locations of the occluded points in a frame are first estimated from the other

tracked points in the same frame and the estimated shape at the previous frame. Then

the estimated and the tracked image coordinates are used together as the input to the

RLS shape space updating algorithm. The computational complexity of the extended

RLS algorithm is shown to be still O(P). A comparison with those occlusion processing

techniques presented in the original and the paraperspective FMs shows the simplicity

and efficiency of the proposed method. Also simulation results demonstrate its good

performance.

Chapter 7 draws conclusions and provides suggestions for future research

L.4 Contributions

This thesis makes the following contributions:

1 Enabling 3D shape and motion to be recovered recursively at each frame

2. A new interpretation of the first step of the FMs as the shape space tracking task

3. Proposal of a new MSE formulation for the shape space estimation under GAP

model

4. Development of an efficient RLS algorithm for shape space updating at each

frame

5. Significant reduction of the shape space updating cost to O(P) per frame
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6. No storage requirement for a large matrix in the RLS algorithm.

7. Recursive recovery of 3D shape and motion at each frame under the orthographic,

weak perspective and paraperspective projection models, respectively, to accom-

modate a wide range of camera motion.

8. Proposal of a new efficient occlusion processing method and incorporation into

the RLS algorithm.



Chapter 2

Review of Factorization Methods

This chapter reviews the three factorization methods that are relevant to our work in

this thesis, and uses the novel notion of shape spacetracking. A definitionof shape space

is presented and the first step of these FMs is interpreted as shape space estimation.

The techniques used for this shape space estimation in each method are introduced.

The second step of Euclidean reconstruction from the shape space is also reviewed.

2.L The Original Method

The factorization method was first introduced by Tomasi and Kanade in [70] and

[7t] by assuming an orthographic projection model and using an object-centered world

coordinate system as shown in Figure 2.1. In the method, singular value decomposition

(SVD) is used to compute shape space at a complexity O(,F P2) after P feature points

have been tracked over a sequence of .F image frames. Euclidean shape and motion

are then recovered from the shape space without computing camera-centered depth.

When the object is far away from the camera, this method generally produces robust

13
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and accurate results.

image frames

u fp tf

Figure 2.1: The object-centered orthographic model in the original FM

z.L.t The Bilinear Formulation and the Rank Theorem

Assume that there is only one rigid object in the scene, and P feature points are tracked

through -t' image frames of a sequence. Let (un¡,ru¡) denote the coordinates of the j-th

image point in the i-th frame. Then the image coordinates of P feature points in F

L4

f+2

f
f

p

X centroid

P

T,

tobjæt



CHAPTER 2. REVIEW OF FACTORIZ.ITION METHODS

frames form the following 2F x P measurement matrix W

utt utp

utt utp

Ap

W': (2.1)

upt upp

upt upp

Here, each column of W stores the image trajectory of one feature point over the whole

sequence, while each pair of rows stores the coordinates of the P points in one of the

frames.

Now all P points in each frame are registered by subtracting their image centroid's

coordinates:

tt,¿¡:u¿¡ - a¿

(i:\,...,F), (2.2)

õ¿j :u¿j - b¿

where (on,bu) is the image centroid of the 'd-th frame given by

(2 3)

Combining eq. (2.2) for all P points in .t' frames into a single matrix equation, we obtain

the registered measurement matrix W. It is equivalent to registering the measurement

matrix W by subtracting from each entry the mean of the entries in the same row, viz:

A1

br

1a¿: Þ

Uu: I

P

Dun¡j:r
P

Do,¡'
j=l

15

(2.4)

P

'W:'W-

br
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Assume that the origin of the world coordinate system resides at the centroid of P

object feature points. Object shape may then be represented by the 3 x P matrix

S:[tr,"',sp],

P

Dt¡:o'
j=l

(2.5)

where the 3-vector sj describes the location of an object point (corresponding to the

j-th image point) expressed with respect to the world coordinate system' We can also

infer that
1

F
(2.6)

Camera rotation over the sequence of .t. frames may be characterized by the 2F x 3

matrix
iT

iT

R_ (2.7)

iT

Jþ

Here, i¿ and j¿ are orthonormal 3-vectors specifying the orientation in the world co-

ordinate system of the horizontal and vertical camera reference axes' respectively, of

image frame k.

With the above assumptions and notations in place, the following equation holds

under orthographic model:

\¡,/: RS. (2 8)

This is the bilinear formulation of the original factorization method. We can see that

under orthography, the image projection coordinates are just related to the camera

rotation and the object 3D location, without any relation to the object depth and the

camera translation. This reflects the nature of orthographic projection'
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Since iy is the product of two rank-3 matrices, it is subject to the rank theorem

which states that

Wi,thout noi,se, the rank of the registered, n'reasurernent matrir iy ¿t at most

3; and, when noise erists, the ranlc of W i,s approrimately 3.

The rank theorem reveals the high redundancy of information present in an image

sequence, and permits a large number of points and frames to be processed to reduce

the effects of noise. It implies that camera orientation and object shape can be robustly

recovered bv direct factorization of iV.

2.L.2 Shape Space Estimation via SVD Factorization

Assume thal 2F ) P. Matrix W a p2FxP may be decomposed using SVD to obtain

'W': OrÐOz, (2.e)

where Or € W2F*P has orthonormal columns, Oz € pPxP is an orthogonal matrix, and

> : di,ag(ott " ', op) with singular values 01 ) o2 > " '

rank theorem, in the absence of noise, Ú has at most 3 nonzero singular values. That

is o4: . . . - op: 0. However, a more realistic situation is that the measurements are

corrupted by noise. Then there are more than 3 nonzero singular values. However, as

long as the noise level is not very high, we have that os Þ øa. Thus the best rank-3

approximation Û of Vf is obtained by just considering the first 3 singular values of

û'
Û : IJÐ'vt, (2.10)
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where U, V are the first three columns of 01, 02, resp€ctively, and X' : di,ag(ot,oz,os)

Now setting

Ê.: U[X,]'/, (2.11)

S: [>,]t/rvt,

we have that

û: ÊS. (2.12)

However, Ê. and S ur" in general different from the desired camera rotation matrix R

and object shape matrix S because the decomposition of Û in eq. (2.12) is not unique'

For any 3 x B non-singularmatrixA, \^/: Ê.AA-tS: Ê.S. In fact, Êand S just

determine the column space and the row space of Û. Since it is also the case that

Û : RS, we can infer that R and Ê. provide two bases for the column space of Û,

and S and 3 provide two bases for the row space of Û'

\Me then define rønge(R), equivalent to the column space of 'W', to be lhe moti,on

sp¡,ce; and range(S"), equivalent to the ro\ry space of Û, to be Lhe shape space. If no

noise exists, eq. (Z.A) holds and Úi : \i/. Then the motion space and the shape space

correspond to the column space and row space of Ú respectively. From the above

definition, it can be inferred that: (1) the dimension of each subspace is at most three;

(2) both subspaces are dual in the sense that one can be computed from the other.

Eq. (2.10) reveals that U and V provide an orthonormal basis for the motion space

and shape space respectively. The original factorization method readily obtains these

bases via SVD.

It needs to be pointed out that motion space is only meaningful in a batch FM

when all image frames in a sequence are processed at one time, while shape space is

meaningful for every frame, and remains stationary throughout the sequence, under
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the object-centered world coordinate system. Therefore, in a sequential or recursive

method, where each frame is processed separately, motion space is meaningless and

only shape space is tracked.

2.t.3 Euclidean Shape and Motion Recovery

Now that R and Ê. ure two different bases of motion space and S and S are two different

bases of shape space, there should exist a linear transformation between R and Ê., and

S and S. Mot. specifically, there exists a 3 x 3 invertible matrix A such that

R: Ê.A (2.13)

S : A-1S.

We also note that th camera orientation vec ors i¡, j¿ in eq. (2.7) of frame lc are

mutually orthogonal unit vectors, and that they must satisfy

llioll :lljull : t
(k - 1, .' ., tr'). (2.L4)

ifio:o

These metric constraints yield the 3f' linear equations

Î[nRTÎu:1

jfnnrju:1 (k :7,' ' ', ¡') (2.15)

Îfial'jo :e

with respect to the 6 unknown parameters of AA". This is an over-determined linear

problem that can be solved by using a linear least-squares (LLS) technique.

After AA" is determined, A can be obtained by eigendecomposition of AA". Such

a solution of A is valid up to a rotation because the orientation of the world coordinate
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system is arbitrary. This arbitrariness can be removed by aligning the ø-axis and g-axis

of the world frame with those of the camera reference system in the first frame.

2.2 The Sequential Method

Since the origin al f.aclorization method is not applicable to real-time applications,

Morita and Kanade subsequently developed a sequential factorization method [54' 55]

that produces estimates of shape and motion at each input frame under an orthe

graphic projection model. In this method, shape space is updated with a cost of O(P')

at each frame via a power iteration method [2a]. Euclidean shape and motion are then

immediately determinable from the estimated shape space.

2.2.L Formulation and Overview

Assume that P feature points are tracked in an F-frame sequence. Let (*o¡,Au¡) denote

the registered image coordinates of the 7-th feature point in the i-th frame with respect

to the centroid of all the P feature points in the frame. The input to the sequential

method is viewed as a vector time series containing feature image positions, so that at

frame k, we have

xt : lrm,rrt2t' " ,rnpfr (2.16)

Yn : lAnt,UIe2,' ' ' rAt Plr '
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Then the registered measurement matrix at frame k is expressed by

2L

xf
T
1

xf

k

v

w Ic : 7,' F, (2.17)

VT

Now define a correlation matrix time series Z¡ € ffiPxP containing the image coordi-

nates up to the k-th frame by

k

Z¡, : l(x¿*T -1 v,ilÐ : Zn-t t x¡,x[ + ynyT, k : 1, "', F' (2.18)
i,:t

It is easy to verify that

zu:iYTÑr (2.1e)

Since the rank of iV¿ is at most three, that of Z¿ is also at most three. In the noisy

case, if the best rank-3 estimate of W¿ via SVD is

Ûr: UtÐoYT, (2.20)

where Ur € $t2kxs and V¡ a pPxs have orthonormal columns, and Ð¿ : di'o,g(ont,oxz,ons)

whose diagonal entries are the first three singular values of iV¿, then the best rank-3

estimate of Z¡, is

2r: çTJr>nYT)runÐrYT:vk>?v|. Q.21)

This means that the first three principal eigenvectors of Z¡, are equivalent to the first

three right singular vectors of Úr. Since range(Y¡,) is equivalent to the shape sp&ce

(see Section2.l.2), it is possible to estimate the shape space by computing the first

three principal eigenvectors of. Z¡.
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2.2.2 Sequential Shape Space Computation

To compute the three dominant eigenvectors of the correlation matrix Z¿ that span

the shape space, the sequential FM used a generalized power method - essentially an

orthogonal power iteration method with the updating of Z¡, by equation (2.18)' The

sequential shape space updating algorithrn is given by:

Initialization:

Zo: Opxp

Qo,8o a pPxs with orthonormal columns

Update equations (for lç : l, ' ", tr')'

Zt :Zn-tf x¡xfl +ynyT

Yr : ZnQn-t

Q*Rr - Y1 (QR factorization)

II¡, : QoQl

Yz : HrQ*-r

QrR, - Yz (QR factorization)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

In the above scheme, the matrix Qr is expected to converge to the dominant eigen-

vectors Yn of Zn. However, even though rønge(V¡), the shape space, is stationary,

V¿ itself changes frame by frame since Z¡, always incorporates ne\ry frame information

as the number of frames increases. Therefore, Qr does not converge to a stationary

orthonormal basis though range(Qù converges to the stationary shape space. On the

other hand, the desired 3D shape and camera orientation are determined from the

shape space by a 3 x 3 metric transformation matrix A¡r. Different Qr in each frame
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make A¡ also change at each frame. To update A¿ seeuentially, it is necessary to com-

pute a stationary basis for the shape space. In the above scheme, eqs. (2.25) - (2'27)

update such a stationary basis Qo via QR factorization of the orthogonal projection

matrix Hr of the shape space.

The updating of Qr at each frame involves the updating of Z¡ and twice QR fac-

torization. Its total computational complexity is O(P2) and specifically 26P2 + 44P'

2.2.3 Sequential Metric Transformation

After the stationary basis Qr of the shape space is obtained, camera coordinates Î¡

and j¿ are computed as

î[ : xfQu, iT : yTQt ' Q'28)

Then the second step of the sequential FM is to determine a 3 x 3 non-singular matrix

A¿ that transforms Î¿, j¿ atrd Q* into the desired 3D camera orientation vectors and

the shape matrix as follows:

i[:i[n u, :T : iTAr Q.2e)

So : At'81. (2.30)

Determination of A¿ is carried out as in the original FM. By using the metric

constraints of the camera orientation vectors i¡r, j¡ of eq. (2.t4) for each frame up to

the k-th, 3k equations of the form eq. (2.15) with respect to the 6 unknown parameters

of A¡fifl are obtained. Solving this over-determined problem by LLS is shown in [5a].
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2.9 The ParapersPective Method

The original and the sequential FMs are based on the assumption of an orthographic

projection model. However, the orthographic model limits the range of motions the

methods can accommodate. Paraperspective projection, first introduced by Ohta [58],

is a projection model that closely approximates perspective projection by modeling

several effects not modeled under orthography, while retaining linear properties' Poel-

man and Kanade developed a FM [60, 61] by using this projection model. This method

can be applied to a much wider range of motion scenarios, such as image sequences

containing significant translation towards the camera or across the image plane.

z.gJ Paraperspective Bilinear Formulation

The paraperspective projection of an object onto an image, illustrated in Figure 2'2,

consists of the following two steps:

1. All the object points are projected onto the average depth plane, the plane passing

through the object centroid and parallel to the image plane, by the rays parallel

to the object centroid perspective projection ray CG'

2. The average depth plane is perspectively projected onto the real image plane.

This is actually a uniform scaling of the average depth plane by the ratio of the

camera focal length and the distance between the two planes.

As in the original FM, the origin of the world coordinate system is placed at the

object centroid G. Thus

24

c:;å*: o (2.31)
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mage

plane f

u fp

|,,. iltutp: 
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*'ïu,l'se - (t/'i/)l
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|X:, 

**u¡'ro - (tr.i¡)l
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G (object centroid)

average depth

plane

(2.32)

P

tp

i

C

Figure 2.2: Two dimensional paraperspective projection model

FYom the definition of paraperspective projection described above and the geometric

relations in Figure 2.2, it can be shown that the image coordinates of a feature point

p: lutu, u¡ofr in frame f arc

These equations can be rewritten as

Ufp: trt¡'so I {r¡ (2.33)
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't)îp: n¡'so I b¡t

where

t¡.j¡
zl

26

(2.34)

(2.35)

(2.36)

(2.37)

zî: -tfkl

%:-+, bÍ

ÍrI¡ :

uFt upp

upt upp

I - a¡kt
zf

ûlp

il¡

- i¡ - b¡k¡
zl

ltr "'sp] +

n¡

If P feature points are tracked in f' frames, we obtain the following matrix equation

from eq. (z.ss):

llll

ute 111

utputt

utt

A1

br

Ap

bp

11
P

F,q. (2.37) is equivalent to the short form

\M_MS+T (2.38)

P

where W is Lhe2F x P measurement matrix, M is the 2F x3 motionmatrix, S is the

3 x P shape matrix, and T is the 2F x I translation vector.

Using eqs. (2.33) and (2.31), we obtain

PPP
Ðu¡o: t(*r'to * o¡) - m¡'I to + Pa¡ - Por (2'39)
p=l p=l P=l
PPP

Ðr¡o: f(n¡'s, + b¡) - n¡ Ð to + Pbr : Pbf
p:I P:l P=l

Thus ø¡ and ó¡, the elements of the translation vector T, can be derived immediately

from the image data as

11

1a'f: F
Pt

P=l
u,: I

Pt
p:I

u F,urp 1p l:L,' (2.40)
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The registered measurement matrix W is then obtained by subtracting the known

translation component T [1 "'1] from'W:
P

VÍ:W-T[l ...1] :MS. (2.4r)

Y
This has the same bilinear form as that in the original FM under orthography, and

proves that the bilinear formulation and rank theorem under orthography also hold

under the paraperspective model.

In the paraperspective method, Poelman and Kanade also used SVD to factorize

iV, and then obtain its best rank-3 approximation Û and the two bases Iûl and S for

the shape space and motion space respectively by retaining only the largest 3 singular

values. That is:

\^/ : IJzr*sx¡*rV""rt : ÑrIS

1ù:UX, S:Vr.

Thus the Poelman-Kanade FM is also a batch method and has the same drawbacks

as the original FM - the complexity for shape space computation is high and the

method is not applicable to real-time applications. However, since it uses paraper-

spective projection model, it can be used to applications involving significant camera

translation where the orthographic FMs cannot accommodate'

2.3.2 Paraperspective Metric Constraints

As in the original FM, a 3 x 3 non-singular matrix A must be determined that trans-

forms Iù and S itrto the desired motion matrix M and shape matrix S. However, under

the paraperspective model, the constraints on the motion matrix M are different from
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those applying under orthography. Noting that i¡, j¡ and k¡ are mutually orthogonal

unit vectors, from eqs. (2.3a) - (2.36), the following constraint equations are derived:

ll",' ll' 1
(2.42)- r +b2r -2or

a¡b¡ _ ,,h,r (llrnÀl? * ll.¡ll'1m¡n/ :T -r-r 2\L+a2r trq) Q'43)

To avoid the trivial solution M : 0, an additional constraint should be imposed. For

instance, let

ll*'ll : t. (2'44)

Eqs. (2.42), (2.43) and (2.4\ gve2F * l constraint equations on the row vectors of

M. Determination of the transformation matrix A is similar to that in the original

FM [60].

2.3.3 Paraperspective Motion Recovery

Once A is determined, the desired motion matrix M and shape matrix S are recovered

as M : Ñ[4, S : A-1S. Now, for each frame /, the estimates of the camera

orientation vectors if , jl, k¡, the average depth z¡, and the camera translation vector

t¡ need to be recovered from the known a¡, b¡, m¡, and n¡ (the latter two being

rows of M). Noting that if , jf , and k¡ should be orthonormal vectors, the following

equation can be derived from eqs. (2.34), (z.aS), and (2.36):

B¡k¡ : D t, (2.45)

where

llm/ll'
TT4 ( )

ín.¡ x ñ.¡

r?r '

1

-4,¡

-brnr

B.f : D"f : (2.46)
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and

(2.47)

Then the camera orientation vectors are computed as

k¡: BitD¡ (2.48)

(2.4e)

(2.50)i¡ :k¡ x ñ¡

These solutions are unique up to an arbitrary rotation. The arbitrariness can be

removed by aligning the world axes with the first frame's camera axes' so that i1 :

[1 0 0]" and j1 : [0 1 0]".

Finally, the average depth z¡ can be computed from eq. (2'42), and the camera

tra,nslation vector t¡ can be derived from eqs' (2-34) and (2.35)'

ínr: tfi;+"iffi, ir: \f+b'rffi

ir:i¡xkf



Chapter 3

MSE Formulation for Shape SPace

This chapter first shows that the bilinear formulation can be extended to a general affine

projection (GAP) model, and the first step of the FMs under GAP can be viewed as

ffine shape spacetracking. A novel MSE cost function is then formulated for the affine

shape space tracking. It is shown that this cost function attains a global minimum at

the desired affine shape space. The properties of the function are also studied and a

comparison with other shape space formulations is made.

3.1 Affine Shape Space under GAP Model

In the last chapter, the bilinear formulation \ryas shown to hold under the orthographic

and paraperspective models. We show in this section that it can be generalized to

the GAP model. We also show that the first step of the FMs under GAP, computing

lhe ffine shape and motion (the 3D shape and motion matrices up to a 3 x 3 affi.ne

transformation), is equivalent to computing the affine shape space because any basis

of the affine shape space provides a solution for the affine shape and motion matrices.

30
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3.1.1- Camera Models

In this subsection we will give a brief review of the perspective camera model and its

affine approximation, the GAP model'

The perspective camera

The most frequently used camera model in computer vision is the perspective camera.

In Figure 3.1, a 3D-point in the scene with coordinates X : [X, Y, Z]' is projected to

the image point with coordinates * : [r,3r]" according to

^+0,
(3.1)

(3.2)

where À is a scale factor and P is the standard 3 x 4 camera projection matrix' Using

QR-decomposition, P can be factorized a"s

P: KIR t] :

where [R,t] represents a rigid transformation, R is a 3 x 3 rotation matrix and t is

a 3 x 1 translation vector. The parameters in K represent intrinsic parameters of

the camera where / denotes focal length, 7 denotes aspect ratio, s denotes skew, and

(ro,yo) denotes the coordinates of the principal point'

The affine camera

With the affine camera (first introduced by Mundy and Zisserman [57]), the projection

of a BD point to the image has the same form as in eq. (3.1), but the camera matrix

f sf ne

oll uo

001
lR tl,
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world coordinate systent

32

0
X

0

Z

camera coordinate

syten

Figure 3.1: Perspective projection model

has the following form

PA: (3.3)

and the homogeneous scale factor ) is the same for all points. The affi.ne camera can be

seen as a perspective camera with its center located at the plane at infinity' Restricting

^+0, 
that is, restricting all affine points within the affine shape space not at infinit¡

C

Ptt Ptz Ptt Pu

Pzt Pzz Pzs Pz¿

000ptn

X

imageplane

t

x

v
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we obtain the following linear equation from eq. (3.1) and (3'3):

x:M¿X*lt, (34)

where M¿ is a2x 3 matrix with elements m¿,¡: Pt¡f À, (i:1,2, i : I,2,3), and

the 2D vector ta: þuf À, prnlÀ]'. Note that À : PzA'

The affine camera has the following two important properties [65, 84] that the per-

spective camera fails to have.

o Under GAP, the parallelism of lines is preserved. That is, lines that are parallel

in the space remain parallel in the image.

Proof. For any two 3D parallel lines L1(À) : X,+)d and L2(¡r) : X¿*pd, where

Xo and X6 ar€ two 3D points and d is the 3D direction vector, their projections

under the GAP model are the following two lines:

h(À) : (M¡X" + t¿) * ÀM¡d (3 5)

Ir(p) : (M¿X¡ + t¡) -f p,M¡d.

It is easy to see that they are parallel to the 2D direction vector M¿d'

o Under GAP, the centroid of a set of 3D points and the centroid of their image

points correspond to each other.

proof. Let X¡ (j : t,...,n) be a set of 3D points and x¡ their corresponding

image points. The centroid of the image points is then

o : I É*, : I Él*ox¡ r tt):M¿G ttt, (3 6)nfi " ,i,
where C : å Ði=tXi is the centroid of the set of 3D points'

Thus, if the 3D points are expressed with respect to their centroid, i.e. i.i :

X¡ - G, and if the image points are also expressed with respect to their centroid,

i.e. i¡ - xj - o, then we have

*j : M¡Xj (3.7)
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The affine camera is a linear approximation to the perspective camera and it gener-

alizes the orthographic, the weak perspective and the paraperspective camera models'

These models provide a good approximation to the perspective camera when the size of

an object is small compared to the viewing distance, which is satisfied in most practical

situations.

9.t.2 The Bilinear Formulation under GAP

Assume that P feature points of a rigid object are tracked through tr' image frames.

Let w¿¡ : lu¿j,u¿¡lr denote the coordinates of the j-th image point in the 'i-th frame.

As in the original FM, suppose that the origin of the world coordinate system resides

at the centroid G of P object points. Object shape is then represented by the 3 x P

matrix

S:[sr,...,sp], (3.8)

where s¡ describes the 3D location of the j-th object point in the world coordinate

system. We can infer that the shape matrix S should be fixed throughout the image

sequence in the object-centroid world coordinate system, and that

(3 e)c: åå,,: o

Let 
1P

o¿: iD *,¡ (3'10)
t j:t

represent the image centroid of the i-th frame. Subtracting o¿ from w¿¡, we get the

registered image coordinater ¡ülj: lru¡, au¡l'of feature point j in image'a as

Anii:v/¿j-O¿

According to property 2 of the GAP model, we have

(3.11)

ít¿j : M¿S¡, (3.12)
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where M¿ is lhe 2 x 3 affine matrix of the 'd-th frame

Combining eq. (3.12) for all feature points from 1 to P, and all frames from 1 to F,

into a single matrix equation, we obtain

v/tt wrp Mr

lst ' " s"], (3.13)

v/rr wpp M¡

or in short form

'W : MS, (3.14)

where Vf ß th. 2F x P registered measurement matrix, M is the 2F x 3 matrix, and S

is the B x P shape matrix. Since M is determined by the camera calibration parameters

and the camera motion parameters at all frames, we call it the camera motion matrix.

From Eq. (3.14), we can see that the bilinear form under GAP has the same form as

that under orthography. Therefore the rank theorem (in section 2.7.t) still holds under

GAp model. The implication of the theorem is that the affine shape S e ffi3"P and

motion ¡4 a pzFxs (the 3D shape S and motion M up to an affine transformation

A e Wsrs) can be readily obtained by a rank-3 decomposition of Vir, such that

û: rùS: MS (3.15)

M: IûtA S: A-rS, (3.16)

where Û is the best rank-3 estimate of W

As under orthography, ffine shape space (simply referred to as shape space) is

defined as range(ST), and the ffine motion space (simply referred to as motion space)

is defined as range(M). They are equivalent to the row space and column space of

Û respectively. Hence their ranks are at most 3. FYom eq. (3.15), we know that any

solution of M and S provides a basis for motion space and shape space respectively.
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Inversely, \rye can infer that any basis of motion space or shape space provides a solution

to M and S. Since motion space and shape space are dual in the sense that one can

be computed from the other, and motion space is only meaningful in the batch FMs

when all the frames are processed at one time, we track shape space to compute affine

shape and motion recursively at each frame.

3.2 An MSE Formulation for Shape Space

Prior to presenting a new shape space tracking scheme in the next chapter, we first

formulate an MSE cost function. It is shown that this cost function attains a global

minimum at the desired shape space. Several important properties of the function are

also discussed.

3.2.L Preliminaries

Xt, : lr;t¡, Its2t''', n¡plf

Yn:lam,akz,'",axplT

(3.17)

represent the registered image vectors of the k-th frame, where lro¡, yr¡l' (i -- t, ' ' ' , P)

are the P image point coordinates with respect to their centroid or. The registered

measurement matrix Ú catt then be expressed by

Vi/ : [*, y1 ' . .xr y¡]" (3.18)

Define the P x P correlation matrix C to be

Let

C: E{x¿xf +vrvT} (3.1e)
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1

F
1

F

i=t
Ð(*,"I + v¿vT)

F
vvtiv,

where E{} denotes expectation. FYom eq. (3.19), we can infer that the rank of C is at

most three since that of Vy is at most three.

Theorem 3.1 The three dominant eigenuectors of C span the shape space'

Proof. Assuming the SVD factorization of W is

ú: OtXOT, (3.20)

where Or € U?2FxP, Oz € pPxP satisfy OTO' : OTOz : O'OT : IP, and x :

d,iag(o1,..' ,op) contains the P singular values. We then have

c : jo,>oîo1Ðo' : or(|>\ol. (8.21)

This is the eigenvalue decomposition of C. It is shown that the eigenvectors of C

coincide with the right singular vectors of W'

Since the rank of W is at most three, by considering only its largest three singular

values and settin 8 o+: ''' - op: 0, the best rank-3 estimate of Vir is then

\i/: IJX,Vt, (3.22)

where U and V are formed by the first three columns of Or and Oz respectively, and

>' : diag(o1,02,os).

Similarly, the best rank-3 estimate of C is obtained by only considering its largest

three eigenvalues and setting all the others to be zero in the eq. (S.Zf¡, that is

^ - "(; 
Ð'')v'. (3.23)



CHAPTER 3. MSE FORMULATIOIV FOR SHAPE SPACE 38

Eq. (3.23) reveals that the three dominant eigenvectors of C coincide with the first

three right singular vectors of iir. We know from Section2.l.2 that the latter span the

shape space. Thus Theorem 3.1 holds.

We then infer from Theorem 3.1 that the shape space can be obtained by computing

the rank-3 principal subspace of C'

3.2.2 An MSE Cost Function

If the columns of a matrix Q € ffiP'3 are an orthonormal basis of the shape space'

then QQ" represents the orthogonal projection matrix of the shape space, whereas

I - QQt represents its orthogonal complement. Any P x 1 vectors x/r, Yr can each be

decomposed into two components, viz:

x¡,:QQ"xr-|(I-QQt)*u

vr: QQrvr * (I- QQt)vu, Q'24)

Here, the first component is the orthogonal projection onto the shape space, while the

second component is the projection onto the orthogonal complement. If x¿, )r¿ are ideal,

noise-free measurements, they wilt be wholly contained within the shape space, and

their second components will be zero. If in contrast x¿, !¡, ãre corrupted with noise, as

is inevitable in practice, they will in general not be wholly contained within the shape

space, having second components unequal to zero. Hence the second components are

the noise effects in the measurement vectors xn, Vk. A natural optimization procedure is

thus to seek a matrix Q which minimizes in some sense the magnitude of the associated

second components. This suggests that the following MSE cost function be minimized:

Jtos'(Q): E{ll (I - QQ')*u ll'+ ll (I - QQ')v* ll'} (3'25)

: E{ll *r - QQ"*u ll' r ll v* - QQrvk ll'}
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: tr{c} - 2tr{QrCQ} + tr{QTCQQtQ},

where fr denotes trace, and Q is assumed to have full rank 3' Note that we do not

impose any constraints on Q. Itt particular, there is no constraint of Q"Q : I¡ as in

some other optimization formulations for subspace tracking. Minimization of "I.se(Q)

has some attractive properties. First, note the following two theorems, which are

presented and proved in [aS]:

Theorem 3.2 Q is a stationary point ol Jprsn(Q) if and only if Q : GsH, where

Ge € ¡1Pxs contains any 3 d,i,stinct eigenuectors of C andW € Ð?sx8 is an arbitrary

orthogonal matrir. At each stationary poi,nt, Jvsn(Q) equals the sum of eigenualues

whose eigenuectors are not i,nuolued in G3'

Theorem B.B When G3 contai,ns the three dominant eigenuectors of C, Jusn(Q)

attains the qlobal minimum, whtle all the other stat'ionary points are sadd,le points'

From the above two theorems, \rye can infer that:

o the stationary points of Jvsø(Q) satisfy QtQ : Ie, i.e. the columns of Q being

orthonormal

o when the columns of Q are one of the orthonormal bases of the rank-3 prin-

cipal subspace of C, Jmsø(Q) attains the global minimum, while all the other

stationary points of JTrasB(Q) are saddle points'

Hence, by minimizing JlailB(Q), *. can obtain an orthonormal basis (the three

columns of Q) of the shaPe sPace.
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3.3 Properties and Comparisons

In this section, we discuss several key properties of the MSE formulation

Property 1. The cost function Jusn(Q) has a global minimum at the shape space

and no other local minima. Thus, iterative methods which minimize -f¡asB(Q) with

proper initializations are guaranteed to globally converge to the rank-3 principal sub-

space of C, i.e., the desired shape space. The initializations of the iteration methods

are discussed in chapler 4.

Property 2. The two theorem of Jlasp(Q) show that minimization of "I¡as¿(Q) au-

tomatically orthonormalize the columns of Q. No explicit constraint of orthonormality

QtQ : Is is imposed beforehand. Thus minimizing Jusn(Q) is an unconstrained

optimization problem, which has advantages over those formulations where Q"Q : I,

is imposed as an optimization constraint. The advantage is that in the iteration alge

rithms of minimizíng J¡¡¡B(Q), tro step of reorthonormalizating Q is needed, while in

the constrained optimization scheme, such a step is required at each iteration which

results in extra computational cost. Therefore, the use of an iterative algorithm to

minimize J¡øsn(Q) will always converge to an orthonormal basis of the shape space

without any orthonormalization operations during the iteration.

Property 3. At the global minimum of J¡asp(Q), generally Q only yields an arbi-

trary orthonormal basis for the rank-3 principal subspace of C, i.e. the shape space,

but not the true dominant eigenvectors. This is because Just(Q) is invariant with

respect to rotation of Q, i.e. Jmsn(Q) : Jvsn(QR) holds with any 3 x 3 rotation

matrix R. Therefore, the solution of Q obtained by minimizing JLrsn(Q) is unique up

to an arbitrary rotation. However, QQt, the orthogonal projection matrix of the shape

space, is always unique. For the special case when Àr : Àz - Àe : ), i'e. the three



CHAPTER 3. MSE FORMULATIOIV FOR SHAPE SPACE 4t

largest eigenvalues of C are equal, Q yields the true dominant eigenvectors because

etCQ - )Ia produces the required partial eigenvalue decomposition (EVD) of C.



Chapter 4

Recursive Computation of ShaPe

Space

In this chapter, we first review the standard recursive least-squares (RLS) algorithm'

Then we develop an efficient, novel recursive algorithm for MSE minimization. This

is to compute an estimate of the shape space at frame k from that of frame k - |

and the new incoming data, the image coordinate vectors at frame k, by using the

RLS technique. Finally, the performance of the RLS shape space tracking algorithm is

compared with that of the original and the sequential FMs by synthetic tests'

4.L Recursive Least-Squares Technique

In this section, we review a well-known adaptive subspace tracking technique - the

recursiue least squares algorithm [28]. The RLS algorithm may be viewed as a special

case of the Kalman filter. It is also based on a relation in matrix algebra known as the

matri,r inuersion lemma, which is also reviewed in this section.

42
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A.t.t Matrix Inversion Lemma

Let A and B be two positive-definite, rn x rn matrices related by

A:B-1 +CD-lCrr,

A-1 : B _ BC(D + CTTBC)-ICHB

where D is another positive-definite nxn matrix, and C is an rnxn matrix. According

to the matri,r i,nuersion lemma, \Me may express the inverse of the matrix A as following:

43

(4.1)

(4.2)

The proof of this lemma is established by multiplying the right hand sides of eq' (a.1)

and eq. (4.2), and noting that their product is equal to the identity matrix I-' The

matrix inversion lemma states that if we are given a matrix A as defined in eq' (4.1),

we can determine its inverse A-1 by using the relation of eq. (4-2)'

4.L.2 Standard RtS Algorithm

Some Preliminaries

In recursive implementations of the method of least squares, we start the compu-

tation with known initial conditions and use the information contained in new data

samples to update the old estimates. Since the length of observable data is generally

variable, we denote lhe cost function to be minimized as V(n), where r¿ is the variable

length of the observable data, and V(rz) is given by

V(n) : \1"-ile(t)12
n

i,=l
(4 3)

where 0 < ) ( 1 is "forgetting factor", with ): 1 corresponding to infinite memory.

The expression e(i) is the difference between lhe desired, response d(z) and lhe output
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g(i) produced by a transversal filter whose tap inputs equal u(i),u(i - 7),

M + 1), as in Figure 4.t. That is,

e(t):d(t')-s(t')

d,(i) - *H(n)u1;)

where u(i) is the tap-input vector at time instant i, defined by

u(z) : lu(i), u(i - 1),' ",u(i - M +I)lr,

and w(n) is the tap-weight vector at time n, defined by

w(rz) : lro(n), w{n),''', InM-r(")l' .

iÞ(rz)û(rz) :0(n)

Note that the tap weights of the transversal filter remain fixed during the observation

interval 71i, 1n.

The optimum value of the tap-weight vector, û(r), for which the cost function V(n)

attains its minimum value is determined by the matrix equation

,u(i -

(4.4)

(4.5)

(4 6)
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(4.7)

(4 e)

(4.10)

(4.11)

The M x M conelation matrix iÞ(rz) is defined by

o(n) : !À"-¿u(n),rt(¿). (4.8)
i:t

The M x 1 cross-correlation á(n) between the tap inputs of the transversal filter and

the desired response is defined bY

g(n) : | )"-du(z)d.(i,),
n

i=l

where * denotes complex conjugation. Eqs. (4.8) and (4.9) may be rewritten as

iÞ(rz) : )O(n - 1) + u(n)uø(rz)

o(n) : Ào(n - 1) + u(rz)d.(rz).
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(4.r2)

u(r) I1- i-M+2 l-M+1)

v(

Figure 4.1: The transversal filter

To compute the least-square estimate û(rz) in eq. (4.7), the inverse of the M x M

correlation matrix iÞ(n) has to be determined. Since computation of the inverse is

very time consuming, particularly if the number of tap weights, M, is high, we use the

matrir inuersion lemma to reduce the computational cost.

The Exponentially 'Weighted RLS Algorithm

With the correlation matrix iÞ(rz) assumed to be positive definite, the matrix inver-

sion lemma can be applied to eq. (4.10) as

À-2o-1 n - I)u(n)uH(rz)iÞ-' n-r)
O-'(r) - À-1o-1(" - 1) - 1* À-luH n Q-r(n - 1)u(rz)
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For easier computation, let

P(n) : O-t(rr)

n)

46

(4.13)

and

k(n) :ffi. Ø't4)

Then eq.(4.t2) may be rewritten as

P(rz) : )-re(n - 1) - À-rk(n)uH(n)P(n, - 1). (4.15)

Here k(n) is an M x 1 vector and is referred to the gain uector. From eq. (4'14) and

eq. (4.15), we obtain the following relation

k(rz) : P(rz)u(rz) : iÞ-l(n)u(n). (4.16)

From all the above, the following RLS algorithm can be obtained:

À-re(n - t)"(k(n) :
1 * À-luH (n)P(n - t)u(rz)

a(n) : d(") - fr' (, - l)u(rz)

û(n) : .úro(, - 1) + k(rz)ø-(n')

P(n) : À-le(n - 1) - À-1k(n)uH(rz)P(n - 1)

Figure 4.2 shows the diagram for the RLS algorithm.

An important feature of the RLS algorithm described by these equations is that the

inversion of the correlation matrix O(rz) is replaced at each step by a simple scalar

division. This greatly reduces the computational complexity of the RLS algorithm.

The initialization of the RLS algorithm requires a starting value P(0) to assure the

nonsingularity of the correlation matrix O(rz). A simple choice is

(4.t7)

where0<d<1

P(0) :5¡r, 1î/(0) : Ou^t,
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Input vector

u(n)
nH
w (n-1)u(n)

+

d(n)

response

(a)

¿tn) + a*

H^u (n)w(n-1)

Unity negative feedback

(b)

Figure 4.2: Representations of the RLS algorithm: (a) block diagram; (b) signal-flow

graph.

4.2 RLS Shape Space UPdating

In this section, we present a new recursive scheme for estimating the shape space at each

frame with the low complexity O(P) by using the projection approrimation subspace

a

Transversal filter

fftn-r)

innovation

Adaptive weight

control mechanism

Hu (n)t-r Ik(n) sumsum

Gain
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traclcing (PAST) approach and the RLS technique. After that, we show that the affine

shape and motion can be easily computed from the estimated shape space.

4.2.L Recursive Shape Space Updating

We develop an RLS algorithm for updating an arbitrary orthonormal basis of the shape

space at frame k given the basis at frame k - L and the incoming image coordinate

data u¿, v¡:

ut : lun,?)r¡2t "' runpfT (4.18)

Vl, : lUt f r'l)lc2t. . ., UXp]f .

The registered image vectors x*,,Ytt are then given by

xk: LLk - ek (4.19)

Y*': vn - b*'

where (oo, b*) is the image centroid of P features at frame k, and

1
P

(4.20)
P j=l

Let

P

Ðou¡
j=l

1bx: pÐur¡,a¡x

cn, : E{firrr^T} :'rP-_frufrT ,

irp: fx¡, yft]

w¡ - Qf-rfru,

(4.2t)

(4.22)

where Qr-r € pPxs is assumed having full rank 3. Then C¡, the P x P correlation

matrix up to frame k, can be expressed as

(4.23)
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and the MSE cost function for estimating Q¡ (the shape space at frame k) is obtained

by using C¿ to approximate C in eq. (3'25), as given by

Jvsn(Qt): E{ll ú¿ - QrQTí''uli} (4.24)

1k: ; t ll *, - QkQ;*c ll?
tu i=l

: tr{cn} - 2tr{Q[crQr] + tr{Q[c¡QrQfQr].

J¡tsn(Qt) in eq. (4.24) is identicalto Jusn(Q) i" eq. (3.25) except for the use of the

image data up to frame k and not in all f' frames. Thus the theorems and properties

about J*sø(Q) in chapter 3 also hold for Jtosr(Qn). Hence by minimizingJ¡alB(Q),

the columns of Q¿ provide an orthonormal basis for the rank-3 principal subspace of

C¿, that is, the shape space at frame k.

Jvsn(Qn) is a fourth-order function of the elements of Qr and the standard RLS

technique cannot be applied directly to compute its minimization recursively. Accord-

ingly, we now seek a simpler quadratic cost function by making some approximation.

Assume that Qf,Íü¿ (the projections of x¿, /¿ onto the columns of Q¡) can be ap-

proximated by W, : QT_rfr¿, for all t < i < k. Since we a,ssume the shape space is

stationary, the errors in the above projection approximation should be small. Note that

in doing so, wi becomes immediately available at any frame'i given the previous frame

estimate Q¿-., for i : 1,2,..., k. Without this approximation, Qflä'¿ would only be

available at frame k when Qr is obtained. This is the main idea of the PAST approach

that was presented by Yang in [85]. After the projection approximation Ql*n N wi,

Jusn(Qn) is simplified to J'(Q¿) given by

1k
/'(Qu) :;Ð ll {ü, - a*w, ll? Ø.25)

't=L

Under the stationary shape space assumption, "I'(Q¿) should be a good approximation

to Jusn(Qr,) and the matrix Q¡, obtained by minimizins /'(Q¿) should be a good

estimate for the shape space.
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kt
i,:t

kt
i=L

M¡ *uú: M*-r +etú

then we have that

Let
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(4.26)1:-
k

N*: I
K

(4.27)

(4.28)

: tr{cx} - 2úr{M¡Ql} + ¿"{qoNoQf}

To compute the gradient of J'(Qr), we first introduce the following theorem [47] which

transfers the computation of gradient to the relatively easy differentials computation:

Theorem 4.L Let O(X) be a differentio,ble real-ualued function of an rn x n matrir

X. Then the following relationship holds

dÕ(x) : úr{[v(x)]'dx] <+ vo(x) : {/(x), (4.2e)

whered, d,enotes the d,ifferential, andthe grad,ienú o/O(X) wi,th respecttoX is d'efineil

øs Vo(X) : "rS).

After some computation, the differential of "I'(Q¿) is

/'(Qu) - rr{Iå,*, - Qrw¿)(fo, - Qrw¿)'}

dJ' (Qt ) : -2tr {MT aqu} * 2úr{N¡QT aqr}

: tr{(-zNtr * 2Q*N u)'dQo}'

According to theorem 4.1, we have

VJ'(Q¡,) - -2unt2Q¿Nr

/'(Q¿) is minimized when V/'(Qu) :0, that is when

(4.30)

(4.31)

(4.32)

Qt : M¿Nr t (4.33)
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A recursive computation of Q¡, by the above equation (9P + 27 flops), with the update

of w¡ in eq. (4.22) (6P flops), M¡ in eq. Ø.26) (6P flops), and N¡ in eq. (4.27) (18

flops) requires a total of 39P flops operation. In this thesis, one flop is defined as

one multiplication plus an optional addition. A more efficient and numerically more

robust method is to apply Lhe matriri,nuersionlemma (see Section 4.1.1) to compute

the inverse of N¿ in eq. (4.33). This results in the RLS algorithm, which is derived in

the following, to update Q¡ recursively.

Define the 3 x 3 inverse matrix

Pr : Nill (4.34)

Applying the matrix inversion lemma to P¡, we obtain

P wl)-'TV¿+1k-(Nk

: Pk-r - g¡rw{P¡_1

where

Br : Pr-rw*(I, -|- dPu-rw¿)-t

is the 3 x 2 gain matrix. Using eq. (a.35) it is easy to verify that

g¿ : Prwt

Noting that

gx*lP n-t : (gkw'flP k-r)T : P n-tw ngT,

we may use eqs. (4.26), (4.27), (4.33) - (4.37) to obtain

Q* : M¡'P*

: Mr-r(P k-r - gnwlPn-t) + úuef

: Qr-r + (Íi'u - Qr-rw¿)ef,.

(4.35)

(4.36)

(4.37)

(4.38)

(4.3e)
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The RLS scheme is now given bY:

Initialization:

Po : ôI3 (ð is a small positive number)

Qo € Ð?Px3 with orthonormal columns

Update equations: for k: t,2,"'

1å
are : E Luu¡t j:t

1P
bu: ìÐoot

J=t

xfr:uk-ünLp*t

Vn: vn - bnlPrt

Íi'¿ : [x¡ yr]

v/fr : Qf-rä'o (6P flops)

Br : Pr-rF¿(r, + FlPk-l*u)-t (68 flops)

Pr : Pn_, - gtwflPt-r (a5 floPs)

Qr : Q¿-r * (ä'o - Qr-rwr)sf (12P flops)

Here 12,13 âre identity matrices, and 1p"1 : {,t;1Jt

The initiat values Po, Qo should be set carefully to ensure convergence. Since the

covariance matrix of w¿ is positive definite, Pe should be set to some symmetric positive

definite matrix, for example ôI3. Qs should have orthonormal columns, a simple choice

being the first three columns of the P x P identity matrix. Clearly, the updating of

Q¡ requires a total of 18P floPs.

P
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4.2.2 Affine Shape and Motion Recovery

After the orthonormal basis of the shape space Q¡, is estimated, the 3 x P affine shape

matrix S¡ and lhe 2 x 3 affine motion matrix M¿ at frame ,k can be obtained from it'

They can further be transformed to the 3D object shape S¡ and camera motion M¿

by a proper 3 x 3 affine transformation matrix A¡, viz:

Sr : AttSu, M¿ : Ñ[uAo. (4.40)

Determination of A¡ will be discussed in next Chapter. Here we compute 3¿ and ú¡.

In Section 3.1, we stated that any basis of the shape space provides a solution for

the affine shape matrix. Thus we obtain

Sr : ef. Ø.41)

Extracting the k-th pair of rows (corresponding to the fr-th frame points) from the

registered measurement matrix iV itt eq. (3.13), we obtain

frT : M¡,Sr : ú¡oArAiltSu : wluQl. @.42)

Since Q¡ has orthonormal columns, right multiplyingeq' (4.42) by Qt' we obtain

(4.43)

4.2.3 Comparison

For a sequence of ,t' image frames where P feature points are tracked, we compare the

RLS shape space algorithm with the other FMs.

In the batch FMs, such as the original FM and the paraperspective FM, by com-

puting SVD of |he 2F x P measurement matrix after all .F' frames are available, the

Qr-T-w[M¡
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shape space is obtained by the first three right singular vectors. If 2F > P, the SVD

computational complexity is l4FP2 + +Pt flops. Moreover, Lhe 2F x P measurement

matrix, whose size increases with the number of frarnes, needs to be stored before SVD

computation.

In the sequential FM, the power orthogonal iteration method is used to compute

the three dominant eigenvectors, which span the shape space, of a P x P correlation

matrix at each frame. The correlation matrix needs to be updated to incorporate new

frame information and stored at each frame iteration. Hence, even though the shape

space is stationary, the computed dominant eigenvectors of the correlation matrix at

each frame do not converge. To make the next step - the computation of the affine

transformation matrix A¿ seeuential, an extra step of computing a stationary basis of

the shape space is required. This is achieved by computing the orthogonal projection

matrix of the shape space and its QR decomposition. Thus the total computational

cost of the sequential shape space updating algorithm is 26P2 + 44P flops'

In Hwang's 3-D linear combination FM [34], only three rows of the 2F x P measure-

ment matrix are used to compute an orthogonal basis of the shape space. Thus this

method loses several advantages of the FMs including even treatment of every frame

to get stability, and processing a large number of frames so that the redundancy c¿tn

reduce the noise effects and provide more accurate results.

Our RLS shape space updating algorithm has several advantages over all the above

FMs. First, it computes an estimate of the shape space at each frame recursively as

in the sequential FM. Secondly, it is more efficient than the sequential FM both in

computation and in memory storage. Its computational complexity is only 18P flops

at each frame updating and no large measurement or correlation matrix is updated and

stored in the algorithm. Thirdly, since it is an adaptive subspace tracking algorithm,

54
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once a set of initial values is given, the computed P x 3 matrix Q¿ converges to an

orthonormal basis of the shape space. Thus no step of computing a stationary basis

is required in order to compute Ak recursively. Instead, Q¿ can be used as a station-

ary basis of shape space since it converges after some initial frames. In contrast, the

sequential FM needs to compute a stationary basis of the shape space at each frame

iteration, because the computed dominant eigenvectors of an updated correlation ma-

trix are different at each frame and do not converge at all. Finally, the RLS algorithm

has a similar accuracy to the SVD batch FMs and the sequential FM, which will be

demonstrated in the next section.

4.3 Performance Analysis

In this section we describe the synthetic tests used to compare the performance of

the RLS shape space updating algorithms with that of SVD and orthogonal iteration

algorithms used in the original and the sequential FMs respectively.

4.3.L Synthetic Data Generation

An object was represented by 100 random points within a cube of predetermined size.

The distance of the object centroid from the camera was chosen to be 20 times the side

of the cube and was kept fixed throughout the sequence. Camera rotation was specified

as given in Figure 4.3 and the object was translated so that its centroid projected on

to the principal point of each frame. A sequence of 140 images was generated by

projecting the object points onto 512 x5l2 pixel image planes with sub-pixel accuracy

using a perspective camera model. The (fixed) focal length was chosen so as to yield

good coverage of image points across the image planes. Gaussian noise with a standard
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deviation of 2 pixels was added to all points in all frames. Quantization errors were not

added since we assume that we are able to track features with a subpixel resolution.

4.9.2 Accuracy of the Shape Space Computation

We first discuss accuracy and convergence properties of the RLS algorithms and com-

pare them with the original and the sequential FMs. In order to compare the iterative

and batch methods under the same conditions, we perform the following computations.

For the iterative methods, such as the RLS and the sequential algorithm, the shape

space is updated at each frame iteratively. We obtain Q",* for the RLS method, Q,,t

for the sequential FM at frame k. They are all P x 3 matrices whose orthonormal

columns span the estimated shape space at frame k. For the batch-type original FM,

we form a submatrix 
'W¿, which only contains the feature positions up to frame k.

SVD is then applied to this submatrix to compute its first three right eigenvectors Vt

which span the estimated shape space at frame k.

The shape space estimation error of each method is represented by the subspace

distance between the estimated and the true shape spaces. The errors at frame /c are

defined as the following:

Er,k : d'i st(r ang e(Q",r), r ang e(ST ))

E,,k : d,i st(r ang e(Qr,r), r ange(Sr))

E o,k : d'i st(r ang e(Vo), r øng e(Sr ))

(4.44)

They are errors of the RLS, the sequential and the original methods respectively. The

function d,i,st), which represents the subspace distance between two same dimensional

subspaces Sr, Sz, is defined by

d,ist(ranse(Vr), range(Y2)) :ll V1VT -I/rVT llr, (4.45)
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where the columns of Vl, Vz are orthonormal bases of the two subspaces 51, Sz,

respectively.

Figure 4.4 shows typical convergence for each of the three methods. The methods

perform similarly, with shape space being estimated reasonably accurately within 40

frames. After about 35 - 40 frames, the shape space estimation errors of all three

methods converge to the same low constant level (about 2.3 x 10-2 in this experiment).

4.3.3 Computational Time

We compare the shape space computational time of the RLS method with that of the

original and the sequential FMs. From chapter 2 we know that the computational

complexity of the original FM is dominated by the cost of SVD, which is I4FP2 -t

LlPslsflopsforPfeaturepointstrackedin,F frames (assuming2F> P); thatof the

sequential FM is 26P2 +44P flops at each frame for computing the first three dominant

eigenvectors using the power iteration technique. On the other hand, through the

analysis of the RLS algorithm, its shape space updating complexity for each frame is

18P flops. Therefore, theoretically, to compute an estimate of shape space, the original

method requires O(FP2) operations; the sequential method needs O(P') operations;

while the RLS method takes only O(P).

Our simulation with the synthetic data confirms the above theoretical analysis.

Figure 4.5 shows the actual processing time of the three methods on a Pentium PC.

The generation of the synthetic data is similar to the description in section 4.3.1. The

number of feature points increased from 10 to 200, while the number of frames was fixed

at 140. The processing time in Figure 4.5 is only for shape space computation, does

not include the feature points generation and tracking time. The results agree with

our theoretical analysis. We can see that the RLS method is much more efficient than
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the other two FMs, especially when P becomes large. Its shape space computational

time is almost linear in terms of P.
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Chapter 5

Euclidean Reconstruction of Shape

and Motion

After affine shape and motion estimates S¿, M¿ are computed, the next step is to

recover Euclidean shape and motion from them. In this chapter, we give the Euclidean

shape and motion recovery Sr, Mr from the estimated shape space at frame k under

each of the three affi.ne camera models - orthography, weak perspective and paraper-

spective. All that is required is to determine a 3 x 3 affine transformation matrix A¿

under each individual model, such that

M¿ : IùuA* (5 1)

S¡, : Att3r. $'2)

Preliminary

Under each model, assume that the camera has the following normalized intrinsic

parameters: skew s : 0, aspect ratio 'Y : !, and focal length f : l' Also assume

that the origin of the world coordinate system resides at the object centroid G, whose

62
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coordinates in the camera coordinate system of the k-th frame is [X¡, Yx, Zx]' . Then

the object translation vector relative to the camera system is t¡ : lXr,Yu, Zo]r ' The

camera rotation matrix at frame k is R¿ : lin,in,k¡]T, and the k-th image centroid of

P feature points is o¿ : loo,bx)''

5.1 Under OrthograPhY

Under orthography, an object is projected onto the image plane by rays parallel to the

optical axis. Orthographic projection is simple and typically a good approximation for

perspective imaging when the object's size and changes in depth between frames are

small compared to the object's depth from the camera'

In figure 5.1, a 3D point P : [X, Y, Zl' is projected orthographically onto the image

plane at p - lr,Al'. It is easy to see that

U:Y' (5.3)

Hence the orthographic projection matrix is determined by

t:x

1000
P,: 0100

0001

R¡ t¡

Orr.a 1

iT x¡
jT Y¡,

0rre 1

(5 4)

Obviously, the orthographic projection matrix Po has the form of P¡ in eq' (3.3).

Orthography is therefore an affine model. From eq. (5.4), we obtain lhe 2 x 3 a'ffine

iT

J'k

matrix at frame /c as

M¡: (5 5)
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X

Figure 5.1: Orthographic projection model

M¿ consists of only the first two rows of the rotation matrix R¡ and we call it the camera

motion matrix. Thus we obtain the following constraint equations under orthography

P

C

Y

, i: Ir. .. ,k (5.6)

image plane

p

c

v
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For all frames up to the k-th, eq. (5.6) gives a set of 3k linear equations

îl nrnfi,:t

il n rtfiu:t (i: !,2,"' ,k) (5'7)

il n un'[iu:s

with respect to the 6 unknown parameters of L¿ : A¡Á,T ' For k ) 3, this is an over-

determined problem which can be solved by using the linear least-squares technique.

Let

L¡,: A¡AI :
lr

lz

ls

l3

ls

I6

l2

l+

l5

(5.8)

(5.1o)

The eqs. (5.7) can be expressed as

G¡rl¡r: c¡r, (5 9)

where the 3k x 6 matrix G¿, the 6 x 1 vector l¿, and the 3k x 1 vector c¿ ârê defined

by:
ry¡ì î r

8'(tr,lrJ
1

lr

lz

l3

h

l5

la

k

gt(î0,î*)

st6.,it)

et6*,iu)

gt(ît,it)

gt(î0,io)

2k

G lt: c¡x

1

0

k

0

and

gr(a, b) : [ø1fu atbz I a2bv avbs * asfu azbz azbt * asbz asba]. (5'11)
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Define

D& : GlGo (5.12)

E&: GT.o. (5.13)

The least-squares solution of the vector l¿ consisting of the 6 unknown entries of A¡AI

is then

Ir : DtlEr. (5.14)

In the recursive scheme, the following equations are used to update D¿, Er and l¿

at each frame: For k : 1,"',F

î[ : x[q¡, iT : yTQn

D* : D*-r I s(îu, Î*)st(Î*, Îo) + g6*,i*)st6*,iu) + g(î*,io)gt(Î*,iu) (5'15)

Et : E¡,-r * s(Îu, Îu) + s6*, j*) (5.16)

lr: DttE¿

Here Ds : 06"6, Eo : 06¡1, ând l¿ provides the entries for the symmetric matrix

L¡, : A*AT. l* can be obtained by eigendecomposition of L¿. Such a solution of A¡

is determined up to a rotation and reflection. The rotation ambiguity can be removed

by aligning the ø-axis, y-axis with those of the camera reference system in the first

frame. That is to impose the following constraints:

il : [1 0 0]r and j1 : [0 1 0]r. (5'17)

The reflection ambiguity cannot be removed, because it is an inherent ambiguity of the

affine model. However, in real applications, this ambiguity can sometimes be removed

by means of some known information of the object (see [60])'

The camera orientation vectors i¿, j¡ and the shape matrix S¡ are then computed

iT : jT/-oi[:î[d,r

by

(5.18)
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S ai (5.1e)

5.1.1- Synthetic Test

We now show the results of Euclidean reconstruction from the estimated shape space

using the RLS algorithm under orthography. We continue the synthetic test in chapter

4. The synthetic data generation is described in section 4.3.1. Since the distance of

the object centroid from the camera was fixed at 20 times the size of the object, there

is no camera translation along the depth direction. In this experiment, orthography

should be a good approximation to the actual perspective projection'

In section 4.3, the performance of the RLS shape space updating algorithm is com-

pared with that of the original and the sequential factorization methods' We see from

Figure 4.4that the shape space converges within 40 frames in all three methods. Here

we continue to compute the 3D position of the feature points and the camera ori-

entation vectors in each frame, using the results of the estimated shape space of each

method. The accuracy of each method is compared by computing the shape estimation

errors and the camera rotation errors'

Shape error is defined as the root-mean-square of the distance between the recovered

shape and the true shape, divided by the object size, at each frame, viz:

ES,".,k: [¿r{(S""" - S)(S,," - s)r}/3P]I ¡ttz"

Es,"q,k: [úr{(ssen - s)(s,"0 - s)r}/3P]ï ¡tiz" (5.20)

Eso,i'k: [¿r{(s,"¿ - s)(so"¿ - s)r}/3P]i ¡rize,

where ESr"",k, ESr"q,t, ESori,,k represent the shape errors at the k-th frame of the

recursive, the sequential and the original methods respectively. Figure 5.2 shows the

shape errors of the three methods . We observe that the three methods perform

k Att
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similarly, with the errors being large at the beginning 20 frames but converge within

40 frames. In this experiment, after 40 frames, the shape space errors attain a constant

of 10-2.

Camera rotation errors are defined as the difference between the estimated and the

true values for roll, pitch and yaw. The results of each of the methods are compared

in Figures 5.3, 5.4, and 5.5. It is shown that the three methods also perform similarly

in terms of camera rotation recovery. All the methods are unstable in the early several

frames. After that, the errors settle down to within 1 degree throughout the sequence.

We conclude from the above results that the RLS method is as accurate as the

original and the sequential FMs. We already know from chapter 4 that the RLS shape

space algorithm is more efficient than the other two FMs. Note that the computational

cost of Euclidean reconstruction is trivial compared to that of shape space computa-

tion. Therefore, the RLS method is advantageous over the other two FMs in real-time

applications.

6.2 Under \Meak Perspective

When the object makes significant translation along the depth direction in an image

sequence, the perspective distance effect cannot be ignored. In this case weak per-

spective projection, which models the scaling effects caused by depth changes between

images, can be used instead of orthography to recover Euclidean shape and motion in

the FMs.

Weak perspective, also called scaled orthography, can be understood as a two-step

projection: first, all the object feature points are projected onto the average depth

plane (the plane through the object centroid and parallel to the image plane) by the
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rays parallel to the optical axis, then this plane is perspectively projected onto the

image plane. The second step is actually a uniform scaling of the average depth plane.

Figure 5.6 illustrates the weak perspective model'

In Figure 5.6, a 3D point P : [X, Y, Z]' is projected to the image plane at p -

lr,al'. It is easy to verify that

Thus the weak perspective projection matrix under the object-centered world coordi-

nate system has the form

X
Zn'

Y
9- z)

L¡
(5.21)

(5.22)

(5.23)

P

1

0

0

0

1

0

0

0

0

0
t¡,

1

0 iT x¡,

jT Yn

or*s Z¡,Z¡

R¡

0r*e
up

Hence weak perspective projection is also a kind of affine model. The 2 x 3 affine

matrix (also called motion matrix) at frame k is then

It involves the average depth Z¡, and the camera orientation vectors i¡, j¿

A set of constraint equations for determining A¡ under the weak perspective model

are then

M,Mf :1ù¿ArA L 1 ,k (5.24)

Let rfi, nf, be two rows of M¿, that is, M¡ : [*u tt*]t. For all frames up to the
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k-th, eq. (5.24) gives the 3k equations

nf n rnfao:L
zrk

ffnrl'r[nn:L (i,:1,2,''',k). (5.25)
zJ Ii

ff¡.ua'[ao:s
Then we obtain the following 2k linear equations

(tñ¿ - a)r 4/r[(tîr¿ - ñ¿) :o
(i,:r,2,...,k), (5.26)

fi A¡,Ã[au:s,

with respect to the 6 unknown parameters of L¿ : A¡AT ' To avoid the trial solution

M¿ : 0, we add an additional constraint ll*rll : 1, so that

nfA*aflrirr: 1' (5.27)

For k ) 3, the above over-determined linear system can be solved by LLS as in the

following.

L¿ is assumed as in eq. (5 8). The constraint eqs. (5.26), (5.27) are combined into

one matrix equation

G¡rl¡r: c¡6, (5.28)

where fhe (2k+ 1) x 6 matrix G¿, the 6 x 1 vector l¡, and fhe (2k+ 1) x 1 vector c¿

are defined by:

gT(ûrr - ñr, rîrr - ñr)
It

l2

ls

l¿

l5

la

k

0

G

gT(frr -ñn,rîr¡r-ñr)
gT(rîrr, ñr)

g"(rîtr, ñr)

gT(rîrr, rîrr)

ln: Cp (5.2e)

0

1
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and g"(a, b) is defined in eq. (5.11). Then the least-squares solution of l¿ is given by

lr : Dr,lg(t?tr, tñr) (5'30)

Dn : GIG*. (5.31)

In the recursive scheme, the following equations are used to update D¡ and l¡ at each

frame:

Fork:1, F

ü : *l'Qr, ñT : vTQ*

Dr : Dr-r * g(ñr - fin, ft.¡, - ñ*)gt(tÎtu - ñn, rîr¿ - ñ¡,)

*g(tîrr, ñk)gr(ñft, ñk)

lr : D* lg(r?,t, rÎtt),

(5.32)

where the initial value is

Do : g(rÌrr, tñr)gt(tñt, rñr). (5.33)

l¿providestheentriesforthesymmetricmatrixL¿:A¿'AT.Aucanbeobtained

by eigendecomposition of L¿.

The camera motion vectors tÍL¡, tt¡ and the shape matrix S¿ are computed by

^T: t# : fr'TAo

t;(

(5.34)

(5.35)

ñT/',u

S¡, : Alr taf,

The camera orientation vectors i¿, j¿ are then computed as

.r *í[ iT : n[ 
(5.36)

'; : I;;I' r'n : 
il"*il'

We note from eq. (5.24) that under the weak perspective model, the average deplh Z¡,

of the object at each frame can be determined as

17
zrle - )l-

(5.37)
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In contrast, object depth cannot be recovered under orthography

5.3 Under ParapersPective

Paraperspective projection, which models both perspective distance and position ef-

fects, can be used instead of orthographic and scaled orthographic in the situation

where objects have significant translation across the image plane. It can also be under-

stood as a two-step projection (see Section 2.3.1). The difference between this model

and scaled orthography is the first step: Instead of using rays parallel to the optical

axis, the object points are projected onto the average depth plane using rays parallel to

the centroid perspective projecting ray. The model is illustrated in Figure 5.7, where

a 3D object point P:lx,Y,Zl, is projected onto the image plane at p - lr,al'by

the paraperspective model, and G : lX*,Yu, Znl' is the object centroid under the k-th

camera reference system.

P is first projected, parallel to cG, to the average depth plane at [x - *, *

Xn, Y - ftZ lYn, Z¡,1r. Finally, this point is projected perspectively onto the image

plane as

(5.38)

L¡, f" -2t ¡Yr,).

Thus the paraperspective projection matrix under the world coordinate system is

given by

r *-þrut¡xr,)1

h
1

0

1

0

1

0

0

p 0

0)(-k
Z¡

YL
z¡"

0

R¿ t¡,
1T - *4 x¡,

iT - *t4 Yk

Orte Z¡t

P

Z¡,
Orra 1

(5.3e)
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Since Po has the form of Pa in eq. (3.3), paraperspective is also a kind of affine camera

model. The k-th image center coordinates o¿ : lox, bn]' :l*, ff\', and the k-th

affine matrix (called the motion matrix here) is obtained from Po as the following

M¿
1

Zr
1

Zp

iT - *kT
jT -*4

iT - or4

iT - bruT
(5.40)

Since i*,in,k¿ are orthonormal vectors, we have

M,Ml: iù¿ArATÑoT : +r
I+al

a¿b¡

a¿b¿

t +b?
1L ,k (5.41)

These are the metric constraints under the paraperspective model. For k ) 3,2k ovet-

constrained linear equations in terms of 6 unknowns of Lr : AtA[ can be derived from

eq. (b.41). Then Lt , Ãt ,Sr, M¡, are determined in a similar way as under orthography'

Since the k-th image centroid ot : lan, ó¡]T is known from the RLS algorithm (chapter

4), after M¿ is computed, the camera orientation vectors in,in,k¡ can be computed by

using eq. (b.40), and the average depth Z¡, is also obtained by eq. (5.41). For details

refer to Section 2.3.3 - paraperspective motion recovery.

5.3.1 Synthetic Test

We now compare the performance of Euclidean reconstruction under the orthographic,

weak perspective and paraperspective camera models. Prior to Euclidean reconstruc-

tion at each frame, shape space is first estimated by using the RLS shape space tracking

algorithm.

Data Generation

A set of 100 feature points were randomly chosen within a cube of side d. 77

synthetic image sequences were generated, with the initial object depths (the distance
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from the camera's optical center to the object average depth plane in the first frame)

varying from 4 to 80 times the cube side d. In each sequence, 60 frames were produced

by projecting the feature points onto a 572 x 512 image plane, using a perspective

camera model. The camera rotation was predefined as in Figure 5'8. Throughout

each sequence, the object translation components along the image axes were both d,

and that along the optical axis was half its initiai distance away from the camera. In

all three axes directions, the object translated evenly. The coordinates in the image

frames were perturbed by adding Gaussian noise with standard deviation 2.

Performance Comparison

At each sequence, we computed the shape space using the RLS algorithm. Since

computation of the shape space normally converges within 40 frames and then remains

within a small constant error, the estimated shape space at the last frame should be

the most accurate one in the sequence. Accordingly, we used this frame to carry out

Euclidean reconstruction under each of the three camera models. Shape estimation

error \ryas defined in the same way as in Section 5.1.1. Figure 5.9 shows the shape

errors with respect to the initial depth in each of the sequences under each of the three

models. We see that paraperspective reconstruction is much better than orthographic

reconstruction over the entire range of depths. This is because orthographic projection

cannot model the perspective scaling effect, which is caused by the translation along

the depth direction. We also note that the performance of the paraperspective model is

better than that of the weak perspective model at close range. As the object becomes

more distant from the camera, the performance difference between the weak perspective

and paraperspective models gets smaller. This confirms the importance of modeling

the perspective position effect when objects are close to the camera.
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5.4 Real Image ExPeriments

In order to test the accuracy and applicability of the recursive method, we produced a

sequence of 120 real images of a grid with a Pulnix TM-1000 progressive scan camera.

The angle between the two grid planes was kept at 90 degrees over the whole sequence.

In acquiring the sequence, the camera was rotated by hand around the scene. A stream

of 120 frames was grabbed at a rate of 15 frames per second. The frames 1, 70, 120

are shown in Figures 5.10, 5.11, and 5'12 respectively'

A toial of 141 feature points were selected and tracked using a corner detector [23]

with sub-pixel accuracy. Figures 5.13, 5.14, 5.15 show the tracked feature points in

frames 7, 70,120 respectively.

When producing the image sequence, a large rotation was employed while very little

translation was used, both along the depth direction and across the scene' Thus we

chose the orthographic model to do the Euclidean reconstruction in the RLS method'

Application of the recursive method yields a good 3D reconstruction as indicated in

Figures 5.16, 5.17, and 5.18. We can see from Figure 5.18 that the coplanarity of points

is well preserved, and the angle between the two planes is reasonably accurate'

The results of this experiment demonstrate that the recursive method works well

with real images. Its accuracy and applicability are also confirmed. Since the RLS

method is more effi.cient than the other FMs, it is suitable to be used in real-time

applications.
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Figure 5.10: The first frame of the grid sequence

Figure 5.11: FYame 70 of the grid sequence

Figure 5.12: FYame I20 of the grid sequence
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Figure 5.16: FYont view

Figure 5.17: Oblique view
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Chapter 6

The Extended RLS Algorithm for

Occlusion

So far, we have assumed that all of the P feature points are visible a,nd have been

tracked throughout the sequence. In real applications, this is not always possible.

Sometimes feature points are invisible and are not tracked in some of the frames because

they leave the field of view or become occluded. The occlusion phenomena are so

frequent that it makes an SFM method unrealistic if it cannot deal with them. Hence,

in this chapter, we extend the RLS algorithm to accommodate occlusion concerns'

Compared to the occlusion solutions presented in other FMs, our extended R.LS method

is simple and efficient. Simulation results also confirm its good performance.

6.1 The Extended RLS Algorithm

In an image sequence, frames with missing or occluded features result in the input

vectors to the RLS algorithm being only partially filled in. However, we can always

86
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estimate the image coordinates of these invisible features by using all those visible

feature points at the frame and their 3D positions recoveted at the previous frame.

Then the estimated and the tracked image data are used together to form the input

vectors to the RLS algorithm to update the shape space.

The recovery of the invisible feature points in a frame is based on the following

condition for reconstruction rules [71].

Condition for Reconstruction: In the absence of noise, an unknown image mea-

surement pair (u¡e,u¡o) in frame / can be reconstructed if point p is visible in at least

three more frames "fi, fz, fz, and if there are at least three more point1 Pt, Pz, Ps,

that are visible in all the four frames fu fz, h, f '

In addition, we know from chapter 5 that Euclidean shape and motion can be

recovered only after some initial frames (normally k > 3). Therefore, we assume that

occlusion occurs only at frame k ) 4, the occluded points must be visible in at least

three previous frames kt,lcz,ks 1 k,, and there are more than 3 feature points not

occluded at frames lct,lc",ft3,k. This assumption is generally satisfied in practice.

Assume ihal m (m < P) feature points are invisible and not tracked at the k-th

frame (k > 4). We show in the following that their image locations can be estimated

by using P - m tracked feature points at the frame and the 3D positions recovered at

the previous frame k_ L. Without losing generality we exchange the feature indexes so

that 1, ...,Tnrepresent lhe moccluded points, and m* 1,' ", P represent the P - m

tracked points in the frame. Combining eq. (e.tZ) for the P -m tracked feature points

in frame k, the following equation is derived

tn''^+'t 'úi'"r 

Iïr;*, ::Í,",
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or in short frL: MiSi-t, (6 1)

where frL,¡ U : m 11, . . ., P) are the registered image coordinates with respect to

o'u:la'¡,ó'*]" (the centroid of P -rn tracked feature points at frame k). Also 
"'r,i 

(i :

mlL,...,P) represents the 3D recoveïy of the j-th point at frame,k referringto O'u

(the centroid of the corresponding P - rn object points). Under affine projection, o'u

and O'¿ should coincide with each other. Thus we have the following equations'

1
P

a'k: Ð unjP-m

(6.3)

(6.4)

(6.5)

(6.6)

(6 7)

(6 8)

(6.2)

=rnlJ

1P
bt*: v) yn ,àr,u,t
o'u: lø'¡, b'r)'

fr'k,i:wk,i o'n, (i:rÍùi 1,"',P)

In eq. (6.1), we use sä-r,j to replace s'*,r. Under the object-centered world coordinate

system, and after some initial frames, the errors of the replacement should be small'

After the replacement, an estimate of the 2x3 motion matrix M'u at frame k can be

computed. Assume that the rank of S'*-t is 3. That is, the P - m object points are

in a general 3D position, with not all of them coplanar. Then we obtain the following

equation from eq. (6.1)

1
P

o'r-, t sk-l,iP-m j=ml].
stk-t,j: s&-r,j - Oi-t U -- * + 1, "', P)

Mi : ä';SË1(S;_'Sil')-' (18(P-m)+27 flops)

Thus the image location of each of the occluded points can be estimated as

unj :fr'tj(7) + atk

u¡r¡ :Ãr'ut(2) + Ui

frLj :M'ns'x-t,i (6 floPs)

(j : L,"',rn)' (6 e)
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Now all the image coordinatet wrj :luxi,uni]r, i:I,"',P at frame,k are available,

and so the RLS algorithm listed in Section 4.2.1can be used to update the shape space

at frame k.

The accuracy of the above feature location estimation depends on the difference

between S¿ and S¿-1. Since after 30-40 frames the 3D object shape estimation errors

of the RLS method normally converge to a very small constant error (see Section 5'1.1),

the difference between S¿ and S¿-1 is also very small after 30-40 frames'

In summary, the RLS algorithm in the case of occlusion is given by the following:

1. If this is the first frame (fr:1), choose P feature points

2. If k 1 4, go to step 4.

3. For Iç > 4, check if there are any occluded or missing feature points in the frame.

If none, go to step 4. If there aÍe Tn feature points invisible, use eqs. (6.2)-(6.9)

to compute their image coordinates'

4. Use the update equations listed in Chapter 4 to estimate the shape space Q¿

5. If k ) 3, use one of the affine models according to the camera motion pattern to

compute 3D recovery of the object shape S¿ and the camera motion. (refer to

Chapter 5)

Clearly, the computational cost for step 3 is 6P + 72(P - rn) + 27 flops. Therefore,

the total cost of the RLS shape space updating algorithm for the occlusion case still

remains af O(P).
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6.2 Performance of the Occlusion RLS Algorithm

We now use synthetic data to test the performance and feasibility of the proposed

occlusion RLS algorithm.

The synthetic data used here were generated as in chapter 4, except that some

image points were occluded. 8 randomly chosen points from a total of 100 features

were assumed invisible for 10 consecutive frames. After that, the random choosing

process was repeated until a total of 140 frames were processed.

The occlusion RLS algorithm given in the last section was used at each frame to first

estimate the shape space and then recover the 3D shape and motion under orthographic

projection model. The results of this experiment are shown in Figures 6.1 - 6.5'

We can see that the performance of the occlusion RLS algorithm is good and similar

to that of the RLS algorithm without occlusion. The shape space estimation errors

in Figure 6.1 converge within 40 frames to a constant error of 2.8 x 10-2. The shape

estimation errors in Figure 6.2 converge to 2.5 x 10-2 within 40 frames. The roll, pitch,

yaw estimation errors in Figures 6.3, 6.4,6.5 settle quickly after some initial frames

and are within l degrees after 30-40 frames (Figure 4.3 shows the true rotation).

6.3 Comparison with other Occlusion Solutions

6.3.1 The Original Method

In the original FM, Tomasi and Kanade used a solution-propagation method [7t] to deal

with occlusion. Sequences with occluded features result in a measurement matrix W

being only partially filled in. In this case, SVD factorization cannot be applied directly.
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In their scheme, the image coordinates of each of the occluded feature points are first

computed by the known points' positions in the sequence based on the condition for

reconstruction rules introduced in Section 6'1.

In the general case of a noisy 2F x P matrix 'W, a possibly large, full subblock of

W'is first decomposed by SVD factorization. This initial solution is grown one ro\ry or

one column at a time to compute the missing entries in 'W. SVD is then applied to

a growing subblock of W each time a pair of the missing entries in \ü' is computed.

After all the missing entries of W are computed, SVD is applied to the fully filled W

to recover shape and motion as the general non-occluded case.

Although the original FM also first computes the missing image data as in our

proposed solution, its computation is very expensive because SVD is used on a growing

subblock of W each time to compute a pair of missing entries in \il'. In our extended

RLS algorithm, the cost of computing the missing data in a frame is only O(P). Also

the accuracy of the solution-propagation method in the original FM is influenced by

the choice of the initial subblock of W' and in what order to grow the solution. To solve

this problem, a final refinement step is required that adds more cost to the method.

In contrast, in our extended RLS method, computation of the missing data in a frame

uses only the available data in the same frame and the computed results in the previous

frame. Thus no final refinement step is needed'

6.3.2 The Paraperspective Method

In the paraperspective FM, Poelman and Kanade addressed the occlusion issue by

proposing a confid,ence-weighted solution 160). In their scheme, the SVD step is first

reformulated as a weighted least squares problem as in eq. (6.10), by adding to each

element w¿¡ of the measurement matrix \N' a confidence value 7r¡. If a feature point is
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not obserued in some frames, its confidence value is set to zero

(6.10)

Minimization of e is a non-linear problem. It becomes linear in the following two

situations: when S is þ.td fixed to solve for ÑI and T; or when ú and T are held fixed

to solve for 3. These linear equations can be solved by an iterative method. Choosing

reasonable initial values for the iterative process is critical for convergence, especially

when there are a lot of 1ij : 0 in the system. Thus they developed an approach

analogous to the propagation method in the original FM to obtain reasonable initial

values for their iterative scheme. This step is costly and also makes the confidence

method complicated. Moreover, when the ratio of non-zero confidence drops below

0.6, the method sometimes fails to convelge even after 100 iterations.

Compared with the original and paraperspective FMs, our extended RLS method is

much simpler and more efficient. It is incorporated into the RLS shape space tracking

algorithm that is guaranteed to converge. Thus it does not have the problem of choosing

initial values or an initial submatrix as in the other two methods. The step of computing

the missing image data in a frame does not cause much extra cost to the RLS algorithm,

and the extended method's computational complexity still remains O(P). F\rrthermore,

it is a recursive method that gives shape and motion recovery at each frame, while the

other two methods are based on batch mode. Since it also has good performance

in the synthetic test, we conclude that the proposed RLS occlusion method has the

advantages of efficiency and simplicity over the other two methods.

2FP
s: t Dt?¡@o¡ - (MurSr¡ + Ii[i2j2i + Mß&i +T¿))'

i,=l j=L
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Chapter 7

Conclusloll

This thesis has presented a novel efficient recursive method for object shape and camera

motion recovery at each frame. The critical shape space tracking algorithm of the

method is formulated under the general affine camera model and uses the RLS and

PAST techniques. The proposed recursive method significantly reduces the shape space

computational complexity, while having similar accuracy as the original, sequential and

paraperspective factorization methods. The reduction in complexity is important in

real-time applications, especially when image data is voluminous. Moreover, the new

method does not require storage of a large measurement or covariance matrix as with

the other FMs. It thus emerges that the proposed RLS method improves the efficiency

of the class of factorization methods in terms of both computational complexity and

memory storage.

We also give Euclidean reconstruction from the estimated shape space at each frame,

using one of the three affine camera models - orthography, weak perspective and para-

perspective, according to the motion pattern of the camera. F\rrthermore, we propose

a ne\ry solution (the extended RLS method) to the occlusion problem. Compared to the

a

96
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occlusion methods presented in the original and paraperspective FMs, our extended

RLS method is simple and efficient. It is also a recursive method that gives shape and

motion recovery at each frame, while the other two occlusion solutions operate in batch

mode.

The main contribution of this thesis is summarized as follows.

o The bilinear formulation of the original FM is extended to the general affine

camera model. We demonstrate that the rank theorem of orthography still holds

under GAP. Affine shape space (simply called shape space) is defined as the row

space of the object shape matrix S. Then we formulate the shape space tracking

task as an MSE cost function minimization problem. We show that the shape

space is equivalent to the rank-3 principal subspace of the correlation matrix

of the image measurements, and the global minimum of the MSE cost function

provides an orthonormal basis for this principal subspace. We then study several

attractive properties of the MSE cost function, including that it has a global

minimum, its minimization process automatically realizes orthonormalization,

and it provides an arbitrary orthonormal basis for shape space at its minimum.

o We also develop a recursive least squares algorithm for MSE cost function mini-

mization (shape space tracking). The standard RLS technique, the matrix inver-

sion lemma, and the PAST approach are used in the developing of the algorithm.

The RLS algorithm has several advantages over the other factorization methods,

including its effi.ciency in both computation and storage. We show that the com-

putational complexity for shape space updating at each frame in this algorithm

is only O(P) for P points tracked in ,t' frames, while that in the sequential FM

is O(P2), and that in the batch-type original and paraperspective FM is O(FP2)

for processing the whole F-frame sequence. Also since it is an adaptive algorithm
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and uses the image coordinate vectors as input at each frame, it does not require

storage of a large measurement or covariance matrix as in the other FMs. F\rr-

thermore, once a set of initial values is given, the RLS algorithm converges to

an orthonormal basis of the shape space. No extra step of computing a station-

ary basis is needed for computing the affine transformation matrix recursively

at each frame. In contrast, the sequential FM needs this step at extra cost. Fi-

nally, synthetic tests demonstrate that the RLS shape space updating algorithm

has an accuracy similar to the original and the sequential FMs, while its actual

processing time is much less.

o A procedure is given for recovering the Euclidean shape and motion from the

shape space at each frame under the orthographic, weak perspective and para-

perspective camera models. The experiments show that when objects are far

from the camera, and the camera motion does not involve much depth change

and translation across the image plane, the orthographic model produces good

reconstruction results. However, when the object translates significantly toward

or a\r/ay from the camera and across the camera's field of view, paraperspec-

tive and weak perspective reconstruction yields much better results. Under the

pa,raperspective and weak perspective models, the distance from the camera to

the object in each frame can also be estimated, while that is impossible under

orthography.

e The RLS algorithm is then extended to accommodate occlusion cases. The co-

ordinates of the invisible feature points in a frame are first estimated using the

tracked feature points in the same frame and their 3D positions recovered at

the previous frame. Then the estimated and the tracked image data are used

together to form the input vectors to the RLS algorithm to update the shape

space. The extended RLS method is compared with those occlusion methods in
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the original and the paraperspective FMs. We demonstrate that our method is

less complicated and more efficient than the other two. Synthetic tests also show

that the extended RLS method performs very well.

o The real-image experiments confirm the recursive method's applicability and

good performance, and indicate that it is well suited to real-time applications.

Finally, much work remains to be done in the field of factorization and structure

from motion. F\rrther intensive real-image testing needs to be carried out in order

to assess the performance of the recursive method when camera motion involves large

translation, and to assess the performance of the occlusion RLS method when image se-

quences exhibit occluded or missing data. Fasteï convergence and improved robustness

for shape space tracking might be achieved by using some recently developed subspace

tracking techniques, such as the NIC method [53] and the natural power method [33]'

Another important avenue in need of exploration is the incorporation of covariance

matrices into the factorization approach. These matrices provide a measure of the

uncertainty of the data and are sometimes available in conjunction with the feature

detector in use. Improved parameter estimation may as a consequence be attainable

along with the provision of error bounds on the final estimates obtained (see [12,

13, 38, 39,43,49]). It would also be interesting to perform SFM/factorization when

a modicum of (model-based) prior information is available concerning the particular

shape in view.
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