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Abstract

The beginning of the thesis contains a review of finite temperature field theory
using functional methods and the construction of finite temperature Feynman rules.
Particular attention is paid to the so-called real and imaginary time formalisms.

The gauge field propagator for a non-abelian gauge theory (pure Yang-Mills) in
the Lorentz gauge but with gauge parameter o # 1 at finite temperature is derived.
This is achieved by seeking the most general solution to the equation of motion for
the propagator under the constraints of rotational covariance. The propagator is
used to compute the one-loop correction to the gauge field propagator, in the real
time formalism and arbitrary a.

A well known problem occurs in the real time formalism when finite temperature
amplitudes contain products of delta-functions of the same argument. By examining
free field theory, we show how one can avoid such constructs, by using derivatives,
rather than products, of § functions. Possible insights on how this can be generalised
to interacting field theories are discussed.

Finally, a calculation in coordinate-space showing the temperature independence
of the chiral anomaly for an arbitrary gauge group and arbitrary but even dimen-
sional Euclidean space is presented. The properties of field theory in the imaginary
time formalism and the methods of Nielsen, Schroer and Crewther are utilised. The
temperature independence of the Atiyah-Singer Index theorem is also established.

The original work is introduced in

e Sections 2.2, 2.3, 3.2, 3.4, 4.4, B.2, C.2.

e The finite temperature aspects of the Atiyah-Singer Index theorem in Section

4.5 and of the spin 1 propagator in Section A.1.

e Parts of the table of integrals in Section A.2, particularly those involving

derivatives of é§ functions.
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Chaul

Chapter 1

Background to Finite

Temperature Field Theory

1.1 Introduction

The purpose of this chapter is two fold

¢ To present a field theoretic point of view to finite temperature field theory,
laying down its mathematical structure and to examine how finite tempera-
ture effects are manifested in this approach. Extensions to gauge theories are
given particular attention. Care must be exercised to ensure that only the
physical degrees of freedom contribute to the quantities that we are interested

in calculating.

e To investigate how finite temperature alters the physics of a particular system,
with emphasis on the behaviour of quantum field theories. For example, the
physics relating to spontaneous symmetry breaking (and phase transitions)
and its influence under finite temperature effects will be examined. Also, a
Ibrief survey of how finite temperature effects can appear through cross-sections

and decay-widths will be presented, using the 7° — 2y decay width at finite



temperature as a specific case. It will seen that some situations are not affected
by finite temperature effects - such as the amplitude associated with the chiral

anomaly (which forms the subject of Chapter 4).

Conventional quantum field theory only describes fields and their interactions at
T = 0, absolute zero and when the density of the system is negligible (i.e. many
body effects are ignored). For most circumstances this has been sufficient, since
many theoretical predictions have been verified experimentally on the basis of T = 0
field theory. To some extent, this is not unreasonable since finite temperature effects
become important when &7 of the system is of the order of magnitude of the masses
of the fields. This can seen by noting that thermal energy for a single particle in
a gas of fundamental particles at temperature 7', is related to the difference of its
relativistic and rest mass energies, which for a massive particle of rest mass mg is

o (-] = dur )

2

c2

where k£ = 1.38 x 10723J K ! is Boltzmann’s constant, v is velocity of the particle
and c is the speed of light. Hence thermal fluctuations are of the order of mgyc? when
the factor in the brackets is of O(1) which happens w‘hen v ~ 0.85¢. For electrons
(protons) this occurs at a temperature of the order of 7' ~ 10'°(10'%) K.

Such temperatures are in general beyond the realms of accessibility of present day
experiments, mainly due to difficulty in maintaining and controlling such conditions.
There are however some exceptions - for example, experiments involving relativistic
heavy ion collisions which have been carried out recently, where the dynamics of the
resulting quark-gluon plasma can be understood more readily if finite temperature
effects are taken into account. Finite density effects are also presumed to play a
vital role. Of course nuclear reactions are another instance where finite temperature

effects play a role.



On the astrophysical and cosmological level, finite temperature effects play a
crucial role. During the early stages of evolution of the universe, the spectrum of
particles believed to exist at various epochs can undergo drastic changes (phase
transitions) as the universe expands and cools. The dynamics of stellar systems,
neutron stars for example, can be sensitive to finite temperature and many body
effects.

The main idea is to combine the concepts of statistical mechanics with those
of quantum field theory. In some aspects there are some striking similarities be-
tween cach of these areas. To incorporate finite temperature effects into quantum
field theory, various approaches can be used - for example, the real time approach
[DJ74,LvW87], imaginary time approach [Be74,We74,LvW87], that of Thermo-Field
Dynamics [UMT82] which requires doubling the number of fields, and the closed time
path method [Sc61]. We shall be dealing only with the ‘real’ and ‘imaginary’ time

formalisms.

1.2 Finite Temperature Field Theory

The methods describing gauge theories at finite temperature presented here will
follow those of Bernard [Be74], Dolan and Jackiw [DJ74] and Weinberg [We74]. They
have given ways for obtaining finite temperature Feynman rules that can be used
for perturbation theory. We shall begin with the derivation of the Feynman rules
by functional methods, the major reference for this section being Bernard [Be74].
This section constitutes the derivation of the Feynman rules in the imaginary time
formalism, ITF.

Suppose the dynamics of any field ¢(Z,t) in the Heisenberg picture, which could
have scalar, vector, spinor etc. properties, and its conjugate momentum field (&, 1),

are governed by the Hamiltonian density H(w, ¢). Letting ¢(Z,0) be the Schrodinger



picture field, we can define eigenstates, |¢o > and |¢1 >, of ¢(Z,0) by

#(Z,0) |[¢o > = ¢o(Z) o >,
$(Z,0) |¢1 > = ¢1(Z) |$1 > . (1.2)

The transition amplitudes from an initial state |¢o > at time ¢ = 0 to a final state
|¢1 > at t = ¢, can be expressed in terms of the Hamiltonian form of the Feynman

functional

<@l gy >= N [ DrDs exp {z/ot dt [ & [w—H(n,qﬁ)]} (1.3)

where the integral over classical fields, f D, is restricted to field configurations of

the form

do(Z) at t =0 and $(T)att =1, (1.4)

and the functional integral over the conjugate momenta [ Dr is unrestricted. N is
a normalisation constant and the time derivative of the field is defined in the usual

way by

9 ¢(%,0)

Bzt = 5L, (1.5)

It is generally understood that momentum integrations are performed before field
integrations.

To incorporate finite temperature effects, one lets 2 ¢; = 8, where 8 = 1/T the
inverse temperature (in units such that Boltzmann’s constant k = 1), and performs

a change of variable of

it=r7 (1.6)



in (1.3) to obtain

< d1le P |go > = N/ Dr D¢ exp {/Oﬁ dr /d3;c [z 7rqi$—7‘l(7r,¢$)]} (1.7)

where ‘time’ differentiation is now defined by ¢ = 8 p/OT.

The most important quantity to compute when dealing with many body systems
and statistical mechanics is the partition function Z = Tre=PH. In principle, one
can determine the complete dynamics and behaviour of the system from the partition
tunction - for example, intensive variables such as pressure, specific heat capacitance
etc. can be obtained by differentiation of Z by extensive variables such as volume,
internal energy, entropy etc.

For the field theoretic case, one can take the statistical mechanical approach for
calculating finite temperature Green’s functions in terms of thermal averages of T
ordered fields :

Tr |e PHT [§(21, 1) $(Z3,T2) ...
(T [p(21, 1) (22, 72) ...]) = [ [¢T(re_m)q¢( ) ]] (1.8)

where T' is the 7 ordering symbol. The periodicity properties of the fields can be
" deduced from the following : let ¢,, @s, ... be any fields, either bosonic or fermionic,

keeping in mind that 7; € [0, 3]

Tr [e=BH (21, 8)T 5, 75) ...
(T [$a(27, B) Pp(22,72) ...]) = - da Trﬁe)—ﬂ1£¢b( ) ]]
_ Tr [Tl m) - ] P (s, )
N ) Tre—PH
_ Ir |T [¢e(22,72) - . ] %(ﬁ,O)e‘ﬂH]
- Tre-8H
= & (T [$a(€1,0) ¢5(Z2,72) ...]) (1.9)

where a + (—) is contributed when @, is a boson (fermion) operator and we have



used

e PH &a(Z1,7) ePH — da(21, 7 + B) (1.10)

~which is just the time translation of a field operator. The cyclic property of the
trace has also been used.

The partition function can be derived by allowing the field integration D¢ to
be carried over only those classical fields that have the same configuration at 7 = 8

as at 7 =0, 1.e. the fields are periodic. So the partition function, Z, is

TrePH = = ple P ¢ >
¢
= N/D7r /periOdichﬁ exp {/Oﬁ dr /dax [z x¢ — H(r, ¢)]} (L.11)

In most cases of interest, the Hamiltonian density H is at worst quadratic in the
conjugate momenta 7 - meaning that by completing the squares one can do the =
integration. This causes a shift in 7, with = being replaced by its value that gives

the stationary point of the integrand and is given by

3= PHnd (1.12)
on

which is the prescription that one needs to convert from the Hamiltonian to the
effective Lagrangian formalism. The effective Lagrangian L.s; is now a function of
L(¢,1 ¢~) where all 7 derivatives in £ are understood to be multiplied by i. The

partition function now becomes

TrePH = N’(,B)/ D¢ exp {/oﬁ dr /d3$£eff (¢,z¢)} (1‘.13)

periodic

where N'(3) is a new, infinite, normalisation constant. Its temperature dependence

is due to the m functional integration. A similar infinite normalisation factor also



arises in zero temperature field theory and is usually ignored.

Applying this to the case of non-gauge theories, one can obtain finite temperature

Feynman rules. As usual, the quadratic part of the effective Lagrangian determines

the propagators of the theory, whereas the non-quadratic parts are vertices and

hence describe interactions. The change of variable (1.6) is just the well known

‘Wick rotation’ which converts the theory from Minkowski space to Euclidean space.

Thus one does not need the € prescription to specify the poles of the propagators.

The periodic properties of the field configurations, or equivalently, the range of the 7

integration is restricted to [0, 3], means that from a Fourier transform point of view,

energy summations rather than integrations are the norm of finite temperature field

theory. For bosons, the energy is given by

Inm
ko — Wy = 7
whereas for fermions
ko — w, = (2n+ )7

B
and n is summed over the range (—o0, 00).

Suppose we have a scalar field ¢ governed by the Lagrangian

‘C(d’v ¢) = Eeff(¢, ¢)
= 10,40"¢ — 1m*¢* — \¢".

Then (1.13) becomes

TrefH — N'(B) / D¢

periodic

(1.14)

(1.15)

(1.16)

.exp{/oﬁ d»r/d% (‘71 (80 #)% + (8 6)(8: ¢) + m?¢?] _w)}. (1.17)



Since ¢ is periodic in the interval [0, 8], one can expand the field in its Fourier

series
1 ; d3k iEd _fwnT 7
=52 e ()
where
B - .
=/d3x/0 dr e=*% ™ AT ¢ (Z,7)
and
i S
n /B '

The time part of the é function is given by
/ﬁ eilwn—wa)T B8
0

and can be used to show that

So = ‘112/(2 (68 +E ) 6u(F) 6ol F)
- &k ;
= 55 2/ oy 28 B 6-n(F)

which comes from the quadratic part of the action
s -1
- 3. (= 2 _ , 2,2
So= [ dr [z (5 [@08) + (083 ) + m*e?])
and
D(k) = w? + k* + m?.
Thus the Feynman propagator Ar in the momentum representation is

1

A n,E=Dk‘_l=——'—_.—
plonsF) = (D) =

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)



whereas its coordinate space representation is

1

1 dSk T ; '
Ar(T — 51, r—r = / eck.(a?—z?’)+zwn(1'-—r )] _ .
rl V=52 Gy w2+ B2 m2

(1.26)

Interactions can be included just as for the case of zero temperature field theory
by expanding the exponential of the interaction term, A¢%, - the result is perturba-

tion theory. To do this, the following functional formula is used

/ D % ¢(71,11) $(T2, 72) $(F3, 73) B(Fay Ta) - ..

= C (det D)™'/? {qﬁ(fl, 1) $(Z2, T2) (T3, 73) H(Ta, 7‘4)} + permutations (1.27)
—_—r S———
where the contraction of two fields is given by the Feynman propagator
¢(£la Tl) ¢(£2a T2) = AF(E - il, T — T,)- (1.28)
———’

This means that one can use exactly the same set of diagrams to compute a thermal
amplitude as one uses for zero temperature field theory. So, the finite temperature

Feynman rules are those at zero temperature with the following modifications

d*k s 43k
e~ 2] Gy
kh — 1w, (1.29)

1 — —
(27(‘)3 /86Wn1+(d"2+... 63(k1 + ’Cz + .. )

z

(2m)* 6%4(ky + ko +...) —

where the factors of ¢ come from performing the Wick rotation to Euclidean space
and wy, is given by (1.14) and (1.15).

The normalisation constant N'(3) and (det D)~'/? also nee;i to be evaluated
when calculating the partition function Tre=?H. Consider free scalar field theory,

whose Lagrangian is (1.16) with A = 0. In such a case, (1.17) is a simple Gaussian



which can be evaluated exactly using (1.27) (noting that there are no fields to

contract)
/ Dée® = K (det D)~'/2. (1.30)
Now, it is well known that
InZ =InTre ¥ = —71 In [detD] + In N'(8) + K’
= _TITrlnD—{—lnN'(ﬁ)—i—K' (1.31)

where the determinant of an operator is expressed as the product of its eigenvalues,
and K and K’ are temperature independent constants which are not important to

the calculation. Hence, using (1.24) one gets

1 d3k 7 !
InZ = 7; / o 2 (w2 + R+ m?) + In N'(B). (1.32)

To perform the summation, we write

E2+m2 1

> In (wfL +E+ m2) = /1//32 da® ) g + Y In(w? +1/8% (1.33)

the lower limit 1/5? has been chosen so as to give no 8 dependence to the final
result.

The second term on the RHS of (1.33) is temperature dependent and infinite, but
when the 7 and ¢ integrations are carried out, its contribution to In Z is cancelled
by In N'(8) up to a B independent constant. Putting all this together one finds that
N'(B), (det D)~'/2 and all diagrams not connected by external lines are cancelled
by the denominator of (1.8).

To evaluate the first term on the RHS of (1.33) one can use the Regge trick of

introducing a function that has poles at w = 2wn/B with residue 1 and choosing

10



a contour in the complex w plane which includes all the poles. The most suitable
function is

il 1

z .

2P ot (58)
and a contour that can be continued into the upper and lower half regions of the

complex plane is chosen which will give residues at the poles w = +ia. Bearing this

in mind, the [ da? of (1.33) can then be performed. The partition function becomes

d*k
Inz = /— In [ csc @ + Bindependent constant
J (2m)3 2 :

/ (;ljrl;a [‘gwk —In (1 — e"ﬁ“”‘>J (1.34)

where wi = k2 + m2. ,

Equation (1.34) is the partition function for an ideal Bose gas. Notice the zero
pOiI‘lt energy of the vacuum has been included (the first term of the last line of
(1.34) - which is expected as using the functional method does not incorporate

normal ordering.

1.3 Gauge Theories

Care must be exercised when the techniques outlined in the previous section are

applied to gauge theories. Consider QED with Lagrangian

1
L= —ZF,“,F’“’ where Fo=0,A,-0,A,. (1.35)

If the Coulomb gauge &; A; = 0 is chosen or an axial gauge, e.g. Ag =0 or A3 = 0,
and one calculates H, then the partition function, Z, is just that which describes a
massless Bose gas with two degrees of freedom. However if one chooses the Lorentz

gauge, 9, A" = 0 with gauge parameter o = 1 (the so-called Feynman gauge), and

11



proceeds to evaluate the Hamiltonian H and the partition function Z = Tre P
the resulting theory describes a Bose gas with three positive and one negative metric

states

Bk [ —Pwy
-BH - _M*e _ L —Buwg
InTre e 3 (2%)3[ 5 In (1 e )J
&k [ —pBuw i
+/ -(,M)S[ S = (14 e )| (1.36)

where w? = k2. The results given by (1.36) are highly suspicious because they
include the thermodynamics of spurious degrees of freedom arising from the fact we
have chosen the Feynman gauge. In the Coulomb or axial gauge, the photon has two
independent degrees of freedom, whereas in the Feynman gauge it has four degrees
of freedom. The extra degrees come from the longitudinal and timelike photons,
which in reality do not exist. The partition function given in (1.36) includes these
two extra degrees of freedom.

The point of this exercise was to show that the partition function Tr e=#¥ is not
necessarily a physically meaningful construct in all gauges. In some gauges spurious
particles are wrongly included as physical degrees of freedom. Such particles are
never in thermal equilibrium with the thermal heat bath.

Thus the partition function should be evaluated when a physical gauge 1s used
- by a physical gauge we mean one which has the correct number of degrees of
freedom. Ome can ask whether it is possible to get the same partition function in
other, non-physical, gauges by modifying certain functional techniques. In short the

answer is yes. To see this, consider a non-abelian gauge theory governed by the

Lagrangian
L=-— iF:,, fany (1.37)
where
Fg, =0, A%~ 0, A% + g f* Ab A° (1.38)

12



and f2% are the structure constants of the group. Suppose we write the Hamiltonian
in the axial gauge, A3 = 0. In this case there are two degrees of freedom for each
gauge field, A} and Aj. In this gauge, the partition function is

Z =Tre | goge = N / 1L, DP? DP? / DA® DA?

periodic

. exp{[f dr [ [ip; A;—H(A;,P;)]} (1.39)

where P are the conjugate momenta of A with j = 1,2. The P# integration can

be done with the result

Z = [N'(B)]" / DATL, 6§ (A2) exp l /0 * ir / d%ﬁ(A,iA)]. (1.40)

periodic

Apart from the limits of the 7 integration, this is the same result as one gets using
the Faddeev-Popov method. It is understood that DA means functional integration
over all components of the gauge field. The gauge condition is enforced by the §
functional and @ = 1,...,n. This can be expressed in a more general form

z = V@ |

periodic

DAD exp [/Oﬁdrjd%c(A,gﬁ,iA,ié)

. det [g%:] I, § (F?) (1.41)

where m denotes the total number of physical particles and polarisation states of
the theory. The II; 6 (F ") term is the product of gauge fixing conditions which se-
lects a surface in function space which corresponds to a physical gauge. The term
det [3 F/ 8w°] is the Faddeev-Popov determinant and w(z) are a set of functions
that parametrise gauge transformations. For the case of the axial gauge, the deter-
minant in (1.40) is

0
det (3_2:3) = constant (1.42)

13



and is apparently temperature independent since temperature only appears through
the zo coordinate.

Since we started with a gauge invariant Lagrangian, in principle (1.41) should
give the same result for whatever gauge is chosen - including non-physical gauges,
provided that the surface in function space formed by the gauge conditions F®(z) =
0 intersects the orbit of any gauge field under gauge transformations (-)nly once.
This ensures that only contributions from physically distinct fields are allowed for
evaluation of the partition function- i.e. those fields that are not connected by a
gauge transformation. So, one could choose an unphysical gauge I'*(z) = 0, but the
partition function should still be the same as that computed in a physical gauge.

By specifying the choice of gauge and boundary conditions, one should be able
in principle to compute the partition function. For the finite temperature case, this
means the field configurations should vanish at spatial infinity and be periodic in
the time coordinate ¢(Z, zo+ B) = +¢(Z, z0). Compare this to the zero temperature
case where one has fields that vanish at spatial and temporal infinity.

Thus, it has to be borne in mind that Z given by (1.41) is the same in any gauge
but that this is not the case for T'r e=PH,

As an example, consider pure electrodynamics (1.35). Let
F(z,7)=0,A"— f(Z,71) (1.43)

where f (2, 7) is an arbitrary but regular function, and 0 < 7 < 3, then the partition

function, Z, in Euclidean space is

Z = [N'(B) / DA exp [/(;ﬁ dr /d%: (— iFWFW)]

det, (%) §(8, A* — f) (1.44)

14



where it is noted that there are two [N'(8)] factors - the same number as there are of

physical states for an electromagnetic (massless) field. Under gauge transformations,

0A,=—-0,w (1.45)
then
It
det (M) = det (—D) (1.46)
dw

where O = 0, 0*. As is the case for zero temperature field theory, (1.44) is actually

independent of f, so when its RHS is multiplied by

exp [—% /f/d%f{l (1.47)

and integration over Df carried out, one gets a 3 independent normalisation con-

stant which is absorbed into N'(3), leading to

Z = [N'(B)] det (~0) / DA exp [ /0 * ar / e (— iF,WFW) . i 3, A“)Q} .

(1.48)
At zero temperature, det (—0O) is just a constant, however at finite temperature
1t is temperature dependent due to periodic boundary conditions and must be given

attention. Choosing the Feynman gauge o = 1
8
Z = IN'B) det (-0) [ DA exp [ [ [ <—%a,, A, 0" A")] . (1.49)
0

Performing the functional integration, there are four integrals to do - one for each

¢ and writing

det (—0) = exp[Tr In(—0)]

= exp Zn: / (;lwl;a In (wz + I-C.2) (1.50)

15



where the determinant is defined only on the space of periodic functions, Z becomes

InZ = 2lnN'(B Z/ (2 E ln w +k2)

= 2/ dsk _In [—%—m (1—e-f’°’k)l (1.51)

where w, = (k2)1/2 Thus (1.51) now correctly describes a zero mass Bose gas
with two polarisation states. This result could not have been arrived at without the
assistance of the Faddeev-Popov determinant.

Clearly, for the case of non-abelian gauge theories, the Faddeev-Popov deter-
minant would be more complicated and ghosts could (in some gauges) show their
presence. This presents no problem provided that ghosts have Bose-Einstein type
Boltzmann factors, the same as photons and gluons. Nevertheless the same princi-
ples are involved in the computation of the partition function - or more specifically

Z, albeit it will be more complicated.

1.4 Finite Temperature Green’s Functions

Converting the results of the previous sections of this chapter, which is a presen-
tation of field theory in the imaginary time formalism, to the real time formalism
is non trivial. Dolan and Jackiw [DJ74] have explored how this can undertaken, a
summary of which will be presented, using two-point functions as the starting point.

Consider a spin-0 field. The finite temperature two-point function (Green’s func-
tion) is

Date—y) = TrEPITL00) o))
Tre—PH

= < T {4(z)¢(y)} > (1.52)
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which for non interacting fields, satisfies
(Elx + mz) Dg(z —y) = —i6(x — yr) (1.53)

for a given set of boundary conditions. Using the imaginary time formalism (ITF)

and letting 0 < izq, tyo < B :

< T {e(z)¢(y)} > = <é(z)(y) >

= DE(:v - 9), 1Zo > 1Yo
= <d(y)d(z) >
= Dj(z—y), 1Yo > iTo. (1.54)
For iz, tyo € [0, 8] the propagator has the property
Dﬁ(m — y)ll‘o-_-o = DE(CE - y)|1‘0=0
Dg(x = Y)loo=-ip = Dz (z — y)lso=—is (1.55)

and by using the cyclic property of the trace as well as changes of the ficld variables

under time translations (as outlined in the previous section), one concludes that

Dﬁ(x - y)|1'0=0 = Dﬁ(w - y)l-‘vo=—iﬁ' (156)

The Fourier transform of (1.56), in the ITF, would be just that given in the
previous section. However, the propagator can be expressed in terms of real time

Fourier integrals. Let

DE (k) = / d'z e DE (1) (1.57)
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where the bar denotes Fourier integral transform (as opposed to Fourier sum). Now,

writing Dg(k) for Dg(ko, k), p(k) for p(ko, k etc., one has

D5k = [dtzelomoF) ps(ag, g
: _ /d4-77 ei(koxo—E.i’) DE(SUO _ Z,B, f)
= ¢ ko [ diz eth= Dz (z)

= e D3 (k) (1.58)

where (1.55) and (1.56) have been used.

Equation (1.58) can be rearranged by allowing

D3(k) = [14 f(ko)] p(k)

D§(k) = f(ko)p(k)

) = g
p(k) = D3(k)— Dj(k). (1.59)

The spectral function p(k) defines possible energies for an excitation of momentum

k. The full propagator can be written as

Ds(k) = f d'z ¢** [0(20) D3 (2) + O(~z0) D5 (x)]
.o diy | Dy(kg, k) Ds(ky, k)

I—oo27r kg—k(’)-l-lé ko—k(’)—lé

_ o edk o | 1R f(k)

- Zf"m o Pkos k) [k0~k(,—|—ie ko — ki — ic

_ o dky (kg k)
Z/_OO o ko — K 1 ic + f (ko) p(k). (1.60)

The spectral function can be derived with the assistance of the ITF form of the
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propagator Dg(k)
7 —ih —2mnzg /0 3 —ik-2
Dg(wn, k) = /0 dzoe 0 /d Te Dg(z) (1.61)

and noting the boundary conditions (1.55) and (1.56) for zo € [0, —i8], then

‘

- —lﬁ 7
Dg(wy, k) = /0 dzg e~ 2mmeol/B /dam e—’k'iDE(w)

—if oo e
— [) d.’L‘o e—21mzo/,8 /;oo dSa,/_ e—zk.i’Dﬁ>(w)

eBko _ 1

. [ dkg
e gy L) o)

Il

=i dko p(ko, k) (1.62)

—c0 2T wn—k‘o.

=+ -

We now extend Dg(w,, k) to a continuous function ‘Dg(ke, k) and the spectral

function will be given by

p(k) = Dj(k)—Dj(k)

= Dp(ko + i€, k) — Dg(ko — ic, k) (1.63)
which in the free field case will be given by
p(k) = 2m (ko) 6(k* — m?). (1.64)
Thus the free scalar propagator in the real time formalism (RTF) is
_ ) 2T

Ds(k) = gr—r e + o 8K~ m?) (1.65)

and satisfies the momentum representation of (1.53)
(k* — m?) Do(k) = ¢ (1.66)
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where F = (Ez + m?)1/2 is the energy and the Feynman prescription ie, is assumed

when dealing with the poles in the first term on the RHS of (1.65). Compare this
with the ITF form of the propagator

?

Dy(k) = 15— (L.67)

For fermions the situation is very similar, although one must now take into

account the fact that fermion fields satisfy anti-commutation relations. A very

similar procedure is used to derived the RTF form of the fermion propagator Ss(z—y)

Tre PP T O(z)U(y

= < TY(z)U(y) > (1.68)

which satisfies the following equation

(i —m)Sp(z —y) =ib(z—y) (1.69)

but with boundary conditions

Sﬁ(x - y)$o=0 = S;(:II - y)moﬁo
S6(T = Y)zo=—is = S5(T ~Y)ao=-is

Sp(z — Y)zo=0 = —Sp(z — y)xo;_gp (1.70)

since in the interval [0, —:f]

< TU)0(y) > = < ¥(z)T(y) >
= S3(x—y)  izo > iyo

= — < ¥(y)¥(z) >
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= Sg(m —-y) 1Yo > iZo. (1.71)

As for the scalar case, one can write real time Fourier integrals for the fermion
propagator
S = [ diz e 5P (z) (1.72)

where we can write -

Sp(k) = [1 = f(ko)] p(k)

Sg(k) = f(ko)p(k)
1

oK) = 33(k)+350h) (1.73)
The spectral function p(k) for the fermion is obtained from the ITF propagator

- -t -
Sp(wn, k) = /0 g e~Crti)raolB / dPx e 3 ()

o [ dko p(ko, F)

o 27 o — o (1.74)

where
plko, k) = Sp(ko + i€, k) — Sa(ko — ie, k) (1.75)
and the RTF propagator is determined from the spectral function :
Ss(k) = / iz [0(20)53 (2) — O(~20)S5 ()]
o dk! k. E
=i % AR ) k) (1.76)

—c0 21 ko — kg + €

where for non-interacting fields (with f.= k,v*)

p(k) = 2me(ko) (f+m)8(k* —m?)
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¢ _ 2x(f+m)
K—m +ie efE 41

Sp(k) = 8(k? — m?). (1.77)

1.5 Examples

Having presented some of the mathematical machinery of finite temperature
field theory in the previous sections, let us present some situations in which finite
temperature effects can alter the behaviour of a field theory.

As examples, we shall examine how finite temperature affects the following :
e Spontaneous symmetry breaking.

e Properties of the Ay component of the gauge field in Wilson lines.

e Cross-sections and widths of any process.

Consider the first case of spontaneous symmetry breaking. Consider a scalar
field ¢ described by (1.16). The objects of interest are the effective potential energy
Vess which combines V' (the zero-loop effective potential), quantum effects and finite

temperature effects and where V is
V(¢) = ﬁdﬂ + i¢4 (1.78)
2 4! '
where for m? > 0, the minimum of the potential is
V=0 at ¢ =<¢>=0. (1.79)

The vacuum expectation value (VEV) of ¢, < ¢ >, is the value of ¢ which gives
the minimum of the potential V. In this case there is no spontaneous symmetry
breaking - at the classical level. Spontaneous symmetry breaking can arise due to

quantum effects as shown by Coleman and E. Weinberg [CWT73].
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However, suppose

V(8)= -4+ ot (1.80)

and m? > 0, minima of the potential will now be at some non-zero value of ¢ which

can be determined by calculating V.s;/0¢. The VEV of ¢ for this case is

< ¢ >= LGS O (1.81)

VA

and spontaneous symlﬁetry breaking will occur. So, if neither quantum or finite
temperature effects are considered, then V.¢7(¢) = V(¢), given by (1.80).

The one-loop effective potential at finite temperature can be obtained by sum-
ming all one-particle irreducible diagrams with any number of external legs and in

the imaginary time formalism is given by [DJ74,We74,Ka89]:

Vveff(qS,T)lloop — _Z/ hl l.,2 M2)

= —Z/(dSk —4mn?T? —EJ%,[)
= / (;ljr]; [EM + Tln (1 —e ﬁEM)] (1.82)

where M? = —m? 4 A\¢?/2 and E}, = k2 4+ M2 Equation (1.82) is actually infinite -
due to the first term in the square brackets in the last line. However, the divergence
is independent of temperature and can be removed by renormalisation procedures
at zero temperature.

Thus, the renormalised effective potential to one-loop order is

Vers(8,T) = V(9) + V24, T) (1.83)

where V(¢) is given by (1.80). If T2 ~ M?/X > M?, then the high temperature
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T>T, T. T<T,T=0

‘/eﬂ”(¢1T) - ‘/eﬂ'(O’T) .

Figure 1.1: The effective potential Vess(¢,T) — Ves(0, T') for various temperatures.

expansion of (1.83) to order T* is

AT?  m? 2Tt m2T?

A
Vers (6, 1) = Eﬁ“ + (—— - —) ¢’ — 50 " o (1.84)

48 2

The shape of Ve¢(¢,T) — Vos5(0,T) for various temperatures is given in Fig.[1.1].
Note that for T' = 0 one gets spontaneous symmetry breaking since the minimum of
the potential occurs at a non-zero VEV of the scalar field, but as the temperature
is increased the depth of the minima decreases and < ¢ > approaches zero. Above
a certain temperature, the critical temperature 7, the minimum of the potential is
at < ¢ >= 0 and symmetry is restored.

Applications of this are immediate. The expanding (cooling) of the Universe
can induce phase transitions due to the temperature dependence of the effective
potential for scalar fields - assuming such fields exist. Particles that were originally
massless can attain masses after a phase transition via the Higgs mechanism. The
Higgs field is coupled to gauge, fermion or any other fields and the effective Higgs
potential is similar to that of (1.82) where, of course, one can include contributions
from other fields. Masses of particles can be generated by spontaneous symmetry
breaking and are related to the value of < ¢ >.

Now consider Wilson lines [GJO80,GPY81,Ac84,Man85], which can introduce
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new properties for the gauge fields. Wilson loops are used to study aspects of
confinement. In the ITF, the Euclidean space has cylindrical topology since the fields
have periodic boundary conditions. As such, a closed contour cannot necessarily be

deformed to a point. Consider the gauge invariant construct T'r (%), where
. [P "
QAUF) = P exp (z / dzo Ao(:co,:c)) (1.85)
0

and P is the path ordering symbol and § = T~!. The free energy of two charges
located, at £, and @3, is related to the logarithm of the expectation value correlation

function

(Tr (Q4(#) Tr (U2))) ~ e Klea (1.86)

with the constant K being proportional to temperature. Suppose a Lagrangian £
describes the interaction of gauge fields A,(z) and matter fields ¢(z), the full theory

can be summarised by the generating functional
B
7 = ] . DALD$ exp <— / dzo / &Pz L(A,, ¢)> . (1.87)
periodic 0
The generating functional Z can be rewritten as [GJO80,RT80] :
Z = / DO(F) exp (—Ser((2)) (1.88)

where Q(z) is given by (1.85) and Seg is defined as

]

¥
Sef = —ln/ - DAM D¢ exp <—./0 dzo /da-f'3 'C(Am ¢)) . (189)
periodic

Here, the prime over the functional integral [ " means that the integral is over fields
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that have the following boundary conditions

AB,E) = AN0,F) = Q7(&) A0, 8) (E) + 07 () 8. (%)

$(8,%) = ¢°(0,) = Q%) ¢(0, %). (1.90)

In other words, the fields at end points of the interval 0 < zy < B are gauge
equivalent.

To choose the gauge condition Ag = 0, a gauge transformation U(zo, ) is chosen
such that

AO—)U_IAoL]+U_180U:0 (191)

where

U(zo,Z) = P exp (z /20 dzy Ao(zq, :?:')) ) (1.92)
0

Even after choosing the gauge Ag = 0, the effective action Seg is still invariant when
Ao(z) — Ao(x) + 27Tz n(Z) (1.93)

which are generated by gauge transformations U = exp[izo2nTn(Z)] where n(Z) is
a static integer-valued field. Thus, as Gava et. al. [GJO80] and Rossi and Testa
[RT80] point out, one cannot eliminate Ag completely even though one started with
the Ag = 0 gauge.

Note that (1.93) suggests if one compactifies a coordinate, such as o for finite
temperature field theory, then the corresponding component of the gauge field Ag
can only take values in the range — 7T < Ay < 7T, i.e. Ap is also compact.

Finally, let us examine how temperature affects cross sections or widths of pro-

cesses, using the 7 — 2y decay width as an example [CL88]. For T' = 0, the pion
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decay width is

43k cky 1
_ 4 a =
L'=(2r) / (2m)32k0 (27)32k2 qo

60—k~ k) 3 [M@E° -2 (L99)

polns

where

> |M(7r° — 27)|2 = % ( a2 )2 my (1.95)

polns 47rf7"
and a and b label the outgoing photons. After the momentum integration is carried

out, we find that
o md e? .
=G 2 where a= . (1.96)

Comparing the theoretical result to experiment one gets
Fiheory = 8.5 €V Fexpt. = 7.95 £ 0.55 eV . (1.97)

For T' # 0, several things can happen. Finite temperature effects can appear

through :

o The amplitude - similar to the amplitude calculated above for spontaneous
symmetry breaking. lor the case of the #° — 2y width, since the anomaly
is temperature independent, no finite temperature effects are expected from
this sector. However, finite temperature effects appear in another part of the

amplitude and contribute to the decay width [CL88].

e Parameters such as mass and coupling constants can depend on temperature.
For the pion decay, the temperature dependence of the pion mass mI and pion
decay constant fT in the high temperature limit are [LS90,GoL89]

T2
T _
m, = Mg (1+48L%—I—...)

T _ T°
fr = [ (1~12f3+...). (1.98)
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where m, and f,; are T' = 0 values.

o Phase-space factors of the outgoing photons are modified to :

d®k, &3k, 1
=3 (1.99)
(27)32k0 (27w)32k0 1 4 n(BkD)
where the Boltzmann factor is
n(ﬂko) = ; (1.100)
o) = g =1 )

As usual, the upper sign refers to bosons and the lower to fermions.

Taking into account the finite temperature effects of phase space factors, coupling

constants and mass, the contribution of the anomaly to the decay width becomes

3
2 (my 1
7 === ( )2 5. (1.101)
6473 (f5)" (1— e=mn/(2T))
For T' ~ m,
r7~ms — 6.5T (1.102)

i.e. width increases with temperature, or equivalently the pions lifetime decreases.

For low temperature T' < m.,

[7=0 7 T? .
T = 14+ ——+4...] >1T=0 1.103
(1 — e=-mr/(T))? ( i 48 f2 + ) - ( )

where I'T=0 = T. Thus it appears that the pion lifetime diminishes at finite temper-

ature.
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1.6 Conclusion

The functional approach to finite temperature field theory is perhaps one of
the more transparent ways of examining finite temperature behaviour of quantum
field theories. As we have seen, when gauge theories are analysed, care must be
taken when dealing with spurious degrees of freedom of the gauge fields. The same
situation occurs for the case of T = 0 field theory. The perturbative Feynman rules
can then be obtained in either the real or imaginary time formalism.

It is interesting to note how temperature appears in either the real or imaginary
formalisms. In the imaginary case, temperature appears through the periodic proﬁ—
erties of the fields, and in the fact that energy summations rather than integrations
are carried out. For the real time case, finite temperature effects appear through
distributions, delta-functions or derivatives thereof, that contribute only when the
particle is on mass shell. In the real time situation, one can easily see where finite
temperature effects occur since they can be separated into a 7' = 0 part and a finite
temperature part. However, in the imaginary time case, the temperature indepen-
dent part is related to the n = 0 term in the energy summation §_,, but to separate
this term out and then perform the summation can be tricky.

Converting the imaginary time results to the real time formalism cannot be
achieved by simple analytic continuation. In the imaginary time formalism energies
are discrete, and must be converted to a continuum before computing the spectral
function which 1s related to the discontinuity of the imaginary time propagator
across the real axis in the complex energy plane. The real time propagators are
then related to the spectral functions.

We have seen that cross-sections and decay-widths can be affected at finite tem-
perature through phase space factors of the outgoing photons, temperature depen-

dence of coupling constants, masses and amplitudes.
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When one restricts the range, or compactifies, a coordinate xg, as in the case of
finite temperature field theory in the imaginary time formalism, the range of values
for the corresponding component of the gauge field Ag is also compact. When T — 0,
the range of Ag is unrestricted.

Having laid the foundations for calculating amplitudes at finite temperature and
where finite temperature effects are likely to manifest themselves, we can now apply
some of the methods outlined in this chapter to cases of interest.

We begin by looking at the gluon or spin-1 propagator in the real time formalism.
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Chapter 2

The Spin-1 Propagator

2.1 Introduction

In this chapter we will use the conventional methods of perturbation theory in
the momentum representation - specifically, the real time formalism. The real time
formalism (RTF) approach to quantum field theory at finite temperature involves
different techniques corhpared to those used in the imaginary time formalism (ITF).
With the ITF one encounters energy summations rather than integrations which can
be very difficult, in some cases intractable, Lo perform beyond one loop diagrams.
With the RTF it is possible to separate the amplitude into a temperature dependent
and a temperature independent part. It is not as easy to do such a procedure when
using the ITF.

The RTF is plagued by its own problems - some of which will be examined in this
chapter and discussed in the next chapter. Specifically, in the RTF one encounters
¢ functions and products of such functions and their derivatives. This may lead to
ambiguities for products of § functions for a particular set of values of momenta
for the internal and external lines of a Feynman diagram. These problems are well
known throughout the literature and were pointed out by Dolan and Jackiw [DJ 74).

Some methods and theories, such as thermo-field theory [UMT82], have been put

31



forward to deal with them.

Obviously, one hopes that whatever formalism one chooses, the same answers
should be obtained. This is not always the case. This can be due to various causes
- a major one being the lack of finding, if at all possible, a suitable prescription for

dealing with products of two or more é functions in the RTF, say,

6(k*)8 ((k +p)?) (2.1)

when limp, — 0 is taken. In the context of

S
]
~—

lim, [ dko(K)S((k + p)?) S (k) ~ 6(0)(0) (2.

pu—0

this is undefined in the sense of normal functions, where p, and k, are momentum
vectors.

At T' = 0, perturbation theory can be tedious when calculating higher order
diagrams, particularly those involving loops. At finite temperature, T' # 0 in the
RTF, propagators contain extra terms displaying finite temperature effects, making
perturbation theory even more tedious.

In the context of Yang-Mills gauge theories, many calculations are carried out
in the Feynman gauge o = 1, which in some cases makes it difficult to keep track
of gauge dependent terms. Any physical quantities which are evaluated should not
depend on the choice of gauge. Clearly, in principle, by making an astute selection
of the gauge fixing term, it can greatly assist the ease of calculation of amplitudes
containing gauge boson propagators. When results are compared to those derived
by other methods, such as those obtained using the ITF or using the RTF but
in different gauges, or specific values for the gauge parameter, some discrepancies
arise. Thus, it would be convenient to consider the case where not only a gauge

fixing term is chosen, but also keeping the gauge parameter arbitrary. This will
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assist in keeping track of gauge dependent terms, possibly allowing some insight
into how gauge dependent and finite temperature effects are related.

As an example to illustrate some of the techniques and problems involved, we
shall examine aspects of QCD - SU(3) pure Yang-Mills gauge theory. An important
and interesting effect to investigate is the finite temperature dependence of the QCD

coupling constant g. Questions asked are :

e To what extent does the (renormalised) coupling constant depend on temper-

ature, i.e. does it become larger or smaller as temperature is increased?

e Do you get asymptotic freedom at high temperatures, i.e. what does the finite

temperature S function look like?

e Are there any new processes or phenomena incurred by the presence of finite

temperature effects?

Baier et. al. [BPS91] and references therein, have given a summary of the vari-
ous calculations that have been done by many people of the renormalised coupling
constant gg, in finite temperature QCD at one loop order, using the ITF, RTF, and

in various gauges. The main object of interest is the thermal 8 function fr, defined

by

Br =T (gR(;W) (2.3)

which at one loop order becomes

) 24)

472

pr = —o(1)

where
53/2
9r(T) = (Zg—l(%)*) g (2.5)
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is the running coupling constant, with Z3 and Z; being the gluon field and three-
gluon vertex renormalisation constants respectively and ¢(7T') is a temperature de-
pendent coefficient which depends on which gauge is chosen.

One may consider that since the renormalised coupling constant is a physical
quantity, it should be gauge-independent.

For T' = 0, the renormalisation constants (or counterterms) needed to remove
the divergences from loop corrections to the three-gluon, four-gluon, ghost-gluon
or quark-gluon vertices are not independent - they satisfy constraints called the
Slavnov-Taylor identities [Mu87]. It is these identities that ensure the universality
of the renormalised coupling constant - i.e. whatever vertex one uses to compute the
renormalised coupling constant, the same physical result is obtained if a different ver-
tex i1s chosen. It should be kept in mind that there is a renormalisation-prescription
dependence of the renormalised coupling constant and different prescriptions are
related by the renormalisation group equations [CGT9].

For T' # 0, the situation is somewhat perplexing. The general understanding of
perturbative QCD at finite temperature can be inferred from knowledge of QCD at
T = 0, particularly the renormalisation group equations, since no new divergences
arise from finite temperature effects. One could identify the renormalisation scale

Agcp, with T in the following way

glzi(T) ~ (%ln (T/AQCD))— (2.6)

where N is the number of colours.
However, if a renormalisation scheme at finite temperature is used, then in the

RFT, rather than getting the behaviour given by (2.6), one gets, for some scale M,
M 3
() ~ () (2.7)
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whereas in the IFT, one obtains

M

GHT) ~ o (2.8)

or in some cases gr may increase with temperature. The main reason for this being
the different number of Boltzmann factors one obtains when using either the RTF
or ITF.

For the case of finite temperature QCD, high temperature expansions of the
coefficient ¢(1"), in various gauges, using different formalisms have been derived and

can be summarised as follows [BPS91] :

1. Using RTF (but doubling the number of fields), the three-gluon vertex
and the symmetric momentum configuration (py = qo = ry = 0,p* =

F=rr=-M?%:

o(T)

251N (T)"”‘ (2.9)

4 \M

2. As above, but using Feynman gauge and the collinear momentum config-

uration p = (0,0,0, M) = —¢/2 =7r:

-35m2N ( T )

24  \M

c(T) ~ i

(2.10)

3. Using the thermal Wilson loop (gauge-invariant construct) in the RTF :

327N ( T )2

oT) 3 \M

(2.11)

4. Using the three-gluon vertex in ITF, symmetric momentum configuration

and Feynman gauge :
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oT) ~ i‘igﬂ (%) . (2.12)

Evidently a similar result is obtained using ITF and an axial gauge.

5. A gauge-invariant coupling constant has been derived [La89]:

o(T) ~

—2172iN (T) - (2.13)

16 \M

As it can be seen, in some cases the fr function will be positive, i.e. the running
coupling constant, ggr, increases with temperature. This is against conventional
wisdom, where it is generally expected that asymptotic freedom will result as the
temperature of the system is increased.

It would be of interest to see how gauge dependent terms affect amplitudes as well
as the A function at finite temperature. If we choose the Lorentz gauge, d,A* = 0,
but keep the gauge parameter arbitrary, rather than choosing the Feynman gauge,
a = 1, then one needs to generalise the propagator given by the authors of ref.
[BPS91] to display the gauge dependence of the gluon (spin-1) propagator at finite
temperature. This is carried out in the next section.

The new propagator is then used to calculate the one loop correction to the
tri-gluon, four-gluon and the quark-gluon vertices. Due to the numerous terms that
can arise in such a calculation, it became necessary to use a computer program to
handle the unwieldy expressions. The symbolic or algebraic manipulation package
Mathematica [Wolf] was used. By writing a series of rules to perform algebraic
operations it was possible to use Mathematica for a major portion of the calculation
of amplitudes associated with Feynman diagrams, particularly those at temperature
T =0.

However, when one includes finite temperature effects, after performing contrac-

tions of 4—vectors with other 4—vectors and tensors etc., the number of terms for
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some diagrams becomes enormous. For a single diagram for the one loop correction
to the tri-gluon vertex using gluons only, the most lengthy expression, the number
of terms and hence momentum integrations to be performed was of the order 6000.
The number of independent, finite temperature integrals to be evaluated is of the
order of a few hundred. At T' = 0, the total number of terms is of the order a few
hundred for the same diagram.

The momentum integrals for the T' = 0 case can be performed using the well
known dimensional regularisation formulae appearing in many books on quantum
field theory. In such a case, only a few very basic integrals need be known, others can
be obtained by differentiation with respect to a non-integrated momentum vector
or a mass parameter of the theory.

Unfortunately, the case for finite temperature integrals is not as simple. When
integrals are computed, the advantage of Lorentz covariance, used for the T' = 0
case, 1s lost since it is broken by finite temperature effects. At best, one has to
resort to rotational covariance. This means that not only the energy and momentum
integrations have to be performed separately, but that also if the integrands contain
tensorial constructs, then many of the integrations have to be done component by
component. The results are then converted into tensorial form with respect to
rotational covariance.

When it became apparent that the task of doing the integrations for the case of
one loop vertex corrections was massive, it was decided to put this calculation aside.
Instead, the same Mathematica program was used to investigate the self-energy of
the gluon to one loop order, using the new gluon propagator. The results of this
calculation, as well as the derivation of the full finite temperature gluon propagator,

are presented in the next two sections.
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2.2 Derivation of Spin-1 Propagator at Finite

Temperature

Given the equation of motion that a field satisfies, the propagator associated with
that field can be obtained from a similar equation of motion, but a point source term

is introduced. Suppose a field ®(z) is a solution of the following equation :

Od(z) =0 (2.14)
then the propagator P(z — y) satisfies

a

OP(z—y)=6(z—y) (2.15)

where O is some oper.a.tor and §(z —y) is a § function which is the point source term
for the field ®(x). In order to specify the propagator, boundary conditions must
also be given.

As is the case for solving differential equations, in general one would have inho-
mogeneous and homogeneous solutions and that the full solution is clearly the sum
of the two. For the case of field theory at T' = 0, the propagator does not contain
any homogeneous term - if the Feynman prescription is used.

In the ITF, Dolan and Jackiw [DJ74] show that due to periodic boundary con-
ditions of the fields, the propagator itself would also exhibit the same periodicity
constraints, further the propagator contains only the inhomogeneous solution.

In the RTF, the situation is different since one can not take the ITF result and
then perform a Wick rotation in order to get the RTF result, i.e. naively, one can not
do a Wick rotation from Euclidean to Minkowski space for finite temperature field
theories as it leads to certain ambiguities. Some of these problems will be discussed

in the next chapter.
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When using the RTF, ﬁniteltemperature effects in the propagator appear in the
homogeneous part of the solution. We shall see how this arises, using QCD as a
typical theory, in 4—dimensional Minkowski spacetime with metric (+ — ——).

Consider an SU(N) non-abelian gauge theory described by the Lagrangian

£ = —gFLF™ = S (@uA%) + (') D3ty (2.16)
4 # 2c H°
where, as usual
Fp, = 9,A; — 3, AL + g™ ALA; (2.17)

is the field strength tensor,
Dab _ 5aba o abcAc 21
[ i gf 73l ( . 8)

f2b¢ are the structure constants of the SU(N) group, x° are the Faddeev-Popov
ghosts and g is the coupling constant.

Following standard procedures, the Action S, calculated from the Lagrangian
(2.16) is

S / d'zL(z) (2.19)

2 (81 o )

where the terms quadratic in the gauge fields have been singled out and ... denotes
all other remaining terms of £, including interactions and ghosts.
If there were no interactions, then the gauge fields A¢ satisfy the following free

field equation, which is attained by taking the variation of S with respect to A}, and
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setting g =0 :

K A" =0 (2.21)
where
K% = 6% (apapgu,, ~ (1 — i) 8@) : (2.22)
This means that the free gluon propagator, Azlf,, obeys the following equation

KX A*(z,y) = —6°626(x — y). (2.23)

in the coordinate representation. As is customary for working in perturbation theory,
we shall work in the momentum representation, hence the Fourier transform of (2.23)
is

Ko Aber = —goege, (2.24)

where

K = 6 (_kzgw + (1 - l) k,,ku) (2.25)
(43

and A(k) is the Fourier transform of Az, y).
We find that the most general solution to (2.24) which is rotationally covariant

(since Lorentz covariance is broken by finite temperature effects) is

k2 +1¢) k24 e
+ 6%C (gud(k?) + (1 — o) kuk, 8'(k?)) (2.26)

. k,k, 1
A%k = g (g,w-u-a) . )

and the constant C is determined by using procedures as outlined in Section 1.4.

Without loss of generality, we can set @ =1 in (2.26), giving

A ab __ gab 1 2 >
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which can be rewritten as
Ret (k) = i6%g,, Dy k) (2.29)
where Ds(k) is given by (1.65). We then find that
C = —2ming(|kol) (2.29)

where

ng(|kol) = (exp[Blkol] — 1)~ (2.30)

is the Boltzmann factor for bosons.

The 6 functions have been defined in the following way

1
|f' ()]

5(f(@) = X bz — 22) (231)

where the sum }; is over the zeroes of f(z), hence

1

§(k?) = 2 (6(ko — k) + (ko + k) (2.32)
and
) = T8k
1 0 _,,
= ) (2.33)

The new feature of (2.26) is the occurrence of a derivative of a § function &§'(k?)
instead of unregulated products of § functions and factors of the form (k* + i¢)~1.
The nearest resemblance to our approach in the literature is a propagator of Kobes

and Semenoff [KS85] in a 2 x 2 matrix formulation. The idea of that formulation is
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to combat the problem of unregulated products of § functions and (k?+i€)~! terms.
Nevertheless they also _iptroduce 8'(k*) terms. We shall see in the next section
that one-loop calculations are possible for o # 1 with our pr(;pagator. Kobes and
Semenoff [KS85] have computed self-energies of the photon and electron in QED
in the Feynman gauge a = 1, and in this case the §'(k?) terms do not need to be
considered.

Terms proportional to g.09.0, k39, 9uigv; €tc. are allowed by rotational co-
variance, but the coefficients of such terms are either zero, or when combined with
other terms give a term which already exists in (2.26).

If o = 1, the derivatives of §(k?) drop out and the propagator becomes

1 2wt
k2 +ie  eflkol — 1

Rst (k) = 6g, ( ) (2.34)

which is the same as that given in many references e.g. [BPS90].

From (2.26), it can been seen that in the RTF the finite temperature effects of
the propagator appear through the homogeneous solution to (2.24).

The vertices are just those as for the T' = 0 case. A list of Feynman rules for

finite temperature QCD are given in Appendix A.

2.3 One Loop Correction to Gluon Propagator

The calculation of the one loop correction to the gluon propagator, more specif-
ically the polarisation tensor Hzl,’,(p) at finite temperature, is very similar to that
carried out for the case of T' = 0. For the finite temperature case, the momentum

of the incoming gluon will be set to:

pu = (0107 O’m) (235)
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Figure 2.1: Diagrams that contribute to the self energy of the gluon.

Clearly the conditions (2.35) are unphysical, i.e. off-shell, but they simplify both the
Boltzmann factors and calculation considerably, particularly for diagrams containing
many propagators.

The full gluon propagator D% (p), can be written as a perturbation series :
ab A ab A acTrrocd A db
Dy, = AL + AT AL + ... (2.36)

where AZ?, is the free gluon propagator. It is understood that the polarisation tensor
and propagator given above are at finite temperature.
Following normal procedures for using Feynman rules, the polarisation tensor

1S @

ne (p) = % {Fig.[2.i a] + Fig.[2.1b]} — Fig.[2.1 c] + Fig.[2.1d] (2.37)

where the 1/2! factor is the symmetry factor for Fig.[2.1 a] and Fig.[2.1b], and the
minus sign for Fig.[2.1c] arises from the ghost loop. Fig.[2.1d] is the counterterm

needed to remove the divergence from the self-energy part.
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For T' = 0 field theory, ghosts are introduced in order to restore unitarity and
to give the correct expression for the polarisation tensor. They are spin-0 fields but
satisfy anti-commutation relations. To maintain unitarity and the transversality
of the polarisation tensor at finite temperature, ghosts must have Bose-Einstein
type Boltzmann factors - i.e. the same Boltzmann factors as for gluons. In other
words, they obey Bose-Einstein statistics. Naively, one may have expected that as
ghosts have anti-commutation relations, then they have Fermi-Dirac type Boltzmann
factors and obey Fermi-Dirac statistics, which is not the case.

Using the RTF, the polarisation tensor can be split into a temperature indepen-

dent and temperature dependent part as follows :
ab — T7ab T=0 ab T#0 Q

where [Mu87]

g26°Ce(—p?) T () B(2 — ¢,2 — ¢)
(4m)2—c 1—c¢

- (2(5 —36)+ (1 - @)(1 — 43— 26) + (1 - @)*£(3 - 26))

HZ!:/(p)T:O (guvp2 - pupu)

= 6”(pupy — P19 )I(P"). (2.39)

Dimensional regularisation has been used to obtain equation (2.39) where, after

expanding in ¢, II(p?) becomes

) = [ e n () -5

+(Z5—1) (2.40)

where Cg is related to structure constants focb

fa.cdfbcd — 6ab CG- (241)
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The (Z3 — 1) term is the counterterm required to remove the divergences of the
theory - the value of Z3, the gluon field or wavefunction renormalisation constant,
depends on which renormalisation prescription one chooses. For this specific case
the counterterm is temperature independent.

The temperature dependent contribution to the polarisation tensor yields

925abCG

(27)*

112 (p)T#° = (C1 (9uvP® = pups) + Cagy09009%) (2.42)

where the integrals have been evaluated using the list in Appendix A and the coef-

ficients are

C, = —(2nf(1,1) —4rf(1,3) + 27 f(1,5) — 3w f(3,0) + 57 f(3,2) — 7f(3,4)
—f(3,6) + —3in%g(1,0) + —in?g(1,2))

—(I = a)(=37f(1,—1) + 67 f(1,1) — 3x f(1,3) + 37 f(2,0) — 67 f(2,2)

13rf(2,4) + 37ff<g’ =), 57rfg3,0) N 7rf(23, 2) , wf(s,él) 3r f(;t, 1)
mf(4,1 7 f(4, 7 f(4, 3 i,
+5 f; )_ f(;1 3)_ f(;1 5)+§7rg(1,—2)+§7rg(1’0)

_3; O
+—Z1r2mg(2, 0) + 717r2mg(2, 2))

2
—(1- a) (wf(l,—l) ALY T pe,0) 4 2002,2) - wf2,4)

T3, 3rf(3.0)  wf(3,4) | wf(4-1) 7f(4,3)
2 4 4 2 2

% = OF
—Z7rzg(1, —4) + lezg(l, -2) + —Z7r2g(1, 0)

Tf(4,1) +

+8 8

+—;—Z7r2mg(2, -2) + i7r2mg(2, 2) + é'lrzng(& 0) +

—1

i mtm?g(3, 2)) (2.43)

02 = (27rf(13 1) - 47rf(113) + 27rf(1a5) - 7rf(31 0) it 57rf(3a2)
—Tr f(3,4) + 37 f(3,6) + —im?g(1,0) + 3in?g(1,2))

—(1 = &) (=7 f(1, 1) + 2xf(1,1) = wf(1,3) + 7 £(2,0) ~ 2 (2,2)
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3.~ w30 ©f(.2) 7G4

24+ = 9 2 2
_7rf(42,—1) . 57rfg4,1) - 77rfg4, 3, 37rfg4,5) \ %W2g(1,—2)
+%w2g(1, 0) + ;Wzmg@, 0) + %iwzmg(.?, 2))

—(1 - a)? (—7rf(1,—1) + ”f(zl’l) - Wf(;’g) + 7 £(2,0)
—3m£(2,2) + 27 £(2,4) + ’rf(3?j = 1 3”fi3’0) + ”f(2’4)
_If@ +7rf(4 1) — ”f(;’3) + _83i7r2 (1,—4) + %’Pgu 0)

-3
+47r *mg(2,-2) + 27r ’mg(2,0) + <" *mg(2,2) + ?w *m?g(3,0)

+%7r2m g(3,2)) ; (2.44)

where the functions f(a,n) and g(e,n) are defined by

fn) = ”/oco dm(—1+xx2(1 +}c)2 exP[ﬂmiﬂ]—l (245)
f2n) = ”/000 o (_1+xx2(1 +z)? dii;exp[ﬂmi/z]—l (2:46)
f@n) = x [ da i+ .::(1 Toe B ( —11++x:c ) exp[ﬁmlw/2] -7 (@47
f4,n) = / = 1+:1:wn(1+:c)2 N (‘_11++xa:) di:cexp[ﬂmlx/Z]—l (2.48)
o) = 7 [ dean d‘:’:a (exp[ﬂmi/Q]— 1)2. (2.49)

Notice that the coefficients C} and C; are complex. The functions f(1,n), f(2,n)
etc. arise when only a single § function or its derivative is present in the momentum
integrand and contributes to the real part of the polarisation tensor. The functions
g(1,n),9(2,n) etc. however, result from products of two § functions and/or their
derivatives and correspond to the imaginary part of the polarisation tensor. This is
primarily due to the fact that the coefficient of the é function, 2wing(|ko|), in the
propagator is imaginary, which after multiplying with a similar factor from another

propagator will become real.
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The fact that the coefficients Cy and C, are complex could be interpreted in a

couple of ways :

e That absorptive or emissive effects occurred in the process. This is possible in
the context of finite temperature field theory since the system is in a thermal
heat bath where particles can be absorbed or emitted by the thermal vacuum

but keeping overall conservation of energy and momentum.

e Since the coefficient C, (2.29), of the temperature dependent term for the
propagator contains a factor z, clearly taking products of various numbers of §

functions are going to give imaginary contributions to the polarisation tensor.

Clearly this calculation is invalid for the case when p, = 0 since one would then
have products of § functions of the same argument, which are not well defined.

These results reduce to those obtained by Fujimoto and Yamada [FY87] who do
their calculation in the Feynman gauge o = 1 using Thermo Field Dynamics, and
- if the g(1,n) etc. functions are set to zero.

With the conditions (2.35), the Ward identity for the gluon self-energy part
p*I% =0 (2.50)

1s satisfied.

b

> into transverse 7 and longitu-

One can decompose the polarisation tensor 1T

dinal £ projection tensors :
I (p) = 6 [A(p) T + B(p)L,) (2.51)
which have the following properties

%u:O
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DuD
Ly, = e — 9w — Tuvs (2.52)
The projection tensors satisfy

puT" = 0

pL* = 0. (2.53)

Considering the finite temperature part of the polarisation tensor, we find that

it can be written as

ab, \T20 _ 9°6"Cq T40 .
5 (p) 7" = @)t [A(P) T + B(p)Low) (2.54)
where
Alp) = —(CL+Cy)p?
B(p) = Cip™ (2.55)

2.4 Conclusion

Deriving the finite temperature spin-1 propagator in the general Lorentz gauge
(with arbitrary gauge parameter a) in the real time formalism (RTF) leads not only
to 6 functions but also their derivatives. The propagator was obtained by seeking
the solution to its equation of motion with a point source term rather than by the
usual field theory methods of evaluating the vacuum expectation value of a time
ordered product of two gauge fields. Finite temperature effects still appear through
the homogeneous solution to the equation of motion for the gluon fields (or equation

of motion for any field for that matter). The inhomogeneous solution is unaffected
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by finite temperature effects - it gives the same expression as one gets at 7' = 0.

The gluon self-energy part has been calculated in the general Lorentz gauge while
keeping the gauge parameter « arbitrary, using the RTF. An extra term proportional
to guogv0 1n the polarisation tensor arises due to the fact that Lorentz covariance is
broken when finite temperature effects are taken into account. The final expression
is basically simple despite the enormous amount of work required to calculate the
amplitude for a few simple Feynman diagrams. One finds that coefficients of various
terms in the polarisation tensor are complex.

Having performed the calculation, one becomes aware that the conventional ap-
proach to perturbation theory in the RTF is somewhat ambiguous and that great
care must be taken as to what should be done to products of é§ functions, particularly
when their arguments coincide.

This leads one to consider the role of the Wick expansion at finite temperature
and whether the finite temperature propagator (in any gauge) in the RTF containing
6 functions and/or their derivatives, should be used directly in perturbation theory.

Further discussion of this issue will form the subject of the next chapter.
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Chapter 3

Finite Temperature Perturbation

Theory in the RTF

3.1 Introduction

The calculation of the one loop correction to the gluon propagator provides
a good background for a possible attack on how to approach finite temperature
field theory perturbatively in the real time formalism (RTF). Although, one should
be open to the possibility that the process may in fact be a nonperturbative phe-
nomenon.

Many authors have put forward theories to circumvent some of the problems
concerning the RTF. For example, Thermo Field Dynamics (TFD) [UMT82] has
evolved as a result of this. However, while it provides a mechanism for dealing
with some of these problems, it is not without its own drawbacks. In TFD, there
is a doubling of the number of fields - every field has an additional field, called
the tilde field. In this case propagators and vertices become 2 x 2 matrices, whose
properties are such that it allows some cancellations of the undesirable products of

0 functions. When a calculation in TFD is carried out, the physics is contained
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in the (1,1) component of the matrix amplitude. There is still some uncertainty
as to what physical meaning, if any, the tilde field represents. It is more of an
artefact introduced to get rid of the mathematical problem of dealing with products
of 6 functions rather than a solution to a physical problem.

As is pointed by Dolan and Jackiw [DJ74], in higher order calculations, one

encounters integrals of the form

d'k ( 1 2m

(2m)* \ p? — m? +1c h exp[B|pol] — 1 6(1’2 - m?‘)) (3.1)

whereas in the imaginary time formalism the analogous objects are

1 (. 9\ -1 Sk 1
(n—1)! (Z 8m2) ﬁ Zn: / (27)3 k2 — m?’ (3.2)

Thus, in the RTF, expressions of the form (3.1) are conventionally understood to

mean

L (0 \" [ d% 1 omi .
(n—1)! (Z 8"12) (27 )t (P2 —m?+ic exp[Blpol] — 1 5" - mz)) . (3.3)

The imaginary time formalism does not require a doubling in the number of
fields in order to carry out a calculation. It seems incongruous that in one case it
is necessary to double the number of fields in order to get any sense of the theory,
whereas in the other case this is not so.

There does not seem to be any unified consensus as to how one should deal with
perturbation theory in the RTF and at the same time making it consistent, as is
the case for zero temperature Feynman rules. Many authors seem to have their
own prescription for curing the malaise. The ‘derivative method’ as outlined in this
chapter is no exception, where one differentiates with respect to momenta rather

than masses. For the purposes of this chapter, unless otherwise explicitly stated,
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the ‘derivative method’ is understood to mean differentiation by momenta, not by

mass.

3.2 Free Field Theory in the RTF

An ideal way to examine how a theory behaves perturbatively is to find a theory
that can be solved exactly - i.e. a theory in which the dynamics is fully understood,
and at the same time, a perturbative treatment is possible. Obviously if one knows
the exact theory, then it would not be necessary to resort to any of the ideas of
perturbation theory. However when interactions are considered it is, in general,
very difficult, if not intractable, to solve the full theory exactly. In the case for free
field theories it might be possible to pursue such a course of action. Although it
might be trivial and an overly simplified situation, it may give some insight into
how perturbative effects are manifested in finite temperature field theories, at least
in the free field case.

Consider a free scalar field theory governed by the following Lagrangian

2

1
£ = 50,406 — 0" (3.4)
2 2
which leads to an equation of motion for the ¢ field
(0,0" + m*)¢(z) = 0. (3.5)

In the momentum representation, the propagator for the scalar field at finite

temperature, A(p, m), is

1 2t .
—m?+ic  exp[B|po]] -1

A(p,m) = = 6(p* —m?). (3.6)
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Figure 3.1: The full propagator in terms of two-point interactions.

In this case, both terms of (3.4), being quadratic in the field variables, were used
to derive the propagator. Now consider the case where the mass term in (3.4) is
treated as an interaction, a two-point interaction, then do a perturbation expansion

in m2. The Feynman rules for this case are, for the propagator A(p)

B 1 2T
p*+ie  exp[Blpo|] -1

A(p) 6(p?) (3.7)

and the two-point vertex

V ~m? (3.8)

Now consider the following perturbation series, using the above Feynman rules

A(p) + A(p)VA(p) + A(P)VA(P)VA(R) + ...

=3 (A(RV)" Ap) (3.9)

n=t

which can be represented diagrammatically as in Fig.3.1 where the bold line is
A(p,m), the thin lines A(p) and the crosses are interactions V. It is immediately
clear that this is undefined because of the products of § functions. This demonstrates
that the propagator of the form (3.6) or (3.7) cannot be directly used for perturbation
theory.

However, if a Taylor series expansion of (3.6) about the point —m? is calculated,

one gets
= (—m?)" .i "l_ 211 i " 2
A(p,m) = r; ! [(dpz) p?  (exp[Blpol] — 1) (dpz) é(p )]
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= Ao(p,m) + AT(p,m). (3.10)

It is observed that in (3.10), derivatives rather than products of § functions
occur. Derivatives of § functions are well defined constructs. Part of the task now is
to see if this can be converted into a perturbation like expansion in the mass term

m?. Since p? = p2 — p'?, the derivatives can be written as

4o Lo -

_ o miHr a1 2mi i
Alem) = 2, (652) Lﬂ (Bl — 1) 7

(3.12)

[
Nk
| —
AN
SN
3
g - TR
>
S

It can now be seen that (3.12) gives a relation between (3.6) and (3.7).

Let us examine the temperature dependent term of (3.10)

T _ ¥ (=m?)" 2m 4 R
Alem) = = T e B =) (dp‘*) o)
—271

2 i —m? 2
B (exp[B]pol] — 1) lé(p )+ dp2( )6(p°)

+ g )86+ 6y

Note that the first ‘propagator’ of the diagram is just the é function. If there
is more than one propagator in the diagram, the extra ‘propagators’ appear in the
form of derivatives with respect to the square of the momentum associated with that
‘propagator’. Thus, extra propagators seem to manifest themselves as differential
operators acting on a 6 function. The Boltzmann factor associated with the §

function is positioned to the left of the differential operators and the energy in its
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exponential term corresponds to the energy given by the é function, e.g.

1
exp[Blao + bo + ... + co

] (diff. opera,tors)ﬁé ((a +b+...4+ )~ m2) . (3.14)

We shall call the above procedure the ‘derivative method’.

Now, consider expanding
o »
/dpo 8(p* —m®) f(lpol) = i) ) (3.15)

as a Taylor series in (—m?), where w = 1/|p]2 + m?. For the LHS we get

oo 3 600 (ol (3.16)

and for the RHS

@an(—f(lﬂ) f’(lﬂ))+m4 (3f(lz51) 3/'(Ipl) f”(IﬁI))jL“_. (3.17)

+ - -
|l 2”2’ 851" 8lpI"  8lAr

The terms of (3.17) can be generated from (3.16) if the derivatives of the é functions

are given by

-1 a\" .,
= (mm) 5(5%). (3.18)

It is worth noting that the series (3.17) can also be obtained from

o () ()

where p? 4+ ie = (po + |p] — i€)(po — |p| + i€) is the usual Feynman prescription

for handling the poles of the propagator. The § function has been defined in the
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following fashion

6(p%) = ﬁ (6(p0 — I51) + 6(po + |51)) (3.20)

wheré a simple 6 function is defined by

6(:”):%?—{%:52—?—62=§-7%1i—{%(m—{1-ie_w—1ie)' (3:21)
From this it is apparent that §(p?) has 4 poles, one in each quadrant in the complex
energy plane - compare this to the Feynman prescription which has two poles, one
each in the second and fourth quadrants.

Thus, the é function prevents us from using the naive Wick rotation to go from
the real to the imaginary time formalism (or vice versa) as it could lead to some
problems as the poles in the first and third quadrants will have to be crossed.
In quantum field theory, the Wick rotation is carried out on the assumption that
there are no poles in the first and third quadrants. It is possible that the form
or regularisation of the § functions given above is not appropriate for performing
calculations in finite temperature field theory in the RTF.

Whether one chooses (3.18) or (3.19) is dependent on what set of boundary
conditions are chosen. This is usually determined by taking the Fourier transform
and seeing what one needs to do with positive and /or negative energy solutions. One
has to keep in mind that in the RTF, the finite temperature part of the propagator
corresponds to the homogeneous solution to the equation of motion.

Obviously one would like to include more general interactions, rather than just
those of the two-point type, such as three-point interactions and loops etc. We shall
examine how the ‘derivative’ method could be extended to such cases.

As a prelude, we shall now present z;J very brief outline how perturbative field
theory at finite temperature is carried out using Wick’s theorem.

Then, we use the ‘derivative’ method to investigate how quantum effects can
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cause mass-shifts, denoted by ém?2, of a particle at finite temperature.

3.3 Interacting Field Theory in the RTF

Usually interacting field theories are examined perturbatively, primarily because
it is the only method at our disposal for which calculations of amplitudes, decay rates
etc. can be carried out. The thermal average of the full propagator or the so-called
temperature Green’s function, with free Hamiltonian I:[O, mteraction Hamiltonian
H and partition function Z, is defined by [FW71],

- - 7 1 ~BH, > (_1)n Bh . Bh .
g(w,T,y,T) = —Z Tre Zhn—n'/o dn /d:lfl... ! dr, /dmn
n=0 °

T [AN @) B (G ) 63 1)) L (3.22)

where the partition function Z is

. —ﬁﬁo ® (—l)n /ﬁh / . Bh ~ r,
7z = Tee?y i [Tan [az.. [“dn [ a3,

n=0

T [ (F ) (F )] (3.23)

and knowledge of the finite temperature aspects of the time-ordering operator is
necessary. This can be done by considering Wick’s theorem. When a theory is
quantised, it is possible to compute diagrams for n-point functions with the as-
sistance of Wick’s theorem - certainly for the case of 7' = 0 field theory. Let us
examine the basics of Wick’s theorem and how it presents problems when used for
perturbation theory at finite temperature.

When computing a time ordered product of field configurations at T' = 0, Wick’s
theorem shows hpw this may be reduced in terms of normal ordered combinations

of the fields and their contractions. For example, for a time ordered product of two
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fields
T(¢(z1)¢(z2)] = $(z1)d(72) : + $(z1)P(22) (3.24)

where the contraction of two fields ¢(z1) and ¢(z,) is defined by

$(z1)d(z2) = T[¢(z1)gp(w2)]— : d(z1)9(z2)
N —’

< 0|¢(z1)(2)[0 > (3.25)

and is the propagator for the ¢(z) field, further it is a c-number. Hence when
calculating the vacuum expectation value of a time ordered product of fields, the
contributions from the normal ordered products vanish.

For the more general case we have

Ti$(er)... $en)] = : $(a1)... f(zn) :

+3 0 d(x)... ¢(xr) ... d(w1) ... p(xn) : < O|Tp(xi) ()]0 > + ...

k<!

+ S opid(@n).. d(en) . plhig,) . B(xa) :

ky <k <...<kap

X Y < O[T [¢(zkp )p(zxp )0 > ... <O|T[B(zkp, ,)b(2ky, )0 >
P

+... (3.26)

where Y p denotes the sum over all possible signed permutations of pairs of fields
with ¢ and op taking account of the sign of the permutation when the fields are
(anti-) commuted through the normal ordered term to get the contractions.

Extending this to include finite temperature effects requires very careful consid-
eration. Some ideas and concepts have to be modified, such as the vacuum and the
role normal ordering plays in field theories at finite temperature. A number of peo-
ple have examined this as early as 1955 [Ma55,Th57,B158,BD58,Ga60,BM61,FW71].
Let us also examine what happens if this naive approach is used.

Taking the statistical mechanical approach, the thermal average of any operator
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A is given by

Tr {e_ﬁHA}

Tre—fH
ZN,]' < N]IC_ﬁHAlN] >
T < N jle PHIN 5 >

<A> =

(3.27)

where the )"y ; is the sum over the number of particles N, and j represents all
possible quantum numbers of the system.

Using this and (3.24), we can see how the thermal average of a time ordered

product of fields could be defined

/& {e“ﬁHT[¢($1)¢($2)]}

Tre—8H
Tr{e ™ : ge0)d(z) :}  Tr{e? <0lg(e)é(z)l0 >}
Tre—8H + Tye—BH " (3.28)

The conventional 7' = 0 vacuum state |0 >, consisting of no particles is just one of
the states in the summation. Recalling that < 0|¢(z1)¢(z2)|0 > is a c-number, and

therefore can be pulled outside the summation }_y ;, the last term of (3.28) becomes

Tr{e#H < 0]¢(w1)¢(22)[0 >}
Tre—fH

=< 0|é(z1)p(z2)|0 > . (3.29)

In general, the normal ordered term would not vanish, since the summation is

made over not only the vacuum state, but also non-zero particle number states, so

Trie ™ : ¢(xy)d(x2) :
{ Tre—PH | } Y

(3.30)

This, in essence, defeats the purpose of normal ordering as understood in the
context of 7' = 0 field theory. When one defines the propagator as a vacuum
expectation value of a time ordered product of two fields, one cannot simply ignore

normal ordered terms or rather, care must be taken when working with the 7' = 0
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vacuum, or whether a new vacuum should be introduced for finite temperature field
theory. It should be borne in mind that as finite temperature field theory describes
a many particle system, then it may be the case that the ground state of the system
is not the vacuum state, or rather, not the zero particle state.

When using Wick’s theorem, one actually deals with ‘contractions’ of pairs of
fields. In the T' = 0 field theory, a contraction of two fields, denoted by an underbrace

connecting the two fields as defined in (3.25), is just the free propagator D(z, — z,)

P(z1)p(z2) = < O0|d(z1)¢(z2)]0 >

S —
= D(z; — ). (3.31)

So, one might modify the definition of contraction of fields when dealing with
finite temperature field theory. This was first recognised by Gaudin [Ga60] and also
discussed in [FW71]. The contraction in this case is given by

. [(}5(5(71), ¢(w2)]q:

¢($1)¢($2) - = et0E

(3.32)

where E = E, — E,, the upper sign refers to bosons and the lower to fermions and

[#(z1), ¢($2)]; = ¢(z1)¢(z2) F ¢(z2)$(21) (3.33)

is the (anti-) commutator if ¢(z) is a (fermionic) bosonic field.
If we denote the creation and annihilation operators by a;r- and a; respectively,
then contractions between creation and annihilation operators, depending on their

order, are

5, — {a;’a"];u L
J

2T 1FfE T FEEl
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P g F - :
aja; 1 o#; = 17 oPF; 1 £ n; (3.I34)
where
Tr{ePHoglq. !
n; = { e} _ (3.35)

Tr{ePHo} — ¢PE; 1
is the number operator for particles of species j.

Wick’s theorem for finite temperature field theory would now give

Tr{e M p(v1)$(2)d(xs) ... 6(z)} = $(20)d(w2)Tr {e™ $(3) ... d(w2n) }
F ¢(21)d(@s)Tr {7 §(22)$(4) ... $(w2n) } + ..

——’

+ $(£1)$(w2)Tr {7 d(22)(23) . .. (2a1) } - (3.36)
S —

There are striking similarities in Wick’s theorem for the finite temperature case
when compared to the zero temperature case. Unfortunately, this in itself is not
sufficient to allow us to handle the problems associated with the § functions en-
countered in finite temperature field theory in the real time formalism, where in the
momentum representation, one replaces the contraction of the fields by the propa-
gator (3.6) or (3.7).

We now turn to the case of applying the derivative method to the self-energy of

a particle.

3.4 Interactions and the Derivative Method in

the RTF

To see how the derivative method in Sect.3.2 can be applied to interactions
and loop diagrams, we shall choose the case of the self-energy of a scalar particle -

specifically the mass-shift. Our guiding principle is that a mathematical expression
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Figure 3.2: Self-energy insertions to the free propagator.

should be well defined at all stages of a calculation.

For simplicity, let us work with ¢° field theory described by the Lagrangian
1 m? A
I oy 2 3 -
L= 26,&38 é 5 ) 3¢ (3.37)

The free propagator will be given by (3.6). Including self-energy insertions to the free
propagator as displayed in Fig. 3.2, would cause a mass-shift in the full propagator.

The full propagator

1 271
p?P—m?+6m? +ic  exp[Blpol] — 1

A(p,m,ém?) = 6(p* — m* 4+ 6m?).  (3.38)

can be expressed as a series, very similar to (3.10), but this time an expansion in

the mass-shift parameter ém? is performed instead. The result is

2y _ X (mI)r 4\
A(p,m,&m) - Z |:(dp2 ,T)?

1 _m2 4
n—o T me +ue

2 dX" .9 _a
~lexpBlpoll = 1) (5) o’ ~m )} (3:39)

‘where we note that the derivative can be written as

d d
d? =) " -
Here, we let
ém? = §m2._, + ém?2 (3.41)

62



k_.
Vi Va

« k4p

Figure 3.3: The scalar self-energy to order A%

be just the simple one loop self-energy correction to the free scalar propagator as
shown in Fig.3.3.

The zero temperature part of the self energy ém?_, can be obtained from the
conventional 7 = 0 Feynman rules. The finite temperature contribution to the

self-energy in the derivative method is

T Il dk 27 d ) )
= — o(k* —
[(p,m) 21 (2m)t [ePlkol — 1 i d((k+p)* — m?) ol m
—2m

3 2 .2
Bl =1 1 g =) 2 ((E 4P —m) (3.42)

where 2! is the symmetry factor and V; and V; are vertex factors which in general
will be functions of momentum (e.g. for non-abelian theories). Each term within the
large braces is obtained by starting with a é function for one propagator and then
continuing anti-clockwise to get the rest of the expression. For scalar field theory
(3.37), i =V, = A

The derivative of the first 6 function in (3.42) may be rewritten as (using (3.40))

d 9 ) dk? d 2 2
d(k + p)? ok ) d(k + p)? dk? i )
p-k P2 d 2 2
(1 (k+p)? (k+ p)2) dk? 5(k ) (3.43)

and the derivative of the second é function is treated in a similar fashion.
For simplicity, let us consider a scalar field with .2 = 0 and compute the self-

energy for the unphysical external momentum configuration p, = (0, p) such that
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p? = —M?. Using the finite temperature integrals in Appendix A (with m replaced
by M), II(p,0)T becomes

A* —2m1 p-k p? d
T _ __ 4 e =T . _ Sl 2
HE07 = Simy L {eﬁlkol - (1 (k + p)? (k+p)2) 2 5
—2m p-k P KT
e (Ve w ) o

o L 3f(LY) | f(L3) B
_JB,-2) | 57(3,0) F3,4) 14,1
2 4 4 2

- s+ 149). (3.44)

f(3,2) +
2

Thus to order A?, the finite temperature contribution to the mass-shift is

ém2 ~ I1(p,0). (3.45)

Let us compare these results with those obtained from the conventional real time

approach. The expression for the self-energy I1(p, m)conventional Would be

A? 4 1 273 s .
II(p, M )conventional = m f d*k (k2 " ic ~ ARl — ] S5(k* —m )>
1 2 . |
| ((k TP —mitic el —q ok RS —m )) (3.16)

where the finite temperature contribution is

A? —2m
(o, M) ntional. = St .
(ps m)conventlonal 21 (2,".)4 / d4k {(eﬁlkol _ 1) ((k I p)2 —m? T 16) 6(’6 m )
2m ; -
B (eBlkotpol — 1) (k% — m2 + ic) 6((k +p)* —m?)
(—2mi)?

+ Al Z 1) (eBlkotrol — 1) §(k* —m*)6((k +p)* — m2)} : (3.47)
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Letting p, = (0,0,0, M), m = 0 and using the integrals in Appendix A

2

(P, ) emions = 2,—(;; [im (2£(3,0) — 4£(3,2) + 2£(3,4)) — 27°9(1,0)] (3.48)

which is simpler than but quite different from the result obtained from the derivative
method (3.44).

Some comments regarding the derivative method are in order :

o In the derivative method, the only mass variables appearing in the amplitude

are those from the é functions.

e If the vertex factors V; and V; have momentum dependence, it is not clear at
present whether such factors should be differentiated along with the é functions
or if they should be extracted from the amplitude and placed together with

the Boltzmann factor before the differential operators.

e What combinatorial factors one attaches to a particular diagram have still yet

to be clarified.

3.5 Conclusion

In principle an amplitude evaluated in the imaginary time formalism (ITF) can
be continued to the real time formalism (RTF) using techniques given in Sect. 1.4.
Usually the ITF expressions for the free propagators and vertices are continued
to the RTF, giving the well known finite temperature Feynman rules in the RTF
and then applied to perturbative calculations. More correctly, the calculation for
whatever amplitude one has in mind should be done entirely in the ITF and then
continued to the RTF. This way, it will be more likely that one gets distributions,
which may be quite complicated, instead of products of distributions (such as é

functions). However, performing the energy summations in the ITF can be very
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difficult, thus other methods for dealing with perturbation in the RTF have to be
constructed. The mass derivative and derivative methods try to bridge this gap.

The mass derivative method applies only when the momenta and mass variables
in the products of § functions coincide. Converting from products of ¢ functions
to mass derivatives of § functions for a specific set of masses and momenta is not
a ‘smooth’ process, in the sense that one has to replace certain functions with an
entirely new function, or rather, replace a set of distributions with a new distribution.
The derivative method is a ‘smooth’ process and each step is well defined from a
mathematical viewpoint. It reproduces the exact free field theory results, when
compared to a theory in which a perturbation in the mass term is carried out.

As it stands, the derivative method is mathematically well defined and at the
level of an initial investigation, it appears to be physically legitimate. The procedure
needs to be extended to four-scalar (in ¢* theory) or four-gluon (in non-abelian
theory) vertices or diagrams of more than one loop. Further development of the
derivative method requires a more extensive research program which is beyond the

scope of a single thesis.
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Chapter 4

The Chiral Anomaly

4.1 Introduction

Since their discovery [St49,5¢51,5u66,Su67,BJ69,Ba69,AB69,Ad69], anomalies
have been the subject of much investigation and they have played a crucial role in
understanding the nature of quantum field theories. For the case of the 70 — 2y
decay amplitude, the presence of the anomaly allows very good agreement with
experimental data, without which the PCAC theory could not account for the large
value observed. However in the case of the weak interactions, the Weinberg-Salam-
Glashow Model, anomalies presented a very different picture.

At first, they appeared to be a curse or the death knell of certain field theories,
making them non-renormalisable. Prior to their discovery, renormalisation proce-
dures did not clash with symmetries that existed at the classical level. However
when quantum effects are taken into account, anomalies arise when some symme-
tries are not preserved. Later it was realised that by choosing certain gauge groups
and representations thereof, it was possible and essential to cancel these anomalies.
This narrowed the search for theories that might be applicable for describing the
various interactions we observe. For the 7° — 2y case, the anomaly does not affect

renormalisability since the axial current associated with it is not a current of the
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Standard Model SU(3) x SU(2) x U(1). For QED and QCD only vector couplings
between the fermions and gauge fields have been observed experimentally, whereas
for the case the weak interaction (Weinberg-Salam Model) axial vector couplings
also occur.

As the name suggests, an anomaly arises when something ‘unexpected’ happens
to a particular equation under certain circumstances. There are various types of
anomalies - chiral, conformal etc. In this chapter we shall only be concerned with
the chiral anomaly, which was the first to be discovered and occurs in gauge theories
that have gauge fields coupled to chiral fermions.

Specifically for the case of the chiral anomaly, they arise when both chiral and
gauge symmetries cannot simultaneously be preserved. A regularisation scheme
that satisfies both chiral and gauge invariance cannot be found. In such a case, one
must forego either gauge or chiral invariance - usually gauge invariance is retained
and chiral invariance is not. This allows the physics of the process to become
more apparent since physically relevant quantities are believed to be gauge invariant
constructs. However this procedure is by no means unique as one could have just
as well chosen to retain chiral invariance but not gauge invariance - this makes it
difficult to obtain the physics inherent in the theory. Generally, when theories arc
quantised, anomalies appear as extra terms in certain equations - it is these terms
that break some symmetries that were present at the classical level. In other words,
some equations at the classical level are not necessarily maintained at the quantum
level.

The chapter will present an introduction to the chiral anomaly in four dimensions
- the triangle diagram using the Feynman diagrammatic approach in the momentum
representation. Next, a section on the derivation of the chiral anomaly using the
Nielsen-Schroer method [NS77] which begins by defining the necessary physics on a

hypersphere S?" (a compact manifold), then transforming the results to R?*. Then
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a section will be given showing the temperature independence of the chiral anomaly
by extending the Nielsen-Schroer analysis to include finite temperature effects. A
finite temperature delta-function, é7, which is anti-periodic in the time coordinate,
called either the ‘anti-periodic § function’ or the ‘temperature ¢ function’ is required.
The Nielsen-Schroer method is carried out entirely in the coordinate representation.

Finally, the last section deals with an interesting aspect of the Atiyah-Singer
Index theorem which relates the number of zero modes (i.e. massless modes) of
the Dirac operator to the topological properties of the gauge field, in particular
its winding number. After presenting the 7' = 0 situation, it is shown that the

Atiyah-Singer Index is unaffected by finite temperature effects.

4.2 The Triangle Anomaly - Feynman Diagram

Approach

Many books on advanced quantum field theory provide a good introduction to
the subject of chiral anomalies from a Feynman diagram viewpoint [Ry85.Fr87.1Z85].
The triangle anomaly, also known as the Bell-Adler-Jackiw anomaly, is the chiral
anomaly in 4 dimensions. It arises in any gauge theory that has couplings to chiral
fermions.

Vector and axial vector couplings of fermions ¥ with gauge fields can be described

by the interaction Lagrangian
L=—gvUy,VA* — g4V, vV Z" (4.1)
where gy and g4 are the vector and axial vector coupling constants, and A, and Z “f

are the gauge fields that couple to the vector and axial vector vertices respectively.
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The vector and axial vector currents are

Ju=UyV and J = Ty, (4.2)

The axial vector coupling consists of the 45 matrix defined by

Y5 = Y1723
1 o
= 7 Eavws Y Py (4.3)

where the Dirac matrices v, satisfy the Dirac algebra

Vs Wly = 26w

[vssvul, = 0 (4.4)

and Eya45 18 the totally antisymmetric tensor.
At a classical level (calculating tree-level diagrams only) and using the Dirac

equation one finds that the vector current is conserved :

0"J, =0 (4.5)

but that the axial vector current is not :

" JS = 2imUys ¥ = 2mJ° (4.6)

where J® = U~V is the chiral density and m is the mass of the fermion coupling
the axial vector vertex.

However, when higher order corrections are included, for example to one loop
order, there are two Feynman diagrams, each consisting of a closed, but oppositely

directed, fermion loop with two vector and an axial vector vertex shown in Fig.[4.1],
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Figure 4.1: Diagrams that contribute to the chiral anomaly.

(4.6) is modified but (4.5) is unaltered. It is these higher order diagrams that
contribute to the chiral anomaly. The change to (4.6) is the chiral anomaly.
Contributions from all possible types of fermions circulating the loop are summed

over. The amplitude for the amputated diagrams can be written as

qu,\(PlaPZ’ m) - Tuw\(PlaP% 77'1) + Tl’l-t)\(p2’p1’ m) (47)

where the first (second) term on right hand side of (4.7) corresponds to the first
(second) diagram of Fig.[4.1]. Normally the computation of amplitudes is greatly
assisted by using the techniques of dimensional regularisation, where the number of
spacetime dimensions, d, is analytically continued to the complex plane. However,
this method cannot be applied in the case of the chiral anomaly due to the inability
of defining a generalised 75 type matrix to arbitrary dimensions - it is (;nly defined
for spacetimes of even number of dimensions.

Using Feynman rules, we find that

1

—m? + e

Tuw\:(i)a(_igA)(_igV)2/((2i7l'];4 R

1 1 .
—p)P—mitic (ktp)—miiic & (4.8)
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where

4 tn = Tro[(F4 mpvu(— o+ m)pys (K + #2 + m)n] (4.9)

where Tr,.denotes the spinor trace. Note that 7}, is Bose symmetric under the
interchange (p1, 1) — (p2,v) and so the contribution of the second diagram to 7,,x
gives a factor of 2, so only one diagram needs to be evaluated.

It is important to note that (4.8) is linearly divergent, meaning that shifting the
integration variable alters T, by a finite amount. This can be seen by considering

the following

[dkite) = [d® sk a)
_ /d“k’f(k’)—au/d“kaiuf(k) s (4.10)

where we have used the Taylor Series expansion. Suppose the original integral is
linearly divergent, the second term in (4.10) is finite since when it is converted
to a surface term by Gauss’ theorem, the integrand f(k) ~ |k|™ and the surface
area ~ |k|3.

When matter (fermions) couples to gauge fields via vector or axial vector inter-
actions, expressions called the Ward Identities are encountered - one each associated
with the vector and axial vector current. The Ward identities are established by
considering such a shift in the integration variables described above. Naively, the

Ward identities would be

(pr+p) M s = 0 (Axial) (4.11)
Piluy = 0 (Vector) (4.12)
Pl = 0 (Vector). (4.13)

In reality, when the vector Ward identities (4.12) and (4.13) are imposed, which
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are essential for charge conservation in quantum electrodynamics, we cannot at the
same time satisfy the axial vector Ward identity (4.11). We will present an outline
of how this occurs.

As the linear divergent term is independent of the mass m of the fermion, without

any loss generality it can be set to zero, thus

_ o [ 4k Try [fru(K = #1)os(K+ po)v]
Ty = —gagv (2r ) B2k —p1)2(k + p2)? . (4.14)
Now consider
T TR e

and rewriting (p, + pa)vs as

(B + Po)vs = —(F— pi)vs — (K + p2) (1.16)

leads to

(pl + p2)/\T;w)\ = gAglz// ((2171.];4 Tr" “:)2/‘225_(*_/2—2'_)2?‘2)7'/]

ot [T,

Both terms on the right hand side of (4.17) are second rank pseudotensors depending
on only one 4—momentum. Naively, there does not exist any tensor that has this
property, so it is tempting to draw the conclusion that (4.11) is satisfied.

If we now calculate

" _ d*k Try [ (F — pr)vrs(£+ p2)v]
PTr = 0090 | Gomye Kok = pu)?(k + o)

(4.18)
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and change the integration variable to k' = (k + p) and do the literal substitution,

one gets

d*k Tro[(K = p) (¥ — # — 152)%75/6'%]'

(2m)* K2 (k' — py — p2)2(k' — pa)? (4.19)

PiTuwx = —gagy /
Again, if we rewrite p; = —(k — p1 — p2) + (K’ — p2) then (4.19) becomes

pp gz [ LRI [(F — pa)vys E)
e T S G K (F = pa?

: / &K Tro (K — hi — B)1rs K] (4.20)
( .

TV @y KRR = - p)?

which vanishes for the same reasons as for (4.17).

Similarly, by letting p, = (K" + p1 + p2) — (K" + 1) we find that

vp o o [ @R Tra (K4 PO vy

Dodpyvy = —Gagy (27r)4 k”z(k” + p1)2

and? Ak Trs (v vy (K + b+ 82)]
agv (2mr)? k2 (k" 4 py + pa)?

(4.21)

also vanishes.

Thus it seems that the Ward identities (4.11) - (4.13) are satisfied. However,
when we performed the change of variables in calculating the above, we did not
consider finite contributions from ‘surface terms’ as described in (4.10). Let us

define S,,, by

Tuu)\ s —gAg%/Suw\ (422)

where the linearly divergent piece is

1 / o LTs [ﬂvuléwvslé%]_

) = (4.23)

Suw\ .

Let us now see what happens to this when the integration variable is changed to
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K =(k+a):
S,uw\ = Suw\ s Cp,v)\pap (424)

where

_ 1 a0 [ Trs [ Krays f) :
Curo =~ 33 J & a%, [ o : (4.25)

Using the cyclic property of the spinor trace Tr,, and the following expression

Trs ['75’7&')%'77’76757(] = _4i56c(~ (gnag,ﬁ'y — k89~ + gn'ygaﬁ)

+4igaﬁ'w< (gn&gc( — Gkedés¢ + gK(g5E) (426)

we find that (4.25) becomes

44 4, O [ ke
o N O [R) 4.2
Cuvrp r)" Euvn /d k@k,, (k“) (4.27)
Now transform this integral to Euclidean space, i.e. let k; = tky. Note that the

integral vanishes when p # ¢ since it is odd in k. If p = ¢, then (k,)* = 1k? (no sum

in ). Converting the 4—dimensional integral to a 3—dimensional surface integral

gives, noting that the solid angle for 53 is § dQ = 272 :

4 .0
Cl-“’/\P - (27r)4 gu.l//\c /d I"Ea—k‘p (

Is)
= ﬁg““p [ ke ( )
k,
B (271r)‘1 s § (&°58), Iz

1 ko (a0 ke
= e G }f = (da) =
1
= 8—7(_2‘ gu'uAp, (4.28)

x|l =

Therefore by shifting the integration variables k' = k + p; and k" = k — p,, we
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see that (4.12) and (4.13) respectively become

1
PfS,w/\ = ﬁ Suu)\p Pg Pill . (4-29)
v 1 4
P2 SﬂuA = @ g;w}\p p,l) Do (430)

but the axial vector Ward identity (4.11) is still satisfied. This demonstrates that
it is impossible to satisfy both the vector and axial vector Ward identities. As it
stands, this is unacceptable since (4.29) and (4.30) violate conservation of charge.

To cure this, we define :

. o 1
S;Lu)\ = Syw\(PI:P?) + Slll/)\(p21 pl) + 4? gl“/}\P(pl - p2)P (4‘31)
then the Ward identities become
AC 1 A P P %
(p1 + p2)" Suwa ) Eivap Dy Pl (Axial) (4.32)
PiSun = 0 (Vector) (4.33)
PySun = 0 (Vector). (4.34)

That is, the vector Ward identities (4.33) and (4.34) are satisfied thus preserving
conservation of charge, but the axial vector Ward identity (4.32) has an extra term
- this is the anomaly. This is endemic in the theory. It can not be circumvented by
choosing another regularisation scheme where only one fermion is involved. Different
regularisation schemes may put the anomaly somewhere else, but cannot get rid of
it.

This poses a serious threat to quantum field theories since they cannot be renor-
malised under these circumstances. However, by choosing the gauge group and
fermionic representations carefully, it is possible to cancel the anomaly where all

contributions from different fermions are summed. It is remarkable that this seems
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to be the case in observation - provided that each generation of fermions is complete,
i.e. each generation consists of an electron, an anti-neutrino and three colours each
of up and down quarks, then the anomaly is cancelled. This is where one of the
major predictions of gauge theories is made - that of the top quark, as it is needed
to complete the third generation of fundamental fermions (at energy levels currently
accessible by present day accelerators).

As we calculated only the amputated amplitude to the triangle diagram, if we
include the polarisation vectors of the oulgoing photons the divergence of the axial

current (4.6) is modified to

2
g I L
oI = 2mJ® + 87‘;2 I, I (4.35)
where F),, the dual of F,,, is given by
AT 1 [vpo
"= 55 Lo (4.36)

The second term of the RHS of {4.35) is another way of stating the chiral anomaly.
Even in the limit of massless fermions, the axial vector current J 3 is not conserved.
Since the anomaly arose from a fermion loop with an axial vector and 2 vector
vertices (in 4—dimensional spacetime), it is thus a quantum rather than classical
effect.

Having seen how the chiral anomaly arises in gauge theories in four spacetime
dimensions, it is natural to ask whether the anomaly is peculiar to four dimensions
- do anomalies exist in higher dimensional field theories 7 Many methods can be
used to show that anomalies indeed exist in higher dimensional theories. They have

been investigated by using the following techniques

¢ Feynman diagrammatic techniques similar to those given above [FK83].
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Path integrals [Fu80,WN87,Gi86].
e Differential geometry [Zu84,AG84].

e Derivative expansions [Fs85,No84 et al,DK87).

Point splitting [Sc51,NS77,Ha69,JJ69,Crew].

Chiral Jacobians [RD85].

To examine the finite temperature aspects of the anomalies, one can make some

progress using the methods listed above. For example

e Dolan and Jackiw [DJ74] used finite temperature Feynman rules to show
that the anomaly is temperature independent in the Schwinger model (two-
dimensional QED). Similar conclusions have been arrived at using derivative

expansions [DK87] and chiral Jacobians [RD85].

e Calculating Feynman diagrams for four-dimensional QED [CL88] also shows
the temperature independence of the chiral anomaly as does evaluating the

determinant of the Dirac operator [LN88].

e The anomaly for four-dimensional QCD is temperature independent [IM83].

From this it is tempting to conclude that there is strong evidence that the chiral
anomaly is temperature independent in more general theories. To prove this using
the methods above can be very tedious.

At zero temperature the point splitting technique provides a very elegant way
of arriving at the chiral anomaly. This has been shown by Schwinger [Sc51] and
extended to include four-dimensional QCD by Nielsen and Schroer [NS77}. Crewther
[Crew] has further generalised this to arbitrary gauge groups in an even dimensional
spacetime. It will transpire that this method is very well suited to investigate finite
temperature effects of the chiral anomaly. The zero temperature case will be outlined

in the next section, the following section treating the finite temperature situation.
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4.3 The Chiral Anomaly - Point Splitting
Approach

To provide the tools required for the examination of the chiral anomaly at finite
temperature it will be helpful to give an outline of how the anomaly arises from
the point splitting method at zero temperature. An advantage of this procedure
is that it is gauge invariant and also it is calculated in the coordinate rather than
momentum representation. In pursuing this, it is crucial that the zero modes of the
Dirac operator in the presence of a background gauge field be identified. This is
greatly simplified if the Dirac operator is defined on a compact manifold since its
spectrum of eigenvalues is discrete. Choosing a non-compact manifold results in a
continuous spectrum making it difficult to separate and count the number of zero
modes.

To begin, the Dirac operator is defined on the compact 2n dimensional manifold,
the hypersphere $?*. This is the surface of a sphere of unit radius in 2n + 1 dimen-
sions. An even dimensional manifold is required so as to define a 5 type matrix. It 1s
only in such theories that chiral operators can be defined, i.e. left and right handed
components of fermions can only be constructed in an even dimensional spacetime.
Further, an Euclidean manifold is chosen - this does not affect the computation of
the anomaly, only making it easier to carry through some steps of the calculation.
The S?" results are then stereographically projected onto R*" and the anomaly is
then derived.

Details of the relation between the Dirac operators in S** and R*" are given in

Appendix B. The Dirac equation after being projected from S?" to R** is

2
14 z2

Pur(z) = Aux(z) z, € B> (4.37)
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Compare this with the well known Dirac equation in R*®
iPY(z) = mY(x) z, € R* (4.38)

where the covariant derivative D, = d,+ A, acts on a representation R of the gauge
group G. The background gauge field is smooth, antihermitean A, = — A}, and has
field strength tensor F,, = [D,, D,] which is assumed to die off sufficiently quickly
for large z.

For each configuration of A,, the eigenfunctions ux(z) have the following or-

thonormality relations

2
/ & (o) ux(z) = Sy (4.39)

and completeness relations

1+ 2?

S uahu) = =56~ v) (4.40)

where the summation ¥, includes those eigenfunctions that have degenerate eigen-
values, and 6,/ vanishes if A and )\’ are distinct.
Now introduce the fermionic propagator, which includes interactions with the

gauge field

S@y) = LA n(n) (1.41)

where the prime indicates that zero modes are excluded. If there are N distinct zero
modes ug;(z),

Pugi(z) =0 i=1,...,N (4.42)
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Figure 4.2: The contribution to the chiral anomaly in 2n dimensions.

then S'(z,y) obeys the equation

N
.S (2,5) = 6z — 1) — 1= O woi(@uoi)' (4.43)

The integer N is related to the ‘winding number’ of the gauge field.

Gauge-invariant functions may be constructed by Schwinger’s method [Sc51]:
let the fermion propagate from z to y, parallel transport back to z, and take the
trace. This can be represented pictorially by Fig.[4.2]. The gauge fields (wavy lines),
labelled by 1,2,...,n—1,n, are attached to the fermion propagator S(z,y) and the
dashed line I' is the path taken by the parallel transport operator Er(y,z).

Let

Gulz,y) =Tr, Gu(z,y)Er(y, ) _ (4.44)

be the gauge-invariant function obtained from the axial-vector projection

gu(ma y) . Trsi7u72n+lsl(xa y) (44:5)
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where T'ry, T'r, are respectively, the gauge and spinor traces. The parallel transport

operator is represented by the path ordered exponential

Er(y,z) = Prexp (— f: dzuA#(z))

= I-/: dzuAu(z)+/: dz, /:I dzy, Au(z') Au(2) — ... (4.46)

and involves ordering Pr along a path I' running from z to y. As usual 7, and Yon 43

are Hermitean 2" x 2" matrices and obey the following anticommutation relations :

[’7#? 7u]+ . 25;“/ ['7;”'72n+1]+ =10 Y2n+1 = (—l)n’71’72 s Yon-
(4.47)

Under a gauge transformation U, the fermion propagator transforms as
S'(z,y) = U(z) S'(z,y) Uy)' (4.48)
and path ordered exponential as
Er(y,z) — U(y) Er(y,z) U(z)". (4.49)

By noting the cyclic property of the trace, it can be seen that (4.44) is gauge
invariant.
The anomaly arises from the divergence of G, in the limit y — x in which the

path T' shrinks to a point. In this limit, the ordered exponential Er(y, z) is regular,
Er(y,z) =1+ (2~ y)uAu (3(= +) + 0 (= - v)") (4.50)

but the fermion propagator S’(z,y) is singular, with the leading power at = ~ y
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given by
—in—=D! (- ¥)
2 (m(z—y)?)

S'(z,y) ~ —ig " 8(z — y) = (4.51)

This requires finding singular terms in the short-distance expansion of S'(z,y)

which can be isolated by rewriting (4.43) in the form

(P4 A) (iS'(z,y)— F7'8(z —y)) = — A §7'6(z ~ y) + regular. (4.52)

where is @' is defined through the following relation

9 (ﬁ'15(w - y)) =é(z —y) (4.53)

which shows that @='6(z — y) is the Green’s function for the @ operator. Applying

771 to (4.52) gives

(24 ) (iS' (2, y)— P7'8(z —y)+ §7 A §76(x — y))

=A §" A P7'6(z — y) + regular. (4.54)

Repeating the procedure will eventually make the R.H.S. of (4.54) regular, depending

on the number of spacetime dimensions. Thus the propagator can be rearranged as

Se,y)=—i[P7= FAPH PTAPT AP+ (2 —y) +regular (4.55)

where the number of terms inside the square brackets is finite. As it stands, this
expression is rather restrictive and somewhat cumbersome as gauge covariance is
lost.

A much more convenient and elegant method for examining the short-distance

expansion of S(x,y) is to use covariant derivatives rather than partial derivatives.
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The singularity behaviour of (4.43) can be isolated by considering

$(e.0) = —PPEP. {6 - 1) - L S ulehio)! ) (156)
with the inverse of
E@ = ¢ + }‘['Wla')'u]Fuv (457)

expanded as a series in the field-strength tensor £}, :

(PP)” Z{ D74 v} D7 4 {=D % nlFu ) (PP) . (4.59)

All singularities arise from the é function §(z —y) in (4.51). Contributions from
the zero-mode term are regular at z ~ y, since /N is finite - this was primarily the
reason why a compact manifold was chosen. These singularities are either a simple
logarithm

~ (constant)In(z — y)*

Or poOwers

x (z—y)? 0<p<2n-1

including direction-dependent terms such as

(z—y)alz—y)s
(z —y)2

The effect of each operator D! is to decrease the power p of the singularity by 1.
Consequently all singular terms in the expansion of S’(z,y) are generated by the

finite series }_; in (4.58) acting on —ipé(z — y) in (4.56).
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Because of the identity

0 k< 2n

TTS’YHI Yoz -+ - Y Toznyr = ' (459)
(2z)n£u1uz---ﬂzn k=2n

the spinor trace in (4.45) eliminates all singular terms except k =n —1:

n—1

Gulz,y) = Trovpami {—DHvevalFag}  D7*Peb(z—y)
+ (finite) oy
e 2(—i)n8ul/011ﬁ1~--01n—1ﬁn—1 {D—2Fa1ﬁ1 <o D—2Fan—1ﬁn—1D—2DV}x

b(z — y) + (finite)zay. (4.60)

The short-distance limit is to be specified by taking

n=(@y—z)—0 (4.61)
with the mid-point
s 1 ) (4.62)

held fixed. Noting that if M and N are operators
(M+N)1=M'-MI'NM*'+ M 'NMT'NM™' — ... (4.63)

and that
1

D2 = : '
0°+2A-04+(0-A)+ A?

(4.64)

then potentially singular terms in (4.60) arise from the first two terms in the expan-

sions

D? = 972-207A-007%+0(07)
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Fu(w) = Fu(2)+(w—2),0,Fu(2) + O(w — 2)*) (4.65)

where for F,, Taylor’s theorem has been used.
The leading O(n~!) power in G, is generated by =% acting directly on the delta

function in (4.60) :

2(-1)"

OO =~ Ty

(4.66)

see Appendix C for details.
Contributions involving d, [, sum to zero (provided the limiting procedure of
(4.61) and (4.62) is adopted), but G, contains nou-leading singularities due to the

A-dependent terms in (4.65) and of D, =4, + A, :
(D‘Q"D,,)r §(x—y)= (0, + A, — 2 A- 00,07 07*6(z)+ (finite)sny. (4.67)

We can rid ourselves of these A-dependent terms by multiplying (4.67) by (4.50)

and using the identity
218, 8, 072" Vé(z) = (g, + £,0,) ~*"6(x) + constant. (4.68)

where the constant term in (4.68) takes account of the arbitrary constant of inte-

gration (subtraction at z¢) needed to define

~2n . (_1)n—1 27,2
8 6(x) = P In (22/23). (4.69)
The result is :
Er(y,z)(D™*"D,).6(z — y) = (8,):0""6(z — y) + (finite)zny. (4.70)

It 1s therefore convenient to specify the short-distance behaviour of G, in the
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following way :

Er(z+in,z—1n) Gu(z — in,2 + in)
_in Ny

4n_17rn(n _ 1)! gﬂualﬁl---an—l,@n—l ﬁ (Falﬁl R f71°fr'|—1ﬁn—1)z

+ Ru(z,n) | (4.71)

where lim,_o R,(z,7) is finite and independent of the direction of n,. There are

non-leading singularities or direction-dependent terms such as

U
Suvalﬁl---an—lﬁn—l —7’2_7 [D"/’ Falﬁl] Fazﬂz s Fan—lﬁn—x . (4‘72)

This property seems to be peculiar to the axial-vector current in a Yang-Mills field.
(For example, in curved space, the analogue of G,(z,y) gives rise to a direction-
dependent term at short distances [NSR78].)

Equation (4.71) allows us to define a subtracted amplitude
G.(z) = lin% Tr, Rz n): (4.73)
n—

Evidently the standard procedure [NS77,Sc51] of averaging over %7, is also appli-

cable and gives the same answer :
~ o1
Gul(z) = lim 5 {Gu(z = 3,2 + 5n) + Gulz + 31,2 — )} - (4.74)

The O(n~!) subtraction in G,(z,y) is conserved as a result of the Bianchi identity,

0
8_2: TT'g gul/alﬁl---an—lﬁn—l (Falﬁl ‘e Fau—lﬁn—-l)z

= TryguValﬁl--~an—1ﬁn—1 [Dlh Falﬁl tacm Fan—lﬁn—l]

= 0 (4.75)
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s0 8- G can be obtained as the 7 — 0 limit of the identity

d 0 19}
oz, TryRu(z,m) = (a—xu + @;) Gu(z,y).

The divergence (4.76) can be written

8 8

with

1y = T, { By ()9u(e,) = Gue,3) D (0} ry:)

and

T, = Try { D (1) Py, ) — Bn(y,2) Du (2)} Gulsp)

where for any function f(z,y)

By (&) fa) = L2 4 o) fto)
and
£ Du () == L2 4 fa) (o).

(4.76)

(4.77)

(4.78)

(4.79)

(1.80)

(4.81)

Equations (4.43) and (4.45) allow us to write the first term 7} in terms of zero modes

Ug; -

Th=2 { (1 + 362)—1 + (1 +uy ) }Zuo. TEr‘ (¥, T)Yant1toi(z).

For the second term T3, we need the short-distance result

Dy (v)Er(y, 2) — Er(y,2) Dy (2) = (¢ — y)pFup(2) + O(z — 3)?)
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which, together with the leading singularity of (4.71), implies

T2 — —" ﬂﬁnvgwaﬁ on_1 1TrgFuﬁFa1ﬁ1---Fa 1B8n—1
4n—17rn(n_1)! n? 181-0n_10n_ n-18n—

+ O(n) (4.84)

in the n — 0 limit (4.61). The leading term of (4.84) seems to be O(nn/n?), but it

is not really direction dependent because

guvalﬁl---dn-lﬁn—l Fﬂ,@Falﬁl ool Fﬂn—l.@n-l (485)

is proportional to ,5. This can be seen by supposing that we have an « dimensional

spacetime, then

Wieatida = UHEAE=iz | URdE i = UG A0 50 T e 1 i [t

= 0 (4.86)

since there does not exist any construct which is antisymmetrised with respect to
a + 1 indices in a dimensions. Note that the indices within braces {z;...%,} are

antisymmetrised. This means that

Ber. g, _n Bea. ey, =10 (4.87)
and
—6;;
Fiiy oo . Fiy_jiq Eiyiaj = — Fiiy oo Fyysia Eiy.iar (4.88)

Consequently the n — 0 limit of 7, can be taken without ambiguity to yield the

result

~ 4 ]
3,,Gu(z) = 1-|-—22 Z uOi(Z)f’an+1uO,'(Z) + f171_1;% T2 (489)
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where

Z'n

m&lm...anﬁn Trg Foypy -+ Foupa (4.90)

hm T2 =
n-—0

is the anomaly, in agreement with other calculations [Zu84].

4.4 Chiral Anomaly at Finite Temperature

In this section we confirm that the chiral anomaly is temperature independent
for an arbitrary gauge group in an even dimensional spacetime. This is achieved
by extending the procedure outlined in the previous section to finite temperature
using the imaginary time formalism [Be74]. Many of the steps iﬁ the procedure are
very similar to those carried out above, although care must be taken to ensure that
any new properties arising from the finite temperature analysis are given particular
attention; for example, the § function now contains an infinite sum of terms.

Heuristically the anomaly should be temperature independent since it arises from
the short-distance behaviour of quantum field theories. A regularisation scheme
should be chosen so as to exhibit the finite temperature effects clearly. Finite tem-
perature effects, in the imaginary time formalism [Be74], are manifested through
global, rather than local properties of the field theory. No new divergences arise in
such theories, the same counterterms used for zero temperature field theories can
be used for renormalisation. Thus, one may expect the anomaly to be temperature
independent. Further, the anomaly arises as a result of a finite, rather than infinite,
effect in the regularisation scheme.

For T + 0, using the imaginary time formalism, the (fermion) boson fields are
(anti-) periodic in the time coordinate, z1, (we choose units such that Boltzmann’s

constant k = 1):

Al(z +1/T,3) = AlL(z(,7)
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o

T Z Af;(f) expli2nj Tz

u{(ml +1/T,%) = —ug‘(:cl,.i:')

T {Zj wh(Z) expli(27 + )rTz4]. (4.91)

This imposes a restriction on the z; coordinate
z, €10,1/T]. (4.92)

In 2n dimensions this necessitates operators to be defined on S' x M, Whe_re M
is a (2n — 1) dimensional manifold and S takes into account the (anti-) periodic
properties of the fields in the time coordinate. For our purposes we choose M =
S§*=1_ giving the Dirac operator on S' x 5?"~! a discrete spectrum. Stereographic

projection from S*"~1 to R?*"~! is carried out, leaving the S* factor unchanged :
St x §*1 4 St x gl (4.93)
Equivalently, one could use
R' x §**7' » R' x R**! (4.94)

on the understanding that R' is a compact manifold whose range is restricted to

[0,1/T] and let the coordinates be
T € Rl f = (1172, T3y..., ﬂfzn) € Rzn—l. (495)

One can convert from R! to S! by letting

0 0<0<2r. (4.96)

ry —

27T
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Using the results of Appendix B, the stereographically projected Dirac equation

from R! x §?" 1 to R' x R 1! is:

2
iPTur(z) = e :E?Au,\(a:) (4.97)
where the covariant derivative is
PT =781 + AT) + 7.(8 + A7). (4.98)

The orthonormality and completeness relations of the eigenfunctions u,(z) are mod-

ified to
1T 2
n— t _
/0 dz, / e (=) un(z) = b (4.99)
_ ;1427
D ua(@)ua(y)t = 5 ér(r —y) (4.100)
- .

where ér(z — y) is now the temperature dependent é function.

Following the previous section, the finite temperature fermion propagator
I —
S'r(z,y) = 32 AT ux(2)ui(y)! (4.101)
)

obeys the equation

2 N
7 2 to(@)ua(y)" (4.102)

t=1

i S'r(z,y) = br(z —y) —

Due to the boundary conditions (4.91), the fermion propagator has the property

S’T(xl + 1/Ta "E-) y) = —SIT(:El,:Z",y) (4'103)
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leading to an anti-periodic or temperature ér function

6T($1+1/T,.‘;3.) = —(ST(.'L'l,.’E)

_ ) - i Cutbu /T
= o 2 W Grgmp iy G

j=—c0

where ¢ = 1,2,...,2n. A derivation of (4.104) is outlined in Appendix C.

The path-ordered exponential, Er(z,y), together with (4.91) has the property
EL (zy+ 1T, &, y1 + 1/T, §) = Ef (z1, & y1, §) (4.105)
and as z — y
Ef(y,z) = I +(z — y)uA} (3(z +9)) + O((z — v)?). (4.106)
Since x1,y1 € [0,1/T], then at finite temperature (4.44) becomes
Gf(a:, y)=Tr, gf(z, y)EL(y,z) (4.107)
where after some work

QZ(:c, y) = Travuyana1S'r(z,y)

n—lﬁn-—l

= 2=i)"€psasroansbs {0 Forpy .- D Fa 5, DD}
br(z — y) + (finite)gay

2"

T
= (n _ 1)!(47!’)” guvollﬁl---an-lﬁn—l (Falﬁl e Fan—lﬁn—l)

T

> ; (w_y)u_‘sulj/T .
5 E —1¥ - —— finite)zn,. (4.108
Fm(’mrwﬁqﬂv+n—w+(m@y (4.108)

The zero temperature counterpart to (4.108) is nothing but the j = 0 term.
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Letting n = (y — x), the finite temperature equivalent of T, (4.90), is now

i'n,
I = GumayCapieannl Telop - Fonpn

=y 1 mi/T
' j=z—:oo(_1) (m +3/T) 4+ |71* (4.109)

In the limit » — 0, only the j = 0 term survives in the summation 3=; of (4.109),

leaving

i7l

Qn=2gnpl

T
8alﬁl---anﬁn TT'g (Falﬁl R Fan,@n) (4'110)

Iim T2 =
n—0

representing the anomaly. The form of the anomaly is unchanged by finite tem-
perature effects - the coefficient is independent of temperature. However, global

properties of the field configurations may be affected at finite temperature.

4.5 Atiyah-Singer Index

For T' = 0, Nielsen and Schroer [NS77] show that the Atiyah-Singer Index can

obtained by noting that integrating (4.89) with (4.90) over all space gives :

/dznw 8, G(z) = }idSu Gu(z) =0 (4.111)

where S is the surface enclosing the volume of integration. This was obtained by
considering the corresponding equation on the hypersphere, which was shown to

vanish when integrated over the hyperspherical coordinates. Hence one has

2
2 / s z‘:uog(x)f'ygnHum(x) S / &z A(z) (4.112)

where, from (4.90), A(z) = lim,_¢ T is the anomaly.

The zero modes of the Dirac operator ug;(z) can be expressed in terms of eigen-
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states of the matrix yan41 since [yan41, ], =0 :
Y2n+1 'U,(),‘(SI?) =4 U()i(.’l?) . (4113)

Usually states that have eigenvalue +1 are called right-handed whereas those with

eigenvalue —1 are left-handed states. So, (4.112) can be rewritten as
9 (np—ng) = _/d% Alz) = 20 (4.114)

with ng (nr) being the number of right(left)-handed zero modes and v is an integer,
usually regarded as the Atiyah-Singer Index.
Let us now examine what happens at finite temperature. The integral of the

divergence of the axial current is

/Oﬁ dzy /dZ"‘lw 8, Gu(z) = /Oﬁ diy / 212 8, Gh(z) + /Oﬁ dr, / P 1g 8, Gila).

(4.115)
The second term on the RHS of (4.115) is zero for the same reasons that lead to
the result of (4.111). By noting the finite temperature properties of solutions to
the Dirac operator (4.91), and the parallel transport operator EZ (4.105), one can

deduce that G,(z) obeys

Gu(zy + 8,%) = Gz, 2). (4.116)

Thus the first term of (4.115) can be rearranged as

[t [amzaGie) = [ (G, - G0}
0

(4.117)

95



because of (4.116). Hence
8 ~
/ di /d2"'1x 8, Gulz) = 0 (4.118)
0

which shows that the Atiyah-Singer Index theorem is not affected by finite temper-

ature effects.

4.6 Conclusion

The Nielsen-Schroer technique provides a very elegant way of deriving the chi-
ral anomaly in the coordinate representation. It has transpired that it is also the
most convenient method to extend to finite temperature and to show the temper-
ature independence of the anomaly. To do the analysis by I'eynman diagrammatic
techniques would have been much moré tedious. To the best of my knowledge, the
coordinate representation of an anti-periodic or temperature 67 function has not
been observed in the hiterature.

The temperature independence of the anomaly - or more specifically, the ampli-
tude associated with the anomaly, does not mean that the 7° — 2v decay width T,
is temperature independent. In fact the width does depend on temperature [CL8S],
through the phase space factors of the outgoing photons, as outlined in Section 1.5.
Other parameters, e.g. the pion decay constant f, [LLS90] and the pion mass m,
[GoL89] also depend on temperature.

After this work was completed, I became aware of a paper by Wang [Wa89] who
reaches similar conclusions regarding the temperature independence of the anomaly
by using chiral Jacobians.

The Nielsen-Schroer method also allows one to obtain the Atiyah-Singer Index
in a relatively simple way. This was well suited to extend to finite temperature, and

showed its temperature independence. From a physical point of view, this means
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that the number of zero or massless modes of the Dirac operator is unchanged as

the temperature is varied — provided no phase transitions are encountered.
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Appendix A

Feynman Rules

This appendix gives the finite temperature Feynman rules needed to compute the
self-energies of the gluon and scalar fields. Lists of finite temperature integrals with

6 functions are also given.

A.1 Finite Temperature Feynman Rules
The Lagrangian for an SU(N) non-abelian gauge theory is

L= TR Fw — L (@,A%) 4 (XD, (A1)

Using the conventions of Muta [Mu87], Baier et. al. [BPS90] the finite temper-
ature Feynman rules are :

Propagators:

e Gluons AZ
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" | bk, !
Az?/(k) = §% [(guu —(1 - a) kzu—l-ie) k2 4+ i¢

271 ) o
exp[B|ko|] — 1] (guu5(k Y+ (1 — ) kuk, 8 (k ))] (A.2)
e Ghosts y? 'é
T _< s e e
¢ b (A.3)
Ao — a 1 27t 5
A b(k) = —§2% (k‘2 Tie eXp[ﬂlm‘s(k )) (A.4)

Vertices:

o Tri-gluon vertex

— g fHT ((kl - k2)p3 Gz T (k2 - k3);41 Guzps T (k3 - kl)ﬂ2 guaul) (A5)

e Four-gluon vertex

a

as as

& M3
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q° ((f13’24 - f14’32) pruzGpuaps + (f12’34 - f14,23) GurpsGuapa +

R (A6)

e Ghost-gluon vertex

a
5 e
2
:
- - - L i ) -\- $\ -
b «k c
g™, (A7)
* Loop integrations :  For gluon loops there is a factor d*k/((27)%) and for

ghost loops a factor —d*k/((27)%).

The structure constants of the group are denoted by fa¢ and
f12,34 — fa1a2’1f0-3ula. (AS)

For scalar fields described by the Lagrangian

1 m? ., A,
£—§3u¢a“¢——2—¢ —ad’ (A.9)

the scalar propagator is

1 2w
P2 —m?24ie  eflrol — 1

A(p,m) §(p* — m?). (A.10)
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A.2 Finite Temperature Integrals

To evaluate integrals with é functions or products of é functions and their deriva-

tives, it is convenient, at first, to use cartesian coordinates to integrate out all the é

functions then use spherical polar coordinates to do all angular integrations. What

remains is a single integral over the magnitude of resultant vector from the spherical

polar coordinates. Usually the final integral is left untouched, since it can not be

put into a simple closed form.

Integrals that are normally encountered can be summarised as follows, where

f=1/1Tand a,n=0,1,2,... as:

. z™ l
fLin) = 7r/0 dx(—1+x)2(1+3:)2 exp[fmz /2] — 1 (A-11)
) B . " d 1
USIO 7r/0 o (=1 4+ 2)2(1 4+ z)? dz exp[fmz /2] — 1 (A.12)
‘ _ oo o l+z 1
f3n) = W/o de (=14 2)*(1 4 z)? In ( —1+= ) exp|Bmz/2] — 1 (A.13)

[ z" 1+=z
fn) = WL dm(—1+x)2(l+m)2 ln(—l—l-:r

o e 1 ’
g(a’n) ey 7["/1 d.r:l: d,na (exp[ﬁmw/2] —_ 1) 5

) iz <
dz exp[fmz /2] — 1

A.14)

(A.15)

Below are the finite temperature integrals used to evaluate the one loop correction

to the gluon propagator, given that the momenta of the external lines are set to

p. = (0,p) such that p? = —m2.

Integrals involving one § function :

| dks(yng(lkol) = m? (£(1,1) — 2£(1,3) + £(1,5))

/(3,0)

1 2 . _ —f(3,0) f(3’4)
/ ‘ﬂkmé(k Ing(lkol) = ===+ £(3,2) - =5—
g1 2 _f(L1) - £(1,3)
[ d FE T Ens(lkel) = —
4 1 2 _ —f(]_’l) f(1,5)
/ SRk Ty S Ims(lkol) = pu (—2— +5(1,3) - =52 +
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1(3.2) | 13.4)
e

. 1 .2 _ p_lt _f(lal) f(173) f(310) o f(3’2)
[ el = 2 (< FED) SO S,
f(3,4))
4
1,3 1,5 3,0
/ d4kk L (k 1 ) 6(k2)nﬁ(|k0|) 2<f(1a1) f( )+f(8 )__ f(16 )+
36.2) 36,4, ] )%U o ( f1L1) 7 _f(18.5) |
f(3,0)  5f(3,2) ?f 3 4) ?f 3,6) 3f 3f(1,3)
6 16 )g""g”" ( T T
3/(1,5) 33,0 7f(3 D80 S 6))
8 16 16 i
,1 s, 1 f(1,5 f(3,0
f(3,2)  f(3,4) —f(1,1)  3f(1,3) f(1,5) @ £(3,0)
4_8)9“"+(4+4—2+8—
f3.2) | f(3,4) 3f(1,1)  5f(1,3)  f(1,5) 3/(3,0)
1 + 3 )guoguo+( 1 i + 5 T 3 +
3f(312) _ 3.{(314) PuPv
4 8 m?

41,1, 1. 1 _ _15f(1’1) 7f(133) _ 13f(15)
/dklwkukp((k+p)2)25(k2)nﬁ(|k0|)_( 16m? t 4m? 16m? +
15f(3’ 0) 33f(37 2) 21f(374) 3f(3’ 6) _Bf(la 1)
32m?  3m? | 3om? 32m2) s "+< T

3f(1,3) _ 3f(1,5) , 3f(3,0) 7f(3,2)  5f(3,4) f(3,6)
s 16 1 32 3 T om m >(p“g“"+
(MBI 9099150 915

9£(3,4) N 3f(3,6)

(Puguogpo + Pv3p0G,0 + ppguO.guO)
32 32

Integrals involving a derivative of a single 6 function :

[ a8 () (lkol) = 2£(1, ~1) — 4£(1, 1) + 2£(1,3) — 2/(2,0) + 4£(2,2) —

2f(2,4)
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4 1 "N na(lkal) = L B B e B
[ g (mallkol) = o (F(1,1) = £(1,3) = /(3,-2) + 2/(3,0)
f(3,2) + f(4,-1) —2f(4,1) + f(4,3))

[ k8 (kmgllkol) = 0

/ dkk (H;)z (k) (lko]) = 25 (—f(l,—1)+3f(;’1) —f(12’3)+
o0 ~21 2+ sy + LD _ VOO 00 Jthon)
sy - 262)

[ ks = (D 909, 100 Je,
f(26,6))gw +m2(—f(31,1) VLY I 222 )
2f(§ : 6)) 9u09u0

| kb e o) = (f“;[“ SEULASICLINE. . ol
10, 12224 [0, 00162 o)
YD DS, | () S0, 0
ML), SO J22)  JR4) f0.2) Y, S04
f(4a8—1) + ?f(‘sl-sl) B 7f(§a3) + 3f(;1,5)> Gu09v0 + <3f(1[1—1) B 3f(ia1)
09 | SLD) 0 R N 6 | [0,
102 f04) , Y1) T 55 _f(t5))p:nz;u

[ ek (—(Hl—)z)za'(k?)nﬁ(mon = (f(l’z_l) _ 3f(i’1) 4 f(t’f*)_
H0) | o A SO O _JO4)  fho)

(42’1) n (‘23)) +$(—f(12a—1) _l_f(14al) B f(14a3) +f(?,£0)“
2D | o4 162 MO0 S0 Jho1) | f61)
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T)g“°g"°+< 2 1 1 2 ‘T2 _
oy - B2 UG HOH | 3l 3D,
3f(473) pitpv
4 mt
AL L 2 _ (=8/4, 1) 23/(,1) | 19f(1,3)
/dkl”ﬂkukp(k_l_p)z&(k )n.@(|k0|)—< 8m2 L 48m? + 241m2 o

482 8m? 12m? 24m? 612 16m?2

11/(3,0) 11/(3,2)  15/(3,4) _3/(3,6) 5f(4,-1) 13f(4,1)

32m? 32m?2 32m? 32m? 16m? 16m?
11£(4,3) 3f 4,5) fQ,-1)  5f(1,1)  17£(1,3)
16m? 16m? )p“p”p” ( LT TR
23f(1,5) 2 ,0) 7f 2 2) 19f(2 1) f(2,6)  f(3,-2)  f(3,0)
48 t 24 T3 16 32
11/(3,2) 11f(3,4) 3f(3 6) f(4,-1)  5f(4,1)  T7f(4,3)
32 16 6 T 16
3f(4,5) —f(1,-1)  Tf(1, l)

16 ) (pugvogpo + Pv3p04.u0 + Ppguoguo) + ( 3 -+ 18

f(1a3)_5f(135)+f(210)_f(2’2)+7f(234)_f(2’6)+f(3=_2)_

12 48 8 3 24 12 16
32 32 32 32 16 16 16
f%m) (Pugve + Pvgou + PoGuv)
Integrals involving two ¢ functions :
[ k55 pIna(lkol)? = LY
[ dRSE)S((k + pP)na(lkol)? = =F2g(1,0)
/ d'kk,k, 6(k*)6((k + p)*)np(|kol)? = m® (9(180) -4 (igf)) G +
—g(1,0) = 3g¢(1,2 3¢(1,0 1,2
mz( giﬁ ) + 9(16 )> guogvo + ( g(16 ) _ 9(16 )) Pupv
/ d'kk,k, k,6(k*)6((k + p)*)np(|kol)® = (_5%(21’ ) + 3922’ 2)) PubvPp +

(ngu,O) _ 3m(1,2)

39 32 ) (pugvogpo + Pvgpoguo + Ppguoguo) +

104



(<imiatton , mia

39 39 ) (Pugvp + PvGou + PoGuv)

/ d*k8(k*)6'((k + p)*)ng(|ko|)* = g(;;n_f) - g(22r,nO)

[ a8 ((k + 5 )ng(lkol)? = (—9(14’ 240 0)) i 920

1 _2) g(l,O) 7”9(2a0)
&k b, 6(k2)6" 2 (k2 = (90 =2) B
| kB4 gl = (L2 - 20 D)
mg(2,2) —g(1,-2) B g9(1,0)  mg(2,0) B 3mg(2,2)
16 )T\ 16 6 16 16 ) Swodwo
39(11_2) . 59(170) o 39(230) + g(2a2) Dup
16m? 16m? 16m 16m )74
41.7. N7 2a2 2 V2 _
/ @k, ko6 (k)8' (R + p)"Ins([kol)” = ( 32m? + Sm? 32m? i
59(2,0)  3¢(2,2) g(1,-2) _ 39(1,2) mg(2,0)  3mg(2,2)
39m $2m )PP T\ T3 T g 32 T 39

32 16 32

APu9v09s0 + Pvgpoguo + Poguogio) + (

mg(2,0) mg(2,2)
32 32

) (pugup + Pvpu + ppguu)

g(l, _2) _ 9(170) o 777'9(210)
16 16 16

| B + 2P sl = (

mg(2,2) Soilbe2)  olsll  magonl),  Bmelsn) +
16 w 16 16 16 16 S
39(1,—2)  3¢(1,0) 3¢(2,0)  ¢(2,2)
16m? 16m? 16m 16m | PuPr

, —59(L,—2)  3¢(1,0) = 3g(1,2)
dikk,k, k,8'(k%)6((k + p)? = -
[ kb k8 (R)8(( 4 9))ms( ko) ( w7 lom? T 3

59(2,0) . 39(2’2)) PP+ (9(1’_2) + 9(1,0) . 39(1,2) 77"9(210)_{_

32m 32m B

32 16 39 392
3mg(2,2)
a9 (Pugrogeo + Pugpoguo + Poguoguo) +

_9(1’_2) 9(112)
32 + 32
mg(2,0) B mg(2,2)

) (Pugvp + PuGou + PoGuv)

32 32
o _ (39(1,-4)  g¢(1,-2) ¢(1,0)
/ d*kk,k,6'(k*)6 ((k+P)2)n[3(|k0|)2 = ( 16m2  8m2  16m?2

g(2,—2)+g(2,2)+g(3,0) 9(3,2)) ) (—39(1,—4) 9(1,0)

8m 8m 16 16

16m?2 16m?2
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9(2-2)  9(2,0) 3¢(2,2) ¢(3,0) 39(3,2)> o (99(1:—4)

8m 4dm 8m 16 16 16m4
59(130) _ 39(21 _2) . 9(2’0) + 9(2, 2) + 39(310) _ 9(3,2) P
16m* 8m3 4m3 8m3 16m2 16m? HEE
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Appendix B

The Dirac Equation

The first section of this appendix details a projection of the Dirac equation from a
compact to a non-compact manifold suited for zero temperature field theory. The

second section presents a similar analysis but for finite temperature field theory.

B.1 Dirac Equation : $%* « R*"

This section gives an outline of how the stereographic projection of the Dirac
equation from $?" to R*™ is carried out [NS77,Crew]. This is applicable to the casc
of zero temperature field theory.

Let {z,} and {r,,r2.41} be the coordinates of R?® and S?" respectively (u =
1,...,2n). Performing stereographic projection from the south pole, the coordinates

are related by

2z, 1—gz?
Ty = 1+ 22 Ton41 = _‘1+$2 (B'l)
where
=2l 4. . 422 _ (B.2)
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and the coordinates of S?" satisfy

rit. oty e =1 (B.3)

The volume elements of the respective manifolds are related by

. 2 2n .
(1+x2) Pre = d0 (B.4)

where df) is the elemental solid angle for the hypersphere.
The Dirac matrices for R?" are denoted by ~y, while those for S** are given by

I', and are defined as

Fu = —1 T Y2n41 F2n+1 = Y2n+1 (B5)

where

Yon41 = (—l)n’)’l’)’z e V2n (B-G)

and satisfy the anti-commutation relations

[’7#1’71/]4. - 26;“/ [’7#1’72714-1]4. = 0. (B7)

If we let the coordinates of S?" be given by Latin subscripts a,b=1,...,2n,2n +1

and those of R?" by Greek subscripts u,v = 1,...,2n then using
5a5 = ~= [T, T - (B.8)
ab = 43 aylb .

and the angular momentum operator

la.b =TaePb — ThpPg Do = _ia(za (Bg)
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or equivalently
ly = —iz,0, + 12,0, long1 p = —17,2,0, — % (1 — a:2) M (B.10)

one can show that

(1 + $2)2n
2

-1

n—1 . n
1Y,0, = (1 + xz) (1 —yuzy) (saplay + 1) (1 4+ 2y,2,) (1 + :c2)
(B.11)

Equation (B.11) gives a relation between the Dirac operator in R?" to that of S2"
1704 — Sablap + 1. (B.12)

If gauge fields are included, then the correspondence of the potentials in R*", A,
to those in 52", flu and Agniq, is
14 z?

Au = 5 A, —z Ay z‘i2n+1 = —z,A, (B.13)

and the /ia are constrained by

a

reAa=0 (B.14)

i.e. the field configurations A, are ‘tangential’ to the surface of the hypersphere 57,
Interactions of fermions with gauge fields can be implemented, as is normally

done, by minimal substitution to (B.11), i.e.
0,—D,=08,+A, (B.15)
which means that on the hypersphere

lopg — Loy = Loy + ?:T'a/i(, — inAa (BIG)
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where A, = — A} are the anti-hermitian gauge potentials of any gauge group.

The normalisations of the fermion fields are

2
14+ z2

/\i'l(r)\ilg(r)dﬂ - /\I’l(x)\llg(:c) d*ng (B.17)

where ¥(r) are fermion fields on $?* and ¥(x) are those on R*® and are related by

¥e) = (7533) 750 — e ¥0) (B.18)

B.2 Dirac Equation : $?* ! x R! & R* ! x R!

The treatment of the finite temperature case is analogous to that of the previ-
ous section, except that the (anti-) periodic properties of the fields are taken into
account. This means that the range of the R' coordinate is restricted to [0, 3]. One
could have just as well chosen S* rather than R'. The convention regarding indices

for the various coordinates used in this section 1s as follows
e The index u = 1,2,...,2n labels the coordinates of R! x R*"!
e The indices a,b=2,3,...,2n + 1 label the coordinates of S**
e The indices 7,4, k,I,m = 2,...,2n label the coordinates of R*"~1,

Label the coordinates as follows

Rl X R2n—l _ Rl X S2n—1

(-'51, T2,..4, -'L‘zn) == (7'1, T2y-«-3T2n, 7‘2n+1) (B.19)

where the first coordinate of each set is that of R!. Stereographically projecting from

S§2n=1 to R™! and leaving the R! component unchanged, the relations between the
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coordinates are

2x; 1 — 32
n=on re = 1+ 32 Tondl = 11z (B.20)
where
2_3'.= (:321373,-“337271) (B21)
and
ridrib i e, =1 (B.22)
The volume elements are related by
dz,d* 'z = drdQ (B.23)

where dQ is the solid angle element for the hypersphere S**~! and dzy = dr;. The
same definitions for ;5 and sgp as in (B.9) and (B.8) respectively are used (noting
that now a,b = 2,3,...,2n + 1). The matrix '72,;4,1 is still defined as in (B.6) and
satisfies the same anticommutation relations.

The relation between the Dirac operators in the respective manifolds is now

1 = Prae
Y0, = 2 ((1 _:7-];)1)
z
2n — 1| (1 + tyeay)

2 (1+22)

) ) ) d
2 (1 +vmZTm) M (L —tmiz)) m— + Saplapr + (B.24)
2 (97'1

where j,k,Iim=2,3,...,2nand p =1,2,...,2n.
Equation (B.24) shows that the relation of the Dirac operator in R' x R**~! to

that of R x §%*~1 g

] : . ) d 2n — 1
1,0, — 3 (14 tymem) M (1 —imzt) 5— + Sablap +

. > (B.25)
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The relations of the gauge fields are

A . 1+ X
A1 = A1 Aj = 2 Aj — .’Ej.’EkAk A2n+1 = —.’DJ‘AJ' (B26)

where the A, are constrained by

roAq =0 (B.27)

and by performing the minimal substitution as in (B.15) one can include interactions.

The fermion fields are normalised such that

2

/drl 4, ()05 (r) = /da:l e U (@) Uale) 5
X

(B.28)

where ¥(r) are fermion fields on R! x $2" and ¥(z) are those on R' x R** and are

related by

9 n—1/2 1 ‘ .
! +£2> — (1 — iypzy) Y(r). (B.29)

¥(z) = ( 7
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Appendix C

Representations of § Functions

This appendix gives coordinate representations of zero and finite temperature delta

functions and other associated functions required for evaluating the short distance

behaviour of the fermion propagator.

C.1 . The é Function for R?"

A coordinate representation of a é function for R** is [Crew]

5(z) = ) 5, [ T ]

27

Hence it can be seen that

L(n) ou_
2rn (z2)"

e ()" %]

8,072 §(z) =

and if this procedure is repeated n — 1 times one arrives at

—2\" _2\" —1)»-1 Ty
0 (07 8(a) = (07" 04 8(0) = gt 7 | 4]
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The meaning of =% can be inferred from the following
8* (072 6(z)) = 8(x) (C.4)

i.e. 26(x) is the Green’s function for the 9% operator.

Let g(z, z) be the solution of
8% g(z, z) = b(z — 2) (C.5)
then by using conventional methods, the solution to (as an example)
9 (072 Foup 072 P8(z —y)| = Fapd™® Pé(z —y) (C.6)
is

| ' 9
B2 Fpd? Pé(z—y) = /dznzg(rr.,z) Fos(z) /d%wg(z,w)fyu%&(w —y)
/ u

= Fop(x) /dznz]d2"w g(z,2) g(z,w)y, 8iwu Sw—y)+... (C.7)

where Taylor’s expansion has.been used for I, .

C.2 The Anti-Periodic or Temperature § Func-
tion

The antiperiodic or temperature § function on S x R?"~! can be obtained by

finding the solution to the following equation

a 0
a—%a—%f(x,y) =br(z —y) (C.8)
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with the boundary condition
f(a:1+1/T,a':’,y) = _f(wlafvy)' (Cg)

This implies
ér(z1 + 1/T,%) = —br(z1, ). (C.10)

Since f(z,y) = f(z —y), let

flz)=T i exp[z(27 + l)mel]/(gj:T;;l_cl—‘exp [zl-c‘a?] f (], E) (C.11)

j=—oc0

where
L —1
F(, k) =— =r: (C.12)
(25 +1)272T2 + k|

To perform the summation we use [Jo61]

= cos(mf)  wsin(a(7/2 —0))
m=1'2n:z odgM? —a? " 4a cos(am/2) (C.13)

where 0 < 0 < 7 and a may be complex.

Hence

i exp[i(2j + 1)7Tz] _

4t (21 + 120212 + [k2

expl[Fjos] + expl—l’?lwll} S

-1 o
—— { (—exp[—|k|z1 =
2|k|T.{( Pkl = /T + 1)

Choosing polar coordinates for R**~!, the angular integration over f can be

performed to yield
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n—3/2 oo _" . . .
o = (%) w7 AR R () ) foxpl 2
~ -1 (expllF| (a1~ 1/T = §/T)) + expllFl (=1~ 1/T ~ 5/T)]))
_ 1220 —2) I'(2n — = 1\i 1 ‘
- T Em Y @ x s r (C.19)

where J,(z) is a Bessel function of the first kind; the solid angle in d dimensions is

[tHV72]
27d/?

I'(d/2)

and the following were used [GR80]

/Oooe‘xp[ az)J,(Bz) 2z =

(32) wreen? (e mr ot ue /2 +1—%) (€10

where F' is the Hypergeometric function and

F(—n,B,8,—2z)=(14+2z)" (B8 arbitrary). (C.17)
Hence
= I 6 1 )
Sr(z) = F(n) 8, ,20( 1) (:cl:ij/ngiL/T;?m"' (C.18)
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ERRATA

Page 7, Eq.(1.17) uses do¢ = a¢/0T.

Page 8, Eq.(1.21) should read ff dr eon=wn)T = B8,

Page 9, Eq.(1.28): 7 and ' should be replaced by 71 and 72 respectively.
Page 18, second line : ‘p(ko,l-s; etc.” should read ‘p(ko,E) etc.’

Page 24, Eq.(1.84): This result is found in [DJI74], with m? — —m?.
Page 27: fr in Eq.(1.95) is defined through the following relation [1Z85]

< 0| Au(2)|x(p) >= ipufre™ "

Page 32, Eq.(2.1) and Eq.(2.2) are actually well defined. The problem in finite temperature
field theory in the RTF is to find out how to deal with constructs of the form

(s(e) "

Page 36, middle: Strictly speaking 0,A* = 0 only when a = 0.

Page 42, Sect. 2.3 Computing the self-energy of the gluon at finite temperature is greatly
simplified if one sets the energy of the external gluon pg, to zero. In this case, the Boltz-
mann factors for each particle in the Joop will be identical. Thus, in general, we can set
the external momentum of the gluon to p, = (0,p) and p? = —m? and evaluate the polari-
sation tensor. By taking advantage of the rotational covariance of the theory, one can then
set 7 = (0,0,m) in order to calculate the coefficients C, and C3, which are functions of
po. The final result in Eq.(2.42) is specific to the case of p, = (0,P) and p® = —m?2. While
keeping these conditions in mind, one sees that the Ward identity Eq.(2.50) is satisfied.
Page 44: ¢ in Eq.(2.39) is defined by € = (4 — d)/2 where d is the number of spacetime
dimensions.

Page 45, Eqs.(2.43) and (2.44): A comment on the singularity structure of the f(a,n)
functions in the coefficients C1 and Cs. The integrands of the various combinations of the
f(a,n) in Cy and C; to order (1 — )® and (1 - o)l are well defined at © = 1 since they
occur in the form of f(a,n)—2f(a,n + 2) + f(a,n + 4) which is non-singular at z = 1.

For order (1 — a)? terms, singularities arise when a term

(k + p)u(k + p)v

(=) Gt p)2 ¥ iy

from the T = 0 part of one propagator is combined with
(1 — o) ko () <
s eBlkol — 1

from the T' # 0 part of the other propagator. The singularity occurs when both k2 =0
and (k+p)? =0 simultaneously. It appears the singularity (a linear divergence) is more
severe than that inferred by simple power counting (a logarithmic divergence). Further
investigation is required in order to find an appropiate prescription to handle this type of

singularity.



The combinations of the integrands as encountered in C1 and C, are well behaved at

¢ = 0. Series expansions of the integrands near the point z = 0 are, for C}
ﬂs—; (—1 +(1+a)- §(1 + a)Z) +0(z)

and Cz 8
s

36m
Page 46 Eq.(2.49): the following replacement should be made

(1 +e)—201+ a)?) +O(z).

d® da—l
dms ~ dme-1

Page 48: The definiton of £,, in (2.52) should read

bup
Euu =0uv — ;2V + W guogu0 — 7;41/

and (2.55) should be

Alp) = B(p)=Cip?
w = &

Ch

Page 56, line 5: The § function is a distribution which arises from the pinching of two

singular functions (with poles) - resulting in a real singular function with no poles.

Page 60, after Eq.(3.32): ‘where E = Ey— E,’ should read ‘where E is the energy associated

with the propagator’.

Page 62: ém? is the momentum dependent seff-energy. ~ = =~

Page 71, above Eq.(4.8): A number of generalisations of the 75 matrix to complex dimen-

sions d have been put forward. It is not clear which of these generalisations are consistent
when applied to particular calculations. Apparently, dimensional regularisation can be
applied to 45 type problems. In this case, either the commutation relations (4.4) or the
cyclicity of the trace has to be abandoned for ¢ # 0.

/- Page 72 Eq.(4.10): f(k —a) should be replaced by f(k'=qa): — — — — -

Page 101 Eq.(A.15): the following replacement should be made

da da—l
dme dme-1
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