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Abstract

The beginning of the thesis contains a review of finite temperature field theory

using functional methods and the construction of finite temperature Feynman rules.

Particular attention is paid to the so-called real and imaginary time formalisms.

The gauge field propagator for a non-abeiian gauge theory (pure Yang-Mills) in

the Lorentz gauge but with gauge parameter d I I at finite temperature is derived.

This is achieved by seeking the most general solution to the equation of motion for

the propagator under the constraints of rotational covariance. The propagator is

used to compute the one-loop correction to the gauge field propagator, in the real

time formalism and arbitrary a.

A well known problem occurs in the real time formalism when finite temperature

amplitudes contain products of delta-functions of the same argument. By examining

free field theory, we show horv one can avoid such constructs, by using derivatives,

rather than products, of ,6 functions. Possible insights on how this can be generalised

to interacting field theories are discussed.

Finally, a calculation in coordinate-space showing the temperature independence

of the chiral anomaly for an arbitrary gauge group and arbitrary but even dimen-

sional Euclidean space is presented. The properties of field theory in the imaginary

time formalism and the methods of Nielsen, Schroer and Crewther áre utilised. The

temperature independence of the Atiyah-Singer Index theorem is also established.

The original work is introduced in

o Sections 2.2,2.3,3.2,3.4, 4.4,8.2, C.2.

o The frnite temperature aspects of the Atiyah-Singer Index theorem in Section

4.5 and of the spin 1 propagator in Section 4.1.

o Parts of the table of integrals in Section 4.2, particularly those involving

derivatives of ó functions.
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Chapter 1

Background to Finite

Ternperature Field Theory

1.1 Introduction

The purpose of this chapter is trvo fold

o To present a field theoretic point of view to finite temperature field theory,

laying down its mathematical structure and to examine how finite tempera-

ture effects are manifested in this approach. Extensions to gauge theories are

given particular attention. Care must be exercised to ensure that only the

physical degrees of freedom contribute to the quantities that we are interested

in calculating.

o To investigate how finite temperature alters the physics of a particular system,

with emphasis on the behaviour of quantum field theories. For example, the

physics relating to spontaneous symmetry breaking (and phase transitions)

and its influence under finite temperature effects will be examined. Also, a

brief survey of how finite temperature efiects can appear through cross-sections

and decay-widths will be presented, using the zr0 - 2l decay width at finite
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temperature as a specific case. It will seen that some situations are not affected

by finite temperature effects - such as the amplitude associated with the chiral

anomaly (which forms the subject of Chapter 4).

Conventional quantum field theory only describes fields and their interactions at

T : 0, absolute zero and when the density of the system is negligible (i.e. many

body effects are ignored). For most circumstances this has been sufficient, since

many theoretical predictions have been verified experimentally on the basis of T :0

field theory. To some extent, this is not unreasonable since finite temperature effects

become important when kT of the system is of the order of magnitude of the masses

of the fields. This can seen by noting that thermal energy for a single particle in

a gas of fundamental particles at temperature 2,, is related to the difference of its

relativistic and rest mass energies, which for a massive particle of rest mass ?rÙ¡ is

?TloC2

,fr-É
(1.1)KT-') :;1

where È : 1.38 x 10-23JK-1 is Boltzmann's constant, u is velocity of the particle

and c is the speed of light. Hence thermal fluctuations are of the order of msc2 when

thé factor in the brackets is of O(1) which happens when u - 0.85c. For electrons

(protons) this occurs at a temperature of the order o1 T - 1010(1013) K.

Such temperatures are in general beyond the realms of accessibility of present day

experiments, mainly due to difficulty in maintaining and controlling such conditions.

There are however some exceptions - for example, experiments involving relativistic

heavy ion collisions which have been carried out recently, where the dynamics of the

resulting quark-gluon plasma can be understood more readily if finite temperature

effects are taken into account. Finite density effects are also presumed to play a

vital role. Of cou¡se nuclear reactions are another instance where finite temperature

effects play a role.
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On the astrophysical and cosmological level, finite temperature effects play a

crucial role. During the early stages of evolution- of the universe, the spectrum of

particles believed to exist at various epochs can undergo drastic changes (phase

transitions) as the universe expands and cools. The dynamics of stellar systems,

neutron stars for example, can be sensitive to finite temperature and many body

effects.

The main idea is to combine the concepts of statistical mechanics with those

of quantum field theory. In some aspects there are some striking similarities be-

trveen each of these areas. To incorpolate finite temperature effects into quanturn

field theory, various approaches can be used - for example, the real time approach

[DJ74,LvW87], imaginary time approach [Be74,We74,LvW87]., that of Thermo-Field

Dynamics [UMT82] which requires doubling the number of fields, and the closed time

path method [Sc61]. We shall be dealing only with the 'real' and 'imaginary' time

formalisms.

L.2 Finite Temperature Field Theory

The methods describing gauge theories at finite temperature presented here will

follow those of Berna¡d [8e74], Dolan and Jackiw [DJ74] and Weinberg [W'e7a]. They

have given ways for obtaining finite temperature Feynman rules that can be used

for perturbation theory. We shall begin with the derivation of the Feynman rules

by functional methods, the major reference for this section being Bernard [Be7 ].

This section constitutes the derivation of the Feynman rules in the imaginary time

formalism, ITF.

Suppose the dynamics of any field ó(i,t) in the Heisenberg picture, rvhich could

have scalar, vector, spinor etc. properties, and its conjugate momentumfield r(irt),
are governed by the Hamiltonian density Tl(", ö). Letting d("-, 0) be the Schrödinger

3



picture field, we can define eigenstates, do ) and ót ), ol þ(irO) bV

ö(i'o) ldo >

ó(i'o) ló, >

: ó"(i) ldo >,

: ór(i) ló, > , (r.2)

The transition amplitudes from an initial state l/s ) at time ú : 0 to a final state

lÓ, > aL t : 11 can be expressed in terms of the Hamiltonian form of the Feynman

functional

< órl e-;Hh ldo > : x I o" Dþ exp 
{o lr" 

at I a'* l"ó - u6, Ð]l (1.3)

where the integral over classical fields, I Dó, is restricted to field configurations of

the form

óo(i) at t :0 and ór(i) at t : tt (1.4)

and the functional integral over the conjugate momenta J Dr is un¡estricted. ,^/ is

a normalisation constant and the time derivative of the field is defined in the usual

way by

þ(í,t¡ : 0

0t (1.5)

It is generally understood that momentum integrations are performed before field

integrations.

To incorporate finite temperature eflects, one lets i h - B, where þ : LIT the

inverse temperature (in units such that Boltzmann's constant fr : 1), and performs

a change of variable of

it : r (1.6)

0r1ó( )
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in (1.3) to obtain

(r.7)

where'time'differentiation is now defined bV d :0ólðr.

The most important quantity to compute when dealing with many body systems

and statistical mechanics is the partition function Z : Tr e-þH. In principle. one

can determine the complete dynamics and behaviour of the system from the partition

1ïnction - for example, intensive variables such as pressure, specific heat capacitance

etc. can be obtained b¡' d1ç"tentiation of Z by extensive variables such as volume,

internal energy, entropy etc.

For the field theoretic case, one can take the statistical mechanical approach for

calculating finite temperature Green's functions in terms of thermal averages of r

ordered fields :

(T ló("-t,rt) ó(r-r,rr) . . .l) :
T, fe-on T [ó(*-r,rù ó(r-2,"r) . . ]]

(1.8)
Tr e-þH

where T is the r ordcring symbol. The periodicity properties of the fields can be

deduced from the following : let þo, óu . . . be any fields, either bosonic or fermionic,

keeping in mind that r¿ e 10, pl

(T [ó"(*-r,0) óu(*i, rr) . . .] )
Tr fe-on ó"çir, Ðr [óu(*'r, tr) . . .]]

Tr e-þH

rr lr [ó{*-r,rr) ...) e-Bu ó"@r, Ð]
Tr e-þH

Tr T lóo(*-r,rr) .. .) ó"ç*-r,O)e-oa1

Tr e-þH

+ (f ló"(r't,O) óú*-r,rr) ...1) (1 .e)

where u + (-) is contributed when {o is a boson (fermion) operator and we have

< ótle-Hgldo >: x I o*Dg exp?"t * | o"* lo*o-',1(",Ðl\
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used

e-PH óo(x1,r) "þ' 
: óo(*'r,r + 0) (1.10)

which is just the time translation of a field operator. The cyclic property of the

trace has also been used.

The partition function can be derived by allowing the field integration / DS to

be carried over only those classical fields that have the same configuration at T : P

as at r : 0, i.e. the fields are periodic. So the partition function, Z, is

-ßHI TC t . óle-ontr,
ó

x lo*.1*.*" Dþ expU"t * Io"* [o*o-u(o,Ð]].rr.nl

In most cases of interest, the Hamiltonian density Jl is at worst quadratic in the

conjugate momenta zr - meaning that by completing the squares one can do the zr

integration. This causes a shift in zr, with zr being replaced by its value that gives

the stationary point of the integrand and is given by

(1.12)

which is the prescription that one needs to convert from the Hamiltonian to the

effective Lagrangian formalism. The effective Lagrangian L"¡¡ is now a function of

L(Ó,¿¿¡ *h.." all r derivatives in I are understood to be multiplied by i. The

partition function now becomes

( 1.13)

where ¡/'(P) is a new, infinite, normalisation constant. Its temperature dependence

is due to the z' functional integration. A similar infinite normalisation factor also

Tr e-þH : N'(p),{*,"u," Dg exp 
Urt 

* I o" * t.,, (O,u ù}
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arises in zero temperature field theory and is usually ignored.

Applying this to the case of non-gauge theories, one can obtain finite temperature

Feynman rules. As usual, the quadratic part of the effective Lagrangian determines

the propagators of the theory, whereas the non-quadratic parts are vertices and

hence describe interactions. The change of variable (1.6) is just the well known

'Wick rotation' which converts the theory from Minkowski space to Euclidean space.

Thus one does not need the i e prescription to specify the poles of the propagators.

The periodic properties of the field configurations, or equivalently, the range of the r
integlation is restricted to [0, B], means that from a Fourier transforn point of vierv,

energy summations rather than integrations are the norm of finite temperature field

theory. For bosons, the energy is given by

, 2nr
KO + U)n: 

0
(1.14)

(1.15)

(1. 16)

whereas for fermions

ks --+ u- - Qn * L)r.n_p

and n is summed over the range (--, -).
Suppose rve have a scalar field / governed by the Lagrangian

L(ó,ó): L.¡¡(ó,ó)

: î0róôró-+*rór-^ón.

Then (1.13) becomes

Tr e-þH N'(p) DÓ,4*.*"
. 
"*ru"o d, I o, (+lra"oy + @;Ð@;ó) + *,ö,1 - ^t,))

I

(1.17)



Since { is periodic in the interval [0,,P], one can expand the field in its Fourier

serles

where

and

and can be used to show that

ö(i,,,) : b+ I !u¡""*' "iunr 
ö.(É)

ó" (E) : I o* 
lou 

o, 
"-;É'a "-iuir ó(i,r)

(1.1 8)

(1.1e)

(1 .20 )un

The time part of the á function is given by

l"
p

2trn
p

"i(un-u¡lr 
: 0 6nn,

^9o

which comes from the quadratic part of the action

+iÐ I l*, þ'-+É'+*') ó^G)ó--,eÉ)

+b+l #Dft)ó^(Ë)ó-^eÉ)
(t.22)

(1.21)

(1.23)

(r.24)

(1.25)

and

D(k):r'^+É'*m2.

Thus the Feynman propagator Ar in the momentum representation is

' so: 
Ioo 

o, I 0", (* t,* ó), + @¿Ð;,¿ó) +*,0"1)

Lr(rn,Ë¡: çnç*))-t : ^.+-' u2"¡ þz ¡ pz

8



whereas its coordinate space representation is

Ar(r- - il,r - ,') : (1.26)

Interactions can be included just as for the case of zero temperature field theory

by expanding the exponential of the interaction term, 
^ón, 

- the result is perturba-

tion theory. To do this, the following functional formula is used

I ", "so ó(ir,rr) ó(iz,rz) ó(ir,rz) ó(in,rn) ...

:C(detD)_ttz{g,,:¡.giz,rz)w(í^,,^)\fpermutations(1.27)

1

0

where the contraction of two fields is given by the Feynman propagator

Ó(ù,rr) ö(ir,rz): Ar(z- - i',r - r')

-\,-

(1.28)

This means that bne can use exactly the same set of diagrams to compute a thermal

amplitude as one uses for zero temperature field theory. So, the finite temperature

Feynman rules are those at zero temperature with the following modifications

I d4k

(2")n

ko 2un

1
(2")n ón(fr, + kz * ...) (2")t g 6,nr+.nr+ át(r] I k'z r ...)

.+ ø+l#
(1.2e)

z

where the factors of i come from performing the Wick rotation to Euclidean space

and ø,, is given by (1.1a) and (1.15)

The normalisation constant N'(þ) and (det D)-t¡z also need to be evaluated

when calculating the partition function Tre-þH. Consider free scala¡ field theory,

whose Lagrangian is (1.16) with I : 0. In such a case, (1.17) is a simple Gaussian

I



which can be evaluated exactly using (L.27) (noting that there are no fields to

contract)

[ ,Oeso : I{ (detD)-r/2. (1.80)
J

Now, it is well known that

rvhere thc determinant of an operator is expressed as the product of its eigenvalues,

and 1í and 1í' are temperature independent constants which are not important to

the calculation. Hence, using (1.24) one gets

lnZ:lnTre-9H

To perform the summation, we write

-1: 
2 l" [detD] +tn N'(p) + Ii,

I: irrln D * tn N,(B) + t( (1.31)

(1.32)rn z : ++ | ffi r, (ul + Ë' + *') +h.n/'(p)

(1.33)

the lower lirr^it llB2 has been chosen so as to give no B dependence to the final

result.

The second term on the RHS of (1.33) is temperature dependent and infinite, but

when the zr and / integrations are carried out, its contribution lo ln Z is cancelled

by ln l['(B) up to a B independent constant. Putting all this together one finds that

N'(P), (detD)-1l2 and all diagrams not connected by external lines are canceJled

by the denominator of (1.8).

To evaluate the first term on the RHS of (1.33) one can use the Regge trick of

introducing a function that has poles at u : 2trnlB with residue I and choosing

D r,, (,,^ + Ë, + *,) : l,riol^' 0", Ð#+ ! h(,u,^ + rlp,)

l0



a contour in the complex u; plane which includes all the poles. The most suitable

function is

t¡o 
'"' Gu')

and a contour that can be continued into the upper and lower half regions of the

complex plane is chosen which will give residues at the poles ar : *ia. Bearing this

in mind, the / daz o1(1.33) can then be performed. The partition function becomes

d3k þr*lnZ ln
2

* 0 independent constant

I
(2")'
d3k

(2")' l+-r.'(r -"-e") (1.34)

where ,? : Ét * m2. 
I

Equation (1.34) is the partition function for an ideal Bose gas. Notice the zero

point energy of the vacuum has been included (Lhe first term of the last line of

(1.34) - which is expected as using the functional method does not incorporate

normal ordering.

1.3 Gauge Theories

Care must be exercised when the techniques outlined in the previous section are

applied to gauge theories. Consider QED with Lagrangian

L - -Io,, r* where F,, : ô, A, - 0, Au. (1.3b)

If the Coulomb gauge ô¿ A¿ :0 is chosen or an axial gauge, e.g. Ao : 0 or A3 = [,

and one calculates -F1, then the partition function, Z,isjust that which describes a

massless Bose gas with two degrees of freedom. However if one chooses the Lorentz

gauge, ð, A' : 0 with gauge parameter o : 1 (the so-called Feynman gauge), and

11



proceeds to evaluate the Hamiltonian 11 and the partition function Z : Tr 
"-þH,

the resulting theory describes a Bose gas with three positive and one negative metric

states

lnTr e-þH 3
f dskI-J eù' l+-n(r -"-e'r)

l+-k (r +"-u'o)

Feynman gauge

(2")' (1.36)

where ,l: Ë'. The results given by (1.36) are highly suspicious because they

include the thermodynamics of spurious clt-,grcrcs of freedorn arising from the fact lve

have chosen the Feynman gauge. In the Coulomb or axial gauge, the photon has two

independent degrees of freedom, whereas in the Feynman gauge it has four degrees

of freedom. The extra degrees come from the longitudinal and timelike photons,

which in reality do not exist. The partition function given in (1.36) includes these

two extra degrees of freedom.

The point of this exercise rvas to shorv that thc partition function Tr e-7H is not

necessarily a physically meaningful construct in all gauges. In some gauges spurious

particles are wrongly included as physical degrees of freedom. Such particles are

never in thermal equilibrium with the thermal heat bath.

Thus the partition function should be evaluated when a physical gauge is used

- by . physical gauge we mean one which has the correct number of degrees of

freedom. One can ask whether it is possible to get the same partition function in

other, non-physical, gauges by modifying certain functional techniques. In short the

answer is yes. To see this, consider a non-abelian gauge theoiy governed by the

Lagrangian

r- I
L : - iFi, F"t"" (1.97)

where

Fi, : 0, A?, - A" Ai + g l"b" Au, Ai

+ I
d3k

72

(1.38)



and f"b'are the structure constants of the group. Suppose we write the Hamiltonian

in the axial gauge, As: 0. In this case there are two degrees of freedom for each

gauge field, Ai and Ai. In this gauge, the partition function is

Z : Tr e-ÉH A*irr*.o*" : * I n"DPi DP;.1"""*" DAiDAi

. exp 
Ut 

* Io'* fr. 
r; ai - H (ti,"Í)])

z :lN'(þ)l'^ 
Io_,"u,"oo[,ó(A3) ."0 |f' d, I a"*r.çt,;t¡]

z : îN'(p))^.{*.*" DADó*n 
|ft 

a, I a"rL(A,ó,talO¡)

'" l#] uao (ró)

(1.3e)

rvhere Pf are the conjugate momenta of ,4j with j : I,2. The P¡" integration can

be done rvith the result

(1.40)

Apart from the limits of the r integration, this is the same result as one gets using

the Faddeev-Popov method. It is understood that DA means functional integration

over all components of the gauge field. The gauge condition is enforced by the ó

functional and ¿ - 1,. .., n. This can be expressed in a more general form

(1.41)

where m denotes the total number of physical particles and polarisation states of

the theory. The na O (f'ä) term is the product of gauge fixing conditions which se-

lects a surface in function space which corresponds to a physical gauge. The term

det [0 Fbl0u") is the Faddeev-Popov determinant and ø"(ø) are a set of functions

that parametrise gauge transformations. For the case of the axial gauge, the deter-

minant in (1.40) is

' 1) : constan t (t.42)o"t lã'./

13



and is apparently temperature independent since temperature only appears through

the ro coordinate.

Since we started with a gauge invariant Lagrangian, in principle (1.al) should

give the same result for whatever gauge is chosen - including non-physical gauges,

provided that the surface in function space formed by the gauge conditions f'å(r¡ :

0 intersects the orbit of any gauge field under gauge transformations only once.

This c:nsules that only contributions from physically distinct fields are allowed for

evaluation of the partition function- i.e. those fields that are not connected by a

gauge transforrnation. So, one could choose an unphysical gauge 1.'(r) : 0, but the

partìtion function should still be the same as that computed in a physical gauge.

By specifying the choice of gauge and boundary conditions, one should be able

in principle to compute the partition function. For the finite temperature case, this

means the field configurations should vanish at spatial infinity and be periodic in

the time coordinate ó(í,ro+ 0): +ó(i,rs). Compare this to the zero temperature

case where one has fields that vanish at spatial and temporal infinity.

Thus, it has to be borne in mind that Z given by (1.a1) is the same in any gauge

but that this is not the case for Tr e-þH.

As an example, consider pure electrodynamics (1.35). Let

F (i,r) : Ap At' - I @,r) (1.43)

where f @,") is an arbitrary but regular function, and 0 1r 1 B,thenthe partition

function, Z, in Erclidean space is

Z [N'(þ)]' I oo ""rll"o d, I æ" çIo*r,")]

^"(\+P) ,,u, A,"- t) (1.44)

t4



where it is noted that there are two [¡f'(B)] factors - the same number as there are of

physical states fo¡ an ålectro-ugnetic (massless) fietd. Under gauge transformations,

6 A, - -ïru (1.45)

then

det : det (-D) (1.46)

(r.47)

where o -- 0, 0t" . As is the case for zero temperature field theory, (1.44) is actually

independent of /, so rvhen its RHS is multiplied by

and integration over 2/ carried out, one gets a B independent normalisation con-

stant which is absorbed into N'(P),leading to

z:lN'(þ¡12 det (-!) I "o.,.o fft 
d, I o'. (-Ir*r*) - *@,A,),f .

(1.4s)

At zero temperature, det (-!) is just a constant, however at finite temperature

it is temperature dependent due to periodic boundary conditions and must be given

attention. Choosing the Feynman gauge a: I

""o[-*[ Io'"rf

(1.4e)

Performing the functional integration, there are four integrals to do - one for each

¡r and writing

det (-n) : exp [?r 1n(-l¡]

z:[N'(0)]'det (-!) I ,o.,.0 
llo 

d, I o', (- Tu,o,u, o")]

Ð l#rn('l +É')exp

15
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where the determinant is defined only on the space of periodic functions, Z becornes

lnZ ztn N'(B) - D I l*rh (c'''l +É')

-ry-h' (r - "-Þur) (1.51)

where (tte : (É')t''. Thus (1.51) now correctly describes a zero mass Bose gas

with two polarisation states. This result could not have been arrived at without the

assistance of the Faddeev-Popov determinant.

Clearl1,, {or 1he ca,sc of .non-abelian gauge theories, the Faddeev-Popov deter'-

minant would be more complicated and ghosts could (in some gauges) sholv their

presence. This presents no problem provided that ghosts have Bose-Einstein type

Boltzmann factors, the same as photons and gluons. Nevertheless the same princi-

ples are involved in the computation of the partition function - or more specifically

Z, albeit ìt will be more complicated.

L.4 Finite Temperature Green's Functions

Converting the results of the previous sections of this chapter, which is a presen-

tation of field theory in the imaginary time formalism, to the real time formalism

is non trivial. Dolan and Jackiw [DJ74] have explored how this can undertaken, a

summary of which will be presented, using two-point functions as the starting point.

Consider a spin-0 field. The finite temperature two-point function (Green's func-

tion) is

Tre-þH

< r {ó@) ó(y)} >

r#^Ï2

rre-þH r {ó@) ó@)}DB@ - v)
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which fo¡ non interacting fields, satisfies

(o' * *') np\" - v) : -i 6(x - v) (1.53)

for a given set of boundary conditions. Using the imaginary time formalism (ITF)

and letting 0 1 iro,iys I þ:

< r {ó@) ö(v)} > : < ó(") ó@) >

: n/@ - v),

: < ó(v)ó(") >

: Dp<(r - a),

DB@ - a)l,o=o :

DB@ - U)l,o=-iþ :

Dot@ - u)l,o=o

D'B @ - a)l,o=-¿þ (1.55)

and by using the cyclic property of the trace as well as changcs of thc ficld variables

under time translations (as outlined in the previous section), one concludes that

DB@ - y)l,o=o : D B(r - y)l,o=-¿p. ( 1.56)

The Fourier transform of (1.56), in the ITF, would be just that given in the

previous section. However, the propagator can be expressed in terms of real time

Fourier integrals. Let

Df ''\ (k) : I t, "ik' 
D[','] çr¡

zrs ) iys

iys ) irs (1.54)

For irs, igo e [0, fl the propagator has the property

T7

( 1.57)



where the bar denotes Fourier integral transform (as opposed to Fourier sum). Now,

writing DB&) for DB(lcs,Ð, pQù for p(/c¡, ã etc., one has

D o'&l ¿n, 
";(koxo-É.r) 

Oã @o, ¡)

¿n* 
"i(koxo-É 

E) n/ @o _ ip, i)

:T
:T
: 

"-u^ Id4r eik, n/@)

: 
"-Pk" 

Dì(k)

where (1.55) and (1.56) have been used.

Equation (1.58) can be rearranged by allowing

(1.58)

( 1.5e)

(1.60)

Dàtn)

DÈ'(t )

/(ko)

p(k)

J+fft")lp.(k)

f (t'r) p(t')

I
e\tt -|
D,o rtq - Dã r*l

The spectral function p(k) defines possible energies fo¡ an excitation of momentum

Ë. fn" full propagator can be written as

"te' [o1'o)oà(*) + o(-ro)Dp<(u)]

d,ko I n¡&,o,ô Dã&,o,ô l
h, vh-m-Ç-Ã-l
d'kto

P&'o,Ë)
I + /(kå) r&L)

2r ko-k[¡ie ks-k'o-ie

il*##*+rØo)p(k)

The spectral function can be derived with the assistance of the ITF form of the
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propagatot Dp(k)

+ t-iþ
DB(rn,Ë): lo-" d,æse-2nn'ota I a3x"-nÉ'a DB@)

and noting the boundary conditions (1.55) and (1.56) for 16 € [0, -iB], then

(1.61)

(1.62)

(1.64)

(1.66)

DB@*,É) :
lo-no 

o*oe-21rnrof B 
I ot*"-;É.e o/@)

lo-'o 
o*o 

"-2trnnslB l_*0"* "-;É'a 
Dì @)

. f* dko ¿-Êko - 1

o J-*ï) r" I z*,1()¿Ð l' * r&')l p(k)

, [* dleo p(ko, k)
'J-* zo n-ko'

We now extend Dp(rn,fr) to a continuous function DB(ko,Ë) and the spectral

function will be given by

p(k) : Dà(k)-DB.(k)

: DB&o + ie,,É) - DB(ko - te,,É) (1.63)

which in the free field case will be given by

p(k) :2tr e(ks) 6(k2 - m2).

Thus the free scalar propagator in the real time formalism (RTF) is

DB(k)

and satisfies the momentumrepresentation of (1.53)

(*'-*,) Doçt¡:'i

(1.65)
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where n : (Ë" * mz¡r¡z is the energy and the Feynman prescription ie, is assumed.

when dealing with the poles in the first term on the RHS of (1.65). Compare this

with the ITF form of the propagator

(1.67)

For fermions the situation is very similar, although one must nolv take into

account the fact that fermion fields satisfy anti-commutation relations. A very

similar procedure is used to derived the RTF form of the fermion propaga,t or S B@-y)

sB@ - a)
Tr e-þH T ú(r ü

Tr e-þH

< 
"ü(c)v(v) 

> (1.68)

which satisfies the following equation

(i ø-m)SB@-u):i6(r-y) (1.6e)

but with boundary conditions

SBþ - U),o=o

SB@ - u),o=-¿p

SB@ - !)zs=o

: Sã(" - a),o-o

: Sì(" - u),o:-ia

: -SB@ - U)'o=-io (1.70)

since in the interval [0,-ip]

< 
"!ú(ø)iÚ(y) 

> : < ü(r)iú(y) >

: Sì (* - v) i,rs ) iys

: -< iú(y)ü(") >
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: Sã(, - v) i,vs t i,rs- (1.71)

As for the scalar case, one can write real time Fourier integrals for the fermion

propagator

Sj''.)1*¡ : I o*"¿k, s[,,<]ç*¡ (1.72)

where we can write

sìrnl

Sittr)

f (ko)

p(k)

Í- f(@) p(t)

l(n") p(n)

1

eBk" +l
sìu'l + sã(k).

The spe.ctral function p(k) for the fermion is obtained from the ITF propagator

(1.73)

(r.74)

(1.75)

(1.76)

SB(u^,i)
Io-'u 

O*o"-(zn*L)trzota I asr"-;Ê'a Sì@)

where

p&o,Ê) : sBUeo ¡ ie,É) - sB&o - te,Ë)

and the RIF propagator is determined from the spectral function :

r [* dleo p(ko,É)
'J-*2o,t"_ l*

SB(k) : I !.rie' [o1'o)sà(ry) - o(-øs)sB<(o)]

d'kto P&'o,Ë) - f @o) p(k)hr les - k'o + ¡,

where for non-interacting fields (with þ = kñu\

p(k) : 2r e(ks) (þ + *) 6(k2 - m2)
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sB(k)
2r(þ + m)

6(k2 - m2). (r.77)
þ-m!ie ePE+l

1.5 Exarnples

Having presented some of the mathematical machinery of finite temperature

field theory in the previous sections, let us present some situations in lvhich finite

temperature effects can alter the behaviour of a field theory.

As examples, we shall examine how finite temperature affects the following :

o Spontaneous symmetry breaking.

o Properties of the As component of the gauge field in Wilson lines

o Cross-sections and widths of any process

Consider the first case of spontaneous symmetry breaking. Consider a scalar

field / described by (1.16). The objects of interest are the effective potential energy

%yy which combines V (the zero-loop effective potential), quantum efects and finite

temperature effects and where V is

v(ó):Ç0, I
+41 ón (1.78)

where Tor mz ) 0, the minimum of the potential is

V:0 at ó:<d):0. (1.7e)

The vacuum expectation value (VEV) of ö, < d ), is the value of / which gives

the minimum of the potential V. In this case there is no spontaneous symmetry

breaking - at the classical level. Spontaneous symmetry breaking can arise due to

quantum effects as shown by Coleman and E. Weinberg [CW73].
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However, suppose

( 1.80)

and m2 ) 0, minima of the potential will now be at some non-zero value of / which

can be determined by calculating 0V¡¡10ó.The VEV of / for this case is

1 Ó): -# (1.81)

and spontaneous symmetry breaking will occur. So, if neither quantum or finite

temperature effects are considered, then V"¡¡(ó): V(ó), giverr by (1.80).

The one-loop effective potential at finite temperature can be obtained by sum-

ming all one-particle irreducible diagrams with any number of external legs and in

the imaginary time formalism is given by [DJ74,We74,Ka89]:

d3

v(ö): -{¿,* à.ø^

V¡ ¡(ó,?)1 
rooo ln lc2 - M2

T
2

T:
2:l

k

)3(2"+l
+I
æk

( )

P*rrn(-+t''zr' - 
E'*)

lry -rrn (r - "-o'*)](2")"
(1.82)

where M2 : -n'¿2 + 
^ó'12 

and E2¡a : Ë' + M2. EqrLation (1.82) is actually infinite -

due to the first term in the square brackets in the last line. However, the divergence

is independent of temperature and can be removed by renormalisation procedures

at zero temperature.

Thus, the renormalised effective potential to one-loop order is

Vt¡(ó,\: v(ó) + v:l;"P(ó,r) (1.83)

where Iz({) is given by (1.80). If.T2 - M'l^Þ M2, then the high temperature
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T> T. T" T <T" T:0

Figure 1.1: The effective potential V"¡¡(ó,7) - Vt¡(0, ?) for various temperatures

expansion of (1.83) to order ?a is

tsr

d
H\o

I

si
d
H

\q)

ó

(1.84)

The shape of V.¡¡(þ,7) -Vt¡(0,7) for various temperatures is given in Fig.[1.1].

Note that Tor T : 0 one gets spontaneous symmetry breaking since the minimum of

the potential occurs at a non-zero VEV of the scalar field, but as the temperature

is increased the depth of the minima decreases and < / > approaches zero. Above

a certain temperature, the critical temperature T", the minimum of the potential is

at < ó ): 0 and symmetry is ¡estored.

Applications of this are immediate. The expanding (cooling) of the Universe

can induce phase transitions due to the temperature dependence of the effective

potential for scalar fields - assuming such fields exist. Particles that were originally

massless can attain masses after a phase transition via the Higgs mechanism. The

Higgs field is coupled to gauge, fermion or any other fields and the effective Higgs

potential is similar to that of (1.82) where, of course, one can include contributions

from other fields. Masses of particles can be generated by spontaneous symmetry

breaking and are related to the value of < ó >.

Now consider Wilson lines [GJO8O,GPY8I,Ac84,Man85], which can introduce

v¡¡(ó,n:ào^- (# -+) r2Ta m2T2
óz__'9024
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new properties for the gauge fields. Wilson loops are used to study aspects of

confinement. In the ITF, the Euclidean space has cylindrical topology since the fields

have periodic boundary conditions. As such, a closed contour cannot necessarily be

deformed to a point. Consider the gauge invariant construct TrQ(i), where

0(t) : P exp (o I"t d'xoAo(xo,fl) (1.85)

and P is the path ordering symbol and 0 : T-1. The f¡ee energy of two charges

located, at rl and c-6, is related to the logarithm of the expectation value correlation

function

(r"1ot1"-u))Tr(a@-"))) - "-Kto'o-r6t (1.86)

with the constant K being proportional to temperature. Suppose a Lagrangian L

desc¡ibes the interaction of gauge fields Ar(r) and matter fields /(ø), the full theory

can be summarised by the generating functional

Z DA,Dþ exp d*o d3n L(Ar,þ) (1.87)

The generating functional Z can be rewritten as [GJO80,RT80] :

(-Ip

I

I/- Da@) exp (-S.n(f¿)) (1.88)

where ft(r) is given by (1.S5) and ,9.n is defined as

(1.8e )

Here, the prime over the functional integral /' means that the integral is over fields

s"n : -t"1.""- .oorDþ exp(- lrt o*" I a'* qtr,6¡) .
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that have the following boundary conditions

A¿(0, Ð t?(o,d) : 0-'(i) Ar(0, Ð CI(r) * f)-l(r-)a o(i)

do(o,d) : c¿(d) ó(o,i).ó(p,i) (1.e0)

In other words, the fields at end points of the interval 0 ( ro 1 B are gauge

equivalent.

To choose the gauge condition Ao : 0, a gauge transformation [/(rs, d) is chosen

such that

Ao - U-' A,LI + U-r ðoU :0 (1.91)

where

(1.e2)

Even after choosing the gauge Ao : 0, the effective action .9"n is still invariant when

Ao(*) ---+ As(r) t 2nThn(i) (1.e3)

which are generated by gauge transformations U : exp[iro2rTn(í)] where n(r-) is

a static integer-valued field. Thus, as Gava et. al. [GJO80] and Rossi and Testa

[RT80] point out, one cannot eliminate As completely even though one started with

the Ao: 0 gauge.

Note that (1.93) suggests if one compactifies a coordinate, such as rs for finite

temperature field theory, then the corresponding component of the gauge field As

can only take values in the range -rT 1 Ao 1. rT, i.e. As is also compact.

Finally, let us examine how temperature affects cross sections or widths of pro-

cesses, using the n0 - 21 decay width as an example [CL88]. For T : 0, the pion

U(*o,i): P 
"*o (; Io'o 

O*'o,A'(to,r-)) ,
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decay width is

| : (2tr)a I 6(n)(q - teo - È,) I lrØo -- 2.,ùl
polls

where

"ã. 
lr,"o--.2t)l':;(*-r-)' *r (l.eb)

and ø and ö label the outgoing photons. After the momentum integration is carried

out, we find that

ra2m3or€2| : 
64"t fi 

where o: 
4n ' (l'96)

d"ko d"ko 1

Oærks@Fn * (1.e4)

Comparing the theoretical result to experiment one gets

Ith"o.y : 8.5 eV f"*pt. : 7.95 + 0.55 eV. (1.97)

For ? f 0, several things can happen. Finite temperature effects can appear

through :

o The amplitude - similar to the amplitude calculated above for spontaneous

symmetry breaking. I'br the case of the n0 - 21 width, since the anomaly

is temperature independent, no finite temperature effects are expected from

this sector. However, finite temperature effects appear in another part of the

amplitude and contribute to the decay width [CLS8].

¡ Parameters such as mass and coupling constants can depend on temperature.

For the pion decay, the temperature dependence of the pion mass rnfl and pion

decay constant fl i" the high temperature limit are [LSSO,GoL89]

*l

fï
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where mn and fn are T :0 values.

o Phase-space factors of the outgoing photons are modified to :

æk" I
(1.ee)

(2tr)32k! t + n(Bk!)

where the Boltzmann factor is

1

"(pk2) - 
"?tZ ¡l'

(1.100)

As usual, the upper sign refers to bosons and the lower to fermions.

Taking into account the finite temperature effects of phase space factors, coupling

constants and mass, the contribution of the anomaly to the decay width becomes

t?: a2 (*T)" I
64tr3 Uî)' (l - e-*"/QT ))2

(1.101 )

For T - Tflr

lT-^" : 6.5 f (1.102)

i.e. width increases with temperature, or equivalently the pions lifetime decreases

For low temperature T < mn,

¡?=of"
(1 - ¿-m,/(zrl)2 ('-å #. ) =.'='

(1.103)

where lT=0 : f. Thus it appears that the pioñ lifetime diminishes at finite temper-

ature.
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1-.6 Conclusion

The functional approach to finite temperature field theory is perhaps one of

the more transparent ways of examining finite temperature behaviour of quantum

field theories. As we have seen, when gauge theories are analysed, care must be

taken when dealing with spurious degrees of freedom of the gauge fields. The same

situation occurs for the case of T : 0 field theory. The perturbative Feynman rules

can then be obtained in either the real or imaginary time formalism.

It is interesting to note how temperature appears in either the real or imaginary

formalisms. In the imaginary case, temperature appears through the periodic prop-

erties of the fields, and in the fact that energy summations rather than integrations

are carried out. For the real time case, finite temperature effects appear through

distributions, delta-functions or derivatives thereof, that contribute only when the

particle is on mass shell. In the real time situation, one can easily see where finite

temperature effects occur since they can be separated into a ? : 0 part and a finite

temperature part. However, in the imaginary time case, the temperature indepen-

dent part is related to the n :0 term in the energy summation f,r, but to separate

this term out and then perform the summation can be tricky.

Converting the imaginary time results to the real time formalism cannot be

achieved by simple analytic continuation. In the imaginary time formalism energies

are discrete, and must be converted to a continuum before computing the spectral

function which is related to the discontinuity of the imaginary time propagator

across the real axis in the complex energy plane. The real time propagators are

then related to the spectral functions.

We have seen that cross-sections and decay-widths can be affected at finite tem-

perature through phase space factors of the outgoing photons, temperature depen-

dence of coupling constants, masses and amplitudes.
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When one restricts the range, o¡ çompactifies, a coordinat€ os, â,s in the case of

finite temperature field theory in the imagina,ry time formalism, the range of values

for the corresponding component of the gauge field ,4,o is also compact. When 
" 

-* 0,

the range of As is unrestricted.

Having laid the foundations for calculating amplitudes at finite temperáture and

where finite terpperature effects are likely to manifest themselves, we ca,n now apply

some of the methods outlined in this chapter to cases of interest.

We begin by looking at the gluon or spin-l propagator in the real time formalism.
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Chapter 2

The Spin-l Propagator

2.1 Introduction

In this chapter we will use the conventional methods of perturbation theory in

the momentum representation - specificall¡ the real time formalism. The real time

formalism (RTF) approach to quantum field theory at finite temperature invoh,es

different techniques compared to those used in the imaginary time formalism (ITF).

With the ITF óne encounters energy summations rather than integrations which can

be very difficult, in some cases intractable, to perlorrn beyond one loop diagrams.

With the RTF it is possible to separate the amplitude into a temperature dependent

and a temperature independent part. It is not as easy to do such a procedure rvhen

using the ITF.

The RTF is plagued by its own problems - some of which will be examined in this

chapter and discussed in the next chapter. Specifically, in the RTF one encounters

ó functions and products of such functions and their derivatives. This may lead to

ambiguities for products of ó functions for a particular set of values of momenta

for the internal and external lines of a Feynman diagram. These problems are well

known throughout the literature and were pointed out by Dolan and Jackiw [DJZ4].

Some methods and theories, such as thermo-field theory [UMT82], have been put
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forward to deal with them.

Obviously, one hopes that whatever formalism one chooses, the same answers

should be obtained. This is not always the case. This can be due to various causes

- a major one being the lack of finding, if at all possible, a suitable prescription for

dealing with products of two or more ó functions in the HlF, say,

6&2)6 ({r + r)') (2.r)

when limpr --+ 0 is taken. In the context of

lim
PP'o l* anosç*,)6((k + p)')r&) - ó(0)/(0), (2.2)

this is undefined in the sense of normal fur.rctions, where p, and I;, are momentum

vectors.

At T : 0, perturbation theory can be tedious when calculating higher order

diagrams, particularly those involving loops. At finite temperature, T f 0 in the

RTF, propagators contain extra terms displaying finite temperature effects, making

perturbation theory even more tedious.

In the context of Yang-Mills gauge theories, many calculations are carried out

in the Feynman gauge o : 1, which in some cases makes it difficult to keep track

of gauge dependent terms. Any physical quantities which are evaluated should not

depend on the choice of gauge. Clearly, in principle, by making an astute selection

of the gauge fixing term, it can greatly assist the ease of calculation of amplitudes

containing gauge boson propagators. When results are compared to those derived

by other methods, such as those obtained using the ITF or using the RTF but

in different gauges, or specific values for the gauge parameter, some discrepancies

arise. Thus, it would be convenient to consider the case where not only a gauge

fixing term is chosen, but also keeping the gauge parameter arbitrary. This rvill
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assist in keeping track of gauge dependent terms, possibly allowing some insight

into how gauge dependent and finite temperature effects are related.

As an example to illustrate some of the techniques and problems involved, we

shall examine aspects of QCD - Stl(3) pure Yang-Mills gauge theory. An important

and interesting effect to investigate is the finite temperature dependence of the QCD

coupling constant g. Questions asked are :

¡ To what extent does the (renormalised) coupling constant depend on temper-

ature, i.e. does it become larger or smaller as temperature is increased?

o Do you get asymptotic freedom at high temperatures, i.e. what does the finite

temperaturc þr function look like?

o Are there any new processes or phenomena incurred by the presence of finite

temperature effects?

Baier et. al. [BPS91] and ¡eferences therein, have given a summary of the vari-

ous calculations that have been done by many people of the renormalised coupling

constant gR,, in finite temperature QCD at one loop order, using the ITF, RTF, and

in various gauges. The main object of interest is the thermal B function B7, defined

by

gr:rft(#) (2.3)

(2.4)

which at one loop order becomes

,

þr: -c(T)

where

gR(T):
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is the running coupling constant, with Zs and Zl being the gluon field and three-

gluon vertex renormalisation constants respectively and c(T) is a temperature de-

pendent coefficient which depends on which gauge is chosen.

One may consider that since the renormalised coupling constant is a physical

quantit¡ it should be gauge-independent.

For 7 : 0, the renormalisation constants (or counterterms) needed to remove

the divergences from loop corrections to the three-gluon, four-gluon, ghost-gluon

or quark-gluon vertices are not independent - they satisfy constraints called the

Slavnor,-Taylor identities [l\{u87]. It is these identities that ensure the universality

of the renormalised coupling constant - i.e. whatever vertex one uses to .o-pnt. th"

renormalised coupling constant, the same physical result is obtained if a different ver-

tex is chosen. It should be kept in mind that there is a renormalisation-prescription

dependence of the renormalised coupling constant and different prescriptions are

related by the renormalisation group equations [CG79].

For ? f 0,, the situation is somewhat perplexing. The general understanding of

perturbative QCD at finite temperature can be inferred from knowledge of QCD at

T : 0, particularly the renormalisation group equations, since no new divergences

arise from finite temperature effects. One could identify the renormalisation scale

/\qco, with ? in the following way

(2.6)

where l/ is the number of colours.

However, if a renormalisation scheme at finite temperature is used, then in the

RFT, rather than getting the behaviour given by (2.6), one gets, for some scale M,

shlz)- (#," (rl^q"ù)

s,R(r) - (#)'
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whereas in the IFT, one obtains

sh(D - r (2.8)

or in some cases gR may increase with temperature. The main reason for this being

the diffe¡ent number of Boltzmann factors one obtains when using eithei the RTF

or ITF.

For the case of finite temperature QCD, high temperature expansions of the

coefficient c(?), in various gauges, using different formalisms have been derived and

can be summarised as folloivs [BPS91] :

1. Using RTF (but doubling the number of fields), the three-gluon vertex

and the symmetric momentum configuratior (po -- eo : ro : 0,p2 -
Q2 : r'2 : -lvI2) :

c(T\ -25r2N ¡T\/ 4 \M )' (2.e)

2. As above, but using Feynman gauge and the collinear momentum config-

uration p: (0,0,0,M) - -qf 2: r :

c(r)--#!(#) (2.10)

c(r)-ry(Ð' (2.1i)

4. Using the three-gluon vertex in ITF, symmetricmomentum configuration

and Feynman gauge :

3. Using the the¡mal wilson loop (gauge-invariant construct) in the RTF :

35



c(r)--:#(:, (2.t2)

Evidently a similar result is obtained using ITF and an axial gauge.

5. A gauge-invariant coupling constant has been derived [La89]

(2. 13)

As it can be seen, in some cases the B7 function will be positive, i.e. the running

coupling constant, gp, increases with temperature. This is against conventional

wisdom, where it is generally expected that asymptotic freedom will result as the

temperature of the system is increased.

It would be of interest to see how gauge dependent terms affect amplitudes as rvell

as the p7 function at finite temperature. If we choose the Lorentz gauge. 7rAu : 0,

but keep the gauge parameter arbitrary, rather than choosing the Feynman gauge,

a : 1, then one needs to generalise the propagator given by the authors of ref.

[BPSg1] to display the gauge dependence of the gluon (spin-1) propagator at finite

ternperature. This is carried out in the next section.

The new propagator is then used to calculate the one loop correction to the

tri-gluon, four-gluon and the quark-gluon vertices. Due to the numerous terms that

can arise in such a calculation, it became necessary to use a computer program to

handle the unwieldy expressions. The symbolic or algebraic manipulation package

Mathematicø [Wolf] was used. By writing a series of rules to perform algebraic

operations it was possible to use Mathematicafor a major portion of the calculation

of amplitudes associated with Feynman diagrams, particularly those at temperature

T :0.

However, when one includes finite temperature effects, after performing contrac-

tions of 4-vectors with other 4-vectors and tensors etc., the number of terms for

c(r)--+!(!_)
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some diagrams becomes enormous. For a single diagram for the one loop correction

to the tri-gluon vertex using gluons only, the most length5r expression, the number

of terms and hence momentum integrations to be performed was of the order 6000.

The number of independent, finite temperature integrals to be evaluated is of the

order of a few hundred. At T :0, the total number of terms is of the orde¡ a few

hundred for the same diagram.

The momentum integrals for the T : 0 case can be performed using the well

known dimensional regularisation formulae appearing in many books on quantum

field theory. In such a case, on11, a ferv very basic integrals need be knorvn, others can

be obtained by differentiation with respect to a non-integrated momentum vector

or a mass parameter of the theory.

Unfortunately, the case for finite temperature integrals is not as simple. When

integrals are computed, the adrrantage of Lorentz covariance, used for the T : 0

case, is lost since it is broken by finite temperature effects. At best, one has to

resort to rotational covariance. This means that not only the energy and momentum

integrations have to be performed separately, but that also if the integrands contain

tensorial constructs, then many of the integrations have to be done component by

component. The results are then converted into tensorial form rvith respect to

rotational covariance.

When it became apparent that the task of doing the integrations for the case of

one loop ve¡tex corrections was massive, it was decided to put this calculation aside.

Instead, the same Mathematicø program was used to investigate the self-energy of

the gluon to one loop order, using the new gluon propagator. The results of this

calculation, as well as the derivation of the full finite temperature gluon propagator,

are presented in the next two sections.
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2.2 Derivation of Spin-l Propagator at Finite

Temperature

Given the equation of mo[ion that a field satisfies, the propagator associated with

that field can be obtained from a similar equation of motion, but a point source term

is introduced. Suppose a field A(r) is a solution of the following equation :

OA(*) :9 (2.t4)

then the propagatot P(r - y) satisfies

O rç, - a) : 6(" - y) (2.15)

lvhere O i. ro-" operator and ó(r - y) is a á function which is the point source term

for the field Õ(z). In order to specify the propagator, boundary conditions must

also be given.

As is the case for solving differential equations, in general one would have inho-

mogeneous and homogeneous solutions and that the full solution is clearly the sum

of the two. For the case o{ field theory al T :0, the propagator does not contain

any homogeneous term - if the Feynman prescription is used.

In the ITF, Dolan and Jackiw IDJ74] show that due to periodic boundary con-

ditions of the fields, the propagator itself would also exhibit the same periodicity

constraints, further the propagator contains only the inhomogeneous solution.

In the RTF, the situation is different since one can not take the ITF result and

then perform a Wick rotation in order to get the RTF result, i.e. naively, one can not

do a Wick rotation from Euclidean to Minkowski space for finite temperature field

theories as it leads to certain ambiguities. Some of these problems will be discussed

in the next chapter.
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When using the RTF, finite temperature effects in the propagator appear in the

homogeneous part of the solution. We shall see how this arises, using QCD as a

typical theory, in 4-dimensìonal Minkowski spacetime with metric (+ - --).
Consider an Stl(l/) non-abelian gauge theory described by the Lagrangian

1
L

4

where, as usual

F"r, : 7rAi - A,Ai + g.f*" AurAi (2.r7)

is the field strength tensor,

D"ro : 6"u o, - g f"b" A"r, (2.18)

f"b" are the structure constants of the SU(¡/) group, yo are the Faddeev-Popov

ghosts and g is the coupling constant.

Following standard procedures, the Action .9, caiculated from the Lagrangian

(2.16) is

s:ld,arL(x) (2.1e)

which can be rearranged as

Fl,Fot", - {ruror), + (ð, x".) Dî"u xu (2.16)

s :; I d,n*r, (uouon,,- (1 - I) up,) Ao, + (2.20)

where the terms quadratic in the gauge fields have been singled out and . .. denotes

all other remaining te¡ms of ,C, including interactions and ghosts.

If there were no interactions, then the gauge fields A[ satisfy the following free

field equation, which is attained by taking the variation of S with respect to A[ and
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setting g :0

(2.21)

where

(2.22)

This means that the free gluon propagator, Lrb,, obeys the follorving equation

I{i:,Lb" " (*, y) - -6"'61,6(" - y) (2.23)

in the coordinate representation. As is customary for working in perturbation theory,

we shall work in the momentum representation, hence the Fourier transform of (2.23)

1S

I<1!,t:b""' : _ 6""61,.

I{T":,

I{|b,Ab', : O

: 6ob (u,uon,,- (r - *) up")

(2.24)

where

(2.25)

ana A(*)
'We fin rotationally covariant

(since Lor cts) is

6"b

6"bc (sr,6(k') + (t - o) kt"k,6'&2)) (2.26)

and the constant C is determined by using procedures as outlined in Section 1.4.

Without loss of generality, \¡¡e can set o : I in (2.26), giving

nîl,fnl : 6"usr, (

itîu"(t ) ep._(r_o) #h)ri
+
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which can be ¡ewritten as

li],Ur) : i6"bg*DB(k)

where DB(k) is given by (1.65). We then find that

C : -2rinrllËol)

where

"¡(lkol) 
: (exp[Blfrol] - 1)-'

is the Boltzmann factor for bosons.

The 6 functions have been defined in the following way

(2.28)

(2.2e)

(2.30)

(2.31)

(2.32)

(2.33)

a (/(")) : I

where the sum !¡ is over the zeroes of /(r), hence

and

6(k\:# (r,*. -û +ó(ko + ã))

6'(þ") : 
oL*Ur*''ra: 
zl^ al^6(k')'

The new feature oI (2.26) is the occurrence of a derivative of a ó {unction 6'(k2)

instead of unregulated products of ó functions and facto¡s of the form (lc2 * fe)-l.

The nearest resemblance to our approach in the literature is a propagator of Kobes

and Semenoff [KS85] in a 2 x 2 matrix formulation. The idea of that formulation is
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to combat the problem of unregulated products of ó functions and (k2 + te)-r terms.

Nevertheless they also introduce 6'(k2) terms. We shall see in thé next section

that one-loop calculations are possible for o I 1 with or. p.åpug.tor. Kobes and

Semenoff [KS85] have computed self-energies of the photon and electron in QtrD

in the Feynman gauge a : 1, and in this case the ó'(k2) terms do not need to be

considered.

Terms proportional lo g¡"ogro, kf;g,ru, gpig,j etc. are allolved by rotational co-

variance, but the coefficients of such terms are either zero, or when combined with

other terms give a term which already exists in (2.26).

If c : 1, the derivatives of ô(fr2) drop out and the propagator becomes

I 2zri
L"rb,(k) : 6"'sr, ( 6(k') (2.34)

rvhich is the same as that given in many references e.g. [BPS90].

From (2.26), it can been seen that in the RTF the finite temperatureeffects of

the propagator appear through the homogeneous solution to (2.2a).

The vertices are just those as for the ? : 0 case. A list of Feynman rules for

finite temperaturè QCD are given in Appendix A.

2.3 One Loop Correction to Gluon Propagator

The calculation of the one loop correction to the gluon propagator, more specif-

ically the polarisation tenso, tlrb,(n) at finite temperature, is very similar to that

carried out for the case o1 T :0. For the finite temperature case, the momentum

of the incoming gluon will be set to:

P2 : -m2

(o, o, o, rn)

lcz + ie eP kol - 1

Pp
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Figure 2.1: Diagrams that contribute to the self energy of the gluon.

Clearly the conditions (2.35) are unphysical, i.e. off-shell, but they simplify both the

Boltzmann factors and calculation considerably, particularly for diagrams containing

many propagators.

The full gluon propagator Di"!"(p), can be written as a perturbation series :

Dib, : ni"!" * LXÎ.il-.,¿Llu, + ... (2.36)

where L}u,i" the free gluon propagator. It is understood that the polarisation tensor

and propagator given above are at finite temperature.

Following normal procedures for using Feynman rules, the polarisation tensor

IS

(2.37)

where the ll2l factor is the symmetry factor for Fig.[2.1a] and Fig.[2.1b], and the

minus sign for Fig.[2.1c] arises from the ghost loop. Fig.[2.1d] is the counterterm

needed to remove the divergence from the self-energy part.

nî!,(p): fr {utr.[2 1r,] + Fis.[2.1b]] - Fig.[2.1c] + r'is.[z.r a]
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For T : 0 field theory, ghosts are introduced in order to restore unitarity and

to give the correct expression for the polarisation tenàor. They are spin-O fields but

satisfy anti-commutation relations. To maintain unitarity and the transversality

of the polarisation tensor at finite temperature, ghosts must have Bose-Einstein

type Boltzmann factors - i.e. the same Boltzmann factors as for gluons. In other

words, they obey Bose-Einstein statistics. Naively, one may have expected that as

ghosts have anti-commutation relations, then they have Fermi-Dirac type Boltzmann

factors and obey Fermi-Dirac statistics, which is not the case.

Using the RTF, the polarisation tensor can be split into a temperature indepen-

dent and temperature dependent part as follows :

il1l"@) : n!"(p)'=o + il1b,(n¡'*o, (2.38)

where [NIu87]

r1u,(n)'=o
g'6"b.Cc(= p')-'l(e)B(2 - e,2 - e) ¡, z \-@-- r- e ylu"P--PuP,)

. (r,t - 3.) + (1 - oxr -ae)(3 - 2e) * (t - ")'í(t - r.))

6"u(prp, - p'gròn(p'). (2.99)

Dimensional regularisation has been used to obtain equation (2.39) where, after

expanding in e, fl(p2) becomes

il(p') #lf+ - ;) (: - ^, -,"(#)+ T - (, -o) - n#)l
+ (h - r) (2.40)

where Cc is related to structure constant s f""b

¡øcd ¡bcd : 6"b cc'

44

(2.4t)



The (Zs - 1) term is the counterterm required to remove the divergences of the

theory - the value of 23, the gluon field or wavefunction renormalisation constant,

depends on which renormalisation prescription one chooses. For this specific case

the counterterm is temperature independent.

The temperature dependent contribution to the polarisation tensor yields

(2.42)

where the integrals have been evaluated using the list in Appendix A and the coef-

ficients are

Ct : -(2rf(I,r) - atrf (t,3) + 2rf (r,5) - 3zrl(3,0) + 5rf (3,2) - rf g,a)

ili,!,(p)r+o : ffi lc, (g,,p' - p,p,) * czs pos,op2]

-o f (3,6) * -3izr'g(l, 0) * -irzs(1,Ð)

-(l - a)(-3zr/(1, -i) * 6zrf(1,1) - 3url(1,3) + 3rf (2,0) - 6rf (2,2)

rr,rf (2,n) +y+a2 -yryÐ *Tl+2 *TJ+9 -3rf 
(!'-Ð

*YIJP _ry9 _ryÐ +f;*,se,_z) + ln,s(r,o)

+ -] n' * s (2., o) + -| o' 
^ s (2, 2))

-(r - '¡'(o/1r,-1) - 
y+Ð *Il+Ð -7rr(2,0)+2trre,,z) - nf(2,,a)

_ü+2* ryFq _ t+9 * üJP _ or(4,\ + ü+?
3i

+!r2sQ,-4) + l"'n0, -2) + -{r2s(t,0)

+-|n'*s(z, -2) + 
f,n2ms(2,,2) 

+ [o'*'s(3,0) + f r'z m'zs(J,Ð) Q.4J)

Cz : - (ztrf (r,l) - anf(1,3) + 2rf(\,5) - zrl(3,0) + brl(3,2)

-7r f (3,a) + 3zrl(3, 6) + -ir2s(1,0) * }ir2 s(1, 2))

-(1 - c)(-rl(1, -1) + 2rf (r,1) - z'l(1, J) * rf (2,0) - zrf (z,z)
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*,rf(2,4) +rl+Ð -tl+9 -tl+2 *!l+9
tlp * ry - ry - WyÐ * ln, n(r, -2)

+ |o' s (r, Ð + -| o' * g (2, Ð + f; *' * n Q, 2))

-(1 - ù' (-*rrr, -r) . rl+Ð - tl+Ð * tr f (2,0)

-3trf (2,2) + ztrf (2,4) + - la#CI * tlJP
try +ol(4,r¡ -"r(!'t) *-**'n(1,-4) + f o'e1r,o¡

+f,,r'zms(z,-2) + |tr2ms(2,0) + #"2ms(2,2) + +"'nf s(3,0)

I{o',,'s(3, 2)) . Q.44)

where the functions /(ø, n ) and g(o,r) are defined by

.f(1, n)

f Q,")

(2.45)

(2.46)

(2.47)

(2.48)

(2.4s)

/(3, rz)

l@,,")

g(a,n)

Notice that the coefficients C1 and C2 are complex. The functions /(1, n), f (2,n)

etc. arise when only a single ó function or its derivative is present in the momentum

integrand and contributes to the real part of the polarisation tensor. The functions

g(I,n),g(2,n) etc. however, result from products of two á functions and/or their

derivatives and correspond to the imaginary part of the polarisation tensor. This is

primarily due to the fact that the coefficient of the ó function,2rinB(lksl), in the

propagator is imaginary, which after multiplying with a similar factor from another

propagator will become real.
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The fact that the coefficients Cr and C2 are complex could be interpreted in a

coupie of ways :

o That absorptive or emissive effects occurred in the process. This is possible in

the context of finite temperature field theory since the system is in a thermal

heat bath where particles can be absorbed or emitted by the thermal vacuum

but keeping overall conservation of energy and momentum.

¡ Since the coefficient C, (2.29), of the temperature dependent term for the

propagator contains a factor i, clearly taking products of varions numbers of á

functions are going to give imaginary contributions to the polarisation tensor.

Clearly this calculation is invalid for the case when pp : 0 since one would then

have products of 6 functions of the same argument, which are not well defined.

These results reduce to those obtained by Fujimoto and Yamada [FY87] who do

their calculation in the Feynman gauge a : L using Thermo Field Dynamics, and

if the g(1,") etc. functions are set to zero.

With the conditions (2.35), the \Mard identity for the gluon self-energy part

P'n",jr: o (2.50)

is satisfied.

One can decompose the polarisation tens", fii"T into transverce T and longitu-

dinal I projection tensors :

ni:,@) : 6ob [A@)rr" * B(p)Lr,) (2.51 )

which have the following properties

Top 0
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t NJ 6¿j

PpP"
p2

L,,

A(p)

B(p)

påpj

i2
-9p,-Tp (2.52)

The projection tensors satisfy

PrT" :

PrL" : (2.,i3 )

Considering the finite temperature part of the pola,risation tcnsor. u'c: find that

it can be written as

926"bCG

(2o)n
(2.5'1)fliu,(n)r+o : ÍA@)r," I B(p)L,,)r+o

where

0

0.

: -(Ct+Cz)p2

: Crir. (2.5c)

2.4 Conclusion

Deriving the finite temperature spin-l propagator in the general Lorentz gauge

(with arbitrary gauge parameter a) in the real time formalism (RTF) leads not only

to ó functions but also their derivatives. The propagator was obtained by seeking

the solution to its equation of motion with a point source term rather than b), the

usual field theory methods of evaluating the vacuum expectation value of a time

ordered product of two gauge fields. Finite temperature effects still appear through

the homogeneous solution to the equation of motion for the gluon fields (or equation

of motion for any field for that matter). The inhomogeneous solution is unaffected
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by finite temperature effects - it gives the same expression as one gets at 7 : 0.

The gluon self-energy part has been calculated in the general Lorentz gauge while

keeping the gauge parameter a arbitrary, using the RTF. An extra term proportional

to g¡"o!,o in the polarisation tensor arises due to the fact that Lorentz covaria,nce is

broken when finite temperature effects are taken into account. The final expression

is basically simple despite the enormous amount of work required to calculate the

amplitude for a few simple Feynman diagrams. One finds that coefficients of various

terms in the polarisation tensor are complex.

Having performed the calculation, one becomes aware that the conventional ap-

proach to perturbation theory,in the RTF is somewhat ambiguous and that great

care must be taken as to what should be done to products of 6 functions, pa,rticularly

when their arguments coincide.

This leads one to conside¡ the role of the Wick expansion at finite temperature

and whether the finite temperature propagator (in any gauge) in the RTF containing

á functions and/or their derivatives, should be used directly in perturbation theor.v.

Further discussion of this issue will form the subject of the next chapter.
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Chapter 3

Finite Temperature Perturbation

Theory in the RIF

3.1- Introduction

The calculation of the one loop correction to the gluon propagator provides

a good background for a possible attack on how to approach finite temperature

field theory perturbatively in the real time fo¡malism (RTF). Although, one should

be open to the possibility that the process may in fact be a nonperturbative phe-

nomenon

Many authors have put forward theories to circumvent some of the problems

concerning the RTF. For example, Thermo Field Dynamics (TFD) [UMT82] has

evolved as a result of this. However, while it provides a mechanism for dealing

with some of these problems, it is not without its own drawbacks. In TFD, there

is a doubling of the number of fields - every field has an additional field, called

the tilde field. In this case propagators and vertices become 2 x 2 matrices, whose

properties are such that it allows some cancellations of the undesirable products of

ó functions. When a calculation in TFD is carried out, the physics is contained
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in the (1,1) component of the matrix amplitude. There is stili some uncertainty

as to what physical meaning, if any, the tilde field represents. It is more of an

artefact introduced to get rid of the mathematical probiem of dealing with products

of ó functions rather than a solution to a physical problem.

As is pointed by Dolan and Jackiw [DJ74], in higher order calculations, one

encounters integrals of the form

1 2tri
p2 - m2 t ie exp[Blp6l] - 1

6(P' - ^')
'ìL

(3.1)

rvhereas in the imaginary time formalism the analogous objects are

1

(n - 1)!
(3.2 )

Thus, in .the RTF, expressions of the form (3.1) are conventionally understood to

mean

('#)"-'-å+l#r+

(n - 1)!

.a
' ðnt2

I 1 2tri
p2 - m2 ¡ ie exp[Blpsl] - 1

6(P' - *') (3.3)

The imaginary time formalism does not require a doubling in the number of

fields in order to carry out a calculation. It seems incongruous that in one case it

is necessary to double the number of fields in order to get any sense of the theory,

wherças in the other case this is not so.

There does not seem to be any unified consensus as to how one should deal with

perturbation theory in the RTF and at the same time making it consistent, as is

the case for zero temperature Feynman rules. Many authors seem to have their

o\ryn prescription for curing the malaise. The 'derivative method' as outlined in this

chapter is no exception, where one differentiates with respect to momenta rather

than masses. For the purposes of this chapter, unless otherwise explicitly stated,
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the 'derivative method' is understood to mean differentiation by momenta, not by

InASS.

3.2 Free Field Theory in the RTF

An ideal way to examine how a thèory behaves perturbatively is to find a theory

that can be solved exactly - i.e. a theory in which the dynamics is fully understood,

and at the sarne time, a perturbative treatment is possible. Obviously if one knows

the exact theory, then it would not be necessary to resort to an5, of the icleas of

perturbation theory. However when interactions are considered it is, in general,

very difficult, if not intractable, to solve the full theory exactly. In the case for free

field theories it might be possible to pursue such a course of action. Although it

might be trivial and an overìy simplified situation, it may give some insight into

how perturbative effects are manifested in finite temperature field theories, at least

in the free field case.

Consider a free scalar field theory governed by the following Lagrangian

t:f,a,6a,0-Tr, (3.4)

which leads to an equation of motion for the / field

(ôrô,+m2)þ(r¡:s. (3.5)

In the momentum representation, the propagator for the scalar field at finite

temperature, A(p, ræ), is
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Figure 3.1: The full propagator in terms of two-point interactions.

In this case, both terms of (3.4), being quadratic in the field variables, were used

to derive the propagator. Now consider the case where the mass term in (3.a) is

treated as an interaction, a two-point interaction, then do a perturbation expansion

in m2- The Feynman rules for this case are, for the propagato. A(p)

1 2tri
a(p) 6(p') (3.7)

(3.e )

p2 + ie exp[Plpsl] - 1

and the tlvo-point vertex

V-m2 (3.8)

Now consider the following perturbation series, using the above Feynman rules

A(p) + L(flv L(p) + l1p¡v L(e)v L(e) + . . .

: D (a(p)v)" a(p)
oo

n=N

which can be represented diagrammatically as in Fig.3.1 .rvhere the bold line is

L(p,*), the thin lines A(p) and the crosses are interactions V. It is immediately

clear that this is undefined because of the products of ó functions. This demonstrates

that the propagator of the form (3.6) or (3.7) cannot be directly used for perturbation

theory.

However, if a Taylor series expansion of (3.6) about the point -m2 is calculated,

one gets

å +t t(#)" i -6ffi:r ffi)" o(o')]L(p,*)
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Ao(p, rn) + L'(p,*).

d

(3.10)

It is observed that in (3.10), derivatives rather than products of ó functions

occur. Derivatives of 6 functions are well defined constructs. Part of the task now is

to see if this can be converted into a perturbation like expansion in the mass term

rz2. Since p2 : p3- F', the derivatives can be written as

a IA
dp' ai' Aitatit'

6(p')

(3.11)

(3.12)

(3.13)

then (3.10) can be rearranged as

)"TN

2
n'¿

1

"l

Ë
n=0
oot

n=0

(
J

L.(p,*)
nl

-2ri
(exp[Blp¡l] - 1)

Id
+

2

It can now be seen that (3.12) gives a relation between (3.6) and (3.7)

Let us examine the temperature dependent term of (3.10)

L'(p,^) Ë
n=O

(-*')"
nt (exp[Blp6l] - 1)

d

dp'
2ri n

fr,o', 
+ frr-^')6(p')

dp'
(-*') fif-*'lrto'l *. ]

Note that the first 'propagator' of the diagram is just the 6 function. If there

is more than one propagator in the diagram, the extra 'propagators' appear in the

form of derivatives with respect to the square of the momentum associated with that

'propagator'. Thus, extra propagators seem to manifest themselves as differential

operators acting on a ó function. The Boltzmann factor associated with the 6

function is positioned to the left of the differential operators and the energy in its
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exponential term corresponds to the energy given by the 6 function, e.g.

1

exp[Blas* óo*... + col] 
(diff'operators) ó ({'+ ó+ " '+ ")'-*')' (3.14)

We shall call the above procedure the 'derivative method'.

Now, consider expanding

as a Taylor series in (-m2), where ø : lil'+ rn2. For the LHS we get

I oo"6(p' - *') f (þ.1) : f

loo"å e# 6@@')/(tpot)

(3.15)

(3.16 )

+.... (3.17)

(3.18)

and for the RHS

#*^'(#t.#) . 3/(lp'l) 3/'(lpl) /'(l1l)\
Tþ1- Tþf¡- * ,tia )

4
na

The terms of (3.17) can be generated from (3.16) if the derivatives of the ó functions

are given by

d

21fl alñ

n

6þt@r) : 6(P')
dp'

-1 a
fL

6(p')

It is worth noting that the series (3.17) can also be obtained from

(3.1e)

where p2 + ie : (po + lpl - ir)(po - lp] + ie) is the usual Feynman prescription

for handling the poles of the propagator. The ó function has been defined in the

lø,ä(#)"(4P)

,),)



following fashion

6(p") : firurr"- lpl) * ó(po + lpl)) (3.20)

where a simple 6 function is defined by

hl--1 --r le+o\¿f 26 x-ze/
(. 1

12 + e2 Zri
(3.21)

From this it is apparent tha,t ó(p2) has 4 poles, one in each quadrant in the complex

energy plane - compa e this to the Feynman prescription which has two poles, one

each jn tile seconcl and lourth quadra,nts.

Thus, the á function prevents us from using the naive Wick rotation to go from

the real to the imaginary time formalìsm (or vice versa) as it could lead to some

problems as the poles in the first and third quadrants will have to be crossed.

In quantum field theor¡,, the Wick rotation is carried out on the assumption that

there are no poles in the first and third quadrants. It is possible that the form

or regularisation of the ó functions given above is not appropriate for performing

calculations in finite temperature field theory in the RTF.

Whether one chooses (3.18) or (3.19) is dependent on what set of boundary

conditions are chosen. This is usually determined by taking the Fourier transform

and seeing rvhat one needs to do with positive and/or negative energy solutions. One

has to keep in mind that in the RTF, the finite temperature part of the propagator

corresponds to the homogeneous solution to the equation of motion.

Obviously one would like to include more general interactions, rather than just

those of the two-point type, such as three-point interactions and loops etc. We shall

examine how the 'derivative'method could be extended to such cases.

As a prelude,, we shall now present a very brief outline how perturbative field

theory at finite temperature is carried out using Wick's theorem.

Then, we use the 'derivative' method to investigate how quantum effects can
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cause mass-shifts, denoted by 6m2, of a particie at finite temperature.

3.3 Interacting Field Theory in the FUTF

Usually interacting field theories are examined perturbatively, primarily because

it is the only method at our disposal for which calculations of amplitudes, decay rates

etc. can be carried out. The thermal average of the full propagator or the so-called

temperature Green's function, with free Hamiltoni un Ho, interaction Hamiltonia,n

,gr .nd partition function Z,is defrned by [FW71].

Ç(i,r,f ,r') -)r "-g'oå # looo 
0,, I or, 

I,oo 
a,, I ail

. ,,lu'(r-r, rr) . . . HI (in,rn) þ(i,r)g(f ,r')] , ß.22)

where the partition function Z is

Z a, "-e'oå $ff looo 
0,, I or, 

l"o

h

drn d,i^

,,[n' (dr,"r) ...H1 @,,rò] (3.23)

and knowledge of the finite temperature aspects of the time-ordering operator is

necessary. This can be done by considering Wick's theorem. When a theorv is

quantised, it is possible to compute diagrams for n-point functions rvjth the as-

sistance of Wick's theorem - certainly for the case of T : 0 field theory. Let us

examine the basics of Wick's theorem and how it presents problems when used for

perturbation theory at finite temperature.

When computing a time ordered product of field configurations at T : 9, Wick's

theorem shows how this may be reduced in terms of normal ordered combinations

of the fields and their contractions. For example, for a time ordered product of two
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where the contraction of two fields ó("t) and þ(r2) is defined by

fields

r[þ@ 1) S@z)] :: ó(*')ó("r) + ó(rt)ó(rz) (3.24)

ö(r')ó(*r) : rlþ@1)S@r)l- 
' þ(x1)þ(r2):

: < oló@r)ó("r)lo > (3.25)

and is the propagator for the /(r) field, further it is a c-number. Hence when

calculating the vacuum expectation value of a time ordered product of fields, t.he

contributions from the normal ordered products vanish.

For the more general case we have

Tló@') . . . ó(*")l : : ó(rt) . . . ó(*"),

+D" : ö(x) ..óG,)...0G¡...ó(,*): <0lrg(r*)ó("ù10 > +...
À<l

+ t op : þ(r) ...óG*,) .. .óG,,) . . .ó("^) ,

h<k2<...<k2p

x ! < 0lTlg(r¡,,)ó@*n)10 > . . . < 0lrld(tkp,p_,)ó(*r,,,)10 >
P

+. . . (3.26)

where !p denotes the sum over all possible signed permutations of pairs of fields

with ø and op taking account of the sign of the permutation when the fields are

(anti-) commuted through the normal ordered term to get the contractions.

Extending this to include finite temperature effects requires very careful consid-

eration. Some ideas and concepts have to be modified, such as the vacuum and the

role normal ordering plays in field theories at finite temperature. A number of peo-

ple have examined this as early as 1955 [Ma55,Th57,8158,8D58,Ga60,8M61,FW71].

Let us also examine what happens if this naive approach is used.

Taking the statistical mechanical approach, the thermal average of any operator
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.4. is given by

<A>
Tr {e-ßH A)

Tre-ßH
Ðr,, < N jle-r3HAlllr >
Ð,¡v,¡( N jle-ÊHlN j> (3.27)

where the fry,¡ is the sum over the number of particles N, and j represents all

possible quantum numbers of the system.

Using this and (3.24), we can see horv the thermal average of a time ordered

product of fields could be defined

r r {e-ÊH r[ø(',) d(",)] ]
Tre-þH

rr {e-on : þ@)þ(Q :}
(3.28)

Tre-þH

The conventional T : 0 vacuum state l0 ), consisting of no particles is just one of

the states in the summation. Recallingthat ( 0lS@1)S@r)10 > is a c-number, and

therefore can be pulled outside the summation !¡y,¡, the last term of (3.28) becomes

Tr {e-oa < oþ@)ó(rr)lo >} :< \ló@r)d("r)10 > (3.2e)
Tre-ßH

In general, the normal ordered term would not vanish, since the summation is

made over not only the vacuum state, but also non-zero particle number states, so

rr {e-on : g@)g(Q :}
+o (3.30)

Tre-þH

This, in essence, defeats the purpose of normal ordering as understood in the

context of T : 0 field theory. When one defines the propagator as a vacuum

expectation value of a time ordered product of two fields, one cannot simply ignore

normal ordered terms or rather, care must be taken when working with the T : 0
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vacuum, or whether a new vacuum should be introduced for finite temperature field

thçory. It should be borne in mind that as finite temperature field theory describes

a many particle system, then it may be the case that the ground state of the system

is not the vacuum state, or rather, not the zero particle state.

When using Wick's theorem, one actually deals with 'contractions' of pairs of

fields. In the T : 0 field theory, a contractiori of two fields, denoted by an underbrace

connecting the two fields as defined in (3.25), is just the frel propagator D(r1- x2)

ó(*')ó(*r) : < 0ld(",)d(rz)10 >

: D(q - r2). (3.31)

So, one might modify the definition of contraction of fields when dealing with

finite temperature field theory. This was first recognised by Gaudin [Ga60] and also

discussed in [FW71]. The contraction in this case is given by

(3.32)

where E : Et - Eo, the upper sign refers to bosons and the lorver to Iermions and

ld("), ó(r2))+ : ó(rt)ö(rz) T ó@r)ó("') (3.33 )

is the (anti-) commutator if /(æ) is a (fermionic) bosonic field.

If we denote the creation and annihilation operators AV 
"t¡ 

and, a¡ respectively,

then contractions between c¡eation and annihilation operators, depending on their

order, are

!þþ(rz):YW

60

-nj



+aja;

Tr {e-eú,at,a¡}

(3.34)

(3.35)

4ç*.,ò)

(3.36)

where

I
nj:

Tr {e-QHo} eÊEi ¡ 7

is the number operator for particles of species j.

Wick's theorem for finite temperature field theory would nolv give

rr {e-an 6@)ó(*,)ö(",) . . .O@ò) : !@:)ó(*ùr, {"-PIr ó(*,)

+ !(x^þ(æ)rr {¿-0n ó@,)ó(,o) . . . 6@,)} + . . .

+ !(t!!(rz,)rr {"-o'ó("r)d("r) . . .ó(*,^ì} .

There are striking similarities in Wick's theorem for the finite temperature case

when compared to the zero temperature case. Unfortunately, this in itself is not

sufficient to allow us to handle the problems associated with the ó functions en-

countered in finite temperature field theory in the real time formalism, rvhere in the

momentum representation, one replaces the contraction of the fields by the propa-

gator (3.6) or (3.7).

We now turn to the case of applying the derìvative method to the self-energy of

a particle.

3.4 Interactions and the Derivative Method in

the RTF

To see how the derivative method in Sect.3.2 can be applied to interactions

and loop diagrams, we shall choose the case of the self-energy of a scalar particle -

specifically the mass-shift. Our guiding principle is that a mathematical expression
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Figure 3.2: Self-energy insertions to the free propagator.

should be well defined at all stages of a calculation.

For simplicity, let us work with /3 field theory described by the Lagrangian

- 1 m2 ^ )
L : io,óa,ó 

_ ;ó, _ rtö". (3.3i)

The free propagator will be given by (3.6). Including self-energy insertions to the free

propagator as displayed in Fig. 3.2, would cause a mass-shift in the full propagator.

The full propagator

(3.38)

can be expressed as a series, very similar to (3.10), but this time an expansion in

the mass-shift parameter 6m2 is performed instead. The result is

L(p,*,6m2): fæ] o*, *.ie- .*o¡p'¡irr1¡ r 6(p' - m2 ¡ 6m2)

A,(p,m,6m2)

where we note that the derivative can be written as

d d

d(p" - *') dp'

6m2 :6*T=o+ 6m2,

(3.3e)

(3.40)

Here, we let

62

(3.41)



k

V Vz

k+p

Figure 3.3: The scalar self-energy to order )2.

be just the simple one loop self-energy correction to the free scalar propagator as

shown in Fig.3.3.

The zero temperature part of the self energv 6*T=o can be obtained from the

conventional T : 0 Feynman rules. The finite temperatu¡e contribution to the

self-energy in the derivative method is

II(p,*)r I ¡ d{lc I -zr¿ d,' l*'" | -"" Iz" * 
',V6&2-m,)+Zl I Qtr)a leglr"l - | ''' d((k + p)2 - *- )

-Zzri '\r d 
,,vr6((k+ù2-*');plk,+*l-" agr--,rL-)

ffi-*rr#orr'- *')

(3.42)

where 2! is the symmetry factor and Vr and Vz are vertex factors which in general

will be functions of momentum (e.g. for non-abelian theories). Each term within the

large braces is obtained by starting with a ó function for one propagator and then

continuing anti-clockwise to get the rest of the expression. Por scalar field theory

(3.37), V1 : l/2 - ).

The derivative of the first ó function in (3.a2) may be rewritten as (using (3.40))

d

a(k + ù2
6(k2 - m2)

I
p'k p2

6(k' - m'?) (3.aJ)
d

dk2(k + p)' (k + p)'

and the derivative of the second ó function is treated in a similar fashion.

For simplicity, let us consider a scalar field with m : 0 and compute the self-

energy for the unphysical external momentum configuration pp: (0,p] such that
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p2 : -M2. Using the finite temperature integrals in Appendix A (with rn replaced

by M),II(p,0)t becomes

II(p,0)t -2¡ri
¿Þlkol - 1

d4k

I

(-d#-åñ)#ou',
*#ä(-d5-¿æ) *¡rt'))

ffi (trr,-1) -u+!*{P re,,)+zre,Ð- re,4)

rG,-2) * q*q _ /(3, z¡ + ßP +

- .f (4,t)* l(P)
/(4, -1)

2

Thus to order 12, the finite temperature contribution to the mass-shift is

6m2, - II(p,0).

(3..14)

(3.45)

(3.46)

(3.47)

Let us compare these results with those obtained from the conventional real time

approach. The expression for the self-energy fl(p, r7l)conventional would be

rl(p, m).".verrrionar : #f^ I or (ø _#Æ - #= 6ft'z - nz\)

çt, + ù' - *z ¡ ie ¿?lkornol - |

where the finite temperature contribution is

^2

2tri
6((fr+p)2-nz2)

II(P, -)I"."entionat : #lc
2! (2r)a

2ri
(eqlko+nol - 1) (fz - m2 ¡ ie)

( -nr'
\@r--TTffi6(k2-m2)I

6((/c+ p)'-*')
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Letting pp: (0,,0,0, M), m :0 and using the integrals in Appendix A

rl(p,o)å."entionar : ñ+ ltnçz¡çt,o) - 4/(3, 2) +2f Q,4)) - 2tr2s(r,0)) (3.48)

which is simpler than but quite different from the result obtained from the derivative

method (3.44).

Some comments regarding the derivative method are in order :

o In the derivative method, the only mass variables appearing in the amplitude

a,re those from the ó functions.

o If the vertex factors I and V2 have momentum dependence, it is not clea,r at

present whether such factors should be differentiated along rvith the ó functions

or if they should be extracted from the amplitude and placed together rvith

the Boltzmann factor before the differential operators.

o What combinatorial factors one attaches to a particular diagram have still yet

to be clarified.

3.5 Concluslon

In principle an amplitude evaluated in the imaginary time formalism (ITF) can

be continued to the real time formalism (RTF) using techniques given in Sect. 1.4.

Usually the ITF expressions for the free propagators and vertices are continued

to the RTF, giving the well known finite temperature Feynman rules in the RTF

and then applied to perturbative calculations. More correctly, the calculation for

whatever amplitude one has in mind should be done entirely in the ITF and then

continued to the RTF. This way, it will be more likely that one gets distributions,

which may be quite complicated, instead of products of distributions (such as 6

functions). However, performing the energy summations in the ITF can be very
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difficult, thus other methods for dealing with perturbation in the RTF have to be

constructed. The mass derivative and derivative methods try to bridge this gap.

The mass derivative method applies only when the momenta and mass variables

in the products of ó functions coincide. Converting from products of 6 functions

to mass derivatives of á functions for a specific set of masses and momenta is not

a 'smooth' process, in the sense that one has to replace certain functions with an

entirely new function, or rather, replace a set of distribuiions with a nelv djstribution.

The derivative method is a 'smooth' process and each step is rvell defined from a

mathematical viewpoint. It reproduc.es the exa,c.t free field theory results, when

compared to a theory in which a perturbation in the mass term is carried out.

As it stands, the derivative method is mathematically well defined and at the

level of an initial investigation, it appears to be physically legitimate. The procedure

needs to be extended to four-scalar (in /a theory) or four-gluon (in non-abelian

theory) vertices or diagrams of more than one loop. Further dcvelopment of the

derivative method requires a more extensive research program lvhich is beyond the

scope of a single thesis.
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Chapter 4

The Chiral Anomaly

4.L Introduction

Since their discovery [St49,Sc51,Su66,Su67,BJ69,Ba6g,AB69,Ad6g]. anomalies

have been the subject of much investigation and they have played a crucial role in

understanding the nature of quantum field theories. For the case of the zr0 - 2^l

decay amplitude, the presence of the anomaly allows very good agreement with

experimental data, without rvhich the PCAC theory could not account for the large

value observed. However in the case of the weak interactions, the Weinberg-Salam-

Glashorv Model, anomalies presented a very different picture.

At first, they appeared to be a curse or the death knell of certain field theories,

making them non-renormalisable. Prior to their discovery, renormalisation proce-

dures did not clash with symmetries that existed at the classical level. However

when quantum effects are taken into account, anomalies arise when some symme-

tries are not preserved. Later it was realised that by choosing certain gauge groups

and representations thereof, it was possible and essential to cancel these anomalies.

This narrowed the search for theories that might be applicable for describing the

various interactions we observe. For the zro - 2.y case, the anomaly does not affect

renormalisability since the axial current associated with it is not a current of the
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Standard Model SU(3) x SU(z) x U(1). For QED and QCD only vector couplings

between the fermions and gauge fields have been observed experimentally, whereas

for the case the weak interaction (Weinberg-Salam Model) axial vector couplings

also occur.

As the name suggests, an anomaly arises when something'unexpected' happens

to a particular equation under certain circumstances. There are various types of

anomalies - chiral, conformal etc. In this chapter we shall only be concerned rvith

the chiral anomaly, which lvas the first to be discovered and occurs in gauge theories

that have gauge fields coupled to chiral fermions.

Specifically for the case of the chiral anomaly, they arise when both chiral and

gauge symmetries cannot simultaneously be preserved. A regularisation scheme

that satisfies both chiral and gauge invariance cannot be found. In such a case, one

must forego either gauge or chiral invariance - usually gauge invariance is retained

and chiral invariance is not. This allows the ph),sics of the process to becomè

more apparent since physically relevant quantities are believed to be gauge invaria,nt

constructs. However this procedure is by no means unique as one could have just

as lvell chosen to retain chiral invariance but not gauge invariance - this makes it

difficult to obtain the physics inherent in the theory. Generally, rvhen theories arc

quantised, anomalies appear as extra terms in certain equations - it is these te¡ms

that break some symmetries that were present at the classical level. In other words,

some equations at the classical level are not necessarily maintained at the quantum

level.

The chapter will present an int¡oduction to the chiral anomaly in four dimensions

- the triangle diagram using the Feynman diagrammatic approach in the momentum

representation. Next, a section on the derivation of the chiral anomaly using the

Nielsen-Schroer method [NS77] which begins by defining the necessary physics on a

hypersphere Szn (a compact manifold), then transforming the results to R2". Then
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a section will be given showing the temperature independence of the chiral anomaly

by extending the Nielsen-Schroer analysis to include finite temperature effects. A

finite temperature delta-function, áa, which is anti-periodic in the time coordinate,

called either the 'anti-periodic ó function' or the 'temperature ó function'is required.

The Nielsen-Schroer method is carried out entirely in the coordinate representation.

Finally, the last section deals with an interesting aspect of the Ati¡'ah-Singer

Index theorem which relates the number oÍ zero modes (i.e. massless modes) of

the Dirac operator to the topological properties of the gauge field, in particular

its winding number. After presenting the ? : 0 situation, it is shorvn that the

Atiyah-Singer Index is unaffected by finite temperature effects.

4.2 The Triangle Anomaly - Feynman Diagram

Approach

Many books on advanced quantum field theory provide a good introduction to

the subject of chiral anomalies from a Feynman diagram viewpoint [Ry85.Fr87,1285].

The triangle anomaly, also known as the Bell-Adler-Jackiw anomaly, is the chiral

anomaly in 4 dimensions. It arises in any gauge theory that has couplings to chiral

fermions.

Vector and axial vector couplings of fermions ü with gauge fields can be desc¡ibed

by the interaction Lagrangian

L : -gvú.yrú A' - g1ú1p1u.ü Z',q (4.1)

where ly and !¡ ar.e the vector and axial vector coupling constants, and A, and Zf

are the gauge fields that couple to the vector and axial vector vertices respectively.
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The vector and axial vector currents are

Jr: ú'1,,ú and 4,: úlñuü.

The axial vector coupling consists of the'/s matrix defined by

'ls z1o^lt'lz'Ys

(4.2)

(4.3)
1

top-rt 1o^lþ^l'^16
4t

where the Dirac matrices 1,, satisfy the Dirac algebra

11*,1,)+

l1u,^tÀ*

2 s,,,

0

and to6.r6 is the tol,ail1, antisymmetric tensor.

At a classical level (calculating tree-level diagrams only) and using the Dirac

equation one finds that the vector current is conserved :

(4.4)

(4.5)

(4.6)

but that the axial vector current is not

0PJu: g

APJÍ:2im.ütyú :2mJ5

where Js : iú%ü is the chiral density and r¿ is the mass of the fermion coupling

the axial vect'or vertex.

Horvevet, when higher order corrections are inciuded, for example to one loop

order, there are two Feynman diagrams, each consisting of a closed, but oppositely

directed, fermion loop with two vector and an axial vector vertex shown in Fig.[4.1],
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Figure 4.1: Diagrams that contribute to the chiral anomaly

(a.6) is modified but (4.5) is unaltered. It is these higher ordcr diagrams that

contribute to the chìral a,nomaly. The change to (a.6) is the chiral anomalS'.

Contributions from all possible t5,pes of fermions circulating the loop are summed

over. The amplitude for the amputated diagrams can be written as

I u,¡(pt, pz, m) : T*x(pr, pz, tn) * T, px(pz, h, m) (4.i)

where the first (second) term on right hand side of (4.7) corresponds to the first

(second) diagram of Fig.[a.1]. Normally the computation of amplitudes is greatly

assisted by using the techniques of dimensional regularisation, where the number of

spacetime dimensions, d, is analytically continrrecl to the complex plane. However,

this method cannot be applied in the case of the chiral anomaly due to the inability

of defining a generalised 15 type matrix to arbitrary dimensions - it is only defined

for spacetimes of even number of dimensions.

Ûsing Feynman rules, we find that

I d4k 1
T ¡", ), : (i)t (- i g n) (- i g u)'

1

(2")n ¡z - yy¿z ! ie
1

(k - pr)' - m2 + ie (k + pr)' 'm2 + ie

7I

4 t*x (4.8)



where

4 t'¡"vÀ - Tr"l(þ + m)tr(þ - lt * m)t¡ts(þ + l, + m)t"l (4.9)

lvhere Tr" denotes the spinor trace. Note that T¡r,x is Bose symmetric under the

interchange (pt, p,) -- (pr,r) and so the contribution of the second diagram to I¡",x

gives a factor of 2, so only one diagram needs to be evaluated.

It is important to note that (a.S) is linearly divergent, meaning that shifting the

integration variable alters T*xb! afinite amount. This can be seen by consideling

the following

I d4k.f (k) I
I

(pt + or¡^ I *x :

plI*"x:

plrl ¡",x :

d4k'f(k - a)

dlk'¡çk'¡ - a* la^*ftrøt (4.10)

lvhere we have used the Taylor Series expansion. Suppose the original integral is

linearly divergent, the second te¡m in (4.10) is finite since rvhen it is converled

to a surface term by Gauss' theorem, the integrand /(k) - lkl-t and the surface

area - lklS.

When matter (fermions) couples to gauge fields via vector or axial vector inter-

actions, expressions called the \Mard Identities are encountered - one each a.ssociatecl

with the vector and axial vector current. The Ward identities are established by

considering such a shift in the integration variables described above. Naivell', the

Ward identities would be

0

0

0

(Axial)

(Vector)

(Vector)

(4.11)

(4.12)

(4.13)

In reality, when the vector Ward identities (4.I2) and (4.13) are imposed, which
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are essential for charge conservation in quantum electrodynamics, we cannot at the

same time satisfy the axial vector Ward identity (4.11). We will present an outline

of how this occurs.

As the linear divergent term is independent of the mass rn of the fermion,, rvithout

any loss generality it can be set to zero, thus

I d4k Tr"lhr(þ = /t)txts(þ + úr)t"lT¡rr\: -gAgT (4.14)

(4. r5)

(2o)n k'(k - p')'(k + pz)2

Now consider

(pt + Pz)\T'r,x: -gAgT
d4lc Tr"llh,(þ - l')(l' * úr)to(l * lr)^,,1I (2")o k'(k-pt)2(k+p2)2

and rewriti"g (y'r I lz)ls as

leads to

(ú' + lr)^yu: -(þ - l')^y' - ts(l¿ + rrr) ('1. r6)

(4.17)

(pr * pr¡^T*x: gAgT
d4lc Tr"Uhnr(þ + úr)^,t")

(2o)n k'(k + pr)'
dalc Tr"llhr(ft - lr)tn"l

I
+g,agT I

Both terms on the right hand side of (4.17) are second rank pseudotensors depending

on only one 4-momentum. Naively, there does not exist any tensor that has this

property, so it is tempting to d¡aw the conclusion that (4.11) is satisfied.

lf lve now calculate

(2")n k'(k - pt)'

d4te Tr,ll¿l'(þ - ll)tx.Tu(þ + úr)t"l
(2")n kr(k - pt)r(k * pz)2I (4.18)pfT¡,,x: -gAgT

73



and change the integration variable to le' : (k + ù and do the literal substitution,

one gets

I d4k Tr'l(ft' - ir)ú'(þ' - l', - /ùtxtuþ't"lpfTp,x: -g¡gT (4.1e)

(4.20)

(2")n Pz(þr - h -p")r(k, - pr),

Again, if rve rewrite p1 : -(k - h - pz) * (k' - pr) then (4.19) becomes

p1 1 ¡uÀ gAgT
d'\k' Tr"l(l¿' - lr)lxluþ't,l
(2")n ¡rz (P - pr),

I dalc' Tr"[(ft' - /, - lr)lxtsþ'nl
-gAgT (2")o ¡tz(P - pt - pz)2

which vanishes for the same reasons as for (4.17).

Similarl¡', by letting pz: (k" t pr I pz) - (k" + Þr) rve find that

PlrT,,,x -gAgT

+gNT

d4lc" 1.r"[(þ" + út)lrþ"^t^1u)
(2")o ¡trrz ç¡r, + pt)2

d'tk" Tr"lt,þ"1^lu(tr" + út+ /r)l
I
I ¡¡rz7Pt+m+p2)2

(4.2r)
(2")n

also vanishes.

Thus it seems that the Ward identities (4.11) - (4.13) are satisfied. However,

when we performed the change of variables in calculating the above, we did not

consider finite contributions from 'surface terms' as described in (4.10). Let us

define S*s bV

T¡",): -g¡gTSp,^ (4.22)

where the linearly divergent piece is

S ¡rr), : d4le
1 I Tr"llhrlhxtuþt")

le6
(4.23)

(2")n

Let us now see what happens to this when the integration variable is changed to
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lt':(k+o,):

where

Strr¡: SryxlC¡",Àpaq (4.24)

(4.25)

Llsing the cyclic propertl' of the spinor tracc ifr'", a.nd the follorving cxplession

T r, l'y s'l *^l B'l {l ¡''1,^l el -4it6,ç* (9 
^og h - 9^þ9q I g 

^tgop)

lLitogr*(g*¡g,e - 9*e9tç I g*cg*) (4.26)

we find that (a.25) becomes

cpò,p: -fi ¡ o^

cp,\p:-&s*^, lo^o& (å)

&8,.^, ld^k,&(#)

#rtu^, Id^kuh(#)

*aF 
t,,^, f (ætù,h

àrt"^'ll Q;aQ fr

r&t 
l

(4.27)

Now transform thìs integral to Euclidean spa,ce, i.e. let È.r : iÅ0. Note that the

integral vanishes when p I e since it is odd in fr. If p: €, then (frr)' : Ikt (no sum

itt p). Converting the 4-dimensional integral to a 3-dimensional surface integral

gives, noting that the solid angle for 53 is { df-} : 2tr2 ;

C ¡"r),p

I
t¡"r\0.

812
(4.28)

Therefore by shifting the integration variables fr' : lc + p2 and k" : k - p1, we

J.f



see that (4.I2) and (4.13) respe¿tively become

(p, + pù^ 5,,^

plSy,s : # tr,^, po, pT

piS¡,,x: # t*x, pl, pi

1

- t,,"¡o p) pl
z1f '

0

(4.2e)

(4.30)

but the axia,l vector Warcl identitr'(4.11) is still satisfied. This demonstrates tha,t

it is impossible to satisfv both the vector and axial vector Ward identities. As it

sta,nds. this is nnacceptable since (4.29) and (4.30) violate conservation of charge.

To cure this, lve define :

3p,),: S,,,.r(pr ,pz) * S*x(pz,pr)* # t*^r(p, - pr)' (4.31)

then the Ward identities become

PT3,,¡

PiS,",x 0

(Axial)

(Vector)

(Vector).

(4.32)

(4.33)

(4.34)

That is, the vector Ward identities (4.33) and (4.34) are satisfied thus preserving

conservation of charge, but the axial vector Ward identity (4.32) has an extra term

- this is the anomaly. This is endemic in the theory. It can not be ci¡cumvented by

choosing another regularisation scheme where only one fermion is involved. Different

regularisation schemes may put the anomaly somewhere else, but cannot get rid of

ir.

This poses a serious threat to quantum field theories since they cannot be renor-

malised under these circumstances. However,, by choosing the gauge group and

fermionic representations carefully, it is possible to cancel the anomaly where all

contributions from different fermions are summed. It is remarkable that this seems
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to be the case in observation - provided that each generation of fermions is complete,

i.e. each generation consists of an electron, an anti-neutrino and three colours each

of up and down quarks, then the anomaly is cancelled. This is where one of the

major predictions of gauge theories is made - that of the top quark, as it is needed

to complete the third generation of fundamental fermions (at energy levels currently

accessible by present da¡' ¿6..1"rators).

As we calculated only the amputated amplitude to the triangle diagrarn, if we

include the polarisation vectors oI the outgoing photons the divergence of the axial

current (4.6) is modified to

apJï: 2¡nJ5 + fiF,,,F,' (4.35)

where Fr,,lh"dual of F*,,is given by

Ftlv çltuqo t-a- a p.o

I

2
(4.36)

The second term of the RHS of (4.35) is another rvay of stating the chiral anomaly.

Even in the limit of massless fermions, the axial vector current "/j is not conserved.

Since the anomaly arose from a fermion loop with an axial vector and 2 vector

vertices (in 4-dimensional spacetime), it is thus a quantum rather than classical

effect.

Having seen how the chiral anomaly arises in gauge theories in four spacetime

dimensions, it is natural to ask whether the anomaly is peculiar to four dimensions

- do anomalies exist in higher dimensional field theories ? Many methods can be

used to show that anomalies indeed exist in higher dimensional theories. They have

been investigated by using the following techniques

o Feynman diagrammatic techniques similar to those given above [FK83]
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¡ Path integrals [Fu80,WN87,Gi86].

o Differential geometry [2u84,4G84].

o Derivative expansions [Fs85,No84 et al,DK87].

o Point splitting [Sc51,NS77,Ha69,JJ69,Crew].

o Chiral Jacobians [RD85].

To examine the finite temperature aspects of the anomalies,, one can make some

pÌogress using the methods listed above. For example

o Dolan and Jackiw [DJ7a] used finite temperature Feynman rules to show

that the anomaly is temperature independent in the Schrvinger model (two-

dimensional QtrD). Similar conclusions have been arrived at using derivative

expansions [DK87] and chiral Jacobians [RD85].

o Calculating Feynman diagrams for four-dimensional QED [CL88] also shows

the temperature independence of the chiral anomaly as does evaluating the

determinant of the Dirac operator [LN88].

o The anomaly for four-dimensional QCD is temperature independent [IM83].

From this it is tempting to conclude that there is strong evidence that the chiral

anomaly is temperature independent in more general theories. To prove this using

the methods above can be very tedious.

At zero temperature the point splitting technique provides a very elegant way

of arriving at the chiral anomaly. This has been shown by Schwinger [Sc51] and

extended to include four-dimensional QCD bV Nielsen and Schroer [NS77]. Crewthe¡

[Crew] has further generalised this to arbitrary gauge groups in an even dimensional

spacetime. It will transpire that this method is very well suited to investigate finite

temperature effects of the chiral anomaly. The zero temperature case will be outlined

in the next section, the following section treating the finite temperature situation.

78



4.3 The Chiral Anomaly Point Splitting

Approach

To provide the tools required for the examination of the chiral anomaly at finite

temperature it will be helpful to give an outline of how the anomaly arises from

the point splitting method at zero temperature. An advantage of this procedure

is that it is gauge invariant and also it is calculated in the coordinate rather than

momentum representation. In pursuing this, it is crucial that the zero modes of the

f)irac operator in the presence of a background gauge field be identified. This is

greatly simplified if the Dirac operator is defined on a compact manifold since its

spectrum of eigenvalues is discrete. Choosing a non-compact manifold results in a,

continuous spectrum making it difficult to separate and count the number of zero

modes.

1b begin, the Dirac operator is defined on the compact 2n dimensional manifold.

the hypersphere 52". This is the surface of a sphere of unit radius tn 2n * 1 dimen-

sions. An even dimensional manifold is required so as to define a 15 type matrix. It is

only in such theories that chiral operators can be defined, i.e. left and right handed

components of fermions can only be constructed in an even dimensional spacetime.

Further, an Euclidean manifold is chosen - this does not affect the computation of

the anomaly, only making it easier to carry through some steps of the calculation.

The .92" results are then stereographically projected onto .R2" and the anomaly is

then derived.

Details of the relation between the Dirac operators in 52" and R2" are given in

Appendix B. The Dirac equation after being projected from 52" to .R2" is

)
ipu¡(x): T+^r^r^(r)r-r.ü
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Compare this with the well known Dirac equation in R2"

ipV(r) - m'trt(r) r, e R2"

where the covariant derivative D, : 0p* A, acts on a representation R of the gauge

group G. The background gauge field is smooth, antihermitean Ar- -Al, and has

field strength tensor Ft",: lDr,,D"l which is assumed to die off sufficiently quicklv

for large r.

For each configuration of Ar, lhe eigenfunctions u¡(r) have the following or-

thonorm ality relations

(4.3s)

(4.3e)I d2n (r)tu¡,(r) : óÀÀ,

and completeness relations

, :t *r*'6
! 2.1(z)u¡(y) ("-v) (4.40)
I

where the summation E¡ includes those eigenfunctions that have degenerate eigen-

values, and ó¡¡, vanishes if ) and À' are distinct.

Now introduce the fermionic propagator, which includes interactions with the

gauge field

S'(*,,y) : l' À-tu.r(")rr(y)t (4.41)
À

whe¡e the prime indicates that zero modes are excluded. If there are Iú distinct zero

modes uo¿(r),

ipus¡(x):O i:1,...,¡ú (4.42)
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n-l

I

f/n

'l p'lz"+t

Figure 4.2: The contribution to the chiral anomaly in 2n dimensions

then S'(r, y) obeys the equation

n

v

X

(./I
2

(4.43)

The integer .ð/ is related to the 'winding'number' of the gauge field.

Gauge-invariant functions may be constructed by Schwinger's method [Sc51]:

let the fermion propagate from r to y, parallel transport back to r, and take the

trace. This can be represented pictorially by Fig.[a.2]. The gauge fields (wavy lines),

labelled by 112,. .. ,,n-1,,fl, are attached to the fermion propagator S'(*,y) and the

dashed line f is the path taken by the parallêl transport operator Er(A,*).

Let

Gr(*,y) : Trn Çr(*,y)Er(y,*) (4.44)

be the gauge-invariant function obtained from the axial-vector projection

Ç r(*, a) : T r 
"i^l r1zn+rS' (r, a)

ip,S'(r,y): 6(r - y) - :-f uon(*)uoo(y)t
L_f L i=l
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where Trn, Tr" are respectivel¡ the gauge and spinor traces. The parallel transport

operator is represented by the path ordered exponential

Er(y, *) P¡ exp dz rAr(z)

, - l,' d, z, Ar(z) + l,o a /, 1,, d z, Ar(z') A"(") - ... (4.46)

and involves ordering P¡ along a path f running from r to y. As usual 1, and 1zn+t

are Hermitean2" x 2" matrices and obey the follorving anticommutation relations :

11r,^r,l+ - 26¡r, llr,'lz,arl¡ : 0 'fzn+t : (-1)"?r'lz . . . jzn.

(4.47)

Under a gauge transformation U, the fermion propagator transforms as

S'(*,y)--+ tl(r) S'(*,y) U(y)t (4.48)

and path ordered exponential as

Er(y,r) --+ U(s) Er(y, r) U(r)t . (4.4e)

(4.50)

By noting the cyclic property of the trace, it can be seen tha| (4.44) is gauge

invariant.

The anomaly arises from the divergence of G, in the limit y --+ r in which the

path f shrinks to a point. In this limit, the ordered exponential E¡(y,r) is regular,

Er(a,t) : I * (" - a),A,(å(" + y)) + o (@ - ù')

but the fermion propagator .9'(r, y) is singular, with the leading po\ryer at, r - a
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given by

S'(*,a) - -iØ-t6(r - y) : -i(n-L)t Ø-ú) (4.51)2 ("(x: - y)2)"

This requires finding singular terms in the short-distance expansion of S'(*,A)

which can be isolated by rewriting (a.a3) in the form

@+,1) (tS'(r,y)- ø-'6(" - ù) -- - ,l Ø-'6(* - y) +regular. (4.52)

whe¡e is P-t is defined through the following relation

Ø (ø-'s1* - v)) : 6@ - v) (4.53)

which shows that P-16(x-y) is the Green's function for the floperator. Applying

Ø-t to (4.52) gives

@+ ,l) (ts'1*,y)- ø-'6(r - y)* ø-' ,l Ø-'6(, - y))

:4 ø-t ,l Ø-'6(" - ù + regular. (4.54)

Repeating the procedure will eventually make the R.H.S. of (a.5a) regular, depending

on the number of spacetime dimensions. Thus the propagator can be rearranged as

s'(*,u): -ilø-'- ø-r ,l Ø-'+ ø-' ,l ø-' ,l Ø-'+...] ,(" - v)+resutar (4.55)

where the number of terms inside the square brackets is finite. As it stands, this

expression is rather restrictive and somewhat cumbersome as gauge covariance is

lost.

A much more convenient and elegant method for examining the short-distance

expansion of ,S'(ø, y) is to use covariant derivatives rather than partial derivatives.
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The singularity behaviour of (4.43) can be isolated by considering

s' (*, y) = - i (p p);' p 
" {t {* - ù - i-- f uou(,¡u,, ( u ) 

t 

}
(4.56)

(4.57)

with the inverse of

þØ:D'++11,,,l,fF*

expanded as a series in the field-strength tensor F'

(4.58)
k=0

All singularities arise from the ó function 6(* - y) in (a.51). Contributions from

the zero-mode term are regular at r - y, since 1/ is finite - this was primarily the

reason why a compact manifold was chosen. 'Ihese singularities are either a simple

logarithm

- (constant)ln(z - y)'

or powers

o (* - v)-' 0<p12n-1

including direction-dependent terms such as

("-v)"(*-v)p
@ - a)'.

The effect of each operator D-l is to decrease the power p of the singularity by 1.

Consequently all singular terms in the expansion o1 S'(r,g) are generated by the

finite series D¡ ir (4.58) acting on -ip6(r - y) ir (4.56).

n-L
(pp)-: t {- o-r+lrr,^r,)F,,}* D-2 + {-o-,il^,t,,^y,lF,,\" (pp)-'

84



Because of the identity

Tr"1pr'{p, .' .^lpr'Ypzn+t :
0

(2i)" tþ, p"...t r^

k <2n
(4.5e)

k:2n

the spinor trace in (4.45) eliminates all singular terms except k : n - |

The short-distance limit is to be specified by taking

q:(y-r) -+0 (4.61)

with the mid-point

(4.62)

held fixed. Noting that if M and, N are operators

(M + N)-t: M-r - M-rNM-t ¡ ¡1[-rNM-rNM- (4.63)

and that

D-2 : a-2 _2a-2 A. a a-2 + o@-4)

(4.64)

then potentially singular terms in (a.60) arise from the first two terms in the expan-

slons
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Fr"(u) Fr,(z) -l (. - z)oïrFr,(z) + Oç1w - ")") (4.65)

where lor F¡,, Taylor's theorem has been used.

The leadin g O(rt-t ) power in Ç, is generated by fl-z acting directly on the delta

function in (a.60) :

0-2^A,6ç17¡ : -
2(-r)" \u (4.66)

(n - l)l(4r)" n2

see Appendix C for details.

Contributions involving 0^,F,B sum to zero (provided the limiting procedure of

(4.61) and (a.62) is adopted), but Ç¡, c<ntLairLs rron-leatling sirrgularil,ies due to the

A-dependent te¡ms ìn (a.65) and of D, : 0u + A, :

(r-'" o,) ,6@ - y) : (a, + A, - 2n A. a a, a-2) , 0-2"6(x)* (finire),- u. Ø.67)

We can rid ourselves of these A-dependent terms by multiplying (4.67) by (a.50)

and using the identity

2n ôr 0,6-z("-r¡ó(r) : (g* I *rô,) ô-2"6(r) * constant. (4.68)

where the constant term in (a.68) takes account of the arbitrary constant of inte-

gration (subtraction at rs) needed to define

A-2" 6(r)
(- t¡"-t t"("'¡*i)

(azr)"(n - 1)!
(4.6e)

The result is

Er(a,x)(D-2" D"),6(, - u) : (Aò,A-2"6@ - y) * (finfte),-r. (4.20)

It is therefore convenient to specify the short-distance behaviour o1 9t, in the
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following \May :

4^-t¡"(n _ l)l
* Rr(z,r¡)

t¡tva1B1...a,-tþn-t 
# 

(O-to, . . . Fo^-rþ^-r)

(4.71)

where limr*o Rr(r,7) is finite and independent of the direction of. r¡,. There are

non-leading singularities or direction-dependent terms such as

t¡tva1B1...an-tþn-tff to-r,For¡r) Forg, - - - Fon-tþn-t (4.72)

This property seems to be peculiar to the axial-vector current in a Yang-Mills field.

(For example, in curved space, the analogue of Gr(*,y) gives rise to a direction-

dependent term at short distances [NSR78].)

Equation (4.71) allows us to define a subtracted amplitude

(4.73)

Bvidently the standard procedure [NS77,Sc51] of averaging over try, is also appli-

cable and gives the same ans\ryer :

1

2
{Gr(t - ïq,z + iTt) IGr(z I irt,"- irt)}. (4.74)

The O(7-1) subtraction in Gr(*,,y) is conserved as a result of the Bianchi identity,

Ey(z * Tq, z - Èn) Çr(, - Tq, z * in)
_in

: lirq TroR,
4+u,(t)G n

GIt lim
?-0

a
Trs tt"r.'rBt...."n-tgn-t (O'rO, . . . Fo.-rþ^-r) 

"
: fvnt¡rv..1Þr...on-rpn-r lD, ForBr. . . Fo.-rB"-r]

:0

0",
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so A . G can be obtained as the ? -+ 0 limit of the identity

fir,,R,(",n) 
: ( a a

ôy
+ Gr(*,y). (4.76)

o** p

The divergence (4.76) can be written

with

and

(#¡ #) G,(*,r) : rt * rz (4 TT)

rt : rre 
{É , AV,@, ù - Ç ,(,, y) 

*D 

, (ù\ nrçy ., *¡ (4.78)

Tz : Trs{õ, {r)ur(y,*) - Er(y,*) õ, @)\ Ç,,(*,y) (4.7s)

where for any function f @,y)

and

õu@) r@,v):W * A,(r) r@,v)

f (*,y) 
*D, 

(*) : - utáî;" 
+ r@,y) A,(*) .

(4,80)

(.1.81)

Equations (4.43) and (a.a5) allow us to write the first term ft in terms of zero modes

uoi

rt : 2{ (t * ,')- + (r + ,')-'} Dron(y)tE"(y,*).tr^+ruon(*). (4.82)

For the second term T2, we need the short-distance result

ñ, @)n (y,r) - Er(y,r) õ, (") : (, - y)BFTBQ) + O((* - y)') (4.83)
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which, together with the leading singularity of (4.71), implies

Tz
;n_L TPT, trro, Br....,n-rBn-rTr nF,"p ForBt . . . Fan-tþn-t

4"-t¡"(n - l)l q2

+ O(rt) (4.84)

in the ? -- 0limit (4.61). The leading term of (4.84) seems to be O(nnln'), but it

ìs not really direction dependent because

t rrorBt.-..,n-tÊn-t Ftrþ Forþ, . - . Fon-tþn-t (4.85)

is proportional to 6,9. This can be seen by supposing that we have an a dimensional

spacetime, then

T;u¿r...;.j 6¿j €;r¿r...r, * 6¡¿, t¿r...;.¡ * 6;;', ti"...i.ji, + . . . + 6¿¡o €¡ir...;.-,

0 (4.86)

since there does not exist any construct which is antisymmetrised with respect to

o + 1 indices in a dimensions. Note that the indices within braces {it . . . io} are

antisymmetrised. This means that

Firir...Fio-r;o 41¡i,...;.1 : o (4.87)

and

F¿;r. ..Fio-rio t;r...ioj : + F;rir.. .Fio-rio €¿r...io. (4.88)

Consequently the r7 -* 0 limit of T2 car, be taken without ambiguity to yield the

result

0r1r1"¡ : #\uo,(")Itrn+tuo¿(z)* I'g n (4.89)
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where
,in

In": ,zizn-1to,Pr--'nBnTrn 
ForB, " ' Fo,P, (4.e0)

is the anomaly, in agreement with other calculations [Zu8a].

4.4 Chiral Anomaly at Finite Temperature

In this section we confirm that the chiral anomaly is temperature independent

for an arbitrary gauge group in an even dimensional spacetime. This is achieved

by extencling the proceclure outlined in the previous section to finite temperature

using the imaginary time formalism [BeZa]. Many of the steps in the procedure are

very similar to those carried out above, although care must be taken to ensure that

any nelv properties arising from the finite temperature analysis are given particular

attention; for example, the ó function now contains an infinite sum of terms.

Heuristically the anomaly should be temperature independent since it arises from

the short-distance behaviour of quantum field theories. A regularisation scheme

should be chosen so as to exhibit the finiie temperature effects clearly. Finite tem-

perature effects, in the imaginary time formalism [8e74], are manifested through

global, rather than local properties of the field theory. No new divergences arise in

such theories, the same counte¡terms used fo¡ zero temperature field theories can

be used for renormalisation. Thus, one may expect the anomaly to be temperature

independent. Further, the anomaly arises as a result of a finite, rather than infinite,

effect in the regularisation scheme.

For T f 0, using the imaginary time formalism, the (fermion) boson fields are

(anti-) periodic in the time coordinate, 11, (we choose units such that Boltzmann's

constant lc : I):

,+[(u,í)AT@' + rlr,i)
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T Ë A!,(i) expli2zrjTxl
J:-oo

-u!(ryi)
r t "\(i) expli(zj * r)rrrl. (4.e1)

J:- oo

This imposes a restriction on the u1 coordinate

tt € l0,rlTl. (4.s2)

In 2n dimensions this necessitates operators to be defined on .91 x M, where M

is a (2n - l) dimensional manifold and 51 takes into account the (anti-) periodic

properties of the fields in the time coordinate. For our purposes we choose M -
Szn-r ) giving the Dirac operator on Sl , 52n-L a discrete spectrum. Stereographic

projection from ^92"-r ¡o p2n-r is carried out, leaving the 51 factor unchanged :

5r ,a 5zn-l -- 51 , P.2n-r (4.e3)

Equivalently, one could use

pt - gzn-l _- -Rr * 172n-L (4.e4)

on the understanding that ,l?r is a compact manifold whose range is restricted to

l}Jl?l and let the coordinates be

rt€Rr í: (*rrrs¡...,r2n) e P2n-r. (4.e5)

One can convert from r?1 to 51 b), letting

"T@' + tlT,i) :

x)t -) t*, e

e1

0<012tr. (4.e6)



Using the results of Appendix B, the stereographically projected Dirac equation

from ¡?1 x S2n-r to -Rl x -¿?2'-1 is :

ipr u¡(r) Àu¡(x)
2

À

(4.e7)

where the covariant derivative is

r+#

þr:T(tu¡tT)+l.tã+F'¡. (4.e8)

The orthonormality and completeness relations of the eigenfunctions z¡(r) are mod-

ified to

lo''' o*, I dzn-t r ]"r^{.)tr^,(') : óÀr, (4.99)

)ìz¡(r)u¡(y)t: '#6O - r, (4.100)
À

where 6r(* - y) is now the temperature dependent ó function.

Follorving the previous section, the finite temperature fermion propagator

S' r(*,y) : D'l-' "! ç"¡"!çy¡t (4.101)

obeys the equation

;pf,S'y(æ,y):6r(r - y)
2

L+#
N

l"[,,(*)"Tn@)l
i=1

(4.102)

Due to the boundary conditions (4.91), the fermion propagator has the property

S' r(*, + I lT, i,y) : - S' 7(x1, i, y) (4.103)
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leading to an anti-periodic or temperature 6a function

6r(*, + llT,i)

where after some work

J=-oo

: -67(q,i)
: Hr, Ër

J=_OO

1 (4.104)

(4.107)

T

r

where þ : I,2,,...,2n. A, de¡ivation of (a.10a) is outlined in Appendix C.

The path-ordered exponential, Ey(x,y), together with (4.91) has the property

El @' + rlT, i, at * rlr, y) : El (*r, i, n, í) (4.105)

and as î --+ y

Elfu,r) : I * (, - y),AT (å(" + y))+ o((* - ù'). (4.106)

Since rt,Ut € [0,1/f], then at finite temperature (4.44) becomes

c[@, y) : rrs ÇT@, ù ET@, ")

ÇT@,y) : Tr"i1,,1zn+rs'r(*,y)

: 2(-i)" trvatþt...an-tþ^-, {D-' F*tþt . . . D-2 Fo^-rp,-rD-2 D r}

.6r(* - y) + (finite),-,

2i
t¡"r.,181--o,-tgn-t (O.rO, . . . Fr^-rU,-r)I

(n -l)!(azr)"

I (-t)j
@,Y r: l';,;ï-t,!í- il +(nnite)"-v (4 108)

The zero temperature counterpart to (4.108) is nothing but the j : 0 term.
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Letting T : (y - r), the finite temperature equivalent of 72, (4.90), is now

in
T2

)2n-2vny¿l þr...o,,l3nT T n ForP,''' Fongn

n2+ryjlTD (-r)j
ôo

J=-oo

(4.10e)

(4.110)

(4.111)

(ry'+jlr)'+líl'

In the limit 7 -* 0, only the j : 0 term survives in the summation D¡ of (4.109),

leaving

i'"
torpr,...onpn Trn (ForBr, . . F..^p^)

T

22n-2 On,¡¿l

representing the anomaly. The form of the anomaly is unchanged by finite tem-

perature effects - the coefficient is independent of temperature. Holvever, global

properties of the field configurations may be affected at finite temperature.

4.5 Atiyah-Singer Index

For T : 0, Nielsen and Schroer [NS77] show that the Atiyah-Singer Index can

obtained by noting that integrating (4.89) with (4.90) over all space gives :

lirnTz
n-o

I o'"* orcrç*¡ : lrot,,Grç*¡ 
: s

z I a'"* #\uo,(*)ttzn+tuo¿(r): - I d2'r A(r)

where S is the surface enclosing the volume of integration. This was obtained by

considering the corresponding equation on the hypersphere, which was shown to

vanish when integrated over the hyperspherical coordinates. Hence one has

(4.112)

where, from (4.90), A("): lima*o Tz is the anomaly.

The zero modes of the Dirac operator uo¿(r) can be expressed in terms of eigen-
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states of the matrix .lzn+t since hz,,+r,P)¡:0 :

'yznlruo¿(r) : * uo;(r) (4.1 13)

Usualiy states that have eigenvalue *1 are called right-handed whereas those with

eigenvalue -1 are left-handed states. So, (4.112) can be rewritten as

I2(n^-nr):- d2"r A(r) :2u (4.114)

(4.117)

with n¿ (n¿) being the number of right(left)-handed zero modes and u is an integer,

usually regarded as the Atiyah-Singer Index.

Let us no'w examine what happens at finite temperature. The integral of the

divergence of the axial current is

Ioo 
or, laz"-trlrÕrç*¡: Ioo 

o*, I¿2n-L*lrÕr@¡* l"o 
o*, I ¿2n-r, a¿ Õ¿ç"¡.

(4.115)

The second term on the RHS of (4.115) is zero for the same reasons that lead to

the result of (a.1ll). By noting the finite temperature properties of solutions to

the Dirac operator (4.91), and the parallel transport operator ¿'f, (4.105), one can

deduce that G r(r) obeys

Gr(*, + p,i): Õr@r,í) (4.116)

loo 
o*, I az"-trarcrlr¡ I dz"-tx {*r@,4 - c,10,;)}

Thus the first term of (a.115) can be rearranged as

0
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because of (4.116). Hence

l,u Id,r 1 ¿2n-r* 0rêrçx¡ : o (4.118)

which shows that the Atiyah-Singer Index theorem is not affected by finite temper-

ature effects.

4.6 Conclusion

The Nielsen-Schroer technique provides a very elegant way of deriving the chi-

ral anomaly in the coordinate representation. It has transpired that it is also the

most convenient method to extend to finite temperature and to show the temper-

ature indepenclence of the anomaly. To do the analysis by Ireynma.n diagramma,tic

techniques would have been much more tedious. To the besl of n'ry knorvledge, tl.re

coordinate representation of an anti-periodic or temperature ó7 function has not

been observed in the literature.

The temperature independence of the anomaly - or more specifically, thc an-rpli-

tude associated with the anomaly, does not mean that the ro -- 21 decay width f,

is temperature independent. In fact the width does depend on temperature ICLSE],

through the phase space factors of the outgoing photons, as outlined in Section 1.5.

Other parameters, e.B. the pion decay constant l" [LS90] and the pion mass m,,

[GoL89] also depend on temperature.

After this work was completed, I became aware of a paper by Wang [Wa89] who

reaches similar conclusions regarding the temperature independence of the anomaly

by using chiral Jacobians.

The Nielsen-Schroer method also allows one to obtain the Atiyah-Singer Index

in a relatively simple way. This was well suited to extend to finite temperature, and

showed its temperature independence. From a physical point of view, this means
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that the number ol zero or massless modes of the Dirac operator is unchanged as

the temperature is varied - provided no phase transitions are encountered.
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Appendix A

Feynman Rules

This appendix gives the finite temperature Feynman rules needed to compute the

self-energies of the ghron and scalar fields. Lists of finite temperature integrals rvith

6 functions are also given.

,4..1 Finite Temperature Feynman Rules

The Lagrangian for an Stl(¡r/) non-abelian gauge theory is

1 1^
F"t,F"t" - fi{A rer)' + (op y"') Dib xbL (4.1)

4

Using the conventions of Muta [Mu87], Baier et. al. [BPS90] the finite temper-

ature Feynman rules are :

Propagators:

r Gluons ,4[

A ba

Lr

98

u



o Ghosts ¡o A

b

2ri
lc2 + ie exp[Blksl] - 1l

o,

(k')

(A.2)

(A.3)

(A.4)Ã"u(¿) : -6ob
1

Vertices:

o Tri-gluon vertex

l, --Þò)

a2 Fz

l-tz

&1 ltt

tt4

h, J,

h
3

CI4 lte

- igfdt"z"' ({1, - kz)rrgt rt", * (k, - k")rrgrrr"* (fr, - lrr)rrgr"rr) (4.5)

r Four-gluon vertex

FtA1

Ag

Ps

ü2
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n' ((ft"''o - ft4þ2) 9t",t"r9p"t t + (f"'"n - Ít*''o) gt rp"gprpri

(¡'"'n' - ¡ts'za) 9u,rnsr,r,)

o Ghost-gluon vertex

(4.6)

(A.e)

11a

1-' s-
í *'â c

- igf"u"k, (A.7)

o Loop integrations : For gluon loops there is a factor dakl(Qr)ai) and for

ghost loops a factor -dakl((zr)ai).

The structure constants of the group are denoted by /äö" and

¡tz,s,t _ 
føta2d f(+ara . (A.8)

For scalar fields described by the Lagrangian

L:rô,óô, ó -+ o, - iø,

the scalar propagator is

Þ->

L(p,*): ---l . - =,'Top' - m2 ¡ ie sglnol - t6(p' - *')'
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iì

^.2 
Finite Temperature Integrals

To evaluate integrals with á functions or products of ó functions and their deriva-

tives, it is convenient, at first, to use cartesian coordinates to integrate out all the á

functions then use spherical polar coordinates to do all angular integrations. What

remains is a single integral over the magnitude of resultant vector from the spherical

poìar coorclinates. Llsua.ll)'the final integral is left untouched, since it can not bc

put into a sirnple closed form.

Integrals that are norma.lly encounteled can be summarised as follolvs, lvhere

þ : Il7' and ø, n : 0, I,2,... as:

"f(1, ")
: olo*

: olo*

: o 
Io._,

: olo*

: ol,*

r.n 1

.f (2.".)

dr

dr

dx

dr

dr

(-1 + r)2(1 * r)2 explpmxl2l - I
tndl

(-1 + r)'?(l * r)2 h explBmx l2l - |

(4.11)

(A.12)

(A.13)f(3. n)
tn l"rl 1+'ll

(J+")1t +'f "'\l-t+rll

c*::-)T+ù,'"(|+D * "-å,r-(A 14)

*,do 1 t \':t" o,o \;¡ø;;ø-l (A'r5)

I
expl¡3mr l2l - |

f (4,n)

g(a,n)

Below a,re the finite temperature integrals used to evaluate the one loop correction

to the gluon propagator, given that the momenta of the external lines are set to

p,": (0,p] such that p2 : -n'¿2.

Integrals involving one á function :

I
I
I

d4k6(k2¡nB(|ßol) : m2 ç¡(t,r) - 2rQ,3) + /(1,5))

d^k@+ñ6ft2)nB(lßol) : iP + /(3, Ð - fQ:4)

d4 k (&+,e),y 6 (kz)n B (lksl) :
rr¿2

(t*, + /(1, 3) - /(1j5) * q9-

/(1,1) - /(1,3)

I d,kkl,å 
ey6(k2)nBlksl) 

: p,
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I d4klct,
1

((k + p)r),

/(3,4)
4

8

- *9) epoe,o*

(k),B(#ot) : #(J+Ð*{P*qq -r(Y+
r(3,4)

4

I aakk*k"ffi6ft2)nB(lkol) :,,' ( , /(1,5) /(3, o)
-8-16/(1,1) _ /(1,3) +

8 4

-.f(1,1)
I

, .f(1,3) f(1.5)--r-s-(

)
, (s¡¡r,r¡ 3.f(1,3) 

,9po7vo*[ , - 4 +

3.r(r,5) _ 3./(3,0) ,71Q,2) 5/(34 , .r(3,6)\ _ _.8 16 -r- 16 - 16 * * 1',''
I d4 kk'k' 

(k+,p)2Y 6(k'z)np1frot) : (^p -!!**{P-q9-

)n**(r*r*l(|e -,#-*e_
/r¡1r, r¡ 5/(1,3) , /(1,5)
\n-4-2-

4

/(3,2)
4

3/(3,2)
4

1 îd4 kkrk,le , (k2)no(kol):
çç* + ù')'

.f(3,2) _ /(3,4)

3l 3,0)
8

+

I ( -ts¡1r, t¡ , T .f (r,J) l3/(1. 5)

\ to-, - ,h-,r, - ta*, -
15.f(3, o) _ 33/(3,2) 

,

32m2 - 32*' +
)o,r.o,- (=+t'-2tf (3,4) 3/(3,6)

32m2 32m2

3/(1'3) _ 3/(1,5) r 3/(3,0) !f (3,2) , 5/(3,4) /(3,6)\ ,_
8 16 --| n - n * n - n )\PPe'Pt

/ sf 0,t) /(1,3) , b/(t, b) 3/(3,0) , sf (J,z)P,epp*posr,)*(ã +-*t * 32 -
e/(3,4) , 3/(3,6)\- r= * - rr- ) @ro^sro * pugpogpo * prgt og,,o)

Integrals involving a derivative of a single ó function :

I d4k6'1k2¡nB(l¿ol) :2f (r,-1) - 4f (r,,1) + 2/(1, 3) - 2r(2,q + 4rQ,2) -
2rQ,4)

t02



I

I
I

d4lc
ç*+ù'

(k2)n¡lkol) : #(/(1,1) - f 0,3) - /(3, _2) +2/(3,0)-

r?,z) + rØ,-1) - 2f (4,1) + /(4,3))

d4kkr6'çkz)nBflfrol) : ¡

a^**,ffi6'@2)n.1frol) : # (- to, -1) + +Ð - +9*
rQ,o) - 2f (2,2) + rQ,+¡ ¡ rG'- 2) - , /(3,4) f(4,-r) ,

-4-2-

1

3.f(3, o

4

I
rØ,r, -+r)

d4 kk pk, 6' (k2)n ol*ol) :,-,r', -/(i,l)
f)

2/(2, 6) \
3 )ÇP'oÇuo

I aa*k,k,ffi6'&2)nB(lksl) : (
/(1, -1) /(1,1) /(1,3)

4 4 4

rQ,-2) 3/(3,2)
8 I

r 4, -1)
I

u+ * l(P _ ry) ep. r(r+- * {P . {P_
/(1,5) , f(2,0) lQ,z) , f(2,4)

2=4-2'4
re# * q+! _ EP - U!lq),".,^ * (

3/(1, -1) 3/(1,1)
4 4

I

/(1,3) , /(1,5) 3/(2,0) , 31Q,2) 3r(2.4) 3/(3,-2) , /(3,0) ,

2-2-4-z-4-g-2-
l\,z) f (3,4) , 3/(4, -1) 7f (4,1) , 5/(4,3) f (1,5)\ p,p,

8 - 4 - 8 - 8 - 8 - & )*,

aank,k, 
ç]ffi6'(k2)nB(lk"D: # (

3/(1,1) , /(1,3)
-4-4-

/(1,-1
2

ry + Íe,z¡ - lQ.Ð - rQ'¡2) +

f Ø,Ð _, /(4, 3)\ _,_ 1 ( - f (t, -t)T*-n )-*r\-, *

?192 + rQ,4) + {g?_ ll*E

3/(1,0) _ /(3,a) +88
f 4, -1)

4
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/(4,3)\ , (s¡çr,-r¡ 7Í(L,t) /(1,3) 3rQ,0) , 5f(2,2)
n )Çuoevo*\ 2 - 4 - 4 z - 2 -

r/r, ^\ 
3/(3, -2) , 9/(3, 0) 3/(3,4) , 3/(4, -1) 3/(4, I ) ,J\¿)+)- 4 - S - g - 4 - Z -

3.f (4,3)\ p,p,
4 )*^

I d4kkt"k,ke(k+ 
py6'(k2)nBrksr) 

: (# -ry/Un-,* + Y!!a-
nr?,!) _ rQ,g) +24m2 6tn2
3/(3,6) 5f (4,-r)

5.f 3r-2
16m2
13/(4,1)11/(3,0) ÍrG,2) 15/(3,4)

+ +
32m2 32rn2 32m2 32m2 l6tn2 l6n*

11/(4,3) , 3/(4,5)\ , ( Í(1,-1) , 5/(1,1) r7l(t,3) 
,

t6r., -r 16*, )PuP,Pot\ , -r ¿S - U -
nr 1,5) r?,o) , 7 [(2,2)-s-12-

ßr 214

24

rØ,-r) 5/(4,1)
16 32
7 rØ,3)

f (3, -2) .f (3, o)
+

48
11.f(3, 2)

32
+

16 r6

-/(1, -1)
I

"*9) 
(prs^soo * p,epospo I ppsposvo, * (

/(1,3) _ 5/(1,5) _rQ,0) _r?,z) _L7f(2,4) _1Q,6) _' r(3,-2)
lz48t8-3-u-:.2-16-

3/(3, o) lß,2) +
3/(3,4) /(3, 6) r(4, -r)

32 32 32 16
, 3/(4, 1) 3/(4, 3 ) ,-16-16-r32

rØ,5)
16

(Prg,olP,Lpp*Pogr,)

Integrals involving two ó functions :

I
I
I

d4 k6 &\6 ((k + fi'), B(lkol)' : n!*

d4 kk t"6 (k\ó(( k + p)' )n B(lko1¡'z : -! s í, 0)

tt krk"6çk')6((k + pf)"B(kol)' : ^'
s(1,0) s(r,2)

16 )n**

m2s(1,0) 3m2s(1,2)

16

s(r,2)
16 16

(Prg^goo * Pugpogpo * Pogrog,o) I

3s(1,2)
16

3s(1,0)
m PpP,+¡n9vog

I d4tetcptc,tee6(Ér)ó((fr + p),)rpl.ßol), : (-*, -ry) r,o,oo *

32 32
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I
I
I

d4 k6(k2)6'((k + p)\rB(lkoÌ' : n(;:*') - #
d4kkt6@\ó'((k+ p),),8| frol)': (=+r- 4P) 4 + ge,qh

d4kkt k,6(k )6,((k + p)")"p| froI), :

g(1, o)
- 16 *

g(1, -2) g(1, 0) ms(2,0)

16 16 16

3mg(2,2)

+

mg(2,2)
16

gr" * -9 l, -2)
16

PpP"Pp *

mg(2,0)
16

PpP,

9po7vo I
16

( zsçr, -z¡ 5e( r, o) Js(2,0) , s(2,2)\
\"-, -ß*r- 16^-16*)

I d4 lctc t"lc,lc p6 (k\ 6' ((k t p)2 )n B (ko 
I ), :

( -ss(t, -z) , 3e( l , o) Js(r,2) 
,

\ tt* * s"r, - J2,", 
't

5.q(2, 0) _ 3g(2, 2)\
32* - 32* )

3e(1,2) ms(2,0)
32 32

. (p,s^sro * puepoepo * ppsposvo) - (# * +# - t#r
ms(2,0) ms(2,2)

(Pug,olP,gpplPrgr,)
32 32

I d,tere t"tc,6,(k\6((k r p)\,8|kol), : (g!fl - +P _ '"nll,o, *

gr, * -s(1,-2) e(l,0) mg(2,0) Stng(2,2)

16 16
+

16 16

PpP"

9po9"o *

I

(ss1t, -z¡ , 3e(r, o) 3s(2, o)

\ "-, 
- 16*, - t6* -r

d{lcle ple,ke6'(k2)6((k * p)2)np(lkol)2 : ( -5s(1, -z) 3e(1,0) , 3s(r,2) 
,

\ tr-, - 16*, -r t z+
5g(2,0) _3g(2,2)\ - - _ (s0,-2) , e(1,0) 3g(t,2) ms(2,0) 

,

J2m J2* )PpPuPpt\ 32 -l- t6 - n - n +

3me(2,2)\ , (-q(1,-2) , s(I,z) .-T )(prs^soo 
I P,gpospo * pplJpo(Jvo) + 

l-tit= 
+ l+

mg(2,0) mg(2,2)\ ,

f )(n's" 
l P'spp * Pos")

I d4kkt tc,6'(k\6,((k + p)r)np|t ol), : (lql# - #- 1s}-
2,-2) , s(2,2) , e(3,0) e(3,2) \*s-*16-") -3e(1, -a)

I6m2
s(1,0)I

8m
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e(3,0)
16

s(2,0) 3s(2,2)
4m 8m

+ ,O*po9g

5.q(r,0) _ Upr_2) g(2,0) , s(2,2) , 3g(3,0) s(3,2)
I6tna gm3 - Amr - S*" - 16*, - l6tn,

106



Appendix B

The Dirac Equation

The first section of this appendix details a projection of the Dirac equation from a

compact to a non-compact manifold suited for zero temperature field theory. The

second section presents a similar analysis but for finite temperature field theor¡,.

8.1 Dirac Equation : $?n ,- ¡¿2n

This section gives an outline of how the ste¡eographic projection of the Dirac

equation from 52" to R2" is carried out [NS77,Crew]. This is applicable to the casc

of. zero temperature field theory.

Let {xr} and {r^rz,,+r} be the coordinates of R2" and 52" respectivel1 0t --
1,.. .,2n). Performing stereographic projection from the south pole, the coordinates

are related by

2xu
'r- l+x2

L-12
T2n+r: | + # (8.1)

where

r'- *?* ...r xl*
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and the coordinates of 52' satisfy

,?+...+13^rr|n+t:1.

The volume elements of the respective manifolds are related by

(8.3)

(8.4)

where d0 is the elemental solid angle for the hypersphere.

The Dirac matrices lor R2" are denoted by l, while those for Szn are given by

f, and a¡e defined as

I t" : -i 1p'lzn+t fzrr+r :'lzn+t (B.5)

whe¡e

'l2n+t : (-l) nl, . . . ^lzn (R.6)

and satisfy the anti-commutation relations

11r,1,)a - 26p, [1u,'Yzn+r)*:0 (8.7)

If we let the coordinates of 52" be given by Latin subscripts a,b : 1, . . . , 2n,2n j I

and those of R2" by Greek subscripts þ,u :1,...,2n then using

1

[f", f¡] (8.8)Sab

(å")'n n'n*: r/e

4i

and the angular momentum operator

,a
Pø: -2;--OTo

lob: ToPb - rbPa
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or equivalently

lrr:-itrðr¡irrï, lzn+t r, : -ixr,,rÔ, - ;( - #) a, (8.10)

one can show that

l1 , --2\2nV+- i-,tr}r: (t * *')" (r - firrr) (ral"r+ n) (1 * i.y,r,) (1 + uz¡"-t .

(8.11)

Equation (8.11) gives a ¡elation between the Dirac operator in R2" to that of .92"

i1r0, --+ soblob * n. (B.12)

If gauge fields are included, then the correspondence of the potentials in Rzn, At,,

to those in .92", Â, and Â2n5, is

l*x2
A, A, - xrxrA, Azn+t: -rpAt, (8.13)

2

and the Ao are constrained by

roÂo - o (8.14)

i.e. the field configurations Âo ur" 'tangential' to the surface of the hypersphere S2n.

Interactions of fermions with gauge fields can be implemented, as is normally

done, by minimal substitution to (8.11), i.e.

0, - D,: ð, + Au (8.15)

which means that on the hypersphere

Iob + Lob : lo6 ! àro,46 - ir6A"
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where Atr: -AI, are the anti-hermitian gauge potentials of any gauge group.

The normalisations of the fermion fields are

2

I*12
dznr (8.17)

where ü(r) are fermion fields on .92" and iú(r) are those on R2n and are related by

/ û,1'¡û, þ)d,a : I v,@)ü,(")

ü(u) : (i*)" #rr-fi,r,)\t(r) (8.18)

8.2 Dirac Equation : 52n-r x ,R1 ++ fthz-l x ,Rl

The treatment of the finite temperature case is analogous to that of the previ-

ous section, except that the (anti-) periodic properties of the fields are taken into

account. This means that the range of the -Rl coordinate is restricted to [0, p]. One

could have just as well chosen Sr rather than r?1. The convention regarding indices

for the various coordinates used in this section is as follows

o The index F:I,2,...,2n labels the coordinates of ,Rl t P2n-r

o The indices a,b:2,3,. . . ,2n * 1 label the coordinates of 52"

o The indices i, j,k,l,m:2,...,2n label the coordinates of R2n-r

pr , pzn-r pt * gzn-t

(*rr*rr.. -,'ír2n) (rrrrrr. . . ,T2nrrzn+t) (8.1e)

where the first coordinate of each set is that of -R1. Stereographically projecting from

S2n-r ¡o pzn-L and leaving the Æ1 component unchanged, the relations between the

Label the coordinates as follows
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coordinates are

Tl:fr|
2r¿ri:-l+#

,Ll-r'
T2n+l: 

-1 

, :2,L-TJ'
(B.20)

(8.24)

where

i : (rzrírst...¡rzn) (8.21)

and

,l + r!+ . . . + 13^ + rlnal : r. (8.22)

The volume elements are related by

dr1d2n-1r : drdl (8.23)

where df) is the solid angle element for the hyperspher. 52n'-L and dr1 - drr. The

same definitions lor la and so6 as in (8.9) and (B.8) respectively are used (noting

that now a,b : 2,3,...,2n * 1). The matrix ?2,,+r is still defined as in (8.6) and

satisfies the same anticommutation relations.

The relation between the Dirac operators in the respective manifolds is now

ilr0, ^ 
(1 - il¡*¡): /.-- (l +#)

[;,, * 
i1,nr^) rr (1 - itpù*r- sobtob-'"]li#

i.trL, -- iO * i^t^x^) rr (1 - itpt) *,- soblob t'+

where jrkrlrrn:2r3,. ..,2n and þ : lr2r... r2n.

Equation (8.24) shows that the relation of the Dirac operator in .Rr t ¿2n-r 1o

that of l?1 x S2n-1 is
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The relations of the gauge fields are

L+æ
Aj A¡ - r¡r¡A¡ Azn+t - -r¡A¡ (8.26)A1 AI

2

where the Ao are constrained by

roÂo 0 (8.27)

and by performing the minimal substitution ¿rs in (8.15) one can include interactions.

The fermion fields are normalised such that

(8.28)

where Û1r¡ .r. fermion fields on .r?1 x 52" and V(r) are those on r?1 x R2" and are

related by

ü(r): 2 n-r/2 I
(8.2e)r+i2 J'

I orrdftÛl(r)Ûr(r) : Io*, ¿2n-t, ü1(ø)ü2(r);æ

(1 - i'y¡r¡) ü( )r
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Appendix C

Representations of ó F\rnctions

This appendix gives coordinate representations of zero and finite temperature delta

functions and other associated functions required for evaluating the short distance

behaviour of the fermion ptopagatoi.

C.l The ó F\rnction for R2"

A coordinate representation of a 6 function Tot R2" is [Crew]

á(r) :ffia, 
1

rp
(c.1)

(c.2)

(*')"

Hence it can be seen that

ô, ô-2 6(r) : f(") rp
2¡ro (*')"

and if this procedure is repeated n - | times one arrives at

(-1a, (a-)" 6@): (a-z)" 0,6(r):
1
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The meaning of ð-2 can be inferred from the following

a2 (a-2 a(ø)) : a(r)

i.e. 0-2 ó(r) is the Green's function for the â2 operator.

Let g(x,z)be the solution of

ô'g(*,2):6(x - z)

then by using conventional methods, the solution to (as an example)

6z l2-z FoB 0-' Ø 6(" - y)] : F..B 0-' Ø 6(" - v)

IS

(c.4)

(c.5)

(c.6)

6-2 Foga-2 ø6@-ù : !a'"rsçr.,2)F*BQ) In'".g(z,w)tu*6@-y)
: F,B(*) I o'", I o'".g(r,z)g(",-)-r,,f-a*6(. -ù+... (c.7)

#*,rræ,y):6r(, -y)

where Taylor's expansion has,been used for F'

C.2 The Anti-Periodic or Temperature ó Func-

tion

The antiperiodic or temperature ó function on 5r t p2n-1 can be obtained by

finding the solution to the following equation
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with the boundary condition

This implies

Since l@,a): Í(* - y), let

where

Ë
rn:I, ntr

l@t + If T,i,Y) : -f @t,i,9).

6r(*, + | lT, i) : -6r(ru i).

r@):r Ë expli(zj *L)rrnl I @="*p [;[.;] î (i,É)
J=-oo

(c.e)

(c.10)

(c.11)

(c.12)

(c.13)

(c.14)

i (i,Ë)
(2i *I)z¡z7z +lÉl''

To perform the summation we use [Jo61]

-l

cos(m0 r sin( r12-
oàdffi2 - d2 4a cos(atrf2)

where 0 < 0 ( ¡- and o, may be complex.

Hence

ñ{t-',.nr-¡Élrrl 
+

exp ¡ãlr'l * exp[- 1Êlæi
expIl lrl + rl

Choosing pola,r coordinates for .R2"-1, the angular integration on"t / can be

performed to yield
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(c.15)

where J"(r) is a Bessel function of the fi.rst kind; the solid angle in d dimensions is

ltHVT2l
2#lz

t(dl2)

and the following were used [GR80]

rþ) :

where -F is the Hypergeometric function and

F(-n,0,þ,-"): (l I z)" (p arbitrary).

Hence

(å) 
n-"'' 

on-''' I"* olÉl lÊl^-"/' r*-"¡' (lËllãl) {expt- 1Êl xr)

- I(-r)j (e"pilËl (*,, - rlr - j lr)¡+ expilËl (-*' - rlr - j lr)l)j
j--o

l* *ot- azlJ,(Bz) zþ-Ldz :

(*)' #¿#r (' r tù12,(v -r t'+ \12,v * r,-.p'lo) (c'16)

6r ap I (-t)j np*6øilTw(r) r(n)
2rn

(c.17)

(c.18)
J=-oo
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ERRATA

Page 7, Eq.(1.17) uses âsl = 0$l0r '

Page 8, Eq.(1,21) should' read ff d'r ei('n--n'\t - þ6nn' '

Page 9, Eq.(1.28): r and' r/ should' be replaced by 1 and 12 respectively'

Page 18, second. line : 'p(kq, I etc'' should rcad''p(les'Ë¡ "tt''
Page24,Eq.(1.8a): This result is found in [DJ74]' with rn2 -+ -rnz'

Page27:/'inEq.(1.95)isd.ef.nedthroughthefollowingrelation[1285]

< OlÁr(c)lr(P) >: iPrfne-'P''

page 32, Eq.(2.1) and Eq.(2.2) are actually well defrned. The problem in f'nite temperature

fi.eld.theoryintheRTFistofindouthowtodealwithconstructsoftheform

(rt*'l)''

Page 36, middle: Strictly speaking \rAu = 0 only when a:0'

Page 42,Sect. 2.3: Computing the self-enerry of the gluon at finite temperature is greatly

simplifled. if one sets the enelry of the external gluon pol to zero' In this case' the Boltz-

mann factors for each particle in the loop will be identical' Thus' in general' we can set

the external momentum of the gluon to Pt, = (0, þ) and. p2 = -m2 and evaluate the polari-

sation tensor. By taking advantage of the rotational covatiance of the theory' one can then

set p-- (0,0,n'r,) in ord.er to calculate the coefficients C1 and C2, which are functions of

po. The f.nal result in1q.(2.42) is specific to the case of Pt'= (0,1) and P2 = -m2 ' While

keeping these cond.itions in min,ú, one sees that the ward identity Eq:(2'50) is satisfied'

Page44: e inEq.(2.39)isdefined'bye 
__(4_d')l2whercdisthenumberof spacetime

dimensions.

page 45, Eqs.(2.43) and (2.44): A comment on the singularity structure of the f (o'n)

functions in the coefficients Cr and' Cz. The integrand's of the various combinations of the

r@,n)inClandC2toorder(1-o)oand(1_o)'arewelldefrnedatx=lsincethey
occur in theform o.f r@,n)-ZJ@,n*2)+ r(a,n*a) which is non-singular at r =I'

For order (1- o)t tetms, singularities arise when a term

k+p),"(k*P),(
(1- ") ((k+p)2+¡e )2

fromtheT=}partofoneplopagatoriscombinedwith

(1- o) kpko|'|Qç|J"å-

from the T + 0 part of the other propagator. The singularity occuls when both k2 = 0

and (fr + p)2 = 0 simultaneously. It appears the singularity (a linear divergence) is more

severe than that inferred by simple power counting (a logarithmic divergence)' Further

investigation is required in order to find an appropiate prescription to handle this type of

singularitY.

1



The combinations of the integrands as encountered in C1 and C2 arewell behaved at
x :0. series expansions of the integrands near the point ø = 0 arêr ror c1

ffi (-r+ (1 + ") - ;(1* "),) + o@)

and C2
8n' /.
r,a (t, * o) - 2(1+ 

")'z) + o@)

Page 46 Eq.(2.a9): the following repracement shourd be made

da do_L

ñ - dm*L

Page 48: The definiton of f.r, in (2.52) should read

PpP"
p2

*wgpogvo-Tr"

and (2.55) should be

A(p) B(p) = Qpz
C2

Ltu=gp,-

,.D :
Ct

Page 56, line 5: The ó function is a distribution which arises from the pinching of two
singular functions (with poles) - resulting in a real singular function with no poles.
Page 60, after Bq.(3.82): 'where E = Et- E,' should read ,where 

,E is the energy associated
with the propagator'.

Page 62: órn2 is the momerÉ

Page 71, above Eq.(a.8): A number of generalisations of the 7s matrixto complex dimen-
sions d have been put forward. It is not clear which of these generalisations are consistent
when applied to particular calculations. Apparently, dimensional regularisation can be
applied to 75 type problems. In this case, either the commutation relations (4.4) or the

_ :I:licjly o:llbe rracp has to be abandoned for e I 0.
'-/ - Page 72 Dq.(4.10): Í(k - a) should be replaced by f(kL: a).

Page 101 Eq.(A.15): the following repracement should be made

da do_r
dma dmo-r

I
I
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