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(viii)

SUMMARY

The programming language Lucid is a nonprocedural language proposed by Ashcroft
and Wadge. In their formal definition, a Lucid program is regarded as a set of equa-
tions expressing relationships between infinite sequences of data objects; the solution
of the set of equations is defined using least fixed point semantics. The formal defi-
nition defines a family of programming languages, with each member determined by
a specific data algebra. This thesis defines a particular Lucid-like language, LX, with

list structures, strong typing and clause-oriented syntax.

Experiments in the translation to data flow graphs of the language LX are of primary
concern in the thesis. An extended data flow model, derived from the work of Dennis,
is presented, and an interpreter described. The operations of the model are low level,
in order to exploit instruction-level parallelism. Operations are executable when all

input operands are present; in other words, it is a data-driven model."

Demand-driven data flow, in which computation can be likened to call-by-need evalu-
ation, is more appropriate to the correct implementation of the formal semantics than
is data-driven data flow, which is essentially call-by-value. A technique is developed
whereby demand-driven computation is modelled by representing demands as data.
An operational semantic model of LX is presented, which describes an abstract com-
putation in terms of the flow of demands initiated by a request for a program result.
The semantics of each LX language construct is expresssed as a demand transforma-
tion, specifying the demands propagated on receipt of a demand for a particular value.
A detailed description of a translator for LX which produces demand-driven graphs is
given.

An implementation strategy more directly related to data-driven data flow is also con-
sidered. A subset of LX| called LX3, is defined which allows a simple operational
interpretation in terms of loops. Techniques for the translation of LX3 to data flow
networks are proposed, and their implementation described. The thesis shows that LX3

can be implemented simply and efficiently, and that LX3 is comparable in expressive-



(ix)
ness to high level languages developed specifically for data flow. An implementation

of LX3 for a conventional, sequential machine is also described.

The demand-driven code generated by the LX translator implements the formal def-
inition, but incurs significant overhead in treating demands as data, and in invoking
a separate computation for each value required. The application to LX of known
optimization techniques for the latter problem is discussed. However, the thesis em-
phasizes an alternative approach to performance optimization, whereby the LX and
LX3 translation techniques are combined. An extension to LX3 allows some definitions
to be written in LX; a translator for the extended language would produce data flow
graphs with both demand-driven and data-driven components. The interface between
these components utilizes early completion data structures to enable communication
between the components. A possible implementation technique is discussed, with an

example of its application.

The thesis includes descriptions of Pascal programs which implement the data flow
graph interpreter and translators for LX and LX3; these programs have been used to
thoroughly test the translation schemes proposed. Specific examples of the operation

of each implementation are demonstrated and analyzed.
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CHAPTER 1

INTRODUCTION

1.1 Aims of the thcsis

Lucid [AshW76, AshW77a, AshW79a, AshW79b] is a functional language with
a well defined formal semantics. This thesis reports on research into the design of a
programming language, LX, based on Lucid, and on experiments in its implementation.
Published descriptions of Lucid give the semantics of the language in detail, but other
aspects of language design are given less detailed treatment. Hence, in this thesis,
previous descriptions of Lucid are used almost unchanged in defining the semantics of
LX. An aim of the thesis is to design a suitable concrete syntax taking into account
such factors as clarity and correctness of programming in the language, and ease of
compilation. Thus facilities for structuring data and programs, for controlling scope

and for type checking, are included.

However, the thesis is concerned primarily with the implementation of LX. The aim
of the earliest experiment in the research reported here (and also in [Wen81, Wen82|)
was to establish that a Lucid-like programming language could be implemented, with
acceptable efficiency, using essentially conventional compiler construction techniques
[Wir76], combined with dependency analysis. This experiment led to the development

of the implementation structure used in subsequent experiments.

The main aim of later experiments was to explore relationships between LX and
data driven data flow [Den74, ArvGP78, GurGKS&1}; the nodes of a data flow net-
work are low level, side-effect free operations activated by the availability of operand
values flowing on the arcs. This was done by constructing two implementations, one
emphasizing efficiency of the target code but restricting the language translated, the
other, correctness and completness of the translation, in the sense of agreement with
the mathematical semantics. For the first, the thesis describes restrictions on LX to

give LX3, a subset which can be implemented efficiently, and which is comparable in
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Section 1.2 An introduction o LX 2

expressiveness to certain other languages developed specifically for data flow.

An important research goal was the development of an implementation of unre-
stricted LX with data driven data flow as the target language. A relationship between
Lucid and data flow was noted by Ashcroft and Wadge in [AshW77a], in which they use
the term “data flow” with respect to networks of the type proposed by Kahn [Kah74].
These networks describe data flow at a higher level (that is, the nodes represent more
complex operations) than the networks of principal concern in this thesis. In addition,
Ashcroft and Wadge note that not all valid programs can be expressed using such net-
works, but that an implementation based on the notion of demand driven computation
is correct. This suggests that demand driven data flow might be used as the basis of a
complete, correct implementation. The work of this thesis differs in that the data flow
networks considered are low level and data driven, hence it was necessary to resolve
the apparent differences between the data and demand driven views. To achieve this,
the thesis presents a new operational semantic definition of LX which explicitly models
the flow of demands during a hypothetical computation yielding the same result as

specified by the formal definition of Lucid.

The second implementation of LX is a literal application of this operational se-
mantic definition; because it explicitly represents demands and demand flow, it has
inherent inefficiencies. However, it provides a precise and readily comprehensible op-
erational model of program execution in a data driven data flow environment; several
possible optimizations for improving the performance of the implementation are indi-
cated. Optimization is not the only approach to performance improvement, and the
thesis concentrates on an alternative approach. A third, hybrid, implementation, is
proposed, in which the first implementation method is used primarily, with the second

applied to program components when so specified by the programmer.

1.2 An introduction to LX

This section attempts to illustrate the basic concepts of LX by explaining some

example programs. The first program considered is given in Figure 1.1. It demon-
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strates that a program is an unordered set of definitions; Lucid and LX are equational
programming languages. In the figure, the program is shown on the left, with the
values of some program identifiers and constants given on the right. The variable 1 is
defined as the history of even numbers. In LX, the variable result, in a program, is
regarded as the output of the program. In this case, the output is formed by adding 1

to each value in the history [[1].

prog OddNos;
int result, i;

result = i + 1; [ij=(1 1,1, ... )
i= 0fbyi+ 2 [l =(o0, 2 4, ... )
eprog [result] = ( 1, 3, 5, )

Figure 1.1. Program OddNos.

The program illustrates several other points about LX and Lucid. Firstly, variables
denote histories, where a history is an infinite sequence of values. The notation [[a]]
means “the history denoted by a”, and [[a]}; should be read “the history denoted by a

at time t”, written thus:

[ = {lelo, Doy, Dl - ).
When the meaning is clear, this may be abbreviated to:

la] = {ao, o1, as ... ).
Secondly, arithmetic operations apply pointwise to histories, for example:

fa + ] = (ao+bo, a1+b1, ar+by, ... ).
The operator fby (pronounced “followed by”) is a special operator defined thus:
fafby 8] = (a0, bo, b1, ... ).

A variable, such as 3, defined by an expression involving fby, is referred to as an

inductive variable.

The next example, the program Sums in Figure 1.2, uses a variable n as input; its

output at time ¢, as defined by result, is the sum of the input values ng, ny, ..., ng.
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The variable n is declared as a global of the main program; in LX, the values in the

history denoted by such a variable are to be supplied as input from an external source.

prog Sums giobal int n; [p] =(2, 7, 3 8, ... )
Int result, sum,;
result = sum; [sum] = ( 2, 9, 12, 20, ... )
sum = first n fby sum + next n

eprog [result] = { 2, 9, 12, 20, ... )

Figure 1.2. Program Sums.

The monadic operators first and next are defined thus:

[first a] = (ag, a0, ao, ... )
[next a] = (a1, ag, a3, ... ).

From the definition of fby, it can be seen that, in program Sums

[[sum]]o = [[ﬁrst n]]o
— no
and also that
[sum];11 = [sum + next n];

[sum]; + [nlis1.

The definition of sum can be visualized as describing an infinite loop in which the
variable is initialized to the first input value (ng), with subsequent values computed by

adding the current value of sum to the next input value.

The program NM in Figure 1.3 defines as its result the square root oi the input
a. It is convenient to regard the main program variable result of program NM as
being defined point by point by the define clause SgRt invoked with the input, a,
as its actual parameter. At time point ¢, SgRt defines (outer) [result]]; as follows.
The formal parameter r is declared as frozen; this means that, within the clause as
invoked, r denotes the constant history { a¢, a¢, ay, ... ) formed by freezing the actual
parameter at the outer time, £. The square root is defined by forming z, denoting
a history of approximations to the square root, and using the asa then_easa (“as

soon as”) operator to extract the tenth approximation. The definition of this operator,
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operating on two variables @ and b, is

[asa b then a easa] = ( [a]s, [a]s, [alls, ---)

where s is such that
[6]; = true, i=s
and

[o; = false, i<s.

From this definition, it can be seen that (inner) result denotes the constant history ( zg,
g9, Zg, ... ). This value then defines outer result at time ¢, as required. Operationally,
the define clause can be seen as an inner loop executed 10 times at each step of an outer
loop; each iteration of the outer loop accepts a value from input and produces its square
root. A definition which uses fby models an infinite iteration; the asa_then_easa

operator models the termination of a loop.

The inner loop (the define clause) can be seen as having been invoked at each step
of the outer loop, with the histories denoted by variables inherited from the outer loop
(a in the example) regarded as constant (frozen) for the duration of the inner loop. It
is in this way that LX, like Lucid, models a nested subcomputation.

prog NM global real a; [a] ={ 4. 18, 9, ... )
Int result, SqR¢;
define SqRt( resl r ) freezing r;
resl x, result; Int Count;
result = asa Count eq 10 then x easa;
x= 1fby (x + firstr /x) [ 2;
Count = 1 fby Count + 1
edefine;

result = SqRt( a );
eprog [result] =( 2, 4.3, ... )

Figure 1.3. Program NM.

1.3 Structure of the thesis

The next section of this chapter surveys the historical development of Lucid, and
examines its relationship to LX. A description of data flow models relevant to the thesis

follows. Important issues in implementing LX are then discussed.



Section 1.4 The Development of Lucid 6

Chapter 2 formally defines the syntax of the language LX. The semantics of LX are
explained informally by comparison with the semantic definition of Structured Lucid
[AshW79b}, and defined operationally using an information structure model which
describes the flow of demands in a computation. The loop based subset, LX3, is then
defined by giving restrictions on LX programs, and showing how such programs can
be interpreted in terms of loops. Chapter 3 describes the data flow model used in the

thesis.

In Chapter 4, the implementation of LX3 is described. The importance of depen-
dency analysis in determining the loop structure of a program is demonstrated, and
appropriate data flow schemes are described, corresponding to LX3 constructs. A new
loop scheme is presented, of general applicability in data flow languages, which permits

reference to both current and next values of an inductive variable.

The demand driven implementation is described in Chapter 5, by describing how
appropriate data flow schemes can be developed from the operational semantic model.
Chapter 6 shows how the two implementations can be combined so as to allow the
schemes of the second implementation to be used, with certain restrictions, in LX3

programs.

Chapter 7 discusses various aspects of the thesis, in particular, relationships be-
tween the implementation of LX and other implementations, of Lucid-like languages,
which use data flow concepts. It also outlines areas of possible future work, in partic-

ular, suggestions for improved input/output facilities in both LX and data flow.

1.4 The Development of Lucid

Lucid originated as a formal system, proposed by E.A. Ashcroft of the University of
Waterloo, and W.W. Wadge, of the University of Warwick. Three distinct stages in the
development of Lucid can be distinguished. The original proposal, termed Basic Lucid
[AshW76, AshW77a], was published in 1976. A short time later, an extended language,

which will be referred to as Clause Lucid, was proposed [AshW78]; it permits functions
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to be defined, thereby giving control over the scope of identifiers. This proposal was
modified somewhat with the advent of Structured Lucid [AshW79a, AshW79b} in 1979,
in which Asheroft and Wadge describe Structured Lucid in two distinct parts. Firstly,
USWIM, a logical programming language based on Landin’s ISWIM, is defined, allow-
ing the expression of structured, recursive definitions. Secondly, this language is com-
bined with Basic Lucid to give Structured Lucid, a language which includes iteration,
recursion and function definition and is defined by a simple denotational semantics.
The latter definition is a significant advance over Basic and Clause Lucid in that it

constitutes a clearer and more unified mathematical description of the language.

Each of these stages will now be described in more detail.

1.4.1 Basic Lucid

In [AshW76], Ashcroft and Wadge state that “Lucid is both a language in which
programs can be written, and a formal system for proving properties of such programs”.
A Basic Lucid program is simply an unordered set of assertions, from which other

assertions may be derived. Programs are denotational and referentially transparent.

In [AshW76], a program is defined as a set of equations, with the right hand side
of each essentially an expression comprising variables combined using logical, integer
and special Lucid operators. The latter include first, next, as soon as, latest and
followed by. A variable £ must be defined exactly once (except the variable input,

which is assumed to be defined outside the program), in one of the following ways:

(1) t = FE

(2) latestz = FE

(3) first z = E;
next z = E,.

In the above, E, E; and E, are expressions. In Basic Lucid, the operator latest is
used to express nesting of subcomputations and freezing. Form (3) is the definition
of an inductive variable, using two equations; in LX (and later versions of Lucid), it

would be written
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zr = El f'by EQ.

Variables and expressions denote infinite sequences of data objects, and equations
are assertions about the histories of variables. All operators in the language are inter-
preted as operations on infinite sequences. Definition (3) models an infinite iteration,
in that it specifies an initial value in the history of z, and an expression giving the next
value in the history, often in terms of the current value. The as soon as operator

makes it possible to extract a value from such an infinite iteration.

In Basic Lucid, the history of a variable used in a nested loop is an infinite se-
quence, each member of which is also an infinite sequence, and so on, for further levels
of nesting. Hence, nested iteration is allowed for by considering each history to be
function of an infinite sequence of time parameters. The first member of the sequence
of time parameters represents the iteration number of the most deeply nested loop,
the second member the enclosing loop, and so on; it is clear that only a finite number
(equal to the level of nesting) of these parameters is relevant, the rest are added for

/
“convenience.”

Under this interpretation of nested iteration, the operator latest is defined as
latest 1 at time tptyfo... = 1 at time &3ist3...

giving access to an additional time parameter, or level of nesting; use of latest ¢ on the
right hand side of an equation gives access to ¢ in the immediately enclosing iteration,
effectively making 1 global to the loop. Use on the left hand side (form (2) above) has
the effect of passing the value out of the loop. To avoid explicit use of latest, Basic
Lucid has the program structuring construet

begin

...set of equations...
end

which has the effect of applying latest to every use of a global variable, (that is, a
variable which is not local) between the begin ... end brackets. A use of a global

on the right hand side of an equation always yields the value of its operand in the
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immediately enclosing iteration; this has the effect of freezing the operand within the

inner iteration.

The semantic definition given in [AshW76] formalizes these ideas in terms of math-
ematical objects termed computation structures, which are power structures based on
first-order logical structures. It is also shown that every program has a minimal solu-

tion, given a suitable approximation ordering on the underlying data values.

Ashcroft and Wadge [AshW76, AshW77a) show that the formal semantics leads to

several inference rules which can be used to construct proofs of programs.

1.4.2 Clause Lucid

In [AshW78], Asheroft and Wadge describe extensions to Basic Lucid which allow
functions to be defined and the scope of variables to be restricted. This is achieved
by the introduction of four clauses, the produce, function, compute and mapping
clauses. The compute clause is equivalent in effect to the begin ... end construct of

Basic Lucid. Produce and function clauses, in programs, take the form

produce VARIABLE using VARIABLE LIST
...set of assertions...
end

function VARIABLE (VARIABLE LIST) using VARIABLE LIST

...set of assertions...
end.

In both cases, the set of assertions must include a definition of the local variable output;
the variable at the head of the clause is termed the subject of the clause, and the clause
constitutes a definition of its subject. The variables in the using list are the globals
of the clause, and the variables listed within parentheses are the formal parameters.
The compute and mapping clauses are syntactically similar to the produce and
function clauses, respectively, with the set of assertions including a definition of the

local variable result, instead of output.

In Basic Lucid a program is regarded as a set of assertions; in Clause Lucid,

this approach is extended so that clauses are defined as compound assertions about



Section 1.4.2 Clause Lucid 10

their local and global identifiers. Within a clause, output refers to the subject of the
clause; for compute and mapping clauses, result means latest output, and latest is

automatically applied to all globals and formals of the clause.

In Basic Lucid, a variable denotes a history, which, as noted above, is an infinitely
dimensioned infinite sequence of data values. In the extended semantics of Clause
Lucid, the subject of a function with n formal parameters denotes an n-ary semantic
function from histories to histories; the complete formal parameter history is used in
determining the meaning of the function. The subject of a mapping with n formal
parameters denotes a stream of n-ary data functions; that is, the meaning of the
mapping is defined point by point, using parameter values at that point only, hence
mapping application is the pointwise extension of conventional function application.
It follows that, in the case of a produce or function clause, a global denotes the same
history inside as outside the clause, whereas, within a mapping or compute clause,
it denotes the latest value of the global; in other words, globals and parameters can

be regarded as frozen inside mapping and compute clauses.

In [AshW78], additional rules of inference, derived from the formal semantics,
are introduced for reasoning with clauses. Rules for program transformation are also
presented; under certain conditions, it is possible to add assertions to a clause, move
assertions into, or out of, a clause, or rename the local variables of a clause. Ashcroft
and Wadge show that the language does not use call by value in passing parameters,

and that it uses static rather than dynamic binding.

Ashcroft and Wadge also give possible operational interpretations of each clause.
In the case of a produce clause, globals have the same meaning inside as outside
a clause; definitions are at the same “level of iteration” both inside and outside the
clause. This suggests that a produce clause can be seen as a coroutine-like block of
code “which is repeatedly executed but with persistent internal memory in the form
of inductively defined local variables” [AshW78]. It can also be seen as “an ongoing

process which continuously produces values of its subject” [AshW78]. Function clauses
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can then be seen as templates for such processes, which each textual occurrence of a
function call giving rise to a new instance of the template. In the case of recursive

calls, this requires dynamic creation of new processes.

The compute clause, because it freezes its globals, can be seen as a nested loop.
The mapping clause defines a pointwise function of its arguments and globals; a use

of a mapping clause corresponds to a conventional function call.

1.4.3 Structured Lucid

Structured Lucid [AshW79b] was developed by using a different approach to the
definition of Lucid. The approach taken is to first define a denotational language,
USWIM, which permits recursive definitions and program structuring [AshW79a].
USWIM is similar to many other assertional languages, and gives a well defined basis
for defining Structured Lucid by adding the Basic Lucid concept of iteration. The re-
sult is a language which expresses essentially the same semantic ideas as Clause Lucid,
but with a much simpler mathematical presentation of the semantics. Its development

is also more clearly related to earlier ideas in denotational languages.

The language USWIM is a variant of Landin’s ISWIM [Lan66a}, and, like ISWIM,
actually defines a family of programming languages; USWIM defines “the ways of
expressing things in terms of other things” [AshW79a), with the set of primitive things
being specified as an algebra, which determines a particular member of the USWIM

family.

According to the abstract syntax given in [AshW79a], a USWIM program is a
term, where a term is either a variable, an expression or a phrase. The valof phrase

provides a means of structuring programs, as in the following example

valof
result = f(5)
f(x) = x + valof
g(z) = i z< 1 then 1 else z+g(z — 1)
c= Xx*X
result = g(x) + ¢
end
end.
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The valof phrase represents the major difference between USWIM and ISWIM; it
corresponds to the whererec phrase of the latter. The example also illustrates the
differences between a phrase and a clause. A phrase is essentially expression-oriented,
whereas a clause is definition oriented. A clause is used as a compound definition,
defining an n-ary variable which can then be used in an expression. The definition of
f shows the manner of definition of an n-ary variable in a phrase-oriented language.
It also shows the use of an anonymous phrase in the expression which makes up the

right hand side of the definition of f.

The formal semantics of USWIM defines how the value of a term can be determined
from an algebra and an environment; an environment is a function which assigns to
each n-ary (where n is the number of formal parameters of the definition of the variable)
variable an n-ary semantic function over the universe of the underlying algebra. For
example, a 0-ary variable is assigned a 0-ary history function which maps the variable
to a history, where a history is an infinite sequence of values from the underlying

algebra.

The semantics can be used to justify various syntactic manipulation rules. Rules
are presented for substitution, the importation of variables, renaming of local variables,
function calling, and others. By embedding it in a suitable first order logical system,
Ashcroft and Wadge [AshW79a] extend the language to permit the manipulation of

assertions.

USWIM forms constructs from equations; Basic Lucid allows iteration in a math-
ematical way, using simple equations but a modified data algebra. The essential idea
behind Structured Lucid [AshW79b] is that the two can be combined, in a denotational
framework, to give a language which combines program structuring facilties with the

ability to write both recursive and iterative definitions.

Asheroft and Wadge [AshW79b] discuss two ways in which the combination can
be made. The first is to form a member of the USWIM family with an algebra similar

to that of Basic Lucid, with variables denoting histories; the language which results is
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termed ULU. In this language, globals have the same meaning inside a phrase as outside.
In fact, an ULU definition which uses a valof phrase as its right hand side is analogous
to either the produce or function clause of Clause Lucid, depending on whether or
not the left hand side has formal parameters. The operational interpretations of ULU

programs are also similar.

A second way in which the ideas of USWIM and Basic Lucid can be combined
is to use a pointwise extension of USWIM (with a standard data algebra). The lap-
guage formed in this way is called LUSWIM. In LUSWIM, a single outer environment
does not determine a single inner environment (as it does in ULU), but a sequence of
environments, one for each outer time step. Each inner environment is obtained by
freezing the outer environment at a particular time. It is required that each variable
used in a LUSWIM program denote an elementary history functi(;n, which is a function
with the property that its value at any time depends only on the value of its arguments
at that time, and perhaps the time itself; it is possible to freeze such a function at a
particular point in time. Certain restrictions are imposed on the syntax of definitions
to ensure that all LUSWIM variables are elementary (an elementary variable denotes
an elementary history function). This ensures that all variables can be frozen in the
manner required. LUSWIM phrases are similar in effect to the compute and mapping

clauses of Clause Lucid, and have similar operational interpretations.

Structured Lucid is the language formed by combining ULU and LUSWIM. In this
language, there are two classes of variable, elementary and non-elementary. The ele-
mentary variables must be defined according to the restrictions applicable to LUSWIM,
and are subject to freezing inside phrases. All other variables are non-elementary;
phrases which use only such variables can be understood in the same way as ULU

phrases.

The formal semantics combines the two languages by defining the result of a valof
phrase pointwise, with the environment frozen at each point, as defined below. Freezing

of globals in a phrase is defined formally by saying that the meaning of a phrase in
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a Lucid environment E is a history @, where a is defined point by point, thus: a, is
defined as the meaning of result at time s, where result is determined in a frozen
environment E’ which incorporates the outer environment E frozen at time s. The
definition of freezing an environment captures the distinction between elementary and
non-elementary variables by specifying that the latter are unaffected by freezing (that
is, the frozen environment assigns to them the same meaning as unfrozen), whereas
the frozen environment assigns to an elementary variable the meaning { B,, B;, B,

... ), where B is its meaning in the unfrozen environment.

This represents a significant simplification in the presentation of the formal se-
mantics compared with that of Clause Lucid; the use of nested environments replaces
that of sequences of time parameters, thereby simplifying the notion of history. Conse-
quently, the operator latest, and the attendant distinction between output and result

(latest output), are no longer needed.

Structured Lucid permits both frozen and unfrozen globals to be present in one
phrase (Clause Lucid allowed one or the other, but not both). Such a phrase can be
considered operationally as basically an ordinary LUSWIM phrase in which the non-
elementary variables must be thought of as being restarted at the beginning of every

subcomputation.

1.4.4 Relationship of LX to Lucid

The language LX described in this thesis has the same semantics as Structured
Lucid, but is significantly different in syntax. Firstly, the grammar has been adapted
to make it LL(1). LX, while clause based, has only a single kind of clause, the form of
which is simpler, and, it is hoped, clearer than equivalent Structured Lucid phrases.
The language requires explicit specification of variables frozen within a clause, and of
those global to a clause (with a distinct form of specification for those global to the
main program). Strong typing is used—the type of every variable must be specified, all
values in the history denoted by a variable are of the same type, and every expression

has a data type which can be determined statically. The structure type provided in



Section 1.5 Data flow models of compulation 15

LX is a linear list structure with elements of the same particular basic type.

1.5 Data flow models of computation

A broad interpretation of the term “data flow” is that it describes a system in
which the actions which take place are determined primarily by the flow of d‘c’xta within
the system; the system is driven by the passage of data. Conway’s original proposal
for implicitly sequenced coroutines [Con63| can be seen as defining a language facility
for the construction of data driven programs. Some more recent language proposals
for distributed systems specify a system of processes which communicate by passing
messages [Hoa78]; although each process is sequential (executed under control flow), the
resumption and suspension of processes is determined by the flow of messages (data),

and is thus data driven at the process level.

The data flow systems considered in this thesis are those which are data driven at
the operation level. The fundamental principle of data flow computation at this level
is that an operation is enabled for execution whenever its operands are available. In a
system in which this is the only rule for determining executable operations, program
execution is entirely data driven; most systems, however, incorporate some modifi-
cations to this rule. In addition, operations are not permitted to have side effects,
hence all enabled operations can be executed concurrently. Several proposals based on
the data flow model of computation have been put forward for machine architectures

capable of exploiting this parallelism.

Most early work on data flow models and architectures was carried out at MIT
[Rod69, Den74, DenFL74, Mis77]. Other early proposals were put forward by Karp and
Miller [KarM66], and Adams [Ada71], and the LAU system [ComHS80, Syr82| is based
on data flow principles. Important data flow projects were also initiated at the Univer-
sity of California at Irvine [ArvGP78], Manchester University [GurWG80, GurGKS81],
Iowa State University [OldTRZ77, AllIO80], the Univerity of Newcastle upon Tyne
[TreHR82, TreBH82] and Westfield College [HanG81]. More recently, Japanese re-

searchers have been active in the data flow area [Ama82, ACMS82|, working as part
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of the so-called “Fifth Generation” project [Tan82, ACMS82]. Surveys of work in data

flow and related areas can be found in [TreBH82, ArvA82, Den80].

Some characteristics of the data flow computational models relevant to this thesis
will now be discussed. An important model, which has had considerable influence on
subsequent proposals, is that of Dennis [Den74]; the model, often termed DDF (Dennis
data flow), is now described in some detail, and used as the basis of comparison with

other models.

A data flow program is a directed graph, the nodes of which represent operations,
and the arcs, channels on which value-carrying tokens flow. Dennis distinguishes be-
tween control arcs, which carry Boolean values, and data arcs, which transmit values

of type integer, real or string.

Dennis classifies a node, according to the values on which it operates, as a fork, an
operator, a decider, a Boolean node or a control node. The terminology used here is
slightly different from that of Dennis, who classifies nodes as links and actors; a “link”
is referred to here as a fork, while “actors” encompass the remaining node categories.
A fork permits an incoming value to be copied onto one or more output arcs (in Dennis’
model, a fork, or link, can be seen as a cell storing the value which occupies the arc;
here, a fork is regarded as a replicator of values). An operator node acts on one or
more data values; typical operators are plus, minus and other arithmetic operations. A
decider (predicate) produces a control value from one or more data values. A Boolean,or
control, node operates on control values; examples are the operations AND, OR and
NOT. The control nodes, MERGE, TGATE and FGATE, use control values to regulate

the flow of data values.

In general, a node is enabled for execution (firing) when a value is present on each
input are, and, in addition, each output arc is empty; the input values are absorbed,

the appropriate computation performed, and the result transmitted on the output arc.

The control nodes behave somewhat differently. The TGATE instruction takes

control and data inputs, and becomes enabled when both are available, as usual; on
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execution, the data value is transmitted (unchanged) if the control input is true, other-
wise it is absorbed and no output is produced (the FGATE instruction behaves similarly
for a false control input). The MERGE instruction fires when its control input and the
corresponding data input are present (the data inputs are labelled T' and F); the data
value is transmitted, the other input line being unaffected. An initial value may also
be specified (that is, a value placed on an arc before initiation of execution of the data
flow program) on the control input of a MERGE instruction. Control nodes are used

in constructing conditional and iterative schemes.

Dennis also proposes facilities for tree structures in the language, manipulated
by SELECT and APPEND operations. Conceptually, structure values flow on arcs of
the data flow graph in the same way as other values, with all operations creating new
values rather than updating existing ones (to ensure the absence of side effects). Dennis
extends the model to include a heap, with structure values represented as heap nodes,
identified by pointers into the heap. In this representation, pointers, rather then actual
structures, are transmitted on the arcs of the graph, and structure operations cause

changes to be made to the heap; this allows structures to be shared.

A data flow procedure is a data flow graph which accepts, as input, a structure
containing parameter values, and produces a value from those parameters. The APPLY
node permits such procedures to be activated. It accepts two parameters, the data flow
graph of the procedure (regarded as a node, containing a representation of the code of
the procedure, on the heap), and the parameter structure, and produces, as its output,
the result of the procedure. The procedure is activated, each time APPLY fires, by
putting a token on its input arc. It is clearly necessary to distinguish tokens which
arise from different firings of APPLY; the notion of token colouring is used to achieve
this. Every token is tagged with a colour, which identifies a particular activation. The
token which initiates a new activation is given a new colour; the colour of the result
of the procedure is restored on termination. The general firing rule is modified so that
a node is enabled if values of the same colour are available at each input; the output

arc must contain no value of that colour, but it can contain values of other colours.
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Researchers at the University of California at Irvine extended Dennis’ model (DDF)
to permit greater asynchcrony in the execution of operations [ArvG78, ArvGP78]. DDF
specifies that all output arcs of a node must be empty for the node to be enabled for
firing. This rule prevents conflicts between the tokens at the inputs of a node, at
the expense of restricting the number of enabled nodes; the rule enforces a queuing
discipline on the transmission of tokens along an arc, restricting the queue size to one
for practical reasons. Arvind and Gostelow [ArvG78] describe a data flow language
very similar to DDF, and present a queuing interpreter (QI) in which the arcs are

unrestricted FIFO queues. Under QI, the operation

a; ++ b;
must be preceded by

a;_1 ++ bi—l

where the subscripts index the queues on the input arcs of the node ++; the firing of

the node is not restricted by the state of its output arcs.

Arvind and Gostelow also describe an unravelling interpreter (UI) under which
the firings of a node need not take place in queue order. The ith output of a node
can be produced as soon as the ih set of inputs is available, even if the § — 1*h set
is not complete. This permits greater asynchrony of operation, and, in cases where
computation of the s — 1th set does not terminate, produces results that QI fails to

produce.

Under Ul, each distinct execution of an operator is regarded as an independent
activity [ArvGP78]. Each activity has a unique name, comprising the procedure appli-
cation context, the procedure name, the node within the procedure, and the iteration
number. The context acts as a stack of return addresses, with an address pushed on
procedure invocation, and popped on exit. All the activities associated with a pro-
cedure invocation constitute a procedure domain, and can proceed independently. A
loop scheme is similar to a procedure invoked from just one place; the iteration num-

ber is used to distinguish activities within a loop domain. The context and iteration
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number fields are further examples of token colouring. The model can be classified as
a dynamic tagged model {WatG82|, in that each token is tagged with a colour; it is
dynamic in the sense that colouring enables a procedure to be used re-entrantly, as
distinct from static data flow [DenGT84], in which only one instance of an instruction

may be active at a time.

The 1d system [ArvGP78] includes a representation of the stream data structure
as an ordered sequence of tokens; streams permit the expression of history sensitive
computations. Facilities for the expression of nondeterminism and resource managers,
and for programmer defined data types, are also proposed. Streams will be discussed

in more detail in §1.6.

The data flow model used by a group at the University of Manchester [GurWG80]
is also a dynamic tagged model, but was developed independently of the Irvine model.
In the latter model, an activity name records a stack of procedure and loop contexts;
the Manchester model uses a fixed length label for each token, in which procedure
invocations are identified by a unique activation name, and iterations by an iteration
number field. To achieve this, it is necessary to have a special instruction to generate
activation names (which cannot be defined as a simple function of a previous name,
because of the possibility of parallel invocations), and to express nested iterations as
procedures (as only one iteration number is allowed in the label). In addition, nodes
are restricted to at most two inputs and/or outputs. All of these characteristics of
the model are influenced by practical consideration for the efficiency of the associated
machine architecture. Structures are regarded, not as entities flowing along an arc or
residing in a heap, but as individual tokens related by having identical labels, except
for the value of an additional, index field. This scheme is used to implement an array

structure [GurWGS0].

For a two operand node to be enabled, operands with matching labels must be
present. The Manchester model has been extended by associating varying actions with

the process of matching potential operands (see below). This approach has been used
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to optimize structure storage and access, and, with the addition of a nondeterministic
operator, to implement resource managers [CatG80]. A prototype machine has been

built at Manchester; an evaluation of its performance appears in [GurW83].

The data flow models described above are the most significant from the point of
view of this thesis. Several other models have been proposed over the years [Gel76,
Syr82, Dav79, Dav78, ReqM83, Gaj81, Sri8l, Fau82, HanG81, FarGT79, TreBH82,

TreH81, TreHR82]; some of these are now described briefly.

The LAU project at Toulouse [Gel76, Syr82] began, in 1973, as an investigation
of single assignment languages [TesE68, Cha71, Kli72], and led to the design of a
language based on the principle of single assignment and a supporting data flow ma-
chine architecture. The single assignment rule states that any variable in a program
may be assigned to at most once during program execution; the LAU group uses the
term “object” instead of “variable” to emphasize that it is, in fact, constant once
assigned. The high level language includes constructs for assignment, conditional, iter-
ation, procedure definition and use, and parallel array computation. The semantics of
the language is expressed using the Data Production Set (DPS) concept, where a DPS
is a triple specifying a set of input objects, a set of statements which manipulate the
inputs, and a set of output objects; data flow principles determine the eligibility for
execution of a DPS. It is, of course, possible for many DPS’s to be eligible for execution
in parallel. The machine architecture implements the DPS concept, and instructions
corresponding closely to the constructs of the high level language. A machine has been

built, and numerous programs tested.

The model developed by Davis [Dav78] is similar in principle to DDF, with nodes
and arcs used to represent a data flow computation graphically. Unlike DDF, no
distinction is made between data and control tokens, and the arcs represent data paths
which are queues of finite length. The nodes are similar in function to those of DDF,
but more general; a network usually contains less nodes than a functionally equivalent

DDF network. Davis also introduces a nondeterministic arbiter node for use in resource

R —a=
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control. The most significant differences occur in the supporting machine architecture,
which is based on the principle of recursive hierarchy [Dav79]. A machine has been

built, and is described briefly in [TreBHS82].

In a project at the University of Newcastle upon Tyne, the data flow model has
been combined with a generalized control flow medel (GCF) [TreHR82, TreBH82].
The GCF model uses instructions and memory addresses in much the same way as
in the traditional von Neumann model, but uses control tokens to establish multiple
threads of control. An instruction is enabled for execution when all its input control
tokens are present; enabled instructions can execute concurrently. The execution of
an instruction involves absorbing the input tokens, executing the specified operation
(which will usually cause the memory to be updated), and generating further control
tokens. The program counter of a sequential machine can be seen as encoding a single

thread of control in the GCF model.

In the model which combines data flow and GCF, the inputs to an instruction
are data and control tokens, as well as embedded items. Data tokens and embedded
items can be either values or memory addresses. In executing an instruction, sets
of values and addresses are formed from the available inputs; the addresses are then
dereferenced to provide, with the other input values, the set of values upon which the
instruction operates. The outputs released are of three types: data and control tokens,
which specify a destination instruction and a value (null for a control token), and data

to be stored in memory, specified as a memory address and a value.

The Piecewise Data Flow project at Lawrence Livermore Laboratories [ReqM83]
represents an attempt to combine array processor and data flow principles to give a
supercomputer architecture implementable in current technology. The program orga-
nization suggested is based on techniques currently used in optimizing compilers, in
that a program is divided into basic blocks {of up to 255 instructions) such that no
branching into or out of the block occurs. A program is then described at two main

levels, the first giving relationships between blocks, and the second those between the

B
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instructions of a block. The potential successors of a block are used to decide which
block to execute next, and whether or not block execution can be overlapped. Execu-
tion of the instructions within a block proceeds according to data dependencies, as in
data flow. The machine architecture which supports this program organization uses
an array processor, a small number of scalar processors with simple interconnections,

and standard input/output techniques.

A proposal by Gajski et al [Gaj81] uses data flow principles, but at a higher level.
A program is made up of compound nodes related by data and resource (in particular,
memory) dependencies. A compound node represents a function, of higher level than
the usual data flow operations, for which good speedup can be had using existing

techniques, for example, array operations and linear recurrences.

The Westfield data flow model [HanG81, FreG83] makes use of acyclic graphs, with
the nodes representing operators defined at the bit level. The operators of the model
are low level, similarly to the DDF model. Functions can be defined, and when used
are regarded as being expanded in-line, hence, each node of the dynamic graph fires
at most once. A function name is viewed as a value which can be transmitted on an
arc. The BIND operator permits a value to be bound to a parameter, constructing a
closure; the EVAL operator is used to evaluate a function when all actual parameters
have been bound. Higher order functions are supported by these facilities. Structures
are represented by functions. The Westfield group have built a prototype uni-processor

implementing the model, and developed a corresponding high level language, CAJOLE.

Research into data flow models has also been undertaken at Warwick University
[Fau82]. Faustini has investigated the properties of so-called pipeline data flow with
respect to the Kahn principle, which states that the operational behaviour of a pure
data flow net can be described by the least fixed point solution to the set of equations
associated with the net. In Faustini's model, nodes behave in a much more general way
than those of the models considered above: there are no restrictions on the possible

internal states of a node, state transitions can occur without the arrival of inputs, and



Section 1.6 Data flow languages 23

transitions may be nondeterministic. Faustini establishes that that nets constructed

from such nodes using the operations of juxtaposition and iteration possess the Kahn

property.

1.6 Data flow languages

In order to exploit implicit parallelism to the utmost, data flow computational

models are based on the following principles:

e the only sequencing constraints are data dependencies, and

e operations are free of side effects.

An important consideration in designing a high level language for data flow is that it

reflects these characteristics of the model.

Conventional languages do not have the desired properties. Programs usually
need extensive analysis to determine the data dependencies upon which the data flow
program is based. Such analysis is made difficult by, among other things, the presence
of side effects. Conventional languages are based on a computational model which
uses side effects resulting from assignment to memory locations as its fundamental
method of communication between statements; because one memory location may be
referenced by several statements, data dependencies exist between any statement which
updates that location and all statements which reference the location. The problem
is compounded by the presence of aliasing, whereby a reference to a location can be
passed into a procedure, for example, making it possible for the same location to be
accessed via two or more different names. Arbitrary branching in programs adds to

the difficulty of determining data dependencies between statements.

Many language facilities have been suggested to improve the undesirable aspects of
conventional languages. Examples are the use of structured control constructs in sim-
plifying the structure of programs, and modularity in aiding comprehension by making
many data dependencies more explicit. In fact, by imposing restrictions on the way

in which programs are written, conventional languages can be made compatible with
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the data flow model [AllO79, AllO80, Vee81]. However, many designers of languages
for data flow have concluded that the difficulties of this approach, combined with a
desire for a language in which data flow idioms can be expressed naturally, warrant

the development of new languages for data flow.

In looking for a higher level representation of a data flow graph, it seems natural
to give a name to an arc of a data flow graph, and describe the values which flow
on that arc. Such a description can be seen as assignment to a variable name, but
does not make sense if more than one assignment is allowed. Consequently, the single
assignment concept [TesE68, Cha71], where a variable is defined at most once in the
course of execution of a program, came to be seen as a concept which applied naturally

to data flow languages. Programs written in this way express data dependencies clearly.

Data flow languages also require absence of side effects. Applicative languages
[Bac78, BurMS81, Bur75, Dar82, Lan66b, Tur81], in which computation proceeds by
the application of operations to values, have this property. It is common in applicative
languages for information to be passed to a function entirely through its parameter
list; this property (locality of effect) makes the detection of data dependencies very

straightforward.

Thus, single assignment and applicative languages have properties compatible with
data flow principles, and data flow languages therefore have many characteristics in-
herited from such languages. The data flow computational model has natural represen-
tations for conditional, iterative and procedure constructs; many data flow languages
[ArvGP78, GurGKS81, AckD79] have been influenced by conventional language syntax
in this area. A conditional scheme, for example, will use gates, controlled by the re-
sult of the condition, to transmit values to one branch and absorb those directed to
the other; values must still arrive at both branches, however, and conditional expres-

sions in most data flow languages consequently require that both branches be specified

[GurGKS1].

A common data flow view of iteration is that of a cyclic graph with a set of in-
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puts, upon which initial values arrive to commence the first iteration. The loop test
is used to decide that either a new set of values is directed to the inputs for a new
iteration, or the values are used to compute a result for the loop. However, iterations
of a loop need not execute successively, because, as mentioned above, some models
(for example, [ArvGP78, GurWG80]) permit unravelling of loops during execution,
and several iterations of a loop may proceed concurrently. Loop constructs in data
flow languages, although syntactically similar to corresponding constructs in impera-
tive languages, invariably use this semantics. Loops can also be seen as tail recursion,
and, in some languages (e.g {Wen75]), must be expressed as such. However, iteration
offers advantages with respect to efficiency; both the Irvine and the Manchester archi-
tectures exploit the characteristics of cyclic schemes at the hardware level. Iteration

over structures is discussed below.

Data flow procedures (functions) are, in a sense, an abstraction of a data flow
graph as a single node. In the Irvine model, a procedure can accept several input
parameters and produce several outputs. In many proposals, procedures are unlke
primitive nodes in that they can commence execution before the arrival of all actual
parameters; the input interface of the Manchester system has this property. From a

practical viewpoint, this allows greater concurrency.

1.6.1 Data structures

In most data flow languages, structures are viewed applicatively—a structured
value is a distinct unit, manipulated only by operations applicable to structures; a
structure is changed by applying such an operation to produce a new structured value,
not an updated version of the original structure. Structure operations thus conform
to the data flow principle that operations must be free of side effects. The adverse
effect of destructive update in analysis of data dependencies between statements which

manipulate structures has been pointed out by Ackerman [Ack82].

The languages VAL [AckD79] and Lapse [GurWG&80, GurGKS81] provide array

and record structures, similar to structuring facilities provided in many conventional
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languages. Restrictions on the syntax of “assignment” contructs are imposed, reflecting
the applicative semantics adopted. For example, in Lapse, assignment must be to the
whole array, and at most once, in accordance with the single assignment rule; the
language provides a forall...use... construct for this purpose, permitting the use of an
integer variable which takes all values within the bounds of the array. VAL provides a
variety of operations for the creation and manipulation of dynamic arrays, as well as a
forall construct, for array construction or the specification of an aggregate operation

(such as summation) applied in parallel to all elements of the array.

The structures provided in the language Id [ArvGP78] can be described as gener-
alized lists. A structure value is either empty, or a set of { selector : value ) pairs,
where selector is an integer or string value, and value is any Id value (possibly a
structure). Two operators, Select and Append, are applicable to structures. A one
dimensional array can be modelled as a structure with consecutive, integer selectors
and non-structured values, and a Lisp list as a structure in which each element has
two selectors, for example, the strings “car” and “cdr”, and associated values. The
language CAJOLE [HanG81] makes no explicit provision for data structures; they are
defined as functions, with some syntactic sugar provided for common structures, for

example, vectors.

Implementing a structure as a unit can impair the efficiency of operations on that
structure. For example, given an iterative algorithm in which certain elements of an
array are changed from one iteration to the next, it may be theoretically possible to
perform parts of different iterations in parallel; if the array is considered a single value,
a given iteration cannot commence until the array value from the previous iteration
has been produced, and a source of increased parallelism is lost. Consequently, various
proposals have been put forward to permit easier access to the individual components

of a structure, while retaining applicative semantics for structure operations.

In the Manchester data flow model, for example, an array is represented as indi-

vidual elements flowing on an arc, with the index field of a token label representing an
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array subscript. This permits a straightforward representation of operations such as
the addition of corresponding elements in two arrays (GurWGS80], but leads to cum-
bersome schemes, with considerable repetition of code, when scattered elements from
one array are used in constructing another [GurGK81]. Storage matching functions
[WatG82] can be used to solve this problem, with an array effectively stored at an
input of a node, but used in a manner which preserves the applicative semantics of

array operations in Lapse.

Streams |[Lan65] are structures with the property that the components of the
stream are created and used in order, and do not need to exist simultaneously; such
structures are clearly useful in communication between pipelined processes. In the
context of data flow systems, the use of a stream structure permits access to elements
of the structure before the entire structure is created. A stream can be regarded as a
structure with two components, first, a value, and rest, a stream, with corresponding
selector operations; selection of the first component can be made without regard for
the status of the rest of the stream. Stated another way, the stream construction

function is non-strict in either of its arguments [ArvT81].

Weng [Wen75] first proposed the use of streams in a recursive, acyclic data flow
scheme. He represents a stream as a sequence of tokens, terminated by an est token,
and defines several operators for stream manipulation. Most such stream operations
have two states, to distinguish the first and rest components of a stream. The Id
language also suI;ports streams, extending Weng’s proposal to allow the use of streams
in cyclic schemes, and introducing the for each construct to permit processing of
each element of a stream; examples are given [ArvGP78] of the use of streams to write

history sensitive functions in Id.

In data flow models which use arcs of finite capacity, the “token sequence” rep-
resentation does not implement streams correctly, in that some programs deadlock
unnecessarily [Wen79]. Although Id streams do not have this problem (arcs are con-

ceptually infinite), a “stream of stream” structure cannot be used.
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A stream is often used as a buffer between two parallel processes; viewing the
stream as a whole, it is apparent that only a few elements are in existence at any one
time. The stream can be regarded as a partially completed structure; Weng [Wen79]
has proposed an alternative stream representation based on such an idea. The stream
cons operation creates a binary tree, the left branch of which contains the value
representing the first component of the stream. The right branch (rest) contains
a hole, representing a stream which will be filled in as data becomes available. An
attempt by a stream consumer to access a hole causes the read request to be held
awaiting the arrival of data at the hole; a write-hole operation is provided, which writes
a value into a hole, and satisfies any pending read requests. In the DDF model, streams
can thus be represented, similarly to other structures, with a heap pointer transmitted
on the ares of the graph. Dennis [Den81] has generalized this representation slightly in
defining an early completion data structure as a binary tree created with holes in both
left and right branches; Amamiya et al [AmaHMS82| use a similar definition of Lisp’s

cons for their list processing data flow machine.

These proposals are similar in some respects to the suspensions used by Friedman
and Wise [FriW76] in implementing a lenient (non-strict) cons in a functional language.
The suspension is similar in that it represents a data structure which is not yet fully
elaborated; it is different in that the two cells of a suspension are not left empty (holes),
but contain references to an environment which is capable of computing the required
value. The suspension is demand driven (see below) in that it is coerced when its value
is required, whereas an early completion data structure is data driven in that an empty

component is filled as soon as the value becomes available.

An I-structure (Incremental structure) [ArvT81] is an array-like structure (specif-
ically, an Id structure with integer selectors) with constraints on its construction and
consumption to permit elements to be accessed randomly (as distinct from the sequen-
tial access required for streams) before the entire structure is complete. An I-structure
must be produced in such a way that, once a value has been appended at a given

selector, no other value will ever be appended at that position in the structure. If



Section 1.7 Demand driven computation 29

the consumer of an I-structure refers to each element at most once, selection of an
element can be regarded as a destructive read operation. I-structures permit increased
asynchrony in that individual appends can be made out of order (as well as accessing
elements before the structure is complete). They frequently offer an advantage over
streams in simplicity of coding—a program using ordinary structures may need to be
extensively rewritten to use streams in improving parallelism, whereas interpreting an
ordinary structure as an I-structure can offer a similar performance improvement with
no re-coding. Arvind and Iannucci [ArvI83] propose the implementation of I-structure
storage by associating presence bits with each memory cell, which indicate whether or
not a value has been written into the cell. A cell operates similarly to a hole—if an
access is attempted before a value is written, the 1"ead request is queued until the cell

is written.

1.7 Demand driven computation

The data flow models described so far are data driven in the sense that operations
are enabled for execution by the arrival of all operands. In a demand driven model, an
operation is initiated by the arrival of a demand for its value; in computing that value,
it demands values from operands as needed to perform the computation. A demand
driven system is a data flow system in the sense that data requirements determine the
execution of operations. It is different from a data driven system in that only values
needed for the overall result are computed; a data driven program computes values

whenever possible, necessitating the use of gates to discard unwanted values.

The demand driven model has its origins in reduction systems using graph reduc-
tion with an outermost computation rule [Man74, TreBH82, Tur81]. In a reduction
system, a program is a series of function definitions, and an expression denoting the re-
sult of the program. The basic operation used in expressions is function application; an
expression is evaluated by reducing it to a value. Evaluation commences with reduction
of the program expression; a reference to another definition within the expression is

seen as a demand for the value of that function application. Evaluation of the original
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expression is suspended while the definition is invoked and reduced. Invocation is by
following a pointer to the definition, using an appropriate mechanism for parameter
binding (as in the lambda calculus {Lan66b, FriW78, Abd76]); reduction of the desig-
nated expression may, of course, result in further demands. Evaluation of the original
expression is resumed when the demanded expression has been reduced to a value. The
advantages of this evaluation mechanism are that sub-expressions can be shared, and
reduced at most once, that only necessary computations are attempted, and that infi-

nite data structures can be manipulated if only finite portions are demanded [FriWw76,

KelLP79].

Reduction systems have been used as the basis of several machine architecture
proposals [KelLP79, KelLP78, Ber75, DarR81, ClaGMN80|. These proposals, and

their relationship to data driven computation, are discussed in [TreBHS82].

An advantage of data driven computation over demand driven is that is more ef-
ficient in situations where all values are required, for example, arithmetic expression
evaluation; propagation of demands constitutes an unnecessary overhead, and con-
currency is reduced. Demand driven computation is, however, relevant to this thesis
because it is known to provide a basis for implementing Lucid correctly according to
its mathematical semantics [AshW77a). A characteristic of the model discussed above
is that demands are implicit in the evaluation mechanism. This thesis does not use
such a model; in preference, a data driven model is used to explicitly express demand

flow, thus making it easier to combine data and demand driven target schemes.

1.8 Implementation issues

Ashcroft and Wadge [AshW77a] distinguish three possible methods of implemen-
tation for Lucid (or a subset). The first is analysis of the program into loops, and
the generation of iterative object code. Secondly, they suggest translation of a pro-
gram into data flow networks of the type suggested by Kahn [Kah74, KahM77], with
a network for each definition, and a node for each Lucid operator [Wad81]. There

are deficiencies with these methods: redundant computation may be performed, and
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some legal programs cannot be translated either into loops or data flow networks. The
third method, demand driven evaluation based on the formal semantics, is completely
correct in that no redundant computation is attempted. A demand is a request for the
value of a variable at a particular time; evaluation is initiated by requesting the result

of the main program at time 0, and satisfying additional requests as they propagate.

The goal of any LX or Lucid implementation is to compute values of histories
which agree with those specified by the mathematical semantics. Ideally, only those
values required to determine [Jresult] should be computed, and each such value should
be computed once only. Implementations frequently fall short in either or both of these
respects. In this thesis, a redundant computation is one which attempts to compute a
value not required to obtain [[result]}; a redundant computation is undesirable because
it may be either erroneous or non-terminating. For example, many implementations fail
to correctly implement intermittent histories, those histories which have some unde-
fined elements, representing values which need not be computed to obtain the program
result; an attempt to compute such a value is redundant at best, nonterminating at
worst. The term recomputation refers to the computation of a value more than once;

excessive recomputation should be avoided because it is inefficient.

The implementation described in Chapter 4 follows the first method of Asheroft
and Wadge in that it considers those programs which can be readily analysed into loops,
hence, the language implemented is a subset of LX, rather than the full language. One
version of this implementation generates imperative code. Another version generates
DDF-like data flow graphs. Like method two of [AshW77a], in generating these graphs,
it exploits the fact that programs are free of side effects, and impose no sequencing
other than data dependencies. It is also loop based, a characteristic of method one.
The graphs are built from low-level nodes, and the design of the implementation is
influenced more by considerations of target language schemes than source language

constructs.

One way of adding to the power of the implementation is to raise the level of
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abstraction of the target language. For example, a Clause Lucid function clause
can be understood, in terms of Kahn and MacQueen networks, as requiring dynamic
reconfiguration of the network to implement recursion in the clause. It is possible, with
considerable effort, to define DDF-like schemes with similar capabilities, and hence
implement more powerful source language features. However, such schemes still suffer
from a problem fundamental to data driven networks: redundant computations may
be attempted. The implementation described in Chapter 5, in striving for a correct
implementation of full LX, combines Ashcroft and Wadges' methods two and three.
It is based on an operational semantics which models the flow of demands (requests
for values) in computing the result of the program at a particular time. The model is
designed in such a way that DDF-like schemes can be derived directly from it; these

schemes are the basis of this second implementation.

Several other implementations of Lucid, Lucid subsets, and Lucid-like languages
have been attempted [Far77, Hof78, Hof80, Wen82, Gla82, Pil83, Car76, DenM83).
The implementations of Farah [Far77] and Hoffmann [Hof78, Hof80] both implement
subsets of earlier versions of Lucid using loop analysis; [Wen82| describes an earlier
version of the subset implementation presented in this thesis. Glasgow [Gla82] devel-
ops an operational semantics, and proposes an algorithm as a possible basis for an
implementation. The operational semantics is formally derived from the denotational
definition of Structured Lucid [AshW79b], and gives rise to an implementation scheme
with iterative and recursive components, and a dynamic dependency graph used to

determine which computations should be attempted.

Pilgram’s implementation scheme [Pil83] also uses method two above. An imper-
ative, message passing language is used to implement the nodes of the network. The
nodes communicate using a standard protocol which ensures, by buffering some values,
that recomputation of history values is avoided. However, the method requires that
history values be computed in succession, and hence some redundant computations

may be attempted.
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Cargill [Car76] describes a demand driven interpreter for Basic Lucid. Denbaum’s
implementation [DenM83] compiles ANPL (essentially Clause Lucid) into coroutine
based object code, which uses recursive procedure invocations to reflect the demands
issued in the course of a computation, and generators [Mar80} to supervise the compu-
tation of the values of a particular history. It is not clear from Denbaum’s description,
however, that the implementation is capable of the dynamic reconfiguration required

to implement recursion, or that no redundant computation is attempted.



CHAPTER 2

THE PROGRAMMING LANGUAGE LX

2.1 Introduction

The programming language LX was introduced in §1.2. This chapter begins with
a more detailed informal description of the language, including an explanation of its
semantics based on the mathematical definition given in [AshW79b]. Subsets of LX
are used to explain some aspects of semantics, and in presenting operational views of

the language.

If it is supposed that execution of an LX program is initiated by demands for
values of the result of the program, then execution can be understood, in operational
terms, by examining the propagation of such demands to the constituent definitions
of the program, which in turn will initiate the computation of further values. An
important contribution of this chapter is the definition of a demand driven model

of the semantics of LX, which specifies precisely how, and to where, demands are

propagated. The relationship of this operational semantics to the formal definition of

Lucid [AshW79b] is also considered.

It is then shown how the imposition of certain syntactic and semantic restrictions
results in a language LX3 with a straightforward operational interpretation in terms

of loops.

2.2 A description of LX

A syntactic description of LX, in extended BNF notation, is given in Table 2.1. An
LX program consists of declarative information about the {ree variables of the program,
its inputs, and a program body which consists of a list of definitions of the variables
of the program. The definitions can occur in any order, except that all variables must

be declared, and the declaration of a variable must occur before its definition.
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The following symbols are used in the meta-language:

;= definition

{X} O0or1 occurrences of X

[ X] O or more occurrences of X

| alternative

' ysed to enclose a symbol used in both LX and the meta-language

PROGRAM

DEFN

CLAUSE

RHS

EXPR

SEXPR
TERM
FACTOR

APPLICATION

DECLARATION

TYPE

SIMPLE_TYPE

DEFN_LIST

FREEZE LIST

GLOBAL
PARAM
VAR
SUBJECT

LITERAL
NUMBER
BOOL_CONST

prog IDENT
[ global GLOBAL{ , GLOBAL 11
DEFN_LIST

eprog
VAR = RHS | CLAUSE | DECLARATION

define SUBJECT | PARAM {, PARAM } |
[ using IDENT{ , IDENT } |
[ freezing FREEZE_LIST |
DEFN_LIST

edeflne

EXPR | fby EXPR | |

asa EXPR then EXPR easa |
wvr EXPR then EXPR ewvr |
upon EXPR then EXPR eupon |

if EXPR then EXPR else EXPR eif |
SEXPR | REL_OP SEXPR |

[ UNARY_OP | TERM { ADD_OP TERM }
FACTOR { MUL_OP FACTOR }

LITERAL | VAR |

first FACTOR | next FACTOR | not FACTOR |
hd FACTOR | 1 FACTOR |

null FACTOR | atom FACTOR |
APPLICATION | ( EXPR)

SUBJECT [ (EXPR { , EXPR } )|
TYPE IDENT { , IDENT }
SIMPLE_TYPE | list of SIMPLE.TYPE
int | real | char | bool
DEFN { ; DEFN } [}

VAR {, VAR } | all | none

TYPE VAR
TYPE VAR
IDENT
IDENT

NUMBER | “CHAR” | BOOL_.CONST | LIST.CONST

DIGITS | . DIGITS | | e [ UNARY_OP | DIGITS |
true | false

35
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LIST.CONST == ‘[ [LITERAL {,LITERAL } |’
DIGITS = DIGIT { DIGIT }

IDENT .= LETTER { ALPHANUM }
ALPHA NUM .= LETTER | DIGIT

REL_OP = < | > | ne|eq|>=| <=
MUL_OP = * | /| div | and

ADD_OP = + | - |or|:

UNARY.OP = +| -

Table 2.1. A syntactic description of LX.

2.2.1 Variables, definitions and declarations

Most LX language constructs have as their meaning a history, that is an infinite
sequence of values in which each value is of the same type. In the following description,
the semantics of various LX constructs is discussed in terms of the history denoted by
the construct. In §1.2, the following notations were introduced, for an LX construct
X: [[X], “the history denoted by X”, and [X]};, “the history denoted by X at time

. It will be recalled that the history denoted by X can be written:
[x] = (0xDo, [XD:, [X]2 .- ).
An abbreviated notation is sometimes used, for example:
[e] = (a0, a1, a2, ... ).
A history in which all values are equal is referred to as a “constant history”; an example
1s:
[2] = (2.2,2,...)
Additional examples are given in §1.2.

A variable declaration is introduced by a type specification, which is followed by
a list of identifiers. The basic types supported are int, real, char and bool, with

appropriate literals and operators (see Table 2.1). A structured type can be specified
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as list of a basic type. A value of such a structured type is either nil, or a list of
atoms, each of which is a value of the specified basic type. Structured literals can be
constructed by writing a list of values of the appropriate type, separated by commas,
between square brackets. For example, the following definitions show a declaration of
a structured variable, and its definition using a literal value. Note that the definitions
define a constant history.

list of int a;
a = [1,5,66,77,9];

A variable is defined using a definition of the form
VAR = RHS

where the left hand side is an identifier. The right hand side, in its simplest form, is

simply an expression. Other forms of the right hand side will be described later.

Consideration is now given to the formation of expressions from variables and op-
erators. Note that not all syntactically valid expressions are legal, for they may not
satisfy the type rules of the language; type checking is described below. According to
the syntax definition, expressions are defined hierarchically in terms of simple expres-
sions, terms and factors. This groups the operators of the language by precedence as

follows, in descending order (the order is based on that used in Pascal)

(1) first next not hd tl atom
(2) * / div and
(3) + —or:
(4) eq <> < > >= <=
if_then _else_eif
(5) fby
asa_then easa
wvr_then ewvr

upon_then_eupon.

The operators of the fifth group are actually not defined as part of the syntactic

category EXPR, but as part of RHS; however, they can be regarded, informally, as
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operators with syntactic restrictions on their usage.

In discussing the meaning of operators applied to variables, two sets of operators
are considered, firstly, the data operators, which are defined in terms of operators
associated with the data types of the language, and, secondly, the special Lucid-like
operators. The arithmetic, boolean, relational and list operators, and the operator
if_then _else_eif, are included in the first set. The operators first, next and all oper-

ators of precedence group (5) are in the second set.
Consider the expression
aopb
where op is an operator in the first set, and a and b are variables. In the above notation:

[aopt] = ([aopbllo, [aopb]i, faopbt]s ... )

The components of the history are defined pointwise, thus:

fa op 8]; = [a]i op [b]:-

The history yielded by the expression can then be expressed, in the abbreviated form,

as:

[aop ] = (aoop bo, a1 0p by, agop by, ... ).

When either operand is an expression, the history denoted by the expression can be
found by applying similar considerations to the constants, variables and operators of

the expression.

The operations on structured values are defined below:

(1) selection operators

hd a unary operator which yields the first element of the list supplied
as argument; an error occurs if the list is nil.

tl a unary operator which yields the list formed by removing the
first element of the list supplied as argument; an error occurs if
the argument list is nil.

(ii) construction operator
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a binary operator which yields a new list, the head of which is the
left argument, and the tail, the right argument; an error occurs
if the left argument is not a value, or the right argument is not
a list, of the appropriate type.

(i) predicate

null a unary operator which yields the Boolean value true if its argu-
ment is the empty list, otherwise false.

{(iv) comparison operators

eq a binary operator which yields the value ¢rue if its arguments
are equal, where equality is as defined below.

<> a binary operator which, given arguments a and b, yields
not (a eq b).

Equality is defined thus:

e two null lists are equal;

e a null list is not equal to a non-null list;

e in the case where both lists are non-null, let the lists be z and y; then
zeqy iffl {hd z eq hd y) and (tl z eq tl y)

where the eq operation comparing list heads is that appropriate to the type
of the atoms of the list.

The conditional expression
if E; then E; else E3 eif

where Ey, E5 and E3 are expressions, yields a history which is the pointwise extension
of the triadic data operator if_then_else (which acts on ;ra,lues). This operator takes
three values as arguments, one of which must be of type bool; the remaining two values
can be of any type, but each must be of the same type. If these values are p, z and y
respectively, the result yielded by the data operator is z if p is true, y if p is false, and

undefined otherwise. The value at time ¢ in the history yielded can be written:

[if E; then E; else E; eif], = if [E1]}, then [E:], else [Es]; eif.

Consider the Lucid-like operators of the second set. The operator first forms a
constant history from the first element of the history denoted by its argument, while

next forms a history by removing the first value. The meanings of the operators are
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defined thus:

[6irst F] = ( [Flo, [F]o, [FTo, ---)
[[next FI] = ([[F]]l, lIF]]Q, [[FI]3, )

where Fis a factor. The operator fby (pronounced “followed by”) takes two expressions
as arguments, and forms a history from the first value of the first argument history,

and the entire history denoted by the second argument, thus:
[E, by E2] = ([Eilo, [E2]o, [E2D, ---)-

The right hand side of an LX definition can be written in one of the following
three forms, in which E; and E9 are expressions:

(i) asa E; then E) easa
(ii) wvr Eg then E) ewvr

(i) upon E; then E; eupon
The history corresponding to any of these is defined in terms of the histories denoted
by the constituent expressions.

The definition of the asa_then_easa (pronounced “as soon as”) operator is:

[asa b then a easa] = ( [a]ls, [alls, [alls, - )
where s is such that
[6]; = true, i=s and
[6]; = false, Vi<s.

= 1 otherwise.

Thus, the operator can be seen as examining the history denoted by its first argument
until a value true is found, extracting the corresponding value from its second argument

history, and yielding a history which takes on this value at every point.

The wvr_then_ewvr (pronounced “whenever”) operator is defined (see Appendix
1) using a recursive define clause. It can be explained by considering the following

equation, which specifies a right hand side which can be substituted for the left when
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appropriate:

wvr E9 then E; ewvr =
if first Eo

then first E; fby wvr next E; then next E; ewvr

else wvr next E5 then next E; ewvr

eif.
The overall effect is that the operator yields a history containing those values of [E\]
for which the corresponding value of [[E2] is true, or, in other words, it filters out
those values of [[Elﬂ for which [[E’g]] is false. To see this, the definition should be
understood, in terms of the histories denoted by the operands, as examining the first
item in [[E5]] and, if the value is true, yielding a history, the first value of which is
the first value of [E1] and with the remaining values determined by applying the
operator to the operands next E2 and next E; the latter yields [[E'll] with its first
value removed. If first E; (a constant history) yields false, the history returned is
determined by applying wvr_then_ewvr to next E; and next Ej; in effect, the first
value of each of [[E1]] and [E:] is discarded. For example, consider the variables p

and z, denoting histories thus:

Ie] = (t,fitst, fity t,...)
[z] = (0,1,2,34,56,...).

The operator yields:

[wvr p then z ewvr] = (0,2,3,5,6,...).

In contrast, the operator upon_then eupon (pronounced “upon”) can be seen as
stretching out the history denoted by its second argument according to Boolean values

supplied by the first argument. For example, considering the variables p and z, as

defined above, the operator yields:

[upon p then z eupon]] = (0,1,1,2,3,3,4,5,...).

As in the case of wvr_then_ewvr, this operator is defined.(Appendix 1) using a
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define clause, but can be understood by considering the equation:

upon E; then E| eupon =
first E; fby
if first E,
then upon next E5 then next E; eupon
else upon next E; then £ eupon
eif.

This definition is discussed in more detail in §2.3.1.1.3. The operator can be used to

merge two histories (Wad81].

This completes the description of types and variable declarations, of expressions
and of right hand sides, with the exception of the meaning of an APPLICATION,

which is included in the discussion of the define clause, immediately below.

2.2.2 The define clause

The define clause has two major purposes in the language; it permits the user to
structure a program into parameterized functions, and also permits the use of nested
subcomputations. This raises issues of scope rules and the environment in which vari-

ables are defined.
The general form of the clause is as follows:

define SUBJECT | PARAM {, PARAM } |
[ using IDENT{ , IDENT } ]
| freezing FREEZE LIST |
DEFN_LIST

edefine.

An additional language rule is that the variable result must be declared and defined
within the list of definitions making up the body of the clause, which defines a subject
by identifying it with the history denoted by result. The using list includes those
identifiers which are global to the clause, and the freezing list, those which are frozen
inside the clause; freezing will be considered in detail later. The optional parameter

list includes declarative information about any formal parameters.

2.2.2.1 Scope Rules
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The scope of an identifier is the region of the program over which a particular
declaration of the identifier is in effect. In LX, the scope of an identifier is the clause
in which it is declared (a program is a special case of a clause), and does not implicitly
include inner clauses. If access to an identifier is required in an inner clause, its scope
can be extended explicitly by including it in the using list of the inner clause; the
identifier is said to be “inherited” by the inner clause. Any identifier which is accessible

within a clause can have its scope extended in such a way.

Identifiers declared in a clause are referred to as local identifiers of the clause, and
are declared either as formal parameters of the clause or as declarations in the list of
definitions which make up the clause. Global identifiers are those which appear in the
using list of a clause, or, in the case of the program clause, the global list. The latter
also have declarative information attached, because it is necessary to know the type of

each variable which is global to the program clause.

It is not necessary for declarations of local identifiers to appear at the head of the
list of definitions of a clause. The scope of identifiers which are declared part way down
the list is not the entire clause, but the region extending from the point of declaration
to the end of the clause. This cannot lead to ambiguities, because a global identifier
must be specified in the clause heading, and it is then illegal for the same identifier to

be used as a local anywhere within the clause.

2.2.2.2 The meaning of a clause

The meaning of a variable has been defined as a history, and the meaning of an
expression in terms of the histories denoted by the components of the expression. It is
clear that a parameterized clause, used with different actual parameters (the meaning
of each of which is a history), will, in general, yield different histories. The meaning
of a clause is therefore regarded as a history function, that is, a function which maps

the appropriate number of histories onto a history.

The appearance of an identifier z on the right hand side of a definition is referred
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to as a use of . The meaning of a particular use of a clause subject (with specific actual
parameters) is the history determined by applying the history function (the meaning

of the subject) to the histories which are the meanings of the actual parameters.

Another notion useful for explaining clauses, and the meanings of variables within
them, is that of an environment. The environment of a clause is a function which
associates each identifier accessible within the clause with either a history (in the case
of a variable) or a history function (in the case of the subject of a define clause).
The notion of environment considerably simplifies the explanation of what it means to

freeze a variable.

The notion of solution can now be defined. Informally, the solution is the en-
vironment which contains the minimum amount of information consistent with the
definitions of the program; it assigns values to only those history elements which are
needed to satisfy the definition of result in the program. Ashcroft and Wadge define
the solution of a program as the least environment which satisfies the definitions of the
program, where “least” is defined in terms of an information ordering on the underly-
ing data algebra [AshW76]. It can be regarded as the least fixed point of a system of
mutually recursive equations, and fixed point theory used to show the existence and
uniqueness of a solution for all well formed programs [AshW76]. The least environ-
ment is a mathematical device for giving meaning to a program,; it gives no indication
of how the solution can be computed. In this and subsequent sections, the existence
of a solution is assumed, so discussion centres on properties of the solution and en-
vironments in general, rather than on computational mechanisms; §2.4 examines the

mathematical semantics in relation to an operational model.

Subsequent sections (2.2.2.2.1-5) explain in some detail the mathematical seman-
tics of clauses. It is desirable to do this, for three reasonms, firstly, to establish a
correspondence between Lucid semantics ([AshW79b]; summarized in Chapter 1) and
LX semantics. For explanatory purposes, it is convenient to focus on two subsets of

LX, termed LX1 and LX2, which parallels the treatment in [AshW79b] of the lan-
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guages ULU and LUSWIM in relation to Structured Lucid (see §1.4.3). Secondly, an
understanding of the mathematical semantics provides an insight into the formal roots
of the language. Finally, a detailed explanation is necessary to form a basis for argu-
ments that the operational model described in §2.3.1 correctly implements the semantic

definition.

However, a simpler description should suffice on first reading. The comments
which follow, in conjunction with the examples discussed in Sections 1.2 and 2.2.3, are

intended to give such an explanation of the meaning of a clause.

Conceptually, a clause denotes a history function, an object which yields a history
when presented with histories as arguments. Hence, a use of a clause denotes a history;
this history is [[result] calculated in an environment which associates the formal
parameters of the clause with the histories (possibly frozen) denoted by the actual

parameters.

It may be more instrﬁctive to view a clause use textually. A use of a clause can
be regarded as introducing a new clause into the program, with actual parameters
substituted for formals; a recursive use causes new “copies” of the same clause to
appear. This view can be justified by considering the development of Lucid from
Landin's lambda-calculus-based ISWIM [Lan66a, AshW79a]. Another view, applicable

to programs which do not use freezing, is to regard a program as a graph, as in §2.2.3.

These views must be modified somewhat to allow for freezing. If a clause freezes a
formal parameter, [[result] must be determined point by point; the environment used
to determine [Jresult] at time 1 associates with the formal parameter a constant history
formed by extracting the ith value of the history denoted by the actual parameter.
Using the textual view, one can imagine a copy of the clause for each time point, each

substituting a different, constant, history for the formal parameter.

2.2.2.2.1 The language LX1

In this subset of LX, no freezing is permitted. This restriction is enforced syn-
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tactically by requiring that the option freezing none be used at the head of every

clause.

In an LX1 program, the meaning of an identifier is the same everywhere in its
scope, whether the identifier is used locally or globally. It will be shown in §2.2.3 that
such programs may be interpreted operationally as specifying a data driven network

of autonomous processes or coroutines.

2.2.2.2.2 The language LX2

The restriction for this subset is that all parameters and globals must be frozen,

and is enforced by requiring that the option freezing all be used with every clause.

In an LX2 program, an identifier has a different interpretation inside an inner
clause, within which it is global; the inner clause is regarded as defining its subject
point by point, with the values of all globals being frozen at each point. Such programs
have an operational interpretation in which inner clauses are subcomputations of the
enclosing computation; they can be implementéd as nested loops or procedures. For
example, the clause SgRt of program NM in §1.2 freezes its parameter, and can be

interpreted as a nested subcomputation.

2.2.2.2.3 The meaning of a clause in LX1

The meaning of a clause is defined by considering a particular use of the clause, and
explaining how the corresponding history can be determined. This is done by adapting

the description given in [AshW79b] of the mathematical semantics of Structured Lucid.

Suppose that the clause subject z is defined within y, and that the clause use
occurs within 2, as in Figure 2.1. The environment which determines the meanings of
identifiers accessible within a clause y is denoted Ey,. Although 2 is shown as distinct
from z, subsequent discussion applies equally to a recursive definition of z. If z is used

directly within y, Ey and E; are the same environment.
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prog m;
;i.eﬁno y ..
.Jeﬁnc x( 10, f1, ... ,fo—1) using ...
ed;f'inc {x};

define z ... using x ...
int b;

.l;.= ..x(a0, al, ... ,an—1)... ..1)
od;f.ino {z};
od‘e.i.lno {r}

op;c-»g
Figure 2.1. Using a clause.

Let H be the history associated by E; with the clause use shown in Figure 2.1. It
is convenient to regard H as being formed at successive time points as Hy, H), Ho,
and so on, by environments ES, El, E2, and so on, where E'z is the environment E;
determined at time i. For LX1 programs, E'z is defined such that, for any identifier a

accessible within z,
Ey(a) = Esla).

In other words, E"z is independent of ¢ when considering LX1 programs; however, it
will be seen below that this is not the case for LX2 and LX programs. Thus, H can be
determined pointwise; the problem of finding the meaning of the clause use in E; has

been reduced to finding [result]); in EY.

It is clearly necessary to define the environment E’, which determines [result].
The identifiers accessible within E‘z can be grouped into several categories, namely,
formal parameters, local variables and subjects, and global variables and subjects.
The histories which E!, associates with the formal parameters are the meanings of
the corresponding actual parameters, which are defined by E,. The meanings of local

variables can be determined using methods described in §2.2.1.
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The history which E',, associates with a global g of z is the same as the history
associated by E, with g. This follows from two properties of the language: firstly,
static scoping is used, hence the meaning of a global is determined by the environment
in which it is defined, and secondly, it is required in LX1 that a global have the same

meaning inside as outside the clause.

The meaning of a subject use (either local or global) within z, for example y(a),
can be determined in the same manner as the subject use 1) in Figure 2.1, but now
the role of E, of the preceding discussion is taken by E';, and that of E} by Ef;. If the
clause is recursive, the clause use is z(a’g,. . .,a'n_1). In this case, it may be necessary
to determine, in E‘,',, the value of this new use at time $. At first glance, this may
seem circular, in that determination of the value of z at time i requires the value at
time 1. Looking more closely, it can be seen that this is not so—in general, the actual
parameter histories associated with the new use will differ from those of the original
use, thus determining a new environment for the new use. In fact, no such circularity
can be involved, because it is assumed that the program is well-formed, and hence has

a unique solution.

The mathematical semantics of [AshW79b] offers another viewpoint of the deter-
mination of H. The solution of a program, whose existence and uniqeness have been
established, gives the same n-ary history function X, as the meaning of z in both
Ey and E;; the history H is determined by applying X, to the meanings, in E;, of
the actual parameters, namely the histories [Jao]], [a1]], -.., [an-1]]- The pointwise
interpretation is preferred because it generalizes readily to LX2 and LX, as described

below.

2.2.2.2.4 The meaning of a clause in LX2

Assume a clause use as in the previous section. The determination of E., differs
from above in that the histories corresponding to parameters and global identifiers are

frozen at time s.
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A history frozen at time § yields a constant history, thus:
X frozenati = {( X;, X;, X;, ... )
where X is a history.

The history H, as defined by E;, can again be defined point by point. To determine
H;, firstly establish an environment E‘;,,, defined as for LX1, except that the histories
which E; associates with the formal parameters are determined by freezing at time 3
the actual parameter histories defined by E;; the histories associated with the globals
are determined by freezing the corresponding histories in Ey. In other words, E'z is

defined thus, for an identifier a:

4.

—

=
|

= E;(a) frozen at ¢, if a is a formal or global

E;(a) otherwise.

g!
&
n

Then, as for LX1, H; is the value at time { of the history which E;, associates with

result, thus:

H; (in E;) = [result](s) (in EL).

2.2.2.2.5 The meaning of a clause in LX

A clause in LX can specify a mixture of frozen and unfrozen formal parameters
and global identifiers. It is therefore necessary to show how the definitions above can
be combined to explain the meaning of a use of a clause in LX. For both LX1 and LX2,
it was possible to define H, the history denoted by the clause use, point by point. A

corresponding definition is now presented for LX. At time ¢, H; is determined thus:

(i) establish an environment E%, in which the histories associated with unfrozen
formal parameters and globals are defined as for LX1, while those for frozen

parameters and globals are as for LX2;

(ii) determine H; as the value at time ¢ of the history which E associates with

result, thus:
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H; (in E;) = [[result]; (in E%).

An additional restriction on freezing is introduced when LX1 and LX2 are com-
bined to form LX. It is apparent from Figure 2.1 that a clause subject may appear
on the using list of a define clause. As indicated in §2.2.2.2.3, such a global subject
has, in the absence of freezing, the same meaning as in its defining clause. However,
the definition of freezing given in the previous section applies only to histories, not to
history functions. Hence, it is not permitted in LX to specify that an inherited subject
be frozen. This rule is not absolutely necessary, for Ashcroft and Wadge [AshW79b]
show that freezing of subjects can be defined for definitions which satisfy certain other
restrictions; however, the omission of this facility simplified the language consider:;,bly,

at the expense of a small loss of expressiveness.

Note, however, that it can be shown from the mathematical semantics that freezing
of inherited subjects makes sense for a clause with all globals frozen, as in LX2 (and
also LX3, described in §2.3.2.1). In LX2, freezing of a subject f implicitly freezes any
globals of f in the new scope. This permits a simple operational understanding and
implementation of such freezing; if clause f with global g is inherited into h, then the

frozen value of g is implicitly inherited into A for use with all invocations of f.

2.2.3 Examples

This section illustrates the above presentation of the semantics by discussing spe-
cific examples, including those given in §1.2. It also shows possible operational inter-

pretations of the examples.

Consider the program Sums of §1.2. As no freezing is used in this program, it can
be regarded as an LX1 program. The meaning of the program can be determined using
the semantic description contained in §2.2.2.2.3 (“The meaning of a clause in LX1”). It
is determined pointwise, first finding [[result]lp in Egym,, the environment established
by Sums, at time 0. The environment Egy,,, associates histories with the variables

result, sum and n; because there is no freezing, Egym, is equal to Eg-um‘. The history
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associated by Egyum, With the global n is determined by the environment of definition
of n; n is external to the program, hence [n]] is regarded as being established by some
input medium. For a given [[n]], [sum] and [[resuit] can be found which satisfy the

definitions of the program; using the values given in §1.2,

ES ms(m) = (2,7, 3, 6,...)
E%, n,(sum) = (2,9,12,20,...)
ES, n(result) = (2,9,12,20,...).

Hence, [Sums]o = 2, and subsequent values can be found similarly.

It was mentioned previously that an LX1 program can be interpreted operationally
as a network of autonomous processes. It is possible to identify an arc of such a
network with a stream of values representing a history, and a node with an operator
which transforms histories; for example, the node next discards the first value which
arrives at its input, and transmits subsequent values unchanged. The program Sums
itself can then be regarded as a very simple network of one node which transforms a
history of values to a history of running sums. The node Sums can in turn be viewed
as a network, as shown in Figure 2.2a. This operational viewpoint is described in more

detail in [Wad81, Pil83], and discussed in §7.3.

The program NM of §1.2 contains a define clause. In subsequent discussion, result
will be subscripted to indicate the associated clause use; for example, resulty s is the
variable result in the main program. As in the previous example, [NM]] can be
found by determining [resultyasllo, [resultyarlli, and so on. The environment Epps
associates histories with a and resulty s, and a history function with SqRf; as noted
previously, it is convenient to consider [SqRt(a)], the history denoted by the clause
use SqR{(a), rather than the history function. For convenience, [SgRt(a)] is written
as SR. Because there is no freezing in the main program, these histories are the same

for E(J)VM’ EJIVM’ and so on.

SR is defined as [resultsp]] in an environment established by SqRt instantiated

with actual parameter a. Thus, to determine SRy, it is necessary to find [[resultsp]lo
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in an environment Eg- R which freezes a at time 0. One such environment is:

ESp(r) = (4,4,4,...)
[allo
EQp(z) = (1,25,205,2006,2,...)
EgR(Count) (1,2,3,...)
E%p(resultgp) = (4,4,4,...).

Subsequent values in SR are determined by considering environments in which [r] is

associated with [[a] frozen at different points; for example,

(16,16, 16,...)

[a]:

l?%R(')

The operational interpretation of SgRt as a nested iteration was discussed in §1.2.

Next consider the following recursive LX1 program:

prog U;
Int x, upn; bool p;
define upn(bool a, int b);
resull = b fby W first a
then upn(next a, next b)
else upn(a, next b)
elf
edefine;
p = true fby not p;
x= 0 fby x+1;
result = upn(p, x)
eprog

To find [[U], it is clearly necessary to determine [[resulty]] pointwise. Consider time

0; the environment E% gives meaning to p and z thus:

(t,f,t,f,...)
{(0,1,2,,3,...).

Ef(p)
E}(z)
Consideration is now given to finding [Jupn(p,z)] at time 0. The abbreviation UP
is used for [Jupn(p,z)]. The value [resultyp]lo must be determined in an inner en-
vironment EJ;, which associates [[p] and [[z]] with a and b respectively. From the

definition of resulty p, it can be seen that

[resulty pJlo= [t]lo = [zl = 0.
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It is thus unnecessary to elaborate E?] p further.

In the case of E%I, p and z have the same meaning as before, because they are

unfrozen variables of U. Similarly, E%, defines a and b as above. Noting that, in E};,
first a = [p], = true
and applying the definition of fby, it can be seen that
[resultyp]i = [upn(nexta,nextd)o

which shows that it is necessary to determine the history which EIUP associates with
a recursive clause use. It is convenient to regard this use as introducing a new copy of
the clause defining upn, which can then be instantiated with actual parameters next a
and next b, in much the same way as the outer use of upn. Appropriate environments
can then be found in the manner described above. Letting upn_1 be the name of the

copy, and UP1 abbreviate Jupn_I(next a,next b)]], the requirement is to determine
[resuityply = UPIy.
EY p, associates [next z]] with b, hence
UP1g= [[resulty p1]lo = [8]o = [mext z]oz; = 1.
The clause upn can be viewed as the network shown in Figure 2.2b. In Figure 2.2b,

the internal node upn can be regarded as expanding to form a copy of the network

when it is triggered for the first time; see [Wad81, Pil83].
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(a) Program Sums

b a

(b) Clause upn

Figure 2.2. LX programs as networks.
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2.2.4 Discussion of language design

The design of a new language was not a primary goal of the research reported
in this thesis. Rather, the intention was to take the language Lucid and perform
experiments aimed at examining the practicality of implementing it in a data flow
environment. Because the Lucid literature current at the time these experiments com-
menced did not define the language in concrete terms, ! it was necessary to consider
some aspects of language design. In particular, it was decided to examine a strongly
typed variant of Lucid. The two most important design decisions are now considered

in turn, firstly strong typing, and secondly clause structure.

The language LX is strongly typed; a design goal was to require static determi-
nation of the type of any expression written in the language. The principal reasons
are those often put forward by proponents of strong typing in conventional languages,
namely the advantages of requiring a programmer to declare the intended manner of
usage of each identifier, and the ability of a compiler to check that every use of an
identifier agrees with this declaration. A consequence of this decision is that histories
are homogeneous—every value in the history denoted by an expression must be of the

same type.

Although opportunities to write LX programs of significant size have been limited,
it seems likely that the advantages and disadvantages of strong typing in LX generally
will be similar to those encountered in other block structured languages. In particular,
the general appearance and structure of a typical LX program bears a strong resem-
blance to programs in such languages. Further investigation is required before more

substantive statements can be made.

Type constraints are responsible for the somewhat limited list structuring facility
of LX, which permits specification of only linear lists in which a list cannot include a
list as one of its elements. LX is a strongly typed language, requiring that the type of

any expression be determinable statically. A problem associated with a more general

1 This was true when an early version of LX3 was developed in 1978, but not when LX was designed
in late 1982; however, the earlier design formed a satisfactory starting point for further development.
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list structuring facility is that a list element can be either an atom or a list, that
is, a value of either a basic type or a structured type. For example, the type of the
expression hd z depends on the value of z. As an investigation of typing schemes was

not a primary research goal, this issue has been left unresolved for LX.

Other variants of Lucid use different approaches to typing. pLucid [Fau83] requires
no declaration of the type of an identifier; an identifier denotes a history of values,
which need not be of the same type. Consequently, little compile time type checking
is done, and histories are heterogeneous. Denbaum [Den83] requires that histories
denoted by identifiers in ANPL be homogeneous, and that the type of an identifier
be known at compile time, but does not require a type declaration for each identifier.
Instead, only the types of the “input” identifiers (those which denote histories of values
supplied externally) need be declared, and a type inference algorithm is used to deduce

the type of all other identifiers.

LX uses clause oriented syntax for functions, but uses one kind of clause, in con-
trast to other clause oriented variants of Lucid, namely Clause Lucid and ANPL,
which have several different kinds of clause. Precisely the same clause semantics can
be achieved in LX as in the other languages by using the freezing option appropriately.

The syntactic use of one kind of clause in LX thus seems a desirable simplification.

Clause oriented syntax is used for two principal reasons, firstly, clauses provide
a convenient mechanism for placing the declarative information required in LX for
parameters and globals. Secondly, it is felt (somewhat subjectively) that clauses en-

courage structuring of a program into units of a “reasonable” size.

The use of phrase oriented syntax in Structured Lucid (the valof phrase) and pLu-
cid (the where phrase) reflects the evolution of these languages from Landin’s “ap-
plicative expressions” embodied in the language ISWIM {Lan66a]. However, LX clauses
can be transformed directly into Structured Lucid or pLucid phrases. Transformation
from Structured Lucid to LX, and from pLucid to LX is a little more complicated

because each allow “anonymous phrases” as components of expressions, and use a dif-
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ferent syntax for specification of freezing; syntactic transformations can be defined,

but a complete discussion is beyond the scope of this thesis.

2.3 Operational Views of LX

One operational view of a Lucid [AshW76, AshW77a, Pil83], and hence of an LX,
program is as a network of processes or coroutines; this view was described briefly in
the preceding section. It is due to Asheroft and Wadge, and its relationship to the

operational views used in this thesis is further explored in §7.3.

Another operational view identifies the definitions of a program with particular
aspects of a loop [AshW77a]. An advantage of this approach is that it permits efficient
implementation, but it is restrictive in that not all programs (for example, those which
use the wvr_then_ewvr or the upon_then_eupon operators) can be interpreted nat-
urally in this way. In §2.3, LX3, a further subset of LX, is defined, with restrictions
which make it possible to interpret all programs in terms of loops. The implementation

of LX3 is described in Chapter 4.

The operational semantics of LX presented here is capable of describing all LX
programs. The semantic model is based on the notion that computation is driven by
the arrival of demands for particular values in the result history of the program. It
is an “information structure model” [Weg71], in which the semantics is described in
terms of transformations of appropriate structures; the structures used are described
below. Information structure models have also been used recently by Denbaum [Den83)

to describe the semantics of the Lucid-based language ANPL.

2.3.1 A demand driven operational semantics for LX

The purpose of the semantic model is to describe the propagation of a demand
through a program. The destination of a demand is regarded as being a point in the
text of the program, for example, it might be a clause, a definition, or an expression.
Computation is initiated by sending a demand to the program itself from an external

source; a demand carries a non-negative integer n, the demand number, the receipt of
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which means that the value [result]], is required. One demand must be sent for each

value of [[result] required.

An example is now given to illustrate the concepts of the model. Consider the
program OddNos of §1.2, and suppose that a demand number of 1 is received by the
program. The demand number 1 is propagated to the definition of result, thereby

demanding the value [result];, which equals [[i + 1];.

It is clearly necessary to determine 1;, hence the demand number 1 is propagated
to the definition of 4, and thence to the right hand side of the definition of ¢. The right

hand side can be viewed as an expression with the following structure

In this model, the operators of such a structure are regarded as transforming an in-
coming demand number, according to the nature of the operator, into one or mdre
demand numbers, which are sent to the operands of the operator. In this case, the
demand number 1 is sent to the operator fby. From the definition of fby, it can be

seen that

uinl = IIi + 2]]0

and the demand number 0 is propagated to the operator +. This operator acts point-
wise on its operands, hence the demand is propagated unchanged to each operand, so
that the value at time O of each of [i] and [[2] is demanded. The former can be seen
as propagation of the demand to another copy of the definition of ¢; a demand number
of 0 arrives at the fby operator of this copy. It is then transmitted to the operand 0,
a constant history which produces the value O in response to any demand. Thus, the

value of [[i] at time 0 is 0, and thus:

Ii+2]o=[lo=[2lp =0+2=2.
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The value 2 is then returned to the point from which it was demanded; the return of
values retraces the path of demands, and hence 2 is returned as the value [:]:, and 3

as the required value of the result of the program at time 1.

2.3.1.1 Specification of the model

The model specifies a demand transformation (DT) for each of the principal syn-
tactic categories of the language, namely PROGRAM, DEFN, CLAUSE, RHS, EXPR,
the various operators, and IDENT. The transformation specifies both the demands gen-
erated from the incoming demand number, and the destination of each such demand.
For example, the model specifies that a program transforms an incoming demand by

propagating it to the definition of result in the main program.

As mentioned above, the destination of a demand is regarded as being a point in the
text of the program. When the text is that of a clause, it is likely that demands will be
sent to the clause from several points of use in the program. To aid in distinguishing
between demands arriving from different textual sources, and from recursive clause
uses, the ﬁotion of an instance of a clause is introduced. An instance of a clause has
two components, firstly, the text of the clause, and, secondly, an environment table,

used to resolve uses of global variables and formal parameters.

Hence, the basic structures of the model are the demand and the environment

table. A demand is defined as a pair
( Num, Inst )

where Num, a non-negative integer, is the demand number, and Inst the instance
through which the demand is passing. Because this model concentrates on the flow of
demands, and is not concerned with the return of values, it is necessary to record only
the instance in which a demand currently resides, not the history of instances through

which the demand has passed.

Figure 2.3 summarises the relationships between the structures of the model. An

environment table (ET) has two components. The first, FreezeVal, contains the time

- .

.
S
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Figure 2.3. Relationships between structures of the model.

at which identifiers defined by the ET are to be frozen, if freezing is required. The

second, List, is a list with an entry for each global and formal parameter of the clause,

each entry taking the form
( Ident, User, Newldent )

where Ident is the name of the formal or global of the clause, User is the instance in
which the use of the clause occurred, and Newldent is either an introduced identifier or
an identifier. User and Newldent, taken together, identify a point (often a definition),
in the text of the instance User, which can be used in resolving a use of Idenf. An
introduced identifier, rather than an identifier, is used when an actual parameter is

an expression, E; in effect, it is an additional identifier, substituted for the actual

parameter, and defined with E as its right hand side.

DTs are defined by statements in a simple, imperative language with the following
Pascal-like constructs:

control primitives: sequencing

conditional (if_then_else, case)
repetition (for, while, repeat and forall)
assignment: =

compound statement: begin ... end.

The semicolon is used as a statement separator, and local variables are used as required,

without declaration.
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The construct
with ¢ do

where t represents an ET, is used, as in Pascal, to facilitate access to the components
of t. Dot notation may be used to access a component of a pair, and elements of the
list of entries in an ET can be referenced by identifier name. For example, ¢.List(z]

yields a {User, Newldent) pair corresponding to the identifier z.
The repetition construct
forall v in list do

defines a loop in which successive elements of the list are assigned to the variable v.
Lists of formal parameters and globals associated with a subject z can be referred to
as Formals(z) and Globals(z) respectively. A list Actuals of actual parameters is also

available; see §2.3.1.1.2 for details of its use.

To express the propagation of demands, the following primitive is available:
transmit D | envof INSTANCE ] to DESTINATIONS | yielding V |.

D is a demand or demand number, INSTANCE is an instance, DESTINATIONS a list
of points (see below) to which the demand is propagated, V is a variable, and square
brackets indicate optional components. Execution of the primitive causes the demand
to be propagated to the points named, in a manner dependent on the options specified,

as follows:

(i) if the yielding option is used, only one destination may be specified, and
the value computed in response to the demand is stored in the variable
specified;

(ii) if D is a demand, use of the envof option causes INSTANCE to replace
the instance component of the propagated demand, otherwise the instance
component is unchanged. Each destination is a point in the text of the
instance so determined; a point can be a definition, the right hand side of a
definition, or an expression;

(iii) if D is a demand number, the envof option must be used to specify the
instance component of the demand transmitted.
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The primitives Createlnstance(subject) and Create Table(inst) can be used, respec-
tively, to create an instance of the clause with the given subject, and return an empty

ET associated with the instance nst.

The primitive Class(ident) returns the class (local, global or formal parameter) of an
identifier, and the primitive Table(d) the ET corresponding to the tnstance component
of the demand d. The predicates Frozen(ident) and Subject(ident) indicate respectively
whether or not an identifier is specified as frozen, or defined as the subject of a define

clause.

2.3.1.1.1 Program

The DT corresponding to the syntactic category PROGRAM is shown in Figure
9.4. It is assumed that p, an identifier for the main program, is known to the DT; d
is the incoming demand (from an external source). The DT uses two local variables,
namely p1, which holds an instance value, and z, which is used as a control variable in
iterating over the list of program globals. The arrival of the demand triggers the DT, to
create an instance of the main program (p1) with an ET to service the demand. Each
entry of the environment table indicates that the User of the program is the external
instance by setting it to the special instance value external; the transmit primitive, if
given such an instance specification associated with a demand, causes the demand to
be propagated to the appropriate external “device” capable of handling the demand.
The incoming demand, d, is transmitted to the definition of result in the newly created

instance.

2.3.1.1.2 Definition

The DT for “definition entry”, given in Figure 2.5 below, must cater for both
simple equations and define clauses. Before examining the DT in more detail, it is
useful to consider the circumstances under which it is used. When an incoming demand
encounters an identifier in an expression (a leaf of the expression tree introduced in

§2.3.1), the demand is propagated to the definition entry associated with the identifier.
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begin
pl := Createlnst( p );
with CreateTable( p1 ) do
begin
FreezeVal := d.Num;
forall z In Globals( p )
begin
List[z].User := external;
List(z].NewIdent := z;
end
end;
transmit d eavof pl to result
end

Figure 2.4. DT for PROGRAM.

Associated with the tezt component of the instance corresponding to each clause of the
program, there is a definition entry for each identifier accessible within the clause. In
the case of a local, the definition entry is its definition, whereas for a global or formal,
it can be regarded as a unique “placeholder” for the identifier in the text of the clause.

The primitive Class is used by the DT to distinguish between such definition entries.

In the DT, the incoming demand is referred to as d, and the identifier defined
by the definition entry as z. The right hand side of the definition of a variable is
identified as rhs. If z is the subject of a define clause, information about the use from
which d was propagated is represented as ui, the instance in which the use occurred,
and Actuals, a list of the actual parameters associated with the use; Actuals(z) yields
identification of the expression which makes up the actual parameter corresponding to

a given formal 2.

If the definition entry is not that of a local identifier, the demand is redirected to
a definition entry in another instance, as recorded in the ET. The demand number is
changed appropriately if the identifier is frozen within the current instance. Redirection
is intended to propagate the demand one step closer to an instance in which the demand
can be satisfied locally; it is discussed further in §2.4.2. If z is found to be a local

variable, the demand is routed to the right hand side of the definition, within the same

instance.

If z is a subject, a new instance is created. The ET associated with this instance is
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begin
case Class(x) of
global, formal:
with Table( d ) do
begin
W TFrozen(x)
then d.Num := FreezeVal,
transmit d envof List{x].User
to List[x].NewIdent
end;
local:
if not Subject(x)
then
transmit d to rhs
else
begin
x1 := Createlnst( x );
with CreateTable( x1 ) do
begin
FreezeVal := d.Num;
forall z in Formals( x )
begin
List{z].User := ui;
List{z].Newldent := Actuals{z]
end;
forall z in Globals( x )
begin
List{z].User := d.Inst;
List|z].Newldent := z;
end
end;
transmit d envof x1 to result
end
endcase
end

Figure 2.5. DT for a definition entry.

created with an entry for each formal parameter and global identifier of the definition.
An entry for a formal parameter records the introduced identifier corresponding to the
actual parameter, in the instance of use. Note that the DT is executed in the instance
i in which z is defined as a local, which is not necessarily the instance in which z is
used. It is assumed that necessary information about the point of use is available to
the instance 1, as uf and Actuals. An entry for a global records the current instance,
reflecting the fact that uses of global identifiers are resolved statically. The demand d

is propagated to the definition of result in the newly created instance.
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2.3.1.1.3 Right-hand-side and expression

Both a right-hand-side and an expression consist of operators and operands; for the
purposes of this model, a right-hand-side will be regarded as an expression. Asindicated
in the example above, an expression tree can be formed, in which the internal nodes
are operators and the leaves identifiers and literals; it is assumed that all expressions
are in tree form. In forming the tree, a use of a clause is regarded as a leaf, and not
expressed in terms of more primitive operations; propagation of a demand to actual

parameters is handled as described in the preceding section.

The simplest expression consists of a single node, either a literal or an identifier,

with no operator; this case is considered later.

If the expression is not a single node, it consists of an operator, and between
one and three operands, each of which is an expression. The demand is propagated
to the operator, and, depending on the nature of the operator, further demands are
transmitted to one or more operands. The DT corresponding to each operator of the

language is specified below.

In each case, it is assumed that the incoming demand is stored in the variable
d. Different notations are used in naming the operands, depending on the particular
operator. For unary operators, the operand is referred to as E. For binary data op-
erators, and the operator fby, the operands are named E; and E5. The operands of
the conditional are referred to as C (the condition), E; and E9 (the arms of the con-
ditional). For the operators asa_then_easa, wvr_then_wvr and upon_then_eupon,
the Boolean operand is named C, and the other operand, E. Propagation of demands

by operators is always within the same instance.

In the DTs which follow, local variables df and d2 are demand numbers, as distinct

from demands.

The DTs for data operators, ! and the conditional, are specified in Figure 2.6a.

1 Note that the semantics of the operators and and or differ from Lucid, which specifies them as
non-strict operators; here, it is assumed that all operands are defined. The implementation of non-strict
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unary data operators: transmit d to E
binary data operators: transmit d to E;, E;

conditional: begin
transmit d to C ylelding v;
itv
then transmit d to E;
else transmit d to E,
end

Figure 2.6a. DTs for data operators and conditional.

In §2.2, data operators were defined pointwise. Consequently, for all such operators,
the demand is propagated unchanged to each operand. The conditional, although
regarded as the pointwise extension of the triadic data operator if_then _else, is treated
differently. It is clear that a value need be demanded from only one arm of the
conditional, depending on the value of the condition. The demand d is propagated first
to the condition, and then, depending on the value of the condition, to the appropriate

expression; redundant computation is thus avoided.

For the special operators first, next and fby, the DT's are as shown in Figure 2.6b.
The operator first yields the value at time 0 of the history denoted by its operand,
hence a demand number of 0 is propagated, regardless of the value of the incoming
demand number. From the definition of the operator next, given in the previous

section, it can be shown that

[next F, = [Fli+1

where F is a factor. Hence, a demand number of d + 1 is propagated to the operand

of the next operator. It is apparent from the definition of the operator fby that
[E, fby E;]] = if t =0 then [E ]y else [E2];

where Eq and E; are expressions. Accordingly, a demand is propagated to either the

left or the right operand, depending on the value of the incoming demand number.

Consider the operator asa_then_easa, the DT for which is shown in Figure 2.6c¢.

semantics requires that computations for each operand be spawned in parallel; such a computation must
be terminated if it is found that its result is not required. It may be possible to implement this in data
flow systems of the type described in this thesis by passing signals through incremental parameter and
result structures (described in subsequent chapters), but further investigation is required.
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first: transmit 0 envof d.Inst to E
next: transmit d. Num + 1 envof d.Inst to E

fby: ifd.Num=20
then transmit 0 envof d.Inst to E;
else transmit d.Num—1 envof d.Inst to E,

Figure 2.6b. DTs for special operators.

begin
dl:=0;
repeat

transmit d1 envof d.Inst
to C yielding v;
dl:=d1+1
untll v;
transmit d1—1 envof d.Inst to E
end

Figure 2.6¢c. DT for operator asa_then_easa.

The DT demands values from the condition associated with the operator until a value
true is obtained; the variable d1 is used to store the associated demand number, which
is propagated to the second operand. It can be seen from the DT that

[C]i = faise, Vi<t and

[Cl; = true, i=t
where ¢ is the demand number (d1—1) sent to E. Hence, the DT correctly implements
the definition. The behaviour of the DT is independent of the incoming demand

number, which is consistent with the fact that the history yielded by asa_then_easa

is constant; the same value is produced in response to any demand.

The DT for the operator wvr_then_ewvr is given in Figure 2.6d. It was stated

in the previous section that, given
[wvr C then E ewvr] = X

then the history X contains those values of [[E]] for which the corresponding value of

[[C]] is true. It is clear that
Xo =[E];, X:=[E];,

where 1 is the first value such that IICI],- is true, j is the second such value, and so
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begin
di:= 0;
for d2:= 0 to d.Num do
repeat
transmit d1 envof d.Inst
to C yielding v;
dl:=d1+1
until v;
transmit d1—1 envof d.Inst to E
end
Figure 2.6d. DT for operator wvr_then_ewvr.
on. It follows that, to find X at time ¢, values of [C]] must be demanded until ¢ true
values have been found; the time, relative to [[C]], of this value should then be issued

as a demand to E. The DT shown in Figure 2.6d implements this interpretation.
Finally, the DT for upon_then_eupon appears in Figure 2.6e. Consider
upon C then E eupon

which yields a history, X. The behaviour of this operator is now described, based on
the definition in §2.2.2. The value of X at time 0 is produced immediately, from the
expression first E, which yields [E]lo. How the remainder of X is produced depends
on [[first E]), in that, if it is (the constant history denoted by) true, the remainder of
X is produced from the recursive application of the operator to the expressions next C
and next C. In effect, [E]j is released as a value of the result (X), and the histories
[C] and [E] are “advanced” one step before finding the next value in X. If first C
is false, the remainder of X is determined using the expressions E and next C. That
is, [EJlo is released, as before, but only [C] is advanced before finding the next value;
the same value of [[E]] will be released in the recursive application of the operator.
The overall effect is to form X by first releasing [[EJJo, and then to release one further
value for each value of [[C] ; if the value of [C] is true, the next value of [E] is
the value released, otherwise it is the same value of [E]] as was previously released.

From this, it follows that
X, = [E];, t>0

where 7 is the number of true values in
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[cTo, [C]y, --- . [CT.

begin
d2:= 0
for d1:=0to d—1 do
begin
transmit d1 envof d.Inst
to C yielding v;
If v then d2:=d2+1
end;
transmit d2 envof d.Inst to E
end

Figure 2.6e. DT for operator upon_then_eupon.

2.3.1.1.4 ldentifiers and literals

The DT’s which define the propagation of a demand from a leaf node of the tree
representation of an expression can now be presented. A leaf node can be either a

literal or an identifier. In the case of a literal, for which the DT is
literal: the demand is not propagated

the demand is absorbed, because it can now be satisfied, and the corresponding value
returned to the source of the demand, and used in some way. This model is concerned
with the flow of demands, and hence does not specify in detail how values are returned
and used, except when required in determining the generation of demands; similar
techniques could, if desired, be used to model the return of values from literals to the
source of the demand, and the transformation of values by operators. The technique

used in the implementation derived from this model is described in §5.3.3.5.
The DT for an identifier z is given by
identifier: transmit d to z.

The demand d is transmitted to the definition entry, in the current instance, for the
identifier. Its propagation from there is determined by the DT for a definition entry,

as described above.
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2.3.2 A loop based operational description of LX

An objective in the original development of Lucid was a mathematical description
of iteration; Ashcroft and Wadge state [AshW77a)

A Lucid program can be thought of as a collection of commands describing an

algorithm in terms of assignments and loops; but at the same time Lucid is

a strictly denotational language, and the statements of a Lucid program can

be interpreted as true mathematical assertions about the results and effects
of the program.

However, not all legal Lucid (and hence LX) programs can be broken down into simple
loops. Ashcroft and Wadge [AshW77a] cite an example to show this; the example is

given here in LX:

prog FACT;
int n, result;
n= T7fbyn-1i;
result =1fn< 1
then 1
else n * next result
eif

eprog
where result is defined in terms of its own future, and has the history
( 5040, 720, 120, 24,6, 2,1, 1, ... ).

The program cannot be translated directly to a loop which updates n and result at
each iteration. It is interesting to note that the definition of result expresses a recursive

control pattern, and can be translated into a recursive function.

By imposing restrictions on the language, it is possible to define a subset such that
programs written using the subset can be understood in terms of loops. This section
begins by stating restrictions imposed on LX to give the language LX3. An operational
description of LX3, in terms of loops, is then presented, followed by some explanation

of the restrictions imposed.

The language LX3 is similar to the language Lucid-W, implementations of which
have been described in [Wen81, Wen82]. The definition and description of LX3 differ

slightly from that of Lucid-W in order to relate it to the descriptions of LX and its
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subsets LX1 and LX2. The implementations of Lucid-W are similar to those of LX3

described in Chapter 4.

2.3.2.1 The language LX3

The following restrictions on LX define its subset LX3:

(1) First and next may only be applied to an inductive variable, at most once.
In LX3, they are attributes of an inductive variable (a variable defined with
a fby definition), and can only be used as qualifiers rather than operators.

(2) All globals and parameters must be specified as frozen.
(3) The operators wvr_then_ewvr and upon_then_eupon are omitted.

(4) The definition of resultin a define clause must be an equation using the asa
alternative on its right hand side. The definition of result in the program
clause must be part of a loop (see §2.3.2.2 for the definition of a loop).

(5) No identifier can be defined such that a value in the corresponding history
depends on a subsequent value in the history (that is, it cannot be defined
in terms of its own future). This restriction is stated more precisely later,
in terms of dependencies between identifiers.

(6) In defining an inductive variable, the first operand of fby must be a quiescent
expression (essentially, an expression which yields a constant history; see the

next section). ,

(7) Structures are omitted.

Each of these restrictions will be explained in more detail in the sequel.

2.3.2.2 An operational description of LX3

An LX3 program is composed of a set of definitions in any textual order (see
the example in Figure 2.7). The program in Figure 2.7 (adapted from Ashcroft and
Wadge [AshW77a]) defines 10 values of a sequence isprime, such that the j”‘ value
in the sequence is true if 25 + 1 is prime, and false otherwise. The computation of
“primeness” of a given n, where n is 25 + 1, 1s described in the body of the outermost

define clause.

The following histories satisfy the definitions of the program shown in Figure 2.7:
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prog PRIME;
Iint n; bool stop, isprime, result;
n = 3 fby n+2;
stop = asan > 20 then result easa;
result = isprime;
define isprime using n freezing all;
Int i;
bool idivn,result;
i= 21fbyi+l;
result = asa idive or (i*i > n) then not idivn easa;
define idivn usling n,i freezing all;
bool result; Int m;
m= 2=*ifby m+i;
result = asa (m > n) then m eq n essa
edefine
edefine

eprog

Figure 2.7. Program PRIME.

I»] (3,5 7,9 11,13 15,17,19, 21, ... )
[isprime]
=[resalt] (¢, t,t, fitst, fityt, fy...)
=[stop] (f, £, f, £ --- )

In the program, the definition
resull = isprime

indicates that the program returns the history [isprime]] as its result. The asa def-
inition of stop is an artificial device which serves two purposes, firstly, it specifies a
termination condition for the iteration which implements the main program, thereby
indicating that only a finite prefix of [result]), and hence of [n] and [isprime], is
required. Secondly, the use of result in the expression component of the asa definition
ensures that a dependency exists between stop and every variable of the loop, conform-
ing with the definition (see §2.3.2.2) of a loop in terms of dependency relationships.

This example is developed further in §6.5.1.

In LX3, definitions of inductive variables provide the basis for expressing iteration.
An inductive variable is defined by a recurrence relation, which can be written in the

form

1 = E,fby E,
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where E; and E3 are expressions. For example, the definition of n in Figure 2.7 is
n = 1 fby n+2
specifying that
firstn = 1
and
nextn = n+2

which can be understood as meaning that the initial value taken by n is 1, and, for a
given iteration of the loop of which n is a part, the value of n at the next iteration is

obtained by adding 2 to its current value.

When two or more inductive variables are specified in terms of each other, their
definitions form part of a single loop, with each inductive variable being updated on
each iteration of the loop. Execution of a loop is initiated, controlled and terminated
through the definition, in an asa definition, of a variable, dependent on other identifiers
of the loop; this variable can be regarded as the result of the loop. An asa definition

has the form
a =— asa C then F easa

where C is a relational expression and E an expression of the same type as the variable
a. C can be regarded as specifying the termination condition for the loop implied by
the identifiers upon which @ depends, and E as defining the result of the loop. In
Figure 2.7, the definition

stop = asa n eq 20 then isprime easa

can be understood as determining the value of stop (from §2.2.1, it can be seen that
[stop] is a constant history) by iterating a loop involving the definitions of stop, n
and isprime; the value of [[n]] is determined at each iteration as described above, and

each value of [lisprime]] determined as the result of a nested iteration (see below).
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The iteration continues until the current value of n is greater than 20, at which point
the current value of isprime is extracted as the value of the constant history denoted

by stop.

If the value extracted from a loop is used in the definition of another inductive

variable, then operationally the second loop will be executed after the first.

A loop can be defined as a set of definitions, constructed in the following way.
The first member is an asa definition defining a variable, say a; this definition specifies
the termination condition of, and value returned from, the loop. A variable is said to
depend on those identifiers which are used on the right hand side of its definition, and
a clause subject depends on the identifiers specified in the using list of the clause. The
definitions of those identifiers upon which a depends are added to the set of definitions
constituting the loop. For a given identifier £ included in the set, the definitions of
the identifiers upon which z depends are also added to the set. This process continues

until no more identifiers can be added.

It is often useful to distinguish three categories of variables within loops, namely
“inductive”, “quiescent” and “auxiliary” variables [AshW77a]. The inductive variables
are those which must be updated from one iteration to the next. Informally, an
expression is quiescent within a loop if textual analysis shows that it will evaluate to
the same value on each iteration of the loop; a quiescent variable is one defined using
a quiescent expression. The code for the evaluation of such variables can be placed
outside the body of the loop. Auxiliary variables are those which have definitions
expressed in terms of values known to one iteration. In Figure 2.7, n is quiescent
within the definition of tsprime, isprime 1s an auxiliary variable, and ¢, m and n are

inductive.

A parameterless define clause provides for the nesting of loops. It is written in

the form
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define b using x,y,z freezing all;
..... series of definitions....
result = asa C then E easa
edefine

where C and E are, respectively, a conditional expression and an expression. The list
of variables following the word using contains all of the global identifiers referenced
inside the define clause. A nested loop is invoked once for each iteration of the outer
loop, with the values of globals frozen, and thus constant during evaluation of the
inner loop. The series of definitions defines result; at each iteration of the outer loop,
the value of [[] at that iteration is determined from (the constant history) [resuit]
in the inner loop. This form of the define clause is analogous to the begin...end

notation [AshW76)], and the compute clause [AshW77b], of Ashcroft and Wadge.
Consider a variable a defined using a conditional expression:
a = if C then E; else E; eif.

In LX3, the variable a is regarded as being dependent upon all the identifiers used in

C, El and Ez.

In LX3, a parameterized define clause such as in the following example is inter-

preted as defining a mapping [AshW78], akin to a function in an Algol-like language.

define F( Int x, real y ) using z freezing all;
..... series of definitions....
result = asa C then E easa

edefine

In accordance with Restriction (4), result must be defined in the form shown. Consider
a use of such a clause in an outer iteration. Frozen values of actuals and globals are
passed to the clause, determining a constant history [[result]], used as the value of the
clause use in the outer iteration. In other words, the clause defines a pointwise function

of its arguments, similarly to an LX2 define clause.

Asheroft and Wadge [AshW77a, AshW76] present Lucid as a language in which

assertions can be made about the histories of variables, and give general rules for
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expressing these assertions as equations. If Lucid is regarded as a programming lan-
guage, then an implementation must be capable of coordinating the computations of
individual variables in such a way that the equations are satisfied. In designing the
implementation of LX3, it was considered important to find a compilation strategy
which was reasonably efficient in both compilation of source language code, and in
execution of the object code produced. The strategy adopted exploits the operational
interpretation of Lucid in terms of loops. For this reason, it was necessary to restrict
LX3 in such a way that straightforward transformations to iterative object code could
be used. The basic unit of an LX3 program is the loop, and each definition in the

program describes some aspect of one particular loop.

The restrictions imposed on LX3 are now discussed in this light, firstly consider-
ing language facilities for defining inductive variables. In conventional programming
languages, such as Pascal, a statement of the form “:=f(i)” can be used in a loop to
determine the “next” value of 1, that is, the value that s has during the next iteration,
in terms of its current value. LX3 goes a little further than this simple form, in that
it permits definitions to be expressed in terms of first and next values of inductive

variables, as in:

first sum = first j
next sum = sum + next j 1)

With definitions in this form, it is possible to distinguish first, next and current
attributes of an inductive variable. Thus, when we have first z (or next z), where
z is a variable, the use of the operator first (or next) is regarded as qualifying the
variable; however, this qualification can be made only once {Restriction (1)), so that, for
example, first next j is not permitted. In implementing the language, this approach
has the advantage that an inductive variable can be represented using a simple scheme,

details of which are given in Chapter 4.

Restriction (2) states that all globals and parameters must be frozen. This permits
define clauses to be understood as subcomputations; the outer iteration is frozen at

a certain point while the computation associated with the clause proceeds, yielding a
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value to the current iteration of the outer loop. Subject identifiers can be inherited,

for freezing of a subject is the same in LX3 as in LX2 (see §2.2.2.2.5).

The operators wvr_then_ewvr and upon_then_eupon are prohibited because
they are non-pointwise. If an operation on histories is pointwise, the result of the
operation at time ¢ can be determined from the values of the operands at time ¢. The
notion of a point in time thus corresponds naturally to an iteration of a loop, and,
if all operations used in the definitions of a loop are pointwise, computations for the
definitions can be grouped together and synchronized. The operators wvr_then ewvr
and upon_then_eupon cannot be easily understood in this manner. The operators
fby and asa then_easa are also non-pointwise, but, as shown above, they have special

characteristics which allow a simple iterative interpretation.

A use of the subject of a define clause yields a single value to the current iteration
of the outer loop. Hence, it is desirable that result be defined in the clause as a quiescent
variable. The additional restriction, that result be defined with an asa definition, is
imposed to permit simpler analysis of the clause into loops (see Chapter 4). In the case
of a program clause, it is not necessary for result to be quiescent, but it is required that
the definition be part of a loop. Hence, there must be an asa definition dependent on
result, thus satisfying the abovementioned requirement for loop analysis. It is for this

reason that the program PRIME of §2.3.2.2 defines the variable stop.

Restriction (5) is necessary because the values of a history are regarded as being
produced on successive iterations of a loop. The computation of a particular value is
always in terms of values already computed; this representation of a history does not
permit access to “future” values. It will be shown in Chapter 4 that the restriction can

be checked by analysing dependencies between identifiers.

Restriction (8) is imposed to simplify the loop schemes presented in Chapter 4. It
means that “first” values can only be defined in terms of the “first” values of other

inductive variables, or using a value returned from a loop using an asa definition.

Restriction (7), prohibiting the use of structures, is an implementation restriction.
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It can be lifted by including support for structure operations in the implementations

to be described in Chapter 4.

2.4 Relationship of the operational model to the mathematical semantics

This section is intended to answer the question of how the mathematical notion
of solution of a program corresponds to the computation specified by the operational
semantic model of §2.3.1. The notion of solution of a program [AshW76, AshW79b]
was explored in §2.2.2.2; it is the least environment which satisfies the definitions of

the program.

Consider the following analogy, which uses demand driven computation as de-
scribed in §2.3.1. An environment can be thought of informally as a table, each entry
of which associates an identifier with a history. Suppose that the initial demand car-
ries demand number 1, that is a request for ﬂresult]],-. Such an initial demand can
be viewed as a “probe” into an initially undefined environment associated with the
program, initiating computational activity which will assign a value to the element
of [result] which was probed, namely [[result];. The computational activity will
cause other history elements to be probed, the flow of demands determining which
ones. Thus, computation is related to the notion of environment by viewing the flow

of demands as a pattern of probes into the environment.

In this thesis, it is assumed that, when ﬂresultﬂ,- is computed under the demand

driven strategy of §2.3.1, the following statements about the pattern of probes hold:

(i) All history elements probed are defined in the least solution, so that no
attempt is made to initiate a computation not defined in the least solution.

(ii) All values probed are essential to the computation of [result]);.

These assumptions are supported by statements about demand driven computation in
[AshW77a), and by Cargill’s operational semantics of Basic Lucid [Car76]. It would, of
course, be preferable to develop the analogy formally and prove the required properties,
but that is beyond the scope of this thesis. Note that it is not assumed that a required

history element is only probed once.
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The notion of an environment as a table relating identifiers and histories is ade-
quate for a program made up of equations only, but is inadequate if define clauses
are used. However, the analogy can be stretched a little to cover this case. It has been
established that the meaning of a use of a clause can be established in terms of three
environments, namely the local environment of the clause itself, the environment of
definition of the clause, and the environment in which the clause use occurs. Its mean-
ing at time 1 in the environment of use is defined as [Jresult]); in a local environment
determined by the locals of the clause, in which the meaning of a global is fixed by the
environment of definition of the clause. The calculation of [result]]; can be regarded
as establishing a pattern of probes into the local environment, with occasional probes
into the environment of use, to determine the meaning of a formal parameter, or the

environment of declaration, to find the meaning of a global.

The ET of the operational model is related directly to the notion of mathematical
environment, abbreviated to ME. It can be inferred from the previous paragraph that
there is a ME assogiated with each clause use; similarly, in the operational model, there
is an instance ana an ET created for each use. A ME may freeze some of its variables;
an important parameter in freezing is the time ¢ at which [result] is evaluated; the ET
records this as FreezeVal. The “history” component of each entry in the ME is not
recorded directly in the ET; rather, the DTs of the model use the ET in computing

history elements which agree with those specified by the ME.

The remainder of this section demonstrates that probing is indeed performed cor-
rectly. In other words, it is shown that the demand transformations specified by the
operational model satisfy (i) and (ii) above; in particular, that the operational model
does not cause any unnecessary demands to be issued. Firstly, clauses with no global
variables or define clause uses are considered; all demand propagation is within one
instance. Consideration is then given to situations which require transmission of de-

mands between instances, namely uses of global variables and define clauses.

5
= = e
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2.4.1 Demand propagation within a single instance

Consider a program which uses only equations and locally declared variables. The
operational model specifies that an instance of the program clause will be created on
arrival of a demand, say for [[result]],-. All computation initiated by this demand will

be carried out within the program instance.

In this case, the computation of [Jresult]]; can be expressed in terms of the initial
demand number 4, and the DTs associated with the definitions and operators of the
program; no additional instances or ETs need be considered. Hence, to show that
no unnecessary demands are generated, it is sufficient to show firstly that the initial
demand is transmitted correctly to result, secondly, that the operator DTs correctly
transform demands, and finally that demands are transmitted correctly from a use of

an identifier in an equation to the definition of the identifier.

The DT PROGRAM (Figure 2.4) specifies that the initial demand 4 is transmitted
unchanged to the definition of result; this clearly agrees with the mathematical defi-
nition, which states that the value of a clause (here, the program clause) at time 1 is
[result]);. §2.3.1.1.3 includes some discussion of each individual operator DT, which
should be sufficient to show that demand numbers are propagated by the DT's only as

hecessary.

Consider the final requirement above. The arrival of a demand number 1 at a use
of an identifier z is a request for the computation of [[z]];. The operational model
routes the demand to the definition entry for £ and thence to the expression which

defines z; it is clear that the propagated demand has demand number 3, as required.

This explanation should convince the reader that demand propagation in this sim-
ple case is handled correctly. Subsequently, it is assumed that, once a demand for [[z]);
reaches the instance of local declaration of z, the local demand propagation mecha-
nism ensures correct computation of [[z]};. Hence, in discussing demand transmission
between instances, it is sufficient to establish that the demand is correctly delivered to

the instance of local declaration.

R
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2.4.2 Demand propagation between instances

Consider a demand for the value of identifier z at time 5. Propagation of the
demand to another instance is required if z is a local subject, a formal parameter or a
global identifier. The DT “definition entry” in §2.3.1.1.2 (Figure 2.5) is used frequently

in explaining this propagation, and will be referred to in this section as “DTy,”.

Suppose that z is a local subject. DTy, specifies the creation of a new instance of
the clause, and transmission of the demand to result in that instance. The latter ini-
tiates computation of [[result]);, which, for reasons mentioned in the previous section,
is consistent with the mathematical semantics. Correct construction of the ET com-
ponent is, of course, essential to the correct redirection of demands directed to formals

and globals in the new instance; this issue is addressed in subsequent discussion.

The case alternative “global, formal” of DT, specifies a single step in the redirec-
tion of a demand. Since only local definition entries initiate computation, it is necessary
to show that a demand is redirected to an appropriate instance of local declaration;
this is shown below. It is obvious that redirection does not cause any unnecessary de-
mands to be issued; from DTy,, it is clear that the redirection mechanism may change

the components of a demand, but never generates additional demands.

The redirection mechanism is also used to model freezing of globals and formals.
Three cases are now considered, namely unfrozen variables, unfrozen subjects, and

frozen variables.

2.4.2.1 Unfrozen variables

Consider the propagation of the demand from its arrival at z in the current in-
stance. It will be recalled that there is a definition entry for every identifier accessible
within a clause; it is assumed that the demand is transmitted correctly to the definition
entry. DTy, specifies propagation of the demand, with demand number unchanged, to

a destination recorded in the ET.

It is now necessary to examine the entries in the ET, established on creation of the

Te——
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current instance. Consider Figure 2.8, in which a demand for z has been propagated to
i;,, an instance of the define clause h. Suppose that the demand originated from the
use of f in line 1); clearly, the demand was transmitted through iy and g, instances
of f and g, before reaching z in i,. The destination of redirection of the demand
is determined by the ET of ij, established at instance creation. As indicated above,
instance creation occurs only on propagation of a demand to a local subject; hence,
i, was created by transmission of a demand from 4, the instance of local declaration
of h. Consulting DTy,, it is apparent that the ET entry for the global z in 4} is
(z, ig, z); hence, the demand is redirected to the definition entry for z in 4. A similar
argument can be used to show that the demand is then redirected to ty, the instance
of local declaration of z, and thence to the definition of z in ;. This establishes
that the demand is eventually propagated to the definition of z in its instance of
local declaration, with the demand number unchanged. This is consistent with the
mathematical definition, which makes it clear that an unfrozen variable should have

the same meaning inside a clause as out.

define [ ...
int x ...
define g using x ...
define h using x ...
int r;
= ..Xu..
edefine {h};
edefine {g};
edefine {f};
p= ..f.. 1)

Figure 2.8. A program which uses a global z.

Now consider Figure 2.9, in which z is a formal parameter of f. Suppose that a
demand has propagated to e, creating instance t., and thence to instances i and 4.
Suppose further that a demand for [f(a + )] at time i has arisen within ig, either

locally, or as a result of redirection. This demand triggers the creation of instance
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i;. Note that i includes a definition entry for /ab, an introduced identifier (§2.3.1.1)
equated to the actual parameter expression a+b. It is now shown that the demand is

propagated correctly.

define e ...
Int f;
define [(x) ...
int r;
I= .X..
edefine {f};

define h using f ...
define g using { ...
int a, b;
...f(a+ b)...
edefine {g};
edefine {h};
.<he.
edefine {c};

Figure 2.9. A program which uses a formal parameter z.

Firstly, consider [[f(a+b)]] , abbreviated FAB, as determined by the mathematical
semantics. Let Ee, Ey and E; be the MEs associated respectively with e, f and g. It
is required to find FAB; in Eg; to do this, [resulty4p]l; must be determined in Ej.
As there is no freezing, the meaning of the formal parameter z in Ey is o +08] as
determined in Eg, and the meanings of any globals of f are found from Ee, which is
the environment of declaration of f. It follows that [z]}; in E; is equal to [[/ab]; in
E,.

Hence, to show correct propagation of the demand beyond z, it is necessary to
establish that it is redirected, with demand number unchanged, to /ab in i, the ap-
propriate instance of g. The destination of redirection is specified by the entry for z
in the ET of i;. It can be seen, from DTy,, that this ET entry is (z, ig, /ab); thus,
correct redirection is achieved in one step. Note that DT;, assumes the availability of
us and Acluals; although the model does not make it specific, it is easy to see that this

information can be attached to the propagated demand on encountering the use of f
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(as is done by the implementation derived from the model; see Chapter 5).

2.4.2.2 Unfrozen global subjects

The subject f within g, as shown in Figure 2.9, is an unfrozen global. Mathemati-
cally, its meaning within ¢ is the same as its meaning within e. The operational model
is consistent with this definition if it can be shown that a demand directed to the use
of f in i, is propagated, with demand number unchanged, to i, the instance of local
declaration of f. Arguments presented in §2.4.1 above can then be used to establish

correct demand propagation to and from the identifiers of 1.

As f is a global of g inherited from A, considerations similar to those of §2.4.2.1
can be used to show that the relevant ET entries are, in 1y, (z, ig, z), and in 1p,

(z, 1¢, z). Clearly, these entries give the required redirection.

2.4.2.3 Frozen variables

Consider a demand for z at time ¢ within ¢, an instance of a clause g in which z

is declared frozen. The variable z may be either a global or a formal parameter.

Suppose that z is a global of g, that g is a local of clause f, and that [g(ay,. .., an]]
is to be found, within E, at time j. Mathematically, the meaning of z in Ey is specified

as
[z]: in E; = [[z];in E;, V.

Assuming the correctness of demand redirection, consider the changes of demand num-
ber specified by the operational model. The computation of [[g(ay,. . .,an]]j 1s expressed
as the transmission to the definition of ¢ of a demand with demand number j, creating
the instance 145 and its ET with Freeze Val set to j (see DTg,). It is apparent from DTy,
that any demand redirected from z will have its demand number set to Freeze Val, thus

satisfying the requirement established above.

Suppose now that z is a frozen parameter, and that ¢ is invoked from a clause h.

According to the mathematical semantics, assuming that [g(ay,...,an]] is computed
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at time j in Ej, the meaning of z is given by:
[z]tin E; = [a;]; in Ep, Vi

where a; is the actual parameter associated with z. Clearly, the demand number of any

demand redirected beyond z will be set to FreezeVal, which is equal to j, as required.

2.5 Discussion

The language LX differs from Lucid in several respects. The most significant of
these were discussed in §2.2.4. Some possible future directions for LX are discussed in

Chapter 7.

LX is a high level, nonprocedural language; the equations of a program define a
solution, rather than providing a recipe for a computation. There are usually many
possible ways to arrive at the solution; hence, there are many possible operational views
of LX. Chapter 2 has concentrated on two of these; it provides an operational model
which defines a demand driven computation of the solution, and it also describes a

view which permits certain programs to be understood in terms of loops.

The operational model used is an information structure model. It is well known
that such models are a valuable tool in providing abstract operational descriptions of
certain aspects of computational processes [Weg71, Joh71, Mar80, Den83]. Information
structure models describe computation in terms of transformations of basic structures;
different models are distinguished by choice of the basic structures manipulated. In
the case of LX, the mathematical definition encourages an intuitive view of compu-
tation based on propagating requirements to obtain values at certain times in certain
histories, starting with [Jresult]. It is apparent that the driving force in such a no-
tion of computation is propagation of the need to compute a value, and an important
attribute of each need is the time (index) at which the value is required. Clearly, a log-
ical choice for the basic structure of the model is a representation of a requirement, or
demand, with the index of the request, the demand number, an essential component of

the demand. This is the fundamental structure of the model; other structures, such as
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environments, are added, as components of the demand, to represent other important

information.

Two principal criteria were used in designing the transformations (DTs) of the
model, namely the need to describe clearly the propagation of demands in the course of
computation, and at the same time maintain a close association of events in the model
with the text of the program. In models of sequential computation, an abstraction
of the program counter is usually stepped through the program text (for example,
Johnston's “ip” [Joh71]), and events in the model thereby associated easily with specific
points in the text. An LX program is not sequential, but points in the text can be seen
to influence demands in different ways; an identifier affects direction of propagation,
whereas an operator affects both direction and demand number. The model therefore
associates a structure transformation with each syntactic category of the language,

providing a direct relationship between syntactic and semantic definitions.

The model accurately describes demand driven computation in LX-specific oper-
ational terms. It has several desirable characteristics: it is concise and abstract, it
describes the full language LX, it has been shown to agree with the mathematical

semantics, and it is tailored to data flow concepts.

The latter suggests that the model can provide the basis of a translator to data flow
graphs; the construction of such an implementation is described in Chapter 5. This is
the principal application of the model in this thesis. The model could be extended to
describe other aspects of computation; for example, it is suggested in §5.4 that certain

DTs in the model could be used to trigger events in a model of storage management.

It is not necessary to confine the model to LX. Its essential elements are demands,
and descriptions of their propagation. It should be possible to adapt these elements to
many situations where precise description of demand flow is relevant. For example, in
Chapter 7 it will be argued that input/output in data flow inevitably involves some no-
tion of demand, but does not necessarily require all computation to be demand driven.

A variant of this model could be used to specify such limited demand propagation.
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The notion of demand used in the model, while specifically tailored to LX, is
similar in many respects to that used in other demand driven models of computation.
Typically, demand driven computation is identified with graph reduction [TreBH82];
an operator coerces, or demands, the computation of its operands, reducing them
to values. The invocation of such a computation can be seen as the propagation
of a de:mand, which is thus identified with a recursive function invocation and return
control pattern. The model of LX extends the facilities available for controlling demand
propagation; the transmit primitive separates the invocation of a computation and the
return of a value, and several DTs (for example, that for asa_then_easa) implement
quite complex demand transformations. In short, the model transforms demands rather
than merely propagating them, and a DT may transmit several demands to obtain one

value.

The language LX3 stems from a very different operational interpretation of LX.
Initially, a decision is made to interpret programs in terms of loops, and the language
is restricted so that it is only possible to write programs which can be interpreted in
this way. In designing such a language, the restrictions must be considered carefully

to permit a suitable balance between expressiveness and implementability.

The loop based operational interpretation compromises the mathematical defini-
tion to some extent. It is required that all histories be computed in order of increasing
index, and that all values of a history up to the current index are computed in case
they are needed in subsequent iterations. Occasionally, values are computed which
would not be required in a demand driven computation. If this fact is accepted, LX3
can be seen as a different language for describing iterative computations (of course,
it permits function definition and use as well). It will be demonstrated in Chapter 4
that it can be implemented as such on both data flow and conventional von Neumann

machines.



CHAPTER 3

AN ABSTRACT DATA FLOW INTERPRETER

3.1 Introduction

One deficiency of the von Neumann model of computation is that it is difficult to
specify and utilize parallelism. The data flow model has been proposed as an alternative
which alleviates this problem. The basic principle of the data flow model is that an
instruction can execute as soon as the input values required by that instruction are

available; the parallel execution of many such instructions is implicit in the model.

Subsequent chapters of this thesis are concerned with the translation of LX to data
flow graphs. In this chapter, the data flow interpreter, used in each of the implemen-
tations, is described. The next section describes the model on which the interpreter is
based. A description of the interpreter itself is then presented; the chapter concludes

with a discussion of the relationship of the model presented to other data flow models.

An example of the execution of a data flow program is given in Appendix 2.

3.2 The data flow model

The data flow model used in this thesis is essentially that presented by Dennis
[Den81]. It is used because it provides an abstract description of a data driven com-
putation, at a level which does not require consideration of machine details, yet it
models most of the characteristics of data flow computers which are important in im-
plementing a higher level language. For example, it permits the construction of graphs
which use the basic operations common to all data flow schemes (data and structure
operations, and control operations), but does not express lower level details such as
generation of acknowledge signals [BroM79] or label manipulation [GurWG80]. In ad-
dition, it uses non-strict data construction operations, a concept used in many recent

data flow proposals to improve the efficiency of data structure manipulation and to

increase parallelism [Arv80, ArvI83, CalDP83.
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In this thesis, Dennis’ model [Den81], which uses only acyclic graphs, has been
extended with additional operation codes which permit the simulation of cyclic schemes
using tail recursion. This is done, firstly, because the translation schemes for LX3
presented in Chapter 4 are most conveniently expressed in cyclic form, and, secondly,

to permit comparison with other data flow models which include cyclic schemes.

A data flow computation is viewed [Den81] in terms of transitions between config-
urations, where a configuration consists of a state S and a set of activities A. The set
of activities models the set of instructions enabled for execution. The state is repre-
sented by a heap whose elements are function templates, function activations, and data
structures, all of which are described below. Given a configuration (S,A), a successor

configuration (S',A’} can be found by applying the function
Interp: State x Activity — Stale = set of Activities.

The function Interp describes the execution of some activity a by defining a new state,
and a new set of activities, which replaces a in the original set of activities, A. Thus:
S = Interpy(S,a)
A = Interpy(S,a) U (A—{a})
where a is an activity selected arbitrarily from A; the notation Interp; means “the
first component (the State) of the pair returned when Interp is applied to S and a”.
In summary, a state transition is performed by removing an activity from the set
of activities, and performing the instruction defined; this will generally involve the
creation of further activities, and changes to the heap. The Pascal program described

later is an implementation of the function Interp, with appropriate representations of

State and Activity, as described below.

It is assumed that a data flow program is written as a series of function definitions,
each of which can be expressed in graphical form. The nodes of a graph correspond to
the instructions of the program, and are numbered consecutively, as are the positions
of the associated input and output arcs, corresponding to operands and results respec-

tively. An end point of an arc is thus specified as a link, which is a pair instr.posn
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identifying an operand position of a given instruction; for example, 5.1 denotes the
first operand (either input or output, depending on the context in which it is used) of
instruction 5. An arc is represented by including a link identifying its consumer instruc-
tion at the appropriate output position of the producer instruction, and, redundantly,
by the presence of its producer link among the inputs to the consumer instruction.
A value can be of type integer, real, boolean, character, or a binary tree. There are
instructions for performing arithmetic and boolean operations, for controlling the flow
of values within an executing program, for producing constant values (the CONSTANT
instruction) and for replicating values (the IDENT instruction). Operations on binary
trees are supported. Instructions for function activation are also provided. Examples

of data flow graphs and their execution are given in Appendix 2.

As mentioned in §1.5, the firing rule is that an instruction is enabled when a value
is available on each input position; an instruction fires, or executes, some time after
becoming enabled, absorbing a value at each input position and producing a value at
each output position. In the case of the CONSTANT instruction, the input serves as a

trigger to produce the value specified by the instruction.

The control instructions of the model are TGATE, FGATE, SWITCH and MERGE.
The firing rules for TGATE and FGATE have been given in §1.5. The SWITCH instruc-
tion has identical inputs and enabling condition to the gate instructions, but transmits
the data value to either the T or F output arc, depending on the value of the control
input. The MERGE instruction used differs from that of §1.5; it has two inputs, and
fires on arrival of either input, transmitting the value on the output arc. It is poten-
tially non-deterministic, but in this thesis the manner of its use usually ensures that
its behaviour is deterministic. In fact, it is better thought of as identifying a shared

input arc used in a disciplined fashion, rather than as an instruction.

A graph, constructed from the instructions described above, is represented in the
data flow model as a function template (FT), which is essentially an array of instruc-

tions. Both templates and function activations reside on the heap; each heap object
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is identified by a unique identifier, or Uid. A function activation consists of the Uid
of a function template and space for the operand values of instructions. An enabled

instruction is called an activity.

The APPLY instruction creates a new activation on the heap from a function
template. Its inputs are the Uid of the FT to be activated, and actual parameter values.
The output link specifies the destination of the value returned from the activation. A
result is returned via a RETURN instruction in the FT; on activation of the FT, the
address of the APPLY instruction is transmitted to the RETURN instruction, which,

when executed, uses the destination address contained within the APPLY instruction.

Iteration is expressed as tail recursion, using the instructions IAPPLY, INCR and
RETURN. A loop is similar to a function in that it produces a result in response to
the arrival of a set of input values, the initial values of the loop variables. Hence,
a loop is represented as a separate function template, activated by execution of an
IAPPLY instruction with the initial values of the loop variables as parameters. The
INCR instruction, in a loop, uses the same inputs as’the IAPPLY instruction which
initiated the loop, and creates a new activation for a new iteration of the loop, using
updated values of the loop variables as parameters. A RETURN instruction 1s used to
transmit the result of the loop. It is executed only once for each loop, by the activation
representing the final iteration. The value is returned directly to the activation which
initiated the loop, rather than through all activations; to make this possible, the INCR
instruction passes on the address of the original IAPPLY instruction at the activation
of each new iteration. A more detailed definition of a loop in the context of this thesis

is given in §4.4.2.

The progress of a computation is modelled by changes to the heap. At the com-
mencement of execution, the heap contains all the function templates for the program,
and an activation of the “outermost” function of the program. No further function
templates will appear on the heap, because new functions, as distinct from function

activations, cannot be created dynamically. A function application or loop invocation
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results in the creation of a new activation on the heap, and return of results from
an activation causes deletion of that activation from the heap. Execution of other

activities causes transmission of values within an activation.

The model also includes operations for the creation and manipulation of binary
trees. The operations are defined to give tree structures an “early completion” se-
mantics, for example, elements can be selected from the tree before its construction 1s
complete; if the element selected has not yet been computed, the selection operation
is deferred until the element has been computed. Dennis points out that parameters
can be passed to a function in an ECDS; because the function can access parameters
before the structure is complete, function evaluation can commence with the arrival of
any parameter value, rather than waiting for all to arrive. This can give a significant
increase in parallelism of function activations, when compared to an APPLY operation
which waits for all its operands to arrive before commencing execution of the applied

function.

A binary tree consists of two components, called { and r. A component contains
either a value, or a queue listing the destinations of those instructions which have
attempted to select a tree component before it has been produced. The ECDS con-
struction operators are PAIR, MKL and MKR. The first creates an ECDS in which
both components are empty queues; each structure value is represented as a separate
node on the heap. The operators MKL and MKR each replace a queue with a value,
and forward the value to all destinations on the queue. The selection operators are L
and R, which select the appropriate component if it is a value; if not, the destination

links of the instruction are appended to the queue.

3.3 The data flow interpreter

This section describes in outline the structure of a Pascal program which interprets
data flow programs based on the model of computation given in the previous section.
The main purpose of the interpreter is to test data flow programs produced by the LX

and LX3 translators described in succeeding Chapters.
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The interpreter reads a data flow program from one or more sources, and then
executes the program. The next sections describe the input of programs and data to
the interpreter; the data structures used to represent the program and the heap, and
the simulated execution of the data flow program, are then described. Some example
programs, with a trace of their execution by the interpreter, are presented in Appendix

2.

3.3.1 Loading programs

A data flow program is a series of function templates, where each function template
is written in the form described in §3.2. Examples are given in Appendix 2, and in
Figure 3.1 below. The interpreter performs very little processing of the program text,
simply converting it into a suitable internal form, which is essentially an array of
instructions, with each array element containing information derived from a single line

of the program text; it is described in more detail below.

The translators described in subsequent chapters produce data flow programs in
the internal form, rather than as text. Consequently, the interpreter loads programs

in this form as well. It is also possible to load libraries of routines from several files.

3.3.2 Input of data

Two new instructions are used, namely START and FIN, each of which have one
input and one output operand. The START instruction is a means by which values are
communicated to the data flow program from the sequential environment in which the
interpreter runs. Although it is triggered in the usual way by the arrival of values at
its input, it ignores this input and prompts for, and accepts, a new input value from
the terminal, which is then transmitted as the output of the instruction. The START
instruction, because it has the side effect of accepting a value from the terminal, creates

an implicit data path from outside the data flow program to the activity.

It has been found convenient to submit programs to the interpreter with a more

or less standard driver program. Figure 3.1 shows the START and FIN instructions as
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used in the driver developed for testing the factorial program described in Appendix
2, providing a mechanism with which a function can be repeatedly invoked, accepting
input from, and displaying results at, a terminal. The program can be regarded as
driven by data at its input if the data is stored in a file, and the START instruction

modified to read from that file.

*»
(=]

Program driver

Ident 0
Return 5
Start 0.
Apply =
Ident 3
Apply =
Fin 4.1

End 0

Uid 0 - program driver FI

Uid 1 - factorial FT

D N WO
(S = )

Figure 3.1. A program driver.

If used indiscriminately, such a START instruction would compromise the data
driven character of the program. However, when used in the manner shown, it provides
a convenient means of admitting values to a data flow program as they are required,
simulating a queue of values at the input position. The means by which a similar effect
can be achieved in an “ideal” data flow environment will be discussed in section 7.4.
The FIN instruction displays its input operand on the terminal, and absorbs it; it is

used here to simulate a sequence of values produced by the program.

3.3.3 Data structures

Figure 3.2 shows Pascal declarations of some of the principal data structures used

by the interpreter. The declarations are derived from those given in [Den81].
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StateTyp =
record
Heap: HeapTyp;
NextUid: HeapSize; { HeapSize is suitable integer subrange}
end;
HeapTyp = array [HeapSize] of Node;
NodeTyp = (Ac, Fn, St);
Node =
record
case NTyp: NodeTyp of
Ac: (Actvn: Activation);
Fn: ( Func: Funtion);
St: ( Str: Structure);

end;
Funtion =

record
Nolnstrs: InstrNo; { InstrNo is suitable integer subrange}
Fn: array [[nstrNo] of Instr;

end;

Instr =

record
Op: OpType; { OpType enumerates all op. codes}
Constants: ValueArray; { any constant input operands}
NumIn,NumQut: Prange; { no. of inputs, outputs}
InCount: Prange; { no. of inputs reqd = NumlIn — no. constants}
Tgt: LinkArray; { each element is a destination link}

end;

Instance =

record
Opnds: Operands; { an array of values, one for each input}
Noln: Prange; { decremented as operands arrive}
Active: boolean; { has instruction been activated?}

end;

Activation =
record

Iter: integer;
Instances: areay [InstrNo| of Instance;
FuncUid: HeapSize;

end;

Figure 3.2. Some data structures of the interpreter.

The state of the data flow computation is recorded in a variable of record type
State Typ. The component State. NeztUid contains the next available Uid, a Uid being
represented by an integer value, incremented whenever a new heap node is acquired.
The state component State.Heap is an array of heap nodes. Ideally, the heap array
should be dynamic, but a reasonably large static array, combined with some simple

heap management techniques, has proved adequate for testing the LX implementations.
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A heap node is either a function template (Func), a function activation (Actvn), or
a structure (Str). The component Func implements a function template as an array of
instructions, where an instruction is a structured value containing an operation code

and other relevant information, as shown in Figure 3.2.

An activation is created whenever a function template is invoked. A function tem-
plate records the static aspect of a data flow program, whereas an activation contains
information pertaining to the dynamic aspect of a specific function invocation, namely
the Uid of the template from which the activation was created, an iteration number,
used for activations which represent loop iterations, and an array of Instances, isomor-
phic to the array of instructions of the template. Each instance contains those input
values which have already arrived, and a count of the number of inputs which have
yet to arrive before the instruction instance becomes enabled. Space is reserved for
one incoming value at each input position; because the data flow graph of the function
is acyclic, and a new activation is created for each invocation, at most one value can

arrive at any input, so there is thus no need for queue of values on an input arc.

An instruction instance is enabled when all required input operands have arrived;
as mentioned previously, an enabled instruction is termed an activity. All current
activities are recorded on a list, EnabledList, from which activities are selected for ex-

ecution. Each element of the list records an activation Uid and an instruction number.

The interpreter supports integer, boolean and structured values. A structured
value is represented as the Uid of a heap node. The node contains two components,
[ and r, each of which is either a value or a queue. Each queue element is, in ef-
fect, an interrupted structure selection activity, which, having attempted to access an
undefined structure component, is placed on the queue associated with that element
until the element becomes defined by a structure construction activity. As part of the
execution of such a construction activity, each interrupted activity is removed from
the queue, and its execution completed by transmitting the value to the destinations

specified by the suspended activity.
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3.3.4 The initial state

It was stated above that a data flow computation is viewed in terms of transitions
between configurations, each of which consists of a state S and a set of activities A. In
the interpreter, the former is represented by the variable State, and the latter by the

list of activities, EnabledList.

It is clearly necessary to define an initial configuration. Firstly, consider the heap
component of the state. The function templates used in the computation are supplied
to the interpreter, and entered on the initial heap. Structures are represented as heap

nodes, so any structure constants required are also entered on the initial heap.

At least one activation node must also be present on the initial heap to start a
computation. The interpreter prompts the user for identification of a function template
to be activated initially; alternatively, it may be convenient to adopt the convention

of initially activating the template at heap node 0.

The selection of initial activities from the initial activation could be carried out by
finding all instruction instances with all inputs available, and entering these instances
in the initial set of activities, EnabledList. To avoid making this search, the interpreter
assumes that instruction 0 of the initial activation is the only such instance, and enters
it on the activity list. It is then necessary to ensure that each function graph is
constructed such that all operations which would normally require no input arcs are,
in fact, triggered in some way, usually by the arrival of an output of operation 0. The

initial configuration is thus defined, and execution can commence.

3.3.5 Program execution

3.3.5.1 The execution cycle

The basic execution cycle can be described thus:
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while EnabledList is not empty do

begin
a <— an activity removed from EnabledList; ..(1)
Inputs <— input operands of a; ..{(2)
Execute( a, Inputs, Outputs ); ...(3)
transmit each value in Outputs to its destination; ..-(4)
end.

Inputs and Outputs are temporary storage arrays, holding, respectively, the input values
required by the activity, and the output values produced on execution of the activity;

Outputs[i] is the value produced at output 1 of the activity.

Steps (1) and (2) of the cycle are straightforward, representing the selection of an
activity for execution, and retrieval of its operands. Step (3) describes the execution
of activity a as mapping Inputs to Outputs; this step also causes changes in the state
of the computation. At step (4), output values are moved to the instruction instances
specified by the output links of a; any destination instructions which become enabled
are added to EnabledList, the list of activities. Steps (3) and (4) are now considered in

more detail.

3.3.5.2 The execution of an activity

Activities can be divided into two categories, according to their effect on the heap;
firstly, there are those whose effect on the heap is quite local as they cause values to
be transmitted to instruction instances within the same activation, thus affecting only
one heap node, and secondly, there are activities which can, in addition, change the
structure of the heap by causing nodes to be created or deleted. Arithmetic, character,
boolean and control operations are in the first category. The instruction APPLY causes
an activation node to be added to the heap, and is thus in the second category. The
operations RETURN, IAPPLY, and INCR, and the structure construction operation

PAIR, are also in the second category.

Figure 3.3 shows extracts from the interpreter which illustrate the interpretation of
typical activities in the first category. The examples are part of a Pascal case statement

which includes one case for each operation code. The integer addition operation has
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two input operands, and one output. It is interpreted by accessing the input values,
and computing the output value, as integers. For the operation SWITCH, the first

input is used as a boolean, and used in deciding to which output the second (data)

input should be sent.

Plus:
With Outputs[l] do
Begin { a value is stored in a variant record;}
VTyp := int; { VTyp is the tag, iv an integer variant}
iv := Inputs[1].iv + Inputs|2].iv;
End;
Switch:
Begin

If Inputs[l].bv then J:=1 else J:=2;
Outputs[J] := Inputs(2];
End;

Figure 3.3. Examples of interpretation of simple activities.

Figure 3.4 shows the interpretation of two activities in the second category, namely
APPLY and PAIR. Three phases in the execution of an APPLY operation are shown.
The inputs of APPLY are the Uid of the function template, and the parameter values
to be passed to the invocation. In the first phase, an activat.ion node is created on the
heap from the template Uid. In the second phase, parameter values are transferred to
the newly created activation, as follows. If n is the number of parameters, then, by
convention, the first n instructions of each function template are IDENT operations re-
sponsible for distributing parameter values to their points of use in the function. Each
parameter value is moved to the input operand of the appropriate IDENT instruction.
Each IDENT instruction thus becomes enabled, and is added to the activity list. The
third phase, FizRA, causes the address of the invoking APPLY instruction to be in-
cluded in the RETURN instruction instance of the activation as a “return address”, to
facilitate transmission of function results to the invoking activation when the RETURN

instruction is executed.

3? Sem—— L

e
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Apply:
begin
CreateActivation( Inputs{1] );
ActivatePars{ Inputs );

FixRA;
end;
Pair:
begln
with TempElt do { TempElt is an empty queue }
begin
ElTyp := que;
q = nil;
end;
with TempStr do { each component of TempStr}
begin { is an empty queue}
I := TempkElt;
r := TempkElt;
end;
AddStToHeap( State.Heap, TempStr ); { insert on heap,}
UidSt := State.NextUid — 1; { at node UidSt}
for J:= 1 to Instruction.NumOut do
begin
with Outputs[J] do
begin
VTyp := str; { tagof value, a}
strv := UidSt; { structure variant}
end;
end;
end;

Figure 3.4. Examples of interpretation of node-creating activities.

The PAIR instruction was specified above as producing a structure in which each
component is an empty queue. In the case PAIR of Figure 3.4, the first three statements
show the creation of such a structure value, and its insertion on the heap as a new
node. The for statement places a copy of the output value at each output position
of the instruction. The value itself is identified by its Uid; its Pascal representation

includes a tag to indicate that it is a structure.

3.3.5.3 The transmission of outputs

It will be recalled that each instruction in a function template specifies the num-
ber of outputs produced, and the destination of each. Each instruction instance also
contains space for its input operands, and includes a count, Noln, of the input values
yet to arrive. The final phase in the execution of an activity a is the transmission of

outputs to destinations, which proceeds as shown in Figure 3.5.

B =5
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for j:= 1 to number of outputs of a do
begin

i := instruction component of jth output link;
p := position component of jth output link;
with instruction instance i do
begin
copy Outputs|j] to input operand p; ..(1)
decrement Noln by 1;
¥ Noln= 0
then insert instance i onto EnabledList; ..(2)
end
end

Figure 3.5. Transmission of outputs.

The statement labelled (1) in Figure 3.5 models a value flowing along an arc of
the data flow graph. Statement (2) implements the construction of the set of activities

(mentioned in §3.2) which replace a in the succeeding configuration.

3.4 Discussion

3.4.1 Comments on the data flow model

The data flow model described in this Chapter uses acyclic graphs to define a set
of function templates which make up a data flow program. The principal advantage
of the model for this research is its simplicity, which is a consequence of its intended
use in a “semantic model for an experimental computer system” [Den81}. The factors

which contribute to this simplicity are now considered.

. Because graphs are acyclic, repetitive computation must be expressed using re-
cursion. This encourages the decomposition of programs into comparatively small
recursive function definitions, a process encouraged by the provision of function tem-
plates in the model. In [Den81], it is the textual view of an APPL program as recursive
function definitions which is of most interest; in this thesis, the more important view is
of the graphical function templates. Execution of such graphs is conceptually simple;
a graph is activated by the arrival of values at its inputs, data flows (in one direction)
through the graph, causing the execution of operations as operands become available.

An operation is either primitive, or a function invocation, which causes a new activa-
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tion to be spawned, conceptually by taking a copy of the graph of the function. In
other words, the view of computation is one of activations coming into existence as
required, and disappearing when they have fulfilled their purpose; in the model, an
execution of any particular operation in a particular activation of a graph can be seen
as a unique activity. It was demonstrated that buildin'g and designing an interpreter

for such graphs is quite straightforward.

Another simplifying property of acyclic graphs is that the arcs transmit at most
one value; the producer operation of an arc either fires once, or it does not fire at
all. Consequently, an activation was implemented simply by allocating a single storage

location for each arc in the graph.

3.4.1.1 Relationship to cyclic schemes

In this thesis, it was convenient to use a model which provided a concise, abstract
model of data flow computation, rather than a model which is arguably more closely re-
lated to machine concepts; the emphasis is on translation to data flow at the schematic
level. However, a significant aspect of Chapter 4 is the development of cyclic schemes
for the translation of LX3. The question of reconciling this with a model which is
fundamentally acyclic is best answered by considering relationships between the model

and those data flow models which permit cyclic graphs.

In a cyclic model, arcs are regarded as paths along which a sequence of values
can flow, and operations as “stations” which process streams of values. The semantics
of data flow operations given by Arvind et al in [ArvGP78] expresses this approach
more formally. In a sense, operations can be regarded as more permanent objects;
they continue to exist while processing many values, whereas in the acyclic model an
activity is transitory, and processes only one set of operands. In the cyclic model, it is
convenient to express iteration by permitting an arc to “cycle back”, as in the iterative
schemes of Chapter 4. Such models form the basis of promising efforts to develop
data flow machines [Den80, WatG82, ArvGP78|; they seem generally well accepted as

models suitable as a basis for data flow hardware.
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It has been shown that cyclic schemes have representations in the model of this
Chapter, by introducing special operations which, although using tail recursion, permit
iteration to be expressed with a scheme which is almost the same as an equivalent
cyelic scheme (see Chapter 4 for complete details of such schemes). In other words,
at a schematic level, the differences are very slight. Moreover, it is argued below that
schemes could be developed for the transformation of the abstract graphs suitable for

the interpreter described here into programs for a particular real machine.

3.4.2 Relationship of the model to data ﬂov; machines

In this section, consideration is given as to how the basic concepts of the abstract
model described in this Chapter might be identified with characteristics of proposed
data flow machines. It is hoped that this will give some insight into the place of the
model in the spectrum between data flow schemas [DenFL74] and hardware consider-

ations [DenM75].

The basic notions of the model are of state, activity and configuration transition.
The heap represents the significant components of the state, namely function templates,
activations and structures. Function templates provide storage for the instructions of a
program, in much the same way as the node store of the Manchester machine [WatG82]

or the activity store of the cell block architecture [Den80].

An activation represents a particular function invocation; it contains the Uid of
the function template, and storage for all input operands of that template. This is very
similar in concept to the instruction cell of some MIT proposals [Den80]. An activation
groups together all the operand values used by a particular function invocation; by
contrast, there is no such grouping in the Manchester machine. Values relevant to a
particular activation are identified by a common activation label, but are stored at any
position in either the token queue or the matching store. The Id proposal uses a similar
concept: a value belonging to an activation has four fields associated with it, termed
u, ¢, s and 1. The field u is the context, analogous to the activation Uid; ¢ is the code

block address, comparable with the function template Uid; s is the instruction number.
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Field 1 is the iteration number, used to match tokens belonging to same iteration. A
similar field is included for convenience in an activation node, but as each iteration
requires a separate activation, it does not have the same significance as in the Id or

Manchester models.

An activity is an enabled instruction, and is represented by the Uid of an activation
with an instruction number. This corresponds to an operation packet in MIT archi-
tectures [Den80]. In the Manchester machine, matching tokens leaving the matching
unit cause the node store to be accessed to obtain the instruction code and destina-
tion(s), and are combined with this information to form a package which represents

an activity.

Configuration transitions occur when an activity is executed; all data flow machines
have processing units which perform this function. New activities are formed as a
consequence of the execution of an activity; in the cell block architecture, result values
are routed to destination instruction cells, whereas in the Manchester machine new

values with associated activation identification are added to the token queue.

It is with structures that most difficulty arises in identifying the concept in the
model with machine proposals. Consider arrays as an example. In the model, an array
may be represented abstractly as a tree structure comprising a number of heap nodes.
In an MIT proposal [DenGT84], an array may be represented as “the set of values
conveyed at the same moment by a certain group of destination arcs”, and, in the
Manchester machine, as the elements on an arc, with the index field representing the
array subscript [WatG82]. Such low level, machine dependent descriptions of data are
utilized to gain greater efficiency from early data flow hardware. Higher level views of

data structures may become as efficient in the future [CalDP83, ArvI83].

3.4.3 Using graphs with a data flow machine

The translators, described in Chapters 4 and 5, generate graphs which can be

executed by the data flow graph interpreter. It is anticipated that these translation
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techniques would be applicable to the generation of code executable on specific data
flow machines. This section looks at extensions necessary to extend the techniques in

this way.

Two approaches are possible, either refinement of the code generator, or transfor-
mation of the graphs produced by the translator. As the latter is the more general
method, an assessment is now made of the extent to which graphs executable by the

interpreter correspond to programs executable on data flow machines.

Firstly, two of the more straightforward aspects of the transformation process are
considered. The arithmetic instructions of the interpreter are generic in that they
are applicable to both integer and real operands; it may be necessary to transform
them into type-specific instructions, as in the MIT static machine {Tod81]. An IDENT
instruction with multiple outputs would need to be converted to a series of instructions

with at most two outputs for the Manchester machine [GurWG80].

Iterative schemes are commonly used in data flow machines [GurWG80, ArvGP78].
As shown in §3.4.1.1, corresponding schemes can be developed using the model of this
chapter with only slight differences at the schematic level, it should be possible to
transform graphs based on such schemes into machine-specific cyclic code with little
difficulty. Function invocation and return should also be straightforward; for example,
the standard apply/return interfaces [GurWG&0] of the Manchester proposal could be

used to replace the APPLY operation of the interpreter.

Structure operations may, however, require substantial transformation, for the
reasons noted above. It would be interesting to explore the feasibility of developing
standard transformations between common modes of use of structures and machine-

specific representations.

3.4.4 Comments on early completion data structures

Early completion data structures are introduced to permit incremental ¢reation of,

and access to, data structures; this is achieved by separating the actions of creating,
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appending to, and selecting from, structures. However, when using these operations,
some care must be taken to ensure that the structures created are indeed functional.
For example, a structure may be created by a PAIR activity, and passed to two distinct
activations, each of which execute a MKL activity on the structure. The first to be
executed will succeed in replacing a queue with a value, and the second will fail because
the component is not a queue; thus, the value once assigned will not be changed, but
the value itself is determined by a non-deterministic “race” between the two MKL
activities. In this thesis, the instructions are always used in a way which ensures

functionality.

In §3.2, it was indicated that execution of a RETURN activity within an activation
causes deletion of the activation from the heap. It should be noted that such a scheme
is inadequate if the activation uses early completion data structures, because structure
operations may be pending after the result has been returned. One solution is to
require that the completion of such operations generate special signals which, together
with a signal from the RETURN instruction, indicate that the activation can no longer

generate activities.

It is noted in [Den81] that early completion data structures can be used to represent
tuples of arguments to, and results from, functions. Consequently, function evaluation
can commence with the arrival of any argument, and partial results can be returned
as soon as they are generated. As this facility was not essential for the aims of the

research, it was not implemented in the interpreter (see §7.4.1 for further discussion).

Other schemes, which do not depend on early completion data structures, have
been developed to permit incremental passing of argument values to a function invoca-
tion. For example, the code template for calling a function suggested by Gurd et al in
[GurGK&1] uses a trigger to initiate the the steps required to set up a new activation,
independently of the arrival of arguments. Caluwaerts et al [CalDP83, CalDP82] use
a similar scheme. Amamiya et al [AmaHMS82| pass incoming arguments through a

network of specially designed or-gates which detects the arrival of the first argument
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of a new function invocation, triggering the creation of a new activation.

Notions similar to early completion data structures appear in other proposals.
The I-structures of Arvind et al [Arv80, ArvG82], and the scheme of Amamiya et al
[AmaHM82|, were mentioned in §1.6.1. The Manchester machine provides a facility
for deferred access to an array element [WatG82]; a special matching function, termed
“preserve-defer”, preserves a complete array at a single node, and permits accesses
to be attempted before the array is formed; it does this by attempting the access
repeatedly, rather than by queueing the read request. Kishi et al [KisYK83] use a wait

queue to hold attempted read operations.



CHAPTER 4

THE IMPLEMENTATION OF LX3

4.1 Introduction

The traditional concept of assignment is not supported in the data flow model.
However, in implementing a high level language, the left hand side of an assignment
statement can be regarded as associating a name with an arc of a data flow graph,
and the right hand side as defining values which flow on that arc. Such a statement
is seen as definition of the value associated with a variable, rather than assignment
to a storage location; this notion has resulted in the development of single assignment
data flow languages [ArvGP78, ComHS80, GurGK81], in which a value is assigned to

a variable in only one place in a program.

LX3 is a language which permits only one definition of each variable, and hence can
be considered a single assignment language. Many proposals for high level data flow
languages permit programs to be built using iterative constructs, conditional definitions
and functions; it has been shown in §2.3.2.2 that an LX3 program can be understood

in these terms. LX3 must, therefore, be regarded as a potential data flow language.

In this chapter, an implementation is described which analyzes an LX3 program to
determine its constituent loops, and then constructs corresponding data flow graphs.
A data flow scheme corresponding to each LX3 construct is presented, the structure of
the implementation and the operation of its principal components are discussed, and
details are given of the techniques used in compiling code from the schemes. Finally,
LX3 is compared with other languages specifically designed for use with data flow

machines.

The results of the loop analysis of an LX3 program can also be used to generate
code for a sequential machine. Such an implementation is described, and compared

with the data flow implementation. The implementation is then compared with other
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Figure 4.1. A data flow scheme for a conditional definition.

compiler based implementations of Lucid subsets.

An example of program translation appears in Appendix 3.

4.2 Code schemes for LX3 constructs

In this section, it is shown how each LX3 construct can be expressed in the graph-
ical data flow language: these schemes provide the basis for compiling LX3. Later, the

implementation of the transformations discussed here is described in detail.

4.2.1 Arithmetic expressions

The generation of code for arithmetic expressions is expressed as actions associated
with the recursive descent analysis of the expression into terms and factors. Hence, the
schemes used are not significantly different from those in many conventional compilers,

and are not discussed further.

4.2.2 Conditionals

Figure 4.1 shows a data flow scheme for a definition of the form
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gz = if C then E, else E; eif
assuming that the expressions Ej, E2, and C are already compiled.

C, E; and E, are represented as boxes, with one input arc for each variable used
inside the network represented by the box. The result of C' is used as control input to
TGATE instructions for each value used by Ej, and to FGATE instructions for each
value used by Eg; hence, when the graph is executed, one, and only one, of E and Eq

1s executed.

4.2.3 Loops

The loop schemes used in this thesis are cyclic, for two reasoms, firstly, such
schemes have commonly been expressed in cyclic form in the data flow literature
[Den74, Ada71, GurWG80, AllO79], and secondly to ensure that the schemes developed
are usable with data flow machines based on cyclic models (see §3.4.1.1). The data flow
model implements a loop as an acyclic tail recursive function template; details will be

given in §4.4.2, of the transformation of the cyclic schemes into tail recursive form.

The essential requirement is a scheme for the circulation of values. For example,
the cyclic graph of Figure 4.2, termed a simple circulator, permits the indefinite circu-
lation of a single value, admitted to the scheme via the MERGE gate, and circulated
while lfalse values arrive at the gates shown. The MERGE gate used is the 2-input

instruction described in §3.2.

It is usually required that the value of a variable for a new iteration be computed
from that of the current iteration; this computation can be expressed as a data flow
subgraph inserted at the point labelled 1 in Figure 4.2. The resultant scheme, shown
in Figure 4.3, is called a circulator. A circulator is used to implement the computation
corresponding to the definition of an inductive variable in LX3. Henceforth, A is used
to indicate the circulator corresponding to the variable a, which, it will be recalled,

has history [a]-

Circulators may be linked together, as illustrated by the example in Figure 4.4;
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Figure 4.2. A simple circulator ' ﬂ t o

Figure 4.3. A circulator.

Figure 4.4. Interconnected circulators.
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here, the FGATEs of each circulator receive the same sequence of control values, and
a value from circulator A is used to compute an updated value in B. The dependency
of b upon a, and hence of B upon A, implies the existence of a cyclic scheme in which
A and B are components being driven by the same control values, and hence can be
regarded as iterating together. An LX3 loop can be implemented from interconnected
circulators, simple circulators and a subgraph representing the termination condition
of the loop; the latter produces a sequence of control values common to all gates of the

loop. The result of the loop is computed from values produced by the final iteration.

A generally applicable loop scheme must return to its initial configuration on
termination of a particular loop execution; schemes with this property are said to
be serially reusable [Rei78]. On termination, the FGATE instructions in Figures 4.2,
4.3 and 4.4 absorb superfluous values present in the subgraph and so ensure serial
reusability. It should be noted that, once transformed into an acyclic form suitable for
the data flow graph interpreter of Chapter 3, it is not necessary for loop schemes to be
serially reusable, because each loop iteration is a separate activation, which ceases to
exist once a value is returned from that iteration; any superfluous values also disappear.
A similar effect has been noted by Treleaven et al [TreHR82]. However, schemes used
in the implementation of LX3 are serially reusable, to ensure that all results derived

are also applicable to cyclic schemes in which the property is important.

In LX3, loops involve three categories of variables, inductive, auxiliary and quies-
cent (see §2.3.2.2). An inductive variable is updated on each loop iteration and hence
requires a circulator. An auxiliary variable usually defines an intermediate result, ex-
pressed in terms of values available within a single iteration, and its value need not
be circulated. Some quiescent variables are used in each iteration of a loop; a simple
circulator must be generated for each such variable to ensure that its value will be

available at each iteration.

Use of the circulator of Figure 4.3 is based on the assumption that the definition

of the next attribute of an inductive variable does not use the next attribute of any
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other inductive variable. Consideration is now given to the generation of circulators

when this restriction is lifted.

First consider the case when the value of an inductive variable depends on the
next value of another inductive variable of the loop. The example of Figure 4.4 is

used to explain how the definition
b = 1fby b+ nexta

is translated to a data flow subgraph. Circulators A and B correspond to the two
inductive variables, a and b. Suppose that C denotes the termination condition of the
loop, as determined by the appropriate asa definition, and that the loop is terminated
at some iteration N such that control value Cy is false and Cpny; is frue. Then ay
(that is, Ja] ;) and by are the final “current” values produced by A and B respectively,
and ap 4 is the value of next a when the loop terminates. It can be seen from Figure
4.4 that the arrival of C; permits the transmission, through the FGATEs of B, of b;_;
and a;, the values required for the computation of b;. Hence, the arrival of Cy 4
should absorb by and ap,; however, the FGATEs of A inhibit the production of
ay41, which, therefore, does not arrive at the FGATE labelled 1, so a superfluous
control value is left in the circulator B. Hence, in this situation, the FGATE 1 is not
required, as the value it is designed to absorb is never produced; in fact, the gate must

not be present if the scheme is to be serially re-usable.

A different arrangement of gates is required if ay4; is actually used, as, for ex-

ample, in the definition
z = asa... then 5+tnext a easa .. (2)

where the value ap,1 is needed to compute the result of the loop. In Figure 4.4, the
FGATEs of A are used to suppress the computation of ay 41, and, if they are removed,
the computation will proceed. However, FGATEs are then needed at 1, to absorb ay 1,
and immediately preceding the MERGE gate of A, to prevent a superfluous value of

ay+1 reaching the MERGE gate.



Section 4.2.4 Define clauses 114

If by 41 is needed in a computation, then ay 4 is also needed, because b depends
on a. In this case, a gating arrangement similar to that discussed in the preceding
paragraph is required for both A and B, except that the FGATE 1 is not required, as

ay 41 must be computed.

Thus it is necessary to analyze each use of the next value of an inductive variable a
and, in particular, determine whether or not ay 1 is required. With the results of this
analysis available for all the inductive variables of a loop, it is possible to formulate the
following rules for the generation of gates in a manner which ensures serial re-usability

of the data flow graph.

Associated with each inductive variable 1, is a predicate nplus(s), defined to be true
if the value iy, must be computed. For example, in definition (2) above, nplus(a)
holds because, when the loop terminates, the value of next a, namely ay 1, is required

to compute z. In general, nplus(s) is true if either of the following conditions hold:

e There is a quiescent variable z such that z is dependent, directly or indi-
rectly, on next s

e There is an inductive variable j such that nplus(y) holds and next j is
dependent, directly or indirectly, on next 4, and hence i) 41 is needed to

compute jy41-

The following four gating rules can now be stated. The last three rules refer to

two inductive variables a and b such that next b depends on next a.

(1) If nplus(i) holds, then an FGATE is needed immediately preceding the
MERGE gate in the circulator for 1.

(2) If (nplus(a) A nplus(b)) holds, then no FGATEs are needed on the next
network of either a or b.

(3) If nplus(a) is false, then nplus(b) must be false, and FGATEs are needed for
the next networks of both a and b, except that the uses of a implied by the
dependency of next b on next a must not be gated.

(4) If (nplus(a) A = nplus(b)) holds, then no gates are needed for a, and similarly
for b, except that uses of a must be gated.

4.2 4 Define clauses

The interface between an unparameterized define clause and the network which
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uses it, is defined by the data flow code of the clause, its set of global variables, and
its result variable. In this implementation, a function template is generated from the
clause, and linked into the enclosing network as a nested loop, using the loop activation

instruction IAPPLY.

Figure 4.5. Data flow schemes for a define clause and its invocation.

A parameterized define clause is similar to a mapping definition [AshW78], and
is compiled as a data flow function template. A use of such a clause is regarded as
an invocation of that template. Figure 4.5a illustrates the scheme used in compiling a
parameterized define clause; the box labelled B represents the data flow code generated
from the definitions of the clause, and the IDENT instructions the interface for passing

parameter values. Figure 4.5b shows an invocation of the clause.
4.3 Implementation of LX3

4.3.1 Structure of the implementation

The implementation is organized as shown in Figure 4.6. Syntax analysis is per-
formed using recursive descent techniques; within that framework, there are procedures
for identifier table maintenance, and for generation of primitive code. The source ana-
lyzer generates a function template for the main program and for each define clause;

it also produces an incomplete data flow subgraph for each LX3 definition, but it does
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not have sufficient information about loops to complete the generation of loop code,
a consequence of the lack of ordering of definitions in an LX3 program. The source
analyzer cannot determine either the structure of loops or which constants need to be

circulated in a loop; instead, it produces a dependency graph.

dependency
analyzer 4
code
depeg?ggﬁy template
source source code code final df graph i
ey e > generator c%de interpreter

Figure 4.6. Implementation organization.

The dependency analyzer traverses this dependency graph to determine the loop
structure of the program, and to determine the gating appropriate to individual circu-
lators within each loop. The results of this analysis are recorded on the code template

(described in the next section).

The code generator scans the code template and makes any necessary alterations
to the original data flow code produced by the source analyzer. Finally, the code
generator also determines from the resultant data flow code where triggers are required,

and generates triggering arcs for CONSTANT instructions from preceding instructions.

As indicated above, the language LX3 is such that a compiler must perform some
loop analysis before code generation can be completed. The dependency analyzer is
responsible principally for the analysis of loops, while the source analyzer and code
generator cooperate in performing the generation of code. In the sequel, the principal
data structures of the implementation are first described, and then the implementa-
tion of code generation for each of the above schemes is presented in detail. As the
dependency analyzer determines many of the actions required of the code generator,

it is convenient to discuss the implementation of these actions during the description
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type
idtablecell =
record
ident: alfa;
level: levrange;
charaddr: coderange;
deptr: {deplist;
nplus: boolean;
kind: (aux, quiescent, inductive);
gatelist: {deplist;
end;
deplist =
record
arc:
record
suc: idtableaddr;
attrl, attr2: 0..2;
end;
occ: Tocclist;
next: {deplist
end;
occlist =
record
lk: link;
next: focclist
end;
link =
record
instr: instrno;
posn: prange
end;

Figure 4.7. Identifier table structure.

of the dependency analyzer.

4.3.2 Principal data structures
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The identifier table, with an associated dependency graph, and the code template,

are the principal data structures of the implementation. Pascal type declarations for

the identifier table and associated types are given in Figure 4.7; those type declarations

left unspecified are declared as suitable integer subranges.

Consider the type tdtablecell shown in Figure 4.7. The ident field contains the

identifier. A level number is associated with each clause; the main program is at level

1, and the level is incremented for each inner clause. The field charaddr indicates

the first of the three contiguous characteristic addresses associated with the three
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attributes of the identifier. This field, which is allocated on creation of the table entry
for the identifier, holds the address of a data flow instruction from which values of the

attribute can be taken when required during compilation.

The dependency graph records dependencies between attributes of variables. Each
identifier appears as a node of the graph. A directed arc from node a to node b indicates
that an attribute of a depends on an attribute of b, the nature of the dependency being
shown by labelling the arc with an ordered pair of digits to represent the attributes of
its initial and final nodes; the first attribute is numbered 0, the “current”, 1, and the

next, 2.

For an identifier a, the field deptr of its identifier table entry is the pointer to its
dependency list. A dependency list element represents an arc of the dependency graph
(see Figure 4.7), and records the fact that a particular attribute of some identifier is
used in the definition of a; such a use may occur once or more in the definition, so a
sublist, the occlist, associated with each dependency list entry, records each point of
use in the data flow code. Both the dependéncy list and the ocelist are updated as the

source code definition is parsed from left to right.

The flag nplus implements the predicate nplus(s) defined in §4.2.3; the field kind is
self-explanatory. The gatelist is a copy of part of the dependency list for the identifier;
it contains the dependency list entries pertaining to the definition of the next attribute

of an inductive variable.

The code template is the interface by which the source and dependency analyzers
communicate with the code generator. The information contained in each entry is
largely inherited from the appropriate identifier table entries, namely ident, attributes,
characteristic addresses, occlist, gatelist and flag nplus. The template is structured
according to the level and loop structure of the program; markers separate the section
for one clause from that for the next, and, within each such section, additional markers
separate the contributions made by each loop of the clause. An example of a code

template is given in Appendix 3.
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Code generation is expressed in terms of a record description of an instruction,
an array of instructions containing the data flow code, and operations (implemented
as procedures) on this array. Operations are provided to generate an instruction, to
create an arc between two instructions, and to find the next available position for the

extraction of a value from a characteristic address.

4.3.3 The dependency analyzer

The primary function of the dependency analyzer is to determine the definitions
which constitute a given loop; the asa definition associated with each loop provides
the basis for doing this. As all identifiers involved in a loop must contribute to the
result defined by the asa definition, the variable z on the left hand side of the defini-
tion is dependent, either directly or indirectly, on each loop identifier. It follows that
all identifiers in the loop can be found by examining the substructure of the depen-
dency graph starting at z. Whenever this traversal encounters an asa definition, loop
analysis is invoked and continues while the graph traversal covers the substructure of
z. Lists of quiescent and inductive variables are accumulated during the traversal; the
concatenation of such lists from every loop of the program produces the code template.

The operation of the dependency analyzer is now described in more detail.

Note that, in an LX3 define clause, a use of a non-local variable does not imply
a dependency on that variable, because its value will be constant within the clause.
Thus, the dependency structure of each clause can be analyzed independently of the

rest of the program. The overall structure of the dependency analyser is as follows:

template <~ nil; { the code template }
for each clause of the LX3 program do
fixloop( r ).

r is the identifier table entry of the variable defined as the result of the main loop of
the clause. In the case of the program clause, r will not necessarily be the variable
result; it is the variable defined with an asa definition which is not used in any other

definition, for example, stop in Figure 2.7. The definition of the procedure fizloop is
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given in Figure 4.8, in which the template entry lv contains information about the

termination condition and result of the loop.

procedure fixloop( lv )
{ Iv is an identifier table entry representing }
{ a variable defined by an asa definition. }

{ The operator + is list concatenation }

var q,i : v_list { lists of quiescent and inductive variables }

begin
q <- nil; i <- nil;
searchtree( 1v ); { builds q and i}
template <— template + Iv +q + 1 =
fixgates( i ); { see text }
end

Figure 4.8. Definition of procedure fizloop.

The procedure searchtree, a local procedure of fizloop, is defined in Figure 4.9. It

is used to perform a breadth-first search of part of the dependency graph.

procedure searchtree( st )
{ st is an identifier table entry, representing }
{ the root of substructure to be searched }

begin
If st is defined by an asa definition
then If st <> lv then fixloop( st )

begin
for each node, nd, in the dependency list of st do

processnode( nd );
for each node, nd, in the dependency list of st do

searchtree( nd );
end
end

Figure 4.9. Definition of procedure searchiree.

The procedure processnode, local to searchtree, is defined in Figure 4.10. The
generation of a simple circulator is required to circulate the value of a quiescent variable
only if it is used by each iteration, specifically, in the definition of an auxiliary variable,
or in defining the next attribute of an inductive variable; if it need not be circulated,
the code generated by the source analyzer is adequate, and no action is required. Hence,

quiescent variables which require further action by the code generator are recorded on

the code template.

?,-? = S
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procedure processnode( node )

{ lists q and i are inherited from fixloop }
begin
It node corresponds to a quiescent variable
then
It value must be circulated in loop
then record node on list q
else no action required
else If node corresponds to an inductive variable
then

If dependency involves next attribute of node
then
begin
determine setting of node.nplus; { see text }
record node and nplus on list i
end
else
same action as for a quiescent variable
end

Figure 4.10. Definition of procedure processnode.

A second important function of the dependency analyzer is to implement the gating
rules given in a previous section. The dependency analyzer evaluates the predicate
nplus(s) for each inductive variable 1, and, when analysis of a loop is otherwise complete,
uses the dependency relations between each pair of inductive variables to determine
gating requirements according to rules (1) to (4) above, and record the predicate value
in the code template. The code generator, as it scans the code template, can then
determine whether or not to generate a gate for a particular use of an inductive variable.

A more detailed description of the techniques used is now given.

Within the dependency analyzer, the flag nplus associated with each identifier
table entry is set. As loop analysis proceeds, the processing of inductive variables
includes the necessary checks described in §4.2.3 to determine the value of nplus. In the
current implementation, these checks are incomplete, in that only direct dependencies
are checked; indirect dependencies did not arise in the examples tested, but their
inclusion would require only a list of identifier uses for each identifier table entry, and
some modification of the dependency analyzer. The value of nplus is recorded on the
code template element associated with the inductive variable; subsequently in the code

generator, if nplus holds, a gate is generated between the next network and the MERGE
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instruction of the associated circulator, and no other gates are generated (Rules (1),

(2) and (4)); otherwise further checks must be carried out, as described below.

The code template element for an inductive variable 1 includes the gatelist for 1,
which, as explained in §4.3.2, records that portion of the dependency list relevant to
the computation of next i. Also associated with each gatelist element in the template
is a flag which indicates whether or not a gate must be generated for the kind of use
specified. The code generator checks this flag as it scans the gatelist, and, if necessary,

generates a gate at each point of use specified in the associated occlist.

The procedures provided in the dependency analyzer for the implementation of the
rules of §4.2.3 are now discussed. As mentioned above, determination of nplus takes
place in the procedure processnode during dependency graph traversal. Rules (2) to (4)
are implemented primarily by the two procedures fizgates and fizarcs, the definitions of
which are shown, respectively, in Figures 4.11 and 4.12. It can be seen from Figure 4.11
that the default setting of the gate flags is changed by fizares, if necessary. Procedure
fizares is used to check for uses by inductive variable iv of other inductive variables, a

condition which causes one of Rules (3) and (4) to become relevant.

procedure fixgates( il )
{ il is a list of inductive variables }
begin
for each inductive variable, iv, of il do
begin
It iv.nplus
then set iv.gatelist.flags for no generation of gates
else
begin
set flags for generation of all gates;
fixarcs( iv.gatelist )
end
end
end

Figure 4.11. Definition of procedure fizgates.

4.3.4 Checking the subset restrictions

The definition of LX3 §2.3.2.1) states seven restrictions on LX. Restrictions (1)

??‘ Tl
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procedure fixarcs( g )
{ g is a gatelist }
begin
for esch element, y,of g
begin
it the variable identified by y is inductive
then
¥ y.nplus
then set flags appropriate to Rule (4)
else set flags appropriate to Rule (3)
end
end

Figure 4.12. Definition of procedure fizares.

to (3), and Restriction (7), are entirely syntactic, and can be checked accordingly.
Restriction (4), requiring the presence of an asa definition of result, can be checked at

the end of syntax analysis of a clause.

Dependency analysis can be used to check Restriction (5), which requires that no
identifier be defined in terms of its own future. In LX3, the only permitted access
beyond the current iteration is via the next attribute of an inductive variable; the
restriction is violated if the current attribute of a variable z depends, directly or
indirectly, on the next attribute of z. As dependencies between attributes are recorded
on the dependency graph, it 1s étraightforward for the dependency analyser to examine

such dependency chains. Circular dependencies can be checked similarly.

Restriction (6) is checked by examining each variable z in the expression defining
the first operand of fby; as clause subjects are not quiescent, they are excluded by this
restriction from such expressions. Each variable in the substructure of the dependency
graph starting at z must be either qualified by first or defined by an asa expression,
or be dependent directly or indirectly, on only such variables. This restriction can be
relaxed by extending the implementation, but this was not found necessary for the

investigations reported in the thesis.

—rap——-
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4.4 Generation of dsta flow code

4.4.1 Conditionals

It can be seen from the conditional scheme of Figure 4.1 that each input to E; or
E, must be gated, and that in providing these gates the set of input variables to each
of E; and Eq, and their points of use, must be determined. Sufficient information is
recorded on the dependency list and its associated occlist to permit these gates to be

generated by the source analyzer.

In finding the sets of input variables and their uses, it is necessary to determine
which occurrences were added during compilation of C, Eq and Es. If Ig, is the set of

input variables to Ey, and O, the variables in occlist after Ey has been parsed, then

Ig, = Og,-Oc¢

IE2 = OEg_OEI_OC-

The fact that the dependency list is built during a left to right scan of the definition

simplifies the computation of these sets.

In providing gates for input variables, it is simplest to gate each use of a variable,
but this causes an unnecessarily large number of gates to be generated. Hence, a more
economical method is used, generating one gate for each input variable, and using an

IDENT instruction to distribute the gated value to each point of use.

4.4.2 Loops

As discussed above, the source analyzer generates circulators and other data flow
code for the individual definitions of an LX3 loop, and the dependency analyzer de-
termines the overall structure and gating requirements of the loop, recording this

information on the code template.

An inductive variable 1 is defined using the fby construction. The source analyzer
generates part of the code required by the circulator scheme of Figure 4.3, namely the

code for the expressions defining the attributes, the MERGE gate, and links to the data



Section 4.4.2 Loops 125

inputs of the MERGE gate. The gatelist is also constructed. When an asa definition
is encountered, the source analyzer generates code for the expressions defining the
condition and result specified. All gates and control links are generated by the code

generator, as described previously.

The transformation of such a loop into the tail recursive form required by the
data flow model is now discussed. As discussed in §3.2, a single instruction, IAPPLY,
is used to admit the initial values of all circulators into the loop; the loop itself is
a separate FT, activated by the execution of an IAPPLY instruction with the initial
values as parameters. A new iteration is set up, not by linking the next network to the
MERGE gate to form a cycle, but by sending the updated value of each circulator to
a single INCR instruction, which creates a new activation for the next iteration, with
the updated values as parameters. A RETURN instruction is used to return the result

of the loop.

To effect the transformations required, the cyclic loop scheme is modified as follows.
IAPPLY, INCR and RETURN instructions are generated. The output from the first
network of each circulator is linked to an input of the IAPPLY instruction. The IAPPLY
instruction, when executed, passes its parameter values into the FT in the same way
as an APPLY instruction; hence, within the FT, an instruction which delivers the
appropriate parameter value replaces the first network. Similarly, the ares which
transmit updated values to the separate MERGE instructions of each circulator are
removed, making the graph acyclic, and connected, instead, to the appropriate input
of the INCR instruction; transmission of these updated values to the next iteration
is accomplished by the parameter passing mechanism. Finally, the instruction which

delivers the result of the loop is linked to the RETURN instruction.

Note that, subsequently in the thesis, the term “circulator” is used in reference to

both the cyclic and equivalent acyclic schemes.
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4.4.3 Define clauses

A define clause introduces a new level of lexical scoping in an LX3 program.
Hence, a new level is allocated in the identifier table, and the local variables of the
definition included at that level. The list of definitions which makes up the body of

the clause is compiled using the techniques discussed so far.

Each variable included in the using list of the clause is quiescent inside the clause,
as its value is frozen within the inner loop. This effect is achieved by adding to the
identifier table for the clause, a new entry for each such variable, and marking it as
quiescent. Each such entry has a new characteristic address, from which the input
value of the variable is sent to each point of use within the network for the clause. The
appropriate values are transmitted to the clause, and thence to the new characteristic

addresses, when the data flow graph representing the clause is invoked.

Clause subjects on the using list are treated slightly differently. Consider an
inherited subject f. The frozen values of its globals must be inherited implicitly, as
explained in §2.2.2.2.5. This is implemented by replacing the identifier f on the using
list with a list of its global identifiers; the process of replacement continues until no

subject identifiers remain on the using list.

It will be recalled, from §2.3.2.2, that an unparameterized LX3 define clause is
viewed operationally as a nested loop, whereas a clause with parameters is regarded
as akin to a function. Consequently, in implementing clause invocation, the two cases

are treated differently.

For an unparameterized clause, the input interface is formed by linking the old
characteristic address in the enclosing network to an IAPPLY instruction which acti-
vates the nested loop, and thence to the new characteristic address, making it possible
to pass input values to the network for the clause. The result interface is formed
by linking the IAPPLY instruction to the characteristic address of the variable being
defined, so that the result of the nested loop is passed back to the enclosing network.

Note that direct linking of a subgraph in this fashion is shown to greater advantage
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in a cyclic scheme, where it permits a nested loop to be used without the overheads of

function application [ArvGP78, GurWG80].

For a parameterized define clause, an APPLY instruction is generated each time
the clause is used in the text of a definition. Input links for parameter values and
values of variables on the using list are linked directly to the APPLY instruction. The

output of this instruction is directed to the point of use of the clause value.

4.5 A Sequential ]mplementa_tion of LX3

The implementation structure described above can also be the basis for the transla-
tion of LX3 into a sequential target language. A description of such an implementation

is now given, with emphasis on the differences from that described above.

4.5.1 Target language

To avoid undue emphasis on the details of code generation, it was considered desir-
able to choose a simple target language. It was thus convenient to use the instruction
set of the PL/0 machine, described by Wirth [Wir76], as the target language. This
instruction set is simple, sufficiently powerful for the purposes of this experiment, and

a suitable interpreter was readily available at the time.

The PL/0 machine has a stack oriented architecture. Its instruction set includes
instructions for transferring words between top of stack and memory, instructions for

stack maintenance, jump instructions and arithmetic and relational operations.

4.5.2 Structure of the implementation

The source analyzer builds a dependency graph, as described above. It also pro-
duces a piece of code for each definition in the program; these pieces of code produced

by the source analyzer are unordered.

A major function of the dependency analyzer, in addition to loop analysis, is to

determine a suitable order for the execution of code. The code template is used to
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indicate where each of the previously generated pieces of code is to appear, and where

code needs to be added to ensure correct execution of loops.

The code generator uses the code template to rearrange the pieces of code gen-
erated by the compiler in an appropriate order, with some additional code for loop
control. The result is ordered code, in a form suitable for execution on the PL/0

interpreter.

4.5.3 Principal data structures

The principal data structures used are, as before, the identifier table, incorporating

a dependency graph, and the code template. Differences are now explained.

The characteristic address field of the identifier table is interpreted as the address
of a group of three locations used to store the values of the first, next and “current”
attributes of an inductive variable; for other variables, only the “current” attribute is
defined. The code address field stores the address of the piece of code generated from
the definition associated with the identifier; this piece of code may be re-positioned by
the code generator. The flag nplus, and the sublists associated with each dependency
list entry in the data flow implementation, namely the gatelist and the occlist, are not

used in this implementation.

4.5.4 Dependency analyzer and code generator

The dependency analyzer must determine the order in which code for definitions is
evaluated. The analysis of the dependency graph is based on a tree traversal algorithm,
modified to allow for nodes which have more than one incident arc; nodes are marked
when first traversed, and further traversals through such nodes are not permitted. A
postorder traversal, which visits first the left subtree, then the right subtree, and then

the root node, gives an appropriate ordering for the execution of pieces of code.

The loop analysis function of the dependency analyzer proceeds as described pre-

viously. During this phase, ordered lists of inductive, auxiliary and quiescent variables
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Figure 4.13. A scheme for sequential code.

are accumulated, and on completion of the loop analysis, these lists are merged into
a single list following the pattern of the loop scheme, shown in Figure 4.13. This list
shows which variables appear in each section of the loop scheme, and also contains
markers which indicate where boundaries between sections occur. Later, branching
code is inserted at some of the points where markers occur. Application of this analy-
sis to each loop eventually produces a single list, in which every variable in the original
dependency graph has been ordered. Such lists exist for every clause in the program,

and when concatenated, constitute the code template.

The function of the code generator is to use both the control template and the
pieces of code produced previously, to generate code which is directly executable. For
every clause, this is carried out by traversing the associated list of variables, the list
being part of the code template; the appropriate piece of code is relocated if the list

element represents a variable; some loop branching code is generated if the list element
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is a marker. Thus, each loop defined by the LX3 program is translated into a target

language iteration, patterned after the loop scheme of Figure 4.13.
4.6 Discussion

4.68.1 Comparison with data flow languages

Several high level language proposals have been presented for data flow machine
architectures based on the Dennis data flow model [Den74], principally at MIT (VAL
[AckD79]), the University of California at Irvine (Id [ArvGP78]), the University of
Manchester (Lapse [GurGK81]), and Iowa State University (a Pascal-like language
[AllO79]). The languages VAL, Id and Lapse are value oriented, single assignment
languages, each of which includes constructs for binding of an identifier to a value, for
conditional definition, and for iteration. In a single assignment language, an identifier
can have a value bound to it just once in its scope; this property is natural in a data
flow language because an association can be made between an identifier and an arc of a
data flow graph. LX3 also is a single assignment language, as each identifier is defined

once only.

LX3 has been defined by imposing restrictions on tha language LX (see §2.3.2.1).
These restrictions are now considered in relation to other data flow languages; it will
be shown that LX3 is a language comparable in expressiveness to other data flow
languages. Restriction (1) requires that first and next be considered as attributes of
an inductive variable. This is very similar to the treatment of updated loop variables
in other languages; in fact, LX3 goes further than some in permitting general use of
the next attribute. Freezing of globals and parameters, as required by Restriction (2),
is generally accepted in other languages; the restriction excludes those features of LX
which extend the semantics beyond a conventional interpretation, as does Restriction

(3) in omitting nonpointwise operators

The requirement expressed in Restriction (4), that the body of a define clause

be a loop, is somewhat unusual, and encourages some artificial constructions in pro-
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gramming. However, it is not essential to the definition of the language, and could be
relaxed by using more sophisticated dependency analysis; such extensions are beyond

the scope of this thesis.

Restriction (5) again excludes certain features of LX which do not have a con-
ventional interpretation. There are no operators in the other data flow languages

considered so far which permit the current iteration to depend on future iterations.

Restriction (6) effectively prevents initial values of a loop being extracted directly
from inside an iteration. Such a facility is not usually available in other languages; in
general, a loop would have to return such values as extra results of the loop. Note,
however, that any value can be inherited by a define clause and used as the initial

value of a nested loop.

This Chapter emphasizes implementation of the basic constructs of LX3, and does
not consider the implementation of structures, which are omitted from the language
(Restriction (7)). Such features are essential if the language is to be developed further;

for example, an array structure, with appropriate aggregate operators analogous to the

forall construct of VAL [AckD79], would be desirable.

It can be concluded that LX3 is a suitable candidate for use as a data flow lan-
guage, in that it can express the basic constructions of definition, conditional, iteration
and function invocation. It has been shown that each of these can be implemented ef-

ficiently, using essentially standard translation techniques.

It has been suggested that conventional languages can be used, in a modified
form, as data flow languages [All079, Vee81]. Allan and Oldehoeft [AlIO79] propose
a Pascal-like language without a goto statement or global references, and in which
procedure parameters must specify a directionality (either in, out, or both). Because
several assignments may be made to variables in the language, data flow analysis is
used to determine the definitions and uses of a variable; a data flow graph arc can then
be associated with each re-assignment to a variable. The translation of a conditional

statement (as distinct from a conditional expression) requires further data flow analysis
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to determine the input and output sets of the statement; the corresponding data flow
graph must have an input arc for each variable in the input set, and an output arc for
each member of the output set. Similar data flow analysis is performed on iterative

statements; a scheme like that of Figure 4.14 is then used in translation.

merge
3
update
values ]
condition
¥
switch

Figure 4.14. A general loop scheme.

Veen [Vee81] describes compilation techniques for a conventional language which
includes global variables and procedures with side effects; if a global variable is used
by a procedure it is regarded as an additional input parameter to the procedure, and
if updated it is regarded as an extra result of the procedure. It is here that one of
the difficulties of compiling a traditional language in a data flow environment is seen;
for updates to global variables to be implemented correctly with this method, it is
necessary to perform an exhaustive data flow analysis at compile time to determine
all possible side effects of every procedure. Furthermore, sharing of global variables
between procedures often requires sequential execution of procedure invocations which
could otherwise be executed in parallel. This is but one illustration of the inherently
sequential nature of conventional languages, and supports an argument for the use of
languages which are fundamentally non-sequential, in which parallelism arises more

naturally and is easily exploited. The work reported here confirms the view that
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LX3 is indeed such a language, along with the single assignment languages discussed

above, and applicative languages such as the language described by Friedman and Wise

[Friw76], KRC [Tur81], FGL [KelLP78] and CAJOLE [HanG&1].

4.6.2 Comments on locp schemes

The schemes described for arithmetic expressions and conditional definitions are
essentially the same as thoe_;e used in proposals for VAL, Id and Lapse. However,
considerable differences between the implementation of these languages and that of
LX3 emerge when schemes for iteration are considered. Each of the languages VAL,
Id and Lapse has a syntactic unit for the expression of iteration, which, semantically,
can be seen as accepting input values, of which some are used as initializations of
variables updated in the loop and the remainder as values which remain constant for

the duration of the loop.

Figure 4.14 shows a general data flow loop scheme which captures the essential
features of the schemes used in other implementations [ArvGP78, GurGKS81]. In this
scheme, MERGE gates permit the introduction of initial values and the circulation of
updated values, and SWITCH gates permit the circulation of values during the iteration,

and, at the last iteration, absorb unused values and transmit result values.

The expression of iteration in LX3 differs in two ways. Firstly, there is no single
syntactic unit corresponding to a loop. This need not necessarily affect the scheme
used, but requires a method of synthesizing the loop from its individual definitions;
this has been accomplished by using dependency analysis to find which definitions are

needed to compute the result of a loop.

Secondly, both “current” and next attributes of an inductive variable can be used
in definitions; in terms of the loop scheme, a value associated with the next iteration
can be used both in the current iteration, and in computing the result of the loop.
In VAL, either the old or the new value can be used, as the order of definition of

updated values is significant, and a somewhat different loop scheme is used [BroM79].
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The scheme of Figure 4.14 is inadequate if updated (next) values are returned as
results of the loop. Attempts to use the scheme to return such values usually cause
superfluous values to remain in the loop scheme at termination, thereby destroying the
property of serial reusability. An analysis of the gating requirements for this case has
been presented, rules for the generation of code developed, and a new serially reusable

scheme presented.

In the new scheme, and in contrast to previously published schemes, gates are
generated at the points of use of values, rather than at the origin of a value, as in
Figure 4.14. By permitting greater flexibility in the placement of gates, this facilitates
implementation of the gating rules of §4.2.3; for a typical circulator (Figure 4.3), these
rules may require that any of the gates controlling input of values to the next network
be omitted; even the gate admitting the current value of the circulator itself may be

omitted.

4.6.3 Comparison of the data flow and sequential implementations

Some comments are now made about the differences between the individual phases
of the data flow and sequential implementations. In the first phase, the source analyzer
makes a single pass over the source program, producing code for each LX3 definition
independently. In the case of compilation to a sequential target language, many un-
ordered pieces of code are produced, but each piece of code, corresponding to one LX3
definition, is produced as it would be for a conventional high level language. In the
case of a data flow target language, much of the dependency information inherent in
the LX3 source program, is expressed directly in the data flow code itself, and further
ordering by the translator is not required. In this sense, then, LX3 is a language which
is implemented naturally on a data flow machine. However, loop analysis is required
in both cases because loops are expressed indirectly in LX3 and no special ordering of
the definitions associated with one loop is required. In the data flow implementation,
the function of the dependency analyzer is only to determine the loop structure of the

program, but in the case of sequential object code, the dependency analyzer is also
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used to establish the ordering of the pieces of code compiled from the definitions of the
program; similarly, the final code generating phase is more complex for compilation to

sequential code.

4.6.4 Other compiler based implementations of Lucid subsets

The compilation of Lucid programs has also been considered by Hoffmann [Hof78]
and Farah [Far77]. Hoffmann has developed a system which enables Lucid programs
to be compiled and executed, while Farah presents a theoretical scheme for the trans-

formation of Lucid programs into an Algol-like language, and vice versa.

first next

Figure 4.15. A window.

In LX3, first and next are regarded as attributes of an inductive variable, rather
than operators on histories. In writing programs in LX3, a variable can still be regarded
as a history consisting of a sequence of values, with the programmer being able to
express relationships between variables in terms of first, “current” and next values.
These three values can be regarded as a window through which the history of a variable
may be viewed, as illustrated in Figure 4.15. In some situations, it may be desirable
to have a larger window through which to view a particular history. For example, in

Lucid, it is possible to write
next z = z+next nexty

which requires a window on y as shown in Figure 4.16. The subset of Lucid compiled
by Hoffmann’s implementation [Hof78] permits such constructs. In this subset of the
language, as in Lucid itself, first and next are treated as operators, and can be used
in much the same way as the usual arithmetic and relational operators. The effects

of this on implementation strategy are now considered. It can be seen from Figure
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4.16 that, to generate code for a loop which includes both z and y, three values of y
must be retained for use in the loop body. This can be determined from additional
analysis of dependencies between variables. Further, it may be necessary to evaluate
some inductive variables for a few steps, before the main iteration commences. For

example, in

x \_

first next

Figure 4.16. An extended window.

first z = first nexty

y, must be evaluated before zg can be computed. Hoffmann’s analysis involves the
introduction of mappings which map expressions into “extended terms”, in which oc-
currences of first and next have been replaced by qualified names. These qualified
names are used as variables in the generated code, and thus provide the extra storage

needed to implement the expanded window of, for example, Figure 4.16.



CHAPTER &

A DEMAND DRIVEN IMPLEMENTATION OF LX

5.1 Introduction

In the implementation described in Chapter 4, an LX3 variable is identified with
the sequence of values which flows along a particular arc of a data flow graph. In LX3
variables, are defined in such a way that each is seen as part of a loop, and successive

values of each can be computed on successive iterations of the loop.

There are two principal deficiencies in this loop-based approach. Firstly, Lucid and
LX programs may use non-pointwise transformations of histories; it has been pointed
out, in §2.3.2.2, that definition of such transformations in LX3 is impracticable. The
second is the problem of redundant computation (§1.8); the data flow graph generated
from an LX3 program does not compute the minimal solution [AshW76] of the program.
One reason for this is that history values are computed pointwise, that is one history
element per loop iteration, even if the value is not used at that iteration. Another
follows from a basic characteristic of data flow, namely that computation is driven by
the availability of data, an evaluation strategy which permits highly parallel program
execution, but at the expense of sometimes computing values that are subsequently

discarded.

A data flow implementation based on the demand driven operational semantics
given in §2.3.1 overcomes both of these difficulties. In this chapter, such an implemen-
tation of LX is described, for the data flow interpreter described in Chapter 3. The
chapter concludes with a discussion of possible improvements to the implementation

scheme.

The steps in the translation of a complete example LX program are presented is

some detail in Appendix 4.
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5.2 A simple example

In compiling an LX program into demand driven data flow code, the following
method is used. Firstly, each definition of the program is compiled into a data flow
network. A function template is created from each such network; each template is
defined with one parameter, a demand, and one result, a value. A use of a definition is
compiled as the application of the function template corresponding to that definition;
this creates an activation of the template with an appropriate demand as parameter.
The purpose of a function activation is to compute a single value (rather than a history)
corresponding to the demand it receives. To do this, it will often demand values from
other definitions; it has been shown, in §2.3.1.1, that the demand number of every
such value can be derived from the incoming demand number. New activations are

thus created as needed, with one activation for every value needed.

These ideas are illustrated in the translation of the following three definitions.

i= 1fbyi+l
j= 3x*i
= asa i eq 3 then j easa.

The function templates shown in Figure 5.1 are generated from these definitions; in Fig-
ure 5.1 and elsewhere, function templates are represented as in Figure 5.2, with one arc

entering, carrying a demand, and one leaving, for transmission of the demanded value.
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~

Figure 5.1. Function Templates for variables 1, 7 and r.
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A
e

Figure 5.2. Representation of a function template.

Consider the template for . The area labelled A represents a data flow network
which transforms the incoming demand d according to the DT for the operator fby
given in §2.3.1.1.3; it also returns the value received in response to the demand. In
the template for j, the demand number is used, unchanged, to activate a computation
of 4; this is consistent with the DT for *, a pointwise operator. The area labelled
B in the template for r, implementing the DT for asa_then_easa (§2.3.1.1.3), issues
demand numbers 0, 1, 2, and so on, to the network representing the condition of the
asa definition, until the value true is returned; the corresponding demand number is
then sent to the expression component of the asa definition. The value yielded in

response to this demand is returned directly as the result of the template for r.

The execution of this program fragment is now traced. Execution commences
with the arrival of a demand (from a source external to the program) for [rDo, which
triggers the creation of a function activation from the template for r, and transmission
of the demand to that activation. The variable r is defined using an asa definition,
which requires that values of its condition be demanded until a value true is returned.
Hence, a demand number of 0 is then propagated to both the function application
i and the constant instruction “3”. The latter is enabled immediately, and fires to
produce a value 3 at an input of the EQ instruction. The function application causes
an activation to be created from the function template for ¢, to which the demand
number 0 is transmitted. As shown above, the demand will in turn be propagated
to the constant “1” (the left operand of the fby operator in the definition of 1), the
value 1 returned from the activation, and propagated to the EQ instruction. The
comparison fails, so 2 demand number of 1 is transmitted to the F'T for 4, resulting in
the creation of another activation of 1, termed #;. Within 3, the right hand operand

of the fby is chosen, and a demand number 1 — 1 = 0 is propagated to both the
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Figure 5.3. Demand flow in the example of Figure 5.1.

constant instruction and a further activation of 1, t5. The activation $y returns the
value 1, as described above, the addition instruction fires, and the value 2 is returned
from i;. The comparison again fails, another activation of ¢ is created with a demand
number of 2, producing the value 3. The test now succeeds, a demand number 2 is
transmitted to an activation of 7, and propagated to yet another activation of 3. A
value 9 is eventually produced from the activation of j, and returned as the result of

the program. Figure 5.3 illustrates the flow of demands and the return of values.

It is apparent from this description that, although the implementation does not
attempt to compute any elements of histories which are not required to determine the
solution of a program, recomputation (§1.8) of particular elements occurs. In §5.4, a

means of reducing the extent of this recomputation is discussed.

5.3 The implementation

The implementation consists of a compiler and a data flow interpreter. The com-
piler analyzes the program source, producing an initial heap which includes function
templates and appropriate tables. The initial heap provides the initial configuration

for the execution of the program by the data flow interpreter.

In the next section, the representation in data flow of the principal components of

-

-

e
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the semantic model of an LX program (§2.3.1) is described. The translation schemes

used for LX language constructs are presented in subsequent sections.

5.3.1 Representation of Demands and Environment Tables

The principal structures of the semantic model, defined in §2.3.1.1, are the demand
and the environment table (ET). The data flow interpreter directly supports binary
trees as objects on the heap, with instructions for the manipulation of trees. Demands

and environment tables are therefore represented as binary trees.

A demand is represented by a tree, the left branch of which is a demand number,
and the right, the tree representation of an instance, defined (§2.3.1.1) as the pair
( Tezt, ET ). The textual component of an instance is represented by the Uid of a
function template (FT); any such textual reference can be satisfied by using the Uid
of a template on the initial heap. An instance is also represented by a tree, the left
branch of which is the Uid of the appropriate FT, while the right branch is the tree

representation of an ET.

An ET has two components, namely FreezeVal, an index at which histories are to
be frozen and List, a list of identifer associations. Again, an ET is represented by a
tree, the left branch of which is Freeze Val, and the right the tree representation of List.

Each list element, defined in the model as
{ Ident, User, Newldent ),

is also represented by a tree, with the following structure:

/ \
Insti Uid2.

Uid! and Uid2 represent 1dent and Newldent, respectively; an identifier is represented

by the Uid of the function template generated from the text which defines the identifier.
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The User component is represented as an instance Instl, the representation of which

was described above.

The data flow interpreter supports primitive operations for the manipulation of
trees. These operations can be used to define higher level operations appropriate to the
structures of the semantic model. The following operations have been defined in the

interpreter, but can be expressed in terms of the more primitive operations on trees:

DCons construct a demand from a number and an instance
DNum  select the Num component of a demand
DInst  select the Inst component of a demand
DNumD  decrement by 1 the Num component of a demand
DNuml  increment by 1 the Num component of a demand
DNum0  set the Num component of a demand to 0
ICons construct an instance from a Uid and an ET
IFT  select the Uid component of an instance
IET  select the ET component of an instance
ETCons  construct an ET from a FreezeVal and a List
ETFrz  select the FreezeVal component of an ET
ETList  select the List component of an ET
LCons  construct a list element from 3 input components
LAppend  append one list to another
LHd  select the element at the head of a list
LTl select the tail of a list
Lldent  select the Ident component of a list element
LUser  select the User component of a list element
LNewld  select the Newldent component of a list element.

In these definitions, “list” is a list of identifier associations of the form described above.
Much of the information about the formals and globals of a clause needed for the
List component of an ET can be determined by the compiler; for example, the Ident
component of a List is known at compile time. It is thus convenient to assume that
the initial heap contains structures representing partially completed lists, and to define
the following operations, which permit a concise expression of the list manipulations

required by the model:

LUpd  takes alist L and an instance ¢ as arguments, and produces a list
in which the User component of each element of L is replaced by
i

LFind  takes a list L and the Uid of an FT ¢d, searches L, and returns
the entry whose ident component is ¢d.

B e



Section 5.3.3 Compilation of program consirucls 144

5.3.2 Representation of primitives

Many of the primitives of the semantic model are concerned with information
which can be derived at compile time. The primitives Class, Frozen and Subject are
in this category, as are the lists of identifiers Formals and Globals, and the list Ac-
tuals. The primitives Createlnstance, CreateTable and Table are implemented using
the operations on structures defined above; as indicated above, some structures can
be partially constructed at compile time. Details are given below of how the compiler

uses available information in constructing objects on the initial heap.

The representation of the transmit primitive depends on the context in which it is
used. For example, the transmit primitive in the DT for a program §2.3.1.1.1) uses the
envof option and transmits a demand to the definition of result. The implementation
of the primitive requires the construction of a demand, using the DCons operation, and
the application of the function template for result. In the case of an expression, the
representation of transmit depends on whether the demand is transmitted to a node
or to a leaf of the expression tree. Details of the representation in a given context are

included as part of the descriptions of function template construction which follow.

5.3.3 Compilation of program constructs

5.3.3.1 Program

As in Chapter 4, a single pass, recursive descent compiler is used, but no depen-
dency analysis is performed by this implementation. Compiler actions can be related
directly to the productions of the definition of LX syntax {Table 2.1); in the case of
PROGRAM, the compiler firstly records type and other information about the program
name, the globals and the frozen variables. It also constructs, on the initial heap, a
partially completed list of global identifiers, in the manner deseribed in §5.3.1. For the
globals of the program, special function templates are constructed, which incorporate
facilities for communication with the external environment. Each definition associated

with the program is then compiled.
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Figure 5.4. Function template scheme for PROGRAM.

Finally, the function template for the program itself is constructed, using the
data flow scheme shown in Figure 5.4, in which the value arriving from the left is the
demand which triggers the program. In the figure, Iy, is a constant, the Uid of the
aforementioned list of global identifiers constructed by the compiler. The constant ezt
is the Uid of an instance used to represent the external environment. The constant
Uidpy is the Uid allocated by the compiler for the function template of the program
itself; it represents the text of the program within the instance which is created by
ICons and used in the propagated demand. The latter is shown as being transmitted to
the definition result; this is an abbreviation for the application of the function template

for result, the expansion of which is given in §5.3.3.4.

5.3.3.2 Definition

From the syntax definition of LX (Table 2.1), it can be seen that there are three

categories of DEFN, namely a declaration, an equation, and a define clause. The
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actions taken by the compiler in analyzing an LX definition are now described; they are
determined by the requirement to maintain internal information about the program,

and the necessity to implement the specifications of the DT.

A declaration specifies the type of an identifier, and hence the compiler need
perform no code generation actions, but simply records appropriate information in its

symbol table.

Consider the case of an equation. Given that the primitives Class and Subject
can be evaluated by the compiler, it can be seen that the DT for a definition entry
§2.3.1.1.2) specifies that an incoming demand be propagated to the right hand side
of the equation. The compiler is thus réquired to construct a function template from
the expression on the right hand side of the equation; the method used to do this is

considered in detail in the next section.

Finally, consider the compilation of a define clause, the general form of which is

as follows:

define SUBJECT | PARAM { , PARAM } |
[ using IDENT{ , IDENT } |
[ freezing FREEZE LIST |
DEFN_LIST

edefine.

The subject identifier is entered in the symbol table to enable evaluation of the predi-
cate Subject when required. A list of formal parameters is added to the initial heap, for
use, as described above, in constructing an ET. As described in §2.3.1.1.2, a definition
entry exists for each identifier accessible within a clause; accordingly, a function tem-
plate must be provided for each such identifier. The case alternative “formal, global”
of the DT for a definition entry specifies how the template is to be constructed. For
example, if the formal parameter z is not frozen, the function template for its defini-
tion entry in the clause will be constructed according to Figure 5.5. The constant Uid,
in Figure 5.5 is the Uid which represents the identifier z. In this template, the trans-
mission of the demand is implemented by invoking the function template identified by

the table entry, with the newly constructed demand as its parameter. If z is frozen,
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DInst

Figure 5.5. Function template scheme for an unfrozen formal parameter.

the instruction DNum is replaced by a network which selects the Freeze Val component

of the ET associated with the incoming demand.

The using list specifies the globals associated with the define clause. The action
taken by the compiler for each identifier on this list is the same as for a formal param-
eter of the clause. In the case of the freezing list, sufficient information about each
entry is recorded in the symbol table to permit the compiler to evaluate the primitive

Frozen when required.

After compiling each entry in the definition list, the compiler constructs a function
template for the subject of the clause, as specified by the DT (§2.3.1.1.2). The scheme

used is almost identical to that presented for the main program, except that the list
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input to the ETCons operator, as shown in Figure 5.6, is formed differently. In this
figure, the lower input is the demand which triggers the function template; it is used
also to trigger the constants Iy, and Iy, Uids of the partially constructed lists of
formals and globals, respectively. The input usis the Uid of the instance in which the
use of the clause occurred, and is transmitted from the point of use. A list of Uids of
function templates which compute the values of actual parameters (the list Actuals of
§2.3.1.1.2) is also constructed at the point of use, and included with the demand (also

see §5.3.3.4).

Figure 5.6. Data flow scheme for the list component of an ET.

5.3.3.3 Right-hand-side and expression

Here, as in §2.3.1.1.3, the syntactic notions RHS and EXPR will be considered
together as expressions, as both comnsist of operators and operands. The compiler
constructs a function template from each such expression, which again is assumed to

be in tree form.

The root of an expression tree can be viewed as the operator of an expression,
and the branches of the tree as operands. The DTs given in §2.3.1.1.3 specify the
transformations appropriate to each operator; each DT can be represented as a data

flow network which transforms an incoming demand. A data flow network which
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accepts the transformed demand and returns the demanded value is associated with
each operand. As each operand is in turn made up of operators and operands, this
construction is applied recursively to determine the form of the function template. The
recursion terminates when an operand is either a constant or an identifier; the action

taken by the compiler in this case is described in the next section.

It should now be clear that the general pattern of Figure 5.7 can be used in
constructing a data flow network for any (operator, operand(s)) pair. The area labelled
B in the figure is a data flow network constructed using the appropriate DT, with any
additional data flow instructions required to ensure that the values demanded are
returned correctly; the return of values is considered in more detail in §5.3.3.5. The

boxes o; and o3 represent the operands of the expression.

Y

b 4

Figure 5.7. A general data flow scheme for expressions.

To determine the data flow network which implements the demand transforma-
tion required in the area labelled B in Figure 5.7, it is necessary to associate a data
flow network with each of the operator DTs of §2.3.1.1.3. As examples, the networks

associated with the operators if_then_else_eif and fby are given in Figure 5.8.

5.3.3.4 Identifiers and literals

The previous section described the analysis of an expression tree, and associated
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Figure 5.8. Data flow schemes for conditional and fby.
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compiler actions. Identifiers and literals are encountered as leaves of the expression
tree. In the case of a literal, the demand can be satisfied, and it is not necessary
to propagate it further; compiler actions associated with the return of the value are

described in the next section.

In the case of an identifier, the compiler generates code which causes invocation
of the function template associated with the definition entry for the identifier. Firstly,
consider an identifier 4+ used with no parameters. In §5.2, a use of such an identifier
was represented as the invocation of the corresponding function template using the
scheme shown in Figure 5.2. This scheme is now regarded as an abbreviation for
the more detailed scheme shown in Figure 5.9, in which Utid; identifies the function
template associated with 3, which, as noted in §5.3.3.2, can always be determined by

the compiler and inserted as a constant in the generated code.

Figure 5.9. Data flow scheme for a use of an identifier.

Essentially the same scheme is applicable when ¢ is used with actual parameters.
As discussed in §5.3.3.2, information about actual parameters and the instance in
which the use of 1 occurs, must be transmitted to the function template Uid;, where
such information is necessary for constructing an ET; however, the scheme must be
modified slightly for this purpose. Perhaps the simplest way is to suppose that the
information is carried with the demand; the scheme can then be used unchanged, but
the representation of a demand redefined. An alternative is to pass the information
as an additional parameter to the APPLY instruction. The former approach has been

implemented, but further details are not given.
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5.3.3.5 Return of values

The model of §2.3, and the descriptions of previous sections, are concerned prin-
cipally with the propagation of demands and the construction of data flow networks
which implement demand transformations. The value return path, or VRP, is data
flow code which enables the return of demanded values; this section is concerned with

the construction of such paths by the compiler.

When a demand is propagated to a literal, the demand is satisfied and the value
of the literal can be returned to the point of origin of the demand. The compiler
implements this by representing the literal as a CONSTANT instruction, and the first
stage of the VRP as an arc directed to a point in the function template which can
either use the value, or continue its transmission along the VRP. The arc can always
be constructed using statically determined information; either the demand came from
within the function template, or the literal is the only component of the expression,
and hence of the function template. In the latter case, the value can be returned as the
result of the function template, whereas in the former, the literal must be an operand
of an operator, and the value can be directed to the network associated with that

operator.

In the construction of a function template from an expression, it is clear that
values can be regarded as returned from the leaves of the expression tree. The oper-
ator of which the leaf is an operand contributes to the VRP with some transforma-
tion of the value returned to it from the leaf node. For each operator, a definition
is now given of the transformation required to describe how the value or values re-
turned from each operand are to be used in determining the value v propagated on
the VRP in response to the original demand d. In the definitions which follow, v; 1s

defined as the value returned from operand 1 in response to demand d; (see Figure 5.7):
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arithmetic and

relational operators ¥ = v] Op Vo
unary operators v = 0p Vi
first v = vy
next ¥y = v]
fby if d. Num= 0 then v=uv; else v=v,
if_then_else_fi if v; then v=uv, else v=v3
asa_then easa v=uv2
wvr_then_ewvr v=v2o
upon_then_eupon v=v9.

Data flow networks constructed from these definitions are included in function tem-

plates at appropriate points.

A VRP segment must also be constructed at those points in a function template
which correspond to the use of the transmit primitive in the DTs for PROGRAM and

definition entry; for example, within the latter, the statement
transmit d envof z! to result

clearly implies that a value will eventually be returned from the function template
corresponding to result. In this and similar cases, the value returned can be considered
the result of this function template, and an appropriate arc is constructed by the

compiler.

5.4 Discussion

Three significant achievements emerge from the work of this chapter. Firstly,
the semantic model itself has been validated by examining the execution of a repre-
sentative sample of LX programs. Secondly, it has been shown that the operational
semantic model of LX (§2.3.1) can be used in conjunction with a recursive-descent
based translator to produce quickly a correct implementation of LX, thus demonstrat-
ing the usefulness and importance of a precise operational model. Thirdly, it has been
shown that demand driven computation can be expressed using purely data driven

schemes, and used to overcome the problem of redundant computation.

A characteristic of the implementation is the “interpretive” nature of the code gen-
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erated, in the sense that the target language is effectively a high level virtual machine
which incorporates directly many of the primitives of the semantic model. While this
is advantageous for developing a prototype implementation, such as described in this
chapter, it is inefficient. There are two possible directions for improvement in this area.
Firstly, the virtual machine could be refined so as to be closer to specific data flow
machines. A second interesting possibility would be to design a physical realization of

the virtual machine itself.

The implementation potentially increases parallelism in that it spawns many acti-
vations in response to the propagation of demands, with each such activation exploiting
the parallelism inherent in data flow. A significant deficiency of the implementation is
that many of the activations so spawned attempt recomputation of the same history
element. A similar effect was noted by Maurer and Oldehoeft [MauO83] who, in trans-
lating a purely functional language to data flow graphs, treat a structure element as a
function, and observe that although such a function is not evaluated until it is applied,

such evaluation must occur each time the element is accessed.

It is clearly essential that steps be taken to alleviate this problem of recomputation.
An effective method of eliminating the necessity to recompute a value is to store that
value the first time it is computed. The possibility of introducing such a notion of

storage into the semantic model and the implementation is now discussed.

It is proposed that storage be provided for each variable in the main program, and
dynamically for each use of a clause subject; it is understood that use of a subject gives
rise to an instance of its defining clause in which storage is similarly associated with
variables and uses of subjects. In the existing semantic model (§2.3.1), an instance of
a clause is created for the computation of a single value. In extending the model in
this way, an instance becomes a repository for the values contained in all associated

histories, which are included in the entries of the instance’s ET.

Facilities must be provided to detect the first demand on a history, to create

associated storage, to add and retrieve values, and to release storage. The first two
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are illustrated by considering the main program. Assuming that a heap entry for
an instance of the main program is pre-allocated, the DT (Figure 2.4), and the FT
which implements it (Figure 5.4), can determine whether or not the instance has been
entered previously, and, if not, initialize it; propagation of a demand for the first time
to a definition entry within the instance causes allocation of storage for that entry.
Instances which create other instances can use similar techniques to detect the first

demand propagated to an instance.

Values can be added to storage at their site of computation; in implementation
terms, an “append” operation can be inserted at a suitable point on the VRP (§5.3.3.5).
Retrieval of values from storage can be arranged by intercepting a demand before it is
propagated to a particular definition entry, and checking the storage associated with

that entry to decide if it is necessary to transmit the demand.

The release of storage is a little more complicated. Each instance is now responsible
for a history, not a single value; in the latter case, the instance and its storage can
be deallocated when the value is returned (exactly as for a function in a conventional
language). As a history is potentially infinite, it is usually necessary to perform some
program analysis to find situations in which storage can be released. For example, a
quiescent definition (see §2.3.2.2) can be replaced by a single value. Program analysis

could be used in many cases to provide bounds on the amount of storage required.

An important aspect of compilation is optimization, which was not considered at

all in §5.3. Some possible optimizations are now discussed.

If a notion of storage is introduced as suggested above, various storage optimiza-
tions are possible. As already mentioned, it may be possible to determine bounds on
the storage required for some histories. If the same definition is used in several clauses,
it should be possible to share storage by using one copy of the definition. Some use
of memo functions [Mic68] is possible; this is the technique of associating a table of
argument values and function results with a function definition, to reduce recomputa-

tion. Clearly, LX clauses can generally not use this technique, because the arguments
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are infinite histories. However, a clause with all its parameters and globals frozen acts

exactly as a conventional function, and the technique is then appropriate.

The implementation performs considerable manipulation of demands; optimiza-
tions which reduce demand handling in appropriate situations should be investigated.
Similarly, it could be arranged in many cases for values, particularly constants, to be

returned directly to the original point of demand, rather than following the complete

VRP.

Machine specific optimizations should also be explored. For example, techniques
appropriate to the Manchester machine for balancing the data flow graphs of expres-
sions, and for common subexpression elimination have been investigated by Jones,

Kidman and Morello [JonKMS85].



CHAPTER 6

A HYBRID IMPLEMENTATION SCHEME

6.1 Combining the data flow and demand driven schemes

The implementations of two different strategies for the translation of LX programs
to data flow graphs have now been described in Chapter 4 and in §5.3 respectively. As
mentioned previously, the former is restrictive in that it can compile only a certain
class of programs corresponding to the subset LX3, but involves a straightforward
transformation into code “in the data flow idiom”; in fact in many ways, an LX3
program can be viewed as a high level representation of a data flow machine-level
program. The latter is general in that it can translate any LX program to data flow
graphs, but the graphs are somewhat “forced” in terms of their adherence to a natural
data flow idiom. Stated another way, an LX program can be represented as a data flow
graph which is most suitably interpreted on a “virtual machine” somewhat removed
from a realistic data flow machine. Consequently, it is inefficient as a program for a

data flow machine.

Such a data flow program can, of course, be made more efficient by applying any
of several optimization techniques, for example, those discussed in §5.4. However, a
different approach is explored in this chapter. It is proposed that the two strategies
mentioned above should be combined in such a way that the networks of Chapter 4
are used except when demand driven computation is required by the source program
(for example, to give control of input and output, as discussed in Chapter 7). This
hybrid approach complements the use of optimization as a means of producing more
efficient target language programs; it can also be seen as increasing the expressiveness

of the language LX3.

Extensions to the language LX3 are presented which, subject to appropriate re-
strictions, enable programs optionally to specify a demand driven component as part

of the main program or any define clause; the definitions of this component are to



Section 6.2 Language eztensions 158
be implemented in the demand driven manner of §5.3, whereas other definitions are
to be translated using the techniques described in Chapter 4. The implementation of
the interface between the two components is discussed, and an example of program
translation is presented. Finally, possibilities for widening the domain of applicability

of the scheme are discussed.

6.2 Language extensions

Firstly, some terminology is introduced. Two sets of identifiers, termed DF and
DD, are associated with the main program, and each define clause. The definition of
each identifier in DD is to be translated using demand driven techniques. All other
identifiers are in DF, and their definitions are to be translated into data flow networks,
referred to as the data flow component, DFC, of the clause. Similarly, the networks
which result from the translation of the definitions of identifiers in DD comprise the
demand driven component, or DDC, of the clause. Occasionally, the notation DF; is
used to denote the set DF associated with a particular clause subject 2; DD,, DFC;

and DDC; are used similarly.

The following rules describe the proposed language extensions, and the circum-

stances in which they are applicable.

(1) The main program identifier is in DF.

(2) Variable declarations within a clause whose subject z is in DF (including

the main program clause) may be specified as in dd; in this context, the
BNF definitions of DECLARATION and GLOBAL given in Table 2.1 are
replaced by the following:

DECLARATION := TYPE IDENT [in dd] {, IDENT [in dd] }
GLOBAL = TYPE VAR in dd

Within such a clause, an identifier specified as in dd is included in DD,
otherwise in DF,. In general, the formal parameters and global variables of
z are included in DF,, with the exception of variables specified as global to
the main program, which are included in DF, 4.

All identifiers declared within a clause whose subject z is in DD are included
in DD,; DF; is empty for such clauses.

(3) The definition of an identifier z in DD, may be written according to LX
syntax, using identifiers from both DF, and DD;, provided that the defi-
nition of z does not use any identifier y in DF,; which is the subject of a
parameterized define clause.
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(4) The definition of any identifier z in DF must conform to the syntax and
restrictions of LX3, except as modified by these rules. DD identifiers may
be used in the definition of z; in the case when z is a subject, any DD
subject inherited by z must freeze all its parameters and globals.

(5) Consider an identifier y in DI';, used by the definitions of one or more
identifiers in DD;. These definitions must be written in such a way that
DDC, does not issue any demands for values of [y] which are in the
“future” of y relative to the current state of DFC,.

Rule (1) ensures that the main program is regarded basically as an LX3 program
extended to have both a DFC and a DDC. Note that the declarations of the locals and
globals of the main program determine DF ,4i, and DDyyqipn; DF jgin does not include
the main program identifier itself, which is best regarded as a DF identifier external

to the program.

Rule (2) ensures that DFy, is empty for a subject w in DD, so that only LX3-based
clauses have both a DFC and a DDC. An LX3-based clause z has frozen global variables
and parameters; in effect, the environment which satisfies the definitions of the clause
is determined in terms of these frozen (constant) values, and the definitions of the
local variables of the clause. An important consequence of this is that demand flow
within DDC, will always be confined to identifiers which are either local to z or have a
constant value within z. In other words, it is never necessary to propagate a demand
outside 2z, hence DDC; requires no information about the environment global to z,
a fact which greatly simplifies the task of communicating environment information

between the components.

Although the main program is LX3-based, Rule (2) stipulates that its globals are
included in DD,,4in, Which ensures that input from the external environment has a
demand driven semantics. There are two advantages in using such semantics. Firstly,
only those input values actually required by the program need be supplied to it; data
driven input semantics may require input values to drive a part of the computation
which simply discards the values. Secondly, because an input value can be supplied
in response to a demand, or request, from the program, a dialogue can be established

with the program. See §7.4.4 for further discussion of this topic.
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Rule (3) ensures that identifiers in DF, can be represented uniquely in DDC;, and
that the required representation can be determined statically. In §6.3, it will be seen
that a variable y in DF, can be represented in DDC, by a function template which
accesses a structure containing values from [[y]]. If y were a parameterized subject,
one such structure would be required for each use of y in a definition of an identifier
in DD;; the number of such uses cannot be determined statically in the presence of
recursion. A consequence of Rule (3) is that data flow procedures in DFC; are invoked

only from DFC,.

Consideration of Rule (4), in conjunction with Restriction (4) of the definition of
LX3 (§2.3.2.1), leads to the conclusion that result must be in DF, and part of a loop.
Hence, each LX3-based clause has a loop structure determined by an asa definition;
this ensures that the techniques of dependency analysis and loop synthesis described
in §4.3 remain applicable to the extended language. A DD subject which freezes all its
globals and parameters can be inherited, as such a subject is defined in terms of values
known to the DFC; similarly to an LX3 clause, it can be regarded as a subcomputation

of an outer loop (§2.3.2.2).

Rule (5) is a restriction which cannot be checked statically, but is imposed to
prevent deadlock. The rule is analogous to Restriction (5) of §2.3.2.1, and prevents
DDC, from attempting to access any values which are yet to be computed by the DFC.

Further explanation is given in §6.4.

6.3 Schemes for the extended language

In this section, schemes used in the construction of the DFC and the DDC are
described. For the cases in which either a clause subject is in DF, and DD for the
subject is empty, or the subject is in DD (hence, all its local identifiers are in DD), the
schemes of Chapters 4 and 5 respectively, apply unchanged. Consequently, schemes

are considered only for a clause whose subject is in DF and which contains both a DFC

and a DDC.
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As described in Chapter 4, the data flow program produced from an LX3 pro-
gram has the following characteristics. Firstly, there is a function template (FT) for
the main program, and for each define clause. Each such FT is composed of inter-
connected circulators, synchronized by control values generated by the termination
condition network. The circulators generate the values in the history of an LX3 vari-
able consecutively, on the assumption that each value can be computed from previous

values.

In contrast, an LX program is translated into an FT for each definition. An FT is

invoked, with a demand as parameter, for each required value of a history.

The construction of the networks of the DDC is essentially the same as described in
§5.3, except that a different construction is needed for uses of identifiers in DF; details
will be given later. Attention is now given to the design of the interface between the

DFC and the DDC, and the schemes used in the DFC to implement this interface.

The interface between the DFC and the DDC serves two important purposes.
Firstly, by storing values computed by the DFC, it enables the DFC to service demands
issued from the DDC. Conversely, it permits the DFC to transmit demands to, and

receive values from, the DDC.

These objectives can be achieved as follows. A history structure is built within
DFC, for each variable in DF ; which is required to supply values to DDC;. A special
FT is generated within DDC; for each such DF variable; this FT interprets a demand
for a value as an access operation on the appropriate history structure. Further details

are given in §6.3.2.

The history structure is represented in the data flow model as an early completion
data structure (ECDS) [Den81]. An ECDS can be used before it is fully defined; this
property is used here to separate the actions of creating, writing to and reading from
the structure. The undefined structure is created initially in the DFC, and transmitted
to both the DFC, which generates its component values, and to the DDC, which accesses

the values as dictated by the flow of demands. See §6.3.1.2 for more details.

T—

M
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The history structure is the mechanism used by the DFC to supply values to the
DDC; a request from the DDC for a value computed by the DFC causes the structure
to be accessed. The DFC obtains a value from the DDC by transmitting the current

DFC iteration number to the DDC as a demand number, as described in §6.3.1.1 below.

6.3.1 DFC schemes

The schemes used to construct the DFC are essentially those presented in §4.2;
additional schemes required for the interface to the DDC are now described as modi-

fications of those presented in Chapter 4.

6.3.1.1 Construction of a demand and invocation of a DDC FT

Consider a clause with subject z in DF, in which the definition of some variable
in DF; uses an identifier z in DD,. DFC; constructs a suitable demand, and uses it
to invoke the relevant FT in DDC,. The required demand number is the iteration
number of the loop from which the demand is transmitted. The iteration number is

made available by including in DFC; a circulator corresponding to the definition

tn = O0fby in+ 1.

A demand also contains an instance component, which is used to pass environ-
ment information to an FT. However, it is unnecessary for the demand entering the
DDC from the DFC to carry any such information because, in fact, there is no global
environment to be carried forward. This can be understood as follows. The ET of an
instance is used to resolve uses of global identifiers and formal parameters in terms of
instances through which the demand has passed in arriving at the current instance;
in effect, each such previous instance contributes to the current environment. Because
the clause subject z itself is in DF, the parameters and globals of the clause are frozen,
and are represented in the DFC as simple circulators which make the single, frozen
value available to each iteration, as in a local, constant definition. Consequently, the

fnstance component of a demand entering the DDC from the DFC can be empty.

Z——

.
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Figure 6.1. A scheme for the invocation of an FT in the DDC.

The FT representing z can be invoked from DFC; according to the scheme shown
in Figure 6.1, in which ¢.n is supplied by the circulator described above, and FT; is

in DDC,. A dummy instance is created; components of both the ET and the instance

can be defined arbitrarily.

Consider the incorporation of this scheme into the LX3 translation scheme. It
can be seen that the use of z is effectively a use of the DF inductive variable 1.n.
Consequently, when it is found necessary to create a link from z, links can be created
instead from 1.n; if the use of z is qualified with either first or next, values can be taken
from the appropriate characteristic address of ¢.n. Similarly, dependency analysis and

gate generation can be based on f.n.

6.3.1.2 Construction of history structures

Consider the case in which y is an identifier in DF;, used within DDC;. An
additional circulator is included in DFC; to generate a structure H containing values

in the history [Jy]]. The history structure can be viewed as the tree shown in Figure
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6.2, the root of which is the original structure allocated by the compiler, and in which

Y denotes the history [y].

/\
YO -
/\
Yr -
/\
T2

Figure 6.2. A history structure.

The circulator corresponds to the definition:
H = FirstH fby H ++ y.

FirstH represents a network which adds yg to the initially undefined history structure
for Y allocated by the compiler. The notation ++ indicates an operation which takes
the current values of the history structure and Y and produces an updated history
structure according to the scheme given in Figure 6.3, in which the operation PAIR
creates a new, undefined ECDS. MKR inserts the newly created ECDS into the right
component of H, while MKL sets the left component of the newly created structure to

the current value of Y; the right component remains undefined.

6.3.2 A DDC scheme for accessing DF identifiers

As mentioned above, an identifier y in DF can be represented in the DDC by a
special FT, shown in Figure 6.4, which accesses Hy, the history structure containing
values of [Jy]]. In the figure, the network labelled Access stands for a scheme which
accepts a structure input H and an index ¢, applies the R operator to H 1 times, and
then the L operator, thus accessing the correct value in H. Because H is an ECDS, if
an R or L operation is applied to an undefined structure, the operation will be queued

until the structure element is defined.
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Figure 6.4. A DDC scheme for accessing DF identifiers.

6.4 An example of program translation

Consider the LX3 program shown in Figure 6.5, the translation of which is de-
scribed in detail in Appendix 3. It can be described operationally as producing a
result, formed by first extracting, under a condition specified in an asa definition, a
value from [[b]], where b is defined in the program using an equation, and secondly

finding the factorial of that value.

Suppose that the program is to be generalized in such a way that it computes the
factorial of a value, not from [[5]], but from some nonpointwise transformation of [[b].
LX3 is not suitable for expressing such functions, making it necessary to rewrite the

program in LX.
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prog Fact;
int b, c,Fac,result;
define Fac (int n) freezing sil;
Int result, i, f;
result=asa i eq n then { easa;
i=1 fby i+1;
f=1 fby [+next i;
edefine;
c=Fac(b);
b= 1 fby b+1;
result=asa next b eq 5 then c eass;
eprog

Figure 6.5. Factorial program.

However, it would be preferable, for reasons of efficiency, to use some of the data
flow graphs produced by the LX3 implementation, particularly those which compute
factorials. Using the language extensions proposed in this chapter, the program of
Figure 6.6 is suggested, in which the definition of filter defines the transformation to
be applied to b.

prog Fact;

int b, ¢, Fac, result;

Int filter In dd;

define Fac (Int n) freezing all;
{as in Figure 6.5}

edefine; .

define filter (int p);
{definitions written in LX}

edefine;

c=Fac(filter(b));

b= 1 fby b+1;

result=asa next b eq 5 then c easa;
eprog

Figure 6.6. Extended factorial program.

As it is the purpose of this section to illustrate communication between the DFC
and the DDC, the above program is simplified by removing the factorial computation
defined by Fac (the translation of which is discussed in Appendix 3) to give the program
shown in Figure 6.7. In addition, filter has been given a specific definition, using a global

from DF, and the asa definition in the main program has been simplified.

Note that b has been included in DD, in order to comply with Rule (5). If b were
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prog Fact;
int f, result;
int b In dd, c In dd, filter In dd;
define filter (Int p) usirg f;
Int result, r;
r = wvr (p mod 2) eq 0 then p ewvr;
result = r + f;
edefine;
c=filter(b);
b=1 fby b+1;
result=—asa ¢ > 500 then c eass;
f= 5 fby f«5;
sprog

Figure 6.7. A program in the extended language.

included in DF, propagation of demands from the wvr_then_ewvr operator in filter

might cause an attempt to access a value of [6] not yet computed by the DFC.

Rule (5) is now explained further. Suppose a DDC FT has been activated (from
the DFC) with demand number n. From the point of view of the FT, the DFC is at
iteration n; Rule (5) stipulates that, as demands propagate within the DFC, no demand
for a “future” value of a DF identifier may be issued. In other words, ECDS elements
beyond n+1 (the next value) may not be accessed. If this restriction is not made,

deadlock is possible. Suppose b is in DF, and consider

¢ = filter(b)

when the FT for filter has been invoked with demand number n and an ECDS Hj
representing b. Clearly, if the FT for filter generates a demand number of say, n+5,
directed to p, the formal parameter of f, an attempt to access Hy[n+5] will occur.
This access will be delayed pending computation of [[5] at iteration n+5; in other

words, iteration n cannot complete before iteration n+5, a case of deadlock.

The following histories satisfy the definitions of the program in Figure 6.7:

] = (1,2,3,4,...)

[n] (5,25, 125, 625, ... )

(71 (7,29,131,633,...)
[resuit] ( 633, 633, 633, 633, ... ).

I
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Figure 6.8. DFC of program of Figure 6.7.

Note that [[c]] can be described thus:

¢; = “the 14+1° even number in [b]]” + f;.

The data flow graph of the DFC is shown, in cyclic form, in Figure 6.8. The
additional circulators required to construct H, (which is needed because f is used
by filter) and to circulate the iteration number are clearly marked. The unexpanded
graphs FirstH, and NeztH; correspond to FirstH and H++y described in §6.3.1.2, and
DI creates a dummy tnstance component for the demand transmitted into the DDC

via the FT for c.
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Execution of the graph of Figure 6.8 is initiated by an external trigger which
enables the CONSTANT instructions labelled ¢y, ¢o and ¢3. It is interesting to note that
there are two distinct comp'onents of the graph. In the first, the circulators for f and
H ; produce values which are appended to the structure H ;. The second component is
driven by the circulator for ¢.n producing successive demands propagated to the DDC
which consumes values of Hy and returns values in [c] for use in determining the

termination condition and result of the DFC.

Note that ¢ would normally be in DF; it is placed in DD in this example to simplify
construction of the data flow program. With ¢ in DD, the LX implementation contructs
an ET to be passed to filter; while this could be done by the DFC, it is more convenient

to permit it to be done by the DDC.

Further details of the construction of a data flow program, and its execution on

the data flow graph interpreter, are given in Appendix 5.

6.5 Further examples

In this section, two additional examples are given of the development of programs
in the extended language. The purpose of these examples is to give an indication of
the applicability of the hybrid scheme. The first shows an LX3 program modified,
using the extended language, to include a nonpointwise transformation; the modified
program is found to violate Rule (5), but a simple reformulation of some definitions
is given which solves this problem. The second example shows the extended language
used in a simple manner to express additional definitions with much greater clarity

than is possible in LX3.

6.5.1 Prime numbers

Considering the program PRIME shown in Figure 2.7 of Section 2.3.2.2, it will be
recalled that the definitions of the program are satisfied by the following histories; the
finite prefixes shown are the values actually computed by the loop corresponding to

the program:
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[=] (3,5 7,9, 11,13, 15,17,19,21,...)
[isprime]
=[result] (t, ¢, ¢, fit, t, fit, 8, f,...)
Qstop] (f fo £ fo--2).

It is desired to modify the program to define primes, a sequence of prime numbers, as

well as the variable fsprime; primes would then satisfy:
[primes] (3,5 7,11,13,17,19,...).

Clearly, primes cannot be defined as a pointwise transformation of n and tsprime, that
is, [primes]); (abbreviated primes;) cannot be determined either in terms of n; and
isprime;, or in terms of values of those histories in the prefix 0 to 1. The values n; and
isprime; are produced at iteration i41 of the data flow computation; it follows that

primes; cannot be produced at this iteration.

In fact, the variable primes cannot be defined directly in LX3. It is, however,
possible to define a variable lastprime which keeps track of the last value of n which

was prime; the definition
lastprime = 3 fby if next isprime then next n else lastprime eif
is satisfied by the histories

[n] (3,57 9, 11,13 15 17,19, 21, ... )

[isprime]] (¢, t, ¢, f,t, ¢ f, t, 8 f, )
[lastprime] (3,5,7,7, 11,13, 13,17, 19, 19, ... e

If, in other parts of the LX3 program, it is required to manipulate a sequence of prime
numbers, it is necessary to define such manipulations in terms of both lastprime and

isprime. In summary, it is clumsy to define and use a history of prime numbers in

LX3.

Using the extended language of this chapter, it is possible to declare primes in

DD, and define directly

primes = wvr tsprime then n ewvr.
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This has two advantages. It is a direct definition of primes, and it permits other parts
of the program (in either the DFC or the DDC) to manipulate a sequence of prime

numbers directly.

It is, however, necessary to use primes carefully, to ensure that Rule (5) is satisfied.
For example, consider a variant of the original program (Figure 2.7), shown in Figure
6.9, which in fact does violate Rule (5). The “termination condition” of the loop
becomes true during the tenth iteration; at that iteration, the index is 9, ng is 21, and

it can be seen that

stop; = resulty V j, and

resully = primesg.

In other words, the DFC attempts to use primesg. It is the definition of primes which
violates Rule (5), because the wvr_then_ewvr operator, in attempting to compute
primesg, causes a demand number greater than 9 to be propagated to isprime and n,
thus attempting to access values not computed by the loop. Consideration is now given

to avoiding this violation of Rule (5).

prog PRIME;
Int n; bool stop,isprime; Int primes In dd;
n = 3 fby n+2;
result = primes;
primes = wvr isprime then n ewvr;
stop = asa n > 20 then result eass;
deflne isprime using n freezing all;
int §;
bool idivn,result;
i= 2fbyi+l;
result = asa idivn of (ixi > n) then not idivn eass;
define idivn using n,i freezing sll;
bool result; Int m;
m= 2=*ifby m+i;
result = ass (m > n) then m eq n easa
edefine
edefine

eprog

Figure 6.9. A variant of program PRIME which violates Rule (5).

Demands to primes must be kept within the finite prefix of [[primes]] actually
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computed by the loop. From the previous paragraph, it can be seen that the definition
of stop initiates the demand number propagated to primes which causes the problem,
suggesting that it may be useful to reformulate this definition. It should be remembered
also that in this program, the purpose of the expression component of the asa definition
is not so much to define a result as to provide a “root” for the dependency graph, and

hence it can be altered within this constraint.

The definition is reformulated by once again introducing a mechanism to keep
track of those primes computed by the iteration, but using LX instead of LX3. In fact,

if lastprime is defined as
lastprime = upon next isprime then primes ewvr,

then [[lastprime] is exactly as shown earlier. The definitions of the main program

can then be written to satisfy Rule (5):

n = 3fby n+2;

result = primes;

primes = wve isprime then n ewvr;

lastprime = upon next isprime then primes eupon;
stop = asan > 20 then lastprime easas;.

The program no longer violates Rule (5). Consider lastprime, which is in DD,
and is defined using the DF identifiers isprime and resull; the upon_then_eupon
operator ensures all demand numbers propagated to primes are within the range of

values computed by the DFC. From the following history associations

[n] (3,5 7,9,11,131517,19,21, ...)
[isprime] (¢, t, ¢, f, t, ¢, f, &, ¢, f,...)
[lastprime]] {3,5,7,7,11, 13, 13,17,19,19, ... ).
[primes] (3,5,7,11,13,17,19,...)
[stop] (19,19, 19,19,...)

it can be seen that

lastprimeg = resully = primesg = 19.

For both the LX3 and extended language versions of the program PRIME it
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proved useful to define a variable (lastprime in this example) which “padded out” an
essentially nonpointwise transformation to match the rate of production of values by
the DFC iteration. In this case, there is little apparent difference, in terms of complexity
and clarity, between the respective definitions of lastprime. It is worth noting that,
in many cases, the required nonpointwise transformation will be considerably more
complex than that presented here, and much more easily and clearly expressed in LX

than 1.X3.

6.5.2 Averages

Figure 6.10 shows an LX definition which can be used to produce running averages

of its argument, which yields a history with the property:

[avg(2)]; = average value of [[z]lo, [2]1, [2]2, - - -, [2]:-

The definition cannot be written as given in L.X3 because it uses several values in the

history denoted by its parameter, hence its parameter cannot be frozen.

define avg( Int x );
int result, s, n;
result = s dlv n;
s = x fby s + next x;
n = 1fby n+l;
edefine.

Figure 6.10. A definition of running averages.

Suppose that the factorial program presented in Section 6.4 is to define running
averages of factorials. It can be modified by firstly declaring a new variable avg in DD,
defined as above, and secondly declaring avfac as a DF identifier, defined thus, assuming

that ¢ is in DF:
avfac = avg(c).

The body of the main program can then be written:

¢ = d(b);

b = 1 fby b+1;

avfac = avg(c);

result = asa c> 500 then avfiac easa.
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It is now shown as follows that avg(c) does not violate Rule (5). To compute avg(c)
at some time 4, it is necessary to compute result in the definition of avg at time 1, which

requires 8;, and in turn ¢;; in other words, no value in the future of ¢ is required.
6.6 Discussion

6.6.1 Advantages of the hybrid scheme

The hybrid scheme presented in this chapter facilitates an approach to program
development whereby as much programming as possible is done in the relatively ef-
ficient LX3, but with parts of the program written in LX when this is necessary or
more convenient. When compared with development of a program entirely in LX, it is
suggested that use of the techniques outlined in this chapter should give a considerable

performance improvement over an unoptimized LX program.

The question arises as to why unoptimized LX should be used at all. Clearly,
if the language LX and data flow machines were widely used and well understood,
the most satisfactory imp'l/ementa,tion would be a sophisticated optimizing compiler.
However, the state of the art is that developing and debugging LX programs is not well
understood, and neither is their implementation on data flow machines. Thus there
is a place for translators which use current compiler construction technology as much
as possible, and are capable of producing target language code which exhibits clear
correspondence with the original source. Both translation methods described in this
thesis have these characteristics. The hybrid scheme offers performance improvement
with little effect on either of these characteristics; it is, however, emphasized that

it is seen as a scheme which is best used in conjunction with further optimizations,

separately applied to the LX and LX3 components of a program.

The hybrid translation technique is most obviously applicable to programs of the
form suggested in Figure 6.6 of Section 6.4. This program scheme is representative of
a class of programs which can be structured into two components: one which produces

some history, and another which applies a transformation to that history. The trans-
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lation technique is directly applicable when the former can be specified in L.X3, and
the latter component satisfies the restrictions given in Section 6.2. Examination of the
(currently limited) repertoire of LX and Lucid programs [AshW76, AshW77b, Fau83,

Weng2, Pil83] suggests that this class of programs is quite large.

6.6.2 Early completion data structures

The ECDS plays an important role in the hybrid scheme in embodying the interface
between the DFC and the DDC; this interface is effectively an early completion buffer,
with the DDC consuming items placed in the buffer by the DFC. The fact that it is an
ECDS permits production, consumption and order of access to be seen as independent,
asynchronous activities. This results in a clean “factoring” of two important aspects
of the scheme: its implementation in a translator, and the run-time behaviour of the
target code. In the first case, the translation schemes described in previous chapters
can be carried over essentially intact; as shown in earlier sections, the only changes
necessary are for communication with the other component, which can be expressed
in terms of ECDS operations. Similarly, the run-time behaviour of each component
can be considered independently, except when communication between components is

required.

The buffering provided by the ECDS is such that a DFC circulator can insert
a value in to its history structure as soon as the value is produced, irrespective of
consumption by the DDC. If the DDC attempts to retrieve a value from the ECDS
before it is computed, the ECDS ensures that the access activity is suspended until a

value is written to the appropriate point in the buffer.

The ECDS is used to interface a DFC and a DDC. It would be interesting also
to explore the possibility of building a similar interface between a data flow scheme
and, for example, a conventional, control flow program. The interface developed in
this chapter relies on a common notion of “demand”; construction of a control flow
component would similarly depend on appropriate mechanisms for recognizing and

generating demands.
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6.6.3 Discussion of Rule (5)

Originally, it was hoped that communication via an ECDS would permit the use
of arbitrary LX definitions of DD identifiers. It was shown in Section 6.4 that this
may lead to deadlock. Hence, Rule (5) was introduced to place restrictions on the

consumption of values by the DDC.

The necessity for Rule (5) follows directly from the restrictions which are imposed
on LX3 and which guide the construction of the DFC. Consider variables z in DD and
y in DF. In the DFC, only 3 components of [y] are visible at one time—first, next
and “current”. The DDC has access to all components of [[z]], where z is in DD. Con-
sequently, the usual DDC demand mechanism cannot be applied to the representations

of DFC variables passed to the DDC, without appropriate restrictions.

Rule (5), as stated, is not entirely satisfactory, and it is probable that further
investigation will yield a better formulation of the rule. It would be useful to investigate
situations in which the rule could be checked syntactically; Wadge's cycle sum test
[Wad81] and Pilgram’s “index offset” considerations [Pil83] provide a starting point. It
is worth noting that the rule can be checked during execution by tagging the demand,
as it passes from the DFC to the DDC, with the current iteration number, and using it

to validate all ECDS accesses; improvements to this scheme could also be investigated.

Another aspect for future investigation is to prove that Rule (5) does prevent
deadlock. It seems likely that a program satisfying Rule (5) also satisfies Wadge's cycle
sum test, which can be applied to some programs to determine whether or not they
may deadlock. The test makes use of “index offsets” associated with operators; Rule (5)
effectively makes the offsets of definitions of DD identifiers predictable within certain
constraints, suggesting that the cycle sum test is satisfied, and providing evidence that

Rule (5) prevents deadlock.



CHAPTER 7

DISCUSSION, CONCLUSIONS AND FUTURE WORK

7.1 Introduction

This discussion is concerned with three areas important to the work of the thesis,
firstly the design and specification of the language LX is reviewed, and secondly there is
an attempt to put in perspective the implementations described in this thesis relative to
each other and to other contemporary implementations of Lucid-like languages based
in data flow. Thirdly, data flow systems in general are discussed, with emphasis on

the expression of demands in data flow.

Various suggestions for further investigation are made throughout this chapter. In
particular, the provision of adequate facilities for input Joutput is seen as an important
area for both data flow and LX, and suggestions for future work on this problem are

emphasized.

7.2 Language design

Some discussion of language design was presented in §2.2.4, which explored the
issues of strong typing and clause structuring. It is apparent that further work is
warranted for each of these. For example, considerable declarative information must
be included in LX programs, and it can be argued that this represents an overhead
which actually reduces the readability of a definition; the relevance of this argument in
the context of languages which emphasize conciseness of definition, as LX does, should

be investigated.

LX provides basic definitional facilities; investigation of useful extensions to these
facilities should be of interest. Some possible additional language constructs follow: a
case construct for conditional definitions; aggregate operators on histories, to assist in
the detection of forall parallelism; multiple results from define clauses; higher order

functions.
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The development of data structuring facilities requires considerable attention. Re-
gardless of the details of such facilities, transformations between structures and histo-
ries will be important. LX requires that variables be viewed as histories of values; in
the case of a history of structure values, it is often useful to manipulate the structure
at a particular time index, perhaps generating from it a history of its values which

could best be processed iteratively.

LX has only rudimentary features for the expression of input and output. These
facilities, and their interaction with aspects of language design such as strong typing,
clearly warrant further investigation. In the next section, some suggestions are made

for improving these features.

7.2.1 Input/Output in LX

The global variables of an LX program can be regarded as defined externally, with
their values supplied as inputs to the program. The history denoted by [result] in
the main program can be interpreted as the output produced by the program. This
provides a simple means of getting values to the main program and receiving results
from it. Inner clauses may obtain access to external input sources by inheriting global
variables; they may contribute to the output of a program by returning results to the
outermost (program) level for inclusion in [[result]. It is also possible to establish a
form of dialogue if the implementation ensures that output is produced as soon as

available, and input accepted when supplied.

These facilities are inadequate in many respects. For example, consider how the
format of output can be specified. If the main program result is of type T, the values
can be output in a fixed, implementation-determined format appropriate to values of
the type; there are no facilities in the language for defining alternative formats. Using
stream oriented output within the framework of LX, the output may be considered
as a history of characters, and formatting may be specified by including appropriate
control characters. Thus, it is necessary to devise a means of deriving, from the

history denoted by z of type T, a stream of characters capable of producing the
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desired output. That is, a history of type T must be transformed into a history
of characters. A general input/output facility would need to contain a library of
such transformations, which are inherently non-pointwise. Another approach is to
specify formatting requirements using a variant of the format descriptions of Fortran,
permitting a higher level description from which the implementation could generate

the required stream of characters.

Further problems arise if an LX program is to fit into an existing environment. For
example, it may be necessary to associate more than one history with an input/output
source (or vice versa), to describe the structure of a file, or to display, in some form, a
variable defined at an inner level. All are worth further investigation; some attention

is now given to the latter.

Confining expression of input/output to the outermost level of an LX program
is unnecessarily restrictive. Consider a display facility, whereby any variable may be
annotated to indicate that a suitable display of its values is to be output from the pro-
gram; such a facility is a simple example of an inner level specification of a requirement
for output. A proposal, presented in [Wen83], represents an attempt to define the se-
mantics of such a facility in terms of language, rather than implementation, concepts.
The essential idea is to introduce program tranformation rules which firstly introduce
extra results corresponding to displayed histories, and secondly move the specifications
of those histories to the outer level, where they can be associated with output devices.
It is also important that a display specification does not initiate computation which is
redundant with respect to the main result; [Wen83] outlines how such a display might
be defined in LX. These ideas are at an early stage of development, and require further

investigation.

7.3 Comparison of implementations

Several proposals for the implementation of Lucid and related languages have been
put forward. It is worth examining these developments chronologically, to put in per-

spective the work reported in this thesis in comparing it with other proposals. The
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work of this thesis began in 1978, inspired principally by [AshW77a] in conjunction
with a desire to find a higher level approach to programming. It was decided to perform
an experiment testing the feasibility of implementing “Lucid” using conventional com-
piler construction techniques, in particular, the recursive descent approach espoused
by Wirth [Arvg0]. It was also decided to treat Lucid principally as a language for
describing iterative computations, a view encouraged by the perspective placed on the
language in [AshW77a], hence the implementation was of a subset (Lucid-W [Wen81})
which emphasized these features. This work was carried out shortly after, but inde-
pendently of, the subset implementations of Hoffmann [Hof80] and Farah [Far77], as
discussed in §4.6.4. It came some time after, but was not influenced by, the full Basic

Lucid interpreters of Cargill [Car76] and May (mentioned in [AshW77a]).

7.3.1 The implementations of LX3 and LX

The earliest implementation of Lucid-W (which is essentially LX3, apart from some
minor syntactic differences) generated imperative code. At this time, suggestions had
been made about relationships between Lucid and high level data flow [AshW77a], and
there were interesting developments in low level data flow [Den74, Mis77] as a means
of exploiting parallelism. In order to gain some insight into relationships between
Lucid, a language with a mathematical foundation and roots in the field of program
verification, and data flow, a novel basis for new, parallel machine architectures, an
experiment was planned to translate LX3 to low level data flow. This implementation
is described and discussed in Chapter 4 of this thesis. It was concluded that LX3 could
be considered a suitable language for data flow machines, as it translates naturally to
standard data flow schemes, and that it is comparable in expressiveness to languages
designed specifically for such data flow machines. Chapter 4 also found that LX3 is
more naturally implemented on a data flow than a sequential machine, in that both
analysis of data dependencies between definitions and code generation are simpler in

the data flow case.

Although the results of these experiments with the translation of LX3 were en-
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couraging, it was always an important goal of the research to extend the techniques to
translate successively more powerful subsets of Lucid. To assist subsequent discussion
of attempts to do this, a simple model is introduced, emphasizing those properties of
data flow which are particularly relevant to the implementation of Lucid and its vari-
ants. Three important aspects of data flow implementations of Lucid are distinguished:
computation agents, regulation, and storage. The first encompasses those objects in
a data flow scheme which produce histories. For example, in the translation scheme
used in Chapter 4, a primitive operator may be the computational agent for the his-
tory denoted by a simple expression, while a circulator is the agent responsible for the
production of the history denoted by an inductive variable. Regulation refers to that
aspect of a data flow scheme which controls the production of values; in the scheme of
Chapter 4, the loop termination condition regulates the number of values produced,
and the control operations of a loop regulate the rate of production. Storage refers to
storage of history values; in the data flow graphs used in Chapter 4, it is provided by

the arcs of the graph.

In the LX3 translation scheme, the computational agents (described above) are
simple, and entirely data driven; an agent places a history value on the are representing
the history according to the usual firing rules of data flow operations. Regulation is

similarly data driven; all control is expressed in terms of values in histories.

Two key assumptions make this simple regulation scheme possible, and generally
simplify the translation of LX3. The first is that variables can be identified with arcs
of a data flow graph, and that the values flowing along the arc represent the values in
the history denoted by the variable in index order. The second is that histories defined
are such that a loop scheme can be used to synchronize the computations, in index
order, of every value in each of the histories denoted by several inductive variables. In
other words, given some interrelated inductive variables, it is assumed that a circulator
is the appropriate computational agent for each, that every value in each history is to

be computed, and that the circulators can be synchronized by a common index.
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In moving towards the implementation of a larger subset of LX, several attempts
(not reported in this thesis) were made to develop translation schemes for nonpeintwise
operators such as wvr_then_ewvr. Clearly, such an operator violates the synchro-

nization assumption, and it is no longer possible to use only loop control for regulation.

At first sight, a promising approach seemed to be the development of a more so-
phisticated regulation scheme. The suppression of redundant computation was also an
important aspect in developing a new regulation scheme. Circulators remained as the
basic computational agent for both inductive definitions and those using nonpointwise
operators, the first assumption above, concerning the identification of arcs with histo-
ries, was retained; it was required, however, that the scheme use only standard data
flow operations. Circulators for definitions using nonpointwise operators were seen as
asynchronous (in the sense of not sharing a common index) agents separate from those

in an LX3 style loop component.

A circulator can be viewed as a computational agent which produces the next value
in a history when triggered by a control value directed to its FGATE instructions. In
the loop scheme of §4.2, each circulator is advanced by a common control signal, in
the knowledge that values required for the computation will be available. However,
with circulators viewed as asynchronous agents, no such common signal could be used,
so attempts were made to design schemes for circulators which, in effect, used control
signals as demands, in that a circulator interpreted an incoming signal as a request,
and would send a signal as a demand to those circulators which produced values needed
for the requested computation. For example, one idea explored was to express Hen-
derson’s delay and force primitives [Hen80] in terms of data flow control values and
instructions. However, a satisfactory regulation scheme which managed demands for
required values only, maintained communication between the synchronous and asyn-
chronous components, and still retained the flavour of a data driven network, could

not be developed.

As a result, it was decided to change strategy at this stage (mid 1982). It was

AR
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apparent that quite sophisticated extensions would be required to the basic LX3 scheme
to implement even a slightly larger subset of Lucid. Given that this would almost
certainly be considerably more expensive than the basic scheme, it was decided to
attempt the derivation of translation schemes for an unrestricted language, working
directly with demand flow to get a translation scheme in complete agreement with
the mathematical semantics of LX. Possible refinements to “more natural” DDF-like

schemes are left for further investigation.

It was found necessary to remove the assumption that variables be identified with
arcs and arcs with histories, with the attendant implication that values in a history
flow along the arc in time order. There are two reasons for this: firstly, with this
assumption, it is impossible to provide a complete and correct translation of all pro-
grams [AshW77a). This follows from the fact that all values which flow on an arc
must be requested and produced in order of increasing “time”; it is possible to write
legal Lucid programs which do not conform to this restriction, for example, the facto-
rial program of Appendix 4. Secondly, intermittent histories (§1.8) cannot always be

produced correctly.

In the resulting implementation scheme for LX, described in Chapter 5, the com-
putational agents are function templates, but it is important to note that such an agent
is not responsible for the computation of an entire history, but rather for an individual
value in that history. Regulation is provided by the DTs, which manipulate demands
directly; this provides sufficient flexibility to ensure a correct implementation. Storage
is provided by the arcs of the graph; the restrictions of pipelining are avoided by the

recomputation of values—a data flow activity is spawned for every value required.

The principal contribution of this scheme is the semantic model, which provides
a concise operational description of how demands are propagated. Considered as an
implementation, the emphasis on recomputation of individual values is clearly im-
practical; this problem, and a possible solution, were discussed in §5.4. Because the

complete avoidance of redundant computation provided by the LX scheme may well
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only be essential in a few situations, the hybrid scheme of Chapter 6, by enabling
selective use of LX schemes, should be useful also in lessening the amount of recompu-
tation. The hybrid scheme shows also that the contrasting schemes for LX3 and LX

can be integrated.

7.3.2 Other implementation schemes

Consideration is now given to the translation schemes of Pilgram [Pil83} and Den-
baum [Den83}, each of which translates a variant of Lucid to imperative, rather than
data flow code. However, in each case the underlying translation schemes can be viewed
in terms of data flow in a general sense, and provide some insight into translation to
data flow. The development of each of these schemes was contemporary with that of

the operational model of LX.

Pilgram’s scheme, which is capable of translating almost all full Lucid (the pLucid
[Fau83] variant) programs, uses, as an intermediate form, a generalized high level data
flow model which retains the assumption that an arc is a pipeline along which flow the
values of a Lucid history, in time order. However, this model is based on a graphical
view of a Lucid program (§2.2.3), and describes data flow at a much higher level than
the model used in this thesis. Pilgram’s model is demand driven in that, in addition

to values flowing along the arcs, requests may flow in the opposite direction.

Initially, a Lucid program is transformed directly into a graph, in which Lucid
operators and user defined functions are nodes, and every arc corresponds to a variable
or partial result. This graph is then translated into a system of message passing actors,
essentially with one actor for each node, in which the actors use a pre-determined
protocol in cooperating with each other to ensure, firstly, that the values transmitted
between them are the values of the history associated with the corresponding arc of the
original Lucid graph, and secondly, that, whenever possible, values are not computed

needlessly.

Consider the mechanisms used to transmit values in Pilgram’s scheme. The com-
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putational agents are message passing actors; an actor attempts to compute and trans-
mit values one at a time, in index order, and only if needed. Each such actor commu-
nicates with others using a standard protocol, under which an actor can receive values
and requests. There are three requests: COMPUTE, ADVANCE and NULLIFY. Part
of the state of each actor is the history index; COMPUTE requests that the value at
the current index be computed, and ADVANCE that the index be incremented by one,
perhaps without having computed the value at the current index. NULLIFY is used
to cancel computations which have been initiated but turn out not to be required;
a full account of its significance is beyond the scope of this discussion. Suppose all
values in a particular history are required; the cycle of activity for its actor would be
to receive a COMPUTE request, compute the value, send it to the requesting actor,
then receive an ADVANCE request to move on to the next value “in the pipeline”. By
way of comparison, this pattern of activity is specifically built into the design of a cir-
culator; the arrival of a control value at its “merge” operation constitutes a combined
COMPUTE/ADVANCE request, with coﬁsequent (and unavoidable) computation and
transmission of the value. In Pilgram’s scheme, storage for values computed but not
yet demanded is provided by queues at points in the Lucid graph where an arc is forked
to multiple points of use. Queueing is necessary because demands arrive from points

of use at varying rates.

Clearly, in Pilgram’s scheme the computational agents are comparatively complek
entities, and are responsible for the regulatory function of the scheme—they supervise
the transmission of demands for values, as well as of the values themselves. Pilgram’s
regulation protocol permits the translation of nonpointwise operators and general user
defined functions, but it cannot translate all programs, for example, those in which
a variable is defined in terms of its own future. Also, as Pilgram acknowledges, it
occasionally initiates redundant computation of a value, but it does have a mechanism

by which such computations can often be abandoned.

This suggests that direct translation of extended LX3 to low level data flow, as

discussed above, did not work primarily because the “data flow” must be seen at a
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considerably higher level. Results equivalent to Pilgram’s could be achieved by imple-
menting communicating actors in a low level data flow system with process handling
primitives, thereby simulating a higher level of data flow. In fact, facilities have been
proposed which should make this possible, for example, Id managers [ArvGP78| and

the communicating processes of [CatG80].

Denbaum’s thesis [Den83] describes another approach to the implementation of
Lucid-like languages. The language considered is ANPL, which is essentially Clause Lu-
cid; ANPL’s define clause subsumes the compute and mapping clauses of [AshW78],
and its produce clause the produce and function clauses of [AshW78]. The thesis
presents an operational semantics of ANPL, based on a technique used by Marlin
[Mar80] in describing ACL; in this method separate information structure models are
developed for the sequence and data control aspects of the language. The semantic
models are used as the basis for a compiler which translates an ANPL program to
imperative, coroutine-based code, in the form of an ACL program. Thus, it is not
strictly a data flow implementation, but has much of the flavour of one, and provides

interesting comparisons with both Pilgram’s work and this thesis.

In Denbaum’s implementation scheme, there is a computational agent for every
variable and use of a clause, responsible for computing values in the corresponding
history on request; the agent is either a coroutine or a procedure, and is derived from
the ANPL definition. Regulation of computation of history values is specified in a novel
fashion. Agents do not communicate directly, but rather request the values required
to perform a computation by invoking a special procedure retrieve. If the requested
value is already available (see below), retrieve simply returns it; otherwise, it uses a
dependency graph to determine which values of other histories are needed to meet the
request, invokes retrieve to obtain them, and then calls or resumes the appropriate

computational agent to actually compute the originally requested value.

The requirement to produce and access values in index order is relaxed by allo-

cating storage, a list of the values used, for each history. This eliminates any need
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to recompute values, and permits values to be produced and accessed in any order.
Storage of all values is in direct contrast with the approach used for LX, which, in its
simplest form, requires recomputation of all values. Ideally, a suitable combination of
storage and recomputation should be determined by the compiler, depending on the
program; this is a significant problém in the implementation of many very high level

languages.

Denbaum's scheme is not entirely correct, however, in that it does not always agree
with the mathematical semantics. A coroutine is used as the computational agent for
an inductive variable; the only requests which can be issued to a coroutine for the
production of values are create, which establishes the coroutine instance and returns
the first value, and resume, which computes the next value. Such an agent cannot
correctly implement an intermittent history, for example, one in which the first value
is not required. Further, it is apparent from the semantics of Lucid that a recur-
sive function invocation effectively introduces a new history; it seems that Denbaum'’s
model does not assign storage for histories introduced in this way, and hence it cannot

correctly implement all recursive functions.

Some general conclusions can be drawn about data flow implementations of Lu-
cid and similar languages. The implementation of LX3, and those of Pilgram and
Denbaum, are examples of attempts to implement Lucid by adopting a particular op-
erational interpretation of the language; in each case, the particular interpretation
cannot be applied successfully to all programs. Although it is desirable, from the point
of view of efficiency, to adopt a consistent operational interpretation, it seems difficult
to find one such interpretation which encompasses all programs. The operational se-
mantic model of LX is an attempt to do this in terms of demand driven computation;
the implementation achieves agreement with the mathematical semantics of LX, but
at the expense of recomputation of values and a quite complex regulation scheme. This
would suggest that a practical implementation of Lucid should be a hybrid, capable of
exploiting different operational interpretations according to the characteristics of par-

ticular programs; the implementation techniques described in this thesis and elsewhere
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are tools which could be incorporated into such an implementation.

7.4 Data flow models

Data flow models were discussed at length in Sections 1.5 and 3.5, particularly
the relationship of the model used in this thesis to cyclic schemes, the usability of the
graphs produced on data flow machines, and the relevance of early completion data

structures. Additional points of interest are presented in this section.

7.4.1 Uses for early completion data structures

As described in Chapter 6, the principal use of early completion data structures
for the research reported in this thesis is to implement an incrementally constructed
buffer between the data flow and demand driven components of a hybrid translation
scheme. However, there are other ways in which they can be used, and these are now

discussed briefly.

It was mentioned in §3.4.4 that such structures could be used to pass arguments
to functions. In code generated by the LX translator, the only arguments passed
to function activations are demands; the facility would permit the components of
a demand, particularly the environment table, to be passed incrementally, thereby
providing an opportunity for speeding the progress of demands. Values could also
be returned incrementally, particularly list structured values, thereby giving a “lazy

evaluation” semantics to the lists of the language.

The possibility of associating storage with histories in the demand driven imple-
mentation was discussed in §5.4. It is apparent that an early completion data structure
should be used to implement such storage, because the order in which components of
the history would be p}oduced and accessed is unpredictable; it is necessary to delay
access to a particular element pending its computation. Note that use of the history
structure is essentially functional; once an element is written to a history, it is never

changed.
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It is expected that early completion data structures will also be important in

implementing a useful input/output facility. This will be discussed further in §7.4.4.

7.4.2 Combining data and demand driven data flow

Attempts to combine demand driven and data driven data flow have been signifi-
cant in this research. A first approach, not deseribed further here, was to take a data
driven graph and superimpose on it additional data flow operations which would cause
the operations of the original graph to behave in a demand driven fashion. This is quite
straightforward for arithmetic operations. Consider an operation with two inputs and
one output. It can be made demand driven by adding an IDENT operation with one
input and two outputs, transmitting demands in the opposite direction to the flow of
data; execution of the original operation is initiated by a sending an arbitrary value
along the additional demand network; operand values are not produced until triggered

by a demand.

This simple approach could not be extended to permit demands to be propagated
past an IDENT operation, however. The reason is that a demand driven IDENT opera-
tion must provide storage for values demanded on some outputs but not on others, as
observed by Pilgram [Pil83] (and noted in §7.3). Correct handling of demands requires
a demand propagation operation with arbitrary storage requirements and complex in-
ternal state transitions; this is very difficult to implement with primitive data flow

operations.

This more general approach was rejected principally because, for an adequate
implementation, it would have been necessary to go beyond “simple” DDF-like schemes.
The approach adopted, and successfully implemented (Chapter 5), is less general in
that it uses a notion of demand specific to LX implementation. It is worth noting
that, in both cases, the objective was to abstract out that part of a demand driven
scheme which handles demands, and express it explicitly in data driven data flow. In
other demand driven models, and the hardware which implements them, these demand

manipulations are implicit.
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Extensions to a data driven data flow model to provide demand manipulation
primitives, similarly to the transformation of demands in the operational model of LX|
warrant further investigation. These primitives, which could perhaps be implemented
in microcode, would provide flexible handling of demands in appropriate situations.

This is thought to be particularly relevant for input/output, as discussed in §7.4.4.

7.4.3 The notion of storage in data flow

In pure data flow [DenFL74, ArvG78|, there is no notion of assignment to storage;
all values, including structures, flow on the arcs and are manipulated by side-effect-free
operations—this, of course, is the key to the parallelism provided by the model. In
this thesis, the advantages of providing storage for history values have been discussed

(85.4); it is interesting to look briefly at various general notions of storage in data flow.

In a data flow graph, the arcs may be viewed as storage for values; in actual
machines, this storage is implemented in various ways, which may be exploited to
provide a low-level notion of storage. For example, Todd [Tho81] uses instruction
cells in the MIT static data flow machine to implement various storage structures,
including arrays. At the graphical level, Wendelborn [Wen82] uses cascaded 3-input
MERGE gates to buffer a fixed number of recently computed values in a history. In

another early proposal, Kosinki [Kos73] provides a low-level storage cell.

A literal interpretation of functional structures at the machine level is clearly
impractical, as it gives rise to the need for extensive copying and movement of data.
In an early model proposed by Dennis [Den74], structure values are represented using
a heap, with the tokens which flow on arcs carrying pointers to the structures. This is
reflected in architecture proposals [Mis78] with a separate unit implementing structure
storage and processing; considerable work has been done [Isa79, Ack78] on the design
of such a unit, in a way which allows the optimization of structure operations and the

sharing of storage.

Various attempts to make functional structure operations more efficient have been
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mentioned (§1.6). For example, early completion data structures and I-structures per-
mit access to incomplete structures; it is interesting to note that they introduce non-
functional operations (§3.4.4) in order to do so. The Manchester machine [WatG82]

has a provision for fixed array storage at a node to reduce movement of data (§3.4.4).

Treleaven et al [TreBH82, TreHRS82] propose a model which combines a tradi-
tional notion of storage with low level data flow (see §1.5). In this model, references to
memory locations may flow on arcs, thereby enabling the sharing of memory between
instructions; memory may be updated as a consequence of instruction executiorn. Shar-
ing of memory in this fashion allows efficient implementation of data structures such

as arrays.

Other models provide nodes of arbitrary internal complexity; such nodes can im-
plement any storage requirements. For example, in the models of both Pilgram [Pilg3]

and Faustini [Fau82] nodes are used which contain queues of arbitrary size.

7.4.4 Input/Output in Data Flow Systems

This section discusses input and output in general terms; input is considered as
those values admitted to a data flow graph through its input arcs, and output as
the values produced at a graph’s output arcs. Low level details of interaction with
devices, for example, the writing of device drivers in data flow, are not considered.
The purpose of the discussion is partly to clarify earlier descriptions of input/output
facilities (for example, §3.3.2); it is also intended to demonstrate the usefulness of
the demand handling primitives of §7.4.2 in the further development of input/output

facilities.

Firstly, “batch” input/output is considered, for queueing, dynamic tagged token
and acyclic models, and it is shown that such batch input can be regarded as a form
of demand driven input. Secondly, it is argued that demand driven input provides a
natural expression of interactive input, and hence provides a unifying framework for

both batch and interactive input/output.
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7.4.4.1 “Batch® input/output

The term “batch input/output” is used to indicate a system in which all input
data is available before execution commences. In a model in which the ares of data
flow graph are regarded as queues (§1.5), input values can be placed on the input arcs,
causing the consumer operations of those arcs to fire repeatedly, in the usual manner.
Assuming the use of standard schemes which preserve queueing on the arcs, output
values will appear in order on the output arcs of the graph. Termination occurs when
external input arcs are empty, and there is no activity in the graph. In summary, the

input values can be pipelined through the program, and outputs produced in order.

However, generally arcs are not regarded as FIFO queues, because this unnecessar-
ily restricts possible parallelism [ArvGP78, WatG82]. Consider an external input arc
connected to some consumer operation in a dynamic tagged token model. In execution,
many activities may be generated from this one consumer operation. Values introduced
to the data flow system must be tagged with the correct labelling information in order
to correctly associate a value with the activity which consumes it. Similarly, multiple
activities will be associated with the producer operation of an external output are,
hence outgoing values will be produced in arbitrary order. These values may be ar-
ranged in correct sequence either within the program itself, using label manipulation
instructions, or permitted to leave the program as they are produced, and sequenced by
a separate mechanism, outside the data flow program; in a general-purpose data flow
system, the mechanism might be a resource manager [ArvGP78, TreHR82] responsible

for the output device.

In the “function template” model used in Chapter 3, special instructions were
used to simulate the arrival of a sequence of values at an input point and an output
point (§3.3.2). This technique initiates sequentialized activations of the program FT,
with each activation processing one input value and producing one output value; this
simplified view was adequate for testing all programs used in the thesis in a sequential

environment. It can be generalized to simulate, in effect, the behaviour of the dynamic
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tagged token model, with similar sequencing characteristics.

In an acyclic model, it is natural to view the program as an activation of a function
template which accepts an input structure and produces an output structure. Assuming
that the structures are early completion data structures, the program can be seen as
embedded in a system which includes a process [CatG80, TreHR82] which appends
values to the input structure, and another which consumes values from the output

structure.

In all the above cases, a real implementation will introduce physical limitations, for
example, input devices will require that input be buffered. In each case, the assumption
must be made that there are signals which pass to an input handler, indicating that
the buffer is either full or has available space. Such signals can be regarded as a form
of demand for input. In the case of batch input, such demands can be handled entirely
by an interface which regulates the rate of flow of values into the program, and need

not be explicitly programmed.

The above data driven “batch” schemes have one distinct advantage: data can be
transmitted to the program at a rate determined only by the capacity of the program
to accept and process it. A disadvantage is that it is occasionally necessary to supply
dummy input values to trigger computations which do not actually use the values; an
example is a program which consists of a conditional scheme in which both arms of

the condition are input arcs.

7.4.4.2 Interactive input/output

In an interactive data driven program, input is related to previous output from the
program, acting as prompts. Conceptually, the output feeds back to the input source,
thereby controlling it to some degree. Input is thus controlled by two sources of signals,
namely the regulating signals mentioned above, and additional signals dependent on

program output.

A program prompt emanating from a particular point inside the program at which
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input is needed in fact constitutes a demand for input. In a data driven system, the
prompting signal must follow a path from that point via an output port of the program
to the source of input. Although this is quite feasible within the data driven framework
if input and output are incremental structures, it is somewhat unnatural. In summary,
input in general can be seen as driven by demands, with the difference between batch

and interactive input characterized by the nature of the demand.

Now consider the passage of demands in the demand driven system implemented
in Chapter 5. A demand propagates from an output point through the program and
thence externally to sources of input, requesting those values required by the computa-
tion. In other words, all computation takes place in response to a demand for output,
including demands propagated to sources of input. This is similar to interactive input
as described above, with the difference that in the interactive case the demand is orig-
inated by the program, rather than outside it. Thus, input is demand driven, in some

sense, in each case considered.

Clearly, a system driven entirely by demands for output has the advantages that
the order of demands determines order of response, and no unnecessary input is re-
quested. The principal disadvantage is that the rate of acceptance of data by a program
will be slowed, because input is not accepted until demanded; given that speed of com-
putation is of great importance in many applications of data flow, such degradation is

unacceptable.

It is, therefore, suggested that the following design of an input facility warrants
further investigation. Initially, determine the nature of the signals required to commu-
nicate with input devices. Implement batch input using an interface which generates
such signals according to the state of the input buffer, thus allowing points of in-
put which operate in a purely data driven fashion. Then, implement demand driven
primitives of the type discussed in §7.4.2. This would enable interactive input to be
implemented as above, but allows construction of a direct demand path to the site

of input, rather than a roundabout feedback mechanism. It would also permit tailor-
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made demand driven regimes. For example, parts of a program could be made entirely
demand driven by accepting demands at certain output points, and propagating them
through the program; the operational model of LX, or a variant of it, could be used in

designing appropriate demand transformations.

1.5 Conclusion

A goal of the research reported in this thesis was to investigate the practicality
of implementing a Lucid-like language in a data flow environment. To this end, the

language LX was developed.

The major achievements of the work are a demand driven operational semantic
model of LX which shows substantial agreement with the mathematical semantics,
the completion of an implementation of LX based on the model, the specification of
a subset of LX with expressive power comparable to languages specifically designed
for data flow, and the satisfactory implementation of that language. The latter ex-
periment demonstrates the practicality of implementing a subset of LX in data flow.
While a truly practical implementation of LX itself has not emerged, several sugges-
tions have been put forward in the thesis for its further development towards that
goal, including concrete proposals for a hybrid data and demand driven implementa-
tion. Experience thus far with implementing LX illustrates the usefulness of a concise
operational description of a language as a starting point in the development of a sat-

isfactory implementation.

Another significant achievement is the use of data driven data flow to express
demand driven computation. While the notion of demand used is problem-specific,
it is suggested that development of more general demand transforming primitives will

considerably enhance data driven systems, particularly for expressing input and output.



APPENDIX 1

OPERATOR DEFINITIONS

The operators wvr_then_ewvr and upon_then_eupon can be defined formally

wvr b then a ewvr = wvr(a,b)
upon b then a eupon = upon(a,b)

where wyr and upon are defined using the following recursive define clauses:

define wvr(bool 2, Int b);
result =1 fest a
then b fby wvr(next a, next b)
else wvr(next a, next b)
elf
edefine
define upon(bool a, Int b);
result = b fby Iif firsta
then upon(next x, next y)
slse upon(x, next y)
elf
edefine

Note that these definitions assume that b is of type int; similar definitions can be

made when b is of another type.



APPENDIX 2

OPERATION OF THE DATA FLOW INTERPRETER

In this Appendix, the operation of the data flow graph interpreter is illustrated
by giving two examples of the execution of programs. The first example is a recursive
factorial program, and the second shows the production and consumption of a partially

defined structure.

A2.1 Recursive factorial

The program text is shown in Figure A2.1, and the corresponding data flow graphs
in Figure A2.2. The program consists of two functions; the first is called the “program
driver”, and is used to invoke the second function, which computes factorials. Before
discussing the program in detail, some notational conventions are mentioned. The
character “=" preceding a literal value in the program text indicates a constant input
to an instruction. The null link 0.0 is used to show that no arc terminates at or
emanates from the input or output position concerned. In the case of an output link,
this means that any value produced by the instruction for transmission from that point

will be discarded.

It has been found convenient to structure programs submitted to the interpreter
with a more or less standard program driver for the initial activation. In this program,
the program driver, designed for testing purposes, provides a mechanism by which
the factorial function can be repeatedly invoked, accepting input from, and displaying
results at, a terminal. Instruction 3 of the program driver in Figure A2.1, and in
Figure A2.2a, shows the factorial function, the FT with a Uid of 1, invoked with a
value requested by the START instruction. Repetition of calls to the factorial function
is achieved by recursive application of FT 0 (instruction 5). Because no recursion
termination condition is given, the RETURN instruction will never be executed; the

operation of the interpreter must be terminated by external intervention.
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Figure A2.1. Recursive factorial program

Consider the graph of the factorial function, shown in Figure A2.2(b). An incoming
value n takes one of two paths through the graph; the path taken when n is zero is now
considered in detail. Node 0 is enabled by the function activation mechanism; on firing,
it propagates n to nodes 2, 3 and 4 of the graph. Node 2, comparing n against 0, then
fires to produce the boolean value true, which is transmitted, via the IDENT function
of node 10, to the SWITCH gates, nodes 3 and 4. These nodes are then enabled, and
can fire simultaneously. In each case, the data input n is transmitted via the output
labelled T. This output link is null for node 4, hence n is absorbed when node 4 fires,
and travels no further on that path. The firing of node 3 causes the CONSTANT node,
5, to be triggered, and the value 1 to be transmitted, via the MERGE node, to the
RETURN node; the activation thus terminates, producing the result, 1. The MERGE
node is included in the graph to indicate that values are merged from different paths;
in this example, a value arrives on one or the other path, but not both, making the
merge operation deterministic. No MERGE instruction is included in the textual form

of the program; the same effect is achieved by directing two ares to the same input

link.

If n exceeds zero, then after node 4 transmits n to the IDENT node 6, the right
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hand path through the graph is followed. Node 8 represents recursive application of
the factorial function (the FT of which is 1), with argument n—1; the result returned

is multiplied by n (node 9), and returned as the result of the function.

Figure A2.3 shows an extract from a trace of the execution of the program of
Figure A2.1, produced by the interpreter. Line 1 shows a request, and user response,
indicating that tracing is required for this run. The next line shows that the first
function read in has been inserted in the initial heap as the heap node with Uid 0, and
that the node is of type Fn, namely a function template. Similar considerations apply

to the second function read.

Subsequent lines show a user request for the activation of heap node 0 (the program
driver), the allocation of an activation on the heap (node 2), and the establishment of
instruction 0 as the initial activity. Instruction 0 is an IDENT instruction which, on

firing, causes the START instruction to become enabled.

Consider the execution trace for the START instruction, activity [2,2]. The total
number of inputs is given b;' In; in this case its value is 1. The value of each constant
input, and the position at which it occurs, are listed after Con; in this case, there are
no constant inputs, hence InC', the number of operands which must arrive to enable
the instruction, is 0. There is one output, Out, directed to destination link 3.2. The
input value Inputs which triggered the instruction is 0, but this is supplanted by a

value requested from the terminal; the response, 3, is the output of the instruction,

indicated by Outputs.

The trace of the APPLY activity [2,3] (instruction 3 of the activation with Uid 2)
shows the information passed to a new activation. The argument value 3 is placed
in input position 1 of instruction 0, an IDENT instruction, to create the first activity,
[3,0], of the new activation. Instruction 1 is, by convention, the RETURN instruction of
the function; identification of the invoking APPLY activity [2,3] is placed in its second
input position, and used by the RETURN activity to determine the destination of the

result of the function. The notation NU indicates that the APPLY activity does not
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use its outputs; the RETURN instruction, in effect, performs the output transmission

phase of the APPLY instruction.

The remainder of the trace follows the course of execution discussed above. Only
the APPLY and RETURN instructions of the recursive activation are shown; it can be
seen that the value 2 will be returned for factorial 2, and multiplied by the value of n,
3, to give the result 3!. The ellipsis at the end indicates that execution may continue

with further factorial computations.

( Return ’1

(a) Program driver.

o
Return

(b) Factorial function.

Figure A2.2. Data flow graphs of recursive factorial program.
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Figure A2.3. Execution trace of factorial program
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A2.2 Structure production

This example illustrates the use of the structure construction and selection opera-
tions. The program includes three functions, namely the program driver, the structure
producer, a function which creates and returns a structure value, and the structure

consumer, which applies selection operations to the structure.

An important characteristic of the program is that, before the producer has com-
pleted its execution, the partially defined structure value is returned, and the consumer
activated—this enables the producer and consumer to operate on the structure in par-
allel. Indeed, the structure value is never completely defined by the producer, but the

consumer successfully accesses those elements which are defined.

Figure A2.4 shows the final structure produced by the program, both in tree form,
and as represented on the heap. The selection operation R returns the r component
of a tree node, hence, given that ¢t denotes the tree depicted in Figure A2.4(a), the

following equation holds:
r(r(r(t))) = 999.

The notation “?” is used in Figure A2.4(a) for an undefined component, represented
in a heap node by an empty queue, denoted E.Q. in Figure A2.4(b). As the interpreter
identifies a structure value by its Uid; the notation STR6 denotes the structure value

stored at node 6 on the heap.

The text of the program is shown in Figure A2.5, and data flow graphs in Figure
A2.6. Various stages in the construction of the structure are now discussed. Two

such intermediate stages are depicted in Figure A2.7, and a trace in Figure A2.8.
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Figure A2.4. A structure value.
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Figure A2.5. Structure production program

Consider the graph of the structure producer, Figure A2.6(b). Its input parameter
acts only as a trigger to enable the PAIR operations 2, 3 and 5, which fire in any order,
producing three undefined structure nodes. Next, the construction operations 4, 6 and
7 are then enabled, and can fire in any order to produce the tree representation shown
in Figure A2.4(b). Note that the node numbers used in Figure A2.6(b) correspond to
those in Figure A2.8, for a particular order of firing of operations 2, 3 and 5. A different
order would produce different node numbers, but the nodes would still represent the

tree of Figure A2.4(a).

o
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(a) Main program.

(b) Structure producer.

(¢) Structure consumer.

Figure A2.5. Structure production program.
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The graph of Figure A2.6(b) shows that the root node of the structure may be
returned, via the RETURN instruction at node 1 of the graph, immediately after it has
been created by instruction 2. It is then used as an argument to the consumer function
shown in Figure A2.6(c). The operation of the consumer function is straightforward,
merely applying the selection operation R three times {sequentially), and returning the

resulting value.

Figure A2.8 shows a trace, produced by the interpreter, of the program in execu-

tion. Various points of interest marked on the trace are now discussed.

At point 1, the PAIR activities {4,3] and [4,5] have executed, yielding structure
heap nodes 5 and 6; the tree is at the stage of development shown in Figure A2.7(a).
Between points 1 and 2, the MKR operations 4 and 6 have fired, and the third structure
node has been produced, to give the partially defined tree of Figure A2.7(b); neither

component of the root node, 7, has been defined.

At point 3, the root node, still undefined, has been returned from the producer,
and has triggered the invocation of the consumer, as activation 8. It can be seen, at
point 4, that activity [8,2] attempts to access component R of the root node; because
that component is undefined, the activity is placed on the queue associated with the
component. The MKR activity [4,2] executes at point 5; this completes the structure
to the stage shown in Figure A2.4(b), and also permits the deferred activity [8,2] to
proceed. The latter action causes the queue entry to be removed (DelQ on the trace),
and the r component thus selected (STR5) to be transmitted to its destination, enabling
operation 3 of the consumer. The remainder of the trace shows further elements of the

tree successfully accessed, and the value 999 returned as the result of the activation.
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heap node 1 r
6 E.Q. E.Q.
5 E.Q. E.Q.

(a) at point 1

heap node 1 T
7 E.Q. E.Q.
8 E.Q. SIRS
6 E.Q. 999

(b) at point 2

Figure A2.7. Stages in structure construction.

Data Flow Graph Interprever
Do you want tracing? y
Heap node 0 allocated as Fn
Heap node 1 allocated as Fn
Heap node 2 allocated as Fn
which Fn to run ? O
Activating Fn with Uid: O
Heap node 3 allocated as Ac
ACTIVITY LIST

[3,0]
INTERPRETING ACTIVITY (3,0]
EXECUTING INSTRUCTION

Ident In :1 InC:1 con:
out:1 2.1
Inputs O
Qutputs O
ACTIVITY LIST
[3,2]

INTERPRETING ACTIVITY (3,2]
EXECUTING INSTRUCTION

Start In :1 InC:1 Con:
Out:1 3.2
Inputs O
New value for input 1: 77
Qutputs 77
ACTIVITY LIST
[3,3]

INTERPRETING ACTIVITY [3,3]
EXECUTIRG INSTRUCTION
Apply In :2 InC:1 Con: .1=1
Out:1 4.2
Inputs 1 77
Activating Fn with Uid: 1
Heap node 4 allocated as Ac
Opnd 1 of Inst. O in Uld 4 = 77
Opnd 2 of Inst. 1 in Uid 4 = {3,3]
Outputs NU
ACTIVITY LIST
{4,0]
INTERPRETING ACTIVITY {4,0]
EXECUTING INSTRUCTION
Ident In :1t InC:1 Con:
Out:3 2.1 3.1 5.1
Inputs 77
Outputs 77 77 77
ACTIVITY LIST
[4,5) [4,8) [4,2]
INTERPRETING ACTIVITY (4,5]
EXECUTING INSTRUCTION
Palr In :1 InC:1 con:
Out:2 6.1 7.2
Inputs 77
Heap node 5 allocated as St
Outputs STR[5] STR(5]
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ACTIVITY LIST
(4,31 (4.,2]
INTERPRETING ACTIVITY [4,3]
EXECUTING INSTRUCTION
Palr In :1 InC:t Con:
Out:2 4.1 8.2
Inpuvs 77
Heap node 8 allocated as St 1)
Qutputs STR[6] STR(6]
ACTIVITY LIST
(4,8 (4,4] (4.2]
INTERPRETING ACTIVITY (4,8]
EXECUTING INSTRUCTION

MKR In :2 InC:2 Con:
Out:0
Inputs STR[5] STRI[8]
gutputs
ACTIVITY LIST
(4,41 (4,2]

INTERPRETING ACTIVITY (4,4]
EXECUTING INSTRUCTION

MKR In :2 InC:t Con: .2=999
Out:0
Inputs STR(B] 999
Outputs
ACTIVITY LIST
(4,2]

INTERPRETING ACTIVITY (4,2]
EXECUTING INSTRUCTION
Pair In :1 InC:1 Con:
Out:2 7.1 1.1
Inputs 77
Heap node 7 allocated a3 St (2)
Outputs STR(7] STR(7]
ACTIVITY LIST
[4,1] [4,7]
INTERPRETING ACTIVITY (4,1]
EXECUTING INSTRUCTION
Return In :1 InC:1 Con:
Out:0
Inputs STR{7]

Return via [3,3]

Outputs
ACTIVITY LIST
(3,41 [4,7]

INTERPRETING ACTIVITY (3,4]

EXECUTING INSTRUCTION

Apply In :2 InC:1 Con: .1=2

Qut:1 5.1

Inputs 2 STR{7]

Activating Fn with Uid: 2

Heap node 8 allocated as Ac

opnd 1 of Inst. O in Uid 8 TR(7]

opnd 2 of Inst. 1 in Uid 8 = [3,4]

Outputs NU
ACTIVITY LIST (3)
[8,0] (4,7}

INTERPRETING ACTIVITY (8,0]
EXECUTING INSTRUCTION
Ident In :1 InC:1 Con:
Dat:! 2.1
Inputs STR(7]
Outputs STR{7]
ACTIVITY LIST
[8,2] [4,7]
INTERPRETING ACTIVITY (8,2]
EXECUTING INSTRUCTION
R In :1 InC:1 con:
Out:1 3.1
Inputs STR{7]
InsQ:(8,2]
Outputs NU
ACTIVITY LIST 4
[4.7]
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INTERPRETING ACTIVITY [4,7]
EXECUTING INSTRUCTION

MKR In :2 InC:2 Con:
Out:0
Inputs STR[7] STR(S5]
DelQ
Cutputs NU
ACTIVITY LIST
[8,3]

INTERPRETING ACTIVITY (8,3]
EXECUTING INSTRUCTION
R In :1 InC:t Con:
Out:1 4.1
Inputs STR(5]
Outputs STR[8]
ACTIVITY LIST
[8,4]
INTERPRETING ACTIVITY (8,4]
EXECUTIRG INSTRUCTION
R In :t InC:1 Con:
Out:t 1.1
Inputs STR[8]
Outputs 999
ACTIVITY LIST
[8,1)
INTERPRETING ACTIVITY (8,1}
EXECUTING INSTRUCTION

Return In :1 InC:1 Con:
Outv:0
Inputs 999
Return via [3,4]
Outputs

Figure A2.8. Execution trace of structure production program.
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APPENDIX 3

AN EXAMPLE OF LX3 PROGRAM TRANSLATION

In this Appendix, the operation of the various components of the LX3 data flow
implementation is illustrated by examining significant stages in the translation of a

simple factorial program, shown in Figure A3.1.

prog Fact;
int b, c,Fac,result;
define Fac (int n) freezing ali;
int result, i, f;
result=asa i eq n then { eass;
i=1fby i+1;
= 1 fby f+next i;
edefine;
c=Fac(b);
b= 1 fby b+1;
result=ass next b eq 5 then c eass;
eprog

Figure A3.1. Factorial program.

Five stages in the translation of the program are considered below. In addition,
the iterative extensions to the data flow model introduced in Chapter 3 are illustrated

by briefly considering the execution of the target language program.
(1) Dependency graphs

The main program and the define clause are analyzed independently to produce
two separate dependency graphs, as described in Section 4.3.2. The graphs are shown

in Figure A3.2.
(2) Initial data flow graphs

Figure A3.3 shows the incomplete data flow graphs generated by the source ana-
lyzer for the define clause and for the main program. The graphs are incomplete in
that circulators are formed only partially, and CONSTANT instructions are not trig-
gered. A separate function template is used for each clause and the main program.
In each case, as described in Section 3.4, instruction O is the initial activity and is

used to transmit the first parameter of the define clause, and instruction 1 is the
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RETURN instruction. The implementation assumes that each identifier requires three
characteristic addresses, and hence generates three IDENT instructions when an iden-
tifier is declared; as can be seen from the graph produced (Figure A3.3), all of these

instructions may not be actually used.
(3) The code template

The dependency analyzer produces a code template as shown in Figure A3.4(b)
and A3.4(c). Figure A3.4(a) shows the format of a typical code template entry, and
of its sub-lists. At most one of gatelist and ocelist are used, gatelist if identifier is an
inductive variable, occlist if it is quiescent, and neither otherwise. The are component
of a gatelist entry records information from the relevant dependency graph arc; for
example, the gatelist for the inductive variable f includes entries for the two arcs
emanating from f in the dependency graph. The gating flag component has value g if

a gate is to be generated for each occurrence, ng otherwise.

result

17 % _!
2,1 b c
'\-_.___,__._—/ 1’1
1,1
Fac

(a) Main program.

(b) Define clause.

Figure A3.2. Dependency graphs for program of Figure A3.1.
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21

addresses:

char.

result 4-6
b 7-9
4 c 10-12

(a) Main program.

char. addresses:

result 6-8
n 9-11
i 12~14
f 15-17

(b) Define clause.

213

switch )19

Figure A3.3. Initial data flow graphs for program of Figure A3.1.
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code template entry:

( identifier, code address, gatelist, occlist, nplus )
gatelist entry:

[ are, gating flag, occlist |
occlist entry:

{ link }

(a) Format of a code template entry.

( result, 4, nil, nil, f) (5,9, [b21,ng,{20.1}], nd, ¢ )

(b) Template for main program.

{n, 10, nil, {18.1}, f ) ( result, 6, nil, nsl, f )
(4,14, [1 2 1,9,{22.1}], nd, f )
( £,17, [f 2 1,9,{25.2}] [¢ 2 2,ng,{25.1}], nil.f )

(c) Template for define clause.
Figure A3.4. Code template for program of Figure A3.1.
(4) Completed data flow graphs

Figure A3.5 shows the completed data flow graphs, produced by the code gener-
ator. Consider Figure A3.5(a), the main program, in which two significant changes
from the initial graphs are evident; firstly, extra arcs to transmit values of the loop
termination condition to control gates have been generated, and secondly, the circula-
tor for b has been modified to include an FGATE instruction before the MERGE gate.
From Figure A3.4, it can be seen that the code address component of the template
entry for result indicates the address which delivers values of the termination condi-

tion; addresses of control gates are determined during a traversal of the gatelist. The



Appendix 3 AN EXAMPLE OF LX3 PROGRAM TRANSLATION 215
template entry for b shows that the flag nplus is set. Gating rule 1 of Section 4.2.3
requires that an FGATE instruction be generated between the next network of b and
the MERGE instruction of the circulator; accordingly, Figure A3.5(a) shows that the
arc which originally linked the next network directly to the MERGE instruction has
been replaced. The “current” value of b, used as input to the next network, is not

gated.

The graph for the define clause, Figure A3.5(b), shows that a simple circulator
for n has been added. The value of the parameter n is frozen, hence constant, within
the clause, and must be regenerated for each iteration of the loop. Control arcs and
gating instructions have also been added; in this case, gating rule 3 determines the

points at which FGATE instructions are inserted.
(5) Transformation of circulators to tail recursive form

The final phase of the translation process is to eliminate all cycles by converting
each loop in the graphs to tail recursive form, as described in Section 4.4.2. This

process can be pictured in the following way:

(1) draw a box around a loop, in such a way that the only inputs to the box
are the initial values of circulators, and the only output, the result returned
from the loop

(2) form a new FT from the instructions inside the box

(3) in the original FT, replace the box with a suitable IAPPLY instruction

Each FT of Figure A3.6 uses one loop; hence, two additional function templates are cre-
ated. The resulting four function templates of the target language program are shown
in Figure A3.6, in a form suitable for execution by the data flow graph interpreter. The
NULL instructions shown are never executed; they correspond to instructions which
were left “outside the box” in step (1) above, and hence are not used in the FT for the
loop. It is possible to eliminate these instructions by renumbering, but this step has

been omitted to simplify comparison with previous templates.
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additional arcs

and nodes
Fy generated by code
\_7 generator

—~+++ deleted arc

O 527 26 :02 2 connector

(b) Define clause.

Figure A3.5. Final data flow graphs for program of Figure A3.1.
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Ident
Return
Con
IApply
Fin
End

Ident
Ident
Return
Incr
Ident
Ident
Ident
Ident
Ident
Ident
Ident
Ident
Ident
Ident
Ident
Ident
Apply
Con
Tull
Con
Add
Ident
Con
Eq
Switch
Null
Ident
FGate
End

Ident
Return
Con
Con
IApply
End

Ident
Ident
Ident
Ident
Return
Incr
Ident
Ident
Ident
Ident
Ident
Ident
Ident
Ident
Ident
Ident
Ident
Ident

Eq

Initiates loop of main program

0.0 2.2
0.0 0.0
=1 0.1 3.2
=1 2.1 4.1
3.1 0.0
0
Loop FTI for main program

0.0 3.1
0.0 71
5.1 0.0
0.1 27.1 0.0
23.1 26.1
24.1 2.1
1.1 21.1
21.1 17.2 16.2 20.1 19.2
20.1 23.1 22.2 27.2
16.1 24.2
17.1 8.2 11.1
=2 8.1 16.1
0.0 0.0
=1 8.4 20.2
19.1 8.3 9.1
7.1 8.1
=5 9.2 23.2
9.1 22.1 4.1
26.2 11.1 : 5.1 0.0
0.0 : 0.0
4.1 27.1 24.1
26.1 9.3 3.2
0

Initiates loop of factorial function
0.0 : 4.22.23.2
4.1 0.0
=1 0.2 4.3
=1 0.3 4.4
=3 0.1 2.13.1 1.1
0

Loop FT for factorial function
0.0 : 5.1
0.0 10.1
0.0 12.1
0.0 15.1
7.1 : 0.0
0.1 30.1 14.1 17.1 : 0.0
18.1 : 27.1
19.1 4.1
1.1 28.1
2.1 23.1
23.1 18.2 31.2
18.1 §.3 25.1
3.1 26.1
26.1 33.2 19.2
25.1 5.4
29.2 13.1 6.1
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19 Switch 27.2 16.2 7.1

20 Null 0.0 : 0.0

21 Con =1 32.2 : 22.2

22 Add 32.1 21.1 : 141

23 Ident 12.1 v 131

24 Null 0.0 : 0.0

25 Times 14.2 33.1 171

26 Ident 15.1 : 18.1

27 Ident 6.1 : 30.1 19.1 31.1 33.1
28 Ident 10.1 0 29.1

29 Ident 28.1 : 30.2 18.1
30 FGate 27.1 29.1 : 5.2

31 FGate 27.3 13.2 : 32.1

32 Ident 31.1 : 232.1 21.2
33 FGate 27.4 18.1 : 26.2

34 End 0

Figure A3.6. Target language version of program of Figure A3.1.

Figure A3.7 shows a partial execution trace for the program of Figure A3.6. Several
interesting points in the trace are indicated. The main program, F'T 0, is initiated as
the activation with Uid 4. At point 1, the main program loop is initiated, as activation
5; it will be noticed that the activities generated by the IAPPLY activity shown have
an iteration number field, initially zero. Point 2 shows resumption of tracing at the
initiation of the final iteration of the main program loop, FT 1; it can be seen that 4 is
the value of b admitted to this final iteration, via the INCR activity [11,2,3]. At point 3,
the define clause, FT 2, is invoked as activation 16. At point 4, the IAPPLY instruction
initiates activation 17, the first iteration of the loop which computes resultin the define
clause. The first input, 3, indicates the FT which implements the loop; the remaining
three inputs initialize the circulators of the loop, in this case with values 4, 1 and 1.
The initiation of a subsequent iteration is shown at point 5. The final iteration of the
define clause loop is initiated at point 6; the value admitted to the circulator for f
is 24, or 4!. At point 7, this value has been returned, via the RETURN instruction of
the final iteration, to the FT for the define clause, and thence to activation 15, the
final iteration of the main program loop. The end of the trace, point 8, shows that the
value has been returned to the main program, activation 4, and displayed using a FIN

instruction.
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Data Flow Graph Interpreter
Do you want tracing? y

Heap node O allocated as Fn
Heap node 1 allocated a3 Fn
Heap node 2 allocated as Fn
Heap node 3 allocated as Fn

Which Fn to run ? O
Activating Fn with Uid: O

Heap node 4 allocated asg Ac
ACTIVITY LIST
{4,0]

INTERPRETING ACTIVITY (4,3]
EXECUTING INSTRUCTION

TApPly In :2 InC:1 con:

(6D
.1=1

Ourv:1 4.1

Inputs 1 1
Activating Fn with Uid: 1
Heap node 5 allocated 38 Ac
opnd 1 of Inst. O in Uid §
Opnd 1 of Inst. 1 1n Uld 5
Opnd 2 of Inst. 2 1n Uld § =
Outputs NU
ACTIVITY LIST
{5,0,1] (5,0,0]

[4,3] .0

INTERPRETING ACTIVITY [11,2,3]

EXECUTING INSTRUCTION

2>

Incr In :2 InC:2 Con:

Out
Inputs 1 4

Activating Fn with Uid: 1
Heap node 15 allocated as Ac
opnd 1 of Inst. O 1n Uid 15
opnd 1 of Inst. 1 1in Uid 15
opnd 2 of Inst. 2 in Ulid 15

Outputs NU
ACTIVITY LIST

100

i
4

{a,3].0

(15,8,1) [15,3,0] [13,0,18] [14,1,28] [14,1,23] [14,1,28]

INTERPRETING ACTIVITY (15,3,16]

EXECUTING INSTRUCTION

3

Apply In :2 InC:2 Con:

out
Inputs 2 4

Activating Fn with Uid: 2
Heap node 16 allocated as Ac
opnd 1 of Inst. O in Uld 18 =
opnd 2 of Inst. 1 in Uld 18 =
Outputs NU
ACTIVITY LIST
{16,0] [(18,0,22] {14,1,7]

INTERPRETING ACTIVITY [16,4]
EXECUTING INSTRUCTION

IApply In :4 InC:3 Con:
out:

Inputs 3 411
Activaring Fn with Uid: 3
Heap node 17 allocated as Ac
opnd 1 of Inst. O in Uid 17
opnd t of Inst. 1 1in Uid 17
opnd 1 of Inst. 2 in Uld 17
opnd 1 of Inst. 3 in Uid 17
opnd 2 of Inst. 4 in Uid 17 =

Cutputs NU

— = = oa W

ACTIVITY LIST
[17,0,3} [17,0,2] (17,0,1]

1111

4

[15,18].0

[15,3,20]

4)

16,4] .0

{17,0,0] [13,0,17] (8,1,11]

[15,3,23]

219
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INTERPRETING ACTIVITY [17,0,5)
EXECUTING INSTRUCTION )
Incr In :4 InC:4 con:
out:1 0.0
Inputs 3 4 2 2

Activating Fn with Uld: 3
Heap node 19 allocated as Ac

Opnd 1 of Inst. O in Uid 19 = 3
Opnd 1 of Inst. 1 in Uid 19 = 4
Opnd 1 of Inst. 2 in Uid 19 = 2
opnd 1 of Inst. 3 1n Uld 19 = 2
Opnd 2 of Inst. 4 in Uid 19 = [18,4].0

Outputs NU
ACTIVITY LIST
[19,1,3] [19,1,2] [19,1,1]1 [19,1,0] [18,1,17]

INTERPRETING ACTIVITY (21,2,5]
EXECUTING INSTRUCTION (8)
Incr In :4 InC:4 Con:
Out:1 0.0
Inputs 3 4 4 24

Activating Fn with Uld: 3
Heap node 22 allocated as AcC
Opnd 1 of Inst. O in Uid 22
opnd 1 of Imst. 1 in Uld 22
opnd 1 of Inst. 2 in Uiqd 22
Opnd 1 of Inst. 3 1n Uid 22 = 24
Opnd 2 of Inst. 4 in Uid 22 = [16,4].0
Outputs NU
ACTIVITY LIST
{(22,3,3] (22,3,2] [22,3,1] ([22,3,0]

([
& o W

INTERPRETING ACTIVITY (22,3,4]
EXECUTING INSTRUCTION

Return In :1 InC:1 Con:
Out:1 0.0
Inputs 24
Return via [16,4]
Outputs 24
ACTIVITY LIST
{16,1]
INTERPRETING ACTIVITY [18,1]
EXECUTING INSTRUCTION . (¢p)]
Return In :1 InC:1 Con:
Out:1 0.0
Inputs 24
Return via {15,3,18]
Outputs 24
ACTIVITY LIST

(15,3,11]

INTERPRETING ACTIVITY [15,3,2]
EXECUTING INSTRUCTION

Raturn In :1 InC:1 con:
Qut:1 0.0
Inputs 24
Return via [4,3)
outputs 24
ACTIVITY LIST
[4,4]

INTERPRETING ACTIVITY [4,4]

EXECUTING INSTRUCTION (8)
Fin In :1 InC:1 Con:
Out:1 0.0
Inputs 24
Result at output 1 = 24
Outputs NU

Figure A3.7. Execution trace of program of Figure A3.6.
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AN EXAMPLE OF TRANSLATION OF AN LX PROGRAM

In this Appendix, the production of data flow graphs fom a simple LX program is
described. The program, shown in Figure A4.1, is a factorial program which defines
a history of factorials [f]] in terms of its own future; a similar program was used in

§2.3.2. The following histories satisfy the definitions of the program:

[m] = (3,3,3,3,...)
[n] = (3,2,1,0,...)
Ir1 = (6,2,1,1,...)
[result] = (6,2,1,1,...).

prog fact global int m;
int n, {, result;
n = m fby n-1;
f=1It n< 2
then 1
else n + next {
eif;
result = f;
eprog

Figure A4.1. A factorial program.

The FTs produced from the program are shown in Figure A4.2. Heap node 0 is
a standard driver which operates in a continuous cycle, of accepting a number d from
the terminal, invoking the main program with d as a demand number, and displaying
[result]y at the terminal. FTs 1, 2 and 3 respectively are loaded with every program,
and are used in the implementation of the operators asa_then_easa, wvr_then _ewvr
and upon_then_eupon. A use of one of these operators is compiled as an invocation of
the appropriate FT; the FT for asa_then_easa is included for information, although

the construct is not used in this particular program.

The FT for the LX program, constructed as described in §5.3.3.1, is shown at heap

node 4. The principal purpose of this FT is to use the supplied demand number to
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construct a second demand, as shown at instruction 7, which is then used to invoke
the FT for result, at instruction 8. Instructions 3 to 6 show the construction of the
component tnstance of this second demand. As indicated by the constant input operand
of instruction 6, the component tezt of the instance is FT 4, the LX main program.
The main program itself is the only clause used, hence only one instance is created.
The scheme given in §5.3.3.1 requires, for an “external instance”, an ET which includes
a list of global variables of the main program, intended for use in resolving uses of such
variables. However, for this particular LX program, the compiler can resolve such uses
directly, and the ET is not needed. Hence, it is created with an empty list, at heap

node 5, and a dummy instance.

FT 6 is invoked to produce a value of [[m]. The external interface required to
obtain such values is implemented in the special instruction Prompt, which displays its
inputs, a character string and the demand number, on the screen, and accepts a value
in response. Such values are buffered to prevent multiple requests for the value at a

given history index.

Both FT 7 and FT &, representing respectively the definitions of n and f, are
constructed as described in §5.3.3.3. The DNum/ instruction (number 11) of FT 8
performs the demand number incrementation required to obtain values of next f. The
SWITCH instructions 14 and 15 simulate a TGATE and an FGATE instruction. As
mentioned in §3.2, the MERGE instruction has two input operands, but fires on arrival
of an input at either operand. Hence, its incount, the number of values yet to arrive
to enable the instruction, is 1; to ensure that the interpreter initializes this count

correctly, only one input source is shown.
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»Q0 DRIVER
Ident
Retura
Start
Apply
Ident
Apply
Fin
End

1 ASA

Ident
Ident
Ident
Return
Incr
Merge
Ident
Switch
Merge

9 Ident
10 Switch
11 DHuml
12 Apply
13 Ident
14 End

*2 WVR

+3 UPOX

%4 program
Ident
Return
Ident
Con
LUpd
EICons
ICons
DCons
Apply
End

5
»8

0 Ident
1 Return

2 Dium

3 Prompt

4 End
7

O N W RO ® DO WD =O

* O O2O0 0N = WN O

Ident
Return
Apply
Ident
Apply
Sub
Con
Ident
DNum
Eq

10 Ident
11 Switch
12 Switch
13 DNumD
14 Merge

16 End

QO NI W DO

(oo e
o
-

12.1 : 7.110.1

empty list
FT for *a"

FT for ®a®

0.0 : 7.1
14.1 :
=6 11.1 : 14.1
4.286.2

5.1
.16.1: 14.1
5.2
11.2 12.2

pa
-~ W
W
[y

-
(£
n

8.
9

| S

08.1: 10.1
i S

O HO I W i
-

NDO O

o n
-
[
-
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»
[«

Ident
Return
Ident
Apply
Lt

Con
Con
Ident
Apply
9 Times
10 Apply
11 DNumI
12 Ident
13 Ident
14 Switch
15 Switch
16 Merge
17 End
9

0 Ideat
1 Returan
2 Apply
3 End

N W= O

Figure A4.2.

0.0 : 12.1

16.1 :

12.1 : 3.2 5.2
=7 2.1 : 4.1
3.15.1: 13.1
=2 2.2 : 4.2
=1 14.1 : 16.1
15.2 : 8.2 11.1
=7 7.1 : 9.1

8.1 10.1 : 16.1
=8 11.1 : 9.2

7.2 10.2
0.1 : 2.1 14.2 15.2
4.1 14.1 15.1
13.1 12.2 : 6.2 0.0
13.212.3: 0.07.1
6.1 : 1.1
0
0.0 : 2.2
2.1 ;
=8 0.1 : 1.1

0

Defn. of £

FT for °‘result®

Function templates produced from LX program of Figure A4.1.

Figure A4.3 shows the propagation of demands to various definitions and expres-

sions in the program. The arcs representing demand propagation are labelled with the

demand number propagated. The return of values is also shown, by labelling arcs with

the returned value.

An extract from a trace of the execution of the program of Figure A4.2 is presented

in Figure A4.4. An explanation of each of the points labelled on the trace follows:

1: The inputs of the DCons instruction are a demand number 0 and an
instance at heap node 14, which comprises an FT at node 4 and an
ET at node 13; the output shows each component of the demand.

2: Heap node 16 is created as an activation of f, supplied with demand
number 0.

3: Heap node 17 is an activation of n, with demand number 0.

4: Shows extraction of the demand number propagated to activation 17,
and its comparison with 0, as required to implement fby.

5. The FT for m has been invoked, and the value 3 accepted from the
terminal and returned from the activation.

6: Shows execution of the test n< 2.

7: The demand number has been incremented to 1, and f invoked, as

required to implement fby.
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8:

10:
11:

12:

Considerably later in execution, f is invoked with demand number 2,
creating activation 26.

In activation 26, the test n< 2 succeeds, hence the value 1 is returned
and multiplied by ny=2.

Shows a later point on the VRP.

The value 3! = 6 is returned to the main program, via activations of
f and result.

The value 6 is displayed on the terminal.



—3— —3 demand flow

- 3- 3 - - returned values

false
en ¢ « ) o)+ ‘"external" information

b m. ¢ ~external
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Figure A4.3. Demand flow in the example of Figure A4.1.
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Data Flow Graph Interpreter
Do you want tracing? y

Heap ncde O allocated as Fn
Heap node 1 allocated as Fn
Heap node 2 allocated as Fn
Heap node 3 allocated as Fn
Heap node 4 allocated as Fn
Heap node 5 allocated as L1
Heap node 8 allocated as Fn
Heap node 7 allocated as Fn
Heap node 8 allocated as Fn
Heap node 9 allocated as Fn

Heap read 10 nodes
Which Fn to run ? 0
Activating Fn with Uld: 0
Heap node 10 allocated as Ac
ACTIVITY LIST

(10,0]
INTERPRETING ACTIVITY [10,0]
EXECUTING INSTRUCTION

Ident In :1 InC:1 con:
out:
Inputs O
Outputs O
ACTIVITY LIST
[10,2]

INTERPRETING ACTIVITY (10,2]
EXECUTING INSTRUCTION

Start In :1 InC:t con:
Out:
Inputs O
New value for input 1: O
Outpurs O
ACTIVITY LIST
{10,3]

INTERPRETING ACTIVITY [t0,3]
EXECUTING INSTRUCTION

Apply In :2 InC:1  Con:

out
Inputs 4 O
Activating Fn with Uld: 4
Heap node 11 allocated as Ac
opnd t of Inst. 0 in Uid 11
Opnd 2 of Inst. 1 in Uid 11 =
Outputs NU
ACTIVITY LIST
{11,0]

INTERPRETING ACTIVITY [11,4]
EXECUTING INSTRUCTION

Lupd In :2 InC:1 Con:

Dut
Inputs 5 I{0]
Heap node 12 allocated as Li
List O elts.
Outputs L{12]
ACTIVITY LIST
[11,5]
INTERPRETING ACTIVITY ([11,5]
EXECUTING INSTRUCTION
ETCons In :2 InC:2 Con
Out
Inputs 0 L[12]
Heap node 13 allocated as ET
Outputs ET[13]
ACTIVITY LIST
[11,8]
INTERPRETING ACTIVITY [11,8]
EXECUTING INSTRUCTION

ICons In :2 InC:1% Con:

Out

1=4
141

[10,31.0

.2=1(0]
11 5.2

18.2

1=FT[4]
17.2

Inputs FT[4] ET(13]

Heap node 14 allocated as Ic

Qutputs I[14]=[4,13]

227



Appendix 4

AN EXAMPLE OF TRANSLATION OF AN LX PROGRAM

ACTIVITY LIST

(11,7]
INTERPRETING ACTIVITY [11,7] [(69)
EXECUTING INSTRUCTION

DCons In :2 InC:2 Con:

Oat:1 8.2
Inputs O I[14]=[4,13]
outputs D[0,14]
ACTIVITY LIST
{11,8]
INTERPRETING ACTIVITY [11,8]
EXECUTING INSTRUCTION
Apply In :2 InC:1 Con: .1=9
Out:1 1.1
Inputs 9 D[0,14]
Activating Fn with Uid: 9
Heap node 15 allocated as Ac
opnd 1 of Inst. O in Uild 15 = D[0,14]
opnd 2 of Inst. 1 in Uid 15 = [11,8].0
Outputs NU
ACTIVITY LIST
(15,0]
INTERPRETING ACTIVITY [15,0]
EXECUTING INSTRUCTION
Ident In :1 InC:1 con:
Out:1 2.2
Inputs D[0,14]
Outputs D(0, 14]
ACTIVITY LIST

[15,2]

INTERPRETING ACTIVITY [15,2] (2)
EXECUTING INSTRUCTION

Apply In :2 InC:1 Com: .1=8

Oout:1 1.t
Inputs 8 D{0,14]
Activating Fn with Uid: 8
Heap node 18 allocated as AC
opnd 1 of Imnst. O 1in Uld 16 = D[0,14]
Opnd 2 of Inst. 1 1n Uid 18 = [15,2]1.0

Outputs NU
ACTIVITY LIST
[18,0]
INTERPRETING ACTIVITY [(16,3] )
EXECUTING INSTRUCTION
Apply In :2 InC:1 Conm: .1=7

Out:1 4.1
Inputs 7 D{0,14)
Actlvating Fn with Uld: 7
Heap node 17 allocated as Ac
opnd 1 of Inst. O in Uld 17 = D[0,14]
Opnd 2 of Inst. 1 in Uld 17 = [18,3].0
Outputs NU
ACTIVITY LIST
[17,0) (18,5}

INTERPRETING ACTIVITY (17,8]
EXECUTING INSTRUCTION

DNum In :t InC:1 Con:
Out:1 9.2
Inputs D{0,14}
Outputs O
ACTIVITY LIST
[17,9]
INTERPRETING ACTIVITY [17,9] (€))
EXECUTING INSTRUCTION
Eq In :2 InC:1 Con: .1=0
Ouv:1 10.1
Inputs 0 O

Outputs T

2

8
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ACTIVITY LIST
[17,10]

INTERPRETING ACTIVITY (17,2]

EXECUTING INSTRUCTION

Apply In :2 InC:1 Con: .1=8

Out:1 14.1

Inputs 6 D[0,14]

Activating Fn with Uid: 6

Heap node 18 allocated as Ac

Opnd 1 of Inst. O 1n Uid 18 = D[0,14]

Opnd 2 of Inst. 1 in Uid 18 = {17,2].0
Outputs NU
ACTIVITY LIST
[18,0]
INTERPRETING ACTIVITY (18,3]
EXECUTING INSTRUCTION
Prompt In :2 InC:1 Con: .1=M
Out:1 1.t
Inputs M 0
M at 0: 3
Outputs 3
ACTIVITY LIST
[18,1]
INTERPRETING ACTIVITY [18,1] 5)
EXECUTING INSTRUCTION
Revurn In :1 InC:1 con:
Out:0
Inputs 3
Return via {17,2]
Outputs
ACTIVITY LIST
(17,14]
INTERPRETING ACTIVITY [17,14]
EXECUTING INSTRUCTION
Merge In :1 InC:1 Con:
Out:1 1.1
Inputs 3
Outputs 3
ACTIVITY LIST
[17.1)
INTERPRETING ACTIVITY [17,1]
EXECUTING INSTRUCTION
Return In :t InC:t Con:
Out.:0
Inputs 3
Return via [16,3]
Outputs
ACTIVITY LIST
{18,4]
INTERPRETING ACTIVITY [18,4] 8)
EXECUTING INSTRUCTION
Lt In 2 InC:2 Con:
Dut:1 13.1
Inputs 3 2
Outputs F
ACTIVITY LIST
[16,13]
INTERPRETING ACTIVITY (18,11]
EXECUTING INSTRUCTION
DNumI In :1 InC:1 Con:
Out:1 10.2

Inputs D(0,14)]
Outputs D(1,14]
ACTIVITY LIST
[18,10]

2

9
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INTERPRETING ACTIVITY [18,10] (¢)
EXECUTING INSTRUCTION
Apply In :2 InC:1 Conm: .i=

out:1 9.2

Inputs 8 D[1,14)
Activating Fn with Uid: 8
Heap noda 20 allocated a8 Ac
opnd 1 of Inst. O in Uid 20 = D[1,14]

Opnd 2 of Inst. 1 1n Uid 20 = [16,10] .0
Outputs NU

ACTIVITY LIST

[20,0] [19,7]
INTERPRETING ACTIVITY {[20,10] ®)
EXECUTIKG INSTRUCTION

Apply In :2 InC:1 Con: .1=8

Qut:1 9.2

Inputs 8 D[2,14]

Activating Fn with Uid: 8

Heap node 26 allocated as Ac

Opnd 1 of Inst. O in Utid 268 = D(2,14]

opnd 2 of Inst. 1 1n Uid 26 = [20,10].0
Qutputs NU

ACTIVITY LIST

[28,0) [25,7]

INTERPRETING ACTIVITY (26,4]
EXECUTING INSTRUCTION

Ly In :2 InC:2 Con:
Out:1 13.1
Inputs 1 2
Outputs T
ACTIVITY LIST

[28,13]

INTERPRETING ACTIVITY [26,1]
EXECUTING INSTRUCTION

Return In :1 InC:1 Con:
Qgut:0
Inputs 1
Return vis [20,10)
outputs
ACTIVITY LIST
{20,9]
INTERPRETING ACTIVITY [20,89)] (€))
EXECUTING INSTRUCTION
Times In :2 InC:2 Con:
Out:1 18.1
Inputs 2 1
Outputs 2
ACTIVITY LIST

{20,16]

INTERPRETING ACTIVITY (20,1]
EXECUTING INSTRUCTION

Return In :1 InC:1 con:
Out:0
Inputs 2
Return via [18,10]
outputs
ACTIVITY LIST
(18,9]
INTERPRETING ACTIVITY [18,9] (10)
EXECUTING INSTRUCTION
Times In :2 InC:2 Con:
Out:t 168.1
Inputs 3 2

Outputs 6
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ACTIVITY LIST
[16,18]

INTERPRETING ACTIVITY (16,1]
EXECUTING INSTRUCTIOR

Return In :1 InC:1 Con:
Out:0
Inputs 6
Return via [15,2]
Outputs
ACTIVITY LIST
[15,1]

INTERPRETING ACTIVITY (15,1]
EXECUTING INSTRUCTION

Return In :1 InC:1 Con:
Qut:0
Inputs 6
Return via [11,8]
Qutputs
ACTIVITY LIST
[11,1]
INTERPRETING ACTIVITY (11,1} 1)
EXECUTING INSTRUCTION
Return In :1 InC:1 Con:
Out :0
Inputs 8
Return via [10,3]
Outputs
ACTIVITY LIST
[10,4]
INTERPRETING ACTIVITY (10,8] (12)
EXECUTING INSTRUCTION
Fin In :1 InC:1 Con:
Out:0
Inputs 8
Result at output § = 6
Outputs

Figure A4.4. A trace of the execution of the program of Figure A4.2.
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APPENDIX 5

THE TRANSLATION OF A PROGRAM USING THE HYBRID SCHEME

This Appendix completes the description of the translation of the program shown
in Figure 6.7. The graphical form of the DFC is shown in Figure 6.8. Figure A5.1
shows the textual representation of a data flow program which implements the program
given in Figure 6.7. In this case, the data flow program was constructed manually from

graphs produced by the implementations described in Chapters 4 and 5.

Function templates 0 and 5 represent the DFC. FT 0 contains that part of the
graph which is “outside the box” (a term explained in Appendix 3) shown in Figure
6.8, as well as a FIN instruction used to display the result of the program. Note
that FTO invokes the main program (FT 5) once, to provide the “external trigger”
mentioned in §6.4. If the program required external input, for example if f was global,
then F'T 0 would use a START instruction to obtain one input value, invoke FT 5 with
that value, and then recursively invoke itself (F'T 0) to obtain another input value (see

§3.3.2).

FT 5 contains the main bédy of the loop shown in Figure 6.8, after it has been
transformed to tail recursive form. FT 6 is the representation in the DDC of the DF
variable f. It can be seen that it invokes FT 4, which implements the Access network
described in §6.3.2; a parameter of the invocation is the Uid 7, the heap node which
contains the structure value H;. All remaining FTs implement the DDC, and are as

generated by the implementation of §5.3.

Explanation of each of the labelled points on Figure A5.1 follows.

1: Instructions 3 and 4 implement FirstH; of Figure 6.8.

2:  Instructions 18 and 19 implement DI of Figure 6.8; inputs 3 and 4 of
DCons implement actual parameter transmission, which is not consid-
ered in detail in this thesis.

3: Instructions 30 to 33 implement NeztH, of Figure 6.8.

4: Instructions 7 and & are concerned with actual parameter transmission.
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*
o

[+ - MQWNMO:O\I DN W= O

5:

Ident
Return
Con
Cen
MkL
Con
IApply
Fin
End
ASA
Ident
Ident
Ident
Return
Incr
Merge
Ident
Switch
Merge
Ident
Switch
DEumI
Apply
Ident
End
YVR
Ident
Ident
Ident
Ident
Ident
Return
Incr
Merge
Ident
Swvitch
Merge

IApply
Switch
DRual
Merge
Ident
Switch
Add
Merge
Ident
Switch
Eq
Ident
DlNum
End
UPon
ACCESS

Heap nodes 13, 14 and 19 are lists of global variables and formal
parameters created by the LX compiler.

Instruction 3 is an invocation of FT 2, wur; the second operand 17 is
an FT which computes a value of the condition of the wvr definition,
and is invoked within FT 3 when required.

Initiates loop of main program

0.0 2.2 3.25.2
7.1 0.0
=5 0.1 6.2 4.2
=7 0.2 4.1 6.3 (1)
3.1 2.2 0.0
=0 0.3 6.4
=5 2.1 3.25.1 7.1
6.1 1.1
0

0.0 4.1

0.0 5.1

0.0 8.1

10.1 :
0.17.211.1:

1.1 6.1

5.1 7.2 12.1
13.1 6.1 : 0.04.2
2.1 9.1

8.1 12.2 10.2
13.29.2: 3.111.1
10.2 : 4.3
6.29.1: 13.1

12.1 7.1 10.1

0

0.0 6.1

0.0 7.1

0.0 10.1

0.0 141

0.0 18.1

12.1

0.19.213.1 17.1 20.2
p 55 | 8.1

7.1 1 9.2 11.2
22.48.1: 0.06.2
2.1 ¢ 11.3

18.210.1 : 12.2
22.3 11.1 : 5.1 13.1
12.2 : 8.3

3.1 : 15.1

14.1 : 16.2 21.1
22.1 15,1 : 0.0 17.2
=1 16.2 : 6.4

4.1 : 19.1

18.1 : 23.1 20.2
22.219.2 : 0.086.5

16.2 23.1 22.1

21.1 : 9.1 12,1 16.1 20.1
19.1 o 21.2

0
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O O®NG WO

Ident
Ident
Ident
Return
Incr
Ident
Ident
FGate
R
Ident
Ident
FGate
Sub
Eq
Ident
Switch
L

End

Ident
Ident
Ident
Ident
Return
Incr
Ident
Ident
Ident
Ident
Ident
Ident
Ident
Ident
Ident
Ident
Ident
Ident
EICons
ICons
DCons
Apply
Ident
Gt
Switch
Times
Ident
FGate
Ident
Null
Ident
Pair
MkR
MkL
Ident
FGate
Add
Ident
FGate
End

Ident
Return
DNum

IApply

O OO

6.1

8.1 12.1

.

4.26.1

QO NN, O OO0O0

>
[P
o e

10.

13.
14,
15.

e )
1]

.0
.0
.0
.0
1
.1

NNONOOOO

3.1
4.1
1.1

26.1
25.1
3.1

37.
36.
28.
34.
31.
13.
=b
13.
=9
21.

o RO R b ) e e
il
o

[« 3 L]

]
-

[ 4
e n

Ny
-~y -
[N
m
N O
o

D OO
R
[

o
[

2.1
30.1
30.1 3
31.21
16.1
6.3 18.1
38.1 =1
12.1

6.4 13.3

- -
[

11.2 17.1 14.1 :

= = e DO O O U
RO DO O -

15.1 7.1 11.1
16.1 0.0
3.1

DFC FT for main program

o . S
- [ SN
- [Ty

27.1 35.1 38.1

O O =)o WU
oo

26.1

27.2

33.2 5.2

37.1

18.1 20.1 38.2
5.4

34.1

35.2

5.3

19.2 (2)
20.2

21.2

22.1

23.1 24.2
6.1

7.1 0.0
11.
10.
25.
15.

e

31.
32.
0.0
0.0
16.1
30.1
14.1
13.1
36.1

3)

N -
w W
W
[
-
-
-~

DDC FT for °f®

- W O W
WO -

&



4 End
+7

»
[o-]

Ident
Return
Con
Ident
Apply
Add
Con
Ident
DNum
Eq

10 Ident
11 Switch
12 Switch
13 DNumD
14 Merge

15 End

OO~ & =~=O

0 Ident
1 Return
2 Ident
3 Dium
4 DiInst
5 DCons
8 Apply
7 Ernd
%10

0 Ident
1 Retura
2 Ident
3 Con

4 Dium
5 DInst
6 LUpd

7 DAPLi
8 DAPi

9 LUpd
10 LAppend
11 ETCons
12 ICons
13 DCons
14 Apply
15 End

0 Ident
1 Returm
2 Ident
3 DlIrst
4 1IET

5 ETList
86 LFind
7 LUser
8 LNevw

9 DCons
10 DHum
11 DAPi
12 DAPLA
13 Apply
14 End
%12

0 Ident

0

=1 3.2

N OO
PR Y

[ 3N S I
~ -
w N

O OO Il NO I
[

O H WO MmO
O O

on .
o
[

T O - = = UV =N

= s pa DD
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-
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o -
(Y
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=W OMNF OO Vi, ON
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1.113.14
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Structure Hf
DDC FT for °b?

DDC FT for °"c®

DDC FTI for "filter®

(4)

DDC FT for *p*

DDC FT for global °f®
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Return
Ident
DInst
IET
ETList
LFind
LUser
LNevw
DCons
10 DNum
11 DAPi
12 DAPLi
13 Apply
14 End
=13

%14

215

O D T®H U = WD =

Ident
Return
Ident
Apply
Add
Apply
End

16
Ident
Return
Ident
TApply
DNumO
Apply
End

17
Ident
Return
Ident
Ident
Apply
Hod
Con
Eq
Con
End

N W =0

# O DO WO OUED N WNNERROSO

-
[ ]

0 Ident
1 Return
2 Apply
3 End
19

w
[

DO o b b e e e

=12

- ke N

O O OO WND O -
©
[

[
= =0
YN
[

O I I OO
[ N DA

[ =]

2 =17 4.1 =0 2.2

O W Il OO
- . .
[l
[/]

-

. e e O
D W
-

N
-

w
@ -
N
[

Ol cnil i NI DOIO
Q - L == - 5 M
[ &)

[ -]

n O
- O

o u
[« -]
o
-

0.17.111.1 12.1 :

O OOHRRONO OB WO

e = o WO N

=W o O N

N RO Ve WO N

- O N
- O

List
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0
1 10.1 11.1 12.1
1
1
1
18.1
2
1
.2
1
.3
4
1
List (5)
List
DDC FT for ®result®
1
0
26.2
1
.1
2
DDC FT for °r®
i
0
1 3.5
2 (8)
3
1
DDC FT for “wvr® cond.
1
0
18.2
26.2
i
1
2
1
2
DDC FT for a.p.

Figure A5.1. A data flow program which implements the program of Figure 6.7.

Figure A5.2 shows the output produced by the data flow graph interpreter when

the program of Figure A5.1 is executed.
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Data Flov Graph Interpreter
Do you want tracing? n

Which Fn to run ? O
Result at output 1 = 633

Figure A5.2. Result of execution of program of Figure A5.1.
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