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SUMMARY

The programming language Lucid is a nonprocedur¿l language proposed by Ashcroft

and 'Wadge. In their formal definition, a Lucid progra,m is regarded as ¿ set of equa-

tions expressing relationships between infinite sequenees of data objects; the solution

of the set of equations is defined using least fixed point semantics. The formal defi-

nition defines a family of programming languages, with each member determined by

a specific data algebra. This thesis defines a particular Lucid-like language, I)(, with

list structures, strong typing and clauseoriented syntax.

Experiments in the translation to data flow graphs of the language LX are of primary

concern in the thesis. A¡ extended data flow model, derived from the work of Dennis,

is presented, and an interpreter described. The operations of the model are low level,

in order to exploit instruction-level parallelism. Operations are executable when all

input operands Ðre presett; in other words, it is ¿ data-driven model.'

Demand-driven data flow, in which computation can be likened to call-by-need evalu-

ation, is more appropriate to the correct implementation of the formal semantics than

is data-driven data flow, which is essentially call-by-value. A technique is developed

whereby demand-driven computation is modelled by representing demands as data.

A-u operational semantie model of LX is presented, which describes an abstract eom-

putation in terms of the flow of demands initiated by a request for a progta,m result.

The semantics of each LX language construct is expresssed a.s a demand transforma-

tion, specifying the demands propagated on receipt of a demand for a particular value.

A detailed description of a translator for LX which produces demand-driven graphs is

grven.

An implementation strategy more directly related to data-driven data flow is also con-

sidered. A subset of LX, called LX3, is defined which allows a simple operational

interpretation in terms of loops. Techniques for the translation of LXB to data flow

networks are proposed, and their implementation described. The thesis shows that LX3

can be implemented simply and efficiently, and that LX3 is comparable in expressive-



(i*)

ness to high level languages developed specifically for data flow. An implementation

of I)(3 for a conventional, sequential machine is also described.

The demand-driven code generated by the LX translator implements the formal def-

inition, but incurs significant ove¡head in treating demands as data, and in invoking

a separate computation for each value required. The application to LX of known

optimization techniques for the latter problem is discussed. However, the thesis em-

phasizes an alternative approach to performance optimization, whereby the IX and

LX3 translation techniques are combined. An extension to LX3 allows some definitions

to be written in LX; a translator for the extended language would produce data flow

graphs with both demand-driven and data-driven components. The interface between

these components utilizes early completion dat¿ structures to enable communieation

between the components. A possible implementation technique is discussed, with an

example of its application.

The thesis includes descriptions of Pascal programs which implement the data flow

grâph interpreter and translators for lX and LX3; these progra,ms have been used to

thoroughly test the translation schemes proposed. Specific examples of the operation

of each implementation are demonstrated and analyzed.
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CHAPTER 1

INTRODUCTION

1.1 Aims of the thcs¡s

Lucid [AshW76, Ash'W77a, AshW79a, AshvfTgb] is a functional language with

a well defined formal semantics. This thesis reports on research into the design of a

programming language, LX, based on Lucid, and on experiments in its implementation.

Published descriptions of Lucid give the semantics of the language in detail, but other

aspects of language design are given less detailed treatment. Hence, in this thesis,

previous descriptions of Lucid are used aimost unchanged in defining the semantics of

LX. An aim of the thesis is to design a suitable concrete syntax taking into account

such factors as clarity and correctness of programming in the language, and ease of

compilation. Thus facilities for structuring data and programs, for controlling scope

and for type checking, are included.

However, the thesis is coneerned primarily with the implementation of LX. The aim

of the earliest experiment in the research reported here (and also in [Wen81, Wen82])

was to establish that a Lucid-like programming language could be implemented, rvith

acceptable efficiency, using essentially conventional compiler construetion techniques

[Wir7ô], combined with dependency analysis. This experiment led to the development

of the implementation structure used in subsequent experiments.

The main aim of later experiments was to explore relationships between LX and

data driven data flow [Den74, ArvGP78, GurGKSl]; the nodes of a d¿ta flow net-

work are low level, sideeffect free operations activated by the availability of operand

values flowing on the arcs. This was done by constructing two implementations, one

emphasizing effÊciency of the target code but restricting the language translated, the

other, correetness and completness of the translation, in the sense of agreement with

the mathematical semantics. For the first, the thesis describes restrictions on LX to

give LX3, a subset which can be implemented efficiently, and which is comparable in

,4

ß1j
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Section 1.2 An introduction lo LX

expressiveness to certain other languages developed specifically for data flow.

An important research goal was the development of an implementation of unre.

strieted IX with data driven data flow as the target language. A relationship between

Lucid and data flow was noted by Ashcofü and Wadge in [AshW77a], in which they use

the term "data flow" with respect to networks of the type proposed by Kahn [Kah7a].

These networks describe data flow at a higher level (that is, the nodes represent nìore

complex operations) than the networks of principal concern in this thesis. In addition,

Ashcroft and Wadge note that not all valid programs can be expressed using such net-

works, but that an implementation based on the notion of demand driven computation

is correct. This suggests that dem¿nd driven data flow might be used as the basis of a

complete, correct implementation. The work of this thesis differs in that the data flow

networks considered are low level and data driven, hence it was necessâry to resolve

the apparent differences between the data and demand driven views. To achieve this,

the thesis presents a new operational semantic definition of LX which explicitly models

the flow of demands during a hypothetical computation yielding the same result as

speciûed by the formal definition of Lucid.

The second implementation of LX is a literal application of this operational se

mantic definition; beeause it explicitly represents demands and demand flow, it has

inherent inefficiencies. However, it provides a precise and readily comprehensible op-

erational model of program execution in a data driven data flow environment; several

possible optimizations for improving the performânce of the implementation are indi-

cated. Optimization is not the only approach to performance improvement, and the

thesis concentrates on an alternative approaeh. A third, hybrid, implementation, is

proposed, in which the first implementation method is used primarily, with the second

applied to program components when so speciûed by the programmer.

1.2 An introduction to LX

This section attempts to illustrate the basic concepts of IX by explaining some

example progra,ms. The first proglâ,m considered is given in Figure l.l. It demon-

I

i

[^.I

D
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Section I.2 An introduction to LX

strates that a progra,m is an unordered set of definitions; Lucid and LX are equational

programming languages. In the figure, the program is shown on the left, with the

values of some progr&m identifiers and constants given on the right. The variable i is

defined as the history of even numbers. In LX, the variable result, in a program, is

regarded as the output of the program. In this case, the output is formed by adding 1

to each value in the history ftill.

3

i

prog OddNos;
lnt result, i;
result: i + 1;

i:0lbyi+2;
cp?o8

flrn :
[i]l :

flresultll :

Figure l.l. Progrzm OddNos.

The program illustrates several other points about LX and Lucid. Firstly, variables

denote histories, where a history is an infinite sequence of values. The notation [c]l

means "the history denoted by o", and [ø]lr should be read "the history denoted by a

at time ú", written thus:

["n : ( [ono, [ont, [onr, )

'When the meaning is clear, this may be abbreviated to:

["n : ( oo, or, @2, )

Secondly, arithmetic operations apply pointwise to histories, for example:

[a + ö[ : ( os*bs, o1*b1, oy*b1, )

The operator fby (pronounced "followed by')is aspecial operator defined thus:

[c fby b[ : ( oo, bo, ö1, )

A variable, such as r, defined by an expression involving fby, is referred to as an

inductive variable.

The next example, the program Sums in Figure 1.2, uses a variable n as input; its

output at time ú, as defined by result, is the sum of the input values ß0, 7ù1, .. ., ßt.

)
)
)

( r, 1, r,
1o,2, 1,
( 1, g, s,

I



Section 1.2 An introduction to LX 4

The variable n is deelared â^s a global of the main progràm; in LX, the values in the

history denoted by such a variable are to be supplied as input from an external source.

prog Sums glob¡l lnt n; [o]l : I 2, 7, 3, 8,
lnt result, sum;
result : sum; [sum[ : ( 2, 9, 12, 20,
sum : flrst n fby sum f ncrt n

cprog flresult]l : ( 2, 9, 12. 20,

Figure 1.2. Program ^9un¿s.

The monadie opcrators first and next are defined thus:

)

)

)

fffirsù o]l :
finext a[ :

dO, O0¡ dO, ...
Al, Ø2, OZ, ...

(
(

)
)

From the definition of fby, it can be seen that, in program Sums

[sumflo fffirst nls
7¿o

and also that

[sum]l¡11 -- fisum * next n]l¡
_ [sum[; + [rn;+r

The deûnition of .e¿z¡ câ,n be visualized as describing an infinite loop in which the

variable is initialized to the first input value (ns), with subsequent values computed by

adding the current value of sum to the next input value.

The program NM in Figure 1.3 defines as its result the square root of the input

a. It is convenient to regard the main program variable result of program NM a,s

being defined point by point by the define clause SqRt invoked with the input, a,

as its actual parameter. At time point t, SqRt defines (outer) flresutt]lr as follows.

The formal parameter r is declared as frozen; this means that, within the clause as

invoked, r denotes the constant history ( or, or, @t¡ . . .) formed by freezing the actual

parameter at the outer time, t. The square root is defined by forming ø, denoting

a history of approximations to the square root, and using the asa-then-easa ("as

soon as')operator to extract the tenth approximation. The definition of this operator,



Section 1.3 Structure of the thesis 5

operating on two variables a and ó, is

fiasa ô then c easa]l : ( [o]|', [onr, [onr, )

where s is such that

flan¡: true, ¡:s
and

[¿n¡ : false, ¡<s'

From this definition, it can be seen that (inner) result denotes the constant history ( 19,

r,g, Íg,... ). fnis value then defines outer result at time ú, as required. Operationally,

the define clause can be seen as an inner loop executed l0 times at each step of an outer

loop; each iteration of the outer loop accepts ¿ value from input and produces its squa¡e

root. A definition which uses fby models ¿n infinite iteration; the asa-then-easa

operator models the termination of a loop.

The inner loop (the define clause) can be seen a,s having been invoked at each step

of the outer loop, with the histories denoted by variables inherited from the outer loop

(a in the example) regarded as eonstant (frozen) for the duration of the inner loop. It

is in this way that LX, like Lucid, models a nested subcomputation.

prog NM globrl rcel a; [t]l : ( 4, 1ô, 9,
lnt result, SqRù;

defrnc SqRt( rcrl r ) frcarlng r;
lltl x, resulü; lnt Count;
result : ¡s¡ Count cq l0 thon x cest;
x: lfty(x*frrstrlxll2;
Count: lfbtCouut*1

cdcffnr;
result:SqRt(a);

Gp?o8 firesult]l : ( 2, 1" 3,

Figure 1.3. Program NM

1.3 Structure of the the¡is

The next section of this chapter surveys the historical development of Lucid, and

examines its relationship to LX. A description of data flow models relevant to the thesis

follows. Important issues in implementing LX are then discussed.

)
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Chapter 2 formally defines the syntax of the language LX. The semantics of LX are

explained informally by comparison with the semantic deflnition c.¡f Structured Lucid

[Ashw79b], and defined operationally using an information structure model which

describes the flow of demands in a computation. The loop based subset, LX3, is then

defined by giving restrictions on LX programs, and showing how such programs ean

be interpreted in terms of loops. Chapter 3 deseribes the data flow model used in the

thesis.

In Chapter 4, the implementation of LX3 is described. The importance of depen-

dency analysis in determining the loop structure of a program is demonstrated, and

appropriate data flow schemes are described, corresponding to LXB constructs. A new

loop scheme is presented, of general applicability in data flow languages, which permits

referenee to both current and next values of an inductive variable.

The demand driven implementation is described in Chapter 5, by describing how

appropriate data flow schemes càn be developed from the operational semantic model.

Chapter 6 shows how the two implementations can be combined so as to allow the

schemes of the second implementation to be used, with certain restrictions, in LXB

progrâ.ms.

Chapter 7 discusses various aspects of the thesis, in particular, relationships be

tween the implementation of LX and othe¡ implementations, of Lucid-like languages,

which use data flow concepts. It also outlines åreâs of possible future work, in partic-

ular, suggestions for improved input/output facilities in both LX and data flow.

1.,1 The Development of Lucid

Lucid originated as a formal system, proposed by E.A. Ashcroft of the University of

'Waterloo, and \ff.W. 'Wadge, of the University of Warwick. Three distinct stages in the

development of Lucid can be distinguished. The original proposal, termed Basic Lucid

[Ash\M76, AshWTTa], was published in 1976. A short time later, an extended language,

which will be referred to as Clause Lucid, wâs proposed þhW7S]; it permits functions
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to be deflned, thereby giving control over the scope of identifiers. This ptoposàl wàs

modified somewha,t with the advent of Structured Lucid [AshW79a, AshWTgb] in 1979,

in which Ashcrofb and \r)Vadge describe Structured Lucid in trvo distinct parts. Firstly,

US\MIM, a logical progrå,mming language based on Landin's IS'WIM, is defined, allow-

ing the expression of structured, recursive definitions. Secondly, this language is com-

bined with B¿sic Lucid to give Structured Lucid, a language which includes iteration,

recursion and function definition and is defined by a simple denotational semantics.

The latter definition is a significant advance over Basic and Clause Lucid in that it

constitutes a clearer and more unified mathematical description of the language.

Each of these stages will now be described in more detail.

1.{.1 Basic Lucid

In [AshW76], Ashcroft and Wadge state that ulucid is both a langrrage in which

progrâ,ms can be written, and a formal system for proving properties of such programs".

A Basic Lucid program is simply an unordered set of assertions, from whith other

assertions may be de¡ived. Programs are denotational and referentially transparent.

In þhW76], a program is defined as a set of equations, with the right hand side

of each essentially â,n expression comprising variables combined using logical, integer

and special Lucid operators. The latter include first, next, as¡ soon as, latest and

followed by. A variable ø must be defined exactly once (except the variable input,

which is assumed to be defined outside the program), in one of the following ways:

:E
_ E

(1)

(2)

u

Iatest r
firsü r
next ø

E7(3)

E2

In the above, E, Et nnd E2 are expressions. In Basic Lucid, the operator latesù is

used to express nesting of subcomputations and freezing. Form (3) is the definition

of an inductive variable, using two equations; in LX (and later versions of Lucid), it

would be written
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L El f."-y E2

Variables â,nd expressions denote infinite sequences of data objects, and equations

are âssertions about the histories of variables. All operators in the language are inter-

preted as operations on infinite sequenees. Definition (3) models an infinite iteration,

in that it specifies an initial value in the history of ø, and an expression giving the next

value in the history, ofben in terms of the current value. The as soon as operator

makes it possible to extract a value from such an infinite iteration.

In Basic Lucid, the history of a variable used in a nested loop is an infinite se

quence, each member of which is also an infinite sequence, and so on, for further levels

of nesting. Hence, nested iteration is allowed for by considering each history to be

function of ¿n infinite sequence of time parameters. The first member of the sequence

of time parameters represents the iteration number of the most deeply nested loop,

the second member the enclosing loop, and so on; it is clear that only a finite number

(equal to the level of nesting) of these parameters is relevant, the rest are added for

*convenience.'

Under this interpretation of nested iteration, the operator latest is defined as

latest d at time tgtú2... : d at time t'¡t2tg..

giving access to an additional time parameter, or level of nesting; use of latest r on the

right hand side of an equation gives access to r in the immediately enclosing iteration,

effectively making r global to the loop. Use on the lefü hand side (form (2) above) has

the effect of passing the value out of the loop. To avoid explicit use of latest, Basic

Lucid has the progrÀm structuring construct

bcgln
...set of equations...

cnd

which has the effect of applying latest to every use of a global variable, (that is, a

variable which is not local) between the begin ... end brackets. A use of a global

on the right hand side of an equation always yields the value of its operand in the

8
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immediately enclosing iteration; this has the effect of freezing the operand within the

inner iteration.

The semantic definition given in [AshW76] formalizes these ideas in terms of math-

ematical otrjects termed computation structures, which are powet structures based on

fi¡st-order logical structures. It is also shown that every progrå,m has ¿ minimal solu-

tion, given a suitable approximation ordering on the underlying data values.

Ashcrofb and'Wadge þhW76, Ash\rV77al show that the formal semantics leads to

several inference rules which can be used to construct proofs of programs.

1.1.2 Clause Lucid

In [AshWZ8], Ashcroft and W'adge describe extensions to Basic Lucid which allow

functions to be defined and the scope of variables to be restricted. This is achieved

by the introduction of four clauses, the produce, function, compute and mapping

clauses. The compute clause is equivalent in effect to the begin ... end construct of

Basic Luc.ld. Produce and function clauses, in programs, take the form

produce VARTABLE urlng VARIABLEI,IST
...set of assertions...

ond

functlon VARIABLE (VARIABLEIIST) uslng VARIABLEIISl
...set of a.ssertions...

cnd.

In both eâses, the set of assertions must include a definition of the local variable output;

the variable ¿t the he¿d of the clause is termed the subjecú of the clause, and the clause

constitutes a definition of its subject. The variables in the using list are the globals

of the clause, and the variables listed within parentheses are the formal parameters.

The compute and mapping clauses are syntactically similar to the produce and

function elauses, respectively, with the set of assertions including a definition of the

local variable resulú, instead of. output.

In Basic Lueid a program is regarded as a set of assertions; in Clause Lucid,

this approach is extended so that clauses are defrned as compound assertions about

I
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their local and global identifiers. Within a clause, output refers to the subject of the

clause; for compute and mapping clauses, result meâns latest output, and latest is

automatically applied to all globals and formals of the clause'

In Basic Lucid, a variable denotes a history, which, as noted above, is an infinitely

dimensioned inflnite sequence of data values. In the extended semantics of Clause

Lucid, the subject of a function with n formal parameters denotes a.n n-ary semantic

function from histories to histories; the complete formal parameter history is used in

determining the meaning of the function. The subject of a mapping with n formal

parameters denotes a stream of n-ary data functions; that is, the meaning of the

mapping is defined point by point, using parameter values at that point only, hence

mapping application is the pointwise extension of conventional function application.

It follows that, in the case of a produce or function clause, a global denotes the same

history inside as outside the clause, whereas, within a mapping or compute ciause,

it denotes the latest value of the global; in other words, globals and parameters ean

be regarded as frozen inside mapping and compute clauses.

In þhW78l, additional rules of inference, derived from the formal semantics,

are introduced for reasoning with clauses. Rules for program transformation are also

presented; under certain conditions, it is possible to add assertions to a clause, moYe

assertions into, or out of, a clause, or rename the local variables of a ciause. Ashcroft

and Wadge show that the language does not use call by value in passing parameters,

and that it uses static rather than dynamic binding.

Ashcroft and V{adge also give possible operational interpretations of each clause.

In the case of a produce clause, globals h¿ve the same meaning inside as outside

a clause; definitions are at the same "level of iteration" both inside and outside the

clause. This suggests that a produce clause can be seen as a coroutinelike block of

code "which is repeatedly executed but with persistent internal memory in the form

of inductively defined local variables" [AshW78]. It can ¿lso be seen as "an ongoing

process which continuously produces values of its subject" [AshV[78]. Funcùion clauses
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can then be seen as templates for such processes, which each textual oceurrence of a

function call giving rise to â new instance of the template. In the case of recursive

calls, this requires dynamic creation of new processes.

The compute clause, beeause it freezes its globals, ean be seen â,s a nested loop.

The mapping clause defines a pointwise function of its arguments and globals; a use

of a mapping clause corresponds to a conventional function call.

l.¡1.3 Structured Lucid

Structured Lucid [Ash\M79b] ** developed by using a different approach to the

definition of Lucid. The approach taken is to flrst defrne a denotational ianguage,

US\ry'IM, which permits reeursive definitions and program structuring þhW79a].

USWIM is similar to many other assertional languages, and gives a well defined basis

for defining Structured Lucid by adding the Basic Lucid concept of iteration. The re

sult is a language which expresses essentially the same semantic ideas as Clause Lucid,

but with a much simpler mathematical presentation of the semantics. Its development

is also more clearly related to earlier ideas in denotational languages.

The language US'WIM is a variant of Landin's ISWIM [Lan66a], and, like IS'WIM,

actually defines a family of programming languages; USWIM defines "the ways of

expressing things in terms of other things" [AshW79a], with the set of primitive things

being specified âs ân algebra, which determines a particular member of the USWIM

family.

According to the abstract syntax given in þhW79al, a USWIM program is a

term, where a term is either a variable, an expression or a phrase. The valof phrase

provides a meâns of strucburing programs, âs in the following example

v¡lo?
result : f(5)
f(x) : x+Y¡lof

e(z) : lf z< I thcn I clsc z*g(z - 1)

C: X*X
result: g(x) + c

cnd
cnd.
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The valof phrase represents the major difference between USWIM and ISWIM; it

corresponds to the whererec phrase of the latter. The example also illustrates the

differences between a phrase and ¿ clause. A phrase is essentially expression-oriented,

whereas a clause is definition oriented. A clause is used as a eompound definition,

defining ân n-a,ry variable which can then be used in an expression. The definition of

/ shows the manner of definition of an n-ary va¡iable in a phraseoriented language.

It also shows the use of an anonymous phrase in the expression which makes up the

right hand side of the definition of /.

The formal semantics of USIVIM defines how the value of a term can be determined

from an algebra and an environment; an environment is a function which assigns to

each n-ary (where ¡t is the number of formal parameters of the definition of the variable)

variable an n-âry semantic function over the universe of the underlying algebra. For

example, a Gary va¡iable is assigned a Gary history function which maps the variable

to a history, where a history is an infinite sequence of values from the underlying

algebra.

The semantics can be used to justify various syntactic manipulation rules. Rules

are presented for substitution, the importation of variables, tenaming of local variables,

function calling, and others. By embedding it in a suitable first order logical system,

Ashcroft and Wadge [AshW79a] extend the language to permit the manipulation of

assertions.

US\MM forms constructs from equations; Basic Lucid allows iteration in a math-

ematical way, using simple equations but a modified data algebra. The essential idea

behind Structured Lucid [Ash\M79b] is that the two can be combined, in a denotational

framework, to give a language which combines program structuring facilties with the

ability to write both recursive and iterative definitions.

Ashcroft and Wadge [AshW79b] discuss two ways in which the combination can

be made. The first is to form a member of the USWIM family with an algebra similar

to that of Basic Lucid, with variables denoting histories; the language which results is
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termed [ILU. In this language, globals have the same meâning inside a phrase as outside.

In fact, an ULU definition which uses a valof phrase as its right hand side is analogous

to either the produce or function clause of Clause Lucid, depending on whether or

not the left hand side has formal parameters. The operational interpretations of IILU

programs are also similar.

A seeond way in which the ideas of USWIM and Basic Lucid can be combined

is to use a pointwise extension of USWIM (with a standard data algebra). The lan-

gua,ge formed in this way is called LUSWM. In LUSWM, a single outer environment

does not determine a single inner environment (as it does in ULU), but a sequence of

environments, one for each outer time step. Each inner environment is obtained by

freezing the outer environment at a particular time. It is required that each variable

used in a LUSWM program denote an elementary history function, which is a function

with the property that its value at any time depends only on the v¿lue of its arguments

at that time, and perhaps the time itself; it is possible to freeze such a function at a

particular point in time. Certain restrictions are imposed on the syntax of definitions

to ensure that all LUSWM variables are elementary (an elementary variable denotes

an elementary history function). This ensures that all variables can be frozen in the

manner required. LUSWIM phrases are similar in effect to the computæ and mapping

clauses of Clause Lucid, and have similar operational interpretations.

Structured Lucid is the language formed by combining ULU and LUSWIM. In this

language, there are two classes of variable, elementary and non-elementary. The ele-

mentary variables must be defined according to the restrictions applicable to LUSWIM,

and are subject to freezing inside phrases. All other variables are non-elementary;

phrases which use only such variables can be understood in the same way as LILU

phrases.

The formal semantics combines the two languages by defining the result of a valof

phrase pointwise, with the environment frozen at each point, as defined below. Freezing

of globals in a phrase is defined formally by saying that the meaning of a phrase in
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a Lucid environment .E is a history c, where a is defined point by point, thus: a¡ is

defined as the meÐning of result at time s, where result is determined in a f¡ozen

environment E' which incorporates the outer environment E f.rozen at time s. The

definition of freezing an environment captures the distinction between elementary and

non-elementary variables by specifying that the latter are unaffected by freezing (that

is, the frozen environment assigns to them the same meaning ¿s unfrozen), whereas

the frozen environment assigns to ¿n elementary variable the meaning ( Br, Br, Br,

. " . ), where B is its meaning in the unfrozen environment.

This represents a significant simplification in the presentation of the formal se

mantics compared with that of Clause Lucid; the use of nested environments replaces

that of sequences of time parameters, thereby simplifying the notion of history. Conse-

quently, the operator latest, and the attendant distinction bet'ween output and res¿Iú

(latest output), are no longer needed.

Structured Lucid permits both frozen and unfrozen globals to be present in one

phrase (Clause Lueid allowed one or the other, but not both). Such a phrase can be

considered operationally as basically an ordinary LUSWM phrase in which the non-

elementary variables must be thought of as being restarted at the beginning of every

subcomputation.

1.1.1 Relationship of LX to Lucid

The language LX described in this thesis has the same semantics as Structured

Lucid, but is significantly different in syntax. Firstly, the grammar has been adapted

to make it LL(t). LX, while clause based, bas only a single kind of clause, the form of

which is simpler, and, it is hoped, clearer than equivalent Structured Lucid phrases.

The language requires explicit specification of variables frozen rvithin a clause, and of

those global to a clause (with a distinct form of specification for those global to the

main program). Strong typing is used-the type of every variable must be speciûed, all

values in the history denoted by a variable are of the same type, and every expression

has a data type which ean be determined statically. The structure type provided in
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LX is a linear list structure with elements of the same particular basic type

15

1.5 Data flow models of computation

A broad interpretation of the term "d¿ta flow" is that it describes a system in

which the actions which take place are determined primarily by the flow of data within

the system; the system is driven by the passage of data. Conway's original proposal

for implicitly sequenced coroutines [Con63] can be seen as defining a language facility

for the construction of data driven programs. Some more recent language proposals

for distributed systems specify a system of processes which communicate by passing

messages [Hoa7S]; although each process is sequential (executed under control flow), the

resumption and suspension of processes is determined by the flow of messâ,ges (data),

and is thus data driven at the process level.

The data flow systems considered in this thesis are those which are data driven at

the operation level. The fundamental principle of data flow computation at this level

is that an operation is enabled for execution whenever its operands are available. In ¿

system in which this is the only rule for determining executable operations, progrâm

execution is entirely data driven; most systems, however, incorporate some modifi-

cations to this rule. In addition, operations are not permitted to have side effects,

hence all enabled operations can be executed concurrently. Several proposals based on

the data flow model of computation have been put forward for machine architectures

capable of exploiting this parallelism.

Most early work on data flow models and architectures wås carried out at MIT

[Rod69, Den74, DenFL74, Mis77]. Other early proposals were put forward by Karp and

Miller [KarM66], and Adams [Ada7f], and the LAU system [ComHS80, Syr82] is based

on data flow principles. Import¿nt data flow projects were also initiated at the Univer-

sity of California at Irvine [ArvGP78], Manchester University [Gur'WGSO, GurGKSf],

Iowa State University [OldTRZ77, 
^ll080], 

the Univerity of Newcastle upon Tyne

[TtefIR82, TreBH82] ¿nd V[estfield College [HanG8l]. More recently, Japanese re.

searchers have been active in the data flow area [Ama82, ACM82], working as part
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of the so-called "Fitth Generation" project [Tan82, ACMS2]. Surveys of work in data

flow and related arers can be found in [TreBH82. A¡v482, Den80].

Some characteristics of the data flow computational models relevant to this thesis

will now be discussed. An important model, which has had considerable influence on

subsequent proposals, is that of Dennis [DenT l; the model, often termed DDF (Dennis

data flow), is now described in some detail, and used as the basis of comparison with

other models.

A data flow program is ¿ directed graph, the nodes of which represent operations,

and the arcs, channels on which value-carrying tokens flow. Dennis distinguishes be'

tween control arcs, which carry Boolean values, and dat¿ ares, which transmit values

of type integer, real or string.

Dennis classifies a node, according to the values on which it operates, ffi â fork, an

operator, a decider, a Boolean node or a control node. The terminology used here is

slightly different from that of Dennis, who classifies nodes as links and actors; a ulink"

is referred to here as a fork, while *actors' encompass the remaining node categories.

A fork permits an incoming value to be copied onto one or more output ¿rcs (in Dennis'

model, a fork, or link, can be seen a,s a cell storing the value which occupies the arc;

here, a fork is regarded as a replicator of values). An operator node acts on one or

more d¿ta values; typical operators are plus, minus and other ¿rithmetic operations. A

decider (predicate) produces a control value from one or more data values. A Boolean,or

control, node operates on control values; examples are the operations AND, oR and

NoT. The control nodes, MERGE, TGATE and pc¡.tE, use control values to regulate

the flow of data values.

In general, a node is enabled for execution (firing) when a value is present on each

input å,rc, and, in addition, each output arc is empty; the input values are absorbed,

the appropriate computation performed, and the result transmitted on the output arc.

The control nodes behave somewhat differently. The TGATE instruction takes

control and data inputs, and becomes enabled when both are available, as usual; on
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execution, the data value is transmitted (unchanged) if the control input is true, other-

wise it is absorbed and no output is produced (the FcATE instruction behaves similarly

for a false control input). The MERGE instruction fires when its control input and the

corresponding data input âre present (the data inputs are labelled I and F); the data

value is transmitted, the other input line being unaffected. .A-n initial value may also

be specified (that is, a value placed on &n arc before initiation of execution of the data

flow program) on the control input of a tvtnRcE instruction. Control nodes are used

in constructing conditional and iterative schemes.

Dennis also proposes facilities for tree structures in the language, manipulated

by SELECT and AnPEND operations. Conceptually, structure values flow on arcs of

the data flow graph in the same \ilå,y as other values, with all operations creating new

values rather than updating existing ones (to ensure the absence of side eflects). Dennis

extends the model to include a heap, with structure values represented as heap nodes,

identified by pointers into the heap. In this representation, pointers, rather then actual

structures, are transmitted on the arcs of the graph, and structure operations cause

changes to be made to the heap; this allows structures to be shared.

A d¿ta flow procedure is a data flow graph which accepts, as input, a structure

containing parameter values, and produees a value from those parameters. The APPLY

node permits such procedures to be activated. It accepts two parameters, the data flow

graph of the procedure (regarded as a node, containing a representation of the code of

the procedure, on the heap), and the parameter structute, and produees, ân its output,

the result of the procedure. The procedure is activated, each time APPLY fires, by

putting a token on its input arc. It is clearly necessary to distinguish tokens which

arise from different firings of Rppl,y; the notion of token colouring is used to achieve

this. Eve¡y token is tagged with a eolour, which identifies a particular activation. The

token which initiates a, ner,v aetivation is given a new colour; the colour of the result

of the proeedure is restored on termination. The general firing rule is modified so that

a node is enabled if values of the same colour are available at each input; the output

arc must contain no value of that colour, but it c¿n contain values of other colours.
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Researchers at the University of California at Irvine extended Dennis' model (DDF)

to permit greater asynchcrony in the execution of operations [ArvG78, ArvGP78l. DDF

specifies that all output arcs of a node must be empty for the node to be enabled for

firing. This rule prevents conflicts betlveen the tokens at the inputs of a node, at

the expense of restricting the number of enabled nodes; the rule enforces a queuing

discipline on the transmission of tokens along an. are, restricting the queue size to one

for practical reasons. A¡vind and Gostelow þvG78l describe a data flow language

very similar to DDF, and present a queuing interpreter (QI) in which the arcs ¿re

unrestricted Ftr'O queues. Under QI, the operation

a; ** b;

must be preceded by

o;-1 ** å¡-1

where the subscripts index the queues on the input arcs of the node **; the firing of

the node is not restricted by the state of its output arcs.

A¡vind and Gostelow also desc¡ibe an unravelling interpreter (III) under which

the firings of a node need not take place in queue orcler. The ¡¿h output of a node

can be produced âr¡ sooû as the d'ä set of inputs is available, even if the d - l'ñ set

is not complete. This permits greater asynchrony of operation, ând, in cases where

computation of the d - lfh set does not terminate, produces results that QI fails to

produce.

Under III, each distinct execution of an operator is regarded as an independent

activity þvGP78l. Each activity has a unique name, comprising the procedure appli-

cation context, the procedure nâ,me, the node within the procedure, and the iteration

number. The context acts as a stack of ¡eturn addresses, with an address pushed on

proeedure invocation, and popped on exit. All the activities a^ssociated with a pro-

eedure invocation constitute a proeedure dotnain, and can proceed independently. A

loop scheme is similar to a procedure invoked from just one place; the iteration num-

ber is used to distinguish activities within a loop domain. The context and iteration
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number fields are further exâmples of token colouring. The model can be classifled as

a dynamic tagged model [WatG82], in that each token is tagged with a colour; it is

dynamic in the sense that colouring enables â, procedure to be used re.entrantly, a"

distinct from static data flow [DenGT84], in which only one instance of an instruction

may be active at a time.

The Id system [AIvGPTS] ineludes â representation of the stream data structure

as an ordered sequence of tokens; streams permit the expression of history sensitive

computations. Facilities for the expression of nondeterminism and resouree managers,

and for progtâmmer defined data types, are also proposed. Streams will be discussed

in more detail in $f .6.

The data flow model used by a group at the University of Manchester [GurlffG80J

is also a dynamic tagged model, but was developed independently of the Irvine model.

In the latter model, an activity nâme records a stack of procedure and loop contexts;

the Manchester model uses a fixed length label for each token, in which procedure

invocations are identified by a unique activation nâme, and iterations by an iteration

number field. To achieve this, it is necessary to have a special instruction to generate

activation names (whieh cannot be defined as a simple function of a previous name,

because of the possibility of parallel invocations), and to express nested iterations as

procedures (as only one iteration number is allowed in the label). In addition, nodes

are restricted to at most two inputs and/or outputs. AII of these characteristics of

the model are influenced by practical consideration for the efficiency of the associated

machine architecture. Structures åre regarded, not as entities flowing along â,n ârc or

residing in a heap, but as individual tokens related by having identical labels, except

for the value of an additional, index field. This scheme is used to implement an ârray

structure [GurWG80].

For a two operand node to be enabled, operands with matching labels must be

present. The Manchester model has been extended by associating varying actions with

the process of matching potential operands (see below). This approach has been used
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to optimize sttuctute storage ånd access, ànd, with the addition of a nondeterministic

operâtor, to implement resource managers [CatG80l. A prototype machine has been

built at Manchester; an evaluation of its performance appears in [GurW83l.

The data flow models described above are the most significant from the point of

view of this thesis. Several other models have been proposed over the years [Gel76,

Syr82, Dav79, Dav78, ReqMS3, Gaj81, Sri8l, Fau82, HanG8l, FarGT79, TreBH82,

TreHSl, TtetIR82]; some of these are now described briefly.

The LAU project at Toulouse [Gel76, Syr82] began, in 1973, âs an investigation

of single assignment languages [TesE68, Cha7l, Kli72l, and led to the design of a

language based on the principle of single assignment and a supporting data flow ma-

chine architecture. The single assignment rule states that any variable in a program

may be assigned to at most once during progra,m execution; the LAU group uses the

term "object" instead of "vari¿ble" to emphasize that it is, in fact, constant once

assigned. The high level language includes constructs for assignment, conditional, iter-

ation, procedure definition and use, and parallel array computation. The semantics of

the language is expressed using the D¿t¿ Production Set (DPS) concept, where a DPS

is a triple specifying a set of input objects, ¿ set of statements which manipulate the

inputs, and a set of output objects; data flow principles determine the eligibility for

execution of ¿ DPS. It is, of course, possible for many DPS's to be eligible for execution

in parallel. The machine architecture implements the DPS concept, and instructions

corresponding closely to the constructs of the high level language. A machine has been

built, and numerous programs tested.

The model developed by Davis [Dav78] is similar in principie to DDF, with nodes

and arcs used to represent a data flow computation graphically. Unlike DDF, no

distinction is made between daba and control tokens, and the arcs represenb data paths

which are queues of finite length. The nodes are similar in function to those of DDF,

but more general; a network usually contains less nodes than a functionally equivalent

DDF network. Davis also introduces â nondeterministic arbiter node for use in resource
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control. The most significant differences occur in the supporting ma,chine architecture,

which is based on the principle of recursive hierarchy [Dav79]. A machine has been

built, and is described briefly in [TreBHS2].

In a project at the University of Newcastle upon Tyne, the data flow model has

been combined with a generalized control flow model (GCF) [Tte]IR82, TbeBHs2l.

The GCF model uses instructions and memory addresses in much the sâ.me wây as

in the traditional von Neumann model, but uses control tokens to establish multiple

threads of control. An instruction is enabled for execution when all its input control

tokens are present; enabled instructions can execute concurrently. The execution of

an instruction involves absorbing the input tokens, executing the specified operation

(which will usually cause the memory to be updated), and generating further control

tokens. The program counter of a sequential machine can be seen as encoding a single

thread of control in the GCF model.

In the model which combines data flow and GCF, the inputs to an instruction

are data and control tokens, as well as embedded items. Data tokens and embedded

items can be either values or memory addresses. In executing â.n instruction, sets

of values and addresses âre formecl from the available inputs; the addresses are then

dereferenced to provide, with the other input values, the set of values upon which the

instruction operates. The outputs released are of three types: data and control tokens,

which specify a destination instruction and a value (null for a control token), and data

to be stored in memory, specified as â memory address and a value.

The Piecewise Data Flow project at Lawrence Livermore Laboratories [ReqM83]

represents an attempt to combine array processor ¿nd data florv principles to give a

supercomputer architecture impìementable in current technology. The progrâ,m orgå,-

nization suggested is based on techniques culrently used in optimizing compilers, in

that a progrâm is divided into basic blocks (of up to 255 instructions) such that no

branching into or out of the block occurs. A program is then described at two main

levels, the first giving relationships between blocks, and the second those between the
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instructions of a block. The potential successors of ¿ block are used to decide which

block to execute next, and whether or not block execution can be overlapped. Execu-

tion of the instructions within a block proceeds according to dat¿ dependencies, as in

data flow. The machine architecture which supports this program organization uses

an ârray processor, a small number of scalar processors with simple interconnections,

and standard input/output techniques.

A proposal by Gajski et al [Gaj81] uses data flow principles, but at a higher level.

A program is made up of compound nodes related by data and resouree (in particular,

memory) dependencies. A compound node represents a function, of higher level than

the usual data flow operations, for which good speedup can be had using existing

techniques, for example, array operations and linear recurrences.

The'Westfield data flow model [HanG8l, FreG83] makes use of acyclic graphs, with

the nodes representing operators defined at the bit level. The operators of the model

are low level, similarly to the DDF model. Functions cân be defined, and when used

are regarded as being expanded in-line, hence, each node of the dynamic graph fires

at most onee. A function name is viewed as a value which ean be transmitted on an

arc. The BtNo operator permits a value to be bound to a parameter, constructing a

closure; the Ev¡.1 operator is used to evaluate a function when all actual parameters

have been bound. Higher order functions âre supported by these facilities. Structures

åre represented by functions. The Westfield group have built a prototype uni-processor

implementing the model, and developed a corresponding high level language, CAJOLE.

Research into data flow models has also been undertaken at W'arwick University

[Fau82]. Faustini has investigated the properties of so-called pipeline data flor'v with

respect to the Kahn principle, which slates that the operational behaviour of a pure

data flow net can be described by the least frxed point solution to the set of equations

associated with the net. In Faustini's model, nodes behave in a much more general way

than those of the models considered above: there are no restrictions on the possible

internal states of a node, state transitions cÐn occur without the anival of inputs, and
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transitions may be nondeterministic. Faustini establishes that that nets constructed

from such nodes using the operations of juxtaposition and iter¿tion possess the Kahn

property.

1.6 Data flow languages

In order to exploit implicit parallelism to the utmost, data flow computational

models are based on the following principles:

o the only sequencing constraints are data dependencies, and

o operations are free of side effects.

An important consideration in designing a high level language for data flow is that it

reflects these characteristics of the model.

Conventional languages do not have the desired properties. Programs usually

need extensive analysis to determine the data dependencies upon which the data flow

progrÐm is based. Such analysis is made difficult by, among other things, the presence

of side effects. Conventional languages are ba.sed on a computational model which

uses side effects resulting from assignment to memory locations as its fundamental

method of communication between statements; because one memory location may be

referenced by several statements, data dependencies exist between any statement which

updates that location and all statements which reference the location. The problem

is compounded by the presence of aliasing, whereby a reference to a location can be

passed into a procedure, for example, making it possible for the same location to be

accessed via two or more different nâ,mes. Arbitrary branching in programs adds to

the difficulty of determining data dependencies between statements.

Many language facilities have been suggested to improve the undesirable aspects of

conventional languages. Examples are the use of structured control eonstructs in sim-

plifying the structure of programs, and modularity in aiding comprehension by making

mâ,ny data dependencies more explicit. In fact, by imposing restrictions on the way

in which programs are written, conventional languages can be made compatible with
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the data flow modet [AllO79, A]1O80, Vee8ll. However, many designers of languages

for data flow h¿ve concluded that the difficulties of this approach, combined with a

desire for a language in which data flow idioms can be expressed naturally, warrant

the development of new languages for data flow.

In looking for a higher level representation of a data flow graph, it seems natu¡al

to give a name to an arc of a data flow graph, and describe the values which flow

on that arc. Such a description can be seen as assignment to a variable name, but

does not make sense if more than one assignment is allowed. Consequently, the single

assignment concept [TesE68, ChaTl], where a variable is defined at most once in the

course of execution of a program, ca.me to be seen âs a concept which applied naturally

to data flow languages. Programs written in this way express data dependencies clearly'

Data flow languages also require absence of side effects. Applicative languages

[Bac78, BurMS8l, Bur75, Dar82, Lan66b, TtrrSl], in which computation proceeds by

the application of operations to values, have this property. It is common in applicative

languages for information to be passed to a function entirely through its parameter

list; this property (locatity of effect) makes the detection of data dependencies very

straightforward.

Thus, single assignment and applicative languages have properties compatible with

data flow principles, and data flow languages therefore have many char¿cteristics in-

he¡ited f¡om such languages. The data flow computational model has natural represen-

tations for conditional, iterative and procedure constructs; many data flow languages

[ArvGP7S, GurGK8l, AckDZ9] have been influenced by conventional language synta:c

in this area. A conditional scheme, for example, will use gates, controlled by the re'

sult of the condition, to transmit values to one branch and absorb those directed to

the other; values must still arrive at both branches, however, and conditional expres-

sions in most data flow languages consequently require that both branches be speeified

IGurGKsl].

A eommon data flow view of iteration is that of a cyclic grÀph with a set of in-
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puts, upon which initial values arrive to commence the first iteration. The loop test

is used to decide that either a new set of values is directed to the inputs for a new

iteration, or the values are used to compute a result for the loop. However, iterations

of a loop need not execute successively, because, asi mentioned above, some models

(for example, þvGP78, GurW'G801) permit unravelling of loops during execution,

and several iterations of a loop may proceed concurrently. Loop constructs in data

flow languages, although syntactically similar to corresponding constructs in impera-

tive languages, invariably use this semantics. Loops c&n also be seen as tail recursion,

and, in some languages (e.g [Wen75]), must be expressed as such. However, iteration

offers advantages with respect to efûciency; both the Irvine and the Manchester archi-

tectures exploit the characteristics of cyclic schemes at the hardware level. Iteration

over structures is discussed below.

Data flow procedures (functions) are, in a sense, an abstraction of a data flow

graph as a single node. In the Irvine model, a procedute can accept several input

parameters and produce several outputs. In many proposals, procedures are unlike

primitive nodes in that they can commence execution before the arrival of all actual

parameters; the input interface of the Manchester system has this property. From a

practical viewpoint, this allows greater concurrency.

1.6.1 Data structures

In most data flow languages, structures are vierved applicatively-a structured

value is a distinct unit, manipulated only by operations applicable to structures; e

structure is changed by apptying such an operation to produce a, new structured value,

not an updated version of the original structure. Structure operations thus conform

to the data flow principle that operations must be free of side effects. The adverse

effect of destructive update in analysis of data dependencies between statements which

manipulate structures has been pointed out by Ackerman þck82l.

The languages VA-L [AckD79] and Lapse [GurWG80, GurGK8l] provide arrây

and record structures, similar to structuring facilities provided in many conventional
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Ianguages. Restrictions on the syntax of "assignment" contructs are imposed, reflecting

the applicative sem¿ntics adopted. For exâmple, in Lapse, assignment must be to the

whole array, and at most once, in accordance with the single assignment rule; the

language provides a forall...use... construct for this purpose, permitting the use of an

integer variable which takes all values within the bounds of the arra,y. Vr\L provides a

variety of operations for the creation and manipulation of dynamic â,rra,ys, as well as a

forall construet, for array construction or the specification of an aggregate operation

(such as summation) applied in parallel to all elements of the ârray.

The structures provided in the language Id [A-rvGP78] can be described as gener-

alized lists. A structure value is either empty, or a set of ( selector : aalue ) pairs,

where selector is an integer ot string value, and aalue is any Id value (possibly a

structure). Two operators, Select and Append, are applicable to structures. A one

dimensional array can be modelled as a structure with consecutive, integer selectors

and non-st¡uctured values, and a Lisp list as a structure in which each element has

two selectors, for example, the strings 'car" â,nd *cdr', and associated values. The

language CAJOLE [HanG8l] makes no explicit provision for data structures; they are

defined as functions, with some syntactic sugar provided for common structures, for

example, vectors.

Implementing a structure as a unit can impair the efficiency of operations on that

strueture. For example, given an iterative algorithm in which certain elements of an

aîr¿y are changed from one iteration to the next, it may be theoretically possible to

perform parts of different iterations in parallel; if the å,rray is considered a single value,

a given iteration cannot commence until the array value from the previous iteration

has been produced, and a source of inc¡eased parallelism is lost. Consequently, various

proposals have been put forward to permit easier â,ccess to the individual components

of a structure, while retaining applicative semantics for structure operations.

In the Manchester data flow model, for example, an Ð:tay is represented as indi-

vidual elements flowing on an arc, with the index field of a token label representing an
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ârray subscript. This permits ¿ straightforward representâtion of operations sueh as

the ad<tition of corresponding elements in two ârrâ.ys [GurWGS0], but leads to cum-

bersome schemes, with considerable repetition of code, when scattered elements from

one arrey are used in constructing another [GurGK8l]. Storage matching functions

[WatG82] can be used to solve this problem, with an â.rray effectively stored at an

input of a node, but used in a manner which pteserves the applicative semantics of

errâ,y operations in Lapse.

Streams [Lan65] are structures with the property that the components of the

stre¿m are created and used in order, and do not need to exist simultaneously; such

structures are clearly useful in communication between pipelined ploeesses. In the

context of data flow systems, the use of a stream structure permits åceess to elements

of the structure before the entire structure is created. A stream can be regarded as a

structure with two compoûents, /irst, a value, and rest, a stream, with corresponding

selector operations; selection of the first component can be made without regard for

the status of the rest of. the stream. Stated another way, the stream construction

function is non-strict in either of its arguments þvT8l].

Weng |ilÍen75l first proposed the use of streams in a recursive, acyclic data flow

scheme. He represents a stream âs a sequence of tokens, terminated by an esú token,

and defines several operators for stream manipulation. Most such stream operations

have two states, to distinguish the first and rest components of a stream. The Id

language also supports streams, extending Weng's proposal to allow the use of streams

in cyclic schemes, and introducing the for each construct to permit processing of

each element of a stream; examples are given þvGP78] of the use of streams to write

history sensitive functions in Id.

In clata flow models which use arcs of finite capacity, the "token sequeDce" rep-

resentation does not implement streams correctly, in that some programs deadlock

unnecessarily ['Wen79]. Although Id streams do not have this problem (arcs are eon-

ceptually infinite), a "stream of stream" structure eannot be used.
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A stream is often used a,s a buffer between two parallel processes; viewing the

streâ,m a.s a whole, it is âpparent that only a few elements are in existence at any one

time. The stream can be regarded as a partially completed structure; 'Weng 
[Wen79]

has proposed an alternative stream representation based on such an idea. The stream

cons operation creates a binary tree, the left branch of which contains the value

representing the first component of the stream. The right branch (rest) contains

a hole, representing a stream which rvill be filled in as data becomes available. An

attempt by a stream consumer to access a hole causes the read request to be held

awaiting the ¿rrival of d¿t¿ ¿t the hole; a write-hole operation is provided, which writes

a value into a hole, and satisfies any pending read requests. In the DDF model, streams

c¿n thus be represented, similarly to other structures, with a heap pointer transmitted

on the arcs of the graph. Dennis [Den8l] has generalized this representation slightly in

defining an early completion data structure as a binary tree created with holes in both

Ieft and right branches; Amamiya et al [AmaHM82] use a similar definition of Lisp's

cons for their list processing data flow machine.

These proposals are similar in some respects to the suspensions used by Friedman

and Wise [FriW76] in implementing a lenient (non-strict) cons in a functional language.

The suspension is similar in that it represents a data structure which is not yet fully

elaborated; it is different in that the two cells of a suspension are not lefb empty (holes),

but contain references to an environment which is capable of computing the required

value. The suspension is demand driven (see below) in that it is coerced when its value

is required, whereas an early completion data structure is data driven in that an empty

component is filled as soon as the value becomes available.

An l-structure (Incremental structure) [ArvTSl] is an array-like structure (specif-

ically, an Id structure with integer selectors) with constraints on its construction and

consumption to permit elements to be aceessed randomly (as distinct from the sequen-

tial access required for streams) before the entire structure is complete. An l-structure

must be produced in such a way that, once a value has been appended at a given

selector, no other value will ever be appended at that position in the structure. If



Section t.7 Demand driven compntolion 29

the consumer of Ðn I-structure refers to each element at most once, selection of an

element cen be regarded as a destructive read operation. I-structures permit increased

asynchrony in that individual appends can be made out of order (as well as accessing

elements before the structure is complete). They frequently offer an advantage over

streams in simplicity of coding-a program using ordinary structures may need to be

extensively rewritten to use streams in improving parallelism, whereas interpreting an

ordinary structure as an l-structure câ,n offer a similar performânce improYement with

no re.coding. Arvind and Iannucci þvI83] propose the implementation of l-structure

storage by associating presence bits with each memory cell, which indicate whether or

not a value has been written into the cell. A cell operates simil¿rly to a hole-if an

å,ccess is attempted before a value is written, the read request is queued until the cell

is written.

1.7 Demand driven computation

The data flow models described so f¿r are data driven in the sense that operations

are enabled for execution by the arrival of all operands. In a demand driven model, an

operation is initiated by the anival of a demand for its value; in computing that value,

it demands values from operands as needed to perform the computation. A demand

d.riven system is a data flow system in the sense that data requirements determine the

execution of operations. It is different from a data driven system in th¿t only values

needed for the overall result are computed; a data driven progrâm computes values

whenever possible, necessitating the use of gates to discard unwanted values.

The demand d¡iven rnodel has its origins in reduction systems using Sraph reduc'

tion with an outermost computation rule [Man74, TteBH82, Tur8l]. In ¿ reduction

system, Ð progtam is a series of function defrnitions, and an expression denoting the rç

sult of the program. The basic operation used in expressions is function application; an

expression is evaluated by reducing it to a v¿lue. Bvaluation commences with reduction

of the ptogrâm expression; a reference to another definition within the expression is

seen as a demand for the value of that function application. Evaluation of the original
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expression is suspended while the definition is invoked and reduced. Invocation is by

following a pointer to the definition, using ân åppropriate mechanism for paralneter

binding (as in the lambda calculus [Lan66b, FriW78, Abd76l); reduction of the desig-

nated expression may, of course, result in further demands. Evaluation of the original

expression is resumed when the demanded expression has been reduced to a value. The

advantages of this evaluation mechanism are that sub-expressions can be shared, and

reduced at most once, that only necessÐry computations Ðre attempted, and that infi-

nite data structures can be manipulated if only finite portions are demanded [FriW7ô,

KeILP7ol.

Reduction systems have been used as the basis of several machine architecture

proposals [KelLP79, KelLP78, Ber75, DarR8l, CIaGMNSO]. These proposals, and

their relationship to data driven computation, â,re discussed in [TheBH82].

An advantage of data driven computation over demand driven is that is more ef-

frcient in situations where all values are required, for example, arithmetic expression

evaluation; propag¿tion of demands constitutes âD unnecessâry overhead, and con-

currency is reduced. Demand driven computation is, however, relevant to this thesis

because it is known to provide a basis for implementing Lucid correctly according to

its mathematical semantics [AshW77a]. A characteristic of the model discussed above

is that demands are implicit in the evaluation mechanism. This thesis does not use

such a model; in preference, a data driven model is used to explicitly express demand

flow, thus making it easier to combine data and demand driven target schemes.

1.8 Implementation rssuet

Ashcroft and \{'adge þhW77a] distinguish three possible methods of implemen-

tation for Lucid (or a subset). The first is analysis of the program into loops, and

the generation of iterative object code. Secondly, they suggest translation of a prÞ

gram into data florr networks of the type suggested by Kahn [Kah74, KahM77], with

a network for each definition, and a node for each Lucid operator [Wad81]. There

are deficiencies with these methods: redundant computation mây be performed, and
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some lega,l progrâms cânnot be translated either into loops or data flow networks. The

third method, demand driven evâluation based on the formal semantics, is completely

correct in that no redundant computation is attempted. A demand is a request for the

value of a variable at a particular time; evaluation is initiated by requesting the result

of the main prog¡am at time 0, and satisfying additional requests as they propagate.

The goal of any LX or Lucid implementation is to compute values of histories

which agree with those specified by the rnathematical semantics. Ideally, only those

values required to determine fireszlú]l should be computed, and each such value should

be eomputed once only. Implementations frequently fall short in either or both of these

respects. In this thesis, a redundant computation is one which attempts to compute a

value not required to obtain ftresult!; a redundant computation is undesirable bec¿use

it may be either erroneous or non-terminating. For example, many implementations fail

to correctly implement intermittent histories, those histories which have some unde-

fined elements, representing values which need not be computed to obtain the program

result; an attempt to compute such a value is redund¿nt at best, nonterminating at

worst. The term rccomputation refers to the computation of a value more than once;

excessive recomputation should be avoided because it is inefficient.

The implementation described in Chapter 4 follows the first method of Ashcroft

and W'adge in that it considers those programs which can be readily analysed into loops,

hence, the language implemented is a subset of LX, rather than the full language. One

version of this implementation generates imperative code" Another version generates

DDF-like dat¿ flow graphs. Like method two of [AshW77a], in generating these graphs,

it exploits the fact that progrâ.ms â.re free of side effects, and impose no sequencing

other th¿n data dependencies. It is also loop based, a eharacteristic of method one.

The graphs a,re built from low-level nocles, and the design of the implementation is

influenced more by considerations of ta.rget language schemes than source language

constructs.

One way of adding to the power of the implementation is to raise the level of
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abstraction of the target language. For example, a Clause Lucid function clause

can be understood, in terms of Kahn and MacQueen net*orks, as requiring dynamic

reconfiguration of the network to implement recursion in the clause. It is possible, with

considerable effort, to define DDF-like schemes with similar capabilities, and hence

implement more powerful source language features. However, such schemes still suffer

from a problem fundamental to data driven networks; redundant computations may

be attempted. The implementation described in Chapter 5, in striving for a correct

implementation of fult IJ(, combines Ashcroft and'Wadges' methods two and three.

It is based on a,n operational semantics which models the flow of demands (requests

for values) in computing the result of the proglâm at a particular time. The model is

designed in such a way that DDF-like schemes can be derived directly from it; these

schemes are the basis of this second implementation.

Several other implementations of Lucid, Lucid subsets, and Lucid-like languages

have been attempted lRafl7, Hof78, Hof80,'Wen82, Gla82, Pil83, Cør76, DenM83]'

The implementations of Farah par77] and Hoffmann [Hof78, Hof80l both implement

subsets of earlier versions of Lucid using loop analysis; [Wen82] describes an earlier

version of the subset implementation presented in this thesis. Gla^sgow [Glâ821 devel-

ops an operational semantics, and proposes an algorithm as a possible basis for ¿n

implementation. The operational semantics is formally derived from the denotational

definition of Structured Lucid [AshW79b], and gives rise to an irnplementation scheme

with iterative and reeursive components, and a dynamic dependency grâph used to

determine which computations should be attempted.

Pilgram's implementation scheme [Pil831 also uses method two above. An imper-

ative, messâge passing language is used to implement the nodes of the network. The

nodes eommunicate using a standard protocol which ensures, by buffering some values,

that recomputation of history values is avoided. However, the method requires that

history values be computed in suceession, and hence some redundant comprrtations

may be attempted.
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Cargitt [Car76] describes a demand driven interpreter for Basic Lucid. Denbaum's

implementation [DenM83] compiles ANPL (essentiatly Clause Lucid) into coroutine

based object code, which uses reeursive procedure invoc¿tions to reflect the demands

issued in the course of a computation, and generators [Mar8Ol to supervise the compu-

tation of the values of a particular history. It is not clear from Denbâ,um's description,

however, that the implementation is capable of the dynamic reconfiguration required

to implement recursion, ot that no redundant computation is attempted.



CHAPTER 2

THE PROGRAMMING LANGUAGE LX

2.1 Introduction

The programming language LX w¿s introduced in $f .2. This chapter begins with

â, more detailed informal description of the language, including an explanation of its

semantics based on the mathematical definition given in þhW79bl. Subsets of LX

are used to explain some aspects of semantics, and in presenting operational views of

the language.

If it is supposed that execution of an LX program is initiated by demands for

values of the result of the progrâ,m, then execution can be understood, in operational

terms, by examining the propagation of such demands to the constituent definitions

of the proglam, which in turn will initiate the computation of further values- An

important contribution of this chapter is the definition of a demand driven model

of the semantics of I,X, which specifies precisely how, and to where, demands are

propagated. The relationship of this operational semantics to the formal definition of

Lucid [AshWTgb] is also considered.

It is then shown how the imposition of certain syntactic and semantic restrictions

results in a language LX3 with a straightforward operational interpretation in terms

of loops.

2.2 A description of LX

A syntactic description of LX, in extended BNF notation, is given in Table 2.f . An

LX program consists of declarative information about the free variables of the program,

its inputs, and a program body which consists of a list of definitions of the variables

of the progtam. The definitions can oceur in any order, except that all variables must

be deelared, and the declaration of a variable must occur before its definition.



Section 2.2 A desuiption ol LX

The following symbols are used in the meta-language

35

::: definitiou

{ X } 0 or I occurrences of X

I X I 0 or more occur¡ences of X

I alternative
¡ ' used to enclose a symbol used in both LX and the meta'language

PROGRAM

DEFN

CLAUSE

RHS

E)(PR

SE)(PR

TERM
FACTOR

APPLICATION

prog IDENT
I globsl GLOBAL{ , GLoBAL } ]
DEFNI,IST

eprog

VAII: RHS I CLAUSE I DECLARATION

deflne SUBJECT IPARAM {, PARAM } I

I ualng IDENT{ , IDENT } I

Ifreezlng FREEZEJIST I

DEFNI.IST
edeflnc

::: E)CPR [fUy Ð{eR ] |

8Es EXPR then EXPR eå!8 
I

wvr EXPR then EXPR ewvr I

upon EXPR then EXPR euPon I

::: tf E)(PR then EXPR else E)GR elf 
I

SE)GR I REL-OP sÐ(PR I

::: I UNARY-OP ] TERM { ADD-OP TERM }
::: FACTOR { M{-tL-OP FACTOR }
::: LITERAL I VAR I

ûr¡t FACTOR I next FACTOR I not FACTOR I

hd FAcToR I tl FACTOR I

null FACTOR I atom FACTOR I

APPLICATION l(Ð(PR)
::: SUBJECT [(E)PR {,Ð(PR } )l

DECLARATION TYPE IDENT { , IDENT }

TYPE SIMPLE-TYPE I ltst of SIMPLE-TYPE

SIMPLE-TYPE :i: lnt I real I char I bool

DEFNIIST ::: DEFN {;DEFN } [;]

FREEZEI,IST ::: VAR{,VAR} lall Inone

GLOBAL
PARAM
VAR
SIIBJECT

LITERAL
NUMBER
BOOL-CONST

::: TYPE VAR

::: TYPE VAR

::: IDENT
::: IDENT

::: NUMBER I "CHAR" IBOOL-CONST ILIST-CONST
::: DIGITS [.DIGITS IIC IUNARY-OP IDIGITS I

::: true I false
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LIST_CONST

DIGITS
IDENT
ALPfTA,-}IUM

REL-OP
MT.'L_OP

ADD-OP
UNARY-OP

:: '['ILITERAL {,LITERAL } l'l'
:: DIGIT { DIGIT }
:: LETTER { ALPHANUM }
:: LETTER I DIGIT

>lo"l"ql>:l<:
/ldlvland
-lorl:

*

+
+

Table 2.f . A syntactic description of LX.

2.2.1 Variables, definitions and declaration¡

Most LX language construets have as thei¡ meaning a history, that is an infrnite

sequence of values in which each value is of the såme type. In the following description,

the semantics of various LX constructs is discussed in terms of the history denoted by

the construct. In $1.2, the following notations were introduced, for an lX construct

X: [X!, "the history denoted by X", and [Xn,, uthe history denoted by X at time

t" . lt will be recalled that the history denoted by x can be written:

[xn : ( [xno, [xnr, [xnr, )

An abbreviated notation is sometimes used, for example:

Ion

ls:

A history in which all values are equal is refer¡ed to as a "constant history"; an example

flzn : (2,2,2,...>.

Additional examples are given in $f '2.

A variable declaration is introduced by a type specification, which is followed by

a list of identifiers. The basic types supported are int, real, char and bool, with

appropriate literals and operators (see Table 2.f). A structured type can be specified
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as list of a basic type. A value of such â structured type is either nil, or a list of

atoms, each of which is a value of the specified basic type. Structured literals can be

constructed by writing a list of values of the appropriate type, separated by commas,

between squate brackets. For example, the following definitions show a declaration of

a structured variable, and its definition using a literal value. Note that the definitions

define a constant historY.

list of inù a;

ø : [1,S,66,72,9];

A variable is defrned using a defrnition of the form

VAR __ RHS

where the left hand side is an identifier. The right hand side, in its simplest form, is

simply â,n expression. Other forms of the right hand side will be desoibed later.

Consideration is now given to the formation of expressions from variables and op-

erators. Note that not all syntactically valid expressions are legal, for they may not

satisfy the type rules of the language; type checking is described below. According to

the syntax definition, expressions are defined hierarchically in terms of simple expres.

sions, terms and factors. This groups the operators of the language by precedence as

follows, in deseending order (the order is based on that used in Pascal)

(1) frrst next not hd tl atom

(z)*ldivand
(3) +-or:
(a) eq <> <

if-then-else-eif
(5) fbv

asa-then-easa
wvr-then-e$rvr
upon-then-euPon.

The operators of the fifth group are actually not defined a"s part of the syntactic

category Ð(PR, but as part of RFIS; however, they can be regarded, informally, as
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operators with syntactic restrictions on their usage.

In discussing the meaning of operators applied to variables, two sets of operators

are considered, firstly, the data operators, which are deflned in terms of operators

associated with the data types of the language, and, secondly, the special Lucid-like

operators. The arithmetic, boolean, relation¿l and list operators, and the operator

if-then-else-eif, are included in the first set. The operators ûrst, next ¿nd all oper-

ators of precedence group (5) are in the second set.

Consider the erpression

aopö

whe¡e op is an operator in the first set, and a and ö are variables. In the ¿bove notation:

[ø op ü[ : ( [ø op ü]ls, [a op ó111, [c op ó[2, ).

The components of the history a¡e defined pointwise, thus:

[ø op ö[; : [ø!; op [ö[;.

The history yielded by the expression can then be expressed, in the abbreviated form,

â^s

[a op ö! : ( oo op ó0, at oP ór, ø2 oP b2, ... )

When either operand is an expression, the history denoted by the expression can be

found by applying similar considerations to the const¿nts, variables and operators of

the expression.

The operations on structured values are defined below:

(i) selection operators

hd a unary operator which yields the first element of the list supplied
a,s argument; an error occurs if the list is nil.

tl a unå,ry operator which yields the list formed by removing the
first element of the list supplied as argument; â,n error occurs if
the argument list is nil.

(ii) construction operator

¿

*
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: a binary operâtor which yields â, new list, the head of which is the
left argument, and the tail, the right argument; an error occurs

if the left argument is not a value, or the right argument is not
a list, of the appropriate tYPe.

(iii) predicate

null a unary operator which yields the Boolean value true if. its argu-
ment is the empty list, otherwise f alse.

(iv) comparison operators

eq a binary operator which yields the value true i|. its arguments
are equal, where equality is as defined below.

not (a eq ó)'

Equality is defined thus:

o two null lists are equal;

o a null list is not equal to a non-null list;

o in the case whe¡e both lists are non-null, let the lists be r and y; then

, eqy iff (hd ø eq hd Y) and (tl ø eq tl Y)

where the eq operation comparing list heads is that appropriate to the type
of the atoms of the list.

The condition¿l expression

if Er then E2 else E3 eif

where Et, EZ and .83 âre expressions, yields a history which is the pointwise extension

of the triadic data operator if-then-else (which acts on values). This operator takes

three values as arguments, one of which must be of type bool; the remaining two values

can be of any type, but each must be of the same type. If these values âre P, x and y

respectively, the result yielded by the data operator is x iÎ p is úrue, y if p is /alse, and

undefined otherwise. The value at time t in the history yielded can be written:

ftif ø1 then E2else E3 eif]l¿: if [Ern, then nDr|,t else [¡l3]1, eif.

Consider the Lucid-like operators of the second set. The operator first forms a

constant history from the first element of the history denoted by its argument, while

next forms a history by removing the first value. The meanings of the operators are

,t

È

I

fr
1,''
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defined thus:

ffirst F! : ( [rno, [rno, [rno, ... )

ftnexü F[ : ( [¡[r, [,F]lz, [r[r, . .. )

where F is a factor. The operator fby (pronounced "followed by" ) takes two expressions

a,s âlguments, and forms a history from the first value of the first argument history,

and the entire history denoted by the second argument, thus:

[^81 fby E2! : ( fiEtno, fiErno, [øznr, .. . ).

The right hand side of an LX definition can be written in one of the following

three forms, in rvhich .81 and E2 àre expressions:

(i) asa.E2 then -81 eaaa

(ii) wvr .82 then -81 ewYr

(iii) uPon .82 then .81 euPon

The history corresponding to any of these is defrned in terms of the histories denoted

by the constituent expressions.

The definition of the asa-then-easa (pronounced "as soon â,s')operator is:

fiasa D then a easafl : ( [o]lr, [onr, [o1,, ... )

where s is such that

[¿]t; : true, d:s and

[a]l; : false,vtcs'

: I otherwise.

Thus, the operator can be seen as examining the history denoted by its first argument

until a value true ß found, extracting the corresponding value from its second argument

history, and yielding a history which takes on this value at every point.

The wvr-then-ewvr (pronounced uwhenever") operator is defined (see Appendix

l) using a recursive define elause. It can be explained by considering the following

equation, which specifies a right hand side which can be substituted for the left when

¿

tr

¡
I

I
d'li

,l

ï
¿

I

I

t'
lìil

fl
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appropriate:

4l
J

,t

¡ì|^

i
wvr E2 then E1 ewvr :

if ûrst .82

then ûrst .81 fby wvr next -82 then next -81 ewvr
else wvr next .82 then next -81 ewvr
eif.

The overall effect is that the operator yields a history containing those values of [^ø1!

for which the corresponding value of [Ð2! is úrue, or, in other words, it filters out

those values of [^81[ for which [^82]l is false. To see this, the definition should be

understood, in terms of the histories denoted by the operànds, as examining the frrst

item in [.8'2[ and, if the value ís true, yielding a history, the first value of which is

the ûrst value of [.ø1[ and with the remaining values determined by applying the

operator to the operands next .82 and next .81; the latter yieids [.81! with its first

value removed. If ûrst Ez þ constant history) yields false, the history returned is

determined by applying wvr-then-ewvr to next .Ð1 and next E2; in effect, the first

value of each of [.81[ and [^82]l is discarded. For example, consider the variables p

and z, denoting histories thus:

¡
l'

t
{

.t

'l
¿

I

I

I
I

I

[,

[pn :
["n :

(t, f, t, t, f, t, t,...1
( o, l, 2,8, 4,5, 6, .. . ).

The operator yields:

[*rpthenøewvr]l (0,2,8,5,6,...)

In contrast, the operator upon-then-eupon (pronounced "upon') can be seen â,rl

stretching out the history denoted by its second argument according to Boolean values

supplied by the first argument. For example, considering the variables p and z, as

defined above, the operator yields:

[upon p then r eupon]l : ( 0, l, 1,2,3,3, 4, 5, ... ).

As in the case of wvr-then-ewvr, this operator is defined.(Appendix l) using a



Section 2.2.2 T/¡e define cl¿use

define clause, but can be understood by considering the equation:

42

i
upon .82 then .81 euPon :

first .81 fby
if first .Ð2

then uPon next .82 then next -81 eupon
else uPon next E2 then .81 euPon
eif.

This definition is discussed in more detail in $2.3.1.f.3. The operator can be used to

merge two histories [Wad8f].

This completes the description of types and variable declarations, of expressions

and of right hand sides, with the exception of the meaning of an APPLICATION,

which is included in the discussion of the define clause, immediately below.

2.2.2 The deûne clause

The deûne clause ha^s two major purposes in the language; it permits the user to

structure â progrâ.m into parameterized functions, and also permits the use of nested

subcomputations. This raises issues of scope rules and the environment in which vari-

ables are defined.

The general form of the clause is as follows:

deûne SUBJECT IPARAM {, PAR.A.M } I

Iurlng IDENT{,IDENT } I

I freezlng FREEZEI,IST I

I

DEFNI,IST
edeflne.

A¡ additional language rule is that the variable result must be declared and defrned

within the list of definitions making up the body of the clause, which defines a subject

by identifying it with the history denoted by result. The using list includes those

identifiers which are global to the elause, and the freezing list, those which are frozen

inside the clause; freezing will be considered in detail later. The optional parameter

list includes declarative information about any formal parameters.

2.2.2.1Scope Rules
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The scope of an identifier is the region of the program over which a particulâr

declaration of the identifier is in effect. In LX, the scope of an identifier is the cl¿use

in which it is declared (a program is a special case of a clause), and does not implicitly

include inner clauses. If access to an identifier is required in an inner clause, its scope

can be extended explicitly by including it in the using list of the inner clause; the

identifier is said to be "inherited" by the inner clause. Any identifier which is accessible

within a clause can have its scope extended in such â, way.

Identifiers declared in a clause are referred to as local identiûers of the clause, and

are declared either as formal parameters of the clause or as declarations in the list of

deûnitions which make up the clause. Global identifiers are those which â,Ppeâ,r in the

using list of a clause, or, in the case of the progrâ,m clause, the global list- The latter

also have declarative information attached, because it is neeessa,ry to know the type of

each variable which is global to the program clause.

It is not necessary for declarations of local identifiers to appear at the head of the

list of definitions of a clause. The scope of identifiers which are declared part way down

the list is not the entire clause, but the region extending from the point of declaration

to the end of the clause. This cannot lead to ambiguities, because a global identifier

must be specified in the clause heading, and it is then illegal for the same identifier to

be used as a local anywhere within the clause.

2.2.2.2 The meaning of ¡ clausc

The meaning of a variable has been defined as a history, and the meaning of an

expression in terms of the histories denoted by the components of the expression' It is

clear that a parameterized clause, used with different actual parameters (the meaning

of each of which is a history), will, in general, yield different histories. The meaning

of a cl¿use is therefore regarded as a history function, that is, a function which mâps

the appropriate number of histories onto a history.

The appearâ,nee of an identifier z on the right hand side of a definition is referred



Section 2.2.2.2 The meoning of a clause 44

to as a use of z. The mes,ning of a particular use of a clause subject (lvith specific actuål

parameters) is the history determined by applying the history function (the meaning

of the subject) to the histories which are the meanings of the actual parameters.

Another notion useful for explaining clauses, and the meanings of variables within

them, is that of an environment. The environment of a clause is a function which

associates each identifier accessible within the clause with either a history (in the case

of a variable) or a history function (in the case of the subject of a define clause).

The notion of environment considerably simplifies the explanation of what it means to

Lreeze a variable.

The notion of solution can now be defined. Informally, the solution is the en-

vironment which contains the minimum â,mount of information consistent with the

definitions of the progtam; it assigns values to only those history elements which are

needed to satisfy the definition of result in the program. Ashcroft and rüfadge define

the solution of a progrem as the least environment which satisfres the definitions of the

program, where "leÀst' is defrned in terms of an information ordering on the underly-

ing data algebra [AshW76]. It can be regarded a.s the least fixed point of a system of

mutually reeursive equations, and flxed point theory used to show the existence and

uniqueness of a solution for all well formed proglams [AshW76]. The least environ-

ment is a mathematical device for giving meaning to a program; it gives no indic¿tion

of how the solution ca,n be computed. In this and subsequent sections, the existence

of a solution is assumed, so discussion centres on properties of the solution and en-

vironments in general, rather than on computational meehanisms; $2.4 examines the

mathematical semantics in relation to an operational model.

Subsequent sections (2.2.2.2.1-5) explain in some detail the mathematical seman-

tics of clauses. It is desirable to do this, for three reâsons, firstly, to establish a

correspondence between Lucid semantics ([AshW79b]; summarized in Chapter l) and

LX semantics. For explanatory putposes, it is convenient to focus on two subsets of

LX, termed IJ(I and LX2, which parallels the treatment in [Ash\ry79b] of the lan-
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guages [ILU and LUSWIM in ¡elation to Structured Lucid (see $f.4.3). SeeondlY, âD

understanding of the mathematical semantics provides an insight into the formal roots

of the language. Finally, a detailed explanation is necessary to form a basis for â,rgu-

ments that the operational model described in $2.3.1 correctly implements the semantie

defrnition.

However, a simpler description should suffrce on frrst reading. The comments

which follorv, in conjunction with the examples discussed in Sections 1.2 and 2.2.3, are

intended to give such an explanation of the meaning of a clause'

Conceptually, a clause denotes a history function, an object which yields a history

when presented with histories as arguments. Hence, a use of a clause denotes a history;

this history is firesulú]l calculated in ¿n environment which associates the formal

parameters of the clause with the histories (possibly frozen) denoted by the actual

parameters.

It may be more instructive to view a clause use textually. A use of a clause can

be regarded as introducing a new clause into the program, with actual parameters

substituted for formals; ¿ recursive use câ,uses new ucopies" of the same clause to

appear. This view can be justified by considering the development of Lucid from

Landin's lambd¿'calculus-based ISWIM [Lan66a, AshWTga]. Another view, applicable

to programs which do not use freezing, is to regard a progtå,m as a graph, as in 92.2.3.

These views must be modified somewhat to allow for freezing. If a clause freezes a

formal parameter, ffresulújl must be dete¡mined point by point; the environment used

to determine firesulú]l at time i associates with the formal parameter a constant history

formed by extracting the ¡lh value of the history denoted by the actual parameter.

Using the textual view, one can imagine a copy of the clause for each time point, each

substituting a different, constant, history for the formal parameter.

2.2.2.2.I The language LXl

In this subset of LX, no freezing is permitted. This ¡est¡iction is enforced syn-



Section 2.2.2.2.2 The language LX?

tactically by requiring that the option freezing none be used at the head of eYery

clause

In an LXI program, the meaning of an identifier is the same everywhere in its

scope, whether the identifier is used locally or globally. It will be shown in $2.2.3 that

such programs may be interpreted operationally as specifying a data driven network

of autonomous ptoeesses or coroutines.

2.2.2.2.2 The languaee LX2

The restriction for this subset is that all parameters and globals must be frozen,

¿nd is enfo¡ced by requiring that the option freezing all be used with evety clause.

In an LX2 progrâm, â,n identifrer has a different interpretation inside an inner

clause, within which it is global; the inner clause is regarded as defining its subject

point by point, with the values of all globals being frozen at each point. Such progtams

have an operational interpretation in which inner clauses are subeomputations of the

enclosing computation; they can be implemeníed as nested loops or procedures. For

example, the clause SqRt ol program NM in $1.2 freezes its parameter, and can be

interpreted as a nested subcomputation.

2.2.2.2.3 The meaning of ¡ clause in LXl

The meaning of a clause is defined by considering a particular use of the clause, and

explaining how the corresponding history can be determined. This is done by adapting

the description given in þhWTgbl of the mathematical semantics of Structured Lucid.

Suppose that the clause subject ø is defined within y, anà that the clause use

occurs within z, as in Figure 2.1. The environment which determines the meanings of

identifiers accessible within a clause y is denoted Ey. Although z is shown a-s distinct

from ø, subsequent discussion applies equally to a recursive definition of r. 11 r is used

direetly within !, Ev and E¿ are the same environment.

4ô
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p?og m;

dcfrnr y ...

i.on. x( fo, fl, ... ,fn-l ) uslng

odeffnc {x};

dolno z ... udng x
lnt b;

b : ...x(aO, â1, ... ,an-l )...

edofrne {z};

oocîno {y};

rp?o8

Figure 2.1. Using â clâuse

Let H be the history associated by E, with the clause use shown in Figure 2.1. It

is convenient to regârd fl as being formed at successive time points æ trfg, Hb fl2,

and so on, by environments .fl, Et, t, and so on, where 4 i" the environment E,

determined at time d. For IXI programr, .Ei is defined such that, for any identifier a

accessible within ø,

E (o) _ Er(o).

In other words, 4 is independent of d when considering IJ(l programs; however, it

will be seen below that this is not the case for LX2 and IX progr¿ms. Thus, .E[ can be

determined pointwise; the problem of finding the meaning of the clause use in E7 has

been reduced to finding ftresult]l; io Ft-

It is clearly necessary to define the environment {, which determines [resutú]1.

The identifie¡s accessible within E, ,rn be grouped into several categories, namely,

formal parameters, local variables and subjects, and global variables and subjects.

The histories which .Ri associates with the formal parameters âre the meanings of

the corresponding actual parameters, which are defined by Et.The meanings of local

variables can be determined using methods described in $2.2.f '
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The history rvhich .Ri associates with a global g of. r is the same a.s the history

âssociated by Eu with g. This fcllows from two properties of the language: firstly,

static scoping is used, hence the meaning of a global is determined by the environment

in lvhich it is defined, and secondly, it is required in IXI that a global have the såme

meaning inside as outside the clause.

The meaning of a subject use (either local or global) within ø, for example y(c),

can be determined in the sâme manneÌ as the subject use 1) in Figure 2.1, but now

the role of E¿of the preceding discussion is taken bV E, and that "f DrAV øi- If the

clause is recursive, the clause use is r(ø'o,...,a'n-t). In this case, it may be necessary

to determine, in {, the value of this new use at time i. At first glance, this may

seem cireular, in that determination of the value o1 s at time i requires the value at

time d. Looking more elosely, it can be seen that this is not so--in general, the ¿ctual

parameter histories associated with the new use will differ from those of the original

use, thus determining ¿ new environment for the new use. In fact, no such circularity

can be involved, because it is assumed that the program is well-formed, and hence has

a unique solution.

The mathematical sema,ntics of þhW79b] offers another viewpoint of the deter-

mination of fr. The solution of a progrâm, whose existence and uniqeness have been

established, gives the same n-aÌy history function Xn as the meaning of r in both

Ey and E¿ lhe history .E is determined by applying Xnto the meanings, in E¿, o1

the actual parameters, namely the histories [as[, [or]1, ..., l[or,-rn. The pointwise

interpretation is preferred beeause it generalizes readily to LX2 and LX, as described

below.

2.2.2.2.1The mcaning of a clause in LX2

Assume a elause use âs in the previous seetion. The determination o1 E, differs

from above in that the histories corresponding to parameters and global identifiers are

frozen at time d.
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A history frozen at time r yields a constant history, thus:

X lrozen at i : ( X;, X;,X¡, ... )

whereXisahistory.

The history E, æ defined by Er, can again be defined point by point. To determine

.E;, firstly establish an environment .q,,, defined as for LXl, except that the histories

which .{ associates with the formal parameters &re determined by freezing at time d

the actual parameter histories defined by Et; the histories associated with the globals

are determined by freezing the corresponding histories in .Ey. In other words, 4 ¡.

defined thus, for an identifier a:

E (o) : Er(o) frozen at d,

gr(") : Er(a)

if ¿ is a formal or global

otherwise.

Then, as for [Xl, .H; is the value at time ¡ of the history which Q, associates with

result, thus:

E ¡ (in E¿) : [resutt[(d) (in øi).

2.2.2.2.í The me¡ning of a clause in LX

A clause in I)( can specify a mixture of frozen and unfrozen formal parameters

and global identifiers. It is therefore necessary to shorp how the definitions above can

be combined to explain the meaning of a use of a cl¿use in L)C For both LXI and LX2,

it was possible to define .H, the history denoted by the clause use, point by point. A

corresponding definition is now presented for LX. At time i, .E; is determined thus:

(i) establish an environment 4, io which the histories associated with unfrozen

formal parameters and globals are defined as for LXl, while those for frozen

parameters and globals are fft for LX2;

(ii) determine .ú[; as the value at time d of the history which E associates with

result, thus:
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E; (in E¿\ : firesult]l; (i" 4).
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An additional restriction on freezing is introduced when LXI and LX2 are com-

bined to form LX. It is apparent from Figure 2.1 that a clause subject mây appeâr

on the using list of a define clause. As indicated in $2.2.2.2.3, such a global subject

has, in the absence of freezing, the same meaning as in its defining clause. Howevet,

the definition of freezing given in the previous section applies only to histories, not to

history functions. Henee, it is not permitted in tX to speeify that an inherited subject

be frozen. This rule is not absolutely necessary, for Ashcrofù and Wadge [Ashw79bl

show that freezing of subjects c¿n be defined for definitions which satisfy certain other

restrictions; however, the omission of this facitity simplified the language consider"Orr,

at the expense of a small loss of expressiveness.

Note, however, that it can be shown from the mathematical semantics that freezing

of inherited subjects makes sense for a clause with all globals frozen, as in LX2 (and

also LX3, described in $2.3.2.f ). In IX2, freezing of a subject / implicitly freezes any

globals of / in the new scope. This permits a simple operational understanding and

implementation of such freezing; if clause / with global g is inherited into ä, then the

frozen vzlue of g is implicitly inherited into å for use with all invocations of /.

2.2.3 Examples

This section illustrates the above presentation of the semantics by discussing spe'

cific examples, including those given in $f .2. It also shows possible operational inter-

pretations of the examples.

Consider the program ,9um¡ of $1.2. As no freezing is used in this progtâm, it can

be regarded as an LXI program. The meaning of the proglam can be determined using

the semantic deseription contained in 92.2.2.2.3 (.The meaning of a clause in LXI'). It

is determined pointwise, first finding firesulú]ls in Egu^r, the environment established

by ,Sums, at time 0. The environment ESu^, associates histories with the variables

result, sum and n; because there is no freezing, Egu-, is equal to 4u-r. The history
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associated by Esu^, with the globa.l n is determined by the environment of definition

oî. n; nis external to the program, hence ["]| i. regarded as being established by some

input medium. For a given [n]1, flsum]l and flresutú]l can be found which satisfy the

definitions of the progrem; using the values given in $1.2,

4su*rþ) _
Úru^rþum) :

Úgr^r(result) --

(2,7, g, 6, ... )
( 2, g, rz, zo, . . .')

( 2, g, lz, zo, ...1

Hence, fi^gumi]lg : 2, and subsequent values can be found similarly.

It was mentioned previously that an IXI program can be interpreted operationally

as a network of autonomous proeesses. It is possible to identify ân arc of such a

network with a st¡eam of values representing a history, and a node with an operator

which transforms histories; for example, the node next discards the first value which

ar¡ives at its input, and transmits subsequent values unchanged. The progÌÀm Sums

itself can then be regarded as a very simple network of one node which transforms a

history of values to a history of running sulrìs. The node Sums can in turn be viewed

as a network, as shown in Figure 2.2a. This operational viewpoint is described in more

detail in [WadSl, Pil83], and discussed in $7.3.

The program NMof $1.2 contains a define clause. In subsequent discussion, resulú

will be subscripted to indicate the associated clause use; for example, result¡¡¡¿ is the

variable result in the main program. As in the previous example, [lfø[ can be

found by determining firesult¡¡¡1]lo, Ilr¿.eulúiv¡rn1, and so on. The environment Exu

associates histories wiùh a and result¡¡¡¡, and a history function with ,99ß[ as noted

previously, it is convenient to consider [Sqn(c)]1, the history denoted by the clause

use .9gÄ(c), rather than the history function. For eonvenience, [Sq^Rt(c)[ is written

as ^9.t?. Because there is no freezing in the main progtâm, these histories are the sarne

for $y,, Ehu, and so on.

Sß is defined as flresulú5^Rn in an environment established by ^9qßú instantiated

with actual parameter c. Thus, to determine 5.8g, it is necessary to find ftresulúsnlo
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in an environmeot 4n which freezes ¿ at time 0. One such environment is

4n(') 

= 
["iJ'4")

fltr(r) : ( t, 2.5, 2.05, 2.006,2, .. .,
Úrp(count) : ( L, 2,3, ... )

fir(resultsn) -- ( 4, 4, 4, . . .').

Subsequent values in SÆ are determined by considering environments in whieh [r]l is

associated with [c[ frozen at different points; for example,

ø!*(r) : ( to, tô, 16, ... )
: [ont

The operational interpretation of SqRt as ¿ nested iteration was discussed in $1.2.

Next consider the following recursive LXI program:

proS U;
lnt x, upn; bod p;

d¡lln¡ upn(bool a, lnt b);
result : b fùy ll ûr¡t a

upn(nort 4 ncrt b)
upu(a, nort b)

odrfrnc;
p : tru¡ fby not P;
x:0 fty x+1;
result : upn(p, x)

aP?o3

To find [U]|, it is clearly neeessâry to determine firesulúy]l pointwise. Consider time

0; the environme"t 4t gives meaning to p and ø thus:

flutpl: (t,f,t,f,..')
Ðuþ\ _ ( o, l, 2, ,3, ...1.

Consideration is now given to finding [upn(p,x)\ ¿t time 0. The abbreviztiot UP

is used for [upn(p,ø)]1. The value [result7p\g must be determined in an inner en-

vironment .{rp which associat.r [pn and [z[ with ø and ö respectively. From the

definition o1 resultryp, it can be seen that

then
¡lso
clf

firesuttup\o: flöllo : [r]ls : 0.
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It is thus unnecessa,ry to elaborate E$"

53

further

In the case of Elr, p and r h¿ve the sa,me meaning as before, because they are

unfrozen variables o1 U. Similarly, El, defines a and ö as above. Noting that, in Ef¡,

first c: fipno : true

and applying the definition of fby, it can be seen that

fresuttuph - fiupn(nextc,nextö)fls

which shows that it is necessary to determine the history which Bf¡p associates with

a recursive clause use. It is convenient to regard this use âr' introducing Ð new copy of

the clause defining upn, which can then be instantiated with actual parameters next c

and next ö, in much the same wÐy as the outer use of upn. Appropriate environments

can then be found in the manner described above. Letting upn-lbe the name of the

copy, and, UPl abbreviate [upn-1(next c,next ö)]1, the requirement is to determine

[resultuph - UPls.

flrrt associates flnext z]l with ö, hence

UPls- flresultyplno : fiü]|o : finext 1116z1 : 1.

The clause upn can be viewed as the network shown in Figure 2.2b. In Figure 2.2b,

the internal node üpn câ,n be regarded as expanding to form a copy of the network

when it is triggered for the first time; see [rilad8f, PilS3].
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result

(a) Program ,9um¡

(b) Clause upn

b

t

nextnext

uPn uPn

se1

Figure 2.2. I.X. programs as networks.



Section 2.2.4 Discussion ol language design

2.2.1 Discuss¡on of language design
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The design of a new ladguage was not a primary goal of the research reported

in this thesis. Rather, the intention rvas to take the language Lucid and perform

experiments aimed at examining the practicality of implementing it in a data flow

environment. Because the Lucid literature current at the time these experiments com-

menced did not define the language in concrete terms, t it was necessary to consider

some aspects of language design. In particular, it was decided to examine a strongly

typed variant of Lucid. The two most important design decisions â.re now considered

in turn, firstly strong typing, and secondly clause structure.

The language LX is strongly typed; a design goal was to require static determi-

nation of the type of any expression written in the language. The principal reasons

are those often put forward by proponents of strong typing in conventional languages,

namely the advantages of requiring a progremmer to declare the intended manner of

usâge of each identifier, and the ability of a compiler to check that every use of an

identifier àgrees with this declaration. A consequence of this decision is that histories

are homogeneous-every value in the history denoted by an expression must be of the

same type.

Although opportunities to write LX programs of significant size have been limited,

it seems likely th¿t the advantages and disadvant¿ges of strong typing in LX generally

will be similar to those encountered in other block structu¡ed languages. In particular,

the general appearance and structure of a typical LX program bears a strong resem-

blance to programs in such languages. Further investigation is required before more

substantive statements can be made.

Typ" const¡aints are responsible for the somewhat limited list structuring facility

of LX, which permits specification of only linear lists in which a list cannot include a

list as one of its elements. LX is a strongly typed language, requiring that the type of

âny expression be determinable statically. A problem associated with a more general

I This was true when an early version of LX3 was developed in 1978, but not when LX was designed

in late 1982; however, the earlier design formed a satisfactory starting point for further development.
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list structuring facility is that a list element ean be either an âtom or a list, that

is, a value of either a basic type or a structured type. For example, the type of the

expression hd ø depends on the value of ø. As an investigation of typing schemes was

not a primary research goal, this issue has been left unresolved for LX.

Other variants of Lucid use different approaches to typing. plucid [Fau83] requires

no declaration of the type of an identifier; an identifier denotes a history of values,

which need not be of the same type. Consequently, little compile time type checking

is done, and histories are heterogeneous. Denbaum [Den83] requires that histories

denoted by identifiers in ANPL be homogeneous, and that the type of an identifier

be known at compile time, but does not require a type declaration for each identifier.

Instead, only the types of the "input" identifiers (those which denote histories of values

supplied externally) need be declared, and a type inference algorithm is used to deduce

the type of all other identifiers.

LX uses clause oriented syntax for functions, but uses one kind of clause, in con-

trast to other clause oriented variants of Lucid, namely Clause Lucid and ANPL,

which have several different kinds of clause. Precisely the same clause semantics c¿n

be achieved in LX as in the other languages by using the freezing option appropriately.

The syntactic use of one kind of clause in LX thus seems a desirable simplification.

Clause oriented syntax is used for two principal tea,sons, firstly, clauses provide

a convenient mechanism for placing the declarative information required in LX for

parameters and globals. Secondly, it is felt (somewhat subjectively) that clauses en-

eourâge structuring of a progrâm into units of a "reasonable" size.

The use of phrase oriented syntax in Structured Lucid (the valof phrase) and pl,u-

cid (the where phrase) reflects the evolution of these languages from Landin's "ap-

plicative expressions" embodied in the language ISWIM [Lan66a]. However, LX clauses

can be transformed directly into Structured Lucid or plucid phrases. Tlansformation

from Structured Lucid to LX, and from plucid to LX is a little more complicated

because each allow "anonymous phrases" as components of expressions, and use a dif-
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ferent syntax for specificâ,tion of freezing; syntâctic transformations can be defined,

but a complete discussion is beyond the scope of this thesis.

2.3 Operational Views of LX

One operational view of a Lucid [AshW76, Ash\M77a, Pil83], and hence of an LX,

program is as a network of processes or coroutines; this view was described briefly in

the preceding section. It is due to Ashcroft and Wadge, and its relationship to the

operational views used in this thesis is further explored in $7.3.

A-nother operational view identifies the definitions of a progrem with particular

âspects of a loop þhW77al. An advantage of this âpproâch is that it permits efficient

implementation, but it is restrictive in that not all programs (for example, those which

use the wvr-then-ewvr or the upon-then-eupon operators) can be interpreted nat-

urally in this rvay. In $2.3, LX3, a further subset of LX, is deflned, with restrictions

which make it possible to interpret all programs in terms of loops. The implement¿tion

of LX3 is descibed in ChaPter 4.

The operational semantics of LX presented here is capable of describing all LX

programs. The semantic model is based on the notion that computation is driven by

the arrival of demands for particular values in the result history of the program' It

is an "information structure model" [Weg71], in which the semantics is described in

terms of transformations of appropriate structures; the structures used are described

below. Inform¿tion structu¡e models have also been used recently by Denbaum [Den83]

to describe the semantics of the Lucid-based language ANPL.

2.3.1 A demand driven operational semantics for LX

The purpose of the semantic model is to describe the propagation of a demand

through â, progra,m. The destination of a demand is regarded as being a point in the

text of the program, for example, it might be a clause, a definition, or an expression.

Computation is initiated by sending a demand to the program itself from ¿n external

source; a clemand earries â, non-negative integer n, the demand number, the receipt of
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which means that the vâ,lue Iresulú[n is required. One demand must be sent for each

value of ftresult]l required.

Al example is now given to illustrate the concepts of the model. Consider the

program OddNos of $1.2, and suppose that a demand number of I is received by the

program. The demand number I is propagated to the definition oî result, thereby

demanding the value [resutú]11, which equals [i + t!1.

It is clearly necessâry to determine 11, hence the demand number l is propagated

to the definition of i, and thence to the right hand side of the definition of r. The right

hand side can be viewed as an expression with the following structure

rby

/\
0 +

/\
2

In this model, the operators of such a structure are regarded as transforming an in-

coming demand number, according to the nature of the operator, into one or mdre

demand numbers, which are sent to the operands of the operator. In this case, the

demand number I is sent to the operator fby. Fron the definition of fby, it can be

seen that

[¡[r : [i+zfls

and the demand number 0 is propagated to the operator *. This operator acts point-

wise on its operands, hence the demand is propagated unchanged to each operand, so

that the value at time 0 of e¿ch of [d[ and [Zl is demanded. The former can be seen

as propagation of the demand to another copy of the definition of d; a demand number

of 0 arrives at the fby operator of this copy. It is then transmitted to the operand 0,

a constant history which produces the value 0 in response to any demand. Thus, the

value of [i[ at time 0 is 0, and thus:

[;+ zflo - ['no - [2no : o* 2 : 2.

1
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The value 2 is then returned to the point from which it was demanded; the return of

values retraces the path of demands, and hence 2 is returned as the value [i!1, and 3

as the required value of the result of the progråm at time 1'

2.3.1.1 Specification of the model

The model specifies a demand transformaúion (DT) for each of the principal syn-

tactic categories of the language, namely PROGRAM, DEFN, CLAUSE, RHS, EXPR,

the various operators, and IDBNT. The transformation specifies both the demands gen-

erated from the incoming demand number, and the destination of each such demand.

For example, the model specifies that a progrâm transforms an incoming demand by

propagating it to the definition of result in the main program.

As mentioned above, the destination of a demand is regarded as being a point in the

text of the program. 'When the text is that of a clause, it is likely that demands will be

sent to the clause from several points of use in the program. To aid in distinguishing

between de¡nands arriving from different textual sources, and from recursive clause

uses, the notion of an instance of a clause is introduced. An instance of a clause has

two components, firstly, the text of the clause, and, secondly, an envi¡onment table,

used to resolve uses of global variables and formal parameters.

Hence, the basic structures of the model are the demand and the environment

table. A demand is defined as a Pair

( Num, Inst I

where Num, a non-negative integer, is the demand number, and /nsú the instance

through which the demand is passing. Because this model concentrates on the flow of

demands, and is not concerned with the return of values, it is necessary to record only

the instance in which a demand currently resides, not the history of instances through

which the demand has passed.

Figure 2.3 summarises the ¡elationships between the structures of the model. An

environment table (ET) has two components. The first, FreezeVal, cont,ains the time
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Figure 2.3. Relationships between structures of the model

at which identifrers defrned by the ET are to be frozen, if freezing is required. The

second, Ilst, is a list with en entry for each global and formal parameter of the clause,

each entry taking the form

( Ident, (Jser, Newldent I

where ldent is the na,me of the formal or global of the elause, User is the instance in

which the use of the elause oecurred, and NewId¿nú is either an introduced identifier or

an identifiel. (Jser and N¿ø.Idenú, taken together, identify apoint (often a definition),

in the text of the instan ee (Jser, which c¿n be used in resolving â, use of. Ident. An

introduced identifier, rather than an identifier, is used when an actual parameter is

an expression, E; in effect, it is an additional identifrer, substituted for the actual

parameter, and defined with E as its right hand side.

DTs are defined by statements in a simple, imperative language with the following

Pascal-like constructs:

controlprimitives: sequencing

conditional (if-then-else, case)

repetition (for, while, repeat and forall)

assignment: ::
compound statement: begin ... end.

The semicolon is used as a statement separator, and local variables are used es required,

without declaration.

ET

þ,1
J..l

{x
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The construct

6t

i
,{

ir

i
wiùh t do

where ú represents an BT, is used, as in Pascal, to facilitate access to the components

of ú. Dot notation may be used to access a component of a pair, and elements of the

list of entries in an ET can be referenced by identifier name. For example, t.Listfrl

yields a (User, Newldentl pair corresponding to the identifrer ¡.

The repetition construct

forall u in lrsú do

defines a loop in which successive elements of the list are assigned to the variable u.

Lists of formal parameters and globals associated with a subject t cân be referred to

as Formals(r) and Globalsþ)respectively. A líst Actuals of actual parameters is also

available; see $2.3.1.1.2 for details of its use.

To express the propagation of demands, the following primitive is available:

tra¡rsmit D I envof INSTANCE ] to DESTINATIONS I yielding V ].

D is a demand or dem¿nd number, INSTANCE is an instance, DESTINATIONS ¿ list

of points (see below) to which the demand is propagated, V is a variable, and square

brackets indicate optional components. Execution of the primitive causes the demand

to be propagated to the points named, in a manner dependent on the options specified,

as follows:

(i) if the yietding option is used, only one destination may be specified, and

the value computed in response to the demand is stored in the variable
specified;

(ii) if D is a demand, use of the envof option eauses INSTANCE to replace
the inst¿nc¿ component of the propagated demand, otherwise the instance

component is unchanged. Bach destination is a point in the text of the
instance so determined; a point can be a definition, the right hand side of a
definition, or an expression;

(iii) if D is a demand number, the envof option must be used to specify the
instance component of the demand transmitted.

I

{
t

.'1

I
I

I
I

I
[':

p I
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The primitives Createlnstance(subject) and CreateTable(inst) can be used, respee-

tively, to create an instance of the clause with the given subject, and return ân empty

ET associated with the instance inst.

The primitive Class(ident)returns the class (local, globalor lormal parameter) of an

identifier, and the primitive Table(d)the ET corresponding to the fnsúcnce component

of the demand d. The predicates Frozen(ident)and Subiect(ident)indieate respectively

whether or not an identifier is specified as frozen, or defined as the subject of a deffne

clause.

2.3.1.1.1 Program

The DT corresponding to the syntactic category PROGRAM is shown in Figure

2.4. It is assumed that p, an identifier for the main progrâ.m, is known to the DT; d

is the incoming ,ilemand (from an external source). The DT uses two local variables,

namely pf , which holds an instance value, and z, which is used as a control variable in

iterating over the list of pro$am globals. The arrival of the demand triggers the DT, to

ereate an instance of the main program (pl) with an ET to service the demand. Each

entry of the environment table indicates that the (Jser ol the program is the external

instance by setting it to the special instance value eúernal; the transmrú primitive, if

given such an instance specification associated with a dem¿nd, câ,uses the demand to

be propagated to the appropriate external "device" capable of handling the demand.

The incoming demand, d, is transmitted to the definition of. result in the newly created

instance.

2.3.1.1.2 Definition

The DT for "definition entry", given in Figure 2.5 below, must cater for both

simple equations and define clauses. Before examining the DT in more detail, it is

useful to consider the circumstances under which it is used. 
'When an incoming demand

encounters an identifier in an expression (a leaf of the expression tree introduced in

$2.8.f), the demand is propagated to the definition entry associated with the identifier.

I

¡
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bcgln
pl :: Createlnst( p );
rlth CreateTable( pf ) do

bcgln
FreezeVal :: d.Num;
forrll z ln Globals( p )

bcgln
List[zl.tlser :: external;
List[zl.Newldent :: z;

cnd
cnd;

tr¡nsm¡t d cnvol pl to result
cnd

Figure 2.4. DT for PROGRAM.

Associated with the úezú component of the instance eorresponding to each clause of the

program, there is a definition entry for each identifier accessible within the clause. In

the case of a local, the definition entry is its definition, whereas for a global or formal,

it can be regarded as a unique "placeholder" for the identifier in the text of the clause.

The primitive Class is used by theDT to distinguish between such definition entries.

In the DT, the incoming demand is referred to as d, anà the identifier defined

by the definition entry as c. The right hand side of the definition of a variable is

identified as rñs. If r is the subject of a deûne clause, information about the use from

which d was propagated is represented as ur, the instance in which the use occurred,

and Actuals, a list of the actual parameters associated with the use; Actuals(z)yields

identification of the expression which makes up the actual parameter corresponding to

a given formal a.

If the definition entry is not that of a local identifier, the demand is redirected to

a definition entry in another instance, as recorded in the ET. The demand number is

changed appropriately if the identifier is frozen within the current instance. Redirection

is intended to propagate the demand one step closer to an inst¿nce in which the demand

can be satisfied locally; it is discussed further in $2.4.2. If ø is found to be a local

variable, the demand is routed to the right hand side of the definition, within the same

instance.

ô3

i

If ø is a subjeet, a, new instance is cre¿ted. The ET associated with this inst¿nce is
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bcgln
crle Class(x) of

Slobrl, formal:
rlth Table( d)do

bcgln
¡l f'lozen( x )
tho¡ d.Num :: FleezeVal;
tr¡nsmh d rnYol List[xl'User

to List[xl.Newldent
rnd;

local:
lf not Subject(x)
thcn

tr¡nsmh d to rhs
eltr

bo¡ln
xl :: Createlnst( x );
rlth CreateTable( xl ) do

bogln
FreezeVal:: d.Num;
for¡ll z ln Formals(x )

bogln
Liet[zl.User :: ui;
List[zl.Newldent :: Actuals[zl

¡nd;
?or¡ll z ln Globals( x )

brgln
List[zl.User :: d.Inst;
List[z].Newldenù :: z;

end
end;

tr¡n¡mlt d envof xl to result
end

endcase
rnd

Figure 2.5. DT for a definition entry.

created with an entry for each formal parÀmeter and global identifier of the definition.

An entry for a formal parameter records the introduced identifier conesponding to the

actu¿l parameter, in the instance of use. Note that the DT is executed in the instance

r in which c is defined as a local, which is not necessarily the instance in which r is

used. It is assumed that necessâry information about the point of use is avail¿ble to

the inst¿nee d, as ui and Actuals. A-n entry for a global records the current instance,

reflecting the fact that uses of global identifiers are resolved statically. The demand d

is propagated to the defrnition of result in the newly creâted instance'
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2.3.1.1.3 Right-hand-side and expîess¡on

Both a right-hand-side and ân expression consist of operators and operands; for the

purposes of this model, a right-hand-side will be regarded a,s a,n expression. As indicated

in the example above, â,n expression tree can be formed, in which the internal nodes

are operators and the leaves identifiers and literals; it is assumed that all expressions

are in tree form. In forming the tree, a use of a clause is regarded as a leaf, and not

expressed in terms of more primitive operations; propagation of a demand to actual

parameters is handled as described in the preceding section.

The simplest expression consists of a single node, either a literal or an identifier,

with no operator; this case is considered later.

If the expression is not a single node, it consists of an operator, and between

one and three operands, each of which is an expression. The demand is propagated

to the operator, and, depending on the nature of the operator, further demands are

transmitted to one or more operands. The DT corresponding to each operator of the

language is specified below.

In each case, it is assumed that the incoming demand is stored in the variable

d. Different notations are used in naming the operands, depending on the particular

operator. For unary operators, the operand is referred to as E. For binary data op-

erators, and the operator fby, the operands are named -81 and 82. The operands of

the conditional are referred to as C (the condition), .81 and E2 (the arms of the con-

ditional). For the operators asa-then-easa, wvr-then-wvr and upon-then-eupon,

the Boolean operand is named C, and the other operand, .Ð. Propagation of demands

by operators is always within the same instance.

In the DTs which follow, local variables d,f and d9 are demand numbers, as distinct

from demands.

The DTs for data operators, 1 and the conditional, are specified in Figure 2.6a.

r Note that the semantics of the operators and and or differ from Lucid, which specifies them as

non-strict operators; here, it is assumed that all operands are deûned. The implementation of non-strict
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unary data operators: tran¡mlt d to E

binary data operators; trsa¡mlt d to E¡, F,2

conditional: begln
t¡en¡mlt d to C Yleldlng v;
llv
then tranemlt d to Er
else transmiù d to E.:

end

Figure 2.6a. DTs for data operators and conditional.

In $2.2, data operators were defined pointwise. Consequently, for all such operâtors'

the demand is propagated unchanged to each operånd. The conditional, although

regarded as the pointwise extension of the triadic data operator if-then-else, is treated

differently. It is clear that a value need be demanded from only one arm of the

conditional, depending on the value of the condition. The demand d is propagated flrst

to the condition, and then, depending on the value of the condition, to the appropriate

expression; redundant computatiou is thus avoided'

For the special operators first, next and fby, the DTs are as shown in Figure 2.6b.

The operator firsù yields the value at time 0 of the history denoted by its operand,

hence ¿ demand number of 0 is propagated, regardless of the value of the incoming

demand number. From the definition of the operator next, given in the previous

section, it can be shown that

ftnext F!¿ _ [rn,*t

where F is a factor. Hence, a demand number of d * 1 is propagated to the operand

of the next operator. It is apparent from the definition of the operator fly that

[ø1nv ø2\¡ : if t : 0 then fl¿rno ebe [-82!¿-1

where .81 and E2 a,Ìe expressions. Accordingly, a demand is propagated to either the

left or the right operand, depending on the value of the incoming demand number.

Consider the operator asa-then-easta. the DT for which is sholvn in Figure 2.ôc.

semantics requires that computations for each operand be spawned in parallel; such a computatiou must

be terminated if it is found that its result is not required. It may be possible to implemeut this iu data

flow systems of tbe type described in this tbesis by passing signals through incremental parameter aud

result structures (described in subsequent chapters), but further investigation is required.
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ffrst: transmlt 0 envol d.Inst to E

next: transmlt d.Num f 1 envof d.Inst to E

D/

lf d.Num: 0
then tren¡mlt 0 envof d.Iust to Er
else tranemit d.Num- I envo? d.Inst to E2

Figure 2.6b. DTs for speciâ,I opera,tors

bagln
dl:: 0;
rcpcrt

tr¡nsmlt dl cnYo? d.Inst
to C yielding v;

dl::d 1*l
untll v;
tnnsmlt d1-1 cnvo? d.Inst to E

cnd

Figure 2.6c. DT for operator asa-then-eas¡4.

The DT demands vålues from the condition associated with the operator until a value

trueß obtained; the variable dl is used to store the associated demand number' which

is propagated to the second operâ,nd. It can be seen from the DT that

fbv

[cn;

[cnt

: false, Vi<t, and

true, i: t

where t is the demand number (dl-l) sent to E. Hence, the DT correctly implemenÙs

the definition. The behaviour of the DT is independent of the incoming demand

number, which is consistent with the fact that the history yielded by asa-úhen-eas¡a

is constant; the same value is produced in response to any demand.

The DT for the operator wvr-then-erwr is given in Figure 2.6d. It was stated

in the previous section that, given

[*" C then .E ewvr]l

then the history X contains those values of [^E! for which the corresponding value of

[Cn is hue. It is clear that

Xo : [E]|;, Xt : [E]l¡,

where i is the ûrst value such that [C[; is true, j is the second such value, and so
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bcgln
dl:: 0;

lor d2::0 to d.Num do
rcpGtt

tr¡nsmlt dl cnvo? d.Inst
to C yielding v;

dl::dl+l
untll v;

tr¡nsmlt dl-l cnvo? d.Inst to E
cnd

Figure 2.6d. DT for operator wvr-then-erwr.

on. It follows that, to find X at time ú, values of [C[ must be demanded until ú tru¿

values have been found; the time, relative to [C]1, of this value should then be issued

â,s a demand to E. The DT shown in Figure 2.6d implements this interpretation.

Finally, the DT for upon-then-eupon åppears in Figure 2.6e. Consider

upon C then .D eupon

which yields a history, X. The behaviour of this operator is now described, based on

the defrnition in 92.2.2. The value of X at time 0 is produced immediately, from the

expression first .8, which yields [¿no. How the remainder of X is produced depends

on fifirst .E']1, in that, if it is (the constant history denoted by) úrue, the remainder of

X is produced from the recursive application of the operator to the expressions next C

and next C.ln effect, fiø]]o is released as avalue of the result (X), and the histories

[C[ and [^U[ are "advaneed" one step before finding the next value in X. If first C

is false, the remainder of X is determined using the expressions .E and next C. That

is, [E[o is released, as before, but only [C[ is advanced before finding the next value;

the same value of [.El will be rele¿sed in the recursive application of the operator.

The overall effect is to form X by first ¡eleasing [E[g, and then to release one further

value for each value of [C[ ; if the value of [C[ is true, the next value of [^E'[ is

the value released, otherwise it is the sâ,me value of [E! as wa,ri previously released.

From this, it follows that

X¡ [En¡, ú > o

where j is the number of bue values in



Sectiou 2.3.1.7.4 ldentifiers ond literals ô9

[cno, [cnt, '.. , [cn,.

bcgln
d2:: O;

for d1:: 0 to d-1 do
bcgln

tr¡nsmlt d1 cnvof d.Inst
to C Yleldlag v;

ll v thcn d2::d2+l
cnd;

tr¡nsmlt d2 cnvoJ d.Inst to E
ond

Figure 2.6e. DT for operator upon-then-eupon'

2.3.1.1.1 ldentifiers and literals

The DT's which define the propagation of a demand from a leaf node of the tree

representation of an expression can now be presented. A leaf node can be either a

Iiteral or â,n identiûer. In the case of a literal, for which the DT is

literal: the demand is not propagated

the demand is absorbed, because it can now be satisfi.ed, and the corresponding value

returned to the source of the demand, and used in some way. This model is concerned

with the flow of demands, and hence does not specify in detail how values are returned

and used, except when required in determining the generation of demands; simil¿r

techniques could, if desired, be used to model the return of values from literals to the

source of the demand, and the transformation of values by operators. The technique

used in the implementation derived f¡om this model is described in $5.3.3.5.

The DT for an identifier ø is given bY

identifier: transmit d to n

The demand d is transmitted to the definition entry, in the current instanee, for the

identifier. Its propagation from the¡e is determined by the DT for a definition entry,

as described above.
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2.3.2 
^ 

loop based opcrational description of LX

70

A-n objective in the original development of Lucid wâ,si a, mathematical description

of iteration; Ashcroft and \ffadge state [AshW77a]

A Lucid program c¿n be thought of as a collection of commands describing an

algorithm in terms of assignments and loops; but at the same time Lucid is

a strictly denotational language, and the statements of a Lucid Program ca,n

be interpreted as true mathematical ¿ssertions about the results and effects

of the program.

However, not all legal Lucid (and hence IJ() programs cân be broken down into simple

loops. Ashcroft and Wadge [AshW77a] cite an example to show this; the example is

given here in IX:

prog FACT;
lnt u, result;
n:7fbyn-1;
result:lfu< I

thcn I
clscn*nc¡tresult
elf

cP?o8

where result is defined in terms of its own future, and has the history

( so+0, 7zo, L20,24,6,2, l, 1, ... ).

The program cannot be translated directly to a loop which updates n and result tt

each iteration. It is interesting to note that the definition of result expresses a recursive

control pattern, and can be translated into a reeursive function.

By imposing restrictions on the language, it is possible to define a subset such that

plogrâ,ms written using the subset can be understood in terms of loops. This section

begins by stating rest¡ictions imposed on IX to give the language LX3. An operational

description of LX3, in terms of loops, is then presented, followed by some explanation

of the restrictions imposed.

The language LXB is similar to the language Lucid-'W, implementations of which

have been described in [Wen8l, Wen82]. The definition and description of LX3 differ

slightly from that of Lucid-W in order to relate it to the descriptions of LX and its
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subsets LXI and LX2. The implementations of Lucid-'W are similar to those of LXB

described in Chapter 4.

2.3.2.1 The language LX3

The following restrictions on LX define its subset LX3:

(f ) First and next may only be applied to an inductive variable, at most once-

In LXB, they are attributes of an inductive va¡iable (a variable defined with
a fby definition), and can only be used as qualifrers rather than operators-

(2) All globals and parameters must be specified as frozen'

(3) The operators wvr-then-erwr and upon-then-eupon âre omitted.

( ) The deûnition o1 resultin a define clause must be an equation using the asa

alternative on its right hand side. The definition of result in the progrâm

clause must be part of a loop (see $2.3.2.2 for the definition of a loop).

(5) No identifier can be defined such that a value in the corresponding history

depends on â subsequent value in the history (that is, it cannot be defined

in terms of its own future). This restriction is stated more preeisely later,

in terms of dependencies between identifiers-

(6) In defining an inductive variable, the first operand of fby must be a quiescent

expression (essentially, en expression which yields a constant history; see the

next section). /

(7) Structures a,re omitted.

Each of these restrictions will be explained in more detail in the sequel.

2.3.2.2 An operational description of LX3

An LXB program is composed of a set of definitions in any textual order (see

the example in Figure 2.7). The program in Figure 2.7 (adapted from Ashcrofü and

V/adge þhìV77al) defines 10 values of a seque nce ísprime, such that the ilñ value

in the sequenee is true fi 2i + 1 is prime, and /olse otherwise. The computation of

"primeness" of a given z, where n is 2j * 1, is described in the body of the outermost

define clause.

The following histories satisfy the definitions of the program shown in Figure 2.7:
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prog PRIME;
lnt n; bool stoP, isPrime! result;
n: Slbynt2;
stop : ¡s¡ n > 20 thcn result casr;
resuli : isprime;
dcf,nr isprime uslng n frccrlng rll;

lnt i;
bool idivn,result;
i : 2lby i+r;
result : rsr idivn or (i * i > o) thcn not idivn cær;
dcfrn¡ idivn uslng n, i fracrlng rll;

bool result; lnt m;

m: 2+ ifty m+i;
result : rsr (m Z n) thcn m cq n .ts¡

cdcfrn¡
cdcfrno

cptoS

Figure 2.7. Program PRIME.

( a, 5, z, g, 11, 13, 15, 17, 19, 21, ... )["n
[ispnme]l
:Irestilt]l

-flstop]l

( t, ü, t, Í, t, t, Í, t,, t, l,
( l, Í, l, Í, ...').

)

In the program, the definition

result ßprtme

indicates that the progrem returns the history fisprime\ as its result. The asa def-

inition of. stop is an artifrcial device which serves two purposes, firstly, it specifies a

termination condition for the iteration which implements the m¿in ploglÐm, thereby

indicating that only a finite prefix of [result]], and hence of flnl and [ispnme]1, is

required. Secondly, the use oî result in the expression component of the asa definition

ensures that a dependency exists betrveen stop anà every variable of the loop, conform-

ing with the definition (see 92.3.2.2) of a loop in terms of dependency relationships.

This example is developed further in $6.5.1.

In LX3, definitions of inductive variables provide the basis for expressing iteration.

An inductive variable is defrned by a recuttence relation, which can be written in the

form

E1Íby E2
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where E1 and E2 are expressions. For example, the definition of z in Figure2.7 ß

n: l fby n*2

specifying that

first n I

73

and

next n n+2

which can be understood as meaning that the initial value taken by n is 1, and, for a

given iteration of the loop of which ¿ is a part, the value of n at the next iteration is

obtained by adding 2 to its current value.

When two or more inductive variables are specified in terms of each other, their

definitions form part of a single loop, with e¿ch inductive variable beiug updated on

each iteration of the loop. Execution of a loop is initiated, controlled and terminated

through the definition, in an a"sa definition, of a variable, dependent on othe¡ identifiers

of the loop; this variable ean be regarded as the result of the loop. A-n asa definition

has the form

o, : asaO thenEeasa

where C is a relational expression and E a,n expression of the same type as the variable

o. C can be regarded as specifying the termination condition for the loop implied by

the identifiers upon which ø depends, and E as defining the result of the loop. In

Figure 2.7, the definition

stop as¡a n eq 20 then i'sprime ezsa

can be understood as determining the value of. stop (from $2.2.1, it can be seen that

fistop[ is a constant history) by iterating a loop involving the definitions of. stop, n

and isprime; the value of [z! is determined at each iteration as described above, and

each value of fisprime]l determined as the result of a nested iteration (see below).
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The iteration continues until the current value of n is greâter than 20, at which point

the current value of. isprime is extracted as the value of the consiant history denoted

by stop.

If the value extracted from a loop is used in the deûnition of another inductive

variable, then operationally the second loop will be executed after the first.

A loop can be defined as a set of definitions, constructed in the following way.

The first member is an asa definition defining a variable, say c; this definition specifies

the termination condition of, and value returned from, the loop. A variable is said to

depend on those identifiers which are used on the right hand side of its definition, and

a clause subject depends on the identifiers specified in the using list of the clause. The

definitions of those identifiers upon which a depends are added to the set of definitions

constituting the loop. For a given identifier s included in the set, the definitions of

the identifiers upon which æ depends are also added to the set. This process continues

until no more identifiers can be added.

It is ofüen useful to distinguish three categories of variables within loops, namely

uinductive', uquiescent" and "auxiliary" variables [AshW77a]. The inductive variables

are those which must be updated from one iteration to the next. Informally, an

expression is quiescent within a loop if textual analysis shows that it will evaluate to

the same value on each iteration of the loop; a quiescent vari¿ble is one defined using

a quiescent expression. The code for the evaluation of such variables can be placed

outside the body of the loop. Auxiliary variables are those which have definitions

expressed in terms of values known to one iteration. In Figure 2.7, n is quiescent

within the definition of isprime, isprime is an auxiliary variable, and d, m and r¿ are

inductive.

A parameterless define clause provides for the nesting of loops. It is written in

the form
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dcfrnr b uslng x,y, z frcctlng lll;
.....series of defi nitions"'.
result:¡s¡CthcnEcas¡

¡dcfrnr

where C and E are, respectively, a conditional expression and an expression. The list

of variables following the word us¡ng contâ,ins all of the global identifiers referenced

inside the define clause. A nested loop is invoked once for each iteration of the outer

loop, with the values of globals ftozen, and thus constant during evaluation of the

inner loop. The series of definitions defines resulti at each iteration of the outer loop,

the value of [ö! at that iteration is determined from (the constant history) flresulúl

in the inner loop. This form of the deûne clause is analogous to the begin...end

notation [Ash\ry761, and the compute clause [Ashw?7b], of Ashcroft ¿nd Wadge.

consider a variable a defined using a conditional expression:

o : if C then .81 else E2 eif .

In IXB, the variable ¿ is regarded as beiug dependent upon all the identifiers used in

C, Et anð 82.

In LXB, a parameterized define clause such as in the following example is inter-

preted as defining a mapping [AshW78], akin to a function in an Algol-like language.

dcfrn¡ F(lnt x, rcel y ) uslng z lrccrlng rll;
.....series of defi nitions....
result:rsrCthcnEc¡¡¡

odcfrn¡

In accordance with Restriction (4), result must be deflned in the form shown. Consider

â use of such a elause in an outer iteration. Frozen values of actuals and globals are

passed to the elause, determining a constant history flresult]1, used as the value of the

clause use in the outer iteration. In other words, the clause defines a pointwise function

of its arguments, similarly to an LX2 define clause.

Ashcroft and Wadge [AshW77a, AshV[76] present Lucid as a language in which

assertions can be made about the histories of variables, and give general rules for
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expressing these âssertions â,s equâ,tions. If Lucid is regarded as a programming lan-

guâge, then an implementation must be capable of coordinating the computations of

individual variables in such a way that the equations are satisfied. In designing the

implementation of LX3, it was considered important to find a compilation strategy

which was reasonably efficient in both compilation of source language code, and in

execution of the object code produced. The strategy adopted exploits the operational

interpretation of Lucid in terms of loops. For this reâson, it was necessary to restrict

LXB in such a way that straightforward transformations to iterative object code could

be used. The basic unit of an LX3 progrâ,m is the loop, and each definition in the

program describes some aspect of one particular loop.

The restrictions imposed on LX3 are now discussed in this light, frrstly consider-

ing language facilities for defining inductive variables. In conventional programming

languages, such as Pascal, a statement of the form "i::f(i)" can be used in a loop to

determine the hext" value of i, that is, the value that ¡ has during the next iteration,

in terms of its current value. LXB goes a little further than this simple form, in that

it permits defrnitions to be expressed in terms of first and next values of inductive

variables, as in:

Êrst sum : first j
nc¡t sum:6um + ncrt j r)

With definitions in this form, it is possible to distinguish first, next and current

attributes of an inductive variable. Thus, when we have first ø (or next ø), where

ø is a variable, the use of the operator first (or next) is regarded as qualifying the

variable; however, this qualification can be made only once (Restriction (l))' so that, for

example, first next i is not permitted. In implementing the language, this approach

has the advantage that an inductive variable can be represented using a simple scheme,

details of which are given in Chapter 4.

Restriction (2) states that all globals and parameters must be frozen. This permits

define clauses to be understood as subcomputations; the outer iteration is frozen at

a certain point while the computation associated with the clause proceeds, yielding a
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value to the current iteration of the outer loop. Subject identifiers can be inherited,

for freezing of a subject is the same in IX3 as in LX2 (see $2.2.2.2.5).

The operators wvr-then-ewvr and upon-then-euPon are prohibited because

they are non-pointwise. If an operation on histories is pointwise, the result of the

operation at time t can be determined from the values of the operands at time t. The

notion of a point in time thus corresponds naturally to an iteration of a loop, and,

if all operations used in the definitions of a loop are pointwise, computations for the

definitions can be grouped together and synchronized. The operators wvr-then-ewvr

and upon_then-eupon cannot be easily understood in this mânner. The operators

fby and asa-then-easa are also non-pointwise, but, as shown above, they have special

characteristics which allow a simple iterative interpretation.

A use of the subject of a define clause yields a single value to the current iter¿tion

of the outer loop. Hence, it is desirable that result be defined in the clause as a quiescent

variable. The additional restriction, that resu/ú be defrned with ân'as¡a deflnition, is

imposed to permit simpler analysis of the clause into loops (see Chapter 4). In the case

of a program clause, it is not necessåty fo¡ r¿sult to be quiescent, but it is required that

the definition be part of a loop. Hence, there must be ân asa definition dependent on

result, thus satisfying the abovementioned requirement for loop analysis. It is for this

reason that the progràm PRIME of $2.3.2.2 defines the variable stop.

Restriction (5) is necessary because the values of a history are regarded as being

produced on successive iterations of a loop. The computation of a particular value is

always in terms of values already computed; this representation of a history does not

permit âceess to "future" values. It rvill be shown in Chapter 4 that the restriction can

be checked by analysing dependencies between identifiers'

Restriction (6) is imposed to simplify the loop schemes presented in Chapter 4. It

means that "first" values ean only be defined in terms of the "flrst" values of other

inductive variables, or using a value returned from a loop using an aÉ¡e definition.

Restriction (7), prohibiting the use of structures, is an implementation rest¡iction.
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It can be lifted by including support for structure operations in the implementâ,tions

to be described in Chapter 4.

2.4 Relationship of the operational model to the mathematical semantic¡

This section is intended to Ðnswer the question of how the mathematical notion

of solution of a progra,m corresponds to the computation specified by the operational

semantic model of $2.3.f . The notion of solution of a program [AshW76, AshWTgb]

was explored in $2.2.2.2; it is the least environment which satisfies the definitions of

the program.

Consider the following analogy, which uses demand driven computation as de

scribed in $2.3.f . An environment can be thought of informally as a table, each entry

of which associates an identifier with a history. Suppose that the initial demand car-

ries demand number i, that is a request for [resulú]l;. Such an initial demand can

be viewed as a "probe" into an initially undefined environment associated with the

progra,m, initiating computational activity whieh will assigu a value to the element

of l[resulúfl which was probed, namely firesulÍ]l¡. The computational activity will

eâuse other history elements to be probed, the flow of demands determining which

ones. Thus, eomputation is related to the notion of environment by viewing the flow

of demands ÍN¡ a, pattern of probes into the environment.

In this thesis, it is assumed that, when firesultfl; is computed under the demand

driven strategy of $2.3.1, the following statements about the pattern of probes hold:

(i) AII history elements probed are defined in the least solution, so that no

attempt is made to initiate a computation not deÊned in the least solution.

(ii) All values probed are essential to the cornputation of [resulú[¡.

These assumptions âre supported by statements about demand driven computation in

[AshW77a], and by Cargill's operational semantics of Basic Lucid [Car76]. It would, of

course, be preferable to develop the analogy formally and prove the required properties,

but that is beyond the scope of this thesis. Note that it is not assumed that a required

history element is only probed once.
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The notion of an environment â,s a table relating identifiers and histories is ade

quate for a program made up of equâ,tions only, but is inadequate if define clauses

are used. However, the analogy can be stretched a little to cover this case. It has been

established that the meaning of a use of a clause can be established in terms of three

environments, namety the local environment of the clause itself, the envi¡onment of

definition of the clause, and the environment in which the clause use occurs. Its mean-

ing at time r in the environment of use is defined as flresult]l; in a local environment

determined by the loeals of the clause, in which the meaning of a global is fixed by the

environment of definition of the clause. The calculation of firesult]l¡ can be regarded

as establishing a pattern of probes into the local environment, with occasional probes

into the environment of use, to determine the meaning of a formal parameter, or the

environment of declaration, to find the meaning of a global.

The ET of the operational model is related directly to the notion of mathematical

environment, abbreviated to ME" It can be inferred from the previous paragraph that

there is a ME associated with each clause use; similarly, in the operational model, there

is an instance and an ET created for each use. A ME may freeze some of its variables;

an important parameter in freezing is the time ¡ at which [result] is evaluated; the ET

records this as FreezeVal. The "history" component of each entry in the ME is not

recorded directly in the ET; rather, the DTs of the model use the ET in computing

history elements which agree with those speciûed by the ME.

The remainder of this section demonstrates that probing is indeed performed cor-

rectly. In other words, it is shown that the demand transformations specified by the

operational model satisfy (i) and (ii) above; in particular, that the operational model

does not eause â,ny unnecessâry demands to be issued. Firstly, clauses with no global

variables or define clause uses a.re considered; all demand propagation is within one

instance. Consideration is then given to situations which require transmission of de-

mands between instances, namely uses of global variables and deûne clauses.
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2.¿1.1 Demand propagation within a single instance

Consider a progrâm which uses only equations and locally declared variables. The

operational model specifies that an instance of the program clause will be created on

ar¡ival of ¿ demand, say for flresulrnd. All computation initiated by this demand will

be carried out within the program instance.

In this case, the computâtion of ffreszlúfl; can be expressed in terms of the initial

demand number r, and the DTs associ¿ted with the definitions and operators of the

program; no additional instances or ETs need be considered. Hence, to show that

no unnecessary demands are generated, it is sufficient to show ûrstly that the initial

demand is transmitted correctly to result, secondly, that the operator DTs correctly

transform demands, and finally that demands are transmitted correctly from a use of

an identifier in an equation to the definition of the identifier.

The DT PROGRAM (Figure 2.4) specifies that the initial demand ¡ is transmitted

unchanged to the definition o1. result; this cle¿rly â.grees with the mathematical defi-

nition, which states that the value of a clause (here, the program clause) at time ¡ is

firesutúl¡. $2.3.1.1.3 includes some discussion of each individual operator DT, which

should be sufficient to show that demand numbers are propagated by the DTs only as

neeessary.

Consider the final requirement above. The arrival of a demand number r at a use

of an identifier c is a request for the computation of [ø[¡. The operational model

routes the demand to the definition entry for z and thence to the expression which

defines ø; it is clear that the propagated demand has dem¿nd number r, as required.

This explanation should convince the reader that demand propagation in this sim-

ple case is handled correctly. Subsequently, it is assumed that, once a demand lbr [ø]l;

reaches the instance of local declaration of. x,, the local demand propagation mecha-

nism ensures correct computation of [u]l¡. Henee, in discussing demand transmission

between instanees, it is sufficient to establish that the demand is correctly delivered to

the instance of local declaration.
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2.1.2 Demrnd propagation bctween instances

8l

Consider a demand for the value of identifier z at time i. Propagation of the

demand to another instance is required if u is a local subject, a formal parameter or a

global identifier. The DT "definition entry" in $2.3.f .1.2 (Figure 2.5) is used frequently

in explaining this propagation, and will be referred to in this section as "DT¿"".

Suppose that ø is a local subject. DT¿" specifies the creation of a new instance of

the elause, and transmission of the dem¿nd to r¿¡ult in that instauce. The latter ini-

tiates computation of flresulú]l;, which, for reasons mentioned in the previous section,

is consistent with the mathematical semantics. Correct construction of the ET com-

ponent is, of course, essential to the correet redirection of demands directed to formals

and globals in the new instance; this issue is addressed in subsequent discussion.

The case alternative uglobal, formal" of DT¿" specifies a single step in the redirec-

tion of a demand. Since only local definition entries initiate computation, it is necessary

to show that a demand is redirected to â,n â,ppropriate instance of local declaration;

this is shown below. It is obvious that redireetion does not cause â,ny unnecessary de

mands to be issued; from DT¿", it is clear th¿t the redirection mechanism may change

the components of a demand, but never generates additional demands.

The redirection mechanism is also used to model freezing of globals and formals.

Three ca,ses â,re now considered, namely unfrozen variables, unfrozen subjects, and

frozen variables.

2.1.2.L Unfrozen variables

Consider the propagation of the demand from its arrival at ø in the current in-

stance. It rvill be recalled that there is a definition entry for every identifier accessible

within a clause; it is assumed that the demand is transmitted correctly to the definition

entry. DT¿" specifies propagation of the demand, with demand number unchanged, to

a destination recorded in the ET.

i¡
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It is now necessâry to examine the entries in the ET, established on creation of the
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current instance. Consider Figure 2.8, in which a demand for r has been propagated to

d¡, an instance of the define clause Ir. Suppose that the demand originated from the

use of / in tine l); clearly, the demand was transmitted through i¡ and ds, instances

of / and g, before reaching r in i¡. The destination of redirection of the demand

is determined by the ET of i¡, established at instance creation. As indicated above,

instance creation occurs only on propagation of a demand to a local subject; henee,

d¡ wâs created by transmission of a demand from is, the instance of local declaration

ol h. Consulting DTd", it is apparent that the ET entry for the global r in r¡ is

(n, is, ø); hence, the demand is redirected to the deûnition entry for ø in ic. A similar

argument can be used to show that the demand is then redirected to i¡, the inst¿nce

of local declaration of ø, and thence to the definition of u in d¡. This establishes

that the demand is eventually propagated to the definition of ø in its inst¿nce of

local declaration, with the demand number unchanged. This is consistent with the

mathematical definition, which makes it clear that an unfrozen variable should have

the same meaning inside a clause as out.

dcfrnr f ...
It¡t x ...
dcfn¡ g utlng x

d¡frno h uslng x...

lnt r;
r: ...x...;

odoffne {h};

cdcûnr (g);

cdofrnr {f};

p: ...f... 1)

Figure 2.8. A program which uses a global ø

Now consicler Figure 2.9, in which ø is a formal parameter of /. Suppose thet a,

demand has propagated to e, creating instance is, and thence to instances d¡ and dg.

Suppose further that a demand for [/(ø + ä)|| at time i has arisen within ds, either

loeally, or ari ¿ result of redirection. This demand triggers the creation of instance

i
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i¡. Note that rg ineludes a definition entry lor !ab, an introduced ideutifier ($2.3.f.f)

equated to the actual parameter expression a*ö. It is now shown that the demand is

propagated correctly.

dcûnr e ...

lnt f;
dcfrno f(*) ...

lnt r;
l: ..,X...i

rdcfrnr {f};

dcfn¡huslngf.."

d¡ûn¡ g utlng f
lnt a, b;
...f(a + b)...

rdcfrnr {g};
...8'..

cdcñnr {h};
...h...

edcfnr {e);

Figure 2.9. A program which uses â, formal parameter ø.

Firstly, consider [t(o+ ä)]l , abbreviated FAB, ¿s determined by the mathematical

semantics. Let E¿, E¡ and B9 be the MEs associated respectively with e, / and g. It

is required to find FAB¡ in Esi to do this, l[recultr¿.al¡ must be determined in E¡.

As there is no freezing, the meaning of the formal parameter n in E¡ is [a + ö[ as¡

determined in Es, and the meanings of any globals of / are found from B¿, which is

the environment of declaration of /. It follows that [ø[; in E¡ is equal to [/oóll¡ in

Es.

Hence, to show eorrect propagation of the demand beyond ø, it is necessary to

establish that it is redirected, with demand number unchanged, to lab in de, the ap-

propriate instance of g. The destination of redirection is specified by the entry for r

in the ET of r/. It can be seen, from DTd, that this ET entry is (ø, ds, /aä); thus,

eorrect redirection is achieved in one step. Note that DT¿" â-ssumes the availability of

uí and Actuals; although the model does not make it specific, it is easy to see that this

information câ,n be attached to the propagated demand on encountering the use of /
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(as is done by the implementation derived from the model; see Chapter 5)

84

2.1.2.2 Unfrozen global subjects

The subject / withiD g, æ shown in Figure 2.9, is an unfrozen global. lr{athemati-

cally, its meaning within g is the sâ.me as its meaning within e. The operational model

is consistent with this definition if it can be shown that a demand directed to the use

of / in rg is propagated, with demand number unchanged, to i", the instance of local

declaration of /. Arguments presented in $2.4.1 above can then be used to establish

correct demand propagation to and from the identifiers of i¡.

As / is a global of g inherited from lr, considerations similar to those of $2. .2.L

can be used to show that the relevant ET entries are, in i¡, (x, ig, xt), and in r¡,

(r, i", ø). Clearty, these entries give the required redirection.

2.1.2.3 Froren variables

Consider a demand for r at time d rvithin is1 t\ instance of a cl¿use g in which ø

is declared frozen. The variable ø may be either a global or a formal parameter.

Suppose that c is a global of g, that g Ls a local of clause /, cnd that [g(o1,..., ør]l

is to be found, within E¡, at time 1. M¿thematically, the meaning of x in Es is specified

asi

[o[r in Es _ [ø[¡ in E¡, V t.

Assuming the correctness of demand redirection, consider the changes of demand num-

ber specified by the operati<¡ual m<¡del. The courputation of [g(or,.. .,ør,nj is expressed

as the transmission to the definition of g of a demand with demand number ¡, creating

the instance io and its ET w\th FreezeVal set to j (see DT¿r). It is apparent from DT¿"

that any demand redirected from ø will have its demand number set to FreezeVal, thus

satisfying the requirement established above.

Suppose now that ø is a frozen parameter, and that g is invoked from a clause l¿.

According to the mathematical semantics, assuming that [g(or,...,ar]l is computed



Section 2.5 Diecuseion 85

at time j in E¡, the meaning of z is given by:

[r]lr in Es : fio¡]|¡ in E¡, V ú

where a¡ is the actual parameter associated with ø. Clearly, the demand number of any

demand redirected beyond ø will be set to FreezeVal, which is equal to j, as required.

2.5 Discussion

The language IX differs from Lucid in several respects. The most significant of

these were discussed in 52.2.4. Some possible future directions for LX are discussed in

Chapter 7.

LX is a high level, nonprocedural language; the equations of a program define a

solution, rather than providing a recipe for a computation. There are usually many

possible ways to arrive at the solution; hence, there are many possible operational views

of LX. Chapter 2 has concentrated on two of these; it provides â,n operâtion¿l model

which defines a demand driven eomputation of the solution, and it also descibes a

view which permits eertain programs to be understood in terms of loops.

The operational model used is an information structure model. It is well known

that sueh models âre a valuable tool in providing abstract operational descriptions of

certain aspects of computational processes [Weg7l, Joh7l, N{ar80, Den83]. Information

structure models describe computation in terms of transformations of basic structures;

different models are distinguished by choice of the basic structures manipulated. In

the case of LX, the mathematical definition encourages an intuitive view of compu-

tation based on propågating requirements to obt¿in values at certain times in certain

histories, starting with [resutt]1. It is apparent that the driving force in such a no-

tion of computation is propagation of the need to compute a value, and an important

attribute of each need is the time (index) at which the value is required. Clearly, a log-

ical ehoice for the basic structure of the model is a representation of a requirement, or

demand, with the index of the request, the demand number, an essential component of

the demand. This is the fundamental structure of the model; other structures, sueh as
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environments, are added, ¿xl components of the demand, to represent other important

information.

Two principal criteri¿ were used in designing the transformations (DTs) of the

model, namely the need to describe clearly the propagation of demands in the cource of

computation, and at the same time maintain a close associ¿tion of events in the model

with the text of the program. In models of sequential computation, an abstraction

of the program counter is usually stepped through the program text (for example,

Johnston's 'ip" [JohZt]), and events in the model thereby associated easily with specific

points in the text. An LX program is not sequential, but points in the text can be seen

to influence demands in different ways; an identifier affects direction of propagation,

whereas an operator affects both direction and demand number. The model therefore

associates a structure transformation with each syntactic category of the language,

providing a direct relationship between syntactic and semantic definitions.

The model accurately describes demand driven computation in LX-speeific oper-

ational terms. It has several desirable characteristics: it is concise and abstract, it

describes the full language LX, it has been shown to agree with the m¿thematical

semantics, and it is tailored to data flow concepts.

The latter suggests that the model can provide the basis of a translator to data flow

graphs; the construction of such an implementation is described in Chapter 5. This is

the principal application of the model in this thesis. The model could be extended to

describe other aspects of computation; for example, it is suggested in $5.4 that certain

DTs in the model could be used to trigger events in a model of storage management.

It is not neeessary to confine the model to LX. Its essential elements are demands,

and descriptions of their propagation. It should be possible to adapt these elements to

many situations where precise description of demand flow is relevant. For example, in

Chapter 7 it will be argued that input/output in data flow inevitably involves some no-

tion of demand, but does not necessarily require all computation to be demand driven.

A variant of this model eould be used to specify such limited demand propagation.
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The notion of demand used in the model, while specifically tailored to LX, is

similar in many respects to that used in othe¡ dem¿nd driven models of computation.

Typically, demand driven computation is identified with graph reduction [TleBH82];

an operator coerces, or demands, the computation of its operands, reducing them

to values. The invocation of such a computation can be seen as the propagation

of a demand, which is thus identified with a reeursive function invoeation and return

control pattern. The model of LX extends the facilities available for controlling demand

propagation; the transmit primitive separates the invoc¿tion of a computation and the

return of a value, and several DTs (for example, that for asa-then-easa) implement

quite complex demand transformations. In short, the model transforms demands rather

than merely propagating them, and a DT may transmit several demands to obtain one

value.

The language IX3 stems from a very different operational interpretation of LX

Initially, a decision is made to interpret programs in terms of loops, and the language

is restricted so that it is only possible to write programs which can be interpreted in

this way. In designing such a language, the restrictions must be considered carefully

to permit a suitable balance between expressiveness and implementability.

The loop based operational interpretation compromises the mathematical deûni-

tion to some extent. It is required that all histories be computed in order of increasing

index, and that all values of a history up to the current index are complrted in case

they are needed in subsequent iterations. Occasionally, values a,re computed which

would not be required in a demand driven computation. If this fact is accepted, LX3

can be seen as a different language for describing iterative computations (of course,

it permits function definition and use as well). It will be demonst¡ated in Chapter 4

that it ean be implemented as such on both d¿ta florv and conventional von Neumann

machines.



CHAPTER 3

AN ABSTRACT DATA FLOW INTERPRETER

3.1 lntroduction

One deficiency of the von Neumann model of computation is that it is difûcult to

specify and utilize parallelism. The data flow model has been proposed as an alternative

which alleviates this problem. The basic principle of the data flow model is that an

instruction ean exeeute âs soon as the input values required by that instruction are

available; the parallel execution of many such instructions is implicit in the model.

Subsequent chapters of this thesis a,re concerned with the translation of LX to data

flow graphs. In this chapter, the data flow interpreter, used in each of the implemen-

tations, is described. The next section describes the model on which the interpreter is

based. A description of the interpreter itself is then presented; the chapter concludes

with a discussion of the relationship of the model presented to other data flow models.

Aa example of the execution of a data flow program is given in Appendix 2

3.2 The data flow model

The dat¿ flow model used in this thesis is essenti¿lly that presented by Dennis

[Den81]. It is used because it provides an abstract description of a data driven com-

putation, at a level which does not require consideration of machine details, yet it

models most of the cha¡acteristics of data flow computers which are important in im-

plementing a higher level language. For example, it permits the construction of graphs

which use the basic operations common to all data flow schemes (data and structure

operations, and cont¡ol operations), but does not express lower level details such as

generation of acknowledge signals [BroM79] or label manipulation [Gur'WGS0]. In ad-

dition, it uses non-strict data construction operations, a concept used in many recent

data flow proposals to improve the efficiency of data structure manipulation and to

increase parallelism þv80, ArvI83, CalDP83l.
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In this thesis, Dennis' model [Den81], which uses only acyclic graphs, has been

extended with additional operation codes which permit the simulation of cyclic schemes

using tail recursion. This is done, firstly, because the translation schemes for LX3

presented in Chapter 4 are most conveniently expressed in cyclic form, and, secondly,

to permit comparison with other data flow models which include cyclic schemes.

A data flow computation is viewed [DenSl] in terms of transitions between config-

urations, where a configuration consists of a state S and a set of activities A. The set

of activities models the set of instructions enabled for execution. The state is repre'

sented by a heap rvhose elements are function templates, function activations, and data

structures, all of which are described below. Given a configuration (S,A), & successor

configuration (S,A') can be found by applying the function

Interp: State x Actiuity l+ State * set of Actiuities.

The ftrnction Interp describes the execution of some activity ø by defining a new state,

and a new set of activities, which replaces ø in the original set of activities, A. Thus:

çt

tl
-¿L

Interp{5,ø)
Interp2(S,a) U (a-{o})

where c is an activity selected arbitrarily from A; the notation InterpT means "the

first component (the ^9tcte) of the pair returned when Interp is applied to S and 4".

In summary, â state transition is performed by removing an activity from the set

of activities, and performing the instruction defined; this will generally involve the

creation of further activities, and changes to the heap. The Pascal program described

later is an implementation of the function Interp, with appropriate representations of

State and Actíuity, as described below.

It is assumed that a d¿ta flow progr¿m is written as a series of function definitions,

each of which can be expressed in graphical form. The nodes of a graph correspond to

the instructions of the program, and are numbered eonsecutively, a-s âre the positions

of the associated input and output arcs, corresponding to operands and results respec-

tively. An end point of an arc is thus specified as a link, which is a pair instr.posn
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identifying â.n operand position of a given instruction; for example, 5.1 denotes the

first operand (either input or output, depending on the context in which it is used) of

instruction 5. A¡ arc is represented by including a link identifying its consumer instruc-

tion at the appropriate output position of the producer instruction, and, redundantly,

by the presence of its producer link among the inputs to the eonsumer instruction.

A value can be of type integer, real, boolean, character, or a binary tree. There are

instructions for performing arithmetic and boolean operations, for controlling the flow

of values within an executing progra,m, for producing constant values (the coNsTANT

instruction) and for replicating values (the IDENT instruction). Operations on binary

trees are supported. Instructions for function activation are also provided. Bxamples

of data flow graphs and their execution are given in Appendix 2.

As mentioned in $1.5, the firing rule is that an instruction is enabled when a value

is available on each input position; an instruction fires, or executes, some time after

becoming enabled, absorbing a value ¿t each input position and producing a value at

each output position. In the case of the CoNSTANT instruetion, the input serves as a

trigger to produce the v¿lue specified by the instruction.

The control instructions of the model â,re TGATE, FGATE, s\MITCH and tuonco.

The firing rules for TGATE and Fc¡.tE have been given in $1.5. The SWITCH instruc-

tion has identical inputs and enabling condition to the gate instructions, but transmits

the data value to either the I or F output arc, depending on the value of the control

input. The MERcE instruction used differs from that of $1.5; it has two inputs, and

fires on arrival of either input, transmitting the value on the output arc. It is poten-

tially non-deterministic, but in this thesis the manner of its use usually ensures that

its behaviour is deterministic. In fact, it is better thought of as identifying a shared

input arc used in a disciplined fashion, rather than as an instruction.

A graph, constructed from the instructions described above, is represented in the

data flow model as a function template (FT), which is essentially an array of instruc-

tions. Both templates and function activations reside on the heap; each heap object
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is identified by a unique identifier, c¡r Uid. A lunction activation consists of the Uid

of a function template and space for the operand values of instructions. An enabled

instruction is ealled an activity.

The ¡,ppl,y instruction creates a, new activation on the heap from a function

template. Its inputs are the Uid of the FT to be activated, and actual parameter values.

The output link specifies the destination of the value returned from the activation. A

result is returned via a RETURN instruction in the FT; on activation of the FT, the

address of the APPLY instruction is transmitted to the RETURN instruction, which,

when executed, uses the destination address contained within the APPLY instruction.

Iteration is expressed as tail recursion, using the instructions IAPPLY, INCR and

RETURN. A loop is similar to a function in that it produces a result in response to

the arrival of a set of input values, the initial values of the loop variables. Hence,

a loop is represented as a separate function template, activated by execution of an

IAppI,y instruction with the initial values of the loop variables as parameters. The

INcR instruction, in a loop, uses the same inputs as'the IAPPLY instruction which

initiated the loop, and creates â, new activation for a new iteration of the loop, using

updated values of the loop variàbles as parameters. A RgtuRN instruction is used to

transmit the result of the loop. It is executed only onee for each loop, by the activation

representing the final iteration. The value is returned directly to the activation which

initiated the loop, rather than through all activations; to make this possible, the INCR

instruction pa,sses on the address of the original IAPPLY instruction at the activation

of each new iteration. A more detailed defrnition of a loop in the context of this thesis

is given in $4.4.2.

The progress of a computation is modelled by changes to the heap. At the com-

mencement of execution, the heap contains all the function templates for the program,

and an activation of the "outermost" function of the proglåm. No further function

templates will appear on the heap, because new functions, as distinct from function

activations, cannot be created dynamically. A function application or loop invocation
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results in the creâ,tion of a new activation on the heap, ånd return of results from

an activation causes deletion of that activation from the heap. Execution of other

activities causes transmission of values within an activation.

The model also includes operations for the creation and manipulation of binary

trees. The operations are defined to give tree structures an "early completion" se.

mantics, for example, elements can be selected from the tree before its construction is

complete; if the element selected has not yet been computed, the selection operation

is deferred until the element has been computed. Dennis points out that parameters

can be passed to a function in an ECDS; because the function can access parameters

before the structure is complete, function evaluation can commence with the arrival of

any pâ,râ.meter value, rather than waiting for all to arrive. This can give a significant

increase in parallelism of function activations, when compared to an APPLY operation

which waits for all its operands to arrive before commencing execution of the applied

function.

A binary tree consists of two components, called I and r. A component contains

either a value, ot a queue listing the destinations of those instructions which have

attempted to select a t¡ee corriponent before it has been produced. The ECDS con-

struction operators are PAIR, MKL and NIKR. The first creates an ECDS in which

both components are empty queues; each structure value is represented as a separate

node on the heap. The operators MKL and turR each replace a queue with a value,

and forward the value to ¿ll destinations on the queue. The selection operators are L

and R, which select the appropriate component if it is a value; if not, the destination

links of the instruction are appended to the queue.

3.3 The data fow interpreter

This section describes in outline the structure of a Pascal progrâ,m which interprets

d¿ta flow p¡ograms based on the model of computation given in the previous section.

The main purpose of the interpreter is to test data flow programs produced by the LX

¿nd LX3 translators described in succeeding Chapters.
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The interpreter reads a data flow program from one or more sourees, and then

executes the program. The next sections describe the input of programs and data to

the interpreter; the data structures used to represent the program and the heap, and

the simulated execution of the data flow program, a,re then described. Some example

progrâ,ms, with a trace of their execution by the interpreter, åte presented in Appendlx

()

3.3.1 Loading programs

A data flow program is a series of function templates, where each funetion template

is w¡itten in the form described in $3.2. Examples are given in Appendix 2, and in

Figure 3.1 below. The interpreter performs very little processing of the program text,

simply converting it into a suitable internal form, which is essentially an array of

instructions, with each array element containing information derived from a single line

of the program text; it is described in more det¿il below.

The translato¡s described in subsequent chapters produce data flow programs in

the internal form, rather than as text. Consequently, the interpreter loads progrâ,ms

in this form as well. It is also possible to load libraries of routines from several frles.

3.3.2 Input of data

Two new instructions are used, namely START and FIN, each of which have one

input and one output operand. The srnRT instruction is a means by which values ¿re

communicated to the data flow program from the sequential envi¡onment in which the

interpreter runs. Although it is triggered in the usual way by the arrival of values at

its input, it ignores this input and prompts for, and accepts, a new input value from

the terminal, which is then transmitted as the output of the instruction. The START

instruction, beeause it has the side effect of accepting a value from the terminal, creates

an implicit data path from outside the data flow program to the activity.

It has been found convenient to submit programs to the interpreter with a more

or less standard driver program. Figure 3.1 shows the START and FIN instructions as
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used in the driver developed for testing the factorial program described in Appendix

2, provicling a mechanism with which a function can be repeatedly invoked, accepting

input from, and displaying results at, a terminal. The program can be regarded as

driven by data at its input if the data is stored in a file, and the START instruction

modified to read from that file.

r0
0 Idenb
1 Roùur¡
2 Start
3 Apply
4 Ide¡t
5 Apply
0 Fln
7 End

Progra,r drlver
0.0
5.1
0.1
=! 2.t
3.1
=Q 1.2
4.1
0

2.L

3.2
4.1
6. t 5.2
1.1

Uid 0 - prograr drlver FI
ttldl-factorlalFT

Figure 3.1. A program driver.

If used indiscriminately, such å sTART instruction would compromise the data

driven character of the progrâ,m. However, when used in the manner shown, it provides

a eonvenient means of admitting values to a data flow program as they are required,

simulating å queue of values at the input position. The means by which a simil¿r effect

can be achieved in an "ideal" data flow environment will be discussed in section 7.4.

The FIN instruction displays its input operand on the terminal, and absorbs it; it is

used here to simulate a, sequence of Yalues produced by the progrå,m.

3.3.3 Data structures

Figure 3.2 shows Pascal declarations of some of the principal data structures used

by the interpreter. The declarations are derived from those given in [Den8f].
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StateTyp :
?ccotd

Heap: HeapTyp;
NextLIid: HeapSize;

.nd;
HeapTyp - t?tatt [HeapSizel of Node;

NodeTyp : (Ac, Fn, St);

Node:
?GCO'd

c¡s, NTyp: NodeTyp o?

Ac: (Actvn: Activaùion);
Fn: ( Frrnc: Funtion);
St: ( Str: Structure);

cnd;

Funtion :
rccord

Nolnstrs: InstrNo;
Fn: rrrry [InstrNo] of Instr;

Gnd;

Inst¡ :
rocord

Op: OpType;
Constants: ValueArray;
Numln,NumOut: Prange;
InCount: Prange;
Tgt: LinkArray;

Gnd;

Instance :
rccord

Opnds: Operands;
NoIn: Praoge;
Active: boolean;

ond;

Activation :
?ccord

Iter: integer;
Instances: ærey [InsùrNol of Instance;
Functlid; HeapSize;

.nd;

{ HeapSize is suitable integer subrange}

{ InstrNo is suitable integer subrange}

Figure 3.2. Some data structures of the interpreter

The state of the data flow computetion is reeorded in a variable of record type

StateTyp. The eomponent State.NectUid cont¿ins the next available Uid, a Uid being

represented by an integer vå,lue, incremented whenever s, new heap node is acquired.

The state component State.Heap is an â,rray of heap nodes. Ideally, the heap array

should be dynamic, but a reâsonably large static array, combined with some simple

heap management techniques, has proved adequate for testing the LX implementations.

{ OpType enumerates all op. codes}

{ any constant input operands}

{ no. of inputs, outputs}

{ no. of inputs reqd : Numln - no. constants}

{ each element is a destination link}

{ an array of values, one for each input}
{ decremented as operands arrive}

{ has instruction been activated?}
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Aheap node is either a function template (Func), a function activation (Actun), or

a structure (Súr). The component Func implemenbs a function template âs an array of

instructions, where an instruction is a structured value containing an operation eode

and other relevant information, as shown in Figure 3.2.

An activation is created lvhenever a function template is invoked. A function tem-

plate records the static aspect of a data florv program, whereås an activation contains

information pertaining to the dynamic aspect of a specific function invocation, namely

the Uid of the template from which the activation was created, an iteration number,

used for activations rvhich represent loop iterations, and â,n a,rra,y of Instances, isomor-

phic to the array of instructions of the template. Each instance contains those input

values which have already arrived, and a eount of the number of inputs which have

yet to arrive before the instruction instance becomes enabled. Space is reserved for

one incoming value at each input position; because the data florv graph of the function

is acyclic, and a new activation is created for each invocation, at most one value can

arrive at any input, so there is thus no need for queue of values on a.n input arc.

A¡ instruction instance is enabled when all required input operands have arrived;

as mentioned previously, an enabled instruction is termed an activity. All eurrent

activities are recorded on a list, EnabledLisú, from which activities are selected for ex-

ecution. Each element of the list records an activation Uid and an instruction number.

The interpreter supports integer, boolean ¿nd structured values. A structured

value is represented as the Uid of a heap node. The node contains two components,

I and r, each of rvhich is either a value or a queue. Each queue element is, in ef-

feet, an intenupted structure selection activity, which, having attempted to access an

undefined structure component, is placed on the queue associated with that element

until the element beeomes defined by a structure eonstruction aetivity. As part of the

execution of such a construction activity, each interrupted activity is removed from

the queue, and its execution completed by transmitting the value to the destinations

specified by the suspended activity.
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3.3.1 The initial state

s7

It was stated above that a data flow computation is viewed in terms of transitions

between confrgurations, each of which consists of a st¿te S and a set of activities A. In

the interpreter, the former is represented by the variable State, and the latter by the

list of activities, EnabledList.

It is clearly necessary to define an initial configuration. Firstly, consider the heap

component of the state. The function templates used in the computation are supplied

to the interpreter, and entered on the initial heap. Structures are represented as heap

nodes, so âny structure constants required are also entered on the initial heap.

At least one activation node must also be present on the initial heap to start a

computation. The interpreter prompts the user for identification of a function template

to be activated initially; ¿lternatively, it may be convenient to adopt the convention

of initially activating the template at heap node 0.

The seleetion of initial activities from the initial activation could be carried out by

finding all instruction instances with all inputs available, and entering these instances

in the initial set of activities, EnabledLisú. To avoid making this search, the interpreter

assumes that instruction 0 of the initial activation is the only such instance, and enters

it on the activity list. It is then necesså,ry to ensure that each funetion graph is

eonstructed such that all operations which would normally require no input årcs âre,

in fact, triggered in some way, usually by the arrival of an output of operation 0. The

initial configuration is thus defined, and execution câ,n commenee.

3.3.5 Program execution

3.3.5.1 The erecution cycle

The basic execution cycle can be described thus:
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rhllc Enabledlist is not empty do
bcgln

a <- an activity removed from Enabledlist;
Inputs <- iuput operands of a;

Execute( a, Inputs, Outputs );
transmit eacb value in Outputs to its destination;

Gnd.
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Inputs and Outputs are temporary storâge arrâys, holding, respectively, the input values

required by the activity, and the output values produced on execution of the activity;

Outputslij is the vâlue produced at output r of the activity.

Steps (1) and (2) of the cycle â,re straightforward, representing the selection of an

activity for execution, and retrieval of its operands. Step (3) describes the execution

of activity r¡ as mapping Inputs to Outputs; this step also causes changes in the state

of the computation. At step (4), output values are moved to the instruction instances

specified by the output links of ø; a\y destination instructions which become enabled

are added to Enabled^úrsú, the list of activities. Steps (3) and (4) are now considered in

more detail.

3.3.5.2 The execution of an activity

Activities can be divided into two categories, according to their effect on the heap;

firstly, there are those whose effect on the heap is quite local as they câuse values to

be transmitted to instruction instances within the same activation, thus affecting only

one heap node, and secondly, there are activities which ean, in addition, change the

structure of the heap by causing nodes to be created or deleted. Arithmetic, character,

boolean and control operations are in the frrst category. The instruction nPPLY causes

an activation node to be added to the heap, and is thus in the second category. The

operations RETURN, IAPPLY, and lNcR, and the structure construction operation

PAIR, are also in the second category.

Figure 3.3 shows extracts from the interpreter which illustrate the interpretation of

typieal activities in the first eategory. The examples are part of a Pascal case statement

which includes one case for each operation code. The integer addition operation has
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two input operands, and one output. It is interpreted by accessing the input values,

atrd computing the output value, as integers. For the operation SwITcH, the first

input is used as a booiean, and used in deciding to which output the second (data)

input should be sent.

Plus:
Wlth Outputs[rl do

Bcgln { a value is stored in a variant record;}
VTyp :: iuü; { VTyp is the tag, iv an integer variant}
iv :: Inputs[1l.iv + Inputs[2l.iv;

End;

Switch:
Bcgln

l? Inputs[1].bv thcn J::l clsc J::2;
Outputs[Jl :: lnputs[2];

End;

Figure 3.3. Examples of interpretation of simple activities

Figure 3.4 shows the interpretation of two activities in the second câtegory, nâmely

APPLY ând PAIR. Three phases in the exeeution of an APPLY operation are shorvn.

The inputs of APPLY âre the Uid of the function template, and the parameter values

to be passed to the invocation. In the first phase, an activation node is created on the

heap from the template Uid. In the second phase, parameter values are transferred to

the newly created activ¿tion, as follows. If n is the number of parameters, then, by

convention, the fi.rst ¿ instructions of each function template are IDENT operations re

sponsible for distributing parameter values to their points of use in the function. Each

parameter value is moved to the input operand of the appropriate IDENT instruction.

Each IDENT instruction thus becomes enabled, and is added to the activity list. The

third phase, FitRA, causes the address of the invoking APPLY instruction to be in-

cluded in the RETURN instruction instance of the activation as a "return address", to

facilitate transmission of function results to the invoking aetivation when the RETURN

instruction is exeeuted.

I

,i

Þ

I
t'

I
t'
i

I
I

I

I

I

t"
llì, ì

H



Section 3.3.5.3 The lrensmisvion o! outputs

,i

I
.ril

tþ.
100

Applv:
bcgln

CreateActivatiou( Inputs[1] );
Activat¿Pars( Inputs );
FixRA;

ond;

Pair:
bcgln

rlth TempEIt do
bcgln

ElTyp '- Que!
q :: nil;

rnd;
rlth TempStr do

bcgln
I :: TempElt;
r :: TempElt;

{ TempElt is an empty queue }

i

each component of TempStr)
is an empty queue)

{
{

ond;
AddStToHeap( State.Heap, TempSùr );
UidSt :: State.NextUid - 1;

?or J:: I to Instruction.NumOut do
bcgln

rlth OutputsIJl do
bcgln

VTyp :: str;
strv :: UidSt;

rnd;

{ insert on heap,}

{ at node Uidst}

tagof value, a)
structure variant)

t
{

Í
$i

#
ond;

cnd;

Figure 3.4. Examples of interpretation of nodecreating activities.

The PAIR instruction was specified ¿bove a,s producing a structure in which each

component is an empty queue. In the case PAIR of Figure 3.4, the first three statements

show the creâtion of such a structure vâlue, and its insertion on the heap as a new

node. The for statement places â, copy of the output value at each output position

of the instruction. The value itself is identified by its Uid; its Pascal representation

includes a tag to indicate that it is a structure.

3.3.5.3 The transmission of outputs

It will be recalled that each instruction in a function template specifies the num-

ber of outputs produced, and the destination of each. Each instruction instance also

contains space for its input operands, and includes a count, NoIn, of the input values

yet to arrive. The final phase in the execution of an activity a is the transmission of

outputs to destinations, which proceeds âs shown in Pigure 3.5.
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for j :: I to number of outPuts of a do
bcgln

i :: inst¡uction component o[ jth output link;
p :: position componetrt of jth output link;
rlth instruction instance i do

bcgln
copy Outputs[j] to inPut oPerand P;

decrement NoIn bY 1;

lf NoIn : 0

thcn insert instance i outo Enabledlist;
rnd

cnd

(1)

.(21

Figure 3.5. Tlansmission of outputs

The statement labelled (t) in Figure 3.5 models a value flowing along an ârc of

the data flow graph. Statement (2) implements the construction of the set of activities

(mentioned in $3.2) which replace ¿ in the succeeding configuration.

3.¡l Discussion

3.{.1 Commcnts on the data flow model

The data flow model described in this Chapter uses acyclic graphs to define a set

of function templates which make up a, data, flow program. The principal advantage

of the model for this researeh is its simplicity, which is a consequence of its intended

use in a "sem¿ntic model for an experimental computer system" [Den81]. The factors

which contribute to this simplicity are now considered.

. Because graphs are acyclic, repetitive computation must be expressed using re-

cursion. This encourages the decomposition of programs into comparatively small

recursive function definitions, â, process encourâ,ged by the provision of function tem-

plates in the model. In [DenSf], it is the textual view of an APPL progtam as recursive

function definitions which is of most interest; in this thesis, the more important view is

of the graphical function templates. Execution of such graphs is conceptually simple;

a graph is activated by the arrival of values at its inputs, data flows (in one direction)

through the graph, causing the exeeution of operations as operands become available.

Al operation is either primitive, or a function invocation, which causes a new activa-

I
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tion to be spawned, conceptually by taking a copy of the graph of the function. In

other words, the view of computation is one r-¡f activations coming into existence as

required, and disappearing when they have fulfilled their purpose; in the model, an

execution of any particular operation in a particular activation of a graph can be seen

as a unique activity. It was demonstrated that building and designing an interpreter

for such graphs is quite straightforward.

A¡other simplifying property of acyclic graphs is that the arcs transmit at most

one value; the producer operation of â,n â.rc either fires once, or it does not fire at

all. Consequently, an activation was implemented simply by allocating a single storage

location for each arc in the graph.

3.{.1.1 Relationship to cyclic schemes

In this thesis, it was convenient to use a model which provided a eoncise, abstract

model of data flow computation, rather than a model which is arguably more closely re'

lated to machine concepts; the emphasis is on translation to data flow at the schematic

level. However, a significant aspect of Chapter 4 is the development of cyclic schemes

for the translation of LX3. The question of reconciling this with a model which is

fund¿mentally acyclic is best answered by considering relationships between the model

and those data flow models which permit cyclic graphs.

In a cyelic model, â,rcs â,re regarded as paths along which â, sequence of values

can flow, and operations as "stations" which process streams of values. The semantics

of data flow operations given by Arvind et al in [ATvGPZS] expresses this approach

more formally. In a sense, operations ean be regarded as more permâ,nent objects;

they continue to exist while processing many values, whereas in the acyclic model an

activity is transitory, and proeesses only one set of operands. In the cyclic model, it is

convenient to express iteration by permitting an arc to "eyele back", as in the iterative

schemes of Chapter 4. Such models form the basis of promising efforts to develop

data flow machines [Den80, \ilatG82, ArvGPTS]; they seem generally well accepted as

models suitable as a basis for data flow hardware.

|^

i
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It has been shown that cyclic schemes have representations in the model of this

Chapter, by introducing special operations which, although using tail recursion, permit

iteration to be expressed with a scheme which is almost the same as an equivalent

cyclic scheme (see Chapter 4 for complete details of such schemes). In other words,

at a schematic level, the differences are very slight. Moreover, it is argued below that

schemes could be developed for the transfo¡mation of the abstract graphs suitable for

the interpreter described here into programs for a particular real machine.

3.1.2 Relationship of the model to dat¡ fow machines

In this section, consideration is given as to how the basic concepts of the abstract

model described in this Chapter might be identified with characteristics of proposed

dat¿ flow machines. It is hoped that this rvill give some insight into the place of the

model in the spectrum between data flow schemas [DenFLTa] and hardware consider-

ations [DenM75].

The basic notions of the model are of state, activity and configuration transition.

The heap represents the significant components of the state, namely function templates,

activations and structures. Function templates provide storage for the instructions of a

program, in much the same way as the node store of the Manchester machine [WatG82]

or the activity store of the cell block architecture [Den80].

A¡ activation represents a particular function invocation; it contains the Uid of

the function template, and storage for all input operands of that template. This is very

similar in concept to the instruction cell of some MIT proposals [Den8Ol. A" activation

groups together all the operand values used by a particular function invocation; by

eontra.st, there is no such grouping in the Manchester machine. Values relevant to a

particular activ¿tion are identified by a common ¿ctivation label, but are stored at any

position in either the token queue or the matching store. The Id proposal uses a similar

concept: a value belonging to an activation has four frelds associated with it, termed

tt, c, s and i. The field ¿ is the context, analogous to the activation Uid; c is the code

block address, comparable with the function template Uid; s is the instruction number.

i
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Field i is the iteration number, used to match tokens belonging to same iteration. A

similar field is included for convenience in an activation node, br¡t as each iteration

requires a separate activation, it does not have the same significance as in the Id or

Manchester models.

An activity is an enabled instruction, and is represented by the Uid of an activation

with an instruction number. This corresponds to an operation packet in MIT archi-

tectures [Den80]. In the Manchester machine, matching tokens leaving the matching

unit eause the node store to be aceessed to obtain the instruction code and destina-

tion(s), and are combined with this information to form a package which represents

an activity.

Configuration transitions occur when an activity is executed; all data flow machines

have processing units which perform this function. New activities are formed as a

consequence of the execution of an activity; in the cell block architecture, result values

are routed to destination instruction cells, whereas in the Manchester machine new

values with associøted ¿ctivation identification are added to the token queue.

It is with structures that most difficulty arises in identifying the concept in the

model with machine proposals. Consider arrays ÍÌr¡ an example. In the model, an arrây

may be represented abstractly as a t¡ee structure comprising a number of heap nodes.

In an MIT proposal [DenGT84], a,n erray may be represented as "the set of values

conveyed at the same moment by a certain group of destin¿tion arcs", ând, in the

Manchester machine, as the elements on â,n arc, with the index field representing the

â,rrây subscript [WatG82]. Such low level, machine dependent descriptions of data are

utilized to gain greater effñciency from early data flow hardware. Higher level views of

data structures may become as efficient in the future [CalDP88, ArvI83].

3.1.3 Using graphs whh a data flow machinc

The translators, described in Chapters 4 and 5, generate graphs which can be

executed by the data flow graph interpreter. It is anticipated that these translation
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techniques would be applicable to the generation of code executable on specific data

flow machines. This section looks at extensions necessary to extend the techniques in

this way.

Two approaches are possible, either refinement of the code generator, or transfor-

mation of the graphs produced by the translator. As the latter is the more general

method, an assessment is now made of the extent to which graphs executable by the

interpreter correspond to progrâms executable on data flow machines.

Firstly, two of the more straightforward aspects of the transformation proeess âre

considered. The arithmetic instructions of the interpreter are generic in that they

are applic¿ble to both integer and real operands; it may be necessary to transform

them into type-specific instructions, as in the MIT static machine [Tod8l]. An logNt

instruction with multiple outputs would need to be converted to a series of instructions

with at most two outputs for the Manchester machine [GurV[G80].

Iter¿tive schemes â,re eommonly used in data flow machines [GurWG80, AIvGPTS].

As shown in $3.4.f.1, corresponding schemes ca,n be developed using the model of this

chapter with only slight differences at the schematic level; it should be possible to

transform graphs based on such schemes into machine-specifrc cyclic code with little

difhculty. Function invocation and return should also be straightforward; for example,

the standard apply/return inte¡faces [GurV/G8O] of the M¿nchester proposal could be

used to replace the APPLY operation of the interpreter.

Structure operations may, however, require substantial transform¿tion, for the

reâsons noted above. It would be interesting to explore the feasibility of developing

standard transformations between common modes of use of structures and machine

specifi c representations.

3.4.{ Comment¡ on early completion data structurer

Early completion data structures are introduced to permit incremental çreation of,

and access to, data structures; this is achieved by separating the actions of creating,
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appending to, and selecting from, structures. However, when using these operations,

some care must be taken to ensure that the structures created are indeed functional.

For example, a structure may be created by a PAIR activity, and passed to two distinct

activations, each of which execute â MKL activity on the structure. The flrst to be

executed will succeed in replacing a queue with a vâ,lue, and the second will fail because

the component is not a queue; thus, the value once assigned will not be changed, but

the vs,lue itself is determined by a non-deterministic *râce' between the two MKL

activities. In this thesis, the instructions are always used in a way which ensures

functionality.

In $3.2, it was indicated that execution of a RETURN activity within an activation

eauses deletion of the activation from the heap. It should be noted that such a scheme

is inadequate if the activation uses early completion data structures, because structure

operations may be pending after the result has been returned. One solution is to

require that the completion of such operations generate special signals which, together

with a signal from the RETURN instruction, indicate that the activation câ,n no longer

generate activities.

It is noted in [DenSl] that early completion data structures can be used to represent

tuples of arguments to, and results from, functions. Consequently, function evaluation

eân commence with the arrival of any argument, and partial results can be returned

as soon as they are generated. As this facility was not essential for the aims of the

research, it was not implemented in the interpreter (see $7.4.1 for further discussion)'

Other schemes, which do not depend on early completion data structures, have

been developed to permit incremental passing of argument values to a function invoca-

tion. For example, the code template for calling a function suggested by Gurd et al in

[GurGK8f] uses a trigger to initiate the the steps required to set up a new activation,

independently of the arrival of arguments. Caluwaerts et al [CalDP83, CalDPS2] use

a similar scheme. Amamiya et al þmÐHM82l pass incoming arguments through a

network of specially designed or-gates which detects the anival of the first argument
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of a new function invocation, triggering the creetion of a new activation.

r07

Notions similar to early completion data structures appear in other proposals.

The l-structures of A¡vind et al þv80, ArvG82l, and the scheme of Amamiya et al

[AmaIIMS2l, were mentioned in $1.6.1. The Manchester machine provides a facility

for deferred access to an errâ,y element [WatG82]; a special matching function, termed

"preservedefer", preserves a complete array at a single node, and permits accesses

to be attempted before the array is formed; it does this by attempting the a,ccess

repeatedly, rather than by queueing the read request. Kishi et al [KisÏt83] use ¿ wait

queue to hold attempted read operations.



CHAPTER 4

THE IMPLEMENTATION OF LX3

¡1.1 Introduction

The traditional concept of assignment is not supported in the data flow model.

However, in implementing a high level language, the left hand side of an assignment

statement can be regarded as associating a name with an arc of a data flow graph,

and the right hand side as defining values which flow on that arc. Such e statement

is seen as defrnition of the value associated with a variable, rather than assignment

to a storage location; this notion has resulted in the development of single assignment

data flow languages þvGP7S, ComHS8O, GurGK8ll, in which a value is assigned to

a variable in only one place in a program.

LX3 is a language lvhich permits only one definition of each variable, and hence can

be considered a single assignment language. Many proposals for high level data flow

languages permit progra,ms to be built using iterative constructs, conditional definitions

and functions; it has been shown in $2.3.2.2 that an LX3 progrâm can be understood

in these terms. LX3 must, therefore, be regarded as a potential data flow language.

In this chapter, an implementation is described which analyzes an LX3 program to

determine its constituent loops, and then constructs eorresponding data flow graphs.

A data flow scheme corresponding to e¿ch LXB construct is presented, the structure of

the implementation and the operation of its principal components are discussed, and

details are given of the techniques used in compiling code from the schemes. Finally,

LX3 is compared with other languages specifically designed for use with data flow

machines.

The results of the loop analysis of an LX3 program can also be used to generate

cocle for a sequential machine. Such an implementation is described, and compared

with the data flow implementation. The implementation is then compared with other
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Figure 4.f . A data flow scheme for a conditional definition.

compiler based implementations of Lucid subsets

A-n example of program translation appears in Appenclix 3.

4.2 Code schemes for LXS constructc

In this section, it is shown how each LX3 construct can be expressed in the graph-

ical data flow language: these schemes provide the b¿sis for compiling LX.3. Later, the

implementation of the transformations discussed here is described in detail.

1.2.1 Arithmetic expressions

The generation of code for arithmetic expressions is expressed as actions associated

with the recursive descent analysis of the expression into terms and factors. Hence, the

schemes used are not significantly different from those in many conventional compilers,

and are not discr,rssed further.

1.2.2 Conditional¡

x

Figure 4.1 shows a data flow scheme for a definition of the form
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Í : if C then .81 elae E2 eif

assuming that the expressions 81, 82, and C zre already compiled.

C, Et and E2 âte tepresented as boxes, with one input arc for each variable used

inside the network represented by the box. The result of C is used as control input to

TGATE instructions for each value used by ^E1, and to FGATE instructions for each

value used by E2; hence, when the graph is executed, one, and only one, of Ey and E2

is executed.

t|.2.3 Loops

The loop schemes used in this thesis are cyclic, for trvo rea.sons, firstly, such

schemes have commonly been expressed in cyclic form in the data flow literature

[Den74, Ada71, GurWG8O, AtlO79], and secondly to ensure that the schemes developed

are usable with data flow machines based on cyclic models (see $3.4.1.1). The data flow

model implements a loop a^s an acyclic tail recursive function template; details will be

given in $4.4.2, of the transformation of the cyclic schemes into tail recursive form.

The essential requirement is a scheme for the circulation of values. For exarnple,

the cyclic graph of Figure 4.2, termed a simple circulator, permits the indefinite circu-

lation of a single value, admitted to the scheme via the N{ERGE gate, and circulated

while lalse values arrive at the gates shown. The MERcn gate used is the Z-input

instruction described in $3.2.

It is usually required that the value of a vari¿ble for â new iteration be computed

from that of the current iteration; this computation can be expressed as a data flow

subgraph inserted at the point labelled I in Figure 4.2. The resultant scheme, shown

in Figure 4.3, is called a circulator. A circulator is used to implement the computation

corresponding to the definition of an inductive variable in LX3. Henceforth, A is used

to indicate the circulator corresponding to the variable a, which, it will be recalled,

has history flo]|.

Circulators ma,y be linked together, as illustrated by the example in Figure 4.4;
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Figure 4.2. A simple circulator

Figure 4.3. A circulator.
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Figure 4.4. Interconnected circulators.
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here, the FGATEs of each circulator receive the same sequence of control values, and

a yalue from circulator A is used to compute an updated value in B. The dependency

of ä upon a, and hence of B upon A, implies the existence of a cyclic scheme in which

A and B are components being driven by the sâme control values, and hence can be

regarded as iterating together. An LXB loop can be implemented from interconnected

circulators, simple circulators and a subgraph representing the termination condition

of the loop; the latter produces â, sequence of control values common to all gates of the

loop. The result of the loop is computed from v¿lues produced by the final iteration.

A generally applicable loop scheme must return to its initial configuration on

termination of a particular loop execution; schemes with this property are said to

be serially reusable [Rei7S]. On termination, the FGATE instructions in Figures 4.2,

4.3 and 4.4 absorb superfluous values present in the subgraph and so ensure serial

reusability. It should be noted that, once transformed into an acyclic form suitable for

the data flow graph interpreter of Chapter 3, it is not necessary for loop schemes to be

serially reusable, because each loop iteration is a separate activation, which ceases to

exist once a value is returned from that iteration; any superfluous values also disappear.

A similar effect has been noted by Treleaven et al [TieIIRS2]. However, schemes used

in the implementation of LX3 are serially reusable, to ensure that all results derived

are also applicable to cyclic schemes in which the property is important.

In LX3, loops involve three categories of variables, inductive, auxiliary and quies-

cent (see $2.3.2.2). An inductive variable is updated on each loop iter¿tion ¿nd hence

requires a circulator. A¡ auxiliary variable usually defines an intermediate result, ex-

pressed in terms of values available within a single iteration, and its value need not

be circulated. Some quiescent variables a¡e used in each iteration of a loop; a simple

circulator must be generated for each such variable to ensure that its v¿lue will be

¿vailable at each iteration.

Use of the circulator of Figure 4.3 is based on the assumption that the definition

of the next attribute of an inductive variable does not use the next attribute of any
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other inductive variable. Consideration is now given to the generâtion of circulators

when this restriction is lifted.

First consider the case when the value of an inductive variable depends on the

nexü value of another inductive variable of the loop. The example of Figure 4.4 is

used to explain how the definition

b - ffbyö+nexta

is translated to a data flow subgraph. Circulators A and B correspond to the two

inductive variables, a and ä. Suppose that d denotes the termination condition of the

loop, as determined by the appropriate aÉta definition, and th¿t the loop is terminated

at some iteration ff such that control value C¡¡ is false and C¡r+t is tru¿. Then ary

(that is, [o[.¡y ) and ö¡¡ are the final "cunent" values produced by A and B respectively,

and ø¡¡11 is the value of next ø when the loop terminates. It can be seen from l'igure

4.4 that the arrivat of C¡ permits the transmission, through the FGATEs of B, of ö;-1

and c¡, the values required for the computation of ö;. Hence, the arrival of Cry11

should absorb äry and aff+ri however, the FGATEs of A inhibit the production of

cJV+I, which, therefore, does not arrive at the FGATE labelled 1, so a superfluous

control value is leÊt, in the circulator B. Ilence, in this situation, the FGATE I is not

required, as the value it is designed to absorb is never produced; in fa,ct, the gate must

not be present if the scheme is to be serially re-usable.

A different arrangement of gates is required if arya1 is actually used, a"s, fot ex-

ample, in the definition

Í, : as¡a . .. then 5*next c eaÉ¡a ...(2)

where the value r¡tf+t is needed to compute the result of the loop. In Figure 4.4, the

FGATEs of A are used to suppress the computation of 4ry11, and, if they are removed,

the computation will proceed. However, FcATEs ¿re then needed at l, to absorb 4lv+1,

and immediately preceding the MERGE gate of A, to preveut a superfluous value of

a¡f+t reaehing the tvtORCE gate.
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If ö¡¡11 is needed in a computation, then a¡y11 is also needed, because ö depends

on o. In this case, â, gating alrângement sirnilar to that discussed in the preceding

pâ,ragraph is required for both A and B, except that the FGATE 1 is not required, as

clV+t must be comPuted.

Thus it is necessary to analyze each use of the next value of an inductive variable ¿

and, in particular, determine whether or not a¡f+t is required. \Mith the ¡esults of this

analysis available for all the inductive variables of a loop, it is possible to formulate the

follorving rules for the generation of gates in a manner which ensures serial re'usability

of the data florv graph.

Associated with each inductivevariable i, is a predicate nplus(i), defined to be úrue

if the value d1y11 must be computed. For example, in definition (2) above, nplus(a)

holds because, when the loop terminates, the value of next a, namely cN+I, is required

to compute z. In general, nplus(í) is true if either of the following conditions hold:

¡ There is a quiescent variable ¡ such th¿t ø is dependent, directly or indi-
rectly, on next i

o There is an inductive variable j such that nplus(j) holds and next j is

dependent, directly or indirectly, on next i, and hence ilv+r is needed to
compute j¡¿+r.

The following four gating rules can now be stated. The last three rules refer to

two inductive variables ø and ö such that next ö depends on next c.

(l) If nplus(i) holds, then an !'cATE is needed immediately preceding the
MERGE gate in the ci¡cul¿tor for d.

(2) If (nplus(a) n nplus(ö)) holds, then no FGATEs are needed on the next
network of either ø or b.

(3) If nplus(o)is false, then nplus(ö) must be false, and ncntEs â,re needed for
the next networks of both a and ó, except that the uses of a implied by the
dependency of next ö on next a must not be gated.

(4) If (nplus(a) ¡ -' nplus(ó)) holds, then no gates are needed for c, and similarly
for ó, except that uses of ¿ must be gated.

{.2.¡l Define clau¡es

The interface between an unpârameterized define clause and the network which
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uses it, is defined by the data flow code of the clause, its set of global variables, and

its resulú variable. In this implementation, a function template is generated from the

clause, and linked into the enclosing network as a nested loop, using the loop activation

instruction IAPPLY.
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Figure 4.5. Data flow schemes for a define clause and its invocation

A parameterized define clause is similar to a mapping defrnition [AshW78], and

is compiled as a data flow function template. A use of such a cl¿use is regarded as

an invocation of that template. Figu re 4.5a illustrates the scheme used in compiling a

parameterized define clause; the box labelled B represents the data fl.ow code generated

from the deflnitions of the clause, and the IDENT instructions the interface for passing

parameter values. Figure 4.5b shows ¿n invocation of the clause.

{.3 Implementation of LX3

{.3.1 Structurc of the implementation

The implementation is organized as shown in Figure 4.6. Syntax analysis is per-

formed using recursive descent techniques; within that framework, there are procedures

for identifier table maintenance, and for generation of primitive code. The source ana-

lyzer gene¡ates a function template for the main program and for each deûne clause;

it also produces an incomplete data flow subgraph for each LXB definition, but it does

retr¡gr

Apprv
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not have sufficient information about loops to complete the generation of loop code,

a consequence of the lack of o¡dering of deûnitions in an LX3 program. The source

analyzer cannot determine either the structure of loops or which constants need to be

circulated in a loop; instead, it produces a dependency graph.

de
code
emplaÈe

Br

f i.nal resul Èssource

Figure 4.6. Implementation orgenizetion.

The dependency anâlyzer traverses this dependency graph to determine the loop

structure of the progtâ,m, and to determine the gating appropriate to inclividual eircu-

lators within each loop. The results of this analysis are recorded on the code template

(described in the next section)..

The code generator scans the code template and makes â,ny necessary alterations

to the original data flow code produced by the source analyzer. Finally, the code

generator also determines from the resultant data flow code where triggers are required,

and generates triggering arcs for CoNSTANT instructions from preceding instructions.

As indic¿ted above, the language LXB is such that a compiler must perform some

loop analysis before code generation can be completed. The dependency anâlyzer is

responsible principally for the analysis of loops, while the source analyzer and code

generator cooperate in performing the generation of code. In the sequel, the principal

data structures of the implementation are first deseribed, and then the implementa-

tion of code generation for each of the above schemes is presented in detail. As the

dependency analyzer determines many of the actions required of the eode generator,

it is convenient to discuss the implementation of these actions during the description

dependency
analyzer

code
generator

df graph
lnEerpreter

aource
analyzer
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tyPc
idtablecell :

rccord
ident: alfa;
level: levrange;
charaddr: coderange;

deptr: fdeplist;
uplus: boolean;
kind: (aux, quiescent, inductive);
gatelist: fdeplist;

cnd;

deplist :
?GCO'd

alc:
rccord

suc: idtableaddr;
atfil, atft2: 0..2;

cnd;
occ: focclist;
ncrt: fdeplist

cnd;

occlist :
rccord

tk: tink;
next: focclisù

cnd;

link :
¡ccord

instr: instrno;
posn: prange

cnd;

Figure 4.7. Identifiei table structure.

of the dependency ana"lyzer.

{.3.2 Principal data structures

The identifier table, with an associated dependency $aph, and the code template,

are the principal dat¿ structures of the implementation. Pascal type declarations for

the identifier table and associated types are given in Figure 4.7; those type declarations

left unspecified are declared as suitable integer subrâ,nges.

Consider the type idtableeell showû in Figure 4.7. The ídent field contains the

identiûer. A level number is associated with each elause; the mâin progråm is at level

l, and the level is incremented for each inner clause. The field charaddr indicates

the first of the three contiguous char¿cteristic addresses associated with the three
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attributes of the identifier. This field, which is allocated on creation of the table entry

for the identifier, holds the address of a data flow instruction from which values of the

attribute can be taken when required during compilation.

The dependency graph records dependencies between att¡ibutes of variables. Each

identifier åppeàrs as a node of the graph. A directed are from node ø to node ö indicates

that an attribute of o depends on an attribute of ö, the nature of the dependency being

shown by labelling the arc with an ordered pair of digits to represent the attributes of

its initiat and final nodes; the first attribute is numbered 0, the ucurrent', 1, and the

nexf, 2.

For an identifier a, the freld deptr of its identifier table entry is the pointer to its

dependency list. A dependency list element represents an arc of the dependency graph

(see Figure 4.7), and records the fact that a particular attribute of some identifier is

used in the definition of c; such a use may occur once or more in the definition, so a

sublist, the occlist, associated with each dependency list entry, records each point of

use in the data flow code. Both the dependéncy list and the occlist are updated as the

source code definition is parsed from left to right.

The flag nplue implements the pred\cate nplus(i) defined in $4.2.3; the field È¡nd is

self-explanatory. The gatelist is ¿ copy of part of the dependency list for the identifier;

it contains the dependency list entries pertaining to the definition of the next attribute

of an inductive variable.

The code template is the interface by which the source and dependency analyzers

communieate with the code generator. The information contained in each entry is

largely inherited from the appropriate identifier table entries, namely ident, attributes,

eharacteristic addresses, occfist, gatelist and flag nplus. The template is structured

according to the level and loop structure of the program; markers separate the section

for one clause from that for the next, and, within each such seetion, additional markers

separate the contributions made by each loop of the clause. An example of a code

template is given in Appendix 3.
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Code generâtion is expressed in terms of a reeord description of an instruction,

an årray of instructions containing the data flow code, and operations (implemented

as procedures) on this array. Operations are provided to generate an instruction, to

create ân arc between two instructions, and to find the next available position for the

ext¡action of a value from a characte¡istic address.

{.3.3 The dependency analyzer

The primary function of the dependency analyzer is to determine the definitions

.lvhich eonstitute a given loop; the asa definition associated with each loop provides

the basis for doing this. As all identifiers involved in a loop must contribute to the

result deflned by the asa definition, the variable z on the lefb hand side of the defini-

tion is dependent, either directly or indirectly, on each loop identifier. It follows that

all identifiers in the loop can be found by examining the substructure of the depen-

dency graph starting at ø. Whenever this traversal encounters ¿n asa defrnition, loop

analysis is invoked and continues while the graph traversal covers the substructure of

r. Lists of quiescent and inductive variables are a,ccumulated during the t¡aversal; the

concatenation of such lists from every loop of the program produces the code template.

The operation of the dependency analyzer is now described in more detail.

Note that, in an LX3 defrne clause, a use of a non-local variable does not imply

a dependency on that variable, because its value will be constant within the cl¿use.

Thus, the dependency strueture of each clause can be analyzed independently of the

rest of the program. The overall structure of the dependency analyser is as follows:

template <- nil; { the code template }
lor c¡ch clause of the LX3 program do

fixloop( r ).

r is the identifier table entry of the variable defined as the result of the main loop of

the clause. In the case of the program clause, r will not necessarily be the variable

result; it is the variable defined with an asa definition which is not used in any other

definition, for example, stop in Figure 2.7. The definition of the procedure fidoop is

I
iri
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given in Figure 4.8, in which the template entry Iu contains information about the

termination condition and result of the loop.

proccdurc fixloop( lv )

{ lv is an identifier table entry representing }
i a variable defined by an asa deûnition. )
i Th" op"t"tor * is list concatenation )
var q, i : vlist { lists of quiescent and inductive variables }
bogln

q <- nil; i <- nil;
searchtree( lv ); { builds q and i }
template (- template * lv * q + i;

fixgates( i ); { see texù }
ond

Figure 4.8. Definition of procedure fidoop-

The procedure se¿rc htree, a local procedure of. fiiloop, is defined in Figure 4.9. It

is used to perform a breadth-first search of part of the dependency graph.

procodurc searchtree( st )

{ sü is an identifier table eutry, representing }
{ the root of substructure to be searched }
bcgln

lf st is defiued by an lsl defiuition
thcn lf st () lv thcn fixlooP( st )
ols¡

bcgln
for c¡ch node, nd, in the dependency list of st do

processnode( od );
lor c¡ch node, nd, in the dependency list of sù do

seatchtree( ud );
cnd

cnd

Figure 4.9. Definition of procedure searchtree.

The procedure proce ssnode, local to searchtree, is defined in Figure 4.10. The

generation of a simple circul¿tor is required to circulate the value of a quiescent variable

only if it is used by each iteration, specifically, in the definition of an auxiliary variable,

or in defining the next attribute of an inductive variable; if it need not be circulated,

the code generated by the source Ðna,lyzer is adequate, and no action is required. Hence,

quiescent variables which require further action by the code generator âre recorded on

the code template.
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proccdurc processnode( node )

{ lists q and i are inherited from fixloop }
bcgln

lf node corresponds to a quiescent variable
thcn

ll value must be circulated in looP
thsn record node on list q
clsc no action required

cls¡ lf node corresponds to an inductive variable

thon
ll dependency involves ncrt attribute of node

thcn
bcgln

determiue setting of node.nplus; { see text }
record node and nPlus on list i

cnd
Gl3.

same action as for a quiescent variable

.nd

Figure 4.10. Definition of procedure processnode

A second important function of the dependency ana,lyzer is to implement the ga,ting

rules given in a previous section. The dependency a.nalyzü evaluates the predicate

nplus(i) for each inductive variable i, and, when analysis of a loop is otherwise complete,

uses the dependency relations between each pair of inductive variables to determine

gating requirements according to rules (1) to (a) above, and record the predicate value

in the code template. The code genera,tor, as it scans the code template, c¿n then

determine whether or not to generate a gate for a particulâ,r use of an inductive variable.

A more detailed description of the techniques used is now given.

Within the dependency analyzer, the flag nplus associated with each identifier

table entry is set. As loop analysis proceeds, the processing of inductive variables

includes the necessary checks described in $a.2.3 to determine the value of. nplus. In the

current implementation, these checks âre incomplete, in that only direct dependencies

are checked; indirect dependencies did not arise in the exemples tested, but their

inclusion would require only a list of identifier uses for each identifier table entry, and

some modification of the dependency analyzer. The value of npfus is recorded on the

code template element associated with the induetive variable; subsequently in the code

generator, iÎ nplus holds, a gate is generated between the next network and the MERGE
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instruction of the âssociâted circulator, and no other gates are generated (Rules (l),

(2) and (a)); otherwise further checks must be câ,mied out, as described below.

The code template element for an inductive v¿riable r includes the gatelisú for d,

which, as explained in $4.3.2, records that portion of the dependency list relevant to

the computation of next i. Also associated with each gatelist element in the template

is a flag which indicates whether or not a gate must be generated for the kind of use

specified. The code generator checks this flag as it scans the gatelist, and, if necessary,

generates a gate at each point of use specified in the associated occlist.

The procedures provided in the dependency analyzer for the implementation of the

rules of $4.2.3 are noÌv discussed. As mentioned above, determination of nplu,s takes

place in the procedure processnode during dependency graph traversal. Rules (Z) to (a)

are implemented primarily by the two procedwes fi,rgates and fizarcs, the definitions of

which are shown, respectively, in Figures 4.11 and 4.I2. It can be seen from Figure 4.11

that the default setting of the gate flap is changed by firarcs, if necessary. Procedure

firarcs is used to check for uses by inductive variable iu of other inductive variables, a

condition which câuses one of Rules (3) and ( ) to become relevant.

proccdurr fixgates( il )

{ il is a list of inductive variables }
bcgln

for crch inductive variable, iv, of il do
bcgln

ll iv.nplus
thcn seù iv.gatelist.flags for no generation of gates

olso
bcgln

set flags for generation of all gates;

ûxarcs( iv.gatelist )
cnd

cnd
ond

Figure 4.11. Definition of procedure f,rgates.

1.3.{ Checkine the subset restrictions
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The definition of LX3 $2.3.2.1) states seven restrictions on LX. Restrictions (l)
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ptocËdu?. fixarcs( g )

{ g is a gatelist }
bogln

for c¡ch element, y, of g
bcgln

lf the variable identified by y is inductive
thcn

lf y.nplus
thcn set flags appropriaüe to Rule (+)

ols¡ set flags appropriate to Rule (3)

cnd
cnd

Figure 4.12. Definition of procedure fitarcs.

to (a), and Restriction (7), are entirely syntactic, â.nd can be checked accordingly.

Restriction (4), requiring the presence of an asa definition of result, can be checked at

the end of syntax analysis of a clause.

Dependency ânalysis can be used to check Restriction (5), which requires that no

identifier be defined in terms of its own future. In LX3, the only permitted Ðccess

beyond the current iteration is via the next attribute of an inductive variable; the

¡estriction is violated if the eurrent attribute of a va¡iable ¿ depends, directly or

indirectly, on the next attribute of s. As dependencies between attributes are recorded

on the dependency grÀph, it is straightforward for the dependency ånâlyser to examine

such dependency chains. Circular dependencies can be checked similarly.

Restriction (6) is checked by examining each variable ø in the expression defining

the first operand of fby; as clause subjects are not quiescent, they are excluded by this

restriction from such expressions. Each variable in the substructure of the dependency

graph starting at z must be either qualified by first or defined by an asa expression,

or be dependent directly or indirectly, on only such variables. This restriction can be

rel¿xed by extending the implementation, but this was not found necessâry for the

investigations reported in the thesis.
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¡1.4 Generation of data flow code
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1.¡1.1 Conditionals

It can be seen from the conditional scheme of Figure 4.1 that each input to ^81 or

.82 must be gated, and that in providing these gates the set of input variables to each

of. E1 and 82, and their points of use, must be determined. Sufficient information is

recorded on the dependency list and its associated occlist to permit these gates to be

generated by the source analyzer.

In finding the sets of input variables and their uses, it is necessary to determine

which occurrences were added during compilation of C, -81 and 82. ß I¡, is the set of

input variables to -81, and O¿, the variables in occlist after -Ð1 has been parsed, then

lE, : oør -oc
lEz : oør-o4r-oç'

The fact that the dependency list is built during a left to right scan of the definition

simplifies the computation of these sets.

In providing gates for input variables, it is simplest to gate each use of a variable,

but this causes an unnecessarily large number of gates to be generated. Hence, a, more

economical method is used, generating one gate for each input variable, and using an

IDENT instruction to distribute the gated value to each point of use.

,1.¡1.2 Loops

As discussed above, the source analyzer generates circulators and other data flow

code for the individual definitions of an LX3 loop, and the dependency analyzer de-

termines the overall structure and gating requirements of the loop, recording this

information on the code template.

An inductive variable ¡ is defined using the fby construction. The source analyzer

generates part of the code required by the circulator scheme of Figure 4.3, namely the

code for the expressions defining the attributes, the MERGE gate, and links to the dat¿
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inputs of the MERGE gate. The gatelist is a.lso construeted. When an as¡a definition

is encountered, the souree analyzer generates code for the expressions defrning the

condition and result specified. All gates and control links åre generated by the code

generator, ¿s clescribed previously.

The transformation of such a loop into the tail recursive form required by the

data flow model is now discussed. As discussed in $3.2, a single instructi<,¡n, IAPPLY,

is used to admit the initial yalues of all circulators into the loop; the loop itself is

a separate FT, activated by the execution of an IAPPLY instruction with the initial

values a,s pâ,rameters. A new iteration is set up, not by linking the next network to the

MERGE gate to form a cycle, but by sending the updated value of each circulator to

a single INCR inst¡uction, which creates â new activation for the next iter¿tion, with

the updated values as paremeters. A RETURN instruction is used to return the result

of the loop.

To efrect the transformations required, the cyclic loop scheme is modified as follows.

IAppLy, INcR and RBtuRN instructions åre generated. The output from the ûrst

network of each circulator is linked to an input of the IAPPLY instruction. The IAPPLY

instruction, when executed, pâsses its parameter values into the FT in the same way

Ðs an AppI,y instruction; hence, within the FT, an instruction which delivers the

appropriate parameter value replaces the ûrst network. Similarly, the arcs which

transmit updated values to the separate MERGE instructions of each circulator are

removed, making the graph acyclic, and connected, insteed, to the appropriate input

of the INCR inst¡uction; transmission of these updated values to the next iteration

is accomplished by the parameter passing mechanism. Finally, the instruction which

delivers the result of the loop is linked to the RETURN instruction.

Note that, subsequently in the thesis, the term "circulator" is used in reference to

both the cyclic and equivalent acyclic sehemes.
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1.1.3 Define clauses
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A detne clause introduces a new level of lexical scoping in an LX3 program.

Hence, â, new level is allocated in the identifier table, and the local variables of the

definition included at that level. The list of definitions which makes up the body of

the clause is compiled using the techniques discussed so far.

Each variable included in the using list of the clause is quiescent inside the clause,

as its value is frozen within the inner loop. This effect is achieved by adding to the

identifier table for the clause, a new entry for each such variable, and marking it as

quiescent. Each such entry has a new characteristic address, from which the input

value of the variable is sent to each point of use within the network for the clause. The

appropriate values are transmitted to the clause, and thence to the new characteristic

addresses, when the data flow graph representing the clause is invoked.

Clause subjects on the using list are treated slightly differently. Consider an

inherited subject /. The frozen values of its globals must be inherited implicitly, as

explained in $2.2.2.2.5. This is implemented by replacing the identifier / on the using

list with a list of its global identifiers; the process of replacement continues until no

subject identifiers remain on the using list.

It will be recalled, from 92.3.2.2, that an unparameterized LX3 define clause is

viewed operationally as a nested loop, whereffi a clause with parameters is regarded

as akin to a function. Consequently, in implementing clause invocation, the two cases

¿re treated differently.

For an unparameterized clause, the input interface is formed by linking the old

characteristic address in the enclosing network to an IAPPLY instruction which acti-

vates the nested loop, and thence to the new eharacteristic address, making it possible

to pass input values to the network for the clause. The result interface is formed

by linking the IAPPLY instruction to the characteristic address of the variable being

defined, so that the result of the nested loop is passed back to the enelosing network.

Note that direct linking of a subgraph in this fashion is shown to greater advantage
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in a cyclic scheme, where it permits å, nested loop to be used without the overheads of

function application [ArvGP78, GurWG8O]'

For a parameterized define clause, ân APPLY instruction is generated each time

the clause is used in the text of a definition. Input links for parameter values and

values of variables on the using list are linked directly to the APPLY inst¡uction. The

output of this instruction is directed to the point of use of the clause value.

1.5 A Sequential Implementation of LX3

The implementation structure described above can also be the basis for the transla-

tion of LX3 into a sequential target language. A description of such an implement¿tion

is now given, with emphasis on the differences from that described above.

{.5.1 Target language

To avoid undue emphasis on the details of code generation, it was considered desir-

able to choose a simple target language. It was thus convenient to use the instruction

set of the PL/0 machine, described by lvVirth [Wir76], as the target language. This

instruction set is simple, sufficiently powerful for the purposes of this experiment, and

a suitable interpreter was readily available at the time.

The PL/O machine has a stack oriented architecture. Its instruction set includes

instructions for transferring words between top of stack aud memory, instructions for

stack maintenance, jump instructions and arithmetic and relational operations.

1.5.2 Structure of the implementation

The source analyzer builds a dependency graph, as described above. It also pro

duces a piece of code for each definition in the program; these pieces of code produced

by the source analyzer are unordered.

A major function of the dependency analyzer, in addition to loop analysis, is to

determine a suitable order for the execution of code. The code template is used to
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indicate where each of the previously generated pieces of code is to appear, and where

code needs to be added to ensure eorrect execution of loops.

The code generator uses the code template to rearrânge the pieces of code gen-

erated by the compiler in an appropriate order, with some additional code for loop

cont¡ol. The result is ordered code, in a form suitable for execution on the PL/O

interpreter.

¡1.5.3 Principal data structures

The principal data structures used are, as before, the identifier table, incorporating

a dependency graph, and the code template. Differences &re now explained.

The characteristic address field of the identifier table is interpreted as the address

of a group of three locations used to store the values of the first, next and "current"

¿ttributes of an inductive variable; for other variables, only the *current" attribute is

defined. The code ¿ddress field stores the address of the piece of code generated from

the definition associated with the identifier; this piece of code may be repositioned by

the code generator. The flag nplus, and the sublists associated with each dependency

list entry in the data flow implementation, namely lhe gatelisú and lhe occlist, are not

used in this implementation.

¡1.5.{ Dependency analyzer and codc generator

The dependency analyzer must determine the order in which code for definitions is

evaluated. The analysis of the dependency graph is based on a tree traversal algorithm,

modified to allow for nodes which have more than one incident arc; nodes are marked

when first traversed, and further traversals through such nodes are not permitted. A

postorder traversal, which visits first the lefù subt¡ee, then the right subtree, and then

the root node, gives an appropriate ordering for the exeeution of pieees of code.

The loop analysis function of the dependency analyzer proceeds as described pre-

viously. During this phase, ordered lists of inductive, auxiliary and quiescent variables
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Figure 4.13. A scheme for sequential code.

aÌe åccumulated, end on completion of the loop analysis, these lists are merged into

a single list following the pattern of the loop scheme, shown in Figure 4.13. This list

shows which variables appeâr in each section of the loop scheme, ând also contains

markers which indicate where boundaries betrveen sections oceur. Later, branching

code is inserted at some of the points where markers occur. Application of this analy-

sis to each loop eventually produces a single ìist, in which every variable in the original

dependency graph has been ordered. Such lists exist for every clause in the program,

and when concatenated, constitute the code template.

The function of the code generator is to use both the control template ¿nd the

pieces of code produced previously, to generate code which is directly executable. For

every elause, this is c¿rried out by traversing the associated list of variables, the list

being part of the code template; the appropriate piece of code is relocated if the list

element represents a variable; some loop branching code is generated if the list elernent

I

2

6
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is a marker. Thus, each loop defined by the LXB program is translated into a target

language iteration, patterned after the loop scheme of Figure 4.13.

4.6 Discussion

¡1.6.1 Comprr¡son with data flow languages

Seve¡al high level language proposals have been presented for data flow machine

architectures based on the Dennis data flow model [Den74], principally at MIT (VAt

[AckDZg]), the University of California at Irvine (Id [ArvGP78]), the University of

Manchester (Lapse [GurGK8f]), and Iowa State University (a Pascal-like language

[A]tO79l). The languages V,{-L, Id and Lapse are vaìue oriented, single assignment

languages, each of which includes constructs for binding of an identifier to a value, for

conditional definition, and for iteration. In a single assignment language, an identifier

ean have a value bound to it just once in its scope; this property is natural in a data

flow language because an association can be made betlveen an identifier and an arc of a

data flow graph. IJ(3 also is a single assignment language, as each identifier is dêfined

once only.

LX3 has been defined by imposing restrictions on tha language LX (see $2.3.2.1).

These restrictions are now considered in relation to other data flow languages; it will

be shown that LX3 is a language comparable in expressiveness to other data flow

languages. Restriction (l) requires that first and next be considered as attributes of

an inductive variable. This is very similar to the treatment of updated loop variables

in other languages; in fact, IJ(3 goes further than some in permitting general use of

the next attribute. Freezing of globals and parameters, as required by Restriction (2),

is generally accepted in other languages; the restriction excludes those features of LX

which extend the semantics beyond a eonventional interpretation, as does Restriction

(3) in omitting nonpointwise operators

The requirement expressed in Restriction (4), that the body of a deÊne clause

be a loop, is somewhat unusual, and encourages some artificial constructions in pro
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grÐmming. Holvever, it is not essential to the definition of the language, ând could be

relaxed by using more sophisticated dependency analysis; such extensions are beyond

the scope of this thesis.

Restriction (5) again excludes ce¡t¿in fcatures of LX which do not h¿ve a con-

ventional interpretation. There are no operators in the other data flow languages

considered so far which permit the current iteration to depend on future iterations.

Restriction (6) effectively prevents initial values of a loop being extracùed directly

from inside an iteration. Such a facility is not usually available in other languages; in

general, a loop would have to return such values as extra results of the loop. Note,

however, that any value can be inherited by a define clause and used as the initial

value of a nested loop.

This Chapter emphasizes implementation of the basic constructs of LX3, and does

not consider the implementation of structures, which are omitted from the language

(Restrictio" (7)). Such features a,re essenti¿l if the language is to be developed further;
,/

for exainple, an array structure, with appropriate aggregate operators analogous to the

forall construct of VAL þckD79l, would be desirable.

It can be concluded that LX3 is a suitable candidate for use as a data flow lan-

guage, in that it can express the basic constructions of definition, conditional, iteration

and function invocation. It has been shown that each of these can be implemented ef-

ficiently, using essentially standard translation techniques.

It has been suggested that conventional languages can be used, in a modified

form, as data flow languages [AllO79, Vee8l]. Allan and Oldehoeft þ1070] propose

a Pascal-like language without a goto statement or global references, and in which

procedure parameters must specify a directionality (either in, out, or both). Because

several assignments may be made to variables in the language, data flow analysis is

used to determine the definitions and uses of a variable; a data flow graph arc can then

be associated with each reassignment to ¿ variable. The translation of a conditional

statement (as distinct from a conditional expression) requires further data flow analysis
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to determine the input and output sets of the statement; the corresponding data flow

grâph must have an input arc for each vari¿ble in the input set, and an output a¡c for

each member of the output set. Similar data flow analysis is performed on iterative

statements; a scheme like that of Figure 4.L4is then used in translation.

Figure 4.L4. A general loop scheme.

Veen þe8l] describes compilation techniques for a conventional language which

includes global variables and procedures with side effects; if a global varieble is used

by a procedure it is rega,rded a^s â,n additional input parameter to the procedure, and

if updated it is regarded as an extra result of the procedure. It is here that one of

the difÊculties of compiling a traditional language in a data flow environment is seen;

for updates to globai va¡iables to be implemented correctly with this method, it is

necessary to perform an exhaustive data flow analysis at compile time to determine

all possible side effects of every procedure. Furthermore. sharing of global variables

between procedures often requires sequential execution of procedure invocations which

could otherwise be executed in parallel. This is but one illustration of the inherently

sequential nature of conventional languages, and supports an argument for the use of

languages which are fundamentally non-sequential, in which parallelism arises more

naturally and is easily exploited. The work reported here confirms the view that

flerge

rædate
valuee

corvliLion

s.r'ritch
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LXB is indeed such â language, along with the single assignment languages discussed

above, and applicative languages such as the language described by Friedman and Wise

[FriW76], KRC [Tirrsr], FGL [KelLP78] and CAJOLE [HanGsr]'

4.6.2 Comments on loop schemes

The schemes described for arithmetic expressions and conditional definitions are

essentially the same as those used in proposals for VAL, Id and Lapse. However,

considerable differenees between the implementation of these languages and that of

LX3 emerge when schemes for iteration a,re considered. Each of the languages VAL,

Id and Lapse has a syntactic unit for the expression of iteration, which, semantically,

can be seen âs accepting input values, of which some are used as initializations of

variables updated in the loop and the remainder as values which remain constant for

the duration of the loop.

Figure 4.14 shows â general data flolv loop scheme which captures the essential

features of the schemes used in other implementations þvGPZS, GurGK8ll. In this

scheme, MERGE gates permit the introduction of initial values and the circulation of

updated values, and swttcH gates permit the cireulation of values during the iteration,

and, at the last iteration, absorb unused values and transmit result values.

The expression of iteration in LX3 differs in two ways. Firstly, there is no single

syntactic unit corresponding to a loop. This need not necessarily affect the scheme

used, but requires a method of synthesizing the loop from its individual definitions;

this has been accomplished by using dependency analysis to find which definitions are

needed to compute the result of a loop.

Secondly, both "current" and next attributes of an inductive variable can be used

in definitions; in terms of the loop scheme, a value associated with the next iteration

ean be used both in the current iteration, and in cornputing the result of the loop.

In VA,L, either the old or the new value can be used, as the order of definition of

updated values is significant, and a somewhat different loop scheme is used [BroM79].
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The scheme of Figure 4.14 is inadequate if updated (next) va,lues a,re returned as

results of the loop. Attempts to use the scheme to return such values usually eause

superfluous v¿lues to remein in the loop scheme at termination, thereby destroying the

property of serial reusability. An analysis of the gating requirements for this ca*se has

been presented, rules for the generatiou of code developed, and a new serially reusable

scheme presented.

In the new scheme, and in contrast to previously published schemes, gates are

generated at the points of use of values, rather than at the origin of a value, as in

Figure 4.14. By permitting greater flexibility in the placement of gates, this facilitates

implementation of the gating rules of $a.2.3; for a typical circulator (Figure 4.3), these

rules may require that any of the gates controlling input of values to the next network

be omitted; even the gate admitting the current value of the circulator itself may be

omitted.

4.6.3 Comparison of the data ffow and sequential implementations

Some eomments are now made about the differences between the individual phases

of the data flow and sequential irnplementations. In the first phase, the source analyzer

makes a single pass over the source progrâm, producing code for each LX3 definition

independently. In the case of compilation to a sequential target language, ma,ny un-

ordered pieces of code are produced, but each piece of code, corresponding to one LX3

definition, is produced as it rvould be for a conventional high level language. In the

case cf a data flow target language, much of the dependency information inherent in

the LX3 source progrâ,m, is expressed directly in the data flow code itself, and further

ordering by the t¡anslator is not required. In this sense, then, LX3 is a language which

is implemented naturally on a data flow machine. However, loop analysis is required

in both cases because loops are expressed indirectly in LX3 and no special ordering of

the definitions associated with one loop i,s required. In the data flow implementation,

the function of the dependency analyzer is only to determine the loop structure of the

progrâ,m, but in the case of sequential object code, the dependency analyzer is also
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used to establish the ordering of the pieces of code compiled from the definitions of the

program; similarly, the final code generating phase is mo¡e complex for compilation to

sequential co<le.

1.6.1 Other compiler based implementations of Lucid subsetr

The compilation of Lucid progrâms has also been considered by Hoffmann [Hof'18]

and Farah [Far77]. Hoflmann has developed a system which enables Lucid progra,ms

to be compiled and executed, while Farah presents a theoretical scheme for the trans-

formation of Lucid progrå,ms into an Algol-like language, and vice versâ.

fi¡st rE)ft

Figure 4.f5. A rvindow

In LX3, ûrst and next are regarded as attributes of an inductive variable, rather

than operators on histories. In writing progr¿Irns in LX3, a variable can still be regarded

as a history consisting of a sequence of values, with the programmer being able to

express rel¿tionships between variables in terms of Êrst, *culrent" and next values.

These three values can be regarded as a rvindorry through which the history of a variable

may be viewed, as illustrated in Figure 4.15. In some situations, it may be desirable

to have a larger window through rvhich to view a particular history. For example, in

Lucid, it is possible to write

next u z*nexf next y

which requires a window on y âs shown in Figure 4.16. The subset of Lucid compiled

by Hoffmann's implementation [HoflS] permits such constructs. In this subset of the

language, ¿s in Lucid itself, ûrst and next are treated as operators, and can be used

in much the same \ilay as the usual arithmetic and relational operators. The effects

of this on implementation strategy are now considered. It can be seen from Figure
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4.16 that, to generate code for a loop rvhich includes both z and y, three values of y

must be retainecl for use in the loop body. This can be determined from additional

analysis of dependencies between variables. Further, it may be necessa¡y to evaluate

some ind¡ctive variables for a few steps, before the main iteration commences' For

example, in

x

v
fi-rst

Figure 4.16. An extended window.

ffrst s ûrst next y

!1 must be evaluated before r0 cân be computed. Hoflmann's analysis involves the

introduction of mappings rvhich map expressions into "extended terms", in which oc-

curlenees of ûrst end next have been replÐced by qualified names. These qualified

names are used as variables in the generated code, and thus provide the extlâ storage

needed to implement the expanded window of, for example' Figure 4.16.

rFxt



CHAPTER 5

A DEMAND DRIVEN IMPLEMENTATION OF LX

5.1 Introduction

In the implementation described in Chapter 4, an LX3 variable is identified with

the sequence of values which flows along a particular arc of a data flow graph. In LX3

variables, are defrned in such a way that each is seen as part of a loop, and successive

values of each can be computed on successive iterations of the loop.

There are two principal deficiencies in this loop-based approach. Firstly, Lucid and

LX programs may use non-pointwise transformations of histories; it has been pointed

out, in 92.8.2.2, that definition of such transformations in LX3 is impracticable. The

second is the problem of redundant computation ($t.A); the data flow graph generated

from an LXB program does not compute the minimal solution [AshW76] of the program.

One reason for this is that history values ere computed pointwise, that is one history

element per loop iteration, even if the value is not used at that iteration. A¡other

follows from a basic characteristic of data flow, namely that computation is driven by

the availability of data, an evaluation strategy which permits highly parallel Proglâ,m

execution, but at the expense of sometimes computing values that are subsequently

discarded.

A data flow implementation based on the demand driven operational semantics

given in $2.3.f overcomes both of these difficulties. In this chapter, such ¿n implemen-

tation of LX is described, for the dat¿ flow interpreter described in Chapter 3. The

chapter concludes with a cliscussion of possible improvements to the implementation

scheme.

The steps in the translation of a complete example LX progrâ,m are presented is

some detail in Appendix 4.
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5.2 A simple example

138

In compiling an LX program into demand driven data flow code, the following

method is used. Firstly, each deûnition of the program is compiled into a data flow

network. A function template is created from each such network; each template is

defined with one parameter, a demand, and one result, a value. A use of a definition is

compiled as the application of the function template corresponding to that definition;

this creates an activation of the template with â,n a.ppropriate demand as parameter.

The purpose of a function activation is to compute a single value (rather than a history)

corresponding to the demand it receives. To do this, it will often demand v¿lues from

other definitions; it has been shown, in $2.3.1.1, that the demand number of every

such value can be derived from the incoming demand number. New activations are

thus created as needed, with one activation fOr every value needed.

These ideas are illustrated in the translation of the following three definitions.

i: llbyi+l
j: 3*i
t:¡3¡ioq3thcnjclsl.

The function templates shown in Figure 5.1 are generated f¡om these definitions; in Fig-

ure 5.1 and elsewhere, function templates are represented as in Figure 5.2, with one arc

entering, carrying a demand, and one leaving, for t¡ansmission of the demanded value.
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Figure 5.1. Function Templates for variables i, j and r.
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Figure 5.2. Representation of a function template.

Consider the template for i. The area labelled A represents e data flow network

which transforms the incoming demand d ¿ccording to the DT for the operator fby

given in $2.3.f.1.3; it also returns the value received in response to the demand. In

the template for j, the demand number is usecl, unchanged, to activate a computation

of r; this is consistent with the DT for *, a pointwise operator. The area labelled

B in the template for r, implementing the DT for asa-then-easa ($2.3.1.1.3), issues

demand numbers 0, L, 2, and so on, to the network representing the condition of the

asa definition, until the value úru¿ is returned; the corresponding demand number is

then sent to the expression component of the asa definition. The value yielded in

response to this demand is returned directly as the result of the template for r.

The execution of this program fragment is now traced. Execution commences

with the arrival of a demand (from a source exte¡nal to the program) for l[r[g, which

triggers the creation of a function activation from the template for r, and transmission

of the demand to that activation. The variable r is defined using an asa definition,

which requires that values of its condition be demanded until a value true is returned.

Hence, a demand number of 0 is then propagated to both the function application

r and the constant instruction "3". The latter is enabled immediately, and fires to

produce a value 3 at an input of the EQ instruction. The function application causes

an activation to be created from the function template for d, to which the demand

number 0 is transmitted. As shown above, the demand will in turn be propagated

to the constant "1' (the left operand of the fby operator in the definition of r), the

value I returned from the activation, and propagated to the EQ instruction. The

comparison fails, so a demand number of I is transmitted to the FT for i, resulting in

the creation of another activation of d, termed i1. V/ithin d1, the right hand operand

of the fby is chosen, and a demand number I - I : 0 is propagated to both the
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Figure 5.3. Demand flow in the exâ"mple of Figure 5.1

eonstant instruction and å, further activ¿tion of r, rg. The activation rg returns the

value 1, as deseribed above, the addition instruction fires, and the value 2 is returned

from 11. The compâ,rison again fails, another activation of i is created with a demand

number of 2, producing the value 3. The test now succeeds, a demand number 2 is

transmitted to an activation of j, and propagated to yet â,nother activ¿tion of i. A

value I is eventually produced from the activation of j, and returned as the result of

the program. Figure 5.3 illustrates the flow of demands and the return of values.

It is apparent from this description that, although the implementation does not

attempt to compute âny elernents of histories which are not required to determine the

solution of a program, recomputation (91.8) of particular elements occurs. In $5.4, a

means of reducing the extent of this recomputâ,tion is discussed.

5.3 The implementation

The implementation consists of a compiler and ¿ data flow interpreter. The eom-

piler analyzes the progr.e,m source, producing an initial heap which includes function

templates ând appropriâte tables. The initial heap provides the initial configuration

for the execution of the progrÐm by the data flow interpreter.
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In the next section, the representâtion in data flow of the principal components of
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the semantic model of an LX program ($2.3.1) is described. The tr¿nslation schemes

used for LX language construcbs are presented in subsequent sections.

5"3.1 Representat¡on of Demandt and Environment Tables

The principal structures of the semantic model, defined in $2.3.1.1, are the demand

and the environment table (ET). The data flow interpreter directly supports binary

trees as objects on the heap, with instructions for the manipulation of trees. Demands

and environment tables are therefore rePresented as binary trees.

A demand is represented by a tree, the lef[ branch of which is a demand number,

and the right, the tree representation of an instance, defined ($2.3.1.1) as the pair

( Teú, Ef r. The textual component of an instance is represented by the Uid of a

function template (FT); any such textue,l referenee can be satisfied by using the Uid

of a template on the initial heap. An instance is also represented by a tree, the lefü

branch of which is the Uid of the appropriate FT, while the right branch is the tree

representation of an ET.

An BT has two components, namely FreezeVal, an index at which histories are to

be frozen and trrsú, a list of identifer associations. Again, an ET is represented by a

tree, the left branch of which is FreezeVal, and the right the tree representation of .Ûrsú.

Each list element, defined in the model as

( Ident, (Jser, Newldent),

is also represented by a tree, with the following structure:

/\
I

I
uidl I

I
I¡gt1

\
\
¡t1d2

U¡dl and Uidg repres ent ident and N¿urldenf, respectively; an identifier is represented

by the Uid of the function template generated from the text which defines the identifier.

)t,

Í
årj
¡fl
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The User component is represented âs &n irrstance InstL, the representation of which

was described above.

The data flow interpreter supports primitive operations for the manipul¿tion of

trees. These operetions can be used to def,ne higher level operations appropriate to the

structures of the semantic model. The following operations have been defined in the

interpreter, but can be expressed in terms of the more primitive operations on trees:

I

II

I
tl'-li

.l
,'

I

I

I

I

DCons
DNum
DInst

DNUmD
DNUmI
DNum0

ICons
IFT
IET

ETCons
ETFrz
ETList
LCons

LAppend
LHd
LN

LIdent
LUser

LNewld

eonstruct a demand from a number and an instance
select the Num eomponenb of a demand
select the Inst component of a demand
decrement by I the Num component of a demand
increment by I the Num component of a dernand

set the Num component of a demand to 0
construct an instance from a Uid and an ET
select the Uid component of an instance
select the ET eomponent of ¿n instance
construct an ET from a FreezeVal and a List
select the FreezeVal component of an ET
select the List component of an ET
const¡uct a list element f¡om 3 input components
append one list to another
select the element at the head of a list
select the tail of a list
select the Ident component of a lisü element

select the User eomponent of a list elemeut
select the Newldent component of a list element.

takes a list .[' and an instance d as arguments, and produces a list
in which the Us¿r component of each element of .Û is replaced by
i
takes a list .[ and the Uid of an FT rd, searches .t, and returns
the entry whose ident component is id.

hìi
ill

fl

In these definitions, "list" is a list of identifier associations of the form described above.

Much of the information about the forrnals and globals of a clause needed for the

tríst component of an ET can be determined by the compiler; for example, the ldent

componetrt of a ^List is known at compile time. It is thus convenient to assume that

the initial heap contains structures representing partially completed lists, and to define

the following operations, which permit ¿ concise expression of the list manipulations

required by the model:

LUpd

LFind
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5.3.2 Representat¡on of primitives

t44
t'^.

i
Many of the primitives of the semantic model are concerned with information

which can be derived at compile time. The primitives Class, Frozen and ,Suöjecú are

in this category, as are the lists of identifiers Formals and Globals, and the list Ac-

tuals. The primitives Createlnstance, CreateTable and Table are implemented using

the operations on structures defined above; as indicated above, some structures can

be partially constructed at compile time. Details are given below of how the compiler

uses available information in constructing objects on the initial heap.

The representation of the transmit primitive depends on the context in which it is

used. For example, the transmit primitive in the DT for a program $2.3'1.1.1) uses the

envof option and transmits a demand to the definition of result. The implementation

of the primitive requires the construction of a demand, using the DCons operation, and

the application of the function template for r¿sult. In the case of àn expÌession, the

representation of transmit depends on whether the demand is t¡ansmitted to a node

or to a leaf of the expression tree. Details of the representation in a given context are

included as part of the descriptions of function template construction which follow.

5.3.3 Compilation of program constructs

5.3.3.1 Program

As in Chapter 4, a single pass, tecursive descent compiler is used, but no depen-

dency analysis is performed by this implementation. Compiler actions can be related

directly to the productions of the definition of LX syntax (Table 2.1); in the case of

PROGRAM, the compiler firstly records type and othe¡ information about the program

name, the globals and the frozen variables. It also constructs, on the initial heap, a

partially completed list of global identifiers, in the manner deseribed in $5.3.1. For the

globals of the progTam, special function templates are constructed, which incorporate

facilities for communication with the external environment. Bach deflnition associated

with the program is then comPiled.

I
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Figure 5.4. Function bemplate scheme for PROGRAM.

Finally, the function template for the program itself is constructed, using the

data flow scheme shown in Figure 5.4, in which the value arriving from the lefb is the

demand which triggers the program. In the figure, lp, is a eonstant, the Uid of the

aforementioned list of global identifiers const¡ucted by the compiler. The constanl eú

is the Uid of an instance used to represent the external environnent. The constant

Uidpr is the Uid allocated by the compiler for the function template of the program

itself; it represents the text of the program within the instance which is created by

ICons and used in the propagated demand. The latter is shown as being transmitted to

the definition resulú; this is an abbreviation for the application of the function template

lor result, the expansion of which is given in $5.3.3.4.

5.3.3.2 Deftnition

From the syntax clefinition of LX (Table 2.f), it can be seen that there are three

categories of DEFN, namely a deelaration, an equation, and a define clause. The
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actions taken by the compiler in analyzing an LX definition Àre now describerl; they are

determined by the requirement to maintain internal information about the program,

and the necessity to implement the specifications of the DT.

A declaration specifles the type of an identifier, and hence the compiler need

perform no code generâtion actions, but simply records appropriate information in its

symbol table.

Consider the case of an equation. Given that the primitives Class and Subject

can be evaluated by the compiler, it can be seen that the DT for a definition entry

$2.3.1.1.2) specifies that an incoming demand be propagated to the right hand side

of the equation. The compiler is thus required to construct a function template from

the expression on the right hand side of the equation; the method used to do this is

considered in detail in the next section.

Finally, consider the compilation of a define clause, the general form of which is

as follows:

deflne SLIBJECT f PARAM {, PARAN{ } I

Iuetng IDENT{ , IDENT } |

Ifreezlng FREEZELIST ]

DEFNl,IST
edeûne.

The subject identifier is entered in the symbol table to enable evaluation of the predi-

cate Subje¿t when required. A list of formal parameters is added to the initial heap, for

use, as described above, in eonstrueting an BT. As described in $2.3.1.I.2, ¿ definition

entry exists for each identifier ¿ccessible within a clause; accordingly, a function tem-

plate must be provided for each such identifier. The case alternative "formal, global"

of the DT for a definition entry specifies how the template is to be constructed. Por

example, if the formal parameter r is not frozen, the function template for its defini-

tion entry in the clause will be constructed according to Figure 5.5. The const¿nt Uidt

in Figure 5.5 is the Uid which represents the identifier ¡. In this template, the t¡ans-

mission of the demand is implemented by invoking the function template identified by

the table entry, with the newly constructed demand as its parameter. If x is frozen,
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Figure 5.5. Function template scheme for an unfrozen formal påra,meter

the instruction DNum is replaced by a network which selects the Freezelal component

of the ET associ¿ted with the incoming demand.

The using list specifies the globals associ¿ted with the deûne clause. The action

taken by the compiler for each identifier on this list is the same as for a formal Pa,ram-

eter of the clause. In the case of the freezing list, sufficient information about each

entry is recorded in the symbol table to permit the compiler to evaluate the primitive

Frozen when required.

Af[er compiling each entry in the definition list, the compiler eonstructs a function

template for the subjeet of the clause, as specifred by the DT ($2.3.1.f .2). The scheme

used is almost identical to that presented for the main program, except that the list
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input to the ETCons operâtor, â,s shown in Figure 5.6, is formed diflerently. In this

frgure, the lower input is the demand which triggers the function template; it is used

also to trigger the constants l¡o and Ist, Uids of the partially constructed lists of

formals and globals, respectively. The input uf is the LIid of the instance in which the

use of the clause occurred, and is transmitted from the point of use. A list of Uids of

function templates which compute the values of actual parameters (the list Acúucls of

$2,3.1.f .2) is also constructed at the point of use, and included rvith the demand (also

see $5.3.3.4).

Figure 5.6. Data flow scheme for the list component of an ET

5.3.3.3 Right-hand-side and expression

Here, as in $2.3.1.1.3, the syntactic notions RHS and BXPR will be considered

together â,s expressions, as both consist of operators and operands. The compiler

constructs a function template from each such exp¡ession, rvhich again is assumed to

be in tree form.

The root of an expression tree can be viewed as the operator of an expression,

and the branches of the tree as operands. The DTs given in $2.3.1.1.3 specify the

transformations appropriate to each operator; each DT can be represented as a data

flow network which transforms an incoming demand. A data flow network which

DInst

uæduÞd

IÀpeeld
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âccepts the transformed demancl and returns the demancled value is associated with

eâ,ch operand. As eaeh operand is in turn made up of operators and operands, this

const¡uction is applied recursively to determine the form of the function template. The

reeursion terminates when an opera.nd is either a constant or ån identifier; the action

taken by the compiler in this case is described in the next section.

It should now be clear that the general pattern of Figure 5.7 can be used in

constructing a data flow network for any (operator, operand(s)) pair. The area labelled

B in the figure is a data flow netrvork constructed using the appropriate DT, with any

addition¿l data flow instructions required to ensure that the values demanded are

returned correctly; the return of values is considered in more detail in $5.3'3'5' The

boxes o1 and og represent the operands of the expression'

Figure 5.7. A general data flow scheme for expressions.

To determine the data flow network which implements the demand transforma-

tion required in the area labelled B in Figure 5.7, it is necessary to associate a data

flow netrvork with each of the operator DTs of $2.3.1.1.3. As examples, the networks

associated with the operators if-then-else-eif and fby are given in Figure 5.8.

5.3.3.{ Identifier¡ and literals

a

a

B

The previous section described the analysis of an expression tree, and associated
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d d1

\

d2

u2

t3
d2

(a) eonditional (all control aÌcs are from u1)

(b) fby (return of values not shown)

DNum

Eo

DInst

DNU¡n DInEt

DCons

DCons

Figure 5.8. Dat¿ flow schemes for conditional and fby
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compiler actions. Identifiers and literals are encountered as leaves of the expression

tree. In the case of a literal, the demand can be satisfied, and it is not necessary

to propagate it further; compiler actions associated with the return of the value are

deseribed in the next section.

In the case of an identifier, the compiler generates code which cå,uses invocation

of the function template associated with the definition entry for the identifier. Firstly,

consider an identifier i rrsed with no parameters. In $5.2, a, use of such an identifier

was represented as the invocation of the corresponding function template using the

scheme shown in Figure 5.2. This scheme is now regârded as an abbreviation for

the more detailed scheme shown in Figure 5.9, in which Uid; identifies the function

template associated with r, which, as noted in $5.3.3.2, ean always be determined by

the compiler and inserted as a eonstant in the generated code.

Figure 5.9. Data flow scheme for a use of ¿n identifier

Essentially the same scheme is applicable when d is used with actual parameters.

As discussed in $5.3.3.2, information about actual parameters and the instance in

which the use of i occurs, must be transmitted to the function template Uid;, where

such information is necessary for eonstructing ân ET; however, the scheme must be

modifred slightly for this purpose. Perhaps the simplest way is to suppose that the

information is carried with the demand; the scheme can then be used unchanged, but

the representation of a demand ¡edefined. A¡ alternative is to pass the information

as â,n additional parameter to the APPLY instruction. The former approach has been

implemented, but further details are not given.

d

Uidi

ApPlv
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5.3.3.5 Return of values

t52

The model of $2.3, and the descriptions of previous sections, are concerned prin-

cipalty with the propagation of demands and the construction of data flow networks

which implement demand transformations. The value return path, or \iRP, is data

flow code which enables the return of demanded values; this section is concerned with

the construction of such paths by the compiler.

\{'hen a demand is propagated to a literal, the demand is satisfied and the value

of the literal can be returned to the point of origin of the demand. The compiler

implements this by representing the literal as a CONSTANT instruction, and the first

stage of the VRP as an arc directed to a point in the function template which can

either use the value, or continue its transmission along the !3,P. The arc can always

be constructed using statically determined information; either the demand came from

within the function template, or the literal is the only component of the expression,

and hence of the function template. In the latter case, the value can be returned as the

result of the function template, whereas in the former, the literal must be an operand

of an operator, and the value can be directed to the network associated with that

operator.

In the construction of a function template from an expression, it is clear th¿t

values can be regarded as returned from the leaves of the expression tree. The oper-

ator of which the leaf is an operand contributes to the VRP with some transfotma-

tion of the value returned to it from the leaf node. For each operator, a definition

is now given of the transformation required to describe how the value or values re

turned from each operand are to be used in determining the v¿lue u propâga,ted on

the VRP in response to the original demand d. In the definitions which follow, u¡ is

defined as the value returned from operand ¡ in response to demand d; (see Figure 5.7):
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arithmetic and
relational operators

unâry operators
first
next
fbv

if-then-else-fi
asa-then-easa

wvr-then-ewvr
upon-then-eupon

u - ut op U2

u:oPUl
u-al
U:UI
if d.À¡um: 0 then u-at else u:u2
íf u1 then u-uz else u:u3
v-v2
!-!2
v:v2.
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Data flow networks constructed from these definitions are included in function tem-

plates at appropriate points.

A \|RP segment must also be constructed at those points in a function template

which correspond to the use of the transmit primitive in the DTs for PROGRAM ¿nd

definition entry; for example, within the latter, the statement

transmit d envof 11 to resul

clearly implies that a value will eventually be returned from the function template

corresponding to result. In this and similar cases, the value returned ean be considered

the result of this function template, and an appropriate årc is constructed by the

compiler.

5.¡l Discussion

Three significant ¿chievements emerge from the work of this chapter. Firstly,

the semantic model itself ha.s been validated by examining the execution of a repre

sentative sample of IX progra,ms. Secondly, it has been shown that the operational

semantic model of I)( ($2.3.1) can be used in conjunction with a recursive-descent

based translator to produce quickly a eorrect implementation of LX, thus demonstrat-

ing the usefulness and importanee of a precise operational model. Thirdly, it has been

shown that demand driven computation cân be expressed using purely data driven

schemes, and used to overcome the problem of redundant computation.

A characteristic of the implementation is the "interpretive' nature of the code gen-
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erated, in the sense that the target language is effectively a high level virtual machine

which incorporates directly mâ.ny of the primitives of the semantic model. \{'hile this

is advantageous for developing a prototype implementation, such as described in this

chapter, it is inefÊcient. There are two possible directions for improvement in this area'

Firstly, the virtual machine could be refrned so âs to be closer to specific data flow

machines. A second interesting possibility would be to design a physical realization of

the virtual machine itself.

The implementation potentially increases parallelism in that it spawns many acti-

vations in response to the propagation of demands, with each such activation exploiting

the parallelism inherent in data flow. A significant defieiency of the implementation is

that many of the activations so spawted attempt recomputation of the same history

element. A similar effect was noted by Maurer ¿nd Oldehoeft [MauO83] who, in trans-

lating a purely functional language to d¿ta flow graphs, treat a structure element a^s a

function, and observe that although such a function is not evaluated until it is applied,

such evaluation must occur each time the element is accessed.

It is clearly essential that steps be taken to alleviate this problem of recomputation.

A¡ effective method of eliminating the necessity to recompute a value iS to store that

value the first time it is computed. The possibility of introducing such a notion of

storage into the semantic model and the implementation is now discussed.

" It is proposed that storage be provided for each variable in the main program, and

dynamically for each use of a clause subject; it is understood that use of a subject gives

rise to an instance of its defining clause in which storage is similarly associated with

variables and uses of subjects. In the existing semantic model ($2.3.1), an instance of

a clause is created for the computation of a single value. In extending the model in

this way, an instance becomes a repository for the values contained in all associated

histories, which are included in the entries of the instance's ET.

Facilities must be provided to detect the first demand on a history, to create

associated storage, to add and retrieve values, and to release storage. The first two
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are illustrated by considering the main progrâm. Assuming that a heap entry for

an instance of the main program is preallocated, the DT (Figure 2.4), and the FT

which implements it (Figure 5.4), can determine whether or not the instance has been

entered previously, and, if not, initialize it; propagation of a dem¿nd for the first time

to a definition entry within the instanee causes allocation of storage for that entry.

Instances which create other instances can use similar techniques to detect the first

demand propagated to an instance.

Values can be added to storage at their site of computation; in implementation

terms, an "append" operation can be inserted at a suitable point on the \IRP ($5.3.3.5).

Ret¡ieval of values from storage cân be arranged by intercepting a demand before it is

propagated to a particular definition entry, and checking the storage associated with

that entry to decide if it is necessâry to transmit the demand.

The release of storage is a little more complicated. Each instance is now responsible

for a history, not a single value; in the latter case, the instance and its storage can

be deallocated when the value is returned (exactly as for a function in a eonventional

language). As a history is potentially infinite, it is usually necessary to perform some

program analysis to ûnd situations in which storage can be released. For example, a

quiescent definition (see $2.3.2.2) can be replaced by a single value. Program analysis

could be used in many cases to provide bounds on the amount of storage required.

Aa important aspect of compilation is optimization, which was not considered at

all in $5.3. Some possible optimizations â.re now discussed.

If a notion of storage is introduced as suggested above, various storage optimiza-

tions are possible. As already mentioned, it may be possible to determine bounds on

the storage required for some histories. If the same definition is used in several elauses,

it should be possible to share storage by using one copy of the definition. Some use

of memo functions [Mic68] is possible; this is the technique of assoeiating a table of

argument values and function results with a function definition, to reduce recomputa-

tion. Clearly, IX clauses cen generally not use this technique, because the arguments
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are inûnite histories. However, a clause v¡ith all its parameters and globals frozen acts

exactly âs a conventional function, and the technique is then appropriate.

The implementation performs conside¡able manipulation of dem¿nds; optimiza-

tions which reduce demand handling in appropriate situations should be investigated.

Similarly, it could be arranged in many cases for values, particularly constants, to be

returned directly to the originol point of dem¿nd, rather than following the complete

VRP.

Machine specific optimizations should also be explored. For example, techniques

appropriate to the Manchester machine for balancing the data flow graphs of expres-

sions, and for common subexpression elimination have been investigated by Jones,

Kidman and Morello [JonKMSS].



CHAPTER 6

A HYBRID IMPLEMENTATION SCHEME

6.1 Combining the data flow and demand driven schemes

The implementations of tlvo different strategies for the translation of LX programs

to d¿ta flow graphs have now been described in Chapter 4 and in $5.3 respectively. As

mentioned previously, the former is restrictive in that it can compile only a certain

class of programs corresponding to the subset LX3, but involves a straightforward

transformation into code "in the data flow idiom"; in fact in many ways, an LX3

progrâm can be viewed as a high level representation of a data flow machine'level

ptogram. The latter is general in that it can translate any LX program to data flow

graphs, but the graphs ate somewhat "forced" in terms of their adherence to a natural

data flow idiom. Stated another way, a.n LX program cân be represented as a data flow

graph which is most suitably interpreted on a "virtual machine" somewhat removed

from a re¿listic data flow machine. Consequently, it is inefficient as a program for a

data flow machine.

Such a data flow program can, of course, be made more efficient by applying any

of several optimization techniques, for example, those discussed in $5.a. However, a

different approach is explored in this chapter. It is proposed that the two strategies

mentioned above should be combined in such â, wâ,y that the networks of Chapter 4

are used except when demand driven computation is required by the source progra,m

(for example, to give control of input and output, as discussed in Chapter 7). This

hybrid approach complements the use of optimization a¡i a, meâns of producing more

efñcient target language progrâ,ms; it can also be seen as increasing the expressiveness

of the language LX3.

Extensions to the language LX3 a¡e presented which, subject to approp¡iate re

strictions, enable progrâ,ms optionally to specify a demand driven component as part

of the main program or any define clause; the definitions of this component are to
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be implemented in the dem¿nd driven mânner of $5.3, lvhe¡eas other definitions a¡e

to be transl¿ted using the techniques described in Chapter 4. The implementation of

the interface between the two components is discussed, and an example of program

translation is presented. Finally, possibilities for widening the domain of applicability

of the scheme are discussed.

6.2 Language extenstons

Firstly, some terminology is introduced. Two sets of identifiers, termed DF and

DD, are associated with the main program, and each define clause. The definition of

e¿ch identifier in DD is to be translated using demand driven techniques. All other

identifiers are in DF, and their definitions are to be translated into data florv networks,

referred to as the data flow componenú, DFC, of the elause. Similarly, the networks

which result from the translation of the definitions of identifiers in DD comprise the

demand driven componenú, or DDC, of the clause. Occasionally, the notation DFz is

used to denote the set DF associated with a particular clause subject z;DD¿, DFCZ

and DDCz are used similarly.

The following rules describe the proposecl language extensions, and the circum-

stances in which they are applicable.

(1) The main progrâm identifier is in DF.

(2) Variable cleclarations within a clause 1!os-e subject -z ls il.DF (including' ' the main program elause) may be _s_pecifie4_ry !o _dd; in this context, the
BNT definitio"ns of DBCLARATION and GLOBAL given in Table 2.1 are
replaced by the following:

DECLARATION ii:- TYPE IDENT [tn ddl { , IDENT [lu ddl ]
GLOBAL ::: TYPE VAR ln dd

Within such a elause, an identifier specified as in dd is included in DD¿,

othe¡.¡ise in DFr. In general, the formal parameters and global v¿riables of
z a¡e included in DF¿, with the exception of variables specified as global to
the main program, which are included in DF,rro;r,.

All identifiers declared within a clause whose subject z is in DD are included
in DDz; DFz is empty for such cl¿uses.

(B) The definition of an identifier ø in DD¿ may be written according to LX
syntax, using identifiers from both DF¿ and DD¿, provided that the defr-

nition of ø does not use any identifier y in DFz which is the subject of a
parameterized define clause.
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( ) The definition of any identifier ø in DF must conform to the syntax and

restrictions of LX3, except as modifìed by these rules. DD identiflers may

be used in the definition of ø; in the case when ø is a subject, any DD
subject inherited by r must freeze all its parameters and globals.

(5) Consider an identifier y in DF¿, used by the definitions of one or more

identifiers in DDr. These defrnitions must be'rv¡itten in such à'way thâ,t

DDC' does not issue any demancls for values of [yn which are in the
"future" of gi relative to the current sbate of DFCz.

Rute (f) ensures that the main program is regarded basically â^s ân LX3 program

extended to have both a DFC and a DDC. Note that the declarations of the locals and

globals of the main program determine DF*o;r, and DD-oi'i DF-oi* does not include

the main progrâm identifier itself, which is best regarded âs å DF identifier external

to the program.

Rule (2) ensures that DF¿, is empty for a subject ru in DD, so that only LX3-based

clauses have both a DFC and a DDC. Al LX3-based clause z has f¡ozeu global variables

and parameters; in effect, the environment which satisfies the definitions of the clause

is determined in terms of these frozen (constant) values, and the definitions of the

Iocal variables of the clause. An important consequence of this is that demand flow

within DDCZ will always be confined to identiûers which a¡e either local to z or have a

constant value within z. In other words, it is never necessâry to propagate a demand

outside z, hence DDCZ requires no information about the environment global to z,

a fact which greatly simplifies the task of communicating environment information

between the components.

Although the main program is lX3-based, Rule (2) stipulates that its globals are

included in DDrrro¡o, which ensures that input f¡om the external environment has a

demand driven semantics. There are trvo advantages in using sueh semantics. Firstly,

only those input values actually required by the program need be supplied to it; data

driven input semantics may require input values to drive a part of the computation

which simply discards the values. Secondly, because an input value can be supplied

in response to a demand, or request, from the program, a dialogue câ,n be established

with the program. See $7.4.4 for further discussion of this topic.
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Rule (3) ensures that identifiers in DF¿ can be represented uniquely in DDC2, and

that the required representâtion can be determined statically. In $6.3, it will be seen

that a variable y in DF¿ can be represented in DDC, by a funcbion template which

accesses a structure containing values from [y[. If y were a parameterized subject,

one such structure would be required for each use of y in a definition of an identifier

in DDa; the number of such uses eânnot be determined statically in the presence of

recursion. A consequence of Rule (3) is that data flow procedures in DFC, are invoked

only from DFCZ.

Consideration of Rule (4), in conjunction with Restriction ( ) of the definition of

LX3 ($2.3.2.1), leads to the conclusion that r¿su/ú must be in DF, and part of a loop.

Hence, each LX&based clause has a loop structure determined by an asa definition;

this ensures that the teehniques of dependency analysis and loop synthesis described

in $a.3 remain applicable to the extended language. A DD subject which freezes all its

globals and parameters can be inherited, .as such a subject is defined in terms of values

known to the DFC; similarly to an LX3 clause, it can be regarded as a subcomputation

of an outer loop ($2.3.2.2).

Rule (5) is a restriction which cannot be checked statically, but is imposed to

prevent deadlock. The rule is analogous to Restriction (5) of 92.3.2.1, and prevents

DDCZ from attempting to access any values which are yet to be computed by the DFC.

Further explanation is given in $6.4.

6.3 Schemes for the extended language

In this section, schemes used in the construction of the DFC and the DDC are

described. For the cases in which either a clause subject is in DF, and DD for the

subject is empty, or the subject is in DD (hence, all its local identifiers are in DD), the

schemes of Chapters 4 and 5 respectively, apply unchanged. Consequently, schemes

are considered only for a clause u¡hose subject is in DF and which contains both a DFC

and a DDC.
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As described in Chapter 4, the data flow program produced from an LXB pro-

grâ,m has the following charncteristics. Firstly, there is a function template (FT) for

the main program, and for each deûne clause. Each such FT is composed of inter-

connected circulato¡s, synchronized by control values generated by the termination

condition network. The circulators generate the v¿lues in the history of an LX3 v¿ri-

able consecutively, on the assumption that each value can be computed from previous

values.

In contrast, an LX progrâ,m is translated into an FT for each definition. An FT is

invoked, with a demand âs parameter, for each required value of a history.

The construction of the networks of the DDC is essentially the same as described in

$5.3, except that a different construction is needed for uses of identifiers in DF; details

will be given later. Attention is now given to the design of the interface between the

DFC and the DDC, and the schemes used in the DFC to implement this interface.

The interface between the DFC and the DDC serves two important purposes.

Firstly, by storing values computed by the DFC, it enables the DFC to service demands

issued from the DDC. Conversely, it permits the DFC to transmit demands to, and

receive values from, the DDC.

These objectives can be achieved as follows. A history structure is built within

DFC' for each variable in DF" which is required to supply values to DDCz. A special

FT is generated within DDCZ for each such DF variable; this FT interprets a demand

for a value as an access operation on the appropriate history structure. Further details

are given in $6.3.2.

The history structure is represented in the data flow model a^s ân early completion

data structure (ECDS) [DenSl]. An ECDS can be used before it is fully defined; this

property is used here to separate the actions of creating, writing to and reading from

the structure. The undefined structure is ereated initially in the DFC, and transmitted

to both the DFC, which generates its component values, and to the DDC, which accesses

the values as dictated by the flow of demands. See $6.3.1.2 for more details.
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The histor]¡ structure is the mechanism used by the DFC to supply values to the

DDC; a request from the DDC for a value computed by the DFC causes the structure

to be accessed. The DFC obtains a value from the DDC by transmitting the current

DFC iteration number to the DDC as a demand number, as desc¡ibed in $6.3.f .1 below.

6.3.1 DFC schemes

The schemes used to construct the DFC are essentially those presented in $4.2;

additional schemes required for the interface to the DDC are now described as modi-

fications of those presented in Chapter 4'

6.3.1.1 Construction of a demand and invocation of a DDC FT

Consider a clause with subjecl z in DF, in which the deflnition of some variable

in DFz uses an identifier z in DDz. DFCZ constructs a suitable demand, and uses it

to invoke the relevant FT in DDCz. The required demand number is the iteration

number of the loop from which the demand is transmitted. The iteration number is

made available by including in DFC¿ a circulator corresponding to the definition

t.n 0 fby i.n * L.

A demand also contains an instance component, which is used to pass environ-

ment information to an FT. However, it is unnecessary for the demand entering the

DDC from the DFC to cârry any such information because, in fact, there is no global

environment to be carried forward. This can be understood as follotvs. The ET of an

instance is used to resolve uses of global identifiers and formal parameters in terms of

instances through which the demand has passed in arriving at the current instance;

in effect, each such previous instance contributes to the current environment. Because

the clause subject z itself is in DF, the parameters and globals of the clause are frozen,

and are represented in the DFC as simple circulators which make the single, frozen

value available to each iteration, as in a local, constant definition. Consequently, the

ínstance component of a demand entering the DDC from the DFC can be empty.
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l.n

Figure 6.1. A scheme for the invocation of an FT in the DDC

The FT representing r cân be invoked from DFC, according to the scheme shown

in Figure 6.1, in which r.n is supplied by the circulator described above, and FT, is

in DDCz. A dummy inst¿nce is created; components of both the ET and the instance

can be defined arbitrarily.

Consider the incorporation of this scheme into the LX3 translation scheme. It

can be seen that the use of ø is effectively a use of the DF inductive variable i.n.

Conseqrrently, rvhen it is found necesså,ry to create a link from z, links can be created

instead from f.n; if the use of ø is qualified with either first or next, values can be taken

from the appropriate characteristic address of r.n. Similarly, dependency analysis and

gate generation can be based on i.n.

6.3.1.2 Construction of history structures

Consider the case in which y is an identifier in DF¿, used within DDCa. An

¿dditional eirculator is included in DFCz to generate a strueture .E[ containing values

in the history flyil. fUe history structure can be viewed as the tree shown in Figure
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ô.2, the toot of which is the original st¡ucture allocated by the compiler, and in which

Y denotes the history fiyl.

/\
Y0+

/\
ï1 +

/\
t2

Figure 6.2. A history structure

The circulato¡ cor¡esponds to the definition:

H FirstH lby H ++ g.

,i

h

I

FirstH represents a network which adds ys to the initially undefined history structure

for Y allocated by the compiler. The notation ** indicates an operation which takes

the current values of the history structure and Y and produces an updated history

structure according to the scheme given in Figure 6.3, in which the operation PAIR

creates â ne'w, undefined ECDS. MKR inserts the newly cre¿ted ECDS into the right

component of H, while MKL sets the left component of the newly created structure to

the current value of. Y; the right component remains undefined.

6.3.2 A DDC scheme for accessing DF identifiers

As mentioned above, an identifrer y in DF can be represented in the DDC by a

special FT, shown in Figure 6.4, which accesses I/s, the history st¡ucture containing

values of [yn. In the figure, the network labelled Access stands for a scheme which

accepts a structure input .ðf and an index r, applies the R operator to fl i times, and

then the L operator, thus accessing the correct value in I/. Because .ã[ is an ECDS, if

an R or L operation is applied to an undeûned strueture, the operation will be queued

until the structure element is defined.
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Figure 6.3. A scheme for appending a value to a history structure.

Figure ô.4. A DDC scheme for accessing DF identifiers

6.{ An example of program translation

Consider the LX3 ptogra,m shown in Figure 6.5, the translation of which is de

scribed in detail in Appendix 3. It can be described operationally as producing a

result, formed by first extracting, under a condition specified in an asa definition, a

value from [ö]1, where ö is defined in the progrâm using an equation, and secondly

finding the factorial of that value.

Suppose that the program is to be generalized in such a way that it computes the

factorial of a value, not from [All, Uut f¡om some nonpointwise transformation of [ö[.

LX3 is not suitable for expressing such functions, making it necessary to rewrite the

progra,m in LX.

l
Y

H

d

v

Pair

MKR r,lkr

DNln Hy

Àccess
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prog Fact;
lnt b, c,Fac,result;
dcfrno Fac (lnt n) frccrlng rll;

lnt result, i, f;
result:a3t i cq n thcn f crsr;
i: I fby i+l;
f: 1 fby f*ncrt i;

cdclnc;
c:Far(b);
b: 1 fbt b+1;
result:¡3¡ nert b cq 5 thcn c G¡s¡;

cpfoS

Figure 6.5. Factorial program.

Horvever, it would be preferable, for rea,sons of efficiency, to use some of the data

flow graphs produced by the LX3 implementation, particularly those which compute

factorials. Using the language extensions proposed in this chapter, the program of

Pigure 6.6 is suggested, in which the definition of filter defrnes the transformati'on to

be applied to å.

prog Fact;
lnt b, c, Fac, resulü;
lnt filter ln dd;
dcllnr Fac (lnt n) frcozlng rll;

{as iu Figure 6.5}
cdcfnc;
dcffne filter (lnt p);

{definitions written in LX}
cdcf,nc;
c:Far(filter(b));
b: 1 fby btl;
resulü:a3a ncrt b cq 5 thcn c c¡3a;

cprog

Pigure 6.6. Extended factorial program.

As it is the purpose of this section to illust¡ate communication between the DFC

and the DDC, the above progrâm is simplified by removing the factorial comPutâ,tion

defined by Fac (the translation of rvhich is discussed in Appendix 3) to give the program

shown in Figure 6.7. In addition, filterh*s been given a specific definition, using a global

from DF, and the asa definition in the main program has been simplified.

Note that ó has been included in DD, in order to comply with Rule (5). If ô were
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prog Fact;
lnt f, result;
lnt b ln dd, c ln dd, filter ln dd;
dcfinr filter (lnt p) uslng f;

lnt result, r;
r : rY? (p mod 2) cq 0 thcn P crvr;
¡esult: r f f;

cdcffnc;
c:filter(b);
b: I fùy btl;
result:¡s¡ c > 500thcn c oesr;
f: 5 lbtl f*5;

aP?08

Figure 6.7. A program in the extended language.

included in DF, propâ,gâtion of demands from the wvr-then-ewvr operâtor in filter

might cause an attempt to access a value of [å! not yet computed by the DFC.

Rule (5) is now explained further. Suppose a DDC FT has been activated (from

the DFC) with demand number ¿. From the point of view of the FT, the DFC is at

iteration n; Rule (5) stipulates that, as demands propegate within the DFC, no demand

for a "future" value of a DF identifier may be issued. In other words, ECDS elements

beyond z*l (the next value) mey not be accessed. If this restriction is not mâde,

deadlock is possible. Suppose D'is in DF, and consider

: filtelb)c

rvhen the FT f.or filter has been invoked with demand number 7ù ånd an ECDS ff6

representing ö. Clearly, if the FT lor f.lter generates a demand number of say, n*5,

directed to p, the formal parameter of, f , an attempt to access ^H6[n+5] will occur.

This access will be delayed pending computation of [ö[ at iteration n+5; in other

words, iteration ¡t cannot complete before iteration nfS, a case of deadlock.

The following histories satisfy the definitions of the program in Figure 6.7:

Ibn

["n
UN

Iresult]l

(r,2,9,4, ...,
( s, 2b, 125, 6gs, ... )
(7, zg, l3l, 6g8, . . . )
( oss, 688, 688, 688, ... )
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Figure 6.8. DFC of program of Figure 6.7

Note that [c]l can be described thus:

ci "the ¿+ltl even number in [ö]1" + /;

The data flow graph of the DFC is shown, in cyclic form, in Figure 6.8. The

additional circulators required to construct H¡ (which is needed because / is used

by filter) and to circulate the iteration number are clearly marked. The unexpanded

graphs Firstí¡ and NertH¡ correspond to Firstí and Il++y described in $6.3.f .2, and

D/ creates a dummy ínstance component for the demand transmitted into the DDC

via the FT for c.
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Execution of the greph of Figure 6.8 is initiated by an external trigger which

enables the C9NSTANT inst¡uctioDs labelled cL, cz and ca. It is interesting to note that

there are two distinct .o-pon.rrts of the graph. In the first, the circulators for / and

Il¡ produce values which are appended to the structure /l¡. The seeond component is

driven by the circulator for í.n producing successive demands propagated to the DDC

which consumes values of fl ¡ and returns values in ficl for use in determining the

termination condition and result of the DFC.

Note that c would normally be in DF; it is placed in DD in this example to simplify

construction of the data flow program. With c in DD, the LX implementation contructs

an ET to be passed to filter; while this could be done by the DFC, it is more convenient

to permit it to be done by the DDC'

Further details of the construction of a data flow program, and its execution on

the data flow graph interpreter, are given in Appendix 5'

0.5 Further examples

In this section, trvo additional ex¿mples are given of the development of programs

in the extended language. The purpose of these examples is to give an indication of

the applicability of the hybrid scheme. The first shows an LX3 progrâ,m modified,

using the extended language, to include a nonpointwise transformation; the modiûed

program is found to violate Rule (5), but a simple reformulation of some definitions

is given which solves this probtem. The seeond example shows the extended language

used in a simple manner to express additional definitions with much greater clarity

than is possible in LX3.

6.5.1 Prime numbers

Considering the program PRIME shown in Figure 2.7 ol Section 2.3.2.2, it will be

recalled that the definitions of the program are satisfied by the following histories; the

finite prefixes shown are the values actually computed by the loop corresponding to

the program:
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( B, 5, z, g, ll, 13, 15, 17, 19, 21, ... )

[isprime
:[result

fistop

(t, t, t, Í, t, t, Í, t, t, Í,
( Í, f, f, Í, . .-).

It is desired to modify the program to deÊn e primes, a sequence of prime numbers, as

well as the variable ispríme; prímes would then satisfy:

fiprimes\ ( 3, 5, 7, ll,l3, 17, r9, . . . ).

Clearly, primes eannot be defined as a pointwise transformation of n and ísprime, that

is, fiprimes!¡ (abbreviated primes¡) cannot be determined either in terms of n; and

isprime¡, or in terms of values of those histories in the prefix 0 to i. The values ni â,nd

isprime; are produced at iteration i+t of the data flow computation; it follows that

primes; eannot be produced at this iteration.

In fact, the variable primes cannot be defined directly in LX3. It is, however,

possible to define a variable lastprime which keeps track of the last value of ¿ which

was prime; the definition

Iastprime : 3 fby if next isprime then next n else lastprime eif

is satisfied by the histories

["]| ( 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, ... )

flisprimel (t, t, t, Í, t, t, l, t, t, l, ...,
fllastprimel ( 3, 5, 7,7, 1-r, 13, 13, L7, Lg, 19, . . . ).

If, in other parts of the LX3 program, it is required to manipulate a sequence of prime

numbers, it is necessary to define such manipulations in terms of both lastprime and

isprime. In summ¡ry, it is clumsy to deflne and use a history of prime numbers in

LX3.

Using the extended language of this chapter, it is possible to declare prímes in

DD, and define directlY

primes : wvr rsPrirne then n ewvr.

In il

l
n

n

)
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This has two advantages. It is a direct definition of prímes, and it permits other parts

of the progråm (in either the DFC or the DDC) to manipulate a sequenee of prime

numbers directly.

It is, however, necessary to use primes carefully, to ensure that Rule (5) is satisfied.

For example, consider a variant of the original progrs,m (Figure 2.7), shown in Figure

6.g, which in fact does violate Rule (5). The "termination condition" of the loop

becomes fru¿ during the tenth iteration; at that iteration, the index is 9, ng is 21, and

it can be seen that

stop¡ :
resultg :

resulþ V j, and

primesg.

In other words, the DFC attempts to use primess. It is the definition o1 primes which

violates Rule (5), because the wvr-then-ewvr operator, in attempting to compute

primesg, câuses a demand number greater than I to be propagated to isprime and n,

thus attempting to access values not computed by the loop. Consideration is norv given

to avoiding this violation of Rule (5).

prog PRIME;
lnt n; bool stop,isprime; lnt primes ln dd;

n:3fbyn+2;
result : primes;
primes : rY? isprime thcn n crvr;
stop : rse n ) 20 thcn result cesr;
dcf,ne isprime uslng n frcczlng lll;

lnt i;
bool idivn,result;
i -- 2 tùy i+1;
result : ¡s¡ idivn or (i * i 2 o) thcn not idivu crsr;
dcfino idivn uslng n, i frccrlng lll;

bool result; lnt m;
m:2*ifbym+i;
result : est (m 2 n) thcn m Gq n c¡s.

cdcflno
cdcffnc

cProS

Figure 6.9. A variant of program PRIME which violates Rule (5)'

Demands to prímes must be kept within the finite prefix of fiprimes]l actually
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computed by the loop. From the previous pâ.râ.graph, it can be seen that the definition

of stop initiates the demand number propagateà to primes which causes the problem,

suggesting that it may be useful to reformulate this definition. It should be remembered

also that in this progra,m, the purpose of the expression component of the asa definition

is not so much to define a result as to provide a "root" for the dependency graph, and

hence it can be altered within this constraint.

The definition is reformulated by onee again introducing a mechanism to keep

track of those primes computed by the iteration, but using LX instead of LX3. In fact,

l1 lastprime is defined as

lastprime

then fitcst prime\ is exactly as shown earlier. The definitions of the main program

can then be written to satisfy Rule (5):

n : 31by n+2;
result : primes;
primes : uY? isprime thcn n crvr;
lastprime : upon ncrt isprime thcn primes .upon;
stop : rsr n ) 20 thcn lastprime G¡3¡; .

The program no longer violates Rule (5). Consider lastpríme, which is in DD,

and is defined using the DF identifiers isprime and r¿sult; the upon-then-eupon

operator ensures all demand numbers propagated lo prim¿$ â.re within the range of

values computed by the DFC. From the following history assocriations

["[ ( B, 5, 7, g, ll,13, 15, 17, t9, 2r, . . . )

fiisprime\ (t, t, t, Í, t, t, l, t, t, l, ...')
filastprime\ (3,5,7,7,r1,13, 13, 17, 19, 19,...).

fiprimes\ ( 3, 5, 7, r!, L3, 17, r9, . . . )

fistopfl ( 19, lg, 19, 19, ... )

it can be seen that

Iastprimeg - result6 - prímes6: 19

For both the LX3 and extended language versions of the program PRIME, it
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proved useful to define a variable (lastprirne in this example) which "padded out" &n

essentially nonpointwise transformation to match the rate of production of values by

the DFC iteration. In this ease, there is little apparent difference, in terms of complexity

and clarity, betrveen the respective definitions of lastprime. It is worth noting that,

in many ea.ses, the required nonpointrvise transformation will be considerably more

complex than that presented here, and much more easily and clearly expressed iu LX

than LX3.

6.5.2 Averager

Figure 6.10 shows an IX definition which can be used to produce running averages

of its argument, which yields a history with the property:

[aug(z)\¡ : averâge value of [z!s, firnt, ["\r,..., [rIr.

The definition cannot be written as given in IX3 because it uses several values in the

history denoted by its parameter, hence its parameter cannot be frozen.

dclln¡ avg( lnt x );
lnt result, a, n;
result: sdlvn;
s: x fby e+ncrtx;
n: lftrn+1;

rdofrno.

Figure 6.f0. A definition of running averages.

Suppose that the factorial progrâm presented in Section 6.4 is to define ruuning

everages of factorials. It can be modified by firstly declaring a new variable aug in DD,

defined as above, and secondly declaring aufac as a DF identifier, defined thus, assuming

that c is in DF:

øvlac : aug(c).

The body of the main program eân then be written:

c : d(b);
b: llùyb+1;
avfac : avg(c);
result : tst c> 500 th¡n avfac r¡¡t.
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It is now shown as follows that au(c) does not violate Rule (5). To compule aug(c)

at some time d, it is necessary to compute result in the definition of. aug at time i, which

requires e;, end in turn c¡; in other words, no vslue in the future of c is required.

6.6 Discussion

6.0.1 Advantages of the hvbrid ccheme

The hybrid scheme presented in this chapter facilitates an approach to program

development whereby as much progrÐmming a.s possible is done in the relatively ef-

fieient LX3, but with parts of the progrâm written in LX when this is necessâry or

more convenient. When compared with development of a program entirely in IX, it is

suggested that use of the techniques outlined in this chapter should give a considerable

performance improvement over an unoptimized IJ( Proglam.

The question arises as to why unoptimized IJ( should be used at ¿ll. Clearly,

if the language LX ¿nd data flow machines were widely used and well understood,

the most satisfactory imþlementation rvould be a sophisticated optimizing compiler.

However, the state of the art is that developing and debugging I)( progtâ,ms is not well

understood, and neither is thei¡ implementation on data flow machines. Thus there

is a place for translators which use current compiler construction technology as much

as possible, and are capable of producing target language code which exhibits clear

correspondence rvith the original source. Both transl¿tion methods described in this

thesis have these characteristics. The hybrid scheme offers performance improvement

with littte effect on either of these characteristics; it is, however, emphasized that

it is seen a.s a scheme which is best used in conjunction with further optimizations,

separately applied to the I)( and IJ(B components of a program.

The hybrid translation technique is most obviously applicable to programs of the

form suggested in Figure 6.6 of Section 6.4. This progrem scheme is representative of

a class of programs which can be structured into two components: one which produces

some history, and another which applies a transformation to that history. The trans-
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lation technique is directly applicable when the former ean be specified in LX3, and

the latter component satisfies the restrictions given in Section 6.2. Exarrin¿tion of the

(currently limited) repertoire of LX and Lucid progrâms [AshW76, AshWTTb' Fau83,

'Weng2, PilSBl suggests thet this class of programs is quite large.

0.0.2 Early completion data ctructures

The ECDS plays an important role in the hybrid scheme in embodying the interface

between the DFC and the DDC; this interface is effectively an early completion buffer,

with the DDC consuming items placed in the buffer by the DFC. The fact that it is an

ECDS permits production, consumption and order of access to be seen âs independent,

asynchronous ¿ctivities. This results iu a clean "factoringn of two important aspects

of the scheme: its implementation in a translator, and the run-time behsviour of the

target code. I¡ the first case, the transl¿tion schemes described iu previous chapters

can be carried over essentially intact; as shown in earlier sections, the only changes

neeessâry are for communication with the other component, which can be expressed

in terms of ECDS operations. Similarly, the run-time behaviour of each component

can be considered independently, except when communication between components is

required.

The bufferiug provided by the ECDS is such that a DFC circulator can insert

a value in to its history structure âÁ¡ soon as the value is produced, irrespective of

consumption by the DDC. If the DDC attempts to retrieve a v¿lue from the ECDS

before it is computed, the ECDS ensures that the access activiüy is suspended until a

value is written to the appropriate point in the bufrer.

The ECDS is used to interface a DFC and a DDC. It would be interesting also

to explore the possibitity of building a similar interface between a data florv scheme

and, for exâmple, a conventional, control flow progtÐm. The interface developed in

this chapter relies on a common notion of "demand"; construction of a control flow

component would similarly depend on apptopriate mech¿nisms for recognizing and

generating demands.
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6.0.3 Discuss¡cn of Rulc (5)
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Originatly, it was hoped that communication via an ECDS would permit the use

of arbitrary LX definitions of DD identifrers. It was shown in Section 6.4 that this

may leâd to deadlock. Hence, Rule (5) was introduced to place restrictions on the

consumption of values bY the DDC.

The necessity for Rule (5) follows direetly from the restrictions which are imposed

on IXB and which guide the construction of the DFC. Consider variables z in DD and

y in DF. In the DFC, only 3 componeDts of [y]t are visible at one tim*ûrst, next

and ncurrent". The DDC has access to all components of [ø[, where ¡ is in DD. Con-

sequently, the usual DDC demand mechanism cannot be applied to the representations

of DFC variables passed to the DDC, without appropriate restrictions.

Rule (5), as stated, is not entirely satisfactory, and it is probable that further

investigatiou will yield a better formulation of the rule. It would be useful to investigate

situations in which the rule could be checked syntactically; Wadge's cycle sum test

[WadSl] and Pilgram's "index oflset" considerations [Pil83] provide a starting point. It

is worth noting that the rule câ,¡ be checked during execution by tagging the demand,

as it passes from the DFC to the DDC, with the current iteration number, and using it

to validate all ECDS secesses; improvements to this scheme could also be investigated.

Another aspect for future investigation is to prove that Rule (5) does prevent

deadlock. It seems likely that ¿ proglam satisfying Rule (5) also satisfies'W'adge's cycle

sum test, which can be applied to some programs to determine whether or not they

may deadlock. The test makes use of "index offsets" associ¿ted with operators; Rule (5)

effectively makes the offsets of definitions of DD identifiers predictable within certain

constraints, suggesting that the cycle sum test is satisfied, and providing evidence that

Rule (5) prevents deadlock.



CHAPTER 7

DISCUSSION, CONCLUSIONS AND FUTURE WORK

7.1 Introduction

This discussion is concerned rvith three â,reås important to the work of the thesis,

frrstly the design and specifrcation of the language LX is reviewed, and secondly thete is

an attempt to put in perspective the implementations described in this thesis relative to

each other and to other contemporary implementations of Lucid-like languages based

in data flow. Thirdly, data flow systems in general are discussed, with emphasis on

the expression of demands in data flow.

Various suggestions for further investigation are made throughout this chapter. In

particular, the provision of adequate facilities for input/output is seen âs àn important

area for both data flow and LX, and suggestions for future work on this problem are

emphasized.

7.2 Language design

Some discussion of language design was presented in 92.2.4, which explored the

issues of strong typing and clause structuring. It is apparent that further work is

war¡anted for each of these. For example, consideralrle cleclarative information must

be ineluded in LX progrâ,ms, and it can be argued that this represents ¿n overhead

which actually reduces the readability of a definition; the relevance of this argument in

the context of languages which emphasize conciseness of definition, as LX does, should

be investigated.

LX provides basic definitional facilities; investigation of useful extensions to these

facilities should be of interest. Some possible additional language constructs foìlow: a

case construct for conditional definitions; âggrega.te operators on histories, to assist in

the detection of forall parallelism; multiple results from define clauses; higher order

functions.
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The development of data st¡ucturing facilities requires considerâble attention. Re'

gardless of the details of such facilities, transformations betlveen structures and histo-

ries will be important. LX requires that variables be viewed as histc¡ries of values; in

the case of a history of structure values, it is often useful to manipulate the structure

at a particular time index, perhaps generating from it a history of its v¿lues which

could best be processed iteratively.

LX has only rudimentâry features for the expression of input and output. These

facilities, and their interaction with aspects of language design such as strong typing,

clearly warrant further investigation. In the next section, some suggestions are made

for improving these features.

7.2.1 Input/Output in LX

The global variables of an LX program can be regarded as defined externally, with

their values supplied as inputs to the program. The history denoted by firesultfl in

the main progrå,m can be interpreted as the output produced by the program. This

provides a simple means of getting values to the main program and receiving results

from it. Inner clauses may obtain åccess to external input sources by inheriting global

variables; they may contribute to the output of a program by returning results to the

outermost (program) level for inclusion in [resulÍ]1. It is also possible to establish a

form of dialogue if the implementation ensures that output is produced as soon as

available, and input accepted when supplied.

These facilities are inadequate in mâny respects. For example, consider how the

format of output can be specified. If the main program res¿lú is of type 1, the values

can be output in a fixed, implementation-determined format appropriate to values of

the type; there â,re no facilities in the language for defining alternative form¿ts. Using

stream oriented output within the framewo¡k of LX, the output may be considered

as a history of characters, and formatting may be specified by including appropriate

control characters. Thus, it is necessary to devise a means of deriving, from the

history denoted by z of type 1, a stream of characters capable of producing the
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desired output. That is, a history of type f must be transformed into a hisbory

of characters. A general input/output facility would need to contain a library of

such transformations, which are inherently non-pointwise. A¡other approach is to

specify formatting requirements using a variant of the format descriptions of Fortran,

permitting a higher level description from which the implementation could generate

tìre required stream of characters.

Further problems arise if an LX program is to flt into an existing environment. For

example, it may be nec:essary to associate more than one history with an input/output

source (or vice versa), to describe the structure of a file, or to display, in some form, a

variable defined at an inner level. All are worth fu¡ther investigation; some attention

is now given to the latter.

Confining expression of input/output to the outermost level of an LX program

is unnecessarily restrictive. Consider a display facility, whereby any variable may be

annotated to indicate that a suitable display of its values is to be output from the pro'

Bram; such a facility is a simple erample of an inner level specification of a requirement

for output. A proposal, presented in [Wen83], represents an attempt to define the se-

mantics of such a facility in terms of language, rather than implementation, concepts.

The essential idea is to introduce program tranformation rules which firstly introduce

extra results corresponding to displayed histories, and secondly move the specifications

of those histories to the outer level, where they can be associ¿ted rvith output devices.

It is also important that a display speeification does not initiate computation which is

redundant with respect to the main result; [WenS3] outlines how such a display might

be defined in LX. Thæe ideas a¡e at an early stage of development, and require further

investigation.

7.3 Comparison of implementations

Several proposals for the implementation of Lucid and related languages have been

put forward. It is worth examining these developments chronologically, to put in per-

spective the work reported in this thesis in comparing it with other proposals. The
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work of this thesis began in 1978, inspired principally by [Ashw77a] in conjunction

with a desire to find a higher level approach to programming. It was decided to perform

an experiment testing the feasibility of implementing "Lucid" using conventional com-

piler construction techniques, in particular, the recursive descent approach espoused

by Wirth þv801. It was also decided to treat Lucid principally as a language for

describing iterative computations, â, view encouraged by the perspective placed on the

language in þhW77a], hence the implementation was of a subset (Lucid-W [\1'en8f])

which emphasized these features. This work was carried out shortly after, but inde-

pendently of, the subset implementations of Hoffmann [Hof80] and Farah [Far77], as

discussed in $4.6.4. It came some time after, but was not influenced by, the full Basic

Lucid interpreters of Cargill [Car76] and May (mentioned in [AshW77a]).

7.3.1 The implementations of LX3 and LX

The earliest implementation of Lucid-'W (which is essentially LX3, apart from some

minor syntactic diflerences) generated imperative code. At this time, suggestions had

been made about relationships between Lucid and high level data flow [AshW77a], and

there were interesting developments in low level data flow [Den74, Mis77] as a meâns

of exploiting parallelism. In order to gain some insight into relationships between

Lucid, a language with a mathematical foundation and roots in the field of progra,m

verification, and data flow, a novel basis for new, pârallel machine architectures, ân

experiment was planned to translate LX3 to low level data flow. This implernentation

is described and discussed in Chapter 4 of this thesis. It was concluded that LX3 could

be considered a suita,ble language for data flow machines, as it translates naturally to

standard data flow sehemes, ¿nd that it is comparable in expressiveness to languages

designed specifically for such data flow machines. Chapter 4 also found that LX3 is

more naturally implemented on a data flow than a sequential machine, in that both

analysis of data dependencies between definitions and code generation are simpler in

the data flow case.

Although the results of these experiments with the translation of LX3 were en-
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couraging, it was always an important goal of the researeh to extend the techniques to

translate successively more powerful subsets of Lucid. To assist subsequent discussion

of attempts to do this, a simple model is introduced, emphasizing those properties of

data flow which are particularly relevant to the implementation of Lucid and its vari-

ants. Three important aspects of data flow implementations of Lucid are distinguished:

eomputation âgents, regulation, and storage. The first encompåsses those objects in

a data flow scheme which produce histories. For example, in the translation scheme

used in Chapter 4, a primitive operator may be the computational agent for the his-

tory denoted by a simple expression, while a circulator is the agent responsible for the

production of the history denoted by an inductive variable. Regulation refers to that

âspect of a data flow scheme which controls the production of values; in the scheme of

Chapter 4, the loop termination condition regulates the number of values produced,

and the control operations of a loop regulate the rate of production. Storage refers to

storage of history values; in the data flow graphs used in Chapter 4, it is provided by

the arcs of the graph.

In the LX3 translation scheme, the computational agents (described above) are

simple, and entirely data driven; an agent places a history value on the arc rePresenting

the history according to ühe usual frring rules of d¿ta flow operations. Regulation is

similarty data driven; all control is expressed in terms of values in histories.

Two key assumptions make this simple regulation scheme possible, and generally

simplify the translation of LX3. The first is that variables can be identifred with arcs

of a ,ilata flow graph, and that the values flowing along the arc represent the values in

the history denoted by the variable in index order. The second is that histories defined

are such that a loop scheme câ,n be used to synchronize the computations, in index

order, of every value in each of the histories denoted by several inductive variables. In

other words, given some interrelated inductive variables, it is assumed that a circulator

is the appropriate computational agent for each, that every value in each history is to

be computed, and that the circulators can be synchronized by a eommon iidex.
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In moving towards the implementation of a larger subset of LX, several attempts

(not reported in this thesis) were made to develop translation schemes for nonpointwise

operators such as wvr-then-ewvr. Clearly, such an operator violates the synchro

nizatiou assumption, and it is no longer possible to use only loop control for regulation.

At first sight, a promising approach seemed to be the development of a more so-

phisticated regulation scheme. The suppression of redundant computation was also an

important aspect in developing a new regulation scheme. Circulators remained as the

basic computational agent for both inductive definitions and those using nonpointwise

operators, the first assumption above, concerning the identification of arcs with histo-

ries, was retained; it was required, however, that the scheme use onl-v standa¡d data

flow operations. Circulators for definitions using nonpointwise operators were seen âs

asynchronous (in the sense of not sharing a eommon index) agents separate from those

in an LX3 style loop comPonent.

A circulator can be viewed as a computational agent which produces the next value

in a history when triggered by a control value directed to its FGATE instructions. In

the loop scheme of $4.2, each circulator is advanced by a common control signal, in

the knowledge that values required for the computation will be available. However,

lvith circulators viewed as asynchronous agents, no such eommon signal could be used,

so attempts were made to design schemes for circulators which, in effect, used control

signals as demands, in that a circulator interpreted an incoming signal as a request,

and would send a signal as a demand to those circulators tvhich produced values needed

for the requested computation. For example, one idea explored rvas to express Hen-

derson's delay and force primitives [HenSOJ in terms of data flow control values and

instructions. However, a satisfactory regulation scheme which managed demands for

required values only, maintained communieation between the synchronous and asyn-

ehronous components, and still retained the flavour of a data driven network, could

not be developed.
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As a result, it was decided to change strategy at this stage (mid f982). It was
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âpparent that quite sophisticated extensions would be required to the basic LX3 scheme

to implement even a slightly larger subset of Lucid. Given that this would almost

certå,inly be considerably more expensive than the basic seheme, it was decided to

attempt the derivation of translation schemes for an unrestricted language, working

directly with dema,nd flow to get a translation scheme in complete agreement with

the mathematical semantics of LX. Possible refinements to "more natural" DDF-like

schemes are left for further investigation.

It was found necessary to remove the assumption that variables be identified with

arcs and arcs with histories, with the attendant implication that values in a history

flow along the arc in time order. There are two reâsons for this: firstly, with this

assumption, it is impossible to provide a complete and correct translation of all pro'

grams [Ashw77a]. This follows from the fact that all values rvhich flow on an arc

must be requested and produced in order of increasing "time"; it is possible to write

legal Lucid programs which do not conform to this restriction, for example, the facto-

rial program of Appendix 4. Secondly, intermittent histories ($1.8) cannot always be

produced correctly.

In the resulting implementation scheme for LX, described in Chapter 5, the com-

putational agents are function templates, but it is important to note that such an agent

is not responsible for the computation of an entire history, but rather for an individual

value in that history. Regulation is provided by the DTs, which manipulate demands

directly; this provides sufficient flexibility to ensure a correct implementation. Storage

is provided by the ¿rcs of the graph; the restrictions of pipelining are avoided by the

recomputation of values-a data flow activity is spawned for every value required.

The principal contribution of this scheme is the semantic model, which provides

a concise operational description of how demands are propagated. Considered asi an

implementation, the emphasis on recomputation of individual values is clearly im-

practical; this probtem, and a possible solution, were discussed in $5.4. Because the

complete avoidance of redundant computation provided by the LX scheme may well
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only be essential in a few situations, the hybrid scheme of Chapter ô, by enabling

selective use of LX schemes, should be useful also in lessening the amount of recompu-

tation. The hybrid scheme shorvs also that the contrasting schemes for LX3 and LX

can be integrated.

7.3.2 Other implementation schemes

Consideration is now given to the translation schemes of Pilgram [PilS3] and Den-

baum [Den83j, each of which translates a variant of Lucid to imperative, rather than

data flow code. However, in each case the underlying translation schemes can be viewed

in terms of data flow in a general sense, and provide some insight into translation to

data flow. The development of each of these schemes was contemporary lvith that of

the operational model of LX.

Pilgram's scheme, which is capable of translating almost all full Lucid (the plucid

[FauSSj variant) progrâ,ms, uses, âs an intermediate form, a generalized high level data

flow model which retains the assumption that an arc is a pipeline along which flow the

values of a Lucid history, in time order. However, this model is based on a graphical

view of a Lucid progråm (92.2.3), and describes data flow at a much higher level than

the model used in this thesis. Pilgram's model is demand driven in that, in addition

to values flowing along the arcs, requests may flow in the opposite direction.

Initially, a Lucid program is transformed directly into a graph, in rvhich Lucid

operators and user defrned functions are nodes, and every ârc eorresponds to a variable

or partial result. This graph is then translated into a system of message passing actors,

essentially with one actor for each node, in which the actors use â pre-determined

protocol in cooperating with each other to ensure, frrstly, that the values transmitted

between them are the values of the history associated with the corresponding are of the

original Lucid graph, and secondly, that, whenever possible, values are not computed

needlessly.
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Consider the mechanisms used to transmit values in Pilgram's scheme. The com-
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putational agents â,re messâge pessing àctors; âD åctor attempts to compute and trans-

mit values one at a time, in index order, and only if needed. Each such actor commu-

nicates lvith others using a standard protocol, under which an actor can receive values

and requests. There are three requests: COMPUTE, ADVANCE and NULLIFY. Part

of the state of each actor is the history index; COMPUTE requests that the value at

the current index be computed, and ADVANCE that the index be incremented by one,

perhaps without having computed the value at the current index. NTILLIFY is used

to cancel computations which have been initiated but turn out not to be required;

a full account of its signiflcance is beyond the scope of this discussion. Suppose all

values in a particular history are required; the cycle of activity for its actor rvould be

to receive a COMPUTE request, compute the value, send it to the requesting actor,

then receive an ADVANCE request to move on to the next value "in the pipeline". By

way of comparison, this pattern of activity is specifically built into the design of a cir-

cula,tor; the arrival of a control value at its "merge' operation constitutes a combined

COMPUTE/ADVANCE request, with consequent (and unavoidable) computation and

transmission of the value. In Pilgram's scheme, storage for values computed but not

yet demanded is provided by queues at points in the Lucid graph where an arc is forked

to multiple points of use. Queueing is necessary because demands arrive from points

of use at varying rates.

Clearly, in Pilgram's scheme the computational agents a.re comparatively complex

entities, and are responsible for the regulatory function of the scherne-they supervise

the t¡ansmission of demands for values, as well as of the values themselves. Pilgram's

regulation protocol permits the translation of nonpointwise operators and general user

defined functions, but it cannot translate all programs, for example, those in which

a variable is defined in terms of its own future. Also, as Pilgram acknowledges, it

occasionally initiates redundant computation of a value, but it does have a mechanism

by which such computations can ofben be abandoned.

This suggests that direct translation of extended LX3 to low level data flow, a^s

discussed above, did not work primarily because the "data flow" must be seen at a

l
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consi,ilerably higher level. Results equivâlent to Pilgram's could be achieved by imple

menting communicating actors in ¿ low level data flow system with process handling

primitives, thereby simulating a higher level of data flow. In fact, facilities have been

proposed which should make this possible, for example, Id managers [ArvGPZ8] and

the communicating processes of [CatGSO].

Denbaum's thesis [Den83] describes ¿nother approach to the implementation of

Lucid-like languages. The language considered is ANPL, which is essentially Clause Lu-

cid; ANPL's define clause subsumes the compute and mapping clauses of þhW7Sl,

and its produce clause the produce and function clauses of [AshWTS]. The thesis

presents an operational semantics of ANPL, based on a technique used by Marlin

[MarSg] in describing ACL; in this method separate information sbructure models are

developed for the sequence and data control aspects of the language. The semantic

models are used as the basis for a compiler which translates an ANPL program to

imperative, coroutineba.sed code, in the form of an ACL program. Thus, it is not

strictly a data flow implementation, but has much of the flavor¡ of one, and provides

interesting comparisons with both Pilgram's work and this thesis.

In Denbaum's implementation scheme, there is a computational agent for every

variable ¿nd use of a clause, responsible for computing values in the corresponding

history on request; the agent is either a coroutine or a procedure, and is derived from

the ANPL definition. Regulation of computation of history values is specified in a novel

fashion. Agents do not communicate directly, but rather request the values required

to perform a computation by invoking a special procedure retrieae. If the requested

value is already available (see below), retrieae simply returns it; otherwise, it uses a

dependency graph to determine which values of other histories are needed to meet the

request, invokes retrieae to obtain them, and then calls or resumes the appropriate

computational agent to actually compute the originally requested value'

The requireurent to produce and access values in index order is relaxed by allo

cating storage, a list of the values used, for each history. This eliminates any need
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to recompute values, and permits values to be produced and àccessed in any order.

Storage of all values is in direct contrâsb with the âpproâch used for LX, which, in its

simplest form, requires recomputation of all values. Ideally, a suitable combination of

storage an{ recomputation should be determined by the compiler, depending on the

program; this is a significant problèm in the implementation of many very high level

languages.

Denbaum's seheme is not entirely correct, however, in that it does not always agree

with the mathematical semantics. A coroutine is used as the computâtional agent for

an inductive variable; the only requests which can be issued to a coroutine for the

production of values are create, which establishes the coroutine instance and returns

the ûrst value, and resume, which computes the next value. Such an agent cannot

correctly implement an intermittent history, for example, one in which the ffrst value

is not required. Further, it is apparent from the semantics of Lucid that a lecur-

sive function invocation effectively introduces a new history; it seems that Denbaum's

model does not assign storage for histories introduced in this way, and hence it cannot

correctly implement a,ll recursive functions.

Some general conclusions can be drawn about data flow implementations of Lu-

cid and similar languages. The implementation of LX3, and those of Pilgram and

Denbaum, â,re exâmples of attempts to implement Lucid by adopting a particular op-

erational interpretation of the language; in eaeh case, the particular interpretation

eannot be applied successfully to all programs. Although it is desirable, from the point

of view of efficiency, to adopt a consistent operational interpretation, it seems difficult

to find one such interpretation which encompa,sses all proglams. The operational se

mantic model of LX is an attempt to do this in terms of demand driven computation;

the implementation achieves agreement with the mathematical sem¿ntics of LX, but

at the expense of recomputation of values and a quite complex regulation scheme. This

would suggest that a practical implementation of Lucid should be a hybrid, capable of

exploiting different operational interpretaûions according to the characteristics of par-

ticular programs; the implementation techniques described in this thesis and elsewhere
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âre tools which could be incorporated into sueh an implementation

189

7.¡l Data flow models

Data flow models were discussed at length in Sections 1.5 and 3.5, particularly

the relationship of the model used in this thesis to cyclic schemes, the usability of the

graphs produced on data flow machines, and the relevance of early completion data

structures. Additional points of interest are presented in this section.

7.¡1.1 Uses for early completion data structures

As described in Chapter 6, the principal use of early completion data structures

for the research reported in this thesis is to implement an incrementally constructed

buffer between the data flow and dem¿nd driven components of a hybrid translation

seheme. However, there are other ways in which they can be used, and these are now

discussed briefly.

It was mentioned in $3.a.4 that such structures could be used to pass arguments

to functions. In code generated by the LX translator, the only arguments passed

to function activations are demands; the facility would permit the components of

a demand, particularly the environment table, to be passed inc¡ementally, thereby

providing an opportunity for speeding the progress of demands. Values could also

be returned incrementally, particularly list structured values, thereby giving a "lazy

evaluation" semantics to the lists of the language.

The possibility of associating storage with histories in the demand driven imple-

mentation was discussed in $5.4. It is apparent that an early completion data structure

should be used to implement such storage, beeause the order in which components of

the history would be produced and accessed is unpredictable; it is necessary to delay

access to a particular element pending its computation. Note that use of the history

structure is essentially functional; once an element is written to a history, it is never

changed.
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It is expected that early completion data structures lvill also be important in

implementing a useful input/output facility. This will be discussed further in $7.4.4.

7.4.2 Combining data and demand driven data flow

Attempts to combine demand driven and data driven data flow have been signifl-

cant in this research. A first approach, not deseribed further here, was to take a data

drivcn graph and superimpose on it additional data flow operations which would câuse

the operations of the original graph to behave in a dem¿nd driven fashion. This is quite

straightforward for arithmetic operations. Consider an operation with two inputs and

one output. It can be made demand driven by aclding an IDENT operation with one

input an,il two outputs, transmitting demands in the opposite direction to the flow of

data; execution of the original operation is initiated by a sending an arbitrary value

along the additional demand uetwork; operand values are not produced until triggered

by a demand.

This simple approach could not be extended to permit demands to be propagated

past an IDENT operation, however. The reason is that a demand driven IDENT operâ-

tion must provide storage for values demanded on some outputs but not on others, as

observed by Pitgram [PilS3] (and noted in $7.3). Conect handling of demands requires

a demand propagation operation with arbitrary storage requirements and complex in-

ternal state transitions; this is very difficult to implement with primitive data flow

operations.

This more general approach was rejected principally because, for an adequate

implementation, it would have been necessary to go beyond "simple" DDF-like schemes.

The approach adopted, and successfully implemented (Chapter 5), is less general in

that it uses a notion of demand specific to LX implement¿tion. It is worth noting

that, in both cases, the objective was to abstract out that part of a demand driven

scheme which handles demands, and express it explicitly in data driven data flow. In

other demand driven models, and the hardware which implements them, these demand

manipulations are implicit.
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Extensions to a data driven data florv model to provide demand manipulation

primitives, sirnilarly to the transformation of demands in the operational model of LX,

".varrant further investigation. These primitives, which could perhaps be implemented

in microcode, would provide flexible handling of demands in appropriate situations'

This is thought to be particularly relevant for input/output, as discussed in $7'4.4.

7.1.3 The notion of storage in data fiow

In pure data flow [DenFL74, ArvG78], there is no notion of assignment to storage;

all values, including st¡uctures, flow on the arcs and are manipulated by sidçeffect-free

operations-this, of eourse, is the key to the parallelism provided by the model. In

this thesis, the advantages of providing storage for history values have been discussed

($S.¿); it is interesting to look briefly at various general noiions of storage in data flow.

In a data flow graph, the arcs may be viewed as storage for values; in actual

machines, this storage is implemented in various ways, which may be exploited to

provide a lorv-level notion of storage. For example, Todd [Tho81] uses instruction

cells in the MIT static data flow machine to implement various storage structures,

including a¡rays. At the graphical level, Wendelborn [Wen82] uses cascaded &input

MER6E gates to buffer a fixed number of recently computed values in a history. In

another early proposal, Kosinki [Kos73] provides a low-level storage cell'

A literal interpretation of functional structures at the machine level is clearly

impractical, as it gives rise to the need for extensive copying and movement of data.

In an early model proposed by Dennis [Den74], structure values are represented using

a heap, with the tokens which flow on arcs carrying pointers to the structures. This is

reflected in architecture proposals [Mis78] with a separate unit implementing structure

storage and processing; considerable work has been done [Isa79, Ack78] on the design

of such a unit, in a way which allows the optimization of structure operations ¿nd the

sharing of storage.

Various attempts to make functional structure operations more efficient have been
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mentioued ($1.6). For example, early completion data structures and l-st¡uctures Per-

mit access to incomplete structures; it is interesting to note that they introduce non-

functional operations (93.4.4) in order to do so. The lvfanchesber machine [WatGS2]

has a provision for fixed ârray storage at a node to reduce movement of data ($3.4.4)'

Treleaven et al [TreBH82, TTeIIRS2] propose a model which combines a tradi-

tional notion of storage with low level data flow (see 91.5). In this model, refercnces to

memoÐ/ locations may flow on rres, thereby enabling the shering of mernory between

instructions; memory may be updated as a, consequence of instruction execution. Shar-

ing of memory in this fashion allows efñcient implementation of data st¡uctures such

as arrays.

Other models provide nodes of arbitrary internal complexity; such nodes can im-

plement any storage requirements. For example, in the models of both Pilgram [PilS3]

and Faustini [Fau82] nodes are used which contain queues of arbitrary size.

7.1.¡l Input/Output in Data Flow Svstems

This section discusses input and output in general terms; input is considered as

those values ¿dmitted to a data flow graph through its input ares, and output as

the values produced at a graph's output arcs. Low level details of interaction with

devices, for example, the writing of device drivers in data flow, are not considered.

The purpose of the discussion is partly to clarify earlier descriptions of input/output

facilities (for example, $3.3.2); it is also intended to demonstrate the usefulness of

the demand handling primitives of $7.4.2 in the further development of input/output

facilities.

Firstly, "batch" input/output is considered, for queueing, dynamic tagged token

and acyclic models, and it is shown that such batch input can be regarded as a form

of demand driven input. Secondly, it is argued that demand driven input provides a

n¿tural expression of interactive input, and hence provides a unifying framework for

both batch and interactive input/output.
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7 .1.1.1 rBatcht input/outPut
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The term "batch input/output" is used to indicate a system in v¿hich all input

data is available before execution comrtences. In a model in lvhich the arcs of dat¿

flow graph are regarded as queues ($f.5), input values can be placed on the input arcs,

causing the consumer operations of those arcs to fire repeatedly, in the usual mâ,nner.

Assuming the use of standard schemes which preserve queueing on the arcs, output

values will appear in order on the output arcs of the graph. Termination occurs when

external input a,rcs are empty, and there is uo activity in the graph. In summary, the

input values can be pipelined through the program, and outputs produced in order.

However, generally arcs a,re not regarded as FIFO queues, because this unnecessar-

ily restricts possible parallelism þvGP78, ìilatG82l. Consider an external input arc

connected to some consumer operation in a dynamic tagged token model. In execution,

many activities may be generated f¡om this one consumer operation. V¿lues introduced

to the data flow system must be tagged with the correct labelling information in order

to correctly associate a value with the activity which consumes it. Similarly, multiple

activities will be associated with the producer operation of an external output arc,

hence outgoing values will be produced in arbitrary order. These values may be ar-

ranged in correct sequence either within the program itself, using label manipulation

instructions, or permitted to leave the program as they are produced, and sequenced by

a separate meehanism, outside the data flow program; in a general-purpose data flow

system, the mechanism might be a resource måna,ger [ArvGP78, TTeIIRS2] responsible

for the output device.

In the nfunction template" model used in Chapter 3, special instructions \ilele

used to simulate the arrival of a sequence of values at an input point and an output

point ($3.3.2). This teehnique initiates sequentialized activations of the program FT,

with each activation processing one input value and producing one output value; this

simplified view was adequate for testing all programs used in the thesis in a sequential

environment. It can be generalized to simulate, in effect, the behaviour of the dynamic
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tagged token model, with similar sequencing characteristics
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In an acyclic model, it is natural to view the program as ân activation of a function

template which accepts an input structure and produces an output structure. Assuming

that the structures are early completion data structures, the program ean be seen as

embeclcled in a system which includes a, proeess [CatG8O, Tre[IRS2] which appends

values to the input structure, and anothe¡ which consumes values from the output

structure.

In alt the above c&ses, a real implementation will introduce physical limitations, for

example, input devices will require that input be buffered. In each case, the assumption

must be made that there are signals which pass to an input handler, indicating that

the buffer is either full or has available space. Such signals can be regarded as a form

of demand for input. In the case of batch input, such dem¿nds can be handled entirely

by an interface which regulates the rate of flolv of values into the progrâm, and need

not be explieitly programmed.

The above data driven "batch" schemes have one distinct advantage: data can be

transmitted to the progrâ,m ¿t a rate determined only by the capacity of the progra,m

to accept and prccess it. A disadvantage is that it is occasionally necessary to supply

dummy input values to trigger computations which do not actually use the values; an

example is a program which consists of a eonditional scheme in which both arms of

the condition are input arcs.

7 .1.1.2 Interactive input/output

In an interactive data driven prograrn, input is related to previous output from the

progÌam, acting as prompts. Conceptually, the output feeds back to the input source,

thereby controlling it to some degree. Input is thus controlled by two sources of signals,

namely the regulating signals mentioned above, and additional signals dependent on

program output.

A program prompt emanating from a particular point inside the program at which
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input is nee,led in fact constitutes ¿ demând fcr input. In a dat¿ driven systern, the

prompting signal must follolv a path f¡om that point via an output port of the program

to the source of input. Although this is quite feasible rvithin the data driven framework

if input and output are incremental structures, it is somewhat unnatural. In summary,

input in general can be seen âs driven by demends, with the difference betlveen batch

and interactive input characterized by the nature of the demand.

Now consider the pâ,ssage of demands in the demand driven system implemented

in Chapter 5. A demand propagates from an output point through the program and

thenee externally to sourees of input, requesting those values required by the computa-

tion. In other words, all computation takes place in response to a demand for output,

including demands propagated to sources of input. This is simil¿r to interactive input

as described above, with the difference that in the interactive case the <iemand is orig-

inated by the progrom, rather th¿n outside it. Thus, input is demand driven, in some

sense, in eaeh case considered.

Clearly, a system driven entirely by demands for output has the advantages that

the order of demands determines order of response, and no unnecessary input is re

quested. The principal disadvantage is that the rate of acceptance of data by a plogram

wilt be slowed, because input is not accepted until demanded; given that speed of com-

putation is of great importance in many applications of data flow, such degradntion is

unacceptable.

It is, therefore, suggested that the following design of an input facility rvarlants

further investigation. Initially, determine the nature of the signals required to eommu-

nicate with input devices. Implement batch input using an interface which generates

such signals according to the state of the input buffer, thus allowing points of in-

put which operate in a purely data driven fashion. Then, implement demand driven

primitives of the type discussed in 97.4.2. This would enable interaetive input to be

implemented as above, but allows construction of a direct demand path to the site

of input, rather than a roundabout feedback mechanism. It would also permit tailor-
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made demand driven regimes. For example, parts of a program could be made entirely

demand driven by accepting demands at certain output points, ancl propagating them

through the program; the operational model of L\, or a variant of it, could be used in

designing appropriate demand transformations.

7.5 Conclusion

A goal of the research reported in this thesis was to investigate the practicality

of implementing a Lucid-like language in a data flow environment. To this end, the

language LX was developed.

The major achievements of the work â,re a demand driven operational semantic

model of I)( which shows substantial agreement with the mathematical semanties,

the completion of an implementation of LX based on the model, the specification of

a subset of IX with expressive power comparable to languages specifically designed

for data flow, and the satisfactory implementation of th¿t language. The latter ex-

periment demonstrates the practicality ol implementing a subset of LX in data flow.

While a truly practical implementation of LX itself has not emerged, several sugges-

tions have been put forward in the thesis for its further development towards that

goal, including concrete proposals for a hybrid data and demand driven imþlementa-

tion. Experience thus far with implementing LX illustrates the usefulness of a concise

operational description of a language as a starting point in the development of a sat-

isfactory implernentation.

A-nother significant achievement is the use of data driven data flow to express

demand d¡iven computation. While the notion of demand used is problem-speciûc,

it is suggested that development of more general demand transforming primitives will

considerably enhance data driven systems, particularly for expressing input and output.
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OPERATOR DEFINITIONS

The operators wvr-then-ewvr and upon-then-eupon can be defined formally

âsr

wvr b then & ew1lr : wvr(a,b)

upon b then ¿I eupon : uPon(a,b)

where urur and lpon a;re defined using the following recursive define clauses:

dollnr wvr(bool a lnt b);

result : lf llnt a
th¡n b lùy wvr(nrrt a, nrrt b)

elre wvr(ncrt a, nrrt b)
el?

¡dtlno
ddln¡ upon(bod a,lnt b);

tesult : b fùy lf frr¡t a
then upon(nct x, nrrt Y)
rlsr upon(x, nrrt Y)

clf
¡dclln¡

Note that these definitions â^ssume that ö is of type int; similar definitions ca¡ be

made when ö is of another tYPe.
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OPERATION OF THE DATA FLOW INTERPRETER

In this Appendix, the operation of the data flow graph interpreter is illustrated

by giving two examples of the execution of progràms. The first example is a recursive

factorial program, and the second shows the production and consumption of a partially

deflned structure.

42.1 Recurcive factorial

The program text is shown in Figure A2.I, and the corresponding data flow graphs

in Figure A2.2. The program consists of two functions; the first is called the "program

drivern, and is used to invoke the second function, which computes factorials. Before

discussing the program in detail, some notational conventions are mentioned. The

character *:' preceding a literal value in the program text indicates a constant input

to an instruction. The null link 0.0 is used to show that no arc terminates at or

emanates from the input or output position concerned. In the case of an output link,

this means that any value produced by the instruction for transmission from that point

will be discarded.

It has been found convenient to structure programs submitted to the interpreter

with a more or less standard program driver for the initial activation. In this program,

the program driver, designed for testing purposes, provides a mechanism by which

the factorial function can be repeatedly invoked, accepting input from, and displaying

results at, a terminal. Instruction 3 of the progÌam driver in Figrrre 42.1, and in

Figure A2.2a, shows the factorial function, the FT with a Uid of l, invoked with a

value requested by the START instruction. Repetition of calls to the factorial function

is achieved by recursive applieation of FT 0 (instruction 5). Because no reeursion

termination condition is given, the RntuRN instruction will never be executed; the

operation of the interpreter must be terminated by external intervention.
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Figure A2.1. Recursive factorial proglâm

Consider the graph of the factori¿l function, shown in Figure 42.2(b). Al incoming

value ¿ takes one of two paths through the graph; the path taken when n is zero is now

considered in detail. Node 0 is enabled by the function activation mechanism; on firing,

it propagates n to nodes 2, 3 and 4 of the greph. Node 2, comparing n against 0, then

frres to produce the boolean value true, which is transmitted, via the IDENT function

of node 10, to the SWITCH gates, nodes 3 and 4. These nodes â,re then enabled, and

cân fire simultaneously. In each câse, the data input n is transmitted via the output

labelled 1. This output link is null for node 4, hence n is absorbed when node 4 fires,

and travels no futther on tha,t path. The firing of node 3 causes the CONSTANT node,

5, to be triggered, ¿nd the value I to be transmitted, via the MERGE node, to the

RETURN node; the activation thus terminates, producing the result, l. The MERGE

node is included in the graph to indicate that values â,re merged from different paths;

in this example, a vålue arrives on one or the other path, but not both, making the

merge operation deterministic. No MERcE instruction is included in the textual form

of the program; the same effect is achieved by directing two arcs to the same input

link.

If n exceeds zero, then after node 4 transmits ¿ to the IDENT node 6, the right
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hand path through the grâph is followed. Node 8 represents recursive application of

the factorial function (the FT of which is 1), with argument n-1; the result returned

is multiplied by n (node 9), and returned as the result of the function.

Figure 42.3 shows an extract from a trace of the execution of the program of

Figure 
^2.1, 

produced by the interpreter. Line I shows a request, and user response,

indicating that tracing is required for this run. The next line shows that the first

function read in has been inserted in the initial heap as the heap node with Uid 0, and

that the node is of type F n, namely a function template. Similar considerations apply

to the second function read.

Subsequent lines show a user request for the activation of heap node 0 (the program

driver), the allocation of an activation on the heap (node 2), and the establishment of

instruction 0 as the initiaì activity. Instruction 0 is â,n IDENT instruction which, on

firing, causes the sTART instruction to become enabled'

Consider the execution trace for the sTART instruction, activity [2,2]. The total

number of inputs is given by In; in this case its value is l. The value of each constant

input, and the position at which it occurs, are listed atter Con; in this ease, there are

no constant inputs, hence InC, the number of operands which must arrive to enable

the instructiou, is 0. There is one output, Ouú, directed to destination link 3.2. The

input value Inputs which triggered the instruction is 0, but this is supplanted by a

value requested from the terminal; the response, 3, is the output of the instruction,

indicated by Outputs.

The trace of the APPLY activity [2,3] (instruction 3 of the activation with Uid 2)

shows the information passed to a new activation. The argument value 3 is placed

in input position 1 of instruction 0, an IDENT instruction, to create the frrst activity,

[3,0],of thenewactivation. Instructionlis,byconvention,theRETURNinstructionof

the function; identification of the invoking APPLY activity [Z,e] is placed in its second

input position, and used by the RETURN activity to determine the destination of the

result of the function. The notation NU indicates that the APPLY activity does not
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use its outputs; the RETURN instruction, in effect, perfCIrrns the output transmission

phase of the APPLY instruction.

The remainder of the trace follows the course of execution discussed above. Only

the App¡,y and RptuRN instructions of the recursive activation are shown; it can be

seen that the value 2 will be returned for factorial 2, and multiplied by the value of n,

3, to give the result 3!. The ellipsis at the end indicates that execution may continue

with further factorial computations.

0
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o
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0

56

I

I

q 6

(a) Program driver.
'7

9

(b) Factorial function

Start
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Figure A2.2. Data flow graphs of recursive factorial plogrâm.
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42.2 Structure production

This example illustrates the use of the structure cr-¡nstruction and selection opera-

tions. The program includes three functions, namely the program driver, the structure

producer, ¿ function which creates and returns a structure value, aud the structure

consumer, which applies selection operations to the structure.

A-n important characteristic of the progrâm is that, before the producer has com-

pleted its execution, the partially defined structure value is returned, and the eonsumer

activated-this enables the producer and consumer to operate on the structure in par-

allel. Indeed, the structure value is never completely defined by the producer, but the

consumer successfully accesses those elements which are defined.

Figure 42.4 shows the final structure produced by the progrâm, both in tree form,

and as represented on the heap. The selection operation R returns the r component

of a tree node, henee, given that t denotes the tree depicted in Figure 42.4(a), the

following equation holds:

r(r(r(t))) : ese'

The notation "?" is used in Figure A2. (a) for an undefined component, represented

in a heap node by an empty queue, denoted E.Q.in Figure ,A.2.4(b). As the interpreter

identifies a structure value by its Uid; the notation STR6 denotes the structure value

stored at node 6 on the heap.

The text of the program is shown in Figure 42.5, and data flow graphs in Figure

42.6. Various stages in the construction of the structure a,re now discussed. Two

such intermediate stages are depicted in Figure A2.7, and a trace in Figure 42.8.

{
fl
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Consider the graph of the structure producer, Figure .A'2.6(b). Its input parameter

acts only a.s a trigger to enable the PAIR operâtions 2, 3 and 5, which fire in Ðny order'

producing three undefined structure nodes. Next, the construction operetions 4, 6 and

7 are then en¿bled, and ean fire in any order to produce the tree representation shown

in Figure 42.4(b). Note that the node numbers used in Figure 42.6(b) correspond to

those in Figure 42.8, for a particular order of firing of operations 2, 3 ând 5. A different

order would produce differeut node numbers, but the nodes would still represent the

tree of Figure A2.a(a).
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The graph of Figure 42.6(b) shorvs that the root node of the structure may be

returned, via the RETURN instruction at node I of the graph, immediately after it has

been created by instruction 2. It is then used &s a,n argument to the consumer function

shown in Figure 42.6(c). The operation of the consumer function is straightforward,

merely applying the selection operation R three times (sequentially), and returning the

resulting value.

Figure 42.8 shows a trace, produced by the interpreter, of the program in execu-

tion. Various points of interest marked on the trace are now discussed.

At point l, the eAIR activities [+,3] and [4,5] have executed, yielding structure

heap nodes 5 and 6; the tree is at the stage of development shown in Figure 42.7(a).

Between points I and 2, the MKR operations 4 and 6 have fired, and the third structure

node has been produeed, to give the partially defined tree of Figure ,A'2.7(b); neither

component of the root node, 7, has been defined.

At point 3, the root node, still undefined, has been returned from the producer,

and has triggered the invocation of the consumer, âs activation 8. It can be seen, at

point 4, that activity [8,2] attempts to a,ccess component R of the root node; because

that component is undefined, the activity is placed on the queue associated with the

component. The MKR activity [4,2] executes at point 5; this completes the st¡ucture

to the stage shown in Figure ,{2.4(b), and also permits the deferred activity [8,2] to

proceed. The l¿tter action câuses the queue entry to be removed (DelQ on the trace),

and the r component thus selected (^91fr5) to be transmitted to its destination, enabling

operation 3 of the consumer. The remainder of the trace shows further elements of the

tree successfutly aecessed, ¿nd the value 999 returned as the result of the ¿ctiv¿tion'

¡^

I
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HIR In :2 InC:2 con:

out :0
Inprr8 STR[7] STR[5J

Delq
Ouiputs ru

ACITVIÎY LIST
t8,31

IIIENPRETIIIG ACTIVIil [8,3]
EXECUTIIIG IIISTRT'CIIOÌ
n In :l InC:l con:

out:l l.l
InDuts sTR[õ]
ourPurr sIR[6]

ACTIVITY LISI
t8,41

ITIHPREÎIXG AClIVIil [8,4]
EXECTTTITG ITSTRUCÎIOT
ß In :1 Inc:l Coû:

out:l l.l
Inputs slR[6]
outPutr 999

ACIWIIY LIST
t8, ll

ITTF.NPRETIIG AClIVIfl [8, T]
qEgUfIXG IISÎRTJCTIOT
Roturn In :l InC:l Corl:

Oui:o
Inputs 999

tle t¡¡D Y1s [3,,1]
output,

Figure 42.S. Execution trace of structure production program.

2ro

(5)



APPENDIX 3

AN EXAMPLE OF LX3 PROGRAM TRANSLATIOT'¡

In this Appendlx, the operation of the various components of the LX3 data flow

implementation is illustrated by examining significant stages in the translation of a

simple factorial program, shown in Figure A3'f .

prog Fact;
lnt b, c,Fac,result;
dofrno Fac (lnt n) lrccrlng ell;

lnt result, i, f;
result:¡s¡ i cq n thon f clsr;
i: I fùt i*l;
f: I fùl f*ncrt i;

cdcînc;
c:Fac(b);
b: I fbt b+1;
result:a3¡ nort b cg 5 thcn c G.s.;

GproS

Figure ,A.3.1. Factorial Progrâ,m.

Five stages in the translation of the progtâ,m are considered below. In addition,

the iterative extensions to the data flow model introduced in Chapter 3 are illustrated

by briefly considering the execution of the target language Proglåm.

(r) Dependency graphs

The main program and the define clause are analyzed independently to produce

two separate dependency graphs, as described in Section 4.3.2. The graphs are shown

in Figure 43.2.

(2) Initial data flow graphs

Figure 43.3 shows the incomplete data flow graphs generated by the source anâ-

lyzer for the define clause and for the main progriln. The graphs are incomplete in

that circulators are formed only partially, and CoNSTANT instructions are not trig-

gered. A separate function template is used for each clause and the main program.

In each case, as described in Section 3.4, instruction 0 is the initial activity and is

used to transmit the first parameter of the define clause, and instruction I is the
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RETURN instruction. The implementation âssumes that each identifier requires three

characteristic addresses, and hence generates three IDENT instructions when an iden-

tifier is declared; as cân be seen from the graph produced (Figure 43.3), all of these

instructions may not be actually used.

(3) The code template

The dependency analyzer produces a code template as shown in Figure 43.4(b)

and 43.4(c). Figure A3.a(a) shows the format of a typical code template entry, and

of its sub-lists. At most one of gatelist ¿nd occlrsú are used, gatelist \f identifier is an

inductive variable, occlist if it is quiescent, and neither otherwise. The arc component

of a gateh'sú entry records information from the relevant dependency graph arc; for

example, the gatelist for the inductive variable / includes entries for the two arcs

emanating from / in the dependency graph. The gatíng /cA component has value g if

a gate is to be generated for each occurrence, ng otherwise.

result
tr/

\
2,L b c

1rl

(a) Main progrâ,m

\'
Fac

2 î.

,,/*i:i¡'
w

1 2rL

212

(b) Deffne clause

Figure 43.2. Dependency graphs for program of Figure 43.1.
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2

APPlY
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I8

7

2I

9

22
l9

L7

l6

char. addresees¡

213

24

result 4-6
b ?-9
c 10-12

5

(a) Main program

20 24
0

10

L2 15

23

I6

26

19

I

18

6

I

cha¡. addresses:

result 6-8
n 9-I1
i 12-14
f 15-17

(b) Deûne elause.

7

merge mer9e

+

1

switch

Figure 43.3. Initial data flow gÌephs for program of Figure 43.1.
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code template entry:

( ídentifier, code address, gatelist, occlist, nplus I

gatelist entry:

I arc, gating flag, occlist I

occlist entry:

2t4

\ Iink )

(") Format of a code template entry.

( result, 4, nil, níL, f ) ( ¿, g,lb 2 L,ng,{2o.1}], nr?, t )

(b) Template for main program.

( n, 10, nrT, {fS.l}, / ) ( result, 6, nil, n;1, f I

( i, t+,li z t,9,{22.1}1, nil, t )

( Í, t2,lf 2 L,s,{25.2}l [d 2 2,ns,{25.L}1, nil,f \)

(.) Template for define clause.

Figure 43.4. Code template for program of Figure 43.1

(a) Completed data flow graphs

Figure 43.5 shows the completed data flow graphs, produced by the code gener-

ator. Consider Figure 43.5(a), the main progr¿m, in which two significant changes

from the initial graphs are evident; firstly, extra arcs to transmit values of the loop

termination condition to control gates have been generated, and secondly, the circula-

tor for ô has been modified to include an FGATE instruction before the MERGE gate.

From Figure A3.4, it can be seen that the code address component of the template

entry lor result indicates the address which delivers values of the termination condi-

tion; addresses of control gates are determined during a traversal of the gatelisú. The
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template entry for ö shorvs that the flag nplus is set. Gating rule 1 of Section 4.2.3

requires that an FGATE instruction be generated between the next network of ó and

the NTERGE instruetion of the circulator; accordingly, Figure 43.5(a) shows that the

arc which originally linked the next network directly to the MERGE instruction has

been replaced. The "cu¡¡ent" value of ö, used as input to the next network, is not

gated.

The graph for the define elause, Figure ,dt'3.5(b), shorvs that a simple circulator

for n has been added. The value of the parameter n is frozen, henee constant, within

the clause, and must be regenerated for each ite¡ation of the loop. Control arcs and

gating instructions have also been added; in this case, gating rule 3 determines the

points at which FcATE instructions are inserted.

(5) Transformation of circulators to tail reeursive form

The final phase of the translation process is to eliminate all cycles by converting

each loop in the graphs to tail recursive form, as described in Section 4.4.2. This

process can be pictured in the following way:

(1) draw a box around a loop, in such a, wå,y that the only inputs to the box
are the initial values of circulators, and the only output, the result returned
from the loop

(2) form a new FT from the instructions inside the box

(3) in the original FT, replace the box with a suitable IAPPLY instruction

Each FT of Figure 43.6 uses one loop; hence, two additional function templates are cre

ated. The resulting four function templates of the target language program are shown

in Figure 43.6, in a form suit¿ble for execution by the data flow graph interpreter. The

NULL instructions shown âre never executed; they correspond to instructions which

were left uoutside the box" in step (l) above, and hence are not used in the FT for the

loop. It is possible to eliminate these instructions by renumbering, but this step has

been omitted to simplify comparison with previous templates.
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18

---) arldi ticAral afCs
ard nodes

generated tD/ code
ger¡erator

deletæd arc

cor¡rector
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(a) Main program.

0

(b) Deûne clause.

Figure 43.5. Final data flow graphs for program of Figure 43.1.
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1

0
0
1

I

1.1
2t
20

r0
0
I
2
3

1
5
r1

0
I
2

3
{
5

6
7
8
I
l0

Ident
Returu
Cou
IApply
Fln
End

Ideut
Ideut
Return
Iacr
Ident
Ide¡t
Ident
Ide¡t
Ident
Ident
Ide¡ù

0.
0.
=t
=t
3.
0

0.
0.
5.
0.
23
24

0.
4.

=t
=!l
0

2.
23
18
3.
2E

26
29

0
0

2.2
0.0
3.2
{.1
0.0

3.1
7.1
0.0
0.0

In1ùlatee loop of raln prograe

Loop FI for ralu progrer

2L.t
17 .2 L6.2 20 .1 19. 2
23.1 22.2 27.2

21.2

11.1
16. 1

0.0
20.2

27.7 21.t
3.2

I¡ltlates loop of f¡cüorial functlo¡

Loop FI for factorlal functlon
: 5.1
: 10.1
: L2.7
: 15.1

0.1
2.L

127
1

1

t
I

1

.1

.1
1

.1

.1

.2

0.0
0.0
0.0
0.0
7.1
0.1

126.
2.1

tl Ideat
12 Ide¡t
13 Idenù
14 Ident,
t5 Ideut
16 Âpply
17 Co¡
18 full
19 Con
20 add
21 Ide¡ü
22 Co¡-
23 Eq

24 Srlùcb
25 rull
26 Idenù
27 FGate
28 End
.2
0 Ide¡t
1 Return
2 Co¡
3 Co¡
4 IÂppry
5 Ead
r3
0 ldenù
1 ldeut
2 Ident
3 ldeuù
4 Retur¡
5 Incr
ô Ident
7 ldent
8 ldent
9 Ide¡t
10 Ide¡t
11 Idenù
12 Ide¡t
13 Ide¡ù
1{ Idenù
15 Ident
16 ldent
17 Ide¡ü
18 Eq

t7.t 8.2 :

=2 8.1 :

0.0 :

=1 8.,1 :

19. 1 8.3 i
7.L :

=5 9.2 :

9.r 22.L :

26.2 [t.L :

0.0 i

4.1 i

26. 1 9.3 :

0

16. 1

223
{.1

9.1
8.1

5.1 0.0
0.0

0
1

1.2 2.2 3.2
0.0
{.3
1.1
1.1

.1

.2
1
1

0.2
0.3
0.1 2.1 3.1

18

0.0
0.0
27.r
4.119. 1

1.1

30. 1 t,[. 1 17. 1

1

28. 1

2

3 25.1
31

23
18
5.
26
33
5.
6.1

1

2 2

13

19
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19 Sritch
20 XulI
21 Co¡
22 Add
23 ldent
24 full
25 lines
26 lde¡t
27 ldeú'
28 Ideut
29 Idert
30 FGaùe
31 FGaùe
32 Ide¡t
33 FGate
3{ E¡d

27.2 L6.2
0.0
=t 32.2
32.1 21.1
t2.l
0.0
14.2 33. 1

15. 1

6.1
10. 1

28.1
27.1 29.1
27.3 13.2
31.1
27.1 L8.L
0

: 32.1
: 22.t 21.2
: 36.2

2
1

1

7.L
0.0
22.
1,1 .

13.
0.0
t7.
10.
30.
29.
30.
s.2

I
1

1 19.1 31.1 33.1
1

2 18.1

Figure 43.6. Target language version of program of Figure 43.1

Figure 43.7 shows â, partial execution t¡ace for the program of Figure 43.6. Several

interesting points in the trace are indicated. The mâ,in progrâm, FT 0, is initiated as

the activation with Uid 4. At point 1, the main program loop is initiated, as activation

5; it will be noticed that the activities generated by the IAPPLY activity shown have

an iter¿tion number field, initially zero. Point 2 shows resumption of tracing at the

initiation of the final iteration of the main progrâm loop, FT l; it can be seen that 4 is

the value of ó admitted to this final iteration, via the INCR activity [11,2,3]. At point 3,

the define clause, FT 2, is invoked as activation 16. At point 4, the IAPPLY instruction

initiates activation 17, the first iteration of the loop which computes result in the deÊne

clause. The first input, 3, indicates the FT'rvhich implements the loop; the remaining

three inputs initialize the circulators of the loop, in this case with values 4, I and l.

The initiation of a subsequent iteration is shown at point 5. The frnal iteration of the

define clause loop is initiated at point 6; the value admitted to the circulator for /
is 24, or 4!. At point 7, this value has been returned, via the RETURN instruction of

the final iteration, to the FT for the define clause, and thence to activation 15, the

final iteration of the main program loop. The end of the trace, point 8, shows that the

value has been returned to the main program, aetivation 4, and displayed using a FIN

instruction.
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D¡È4 Flov Gr¿Ph fnterPret€r
Do tou rãna t¡8c1n8? t
He¿p node 0 ¿Ilocâted â8 Fn

He¿p nodo I elloceted a8 Fn

Heap nodo 2 rllocBl,ed È8 Fn

Heùp nod€ 3 alloccted 38 Fn
l¡hlch Fn to run ? o
Äct1v¿t1ng Fn Ylth Uld: 0

Heap nodê 4 lllocaGed ¿8 Âc

ÀCIIVITY LIST
t4,01

IIITBPREÍ IT¡C ACT TVIÎT
E(ECITÍII{G r[SrrucÎrot
IÂpPlt In :2 InC

t4,31
(r)

Con: .1=l
out:l ¡l .l

Inputs t t
Acttv¿rlng Fn vlLh Utd: I
H€âp nodo 5 ¡llocated e8 Ac

opnd t of Inst. 0 1n U1d 6 =

opnd 1 of Inst. t ln Uld 5 =

opnd2ofI'reL.21nUld5=
outputs llu

ACTIVIÎY LIST
[ó,o,1] [5.0,0]

219

I
I
[4,3].o

IITBPRE'ÍIilG 
^CTWITY 

ltt,2,3)
E€qJÎII'G IilSTruCTIOX
Incr I^ :2 I\C:z Con:

0ut:1 0 0
Inputs I 4

,lctlvatlng Fn flth U1d: I
Hesp node 15 auocal,ed ¿s 

^copnd 1 of In8t. 0 1n U1d 15 = 1

oPnd I of In8t. I 1n U1d 15 = 4

oPnd 2 of Inst. 2 ln U1d 15 = [4,3].0
outPutc l{u

ACÎIVITY LISÍ
[15.3. r] t15,3,01 [13,0,18] tr4,7,26)

IXIENPR.EÍ IIIG ACTWITY .[ 15,3, 16]

Ð€CIJIII{G IilSTruCTTOil
Âpply ln :2 InC:2 Con:

out:l 1l I
InPutB 2 ¡l

^ctlY¡rlng 
Fn flth Uld: 2

He¿p node 16 alloceted ¡s 
^copnd 1 of InFt. 0 1n U1d to = 4

oPnd 2 ot rn8f, I ln Uld 16 = [15,16] O

outputs tlu
ACTIVIÎY LIST
I16,0] lr3,o,22l [1ii,1,7] [15,3,20]

IITERFREIII{C ACTWITY [16,4]
E€C1JTIHG IHSTruCTIOII
IÁppfy In :4 fnc:3 Con: .1=3

out:l l.l
InPutsS'lll

^c?1v¡t,1ng 
Fn Blth U1d: 3

Hecp node l7 allocated ¡8 
^coPnd I ol In8t. 0 ln uld 17 = 3

opnd I of Inet. I ln u1d 17 = 4

opnd I of fnsG. 2 1n U1d 17 = I
opnd I of Inst. 3 ln U1d 17 = t
opnd 2 ot In8r. 4 1n U1d 17 = [lo,l] O

0utput'8 ilU

<2)

lr4, r,2sl

(3)

[14 r,n)

({)

ACIIVITY LIST
177,o.31 tt7,o,2) tt7,o,r) [17,0,0] [13,0,17] [8,1,11] [15,3,23]
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IIINPRETIIIG ACTTVITY [17,0,5]
Ð€clrÎIt{c msrBucTroll
Inc¡ In :{ rnc:4 con:

out:l 0.0
Inpüt¡3422

^ct1v¡t1ng 
Fn ulth U1d: 3

Heap node 19 rlloc¿ted ¿8 
^copnd I of Inst 0 ln ul.d 19 =

0pnd I of In8t. 1 ln U1d t9 =
oPnd I ol Inst. 2 ln Uld 19 =
opnd 1 ot In8È. 3 1n Uld t9 =
opnd 2 of In8t. ,l 1n Uld t9 =

outpuÈs NU

ACTIVIÍY LISI
I19,r,3] [re,1,2] [t9,t,r]

220

(5)

3

4

2

2

l16,4l 0

Ire,1,0] [r8,1,17]

IilTEFRTTIXG ACTWITY 12I.2,6)
Ð(Eclrlrr{G rrslruclr0r
fncr In :4 InC:4 Con:

0ut,: I 0 0
InPut834¡l 24

^cÈ1vst1ng 
Fn ulth uld: 3

Heâp nodo Z2 ¿Iloc¡t€d .s 
^coPnd I ol Ins¿. o ln u1d 22 = 3

oPnd t o1 Inst. I tn U1d 22 = ¡l

opnd I ol T^ai,. 2 L1 U!6 Z2 = 4

Opnd I ot Inst. 3 L¡ Utd æ = A
opnd 2 ot rnst. 4 tn tJl6 n = [16,¡f].0

ûuip[lB llu
ACÎIVITY LISÎ
122.3.3) 122.3.21 122,3,11 lZ2,3,o)

rilTBPRtfrr{G ACTTVTÎY ln,3,4l
Ð(ECIJTIIIG IilSTruCTIO'I
R€turn In :l InC:l Con:

out: 1 0.0
Inpu¡o 2{

Rer[rn vl¿ [1ô,4]
outputs 24

ACTIVITY LISÎ
[16. r]

I}IÍERPREÍIIIG ÀC1N'ITT [16, T]
EECUIITG ITSTruCÏIOI .

Return In :1 InC:l Con:
out:1 0.0

fnpuis 2'l
Roturn v1¡ [15,3,16]

out'puts 24

ACTIVITY LISÎ
[15,3, 11]

(7)

rtltBPREril{G 
^CTTVTTY 

lts,S,2)
E(ECI'TII{C II{STTUJCT IOT
Rsturn In : I InC: I Con:

out:l 0.0
Inputr 24

Rolur¡ v1B [4,3]
oûputs 24

ACÏIVIil LTST
L4.4)

ITTT]ìPRETIHC ACTTVITY [ 4, ¡I]

Ð€C.I'.|TIIIG IilSTRUCTIOT
F1n In :1 InC:l Con

0ut
Inpurs 24

Result ¡t output I = 24

outputs xu

(8)

00

(6)

Figure A3.7. Execution trace of program of Figure 43.ô.



APPENDIX 1

AN EXAMPLE OF TRANSLATION OF AN LX PROGRAM

In this Appendix, the production of data flow graphs fom a simple LX program is

describe,rl. The program, shown in Figure ,¡\4.1, is a factorial program which defines

a history of factorial" Un in terms of its own future; a similar progrânr was used in

$2.3.2. The following histories satisfy the definitions of the program:

[-n :
["]l :
[/n :

firesutúfl :

(3,3,3,3,
(3,2,1,0,
(6,2,1,1,
(ô,2,1,1,

)

)

)

)

prog fact glob¡l lnt m;
lnt n, f, result;
û: mfbyu-1;
f :ll r< 2

thcn 1

ols¡n*ncxtf
eif;

result : f;
cp?o8

Figure 44.f . A factorial program

The FTs produced from the program are shown in Figure A4.2. Heap node 0 is

a st¿ndard driver which operates in a continuous cycle, of accepting a number d from

the terminal, invoking the main program with d as a demand number, and displaying

firesult\¿ ¿t the terminal. FTs l, 2 and 3 respectively are loaded with every progra,m,

and are used in the implementation of the operators asa-then-easa, wvr-then-ewvr

and upon-then-eupon. A use of one of these operators is compiled as an invocation of

the appropriate FT; the FT for asa-then-easra is included for information, although

the construct is not used in this particular program.

The FT for the LX program, constructed as described in $5.3.3.1, is shown at heap

node 4. The principal purpose of this FT is to use the supplied demand number to
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construct a second demand, âs sho\ryn at instruction 7, which is then used to invoke

the FT for result, at instruction 8. Instructions 3 to 6 show the consbruction of the

component instance of this seconC demand. As indicated by the constant input operand

of instruction 6, the component úezú of the instance is FT 4, the LX main program.

The main program itself is the only elause used, hence only one instance is created.

The scheme given in $5.3.3.f requires, for an "external instance", an ET which includes

a list of global variables of the main program, intended for use in resolving uses of such

variables. However, for this particular LX program, the compiler can resolve such uses

directly, and the ET is not needed. Hence, it is created with an empty list, at heap

node 5, and a dummy instance.

FT 6 is invoked to produce a value of [ml. The external interface required to

obtain such values is implemented in the special instruction Prompt, which displays its

inputs, a character string and the demand numbet, on the screen, and accepts a value

in response. Such values are buffered to prevent multiple requests for the value at a

given history index.

Both FT 7 and FT 8, representing respectively the definitions of ¿ and f , are

constructed as described in $5.3.3.3. The DM¡mI instruction (number ll) of FT 8

performs the demand number incrementation required to obtain values of next /. The

SwITCH instructions 14 and 15 simulate a TGATE and â,n FGATE instruction. As

mentioned in $3.2, the MERGE instruction has two input operands, but fires on ¿rrival

of an input at either operand. Hence, iIs incount, the number of values yet to arrive

to enable the instruction, is l; to ensure that the interpreter initializes this count

correctly, only one input source is shown.
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rO DNIYIN
0 Ident
1 Retur¡
2 Sterù
3 Apply
4 ldenù
5 Apply
6 Fin
7 Eud
11 ÂSA

0 Ide¡t
1 Ideuù
2 Ident
3 Betur¡
{ I¡cr
5 lerge
6 ldeuù
7 Srltch
8 lerge
I ldenù
10 Sritch
11 DXUrI
12 Apply
13 Ide¡ü
l{ E¡d
*2 TYB
13 UP0r
r,l Prog¡ar
0 lde¡ù
1 Returu
2 ldeut
3 Co¡
{ LUpd

5 EfCo¡¡
6 ICo¡s
7 DCo¡¡
I Apply
I E¡d
r5
r0
0 ldent'
1 Return
2 DIur
3 Prorpt
4 E¡d
sT

0.0 :

1.1 :

=Q:
={ 2.1 :

21ú. ¡
=Q 4.2 :

1.1
5.1
13.1 6.1
2.1
8.1
t3.2 9.2
t0.2
6.2 9.1
L2.L
0

3. 1 =I [0]
2.2 1.I :

=FI [4] 5. 1

2.3 8.1 :

97.t: I
0

2.t

3.2 5.1 7.1
I : 4.1

9.1
L2.2 L0.2
3.1 11.1

4.3
13. 1

7.1 10.1

s.2
6.2
: 7.2
8.2
1

2.2

1.2
0

3.2
4.1
6. 1 5.2
1.1

{1
51
81

0
I
0

00 2t
31
01 32

0.0
0.0
0.0
10
0.

.0

.1

.1
5

1

L 7.2 Lt 1:
6.1
7.2 Lz.r
0.0 {.2

d
.îl

fl

2t=f
0

1.1

0.0 : 7.L
14.1 :

=6 11.1 : 1{.1
13.1 : 1.2 6.2
=7 3.I : 5.1
4.1 0.1 : 14.1

erpty llaù
FI for rr¡

Ff for r¡r
0
1

2

3
1

5
6
7
I
0

Ide¡ü
Betur¡
Âpprv
Ide¡t
Âpplv

F4

5.2
rL.2 t2.2

Sub

Dfur
t

Co¡
Iden

=1
0.
7.
=Q

9.
10
10
t2
2.

0

1

1

3.2 :

: 8.1
: 9.2

8.1 :

: 11.
17.2 :

27.3 |

1 : 3.
: 1.1

10 Ident
11 SriùcÀ
12 Srltch
13 Dlu¡D
1{ Ierge
15 E¡d

10. 1

1 12.1
2.2
0.0 13. 1

1
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.t

''{

ùf'

I
t'

i
{
Ì

'I

ï
I
i

I

I

I

r8
0 ldent
1 Retur¡
2 Ident
3 Äpply

0.0:
16. I
t2.t
=7 2.
3.1 5

-Á Á.

=t 14
ts.2
-ç, ,
8.1 1 6

2

15. I
6.2 0.0
0.0 7.1

7.2
0.1
4.1
13.

t2.1

4Lr
5 Cou
I Con
7 ldent
I lpply
I Îl¡ea
10 Apply
11 DXUrI
12 Ident
13 Ide¡t
14 Srltch
15 Srltch
10 Ierge
17 End
r9
0 Idenù
1 Retur¡
2 Âpply
3 E¡d

5
.l
13
.2
16
I

.l
I

9.

:

: 3.2
1: 4

.1 :

2t 1
.1 :

: 8.2
1:9
0.1 :

2

1.t

I

1

1

=8 11.1
10.2
2. 1 14 .2 rS.2

: 1{.1
7 L2.2 :

L3.2 12.3 :

6.1 : 1.1
0

0.0 : 2.2
2.1 :

=8 0.1 : 1.1
0

Fl lor rresulù¡

Figure A4.2. Function templates produced from IX program of Figure 44.f .

Figure 44.3 shows the propâ,gation of demands to various definitions and expres-

sions in the program. The arcs representing demand propagation â,re labelled with the

dem¿nd number propageted. The return of v¿lues is also shown, by labelling ârcs with

the returned value.

An extract from a trace of the execution of the progr&m of Figure 44.2 is presented

in Figure A4.4. An explanation of each of the points labelled on the trace follorvs:

1: The inputs of the DOons instruction âre a demand number 0 and an
instance at heap node 14, which comprises an FT at node 4 and an
ET at node 13; the output shows each component of the demand.

2: Heap node 16 is created as an activation of /, supplied with demand
number 0.

3: Heap node 17 is an activation of n, with demand number 0.

4: Shows extraction of the demand number propagated to activ¿tion 17,

and its comparison with 0, as required to implement fby.

5: The FT for m h¿s been invoked, and the value 3 accepted from the
terminal â,nd returned from the activation.

6: Shows execution of the test n( 2.

7: The demand number has been incremented to 1, and / invoked, as

required to implement fby.

Í''
fti

p
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8: Considerably later in execution, / is invoked with demand number 2,

creating activation 26.

9: In activation 26, the test n< 2 succeeds, hence the value I is returned
and multiPlied bY nr:Z.

l0: Shows a later point on the VRP.

ll: The value 3! - 6 is returned to the main program, via activations of
/ and result.

12; The value 6 is displayed on the terminal.

ii
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D¡t¿ FIor Grsph Intorprel,o¡
Do Jrou [rurt tr¡clng? t
H6ap nods 0 âllocsted as Fn

HeaP nodo I clLoce¿ed âs Fn

Hcâp nodo 2 aLloc¡ted a8 Fn

Hesp node 3 ¡lloc¿ted as Fn

Heap nodo 4 aÌloceted as Fn

Hesp node ó âllocated as L1

HelP node 0 ¿lloclted â8 Fn

Ilesp nodo 7 .Iloceted âs Fn

Heap node I lllocated 8a Fn

H€ap node 9 sllocat,€d a8 Fn

Ho.p r€¡d 10 nodsg

'¡n1cl¡ 
Fn to run ? 0

lctlv¿tlng Fn ultl U1d: 0

He¿p node 10 el.loc¿ted ss Ac

ACÎWITY LIST
t 10,01

If,ÎE¡PREÌTXG ACTIVITY
Ð(ECUTIXG IHSIRTJCTIOI'
Idena fn :1 fnc

[ 10, 0]

oon

I Con:
0ut,:1 2 1

InPuts o
outPuts 0

ACTTVITY LISI
tto,2)

IIITERPRETIIIG ACÎIVIÏ [10,2]
Þ(Ff,UTIIG IIISTRIJCTIOI
St^rt fn :1 InC:l

Inputr 0

xou value for lnput l: 0

outp[1,r 0

ACTWITY LIST
[ 10 ,3]

II{TERPRETII{G ACTIVITY [ 10, 3]
Þ(ECUTIIIG IHSTBIJCTIOII
Applt In :2 InC:l

Con:
out:1 3.2

Con:.1=4
out:1 4. I

Inpr¡t8 { o

^ct1v¡t1ng 
Fn ulch u1d: ¡l

Hs¡P nodo 11 ¡lloc¿teó a8 
^copnd I of In8r. 0 1n uld 11 = o

Opnd 2 of Inrt. 1 1n U1d 11 = [10,3].0
outputs ru

ACÏTVITY LIST
t 11 ,Ol

ITÎERPREÎIIIG ACTIVIfY ITT,4]
E(ECUIIIIG IIISTRIJCTTOX

LUPd In :2 InC:l Con: ,2=I[01
0[!:1 5.2

Inpur,s 5 f [01

H€lp node 12 allocated ¡s Ll
L18t O 01.t8.

orrpui¡ L[12]
AC¡TVITY LIST
[11,5]

IHIERPREIIIC ACIIVITY [T1,õ]
Þ(ECUTIXG IIISÎR(rÎIOII
ETCon¡ In :2 InC:2 Con:

0[r:1 L2
InPur,s 0 L[12]

He¿p node 13 ¿llocatod ¿B ET

ourpurs Ef[13]
ACTryITY LIST
[1r,0]

IIIIEXPREÏII{G ACTIVITY
D(ECUTIIIG ITSTRT'CTIOT
Icons In :2 Inc

Irr,6]

I Con: l=FT[{]
o\1,i1 7.2

rnpur8 FÎ[4] ETI13]
H€ap node 14 ¿llocated .s Ic

outputs Itr¡tl=[{,f3]
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ACTTVIIY LIST
[ 1r,7]

IIITERFREIIIG ACTIVITY [11,7]
Ð(ECUTIIIG IIISÎRIJCTIOII
Dcons In :2 InC:2 Con:

out:1 8.2
InÞuis 0 Itl4l=[,1,r3]
oürpurs D[0,14]

ACIN'ITÏ LIST
Ir1,8]

IIIÍMPRETITG ACTIVIil [T1, 8]

(1)

Þ(ECUTIHG IIISTBTJCTIOi
Apply I¡t :2 InC:1

¡)oa

Con: 1=9

out:1 I .1
rnpurs I D[0,14]

Actlvstlng Fn rlth u1d: 9

tleep node 15 ¿Ilocâted ¡s Ac

oPnd I ot Inst,. o ln uld l5 = D[o,r¡¡]
Opnd 2 of Inst. I 1n U1d 16 = [1r,8].O

oûf,putr KJ

ACfWITY LIST
tl5,ol

rT ÎERPRETIIIG ACÎIVI TY

Ð(ECrrTiltG rilsTRtCllol
Idont, h :1 InC

t15,01

1 con:
Ottt'.| 2.2

Inputs D [0,14]
0urPr¡18 Dto,l{l

ACTTVITY LTSÎ
It'.2)

IXIERPREÌIXG ACTIVIÍY [15, 2]
Ð(ECUIII|G rtSTR|.rCÎroX
Applt In :2 InC:l Con: .l=8

out: t 1 .1
InPuts I D[0,14]

^ct1Y¿t1ng 
Fn r1Èh U1d: I

Hoap node 16 ¡llocated 3r 
^cgPnd I of In8r. 0 1n u1d 16 = D[O,14]

opnd 2 of In8r. 1 1n Uld 16 = [r5,2].0
outputs ru

ACITVITY LIST
[ 18,O]

IIITERFßEÎIIIG ACTIVITY [10, 3]
Þ(ECUTIÌG IXSIRIJCIIOi

^PPIy 
rn :2 InC:l Con:.1=7

out:l ¡l .l
InPrrs 7 D[0,14]

Acrlv¿t1ng Fn f1¡h U1d: 7
He¿p nodo 17 rlloclted ¡8 

^cqpnd I of Ins!. O 1n U1d 17 : D[O,r¡t]
opnd 2 of In¡r. I 1n Uld 17 = [16,3].0

outputs ru
ACTWIÎY LIST
[17,0] [16,5)

IIITERPRETIXG ACTIVIil [T7, 8]
Þ(ECUÌTXG rr{SrRrJclror
DLur In :l InC:I Con:

out:1 9.2
InPutt D [o,l¡l]
our,pul,¡ 0

ACTWITY LISÎ
[ 17, 9]

ITÎENPRETITC ACTIVIil [T7,9]
EIECUI rXC rXSlRlJClroX
E4 fn :2 InC:l Con:.1=O

out: I 10.1
Input8 o 0

outputs T

<2)

(3)

({)
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ACITVITY LISÎ
I r7, ro]

IXÏEPRETIIIG ÂCIIVITY
Ð(ECUTIXG I¡ISTRI'CTIOI{

^ppft 
In :2 Inc

Ít7,2)

Con: 1=8

out:1 l¡l.l
Inpüts I D[o,14]

Acilvsilng Fn r1tì Uld: 6

Ho¡p node 18 ¿lloc¿têd ¡B 
^copnd I ol InEt 0 ln U1d l8 = D[0,r4]

opnd 2 of rnst. I 1n U1d l8 = Ll7,2i.O
outputs ru

^cÎryrrY 
Lrsl

I18,o]

.).,0

ITIBPREÎIXG ACÎIVITY
Þ(ECLrIIIIC ITSTBTÆTIOII
Pro¡pt I¡ :2 InC

Inputs I't

M ¿t O: 3
ontputs 3

^cÎwrlY 
LIST

[ 18,1]
IIIIERPRETIIIG ACIIVITY
Ð(ECUTITIG ITSÎRUCTIOf,
Ret'urn In :l InC

Inputs 3

Retr¡rn v1¡ [17,2]
OutDut¡

ACITVITY LIST
[17, r{]

IXÎENPREÌIIC ÂCITVIIÏ
Ð(EUTTXG ITSTRUCTIOX
Herge In :t fnc

rnPuts 3

output8 3
ACTWIÎY LISÎ
t17,rl

ITIERPREIIilC ACIIVITY
Ð(ECUTIXG IXSTRI.|CIIOT
R€E[r¡ f¡ :l InC

Inputs 3

RstürD v1. [18,3]
outputs

AClTVIil LßÎ
Ir0,rl

IXIENPRETIXG ACTIVITY
Ð(ECUrurG rxsÌßuclror
Lt In :2 InC:2

[18,3]

I Con: . l=H
out: I 1.1

o

I18, r]

I Con:
out :0

u7 , t1')

1 Con:
ot¡t:1 1.1

t-17, rl

I Con:
Out:0

[16,4]

CoD:
out,:l 13 I

(6)

(6)

Inputs 3 2
Outputs F

ACTTVITY LISI
I r0, 13]

IIÎENPRETITIG ACTIVITY [T6, 1T]
Ð(ECUIIìG IÈSTRT,CIIOi
DilurI In :l InC:l Con

0ut
Inputs D [0,14]
Otttputr D[1,1,1]

ACIilITY LIST
[ 10, ro]

10.2
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IHTERFRETII¡C ACTIVITY [18, TO]

EÍECUTTìG IXSTRUCTIOÈ
,lpplt In :2 InC: I con: .1=8

out:l 9 2
Inputs I D[1,r4]

Âc¡1Yx¿1ng Fî fltl Uld; I
Help nc<l€ 20 ¿ll.oclt€d ¡8 /tc
opnd I of Inst. 0 ln U1d 20 = D[1,14]
opnd 2 of In8t. t 1n u1d 20 = [16,t0] o

outputs ru
ACTTVIÎY LIST
læ,oJ Ite,7]

rxTmPBETrt{c 
^cTrvrlY 

[20, lo]
Ð(ECUÍ IHG IIISTBT,CTIOf,

^pplt 
Itr :2 InC:t Con: .14

out:l 9 2
Inpüte I D[2,1¿¡]

^ctlv¿tlng 
Fn rlrh Uld: I

He¡p node 26 allocsted 1r 
^copnd t of Inrr- 0 1n u1d 2õ = D[2,14]

opnd 2 ot Inst. t 1n uld 26 = [20,10].0
. oqtPEtr llt

ACTilITY LISI
128,o) L2S,7)

IXIERPREIIIIG 
^CTMTY 

[26, ¡¡]

Ð(ECUTIIIC IüSTRI,CTIOX
Lt In :2 hC:2 Con

0u¡
Inputs I 2
outPuts 1

ACTWITY LIST
[2ô, t3]

IIÎERPREÎITG ACTIVIil [?6,T]
Þ(ECUf ilrG iltSTRt CTrOf,
Return fr :l Inc:l con:

out:o
rnPuts I

Retì¡rn v1¡ [20,10]
ottputs

AClWIil LTST

t2o,9l
IXTEPREIIXC ACTIVIil [2O,9]
E(EflJTIIG I¡STRT'CIIOI
T116¡ In :2 InC:2 Con:

ouù:l 10
rnPur¡ 2 I
outpür8 2

ACÎTVIÍY LIST
t20, 16l

IXTERPRETIXG ACIIVITY [2O, 1]
Þ(Ectnrilc lÌslRt clror
ReturD rn :1 rnc:l con:

out:o
fnputs 2

Roturn Y1¡ [16,10]
Output¡

ACTWTÏY LISÎ
I 16,9]

IXTERPREÎIXG ÂCTIVITY [16, 9]
Ð(ECI,,TIIIG IISTRT.,CTIOI
Tlaer In :2 InC:2 Con:

our:1 1ô. 1

InPuts 3 2

or¡tpu¿8 6

<7)

(8)

(s)

(10)



Appendix 4 AN EXAMPLE OF TRANSLATION OF AN LX PROGRAIVI

ACÎWITY LIST
[ 16, t6l

ITISIPREIIXC ACTIVTTY
Ð(truÎrxc iltsTRtcTroil
Return I¡ :1 InC

[16. r]

1 CoD:
oui:O

fnpu¡8 6
Roturû vl. [15,2]

0utputs
ACIWITY LISÎ
tr5,rl

ITÎENPRE,IIilG ACTIVITY
ÞGLT.,Î IIG IIISIRT'C TIOT
Rat[rn ID :l InC

t16, rl

1 Cor¡:
out:o

Input¡ I
Rotur!, r11 [11,8]

0utp[tg
ACIN'IÏY LIÍ;I
tr1,1l

IXIEPREÍITG ACIIVITY [11,1] (1 r)
EXEN.ÍÎIXG TTSIRI'CÏIOT
Roturn Ir :l InC:l Con:

out:O
Input¡ I

Ret[rn vla [10,31
olrtP¡tr

ACrflrrY Lrsl
[10,r]

ITIENPNEIITG ACTIVIW [1O,0]
Þ(ECI,IIIIG ITISIßUCIIOil
F1¡ I¡ :l InC:l Cor¡:

out:O
Inpulr 6

Re¡ult ¡t output t = ô
Outputc

(12)

Figure A4.4. A trace of the execution of the program of Figure 
^4.2.
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APPENDIX 5

THE TRANSLATION OF A PROGRAM USING THE HYBRID SCHEME

This Appendix completes the description of the t¡anslation of the progrâ,m shorvn

in Figure 6.7. The graphical form of the DFC is shorvn in Figure 6.8. Figure A5.l

shows the textual representation of a data flow program which implements the program

given in Figure 6.7. In this case, the data flow program wâs constructed manually from

graphs produced by the implementations described in Chapters 4 and 5.

Function templates 0 and 5 represent the DFC. FT 0 contains that part of the

graph which is "outside the box" (a term explained in Appendix 3) shown in Figure

6.8, as well as â FIN instruction used to display the result of the progrâm. Note

that FTO invokes the main program (FT 5) once, to provide the "external trigger"

mentioned in $6.4. If the program required external input, for example if / was global,

then FT 0 would use a sTART instruction to obtain one input value, invoke FT 5 with

that value, and then recursively invoke itself (FT 0) to obtain another input value (see

$3.3.2).

FT 5 contains the main body of the loop shorvn in Figure 6.8, after it has been

t¡ansformed to tail recursive form. FT 6 is the representation in the DDC of the DF

variable /. It can be seen that it invokes FT 4, which implements the -A.cc¿ss network

described in $6.3.2; a parameter of the invocation is the Uid 7, the heap node which

contains the structure value E¡. ,\ll remaining FTs implement the DDC, and a¡e as

generated by the implementation of $5.3.

l: Inst¡uctions 3 and 4 implement FirstU¡ of Figure 6.8.

2: Instructions l8 and l9 implement DI of Figure 6.8; inputs 3 and 4 of
DCons implement actual parameter transmission, which is not consid-
ered in detail in this thesis.

3: Instructions 30 to 33 implement Nertí¡ of Figure 6.8.

4: Instructions 7 and 8 are concerned with actual parameter transmission.

Explanation of each of the labelled points on Figure 45.1 follows.
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5: Heap nodes 13, 14 and i9 are lists of global variables and formal
pârameters created by the LX compiler.

6: Instruction 3 is an invocation of FT 2, wur, the second operand 17 is
an FT which computes a value of the condition of the wvr definition,
and is invoked within FT 3 when required.

I¡ltlates loop ol nala prograrr0
0
1

2

3

1
5
6

7
I
r1
0
I
2
3
1
5

I
7
8

I

Ident
Return
Co¡
Con

TTL
Con
IApply
Fl¡
End

Âsa
Ident
Ident
Ide¡t
Reùuru
hcr
Ierge
Idenù
Sritch
llerge
Ident

0.0
7.t
=5 0.1
=7 O.2
3.1 2.2
=0 0.3
=6 2.t 3.2 5. 1

6.1
0

13.1 0.1
2.t
8.1
13.2 9.2
10.2
6.2 9.1
12. I
0

2 3.2 5.2

9.1
72.2 L0.2
3.1 11.1

4.3
13.1
7. t 10.1

: 23.7 2O.2
2: 0.0 6.5
1: 22.1
: 9.1 12.1 16.1 20.1
t 2t.2

0
2 1.2
t 8.3
0
4
I
1

2
0
6
I
0
6
7

1

(1)

0.0
0.0
0.0
10. I
o.t 7.2
1.1
5.1

0.0 : 7.L
0.0 : 10.
0.0 : 14.
0.0 : 18.
tz.t :

0.1 9.2 13.1 1

18. r
22.2 79
t5.2 23

2L.t
19.1
0

4.1
5.1
8.1

11. I :

61

1.1 : 8.1
7.L : 9.2
22.1 8.1 : 0.

7.2
0.0

12. 1
4.2

10 Sritch
11 DXUII
12 Âppry
13 Ideuù
lrt End
t2 ÍYB
0 lde¡t
1 ldent
2 lde¡ù
3 lde¡t
4 Ide¡ù
5 Reüur¡
6 Incr
7 Xerge
I Ide¡t
I Srltch
t0 llerge
11 IÂpp1y
12 Srltch
13 Dlurl
ltl lerge
15 Ident
16 Srltcì
17 Âdd
18 lerge
19 Ident
20 Srltch
21 Eq

22 Idenù
23 Dlur
2{ E¡d
13 I¡POI
r{ accEss

00 61

7.1 20.2 :

2.L 11

=L 8.2 10.1 : L2.2
22.3 tt .7 : 5. 1 13. 1

12.2 : 0. 3
3.1 : 15.1
14.1 : 16.221.t
22.L lE.L : 0.0 17.2
=l 16.2 : 8.4
{.1 : 19.1

1

I
I

Lt.2
0 6.2
3
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0 Ident
1 Ide¡t
2 ldeat
3 Beturr
,[ I¡cr
5 Ide¡t
6 Ident
7 FGate
8B
I Ident
10 lde¡t
11 FGate
12 Sub
13 Eq

14 Ideuù
15 Sriùch

16. 1

0.1 8. I tz.t
1.1
5.1
14.2 6.1
7.L
9.1
9.1
14 .3 10. 1

11.1 =1
10.2 =0
13. I
14.l 8.2
15. 1

0

14. 1

15.1 7.1 11.1
18.1 0.0
3.1

0.0
0.0
0.0

1.L
5.1
9.1
0.0
0.0
0.1
7.2 tE.2
8.1
1.2
10. 1
11.2 13.1
t2.t
4.3

26
27
33
37
18
5.
34
35
5.
19

20
2t
22

23
0.
7.
11

10
25
15

31
32
0.
0.
t6
30
71
13
36

.1

.2
3

.2

.2

.2

.t

.1
1

10
.1
.1
.1
.1

E¡d
16
L7
*5
0
1

2
3
1
5
6
7
I
I

22
23
21
25
26
27
28
2S

30
31
32
33
3t
35
36
37
38
39
r6
0
1

2
3

L

DFC FI fo¡ rai¡ progra¡
Ide¡t
Ident
Ide¡ü
Ide¡t
Returr
I¡cr
Ident
Ident
Ideat
Ident

0.
0.
0.
0.
7.
0.
23
21

1.
2ø
25
3.
37
36
28
34
31
13

=f,
13

22
6.
27
9.
0.
2.

0
0
0
0
1

I

.1
1

2

I

1

1

1

1

3
1

I
2

5.1
9.1

10 Ident
11 Ide¡t
12 Ident
13 ldent
l,l Ide¡ù
l5 Ide¡t
16 Ideut
17 Ident
18 EICo¡s
19 IGor¡
20 DCo¡¡
21 Âpply

fde¡ù
GT

Srlùch
tlles
Ideut
FGate
Ide¡t
fu11
Idert
Palr
TIR
ITL
Ide¡ù
FGate
add
Ide¡t
FG¡te
Eud

=9 2O.l
2t.t

I
1

1

I

2.r
0.0
3.3
1.1

6.4
0

0.0
3.1
0.1

1

t

17.2 t7. I 14. I

8
=Q
.1
19.1 =0 =0

28.7
t2.t
0.0
0.0
24.L 27.1 35.1 38.1
4.1

20.1 38.2

1

2
2
1

1

5.2

4

15. r
6.3 1ô.1
38. 1 =1
L2.T

.1 =500
7 22.2

13 .3

. 1 32.1

.2 33.t 17.r
0
0
.1
.7
.1
.1
.1

(z'l

(3)

221

=$

110

.1 31. 1

31.2 11. 1

2.r
.130

30

Ident
Retur¡
Dlur
IApply =1 =7 2.1

DDC FI for 'f¡



Appendix 5 THE TRANSLATION OF A PROGRALI LTSING THE HYBRID SCHEME

0

235

End1
*7
r8
0
I
2
3
4

5
6
?
8
I

0
1

2

3
I
5
6

7
a

0
I
2
3
I
5
6

7

I
I

Idenù
Retur¡
Gon
Ideut
apply
Àdd
Co¡
Idert
DXur
Eq

10 Idenù
11 Srltch
12 Srttch
13 DXUú
t4 Ierge
15 End
rg

Idenb
Returr
Ide¡t
Df,ur
DInst
DCo¡s
Apply
End

Ide¡t
Retur¡
Ident
Co¡
Dfu¡
DIn¡t
LUpd

DÂPL1

DAPl
LUpd

10 lÁppend
11 EïCo¡¡
12 ICou¡
13 DCol¡
1l Àpply
l5 End
fll
0 Ideut
1 Return
2 Ideut
3 DInst
I IET
5 EILtet
6 LFi¡d
7 Lllset
I Ller
I DCon¡
10 Dlur
11 DÂP1

12 DAPLT
13 Âppry
14 E¡d

'720 Ide¡ù

0.0
14.1
=1 11.1
13. I
=8 3.1
4.1 6.1
=L 3.2
0.1
7.L
=0 8.1
9.1
to.t 7 .2
LO.2 7.3
t2.2
2.r
0

1.1 1.2 =19
5.1

=10 11.1
1-2 t2.t 8.2 7.2
=16 13. I
0

0.0
13. 1

10.1 11 .7 lg.t

Structure Hf
DDC FI lor 'br

DDC FÎ lor ¡cr

DDC Fl for rfilterr

(4)

DDC FI for 'p¡

7.L
0.0
14. 1

1.2 6.2
5.1
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5.2
8.1 11 .2 12.2
9.2
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11.1 12.1
2.2
0.0
3.1
1.1

2.7
0.0
3.1 4.1
5.1
5. 2 5.3
6.2
1.1

2.L
0.0
3.1
{.1
5.1
6.1
7.1
s.2
13. 1
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9.1
9.3
9.{
1.1

0.0
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0
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6.1
0.1
2.t
2.2
3.1
=10

0.0
1{. 1

0.1
=14 2.t
2.2
2.3
3.1 5.1
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2.t
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3.2 1.1 5.1 7.1 8.1
6.1

2.5
7.1 8.1

2.1

9.1 8.1
4.1 10.1

11. 1 13. 1

8.2
10.2
9.1 13.4
9.2 13.3
10. I
17.2
12.2
13.2
11.2
1.1

I

0.1
2.t
3.1
{.1
5.1 =11
6.1
6.2
t0 .t 7.1 11 . t tz.L
2.2
2.3
2.1
8.1 9.1

1

0

0.0 2.r
DDC FI for global ¡f.
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1 Ret'ur¡
2 Idenù
3 DIngù
4 IEl
5 EILigt
6 LFlnd
7 LUser
8 Ller
9 DCon¡
10 DXur
11 DAPi
12 D^Pti
13 rpply
14 E¡d
.13
.L4
fl5

13. 1

0.1
2,L
3.1
4.1
5.1 =12
6.1
8.2

2.2
2.3
2.1
8.1 9.1
0

0.0
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0.1
=tB 2.1

0.0
5.1
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0
1

1

I
I
1

2
.1
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I
3
1
1
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3.
4.
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6.
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L
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L
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1.

2.L
0.0
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1.2 6.2
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1.1
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10.1 11.L 12.I

8.1

0
I
2
3

1
5

6
I

Ident
Retur¡
Ide¡t
Âpply
add
Apply
E¡d

3.1 5.1
=72 2.2
0

10.1 7.1 11.1 Lz.t

=2 =L7 1.t =O 2.2
2.I
=11 3. 1

0

0.0
7.t
0.1
2.L
=11 3.1
4.1 6.1
=2 3.2
5.1 8.1
=O 2.2
0

2.1
0.0
3.2 5 .2
4.t
1.1
1.2

Llst (5)
Li¡ù
DDC FI for rregult,.

DDC FT for rr'

DDC FT for rlvr. cond

DDC FI for a.p.

Llet
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0.1

0.0
2.t
=$
0

0
I
2

3

1
5

6
rl
0
1

2
3
I
5

6
7

I
I
r1
0
1

2

3
r1

Ident
Returu
Ide¡t
IAppIy
Dful0
Âppry
E¡d

7
Ide¡t
Retur¡
Ident
Ide¡ù
apply
Xod
Con
Eq

Co¡
Eud

I
Ident
Return
rppry
E¡d

I

(6)

2.L
0.0
4.1 3.5
s.2
3.3
1.'1

2.2
0.0
1.1

Figure A5.l

Figure 45.2 shows the output produced by the dsta flow graph interpreter when

the program of Figure A5.l is executed.

A data flow program which implements the program of Figure 6.7
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Dat¡ Flor Graph Ilterpreter
Do you rant traclng? [
Íhlch F¡ to ru¡ ? 0
Resulù aù ouùpuù I = 633

Figure 45.2. Result of execution of program of Figure .A.5.f .
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