
'zl'2-t <ot

Unification and Constraints over
Conceptual Structures

I

Dan R. Corbett
B.S. brformation and Computer Science, U. California,Irvine

M.S. Computer Science, Wright State U.

Department of Computer Science

The University of Adelaide

Thesis submitted for the Degree of Doctor of Philosophy

IuJy,2000

Contents

L. Conceptual Structures L

1.1 Overview of the Thesis1.

L.2 Introduction 2

1.2.1, Graph-based Knowledge Representation Schemes2

1.2.2 Constraints on Values 3

I.2.3 Unification of Graphs.............4

1.3 Conceptual Graphs: What They Are and How They Work...............5

1.3.1 Overview of Conceptual Graphs.............5

1,.3.2 Conceptual Graphs Formally.7

1,.3.2.1, Fundamental Concepts 7

1.3.2.2 Canonical Formation Rules 8

I.3.2.3 Tlpes and Inheritance 9

1,.3.2.4 Specialization, Projection and Subsumption............10

t.4 Previous Work in Constraints and Unification over

Conceptual Graphs '1.4

1,.4.1, Structural Constraints and Value Constraints 74

L.4.2 Unification of Conceptual Graphs 20

1.5 Summary27

2. Unification, Knowledge Structures and Constraints30

ll

2.1 Introduction 30

2.2.L Overview of Unification30

2.2.2 Generalization and the Most General Unifier 32

2.2.3 Properties of Unification 33

2.2.4 Tree Isomorphism as Unification 34

2.3 Feature Structures 35

2.3.1, Overview of Feature Structures 35

2.3.2 Feature Structures Formally. 36

2.3.3 Strengths and Limitations of Feature Structures37

2.4 Logic Programming, Constraint Logic Programming, and

Constraint Satisfaction Problenu............38

2.4J1. Logic Programming 38

2.4.2 Constraint Logic Programming...............39

2.4.3 Constraint Satisfaction............40

2.5 Unification and Constraints..............42

2.51 The Relationship Between Unification and Constraints......42

2.5.2 Unification-based Reasoning and Constraint-based

Reasoning 43

2.5.3 Unification as Reasoning.........44

2.6 Knowledge Structures, Partialness and Unification 45

2.6.7 The Relationship Between Unification and Knowledge

Structures45

2.6.2 Partialness...............:...

2.6.2 Intensionality, Join and Unify47

2.7 Summary 49

3. An Algorithm for the Unification of Conceptual Graphs with

52

3.L Introduction 52

3.2 Interval constraints

3.2.1, Previous Use of Interval Constraints

53

53

ul

3.2.2 An úrterval Concept Type Hierardry :: :......

3.3 Projection and constraints using intervals..

3.3.1 The Conformity Relation:....

3.3.2 The Headed Conceptual Graph...............

3.3.3 The Projection Operator

4.1, Introduction

4.1.1 Domains

55

56

56

58

57

3.3.4 Projection and Interval Constraints..........60

3.4 Unification over constraints...............,.......61

3.5 UnificationAlgorithm 62

3.5.1 Unification Algorithm Informal1y...........62

3.5.2 Unification Algorithm Formally 63

3.5.3 Complexity of the Unification Algorithm65

3.5.4 Soundness of the Unification Algorithm 66

3.5.5 Completeness of the Unification Algorithm69

3.6 Summary69

4. Results, Demonstrations and Comparisons 73

73

73

4.2 Design 74

4.2JJ. Computational Design Tools 74

4.2.2 Search as a Metaphor of Design 75

4.2.3 SEED 76

4.2.4 Specification Units as Conceptual Graphs.............................78

4.3 Experiments: SimpleStructures 81

4.3.1. Unification of Specification Units 8L

4.3.2 Example of Specification Unit Unification......82

4.3.3 Example of Unification with Constraints 83

4.3.4 Graphs with Cycles 87

4.3.5 Graphs with Alternate Heads89

4.4 Experiments: Difficult Structures and Unification Failures.............90

tv

4.4.1. Backtracking 90

4.4.3 Unary Relations 93

4.4.4 Canonicity and Validity 94

4.4.5 Conclusions Regarding the SEED Project97

4.5 Comparisons to Other Systems 99

4.5.3 Structural Constraints 108

4.5.4 Constraints with Actors111

4.5.6 Knowledge Conjunction Using Tree Isomorphism112

4.5.5 Constraint Satisfaction Systems .r17

4.6 Summary 119

5. Placing the Unification Model in Context ...124

5.L Introduction 124

5.2 A Framework of Unification Methods............... 125

5.2.1, The Purpose of the Framework.......

5.2.2 The Common Sub-graph Approach

5.2.3 Fuzzy Conceptual Graph Unification...................................127

5.2.4 Term Resolution127

5.2.5 The Unify Algorithm128

5.2.6 Tree Isomorphism 128

5.3 A Toolbox for Knowledge Conjunction on Conceptual Graphs729

5.3.1 The Complete Toolbox.. 129

5.3.2 Generalization for Knowledge Conjunction........................130

5.3.3 Flexibility and User Choices131

5.3.4 Some Thoughts About a Unification ToolboxI32

5.4 Extending the Model 133

5.4.1 Other Domains and GeneralApplicability..........................133

5.4.2 Rules of an Operations Officer

.................... 125

126

v

133

5.4.3. Conclusions Regarding General Applicability

5.5 Summary

6. Conclusions and Future Work

6.L Contributions

135

t36

138

138

6.3 Future Directions 742

6.3.1 Variable-arity relations 143

6.3.2 Steps toward Conceptual Graphs as a Programming

Language ..-.--..-..-1'47

6.3.3 Partial Graphs for Indexing............ ...148

6.3.4 Connections with Previous Work148

6.3.5 Ontologies for Knowledge Conjunction -.....-.-..,---..-1'49

References...............150

vl

List of Figures

2. Müller's example of asymmetry.

4. Kocura's type hierarchies and negative canonical models.

5. An example of Cao's Fuzzy CG programming.

6. Unification in the style of Willems

7. A counter exampte to Willems'unification algorithm

8. Compatible Projections.

9. An example tpe hierarchy from AÏt-Kaci's work

1.0. A Feature Structure in Graph Notation.

1L. The Feature Structure of Fig. 1.0 in matrix notation

1.2. Mackworth's hierarchy of constraint satisfaction techniques.

L3. Is Felix on the mat?

17. The Unification Algorithm

L8. A SEED partial design represented as a Conceptual Graph.

L9. A Conceptual Graph representation of a kitchen SU

20. Aconceptual graph of another kitdren SU.'

22. Two constrained partial designs to be unified....

23. The r:nified design.

24. A generic house with three roonìs.

13

18

t9

24

26

28

32

5/

38

42

49

1.4. Felix is on the mat. -......49

15. An example of an interval lattice, ordered by interval inclusion...................56

L6. A General CG........... 58

65

78

79

83

84

85

86

88

88

21.. The unified design.

25. Ahouse design with rydes.

\rll

26, Graphs which fail to unify. 91,

27. A Conceptual Graph with a negative context. 93

29. Felix has some color 95

31. A concept type hierarchy for cat colors.

32. Acanonical formation rule restricting the color of cats

33. Unifier of two partial designs

34. Graph G to be unified..

35. Graph G'to be unified.

36. U,the unifier of G and G', by Willems' algorithm..

37. Graph G'with a head node.

38. The unification of Fig. 34 and Fíg.37.

40. Another method for representing the bedroom constraint.....

4L. An area constraint expressed in Mineau's actors.........

42. Mineau's à actor, from [Mineau and Missaouil99Tl.

96

96

39. Kocura's negative canonical model in the SEED domain.109

L02

L04

r04

L04

706

107

1.10

111

712

1.15

L1.6

43. Unification by tree isomorphism.

44. Result of tree isomorphism unification.

45. A rule in the defense domain, which uses constraints.1.34

46. Another rule from the same domain. 134

47. A design with arity 2 relations ...1'M

48. Another design with arity 2 relatioru:7M

49. The unification of the two graphs, using variable arity.145

vll1

Table of Abbreviations and Notation

CG

T¿

ï¡

C

R

V

C

T

I

Conceptual Graph

Concept Types

Relation Types

The set of concepts

The set of relations

Universal quantification

Member of (a set)

Subtype or subsumption relation

ToP

Bottom

Meet operator

Join operator

Conformity Relation

i-th argument of the relation r

Number of arguments that the relation r has

Subsumption relation

Greatest Lower Bound

Greatest Lower Bound

Least Upper Bound

Least Upper Bound

Projection Operator

maximum(a, b)

minimum(a, b)

The real interval between x and y, where: [x, y] s R x R: x < y

The head node of a CG, a distinguished member of C (drapter 3)

arg¡(r)

arity(r)

glb

n

1ub

LJ

TE

alb
aJu

[*, y]

q

1X

mgu

L

\J

+

Most General Unifier (Chapter 3)

Restriction

Set r¡nion

Projection

Value assignment

Equivalence

x

Summary of Thesis

This thesis continues the work done in [Corbett 2001; Corbett 2000; vanZyl

and Corbett 2000a; van Zyl and Corbett 2000b; Corbett 1999; Corbett and

Woodbury t999; Corbett and Burrow t9961.

This thesis addresses two important areas in the field of Conceptual

Structures. The first is the unification of Conceptual Graphs (CGs), and the

consequent work in projection and in type hierarchies.

Other researchers have described methods for combining the knowledge in

two Conceptual Graphs. Some of these methods work in a limited sense, but none

are general solutions for the fundamental problem of Conceptual Graph

unification. The first major contribution of this thesis is the development, analysis,

and experimental verification of an algorithm that enables the implementation of a

general solution to Conceptual Graph unification.

The second important area of investigation is the definition of constraints,

especially real-value constraints on the concept referents, with particular attention

to handling constraints during the unification of Conceptual Graphs.

The approadr presented'in this thesis solves the unification-with-constraints

problem by solving several subproblems. First, the definition of a real-value

constraint type hierarchy is defined for Conceptual Structures. This hierarchy

allows the bounding of real values in concepts, and the expressibility of real

numbers. Next, many inconsistent and incomplete definitions in the literature are

redefined or formalized. New definitions of projection, unifier, Most General

Unifier and real numbers create a consistency with the previous canon of

Conceptual Graph formalisms. Finally, the concept of knowledge conjunction is

explored. Knowledge conjunction is a system in which two pieces of partial

information can be combined into a single unified whole. Unification is defined as

xl

an operation that simultaneously determines the consistency of two pieces of

partial or incomplete knowledge, and if they are consistent, combines them into a

single result.

The experiments with the software implemented from the techniques defined

here show these techniques to be useful and efficient. The unification algorithm is

shown to be sound, complete, and have a complexity of O(n), where n is the total

number of relations in both graphs. This is a significant improvement on previous

work in that previous efforts at unification of Conceptual Graphs either restricted

unification to a simpler operation, or had a high complexity (in fact, NP-complete

in the most elaborate system).

The algorithm defined here produces not only a canonical SaPh, but one

which is valid in the domain. The algorithm guarantees that, for any domain, once

the domain hierarchies and canonical formation rules have been properly defined,

the only structures that will be allowed will be those that ¡epresent reasonable

knowledge in the domain.

In the last two technical chapters, the unification model presented here is put

into the context of knowledge representation and manipulation by comparing it to

other methods, including a tree isomorphism method and a unification with

variable-arity relations method, which are also defined in this thesis. The final

conclusion is that unification is an important tool for Conceptual Graphs, but must

be viewed in relation to other useful tools which already exist for CGs.

xl1

List of Results

1. Formal definition of real numbers as concept referents in CGs. (section 3.2)

2. Formal definition of real-valued constraints for CGs. (section 3.3)

3. Redefining standard definitions, so that constraints work within the CG

formalism:

. Conceptual Graph (definitions2' and2"\

. Projection (definition 4')

. Greatest Lower Bound (definition 5)

. Subsumption as Projection (definition 6)

4. Eliminated inconsistencies in the definition of Most General Unifier (sections

1..4and2.2)

5. Investigation of the relation between Constraint Satisfaction Problems,

unification in general and CG unification with constraints (sections 2.4 and

2.5)

6. Investigation of the relationship between unification (in general) and

knowled ge representation schemes (sections 2.2 and 2.6'¡

7. Study of unification (in general) as reasoning and theorem resolution (section

2.s)

8. Introduce the concept of knowledge conjunction for CGs (section2.5,2.6)

9. Formal definition of CG unification (section 3.5)

10. Úrvestigation of completeness of CG r-r¡rification (section 3.5, theorem 6)

1L. Investigation of soundness of CG unification (section 3.5, theorem 5)

\2. Investigation of the complexity of CG unification (section 3.5, theorem 3)

13. Implementation of CG unification algorithm (section 4.1 and 4.2)

'1.4. Study showing usefulness of CG unification for the design domain (section

4.2)

xlll

15. Demonstrations of CG unification on simple structures (section 4.3)

1,6. Demonstrations of the limits of CG r¡nification (section 4.4)

17. Comparisons of CG unification to other standard techniques (section 4.5)

18. Definition of a framework for comparing CG unification to other techniques

for merging knowledge in CGs by complexity, flexibility and ugeful domains

(section 5.2)

19. Discussion placing CG unification into the context of other CG tools (section

s.3)

20. A formal definition of an alternative unification method (section 4.5)

21.. A formal proposal for a more flexible definition of CG relations which would

allow a greater latitude in representation power (section 6.3)

xlv

Acknowledgements

First and foremost,I'd like to thank my suPervisors, Dr. Rob Woodbury and

Dr. Simon Ronald. Rob was willing to step into the supervision void when he was

most needed, for which I'm very grateful. His knowledge and assistance in the

design domain contributed significantly to my thinking in the area. Simon has

been an endless source of knowledge, both in Computer Science and in the process

of completing a Ph.D. He has also generally acted as a mentor and advocate

throughout this entire process.

I would also like to express my sincere gratitude to Dr. John Maraist, recently

of the University of South Australia, now of DePaul University, lor some very

useful discussions about the nature of completeness and soundness with regard to

unification.

I am also indebted to colleagues and associates at the University of South

Australia (in particular Prof. Martin Odersky) and the University of Adelaide (in

particular Dr. Michael Oudshoorn). Many people at both of these institutions

engaged in discussions on the work and made helpful comments.

I couldn't have finished the thesis without the assistance from my soul mate

and lifelong companion, Wendy Mayer. Her careful suggestions and endless

patience were invaluable.

I also received much help and encouragement from the Laggers Coffee

Bunch: Terry,Felicity, Silke, Gail, Guy, Susan and Wendy. Thanks for all the help,

wisdom and encouragement, and good luck to you all. Thanks in particular to

Gail Higginbottom, for some insightful discussions on the nature and structure of

a thesis.

I would like to dedicate this work to Wendy and all of the Laggers.

xvl

Chapter 1

Conceptual Structures

L.L Oven¡iew of the Thesis

Chapter One introduces some of the background of this work, including the

basics of Conceptual Graphs, and explores previous work in constraints and

unification over CGs. All of the concepts that are relevant to subsequent chapters

are presented here. The purpose of this chapter is to discuss past research that is

relevant to the area of constraints and unification over Conceptual Graphs in order

to put this work into context. The formal definitions of some of the terms used in

CGs and in constraints are also set out here. The importance (and the significance

to CGs) of having constraints implemented by unification in CGs is described in

this chapter. Much of this chapter is based on previous observations and literature

reviews from my earlier works [Corbett 2001,; Corbett 2000; Corbett L999; Corbett

and Woodbury 1999; Corbett and Burrow 19961.

Chapter Two includes a discussion of the related areas of Constraint

Satisfaction, Feature Structures and Unification, in order to set the work in this

thesis in the context of these more general areas.

L

Chapter Three introduces and formally defines the methodology used to

solve some of the problems of Conceptual Graph constraints and unification

introducèd in the first chapter. This chapter introduces some techniques and

methods for carrying constraints in the concept of a Conceptual Graph, and

d.escribes a concept type for expressing constraints on the value of a concePt. An

efficient algorithm for the unification of this type of Conceptual Graph is

introduced.

Chapter Four draws together all these ideas, and demonstrates this method

of constraints and unification over Conceptual Graphs in several domains. A

number of test sets are presented that are relevant to conceptual relation domains.

These test sets are used to test the methodology described in Chapter Three, and

the results and. properties of this method are comPared with the properties of

other existing unification techniques for conceptual Graphs.

Chapter Five places the unification model described in the previous chapters

into the context of related work. Chapter Six summarizes the results and presents

a discussion of the significance of this work and also presents some thoughts

about future research d.irections. The discussion includes possible applications for

CG unification.

1.2 Introduction

1.2.1 Graph-based Knowledge tr{epresentation Schemes

It has been demonstrated many times that graphs are a powerful and

efficient knowledge representation technique. Mugnier and Chein [Mugnier and

Chein Lg96l illustrate quite effectively why labeled graphs are useful for

knowledge representation in general. Among the main advantages that they list

are a solid grounding when it comes to combinatorial algorithms, and that a $ÉaPh

(as a mathematical object) allows a natural representation (and therefore permits

the construction of effective algorithms). Until recentþ, the major technique used

in Computer Science for representing the semantic relationships between objects

2

in a data structure was to use a graph technique known as Semantic Networks

[Lehmann t9921. Semantic nets have a long history of use in fields such as the

semantiis of medical diagnosis [Reggia et al. 1983],langúage understanding

[Corbett L991], and abductive reasoning [Dasi$L991';Dasigi 1988].

There have been many attempts to formalize and standardize these graphical

knowledge representation schemes, but probably none has been as extensive and

comprehensive in recent times as Conceptual Graphs. The major use of

Conceptual Graphs is in representing the relationships between objects in a

system. Two of the drawbacks of Conceptual Graphs are that they do not easily

represent constraints on real numbers, and that there are no efficient unification

techniques, especially unification over constrained values.

1,.2.2 Constraints on Values

The research discussed here concerns the development of the semantics of a

constraint tool which operates over a subset of conceptual graph terms extended

to express constraints on the referent values. The idea behind the matching

mechanism is to combine order sorted unification with the action of a constraint

solver. This combination leverages type representation technology from the

Conceptual Graph communify lEllis 1995] and constraint technology [Mackworth

1ee2l.

While the main focus of the research is the definition of the semantics of

unification and constraints over conceptual structures, a major application of this

work is to aid design projects in the elaboration and specialization of design sPace

representations. So, the significance of this extended Conceptual Graph

representation is two-fold. First, this effort will increase the Power and utility of

Conceptual Graphs by extending them beyond first-order equivalence into real

constraints and unification. Second, this thesis demonstrates that the method

defined here can be applied to real-world problems and domains.

The constraint techniques used in the Conceptual Graphs literature only

cover the most basic kinds of constraints. They are based on using either a basic

3

form of subsumption, or producing invalid graph segments [Mineau 1999; Mineau

and Missaoui!997; Müller 7997; Kocura 1996; Cogis and Guinaldo 1995; Willems

ß951. Real intervals are not represented at all, and there is still no method for

validating a set of real constraints in a concept [Mineau and Missaouil997l.

1.2.3 Unification of Graphs

In the Conceptual Graphs literature, the authors who have attempted to

define unification of CGs have either restricted the allowable CGs in some way

[Müller 1gg7], or have restricted the unification to a simpler operation [Kocura

19961. A join on a Conceptual Graph is a simpler operation, and is usually used to

merge two graphs.

Unfortunately, these attempts at merging graphs often lose some of the

knowledge contained in the graphs being merged. In many domairu, it is essential

that the combining of knowledge be represented as a continual refining and

specifying of the knowledge, so that none of the knowledge is lost in the process of

combining with other knowledge [Corbett and Woodbury 1999; Woodbury et al.

1999; Chang and Woodbury 1996; Flemming and Woodbury 7995; Heisserman

199!;Carpenter t992;HeissermanLggL; Colmerauer L990;Jaffar and LassezI987l.

Previously, when the knowledge of two graphs was combined there was no

standard method for checking the validiry of the values of the concepts, only for

checking the structure or canonicity [Wermelinger t9971of the SaPh. The further

significance of this thesis is that a unification method is defined that leads to a

useful and efficient implementation of constraints over CGs. The major

significance of this work is that it improves on previous work in allowing

constraints to be placed on real values in the concepts. The constraints are defined

as a concept type, and therefore can be used as a type in the normal way with

Conceptual Graphs. The constraints are enforced in the u¡ification and join

operations, as defined in this chapter. If a join operation violates the constraints

on one of the concepts, the join fails. The unification algorithm used in this system

4

is a standard algorithm, and is guaranteed to terminate since we restrict the CGs to

a special subset, as defined in Chapter Three.

L.3 Conceptual Graphs: What They Are and How They Work

1.3.L Overview of Conceptual Graphs

Conceptual Strucfures (or Conceptual Graphs, or "CGS") are a knowledge

representation scheme, inspired by the existential graphs of Charles Sanders

Peirce and further extended and defined by lohn Sowa [Sowa 7999; Sowa 1992;

Sowa 19841. Informally, CGs can be thought of as a formalization and extension of

Semantic Networks, although the origins are different. They are labeled graphs

with two types of nodes: concepts (which represent objects, entities or ideas) and

relation nodes, which represent relations between the concepts. As an example,

Figure L shows a Conceptual Graph which represents the knowledge that "The cat

Felix is sitting on the matwhidr is known asmat47."

Every concept or relation has an associated type. A concept may also have a

specific referent or individual. A concept in a CG may represent a specific

instance of that type (e.g., Felix is a specific instance, or individual, of type cat) or

we may choose only to specify the type of the concept. That is to say that a

concept may simply represent a generic concept for a type, such as mammal or

room, or a concept may represent a specific object or idea, such as my cat or the

kitchen at the Smith's house. In the former case, the concepts in Figure L would be

shown as "cat: * " arrd "mati * " indicating non-specified entities of types cat and

møt. In the standard canonical formation rules for Conceptual Graphs, unbound

concepts are existentially quantified.

A relation may have zeÍo ot one incoming arcs, and one or more outgoing

Figurel. ASimpleCG.

5

mat: #47cat: Fel¡x ON

arcs. The type of the relation determines the number of arcs allowed on the

relation. The arcs always connect a concept to a relation. Arcs cannot exist

between concepts, or between relations.

A canon in the sense discussed here is the set of all CGs which are well-

formed, and meaningful in their domain. Canonical formation rules specify how

CGs can be legally built and guarantee that the resulting CGs satisfy "sensibility

constraints." The sensibility constraints are rules in the domain which specify

how a CG can be built, for example that the concept ents must have a theme whidr

is food. Note that canonicity does not guarantee validity. A CG may be well-

formed in the canononical formation rules for the domain, but still be false.

A type hierarchy is established for both the concepts and the relations within

a canon. A type hierarchy is based on the intuition that some types subsume other

fi>es, for example, every instance of cøt would also have all the properties of

mammø\. This hierarchy is expressed by a subsumption or generalization order on

types. Many of these concepts are formalized later in this thesis.

Although the idea of a graphical representation of knowledge is quite old,

Conceptual Graphs are still developing. Many tools and applications of CGs have

only recently been described for natural language understanding [Chibout and

Vilnat 7998; Moulin 1998; Nicolov et al. t9951, business Processes lGerbé et al.

1998; Wing et al. t998; Gerbé 19971, ontology and epistemology [van Zyl and

Corbett 2000a; Mann t998; Tepfenhartlgg8l, the semantics of Conceptual Graphs

[Wermelinger 1997; Wermelinger 1995], and knowledge engineering [Dibie et al.

t998;Ribière I998;Corbett and Burrow 19961.

Conceptual Graphs are a useful and efficient knowledge representation tool.

They can be used to represent the relations between (complex) objects in systems,

and can represent multiple relations (unlike feature structures, as will be discussed

in section 2.2).

6

L.9.2 Conceptual Graphs Fonnally

1,.3.2.1 Fundamental ConcePts

This section d.raws on previous work in defining Conceptual Graphs

formally. Sowa d.iscusses his original definitions in [Sowa 19841but this thesis

follows the further formalized and refined versions of Sowa's original ideas

presented by Wiltems [Willems 1995] and by Chein and Mugnier [Mugnier and

Chein t996;Chein and Mugnier t992!. The following two definitions are adapted

from their work.

Definition 1. Canon. A canon is a tuple (T,1, S,::) where

T is the set of types. We will further assume that T contains two disjunctive

subsets T6 and T¡ containing types for concepts and relations.

I is the set of individuals.

3 c T x T is the subtype relation. It is assumed to be a lattice (so there are

fypes T and I and operations v and n).

:: c f x T is the conformity relation. The conformity relation relates type

labels to individual markers. This is essentially the relation which ensures that the

ryping of the concepts makes sense in the domain'

Some Conceptual Graph authors include B (also called o) which associates

each relation type with the concept types that may be used with that relation. This

helps to guarantee well-formed SaPhs.

Definition 2. Conceptual Graph. A Conceptual Graph with respect to a

canon is a tuple G = (C, R, tUPe, referutt, flr$y . . ., ørgm) where

C is the set of concepts, type : C + T indicates the type of a concept, and

refermt: C + I indicates the referent marker of a concept.

7

R is the set of conceptual relations, type: R + T indicates the type of a

relation, and each arg¡: R + C is a partial function where arg¡(r) indicates the i-th

argument of the relation r. The argument functions are p.artial as they are

undefined for arguments higher than the relation's arity. In this thesis, we adopt

the convention tttat ørg0 indicates the (at most) one incoming arc. If there is no

incoming arc to the relation, then ørg0 is undefined. We also define the function

aríty(r) which returns an integer value representing the number of arguments that

the relation r has.

It is common in the literature to write c e G instead of c e C when it is clear

that c is a concept (similarþ for relations r e G).

1,.3.2.2 CanonicalFormationRules

The following definitions are standard, classical definitions of CG formatiory

which date back to Sowa's original 1984 work on Conceptual Graphs [Sowa L9841,

but which were formalized much more recently [Müller L997; Wermelinger and

Lopes 19941. We present here rules based on the work of Müller [Müller 19971.

Definition 3. Canonical Graph. A canonical graph is a Conceptual Graph

which is in the closure of the Conceptual Graphs in its canonical basis under the

following operations, called the canonical formation rules.

L. Externat join. Given two CGs G = (C, R, Upe, rcferent, al$lt . . . r

ørgà and G' = (C', R', tApe', referent',4rg'1, . . . , ørglrr)- (without loss of

generality we assurne C and C'to be disjoint) Vc € C , and Vc'e C'

where c = c '(that is, they have identical types and referents) the

external join of C and C'is the CG G" = (C v (C' - {c'}), R u(R'r',=r),

We", refermt", arg"L ørg"à. The subscript c':=c denotes the

replacement of every occurance of. c'by c. The functions type and

reþent are such that: f" l- r = ¡, ¡" l c' = f .

8

2. Intemal join. Given a CG G = (C, R, tUPe, referent, argTr . . ., ûrgî)

and two nodes c, d e C with identical types and referents the intemal

join is the CG G' = (C - {d}), (Ra,=r), ¡yprLr-¡¿¡, refere'htL, - t¿l)- The

subscript d;=c denotes the replacement of every occurance of dby c.

3. Restrict type. Given a CG G = (C, R, tAPe, refermt, ar$b - . ., ar$m)

and a node c e C with type f which has a subtype s t l- the restrict

flpe is the CG G' = (C, R, tAPe', reþettt, argb . . . , ørgm) such that type'(c)

= s, v d + c: type'(d) = type(d).

4. Restrict referent. Given a CG G = (C, R, Upe, reþent, afgtr . . . t

argà and anode c e Cwithrefermt(c) =
* and anindividual markerie I

the restrict referent is the CG G' = (C, R, tAPe, refermt', argTr . . . , argm)

wtt}r referent'(c) = i, Vd * c: referent'(d) = referent(d), and type(c)::í-

Sowa (and others) also define a cory rule, which allows a new graPh G' to be

created as ¿rn exact duplicate of a graph G, and a simplify rule which allows the

deletion of duplicate (and presumably redundant) relations. T}:re simplify tule is

just the equivalent of the íntqnøl ioin rvle, but for relations.

'1..3.2.3 Types and Inheritance

Types and inheritance for Feature Structures are discussed in section 2.2, and

in more detail in [Carpenter 19921. The discussion of t¡re-hierarchies presented

here is adapted for Conceptual Graphs from Carpenter [Carpenter 19921. The set

of types discussed in Definition L is arranged into a tyPe hierarchy, ordered

according to the specificity of each type. A type f is said to be more specific than a

type s if ú inherits information from s. We write s) ú, and say that s subsumes f or is

more general than ú (or inversely, that tis subsumedby s, or is more specifc than s).

We may also call s a supertype of t, or t a subtype of s. Equivalently to the above,

9

one can write ú < s.

A standard restriction on inheritance hierarchy specifications is that they do

not contain inheritance loops [Carpenter 19921. It would simply be inconsistent

(and even nonsensical) to be able to follow a chain of subtype links from a type

back to itself.

In early pioneering work on the unification of first-order terms, Reynolds

[Reynolds tg7}]used the natural lattice structure of first-order terms, which was a

partial ordering based on subsumption of terms [Davey and Priestley 1990]. M*y

terms (or types in our case) are not in any subsumption relation, for example cøf

and. dog, or wood and mømmø\. Unification corresPonds to finding the greatest

lower bound of fwo terms in the lattice [Knight 1989]. The bottom of any lattice,

which is represented with the symbol J-, is the fype to which all types can unify,

and represents inconsistency. The top of the lattice, rePresented by T, is the type

to which all pairs of types can generalize, and is called t}:re uniaersal type. Every

type is a subtype of T. Inheritance hierarchies can be seen as lattices that admit

unification and generalization [Knight 1989] .

1,.3.2.4 Specialization,ProjectionandSubsumption

The common specialization of two Conceptual Graphs, s and f, is known as a

join, and. is represented as s v f. The common generalization of the two graphs is

known as a meet, and is represented as s n f.

In this thesis, we will explain that the process of unifying Conceptual Graphs

includ.es the process of finding the most general subtypes for pairs of types of

concepts, which depends on the two types in question being consistent.

The definitions of unification, consistency and type subsumption in this

thesis are based on formal concepts of projection and lower bounds. Carpenter

[Carpenter 19921defines each of these operators (for Feature Structures) as a

morphism. This thesis follows Carpenter's definitions, modifyi^g them to work

with the properties of Conceptual Graphs. A morphism is then a mapping from

the set of nodes of one Conceptual Graph to the set of nodes of another that

preserves the order of relation arguments and the values of those arguments. In a

10

morphism, all of the connections and arguments are preserved. The following

definition of projection is the standard definition used in recent Conceptual Graph

literature [Corbett 200'J,;Leclère 1997; Müller 1997;Mugnier and Chein L996; Cogis

and Guinaldo 1995; Willems L99ï;Carpenter 79921.

Definition 4. Projection.

G =(C,R,type,referent,argl,...,argn) subsumes G'=(C', R',APe',referent',

arg'lr. ..,ørg'¡n) ,G>G',ifand onlyif thereis apair of functions116: C+C'and

h¡: R Ð R', called morphisms, sudr that:

Vc e C and Vc' G C',hç(c\ - c'only if type(c)>Upe'(c), and

reþent(c) = * or refermt(c) = referent(c)

Vr e R and Vr' e R',hp(r) - r' onTy if type(r) >- W{(r)
vr e R, arg'i(hn(r)) - hc@rgi(r)),

Willems also includes the following non-emptiness condition in his

definition of projection in [Willems 1995]:

Vc e C there is a concept c' e C', such lhathç(c) - ¿'

This non-emptiness condition guarantees that all the concepts present in the

more general Saph are also present in the more specific graPh, although they may

be in a more specific state. Willems'definition allows for fhe more specific graPh

to have concepts of a more specific !rçle, or for a generic referent to be replaced by

a specific individual. The definition used in this thesis also admits the non-

emptiness condition.

Leclère discusses the definition on not only type hierarchies, but also the

functionatity of types. Leclère also uses the projection operator to define the

specialization relation [Leclèrc 1997; Leclère L9961. He does this, howevet,by

defining an atomic formula for Conceptual Graphs lChein and Leclèrc t9941.

IL

Essentially Leclère defines a transformation on Conceptual Graphs which

computes projection. In Chapter Three of this thesis, we demonstrate an

implementation of projection as a morphism, in a manner similar to Leclère and

Chein.

Regarding the join and meet definitions, it is sometimes essential to obtain

the most general conunon specialization for a given pair of Conceptual Graphs. In

this case it is important to prove that not only is the graph obtained a consistent

specialization of the two graphs being considered, but also that it is the unique

graph which is the most general of all possible conunon specializations. Such a

graph is known as the Greatest Lower Bound, as it represents the highest join

which falls under the two graphs in the specialization hierarchy.

Definition 5. Greatest Lower Bound. The greatest lower bor¡nd (glb) of two

CGs is the most general conunon specialization of the two Conceptual Graphs.

Let G" be a specialization of G and G'. G " is the glb of G and G' 7f , for any

Conceptual Graph U where G v G'= U, either G" >-U or G" = U'

The gtb of two graphs s and ú is written as s l-l f. Conversely, the most

specific conunon generalization, known as the least upper bound (lub), of two

graphs is written s ll t.

Definition 6. Subsumption. We say that a Conceptual Graph G subsumes

another Conceptual Graph G', ot G 2cc G',Lff G' can be obtained by applying a

finite number of canonical formation rules to G.

Note here that Definition 6 is actually redundant to these definitions, as

subsumption is simply another form of projection. Since any application of the

canonical formation rules to a graph s will always produce a graph f whidr is more

specific than the original, s wilt necessarily have a projection into the new graph ú.

Chein and Mugnier formalize this idea, and demonstrate that s > t fif. there exists a

projection from s to f [Chein and Mugnier 19921-

12

While Definition 6 is presented here for completeness, and to give formal

substance to any discussion of subsumption, the rest of this thesis will concern

itself strictly with the use of projection. Any mention of subsumption from this

point can be construed as meaning projection.

To complete the formal discussion and definition of Conceptual Graphs, we

present another result from Mäller's work lMtlller 19971.

Theorem 1. The subsumption order for Conceptual Graphs is a pre-order.

Proof. It is necessary only to show that this relation is both reflexive and

transitive. First, any Conceptual Graph can be derived from itself by means of

zero applications of canonical formation rules. Thus, CG-subsumption is reflexive.

It is easily verified that the composition of two projections is also a proiection.

Therefore, CG-subsumption is also transitive tr

Although Sowa tries to show in [Sowa 1984] that subsumption is a partial

order, this is in fact not the case, since the antisymmetry condition does not hold.

Consider the example from Mtiller [Müller 19971 of the two CGs shown in Fig. 2.

There are projections both ways even though the CGs obviously are not identical.

Figure 2. Müller's example of antisymmetry.

eat banana: #47monkey: #1

banana: #47monkey: #1

Jrmonkey

13

Also note that these examples are not isomorphic-

1..4 Previous Work in Constraints and Unification over Conceptual

Graphs

7.4.1 Structural Constraints and Value Constraints

Until very recently, CGs have had no formalism for constraining real values

in the referent of a concept. The standard method for representing and validating

constraints has been to use type subsumption to specify which concept types (or

subsumed subtypes) are valid in a system. One could constrain values in a

knowledge representation systemby forcing the concepts to conform to a specified

qrçre, or else to be subsumed by that type. A similar method applies to relations.

To extend a previous example, the concept eats is specified to occur only between

an agent which is an animal and a theme which is afood. Any individual used in

the animal concept must conform to the nnimøI$Pe, which means that it must

either be animal,or be subsumed by ønimal, such as cat or reptile.

However, there are some severe limitations on this type of constraint. First,

reasoning with real numbers by subsumption is not only inefficient and difficult,

but violates the basic definitions of Conceptual Graphs. Representing real

constraints only with the standard definitions of Conceptual Graphs as presented

in the previous section has led to various attempts to alter the structure of the

graphs, or to implement procedures to validate the graph after making all the

constraining calculations.

By defining smaller integers as "more general" than larger integers, one can

define " greater than" and "less than" over the integers. While this method

(though quite trivial) does informally define these functions for CGs, it is really

more an artifact of the structure, rather than actually representing the relationshiP

between numbers. For example, what intention or ProPerties are inherited by the

type two from the type one? }Jrow does it even make sense to discuss the number

one as att¡pe?

1.4

Furthermore, this technique fails in a more significant way when

representing constraints on real numbers. A strict subsumption ordering cannot

be defined when numbers can be sandwiched in betweén already defined

numbers. That is to say, if properties are inherited by the type two from the type

one, then what additional properties are inherited from 1..5 by trtto? What

properties are inherited by 1.5 from the type L.3, or from 1..295 which are not part

of the properties of the type one? How can it be said t}itat two or 1..295 is more

specific than one? The use of subsumption ordering on a lattice to produce

constraints on real values is simply an artifact of the appearance of the lattice

structure, and carries no formal, semantic meaning in Conceptual Graphs.

Further, by adhering to a strict subsumption order on other types of

concepts, it becomes difficult to represent certain domain knowledge. In Chapter

Four, examples of domains which rely on a continual construction and refining of

the structures to find a structure which represents the solution to a problem in the

domain are discussed. If a least upper bound type of unifier is used to unify

structures in these domains, it is sometimes possible (depending on the unification

algorithm used) to lose some of the knowledge gained in the refinement process.

These example domains are presented in detail in Chapter Four.

There have been some interesting recent attempts to create a constraint

system for Conceptual Graphs including the introduction of structural constraints

on the graphs [Mineau and Missaor¿t1997; Kocura L9961, the use of fvzzy logic in

the definition of concepts [Cao et aI.1997; Wuwongse and Cao 1996], enforcing

domain semantics on the relations [Dibie et al. 1998], and èonstraining Processes

which can change a Conceptual Graph [Mineau L999; Mineau t998; Mineau and

Missaoui 19971.

Work on structural constraint systems has included Mineau's system of

representing topological constraints and domain constraints [Mineau and

Missaoui 19971. Mineau's topological constraints are produced by specifying a

section of the canon of graphs which are invalid in the specified domain, and then

attempting to join them to graphs which are produced from the knowledge in the

15

domain. A non-validity interval is a specification of two graphs z and o, such that

o 1u. A^y gruphg which falls into this interval is considered to be invalid. So g is

invalid if a < g <u. The scheme relies on subsumption to find invalid graphs, but

also relies on the development of efficient lattice operators [Champesme 1996; Ellis

L99S;Godin et al. 1995; Wille 1992;Davey and Priestley 1990; Aït-Kaci et al. 19891.

Mineau specifies domain constraints by defining procedural attachments to

graphs which are activated when their concepts are instantiated. These

procedural attachments (or actors) should always have a projection into the

graphs where they are used. If a projection does not exist, then the graPh violates

the constraints, and is invalid.

Figure 3, taken directly from [Mineau and Missaoui 1997] illustrates

Mineau's concept of an implementation of an actor. The actors are used to help

define a tyçte, in this case a type called employee-age, whieh defines the legitimate

age for a person to be hired into the profession under consideration in this

domain. This type will be matched with the age concept in a graph which

represents an employee (or potential employee), and the age of the employee will

be unified with the generic referent labeled *x in the type definition. For the

employee-agetype to have a projection into the employee graph, the employee must

be at least L8 years old, but no older than 70. The actors in this definition are

type Employee-Age(x) is

Boolean: truelnteger: *x

lnteger: 18

Boolean: trueInteger: 7O

Figure 3. Mineau's actors.

16

shown as the 2 and S operators in diamond boxes' When the employee-age is

unified with the generic referent, the actor > verifies that the age is greater than L8,

and sets the boolean concept appropriately. similarly, the s actor verifies that the

employee age is less than 70, andsets its boolean concept. If both of the boolean-

type concepts are true, then the employee is of an employable age.

Mineau,s work really is more of an attempt to define valid structures in a

canon, while the work presented in this thesis constrains the values in concepts. A

major difference in these approaches is that the work presented in this thesis relies

only on projection and ioin, while Mineau has implemented actors to check the

graphs after an attemPt at a join.

Kocura,s approach [Kocura 19961is another structural method, which

essentially is to block certain parts of the graph away from the join; in order to

d.isallow unification with certain parts of a graph. An illustrative example is one

where he specifies that a man can marry a woman, but that-a celibate man does

not marry. He specifies which parts of a type hierarchy a graph can combine with,

but excludes a certain concept, and then all of its specializations, including any

join with other concepts or concePt tFPes. For example, celibate man couldbe

joined with (and specialized Uy) professional man. It basically is the idea of not

allowing a match too far down a type hierardry'

This example is illustrated in Figure 4 which is taken directly from lKocura

tg96l. Kocura here demonstrates the concept of the negative canonical model'

The relati o spousecould be represented as the relation shown as R in the diagram'

Two type hierarchies are shown as trees of subsumption, with the black nodes

representing, for example, mature-man arrd mature-womøn' The graph CM+

represents the positive canonical model. A^y specialization of CM+ is a canonical

graph, unless that graph is also a specialization of one of the negative canonical

models, CM1- or ClvI2-. The gray nodes represent male-member-of-celibate-religious-

ordø, and.femøte-mørúer-of-celibøte-religious-order, respectively. The graPh CCG is a

canonical graph, since it is a specialization of CM+, but not a specialization of

either CM1- or CM2-.

17

Mat y of the projects discussed in this section are attempts either to constrain

the structure of the CGs, or to specify what types of concepts are valid. One

notable exception is the work of Cao et al in the implementation of fuzzy values in

the concepts [Cao et al. \997] and in the definition of fvzzy concept types [Cao and

Creasy 19981. Cao's work is an implementation of fuzzy words, concepts and

types, such as "fairly ripe" ot "yonng." These implementations are useful for

specifying hvzy boundaries for the values in concepts, but Cao has not pursued

constraint processing technology per se. Cao's type constraints are used to

partially match concept types which are near to an expression, such as not

exputsíae or not low. The pu{pose of these constraints is to allow types to subsume

concepts which are near enough (rn a hnzy sense) to the type specified.

One of Cao's examples of. a fuzzy program using Conceptual Graphs is

Figure 4. Kocura's type hierarchies and negat¡ve canon¡cal models,

from lKocura 1996].

CM+

ccG

cuz-cM1-

18

illustrated in Figure 5, which is taken directly from [Cao et aL.19971. This figure

shows a$uzzy Conceptual Graph (FCG) program P which consists of an assertion

that Apple #1 is fairly red, and a rule stating that an apple which is described as

(being within a fvzzy tolerance of) red can be called ripe. There is also a query G,

asking whether there is any fruit which is fairly ripe.

Cao defines a modus ponens, among other FCG operators and functions,

which is used in this example to satisfy the query G. The fuzzy tolerance degree

[Cao L995] is used to match the program to the query. The response to query G is

that Apple #1 is fairly ripe, which is a projection of G, and consequentþ implies G.

Based on the recent literature, the main techniques that exist for consEaining

the value of Conceptual Graphs mostly affect the structure of the graph. The

constraint techniques used in the Conceptual Graphs literafure only cover the

most basic kinds of constraints. They are based on using either a basic form of

subsumption, or producing invalid graph segments. Real intervals are not

query G:

program P:

w

u
¡f

V
then

attr Color: @fairly redApple: #1

attr Color: @red*Apple

attr Ripeness: @ripeApple: *

Figure 5. An example of Cao's Fuzzy CG programming.

attr Ripeness: @fairly riPeFruit.*

19

represented. at all, and there is still no method for validating a set of real

constraints in a concept [Mineau and Missaotulgg7l. When the knowledge of two

graphs is combined (unified, merged, or otherwise combined, as discussed in the

next section) there is no standard method for checking the values, only for

checking the structure of the graPh.

1.4.2 Unification of Conceptual Graphs

Unification is related to constraint processing in that constraints are now

used to play the role in theorem proving and logic programming that unification

of terms once played in Constraint Satisfaction Problems [Baader and Siekmann

t9g4l. The unification-based approach computes projections and general r¡nifiers

and applies them to the terms under consideration. The constraint-based

approach uses constraints to determine whidr instances are valid. Constraints can

be seen as a filter that prohibits instantiations of the variables not satisfying this

constraint [Baader and Siekmann 1994]. Further concepts in Constraint

Satisfaction, Constraint Logic Programming and related areas are discussed in

detail in Chapter Two.

This section discusses the current methods for unification and knowledge

combination of Conceptual Graphs. In the methods described in the current CG

literature, constraints are sometimes handled during the unification process, but

again not as a standard CG technique. In order to make a CG programming

language feasible and usable, it is essential for the user to be able to validate a set

of constraints over a system. It is also essential to be able to combine knowledge

in a way which is sensitive to the domain, and the knowledge being represented.

Unification is the tikely method for doing this.

The usual abstract definition given for the unification problem is to find an

object z That fits both of the descriptions of two objects x and y [Knight t9891.

More specifically, the unification problem for logic can be described as, given two

terms of logic built up from function symbols, variables, and constants, is there a

20

substitution of terms for variables that will make the two terms identical [Knight

legel?

We discuss unification of Conceptual Graphs in term-s of combining the

knowledge contained in two different graphs. While this may involve term

substitution and constraint solving, this thesis is more concerned with knowledge

combination as discussed in [Carpenter 19921. Carpenter defines unification as a

system in which two pieces of partial information can be combined into a single

unified whole. In our case, these pieces of partial information are represented by

Conceptual Graphs. Carpenter refers to this idea as information conjturction, but

in this thesis, 1t is knowledge conjunction that is more important to us. Unification

here is the combining of pieces of knowledge, represented as Conceptual Graphs,

in a d.omain. Where information is simply a gathering and processing of data,

knowledge is the intelligent application of information in a domain. Unification is

then the combining of partial or incomplete knowledge into a-single result.

Some researchers in the Conceptual Graphs community claim that CGs are

equivalent to First Ord.er Logic [Esch and Levinson 1995; Sowa 1992; Sowa \9841,

and therefore that built-in unification already exists in the form of deduction and

theorem resolution (or even Horn clause'equivalent terms). Sowa and Levinson's

position is that Conceptual Graphs are equivalent to First Order Logic [Sowa

Igg¡l. Their claim is that a system of CGs can easily be kanslated into First Order

Logic expressions, have automated reasoning, deduction and theorem resolution

applied, and thenbe translated back into the equivalent CG expression.

Esch and Levinson [Esch and Levinson L995] discuss their concept of the phi

operator, originally defined by sowa lsowa 19841. The phi operator maPS a cG

into "an equivalent logic expression." Esch and Levinson claim that two CGs

which are mapped to logically equivalent expressions by the phi operator have the

same meaning. Unfortunately, neither a complete semantics nor an

implementation of the phi operator has ever been described.

Wermelinger demonstrates that these assumptions of Esch and Levinson,

and the original definitions of Sowa are flawed, by proving that Sowa's definition

2l

is incorrect and inconsistent lWermelinger 19951. He then constructs a new

translation algorithm to solve the problem, stopping short of a complete translator

which works in both directions. While he discusses the sémantics of the phi

operator for translating Conceptual Graphs into closed formulas of First Order

Logicl, he d.oes not demonstrate an operator for translating FOL formulas back

into CGs, failing to demonstrate equivalence between the two systems [Müller

I997;Wermelinger 79951. Wermelinger asserts that it is a more important goal to

have inference rules which operate directly on Conceptual Graphs [Wermelinger

L991;Wermelinger and Lopes 19941.

In the Conceptual Graphs literature, the authors who have attempted to

define unification of CGs have either restricted the allowable CGs in some way, or

have restricted the unification to a simpler operation. Fundamentally, the CG

community has reconized that while First Order Logic subsumption is

undecidable lMüller 19971, CG subsumption is at least well-defined, and well-

behaved, since it involves at worst a finite number of mappings in a finite number

of nod.es lCorbett and Woodbury 1999; Müller 19971. Unification work in

Conceptual Graphs includes Willems'work on finding compatible nodes [Willems

tgg1l, and Mülter's restricted subset of CGs [Mtirller 19971.

Willems' approach to unification is to use type subsumption to compare

compatible nodes [Willems 19951. Two CGs unify in Willems' sense if they each

have some common sub-graph, which can be joined under the usual type

subsumption rules for CGs. The unified graph is then the joined graPh, plus all

the other relations and concepts in the two original graphs. -

Willems [Willems Lggsl discusses creating "unifiers" for Conceptual

Structures which, in his definition, are closely related to the meet operation and

the concept of finding a conunon generalization. His concept is to first find a

"1gririfier," which is a segment which is similar in both graphs. The idea is to then

match the two Saptrs together along the common segment by finding the join of

1In Wermelinger's definition of a closed forrrula, a formula with free variables can be regarded as

equivalent to its universal closure.

,t

atl the nodes in the unifier, and then just attaching all other nodes (i.e. the nodes

that are not in common) in the same relations that they were in before the

unification. Willems refers to the process as "gluing together"the two graphs, but

he does not present an algorithm for accomplishing this gluing þrocess.

Willems' unification algorithm [Willems 19951finds a segment of the CG

which is present in both of the CGs being unified. This segment is a sub-graph of

each graph, but Willems allows each individual concept c in the sub-graph to

subsume or be subsumed by its counterpart in the other sub-graph, c'. Similarly

for relations. In this approach, Willems then defines a graph which is at least as

(or possibly more) general than both of the graphs being unified, and has a

projection into both Saphs, based on Sowa's æ operator [Sowa 1984]. In Willems

definition, the unifier is a graph in which every concept can subsume its

corresponding concept in both graphs, and every relation can subsume its

corresponding relation. This makes the unification algorithm efficient, as it takes

advantage of the built-in CG attributes of subsumption and type hierarchies.

Willems' process of unification is illustrated in Figure 6, which is taken

directly from [Wiltems 1995]. The two graphs G and G' are to be unified. The

unifier U is found by taking the meet of G' and the segment of G which

corresponds to "a man with a name, which is some word." The unifier is then "a

person with a name, which is some word," shown as graph U in Fig. 6. Projections

for U + G + G" and lI + G' -> G" are created to find the unification G". The

two major problems with this approach are that there is clearly more than one

possible projection (why is 'Smith' the girl's name, and not the man's?) and that

Willems does not actually describe how to find the projection into G". He only

d.escribes an algorithm for finding the unifier U (essentially a graPh isomorphism

approach).

Willems'approach makes no attempt to implement a method for producing

the unified graph, however. His effort is mainly to find an uPPer bound, which

may be the least upper bound of the two graphs under consideration, which he

terms the "most general unifier." It is r:nclear whether creating a generalization of

23

name word: *xperson: *y[f=

G=

G

l.1:

Figure 6. Unification in the style of willems lwillems 1995].

a concept using his method loses the essential knowledge that the user wants to

retain, through the loss of specifics in the generalization process. In the domain

which was used for testing the algorithm presented in this thesis, the constructive

nature of architectural design is a continual refining and specífuing of. the structure

lCorbett and Woodbury 7999; Chang a¡rd Woodbwy t9961' '

Also, Willems' concept of a polyprojection allows for a certain amount of

confusion in the implementation of joining concepts. A tpe of "crossover" of the

relations attached to concepts could result from the generalization which is only

useful in certain applications. While polyprojection does preserve the concept and

relation pointers, the difference is that it is not clear which concept should be

pointed to, if there is more than one possibility in the two graphs being r.urified.

He compares this with the Prolog unification, where it is only important to find a

word: *xnameman: *

name word: *xchild girl: *y

name word: *x'Smith'person: *y

name word: *xman: *

word: *x'Smithnamegirl: *ych¡ld

24

lf=

G=

G

Figure 7. A counter example to Willems' unification algor¡thm.

concept that could potentially match a rule, given unbound variables. Essentially,

Willems is defining a way to have no bindings on the variables, and still have a

valid graph.

For example, in Figure 7,we wish to unify the two $aPhs G and G'. Under

Willems' algorithm, it would be possible to derive graph U as the "most general

unifier" in Willems' terms, but U is actually merely a conunon generalization of

the two graphs, G ¡ G'. Willems only describes the method for finding the mgu,

and does not describe how to derive the unified gtaph,'G". As the example

shown in Figure 7 shows, there are cases where it is not possible to define an

appropriate G" from Willems' most general unifier2. Willems' unification

algorithm, then, is not a unification of the information contained in the two

original graphs. Rather, the resulting graph is something like a ffierge of the two

graphs, which makes Willems'term, "gluing together," quite accurate.

2 I am indebted to the anonymous reviewer from Rtuue d'Intelligence Artificielle for suggesting this
counter example.

G"=?

rel P: y*P: x*

P: brelP:a

P: c

25

,/x
u1 u2

w

Figure 8. Compatible Projections.

Müller lMüller 19971 describes unification over a subset of CGs, and

discusses the problems associated with attempting to find a general algorithm

which will unify CGs. The problem that Miiller is attempting to solve is finding a

finite "unifying set" of conunon specializations whidr sPans all possible common

specializations of two CGs. In other words, if it becomes comPutationally difficult

to specify the one Greatest Lower Bound of two CGs, would it be possible to

specify a finite set of common specializations which together define all possible

greatest lower bounds?

Müller borrows from the work of Sowa [Sowa 19841and Willems lWillems

L9951in discussing a join on compatible projections. As shown in Figure 8, two

projections æ1 from a to u7, artdn2 from a to u2 are defined to be compatible if for

every concept of. o, its image under n1 and its image under n2 have compatible

types and referents. Müller then defines the maximum coûunon specialization of

two CGs, u1 arrd u2 with coÍunon generalizattorr o, and compatible projections n1

from o to u1, andn2from o to u2. The join on compatible projections is defined as

the maximum element of all conunon specializations ut, such that projections æ'1

from u1 to w and n'2 frorn u2 to zu exist. Müller shows that such a maximum

element exists in general for any coûunon generalization and two compatible

projections.

The problem is to show whether this type of maximal join exists for graphs

without the restrictions of showing a comrnon generalization, or compatible

projections. Müller proves that there is no such maximal element in these

26

circumstances, and further that there is not even a finite unifying set for two such

CGs. However, he is able to demonstrate that using headed CGs will always

allow a Greatest Lower Bound to be found. Müller's coriclusion is that CG

unification is only guaranteed for graphs which have a labeled head node lMi'iùler

L9971. Unifiers do not always exist for other CGs.

The recent studies of the unification of CGs have concentrated on small areas

of applications. These techniques either simply merge the two graphs, in a

straight-forward mechanical sense, or they restrict the structure of the graphs

being unified. It seems as though the real intention of unification has been lost,

however, in that the Conceptual Graph unification techniques found in the

literature, while fixing small, domain-specific problems, do not perform a true

knowledge combination of the graphs. While some restrictions, such as those

proposed. by Müller, can aid the efficiency of the unification algorithm, a true

sense of knowledge combination is still not present.

The approach to unification of CG structures taken in this thesis is first to

adopt the restrictions imposed by Müller, and deat only with finite, headed CGs,

and then show that headed CGs with constraints can also be unified. In effect, the

head concept node gives the algorithm a "starting point" for joining the two CGs.

In the following chapters, the generality of the algorithm is demonstrated, before

Fving an example in the target domain.

1.5 Summary

This chapter has explored the fundamentals of Conceptual Graphs.

Conceptual Graphs are a highly flexible and useful graph-based knowledge

representation scheme. CGs can be used to represent the relations between

(complex) objects in a system, and can represent multiple relations. CG concepts

are designated with a type drawn from a lattice-structured type hierarchy. A

canon can enforce "sensibility constraints" on the concepts and relations, and there

27

is a very natural specialization order on CGs, induced by the canonical formation

rules. The canonical formation rules cofïesPond to "adding information."

The main techniques that exist for constraining values in ã Conceptual Graph

mostly affect the structure of the graph. The constraint techniques used in the

Conceptual Graphs literahrre only cover the most basic kinds of constraints. They

are based on using either a basic form of subsumption, or producing invalid graPh

segments. When the knowledge of two graphs is combined, there is no standard

method for checking constraints on the values in the graphs, only for chedcing the

structure of the graph.

Unification is defined here as the combining of pieces of knowledge,

represented as Conceptual Graphs, in a given domain. This thesis defines

unification as an operation that simultaneously determines the consistency of two

pieces of partial or incomplete knowledge, and if they are consistent, combines

them into a single result. The unification of two graphs contains neither more nor

less information than the two graphs being unified. While some claim that CGs

can be easily translated into other forms, such as First Order Logic, it is clear from

recent studies that it is more important to have inference rules which operate

directly on Conceptual Graphs.

While CGs are a highly flexible and efficient, they still lack a complete

reasoning capability. Chapter One has demonstrated not only the potential utility

and power of the r.rrrification of knowledge structures, but also that the unification

techniques currently used for Conceptual Graphs are inadequate to fully capture

this potential. These techniques do not combine knowlèdge in a way which

maintains the integrity of the domain knowledge, and they do not handle

constraints in the unification Process.

Techniques for Unification, Constraint Processing, and knowledge structures

are examined in Chapter Two. These techniques are found to be inadequate for

use with CGs in their current state. After discussing some of the basic concepts

and recent research in some areas of related work, the remainder of this thesis will

then define a formal method for representing constraints on the value of a concept.

28

Then an efficient unification algorithm is formally defined which carries these

constraints through the unification process, so that unification fails if a constraint

is violated. These techniques are demonstrated in various'domains, and with

various tlpes of knowledge. Final|y, a discussion of their use and application is

presented.

29

Chapter 2

Unification, Knowledge Structures and
Constraints

2.1 lntroduction

This chapter d.iscusses the relationships between unification, knowledge

strucfures, and Constraint Logic Programming. First, each of these fields is

introduced, and the relevant literature reviewed. Then the recent research in each

area is compared to each of the others. We find that there is a great deal of overlap

in these fields of research, and that each field already contributes to the others.

Finally, the interaction among these three fields is brought into the arena of

Conceptual Graph research, and we examine how these fields contribute there.

2.2 Unification

2.2.1 Overview of Unification

The usual abstract definition given for the unification problem is to find an

object z that fits both of the descriptions of two objects r and y [Knight 1989].

More specificalty, the r¡nification problem for logic ca¡r be described as, given two

30

animal

fish birds fish-eater

trout

Figure 9. An example type hierarchy from Ait-Kaci's work [Ait-

Kaci and Nasr 1 9861.

terms of logic built up from function symbols, variables, and constants, is there a

substitution of terms for variables that will make the two terms identical [Ifuight

tgggl? The modern definition of unification comes from Robinson [Robinson

\965l,who introduced a method of theorem proving based on resolution.

The ry-terms of Ait-Kaci [Ait-Kaci 1986; Ait-Kaci and $asr 19861 are very

similar to Feature Structures, in that subterms are labeled symbolically, rather than

by argument position, and there is no fixed arify. The novel contribution of y-

terms is in the use of type inheritance information. Ait-Kaci's view of unification

was as a filter for matching partial structures, using functions and variables as the

,'filters." Ait-Kaci disagreed with the phitosophy of Feature Structure unification,

where two structures with different functors can never unify [Knight 1989; Ait-

Kaci 19861. ATt-Kaci relaxed this requirement for his ry-terms by allowing type

information to be attached to functions and variables. Then, his unification

technique uses information from a taxonomic hierarchy to achieve a more gradual

filtering.

An example from Knight [Knight Lg1g|illustrates this gradual filtering

technique. Assume that we have the following inheritance information, as

illustrated in Figure 9: Birds and fish are animals; a fish-eater is an animal; a trout

is a fish; and a pelican is both a bird and a fish-eater. Then unifying the following

V-terms:

pelican

31

físh-eater (líkes + trout\

bird (color +brown; Iikes -> fish)

will yield the new V-term:

pelicøn (color + brown; likes -> trout)

Unification does not fail on comparíng físh-eater to bird, or trout to fish.

Instead, the conflict is resolved by finding the greatest lower bound on eadr of the

two pairs of items in the taxonomic hierarchY, in this case pelícøn and trout,

respectively. In this manner, ATt-Kaci's system naturally extends the information-

merging (or knowledge coniunction) nature of unification.

2.2.2 Generalization and the Most General Unifier

Generalization is the dual function to unification, and can be used in many of

the same domains as unification [Knight 1989]. Generalization is also known as

anti-unification [Lassez et al. 1.988]. The usual definition of generalization is, given

two objects ¡ and y, is there some third object z, of which both ¡ and y are

instances? In parallel to the greatest lower bound, the object which is the most

specific of all conunon generalizations of two objects is known as the least upper

bounil. The most specific generalization of two terms retains information that is

common to both terms, introducing new variables (essentially "unbinding"

variables) when information conflicts [Knight 1.989]. Knight gives the example

that the most specific generalization of the two tetms f(ø, 8(b' c)) and f(b, g(r, c)) is

f(z, g@, c)). Since the first argument to/can be a or b, generalizatton abstracts the

terms to the variable z. Unification of these terms, however, would simply fail.

The various (and sometimes conflicting) definitions of unifier, most specific

generalization, least upper bound, and most general unifier have led to some

confusion over the intended application of a unifier. While we have set out our

definitions of "most specific generalization" and "least upper bound" in the

?')

previgus chapter, a discussion of "unifier" and "most general unifier" is still

warranted, as there is stilt some confusion in the Conceptual Graphs community

regarding these ideas. Some of this confusion may stem from the fact that many of

the ideas used by the Conceptual Graphs community are borrowed from similar

work in the Feature Structures community. It the standard definitions for Feature

Structures however, a type hierarchy is represented as having its most general (or

universal) type at the bottom of the lattice. Thus, a Least Upper Bound would

represent a specialization of the types, while a lower bound would be a

gener ahization [Carp enter 19921.

Lassez, Maher and Marriott [Lassez el al. 1988] cite many examples of

confusion in the definition of Most General Unifier. Th"y finally settle on a formal

definition of "Most General Solution" to represent the idea of a Most General

Unifier via a partial order on terms as the substitution that maPs two terms to their

most general conunon instance.

As mentioned in the previous chapter, Willems' approach makes no attempt

to implement a method for producing the unified graph, but rather to find an

upper (more general) bound [Willems t9951. If this is the least upper bound of the

two graphs under consideration, he terms it the "most general unifier". This

phrasing is in conflict with other definitions of "most general unifier" [Knight

1e8el.

The definition of Most General Unifier offered by Lassez and by Knight is the

definition most accepted in the unification literature [Knight7989; Lassez et al.

19381. We formally define "Most General Unifier" for Conceptual Graphs in the

next chapter, and informally state here that our definition will be the unique most

general concept which is more specific than the two graphs being unified, in

accord with Lassez's a¡rd Knight's work.

2.2.3 Properties of Unification

Knight gives a list of several properties whidr are essential to unification, and

which are useful in our study. Knight asserts that unification is monotonic, in that

JJ

it adds information, but never subtracts [Icright 1989]. In our domain, we want to

construct new knowledge structures from old, using unification defined over

Conceptual Graphs. This continual refining and specifyros piocess is essential in

our domain. This is also in accord with Knight's second assertion of unification, as

dealing with partiatly defined structures. As discussed later in this chapter, it is

essential to be able to create partial descriptions of objects, and then specialize

them later. The basic idea behind unification is to accept inputs that contain

uninstantiated variables [Knight L9891. The output may also contain

uninstantiated variables.

Knight's next property of unification is very important in our domain. That

is to view unification as a constraint-merging process. Structures which can not

only represent information or knowledge, but can also encode constraints can use

unification to merge the constraints. Unification can then be used to detect when

combinations of certain constraint sets are inconsistent.

2.2.4 Tree Isomorphism as Unification

The standard graph technique of tree isomorphism is normally used to check

whether two trees have the same structure under a mapping algorithm [Aho et al.

Lg74l, but this technique can also be used as an efficient implementation of the

unification of graphs, if the further restriction of only allowing structures which

are finite trees is allowed. The definition of tree here is quite strict: The graph

must have a root (or head) node, and be finite, directed, and acyclic with no node

having multiple parents. Under the format definition of Tree Conceptual Graph,

all relations must be binary.

The formal definition of a Tree Conceptual Graph will be discussed in

Chapter Four along with an algorithm for unification of Tree Conceptual Graphs.

The essential point here is that graph merging techniques do exist which are very

efficient, but they can place restrictions on the We- structure and flexibility of the

graphs for whidr they will work.

34

2.3 Feature Structures

2.3.7 Overview of Feature Structures

Feature Structures are another graph-based knowledge representation

scheme which also provides a formalism for representing partial information

about the objects in the domain under consideration. Feature structures are

therefore very similar to Conceptual Graphs, except that Feature Structures are

basically simpler structures, and therefore generally more efficient in terms of

computation and complexity. They also have a well-defined and very efficient

unification algorithm.

One of the advantages of Feature Structures is that the graphs are specified

functionally, so that unlike First Order Terms, the position of the argument is not

important. Instead, Feature structures use functors, called "features," which have

explicit names. These functors can be arranged into a type hierarchy, so that if we

know that functor/subsumes functor g, then/(a) subsumesg(a), for any object a in

the domain.

The usual way to conceptualize a Feature Structure is as a labeled, rooted,

d.irected graph [Carpenter 19921. A root (or "head") node is specified for each

Feature Structure, and all other features follow on from the root. Since the order

or position of the arguments is not relevant to the definition of the knowledge

structure, the structure essentially has an extensible arity, in that another functor

can always be added to the structtlre to further specify the structure.

Feature structures are depicted graphically in several different forms. Two of

these forms are shown here in Figure 10 and Figure LL, which are taken directly

from Carpenter [Carpenter 19921. Figure 10 illustrates the standard graphical

notation for feature structures, where its automata-like and graph-like character

are most apparent. The nodes are enclosed in small, numbered circles, and a small

arrow indicates the root node. The type of each node apPears in bold face next to

their nodes, and the features label the arcs. This notation is generally considered

by the Feature Structures communify to be highly illustrative of the knowledge,

35

but is unfortunately complicated and difficult to r:¡rderstand when the structure is

complex [Carpente r L992i.

Figure 10 illustrates the knowledge of a glanunar. The knowledge depicted

can be understood as "a sentence requires both a subiect, which must be of type

noun, and a predicate, which must be of type verb. The noun and the verb must

be in agreement, with the syntax of the sentence. In this case, the Petson must be

third, and the number must be singular.

Figure 1.1 illustrates the more standard method, which is the frame-like

attribute-value matrix notation. In this notation, each bracketed entry represents a

node, and the type of the node is written at the top left of the frame. The tags,

such as the boxed 4 in the diagram, indicate recursive (or just structure sharing)

re-entrancy. The slots are the features, and their values are written next to them.

2.3.2 Feature Structures Fonnally

This formal definition of Feature Structures is due to Carpenter [Carpenter

tgg2land follows the standard definitions in the Feature Structure literature. In

this definition, we assume that a finite set of features, Feat, and an inheritance

hierarchy, Type (and a subsumption function over the hierarúy), have already

been defined.

noun 3rd

agr
person

syn

number
agr

verb sing

Figure 10. A Feature Structure in Graph Notation.

1 sent

subj

36

Definition 7. Feature Structure. A feature structure over T1rye and Feat is a

tuple F = (Q,, q, e,6) where:

Q is a finite set of nodes, rooted at q,

q e Q is the root node,

0: Q + TyP. is a total node tyPing function, and

ô: Feat x Q + Q is a partial feature value function.

The usual way to visualize these definitions is that Q is the set of nodes, 0

determines the labels on the nodes and, where there is an arc from q to some q'

labeled byl then õ(f, q) = q'-

2.3.3 Strengths and Limitations of Feature Structures

Lr Feature Structures, the substructures are labeled symbolically, rather than

inferred by argument position. This means that there is no need for a fixed arity of

arguments in a structure, since all arguments can be referred to functionally

[Carpenter 7992;Knight 1g8gl. This is a major difference with Conceptual Graphs,

where argument position is significant, although symbolic names can still be used

sent

noun

subj: syn
agr:

person: [3rd]
number: [singular]

pred:

Figure 1 1 . The Feature Structure of Fig. 10 in matrix notation.

verb

agr:

4

4

37

to label substructures. Note, however, that chapter six of this thesis will propose

a method of variable-arity relations, which will use the symbolic naming

convention, and not rely on argument position'

Feature structures also remove the distinction between function and

argument, while Conceptual Graphs have some difficulty with functions

(although note some recent work in bringing agents and Pfocesses into the

formalism of Conceptual Graphs in order to express functional constraints

[Mineau t999 ;Mineau 1998;Mineau and Mssa o:ui 79971).

When dealing with Feature Structures, however, the distinction between the

intension and the extension of the structure must be adhered to. In Conceptual

Graphs, concepts which use the generic marker are existentially quantified, but

there is no real distinction made between a Conceptual Graph as a framework of

the knowledge in a domain and the knowledge contained in that framework' A

graph made up only of generic markers can be easily unified with other graphs,

and in fact that is the standard method for gathering, specilri^g, and validating

the knowledge of a system. Both systems have a method for expressing

partialness of the knowledge.

2.4 Logic Programming, Constraint Logic Programming, and

Constraint Satisfaction Problems

2.4.1 Logic Programming

Logic programming is a language paradigm based on logic, and specifically

on resolution theorem Proving as proposed by Robinson in [Robinson 1965]'

Robinson distinguished between the two components in automatic theorem

proving: the inference rule, called resolution, and the testing for the equality of

trees, which he called unification [Cohen t996; Robinson 1965]. In Robinson's

view of resolution theorem proving, resolution is an inference step used to prove

the validity of predicate calculus formulas exPressed as clauses, and unification is

the matching of terms used in a resolution step'

38

Prolog, the first logic Programming language, was at first a tightly-

constrained resolution theorem prover, which was later turned into a useful

programming language [Colmerauer 1990; Knight 1989]. It éssentially inJrerited

unification as a central operation through its use of resolution. Prolog consists of a

sequence of Horn clauses, which is a clause containing at most one positive term.

Prolog programs can be viewed as a set of definite clauses in which the positive

literal is the head of the rule and the negative literals constitute the body or tail of

the rule [Cohen t9961. Functionally, the head corresPonds to the definition of a

Boolean function, whose body consists of a conjunction of calls to the Boolean

functions representing the tail [Kowatskt t9791.

2.4.2 ConstraintlogicProgramming

Constraint Logic Programming (CLP) began as a natural merger of two

declarative paradigms of constraint solving and logic programming [Jaffar and

Maher 19941. Jaff.ar claims that it is this combination of schemes that helps to

make CLP programs both expressive and flexible. A large amount of work in

constraint programming languages actually preceded logic programming and

CLP fiaffar and Maher 19941. Taken broadly, CLP can be said to incorporate

constraints and constraint solving methods in a logic-based language [Jaffar and

Maher 7994; Jaffar and Lasse z 19871.

þffar makes the point that despite this characterization of CLP as suggesting

the possibility of many languages based on different logics and constraints, the

fact is that CLP has almost exclusively been devoted to languages based on Horn

clauses (but lBürckert L99tl, discussed later, presents an exception). Many

languages based on definite clauses have very similar semantics. In fact, the

semantics of a logic-based programming language could be parameterized by a

choice of the domain of computation and constraints. The resulting scheme

defines the class of languages CLP(X), which is obtained by instantiating the

parameter X]affar and Mahet 19941.

39

Constraint Logic Programming languages are Logic Programming languages

in which unification is replaced by constraint solving in various domains'

Constraints are expressed as special predicates whose satisfiability can be

established using efficient algorithms [cohen 1996]. Unification can then be

viewed. as a particular type of constraint that tests equalify in the domain of

graphs. There exist some CLP languages, such as Prolog IVru [ProloglA t9971and

Numerica [Van Hentenryck et al. 19971, which use intervals to bound their

constraints, similar to our solution for Conceptual Graphs (see Chapter Three)'

Ait-Kaci [Ait-Kaci et al. 1gg2! describes a constraint system over Feature

structures. The system (calted FT) depends on having finitety many possibilities

(or possible sub-trees, or branching) in the feature trees. This corresponds to

having finitely many featu¡es in a Feature Structu¡e. Ait-Kaci defines a model for

feature trees, and claims that the model defines the semantics of constraint

processing on Feature Structures.

Constraints in FT are discrete and finite. The entire domain is specified with

the structure (ie as part of the tree), so that there is no distinction between the

framework of the knowledge of domain, and the knowledge contained in that

framework (just as we define later for CGs). There's no room for real-value

constraints in FI but Ait-Kaci discusses the possibitity of the infiniteness of his

structures, implying that a continuous, real-valued domain can be represented by

continually inserting new features between existing features [Aït-Kaci etal-t992]'

2.4.3 Constraint Satisfaction

Constraint satisfaction, sometimes known as constrained deduction, or the

constraint satisfaction Problem (csP), has been formalized in many ways [van

Hentenryck et aI. 1997; Baader and siekmann 1994; Gini and Rogialli 1994;

Mackworthl99¿;Btirckert t99t;Kirchner et al. 7990;Van Hentenryck 1989]. The

underlying concept in all of these formalizations is that it is not necessary to

compute a complete set of solutions to the constraints, and that merely deciding

satisfiability of the constraints is usually sufficient.

40

CLP (general)

CSP

FCSP (specific)

Figure 12. Mackworth's hierarchy of constraint satisfaction

techniques.

A formalizaltonof CSP usually takes this form. Given a set of variables V =

lal, o2, ...pnl and a set of constraints on those variables C = lcl, C2, ... Ckl, a solution

for the problem is an ordered assignment of a set of values S = {sl, s2, ... snl to the

variables such that atl the constraints are satisfied. Some of the work in CSP relies

on efficient backtracking methods [Nadel1990l, while others are concerned with

representing CSP as a highly restricted logical calculus with associated properties

and algorithms [Mackwor lh t9921.

Mackworth's approach to constraint satisfaction is to exploit the logical

relationship between Constraint Logic Programming and constraint satisfaction.

He first defines Finite Constraint Satisfaction Problems (FCSP), which are basically

CSPs with finite domains, and then describes a hierarchy of CLP, CSP, and FCSP

(see Figuret2).

Mackworth's idea is that by describing logical methods of approaching CSP,

he attempts to uncover the semantics of common aPProaches which are more

easily solvable in CLP. Mackworth's main hlpothesis is that all CSP must have an

underlying logical calculus, which can then be used to lift the CSP problem to a

solvable CLP problem.

Finally, Mugnier and Chein convincingly demonstrate that any CSP problem

can be represented as a mathematical morphism [Mugnier and Chein 19961- Their

proof of the strong correspondence between CSP and the general problem of

41

morphism (or projection) also demonstrates that a type hierarchy, such as used in

Conceptqal Graphs, c¿uíì. be effective in representing and solving a CSP problem.

They develop, and prove the soundness of, algorithms fór. transferring CSP

problems to a projection problem, and for transferring projections back to a CSP

representation.

Mugnier and Chein demonstrate that the algorithmic techniques that they

develop for resolving the problem of the existence of a solution to a Constraint

Satisfaction Problem also can enumerate the solutions. Further, these are

transferable from one domain to another [Mugnier and Chein 19961.

2.5 Unification and Constraints

2.5.L The Relationship Between unification and constraints

Unification is related to constraint processing in that constraints are now

used to play the role in theorem proving and logic programming that unification

of terms once played. in Constraint Satisfaction Problems [Baader and Siekmann

I99¡;Bürckert L99l;Kirchner et al. 1990;Iaffar and Lassezt987l. The unification-

based approach computes projections and general unifiers and applies them to the

terms under consideration. The constraint-based approach uses constraints to

determine which instances are valid. Consfraints can be seen as a filter that

prohibits instantiations of the variables not satisfying the constraint [Baader and

Siekmann 1994]1.

Unification (by projection) is the mechanism used in-this thesis to find the

solution of the constraints. The difference with this thesis is that here, the

structures are also carrying a complex, powerful knowledge representation

scheme along with the constraints. As discussed previously, unification starts off

as the identifying of two logical formulae by variable substitution. In this thesis,

unification is a tool which performs the work of identifying two structures using

subsumption, where the elements of the structure can be constrained.

42

2.5.2 Unification-based Reasoning and Constraint-based Reasoning

Automated deduction approaches differ in that a unification-based approach

computes a complete set of unifiers (or all terms whidr have projections lWillems

19951) which are more general than the terms under consideration, and

immediately applies these unifiers to the terms [Baader and Siekmann 1994].

Simply finding the least conunon generalization of two terms is sometimes called

anti-unification [Lassez et al. 1988], or generalization [Icright 1989].

In a constraint-based approach, one does not actually instantiate the terms by

solutions of the con^straints, but the constraints determine which instances of the

terms und.er consideration are admissible. In order to know whether there are still

admissible instances one must determine solvability of the constraints. The main

advantage of this approach is that it is not necessary to compute a complete set of

solutions (e.g., lMülter 1997; Baader and Siekmann 1994]). Merely deciding

whether a solution exists while satisfying all of the constraints is sufficient. In this

case, it is not necessary to compute a general unifier or projection of the terms

under consideration, but only to test whether the unification problem is solvable.

In the case that the unification is solvable, one only need generate a new

constrained expression of the problem. The constraint can then be seen as a filter

that prohibits instantiations of the variables not satisfying this constraint [Baader

and Siekmarctt99ll.

hr principle, it is enough to decide solvabilify of the constraints, however in a

realized system, it is necessary to define an algorithm which is also incremental.

That is, the algorithm should not simply state whethdr the constraints are

unifiable, but then should also transform the constraints into a simpler, "solved"

form [Baader and Siekmann 1994]. I:r this form of constraint solving, "solved" can

mean either finding the specific instance of a concept which simultaneously

matches all constraints, or it can mean narrowing the constraints into a simpler

form, which still matches all constraints, but represents them in a simpler, easier to

manage form. This simpler form can still be converted into an instance later.

Then, when combining constraints, it is not necessary to re-do all the work from

43

previous constraints, but only to combine the new constraint with the solved form

of the previous terms, which corresponds to their most general unifier (or greatest

lower bound, in CG terms).

2.5.3 Unification as Reasoning

Another motivation for this approach to constraint solving is the abilify to

enhance CSP by considering more general constraints than the usual equalify

constraints of normal unification [Baader and Siekmann t9941. One generalization

of unification constraints is the use of ordering constraints, i.e., constraints of the

form s < f where s and f are terms. Depending on the application, the ordering <

may have different interpretations. Recall from Chapter One that in conceptual

.graphs, I has the meaning of subsumption on a partially-ordered lattice of

concepts (in the case of the present discussion, this means projection of one

Conceptual Graph onto another). A concept may unify by subsumption with

another concept if one of the concepts is a more general expression of the other, as

defined in the partial order.

There are also constraint approaches in logic programming where constraints

are not interpreted over a single structure. An example for sudr an approach is H.

Ait-Kaci's Login [Ait-Kaci et al. 19921, where first-order terms are replaced by

feature terms, as discussed earlier in this chapter.

H.-J. Bürckert describes a framework for general constraint resolution

theorem proving [Bürckert 19971. Bürckert's work followed the work in

automated deduction, where the goal was to integrate semantic information about

the problem domain, in order to intelligently explore the search space (by

intelligent prr.rning, directed search, etc.). His work with constraints proposed a

method to handle clauses whose variables are bound by restricted quantifiers.

In Eisinger and Ohlbach's discussion of intelligent behavior in deduction

systems based on resolution [Eisinger and Ohlbach 1993], the importance of

defining a resolution technique is made clear. They describe t}:re logíc of a system

as the syntax and semantics of a deduction system, which includes the ideas of

44

entailment and the formalization of the intuitive relationship between statements.

The logic is a precise representation of the system, which defines the permissible

structure and meaning of statements. Most deduction systems. define a notion of

semantic entailment which does not provide any means to determine

algorithmically whether a given statement entails another [Eisinger and Otrlbach

19ggl. However, Eisinger and Ohlbach define a cølculus of. the system, which

extends the syntax by syntactic rules of inference, and is treatable in an

algorithmic way.

For example, Conceptual Graphs as they stand have a logic in this sense, in

that they can represent knowledge formally and use subsumption, join, etc. but, in

the terms of Eisinger and ONbach, they do not have a calculus yet. A calculus

would allow Conceptual Graphs to have reasoning in the system. Unification

(and thereby a system of inference and resolution) is a good first step toward

Sving Conceptual Graphs that reasoning ability. This thesis will give Conceptual

Graphs their first steps toward being a usable reasoning system, and thereby a

usable programming language.

Essentially, while Conceptual Structures do not contain efficient constraint

satisfaction and reasoning methods, the standard Constraint Satisfaction

techniques do not contain methods for efficient storage and manipulation of

domain knowledge. This thesis will bring constraint processing into the

Conceptual Graphs formalism. Chapter Six contains some thoughts about

bringing together the fietds of CSP and CGs moÍe closely'

2.6 Knowledge structures, Partialness and unification

2.6.1 The Relationship Between Unification and Knowledge Stnrctures

Unification is related to Knowledge Structures through the concept of

partialness. Structures which are not completely specified can be merged together

through unification. Feature Structures are limited in this sense, because Pure

features or properties cannot be unified under the Feature Structures formalism.

45

In this section, we discuss the idea of knowledge conjunctionin terms of partially-

specified structures being unified. The purpose, need and intent of unification of

Conceptual Graphs is darified.

2.6.2 Partialness

In this thesis, partiølness means that a structure need not contain all

information that is implied about it by its structure and types. A partial

representation is used here as a generalized, or higher-level description of an

object in the domain. Whether a structure is partial or not depends on the context

of the knowledge, and the domain. In domain terms, a model might be partial

against one set of knowledge but complete with respect to a subset of the

knowledge. For example, if our current domain knowledge of a building is

limited to its spatial organizalton, a complete model of it would assign functions

to physical spaces. Such a model would be partial with respect to a larger set of

knowledge, containing for example, knowledge of how to construct the building.

The main thrust of the research described in this thesis is the unification of

Conceptual Graphs in terms of conjoining the knowledge contained in two

different graphs. While this may involve term substitution (or the ConcePtual

Graphs equivalent - instantiation, subsumption, variable binding, etc.) and

constraint solving, this thesis is more concerned with knowledge conjunction as

discussed in [Carpenter L9921. Carpenter defines unification as a system in which

two pieces of partial information can be combined into a single unified whole. In

our case, these pieces of partial information are repres-ented by Conceptual

Graphs. Carpenter refers to this idea as information conjunction, but in this thesis,

It is knowtedge conjunction that is more important to us. We want to be able to

combine the expert knowledge of a system, or even combine knowledge from

different sources, not merely gather additional information. Unification here is the

combining of pieces of knowledge in a domain, represented as Conceptual

Graphs. In this thesis, unification will be defined as an oPeration that

46

simultaneously determines the consistency of two pieces of partial or incomplete

knowledge, and if they are consistent, combines them into a single result.

In Feature Structures theor|, it is important to know whether one is

attempting to unify ttre intensíons or ttte extensions of two Feature Structures (FS).

Essentially, the intension of a Feature Structure is all of the attributes (or

properties, or feøtures) of. a construct. The extension of a Featu¡e Structure is the

actual object being represented., with the athibutes specified, even if only partially

[Wille t996a;Wille 1gg6bl. In Feature Structures theory, one must decide whether

the Feature Structures being r¡nified are of the same íntensional type, or the same

extensionøl type, and then seek to identify the two FSs under that ryPe. The

unification of two FSs under their extensional type is simply the identification of

all their values for their features (similar to type labels and individual markers for

the concepts in CGs). There is no way to derive identities of intensional types of

two Feature Structures, as there are no values to be compared.

The significance of intensionality in a representation scheme is the simple

fact that two structures can be identical in all aspects yet remain distinct objects.

In an intensional representation scheme, such as Feature Structures, two structures

which represent the same structure must be explicitly identified as being the same.

It is this property of intensionality which does not allow Feature Structure

unification over existentially quantified features. One major advantage that

Conceptual Graphs have over Feature Structures is that Conceptual Graphs which

contain existentially quantified concepts can still be unified.

2.6.2 Intensionality,foin and Unify

The formal definition of unification for Conceptual Graphs is set out in

Chapter Three of this thesis, however, it is essential to clarify the difference

between the "join" operator, introduced in the previous chapter, and the general

concept of unification. The difference between these two operators can be

illustrated in the following way. In the standard canonical formation rules for

Conceptual Graphs, unbound concepts are existentially quantified. We take for

47

objectcat: Felix ON

mat: #47animal SIT

Figure 13. ls Felix on the mat?

our example the two graphs in Figure L3, whidr can be interpreted as "Felix is on

some object," and "There is some animal sitting on that particular mat." Joining

these two graphs is not possible under the standard canonical formation rule for

external join because there's no projection from one graph to the other. Ffowever,

there are individual concepts which can be joined, such as the concept that "Felix

is a cat" and "animal." Flowever, as discussed in previous sections of this chapter,

true unification is the knowledge conjunction of the two graphs. The unification

of these two Conceptual Graphs would be similar to the unification of ry-terms

presented by Ait-Kaci. The unification is therefore "Felix sat on mat numbet 47,"

as shown in Figure 14. Flere, the more general concepts of "animat," "on," aÍtd

"object" have been replaced by their more specific instances. This illustrates that

unification is more than an external join, and is composed of several operations,

including join.

The extemal join rule can be used to "glue together" two graphs in Willems'

sense, in that a few compatible concepts and relations can be joined together from

two graphs to make alarger,joined graph. Willems then attempts to create a truly

unified graph by finding the least upper bound of the two graphs that will

validate this newly joined $aph [Willems 19951. As discussed in Chapter One, in

Figure 14. Felix is on the mat.

matj. #47cat: Felix SIT

48

the true sense of r¡rrification simply joining a few concepts and relations does not

guarantee the conjunction of the knowledge contained in the SaPhs.

Unification, however, is somewhat more complicatéd, and also more

interesting and useful. The unification of two gfaphs contains neither more nor

less information than the two graphs being unified. Figure 14 shows that the

unification of the two graphs in Figure 13 still retains all the information of the

original two graphs. This is the idea behind knowledge conjunction.

As was discussed in Chapter One, attempts to define unification of CGs have

either restricted the allowable CGs in some way [Müller 19971, or have restricted

the unification to a simpler operation [Kocura 19961. A join on a Conceptual

Graph is a simpler operation than unification, and is usually used to merge two

graphs. As was illustrated in the examples of Chapter One, unfortunately these

attempts at merging graphs often lose some of the knowledge contained in the

graphs being merged, thus violating the concept of knowledge conjunction.

2.7 Summary

Unification is a collection of techniques for finding an object (or structure,

graph, etc.) which fits the description of two objects simultaneously. While

unification has been studied for a long time, many divergent techniques exist for

accomplishing unification in different domains. This ttresis will formally present a

general definition of unification of Conceptual Graphs.

Generalization, or anti-unification, is the dual function to unification. The

Most General Unifier of two Conceptual Graphs is the most general graPh which

is more specific than the two graphs under consideration. In Chapter Five, it will

be shown that a complete set of tools for Conceptuat Graphs will indude not only

unification and Most General Unifier, but also constraint satisfaction,

generalization and all of the canonical formation rules'

One contribution of this thesis is in contributing a definition of knowledge

conjunction to the Concepfual Graphs community. Knowledge conjunction is a

49

system in which two pieces of partial information can be combined into a single

unified whole, as defined by Carpenter. We want to be able to combine the expert

knowledge of a system, or even combine knowledge from dífferent sources, not

merely gather additional information.

Feature Structures are another graph-based knowledge representation

scheme which is simpler in concept and manipulation than Conceptual Graphs.

Their main advantages over Conceptual Structures arê in the use of symbolic

labels for their arguments, and in their freedom from fixed arity of arguments.

While the Feature Structure formalism includes a well-defined and efficient

unification technique for Feature Structure extensions, they lack a general solution

to the unification problem, because there is no method for defining the unification

of the intension of two Feature Structures. For example, in attempting to unify the

intension of one Feature Structure ("some cat") with the extension of another ("the

cat Felix"), there is no defined solution. This problem does not exist in Conceptual

Graphs, because any binding is as good as any other under an existentially

quantified concept. Intensionality precludes this type of subsumption as the

solution to the unification problem in Feature Structures

Constraint Logic Programming is a method which is used to decide the

solvability of constraints in Constraint Satisfaction Problems. While there has

been a great deal of research in CLP, most of this research has concentrated on

making CSP algorithms and techniques more efficient. The common CLP

languages and methods are not able to manipulate complex knowledge structures,

as can Conceptual Graphs.

The unification-based approach to constraint processing computes

projections and general unifiers. The constraint-based approach uses constraints

to determine which insta¡rces are valid. Mugnier and Chein discuss how CSPs can

be transformed into projection (or morphism) problems in order to find a solution.

This type of technique can be exploited with CGs.

Conceptual Graphs have a well-defined formal representation scheme and

can use techniques such as subsumption and lattice operations. However, CGs

50

still lack a good reasoning capability. Techniques which have well-defined

unification processes on knowledge strucfures, such as Feature Structures, only

handle simple versions of the structures, and do not have the representation

power that CGs have. Techniques for constraint solving have concentrated on

efficient constraint algorithms, and have not produced efficient knowledge

structure manipulation techniques. standard unification techniques have never

been applied to CGs, and do not take the structure of CGs into account'

A sound and complete r¡nification technique for conceptual Graphs would

be the first step in creating a reasoning ability for cGs. This thesis will contribute

to Conceptual Graphs by formally defining a unification model for CGs whidr can

use and manipulate constraints over the graphs. The constraints will not only

apply to the structure of the graPh, but more importantly to the referent values in

the concepts. The model defined in chapter Three will use unification of

Conceptual Graphs to propagate constraints on concePts through the reasoning

process of a domain-

51

Chapter 3

he Unification of
s with Constraints

3.L Introduction

Constraint Satisfaction Problems (CSP) are a well-understood and well-

researched area, and many tools exist to handle CSP [Van Hentenryck et al. t997;

Frost and Dechter 1994;Gini and Rogialli 7994;Cohen 19901. These languages and

tools are excellent at handling real numbers, and simultaneous equations.

Flowever, most still fall short in representation Power, as they lack sufficiently

complex knowledge structures to represent the knowledge of any interesting

domain, as will be discussed in Chapter Four.

This chapter discusses research in bringing constraint technology to formal

structured knowledge representation. While the fields of CGs and CSP are still

some distance apart, this project has made a start on bringing formal, structured

knowledge representation techniques into contact with constraint technology. The

significance of this work is that we demonstrate that the merging of these

techniques is both efficient and very useful.

52

The basic objective of this work is to extend Conceptual Graphs not only by

adding constraints, but then also by being able to guarantee that the unification of

two such constrained graphs generates a new graPh which is. canonical, that is,

structr¡¡ally valid in the domain. It is very important that the generated graph is

valid not only in terms of being a valid CG structure, but also in terms of

representing valid knowledge in the domain under consideration. While we

cannot guarantee that the fact represented by the graPh is currently true (that's the

arena of Truth Maintenance), we can guarantee that when fwo constrained

Conceptual Graphs are unified, not only is the canonicity of the graph guaranteed,

but we also produce a graphical representation of knowledge which is meaningful

in the domain under consideration. We discuss this issue in more depth in section

4.4.4.

The method. described here uses intervals to bound the value of an attribute,

thus capturing the idea of a real number. Subsumption of an interval (defined on

an interval lattice) is used to decide whether two concepts of the same $pe are still

r:nifiable. The lattice operator "joiÍl", again defined for intervals, is used to decide

subsumption. We are then able to define real-valued constraints in concepts, and

use the standard Conceptual Structures operations of join, projection and

subsumption to decide whether a concept is valid according to the domain

knowledge. Part of the work presented in this chapter is taken from my earlier

work in this area [Corb ett2}}1.;Corbett L999;Corbett and Woodbury L9991.

3.2 Interwal constraints

3.2.1 Previous Use of Inten¡al Constraints

The concept of using intervals to represent consfraints on real variables is

certainly not new. The work done by Cleary [Cleary tgg7lconcentrates on

defining arithmetic operators for intervals in an implementation of Prolog. His

method of constructive negation deals with quantifier elimination problems in

constraints by reducing the answer to a disjunction of conjunctions of primitive

53

constraints. The primitive constraints are defined as eithet X = Y or V ZX * Y,

where Z is the set of variables in the domain.

Cleary is mainly concerned with the problem of finding efficient methods for

eliminating a negated existential quantifier. The problem is in finding efficient

solutions to a (possibly infinite) assertion that there does not exist a solution to a

formula. Cleary also formally defines the arithmetic operators over the constraints

in this domain [Cleary 19971.

Older [Older lgg7l discusses the lattice operations and gives a formal

definition of an arithmetic over interval constraints on the reals. Older's definition

of the partial order on intervals states that:

[xr, xz] >-Íyuyzlift x1 I yr andx22yz.

Older's lattice operations are defined by:

(join)

(meet)

[xr, xz] v lyuyzl = lxr 1yr, xz J,yz] and

[xr, xz] ¡ Íyt,yzl = lxr J yr, xzl yzl,

where a 1U denotes maximum(aÞ) and a J U denotes minimum(aÞ). Older

calls these "exteryals ," and puts no restriction on the relation between x1 and x2.

For example, the interval 13.1,, -5.71is allowed in these definitions. In order to

avoid confusion in the system described here on interval constraints, we disallow

the interval [x, yl where x > y. Older avoids defining the top and bottom of the

lattice, in order to avoid "failure interpretations" in his algorithms. Failure

interpretations in Older's system result from defining boundaries on the reals.

Older chooses not to represent preset boundaries, but rather allows the lattice of

the real intervals to be infinite [Older t9971.

54

3.2.2 An Interval Concept Type Hierarchy

It is possible to apply the idea of interval constraints to Conceptual Graphs.

First, it is necessary to formally define what we mean by an.interval type over

concepts. We then describe how this concept type hierarchy can be used within

the Conceptual Graph formalism to achieve a representation of constraints over

the real numbers. Finally, we can define unification over these constraints.

We start by defining a concept type lattice of real-value intervals, as shown in

Figure L5.

Definition 8. Interval. An interval is defined as: Intr: [x, y] s R. x R': x < y'

This definition gives us T = [--, -] and I is any absurd interval. Informally,

the lattice is ordered on interwal inclusion, such that two intervals have a join if

there is some other interval which is in the "ovetlap" area of-the two intervals. It

is clear how such an operation on the lattice would be defined. A maximal join is

the largest such overlap interval. Formally, we adopt the definitions discussed for

T

[13,17] [1 5,25] 119,47)

[13,13] [15,'t7] [1e sl

Figure 15. An example of an ¡nterval lattice, ordered by interval

inclusion.

55

interval meet and join in lOlder 1997].

These definitions give us the following desirable results:

ll3, 77lv [L5, 251 + ll5, t7l

l1.5,17lv lL9,47l + L

[15,11] + I

This lattice then defines the concept type hierarchy for an interval type. Two

interval-type concepts can be joined if there is a join on the interval lattice for

them. Constraints over real variables can then be expressed by specifying the

interval into which the real value must be constrained. Note that a specific value

can still be specified by using an interval: '!.3.7 can be expressed as the interval

type 113.7,13.71. Unifying two real-value concepts then becomes finding the join

of the concepts on the interval lattice. The set of individual markers for concepts

can now be expanded to include intervals as defined here.

3.3 Projection and constraints using intenrals

3.3.1 The ConfonnitY Relation

The designs of the relations and algorithms presented in this thesis are based

on the assumption that relations "know" what types they can validly point to. The

Conformity Relation was defined formally in Chapter One, but the discussion of

its use and function has been reserved until now, when we can put it into its

proper context. The conformity relation relates type labels to individual markers.

This is essentially the relation that ensures that the tyPing of the concepts makes

sense in the domain.

For example, we can derive the graph in Figure 1 (reproduced again on the

next page) from the more general graPh shown in Figure t6by simply applpng

the Canonical Formation Rules. Once the general concept has been specified, as

shown in Fig. 16, the concepts can be specialized (or even unified). It is clear from

56

earlier discussions how this is done. The conformity relation enters into the

operations by specifying which individuals can be called "cat" or "obiect"' That is,

it is clear from the type hierarchies that a cat is a kind of animal, but the fact that

Felix is a cat must be specified by the Conformify Relation. Once this type of

declaration has been made, then the generic marker can be appropriately replaced

by a specific individual.

In the case of the interval type, the Conformity Relation can be used to

ensure that the real numbers being represented by the intervals are being used in

an appropriate manner. For example, the conceptual relation "area" must relate a

measure to a floorspace, room or similar. This can be enforced by the Canonical

Formation Rules, but replacing the generic marker with a specific interval requires

that the Conformity Relation validate the individual marker. In this manner, the

intervals can be used to represent prices, lengths, measures or any other number

concept.

3.3.2 The Headed ConcePtual GraPh

Müller demonstrates in his work lMüller 19971that it is not always possible

to find a coÍunon generalization for two arbitrary graphs in the same canon, and

therefore it is not possible to guarantee that two graphs can be unified. If a subset

of CGs is defined as all graphs that have a designated head node, and the head

nodes are of compatible types, then these graphs will necessarily have a most

general unifier. We define Q, theuser-selected head node of a graph, in order to be

Figurel. ASimpleCG.

Figure 16. A General CG.

mali 47cat: Felix ON

objectan¡mal ON

57

able to guarantee unification of the graphs under Müller.ls algorithms. This

method allows us to combine the graphs while preserving the knowledge in both

graphs, and still be able to use efficient unification methods as defined by Willems,

Mtiiller, and others. The specification of a head node gives us a starting point for a

stand.ard depth-first graph search algorithm modified for use with CGs. As will

be discussed in a later section of this chapter, these algorithms have a complexity

of O(n) rather than the O(n2) that might be presumed for a general graPh match

algorithm. We therefore present a definition for a Headed Conceptual Graph as a

slight modification (or perhaps restriction) of that for conceptual Graph:

Definition2'. Headed Conceptual Graph. A conceptual graph with respect

to a canon is a tuple G = (C, q, R, type, reþutt, nrg7, ' ' ', ørgm) where

C, R, type,reþent, ønd nrg7, . . ., ør*ffi are as defined previously'

q is adistinguished member of c, the head or root node of the saPh.

It is important to note here that both Sowa [Sowa Lg84l and Leclère [Ledère

Igg;l(among others) define (or at least discuss the possibility of) a head node for a

Conceptual Graph. In these definitions, the "head node" is really more of a

category of the Conceptual Graph, in a kind of x" government binding sense

[Chomsky 1980]. This head node states the type of the graph and enforces

appropriate speciali zalton and generalization rules'

Müller's use of the head node is as an aid in resolution theorem proving. In

fact, Müller's entire definition and use of unification is as a method for logical

resolution lMüller 19971. While the application of Müller's head node was

originally for a different purpose, the sense used by Müller can still be used for

general unification for knowledge conjunction'

3.3.3 The Projection OPerator

The next step in defining constraints on concept markers is to define a

projection operator, similar to Sowa's æ operator [Sowa 19841, but which takes

58

intervals into consideration. Sowa's n operator is used to identify that portion of a

graph which is derived (by a join) from another graph. In other words, if two

Faphs, u and v, arejoined to form graph w, then there will be in w a projection of

graphv and a projection of graPh u.

We again follow the definitions presented by Willems [Willems 1995] and by

Chein and Mugnier [Mugnier and Chein 1996; Chein and Mugnier 19921. In these

works, projection is defined as a maPPing between two graphs, rather than a

sequence of canonical derivations as Sowa defined it in [Sowa1984l. This allows

the definitions of projection and specialization to become identical; the existence of

a specialization implies the existence of a projection, and vice versa. Similarly,

generalizalion can be defined as the inverse of specialization, using the basic

definition of projection.

Note that the following definition is a re-wording of Definition 4 from

Chapter One. The two major differences from the Chapter One definition are in

including the head node and in allowing individual referents to subsume other

individual referents. We use this notion of subsumption of individuals for some

of the notions to be presented in Chapter Five.

Definition 4'. Projection on Headed CGs. G = (C, q, R, type, referent, ar87, . .

.,ørgn) subsumes G'=(C',q', R',type',reføent',ar$'lr...,arg'm) ,G>G',if and

only if there is a pair of functions nc: C + C'and z¡: R + R', called morphisms,

such that:

Vc e C and Vc' e C', nç(c) = c'only if type(c)>We'(c), and

refermt(c) = '+ or refumt(c)>-referent(c'), and by extrapolation,

nç(q) = Q',

Vr e R and Vr' € R', np(r) = r' only 1f typeQ)> We'(r')

Vr e R, ørg'i(ftR(r¡¡ = na@rgi(r)),

Vc e C there is a unique concept c'e C', sudr that k@) = c'

59

This definition of projection is very similar to previous definitions [Corbett

2001,; Leclère 1997; Müller 1997; Mugnier and chein 7996; Cogis and Guinaldo

I991;Willems l99!;Carpenter 1gg2l, except that here we define a head node, and

we specifically allow a referent marker to subsume another marke¡ in the

projection. The notion of an individual subsuming another individual (a property

often restricted to the generic marker) is not novel. The idea has wide acceptartce

in, for example, the use of conceptual graphs in Formal Concept Analysis (FCA)

[Wille Lgg7l. In FCA, an individual is lower on the concept lattice if it is more

specified, or simply has more properties than another individual. In some

domains in which FCA is used, it makes sense to derive an ordering on this

hierarchy. This sense of an individual subsuming another which is more specified

or more specialized is the sense that is also employed in this work.

3.3.4 Projection and Interval Constraints

In our method, when two individuals of type interval are joined, their join

may be another interval which is contained in both of the originals. This leads to a

situation where, after joining two concepts, it may not be possible to find either of

the original intervals exactly as they were before. It may be a joined interval, or

similar concept type. The new type would be a specialization of the previous

types. In the research discussed here, an interval must be able to have a more

specific q ..1ie, in order to be useful in the domains that we work in. This is the

significance behind defining a type lattice for intervals.

The other properties of the standard n operator remain the same as in

previous work. There is still the guarantee that for each relation r in the graph in

question, the old type must subsume the new !r1le, and that the i-th arc of the old

relation must point to the same concept as the i-th arc of the new relation.

The standard definition of the n operator from [Sowa 19841applies to two

graphs, one of which subsumes the other. In our research, combining the

knowledge of two Saphs (even if there is no subsumption relationship between

them) into a more refined representation is more important. The æ operator as

60

used and further refined here helps define the unifier, so.that unification can

proceed with combining the two graPhs into one.

3.4 Unification over constraints

The r.rnification of two conceptual graphs with constraints now becomes the

combination of two graphs which are compatible in corresPonding concepts and

relations, as defined by our definition of the projection operator and join. We

again employ a definition from Willems lWillems 19951to complete the discussion

of unification:

Definition 9. Most General Unifier. The most general unifier (mgu) of two

CGs is the most general conunon specialization of the two Conceptual Graphs.

Let G" be a glb of G and G'. G" is the most general unifier of G and G' fi., for any

Conceptuat Graph U where G>-IJ. and G'> U, either G" > U or Ç" = U. By this

definition, the following conditions must hold true:

projection: projections G + G" andG'-> G"exist, and

compatibility: for any concept in G", the images c e G and c' e G'

must be compatible, i.e. type (c) v type(c') + L-

The compatibility condition simply states that it is useless to discuss a

unifier, if no possibitity of unification exists. In the Ut ify algorithm, we will

discuss that completeness dictates that an answer must always be found to the

unification process, even if the answer is I.
Also note that this definition of Most General Unifier is nearly identical to the

definition of Greatest Lower Bound. In fact, we take Most General Unifier to be

exactly the Greatest Lower Bound of two Conceptual Graphs. If we can find the

Greatest Lower Bound, then we have accomplished unification of the two

Conceptual Graphs.

This leads to our formal definition of Unification:

1

2.

61.

Definition L0. Unification. The unification of G and Gl is the graPh G" such

that:

projection: there exist morphisms G + G" and G'-+ G", and

mgu: G" isthe mgu of G and G'.

3.5 Unification Algorithm

3.5.1 Unification Algorithm Infonnally

We can now employ standard graph spanning and unification algorithms

which recursively move down through the relations and concepts from the head

node [Aho et al. t9741. Informally, our algorithm starts by comparing the head

nodes, q ærd q' for compatibility, that is, that they have the same [pe or that the

type of one subsumes the type of the other, and that the referents are either equal

or that one of them subsumes the other. Given compatible head nodes, the

algorithm selects a relation r from all of the relations that lead from the head node

Q, and,seeks its projecti ort r'in the second graph from the relations that lead from

q'. Ifnone is found, then the relation r becomes part of the unified graph trivially.

If the projection is present in the second graPh, then the unification algorithm is

called recursively with one of the concepts c pointed to by the relation r used as

the head node. The concept c is marked "old" to aid in cycle detection on the

graph. If c is already marked "old",then this branch of the graPh is not examined

any further, as it has already been examined. If all these concepts c Prove to be

compatible, then the two subgraphs are joined, and attached to the unified head,

q" . ft one relation in graph G is incompatible with its projection in G', then the

unification fails. The algorithm proceeds depth-first through the graph, to the next

relation. When all relations attached to the head concept in both graphs have been

successfully processed in this way, the algorithm terminates successfully.

Note that this algorithm makes no attempt to find other relations r' in G'

which might "match" the relation /. The algorithm matches with the first

1.

2.

62

compatible r' in G'. The issues of possible backtracking problems which this

approach might entail are discussed in detail in section 4.4.1. As for finding the

corresponding c' for each c, the algorithm is able to exploit the semantics of

relations and the orderedness of the relation arguments to look in the one place

where c would have a projection. If there is no c' there, then there will not be a

projection f.or c.

3.5.2 Unification Algorithm Fonnally

In the previous section, the algorithm for unification was discussed

informally. Flere, the algorithm is laid out in a more formal manner, and the

complexity issues are discussed. The algorithm is displayed in Figure 17, and

issues of soundness and completeness are discussed in the sections that follow.

The Unify algorithm is guaranteed to terminate for finite CGs, since the

algorithm is based upon examining and performing operatio4s on the relations of

each graph. The algorithm imitates a depth-first graph search which detects

cycles. At each level of the graph, one node is selected, and its children nodes are

explored, also in a depth-first manner. The algorithm performs a finite number of

steps on a finite number of relations in each g¡aph. To formalize the idea of

termination of the U"ify algorithm, the following theorem is presented.

Theorem 2. Termination. Algorithm 1, Unify will terminate for finite

Canonical Conceptual Graphs.

Proof. The algorithm is based on creating a finite set, MR, of the relations

that are adjacent to the concept under consideration (argo?)). There are a finite

number of relations / € M¡ for each recursion, ild there are a finite number of

recursions þased on the number of concepts c € Mc in the graph, ild the fact that

cycle detection is performed on the set of concepts), and each recursion has a finite

number of steps. tr

63

Algorithm 1. Unify (G, G).

.lf qv q' = I then terminate with failure.

. Mark all c e C, c'e C' as "new."

. Construct the set M6 of all r e R artdr'e R'.

. Search (G, G'\.

. While there is an r e M6 :

. Construct a new G and G'by selecting an r from Mg '

. Search ((C, ørgok), R, tApe, referent, afgy . . ., argm),

(C', ar g' o(nnkÐ, R', tyPr', refermt', ar$' 1 r''', ar 8' à)
. Remove r from M6 .

. Return Ç" - (C", q", R", tAPe", referent", ar$' L . . ., ar$"m)'

Function Search (G, G).

o Construct the set Mpof all r e R andr'e R'where args(r) - 4 and ørg's(r') = q'.

. While there is an r e Mp:

.If nnk) É Mn then set q" = nrgo?).

o Construct the set Mç of all c, c'such thatørg¡(r) = c and ørg'¡(nnþ)) = c'

for all i, 0 < i < øritY(r).

. While there is a c e Mg:

. If c is marked "old" then remove c from Mç. Else:

. Mark c, t4k) " o\d",and remove c, nç(c) from Mç .

. lf. cn c' *l- then set ørg"i(r) = c n c', else terminate with failure.

. If there is an r € Mc, such that args(r) = c' oÍ argofun?)) -- c', then:

o Search ((C, c, R, tqpe, reþrmt, argb . . ., ar$m) ,

(C', c', R', type', reþent', flrg'1r . . ., ør$'ì).

o Set ørg"o(r n r) = q".

o Remove r, np(r) from M¡ and M6 .

o Return Ç" = (C", q", R", tApe", reþent", Ørg"b . . ., ør$"m) .

Figure 17. The Unificat¡on Algorithm.

64

3.5.3 Complexity of the Unification Algorithm

Chein and Mugnier discuss the complexity of projection, equivalence,

irredundance and related operations for a formalization of Conceptual Graphs,

which they call ggraphs lChein and Mugnier t9921. Their S-graphs are bipartite

graphs "of. any structure," with no bound on the size or structure of the graPh.

The structure of these possibly infinite graphs are what leads to the

nondeterminism in Chein and Mugnier's algorithms. Projection under these

properties becomes a generalized graph isomorphism problem on possibly

infinite, possibly connected graphs, with no general solution. They demonstrate

that projection (in its various forms) is NP-complete in their system'

Chein and Mugnier discuss, however, the development of the $tree, which is

a subset of the S-graphs, with no cycles and a strict tree structure. They then

demonstrate polynomial solutions of projection of S-trees.

The addition of the head node, and the restriction that the Conceptual

Graphs be finite are the two attributes that make the algorithms in this thesis

tractable. We do not adopt the additional restrictions of Chein and Mugnier of a

strict tree structure and no cycles. The Unify algorithm described in this section

deals with general graph structures which have a head, and which can have

cycles. The unique head node guarantees that the graphs are not connected. It

also guarantees that they are not the same graph. The requirement for finite

numbers of concept and relation nodes keeps the algorithms from imitating the

halting problem.

The Unify algorithm proceeds by starting with the heád node 4, chooses one

of the relation nodes being pointed to by Q, and then identifies all of the concepts

that it points to, and searches for a corresPonding and compatible

relation,/concept combination in the other graph. The Most General Unifier of two

headed Conceptual Graphs can be found by restricting the types of both head

concepts to their join (and restricting their referents if necessary), and then

proceeding to repeat the procedure with the concepts pointed to by the relations

from the head nodes.

65

From the description of the algorithm in the last few sections, it can be seen

that the unification of two CGs amounts to visiting each relation node of each

g1aph once, deciding the join of the nodes (if necessary) and then copying the join

of the two nodes into a new Conceptual Graph. This is the method used in a

general depth-first search of a standard graPh [Aho et al. L974]- Our lattice

operations are implemented by simple comParison operations of linear

complexity. The G" canbe found in a finite time because a join on a lattice of

intervals can be accomplished in constant time, even if the join is bottom. There

are implementations of lattices that represent their elements by bit strings and

have a join operation of constant complexify [Ellis L995; Aït-Kaci et al.]-9891. The

copying operation can safely be assumed to be of a linear complexity, and when

combined with the lattice operations as described, a linear complexity of the

algorithm is assured.

Theorem 3. Unify has complexity O(n). Algorithm L requires O(n) steps on

two graphs with a sum of n relations in the two graphs'

proof. The initialization of marking all concepts "new" and the selecting of

,,new" concepts require O(n) steps if a list of relations is made and scanned once.

The time spent in the Mç loop is proportional to the number of relations adjacent

to a concept c, which is the number of links incident on concept c. Therefore,

summing over each concept, the algorithm has a complexity proportional to the

number of relations in the graphs. This loop is only called once for a given c, since

c is marke d "o1d" the first time through the loop. Thus the total time spent in this

loop is O(n). Ú

3.5.4 Soundness of the Unification Algorithm

Our discussion of the soundness of the Unification Algorithm centers around

two concepts: that the algorithm produces a valid Conceptual Graph; and that the

66

algorithm produces the Greatest Lower Bound of the two input Conceptual

Graphs. We first show that the result of unifying two Conceptual Graphs is a

Conceptual Graph.

Ttreorem 4. Unification produces a CG. If G" isthe unification of G artdG',

then G" is a ConcePtual GraPh.

Proof. Ç" = (C", 4", R" , tyPe" , referent", øt$"lr . . ,, ør8" î) is finite (i'e'' C"

and R" are finite) because G and G' arc finite'

The functi on type still works as a valid function, since for any c e C , type(c) 2

type(c"),by the definition of projection.

Each argi ís still a valid partial functiory since all ørgi(nn(r)) = nc@r*¡(r))' by

the definition of projection. tr

Recall from earilier discussions that this algorithm makes no attempt to find

other relations r' tn G' which might "match" the relation r in G which is currently

under consideration. The algorithm matches with the first compatible r' ín G'.

The issues of possible backtracking problems which this approach might entail are

discussed in detail in section 4.4.I. So, the Greatest Lower Bound in this work is

tlrte first glb which matdres the graph under consideration.

Theorem 5. Unification produces a Greatest Lower Bound. The unification

of G and G'is a greatest lower bound of G and G'in a canon, if G and G'have a

lower bound.

Proof. Suppose rttat G" = (C", q", R", type", referent", ar$' L ' ' ', ør8"à is a

Iower bound of G and G'.

Define a morPhismh: h e Cx C'

67

h(c") =

h(r") =

r
r'
r vr
I

c
c'
cvc'
I

if c'2 c
if c2c'
if incomparable
otherwise

and another morphism h: h e R x R'

Lf. r'2r
If r 2r'
if incomparable
otherwise

Also, the types would be joined on their type hierarchies:

type(c") = tYPe(c) v tYPe(c')

type(r") = tYPe(r) v tYPe(r')

so that rrc: G -> G" and z¡ : G + G" and rci G '+ G" and z¡ : G' -> G"

By the definitions of projection and subsumption, the unification of G and G'

is a lower bound of G and G'.

It now only remains to show that the unification of G and G' is a greatest

lower bound of G and G'. Consider that Ga G'is defined as G" = (C v (C' - {c'Ð'

R v (R't',=r rr'), type", referent"). Again, the subsctipl c":=c v c' denotes the

replacement of every occurance of. c" by c v c'. The functions type and refermt are

such that: fL , = f, f'L c' = f'. Recall from previous discussions that type

hierarchies are restricted to lattices in this work, so that the join operator is well-

defined and produces a unique result-

The unification of G and G'will then be a greatest lower bound, since the

lattice operators as used in the Ut ify algorithm produce unique results- The first

graph encountered into which the two Saphs G and G'both have projections will

be used as the greatest lower bound.

68

Because of the subsumptive nature of the t¡pe hierarchies, if there is another

lower bound U which satisfies the above conditions, then either G" subsumes U,

or U is an alphabetic variant of. G". That is, either G" > U,.or G" -- U. (It is

possible, however, that even if U is an alphabetic variant of G" they may be

r.rnique, separate Conceptual Graphs.) tr

3.5.5 Completeness of the Unification Algorithm

Flere, we will argue that the join and unify operators are comPlete, even

given the constraints. The proof given here will demonstrate that all possible

gaphs are produced by unify, or by a simple join.

The argument is that finding a G" which contains an interval which is the glb

of some G and some G'is accomplishable in finite time, given that a backtracking

algorithm can be used when needed. If the algorithm can guarantee that the

answer is always decidable in finite time, then the function- is total and there is

completeness of the expressibility of the knowledge in the domain.

Ttreorem 6. Completeness of the Unification Algorithm. Unification of two

Conceptual Graphs is a total function.

proof. Theorems 4 and 5 state that the Unify algorithm applied to two

graphs, G and G', will produce their Greatest Lower Bound (which may be 1).

Theorem 2 guarantees that this result will be found in finite time. Therefore, fi G

and G'have a Greatest Lower Bound, then the U"ify algorithm will find it in a

finite amount of time, which is to state that all possible correct results will be

returned by the U"ify algorithm. tr

3.6 Summary

This chapter presents several significant results in formally defining the

unification of Concepttral Graphs over constraints. First, the definition of a real-

value constraint type hierarchy was defined for Conceptual Structures, and the

69

formal definitions were presented. The system described here allows real

numbers to be represented in concepts, and also allows those values to be

constrained by specifying valid intervals. In the software. as implemented,

inequalify relations and variables in the constraint specifications are also allowed.

As will be demonstrated in the next chapter, the experiments with this software

have shown these techniques to be useful and efficient.

In the methods discussed in this chapter, the intent was to attempt to

improve on previous work in several ways. The major step is in formally

specifying constraints for Conceptual Graphs, but this work also points the way

toward work in defining the major constraint processing techniques from the

Constraint Satisfaction Processing (CSP) community for Conceptual Graphs.

Further work in this area would allow the entire semantics of CSP to be included

in the CG formalism. This would be a major benefit to the researchers and users of

both communities, as it would bring the entire knowledge representation

formalism and structures of CGs (concepts, canonical formation rules, join, type

subsumption, etc.) into the CSP work. The CG community would benefit by

having formal definitions and algorithms for implementing standard constraint

methods within the CG formalism.

The algorithm presented in this chapter has a linear complexity. This

compares favorably with the complexity of other graPh operations, such as simple

sorts or tree isomorphism. This is a significant improvement on previous work in

that previous efforts at unification of Conceptual Graphs either restricted

unification to a simpler operation, or had a high complexity (in fact, NP-complete

in the most elaborate system).

At the close of Chapter Four, a tree isomorphism unification procedure will

be defined, which has an extremenly efficient algorithm, but which places severe

restrictions on the structure of the Conceptual Graphs used in the procedure. It

will be shown that a tree isomorphism unification technique for a restricted set of

CGs is a useful and practical device, but can only be used in certain domains.

70

The techniques and methods presented in this chapter are sound and

complete, as proven earlier in this chapter. This improves on previous work,

where projection and unification were found to be NP-complete. Completeness

was acheived in our algorithm by restricting the Conceptual Graphs to a specific

subset, Finite Headed Conceptual Graphs. While this does literally restrict the

types of knowlege that can be represented in the graphs, this subset still contains

an extremely useful set of structures, which can be used for many domains. I¡r the

next two chapters, we explore some of these domains, and demonstrate the utility

of these structures.

Further, we assume extremely efficient lattice operators to be available for

the operations we perform here. Our own lattice operators use simple techniques

to determine subsumption of real intervals. These operators have a simple,

efficient implementation, but we look forward to using the type of efficient lattice

operators that are being defined in other parts of the Conceptual Graphs

community.

Representing intervals as types will also have its pitfalls. The projection

mechanism will guarantee the compatibility of types, as it would for any typ.e.

There is a possibilify, however, in some applications where there is a large number

of such intervals that it would become computationally expensive to perform the

lattice operations, nofwithstanding the assumption of efficient lattice operators

discussed above. The two main rnethod which can be used to circumvent this

problem are to precompute the closure of the type lattice over all possible

intervals, or to dynamically compute what could be a vèry large lattice. The

cluttering of the type lattice will depend on the number of interval joins that can

be inferred in the lattice. In the domains that we explore in this thesis, this is not a

problem. While it is theoretically possible for a lattice to be designed which will

overwhelm the system, nevertheless, this lattice design solves a problem identified

in [Mineau and Missaoui L9971. In that work, actors are used as a patch over a

conceptual system in order to constrain the referents of concepts in Conceptual

Graphs.

7\

There has been previous work in representing interval constraints for various

implementations. One implementation for Prolog concentrated on the negation of

existentially quantified varaibles, while another defined làttice operators for

interval constraints on real variables. While the algebras of the former project

have little to do with Conceptual Graphs, they do represent an interesting step

toward bounding real values in an Artificial Intelligence domain. The latter

project defines only algebras for interval constraints, but does not discuss these

constraints in the context of any implementation or domain. We borrow some of

the ideas presented in these works, and apply them in our work to constraining

real values in the concepts of Conceptual Graphs.

The formal definitions and the descriptions in this chapter lead to a useful

and efficient implementation of constraints over Conceptual Graphs. This work

improves on previous work in allowing real numbers to be expressed in the

concepts, and in allowing constraints to be placed on those values in the concepts.

The constraints are defined as a concept t;pe, and therefore can be used as a type

in the normal way with conceptual graphs. The constraints are enforced in the

unification and projection operations, as defined in this chapter. If a projection

operation violates the constraints on one of the concepts, the join fails. The

unification algorithm used. in this system is based on a standard algorithm, and is

guaranteed to terminate since we restrict the CGs to a special subset, finite headed

Conceptual Graphs.

72

Chapter 4

Results, Demonstrations and
Comparisons

4.1, Introduction

4.7.1 Domains

The main focus of this thesis so far has been the formal definition of a

unification and constraint tool over conceptual structures. We now demonstrate

the significance of this extended Conceptual Graph model defined in the first three

chapters. This chapter will now present the results of apptying that tool to real-

world domains.

As wilt be detailed in the following sections, much of the testing has been

done in the domain of architectural design. This is the main demonstration of the

major theoretical work in this thesis, and will concern the definitiory retrieval, and

unification of pieces of design knowledge.

73

4.1.2 Implementation and Testing

The theory, concePts and algorithm discussed in previous drapters were

implemented in Allegro Common Lisp on a sun workstation. All of the relations

were implemented. as lisp functions, and all data structures were lisp lists' Many

different types of designs were detailed, in order to cover a wide range of generic

design problems, all type hierarchies and subsumption problems, and various

relations. These designs were unified in various combinations, in order to test the

functionality of unification with and without constraints of various kinds, and to

demonstrate the usefulness of the software. The combinations represented the

types of unification problems that can be encountered' These types of problems

are detailed and demonstrated in sections 4.3 and 4.4.

In the software as implemented, we included a simple scheme for variable

binding, variable arity relations (to be discussed in Chapter Six) and various

arithmetic relations, such as inequality operators. These deviations from and

add.itions to the theoretical work of the previous three chapters will be detailed in

Chapters Five-

4.2 Design

4.2.7 ComPutational Design Tools

In this section, we will introduce one domain which has been used for testing

the concepts and algorithms presented in the preceding chapters' The design

domain has been chosen for several reasons; among them are an access to the data

from an automated design project and ease of translation of design concepts into

Conceptual GraPhs.

There have recently been many research forays by the design community

into computational design tools which will give the designer useful structufes

which can be combined and constrained in useful ways [Burrow and Woodbury

t999; Chang and woodbury L996; Heisserman 19951. There have also been

attempts in the cG community to assist in defining methods and techniques whidr

74

will be useful in computational design [Woodbury et al. 2000; Mineau and

Miranda 1998;Corbett and Burrow t9961-

The results discussed in this chapter are those recorded from the application

of the Conceptual Graphs constraint tool operating over a design domain. The

domain knowledge is represented in Conceptual Graphs with constraints. Here,

we demonstrate the idea behind the unification mechanism by employing order

sorted r¡nification and constraints within the domain of ardritectural design. This

mechanism leverages tlpe representation technology from the Conceptual Graph

community [Ellis t995]and constraint technology [Mackworth L9921-

4.2.2 Search as a Metaphor of Design

Designers have borrowed Artificial hrtelligence techniques to explore design

possibilities and models. While AI researchers may know these techniques as

discovery or search through a space of designs, designers _see them as guided

movement through design possibilites [Woodbury et al. 2000]. The point of

automated search for the designer is to use computer media that engage designers

in exploring design modifications. The design user may want to create new

designs, or index, compare or adapt existing designs. This type of user requires

efficient representations for the designs and states (of designs) in a symbol system.

The designer needs to be able to represent spaces of possibilities which are both

relevant to this exploration metaphor and lend themselves to tractable

computations. It is necessary for the design process that the information in the

system can be ordered by specificlty, since design exploration usually means

starting from an under-specified design and proceeding to a more specialized

state.

This constraint has led us to consider state spaces structured by information

specificity. Under this assumption, it turns out that two crucial properties in a

design space exploration system are intensionalify and partialness, as discussed

previously. Ty?e hierarchies, subsumption and conceptual relations are used to

r ealize these concepts.

75

4.2.3 SEED

These design concepts are made concrete by considering a recent project in

design dêcision space exploration. This section is an introduction to a system

which will benefit from an expanded unification definition on Conceptual Graphs.

Here, we detail the SEED project. The intent of the SEED project is to create

software which will support preliminary design of buildings [Woodbury et al.

2000; woodbury et al. \999; Chang and woodbury L996; Corbett and Burrow 1996;

Heisserman t995; Heisserman 1991]. This includes using the computer as an

active tool which hetps to generate designs [Flemming and woodbury 19951.

SEED is an acronym for Software Environment to support the Early phases

in building Design. Specifically, SEED witl hetp with recurring building types

(designs which are used again frequently). The SEED system is intended to be an

aid to architects in creating building designs by reusing design knowledge. In

order to store and reuse the design cases in an efficient manner/ it is necessary to

use a representation scheme which can handle real-value constraints and

unification.

The philosophy behind SEED is that much design work is based on reusing

previous d.esigns, and that design practice may be captured in the collections of

operations used to construct classes of designs. Annotated solid models have

allowed the formal representation of designs, and shape granunars operating over

these annotated. solid models have been interpreted as formalizations of the

constructive operators [Heisserman 19951. A similar system of reusing previous

designs has been described by Guy Mineau [Mineau and MirandaL998l, as was

discussed previouslY.

The SEED system is built around the idea of a design sPace. The design

space is a set of partial or complete solutions to an ardritectural design problem.

In this sense, it is roughly equivalent to the AI term "search space", in that the

design space is defined by starting states and operators which allow the derivation

of one state from another, induding some acceptable goal states. The current state

is the current focus of interest of the system. Since SEED is always restricted to the

76

domain of building-design problems, it is sufficient to call the search sPace a

design space.

The basic knowledge structures of SEED are described in [Chang and

Woodbury t9961[Woodbury et aI.19991and [Corbett and Burrow 1996]. They

include thefunctíonal unit (zu), which is a specification of the fr¡nctional properties

that a design must satisfy, ttte design unit (DIJ), which is the design solution to the

problem presented by the FU, and l}re specification unit (SIJ) which describes the

constraints on the FU which must be met by the DU. The SU contains not only

static constraints, such as color or material, but also real-value constraints, sudr as

a range of values which would satisfy a constraint on the area of a room. The SUs

are therefore the fundamental building blocks in SEED, and can be represented as

conceptual graphs arranged in a tree structure, with the fundamental concept of

the SU at the root and the atfibutes of the SU as the branches from the root.

Figure L8 shows an example SU for a house, where the-relation "has-parts"

(of arify 4) is used to divide the house into its prioate, publíc, and outdoor sections,

and then to consider each section.

SEED works by exploring the design space during the elaboration of a

design. To achieve the goal of design experience reuse, SEED allows for the

storage of "interesting" design states, where "interesting" is decided either by the

user, or by the interaction of the user's search path and heuristics in SEED. The

difficulty, then, is in identifying and retrieving stored design states containing

design decisions most applicable to the current state, that is, retrieving useful

information corresponding to design experience captured iñ the historical pattern

of explored and stored design states.

As SEED explores the design space, each of the retrieved designs must be

compared to the requirements to find whether the design meets each of the

specifications and constraints. The problem then, is to find a previous design

which will unify with the SU specification currently being worked on. This

unification process must attempt to identify each attribute of the specification with

the same attribute in the retrieved design. If all the attributes can be unified while

77

house

has-parts

outsidepublicprivate

has-partshas-partshas-parts

diningcourthallwaybdrm#1

kitchenbdrm#?
adjacent

adjacent

adjacent
adjacent

adjacent

Figure 18. A SEED partiat design represented as a Conceptual Graph'

satisfying all of the constraints, then the two structures are said to unify,

producing a new structure which is a combination of the knowledge in the two

previous structures. The new structure is a new design, which can be used to

satisfy the current design requirements.

4.2.4 Specification Units as Conceptual Graphs

This section presents an example of some of the types of concepts and

relations which canbe used in the SEED domain. We introduce here only a subset

of the possibitities as an illustration of the SEED domain. A complete description

78

rm: laundry

adjacentrm: kitchencolor

area

rm: dining-rmhue: blue47

*
1 7 l[13,

Figure 19. A Conceptual Graph representat¡on of a kitchen SU'

and type hierarchies of these concepts and relations will be-detailed in the next

section.

In Figure 18, the SU for a house is shown with its has-parts relations, among

others. In this diagram, an ellipsis indicates that other parts of the graPh continue,

but that they have been omitted from this figure to save sPace. Also, the types of

the concepts have been omitted, in order to simplify the presentation of the

diagram. The concept type applicable for most of the concepts in this figure

would be "room."

Also note in Figure 18 that the relation adjøcent is shown as a binary relation.

In the diagram, each ødjøcent rclatton is shown with double-headed arrows. This

is a diagram shorthand, which indicates that, for example, not only is the hallway

adjacent to bedroom#2,but bedroom #2 is also adjacent to the hallway- These are

two separate relations in the graph, but shown as a single relation with double

headed arrows here.

Since SEED works on the principle of constructive design, it is important to

be able to create small units in the design, and then link them together. The

mechanism we use to link these units is unification. For example, the partial

79

design illustrated in Figure L8 contains the concept kitchen. This may initially be

used as a single concept, or as a tink to the standard or template attributes of a

kitchen. These generic concepts would be specialized later.' Figure 19 shows a

design for a kitchen, with some of the usual relations. (Figure L9 reürrns to the

standard of specifying the concept type.) This can be thought of as an extension of

the kitchen concept in Figure 18 (in other words, Figure L9 could be the diagram

referred, to by the ellipsis near thekitchen concept in Figure 18).

T:ne ørea relation ind.icates that the value of the area is an interval, which

constrains the values that the area may have. Other attributes may include

insulation, illumination, support structure and other factors which concern the

design of a building structure. We define some of these relations as follows:

color i c + hue (f.or any concept node c e C)

has-parts z c -> RmxRmxRm, (of arity 4)

area: c+ Interoal

adjacent ; c -> RmxRm, where

hueis a concept We,which refers to specific color hues,

Interoalis the interval concept VPe, defined previously, and

Rrz is a concept We,which is the roomlabels.

We assume that these types and their respective type hierarchies have

already been defined, with their obvious meanings. We detail some of these types

and type hierarchies in the following section.

Note however, that we have changed the arity of the adiacent relation. Ilx

Figure 1B, we specified adjacent as a binary relation, but in Figure 19 it has an arity

of three. It is consistent with the Conceptual Graphs literature to define an

adjacent\2 relation and an ødjøcent\3 relation. These would then be treated as

separately defined relations that could not be joined (unless the user wanted to

find some way of defining these relations on the same relation type hierarchy, and

80

defining what a join would mean). For now, we will keep similar relations of

different arity separate, in ord.er to avoid confusion. Figure L9 will now be

consideréd separately from Figure i.8, with a separate definition of adiacent.

In Chapter Six, we explore the concept of defining relations with a oøriøble

aríty. Such a variable arity would allow us to join the relations in Figure 18 with

the relations in Figure L9. Variable arity raises other problems in the syntax of

Conceptual Graph joins and projection, as well as the fundamental meaning of

some relations. These problems will be considered in Chapter Six'

4.3 Experiments: SimPle Structures

This section of the thesis will describe some of the simpler experiments and

structures that were used. to test the unification algorithm. Essentially, this section

will demonstrate the basics of the unification theory and algorithm, while the

following section will explore some of the more difficult structures, special cases

and problems.

4.3.7 Unification of Specification Units

The unification of two SUs is another SU representing neither more nor less

information than is contained in the two SUs being unified. Unification only fails

when it is applied to SUs that, when taken together, provide inconsistent

information. In the case of SUs, inconsistency can only arise from attempting to

unify two structures that assign incompatible values (in either literal information,

or in the lattices defined for that type of information) to the same attribute.

Informally, the process of r,rnification starts by identifying the head nodes of

two SUs, S and S'. We then proceed. to examine each athibute (relation) in S, and

search for the same attribute type i. S'. Ifthat attribute type is not found in S'then

that athibute unifies trivially. If that attribute type is found, then either the values

must be equal (if literal values, such as color) or they must have a join, or the

values must not be incompatible (eg, if one SU is adjacent to "dining" ánd the other

is adjacent to "laundry" these SUs are still compatible). If the values do not meet

81

one of these criteria, then they are incompatible, a¡rd unification fails. Continue

untit all attributes of each SU are either found to be compatible, or until one fails.

In the SEED domain, there is more of a sense of "constrircting" the solution

to a design problem, rather than resolution. SEED users will want to find

specifications for partial designs which help to solve the current design problem.

However, while the join operator will sometimes suffice, unification will be

necessary when it is important to retain all the information being offered in two

graphs. SEED will need to retain all the constraints and restrictions on the design,

without resolving aw ay specifications.

4.9.2 Exarnple of Specification Unit Unification

We now demonstrate the software on sections of the SEED knowledge base.

This example assumes that some partial designs have been entered into the SEED

knowledge base as Conceptual Graphs, including the CG shown in Figure L9,

which is reproduced on the next page, for easy comparison. Figure 20 is an

example of a kitchen SU specified by the user to have one adjacent room and a

floor area constrained to be in the interval [15, 20]. When we try to find a match

for the specified partial design among the previous designs, we retrieve the

Conceptual Graph shown in Figure !9 as a previousþdesigned kitchen from the

knowledge base. This is r.urified with the SU shown in Figure 20, and the result is

as shown in Figure 21.

The adjacent relations unify by taking on the values of both "dining-rm" and

"laundry", since these two values are compatible (ie there is nothing to exclude the

kitchen from being adjacent to both the lar¡ndry and the dining room)'

The area relation unifies, because the intervals specified in the two original

SUs have a join on the interval lattice. The join becomes the value of the unified

area relation. The color relation unifies trivially, as there is nothing specified

which could be incompatible with it.

82

rm: laundry

adjacentrm: kitchencolor

area

rm: dining-rmhue: blue47

*
1 7 l[13,

¿
rm:

adjacentrm: kitchen

area

rm: dining-rm

[15, 20]: *

Figure 19. A Conceptual Graph representat¡on of a kitchen SU.

Figure 20. A conceptual graph of another kitchen SU'

4.9.3 Example of Unification with Constraints

We present here some of the examples which have been tested in the

software which implements these ideas. We continue with the knowledge domain

of the building architect. The architect will often try to reuse previous designs, not

83

rm: laundry

adjacentrm: kitchencolor

area

rm: dining-rmhue: blue47

*171[1s,

Figure 21. The unified design

only to save time and resources, but also to identify solutions to problems

previously encountered. Once a given problem has been solved, the design which

represents the solution can be stored, and then retrieved when needed.

Consider in the domain of architectural design, a design for the kitchen of a

custom-made house. In this design, the ardritect has specified some of the lighting

design and that the floor area must be greater than 20 square meters. The ardritect

has also retrieved an old design, which specifies the remainder of the lighting

design. The graphs specifying the partial design and the retrieved design are

shown in Figure 22. We assume that the portions of the graphs not shown in the

diagram are compatible.

The unification algorithm defined above combines these two graphs, with the

result shown in Figure 23. In this graph, all the original knowledge of the first two

graphs has been preserved, and the values in the concepts have been joined as

specified.

84

[3, 7]:

112, 261: *

wr: *

illum: pl2

has-x

has-ylocation

wrnng

illumination

attr

util: plum

util: lights

[18, 24]: *

attr

area

rm: kitchen

f!(o
c
o
N)
]\,
+
ão
oo:t
U'

o).
:to
o-
E
A)

a.
0)

o-o
9,.(o
fø
.+
o
6o
c
=
õ'
P

@qr

*l51[9,

[6, 9]: *

wr:plan61

illum: *

has-y

has-x

illumination

location

wiringattrutil: lights

util: plum

[> 20]: *

attr

area

rm: kitchen

aa¡

[6, 7]:

l1z, 151: *

illum: pl

wr:plan61

has-x

has-ylocation

wrnng

illumination

attr

util: pl

util: lights

Í20, Z4l" *

attr

area

rm: kitchen

a¡¡

f!(o
c
-lo
t\)
f¡
{
o
c
f.

=too
o-o
9,.(o
P

æ
o\

Another example of the utility of unifying partial designs is if the designer

has a design similar to the second in Figure 22, speclfi¡ng most of the lighting

design. The second graph could represent a kitchen design where only the

plumbing design is specified, but no lighting. These two would
"oify

since the

two heads are compatible, and the remainder of the graphs would be included in

the unified graph. All of the knowledge is represented in the unified graph, which

would specify the design for the lighting and the plumbing'

These examples also illustrate how the interval type allows real numbers to

be represented in Conceptual Graphs. Any real number could be bounded inside

an interval, similar to the concept of using floating point numbers to approximate

real numbers in digital computers. Further, any concept containing a real value

can be constrained with an inten¡al. This allows the representation in Conceptual

Graphs of constraint satisfaction problems. This use of interval constraints to

represent real constraints has been used for some time in the Constraint

Satisfaction Problem community. The work by van Hentenryck [Van Hentenryck

et al. L997; Van Hentenryck 19891 is a good example of intervals in CSP.

4.3.4 Graphs with Cycles

The Unify algorithm is based on a standard graph search algorithm which

detects cycles in the Saph. The algorithm proceeds in a depth-first manner until a

leaf concept is encountered, or a concept is encountered which has been visited

before. The depth-first traversal then continues from the last relation encountered,

by following its next argument.

For example, in Figure 24wesee a generic house with three rooûls, which the

user wants to unify with the more specified design shown in Figure 25. (Recall

that the double-headed arrows indicate a shorthand for a binary, reflexive pair of

relations.) When these two graphs are unified, the Unify algorithm proceeds

down along ttre høs-parús relation to the first argument, in this case the kítchen

concept in Figure 25.

87

house

has-parts

room: *room: *

room: *

Figure ?4. A generic house with three rooms.

Figure 25. A house design with cycles.

The graph traversal will proceed by following the first argument in each

relation, from kitchm to høIlwøy, Io dining, then back to kitchen- When l}:.e kitchm

concept is encountered for the second time, the algorithm finds the concept

marked "old" and. stops the depth-first search. The corresponding adiøcent

house

has-parts

hallwaykitchen

dining
adjacent

adjacent

adjacent

88

relations are then traversed (ie from kitchen to diníng, from diníng tohallway, and

from høI\wøy to kítchen) but in each case the traversal stops immediately when

encountering an "o\.d" concept. Since the rooms all unify, tlrte ødiacenf relations are

all included in the new graph, and the graphs unify successfully.

4.3.5 Graphs with Alternate Heads

For unification of two Conceptual Graphs to succeed, the heads of each

graph must be compatible, as defined previously. However, we have also

discussed the fact that unification can be used as the technique to specialize and

refine a generic grapln, or a partially specified design. In this case, the user may

want to start with a partialty specified design for a house (for example) and extend

it with a Conceptual Graph which only represents a bathroom. In this case, the

user will want to specify ttre rm: bathroom concept as the head node in both graPhs-

In other words, the natural head of the graph (in this case house) may not be the

concept under consideration by the user when specializing a graph.

In these cases, it is necessary not only to check that the sub-graphs under

consideration are compatible, but also that the rest of the graPh is consistent with

the knowledge being added. The unification algorithm does this automatically,

since it creates a set of all relations and checks every node in both graphs'

For example, it was mentioned in an earlier section that the graPh shown in

Figure 18 could be extended (and specialized) by unifying its kitchen concept node

with the more complete kitchen Conceptual Graph shown in Figure 20. If the

kitchen concept in Figure L8 is specified as the head node, and the corresponding

kitchen node was specified as the head node in Figure 20, then the two graphs

would unify. The resulting graph would consist of all of the graPh shown in

Figure 1.8, plus a unification of the kitchen elements in Figure 20.

The Unify algorithm starts from the head node, but always checks for

relations that point to the c e C currently under consideration. If any are found,

those relations are treated like any of the other relations in the gr.aP}:., i.e. they

make up part of the set Mç. Each arg¡ is traced and attached in the appropriate

89

place for the entire graPh. In this way'a graph can be expanded and specialized

by using unification to "attadr" a small part to it'

By the same argument , avery deep branch in any SIaPh-under consideration

will be followed to the leaf node, or until a cycle is detected. If a SaPh contains a

very deep branch, it will be appended to the resulting unified graph' This is the

same as a very detailed specialization of the gfaph. So, no matter how one of the

graphs being unified is specialized (whether by a deep branch, or by relations

from a larger graph), the specialization will still be included in the resulting graPh'

4.4 Experiments: Difficult structures and unification Failures

This section of the thesis will describe the more difficult structures and

experiments which were used to test the unify algorithm' we discuss here special

cases and problems with the algorithm, and cases where the basic nature of

Conceptual Graphs leads the algorithm into unwanted (or counterintuitive)

answeÍs. At the close of Chapter Four, and in Chapter Six, we discuss some

proposals for altering the d'efinition unification and the nature of Conceptual

Graphs to solve some of these problems'

4.4J1. Backtracking

Figure 26 shows two partial designs for a two'bedroom house' At first

thought, it might appear that these two graphs should unify' In fact' the Unify

algorithm produces a failu¡e when presented with these two conceptual Graphs

as arguments. While there is an intuitive sense that these two graphs should

unify, in fact there is no basis for unification under the standard rules of projection

for Conceptual GraPhs.

Recall the definition of Projection from Definition Four in chapter one' The

third condition of the definition states that projection must be structure preserving

over the relations. That is to say that each ørg¡ in graPh G must unify with its

correspondingargiin G'. In the case Presented' in Fig'26, in graph G'argz(Lus-

rooms)is a bedroom which requires an area of at most 20 square meters' In graph

90

<
?0

:
*

hu
e:

 b
lu

e4
7

>
2O

z
*

hu
e:

 b
lu

e4
7

ar
ea

ar
ea

bd
rm

:
#?

bd
rm

:
#1

ha
s-

ro
om

s
bl

dg
:

ho
us

e

G
=

G

T
I õ' c o N
) P 6) Â

) o :t U
I É =o J È o c = .ã

E
 F

H

S
B

*
õ'

s
-:

 Ë
 F

F
oì

s
E

 g
;È

LU
H

.¡
r

7r
-¿

H
S

i{D

s6

?
öq

ä

3.
ð

sã
'd

Þ
o

q
Y

 Þ
.s

il
È

rii
åá

.;

E
 B

1$
 *

ã3
E

s
H

äå
F

sF
sf

r
*

I
I

ä8
iã

.s

ts

tF
fÈ

å
É

.8
 e

 ì

I
iiC

.H
(! f3
rÌ

Ê
å

ä
ir-

 E
ã'

Þ
'Þ

'à
E

g€
î

ß
 $

I
gË

ß

 ã
!-

el

qg
.

Þ

o

=
:E

'c
t=

åë
'ë

 å
 y

åã
ãÈ

 a
qi

D
É

.<
¡

q
cã

F

ð
ä

d
e

s,
_8

H
ã

È
 Þ

 É
íto

o/
F

l
'iH

ål
D

\o F

[2
5,

30
]:

*

hu
e:

 b
lu

e4
7

*.
*

hu
e:

 b
lu

e4
7

ar
ea

ar
ea

bd
rm

:
*

bd
rm

:
*

ha
s-

ro
om

s
bl

dg
:

ho
us

e

preserving functions. However, if we allow the user to permute the arguments to

t¡.ehas-rooms re\atton in Fig.26, then we can obviously find a combination which

will unify. This may be the case lf., f.or example, the user specified each graph by

using two binary hns-rooms relations. If this method were used, U"ify could fail on

the backtraking issue. It is unclear from the CG literature, however, whether this

would violate the semantics of structure preservation'

If a user wants the flexibility of permuting the arguments to the relations,

then there are two solutions. The first is to build in a backtracking mechanism,

which unbinds the first join, and then tries to bind other arguments, mudr in the

way that Prolog processes unification arguments. There are many standard

backtracking algorithms which will satisfy this first solution, and we will not

pursue them here.

The second solution is to use an algorithm which restricts our structures to

only headed graphs which have a very strict tree structure. We can then use Tree

Isomorphism algorithms to find a match quickly and efficientlywhile avoiding the

backtracking problem. This solution avoids backtracking problerns by working

from the leaf concepts, finding appropriate matches by permuting the arguments,

and then proceeding up the graph to the head node. Restricting our structures to

a subset of Conceptual Graphs can yield quite an efficient solution. The Tree

Isomorphism solution to this problem will be discussed at the close of this chapter.

4.4.2 Constraint Satisfaction

The Constraint Satisfaction Processing literature contains many algorithms

for solving such constraint problems as simultaneous equations and multiple

variables. white the unify algorithm was designed to resolve constraints

expressed as intervals in a Conceptual Graph, it does not have the expressive

power that true CSP systems have. Indeed, where CSP can manage large amounts

of arithmetic constraints very efficiently, Conceptual Graphs, and the Unify

algorithm in particular, are designed to manage large amounts of domain

knowledge efficiently. The best approach for a complete constraint system would

92

rm: garageadjacentrm: kitchen

Proposition:

Figure ?7. A Conceptual Graph with a negative context.

be to combine these two types of knowledge representation into a single constraint

handling system.

The idea of a single toolbox for knowtedge combination is discussed in

Chapter Five, while comparisons between CSP and the Unify algorithm are

covered in section 4.5.

4.4.3 Unary Relations

Unary relations are something of an exception in Conceptual Graph theory,

and indeed in this thesis as well. Sowa lSowa t999; Sowa 1984] discusses the

negation unary relation, but applies it only loproposítions of. graphs. In the context

of our domain of discussion, this would be used, for instance, to assert a

proposition that a kitchen is not adjacent to the gatage' as shown tnEigtte2T.

Contrary to what a user might expect, if we were to attempt to use the Unify

algorithm to unify this graph with a similar graph which did not have the

negation relation, the unification would succeed, and the unary relation would

appear in the final result. That is to say that if we unify some Proposition A with

the negation of Proposition A, the resultant (incorrect) unified graPh would be the

negation of Proposition A. This is because all relations which are comPatible in

93

type and ar7ty, and which have compatible arguments are always included in the

resulting unified graph. If there is some relation R is one graph, but no

corresponding relation in the other graph, then relation R is iarried through into

the result, since it is considered to be not incompatible with any relation in the

other Faph. The negation relation would fall into this category.

The deeper problem for the negation relation is obvious. Since the purpose

of that relation is to assert the negation of the meaning of some graPh, we need to

be able to express the idea that it must not unify with its opposite. The Unify

algorithm does not correctly handle this situation, as a deep understanding of the

semantics of the graph is required in order to do this. The unify algorithm, while

correctly resolving constraints and type hierarchies, nevertheless has no real

understanding of the semantics of a graph.

4.4.4 Canonicity and ValiditY

One major drawback with all unification techniques is that the user can

guarantee canonicity, but there is still no way to guarantee validity. The validify

of a Conceptual Graph has more to do with Truth Maintenance Systems than it

does with the structural correctness of the g¡aph. The Unify algorithm presented

in this thesis is no exception. While we guarantee that two canonical graphs that

are unified under the algorithm presented in Chapter Three will produce a

canonical graph, there is currently no method for validating the meaning of the

graph.

Take, for example, the two graphs shown in Figure 28 and Figure 29. Fig'28

shows a Conceptual Graph which asserts that there exist in the world some

animals which are a particular shade of blue. Figure 29 says that our cat Felix has

the attribute of color. As shown in Figure 30, the unification of these two graphs

says that Felix is colored blue. While we may not know Felix's current state, and

whether he has recently fallen into a bucket of paint, it is generally accepted that

cats do not come in the color blue. It would be easy to say that Unify has derived

an invalid graph.

94

In fact, this problem is more in the arena of the knowledge domain designer

and the truth maintenance researcher. One way to assert that we will not allow

blue cats to exist in our system is to arrange the concept type hierarchy for colors

to disallow certain colors for certain animals (or other objects). Figure 31 shows

such an arrangement for the color type hierarchy. While many hues may apply to

the objects under consideration in our domain, we can use this hierarchy to

exclude colors such as blue and green from being used with cats. Once this

hierarchy is in place in our system, we can assert the canonical formation rule

shown in Figure 32. When specialized, this canonical formation rule would not

allow Felix to have the color blue as an attribute, and the graph in Fig. 29 would

have to be modified to comply with the rule. The unification of the canonical

formation rule shown in Fig. 32 with the graph in Fig. 28 would fail, since blue is

not a cøt-color.

There's a sense that this problem is bound up with the idea of the user

properly defining the domain, and setting up the type hierarchies. Yet, we cannot

guarantee that the user will not derive "Felix is orange" when he's really black.

This is the domain of truth maintenance and theorem resolution, which are not

dealt with in this thesis. In other words, the user can assert, "there are no blue

cats," but they cannot say whether it is really true that Felix is black!

Figure 28. There are an¡mals which are blue.

Figure 29. Felix has some color.

Figure 30. Felix is blue.

hue: blue47coloranimal: *

*huecolorcat: Felix

color hue: blue47cat: Felix

95

o
.9
(ú()

Q)

(!
o-

(¡)

o

Eño
(J

J(J
(5

-a

c
U'

og
3o
-o

ñ
(J

th
o
o(J

t-
(õ

o

(('
(t)

c
(¡)
(¡)

(t)

o
f

=

F

Figure 31 . A concept type hierarchy for cat colors.

Figure 32. A canonical formation rule restr¡ct¡ng the color of cats.

color cat-color: *cat: *

96

However, there's also a sense that designing a house is a continual refining

and specifying of the design, as was mentioned previously. In this sense, at every

step the user will produce aoølidhouse design (minus specializations). While this is

not the sarne as guaranteeing the truth of a gfaph, we can guarantee that once the

domain hierarchies and canonical formation rules have been properly defined, the

only structures that will be allowed will be those that represent reasonable

knowledge in the domain, and in this sense are valid.

4.4.5 Conclusions Regarding the SEED Proiect

In discussions with the architect members of the SEED Project team, several

issues of unification, constraints and matching were identified. The three main

areas where the SEED Project needs the contribution of Conceptual Graph

unification are in type subsumption, knowledge-level reasoning, and pattern

matching. Each of these three areas is discussed below, alo+g with a qualitative

judgment of how well Conceptual Graphs and the U"ify algorithm deal with these

concerns.

The SEED architects want to be able to use type subsumption to make

statements such as, "An office (or kitchen, or corridor) is a kind of room. All the

properties which apply to one should apply to its specializations." This is distinct

from the object-oriented objective of objects inheriting all the properties of a class

of objects. The essential difference is in treating a kitchen as you would any

generic room. A generic room can be placed, occupy sPace, and have attributes

like color and number of doors. A cløss of rooms will have attributes, but cannot

be said to occupy a space or have specific dimensions, or have a specific count or

placement of doors. The generic room can have constraints placed on its

attributes, and finally can be specialized into a kitchen.

Fundamentally, a generic room can take the place of a specialized room,

unlike a class of objects. The room can stay generic for as long as the user needs it

to be generic, and then specialized. Further, the room could be specialized wholly

97

or in part. If partly specified, it can be matched against other specifications to find

appropriate matches.

Conceptual Graphs and the U"ify algorithm give this ability to the architects.

The Unify algorithm allows the user to specialize designs by matching (unirynng)

previous designs with the current design problem. Since all characteristics,

attributes and constraints are carried along in the unification, the specialization

represents all of the design concepts induded in the more generic design. Further,

and more importantly, there is no real separation between generic and specific,

since all points in between can be represented. Conceptual Graphs combined with

the ability to specialize using unification are the ideal tool for the knowledge

combination approach and the constructive nature of ardritectural design.

The second major concern of the SEED Project designers was the ability to

have knowledge-level reasoning. That is, they want to be able to speak in the

language of the architect, not the language of the computer (or CAD system). The

user wants to be able to refer to the "North Wall" or "door" without resorting to

discussing geometric coordinates in space. The user wants to depart from

previous CAD-based data-level processing, and work at the knowledge level in

the architechrre domain.

This is certainly another area where Conceptual Graphs and unification

combine to bring a solution to this domain. While spatial coordinates (and their

constraints) can be stored in a graphical representation of a room, there is no need

for the user to bother with using them. The graph can be manipulated as a whole,

and treated as a room, rather than a square in a diagram. - The completed SEED

system will not deal with lines and boxes, but rather with specializing entire

designs for rooms (or houses, or office buildings). This approach frees the

architect from dealing with datalevel concerns of numbers and coordinates, and

allows the architect instead to deal with the architectural design.

The third major concern of the SEED team is in the area of pattern matdring.

The users want to be able to start with a high-level, generic description of a

building, perhaps represented as a hierarchy of Functional Units. Then they want

98

to be able to make queries such as, "Can this bay structure be used in the support

structure?" or, "Do the constraints match up adequately for a particular

technology to be used? If yes, tell me the constraints under which it is usable"'

Once again, the work presented in this thesis meets the requirements of the

SEED Project team. A query can be represented as a Conceptual Graph' The user

can specify a type of structure for support, and make the query by attempting to

unify the structure with the more generic design. If the unification fails, then the

user knows that the proposed structure does not meet the constraints of the design

problem. If the graphs unify, then the resulting graPh will contain the constraints

which must be met in order to make the design work'

Overall, the system of unification over constraints on Conceptual Graphs

presented in this thesis gives a set of tools to the designer. The ability to use

knowledge combination with constraints to handle objects at the knowledge level

greatly leverages the abitity of the designer to work efficientl¡z'

4.5 Comparisons to Other SYstems

4.5.1 Implementations

Up to this point, the discussions have centered on the implementation of the

theories discussed in Chapter Three, and how that implementation performs in a

particular design domain. This section changes the direction of this chapter by

comparing the implementation of the Unify algorithm to the unification and

constraint systems implemented by others. As discussed in some detail in chapter

One, other models of CG unification or constraint resolution offered in the

literature are only partially defined. A formal comparison, in terms of validify,

complexity and completeness is therefore not possible' We can, however' comPare

methodologies by discussing how each system would be used to solve the

problems in our example domain. The aim of this section, then, is to demonstrate

that the Unify algorithm solves problems that others have failed to solve, or that

they solve in inefficient waYs.

99

4.5.2 Stmctural Unification

Recall from Chapter One that Willems' approach to unification is to create a

"unifier" for two Conceptual Graphs which, in his definiti-on, is the conunon

generalization of similar segments in the two graphs lWillems 1995]. The unifier

is therefore a gïaph in which every concept can subsume its corresponding

concept in both graphs being unified, and every relation can subsume its

corresponding relation.

His method. starts by finding a subgraph which is similar in both graphs, and

then finding the meet of the two subgraphs to form the unifier. The idea is then to

match the two graphs together along the unifier, and then just attach all other

nodes (ie the nodes that are not in common). Willems refers to the Process as

"gluing together" the two graphs, but he does not present an algorithm for

accomplishing this gluing Process.

Willems'process of unification is illustrated in Figure 6,-which is reproduced

here from Chapter One. The two graphs G and G' are to be unified. The unifier U

is found by taking the meet of G'and the segment of G which corresponds to "a

man with a name, which is some word." The unifier is then "a person with a

name, which is some wotd," shown as graph U in Fig. 6. Projections for U + G +

G" and,lL+G'-> G" are created to find the unification G". The firstmajor

problem with this approach is that there is clearly more than one possible

projection. Why is'Smith'the girl's name, and not the man's? This ambiguity is a

small example of the possible loss of information that can occur in Willems'

algorithm

The other major problem with Willems' approach is that Willems does not

actually describe how to find the projection into G". He only describes an

algorithm for finding the unifier U (essentially a graPh isomorphism approach).

Also recall from Chapter One that it is possible for the unified graph G" to be

undefined in Willems' algorithm.

We now examine the advantages and disadvantages of the algorithm defined

in this thesis compared to Willems'algorithm, using the SEED domain of building

100

name word: *xperson: *y

word: *xnameman: *

word: *xnamechild girl: *y

[J=

Ç=

G"

G

Figure 6. Unification in the style of Willems.

architecture. Figure 33 represents the unifier that would be produced by Willems'

algorithm when u ifyirg the two partial house designs shown in Fig. 22. In this

case, the unifier is just the meet of each of the nodes from the two graPhs from Fig.

22. We use T as a representation of a concept which is more generic than the

intervals in the original graphs. The wiring and ptumbing plans which were in the

originals have now been replaced by generic plans. If we accept Willems'

argument that we can then use projection through the original two graphs, we

should have a result something like Fig.23, which was produced by the U"ify

algorithm in this thesis. However, since Willems does not specify how to perform

these projections, it is unclear exactly what the result would be, or how the result

would be derived.

word: *x'Smith'nameperson: *y

name word: *xman: *

word: *x'Smith'namechild girl: *y

L01

t-
*
L
L):

*

=
X
I
.t)
(5

à
tl)
(õ
-c

(')
c
t-'=

c
o
ñ
.c
E)
=

c
.o
(5
(J
o

(o

1¡'

sg
J

E
f
E.
.F
J

l-

l-

(!

(s
c)
(õc

c)
-c()
P.
J

Ë

Figure 33. Unifier of two partial designs.

Even though this result is theoretically the same, this step of finding the

unifier which is more general than the graphs being unified is an extra step that is

not used by the U.tify algorithm. The Ut ify algorithm does not use the idea of

102

rm: diningadjacentrm: laun

window: *door: *

Figure 34. Graph G to be unified.

Figure 35. Graph G'to be unified.

finding compatible projections on a common unifier, but rather uses the

definitions of projection and join to find a unique most general conunon

specialization. This would supposedly be the next step in Willems' algorithm, but

he leaves this step unspecified.

There is at least one area where Willems' algorithm has an advantage over

the Unify algorithm. Figures 34 and 35 show two graphs, G and G', which are

partial house designs to be unified. Using Willems' algorithm, the common

segments found in these two graphs are the two rooÍts, and the relations to the

doors and windows. Therefore, the unifier would be a description of two adjacent

generic roorns, plus the window and door of one of the roonls, as shown in Fig. 36.

rm: kitchenadjacentrm: garage

doon * window: *

103

adjacent rm: *rm: *

door: * window: *

Figure 36. U, the unifier of Gand G',by Willems' algorithm.

In the Unify algorithm presented in this thesis, it would also be difficult to

unify these two graphs, because there is no obvious head node. If we specify, for

example, that dining is the head node of G, andkitchen is the head node of G', the

graphs still do not unify due to incompatible head nodes. In this case, the Willems

algorithm has some advantage. Under Willems, there is at least some basis for

comparison of the two graphs. The Witlems unifier produced would at least

indicate that there is common ground and a conunon domain between the two

graphs. The Unify algorithm would, in essence, fail before it even starts.

Flowever, the ability to produce a more general unifier may not always be an

advantage. First, there is the cost associated with finding the common

generalization, which is at least as costly as finding the common specialization.

Then there is the problem of finding compatible projections down through each of

G and G' to the new unified graph. Willems does not specify how to use (or even

find) the compatibte projections, except that the projections U + G + G" and U ->

G' + G" must be compatible and produce a corunon graPh, G" [Willems 1995].

In our case, it is unclear what G" would be. There is a projection U + G which

includes The dining room and the løundry, but there is no way to make that

compatible with tl -> G'where the rooms must bekitchen artd gørage.

Recall that Müller demonstrated that a join on compatible projections is not

the same as finding a most general conunon specialization (or greatest lower bound\

104

lMäller 19971. In this example it is not possible to find any cornmon specialization,

and therefore there can be no most general conunon specialization.

The lack of an ability to produce the final unified graph'is a concern, but an

additional concern would be that even a coûunon generalization might not be

useful. Returning to the common generalization shown in Fig. 33, since the

intervals and the plumbing and wiring plans have been made generic, the detail

from the original plans is lost. Producing such a coÍunon generalization may

show that the two graphs being unified have some common ground, but this

$aph may be so lacking in detail as to be useless. Further, it is the constructive

nature of design that is of the most interest to the SEED project. The continual

refining and specifyi.g cannot be represented using a Willems-like unification

algorithm which relies on generalization to find corunon elements. Rather, a

method for combining graphs into a representation of the knowledge from both of

the graphs, without losing any of the knowledge through generalization, is what is

needed in this domain.

White both algorithms would have difficulty with the problem just

presented, the Unify algorithm can still work in certain cases. We can modify the

graphs slightly, so that in graph G'kítchen is not only adjacent to the garage,but

also adjacent to dining, as shown in Fig. 37. Then we can specify díning to be the

head node in both graphs. The head nodes are now compatible, and the graphs

unify to produce the graph shown in Fig.38.

The point is that there is intuitively a combined graph which contains all the

information from both G and G'. This is the graph which represents the

construction of a new design from old knowtedge. Figure 38 shows the result of

using the Unify algorithm from this thesis, with the headed versions of G and G'

as the input graphs to be unified.

Where the Unify algorithm can now find a useful coÍunon specialization, in

the case of Willems' algorithm it is still not dear how a the common specialization

could be formed. The conunon generalization would still be as shown in Fig. 36,

1.05

(',
.E
.gE
tr

*
äo
!c'=

c
c)
(J

=
E

+
L-
ooE

c)
(J
(o

b-(!

o)
(u
(!
o)

Ë

Figure 37. Graph 6'with a head node.

and in comparison with Fig. 38, the result of the Unify algorithm, is lacking in

detail and not very useful.

L06

window: *

adjace

rm: dining

door: *

adjace

rm: laun

window: *

rm: kitchen

door: *

acentadjrm: garag

ft(o
c
o
(¡)
P

Jo
c
=,=o
0)
d.
o
f
o
flI
(¡)
À
Â)
f,
o-
flI
u)
f

o\

4.5.3 Structural Constraints

Recall from Chapter One that most methods for constraining Conceptual

Graphs deal with constraining the structure of the graPh. One exception that was

discussed was the negative canonical models of Kocura [Kocura 19961. Kocura's

method defined Canonical Formation Rules, and then defined exceptions by

specifying certain specializations of the n¡Ies which were not allowed. If any of

these negative models have a projection into a graph, then that gtaPh is outside of

the allowed rules, and therefore not canonical.

Kocura's approach is another which guarantees canonici$, as does the U"ify

algorithm defined in this thesis. Kocura's algorithm refines the canon of

acceptable graphs in the domain. When two graphs are unified, Kocura's

algorithm checks that the result is still canonical, by checking that the resulting

graph is not a specialization of a negative model. By this method, Kocura

constrains the canon, but not the values of the individual referents.

An example of this type of constraint is the Blue Cat problem, discussed in

this chapter, in section 4.4.4. If all colors could be used in describing cats, Kocura's

solution would be to create a negative canonical model, which would disallow the

colors blue and green being used as a cat color. Specializations of this negative

model would also be disallowed. The solution in this thesis was just to rearrange

the type hierarchy by adding an additional layer, and then changing the rules to

specify that cats could only have cat-colors.

As another example from the SEED domain, take the FaPhs shown in Figure

39. Here we see parts of the type hierarchy describing fypes of flats and types of

rooms. The positive canonical model, labeled CM+, says that flats have roonu

associated with them. The one negative canonical model, CM-, makes the

exception that studio flats do not have bedrooms. Any specialization of CM- will

notbe allowed under Kocura's sdreme.

The method for handling this situation under the scheme described in this

thesis is shown in Figure 40. Essentially, what has been done is simply to

108

room: **flat

room

livingdiningsmall
flat

big-
flat

CM+

bdrm: *studio-flat: *

cM-

Figure 39. Kocura's negative canonical model in the SEED domain'

rearrange the type hierarchies to better represent the knowledge that is needed in

the domain. Then the canonical formation rules, shown in the bottom of the

figure, accurately represent the types of structures needed with each type of flat'

The studio type of flat is no longer an exception to the rules, but instead has a rule

which requires an open plan for the studio. Now, the Unify algorithm can be used

to specialize arLy of these rules into a more specified design for a flat'

Kocura's algorithm and the Unify algorithm both guarantee to produce

canonical graphs. Both approaches constrain the graphs that can be unified or

specialized. The essential difference in the two algorithms is that Kocura still

requires an additional step to produce the results. Whenever a canonical

formation rule is specialized, Kocura's algorithm must perform an additional

109

small
flat

big-
flatstudio

room

dining livingbdrm

bdrm: *hassmall-flat: *

bdrm: *haspatio-ffat: *

bdrm: #1big-flat: *

bdrm: #?

open-pl: *hasstudio-flat: *

Figure 40. Another method for representing the bedroom constraint.

check to see whether any of the negative models have projections into the newly

specialized graph. If there is a projection, then the graph is invalid, and the

unification must be undone.

The Unify algorithm does not have any problem in this case. The rules as

specified in Fig. 40 spell out that the studio flat must have an oPen plan design.

The open plan design can be further specified in the type hierardry to have several

functions in one large room. Since studio-flat is not a specialization of any of the

other types of. flat,there is no danger that a separate bedroom will be specified for

the studio. Further, the constraint processing is built into the algorithm, where

Kocu¡a's algorithm is an added process performed at the end of the r¡nification.

L10

type Area-constraint(x) is

Boolean: truelnteger: *x

Integer: 18

Boolean: truelnteger: ?5

Figure 41. An area constraint expressed in Mineau's actors.

Once again, the more important issue is that the Unify algorithm looks at

constraints on the value of concepts. We demonstrate that the situation

encountered in Fig. 39 can be reconfigured just by using thè type hierarchies to

rearrange the domain knowledge, but this type of structural constraint is not the

point of the Unify algorithm. In this domain, specific values of the concepts are

handled in a manner that represents the domain knowledge accurately.

4.5.4 Constraints with Actors

Recall from the first chapter Mineau's work on using actors to represent

domain constraints. Mineau specifies domain constraints by defining procedural

attachments to graphs which are activated when their concepts are instantiated

[Mineau and Missa oui 19971. These procedural attachmeirts (or actors) should

always have a projection into the graphs where they are used. If a projection does

not exist, then the graPh violates the constraints, and is invalid.

Each actor constraint is defined as a t1pe. Figure 4L shows the definition of

the type area-constrøint wlnictr constrains the area of a room to be between 18 and

25. Presumably, one could define variables for the two input values, making the

type definition more flexible. A concept of this type could then be used with an

area relation to constrain the area values. The > and < actors would be invoked

1I1.

actor > (in x; in y; out z) is

Boolean:-*zlnteger: *x

lnteger: *y

Figure 42. Mineau's >

each time a graph is joined to a concept of ttre area-constraint tyPe. If the

constraints are not met, then the join fails. The > actor is shown in Figure 42,

which is taken directly from [Mineau and Missaovrl997].

Mineau suggests a method for a shorthand representation for these

constraint actors. The constraint on the area of a room shown in Figure 41 would

be expressed in Mineau's shorthand as: [INTEGER: *x e [18,25]]. Mineau goes to

great lengths to explain that this notation stands only as a contraction for the more

explicit version of the type definition. The shorthand is similar in appearance to

the constrained concepts introduced by this thesis.

Note that the two main differences, however, are that the interval type

defined in this thesis is the actual type used in the concepts, and that Mineau does

not define a type for constraints on real numbers. The interval fype defined in

Chapter Th¡ee can be used to define concepts, and can then be unified with graphs

to validate the constraints represented by the intervals. This definition of interval

qçqie, along with the unification algorithm presented in Chapter Three, rely only

on projection and join, while Mineau requires an additional step to call actors to

check the graphs during the attempted join.

4.5.6 Knowledge Conjunction Using Tree Isomorphism

As was mentioned in Chapter Two, the standard graph technique of tree

isomorphism can be used as an efficient implementation of unification of CGs, if

Ll2

the further restriction of only allowing CGs which are finite trees is allowed. The

definition of tree here is quite strict: The graph must have a root (or head) node,

and be finite, directed, and aryclic with no node having multiple parents. Under

the following definition of Tree Conceptual Graph, all relations must be binary.

As with standard tree isomorphism algorithms, we also allow relation

arguments to be permuted.. This departs from standard CG techniques, but allows

a greater flexibitity in dealing with knowledge conjunction. The example given

here demonstrates that allowing the permutation of relation arguments can

sometimes aid in the appropriate combination of the domain knowledge

represented in the trees.

Definition 11. Tree Conceptual Graph. A tree conceptual graph with

respectto a canonis atuple G=(C,q,Rz,type,reþrmt,ar$7, ' ' ',ørgm) where

4 is the head or root node, as defined previously

R2 e R is the set of conceptual relations, restricted to binary relations

In a Tree Conceptual Graph, since all relations are binary relations, there will

necessarily be concept nodes at the leaves, as well as at the root. The relations

which point to the leaves will be referred to as "Leaf Relation Nodes". This

algorithm has been adapted for CGs from [Aho et al' 19741'

Algorithm 2. Tree Isomorphism Unification.

To unify two tree conceptual graphs, G and G', stafi with the leaf nodes of

each CG. Then:

o Construct the set of all concepts at the current level í, from each CG, L6 and L6',

preserving the relation structure.

o Sort each set by type, and within each type from most specific to most general.

(This sorts the sets from most constraining value to least constraining.)

. Foreachce L6:

113

o Find a corresponding c' e Lç- where c f1 c'. + L,by scanning L6' from most

constraining to least constraildng. If none is found, unify fails.

o Set c" = cn c'.

o For the r e R, and r' e R',where ørgtþ) = c ilìd arg'tk') = c', join r a¡d r'.

If r v r' = Ithen unify fails.

o Set r" =rnr'.
o Set arg"o|") = ørgoþ) fl arg'ok').

o Go to next c € Lc.

o If any c e L6 fails, unify fails.

o Construct a new L6 and L6. from the concept nodes in the next level above the

leaf nodes just processed (i - 1). Go back to the sorting step and proceed as

before.

o When the head nodes are reached, unify them, and refer to the join as q". lf lhts

join fails, unify faits.

o Return G" as the result of unification.

The sorting step is necessar/, since otherwise we would allow a leaf concept

to unify with the first concept that it matches, which might be a compatible

concept with a generic referent. The generic referent must be preserved until it is

the last choice, to ensure that all concepts are considered for matching, and not

only the concepts with generic referents. Next, we show an examPle where the

sorting step is essential to the correct matching of the concepts.

Figure 43 illustrates the usefulness of CG unification by tree isomorphism.

The CG labeled as G in Fig. 43 represents a customer requirement for a house to be

designed by an architect. The Conceptual Graph G'represents a partial design of

the house, which has been retrieved from the architect's past designs. The two

Saphs are unified, resulting in the graph shown in Figure 44, which represents a

gnification of the crrstomer's requirements with a design which partially matdred

the requirements.

114

hu
e:

 b
lu

e4
7

hu
e:

 b
lu

e4
7

[<
 2

0]
:

*

[>
 2

0]
:

*

ar
ea

ar
ea

bd
rm

:
*

bd
rm

:
*

ha
s-

ro
om

s

ha
s-

ro
om

s

bl
dg

:
ho

us
e

Ç
=

G

i3

B
 F

õF

*;
îiË

F
î

r
ir

ä
t î

,
Ê

 E
 ä

gã
 E

r)

o
)t

s'
¿

.O
C

i

Þ
ãr

 if
 È

¡iô
Ë

.o
i¿

?ö
õ.

,9
R

c
'É

oo
H

f
Ë

 E
F

Ë
 +

 #
È

Í.o
.F

iú
c.

9Þ
<

r.
.F

.
ãã

e.
È

3õ
'

åË
 Ë

r
r

Ë
:

É
H

 ä
ã

B

å
il
ri

$
s

tä
'ñ

 t
 ó

 õ
ä

E
 tË

'fi
' E

å
1f

 [
ä

3

t[Ë
 il

 å
:Y

äã
:â

ãä
ß

&
,8

5Þ
9F

..-
.F

.^
V

Ê
)9

Þ
Ð

=
i+

z_
1

oo
<

t:t
È

9;
"+

9s
.

ä
F

 F
qã

tJ (.
fr

hu
e:

 b
lu

e4
7

[2
5,

30
]:

*

*.
*

hu
e:

 b
lu

e4
7

ar
ea

ar
ea

bd
rm

:
*

bd
rm

:
*

ha
s-

ro
om

s

ha
s-

ro
om

s

bl
dg

:
ho

us
e

*
o
N
V

åo(t^
rfl
N

* $
(¡)

=
o))
-g

sr
(¡)

=-o
ö
f,

(õ
o
(!

(5
(l)
(!

+

c
-o
-o

*

L

E
-o

Ø
Eoo
I

rn
(5

U)

Eoo
I

U)
(õ
-c

c)
at,)
o
-c
o)E
-o(9

Figure 44. Result of tree isomorphism unification.

bdrm constraint of area < 20 could not have been matched. Instead, the tree

isomorphism algorithm assigned the > 20 constraint to the intervall25,30l and the

> 20 constraint to the generic referent, which then allowed unification to proceed.

We discuss a formal comparison of Tree Isomorphism to the Unify algorithm

(and others) in Chapter Five. Here we only state that the clear advantage of the

776

Urrify algorithm is one of the flexibility of the knowledge structure- The Tree

Conceptual Graph is very limited in structure and scoPe, and could only be used

in certain domains and circumstances. Given these domáins, however, Tree

Isomorphism Unification could be an efficient method for merging knowledge.

4.5.5 Constraint Satisfaction Systems

As was mentioned in Chapter Two, there already exist many systems for

handling constraint satisfaction problems. We now turn our attention to some of

these systems, and discuss how these implementations of CSP comPare to the

system described in this thesis.

We first examine two CSP systems which use fairly standard techniques to

resolve constraints. Numerica [Van Hentenryck et al. 1997land ILOG IILOG 19961

can also be used. to perform the constraint processing of the type presented in this

chapter. In fact, these two tools in particular can provide a high level of efficiency

in processing simultaneous equations and simple tlpes of constraints on variables.

Numerica in particular handles constraints by using intervals, similar to the

method used in this thesis.

One way to take advantage of this efficiency with constraints is to use the

Unify system described in this thesis to handle the Conceptual Graph unification,

and then make an external call to Numerica or ILOG to do the constraint

processing. This could possibly make the constraint processing more efficient in

the Unify system, if the constraints could be set uP in a format compatible with the

external tool. Essentiall/, the question of solving the constraints internal to the

Urrify system, or extemalþ through a CSP tool is one of implementation.

The major point here, though, is that this promotes working outside of the

Conceptual Graph formalism to solve parts of a CG problem. The Unify algorithm

always works inside the CG formalism, using projection, subsumption and join.

Making a call outside of the Ut ify system would have to be handled in a manner

which would. be sensitive to the CG formalism. For example, once the user exits

the CG formalism, can the system guarantee a canonical graph as a result? Again,

117

this is mostly an implementation issue, but an issue which.does not exist when

strictly using the Unify algorithm.

Recall from Chapter Two that Mugnier and Chein convincingly demonstrate

that any CSP problem can be represented as a mathematical morphism [Mugnier

and Chein tgg6l. Their proof of the strong corresPondence between CSP and the

general problem of morphism (or projection) also demonstrates that a type

hierarchy, sucJn as used in Conceptual Graphs, can be effective in representing and

solving a CSP problem. They develop, and prove the soundness ol algorithms for

transferring CSP problems to a projection problem, and for transferring

projections back to a CSP representation.

Mugnier and Chein demonstrate that the algorithmic techniques that they

develop for resolving the problem of the existence of a solution to a Constraint

Satisfaction Problem also can enumerate the solutions. Further, these are

transferable from one domain to another [Mugnier and Chein 1'996].

Prolog IV lProlo gIA t9971is an extension of Prolog which can also handle

constraints. The difference between Prolog IV and constraint tools such as ILOG

and Numerica is that Prolog IV is not just a constraint tool. Prolog IV is the full

implementation of Prolog, complete with unification algorithm and Horn clause

representation of knowledge, and it handles constraints using intervals.

The question again is whether Prolog IV can be used to implement

Conceptual Graph unification with constraints as described in Chapter Three.

This is certainly possible. The Unify algorithm was implemented in Lisp, using

lists to represent the Conceptual Graphs. This method could certainly be used in

Prolog to represent the CGs. If carefully implemented in Prolog, the built-in

unification engine can be used to perform the unification of the CGs. But here we

return to the main point: the algorithm described in Chapter Three can be

implemented in many different systems and languages, induding Prolog, but this

is still working within the CG formalism to produce an extension to Conceptual

Graph unification and constraints. The contribution of this thesis is not the

implementation, but rather an algorithm for unifying Conceptual Graphs'

118

Unification (by projection) is the mechanism used in this thesis to find the

solution to constraints on the values in CGs. The difference with this thesis is that

here, the structures are also carrying a complex, powerful knowledge

representation scheme along with the constraints. As discussed previously,

unification starts off as the identifF^g of two logical formulae by variable

substitution. In this thesis, unification is a tool which performs the work of

identifying two structures using subsumption, where the elements of the structure

can be constrained.

The systems discussed in this section really represent specific

implementations of the CSP formalism. Prolog [V also contains some tools for

unification and data structures. These implementations cannot readily be

compared to the Unify system, because Unify is not simply another CSP tool, but

rather an extension to the CG formalism. However, in Chapter Five, we discuss

the broader implications of this system.

4.6 Summary

The main contribution of this chapter was to explore the workings of the

formalisms presented in Chapter Three, and to explore the boundaries of the

implemented work. The chapter began with a detailed description of the SEED

project. SEED (and building architecture) is a complex and interesting domain,

which until now had lacked a sufficiently powerful knowledge rePresentation

scheme to be implemented properly.

Most of the examples in this chapter are taken from the SEED domain, and

show that this domain can be represented completely by the system of Conceptual

Graphs with unification and constraints defined in this thesis. In section 4.4.5,we

conclude that knowledge representation for the SEED project had three major

requirements: 1. type subsumption to handle generic objects in the domain,2.

knowledge-level reasoning in the language of the domain, and 3. pattern matddng

for query and "what if" processing. Atl three of these requirements are met by the

t79

Urrify system described earlier in this thesis. The software as implemented allows

the theory and software of the SEED project to move forward.

The Unify algorithm was tested against a large data det, which included

various problems and situations. The Ut ify system performed well in constraint

processing, graphs with cycles, and graphs with multiple nodes which could be

considered the head node.

When tested in a backtracking problem, the Unify system failed to unify. At

first, this seemed like a problem in not being able to permute the arguments to the

relations in the graph, but it must be remembered that permutation of the relation

arguments is not a part of the Conceptual Graph formalism. Each argument of a

relation must unify with the same argument of its corresPonding relation. Thus,

the two graphs in Fig. 26 do not unify. The last section of this chapter discusses

the imptementation of an algorithm which will accept these same two arguments

and unify them, according to a tree isomorphism algorithm. Tree isomorphism as

used here is outside of the standard formalisms of Conceptual Graphs, but may be

of use in certain implementations. Chapter Five presents several methods of

unification for comparison. Some of these methods could be used to extend the

unification model presented earlier, some could be alternatives, and some may

extend beyond the current Conceptual Graph canon. These are discussed further

in the next chapter.

With respect to standard constraint satisfaction techniques, this chapter

emphasizes that Conceptual Graphs and the Unify algorithm are designed to

manage large amounts of domain knowledge efficiently. CSP tools are designed

to manage large amounts of arithmetic constraints efficiently. A merger of these

two techniques, such as calling ILOG from the Unify algorithm, ndY produce a

very efficient CG constraint system. Flowever, it is most important to remember

that the Ur,ify system is a theoretical contribution to extending the Conceptual

Graph formalism, which could be implemented in any number of ways. CGs are a

complex and powerful knowledge representation scheme. The contribution of this

120

thesis is that now they can also can)¡ constraints on the values of the concepts, and

unify the graphs in a way which guarantees a canonical result.

Oné area which gave the Unify algorithm some trouble was in handling

unary relations. Since unary relations are generally used to drange the truth value

of a graph, or for a non-semantic purpose, such as indicating the head node, it is

difficult to incorporate their use into a unification routine. This discussion led into

the d.iscussion on the validity of graphs produced with the Unify algorithm.

While the algorithm guarantees a canonical result, there is no attempt at

performing truth maintenance on the knowledge base. In other words, while we

can guarantee that the graph produced by the U"ify algorithm will be within the

defined canon, it is up to the user or the truth maintenance Programmer to

validate the graphs against the cuirent state of the world. It is possible to keep

impossible situations from happening, such as having blue cats, but it is not

possible in the Unify algorithm to say whether Felix really is a black cat in the real

world.

We then focused our attention on Conceptual Graph unification and

constraint systems which have already been implemented. Willems created an

interesting attempt at unification, which concentrates on finding the lowest

coÍunon generalization of two graphs. While this can be useful in some domains,

it does not meet the requirements of finding a Greatest Lower Bound of two

graphs. Flowever, generalization has the advantage over Uttify of finding any

coÍunon ground between two graphs. We discuss in Chapter Five how this might

be used in situations where it is not possible to produce a Greatest Lower Bound,

and we suggest that the complete Conceptual Graphs Implementor's Toolbox

might include a Willems-style generalization tool for progressing data exploration

when no other conunon ground can be found'

Kocura's structural constraints were presented in an example from the SEED

domain. SEED structures and constraints could be represented using Kocura's

method of constraining the type hierarchy by using negative canonical models.

Flowever, it seems that the type hierarchy can be rearranged in cases sudr as the

L21,

"studio-flat" and the "blue cat" in order to provide a type hierarchy which

conforms more closely with the domain under consideration. Kocura's method

also guarantees a canonical result, but makes an additional'step to produce the

results. Whenever a canonical formation rule is specialized, Kocura's algorithm

must perform a¡r additional check to see whether any of the negative models have

projections into the newly specialized graph. The Unify algorithm does this all in

the same process.

Mineau uses actors, implemented as procedural attachments, to represent

domain constraints. Whenever a new graph is created whidr involves the use of

one of the actors, the new graph is checked to see whether the actor still has a

projection into the new graph. If not, then the graph violates the constraints, and

is invalid. Mineau's method produces a canonical graph, but takes an additional

pass through the graph to accomplish it. As with some previous systems,

Mineau's technique works outside of the standard formalism of Conceptual

Graphs, by calling additional processes to check a new graPh after an attempted

unification. The U"ify algorithm can propagate constraints through a unification

process which works with projection, subsumption and join inside the Conceptual

Graph formalism.

Overall, this chapter demonstrates that the algorithm described in Chapter

Three has been implemented, works on various constraint and unification

problems, and exceeds the limits of previous CG tools. Unify provides both a CG

unification tool and a constraint solver for values of the concepts. A combination

of the U"ify algorithm with efficient constraint solvers might be an interesting and

efficient way forward for new CG tools. On the other hand, this thesis can also be

used as a beginning of the combination of complex knowledge structures with

standard CSP techniques.

Finally, this chapter presents an initial method for bringing together

Conceptual Graphs, constraints and Knowledge Representation to solve a unique

problem in design and architecture. The Unify algorithm and the Conceplual

Graph formalism provide the representational power needed to explore

122

constructive architectural design in a manner easily understood by the user. We

discuss in Chapter Five how these methods have general applicability, and can be

combined into a useful "toolbox" of knowledge conjunction tools for the

knowledge engineer. Chapter Six presents a discussion on the future directions of

research which combines constraints, cGs and unification.

123

Chapter 5

Placing the Unification Model in
Context

5.L Introduction

This chapter will explore how the unification model presented in this thesis

can become part of a practical set of software tools for the Conceptual Graph

designer, prografluner and user. We examine some methods for organizing the

new extensions and the old formalism into a unified set of tools. This new

organization will show how these tools can be compared to each other for

usefulness in a given domain or set of software'

This chapter also explores the applicability of our method and algorithm to

other domains. Some of the work in this chapter was presented in a preliminary

form in some of my earlier publications [Corbett2001.; Corbett 2000; Corbett and

Woodbury 19991.

124

5.2 A Framework of Unification Methods

5.2.1 The Purpose of the Framework

The early chapters of this thesis examined several' types of graph

combination techniques. It was demonstrated that some attempts at merging

$aphs often lose some of the knowledge contained in the graPhs being merged.

Other techniques have a high cost in complexity. In many domains, it is essential

that the combining of knowledge be represented as a continual refining and

specifying of the knowledge, so that none of the knowledge is lost in the process of

combining with other knowledge [Corbett 2000; Corbett and Woodbury t999;

Woodbury et a1.1999; Chang and Woodbury 19961.

In ord.er to produce feasible, usable structures, unification of two conceptual

structures must be shown to produce a unique result, which is a sensible

conceptual structure. The fact that CGs admit a unification operation is crucial to

their efficient application to the representation of knowledge conjunction.

Knowledge conjunction is the idea that when two structures are unified, the result

contains no more and no less information than the two original graphs' By using a

consistent unification technique, knowledge from a number of distinct sources can

be combined into a unique representation [carpenter L9921.

In this section, we present examples of Conceptual Graph unification

technique s, organízed into an ordering on complexity and flexibility of the

algorithms. Some recent unification algorithms are quite flexible and easy to use,

but require additional checking functions or additional structures which increase

the complexity of the algorithms. Other algorithms do not have a need for the

additional functions, and therefore are much more efficient, but only at the

expense of restricting the CGs in some way. These restricted CGs are still usable

in many domains, but do not have the complete flexibility of unrestricted CGs.

Each type of unification technique is accompanied by an analysis of the

technique, so that they can be compared to each other, and to future techniques.

The intent of this section is to present a framework of knowledge conjunction on

L25

Conceptual Graphs, which will allow a comparison of unification, join, or other

merge technique to each other. The framework presented in this section is

incomplete, as only one example is selected in each category. The intent is for this

framework to be filled out in the future.

5.2.2 The Common Sub-graPh Approach

Recall from Chapter One that Willems' approach to unification is to use type

subsumption to compare compatible nodes [witlems 19951. Two cGs unify in

willems' sense if they each have some conunon sub-graph, which can be joined

und.er the usual type subsumption rules for CGs. The unified graph is then the

joined graph, plus all the other relations and concepts in the two original graphs.

Willems'unification algorithm [Willems 19951basically finds a segment of

the CG which is common to both of the CGs being unified. In this approach,

Willems finds a projection which is at least as (or possibly more) general thanboth

of the graphs being unified. This makes the unification algorithm efficient, as it

takes advantage of the built-in CG attributes of subsumption and type hierarchies.

Willems' approach makes no attempt to implement a method for producing

the unified graph, however. His effort is mainly to find the unifier. It is therefore

unclear whether creating a generalization of a concept loses the essential

knowledge that the user wants to retain.

Willems' algorithm constructs a set of all concepts that are of the same type

(similarly for relations). The algorithm then deletes pairs of concepts (or relations)

which do not preserve the original structure of concept and relation arguments.

When all these pairs have been deleted, then what's left is either the unifier, or an

empty set (indicating a failed attempt to unify). Since Willems restricts his

definition of projection to a simpler operation, called polyprojection, he daims that

his unification algorithm is executable in potynomial time on the number of nodes

in the graph. (In the worst case, the algorithm deletes all pairs of nodes, one by

one.)

126

Analysis

Useful domains: Generalization (anti-unification) of conceptual graphs.

Complexity: PolYnomial.

Flexibility: No restriction on the representation, but the algorithm only

finds a coÍunon genetalizadon as the unifier, not a coÍunon specialization.

5.2.3 Frtzzy Conceptual Graph Unification

Recall again from Chapter One the work of Cao et al [Cao et al. 19971in the

implementation of fuzzy values in Conceptual Graphs. These implementations

are useful for specifying boundaries for the values in concepts, but Cao has

implemented them for the purposes of unification and resolution proof

procedures for f'uzzy Programs.

Cao defines a modus Ponens, among other Fuzzy CG operators and

functions. Thefuzzy tolerance degree is used to unify the program to a query, and

to produce a unifie d. fuzzy CG as a result. Cao discusses the algorithm in [Cao

and Creasy1998; Cao et aI.L997l but does not come to a conclusion as to the

complexity of the algorithm, as some completeness issues are still being resolved.

He implies that a potynomial complexity could be expected'

Analysis

Useful domains: Uncertain data or domain rules'

Complexity: ProbablY PolYnomial.

Flexibility: No restriction on the representation. Most useful as a resolution

proof procedure tn a fiizzY domain.

5.2.4 Tenn Resolution

As discussed in Chapter One, Mülter [Müller 19971 concludes that CG

unification is only guaranteed for graphs which have a labeled "head" (or root)

node. Müller demonstrates that the most general unifier of two headed

conceptual graphs can be constructed by restricting the types of both head

concepts to their join, and restricting their referents if necessary following an

external join. Müller then concludes that since an external join is a linear

127

operation, and since there exist implementations of lattices that have a join

operation of constant complexity [Ait-Kaci et al. t9891, the mgu of two headed

CGs can be computed with linear complexity. Mtiller does not discuss how he

handles backtracking or cYcles.

Analysis

Useful domains: CGs as domain objects; Resolution Theorem Proving.

ComplexitY: Linear.

Flexibility: Restricted to headed CGs; assumes efficient lattice operators;

preserves knowledge conjunction.

5.2.5 The Unify Algorithm

The method described in this thesis uses intervals to bound the value of an

attribute, thus capturing the idea of a constraint on a real number. Subsumption

of an interval (defined on an interval lattice) is used to decide whether two

concepts of the same type are still unifiable. The lattice operators "join" and

,,projection" are used to decide subsumption. We are then able to define real-

valued constraints in concepts, and use the standard join operation to decide

whether a concept is valid according to the domain knowledge. The detailed

analysis of this algorithm is contained in Chapters Three and Four'

Analysis

Useful domains: Has been implemented on architectural design domain;

some work on granunars requiring head concepts'

ComplexitY: Linear

Flexibility: Restricted to finite, headed CGs. All standard CG techniques

(tlpe subsumption, canonical formation rules, etc.) still aPPly.

5.2.6 Tree IsomorPhism

Tree Isomorphism was discussed in the previous chapter' Here we

summarize the analysis of the algorithm:

t28

Analysis

useful domains: Taxonomies and other strict hierardries.

Complexity: Linear.

Flexibility: Strict rules on the structure of the knowledge; finite trees only,

with binary relations.

The techniques and analyses discussed in this section are summarized in

Table L.

Table 1. Summary of Results.

5.3 A Toolbox for Knowledge Coniunction on Conceptual Graphs

5.3.L The Complete Toolbox

All of the techniques discussed in this chapter are useful for a comprehensive

system of unification in Conceptual Graphs. All of these tools of unification,

generalization, "gluing" of CGs, fuzzy matching and tree isomorphism can be

combined into a comprehensive set of tools for handling CG knowledge

conjunction.

This thesis has discussed two important approaches which help to make

Conceptual Graphs tractable when it comes to unification. These are the formal

Technique Domains Complex

Willems
(segment gluing)

Generalization Polynomial Unrestricted
structure; no
conunon
specialization

Cao, et al.
(hnzy CGs)

Uncertainty Polynomial Unrestricted
structure; useful
for f.tzzy proof
resolution

Müller
(term resolution)

Resolution
Theorem Proving

Linear Headed CGs only

Intervals Design Linear Finite headed CGs

Tree Isomorphism Taxonomies Linear Finite trees only;
binary relations

I29

definition of Headed CGs, and the formal definition of an algorithm for unification

based on projection. We now consider what other operations might be useful for a

completetoolbox of Knowledge Conjunction over Conceptual Graphs'

5.9.2 Generalization for Knowledge Conjunction

As discussed in Chapter Two, generalization is the dual function to

unificatiory and can be used in many of the same domains as unification [Knight

tg1gl. Generalization is also known as anti-unification [Lassez et al. 1988]. The

usual definition of generalization is, given two objects ¡ and y, is there some third

object z, of which both r and y arc instances? In parallel to the greatest lower

bound, the object which is the most specific of all coÍunon generalizations of two

objects is know as the leøst upper bound. The most specific generalization of two

terms retains some information that is common to both terms, introducing new

variables (essentially "unbinding" variables) when information conflicts [Krright

1989]. Knight gives the example that the most specific generalization of the two

termsf(a, gþ, c\) and,f(b, g(x, c)) isf(z, g@, c)). since the first argument to f canbe n

or b, generalization abstracts the terms to the variable z. Unification of these

terms, however, would simPlY fail.

It is this functionality of generalization that we're trying to capture in this

case. Take for example the "Blue Bedroom" problem shown in Figures 43 andM.

In a complete toolbox, the user would be told that the two graphs cannot *ify by

using any of the standard techniques for CGs. The user would be offered the

choice of allowing the unify to fail, using tree isomorphism to conjoin the graphs,

allowing a generalization of the concepts, user choice of the identification of

branches, or allowing a permutation of the branches of the tree (and therefore

backtracking). These last two operations take care of any non-determinism by

allowing the user to select the match, or by allowing backtracking. The toolbox

could even leave the choice of whether and how to backtrack to the user.

Using the example from Figures 43 and 44, if. the user chooses to use the

generalization option, then the referents in the concepts would be generalized and

compared for compatibilify. The hue: blue47 referent could be generahzed to be

130

just hue: * to represent the idea that some color must be represented there' There

would be some confusion with the area constraints however, since <20 and >20 ate

in a sense already general. It is also unclear how one would generalize the

referent [25, 30]. Questions of how knowledge conjunction would work with

generalization when there are constraints over the referents are left to future work'

The generalization option allows the user to assert that the graphs in

question have some elements in common, but can not be unified. It may be useful

in some domains to be able to state that graphs have conunon elements, even

when they can not be u¡rified. This is similar to Willems'approach [Willems L9951

discussed in earlier chaPters.

5.3.3 Flexibility and User Choices

Testing of the Unify software included experiments with several ideas which

are not part of the standard CG literature. These experiments included the

definition of variables and variable binding. A value constraint in a concept could

be specified as, for example, [10, n], where n is a real variable. In this case, if the

ll1,nlconstraint is being joined with an interval less than 1.0, then the unify would

obviously fail. If the other constraint is greater than 10, then the constraint is

considered to be undecided until the variable is bound to some value. The

constraint is carried in its original form, and propagated through the system until

the constraint can be resolved. Since it is the original form which is propagated,

the variable can be assigned another value and the constraint tested again. In

Common Lisp, variables can never be unbound, but unbinding a variable was

simulated. by having the software recognize nil as meaning nnbound'

Similarly, the > and < symbols were allowed in the software. It is possible to

specify constraints such as [> 10] or even [< n]. However, this is not much of a

departure from the standard, since this really only represents an alternative

notation for [1.0, ""] or Í-*,nf.

A third area which was tested was in allowing the user to specify the priority

that some constraints have over others, and in allowing constraints "tolerances-"

In terms of constraint priority, the user could specify that the color of the room is

13L

not important enough to cause a failure of unification. In this case, the user could

specify that if Unify were going to fail only because of a clash of colors, then the

constraints could be generalized, (to something like [hue: *]) and the rest of the

gfaph unified in the normal way. Priorities were implemented in the Unify

algorithmby allowing the algorithm to attempt to unify the concepts' When that

failed, the algorithm would examine the priority of the constraint involved (as set

by the user) and use a least upper bound of the types to find a compatible concept.

Of course, this returns us to the problem of preserving constraints through a

genenlization of the concepts, which this algorithm makes no attempt to do.

Tolerances were specified for each type before the software was called. So, in

the case of an interval that is pointed to by an area relation, we could specify that

if the intervals do not match, but were within 5% of. the size of the interval, the

unify would succeed, with a value selected half-way between the two end values.

The (as yet unimplemented.) vision that we have of the Knowledge

Conjunction on Conceptual Graphs Toolbox is one of a complete set of tools for

the CG designer and. user. The ultimate knowledge conjunction toolbox would

allow the user to draw the Conceptual Graphs, while the system verified that they

were canonical. The user could then use the graPh drawn on the screen as an

index key to search through a knowledge base for a matching concept- (This is the

idea underlying the SEED system.) When a suitable match is found, the user can

attempt to extend and specify his creation by unifying it with the new-found

graphs. If the Uttify algorithm fails, the user can choose to allow some concepts to

be generalized., rather than specialized. The user could cónstrain the values on

appropriate concepts, and even use variables to specify unknown values'

5.3.4 Some Thoughts About a Unification Toolbox

An important issue which needs to be considered in the near future by the

CG community is the question of what exactþ we're tryrng to get from unification

of graphs. Are we after unification at all costs, or do we really want to concentrate

on flexibility of domain knowledge structures? Clearly, there are cornPromises to

be made, but does the choice of compromise depend on the domain, or on the

132

unification technique or algorithm? Does the domain knowledge necessarily

d.ictate the structure of the graphs, and therefore the unification technique to be

used, or can we use flexible, all-purpose graphs for many lypes of domains?

Besid.es the answers to these questions, the contributions of other researchers

to help fill out the framework of knowledge conjunction in the previous section

would be welcome. An equitable method for comparing the various uses,

domains, complexity and costs of these methods would allow the users in the CG

community to select an appropriate sdreme for their own use.

5.4 Extending the Model

5.4.1 Other Domains and General Applicability

Up to this point, our examples have mostlybeen fromthe domain of building

architecfirre. In order to demonstrate how the ideas presented in this thesis apPty

generally, we now present some examples of the use of unification and constraints

in a different domain. The intent of this section is to show that the method

described in earlier chapters can not only be applied to other domains, but that

many standard Artificial Intelligence techniques can also be represented using this

method.

5.4.2 Rules of an Operations Officer

As our example, we discuss the use of unification and constraints for

applying rules in a defense domain. An Air Operations Officer (usually known as

an OpSO) is the defense officer responsible for deciding the appropriate defensive

response to an air threat. A study of the Operations Ofiicer decision-making

methods was recently conducted, using a cognitive modeling technique lMitchard

et al. 20OO; Mitchard 19981. The study was used to show the usefulness of

cognitive modeling in deriving rules from expert knowledge. In this section, we

only make use of the rules which resulted from the study; the cognitive modeling

technique is not discussed here.

In the domain of the Operations Officer, the magnitude of the response to an

air threat is in proportion to the threat itself. So, if the opposing aircraft are very

133

[495, 51 0]: *distancefighter: *

Assertion:

¡f

then

[400, 500]: *distancefighter: *

alert: 60levelresponse

1number

Figure 45. A rule in the defense domain, which uses constra¡nts.

close, or if the aircraft is of a type which can cause a great deal of damage (known

as a stríke aircraft), then the response is large. If the threat is smaller, then the

response is smaller. For example, Figure 45 shows a rule in this domain. (We

have borrowed. the sfyle of Cao (as illustrated in Chapter One) to express the rule,

although we do not employ fuzzy reasoning here.) This graph expresses the rule

that if a fighter aircraft (small threat) is between 400 and 500 nautical miles distant,

then assert a th¡eat level of "alert 60" (the lowest level of alert, in whidr resPonse

fighters must be ready to take off within sixty minutes), and a single fighter is

assigned to deal with this th¡eat.

The assertion shown in Fig. 45 r¡nifies with the "if" potlton of this rule. The

',l¡1e¡1" portion represents the response to the sihration, and it is asserted into the

current world knowledge. In this man¡rer, we can rePresent the decision-making

capabilities of the Operations Officer.

t34

[380, 390]: *distancebomber: *

Assertion:

Figure 46. Another rule from the same domain'

The rule shown in Figure 46 is used for a bigger and more impending threat'

Any threat aircraft which is closer than 400 nautical miles is considered an

immediate threat, and a resPonse squadron must be ready very quickly' Further'

a strike aircraft is one which can inflict a great deal of damage, and is therefore

dealt with more severely than a fighter craft'

The assertion shown in Fig. 46 states that a bomber is known to be between

3g0 and 390 nautical miles distant. Our type hierarchy indicates that a bomber is a

type of strike aircraft. Because of the proximity of the threat, the response aircraft

are put on "alert 10" status. Because of the enormity of the threat, two fighters are

assigned to d.eal with the target aircraft. Again, the assertion unifies with the "if'

portion of the rule, causing the "l}ren" portion of the rule to be asserted'

5.4.3. Conclusions Regarding General Applicability

The intent of this chapter was to demonstrate that the Unify algorithm can

apply generally to a wide variety of applications, domains and situations'

[< 400]: *distancestrike: *

alert: 10levelresponse

2number

¡f

then

135

Ultimately, unification of Conceptual Graphs (as with unification of any type) is

merely theorem resolution - in the case presented in this thesis, with constraints

added. For example, rule learning could be implemented by dtarting with a set of

simple rules specified in CGs. Every time there is an exception to a rule,

generalization could be used to make the rule more general. Unification could be

used to make more specific rules by combining rules.

Variable arity (as proposed in the next chapter) can be used in domains

where it is not clear how all the objects in the domain relate to each other, or in

domains where the relations between objects can change. Tree isomorphism can

be used to eliminate backtracking in domains where all of the knowledge can be

represented as simple trees.

Essentiall/, what this thesis has done is to demonstrate an efficient

implementation of theorem resolution on Conceptual Graphs with constraints.

This chapter serves to demonstrate that this type of resolution can be applied to

many tlpes of domains and knowledge.

5.5 Summary

The contribution of this chapter was to show that the theory of Conceptual

Graph unification presented in the previous chapters is applicable generally to

many domains and uses.

In the section on the framework of unification methods, we discussed the

idea that the various methods of unification could be organized into a table-like

frame which could be used to compare unification methods to each other. The

methods were compared in terms of flexibility of structure, complexity of the

algorithm and the possible domains which would benefit. There was also some

discussion on how such a framework could be used for future comparisons of

unification methods. The framework would be most useful if unification

researchers in the CG community were to expand the framework with further

attributes and methods.

136

We then turned our attention to one of the proposals for the Conceptual

Graphs community in this thesis: The Knowledge Conjunction Toolbox. The

Knowledge Conjunction Toolbox is proposed as a future resèarch project for the

Conceptual Structures community. Such a toolbox would allow the user of CGs

great flexibility in using Conceptual Graphs for knowledge representation. There

would be a wide range of tools for creating, editing and manipulating knowledge

using Conceptual GraPhs.

In order to demonstrate applicability of the Unify algorithm to various

domains and structures, we explored a rule-based system in the defense domain.

Rules were constructed which represented an assessment of the level of threat

posed by attacking aircraft. If an assertion of the current state of the world unifies

with the "if" portion of a rule, the "then" side of the rule is asserted into the

knowledge base. This approach captures the idea of rules which can be activated

by unification with an assertion in the current context. - Constraints can be

introduced into either the rules or the assertions'

Finally, there was a discussion regarding the general applicability of the

work. The natqre of the U"ify algorithm is such that it can be bent and pushed in

a number of directions to be useful. Ultimately, it all comes down to theorem

resolution using Conceptual Graphs. Since this is the case, the algorithm has

broad practicability and usefulness.

137

Chapter 6

Conclusions and Future Work

6.1 Contributions

This thesis has made several major and minor original contributions to the

areas of Conceptual Graphs, constraints on concePts, unification of Conceptual

Graphs, and the Conceptual Graphs formalism. These contributions are detailed

in this first section.

Before it was possible to define real-value constraints for Conceptual Graphs,

it was first necessary to define a formalism for real values in CGs, as there was no

formal definition of real numbers. This was done by defining an interval concept

type, and the meaning of the interval type hierarchy- Real numbers are

represented by bounding the limits of the number with intervals. A formal

definition of the interval type hierarchy was presented, and the background of

similar work was explored. It was shown that while this defined a new

functionality for Conceptual Graphs, the definition of interval was consistent with

previous work in constraints and inten¡al representations.

The next contribution of this thesis was the formal definition of real-value

constraints in CGs. Prior to this work, there was no standard method for checking

138

the validiry of the values of the concepts, only for checking the structure or

canonicity of the graph. This thesis presents a method such that, when the

knowledge of two graphs is combined, the constraints on ihe concepts can be

verified.

The third contribution of this thesis is in creating new definitions of

constraints which are compatible with the previous body of research in

Conceptual Graphs by working within the existing CG framework. This was not

simply a matter of applying the new techniques to CGs, but rather required a

reworking of some of the basic definitions of ConcePtual Graphs, so that they are

consistent with the constraint definitions. The new definitions can still operate

with all previous definitions of Conceptual Graphs, such as type hierarchies, join,

subsumption, etc. The new definitions of old functions involved collecting the

various versions of the formal definitions of projection, Conceptual Graph, type

hierarchy and canon, eliminating inconsistencies, and then tayrng out their formal

definitions in a manner which would be sympathetic to the Headed Conceptual

Graph, unification and constraint definitions. Also, the join function was placed in

its proper context with respect to these new definitions'

One of the major contributions of this thesis is that a unification method is

defined that leads to a useful and efficient implementation of constraints over

CGs. The major significance of this work is that it improves on previous work in

allowing constraints to be placed on real values in the concepts. The constraints

are defined as a concept qç1le, and therefore can be used as a type in the normal

way with Conceptual Graphs. The unification algorithm used in this system is an

improvement on previous attempts at CG unification, has a complexity of O(n) on

the number of relations, and is guaranteed to terminate since we restrict the CGs

to a special subset. The Unify algorithm presented in this thesis will guarantee

that two canonical graphs unified r¡nder the algorithm presented in Chapter Three

will produce a graph which is canonical and is the Greatest Lower Bound of the

two graphs, if theY have a glb.

L39

This thesis also introduces the notion of knowledge conjunction for ConcePtual

Graphs. Unification of CGs must be a system in which two pieces of partial

information can be combined into a single unified whole. Unification here is the

combining of pieces of knowledge, rePresented as Conceptual Graphs, in a

domain. We define unification as an operation that simultaneously determines the

consistency of two pieces of partial or incomplete knowledge, and if they are

consistent, combines them into a single result.

The next contribution was a major component in formally defining

unification for Conceptual Graphs. Projection and Sowa's æ operator were

redefined to work with unification, constraints and variable-arity relations. The

formal definition of projection was based on some of the recent work in graph

unification, but this was the first formal redefinition of Sowa's æ operator. The

previous definitions of projection would not have worked with constraints on the

referent values of the concePts.

These new formal definitions led to the first definition of real numbers and

real-valued constraints for Conceptual Graphs. The definition of real numbers in

CGs allows an opening for Constraint Satisfaction Problem research in CGs. The

discussion in Chapter Two on the usefulness of CSP described recent work that

d.emonstrates that any CSP problem can be represented as a mathematical

morphism, and therefore as a projection problem. The strong corresPondence

between CSP and the general problem of projection also demonstrates that a type

hierarchy, such as used in Conceptual Graphs, can be effective in representing and

solving a CSP problem. While this thesis does not deeply explore the possible

connections between CG constraints and CSP, the door is left open for future work

in linking these two areas.

This thesis also contributes a proposal for the formal definition of variable-

arity relations in Conceptual Graphs in the Future Directions section of this

chapter. Allowing variable arity relations opens the door to new domains and

new knowledge representation possibilities.

t40

Finally, in order to test the formal aspects of this thesis, all of these

techniques and definitions were implemented in software in Allegro Common

Lisp. The software was tested not only in the SEED domain, but also in unrelated

domains, such as air combat. Many structures and types of knowledge were

tested, in real-world d.omains, using test data from domain experts' There were

also experiments with variables and variable binding, aPProximation and

constraint prioritization. These successful experiments will lead to future

exploration in areas of knowledge conjunction'

6.2 Conclusions

This thesis has addressed two important areas in the field of Conceptual

Structures. The first is the unification of Conceptual Graphs, and the consequent

work in projection and in type hierarchies. The second is the definition of

constraints, especially real-value constraints on the concept referents, with

particular attention to handling constraints during the unification of Conceptual

Graphs.

The significance of this thesis is that a unification method is defined that

lead.s to a useful and efficient implementation of constraints over CGs. This

improves on previous work in allowing constraints to be placed on real values in

the concepts. The constraints are defined as a concept type, and therefore can be

used as a type in the normal way with Conceptual Graphs. The constraints are

enforced in the unification and join operations. If a join operation violates the

constraints on one of the concepts, the join fails. The unification algorithm used in

this system is guaranteed to terminate, has a low complexity, and is sound and

complete.

The unify algorithm produces not only a canonical graph, but one which is

valid in the domain. For example, in our domain of building architecture, there's

a sense that designing a house is a continual refining and specifn"g of the design'

In this sense, at every step the user will produce a aølíd house desígn (minus

specializations). The Unify algorithm guarantees that, for any domain, once the

147

domain hierarchies a¡rd canonical formation rules have been properly defined, the

only structures that will be allowed will be those that represent reasonable

knowledge in the domain.

This research contributed significantly to an automated architectural design

project, SEED. The three main areas where the SEED Project benefited from the

formalization of Conceptual Graph unification are in type subsumption,

knowledge-level reasoning, and pattern matching. The U"ify algorithm allows

the user to specialize designs by matching (unifying) previous designs with the

current design problem. Since all characteristics, attributes and constraints are

carried along in the unification, the specialization represents all of the design

concepts induded in the more generic design.

In the area of knowledge-level reasoning, a graph can be manipulated as a

whole, and treated as a room (for example), rather than a square in a diagram.

This approach frees the architect from dealing with data-level concerns of

numbers and coordinates, and allows the architect instead to deal with the

architectural design.

As for a pattern matching ability, the user can specify a type of structure for

support, and make a query by attempting to unify the structure with the more

generic design. If the unification fails, then the user knows that the proposed

structure does not meet the constraints of the design problem. If the graphs unify,

then the resulting graph will contain the constraints which must be met in order to

make the designwork.

6.3 Future Directions

The approaches taken in this thesis suggest several other possible avenues of

research in the areas of Conceptual Graphs, Knowledge Representation, and

Knowledge Conjunction.

r42

6.3.1 Variable-arify relations

The one area where Feature Structures appear still to have an advantage over

Conceptual Graphs is in extensible arity. The ability to allow flexible arguments,

not restricted by order, is one featr¡re lacking in Conceptual Graphs. Recall also

from Chapter Four, Figures L8 and 19 which could not be unified due to a

mismatch of the arity of the adjøcent relation. In this sectiory we ProPose a new

model for Conceptual Graphs with variable arity relations. Our proposal for a

variable-arity model for Conceptual Graphs will involve having a new look at the

projection operator, and also our definition of unification.

There are some domains which currently do not fit easily into the standard

definitions a¡rd formalisms of Conceptual Structures, due to the dynamic nature of

the knowledge being represented. Some simple examples include a variable

number of students in a class, or several exits from a room. hr these cases, the

number of concepts to be "attadred" to the relation is not knor¡¡n beforehand. The

use of variable arity relations will allow representation of knowledge where a

relation may not point to the same number of concepts in every situation.

To make variable arity relations consistent with the rest of the CG formalism,

it is first necessary to modify the standard definition of a CG slightly [Corbett

L9eel.

Definition2". A conceptual graph is a tuple G = (c, q, R, type, teføent, ar$b .

. ., argm) where:

C is the set of concepts, type : C +Tindicates the type óf a concept.

R c T,. C {" Cx...xC } isthesetof relationsbetweentheconcepts. Tisthe

set of types and (ú, c¡, {c¡, . . ., cmÐ e R yields an arc of type ú from concept i to

concepti, and possibly also to other concepts.

In this definitiory there are optional arguments to each relation, which may

be used in a given circumstance, thus creating relations of variable arity.

L43

Some thought must then be given to the definitions of the join and projection

operators. The objective of a join operation is to find a graph which represents

knowledge which is more specifíc than the two concepts being joined. It is not

difficult to define a join operation which includes variable atity, if we let hígher

arify mean tnore specific. For example, a kitchen design specifies a complete

lighting design, but only relates to a few ptumbing concepts. Another kitchen

design specifies different aspects of the plumbing. The join of these two graphs is

a graph with both lighting and plumbing completely specified. The joined $aPh

is more specific because it is more completely specified, and the arity of the

relations is higher in the joined SaPh.

The projection operator expects that eadr relation in the previous graphs will

still point to the same concepts in the new graph. Recall the third requirement

from the definition of Projection in previous chapters, which states that each

argument from the more general graph must point to the appropriate concept in

the more specific graph:

vr e R, arg'i(hn(r)) = hc@rg¡(r))

In our proposed definitions for variable arity unification, we still want to

guarantee that if a relation points to a given concept in a one SaPh, it will still

point to it in the new, unified Saph, but we do not guarantee that the order of the

arcs is preserved. The semantics of the relation are still guaranteed though, in that

even though a concept has changed places, its meanin$ is still intact. This

obviously would not work for all domains, and the canonical formation rules

would specify which relations were to have a variable arity in a given domain.

Another issue which arises from the definition of variable arify is the

definition of the mgu in a unification process. This definition follows on in a

straightforward manner from the modification to the projection operator

discussed above. If we accept that a relation of higher arity (for example

ailjacent\3) is more specific than the same relation with lower arlty (e-9.,

1,M

SU: kitchen Rm: dining-rmadjacent

Rm: living-rm

area

interval: [15,25]

Figure 47. A design with arity Z relations.

Figure 48. Another design with arity 2 relations'

adjacent\2) then all of the other definitiorrs described in previous drapters are still

valid.

Using these new definitions, plus the definition of Unify from Chapter Three,

we can now combine Conceptual Graphs of variable arity. Variable arity was

implemented in the Unify algorithm by taking all of the arguments of one relation,

and attempting to find the corresponding arguments in its comparable relation

without regard to the order of the arguments, thus violating one of the rules of

Conceptual Graph semantics. After all matches from both CGs have been made,

then all remaining arguments are included in the new, r¡¡rified relation.

The design and architecture domains can benefit from the use of variable-

arity relations. Designers often attempt to reuse previous designs, and apply them

SU: kitchen Rm: dining-rmadjacent

Rm: laundry

area

¡nterval: [13,17]

745

Rm: dining-rm

SU: kitchen Rm: laundryadjacent

Rm: living-rm

afea

interval: [15,17]

Figure 49. The unification of the two graphs, using variable arity.

to new problems. In the case of designing a building, we want unified designs to

reflect all of the knowledge contained in the originals, even if the number of exits

(or the rooms which are adjacent, or the exact floor area) is not an exact match.

For example, a retrieved design may show the kitchen adjacent to the living room

and dining room as shown in Figure 47,whi\e the customer requirements specify

that the kitchen must be adjacent to the dining room and laundry as shown in

Figure 48. Tine ødjacent relat:ron is of arity 2 in these instances. Once unified,

however, the new graph of the kitchen must show it as adjacent to the laundry,

living room and dining room as shown in Figure 49. This change in arity

preserves the knowledge from both of the original graphs, and is in keeping with

the designer's intent.

In the natural language domain, a granìmar is used to specify that adjectives

can precede nouns (in English). However, it is not known in advance how many

adjectives will be used in a noun phrase. A variable-arity relation "adjective"

would allow for any number of adjectives. Since word order is essential in

language understanding, and given that our join operator does not guarantee the

order of concepts after a join, a modification to the join operator would be

necessary for the natural language domain.

1,46

6.3.2 Steps toward conceptual Graphs as a Programming Language

There have recently been some attempts to define a programming language

from (or for) Conceptual Graphs. These indude Cao's Fuzzy CG Programs [Cao et

a|.19971as mentioned in Chapter One, Kabbaj's executable Conceptual Graphs

[Kabbaj 1999a; Kabbaj 1999b1 and Ghosh and Wuwongse's definitions of the

Declarative Semantics of CGs lGhosh and Wuwongse t995; Ghosh and Wuwongse

t9941. Others have mentioned work toward a Programming language, or in

software tools for CGs. This is clearly an aÍea which needs to be explored more

thoroughly, and more formally.

It would be a fairly straightforward task to define a subsumption ordering on

the integers, and use projection or subsumption to increment an integer variable

(but see objections to a partial ordering of integers on a lattice in Chapter Two).

Once it is possible to define a successor function on the integers, then, using

constraint processing, one could provide loop control, variables, etc. This would

help to define a very rudimentary programming language, implemented over

CGs, and able to use CGs as the main data/knowledge structures.

However, the real effort toward a programming language for CGs needs to

first define the semantics behind the language. The Declarative Semantics of

Ghosh and Wuwongse are a very good start in this direction. Another approacþ

however, would be to consider using Axiomatic Semantics for some of the formal

semantics definitions. The appeal of Axiomatic Semantics is the formal logical

rigor, and its ability to show completeness of an individual operator.

Axiomatic Semantics prescribe, in an abstract wây, a minimal set of

constraints that any implementation of the subject language must satisfy in its

treatment of the various types of construct but say nothing about the details of

how this might be achieved. A proof of correctness of a program using Axiomatic

Semantics alone is actually only a proof of partial correcbress, that is correctness

subject to the assumption of termination [Pagan 198U. In order to verify total

correchress, it is necessary also to prove termination. Since a proof of termination

for Headed CGs is offered here in Chapter Three, the Axiomatic approach may

L47

prove useful in prescribing the constraints of the CG language. Axiomatic

Semantics is not useful for state-based semantics, though, so Possibly a

Denotatiônal Semantics would also need to be defined.

6.3.3 Partial Graphs for Indexing

As was shown in Chapter Four, a partially specified graph can be added to a

larger graph by using unification. In a similar manner, and by using the

generalization techniques contained in the CG toolbox, we can use small graphs to

retrieve designs by simpty sketching a part of the desired graPh. If the query

graph matches any graphs in the knowledge base (or possibly a generalization or a

specialization of a graph) the graph from the knowledge base is retrieved for

inspection by the user. Practical user interface issues would need to be resolved,

but see Mineau and Miranda's approach in [Mineau and Miranda 1998].

6.3.4 Connections with Previous Work

Mineau's work, discussed in the first two chapters, really is more of an

attempt to define valid structures in a canon, while the work presented here

constrains the values in concepts. A major difference in these approaches is that

we rely only on projection and join, while Mineau has implemented actors to

check the graphs after an attempt at a join. An interesting research direction might

be to combine these two approaches to produce a more comprehensive constraint

system. Using intervals to express the topological constraints that Mineau uses

might lead to some short cuts in the processing time.

Many of the projects discussed in the first chapters àre attempts to either

constrain the structure of the CGs, or to specify what types of concepts are valid.

One notable exception is the work of Cao et al [Cao and Creasy L998; Cao et al.

t9971 in the implementation of f.uzzy values in the concepts. These

implementations are useful for specif¡ri^g boundaries for the values in concepts,

but Cao has not pursued constraint processing technology. The possibility of

combining the ideas presented in this thesis with Cao's ideas by implementing

1,48

fuzzy membership functions in the value of a constraint is an intriguing idea

whidr is waiting to be explored.

6.3.5 Ontologies for Knowledge Conjunction

Perhaps most significantly, the work in this thesis does not merely have

implications for the area of unification of Conceptual Graphs. One research area

which has emerged from this work is the combination of knowledge bases

represented as ontologies. Research has already started in the area of combining

ontologies from disparate domains lvan Zyl and Corbett 2000a; van Zyl and

Corbett 2000b1. This new research area will involve finding the common

semantics undertying ontotogical representations of the knowledge of a domain,

and linking that knowledge with the knowledge of another ontology in another

domain. This work goes beyond mere unification, into understanding the

fundamental nature of the combination of knowledge.

L49

References

[Aho et al. tg74l Aho,4.V., J. E. Hopcroft and J. D. Ullman. The Design and

Analy sis of Computer Algorithms. Reading, Massachusetts, Addison-Wesley,

1974.

[Ait-Kaci tg16l Ait-Kaci, H. "An Algebraic Semantics Approach to the Effective

Resolution of Type Equations." Theoreticøl Computer Science a5(3): 293-35'l''

1986.

[Ait-Kaci et al. tgSgl ATt-Kaci, H., R. Boyer, P. Lincoln and R' Nasr' "Efficient

Implementation of Lattice Operations." ACM Trønsøctions on Progrømming

Languages and Sy stents 1L (1) : 1I5'"J'46' 1989 .

[ATt-Kaci and Nasr 1986] Ait-Kaci, H. and R. Nasr- "LOGIN: A Logic

Programming Language with Built-in Inheritance." lournøl of Logic

Progrømming 3,1986.

[Ait-Kaci et aL.19921 Ait-Kaci ,H., A. Podelski and G. Smolka. A Feøture Constrøínt

System for Logic Programming with Entnilment. Paris, France, Digital

Equipment CorPorati on, L992.

[Baader and Siekmann 1994] Baader, F. and J. Siekmann. "Unification Theory".

Handbook of Logic in Artificial Intellígence and Logíc Programming,Yol.2, Pgs.

4'J.-126, D. M. Gabbay, c. J. Hogger and J. A. Robinson (eds.). oxford,

Clarendon Press. 1994-

150

[Bürckert tggll Bürckert, H.-1. A Resolution Principle for a Logic wíth Restrícted

Quøntifiers. Berlin, Springer-Verlag, 1991,. Lecture Notes in Artificial

Intelligence #568

[Burrow and Woodbury 19991Burrow, A. L. and R. Woodbury. "p-Resolution in

Design Space Exploration". In Proc. CAAD Futures, Atlanta, Georgia, USA,

Academic Publishers, August, L999.

[Cao 1995] Cao, T. H., Fuzzy ConceptuøI Graph Programs, Masters Thesis, Computer

science, Asian Institute of Technology, Bangkok, Thailand, 1995.

[Cao and Creasy 1998] Cao, T. H. and P. N. Creasy. "Fuzzy Order-Sorted Logic

Programming in Conceptual Graphs with a Sound and Complete Proof

Procedure", In Proc. Síxth lnternøtionnl Conference on Conceptuøl Structures,

Monþellier, France, Springer Verlag, August, L998.

[Cao et a|.7997] Cao, T. H., P.N. Creasy and V. Wuwongse. "Fuzzy Unification

and Resolution Proof Procedure f.or Fuzzy Conceptual Graph Programs". In

Proc. Fifth InternatíonøI Conference on Conceptual Structures, Seattle,

Washington, USA, Springer-V etlag, August, 1997 -

[Carpenter 19921Carpenter , B. The Logic of Typed Feature Structures. Cambridge,

Cambridge UniversitY Press, 1992.

[Champesme L996] Champesme, M. "Opérateurs de Raffinement Idéaux pour les

Graphes Conceptuels." Reoue d'Intelligence ArtificielleL0(7)z 1.01-131, t996-

[Chang and Woodbwy 1996] Chang, T.-W. and R. F. Woodbury. "Sufficiency of

the SEED Knowledge-Level Representation for Grammatical Design". In

Proc. Australian New Zenland Conference on lntelligent Informntíon Systems,

Adelaide, Australia, IEEE Press, November, 1996.

[Chein and Leclèrc L9941Chein, M. and M. Leclère. "A Cooperative Program for

the Construction of a Concept Type Lattice". In Proc. Second Internøtionøl

151

Conference on Concqtual Structures, College Park, Maryland, USA, Springer-

Verlag, August, 1994.

lChein and Mugnier 19921Chein, M. and M.-L. Mugnier. "Conceptual Graphs:

Fundamental Notions." Rst)ue d'Intellignrce Artificíelle 6(4\:365-406,t992.

[Chibout and Vib¡rat 1998] Chibout, K. and A. Vilnat. "Computational Processing

of Verbal Polysemy with Conceptual Structures".In Proc. Sixth Internøtional

Conference on Conceptual Structures, Monþellier, France, Springer-Verlag,

August,1998.

[Chomsky 1980] Chomsky, N. Rales and Røpresetttations. Oxford, Blackwell 't980.

[Cleary Lgg7lCleary,J. G. "Constructive Negation of Arithmetic Constraints Using

Dataflow Graphs." Constrøints 2: t31-162' 1997 .

[Cogis and Guinaldo 1995] Cogis, O. and O. Guinaldo. "A Linear Descriptor for

Conceptual Graphs and a Class for Polynomial Isomorphism Test" .In Proc.

Third Internøtional Conference on Conceptual Structures, Santa Crvz, Califomia,

USA, Springer-Verlag, August, 1995.

lCohen 1,9g}l Cohen, J. "Constraint Logic Programming Languages'"

Communícøtions of the ACM 33(7): 52-68, t990.

[Cohen lg96lCohen, J. "Log;cProgramming and Constraint Logic Programming."

ACM Computíng Suraey s 28(1) : 257 -259' 1996 -

[Colmerauer :9g}l Colmerauer, A. "An Introduction to Prolog III''

Communications of the ACM 33(7): 69-90, 1990.

[Corbett 19gI] Corbett, D. R., A Conjunctíon Annlysís Techníque Applied to an

Abductfue Framework of Naturalltnguøge Processíng, MS Thesis, Department of

Computer Science, Wright State University, Dayton, Ohio, USA, 1991.

152

[Corbett LggglCorbett, D. R. "A Case for Variable'Arity Relations: Definitions and

Domains" .In Proc. Sepenth lnternøtionøl Conference on Concqtual Structures,

Blacksburg, Virginia, USA, Springer-V etlag, Jt:lry, 1999'

[Corbett 2000] Corbett, D. R. "A Framework for Conceptual Graph Unification".In

Proc. Eighth lnternøtional ConfeÍence on Conceptual Structures, Darmstadt,

Germany, Shaker Verlag, August, 2000.

lCorbett 200U Corbett, D. R. "Extending Conceptual Graphs with Unification over

constrain ts." computøtional Intelligence(in revision), 2001.

lcorbett and Burrow tg96]Corbett, D. R. and A. L. Burrow. "Knowledge Reuse in

SEED Exploiting Conceptual Graphs" .In Proc. Fourth lnternøtíonal Conference

on Concøptual Structures, Sydney, NSW, Australia, UNSW Press, August,

1996.

[corbett and woodbury 19991corbett, D. R. and R. F. Woodbury. "unification

over Constraints in Conceptual Graphs". In Proc. Seaenth lnternøtional

Conference on Conceptuat Structures, Blacksburg, Virginia, USA, Springer-

Verlag, Jr:Jy,1999.

[Dasigi 1988] Dasigr, Y ., Word Sense Disømbíguøtion in Desuíptíae Text lnter?retøtíon:

A Dual-Route Pnrsímonious Coaeríng Model, PhD Dissertation, Department of

Computer Science, Llniversity of Maryland, College Park, Maryland, USA,

1988.

[Dasigi tggtlDasigi, V. "Parsing = Parsimonious Covering?-(Abduction in Logical

form Generation)". In Proc. Twetfth International loínt Conference on Attífíciøl

lnt elti g utc e, Sy dney, Australia, Au gust, I99 t .

[Davey and Priestley L99}]Davey, B. A. and H. A. Priestley.lntroduction to Løttices

and Order. Cambridge, Cambridge University Press, t990'

1s3

[Dibie et al. 1.998] Dibie, J., O. Haemmerlé and S. Loiseau. "A-Semantic Validation

of Conceptual Graphs". In Proc. Sixth lnternatíonal Conferance on Conceptual

Structures, Monþellier, France, Springer-Verlag, August, 1998.

[Eisinger and ONbach 1.993] Eisinger, N. and H. I. Ohlbach. "Deduction Systems

Based on Resolution". Handbook of Logic ín Artificíøl Intelligence and Logíc

Programmíng, Yol. 1, pgt. !83-27'1., D. M. Gabbay, C. J. Hogger and J. A.

Robinson (eds.). Oxford, Clarendon Press. 1993.

[Ellis 19951 Ellis, G., Manøgíng Complex Objects, PhD Thesis, Department of

Computer Science, University of Queensland, Brisbane, Australia, 1995.

[Esch and Levinson 1995] Esch,]. and R. Levinson. "An Implementation Model for

Contexts and Negation in Conceptual Graphs".Il:. Proc. Third lnternational

Conferønce on Conceptual Structures, Santa Cruz, California, USA, Springer-

Verlag, August, 1995.

[Flemming and Woodbury 7995] Flemming, U. and R. F. Woodbury. "Software

Environment to Support Early Phases in Building Design (SEED) Overyiew."

Ar chit ectur aI En gineer íng 1(l\, 1995 .

[Frost and Dechter 19941Frost, D. and R. Dechter. "fn Search of the Best Constraint

Satisfaction Search". In Proc. (Americøn) Nøtional Conference on Artifícinl

Intellígence, Seattle, Wash, USA, August, 7994.

[Gerbé 1997] Gerbé, O. "Conceptual Graphs for Corporate Knowledge

Repositories". In Proc. Fífth lnternatíonal Conference on Conceptual Structures,

Seattle, Washington, USA, Spring-Verlag, Augu st, 1997 .

[Gerbé et al. 1998lGerbé, O., R.K. Keller and G. W. Mineau. "Conceptual Graphs

for Representing Business Processes in Corporate Memories". In Proc. Síxth

Internøtionøl Conference on Conceptual Structures, Montpellier, France,

Springer-V erlag, AugusÇ 1998.

154

[Ghosh and Wuwongse LggllGhosh, B. C. and V. Wuwongse"'Inference Systems

for Conceptual Graph Programs" .Irt Proc. Second lnternøtíonal Conference on

ConceptuøI Structures, College Park, Maryland, USA, Springer-Verlag,

August, 1994.

[Ghosh and Wuwongse 1995lGhosh, B. C. and V. Wuwongse. "Conceptual Graph

Programs and Their Declarative Semantics." IEICE TransøctíonE78'D(9):

1208-1217, 1995.

[Gini and Rogialli 1994] Gini, G. C. and C. Rogialli. "CONSTRICTOR: A

Constraint-Based Language." Computer Systerns Scimce ønd Engineeríng 9(4):

255-261,1994.

[Godin et al. 79951Godin, R., G. Mineau, R. Missaoui and H. Mili. "Méthodes de

Classification Conceptuelle Basées sur les Treillis de Galois et Applications."

Ranue d'Intelligence Artifícíelle 9(2): I05-L37 ' 1995.

[Heisserman 1991] Heisserman, J. A., Generatiae Geometric Design and Boundary

SoIíd Grammars, PhD Thesis, Department of Architecture, Carnegie Mellon

University, Pittsburgh, Penn, USA, 199L-

[Heisserman 1995] Heisserman, I. A. "Generative Geometric Design." IEEE

Comput er Gr aphícs and Applic atíons 1a(2) : 37 - 45, 1995 -

[ILOG 1996] ILOG. ILOG Solaer Reþrence Manuø\. Mountain View, California,

usA, t996.

l]affar and Lassez 1987] Jaffat, l. and J.-L. Lassez. "Constraint Logic

Programming". In Proc. ACM Symposium on Prínciples of Ptogramming

Lønguages,t987.

lJaffar and Maherl99Lllaffar,I. and M.I. Maher. "Constraint Logic Programming:

A Survey ." I ournøI of Logíc P r ogr ammingrJdy / Attgust) : 503-581, 799 4.

155

[Kabbaj L999a] Kabbaj, A. "synergy as an Hybrid Obiect-Oriented Conceptual

Graph Language". In Proc. Seaenth Internatíonal Conference on Conceptual

structures, Blacksburg, virginia, usA, springer verlag, August, 1999.

[Kabbaj tgggbl Kabbaj, A. "synergy: A Conceptual Graph Activation-Based

Language" . ht Proc. Seaenth International Conference on Conceptuøl Sttuctures,

Blacksburg, Virginia, USA, Springer Verlag, August, 1999.

[Kirchner et al. lg9}l Kirchner, C., H. Kirchner. and M. Rusinowitch. "Deduction

with Symbolic Constraints." Reuue d'lntellígettce Artifícielle ap\:9'52,t990.

[Knight 1989] Knight, K. "unification: A Multidisciplinary survey." ACM

Computíng Surceys 21(1) : 93-124, 1989 -

[Kocura lgg|lKocura, P. "Conceptual Graphs and Semantic Constraints". In Proc.

Fourth Internøtional Conference on Conceptual Structures, Sydney, NSW,

Australia, Universify of NSW Press, August, 1996.

[Kowalski tgzglKowalski, R. A. "Algorithm = Logtc + Control." Communícations of

the ACM 22(7): 424-436, L979.

lLassez et al. 19881 Lassez, J. L., M. I. Maher and K. Marriot. "Unification

Revisited" . Eoundations of Deductiae Døtøbases ønd Logic Programming,Yol- ,

pgs.587'625, J. Minker, Morgan Kaufman. 1988.

[Leclère lggíll,eclère, M. 'C-CHiC: Construction Coopérative de Hiérarchies de

C até go rie s." Reu u e d' Int ellig enc e Ar tíf íci eII e 10 (l) : 57 -700, I99 6'

[Leclère LggT] Leclère, M. "Reasoning with TyP" Definitions". In Proc. Fifth

Internationnl Conference on Concøptual Structures, Seattle, Washington, USA,

Springer-Verlag, August, L997.

[Lehmann ¡gg2ll,ehmann, F. "semantic Networks." Computers €¡ Møthematics wíth

AVplications 23(2-5): L-50, L992-

156

[Mackworth 1992] Mackworth, A. K. "The Logic of Constraint Satisfaction."

Artífícíal Intelligenc e 58(I-2): 3-20, L992.

[Mann t9981Mann, G. A. "Procedural Renunciation". In Proc. Sixth lnternational

Conference on Conceptual Structures, Monþellier, France, Springer-Verlag,

August 1998.

[Mineau 1998] Mineau, G. "From Actors to Processes: The Representation of

Dynamic Knowledge Using Conceptual Graphs".ht Proc. Sixth Internatíonal

Conference on ConceptuøI Structures, Monþellier, France, Springer-Verlag,

August, L998.

[Mineau 19991Mineau, G. "Constraints on Processes: Essential Elements for the

Validation and Execution of Processes". In Proc. Seoenth Internatíonnl

Conference on Conceptual Structures, Blacksburg, Virginia, USA, Springer-

Verlag, August, 7999.

[Mineau and Miranda 1998] Mineau, G. W. and C. Miranda. Computer-Aided

Design ønd Artificíal Intelligence: Explorøtion in Archítectural Plan Reuse.

Unpublished manuscript, 1998.

[Mineau and Missaouttgg7l Mineau, G. W. and R. Missaoui. "The Representation

of Semantic Constraints in Conceptual Graph Systems". ln Proc. Fífth

Internøtional Conference on Conceptual Structures, Seattle, Washington, USA,

Springer-V erlag, August, 1997 .

[Mitchard 1998] Mitchard,H., Cognitiae Model of øn Operations Offícer, Honours

Thesis, Computer and Information Science, I-Iniversity of South Australia,

Adelaide, South Australia, 1998.

[Mitchard et al. 2000] Mitchard, H., J. Winkles and D. R. Corbett. "Development

and Evaluation of a Cognitive Model of an Air Defence Operations Officer".

In Proc. Fifth Bienníal Conference of the AustrøIøsiøn Cognítiae Science Socíety,

Adelaide, South Australia, May, 2000.

157

[Moulin 19981Moulin, B. "A Logical Framework for Modeling a Discourse from

the Point of View of the Agents Involved in It". In Proc. Sixth lnternøtional

Conference on Conceptuøl Structures, Montpellier, France., Springer-Verlag,

August,1998.

[Mugnier and Chein 19961Mugnier, M.-L. and M. Chein. "Représenter des

Conrraissances et Raisorner avec des Graphes." Reoue d'Intelligettce Artificielle

10(6): 7-56,1996.

[Müller l9971Müller, T., Conceptuøl Graphs as Terms: Prospects for Resolution

Theorem Proaing, Masters Thesis, Department of Computer Science, Vrije

Universiteit Amsterdam, Amsterdam, Netherlands, 1997 -

[Nadel lgg}lNadel, B. A. "Representation Selection for Constraint Satisfaction: A

Case Study Using n-Queens." IEEE Expert:76-23,1990.

[Nicolov et al. tgg1lNicolov, N., C. Mellish and G. Ritchie. "Sentence Generation

from Conceptual Structures". In Proc. Third lnternatíonal Conference on

ConcqtuøI Structures, Santa Crtz, California, USA, Springer-Verlag, August,

L995.

[Older t997lOlder, W. J. "Involution Narrowing Algebra." Constraints2: t13-730,

L997.

[Pagan 1981] Pagan, F. G. FormøI Specifícøtion of Programmíng Lønguages.

Englewood Cliffs, New]ersey, USA, Prentice-Hall, 1981.

[ProloglA L997] ProloglA. Prolog IV Mønuøl. Marseilles, France, Prolog IV is a

registered trademark of ProloglA ., 1997 "

[Reggia et al. 1933] Reggia, J.,D. Nau and P. Wang. "Diagnostic Expert Systems

Based on a Set Covering Model." International lournal of Man-Mnchine Studies

79: 437-460, 1983.

[Reynolds t9701Reynolds,I. C. "Transformational Systems and the Algebraic

Structure of Atomic Formulas ." Møchine lntelligmce 5,1970-

158

[Ribière L9981Ribière, M. "IJsing Viewpoints and CG for the Representation of

Dynamic Knowledge Using Conceptual Graphs" .Itt Proc. Síxth Intnnational

Conference on Conceptual Structures, Montpellier, France, Springer-Verlag,

AugusÇ 1998.

[Robinson 1965] Robinson, J. A. "A Machine-Oriented Logic Based on the

Resolution Principle." |ournøl of the ACM72:23-41,L965.

[Sowa 19991Sowa,]. "Conceptual Graphs: Draft Proposed American National

Standard".In Proc. Seoenth lnternøtíonal Confuence on Conceptual Structutes,

Blacksburg, Virginia, USA, Springer-V erlag, luly, 7999.

[Sowa 7984] Sowa, J. F. ConceptuøI Structures: Informøtíon Processing in Mind and

Machine. Reading, Mass, Addison-Wesley, 1984.

[Sowa 19921Sowa,]. F. "Conceptual Graphs Summary". Concqtual Structures:

Current Reseørch ønd Prøctice, Yol. , Pgs. , (eds.). Chichester, UK, Ellis

Horwood. 1992.

[Tepfenhart 1998] Tepfenhart, W. M. "Ontologies and Conceptual Structures". In

Proc. Síxth lnternationøl Conference on Conceptual Structures, Monþellier,

France, Springer-V erlag, August, 1998.

[Van Hentenryck 1989] Van Hentenryck, P. Constraint Satisføction ín Logic

Pr o gr ømmíng. Cambridge, Massad;rusetts, USA, MIT Press, 7989 .

[Van Hentenryck et al. t9971Van Hentenryck, P., L. Michel and Y. Deville.

Numerícø. Cambridge, Massachusetts, USA, MIT Press
'1997.

lvanZyl and Corbett 2000a] vanZyl,]. D. and D. R. Corbett. "A Framework for

Comparing Methods for Using or Reusing Multiple Ontologies in an

Application". In Proc. Eíghth Internøtionøl Conferütce on Concqtuøl Structures,

Darmstadt, Germany, Shaker Verlag, August, 2000.

lvanZyland Corbett 2000b1 vanZyl,|. D. and D. R. Corbett. "A Framework for

Comparing the Use of a Linguistic Ontology in an Application". In Ptoc.

159

Europeøn Conference on Artificiat Inteltigence Workshop on Applicatíons of

Ontologies and Problem Soltsing Methods, Berlin, Germany, August, 2000.

[Wermelinger tggllWermelinger, M. "Conceptual Graphs and First-Order Log¡c".

In Proc. Third Internatíonøl Conference on Concrptual Structures, Santa Cruz,

California, USA, SPringer-V etlag,

[Wermelinger TggTlWermelinger, M. "A Different Perspective on Canonicity".In

proc. Fifth Internøtionøl Conference on Conceptual Structures, Seatlle,

Washington, USA, Springer-Verlag, August, 7997.

[Wermelingel and Lopes t9941 Wermelinger, M. and J- G. Lopes. "Basic

Conceptual Structures Theory". Irt Proc. Second lnternationøl Conference on

Conceptual Structur es, Maryland, Springer-Verlag, August, 1994'

[Wille ¡9g2l Wille, R. "Concept Lattices and Conceptual Knowledge Systems-"

computers nnd Mathemntics with Avplicatíons 23(G9): 492-575,1992.

[Wille 1996alWille, R. "Conceptual Structures of Multicontexts". In Proc. Fourth

Internøtionøl Conference on Concqtual Structures, Sydney, Australia, Springer-

Verlag, August, 1996.

[Wille tgg1blWille, R. Short lntroductíon to Formal Concept Annlysis. Unpublished

manuscripl,t996b.

[Witle tggTlWille, R. "Conceptual Graphs and Formal Concept Analysis".lnProc.

Fífth lnternationøI Conference on Conceptuøl Structures, Seattle, Washington,

USA, Springer-Verlag, August, 1997 -

[Willems tgg1]Willems, M. "Projection and Unification for Conceptual Graphs".

In Proc. Thírd lnternøtionøI Conference on Conceptuøl Structures, Santa Cruz,

California, USA, Springer-V erlag, August, 7995'

lwing et al. lggSlWitg, H., R. M. Colomb and G. W. Mineau. "Using CG Formal

Contexts to Support Business System Interoperations". I¡ Ptoc. Síxth

160

International Conference on Conceptual Structures, Montpellier, France,

Springer-V erlag, August, 1998.

[Woodbury et al. 2000] Woodbury, R., S. Datta and A. L. Burrow. "Erasure in

Design Space Exploration". In Proc. Artifícínl Intellígence in Design, Worcester,

Massachusetts, USA, |une, 2000.

[Woodbury et a1.1999] WoodburY, R. F., A. L. Burrow, S. Datta and T. W. Chang.

"Typed Feature Structures in Design Space Exploration." AIEDAM l3(4):

287-302,1999.

[Wuwongse and Cao 7996] Wuwongse, V. and T. H. Cao. "Towards Fuzzy

Conceptual Graph Programs". In Proc. Fourth Internatíonal Conference on

Conceptual Structures, Sydney, Australia, Springer-V etlag, August, 1996.

161.

