THE UNIVERSITY OF ADELAIDE

Mirko M. Bajic

The University of Adelaide
Faculty of Engineering
Department of Mechanical Engineering

A thesis submitted in _fulfillment of the requirements
Jor the degree of Doctor of Philosophy on September 13, 2000.

Qualified on January 02, 2001

Existing approaches to the cell formation problem concentrate on simultaneous part family formation and
machine sharing. A fundamental problem faced when part families and independent cells are desired is
that two or more cells may share a machine type. Then, an integer assignment to each cell, subject to
total machine availability constraints, leads to underutilisation or overloading of the important machines
in the cells. Practical shopfloor conditions such as machine failures, fluctuations in part mix or demands
may also make cells unstable. These methods do not use flow data. Hence, they cannot solve together the
machine grouping, machine sharing, intracell layout, intercell layout and handling subproblems. Beyond
the logical grouping of the resources, another important aspect of manufacturing system design is the

physical placement of these resources on the shop floor, which defines the actual flow patterns of parts.

This dissertation addresses, for the first time, an analytical approach to the integrated problems of
designing the dynamic cellular manufacturing (DCM) system layout concurrently with its material flow
(handling) requirements, in such a manner that minimises the material handling within the system. The
proposed strategy encourages the design of a dynamic layout to identify simultaneously the machine

groups, economical machine distribution, and intracell and intercell layouts.

Thus the proposed mathematical models are based on network analysis and graph structures for flowline
decomposition of machine groupings, and flowline layout design of dynamic cellular manufacturing
cells. To minimise travel distances for forward, and backward material flow arcs, the derived model
minimises total travel distances and machine duplications. Consequently, stages I and II of this research
generates machine groups, identifics a flowline layout for each group, indicates which flowlines must be
placed adjacent to each other to minimise intercell distances, and an approximate configuration of the
aisles. Thus by capturing the directionality embedded in- the operation sequences of a variety of parts
produced, the associated facility floor area can be optimised. It is concluded that the classification of

flow arcs used is effective for assessing whether material handling and layout, or machine sharing, is

necessary to minimise intercell Of intracell material travel digtances respectively.

As a development from stages | and 1L, stages [T and IV outlines the associated economics of machine

e e et

distribution and layouts of a dynamic cellular manufacturing facility. Furthermore, by employing
simulated annealing (SA) algorithms the design (machine placement) of the shop layout for these

dynamic cells can be optimised.

Ilustrative case study material demonstrates that the sequential use of these proposed stages effectively
integrates machine grouping and layout design requirements into dynamic cell configurations. It is
established that these evolved dynamic cells have a superior utilisation of resources, when compared
with equivalent classical cellular systems employing traditional design methods such as clustering
analysis, operation sequence clustering and graph based layout techniques. In addition, parametric
analyses of the proposed SA algorithm procedure shows an improvement in the cells responsiveness and
effectiveness, with respect to the reported mean values of the material flow cost function. Furthermore,
examples are utilised for both equal and unequal resource dimensions, with the average value of the
material flow cost comparable with other methodologies. It should be appreciated however, that the SA
algorithm was programmed in MATLAB, and has matrix and graphical interface outputs, which is again a

further step forward in this research area.

fii

To the best of the author’s knowledge and belief all of the material presented in this thesis, except where
due references is made in the text, has not been presented previously for the award of any degree or

diploma in any University.

If accepted for the award of the degree of Doctor of Philosophy, the author consents that this thesis copy,

when deposited in the University Library, be made available for loan and photocopying.

Signature: Date: ¢ @/KJ 2/’14::9/

iv

The long and lonely journey towards the completion of a doctoral dissertation is one of the periods in life
when you learn to appreciate truth and friendship. I was fortunate to have Dr. K. Baines and Dr. C.
Cresswell as my supervisors during my four years at the University of Adelaide. I would like to gratefully
acknowledgment their guidance, encouragement and continuous support of this research project and
preparation of this thesis. I appreciate the freedom that they gave me to pursue my own ideas and to
explore new areas, and the invaluable advice that they offered to maintain a clear goal as my work

progressed. At the end, they became more than supervisors and collaborators; good friends.

I would also like to thank colleagues and staff members in the Department of Mechanical Engineering of
The University of Adelaide for their valuable input and support during my studies. In particular, special

thanks to A. Prof. M. Zockel for his inputs and helpful comments and suggestions.

This work was supported by an Australian Postgraduate Award from the Australian Government. The

financial support from The University of Adelaide is also greatly appreciated.

[am extremely grateful to my lovely daughters (Jelena and Milica) who have been patient throughout

this research while they had to stay at home for many weeks and wait for me many late nights.

ABSTRACT

ii

Statement of Originality iv
Acknowledgments 14
List of contents vi
List of Figures xi
List of Tables xvi
Acronyms xix
CHAPTER 1 1
Introduction 1
1.1. Introduction and Significance 1
1.2. Group Technology Definition 1
1.3. The Concept of Cellular Manufacturing 2
1.4. The Practical Significance of Cellular Manufacturing 3
1.5. The Fundamental Problems in CM 5
1.6. Research Objectives 6
1.7. Overview of the Thesis 8
CHAPTER 2 10
Literature Review of Cell Formation and Layout 10
2.1 Introduction 10
2.2. Design of Cellular Manufacturing Systems 11
2.2.1. Classification and Coding (CC) 12
2.2.2. Production Flow Analysis (PFA) 13
2.2.3. Machine-Component Group Analysis 16
2.2.4. Similarity Coefficient Methods (SCM) 18
2.2.5. Network Flow 22
2.2.6. Cost - Based Methods 22
2.2.7. Mathematical (Integer) Programming Formulation 23
2.2.8. Graph Theoretical Approach 24
2.3. Cellular Layout 25
2.3.1. Facility Layout Problem 25
2.3.2. Mact}ine Layout Problems 34
2.3.3. Multiple-Objective Layout Methods 35

vi

2.4. Artificial Intelligence Techniques (Modern Approaches)

2.4.1. Neural Networks

2.4.2. Simulated Annealing (SA) Methods

2.4.3. Knowledge Based Expert System (KBES) Approach

2.5. Justification Technigques

2.6. Cost - Utilisation

2.7. Computer Simulation

2.8. Conclusions

CHAPTER 3

Integrated DCMS’s Layout Design Methodologies

3.1. Introduction

3.2. Critical Analysis of Cellular Manufacturing Approaches
3.2.1. Problems with the Traditional Approaches

3.3. Main Modules (Problems) in Cell Manufacturing System Design

3.4. Interactions between the Modules (Problems)

3.4.1 Part Families and Distribution of Machines

3.4.2 Part Families, Distribution of Machines and Intracell Layout

3.4.3 Part Families, Distribution of Machines and Intercell Layout

3.4 4 Intracell Layout and Intercell Layout

3.4. Alternative-Enhanced Approaches to Cellular Manufacturing

3.5. Integrated Cellular Manufacturing Layout Methodology - Research Proposal
3.5.1. Cell Formation Module - Problem

3.5.2. Layout Module - Problem

3.5.3. Integration of Different Layout Design Modules
3.5.4, Simulation (validation) Module - Problem

3.6. Research Methodologies for Analysis & Design of DCMS’s

3.7. Capabilities of Research Methodologies

3.7.1. Operations Sequence Approach

3.7.2. Clustering Approach and Matrix Diagonalisation

3.7.3. Graph Theoretical Approach

3.7.4. Mathematical Programming Approach

3.7.5. Rescarch Methodology

3.8. Conclusions

CHAPTER 4

Mathematical Modelling of Dynamic Cells Layout

4.1. Introduction

4.2. Definition from Graph Theory
4.3 Arcs Classification in the WDRT

4.3.1. Forward Arcs

4.3.2. Backward Arcs

4.3.3 Crisscrossing Arcs

4.4. Problem Complexity

4.5. Mathematical Formulation of the Problem

4.6. Modelling of Stage I: Steps 1 - 6

4.7. Modelling of Stage II: Steps 7 - 11

4.7.1. Evaluation and Analysis of Approximate DCMS Flowline Layout

36
36
36
39

40
42
43
4
46
46
46

46
48

49

50
51
51
51
52

52

58
59
60
61
62

64

66
66
66
67
67
67

68
69
69
69
69

71
73
75
75

76
77
78

79
81

vii

4.8. Mathematical Justification of the Methodology

81

4.9. Summary of Initial Methodology for the Stages I and II

82

4.9.1. Stage I: Steps 1 -6

82

4.9.2. Stage 1I: Steps 7 - 11

82

4.10. Computational Experience

83

4.11. Conclusions

84

CHAPTER 5

86

86

Experimental Study of Dynamic Cells and Machines Layout

5.1. Introduction

86

5.2. An Rudimentary Example of Propesed MWDRST Research Model

86

5.2.1. Stage I: Steps 1 -6

86

5.2.2. Stage 11 — Steps 7~ 11

89

5.3. Comparison of MWDRST with Other Flowline Graph’s Adjacency Based Design Procedures 93

5.3.1. Comparison of Proposed MWDRST with MST Procedure

94

5.3.2. Comparison of Proposed MWDRST with Cut Tree Procedure

95

5.3.3 Flowline Directionality Comparison

96

5.3.4. Comments

98

5.4. Comparison of MWDRST with Clustering Analysis Technique

98

98

5.4.1. Clustering Analysis Data
5.4.2 Stage I Steps 1-6

98

5.4.3. Stage II: Steps 7 — 11

5.4.4. Comments

5.5. Comparison of MWDRST with Operation Sequence Clustering Technique - A Detailed

Study

5.5.1. Stage I: Steps 1-6

5.5.2. Stage II: Steps 7 - 11

5.5.3. Comments

5.6. Comparison of MWDRST with Graph-Based Layout Design

5.6.1. Stage I: Steps 1 - 6

5.7. Conclusion

CHAPTER 6

Optimising Dynamic Cell Facility (Shop Floor) Layout — Stages III & IV

6.1. Introduction

6.2. Stage I1I Economical Machine Duplication

6.2.1. Economical Duplication - Example

6.3. Stage I'V Shopfloor Machine Placement - Layout Optimisation

6.3.1. Definition of the Dynamic Cell Discrete Layout Model
6.3.2. Mathematical Formulation of the Dynamic Cell Layout Approach

6.3.3. Proposed Solution Using Improved Simulated Annealing

6.3.4. The SA Layout Algorithm
6.3.5. Numerical Implementation

6.3.6. Examples - with Comparisons

6.3.7. Analysis of Parameters
6.3.8. Computational Experience

6.4. Conclusions

CHAPTER 7

Summary and Conclusions

7.1. Introduction

101
107

108
108
113
119

119
120

122
125
125
125

125
127

130
131
136
139
149
153
154
159
161

162
165
165
165

viii

~7.2. Summary and Research Critique

165

7.2.1. Summary 165
7.2.2. Research Critique 169
7.3, Research Overview 169
7.4. Conclusions 170
7.5. Recommendations for Future Work 170
7.5.1. Cell Formation Stage 170
7.5.2. Intercell Layout Stage 171
7.5.3. Intercell and Intracell Material Handling Systems 171
7.5.4. Integration of GT Coding 171
7.5.5. Physical Criteria as Inputs to the System 171
7.5.6. Integration of an Expert System 171
References: 172
Publications Originating from this Thesis 185
APPENDIX A 186
A.l. Graph Theory Review 186
A.Z. Arcs Classification in the WDRT 187
A.3. Problem Complexity and NP - Problems 187
A.4. Mathematical Formulation of the Approximate Layout Problem 189
A.4.1. Stage I 189
A.472 Stage I 192
A.5. Weighted Directed Rooted Spanning Tree’s Average Path Length - The Proposed First
Theorem 193
A.5.1. Proof: 194
A.5.2. Usual context 195
A.6. Weighted Directed Rooted Spanning Tree’s Adjacencies - The Proposed Second Theorem 195
A.6.1. Proof: 196
A.6.2. Usual Context 197
A.7. Weighted Directed Rooted Spanning Tree’s Maximal Weight - The Proposed Third
Theorem 197
A.7.1. Proof: 197
A.7.2. Usual Context 199
A.8. Weighted Directed Rooted Spanning Tree and Permutations — The Proposed Fourth
Theorem 199
A.8.1. Proof 201
A.9. Weighting Scheme — The Proposed Fifth Theorem 201
A.9.1. Proof: 201
APPENDIX B 204
B.1. Spanning Tree Algorithms 204
B.1.1. Minimum Spanning Tree 204
B.1.2. Minimum Cost Spanning Tree 206
B.1.3. Maximum Spanning Tree 208
B.1.4. Dijkstra’s Algorithm. 209
B.2. Optimum Branching 211
B.2.1. Maximum Branching Algorithm 211
APPENDIX C 214
C.1. Quadratic Assignment Problem (QAP) Model 214
C.1.1. Exact Solution Methods 215

C.1.2. Integer Lincar Programming Problems

C.1.3. Heuristic Solution Methods

C.2. Travelling Salesman Problem

C.2.1. Introduction
C.2.2. Methods for Solving the TSP

C.3. Solving T'SP by Simulated Annealing

C.3.1. A Baseline Implementation of Simulated Annealing for the 7SP
C.3.2. Improvement or Speed - Up Techniques

C.3.3.2-0PT

C.3.4. SA applied to TSP
C.4. Evolutionary Algorithms in 7SP

C.4.1. Genetic Algorithms: Operators

C.4.2. Genetic Algorithms: Application for solving the TSP
Conclusion

C.5. Background of the Simulated Annealing Algorithm

C.5.1. Introduction

C.5.2. Local Optimisation

C.5.3. Simulated Annealing

Appendix D

D.1. Maximum Undirected Spanning Tree
D1.1. Output of Maximum Undirected Spanning Tree

D.2. Minimum Undirected Spanning Tree

D.3. Maximum Weighted Directed Spanning Tree

D.3.1. Output of a MWDRST

D.4. Dijkastra Algorithm

D.5. QAP Algorithm Codes — SDPI Solution

D.5.1. SDPI Output

D.6. TSP Using Branch and Bound Algorithm
D.6.2. TSP Branch and Bound Routine (Balas Method)

D.7. TSP SA Baseline Codes

D.7.1. Improved SA - TSP with 2-opt

D.8. Genetic Algorithm — TSP Order Based Example Routine
D.9. SA Layout Placement 1

D.9.1. SA Layout Placement 1 - Output Example

D.10. Improved SA Layout Placement

D.10.1. Improved SA Layout Placement — Qutput Example

215
216

220
220
221

229
230
231
233
234

236
239
241
248

248
248
249
249

253

253
254

254

255
256

256

257
258

259
263

265
266

269

270
272

273
277

Figure 1. 1 - Definition of a manufacturing system with its inputs And OUIPULSc.occuvveveeeenesenessnseemssssinns 2
Figure 1. 2 - A comparison of different kinds of MARUFACHIIING SYSEEMS.ccc.covocoeeriiiiseeieeeseeeeeeaneaanssersirenes 2
Figure 1. 3 - A 3D model of the classical cell Within @ MARUFACIUIIRG SYSEEM..........ccooooereereeeereserieceneeaeesaesrraeeiens 4
Figure 1. 4 - Advantages and diSadvantag@es Of GT COUIS....vaviiiiviiieieciisicirieieeeeieescsvsineevsr s vrevasaseneennmanresarees 4
Figure 1. 5 - Proposed research-motivating layout PATAIIELETSouveeeeeerecireeeceeieeiieiisie e avriavsasassvsasnsaavassnsoens 6
Figure 2. 1 - Types Of PLant LAYOULccccooiviiiiiiminieierire ettt ettt et n e e e ee e e e ananses 11
Figure 2. 2 - Two classical manufacturing systems in common use today require a system level conversion to be

reconfigured into manufacturing cells [BIACk 1995].........coovieieiiveiriiereeeccciit et et s et naeaeeenas 12
Figure 2. 3 - Classification and coding CODE system (Dornbush E., 1969, American Machinist).................... 13
Figure 2. 4 - Stages in production flow QRALYSIS.........coccovricceriiiiuiiiininssie e e e e e envaeseene 13
Figure 2.5 - Hierarchical clustering of @ machine - PArt MQIX ..o v, 18
Figure 2. 6 — Systematic layout planning [Muther 1975]......cccccviivminriinniiiiii i 26
Figure 2. 7 — Flexible Manufacturing Cells (FMC) [Black 1995] ...covovovneeiminiiiniiiiiiii e, 40
Figure 2. 8 - Witness SIMUIAHON MOACL c.......c.coieoociiieiieiriiiceieins e st s bttt 44
Figure 3. 1 - A traditional (four cells) cellular Iayoutc.ccoveiveevnrmsiiorsmioisiiii e, 47
Figure 3. 2. — Four cells with machine SRAFINGc..ooovueecrciirimsieniasssesesrsts s, 47
Figure 3. 3 - Avoiding intracellmachine dupliCation................ov.oovevvvviinesmssssmmsssss i 49
Figure 3. 4 - A dynamic cellular layout with MACRINe SHAFIRG.........ccovvemmvinmmmsmmmisimi 53
Figure 3. 5 - a) Functional layout and b) Cellular layout [Gallagher 1973 [.c.covvvesvmen L 55
Figure 3. 6 - VIirtual CellULar LAy OuL ..o .cccooveeeiiniiiiiiceaecsieseessisemasemmsass s 00t 55
Figure 3. 7 - Dynamic cells in functional lGyOUt......................cccovevmsemmmssmssinsss st 57
Figure 3. 8 - The structure of the desigrn PrOCEAUTEocueueueirmimssmsesensenr st 59
Figure 3. 9 - The main stages of the design PrOCEAUIe.................oowvrevvneressrrss 8 mmmmmssssiss s 59
Figure 3. 10 - The designs steps of the cell formation module and their relationships with other modyles 60
Figure 3. 11 - Integrated layout module and its relationships with other MOAUIES oo 61
Figure 3. 12 - Design steps of integrated layout design module...........c.coovwevorm 0 mmmmsrmss e, 61
Figure 3. 13 - The relationships of the machine layout with other MOAULES -.vvvvvvesemmenvese 62

W___

xi

Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.

Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.

14 - The relationships between the cell layout model and other modules....................cccccccevvvnnnenee. 62

15 - The components of the simulation (verification and re-design) module and their relationships... 63

16 - Simulation model USTRG “WILRESS”occveiiierie ettt et ersreses crs e sa st sb s s nae e 63
17 - Research methodology for design of DUMS S ..o covevivevveie ettt e ree s 64
18 - DCMSs layout design MethOdOIOZYoecvcenimicisioiseieeiiceer vt ettt 66
1 = URGEFECIEA GIAPNvovveiivteieeie e vtirss s ats s v is st st aas s base e siesstssssnssantassnsasanesrsasaensranes 70
2 - Directed graph..........cccocovvevnnivcniniiieeeeen. ettt ettt e e et e e e e saenaeae e beneeas 70
3 m WDRT oottt e et sttt e e st st e it a i snaeas 70
4 - Corresponding-spanning WDRTccccoommiiiiiiitirteiseesses e ettt ssees e easns e assasnssssesnnsns 70
5 - Tree arcs and only forward arcs i WDRTc..ccovcivveiiiiveriivsesiessessnssssssase sssssnssssasssesnes 73
6 - Tree arcs and only backward Gres in WDRToeeeeeeeeeeeeeeeeeee et ir e e eevreve e vesenens 75
7 - Tree arcs and only crisscrossing arcs in WDRTcccoiiiveerinoiecieiteneeeeesseeee e svesessesenseses 76

8 - An interactive (stages [and 11} DCM flowline layout framework based on graph MWDRST

FREOTY 1o eee ettt ettt b ket ek e e Stk 4 e AR e ettt st e e et eae b et sane sreae e ss et sannene et eran 69
Figure 5. 1 - INGHALLAYOUL...........oooviveeiiieciririei vttt ettt ettt et bt st rat e b saee 87
Figure 5. 2 - MWDRST maximal spanning diStance — after SIAQE L.........ucveeveneoeeeeeevereverivireeresrvesessssresaseners 88
Figure 5. 3 - Only forward arcs in the MWDRSTccooavoeirc ittt et raeraesressressssussesssssesesessmsessarenins 89
Figure 5. 4 - Arcs in MWDRST GRA BACKWATA QICS....uvuneriirrecrirereiiiiseieisiesiesieteesteatstsrestesses e sissesresssssesssanssessenns 89
Figure 5.5 - Arcs in MWDRST GNA CTISSCTOSSING QICS c...onvvueeirienieseeeeeeeeeeeeteae vt ssasseeaessetses st ssssnansaenssssaenns 90
Figure 5. 6 - MWDRST - after stage I MOACIIRG..........ccccooirireeeeeeesesvseee e esv e stessessesssensaarssaetsssetsanns 90
Figure 5. 7 - Stage Il MWDRST with no machine duplicQtionouvvevvvivereiineeieeieiessmeiseesseeseesssessesssssen 92
Figure 5. 8 - Flowline skeleton for MWDRT with no machine duplicQuione.ceeeeeveveeeveeeeeececreerernesonsenn 92
Figure 5. 9 - Intermediate layout from the final MWDRSToooeevevevieiieeereisirisevivereetsrissssenssssesssmssssasennes 92
Figure 5. 10 - Final DCMS fIOWIIRE LAYOUL ... esissieeessissiisssasesesssssasssesssssssssesssssstessenssastssasassons 93
Figure 5. 11 - MST fLOWIIRE LQYOULS. c...cooverreeeeieiiiiiiitiet ettt ettt s st s sansnans 94
Figure 5. 12 - MST flowline SKeleton IGYOULooceouiovereorreeeiecrere et s asre s sests st serasasss e sssossssenssnnnes 94
Figure 5. 13 - Cut tree algorithm [MOREFeuil 1993].....uveieveereeiiceieneiierieieeeieeseseesevessseessesasessnesssssssansnnsnsens 95
Figure 5. 14 - Cut Tree flowline layout SOUIIORc.ooceivoiiceioriiseesieeieeees e sevee e ren s ennsesnseessanesssssnns 95
Figure 5. 15 - Cut Tree flowline skeleton layout SOLULION.c.ccvovvcvmvevvrvinsivireceeseeeeinssinsevesiseiseresssisesssssssns 96
Figure 5. 16 - Cut Tree flowling dir@CHIONALILYovcvivveriivrresosissrsseassissssrcens s eeseessessssnssssesesssesressesssranaos 96
Figure 5.17 - Original GT three cell layout [KOERig 1981]coceoeeeoreooeeeeeeieeseireeeresvsissssisissesisssesisesssassaons 98
Figure 5. 18 - MWDRST - GIter SIUZE L.......v.coeevieiercrrisrisiiiesesiates s st e e sesa s sesansasns s 101
Figure 5. 19 - MWDRST forward and BACKWAIA QICSo..veceeeeeoeeereseeeeevee s svvevosresssrsonssrisssssasss s mnsnssasss 101
Figure 5. 20 - MWDRST G SIAE L1 ..oonevoveeeeeeseveesee et ettt oo enseeenesaeen 104
Figure 5. 21 - Layout after MWDRST StAQE IL..........c.coceouirireeeieeeeeneeceeseese s eren et snssn s ansins 104
Figure 5. 22 - Larger travel distances in original (Figure 5. 17) LaY0Ul........coev.eeeeoreeeeee oo eeene e 104
Figure 5. 23 - Original cells configuration as a branched flowline [Vakharia 1990]cocoovemveerveecreene. 105
Figure 5. 24 - Final - proposed layout based on the MWDRST (restricted Qreas)...............coevcumirieverreeeinnenns, 105

xii

Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 3.
Figure 5.
Figure 5.
Figure 3.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.

Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.

25 Final — proposed layout based on the MWDRST (unrestricted Qreas).........oueeoouveeeeeeeereenververeen 105

26 - MWDRST intercell shapes [AYOUt —cocccoviciiiiiiieiniieteciies ettt e 118
27 - MWDRST final layout et ettt s st en 106
28 - MWDRST U shaped layout —cceeeee. e e e ettt as Lttt en st rbennaesbes aee e nee e s rnteabean 119
29 - Another MWDRST U Shaped IayOutc.cc.ccceveeiriiiminisiieeciiecntcecetee e sisss e eaesae e eie e 106
30 - Undirectional (one dimensional) QAP flowline layout.............c.cvvevmvuviiesvecieeeeeeeacreeerseearesneens 106
31 - Directional (one dimensional) QAP floWline layout...........cococcevveernriiiverieeeesvviesrireerenessrersenens 107
32 - Directional (one dimensional) TSP flowlineg layout..............ccocovveviereevresieeeeieeecisrereeisesaraesnessses 107
33 - Directed one dimensional TSP With S LAYOUL........c..cccooooveievverseeeesecieceevveeereiseseves s eereeenseeses 107
34 - Original cellular layout [Vakharia 1990]c.ccocoviiiivimarmrvrsiirieesesisneeeisseseisvssesssssssneseens 109
35 - MWDRST — stage 1 FIOWLIREcccccociiiiiiiiiiiieiiiieieiecce vttt rvs e se e s esa sae s e e s sessrnnsnnens 112
36 - Modified 51age 1 Of MWDRSTcoveoveieieeeeiiecteteet et ericesestestoststessbss st s eesbess s e nesssassens 112
37 - Forward and backward arcs in MWDRSTcoocooiiiiiiieeoe et e aeveen 113
38 - Initial crisscrossing arcs in MWDRST ..o et ivste s ntoressstssssssunens 113
39 - Crisscrossing arcs after MWDRST S1GRe 11ccoveviviivivveioiiieiirisieessisiseeteeeessvessaesnseasesneeens 115
40 - DCM flowline layout after stage Il 0f MWDRSTcccoviveiiiiieinenerie vt aress s neananeees 115
41 - Resulting DCM Layout after duplication of machines is applied............c.ocvcevenevvvivscvsivnreennnnns 116
42 - Original machines as a branched flowline [Vakharia 1990]cocevivvoeioincneiniecncoraneene. 117
43 - Bidirectional flOWHRE LAYOUL.........c.cccneveeeiriirriieieecvineeteseetereev et terenssesae e s saesssssssssenssrenns 117
44 - Unidirectional fLOWLIRE LAYOULo.oeoovrveeeeeeeeeee et eseses s tese s tsresesre s tesanessonesstansenbonss 117
45 - U Unidirectional flowline Layout —ocovviiriiiemiiiniiriintiitetesteeteieitee et eeae s aea e 131
46 - S layout for unidireCtional fLOWIIREcccoooeiiiiiiicieeeeieeeieee et ess e errs s esessesaeese s ens 118
47 - Serpentine layout for unidirectional fLOWIREccccccvvviimrerviveivernensresessenessssssssssessesennns 132
48 - MWDRST final layout e e 118
49 - L shaped Layout FIOWIIRES.........cccccooeiiicoioriieiieieee ettt sttt saaassaesenen 118
50 - Facilities with fLOWIINE IAYOUL............oocurieioiirireeereeeeeetreevseecense s tsts e sresaesssnsssesrnsensenasenssresasres 119
51 - Original layout for guillotine cell with volumes of material flows [Carrie 1977 |....cucecevvrvnann.. 119
52 - MWDRST ares after SIAGE 1 ..ottt s e ne st s nea e e sressnssenee 135
53 - Forward and backward arcs in MWIDRSTcocooveivrroseiiicvssiseresseresssasesisesserevassrsanssenes 121
54 - Crisscrossing arcs before Stage Iouvvivvvivvieiesiineiiiieerseeeeieecesvasisiensessasensavosessssssssssanes 135
55 - Crisscrossing arcs after stage Iloocioiieioiieceei ettt sttt et 121
56 - Original layout [Carrie 1977] et ettt s s st st s e s sas s st s e s srsns 136
57 - Final layout using the proposed MEtROA.occooeeeevviineiees s eceeceeseissisasvereasestessssaeerasseenns 121

38 - DCM layout developed from proposed MEtHOAcoueorasvairereiniirincenencieseresieescisssns 122

I - Interactive stages Il & IV of the DCM layout framework based on SAccccoveeeeeveeecererensnerennnn. 127
2 - Material flow lines of DCM Gfter S1AQE I.........c.c.ocvevioiriireeieireeeeesieessenasiesssisastesesanssses e 129
3 - Representation of the shop and the MANUFACIUFING TESOUFCES ..o vireriseieeveieeneearienaieseereererisenans 132
4 - Representation of a feasible manufacturing resources shop layout.............ceveeeceiveveonevavenneennn.... 132
5 - Block layout variables Qnd PATAIEIETS...........c.ccocovciviiiviririieieeveeveeeeeessesssisiesstoasssasssessasesenn 134

6 - Flow chart of the simulated annealing based dynamic cell layout methodology 139

Xiii

Figure 6.
Figure 6.
Figure 0.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.
Figure 6.

Figure 7.

Figure A.
Figure A.
Figure A.
Figure A.
Figure A.
Figure A.
Figure A,
Figure A.
Figure A.
Figure A.
Figure A,
Figure A.

Figure B.
Figure B.
Figure B.
Figure B.
Figure B,
Figure B,

7 - Swap operation of manufACtUIIRG FESOUFCEScc..vvwiuericereeirisinirties st ass e sene 142

8 - ROIation of manufactiuriig FESOUITES.........oviiiuieeeeeeteieee e st s e sees s eesenans 143
9 - Translation of manufacturing FESOUITESccrvvvvvivirerivecossnsiseenies et esssasssnsnreseesenssnsassnssecs 143
10 - Effect of low initial temperature Tccooiiiiiiieenisieisset e veresies s e et saesiese st sssse s 160
11 - Effect of high initial 1emperature Tcococoovoriivniieceeesc ittt ieeaseicesaeesssenessotseransns 145
12 - A g00d initial temperatiure T.........c.ccoocviiiiiiiiiiaiicecc st a st e 145
13 - Flow chart for the SA based layout 0f DCM SROD flOOT......cceeeiecieieireereereeeeveseeieserenssnsaannas 149
14 - Example of the matrix style output from the DCM placement program...........cceeevvvvviviveveesinn. 154
15 - Final layout for the example...............co.cccoociiiiiiiiiiinieiirecicceree ettt sesen e s eeseeses s nes 154
16 - Unequal $izes layoutr @Xamplesoovvercirinniiniesiiisisieiecneseiceernsasesssssssssssssessnssssssnssssssssessss 156
17 - Final SA based DUM LAYOUE oooouiieerereee ettt st s s se s stsm s e s e sa s s aes 174
18 - 5A SEarch temperatiure VEFSUS COSEovuuionivireriiniveesiriseenesiinmssenisesiessnssassassessessessensossseessess 158
19 - Final layout for the basic MOAelccooeiiiiieiiiiirreiiieneeeieeiete sttt een 175
20 - Corresponding temperatiere GraPhcooccemimieeineceircreeieee et et e sa s ses st saene 158
21 - Final unequal DCM Iayoutcccc.coviiiiimiiiiiiiiieininiiisiets st sttt te e eeas e naa e en 176
22 - Corresponding SA SEArCR tEMPEIrAUTE......c.ooueveeeiiecirctie ettt et st een s ... 158
23 - Comparisons of the configuration changes with regard to the optimal ratio of the QAP 160
24 - An interactive chart for the design of the DCM system layout (stages I II, Il & 1V).................. 163
1 An interactive chart for the design of the DCM system layout (stages I, 1L, Il & IV).......couenun..... 166
1 - Path lengths in a Maximal Spanning Weighted Directed Rooted Spanning Tree................cuuu..... 194
2 - Adjacencies in paths and weighted directed rooted SPARMING Hree.ouceveovrvvvvvvevveeverieissenanns 196
3 - Adjacencies in a weighted directed rooted SPARNIAG TFEEocnvcvnveeerreoverresinisstssrecreieniseseseanns 196
4 - Converting from a path to a weighted directed rooted Spanning 1ree............o.ocecevvveeeevervenrvanes 198
5 - Increased lengths in LIREAT AITARGEMENL.........o.c.ccoeneeiecireeinvisirieeeeeseaeressereneressrasaesesesenssens 198
6 - Enumeration tree for feasible Qrrangements. viueeererieieesinerssisisissressessessessssssrssesosss 199
7 - Best and worst CASE€ PErTUIALIONScc.coeveveereeeeiiateesenisteeieseireiaseststeseesasstasees et seseeesesrasereanen 200
8 - Approaches for weighted directed rooted spanning tree reorientQLion.............c.cuevveeevsvreverreeens 200
9 - Weighted directed rooted spanning tree with N and (R + 1) ROAES.....c.cocevvvvcververiisrirrererinnens 200
10 - Minimum number of nodes for a weighted directed rooted spanning tree............coveeevvennne. 201
11 - Splitting of paths Sharing @ BrARCAING ROEcc.cvcecvcoivicrverieririesrseree e criesenisiressssesas 202
12 - Weighting of NOAes @t OTHEE [EVels.........o...o..ooiveeeieirieireeseteiteeie et e a s s sess s s 203
[- MST Prims algorithin DSEUAQ COe.uu.oeoeeeaeecieieorererirnsievceee e svessnsas s, S 205
2 — Krusk@l's QLGOTIANL c.......ccco.omieieriiiiiieeecisiieeeeeetet et st s sses st trme st sreas v e s s et ararenssrenens 206
3= BOruvka's QLGOTIAML.........oo.ooiviiireieeiieeeeeee e eevev et s st e atss st e sam et ars s snnnes 206
4 - Pseudo code of Prim’s algorithm for MOSTocooeeeeeoeieieeeeeeeseeeeee e ier e eens s 208
5 Modified Prim's algorithm applied to maximum SPANRIRG IT€e...........ccvcvreovrrereresiisrseesereeeeseaen. 208
6 - Pseudo code for DUKSErQ’S GLOTithM...............c..c.ccovreveeeeecnesineesseeceiitsvssstes s e svenenn 209

xiv

Figure B.
Figure B.
Figure B.
Figure B.
Figure B.

Figure C.
Figure C.
Figure C.
Figure C.
Figure C.
Figure C.
Figure C.
Figure C.
Figure C.
Figure C.
Figure C.
Figure C.
Figure C.
Figure C.
Figure C.
Figure C.
Figure C.
Figure C.
Figure C.
Figure C.

7 - Dijkstra’s algorithm for directed graphcccccevveeieiiiienirinieiiniiiei et 210

8 - Digraph with labelled Qres...........ccooovoiiiiiiiiiiiinice et 210
9 - Optimum branching algorithim’s SIEP..............cccceivivriinieinint i e e 211
10 Pseudo code for algorithm to find a maximum Branching...............ccccovvvcviccvnoiinnnisinvinincnn. 212
11 - Applicarion of a maximum branching algorithm, showing construction of G; G, Gywee...... 213

I - Examples of a) locations and b) initial assignment of machines 10 [oCQtIONSccceeerveuvnennnnnn. 218
2 - Final assignment of machine locations resulting from applying the SDPI algorithm 219
3 - Showing that the salesman must decide which tour will allow him to minimise travel cost.......... 221
4 - Solution of 13 City Problem by Greedy AIGOVItAM.oovcveiveviriniiiiiiieeieisieeeenecveersssasnenanae 222
5 - General schema for a simulated annealing algorithm.coovvvevvvcviviiniccinicereerccnns 230
6 A 2 — opt change: original tour on the left and resulting tour on the right.............ccccovvvvevvnnennnne. 233
7 - Number of SOIUtions vs. toUr LeRgIH oocooooiiiiiiiiiiiiiiecirec ettt s 261
8 - Temperature VS. tOUF Length oottt e e e 236
9 - Basic procedure for a genetic QIGOTIAMcc.covceeveeviremeicireee et et 238
10 - A simple version of an iterated hillclimbing QlQOVIIRMLccevuvvierieeirriiieeetecnierseeseireeneseeens 239
11 - Simple One POIRE CTOSSOVETcc.coovivieivictiririiiniicctiretiresietsnststsiesressesse st snasae et tsssasasenssnsses 239
12 = MULALION (Bit FLID) c.ovievveiniiiiiiieiicct ettt et st et e s s 240
13 — Evolutionary approaches t0 SOIVe the TSPco.ccooeevreeieeceeeeeeeteee et st ee e eee s 241
14 - General schema for a genetic optimisation QlgOrithm,oceeevverveevirneveecveeerreevsreesreseneens 242
15 - Initial tour for the 30 City PrOBIEM.........vcoverceeeeeceeeieeerircteciecsvseeete st rents st e s sr e snveestesseseans 247
16 - Shows a TSP tour at the beginning and after the third generation..............cvcivvevnvenerennnn, 247
17 - The best solution to the TSP 30 city with 420 tOUF LERGIASc.vevveeeeeecriceccerirccieeeenernirinens 247
18 - Overview chart Of the GA PErfOrMaNCE..........uveievieeioieisieersieieseeiesisssensesessssssstsssssssassasessnns 247
19 - The best and average function distribution across the GA generationeeeeeecevereveveerenns 248
20 - SIMULAIEA QRACALIING.oeeviciiee ettt s sae s e e e s e s re e se e s reanens 251

Xv

Table 2. 1 - PFA component — machine chart GA initial record. [Burbidge 1971]ooeemernceecieenecereerenenss 14
Table 2. 2 - Component - machine chart. Finding families and groups after GA complete [Burbidge 1971] 14
Table 2. 3 - Tooling Analysis [Gallagher 1973 [...t cs st ere e s e seseraresessens 15
Table 3. 1 - Summary of the research objectives and the tasks of all problems..................ccvceeeeeeeeeeeveeeeerennn. 58
Table 3. 2 - Typical criteria for facilities [AYOULccccoovirmiceimiviinineieeieinrcee sttt s sereeseeseseseasenes 60
Table 3. 3 - Capability analysis of cell formation MetROAS...............coccooveevevivinvenriiniiiiiieiiee et 65
Table 4. 1 - Terminology for directed and Uncirected graphsc..ccooveecveeesieneecesieneseeissesieseesse s sesessssssssreaens 71
Table 4. 2 - [nitial strategy overview of the proposed research methodologycccccovivvvevirenvivensiesieinivniennns 77
Table 4. 3 - Research methodology strategy: StAges I ANA IL..........c..ccoooeeeieovieieecieeeeeeeeeieieeeeveee e enseesennesronns 82
Table 4. 4 - Computation time when SDPI algorithm utilised in the second stage model...............oceeveerevervennn. 84
Table 5. I - Operation sequence and batch quantity data to provide a numerical SOIRLION.ccoceeeevveveevnnnne. 87
Table 5. 2 - Travel chart used for DCM layout deSigncooeveurioroiisiiereieteeeeeeeeesesieree e ernaseeneseaesens 88
Table 5. 3 - Crisscrossing arcs iNIErcell fOWScovuveorvercicieecrcies ettt st s st sesens 89
Table 5. 4 - Crisscrossing Ares iIEICELl fLOWScouvvviuiicuiciiiesiieeeereseiiis e et ses s e erarassassessesasssessanessssessesens 90
Table 5. 5 - Shared machine flow WEIGHEScc.cccoovmvreniiciieiiciitctc ettt ess s et esas st s seeen 91
Table 5. 6 - Intercell flows (SHATEA MACHIAES)..............ooviviirceecerieeereeseeieseseteees e cseseesesesesseseesssssres s sssstsrerensenens 91
Table 5. 7 - Combined intercell flows - for stage 11 MOAeIlingcccovvcrvveviiveeureeieeerciseeeteeceeeeeeeier e 91
Table 5. 8 - Directionality comparison of the flowlines proCedurescovovmnvivisecnnrivesrenserssessssssesssens 96
Table 5.9 - SUM Of the O1ALIEAGIAS.............c.oeovoviviiccicite e 97
Table 5. 10 Comparison of MWDRST with Cut Tree and MST (legend: F: Forward Flow; B: Backtrack Flow; C:
Cross Flow; D : Flow Direction; D: Distance; V: Volume of Flow; VD: Flow x Distance)............................ 97
Table 5. 11 - Machine loading results [Koenig 1981]............ccccomveecemmeoeccnieeieriiesisssesserereesssssissssesseseesssesssanns 99
Table 5. [2 - Travel chart for GT layout design [Carrie 1977].....ceveovveniecrnieeeeeiiieaeeeresreeeeeseeeeseeeeereesnanns 99
Table 5. 13 - Stage I MWDRST output from MATLABcccoeeemiieniiciiiiteieeiieeeeeesiesesse e e ssrosen s 100
Table 5. [4 - Intercell flows (CPISSCPOSSINE)c...oovumimmiiriicrsieisirere sttt st e ea et e tne s stesobeetssereaes 101

Table 5.
Table 5.
Table 5.

Table 5.
Table 5.

Table 5.
Table 5.
Table 5.
Table 5.
Table 5.
Table 5.
Table 5.
Table 5.
Table 5.
Table 5.
Table 5.
Table 5.
Table 5.
Table 5.

Table 6.
Table 6.
Table 6.
Table 6,
Table 6.
Table 6.
Table 6.
Table 6.
Table 6.
Table 6.
Table 6,
Table 6.
Table 6,
Table 6.
Table 6.
Table 6.
Tuble 6.

Table A,

16 - Intercell flowS (SRATEE MQCHINES) ...c..cccceiverivieriririssiscis et seraesses st sttt et e eesasresesssa st snereanesneas 102
17 - Combined intercell flows for SIAZe I1........cuveviomieeeiieirieeeeesesireieisinse e sesessessesssssssesnenns 102
18 - Summary of stage Il output 103

19 - Operation sequence and batch quantity [Vakharia 1990]ccooovveoiecrereieeenreeaeeeiscsiseinrennns 108
20 - Machine loads and availability data [Vakharia 1990]cccoeiimenecececircreinrnrarnnneseesneenans 109
21 - Machine utilisation in cells [VAkRaria 1990]ccooooiviiiiirinirieeniieeeeiiesseeeeeeeteeeeeeesine e ssesisseseaens 110
22 - Travel chart for CM [GYOUE deSIGR........cccourieieieeeeereee e ettt et etse st ae e e s s sae e sans 111
23 - S1AGE@ T OUIDUL..........occioiiivirireisiese vttt ettt et s s ast et e s s erasansas s emensesanasenes 111
24 - Modified Stage ITMWDRSTcoovooeeeeeeeeeeeeeeeeeeeeee et eee e e et e e r et ee e sesaeresteareeressaseenssenns 112
25 - Intercell flOWs (CrISSCTOSSIAZ) ...vovnvcvreersserisrerseiesessresesiesessissssssssneinissssssssssesssnssssstsessassassassssnssses 114
26 - Flow weights for SRAred MACRINESccovvveeeceeeieeeeeeeeeeeesiesaeee s ceeeeeessevesvssserssreersnesnssnesss 114
27 - Intercell flows (SAATEd MACRIRES)ccveeeeeeeeeeeeeeeeeeeeeeereseeeeeeeteeerint e s st s esseeets s eeeeseeesessesereanrsenn 114
28 - Combined intercell flows fOr SIAGE IL.........c.covciviviriiveirereneeiosisiseesisssessseseersssesssssenesseneesessessensosns 114
29 - Data for planning machine SAQTING............c.ccociieereoereeeeeeer et ssieessssssesessssssasssresssansitssessons 116
30 - Machine loads and availability Atcccooovvieeiierirsirereiieieesereeses e e ses s 120
31 - Travel chart for GT layout [Carrie 1977] .. ieieieesieeiieeereesissceseesasesessssrssssssssesesesseonssenon 120
32 = IREETCEUL FIOWS ittt e e et et nre e srs e e s sasat s 121
33 - Improved research procedure after experimental study completed..........ueeeereeeeeeeeeceeerannnn, 123
I - Operations sequence and batches data [source Vakharia 1990]........coevvcvireeoeesveeressevsnresens 128
2 - Stage HI initial material flow MACKING PUALIIX..........ccooeueerereieeeteseivessieneesissss e ssssessatssassseeessenens 128
3 - Machine requirements for fIOWIINE PALRSccoivvvicrvevirieinriivireesiieeeieeeesisississeesieee s en e eesesssnens 129
4 - Travel chart after economical duplication of machines is Qpplied...............coeeveeeveercveronvnisssrin, 130
5 - Parameters used in simulated annealing..................ccovcveveveviorvciieeviesisiseseiresesssssssrissssesssesssesssenes 140
6 - Definition of the SA variable - CONIrOl PATAMEIErsS...........ovcvoiuuereveeeieeicreisisrisissiisisissassrsseomesssessnens 150
7 - Material flow DEIWEER FESOUICESccvrivvisrreeeeeerieesierseeeasieseeeesevemeseseesasssessssasssesesssnessessesssessaseas 155
8 - Resource sizes and flow for the unequal SiZe eXAMPLE........c..oovvvieevrirveeisriieinssssessinsersisnnseesseenes 155
9 - Travel chart after economical duplication of machines is applied, as input for SA ...uuu.een.......... 156
10 - Resource sizes and flow for the unequal $ize eXAMPle......uu.eecveveveeeceeeeeeerecrereeeeeeseeesvissessisons 159
11 - SA parameter Py (probability of the AnRealing ProCess)ouivveeivevsrivivsesvsssssisinsssesosesnns 159
12 - SA parameter Tre (t€MPErGture deCrease fUCIOr)couimeeeveeeneiieeeiieieseeeerasseessiesensesereonersessons 159
13 - SA parameter L (Iength Of the SEATCR) u.......coooooeoovoeeieeeereieieseeevesseeesveeeressesnesvsssaeenasess s seessssans 159
14 - SA parameter Ty (SEOPPING IEMPETALUTE).......vevvcvnisseieerersinserisiesseeeeeessessessstesssssssnssssesms s sersesenen 160
15 - The results of solving QAP by the SA with the three changes of the configuration scheme.......... 160
16 - Comparison between mean costs generated by the proposed and other SA methods.................... 161
17 - Comparison with Bazaraa’s total oSt MOdel.................ccovovvemeueereorressreresiesisissess oo 161
! - Flow matrix for obtaining a Hamillonian path..............cocceomeceeeeivoveeseoeeeesivssevissireieeesseeosvesesnn 199

xvii

Table B. I - Graphs, adjacency iNPUE LiSto........ccccovivimviiisiiniesirs ot seese et s rs et ns s e svne s stsss s e senes 205

Table B, 2 - AIGOTItRINS PrOCEAUITE.ccccovieteieiiiaisieie ettt ettt e et ts s aem e een 205
Table B. 3 - GFaphs QdJACENCY LiSE.........ccocoviiriieeieeeeseesei et sttt st vttt sras e ee e naetassesans 210
Table B. 4 - Result Of DIJASIFG €XAMPLE ..ocooovveviicciioiovecieete e ees et st e s st s srsssssasebens 210
Table B. 5 - Computation of Dijkstra on diagraph of Figure B.7coevevviveiirioninrseisseessssresieesesssssssessesenens 211
Table C.] = DiISHINCE MULFIX ...t iaeis ettt eeae e en ittt bss e st eb s st s etabarasassennsensatenaseens 218
Table C. 2 - WelgRI MIAITIX c....cccoiiiiiii vttt ettt se s ese s eses e esssressrsa s teesaensenansnstessens 219
Table C. 3 - Time complexities and number Of CAICUIGIIONSccovvveiviriieieeiiriosiessteesisesiesssesesas oo sveresseesenns 222
Table C. 4 - The analogy between the physical system and the optimisation problem.veeeevovveeveean. 250

xviii

Al — Artificial Intelligence

AGYV — Automated Guided Vehicle

ALDEP — Automated Layout Design Planning
BEA — Bound Energy Algorithm

CAD - Computer Aided Design

CAM — Computer Aided Manufacturing

CC - Classification and Coding

CF — Cell Formation

CM - Cellular Manufacturing

CMS — Cellular Manufacturing System

CNC — Computer Numeric Centre

COFAD - Computerised Facility Design
CORELAP — Computerised Relationship Layout Planning
CRAFT — Computerised Relative Allocation Facilities Technique
DCF - Discounted Cash Flow

DCM - Dynamic Cellular Manufacturing

DCMS - Dynamic Cellular Manufacturing System
DLP - Dynamic Layout Planning

DOLA - Dynamic Optimal Linear Arrangement
ES — Expert System

EA — Evaluation Algorithm

FFA - Factory Flow Analysis

FMS — Flexible Manufacturing System

GA - Genetic Algorithm

Xix

GT — Group Technology

KBES — Knowledge Based Expert System

LA - Line Analysis

MAPI — Machinery and Allied Products Institute
MC — Machine Cell

MCST — Minimum Cost Spanning Tree

MPG — Maximal Planar Graph

MPWG — Maximal Planar Weighted Graph
MST — Maximum Spanning Tree

MWDRST — Maximal Weighted Directed Rooted Spanning Tree
MWDST - Maximal Weighted Directed Spanning Tree
NP — Non Polynomial

OLA — Optimal Linear Arrangement

OPT — Optimised Production Technology

PFA — Production Flow Analysis

PF — Part Families

QAP — Quadratic Assignment Problem

ROC — Rank Order Clustering

ROI - Return On Investment

SA — Simulated Annealing

SCP — Similarity Coefficient Product

SCTF - Similarity Coefficient Total Flow

SDPI — Steepest Descent Pairwise Interchange
SLP — Systematic Layout Planning

SP - String Processing

TC — Total Cost

TCR — Total Closeness rating

TOC - Theory Of Constraints

TSP — Travelling Salesman Problem

WDRST — Weighted Directed Rooted Spanning Tree
WIP — Working In Progress

WDRT ~ Weighted Directed Rooted Tree

XX

Introduction

1.1. Introduction and Significance

In the early years (early 20™ century) of the industrial era manufacturing facilities were generally laid out
as a process orientation, meaning that all similar machines were grouped together. This configuration is
known to cause long lead times, excessive work in progress and significant material handling. As demand
grows, production grows and typically, travelling distances increase due to the larger number of
machines and racks to store work in progress. Manufacturing engineers realised that product oriented
layout, or flow line organisation, would in many cases be more efficient by reducing lead-time, work in

progress and handling.

However, these advances are not new. In 1715 Adam Smith in his book “The Wealth of Nations”
described how a number of workers, specialising in different processes, worked together as a team to

make pins. He was probably the first to describe group technology [Smith 1715, Burbidge 1995].

In the later years of the 20 century, the popularity of group technology (GT) cells increased as a
response to a quickly changing market. Group technology cells (cellular manufacturing) is one of the
better approaches for effective arrangement of the shop resources. Theoretically, this system is capable
of superior flexibility, product quality and productivity, whilst reducing lead-time and work in progress.
Thus, this manufacturing system permits quick adaptation to any change in the market place. GT cell
concepts have intrinsic values but also have serious weaknesses, which are characterised by low machine
utilisation and lack of flexibility. A definition of a manufacturing system with its inputs and outputs is

presented in Figure [.1.

1.2. Group Technology Definition
Mitrofanov [1959] conceived the GT concept as a manufacturing philosophy. Gallagher [1973] also
reported that GT was developed to a sophisticated level in the U.S.S.R. before it was applied elsewhere.

In the early years of development it aimed at grouping the components to be processed at a given

1

Chapter 1 Introduction

the early years of development it aimed at grouping the components to be processed at a given processing
facility, utilising the information from route cards. A major part of the work in G7 was directed towards its
practical applications to different specific production problems. However, analytical work in GT has lagged
behind its industrial applications. In 1979 Burbidge advocated that Group Technology, by identifying
similar parts and grouping them together in families, could take advantage of their similarities in design and

manufacture.

'\
[T

T
L

Products, parts, etc.
S———ir]

f’glItzca/ Infor: manon

I

1
'C:Z& A manufacturing system is "

A complex arrangement
of

physical elements* characterised

by

measurable parameterst, r—

[nformation
]

Ser vzce 10 custome

Defectives and scrap

g e e e

* Physical elements:

Measurable parameters of system:

- Machine tools for processing
- Tools and tooling

- Throughput time
- Production rate

- % defective
- % on time delivery

5
4
3
E
5

- Production volumes - Total cost or unit cost
~ Work in progress inventory

- Material handling equipment
- People (Internal Customers)

Figure 1. 1 - Definition of a manufacturing system with its inputs and outpu}s
Cellular manufacturing (CM) has been recognised as one of the recent technological innovations for
improving productivity and competitiveness. By dedicating a machine cell to the production of a part
family, many of the efficiencies of mass production can be realised in a less repetitive batch environment.
Reduction in set up times, work-in-progress inventory levels, and production lead times are some of the

benefits associated with CM systems.

High |
volume
1000 — Transfer Lines
o s
Flow Lines
=
100 Cells
Production Rates e)
(Parts Per Hour)
10
] —
Low
volume L~ e et
i 10 1 00 1000 { 0000
Var iety ﬂVumber of dljferent parts per systems)

Figure 1. 2 - 4 comparison of different kinds of manufacturing systems

1.3. The Concept of Cellular Manufacturing

The traditional approach to the organisation of production is to use line layouts for high volume
production, and functional layouts for low volume cases. With traditional methods of manufacturing a
reduction in batch sizes would result in higher manufacturing costs due to increased cost of setups. GT has
invalidated this relationship and given economies to small batch manufacturing, which were earlier
belicved possible only for high volume production. Thus GT is a proven technique for improving

productivity in batch production systems utilising CM principles. A current comparison of the different

2

Chapter I Introduction

The machines, which are needed to produce each family of parts, are grouped together in what is called a
manufacturing cell. For example, a manufacturing cell might include a lathe, a drill, a milling machine
and a grinder. The first phase in the design and implementation of a CM system is the identification of
part families and machine cells. This phase is commonly referred to as the Part Family/Machine Cell
(PF/MC) formation problem. PF/MC formation is the process of analysing part and machine populations,
grouping parts with similar design features, tooling requirements, or manufacturing routines, into
families, and grouping the required machines into cells to produce the PF’s. This problem has captured
the attention of researchers for over a decade and numerous methodologies have been proposed. Missing
from the literature, however, are case studies reporting the usefulness of these techniques in designing an
actual CM system layout [Wemerlow 1987]. The continued development of new procedures, coupled
with minimal reported successes, indicates that the PF/MC formation/layout problem has yet to be

resolved to the satisfaction of researchers and practitioners alike.

Thus it is only during the last decade that the rapid redesign of CM systems has begun to receive a great
deal of attention. Production flow analysis, mathematical programming, graph theory, statistical
clustering, are some of the approaches that have been suggested for part and machine cell groupings. A
number of other methods have been developed, but the CM rapid redesign problem is yet to be solved
satisfactorily for many industrial situations. This is the case especially with respect to intercell and

intracell formation and for the increasing requirement of low volume, high variety products.

1.4. The Practical Significance of Cellular Manufacturing

The descriptive and case study literature concerning CM argues that batch lot users may achieve a
number of significant advantages. Clearly grouping parts into families should lead to lower average
machine setup (change over) times, because successive batches processed by a machine will be similar
due to grouping of the parts and dedication of the machines. Lowering the average set-up time should
lead to the use of smaller batch sizes, increasing the flexibility of the shop. As the average set-up time is
reduced, the machine utilisation per batch should be lower, where utilisation is defined as the percent of
total available time that a machine is busy. This should lead to an effective increase in capacity,
permitting more products to be processed in a fixed amount time. Hyer [1989] states that grouping
machines into manufacturing cells should reduce the average material handling time, since much of the
travelling will be within the cells. In addition, such cells should reduce the length of queues to machines,

lowering the work in progress inventory [Suresh 1985]. The combination of these factors implies faster
average throughput time.

CM 1s especially effective in improving the productivity of multi-product, small-to-medium batch size
manufacturing systems, which are computer-integrated. Here a particular application of GT is the design
of a CM system, where parts, having similar or identical machine requirements and operation sequences,
are grouped into families, and the complete set of machines and their capacity routines are grouped into

machine groups or cells. A typical 3D-cell model is presented in Figure 1.3.

Chapter 1 Introduction

machine groups or cells. A typical 3D—ell model is presented in Figure 1.3.

A Eroducts

Figure 1. 3 - 4 3D model of the classical cell within a manufacturing system

The effectiveness of a CM system is influenced by fluctuations in product demand, product mix, and
resource availability. The majority of existing PF/MC models assumes each of these factors to be
constant. In reality, the demand for a product varies according to its stage in the product life cycle, when
new products are introduced, and when the production of older products is discontinued. In addition,

resources are continually being replaced due to age and/or obsolescence.

{Finished Parts Stock
Work in Progress
Planning Effort

Effective Machine Operation

Costing Accuracy

Customer Service Paper Work

Productivity = Setting Time :
Order Potential Down Lime
Qverall Cost
Reliability of Estimates \ Work Movement

Component Standardisation and Rationalisation Overall Production Times

Figure 1. 4- Advantages and disadvantages of GT cells
On the other hand, disadvantages (as shown in Figure 1.4) of CM systems are that they are highly
sensitive to machines failure and their performance rapidly deteriorates under changes in product mix

and inadequate load balancing, Other disadvantages are:

o cells can lead to uneven and sometimes low machine utilisations, cell systems sometimes
require the duplication of equipment (additional investments), cell systems are less flexible
than job shops (as a result, their performance can actually worsen unless properly designed),
cell systems are costly to construct due to cost of machine re-allocation, cell systems are
vulnerable to equipment failure and require a relatively higher emphasis on maintenance than
job shops, and cell system operations require strict discipline over time in order to avoid non-

cell parts being routed to the cells and distorting flows and performance.

The traditional approach to cell formation is to use machine-part matrix clustering to create an
independent cell for each part family. Machine sharing and intercell flows are discouraged. However,
this creates the problem of determining the number of shared machines that must be assigned to each

cell, without affecting machine utilisation. Their input data usually does not consider flow directions and

4

Chapter I Introduction

Hence, these approaches fail to relate the intracell and intercell layout problems to the machine grouping
and sharing decisions. With product mixes and demands being subject to change, this rigid traditional
definition of cells does not totally support current design principles of flexibility and effective factory

integration. Thus, any new cell formation method must address the critical issues of:

= part formation, machine grouping, machine sharing between cells, intracell layout and intercell

layout, to meet organisational and operational goals of a company.

1.5. The Fundamental Problems in CM

The fundamental problem of CM system design is the identification of part families and the composition
of machine cells. Given a set of parts, processing requirements and available resources, the objective of
the PF/MC formation problem is to obtain a satisfactory partition of parts into families, and machines
into cells, with respect to one or more design objectives. The system design must be capable of producing
the required volume of parts without exceeding the capacity of the resources. Thus the purpose of this
section is to outline issues related to formulating and solving the PF/CM formation problem, and to

identify the desirable characteristics of a new design methodology.

The design of a CM system has a number of objectives. The following list of objectives, taken from

Ballakur [1987] and Wemmerlow [1988], are as follows:

¢ minimise throughput times; minimise setup times; minimise inventories; maximise resources
utilisation; maximise output; minimise machine relocation costs; minimise intracell and intercell
moves of material; minimise operating costs; minimise investment; minimise the number of cells;
minimise duplication of machines in different cells; maximise the percentage of operations of a
part processed within a single cell with minimal setup time; minimise job lateness; obtain a flow

line structure within the cell.

Consequently, the CM system design process is a multi-objective task. Some of these objectives are
conflicting and will require trade-offs during the design process. The majority of cell formation
techniques focus on a single objective, such as minimising intercell movement, or minimising capital
investment on new machines. Clearly these objectives are conflicting; one can minimise intercell
movement by investing in new machines, alternatively reduced capital investment may come at the
expense of increased material handling. Thus, any new methodology should address the multi-objective

nature of the PF/MC formation problem by including multiple objectives in the design evaluation.

A variety of manufacturing system parameters must also be considered during the process of forming part
families and machine cells. Typical parameters used in the PF/MC formation problem are as follows:
® part processing requirements; available resources; operation times; set up times; production
volumes; resource capacities.

Depending on the design objective, certain cost information is also needed. For example, material

handling costs, and costs of acquiring additional resources, would be required to evaluate the trade-off

5

Chapter 1 Introduction

handling costs, and costs of acquiring additional resources, would be required to evaluate the trade-off
between machine duplication and intercell movement. Thus, the new methodology developed to solve the

PF/MC formation problem should include all relevant parameters and costs,

Existing PF/MC formation techniques fail to address the dynamic nature of the production environment.
The underlying assumption of these techniques is that the part and machine populations are fixed and
that demand is constant. As previously mentioned, production volumes will vary from one time period to
another, and the machine population will also change as older machines are replaced and new technology
is acquired. Any new methodology should address the dynamic nature of the production environment by
incorporating a multi-period forecast of product mix and resource availability. This requires the

specification of the system parameters by time periods.

Furthermore, to obtain a feasible design, certain constraints must be considered during the design
process. For example, there must be sufficient resource capacity to produce the required production
volumes. Other typical constraints include restrictions placed on capital investment, machine utilisation,
the number of machines assigned to a cell, and the number of cells formed. The new methodology should

include all such relevant system constraints.

Once the design objectives, system parameters and constraints have been identified, a mathematical
formulation of the PF/MC formation problem can be developed. In the case of a single objective, such as
minimising intercell transters, the problem is frequently modelled as a mixed integer program. Some
researchers however, have difficulty solving the problem directly using mathematical programming

techniques, due to the large number of variables and constraints involved [Shafer and Rogers, 1991].

i Functional H Dynamic Cellular Hybrid Cellular

i Layouts Layout Modules Layouts

L | 1

E] Process Focus Product Focus
2 o Increasing Increasing

Figure 1. 5 - Proposed research-motivating layout parameters

In general, it is not easy to identify an optimal (non dominated) solution to a multi-objective problem
with conflicting objectives. In addition, it is not possible to include all relevant factors in a model of the
PF/MC formation problem. Thus, intangible criteria that are not easily measured are difficult to include
in the design objective function. Clearly, it is essential that the decision-maker be presented with a set of
solvable designs. The alternative designs can then be evaluated with respect to overall system
performance. Any new methodology should be capable of generating good alternative solutions. Thus,

motivating layout parameters for the proposed research are shown in Figure 1.5.

1.6. Research Objectives
o This dissertation addresses an innovative analytical approach to the integrated problems of

designing the dynamic cellular manufacturing (DCM) system layout concurrently with its

6

Chapter 1 Introduction

radically different approach to the cell formation problem. Specifically, this study provides a method to
derive dynamic cell designs that are economic and efficient to operate. In doing so it considers the
topology of the material flow network (skeleton), cell formation, intercell layout, intracell layout and the
determination of the layout of the resource groups on the shop floor, which are all highly interrelated
issues. In an ideal cellular manufacturing system only the intracell layout, or the physical placement of
machines within a cell, is important, since each cell is independent and there is no transfer of parts
between cells. However, in the arrangement of dynamic cells both intracell and intercell layout (ie.

physical placement of machines and cells within the shop floor) are important.

The design problem is modelled by a comprehensive mathematical program which captures critical
practical concerns such as operational and handling costs, material flow congestion and material flow
travelling distances and capacities. The model is decomposed into three Non Polynomial time solvable
(NP-hard) subproblems. Part family formation at the start is avoided. Cell formation is dynamic ie. the
layout allows a particular machine to process parts from one or more families. For the first step, the
travel chart as the input data is identified. Next, the dis-aggregation of the manufacturing shop into
dynamic cells minimises the travelling of the parts between machines. By developing an analytical
optimisation approach, the dynamic cell formation establishes the assignment of parts to machines and
logical grouping of machines into cells. In the first subproblem, a maximal weighted directed rooted
spanning tree is obtained. This yields machine groups, a material flowline layout network for each cell,
and allows machine sharing amongst cells without physically separating them. A tree layout for the
material flowlines is also suggested. The second subproblem concerns the reorientation of the material
flow network (pivoting optimum linear arrangement), which is a special case of the QAP, to further
minimise the intercell material flow network distances. Furthermore, parts which cause intercell flows
and machine sharing amongst nonadjacent cells can be identified for more detailed analyses. In essence,
this method exploits layout and handling strategies to minimise machine duplication for both intracell
and intercell flows. For the material flow routing problem, optimal polynomial solutions are derived by
an integer programming model-algorithm, whilst solutions to the optimum arrangement of flows are

delivered from the QAP.

Finally, an integrated DCM layout method combines an effective algorithm for the material flow design,
with a simulated annealing scheme, to solve the global DCM shop design problem. Thus the shop layout
of dynamic cells is developed in a manner that minimises material handling between the resources, which
at the same time incorporates machine capacity, costs, setup times, and machine utilisation, as well as
cell production rates and batches. These factors are incorporated in an economical machine duplication
methodology. For this purpose the simulated annealing (SA) algorithm is employed which accounts fully
for all the physical constraints. Once the sizes and shapes of the resources are known, the shop layout is
determined by a similar algorithm. Thus, the resulting dynamic cell shop consists of the cells and
associated machines. Throughout the proposed methodology a consistent objective is the minimisation of

the material handling effort.

Chapter I Introduction

This innovative approach will address simultaneously most major decisions involved in manufacturing
shop design, and provide near-optimal solutions. The approach will also generate an economic
production system designed for reducing operational costs and will be validated by using several
examples from the literature solved by established methods. Complementary theoretical justifications for

the mathematical programming models will also be provided.

Several new issues will be addressed in this thesis. In the cell formation procedure a new methodology
will be introduced by employing a maximum weighted directed rooted spanning tree from graph theory
(commonly a undirected tree is employed). This addresses the practical need of reducing materials
handling costs corresponding to each cell. In addition, the associated economics of machine duplication
(economical duplication) are addressed. Furthermore, by considering the machine dimensions the
physical placement of resources within the cell are established. Finally, a novel layout methodology is
developed to design a dynamic shop that optimises a mix of resources. This approach will address the

majority of shop floor-practical cases, where a pure cellular arrangement is not feasible.

In the worked examples, parametric analysis of the SA algorithm will show an improvement in the
responsiveness and effectiveness of the proposed SA layout procedure. In addition, mean values of the
material flow cost will be reported, which also is a further improvement, since current researchers rarely
include in their reports parametric analysis results. The SA algorithm is programmed in MATLAB, has
matrix and graphical interface outputs, which is again a further step forward in this research area.
Comparison examples will be utilised for both equal and unequal resource dimensions, with the average

value of the material flow costs comparable with other methodologies.

1.7. Overview of the Thesis

The thesis structure is as follows:
© The introduction and benefits of cellular manufacturing are discussed in Chapter 1.

o Chapter 2 presents a thorough review of the state-of-the-art design and layout of cellular

manufacturing systems and discusses the various judgemental criteria utilised.

o Chapter 3 describes the concept of integrated DCMS layout design methodology with a critical
analysis of cellular manufacturing approaches. In addition, the reasons are given for the
continued requirement to apply Group Technology (GT) techniques, together with the
consideration of machine sharing. It is shown that these techniques, which allow this

simultaneous solution, are very efficient in delivering workable group technology solutions.

o Chapter 4 shows that the proposed method of forming dynamic manufacturing cells is a
combination of flow and mathematical programming concepts applied to traditional GT cell
layout design. However, the basic assumption here is that machine sharing, on a part family
basis, creates load balancing problems. One possible solution is for the shared machines to be

retained in functional layouts provided the machine sharing is within the cell or between adjacent

Chapter | Introduction

cells. It is thus proposed that the traditional complex problem of layout design is simplified by
partitioning the layout design problem into two parts. The first part generates the basic "tree and

branches flow” pattern, whilst the second part simplifies the flow by re-ordering the branches.

In Chapter 5 the DCMS analytical approach is tested and compared against three other

methodologies from the literature. In addition, further physical location of the machines is also
considered.

Chapter 6 addresses the issue of the economical duplication of machines, and the optimisation of
physical location of the resources on the shop floor. Furthermore, a simulated annealing scheme
is presented that integrates material flow design procedure with the layout problem, to complete
the integrated solution strategy.

Finally Chapter 7 discusses the conclusions of this work, highlights its contributions and the

recommended avenues for further research.

Chapter 2 Literature Review of the Cell Formation and Layout

Literature Review of Cell Formation and Layout

2.1 Introduction

In this chapter various approaches are reviewed that have been adopted in an attempt to solve the
problem of cellular layout, and forming machines into groups, as well as components into associated
families for cellular manufacturing. CM has been recognised as one of the most innovative approaches to
improve productivity and flexibility for today’s many-products and low-volume production environment,

because it can effectively transform batch-type production into line-type production.

In recent implementation of CM manufacturing personnel were interested in concurrent formation of part
families and groupings of machine tools. In addition to the inherent advantages of physically grouping
machines into cells, material handling distances are also quantitatively reduced. Although a large number
of varied studies covering a wide spectrum of activities have been reported, all these approaches share a
common feature, ie. each utilises a binary machine matrix, where each matrix element takes a value of /
or 0. A matrix element (/) means that a part will visit the corresponding machine. The inherent problem
with these two-value matrix approaches is that a part will visit only one machine for a particular shape.

There is no convention of specifying alternative machines for the feature of that part.

Recently, the importance of layout design has received significant attention. It is recognised that with the
rapid changes in production techniques and equipment technology, very few companies are able to retain
their current facilities and layouts without damaging their competitive position. Additionally, many
previously purchased facilities are modified each year. The investment in these facilities attests to the
importance of the subject matter of layouts. A good layout design will not only reduce capital costs, but
also eliminate unnecessary activities, thus effectively increasing productivity. A number of papers
introducing solution algorithms and computer-aided planning tools have been published. In particular,

Tompkins [1984] and Francis [1992] have given surveys of these efforts.

Each of the four traditional plants layouts (shown in Figure 2.1) has specific features and situations of

applicability, as discussed below:

10

Chapter 2 Literature Review of the Cell Formation and Layout

In a functional layout, machines with identical or similar processing capabilities are located
together as single machines that can process parts from several part families. This type of layout
has advantages such as high machine utilisation and high flexibility in allocating operations to
several alternative machines. However, since the material follows complicated routes between

machines, this results in long throughput times, high WIP levels and high material handling costs.

T Dept A Dept B Dept C

ot | 8] (B 1] 1mll
‘) B2] [C2

BI{CIHDIE e
[A] [BI[C

'fjm 1) Finished
| Materials Product Products

Imulcsﬂ o Ctutr D] [E] [F] 2

Figure 2. 1 - Types of plant layout
In a flowline layout, different types of machines are arranged in a line, and parts typically flow
from one machine directly to the next one. Because it encourages forward-in-sequence or bypass
material flows, a flowline layout is preferable to the other layouts. Unfortunately, flowlines are
usually infeasible for a multi-product plant due to the multiple material flow paths corresponding

to the variety of operational sequences.

In a cellular layout, parts are clustered into families based on common or similar operational
sequences, and the machines required for each part family are grouped and placed together in a
manufacturing cell. A cellular layout reduces throughput times, lowers material handling costs
and decreases WIP levels. However, the disadvantages are duplication of machines and limited
flexibility in case of machine failures, or changes in the part mix. A variation of this layout is the
product layout that is dedicated to the manufacture of a single product or variations of the same

product.

In a project layout, the part or product to be manufactured remains stationary and all
manufacturing equipment required is moved to the location of the product. Usually, such a layout

is used only in shipbuilding, aircraft assembly, and other large scale construction projects.

2.2. Design of Cellular Manufacturing Systems

One of the first problems to be solved in the system design stage is called cell formation (CF), and here

the task is to group parts with similar design features or processing requirements into part families, and

forming the corresponding machines into cells. The CF problem has attracted much attention and

considerable effort has been put into developing efficient procedures. Some references (Burbidge [1990

and 1995], Heragu [1993]) today see “process organisation” (organisation’s based on process

specialisation) as the “normal state” for production, and see “product organisation “ (CM, continuous line

flow) as only partially possible in a limited number of special cases.

11

Chapter 2 Literature Review of the Cell Formation and Layout

e The production shop can be converted into
v i Ny CMS’s by finding compatible families of parts.
I /, .

o Cells can then be designed 10 process families of parts

{Functional layoutr)

_f
-0 | | ®
pg
Production job shop
@ '@

6
5®
e

Yy

::fp :~>
©

YWV V

Production flow shop
Product - oriented layout -
more efficient thun the

Job shop but builds

in larger lots
and is not flexible

Legend:

Assembly Lathe
Drill press @ Milling machine
s . Grinder Paint

e

Receiving
l
?
®
§
®
Starvage

Figure 2. 2 - Two classical manufacturing systems in common use today require a system level conversion to be
reconfigured into manufacturing cells [Black 1995]

The problem of grouping parts and machines for CM has been addressed extensively in recent years
(Burbidge [1995] and Heragu [1993]). A numbers of methods have been developed, but the problem is
yet to be solved satisfactorily for real industrial situations in conjunction with the necessary practical
considerations in CF (such as machine utilisation, economical duplication, setup time etc.). In order to
design cell systems, several methods, based on the analysis of production information, have been
developed, leading to different structures of cell system. Two classical manufacturing systems in
common use today require a system level conversion to be reconfigured into manufacturing cells (Figure

2.2).

2.2.1. Classification and Coding (CC)

Classification and coding offer advantages, such as design rationalisation and variety reduction, and
enable the analysis to be carried out systematically. However, they involve an exhaustive scrutiny of
drawings and design data. This method is more comprehensive than Production Flow Analysis (PFA)

discussed in the next section.

There are design codes, manufacturing codes and codes that cover both design and manufacture. The

main attributes of CC are as follows:

o Classification sorts items into classes or families based on their physical or functional

similarities. It uses a code to accomplish this goal.

o Coding is the assignment of symbols (letters, numbers, or both) to specific component elements

based on differences in shape, function, material, size, and manufacturing processes (Figure 2.3,

12

Chapter 2 Literature Review of the Cell Formation and Layout

show the CODE system).

7 12860
2 Hea il (L i

.10
1)< 16

el 2]

L CONCEHNRIC, O/ PROFILED

Foa

2. Digits 2 through B refine tha information on part shape and Size.
in the complate Lable. 16 characters ars availobls for each digit

A, Computer printaut by graphics code numbar ists simifar parts; it can be used by engineering
to avoid duplicate designs and by manufscturing to estabiish productian by tamilies of pans

s n, uas. we o mon oocumat

ceot Moy AT, ao. rs 0. DGTM COON WAMC UM DECMITION 0,
11120LTe ARG 130K 1e30 10,30 B aiw 1 MOLE 4% O1a YOLSRGs
€1120106 1018 €F 1090 1039 DR mim | WALE sa4e OFA 3OOWISL
11330178 1926 <F 1e30 1073 Ok RIN | MOLE casd DIA 301TR
11120574 ACT1039F £a30 1128 OR A1} MORE .set DIa HOLLGGY
11120176 1018 KF 2,90 8.3 OR pim | MLE J449 Ola 3076837
MAL CRONE BUR fad LACHT Mok oD, BoCUMENT

oot #O. AT, MCTION (DGTH RS SLCTION HOU (RS RAMILOR DBESCRIFTION o,
ALLI0DRF STEEL MR 5 2 3450 TR aRGLE DL TR 1956
2111008F S4€-1020 5 [13 s TR ANGLE 4373 THK 16708
G 411100PF S4€-1020 o [} TR OAMGLE o373 W E7737)
sillgowF Saf 100 69 3 TR ANGLE 300 Te 9238
A1L1009F 3aE 1020 & 90 330 TR AMGLE (%00 Ve it

Figure 2. 3 - Classification and coding CODE system (Dornbush E., 1969, American Machinist)
2.2.2. Production Flow Analysis (PFA)
Burbidge [1995] wrote ”If one uses PFA for CM, it is generally possible in any batch production or
Jjobbing factory, to find a division of machines into groups, and of parts into associated families. With
very few exceptions, these groups finished all the parts in the families of parts which they make, with no

back-flow and no cross-flow between groups”. It is generally possible therefore, to change from process

organisation to CM.

PFA4 is a technique, which uses the information available on route cards to simplify material flow and to
find the part families and machine groupings. The approach sorts through all the components, and groups
them by a matrix analysis, using product routing information. This method is simple, cheap and fast, and

PFA is a valuable tool in systems reorganisation.

[, 7,) e F1'14 - E) B ‘ e \ “ SREN &3 R R et SR
; N - {_*I ac{f:y Flow dnalysis ()28 ’D L& 2. Group Analysis (G4} 6{4 uses matrices 10 3. Line Analysis (LA}
Material 3 Parts divide flow through .
- major groups into Again uses nen;nrky fo
Ao . 1 . parallel sub flow analyse routes between

machines inside groups,
and find best sequence for
plant layout.

FFA wses networks to % ’ 2 r. streams. Finds

analyse routes to find best 3 ! divigion into fonilies
division of plant into major :
groups and simplest possible
Legend: inter departmental flow

Assembly System. 4. Tooling Analysis (TA)
@ Blanks :D arts

Forge T J Again uges matrices to
® Mochine shop 3;] Jind the division of the
Fimished @ outside frms Tools [T 3 “families” produced 7
Product @) sheet meral work I e in each group, into
@) Welding Depr. i *@ tooling fanilies
4 using the same tools.

Figure 2. 4 - Stages in production flow analysis
Production flow analysis (PFA) proposed by [Burbidge 1971 and 1995] (Figure 2.4.), requires subjective
and non-quantifiable inputs into the decision process. When applied to a single cell, the classic
framework for implementation of Production Flow Analysis (PFA) consists of four stages, each stage
achieving material flow reduction for a progressively reducing portion of the factory ie. Factory Flow

Analysis (FFA), Group Analysis (GA), Line Analysis (LA4) and Tooling Analysis (T4), to develop a

13

Chapter 2 Literature Review of the Cell Formation and Layout

layout for a CMS.

In FFA (inter-departmental layout) (Figure 2.4), dominant material flows between shops (or buildings)

are identified. In addition, if parts are observed to backtrack between any of the shops, these flows are

eliminated by a minor redeployment of machines.

PART / PRODUCT
ol 2B vl nlxle(anlalelel 2| BIRIDNRIEF]S M EIEIEIE,
2ISISISIEISI2 2851518182 2121 8IS|21818(81818|3]2]2)2
RN R R IR BN R R N R MR RTINS EENE
MNMAENEE R RN MR AN NI M NME RIS
DMT(3) | X X X|x|x x| (x| Ix|x|x
DM(3) X|X X x| Ix x[x]x X xIxIx
PG X X xIx[x[x
DXY(3) [X[X X X X1x
| _PEGR X
Z| PGR X X
= PGH
= _PGG x[x X
SN X [x[x[x[X xIx xIxx[x
RP X
PGB X x|x xX[X X
W&P X X[x
WG3 X

Table 2. I - PFA component — machine chart GA initial record. [Burbidge 1971]
In GA (intercell layout) (Table 2.1 and 2.2), the flows in each of the shops identified by FFA are

analysed. GA analyses operational sequences of the parts being produced in a particular shop to identify
possible manufacturing cells. Loads are calculated for each PF (Part Family) to obtain the machine
requirements for each cell. Each cell usually contains the entire machines necessary to completely
manufacture its PF. Due to sharing and non-availability of machines, some intercell material flows and
flows to/from vendors may arise. GA uses cluster analysis of a binary machine-part matrix to form

machine groups and part families simultaneously.

PART / PRODUCT
) Q Q < CTE = TS -
N HEHNEHEEEEEEEREEREEEEERARBREE
SIEILI2ISIEIRISISISIS|SISIRIE|5]2(28 88 98|8|e|8|z|gl®
NEE IR NN MR R N N R N R R IR R B R
PG IxIx[x|[x]|x]x
DM X | X
1)x§'33’//11))é))é —| GROUP-1
7 X ONE “EXCEPTION”?
P&G XXX XXX x[X[X]|X]|X =
FAMILY - 1 o
DMT 3/2 x T xTx . <
21 oM < TxTx < x g
S| DXY 32 XTXTX Xg
2T X | X[X[X
E 33—
= o X FAMILY -3
PGG : — .
PGB FAMILY -2 - P X
PGR Z .
DMT 373 g X .
DM 3/3 - g X _
P&GR ;

Table 2. 2 - Component - machine chart. Finding families and groups after GA complete [Burbidge 1971]

In LA (Figure 2.4), a linear or U-layout is designed for the machines assigned to each cell. LA assumes
that the machine compositions of each cell are known. It uses flow data, captured in the operation

sequences of the parts, and a travel chart giving the frequency of use of each routing, to develop a layout

14

Chapter 2 Literature Review of the Cell Formation and Layout

for each cell for efficient transport, as well as minimum material handling and travel by operators. In this
research work the algorithms for line analysis have been applied to group analysis, thereby combining the

two stages (GA and LA).

Digit 1 Digit 2 | Digit3 Digit4 | Digit 5 | Digit 6 Digit 7 | Digit8
Dimension Matching with
Method of | 3 Jaw chuck . . . Surface
. Special . . |Quadruple single point tool| Material | *
hold : accurac,
olding [?m; Overall D, L attachments Boring tool carrier holder y
ia.
3 Jaw chuck L/Dy, GG- rough
0 outer <40 <0.1 wlo wlo wlo formed | tumed V
Boring, counter- . . fine
1 3 qu chuck ¢$421 160 4l...| LDy Axial copying sinking, reaming, Uniform cutting, w/o ST- turned
inner 100 <0.5) accuracy. formed
tapping. VA%
101 L/Dy up Uniform cut, or staggered NE-
2 4 Jaw chuck] p60 | 250 o fto limit of| Face copying | Only outer turning. |cut, with accuracy, simple outer fit
200 . formed
chuck boring up to ¢48.
. . Outer shaping, chamfering, .
Spring 301...] Shafts : GG- inner fit
3 collet P80 315 400 | <500 2 Axis copying 1 with 2 inserting with form tool, cut off | (+ outer)
not copying.
Shafts . Shaping, etc. with i
4 Ma;i‘:: or p80] 400 42(1)0 500... C[c;mu;l Z:rlgiloc ® | form tool; with 3; not 3 with 4 c1lst1;)-ff [:1 Zi‘;::zal
i 1000 pering= copying. y
. . Inner shaping Shaping, inserting
Jigor 501..1 Shafts o . . S : . | NE- .
5 Fixture @ 125] 500 10001 1m. . 2m Steep cone mserFmg .chamf.ermg ;|chamfering W{th form tool; cut off polishing
with 3; copying. copying.
5 Between > Shafts Shor't thread Inner & out‘er at the Swith2 & 1 or 3 GG-bar knurling,
centers 1000 2m...5m milling same time etc.
7 Chuck- Shats | Threading with 6 with back tool holder | ST-bar
center > 5Sm lead screw
8| Steadies Thread with NE-bar
copying
o | Eccentric Unround Automatic cycle with 4™ & non-metal
(face plate) copying 5" digits

Table 2. 3 - Tooling Analysis [Gallagher 1973]
In TA (Table 2.3), the principles of GA and LA are integrated with data on the shape, size, material,

tooling, etc. and attributes of the parts. TA helps to schedule the cell by identifying families of parts with
similar operational sequences, tooling and setups. It seeks to sequence parts on each machine and to
schedule all the machines in the cell to reduce setup times and batch sizes. This increases available
machine capacity on bottleneck machines in the cell. The intracell machine layout problem is addressed
by LA, with TA seeking to minimise setup and tooling change times on essential machines within a cell

by sequence dependent scheduling.

The input data, and hence the solution techniques, used in these four stages are different sequentially
with almost no feedback between the stages. However, there are two difficulties within the PFA

approach:
1. both factory flow analysis and group analysis are based on heuristic rules, and

2. the part-machine matrix showing the operations needed for component processing becomes too

large to handle in the case of large numbers of components and machines.

Based on PFA, the objective of the cell formation is permutation of the columns and rows of the
incidence matrix so that a block-diagonal structure is obtained. The resulting diagonal blocks
representing the manufacturing cells. Clustering analysis is one of the most frequently applied

mathematical tools in CM. The two basic formulations of the clustering models are matrix formulation,

15

Chapter 2 Literature Review of the Cell Formation and Layout

and mathematical integer programming formulation. In the matrix formulation, judgement regarding the
number of clusters and the numbers of elements in each cluster is performed manually, whilst in the
integer programming formulation both the number of clusters and elements are determined by the

clustering algorithm technique.

2.2.3. Machine-Component Group Analysis
One of the frequently used representations of the CM problem proposed by Burbidge is a machine-part

incidence matrix {a;], which consists of ‘1’ (empty) entries, where an entry 1 (empty) indicates that
machine / is used (or not used) to process part j. Typically, when an initial machine-part incidence matrix
[a;] is constructed, clusters of machines and parts are not visible. A clustering algorithm allows the
transformation of the initial incidence matrix into a structured (possible block diagonal) form. To

illustrate the clustering approach to CM, consider the machine-part incidence matrix (Equation 2.1).

Part number

1 2 3 45
1101 0 1 1 Equation 2. 1
211 01 00
!:aij] =Machine number 30 1 01 0
411 01 0 O

Rearranging rows and columns in matrix (Equation 2.1) results in matrix (Equation 2.2). Two machine
cells (clusters) MC-1= {2,4} and MC-2 = {1,3}, and two corresponding part families PF-I= {1,3} and
PF-2=(2,4,5} are visible in this matrix.

PF-1 PF-2
13 245

MC-1 {2 11‘0 00 Equation 2. 2
4111000
{10 111
MC“2303110

Clustering of a binary incidence matrix may result in mutually separable clusters and partially separable
clusters. Mutually separable clusters are shown in matrix (Equation 2.2), whilst partially clusters are
presented in matrix (Equation 2.3). PF-2 from matrix (Equation 2.2) cannot be separated into two

disjointed clusters because of part 5, which is to be machined in two cells MC-1 and MC-2.

PF-1 PF-2
—_—— ——
13 2 4 5
MC-1 2|t ooeo Equation 2. 3
4011 o o o
110 o 1 1 1
MC=2 13 1o o 1 1 o

Removing part 5 from matrix (Equation 2.2) results in the decomposition of the matrix into two clusters,

two machine cells, MC-1= {24} and MC-2 = {1,3} and two part families, PF-1 = {1,3} and PF-2 =

16

Chapter 2 Literature Review of the Cell Formation and Layout
{2,4} (Equation 2.3). The two clusters are called partially separable clusters and the overlapping part

(part 5) is called a bottleneck part (ie. the part that is processed on machines belonging to more than one
machine cell). A way to eliminate a bottleneck part is to use an alternative process plan. For example, if
an alternative process plan for part 5 in matrix (Equation 2.3) involves machines 2 and 4 this would
result in two mutually separable machine cells. Alternative process plans are frequently available for
many parts. It is obvious that grouping of parts with alternative routes increase the likelihood of

generating ideal machine cells,

Analogous to the bottleneck part, a bottleneck machine is defined as a machine that processes parts
belonging to more than one cell, ie. it does not allow for decomposition of machine-part incidence
matrices into disjointed submatrices [Kusiak 1992]. The presence of bottleneck machines implies
intercell flows can be eliminated by duplicating the bottleneck machines. Machine duplication is often
expensive, and justified only if the savings achieved by reduction in intercell flows outweighs the initial
expenditure for purchasing extra machines. It is often necessary to identify those machines whose
duplication is a feasible economic option. This is performed using production data such as machine
utilisation, machine availability, machine costs and travel costs. For this purpose Burbidge [1990] has

classified machines into the following five major categories:

e S - special machines, only one of each type, whose work cannot usually be done by other
machine types, eg. grinding machines; I - same as S except there are more machines of each type;
C - common machines, many of each type, have many operations that can be performed on other
machines, eg. lathes and mills; G - general machines, very few of each type, used for a very large
variety of parts, eg. CNC machines, machining centres, and E -equipment machines, used to

assist manual operations, eg. benches and vices.

Usually, the machine duplication problem concerns machines of types I and C. Machines of other
categories lead to merging of cells or creation of common facilities cells (S and G types) or can be freely

duplicated in every cell that needs them (E type).
Matrix formulation has two disadvantages:

e it is difficult to represent and visualise clusters for matrices having a large number of rows and

columns, and

e in many cases it is difficult to obtain diagonal, or close to diagonal structure of the clustered

matrix.

Whilst intuitive manual methods may be adequate for small problems, they become progressively less
manageable, very time consuming and prone to failure when applied to larger problems. Burbidge [1977]
has reported on the successful use of manual methods to enlarge machine-component matrices, but Carrie
[1974] states that, “...Burbidge’s assertion that manual sorting of the matrix is suitable for large problems

up to 2,000 components is grossly optimistic”.

17

Chapter 2 Literature Review of the Cell Formation and Layout

2.2.4. Similarity Coefficient Methods (SCM)

2.2.4.1, The Single Linkage Cluster Analysis Method
The method of single linkage cluster analysis, developed by Sneath [1968] in the field of numerical

taxonomy, was applied to the problem of group analysis in PFA by McAuley [1972]. He was the first
author who applied similarity coefficients to solve cell formation problems. He used the Jaccard
similarity coefficient to transfer the incidence matrix to a triangular machine-by-machine (M x M)
similarity matrix. The method involves a hierarchical process of machine grouping in accordance with
computed similarity coefficients. McAuley defines the similarity coefficient for any machine pair as, “the
number of components which visit both machines, divided by the sum of components which visit one or
other of the machines”. This approach contains two essential steps; the first step defines the similarity
coefticient, which shows the interdependence for each machine - machine combination, whilst the second
step - clustering of machines, is based on similarity coefficients.

0 980 ~ l ’Iiu'esholé fon.'

gtﬁhnmmm‘

.

1 80 A

Ftl' A

¥ ¥ 1 1 T N ¥ l T 7
7 8 8 5 & 10 11 42 47 43 15 15 16 18

Parts

)

Figure 2. 5 - Hierarchical clustering of a machine - part matrix

In the cell formation problem, the similarity measure is calculated for each pair of machines, or each pair
of components. Grouping of machines or components is based on a specified similarity (admission level).
Any pair of components or machines, which has a similarity measure higher than the admission level and
clusters, are merged when their similarity measure is higher than the admission level. By plotting the
cluster versus admission level, a visual picture of the clustering process is revealed (Figure 2.5). To
illustrate this clustering approach McAuley’s use of the Jaccard similarity measure and single linkage
cluster analysis will now be demonstrated.

The concept of similarity coefficients is based on the similarity between two machine cells. Thus,
consider a set P= {x,, x,,...,x, } of n machines which make up cell P,andaset QO = { v, ,,...,»,, jof

m machines which make up cell Q. Then the similarity coefficient S o, between cells P and Q is given

by:
225,
§ =24 Equation 2. 4
P min(n, m)
where. Xiyi = { if Xi =Y Equation 2. 5
xiy; =0 if Xi 2y Equation 2. 6

18

Chapter 2 Literature Review of the Cell Formation and Layout

min (n, m) = n if n<m
min (n, m) = m if m<n

In order to illustrate the concept, consider the following cells:
1. cell C; consists of three machines {M,, M,, M;} required to manufacture part P,
2. cell C; consists of two machines {M;, M,} required to manufacture part P,,
3. cell C; consists of two machines {M,, M;} required to manufacture part P;, and
4. cell Cy consists of two machines {M,, Ms} required to manufacture part P,.

The cellular similarity coefficient between cells C; and C, is then given by:

AM MM M) (MoM3*YMaMy)+ (M3M3+M3My)
- min (3,2)

w(0+0)+(0+0)+(1+0) 1

- 2 "2

ac,
Equation 2. 7

The numerator of the coefficient S indicates the number of common machines between cells C; and

C,, whilst the difference between the denominator (ie. 2) and the numerator, indicates the number of
machines that have to be added to the larger cell C; in order to form a new cell to manufacture both parts
P, and P,. In this example, one machine has to be added to cell C; to form a new cell for parts P; and P,.
The similarity coefficient reflects the degree of similarity between two machine cells, and can be used as
a basis for CM design. If two existing cells have a similarity coefficient close to one, then a smaller

number of machines are needed in forming a new one from the two existing cells.

Seifoddini and Wolfe [1986] improved McAuley’s method in three ways, which led to significant

increases in computational complexity. They:
1. added a technique that duplicated machines to eliminate bottleneck parts,
2. employed an average linkage instead of the single linkage cluster analysis, and
3. employed techniques that reduced the amount of data storage required for processing.

Kusiak [1987] proposed a fourth measure. His measure of similarity between two machines j and [is

calculated as follows:

oy = 25 (S5 Equation 2. 8

where.
L = similarity between part j and part /,

i = number of machines,

O(Sy, Su) =1 if parts [and j both need machine i, or both do not need that machine, and

O(S;, Si) = 0 otherwise.

19

Chapter 2 Literature Review of the Cell Formation and Layout

The disadvantage of this method is that while two clusters may be linked by this technique on the basis of
a single bond, many of the members of the two clusters may be far removed from each other in terms of
similarity.

In the Kusiak [1992] paper, two new similarity measures were defined and incorporated in two heuristic
algorithms (with and without bottleneck parts). The first similarity measure is applicable for the CM
problem with basic and alternative process plans (where a block diagonal structure is embedded into the
machine-part matrices). The second similarity measure generalises the first matrix and is applicable to
non-decomposable matrices. The algorithms are illustrated with numerical examples and results are
provided. Kusiak discussed two algorithms for solving the CM problem. One is suitable for the CM
problem with basic and alternative process plans. The second algorithm is the clustering identification
algorithm Kusiak [1987] applied to the similarity matrix, which showed that similarity coefficients have

a significant effect on the quality of the clusters and in particular has the advantage of flexibility.

De Witte [1980] described the use of similarity coefficients in PFA, where process routines are the basic
data from which interrelations between operations in a functionally structured production system may be
found. He defined three new similarity coefficients used to measure the absolute relation between
machine types, and the relative single interdependence of the machine-component types. A quantitative
analysis of these interrelations permits operations to be grouped into cells in such a way that
independents between cells fulfil certain conditions. One possibility for describing interrelations between
operations is by using similarity coefficients, which determines the application of the specific cell

structure.

Waghodekar and Sahu [1984] proposed a new cell formation technique called MACE (Machine-
Component Cell Formation) which uses the Jaccard similarity. MACE consists of three outputs based on

three different similarity coefficients as follows:
e The first similarity coefficient considered was the Jaccard coefficient.

o The second similarity coefficient was the product of two ratios (SCR). Specifically, the first ratio
was the number of components that visited both machine types divided by the total number of
components that required the first machine type. The second ratio was the number of components

that visited both machine types divided by the number of components that required the second

machine type.

The third similarity coefficient was based on the total flow (SCTF) of common components processed by
a pair of machine types, and the same two ratios (SCR) were needed for this similarity. This heuristic
attempts to minimise the number of bottleneck parts without considering any possible constraints on the
characteristics of the resultant cells (ie. the number of machines in each cell, and the total number of

cells). It produces consistent results irrespective of the sequence of machines and parts in the initial

incidence matrix.

20

Chapter 2 Literature Review of the Cell Formation and Layout

2.2.4.2. Sorting-Based Algorithms
Another clustering technique has been developed by King [1980], called the rank order clustering (ROC)

method, which is designed to generate diagonalised groupings of the matrix entries. Being more specific
than the McCormick [1972] technique, it is therefore better suited to the problem of group analysis in

PFA. The ROC algorithm operates as follows:

® For each row of the machine-component matrix in turn, read the pattern of cell entries as a
binary word. Rank the rows in order of decreasing binary value. Rows with the same value

should arbitrarily be ranked in the same order in which they are in their current matrix.

The ROC algorithm rearranges rows and columns in an iterative manner that will, ultimately, in a finite
number of steps, produce a matrix in which both columns and rows are arranged in order of decreasing
value when read as binary words. With the PFA solution providing an initial matrix input to the ROC
algorithm, King [1980] generated a different solution in which there were five machine-component
groups and four exceptional elements. This is because ROC is a ranking and not an optimising procedure,
and is determined by the form of the initial matrix. However, this ROC algorithm has two major

limitations:

1. the storage of the incidence matrix as a two-dimensional array puts a severe limit on the size of

the problem that can be tackled, and

2. efficient implementation is not possible for very large problems, because the sorting procedure

has a complexity of cubic order.

In 1984 Waghodekar showed that the ROC method may not produce consistent results when the rows or
columns in the initial matrix were interchanged. The ROC2 algorithm, developed by King [1982],
improves on the original ROC by applying a quicker sorting procedure (in order to avoid extensive

storage and handling of very large matrices).

2.2.4.3. The Bond Energy Method (BEA)

A general cluster analysis technique, called the bond energy algorithm, has been developed by
McCormick [1972]. He maximises the sum of all products of nearest-neighbour elements in the permuted
matrix. Disconnected machine cells are formed after two iterations; the first finds the optimal column
permutation, the second finds the optimal row permutation. As far as it is known, there have been no
previous reports of this method having been used in connection with the problem of PFA. A bond is said
to exist between each pair of adjoining row and column elements in the machine-component matrix and
this creates a “bond energy”, which is defined by the product of the values of the adjoining pair of
elements.

McCormick’s BEA is a sub-optimal heuristic procedure which provides satisfactory solutions for a
variety of clustering problems. The BEA algorithm is:

[. Place one of the columns arbitrarily. Set { =1.

2. Tryplacing individually each of the N-i columns in each of the i + 1 possible positions, and compute

21

Chapter 2 Literature Review of the Cell Formation and Layout

each column's contribution to the total bond energy. Place r the column that gives the largest
incremental contribution to the total bond energy in its best location. Increment i by 1 and repeat until
i= N (where N is the total number of columns).

3. When all the columns have been placed, repeat the procedure on the rows (replacing N in the above
with M | the total number of rows).

The BEA is generally applicable to clustering problems, including those in which there may be more than

the two types of matrix entry normally considered for grouping purposes.

2.2.5. Network Flow

The objective of the network flow methodology developed in the Lee [1967] article, is to measure the
functional similarity between machines and then to group the machines into cells in such a way that all
the parts in each family can be processed in a machine cell. This solution to the CM problem is obtained
in terms of one complete-loop and several sub-loops, identified by using a relaxation method for solving
the network flow problem. The objective of the article is to formulate a capacitated network model to
generate optimal machine cells and part families in CM problems, without specifying the number of
clusters in advance. The flow distance function for machine dissimilarity is used as the length of the arcs
of the network. Each arc length can in turn be interpreted as the per-unit flow costs when one unit of flow
is sent from the source to the terminal nodes. Machine cells are identified, based on closed loops, after
applying the relaxation method for solving the minimal cost flow problem. Part families are then formed

using the information given by the machine-part matrix.

The advantage of this network model in cluster analysis is its extremely efficient computational
performance. The approach was found appropriate for solving large-scale CM problems including up to
500 machines and several thousands of parts using a minicomputer. A disadvantage though of this

approach is that it only deals with the machine-matrix without considering the operational sequences.

2.2.6. Cost - Based Methods

Another approach is to consider that the cost performance of a CM system is directly dependent upon the
manufactured product mix. In this approach, the issue of robustness of a cellular design to product

demand changes, has been addressed by only a few research studies.

Rajamani [1992] considered the cell formation in a manufacturing environment where there are
significant sequence dependent setup times and costs. The trade-off that exists between the savings on
sequence dependent setup costs and additional investment on new machines was identified and explicitly

modelled. The model developed was a mixed integer program.

The cell formation approach proposed by Seiffodini [1990] considers the random nature of the product
mix by assigning probabilities to discrete product mixes and to the associated machine-component
incidence matrix. For each product mix under consideration, a CF is determined, and the intercell
material handling costs that correspond to this configuration, under all possible product mix\mixes, are
calculated. Subsequently, the expected inter-cell material handling cost for each configuration is

evaluated and used to select a near optimal solution. This approach does not take into account shop

22

Chapter 2 Literature Review of the Cell Formation and Layout

characteristics that affect the probabilities assigned to each product mix, such as resource capacity
constraints. Furthermore, the fact that the optimum shop partition is calculated for every product mix
limits the number of alternative states to be considered. Minimisation of fhe expected material handling
cost has also been the target of related research conducted by Rosenblatt, et al [1992], who considered

the stochastic nature of the product demand in their study of plant layout.

Harhalakis [1994] focuses on the cell formation under random product demand and presents an approach
to obtain robust shop decomposition (cellular designs with satisfactory performance over a certain range
of demand variation). The statistical characteristics of the independent demand, as well as the capacity of
the system resources, are explicitly considered. The design objective is to minimise the expected intercell
material handling traffic, a measure originally introduced by Seiffodini [1990]. In 1994 Harhalakis
presented a two-stage design approach. In the first stage the statistics of the feasible production volumes
are determined given the statistics of the independent demand, and are used to compute the design
criterion for that shop configuration. This design stage provides the link between the forecasted market
demand, and the feasible production volumes, upon which the cell formation process should be based. In
the second stage a near optimal cell formation is determined using a grouping methods also presented by

Harhalakis [1990].

2.2.7. Mathematical (Integer) Programming Formulation

Robinson [1986] addressed the formulation of families of parts, which required similar manufacturing
processes with closely related machines, employing a Flexible Manufacturing System (FMS) using the
topological concepts of polyhedral dynamics (ie. g-analysis). Here a qualitative grouping of parts was
accomplished through the application of polyhedral dynamic concepts, in particular the ¢ -analysis, and
showed that the use of the g -analysis may provide:
e suggested part groupings based upon similar processing requirements,
e a measure of the integration of the parts into the overall manufacturing process,
o the strength of the interconnections between parts groups,
o the resilience of the FMS to change in the availability of parts and the potential of machines to
become bottlenecks, and
e a measure of FMS complexity resulting in a qualitative understanding of manufacturing process
stability.
In the Kusiak [1987] paper the relationship between the matrix model, the p - median model, and the
classical group technology concept, was discussed. A generalised group technology concept, based on the
generation for one part of a number of different process plan, was presented. A corresponding integer-
programming model was formulated, and illustrated with examples. The author suggested that the

programming models, which were developed, provided more convenient representation of the clustering

problem than the matrix model. However, this formulation seeks to maximise the total sum of similarity

23

Chapter 2 Literature Review of the Cell Formation and Layout

measurements between all possible pairs of objects for a specified number of groups, under the condition
that each object is assigned to one cluster. Additionally, it is assumed that the number of groups’ (p) is
known in advance. Evidently, this is not a very natural assumption, since in reality the number of clusters
is unknown. Moreover, this method is not appropriate for large-scale applications, because it requires
excessive computer time and memory for a formulation of constraints in terms of decision variables for
product groupings.

Vakharia et al. [1993] has studied the impact of demand changes on the performance of CM systems.
They recognised that resource capacities limit the ability of a cellular system to adequately respond to
such changes, and proposed a system redesign methodology to address these robustness issues. Their
method is based on a zero-one mathematical programming formulation and attempts to allocate new
parts, or reallocate those for which large demand changes have occurred. It is noted that the
manufacturing cells remain unchanged in composition and, therefore, system robustness is not addressed
at the shop design stage. This technique may be viewed as complementary to a robust shop design

methodology.

2.2.8. Graph Theoretical Approach

To improve the method of clustering, Rajagopalan and Batra [1975] have developed a “graph-theoretic
approach” (graph theory terminology is presented in Appendix A). In this paper, a method for designing
a cell is presented, which is based on the use of similarity coefficients, taking into account that some
machine types can be allocated to several cells. Three similarity coefficients are introduced: one based on
the absolute interdependence between machine types, the second based on relative mutual
interdependence, and the third on single interdependence. The clustering was based on the graph-

theoretic approach.

This method, so far, has been used in designing a cellular manufacturing system in such a way that for
every component there is at least one cell in which the component can be fully processed. The method
shows two important characteristics: that it is possible to analyse a greater number of routines and
machine types, and it can be used even if the relations between machine types are fuzzy. The vertices of
this graph are the machines, and the arcs Jaccard similarity coefficients. Here a clique (means of
classifications) is a maximal collection of vertices, every pair of which is connected by an edge of the
graph. The main disadvantage of this approach is that because of the high density of the graph, a very

large number of cliques are usually involved and many of the cliques are not vertex jointed.

Vannelli, [1986] considered in his paper the problem of finding the minimal number of bottleneck
machines and/or parts while disconnecting the operation into several groups. The problem is first shown
to be equivalent to finding the minimal cut-nodes (the cut-node algorithm is presented in Appendix B) of
a graph while disconnecting the graph into m subgraphs, each having at most k nodes. A dynamic
programming approach reported by Lee [1979] is then implemented and extended to find the bottleneck

cells. This algorithm is a heuristic for finding minimal cut-nodes of a graph, given that the designer

24

Chapter 2 Literature Review of the Cell Formation and Layout

specifies the number of disconnected groups desired, an upper bound on the number of nodes in each
group, and a starting node in each group. The interactive capability of this approach allows a variety of
good groupings to be considered. The intention is to give the designer complete flexibility in the design

and analysis of systems.

2.3. Cellular Layout
The cellular layout approach has been recognised as an effective means of enhancing the efficiency of a

discrete parts manufacturing shop. The design problem of a cellular layout is formulated in two distinct

stages:
o Allocation of the machine cells to areas within the shop-floor (intercell or facility layout).
e Layout of the machines within each cell (intracell or machine layout).

This section reviews the appropriate work in both areas of the facility and machine layout problems.
Various formulations, algorithms, and heuristics for these problems are presented. The facility layout and
machine layout problems seek the best arrangement and configuration of facilities and machines,
respectively.

Although both facility and machine layout are location problems, the facility layout problem lacks a flow
structure. Furthermore, a major disadvantage of most existing formulations of the cell layout problems is
that they require the location of sites (to which the facilities are to be assigned) be a known priory by the
designer. However, since both are location problems and belong to a class of Non Polynomial (NP) time
solved complete problems, it is important to review the past and present solution techniques of the

facility layout problem in order to understand the fundamentals of layout problems.

2.3.1. Facility Layout Problem

The facility layout problem in CMS hasn’t captured researchers’ attention as much as cell formation in
the past two decades. The assignment of facilities to discrete locations is a combinatorial problem that
has been of interest to some earlier investigators [Armour 1963, Gavett 1966]. Some optimal-producing
procedures have been presented [Bazaara 1983, Lawler 1963]. However, the only work for small
problems (number of facilities less than 25) has yielded a number of interesting heuristic procedures

proposed by Armour [1963], Buffa [1964], Hiller [1966] and Lee [1967].

Facility layout problems have been of interest to researchers of different disciplines since the early
1960’s. Solution techniques to address such problems come from many differing fields. Furthermore,
different names have been applied to these problems in the literature; Muther [1961] prefers “Layout
Planning”, Buffa [1964] uses “Facilities Allocation” while Hiller [1963] and others [Apple 1963, Lee
1967] prefer “Plant Layout”. The word “facility” sometimes is use interchangeably for “office”, “plant”,
or “department”. The layout problem, however, plays an important role in shop floor design. A poorly

designed layout will result in poor productivity, increased work in progress, disordered material

handling, and so on. Only a few researches have dealt with this comprehensive subject.

25

Chapter 2 Literature Review of the Cell Formation and Layout

2.3.1.1. Traditional Layout Design Processes
Traditionally, the facility layout problem is referred to as plant layout. The research field of layout has

predominantly related to qualitative approaches and depended heavily on the subjective use of checklists,
motion economy principles, and rules of thumb. In one of the earlier texts of layout planning, Immer
[1950] discussed the basic steps involved in the analysis and improvement of an existing layout. The
main idea is that the system productivity can be increased by gradually rearranging the existing machine

lines to comply with the desired material flow.

In 1973, Muther developed a layout procedure named systematic layout planning (SLP). SLP (Figure 2.6)
has been recognised as a milestone in traditional facilities layout methodology. In SLP, block layout
alternatives are systematically produced on the systems material flows (from-to chart) and activity
relationships (activity relationship chart). Space requirements and practical limitations are considered in
the design process to generate satisfactory solutions. The SLP method has difficulties in defining the
adjacency relationship (definition presented in Appendix A) and in converting the space relationships
and diagrams into feasible block layout alternatives. Nevertheless, SLP provides an overall guideline for

developing subsequent methods of traditional layout design.

[itocanion

SLP IN ACTION

MAIN
BLDG

1t GENERAL
OVERALL
Layour

S b

“PRACTICAL
TTTUMITATIONS

B g%

o1y "
= ALUATY
e
]

MODIFYING
CONSIDERATI
L

1V INSTALLATION

Figure 2. 6 — Systematic layout planning [Muther 1975]
In 1977, Apple summarised the facilities layout design methods and proposed a sequential design

procedure. Apple’s procedure recommends a set of detailed design steps, including relevant issues to be
considered at each step. Following these procedures, one can systematically generate layout alternatives
from the data collection stage, to the end of the design implementation phase. His method emphasises the
importance of designing an effective flow pattern for the productive system and uses the planned flow

pattern as an overall guide for the entire layout design process.

These traditional layout design methods have underlined the basic design process of facilities layout

26

Chapter 2 Literature Review of the Cell Formation and Layout

planning. These consists of six steps:

o defining the problem; analysing the problem; generating alternative designs; evaluating the

alternatives; selecting the preferred design and implementing the design.

Virtually all contemporary layout planning methods are based on these steps suggested by Muther and
Apple. Although quantitative approaches have recently played a more dominate role in developing
facilities layout design methods, the systematic structure of the design process, the flow analysis (from-
to-chart), and the adjacency analysis (relationship chart) are still the foundations of the layout planning

tools.

2.3.1.2. Quadratic Assignment Problem (QAP) Model

The problem of assigning new facilities to sites or location when there is an interchange between new
facilities, is refered to as a quadratic assignment problem (QAP). QAP, which is a problem in
combinatorial optimisation, was first introduced by Kopmanns and Beckmann [1957]. The problem
involves assigning n facilities to m locations so that two total cost matrices can be formatted. One matrix
gives the magnitude of the flow of materials between any two facilities, and the other specifies the
distance between any two locations. Detailed further discussion about the QAP model, together with
solution methodologies such as: exacts, integer-linear programming, heuristics [steepest-descent

pairwise-interchange method (SDP/)] are presented within Appendix C.

2.3.1.3. Computerised Layout Planning Techniques

Computer programs for determining layouts generally fall into two classes:
e construction algorithms and improvement algorithms.

a) Construction Algorithms
A construction algorithm constructs the layout from flow data and the information in the activity relation

chart. Construction algorithms do not require the user to specify an initial layout and usually generates a
layout from scratch. Because these algorithms construct layouts based on the closeness ratings given by
the REL (relationship) chart, they are sometimes referred to as qualitative layout algorithms. Some of the
computerised, construction algorithms are PLANET [Apple 1972], COREILAP [Lee 1967] and ALDEP
[Seehof 1967].

ALDEP
Seehof [1967] of the IBM Corporation developed ALDEP (Automated Layout Design Planning). ALDEP

makes use of the closeness ratings that appear in the activity REL chart. ALDEP first selects a department
at random and places it in the upper left-hand corner of the layout. A department with a high closeness
rating (A or E) is then placed in the layout adjacent to the first department. Successive departments are
placed in the existing area in a top down fashion, following a “sweep” pattern. The process is continued
until all the departments have been placed. The performance score for each layout is then computed

based on a numerical scale attached to the closeness ratings. Thus, the recommended layout has the

27

Chapter 2 Literature Review of the Cell Formation and Layout

highest closeness rating score. However, a drawback to this method of scoring is that the ALDEP-
designed layouts can have very irregularly shaped departments. Such configurations tend to be
impractical from an operational viewpoint, as well as expensive to construct if walls are to be used to
separate departments. Another limitation of ALDEP is the assessment of the numerical values assigned to
the closeness ratings for each department. This method is very subjective, since no two layout analyses

will produce the same REL chart.

CORELAP
Similar to ALDEP, CORELAP (Computerised Relationship Layout Planning) [Lee 1967] is a

construction routine that also places departments within the layout, using closeness rating codes. The
major difference between CORELAP and ALDEP is that CORELAP does not randomly select the first
department to be placed. Rather, a total closeness rating (TCR) based on numerical values, is computed
for each department and compared. Although CORELAP requires no initial layout and does not randomly
select an initial layout as compared to ALDEP, it is nevertheless a qualitative heuristic method, since
assigning closeness ratings to departments is again quite subjective. Neither CORELAP nor ALDEP

considers the actual material flows between facilities in their selection for placement.

PLANET
The layout program PLANET provides three selection rules to determine the order in which facilities

enter the proposed layout. All these rules are based on the cost of unit flow between each pair of facilities
and a set of “placement priorities” specified by the user. However, the flow sequence is not taken into

account in the ordering process.

The basic differences between these aforementioned construction methods lie in the selection rules with
which the sequence of facilities’ entering the layout design is determined. Because of their sequential and
non-backtracking nature, construction methods usually require less computing effort and their solution

quality is not as competitive as the other methods (eg. SLP).

b) Improvement Algorithms

Improvement algorithms seek a best layout arrangement from an initial layout considering the effect of
interchanging the location of two or more facilities. They are generally preferred to construction routines
algorithms because these often result in departments with odd shapes. Furthermore, they are not as
subjective as the construction algorithms. Whereas the construction algorithms are based on an active
relationship chart as the input, improvement algorithms facilitates the design of layouts based on flow
considerations. Due to this major distinction, improvement algorithms are sometime referred to as

quantitative layout programs.

CRAFT (Computerised Relative Allocation of Facilities Technique)
CRAFT is one of the oldest computerised layout programs as well as one of the most publicised. It was

developed by Armour and Buffa [1963] and subsequently tested, refined, and applied by Buffa [1964].

The primary objective used in CRAFT is to minimise the total transportation cost of the layout, where

28

Chapter 2 Literature Review of the Cell Formation and Layout

transportation cost is defined as the product of the cost to move loads per unit distance from department i
to department j, and the distance between departments i and j. To be more specific, the total cost of the
product flow between all pairs of departments is:

n

C = Z Z wividi Equation 2. 9

i=l j=1

where: n - Number of departments,

v;; - Flow-number of loads moved from department i to department j in a given time,

u; - Cost-material handling cost to move a unit distance from department i to j, and

d; - Distance separating departments i and j.
The input information vy, u; and d; may be represented as n-by-n- matrices (the from-to-matrices).
CRAFT assume departments to be either rectangularly shaped or composed of rectangular pieces.
Furthermore, departments are assumed to be located at their area centroids. The centroid is another term
for the coordinates of a centre of gravity or balance point. The accuracy of a department, assumed
located at its centroid, depends upon the shape of the department. The assumption is most accurate when
the shape of the department is square or rectangular, but is less accurate for oddly shaped departments.
The distance between departments is assumed as the rectilinear distance between centroid locations. For
example, with two centroids, (Xy, Y4) and (Xp, Y) Hakimi [1964] proposed the rectilinear distance to

be calculated as:
DIST(a w0)= |Xa~ XB|+1YA"YB| Equation 2. 10

Although CRAFT is considered one of the most publicised public domain, quantitative layout programs,

it draws some criticism in the literature. The criticisms include the following:

o CRAFT’s pairwise interchange heuristic does not guarantee that the least-cost layout will be

found, since all possible interchanges (three, four or more at a time) are not considered.

e The CRAFT solution is path dependent. That is, the final layout is highly dependent on the initial
layout supplied. In order to get an unbiased final layout, the layout analysis should specify a total
of n! possible initial layout arrangements of n facilities, choosing the best final solution

generated. This is definitely impractical.

o The method of centroids becomes less accurate or valid as the shape of the department becomes
more irregular. Such an assumption might affect the outcome of the solution when departments

are large. For the machine layout problem, the shapes of machines cannot be altered.

In spite of its drawbacks, CRAFT still is an excellent design or benchmark solution for comparison with
other solutions. It also should be kept in mind that the major contribution of computerised approaches is
the search phase of the layout process, not the selection phases. If the layout analyst is aware of this, the

CRAFT layout program can serve a very useful purpose. This model is capable of handling a problem of

29

Chapter 2 Literature Review of the Cell Formation and Layout

up to 40 departments or machines, but does not guarantee an optimum solution.

Both SPACECRAFT [Johnson 1982], which is designed to produce layouts for multistorey structures, and
COFAD (Computerised Facility Design) [Tompkins 1984], which incorporates the choice of a material
handling system as part of the decision process, are an extension and modification, respectively, of the
original CRAFT program. However, they share the same advantages and disadvantages employed in

CRAFT.

Both the constructive and improvement algorithms are heuristic and they do not guarantee an optimal
solution. They can be used for solving problems that are too large to be solved exactly (ie. greater than 50
machines). One of the major differences between the improvement and constructive algorithms is that the
former has the disadvantage of requiring the initial layout to be specified. However, improvement
algorithms generally result in more useable layouts, since construction algorithms often give layouts with

oddly shaped departments.

2.3.1.4. Graph Theoretics Formulation
A number of researchers have used graph theory to solve facility layout design formulations (terminology

and definition are presented in the Appendix A). Probably the first suggestion that the mathematics of
graphs could be useful in layout planning was by Levin [1964], who proposed one of the first adjacency-
based layout approaches based on graph theory. Adjacency graphs have three major shortcomings for use

as the basis for a design skeleton when material flows are major factors. They are as follows:

1. Adjacency graphs are limited to consideration for only those flows between adjacent cells. That is,
some of the desired adjacencies must be abandoned in order to meet the planarity condition and to

obtain a solution.
2. The flow networks of the actual material flow paths are ignored by the adjacency graphs.

3. The locations of facilities resulting from adjacency graphs are quite subjective, that is, if a
department A is adjacent to department B, a precise location of department B from department A

cannot be captured.

a) Planar Graph Approach
Graphs of special topological characters called planar and dual graphs are of particular interest to facility

layout researchers [Carrie 1975, Giffin 1986]. By definition, a graph is said to be planar if it can be

mapped onto a plane such that no two edges intersect.

Furthermore, if a graph contains the maximum number of edges without loosing planarity, then it is a
maximal planar graph (MPG). That is, a maximal planar graph is a planar graph to which no other edges
may be added without the graph becoming non-planar. Each face (where a face is the area bounded by a
cycle of edges) of a MPG is bounded by exactly three edges. Thus, Busackeer [1965] has shown that a
planar graph is maximal if, and only if, it is triangular, ic. all its faces, including the infinite face (a

region outside the graph) are bounded by three edges. He has also shown that every planar graph is a

30

Chapter 2 Literature Review of the Cell Formation and Layout

subgraph of a triangular graph having the same number of vertices, and established two significant

relationships as follows:

€ =316 Equation 2. 11
foe =2n—4 Equation 2. 12
where: emar - the maximum number of edges in a MPG,

frmax - the maximum number of faces, in a MPG, and

n - the number of vertices in a graph.

These two upper-bound equations indicate that the number of nodes has to be greater than or equal to
three, and the number of faces is always even. A graph is planar only if it has a “dual” solution. This
indicates that if a graph G is planar, than there exists an associated graph G’, such that it is dual.
Conversely, a dual graph is also a planar graph. The dual graph G’ is constructed by placing a point in
each face of the planar graph G, including the infinite face, and connecting the two points whose faces
have a common edge. The points become the vertices of the dual and the connecting lines becomes its
edges. The number of edges in a planar graph and its dual are equal, whereas the number of faces and

vertices are interchangeable.

Because of its characteristics the planar graph can be mapped onto a 2-dimensional facility layout
problem. In a single floor layout, the block plan of the facilities’ arrangement can be represented as a
“layout graph”. Each point on the block plan at which three or more facilities meet, represents a vertex in
the layout graph. One of these facilities may be the exterior of the layout. The boundaries of the facilities
connecting these points are the edges of the graph, and the facilities are its faces. The layout graph is
always planar since in the block-plan facility boundaries do not overlap, and thus the edges of the layout

graph intersects only at its vertices.

Facilities that are expressed by the REL chart can also be represented as a connected weighted graph,
where the vertices and edges of the graph represent the facilities and their relationships, respectively. The
graph is undirected because of the symmetry of the relationship chart. It is also weighted since each edge
has associated with it one of the ratings: A, E, I, O, U, and X. Since the primary objective of the facility
layout problem is to maximise the adjacencies achieved in terms of weight and number, the layout
analyst can apply the Maximal Planar Weighted Graph (MPWG) concept. The formulation of developing
a MPWG is as follows [Nozari 1981], with the objective:

n

n-1
Maximize Z = 2 2 WX Equation 2. 13

i=l je=itl

subject to z; = 3n—6, Equation 2. 14

31

Chapter 2 Literature Review of the Cell Formation and Layout
xj = {0, 1} v i,] Equation 2. 15

where: z; = the weight of the relationship between facilities i and j, and

_ L if facilities i and j are adjacent
Yoo, otherwise '

Different subsets of elements of the relationship chart may be selected for the formation of the MPWG,

thereby resulting in a number of graphs with different weights. A number of edge combinations equal to:

nn-1)/2
n{n-1)/2 C3n—6 = (3n—6 J

can be evaluated and tested for planarity in order to obtain an optimal solution. The possible number of

Equation 2. 16

tests for planarity is a combination, instead of a permutation, because the planar graph contains edges not
arcs. That is, the flow from node i to node j is the same as the flow from node j to node i. However, as for
the machine layout problems, this statement is false, since the number of parts flow from machine A to
machine B is not necessarily the same as the number of parts flow from machine B to machine A. The
expression n(n-1)/2 indicates that the flow matrix is a symmetric matrix, and 3n-6 is the upper bound for

the number of edges allowed.

In summary, there are three steps for developing a block layout representing a facility layout arrangement

by the planar graph concept:
1. developing a MPWG from the facility relationship to indicate which facilities will be adjacent,

2. constructing the dual graph of the MPWG to represent facilities as adjacent regions having

specific boundaries, and

3. converting the dual graph into a block layout where the facilities have a regular shape with

specific areas.

Developing an optimal MPWG, however, is a difficult combinatorial problem, which has been reported
to be NP-complete (Non Polynomial time solvable-complete problem) [Foulds 1983]. Optimal solutions
can be obtained by branch and bound method. However, this solution technique requires an excessive
amount of CPU time when the number of nodes is greater than 15. Hence, interest has turned to

developing heuristic solution techniques for the problem.

b) Graph Heuristic Solution Methods

Testing a graph for planarity is the first problem that has to be solved before the planar graph concept can
be applied to the facility layout problem. Unfortunately, this testing is difficult because of its NP-
complete nature [Giffin 1986]. A substantial advance has been made by Hopcroft and Tarjan [1974], who
developed a polynomial-time (linear-time) planarity testing algorithm. Since Hopcroft-Tarjan’s algorithm

is difficult to implement, recent heuristics have been developed to avoid planarity testing.

32

Chapter 2 Literature Review of the Cell Formation and Layout

Deltahedron Heuristic
It can be shown that the faces or regions of a MPG are all triangles, including the exterior face.

Therefore, a MPG is equivalent to a polyhedron with all faces triangular. Such a polyhedron is
sometimes called a deltahedron, hence the name of the method. The deltahedron method was developed
by Foulds and Robinson [1978]. It has the advantage of being easy to follow compared to the Hopcroft-
Tarjan algorithm [1974]. The deltahedron heuristic solution procedure builds up 2 MPG, one vertex at a
time, for implementation of the graph planarity test. The algorithm for the deltahedron heuristic is as
follows:

1. Given a travel chart (a from-to matrix), for each column, (i), sum up all values, (Wij), in rows, (j). That is,

for each vertex i, calculate a value M(i), where:
n
M) = Z Wi Equation 2. 17
i=l

2. Arrange the vertices in order of increasing M values. Connections are broken arbitrarily. The first four
vertices are chosen.

3. Choose the edge of highest weight, say, e(a, b). Choose vertex ¢ so that the triangle abc has the highest
weight. Choose vertex d so that the induced complete subgraph on a, b, ¢, d has the highest weight.

4. Form a complete graph from these initial four vertices, a, b, ¢, and d. This graph is called a tetrahedron.

5. Insert a new vertex i to the triangle that causes the largest increase in the weight of the graph. (Note that the
tetrahedron graph has four triangles, vertices abc, acd, and bed.)

6. Repeat step (5) until no more vertices remain.

Such approaches do not specify location aspect and the flow information of the layout. It only provides

adjacencies amongst facilities.

String Processing Heuristic
Another procedure which avoids planarity testing is String Processing (SP) [Moore 1976]. This heuristic

solution method is similar to the above deltahedal procedure, except that SP starts with a maximum
spanning tree (presented within Appendix B) as the initial graph instead of the tetrahedral graph. The SP
heuristic method depends on representing and processing a graph as a string of symbols that denotes its
vertices. The string is manipulated according to a set of rules that results in partitioning it into substrings
equivalent to subgraphs of the sought graph. Each partition is equivalent to inserting an edge between
two vertices. The partitioning of the string is repeated to create a triangular face. In order to guarantee
planarity, each edge should appear in exactly two of the substrings representing the triangular faces.
Procedures that rely on SP start with a string that represents a maximum spanning tree, then manipulates
it to create a MPWG. Rules for determining the order of partitioning should be such that it aids in
maximising the total weight of the selected edges. A drawback to this heuristic solution technique,
however, is that it is not very applicable to the machine layout problems, since its structure lacks both the

flow and location aspects, which are essential to the machine layout problems.

¢) Maximum Spanning Tree Approach

The use of a maximum spanning tree as a design skeleton for the facility layout problem has been of

33

Chapter 2 Literature Review of the Cell Formation and Layout

interest to a number of layout researchers [Carrie 1974, Moore 1975]. Carrie [1974] first proposed such
an approach to the problem. These researchers suggested using the maximum spanning tree based on the
direct flows between the cells. The maximum spanning tree has the advantage that it can be efficiently
determined (even without a computer). It is a spanning tree whose sum of edge weights is maximal.
Seeking the most important paths of flow, it is a well established concept, and several algorithms have
been published which utilise maximum spanning trees. However, it does not provide the layout analysis
from any location information and more importantly, it is similar to the adjacency graph approaches
discussed previously, in that it does not consider all the flows in arriving at a design skeleton. In addition,
and most importantly of all, because the maximum spanning tree has edges instead of arcs, it cannot
capture the flow direction, which is important to the machine layout problem. From this, it is clear that an
undirected graph such as the maximum spanning tree cannot capture flow direction. If the concept of the
flow structure can be captured, the maximum spanning tree can be a useful solution technique to solve
the machine layout problem. A maximum spanning tree with direction is called a maximum directed

spanning tree.

2.3.2. Machine Layout Problems

Machine layout problems involves the arrangement of machines on a factory floor so that the total time
required to transfer material between each pair of machines is minimised. As discussed in Section 2.1,
both machine and facility layout problems seek the best arrangement and configuration of facilities and
machines respectively. The major difference between these two location problems is that the facility
layout problem lacks the flow structure, which is essential to solving the machine layout problem. A
good machine layout design should have a well-defined flow structure and be able to capture the

locations of the machines.

2.3.2.1. Heuristic Solution Methods
Researchers [Francis 1974, Kusiak 1985] have mentioned various machine layout configurations, but the

actual creation of such layouts are not addressed in these references. Amongst different types of machine
layout configurations, the straight-line flow is the simplest form of flow structure. Researchers such as
Hillier [1963], Carrie [1975], Vakharia [1990], and Burbidge [1995] used heuristic solution methods to
find the suboptimal flowline layout sequence. Hillier’s heuristic algorithms minimised both backtracking

and by-passing movements.

One of Carrie’s approaches for avoiding the back track movement is to introduce as many machines of
each type as are necessary to avoid back tracking altogether, but such an extreme case yields uneconomic
work loads and costs on some machines. Vakharia designed CM systems eliminating back tracking
moves. He grouped all machines with back tracks into one cell, and all machines with either in-sequences
or by-pass routing into another, and then finds machine flowline sequences for these cells. The results

did not provide maximum overall machine adjacencies and did not contribute to the overall shop layout.

Burbidge’s line analysis plans the layout of the machines in a group and contributes to the planning of

34

Chapter 2 Literature Review of the Cell Formation and Layout

FMS’s. However, the layout is quite subjective, since the actual machine assignments were not based on
material flow volume. Clearly, machine pairs with high flow between them should be positioned close to
each other. To further minimise both back tracking and by-passing movements, alternative machine
layout configurations such as U, O, and L shapes, other than the simple straight-line flow, should be

considered. Such options were not considered by the researchers referenced in this section.

2.3.3. Multiple-Objective Layout Methods

The traditional, or static layout problem assumes that all data such as the number of departments, areas
and flows are constant. However, conditions of companies are constantly changing, so most layout
projects are redesigns rather than new facility developments "from scratch”. Nicol [1983] concluded that
"radical layout changes happen frequently and that management should therefore take this into account in
their forward planning". The design of a facility can have a significant impact on the ease and cost of
expansion. Tompkins and White [1984] recommend developing a flexible layout; one that can easily be

modified.

Clearly a better approach to flexible layout design is to directly incorporate known future data changes
into the layout problem. To do this, a series of layout problems are developed over a number of discrete
time intervals. These discrete intervals can match a company’s planning period, phases of project, or new
product introductions. Discrete intervals also simplify data collection. For this scenario there is a series
of single period or static problems, each with its own flow matrix and block diagram. An additional
‘rearrangement cost’ term in the objective function ties the static problems together. A solution to this
Dynamic Layout Problem (DLP) minimises flow costs and rearrangement costs for a series of static
layout problems. In a DLP, rearrangement costs are added whenever an area contains different
departments in consecutive time periods. Rearrangement costs are in dollars per square meter and must
include all the costs involved in a facilities project. If rearrangements are performed on off-shifts or
weekends, wage premiums must be used to determine costs. One must also consider either the lost

production cost or overtime costs to make up production on off-shifts.

There are two limiting cases to the DLP. Firstly, if the rearrangement costs are much higher than flow
costs, then there would be no rearrangements, which allows one to combine all the flows and solve the
problem as a static layout problem. Secondly, if the flow costs are much higher than rearrangement costs,
then rearrangements are trivial, allowing one to solve a series of independent static layouts. The DLP is
required when one must balance the trade-off between increase flow cost of inefficient layouts and added
rearrangement COSts.

Traditionally, facility layouts have been solved only for one goal, either qualitative or quantitative
measurements of the layout. The most commonly used qualitative objectives are the adjacency
requirements between facilities and safety regulations considerations. The quantitative goals primarily

involve the minimisation of material handling costs, or the maximisation of a system’s throughput.

Since the 1970’s, several multi objective approaches have been proposed. These methods use weighting

35

Chapter 2 Literature Review of the Cell Formation and Layout

factors to bring individual goals, both qualitative and quantitative, into one optimisation scheme. In these
methods, the multiple criteria are either combined as a single factor in the objective function, or treated
as separate groups of factors. These separate groups of subgroups are considered hierarchically during
the layout evaluation and construction. However, weighting factor methods have a serious shortcoming,
since the determination of the proper numerical values for each weighting factor remains a subjective
matter. To address this shortcoming, some researchers turn to treating secondary objectives as side
constraints and solving the multi-goal problem dynamically. Some of the studies that use the

aforementioned approaches are Jacobs 1987, Cambron 1991, and Shin 1992.

2.4. Artificial Intelligence Techniques (Modern Approaches)

Artificial Intelligence (Al) is a research field concerned primarily with emphasising theoretical problem
solving, which is not necessarily applicable to the real situation. As mentioned before, one major branch
of Al is Expert Systems (ES). An ES employed in CM consists of facts that are stored in the knowledge
base and heuristics that are utilised by an inference engine. A person who inserts the rules into an ES for
a particular domain is called a “knowledge engineer”. Such a person develops a system that uses similar

knowledge and inference strategies to simulate the expert’s behaviour.

2.4.1. Neural Networks

Neural networks, a recent development in artificial intelligence, is a distributed information processing
system composed of many simple computational elements (nodes) interacting across weighted
connections. Neural networks are analogous to the working of the brain and the nervous system of human
beings. These networks can learn and adapt themselves with input from the actual processes. They
achieve good performance with a high computation rate using their parallel processing feature and their
ability to learn. The values of the weightings and the topology of the connections internally represent
knowledge learnt. Learning involves modifying the connection weightings. Neural networks have proved
effective at solving problems in a variety of areas, such as image processing and speech recognition. The
application of neural networks to CM is relatively new and has recently attracted the attention of a few

researchers [Moon 1990, Karparthi 1991, Venugopal 1992].

The most important advantage of the neural network in CM is its extremely efficient computational
performance. This approach was found appropriate for solving large-scale cellular problems, but the

disadvantage of using it in CM is that the order of the problem presentation affects the performance to a

large degree.

2.4.2. Simulated Annealing (SA) Methods

A new technique called simulated annealing (will be explained in more details within Appendix C) has
recently received much attention in solving combinatorial optimisation problems, and is based on
classification and coding. The SA algorithm developed by Kirkapatrick [1983], is a general purpose

combinatorial optimisation technique based on the annealing phenomena. SA methods have been

36

Chapter 2 Literature Review of the Cell Formation and Layout

successfully applied to solving combinatorial problems such as the TSP (Travelling Salesman Problem),
the QAP, and the design of large-scale electronic integrated circuits etc. Although the simulated
annealing approach does not guarantee an overall optimum solution in practice, it provides the means of

moving away from the local optima occasionally during the search process.

The method of SA is directly applicable to those optimisation problems where the decision variables can
be expressed as points in a discrete, n-dimensional space. Typical applications include the travelling
salesman problem [Press 1988]. To apply the SA method; the solution-space, the appropriate procedure to
vary the decision variables within this space, the initial ‘melting’ temperature ¢ and the ‘annealing
schedule’ (the manner in which the temperature 7 is to be reduced during the solution process), must be

defined.

The Jajodia [1990] approach represents facilities by equidimensional square blocks and uses the
Manhattan formula to compute the distance between entities. Then SA is employed to reconfigure the
block assignment on the shop floor grid. These two simplifications do not consider the physical
constraints of the problem and may lead to infeasible solutions. Jajodia, et al. [1992] compared CRAFT,
SA algorithms, and other heuristic algorithms. They also arrived at the conclusion that the SA algorithm
was better than the others, with respect to both solution quality and efficiency. Similar comparisons in
the literature can be found in the work of Kouvelis and Chiang [1992], who also provided improved

solutions by restricting entitics with high material flow to be adjacent.

The heuristic method of Proth and Souilah [1992] represented facilities as rectangular blocks and
considered the distance between facilities. They acknowledged physical constraints for intracell layout,
but did not consider reassignment of the parts for the appropriate machines for further improvement and
intercell layout. This last issue of the reassignment of parts is very important, and the physical constraints
and part reassignment are fully considered in further developments of the proposed research

methodology.

Alfa [1992] formulated a model for solving facility layout problems in CMS’s. Alfa's model assumes that
the location of the cells is predetermined. Hence, it only solves the intracell layout problems, utilising the
modified penalty algorithm of Heragu and Kusiak [1991] to generate the initial configuration, with SA
being then applied to improve this configuration. Das [1993] also formulated a model for solving
intercell layout problems. His model does not consider intracell layout, however it does influence the

final intercell layout.

Tam [1992] proposed a SA procedure to allocate space to manufacturing cells on a floor plan. His
procedure takes into account the dimensions and shapes of individual cells as well as occupied areas on
the floor plan. By developing a slicing tree (from the graph theory) as the guidance for cell relative
locations, the SA procedure minimises the intercell flow whilst satisfying the various geometric
constraints. However, the clustering process used in creating the slicing trees does not consider the flow

directions. Although Tam emphasised that the geometric constraints (the area and shape requirements of

37

Chapter 2 Literature Review of the Cell Formation and Layout

each cell) vary according to the flow of parts through the cell, no atternpt was given to specify efficient

flow patterns for the system.

In 1994 Chen investigated the application of simulated annealing based algorithms to the machine cell
formation problem, which partitions the set of machines into some (unknown) number of machine cells.
This was done to maximise the total machine similarities within cells, subject to the cell size constraint,
which restricts the number of machines in each cell. Two simulated annealing based algorithms were
proposed and extensive computational tests were carried out to evaluate their performance with a graph

partitioning based heuristic.

The Bazargan-Lari and Kaebernick papers [1996, 1997 and 1998] illustrated the SA process of
developing the final intercell layout designs by providing layout configurations, showing the impact of
each design on the material handling distances. In this work, the continuous layout model with the
assumption that the departments are of predetermined geometrical shape and the actual dimensions of the
shape can vary continuously, is used. The layout model is defined using only rectangular shaped
departments/facilities which allow the consideration of material handling distances but not travelling

costs, and proposes only two activities (move and swap) to generate neighbouring actions.

Wang et al. [1998] proposed SA algorithms for solving facility layouts in CMS. Their continuous model
assumes only U shaped cells and does not consider costings in the material handling distance’s objective
function. However, they do not indicate how the cell layout is produced or defined (graphical

presentation) and neither is any layout configuration presented.

According to an article in the August 1995 issue of IIE Solutions [1995] the LayOPT software package
incorporates an algorithm for layout generation in addition to layout evaluation. LayOPT is produced by
the Production Modelling Corporation and is an implementation of MULTIPLE [Bozer 1994] and SABLE
[Bozer1995]. The attributes of this software package are comprehensively analysed in the article, and

therefore the analysis will not be presented here.

MULTIPLE, a single or multi-floor improvement type algorithm developed by Bozer, Meller and
Erlebacher [1994] uses a discrete representation, and extends CRAFT by applying space filling curves to
single floor or multifloor facility layout problems. MULTIPLE improves upon CRAFT by increasing the
number of exchanges considered at each iteration. In addition, MULTIPLE can restrict the irregularity of
department shapes by using an irregularity measure, based on the perimeter and area of each department.
However, since it uses a discrete representation, the department shapes may not be rectangular.
MULTIPLE, like CRAFT, is a steepest-descent search and may be affected by the initial layout. SABLE
[Bozer 1996] extends MULTIPLE by employing a simulated-annealing based search, and by generalising
the department-exchange algorithm. SABLE is shown to produce lower cost layout solutions than

MULTIPLE.

To date, no researcher has demonstrated any model that solves both intercell and intracell facility layout

problems for CMS. The problem of shop floor layout can be considered analogous to that of chip

38

Chapter 2 Literature Review of the Cell Formation and Layout

placement on a microprocessor circuit board, since both involve the placement of manufacturing
resources in a given two dimensional discrete space. This analogy will be exploited in the proposed
research in order to generate efficient alternatives for the layout of a manufacturing shop. The machine
and cell placement problem is similar, although they are addressed at different levels in the hierarchy of
the manufacturing facility. Thus, they can be solved using an approach which will be described in

Chapter 6.

2.4.3. Knowledge Based Expert System (KBES) Approach

These studies have shown that the detailed arrangement of facilities layout is subjective. The design
factors such as multi-goals, closeness ratings, material flow pattern selections, and aisle designations are
not easy to quantify. It has been reported that computerised methods do not always out perform visual

methods [Black 1995, Scriabin 1985].

Unlike computerised facility planning methods, human designers have a special ability in visual pattern
recognition and context-based reasoning. A number of researchers have developed methodologies which
allow layout designers to play interactive roles in the computer-aided facilities layout process [Jacobs
1987, Banerjee 1992 and Webster 1992]. The latest generation of interactive approaches for facilities
layout design uses optimisation techniques to generate design skeletons, from which the designer
interactively produces satisfactory layouts with computer-aided expert systems [Montreul 1993 and

Langevin 1994].

Applying KBES to facility layout problems has some drawbacks. Expert systems cannot reason from
axioms or general theories, they do not learn, and thus they are limited to using the facts and heuristic’s
that they were “taught” by human experts. Their performance deteriorates rapidly when the problems
extend beyond the narrow task they were designed to perform. From the present problem (layout) point
of view, because it has been shown that it is a NP-complete problem, the rules developed in the
knowledge base of the ES are difficult. To show that the ES facility layout methods operate with

“reliable” rules, it would either have to compare with an exact procedure or with other heuristic solution

methods.

Recent researchers that have applied KBES to solve the machine layout problems are Kusiak [1989] and
Kusiak and Heragu [1990]. They developed two heuristic algorithms for the “Knowledge Based Machine
Layout (KBML)”, which can only solve optimally those problems in which the number of machines is
less than four. For such a limitation, there is no need to use KBML’s to solve machine layout problems.
Their relationship matrix in the input data is redundant, since the elements in the flow matrix will
quantitatively show a layout analysis to find what machines, with high volumes between them, should be
located together. In addition, the way the KBML’s rule selects the material handling system and type of
machine layout is not convincing. For example, if a robot is used, then the circular layout should be
implemented, or vice versa. If a cluster layout arrangement is used, then a robot is selected. Finally, a

major drawback to KBML is that the input flow matrix is symmetric. From a machine layout point of

39

Chapter 2 Literature Review of the Cell Formation and Layout

view, this is not always true. For instance, a material flow volume from machine i to machine j might not
be the same as flow from machine j to machine i. That is, the flow matrix for the machine layout
problems will generally be asymmetric. In spite of these drawbacks, the KBES approach to machine

layout problems is promising.

Black [1995] stated that the use of integrated manufacturing production systems is a strategy for the
factory with a future. This is based on the linked CMS (eg. a linked FMC is presented in Figure 2.7),
which provides for a continuous flow or smooth movement of materials through the plant. The linked
CMS is the newest manufacturing system. It is composed of manufacturing cells linked by a pull system
for material control. In the cells, operations and processes are grouped according to the sequence that is
needed to make a group of products. This arrangement is much like that of the flow shop but is designed

for flexibility.

Figure 2. 7 — Flexible Manufacturing Cells (FMC) [Black 1995]
In 1992, Webster, et al. developed an interactive computer-based FMS design tool. Thirteen pre-specified

layout types were stored in their program library. Based on a selected layout type, the developed design
tool exhaustively searches the solutions space for non-inferior layouts, which suits the known part
sequence requirements of the given manufacturing system. Their solution method was an improvement

over an existing layout. No effort was made to seek optimisation of the layout design.

Although there are numerous references on general facility layout problems, the physical layout of
machine cells in a modern manufacturing system has not been sufficiently studied. A cellular layout
problem is relatively more complicated than a general layout problem. The difficulty of solving cellular
layout problems stems from the fact that the location of each cell depends on the locations of other cells,

as well as the geometric characteristics of these cells. Only a few papers have directly tackled this issue.

2.5. Justification Techniques

The basic problem is that many of the advantages of the new manufacturing technologies lie not in the
area of cost reductions, which are always paramount, but rather in more “strategic” areas, such as
reduction in inventory, throughput time, and space requirement on the factory floor, as well as simpler

scheduling and better quality. Since these new manufacturing systems are largely equipment based, and

40

Chapter 2 Literature Review of the Cell Formation and Layout

manufacturing equipment has historically been justified on the basis of cost reduction or capacity
expansion, these systems are expected to be justified on these same measures with the respect to layout

methodologies.

When stand-alone systems are linked together into cells, such in CM or FMS, then an intermediate level
of integration is achieved that exhibits an energy linkage between the independent systems. Of all these
advanced manufacturing technologies, two characteristics make their justification process more complex
than has been required in the past. Firstly, these technologies are much more flexible, in most cases
reprogrammable, than equipment has ever been before. However, the advantage of this flexibility is not
easily captured in simple economic justification procedures. The second characteristic of new
technologies that requires special consideration is this aftermentioned interlinked energy. Users often
report qualitative benefits from linked systems, such as faster response to customer requests, that are

deemed far more important than normal cost savings.

There exists a number of formula and approaches that firms use for the economic justification of
equipment. Examples include breakeven analysis, DCF (Discounted Cashflow) techniques, MAPI
(Machinery and Allied Products Institute) methods, and other approaches such as incremental rate of

return, accounting rate of return, net present value, ROI (Return on Investment), and payback.

Almost all literature available on the topic of justification of advanced manufacturing technology seems
to converge on the failure of discounted cashflow (DCF) techniques to adequately consider strategic
benefits of new manufacturing technology. Goldhar [1985] pointed out that traditional capital budgeting
techniques are based on scale economics, cost-per-unit productivity criteria, and lack strategic evaluation
capabilities. Gould [1982] argues that since a system consideration is necessary in judging capabilities of
computer-based manufacturing systems, their performance should not be evaluated in a traditional way.
Kaplan [1993] advocates that DCF is not applicable in the justification of new technology because
improved quality and flexibility are not quantified. Whilst Primrose and Leonard [1986] presented a
qualitative approach to the FMS justification problem.

Traditional justification procedures, which make sole use of financial criteria such as ROl and payback
period, fail to justify manufacturing systems based on advanced technology because of the following
reasons:

1. Itis difficult to quantify long-term strategic benefits, such as improvements in quality, flexibility,
delivery dependability of providing fast response to market needs, and valuable experience
gained by the company in using advanced technology.

2. Tt is difficult to quantify the individual qualitative benefits created by the integration of several
systems such as CAD/CAM, FMS and robotic systems.

3. Life cycles of advanced manufacturing systems outlive the products they produce, making it

difficult to assess appropriate planning horizons for justification purposes.

4. Greater financial risks in terms of future costs, and organisational risks in terms of unanticipated

41

Chapter 2 Literature Review of the Cell Formation and Layout

changes in the infrastructure of the company, are also difficult to assess. Deciding the
appropriate level of new technology for an optimal combination with the existing traditional or

new manufacturing technology also complicates the issue.

Chakravarty [1992] showed a framework for acquiring new technology as follows:

e Strategic evaluation — here consideration is given to: choice of the competitive strategy;
specification of the market requirements; choice of the manufacturing system requirements;
choice of the manufacturing system configuration; identification of the organisational

constraints; iterative strategic evaluation (if needed).

s Operational evaluation - factors to consider are obtaining technical and operational data, and
vendor information for alternative systems proposals; comparison and ranking of the alternative
proposals; simulation studies of top three/four different operational scenarios; selection of

two/three systems for financial evaluation.

2.6. Cost - Utilisation

Methodologies such as optimised production technology (OPT) and the theory of constraints (TOC)
concentrate on the location of constraints and bottlenecks in the production process [Ronen and Starr
1990]. A constraint is defined as anything that prevents the system from achieving a better performance
measure versus its goal [Goldratt 1990]. The cost-utilisation model developed by Borovits and Ein-Dor
[1977] allows analysis of the utilisation of the resources in relation to their cost. The model was
originally used as an economic tool to analyse computer systems hardware and designed to deal with

deterministic systems.

Ronen and Spector {1992] in their paper presents a graphic model combining operational measures of
performance for analysis and design of operational systems. The model combines two approaches, the
Pareto and the theory of constraints (TOC). The Pareto approach concentrates on the important and costly
elements of the organisation. TOC focuses on the organisation constraints. The model enables in-depth
analysis, and at the same time it is easy to use. It allows the manager to identify problems and improve
operating systems by:

o locating and classifying external, internal, and policy constraints; classifying the subsystems by
their cost; identifying the right/desirable place for the constraint; analysing the present load
structure of the system’s components; suggesting a better load structure and positioning of
subsystems within the system; performing a sensitive analysis concerning the effect of changes
(investments in resources, change in product mix or market demand) on the system’s structure
and constraints; determining indices for comparison between alternative flows of operational
systems; monitoring production trends; analysing statistical deviations in the system’s load

profile and assisting managers to achieve a global view of their system.

42

Chapter 2 Literature Review of the Cell Formation and Layout

2.7. Computer Simulation

Computer simulation is the appropriate research methodology for operations with two independent
resources (labour and machines) and in individual functions (cells). Simulation is also the only
methodology that is robust enough to systematically examine the role and impact of product complexity
and other essential variables on factory performance. Furthermore, simulation is compliant with the vast
body of established research in evaluating CM performance. The evaluation criteria might be the
determination of which station (a station can be a department for a facility layout problem, or machine
for a machine layout problem) causes the bottleneck, or the utilisation for each station. Discrete event
simulation is especially of interest to facility planners or to machine layout designers. The few
researchers that applied simulation to facility layout problems are Zoller [1972] and Armour [1963].
Their input data is similar to that of CRAFT, discussed earlier. The main difference is that simulation is
able to evaluate the system performance, and based on simulation output, the analysts can arrange
appropriate facilities that can further minimise the travel time or to maximise the utilisation depending

upon the objective.

Most of the literature, however, uses simulation as a tool to compare the performance levels between CM
cells or FMCs, with traditional job shop manufacturing or functional layouts. Cummings [1980]
compared work in progress (WIP), transit time, and lateness of jobs between CM cells and job shop
layouts. The results showed that CM out-performs the functional layouts and that WIP, setup time, and
transit time are reduced. Flynn and Jacobs [1986], also using simulation, comparing the performance of a
functionally organised job shop with a factory using only manufacturing cells as defined by an actual
firm. The initial CM layout, which they produced, was derived from CRAFT. Their simulation results
showed that although CM exhibited superior performances in terms of average move time and average
set-up time, the traditional job shops had superior performance in queue related variables (average queue
length, average waiting time, WIP inventory, etc). The reason was the breaking-down of functional
machines into many different cells increased the average delays in processing. One aspect of Flynn and

Jacobs’ work is that their initial CRAFT based layout does affect the outcome of the simulation output.

Another simulation case study on performance improvement of CM cells was done by Sassani [1990].
Sassani stated that product mix, product design, market situation, and other technical factors can affect
the CM cells performance. One of the assumptions made was that the distances between machines could
be neglected, however distance does effect the total travel time and thus costs. One should not assume

that distance has no affect on the simulation outcome, simulation outputs are very layout dependent.

Simulators (Figure 2.8 shows a constant material flow handling system model with pickup, transport and
drop-off distance dependent operations) have been used to evaluate CM cells, but none have examined
the hybrid industrial situation where cells manufacture less than 50% of the factory output, and the
demand for products varies. Nisanci et al. [1981] provided an insight into the performance of non-cell

work in their simulation of shoe operations. However, because the study was limited to an actual

43

Chapter 2 Literature Review of the Cell Formation and Layout

company, they were unable to vary part configurations and cell size. This research identified a need for
better understanding of the total manufacturing operation because, although the cells showed

performance gains, the non-cells functional areas showed performance losses.

Figure 2. 8 - Witness simulation model

Computer simulation is an excellent tool to evaluate a system of interest. However, when one compares
CM cells with other traditional systems, assumptions and initial layouts have to be carefully selected.
One performance criterion that has not been addressed in the literature is that alternative machine layout
configurations have a significant impact on the simulation results. A generalised solution technique to
solve the layout problem using simulation is very difficult, since simulation is not a solution technique.
In addition, finding all possible initial layout arrangements, which is one of the required input data, is
unrealistic. This is true especially when the size of # (number of parts) increases. Furthermore, the output
of the simulation is path dependent, (where the final layout obtained depends upon the initial specific
layout) which is the same as CRAFT. As long as the layout analysts remember that computer simulation

is used to evaluate a planning phase, then simulation can serve a very useful purpose.

2.8. Conclusions

One of the basic concepts of CM is to decompose manufacturing systems into subsystems. As a
consequence of this, parts can be grouped into part families, where each part family corresponds to a
group of machines called a machine cell. These concepts were originally proposed by Mitrofanov, and

developed in the western world by Burbidge and others.

Several techniques have been developed to carry out the cell construction process, one of the earliest
being Burbidge’s PFA method. More recently, mathematical methods have been implemented, of which
clustering analysis is the most commonly applied technique. An assumption underlying the use of
clustering techniques is that homogenous clusters actually exist in the data. The basic approach of this
technique is to construct algorithms and heuristics, which group machines into clusters based on certain
attributes, such as processes. Two distinct types of clustering models have been used, namely, matrix

representations and graph representations, the former being the most commonly used.

A number of integer programming clustering models have also been developed to allow for the setting of
constraints on the number of cells, and the maximum number of parts allowed in each cell. The objective
functions in these models are typically designed to minimise the travel distance between parts in the cell

construction, where distance in this context refers to part disparity in terms of their association with like

44

Chapter 2 Literature Review of the Cell Formation and Layout

machines, or like processes. Many of these models have been shown to work well on small to moderate
sized problems, for more realistic problems there are difficulties in defining a suitable distance matrix.
However, more importantly, problems occur with increased computational complexity, since the number

of variables and constraints are each typically of the order of n, where » is the number of parts.

Unfortunately, binary data that is often used to represent the machine-part relationships in matrix form
does not capture information on intracell or intercell travel distances, flow directions, flow volumes,
machine locations and feasible material handling system configurations. Thus, the diagonal arrangement
of the cells in the matrix is incapable of showing how the exemption operations will create intercell flows
in the actual layout. The off-diagonal cluster dispersion caused by the shared machines incorrectly

suggests machine duplication amongst the cells.

The machine (intracell) layout problem however, has received substantially less attention. Although it is
closely related to the facility (intercell) layout problem, certain practical issues prevent direct application
of the methods, discussed in the previous paragraphs, for its solution. For example, most of the facility
methods consider only equidimensional facilities, which is clearly an unrealistic assumption in the case
of machine layout. In addition, most of these methods require that the locations for facility placement, as

well as the distances between them, be known a priori, which is not always possible.

From this literature review, one can see that common sense, trial and error, and intuition is also needed to
improve existing solution methodologies and techniques. Recent development trends of cellular layout
approaches have been moving towards embedding optimisation techniques into heuristic hybrid

procedures, to strengthen their effectiveness in layout design.

45

Chapter 3 Integrated DCMS’s Methodology

Integrated DCMS’s Layout Design
Methodologies

3.1. Introduction

This chapter describes the concept of dynamic cellular layout where a combination of CM cells (or GT
cells) and functional layouts are adopted for the machines. This approach is suggested as a result of the
critical analysis of CM design approaches, which addresses the cell design problem and the associated
interactions. These interactions suggest that PF formation and machine capacity calculations alone

cannot accomplish the design of novel CM cells to provide the required flexibility.

A new approach is suggested in this research for CF (Cell Formation) which integrates machine grouping
and layout design but neglects part family formation, ie. part families with overlapping machine
requirements are assumed to be merged to eliminate some machine sharing. This method proposes
retaining the shared machines in functional sections, with a “dynamic” assignment of machines to PF. It
identifies machine groups and the intercell flows which cause the machine sharing problem. However, it
utilises the flexibility provided by the layout and handling solutions to minimise the intercell flow delays.
This reduces the number of shared machines that must be assigned to two or more cells. Simultaneously,
this method provides approximate intracell and intercell layout configurations by utilising 2 Maximum
Weighted Directed Spanning Tree (MWDRST) approach. This is the starting point for a more detailed
layout design analysis. Thus, appropriate material handling to avoid machine duplication for backtrack
flows within a cell, or intercell flows between adjacent cells, is implicitly assumed. However this
approach, by exploiting layout and handling strategies, questions the traditional machine duplication

solution.

3.2. Critical Analysis of Cellular Manufacturing Approaches
The traditional approach to CM requires that an independent cell be designed for each part family. This
creates a problem in deciding the integer number of each shared machine, which must be assigned to

each cell. Usually, each machine in a cell experiences overloading or under utilisation. Furthermore,

46

Chapter 3 Integrated DCMS’s Methodology

none of the current methods addresses the problem of stable cell compositions for product variety

manufacturing. Thus, it is difficult to develop a method, which has the ability to integrate the five
problems ie. machine grouping, intracell layout, intercell layout, machine sharing and an approximate

handling system configuration. Examples of traditional cellular layouts are given in Figure 3.1.

Legend
Deburring
Drilling
Grinding
Milling

Quality Control

Plating }i’i’

Welding

Figure 3. I - A raditional (four cells) cellular layout

Modern factory cells may be designed to be autonomous, based on the current mix of parts and of
demand volumes. Numerous factors which precipitate intercell flows between these cells are: machine
failures, the need to keep expensive one-off type machines loaded, changes in part mix or production
quantities for part families, non-integer machine requirements of bottleneck machines required by two or
more part families, feasibility of using handling systems to induce intercell moves between adjacent

cells, alternative routing for parts when identical machines become duplicated in cells,...etc.

Legend

Y Deburring
Drilling

Grinding

Milling

Quality Control

Plating

Welding

FA NS AN A

Figure 3. 2. - Four cells with machine sharing

The interactions between some of the important problems in CF often make it difficult to identify
permanent machine-part compositions for the cells. Additionally, using the standard machine-part matrix
clustering representation for cell design, it is possible to get the incorrect impression that cells can be
created only through duplication of the shared machine types. The sizes, shapes and adjacencies of the
different machine groups are lost in the pure linear arrangement for all the machines in the matrix output
solution. Clearly a linear layout structure fails to model the possibility of placing cells that must share the

same machines adjacent to each other to minimise intercell flow distances. This machine sharing (Figure

47

Chapter 3 Integrated DCMS’s Methodology

3.2) by intercell flows that are readily feasible in a shopfloor environment would completely avoid

physical duplication of the machine types. Furthermore, the diagonal arrangement of the cells in the
solution matrix is incapable of showing how the exception operations will create intercell flows in the
actual layout. From a layout perspective the cells could be placed around a common facility cell,

containing all shared machine types.

3.2.1. Problems with the Traditional Approaches

A traditional approach to minimising backtracks has been the division and distribution of machines in
process specialised departments (functional layouts) into several PF based cells arranged in a cellular
layout. This creates the classic machine duplication problem discussed extensively in the literature on
CM. From a historical perspective, the pioneering paper on PFA by Burbidge [1963] was the first to
specifically discuss machine duplication to divide and distribute the departments in a functional layout in
order to design a cellular layout. As regards to machine duplication to create independent cells, Burbidge
wrote ... compare the plant requirements for the different packs (or PF) and reintegrate to produce the
desired number of groups, with the minimum number of machine duplications between groups”.
Burbidge converted the part routings into a 0 - I machine-part matrix and used manual sorting of this

matrix to identify the part families and machine groups to constitute the various cells.

Numerous problems arise when the traditional approach is used. The part families may not be obvious
from the matrix output of the cluster analysis and matrix diagonalisation methods used for GA (Group
Analysis). This makes it difficult to clearly identify the number of machine groups, the overlapping in
machine requirements amongst the part families, and the particular family to which a part may belong.
Nor does the 0 - 1 data capture the design and manufacturing attributes necessary for a more accurate
part family formation. In addition, these analytical methods are computational difficult due to the large

number of parts involved in the analysis.

The GA algorithm assumes a pure linear ordering of all the machines in their matrix output. Also, their
binary data representation of the operation sequences neglect the sequence of flow among machines,
multiple visits to the same machine by a part, permitted backtracking or crossflows among machines
inside the cell, etc. Furthermore, LA (Line Analysis) incorrectly assumes availability of all machines
when developing an intracell layout for a part family. Hence, practical intracell and intercell layout and
handling configurations cannot be modelled by PFA. The reason is that an important intermediate stage -
shop layout analysis - is missing. This stage must relate GA, LA, the locations of the cells, the
accessibility of the shared machine in each of these cells to the other cells, and the machine sharing

problems. Such integration is attempted in the cell formation method proposed in this research.

GA experiences a machine sharing problem involving duplication among cells to minimise intercell
flows. However LA experiences a machine sharing problem involving machine duplication at two or
more stations within a cell, to reduce intracell flow backtracking. LA can only be performed after group

analysis determines machine availability for each cell. Both problems are further complicated by the fact

438

Chapter 3 Integrated DCMS’s Methodology

that only an integer number of machines can be assigned, even if noninteger machine requirements are

computed. An inability to assign the desired numbers of shared machines to each cell will create intercell
flow or intracell backtracking flow problems. Intracell machine duplication problems can be avoided by
adopting U, L, S, W, or Z, ie. multiple parallel line layout configurations. These would reduce the travel

distances amongst the machines and thereby prevent machine duplication.

4)

Layout ¢) Use of a Loop Conveyor

a) Initial Flowline Layout b) Con rsion to

Figure 3. 3 - Avoiding intracell machine duplication

Hence, if the machine sharing and intercell flow problems prevent the formation of independent cells, the
scope for eliminating intracell and intercell machine duplication by adopting layout and handling
strategies must be explored. For example, Figure 3.3(a) shows a six-machine GT flowline with flows
occurring between all the machines. If a strict flowline layout is desired, then machines 1 and 2 may need
to be duplicated near the locations of machines 5 and 6, or vice-versa. However, as shown in Figure
3.3(b), the adoption of a U-layout reduces the average travel distances when parts must backtrack to
previous machines. This is because backtrack flows are converted to crossover flows among adjacent
machines. Figure 3.3(c) shows how a loop conveyor system would further reduce the travel times among
nonadjacent stations in the original flowline. This would allow identical machines to be located together

for better utilisation, thereby minimising the number of machines of this type required within the cell.

If cells having shared machines could be located adjacent to each other, then the intercell flow distances
would be comparable to intracell values. Thus intercell flow is encouraged without physically
distributing identical machines amongst the two cells. Suitable relocations of machines common to the
two cells, which would make them accessible to both the cells from the aisle, would then be indicated.
This need for including layout and handling solutions to minimise the need for duplication of shared
machines among two or more cells in a CF method is another focus of this research. It is based on several

critical problems in CF, as suggested by the PFA model.

3.3. Main Modules (Problems) in Cell Manufacturing System Design

If independent cells are desired for the part families, the machines which are needed in each cell can be
easily identified. However, this does not mean that all the machines required by a cell can be located in
it. Layout and machine distribution problems can arise if two or more independent cells share machines.
Hence, a fundamental argument against the traditional approach is that part family formation, and the
distribution of shared machines, constitute only two of the four problems in cell formation (see
references presented in Chapter 2). If these problems are considered together, the importance of relating

layout decisions to those of machine grouping and part family formation in a cell formation model will

49

Chapter 3 Integrated DCMS’s Methodology

be realised. Based on Burbidge’s PFA, the cell formation can be broken into four distinct problems. The

solution of each of these problems usually affects that of the others. The objective of the research
proposal, presented in section 3.5, is to develop integrated layout design procedures which will facilitate
the design of dynamic (multiple) cellular manufacturing systems (DCMS), which include all four CM

problems; a scenario hitherto not considered.

The first problem is the identification of part families. Each part is essentially produced by a set or
sequence of machines. If the machine sets for the parts in a family are merged, then the machine group
forms a cell. The traditional approach has been to design the same number of cells and part families. This

allows each machine group to be associated with a suitable part family.

The second problem is the distribution of machines. The cells may have common machine

requirements if:
» several part families require operations on the same type of machines, and
e there is only one machine of a given type so that it cannot be assigned to any one cell.

In this case, a compromise between the independence of the cells, the intercell flows, and machine
utilisation is necessary. However, if certain machines are found to process only one part family, they can

be placed in a cell.

The third problem is that of intracell layout. Within a cell, the machine should be arranged in a
flowline ie. the parts flow from one machine to the next in the overall sequence of operations. All the
parts need not visit each machine. Such unidirectional material flow may not always be possible and
backtracking may be necessary. This can be accommodated by using a suitable handling system or by
duplicating identical machine at two or more stations. The proximity of all the machines required for the

part family ensures that operations that are performed within the cell experience minimum handling.

The fourth problem is that of intercell layout. This problem arises if the distribution of machines
creates a difficulty in machine duplication. The intercell layout must be designed to locate cells with a
common machine requirement close to the material handling facilities. Likewise, if the cells are part of

an assembly sequence.

The traditional approach, when applied to part families and distribution of machines, neglects the layout
design issues addressed in intracell layout and intercell layout. In order to consider these problems
together, an alternative view of the cell formation is proposed. This suggests minimising throughput time
and material flow in the shop, rather than manufacturing all the part families in independent cells. Hence,
it encourages intercell flows amongst adjacent cells to maximise the utilisation of the shared machines.

This converts the problem into one of designing a hybrid layout.

3.4. Interactions between the Modules (Problems)
Interactions between the four problems of cell formation suggest that in the attempt to create independent

cells for part families, the sharing of machines may not always be justified. For instance, in adopting a

50

Chapter 3 Integrated DCMS’s Methodology

cellular configuration the system is deprived of flexibility to respond to changes in part mix, demand,
process plans and/or designs, machine failures, machine tool technology, etc. Instead, if a hybrid layout
is designed to minimise material flow with “dynamic” grouping of machines (with families of parts), the
benefits of cell and part family formation could still be achieved, provided effective material handling

and data processing is available. These interactions are discussed in the following sections.

3.4.1 Part Families and Distribution of Machines

The solution for PF’s shows which machines are shared. Parts using only the unshared machines will not
feature in the intercell flows, or in the capacity calculations. Hence, the distribution of machines is
simplified because of the reduction in the number of shared machines that need to be distributed amongst
two or more cells. However, the machine sharing decisions, based on intracell layout and intercell layout,
influence the distribution of machines. This, in turn, determines the number of cells and overlaps

amongst PF’s,

3.4.2 Part Families, Distribution of Machines and Intracell Layout

Intracell layout can influence machine distribution decisions. For example, two part families may be
using the same machine type. However, from a flow perspective, the same machine may feature in
different positions in the flowline for each family. Parts in family 1 may use the machine either at the
beginning or the end of their operation sequences. Parts in family 2 may require this machine in the
middle of their operation sequences. In this case the machine should be assigned to family 2 to simplify

the intercell flow scheduling.

If part families are solved by a cluster analysis of the operation sequences, instead of a binary machine-
part matrix, then intracell layout can be solved. Intracell machine sharing decisions depend on the
particular intracell layout configurations such as loop, multiloop, U, L, S, W or Z shapes, etc. Each of

these will generate different intracell handling times and machine duplication requirements.

3.4.3 Part Families, Distribution of Machines and Intercell Layout

Traditionally, machine distribution decisions are made by computing the number of machines whose
capacity is equal to the load imposed by the part family. Several cells requiring the same machine type
could have noninteger machine requirements. However, only an integer number of machines can be
assigned to any cell. This means that the same machine type could be overloaded or idle in adjacent cells.
Hence, intercell flows must be allowed and the intercell layout must locate cells which have the same
shared machines as key machines near to each other. Clearly, in cellular manufacturing design, cells with

high machine utilisation, production flexibility and no intercell flows are difficult to achieve.

Expensive single machines such as CNC turning or machining centres, may not be practical to locate in a
cell. To keep their utilisation high, companies may prefer loading parts from several families on such
machines. Intercell flows to such a machines cannot be eliminated. Thus, the layout can be planned to

have such machines centrally located in a common facilities section. Similarly, incompatible processes

51

Chapter 3 Integrated DCMS’s Methodology

such as heat treatment, plating or presswork must normally be excluded from the cells due to machine

costs, environmental problems or incompatibility with other processes. Unless an alternative compatible
process is identified, they need to be located away from the cells. An appropriate layout must be designed
which isolates these facilities from the cells. The increase in distances for parts travelling to and from
these facilities is unavoidable. Thus for minimisation of delays the intercell flow must rely on efficient

intercell flow scheduling and handling systems.

A self contained cell cannot be designed for parts which use either a majority of incompatible processes,
or subcontract work, or single expensive machines shared by other cells. Also merging the few remaining
machines in such a cell with another cell will make scheduling in the larger cell more difficult. Instead,
since intercell flows are unavoidable, these machines could be absorbed into a common facilities section,
which is equivalent to a functional layout. However, whilst utilisation of the machines in such a cell is

high, the larger scheduling problems are equivalent to those of a complicated job shop.

3.4.4 Intracell Layout and Intercell Layout

If the flowline of a cell has backtracking it creates a machine distribution problem within the cell. If
machines of the same type are located at two or more stations within the cell, machine utilisation and
production flexibility is affected. Process planning could help to eliminate the operations which cause
backtracking, or the use of a suitable material handling system could allow parts to cycle within the cell
from previous stations. However, if backtracking is unavoidable, it increases the number of machines
required within the cell. Hence, the intracell layout design will depend on how many machines are made

available to the cell after intercell machine distributions are made.

In addition, the intracell configuration, obtained by solving the intracell layout, determines the locations
of the shared machines within a cell. Furthermore, the arrangement of the machines along the perimeter
of the cell will limit the accessibility of the other cells to its shared machines. Hence, the problems of

locating the cells in the shop, and determining which sides of the cells should be adjacent to each other,

are related.

3.4. Alternative-Enhanced Approaches to Cellular Manufacturing

It may be noted, that as early as 1952, Ireson recognised that a manufacturing facility layout might need
to have a combination of the product grouping (or PF formation) and process specialization attributes of
the cellular and functional layouts. He stated that “...the combination method of departmentalisation is
accomplished by a functional layout of machines in long, narrow departments, with the products flowing
at right angles to the departments (but) ... there must be sufficient similarity in the products and the

steps of production so that such a plan can be followed without excessive backtracking of parts”.

By using simulation techniques, several researchers [Ang 1984, Flynn 1987, Gupta 1982] have
investigated the utility of a hybrid layout for batch manufacturing. In reality this is similar to the concept

of dynamic cells which is a combination of functional and cellular layouts. Thus, having a functional

52

Chapter 3 Integrated DCMS’s Methodology

layout for shared machine offers high machine utilisation and loading flexibility. Furthermore, organising
some machines unique to a part family into cells will lead to reduced throughput times and handling
costs. The throughput delays due to some intercell flows can be eliminated by allowing some machine
duplication amongst cells, whilst other intercell flow delays can be reduced by efficient intercell
transferees of some batches of parts. An example of four such (dynamic) cells is illustrated in Figure

3.4.

Legend
-?E" Deburring
%f’ Drilling

AP Grind
oF Grinding
:ﬂ Milling
e, Quality Control
4@,; Plating
%»%«ﬁg Welding

Figure 3. 4 - A4 dynamic cellular layout with machine sharing

This hybrid configuration is adequate for cellular manufacturing since these researchers (Ang, Flyn and
Gupta) only considered the optimum layout of a single group of machines. In their papers, decisions
concerning machine duplication were limited to whether identical machines could be placed at two or
more stations within the cell. If an intercell layout has to be incorporated with intracell layout, an
additional type of flow is created when the cells have common machine requirements. Additional flows
may occur between any pair of flowlines if the machine loads are such that an integer number of
machines cannot be assigned to each cell. This machine allocation problem makes intracell and intercell
layout design strongly related to the machine sharing problem. When intercell flows exist it is more
important to eliminate these flows by machine duplication, since otherwise these shared machines would
have even higher queuing delays for the parts involved. This might reduce the number of machines
available within a cell for duplication at two or more stations, to reduce intracell-handling times. Finally,
the problems of machine utilisation and allocations of shared machines at the intercell and intracell levels
are interrelated. With current advances in handling system capabilities, the intracell machine duplication

problem can be considered to be similar to that of intercell flows.

Designing a hybrid layout can be done with a limited amount of input data. Intracell layout and intercell
layout can be solved using only machine-specific data, such as the flow information captured in the travel
chart. This chart simply aggregates the operation sequences and batch quantities of all the parts. Detailed
part information is not required unless part families and distribution of machines need to be solved. The

suggested method of partitioning the flow network in the travel chart is expected to be sufficient for:
1. locating machines and their supporting equipment to single part families in cells,

2. locating shared machines in functionally organised sections accessible to all the cells if the

intercell flows are between adjacent cells,

53

Chapter 3 Integrated DCMS’s Methodology
3. distributing some shared machines amongst nonadjacent cells if a functional layout for them

creates intercell flows,

4. designing an approximate layout within the cells where backtracking is eliminated by allowing

bi-directional flow,

3. planning the overall shop layout of all the flowlines, based on overlapping of their machine

requirements to reduce intercell flows, and

6. based on shop layout (5), suggesting the paths for the material handling system re the intercell

flows that will occur.

Holographic layouts [Montreuil 1996] and fractal layouts [Venkatadri 1997] are non-traditional layouts
that extend the idea of the traditional functional layout, since they distribute identical machines at
multiple locations on the factory floor. In particular, fractal layouts divide the manufacturing facility into
multiple, nearly identical machine cells. Each cell contains a heterogeneous mix of machines and is
called a fractal. For instance, one fractal may contain a drill press, two machining centres, a turret lathe,
welding station, a large press, a small press and a test station. Arriving jobs are assigned to the fractal
with the largest available resource capacity relative to the job requirements. A fundamental limitation of
the method for designing a fractal layout is that it does not consider the routings of the products for
which the layout is being designed. Hence, for each product routing, it is required to determine the exact
allocation of each operation to one of several identical machines distributed (or duplicated) at multiple
locations in the layout. A related idea, that of giving flexibility to a manufacturing layout by distributing

identical machines at several non adjacent locations on the shop floor, is discussed by Webster [1980].

Holonic layouts [Askin 1996] appear as random arrangements of machines. No specific cell boundaries
exist; instead each machine acts as a “holon”, which is an autonomous entity capable of broadcasting its
availability and bidding its services. In a holonic layout the multiple machines of a type are spread
throughout the facility. The intent is that, for any possible part routing that may be developed for a job,
the job can be accommodated with a routing to adjacent machines in the facility. As with the fractal
layout, the fundamental limitation of the method for designing a holonic layout is that it does not

consider the routings of the products for which the layout is being designed.

Several authors have focussed on decomposing a layout into a set of independent or interacting flowlines.
Vakharia, et al [1990] presented a CF method based on analysis of the operation sequences of the parts.
Their method duplicates machines to create a system of flowline cells with minimum intercell flows.
More recently Askin [1998] proposed an enhanced algorithm to solve the same problem, whilst Ho
[1993] presented a layout design technique that exploits the similarity of product assembly sequences in
a product family to design a network type layout for a multi product flowline. Moodie [1994] discussed
the case of the design of a network of manufacturing cells using product sequence similarity analysis

where all cells have a flowline layout.

54

Chapter 3 Integrated DCMS’s Methodology

Pare] _

e & Legend

Pare 3 > ﬁ Centerless
Grinding
%ﬂ Drilling
@/@ Lathe

. @ v Miliing

e Surface
& Grinding

Part 4
e &

Figure 3. 5 - a) Functional layout and b) Cellular layout [Gallagher 1973]
The concept of a virtual manufacturing cell has been proposed by the National Bureau of Standards to

address specific control problems in the design of their Automated Manufacturing Research Facility
[Simpson 19382]. However, no significant exploration and progress in this field has been made until
recently. It extends the concept of the traditional cell by allowing time sharing of machines with other
virtual cells that produce different PF’s, but have overlapping resource requirements. The cell is no
longer identifiable as a fixed physical group of machines. The CF method suggested in this thesis is a
step in this direction as it assumes intercell machine sharing to be feasible. Finally, such a virtual cell
layout relaxes the traditional view that a cell must be dedicated to a PF. Parts from a family may visit
cells other than the cell that they have been assigned to initially. In addition, cells need not be designed
such that they contain all machines necessary to produce a PF, In this non-traditional layout, cells
containing machines from the same department are located so as to allow regrouping of the machines
duplicated in several cells into a process department, as in the original functional layout. Based on
Figure 3.7 [Gallagher 1973], Figure 3.6 demonstrates the concept of a virtual cellular layout that
combines the properties of the standard functional layout of Figure 3.5(a) with the cellular layout of
Figure 3.5(D).

8

’TQW Part 1 5

P

Part 4)

Legend
After changes Centerless
in routinei> & y Grinding
o e
% Drilling
%@ Lathe
Ay Milling

g Swface
%&m Grinding

Figure 3. 6 - Virtual cellular layout
The flowlines in Figure 3.5 (b) have been permutated in order to bring the identical machines next to

each other. The machines remain dedicated to their part families. However, they are retained in
functional layouts to allow flexibility in machine reassignments when machines failure or the part mix
and/or demands change. Suitable aisle configurations and handling capabilities are assumed which would
allow permitted random flows. For example, the shafts with keyways flow directly from the milling

machines (M) to the centerless grinders (CG), bypassing the drilling machines (D).

55

Chapter 3 Integrated DCMS’s Methodology
A recent study by Drolett [1994] demonstrated the feasibility and desirability of virtual cells for small

batch production, where a new scheme for scheduling and control of such a system is proposed. He
proposed a linear programming model for creating and scheduling virtual cells considering machines,
fixtures and critical tools. The mathematical model in fact is a Gantt chart, with two constraints. The first
constraint concentrates on the detailed horizon which represents the creation of variables and the creation
of virtual cells for jobs at any period of time. The second constraint concentrates on the aggregate
horizon were specific routes for virtual cells are not considered. In addition, the same author [1990]

states a basic definition and terminology of virtual cellular manufacturing.

However, the framework presented by Drolett does not include the bottom nor the top of the control
hierarchy. In fact improving it requires fulfilling the gap remaining at the bottom level (ie. the machine
level), and at the top level (ie. strategic and aggregate planning level). Furthermore, integrated layout
design is another aspect that should be looked at more seriously. Possible areas for improving Drolett’s
study are:

1. Dynamic resource’s classification - the combinatorial complexity makes it impossible to plan the
utilisation of every single resource. Similar to what a schedular would do, it is best to concentrate, at
least at the planning stage, on tightly constrained resources. However, a resource could be tightly
constrained (critical) at one time and lightly constrained at another time. Thus resources (ie. tools,
fixture, pallets and machines) can be monitored and when the utilisation of a particular resource
reaches a certain level, its classification would automatically change to critical. Then a utilisation
profile graph would be attached to it and this resource would be considered in the scheduling process.

If its utilisation became sparse, one could change its classification and continue monitoring it.

2. Control algorithms for AGV’s - given the quantity of virtual cells coexisting in the system at any given
time, the possibility of material flow congestion is limited. In fact, congestion can occur only when
cells overlap or cross each other. In these cases several strategies can be implemented to reduce the

risk of congestion.

3. Physical relocation of machines — with attention to the utilisation of the virtual cellular concept in an
environment where a dynamic physical reconfiguration is possible. A few movable machines in a
virtual cellular manufacturing system could reduce the distance flow significantly. In such a case, an
economic function which considers the setup cost (ie. cost of moving the machines) and the cost
saving in material handling, due to the imminent proximity of machines, could be used as decision
criteria during the virtual cell creation phase. The virtual cellular concept can be used in systems
which support dynamic physical reconfigurations. However, new algorithms which take advantage of
dynamic reconfiguration, will have to be developed, since the advent of integrated, modular, movable

machines are expected in the future.

4. Schedule the unexpected event - good scheduling strategies should deal with stochastic occurrences of

failures and their duration. Besides the system’s state and the job order’s list, the control algorithm

56

Chapter 3 Integrated DCMS’s Methodology
should consider the probability of failures for each resource. Statistics regarding the frequency and

duration of failures on each machine could be updated during the system's evolution. A scheduling
algorithm, which deals with the probability of occurrence of unexpected events, would be a step

forward.

In 1998 Sarker proposed a method to create virtual cells by applying the double sweep algorithm in the
k-shortest (graph theory algorithm, presented in Appendix A) path problem. Here the objective of the
virtual cell creation was to minimise the total throughput time of a given set of jobs by assigning the job
to the appropriate processors. Thus the results generated from this method include not only the optimal
candidate for a virtual cell with the shortest throughput time, but also the secondary candidates with
alternatives routes. The author did not suggest a sorting (factor) procedure for the shortest paths, nor did

he address the problem of layout design.

All of these layouts are developed from the initial machine part grouping analyses used to design
independent cells. However, during the layout phase, creative layout strategies are adopted to place the
duplicated machines as if they had been retained in functional departments, These layouts are realised by
modifying (a) the machine-part compositions of the cells, or (b) the shapes of the cells, or (c) the
orientations of the cells, or (d) the locations of the cells. Instead of a pure cellular or functional layout,
these layouts represent a partial conversion to a cellular layout, with novel fusion of functional grouping
with several shared machine types, limited physical duplication of shared machines, and intercell flows.
Other variations of the concept of hybrid layouts are: where an existing layout is replaced by a
combination of manufacturing cells and individual machines [Harhalakis 1996], cascading cells [Tilsley
1997] and remainder cells [Shunk 1995]. Terminology and explanations of these approaches can be

found in these references.

Part 1, &
e
Legend
%ﬁﬁﬁ Centerless
Grinding
% Drilling
% Lathe
,‘@{; Milling
" Surface

%—fw Grinding

Part 2

Part 3

Figure 3. 7 - Dynamic cells in functional layout

From the presented analyses of these approaches it can be seen that the concept of dynamic cells (Figure
3.7) seems promising. Thus a concept which relies on the development of algorithms to deal with
complex, multi-virtual interaction and integrated layout design will cleatly support a viable programme
of research. The concept will also maintain the low investment required for CM cells, whilst gaining
some flexibility and efficiency associated with FMS’s. Thus by organising some machine types, unique
to a PF, into dynamic cells, the benefits of reduced throughput times and handling cost for those parts
can be gained. The throughput delays due to some intercell flows can be eliminated by allowing some

machine duplication amongst cells, whilst other intercell flow delays can be reduced by efficient intercell

57

Chapter 3 Integrated DCMS’s Methodology

transfers of some batches of parts.

The overall material flow network of the shop can then be decomposed into a set of branched flowlines.
Cells, which have several machines in common, can be placed adjacent to each other and feasible
functional groupings can then be obtained by permutating the flowlines. The proposed research method
can then finally attempt to merge those flowlines, which use the same sequence of machines, and create
functional sections for the machines they share. Effectively resulting in a dynamic layout of functional

sections and machine groups for those machines that are specific to a single part family.

Subproblems Objectives Problems and Tasks
1. All cell formation procedure with the attributes and
considerations such as:
o flexible processing & routing consideration,

e Minimising intercell
flow.
Maximising processing

Cell simnilarities of parts » Cost awareness,
Formation within celis P » detailed grouping results including part & machine content of’
L cells, total costs and assignment of operations, and outer-cell
e Minimising the total .
(operation) cost operations.
pers) 2. Cell formation problems in different situations.
1. Flow matrices estimation,
2. Cell layout problems.
3. Machine layout problems.
o Effective intercell flow. |4. Flow path considerations:
Layout

Effective intracell flow. » flow path configuration,

» flow path directions.
Input/Output points to location problems considering flow
path configuration, intercell flow, and intracell flow.

w

e Consistency between the 1
Integration solutions of different
control levels (modules).

Integration between cell formation and layout problems.
Integration between cell layout and machine layout problems.

B

I. A methodology that is capable of:
« modelling a multiple-cell environment,
, , . o . simulating di t desi ion,
Szm‘ulatz(.m Ensuring the validity and simu ang dlfferep fie51gn configuration, and
(Verification . e . » analysing and verifying the tested systems.
. quality of final solution. o
and Design) 2. Performance analysis.
3. Detecting causes of problems.
4. Re-design justification function.

Table 3. | - Summary of the research objectives and the tasks of all problems

3.5. Integrated Cellular Manufacturing Layout Methodology - Research
Proposal

The objective of this research proposal is to develop integrated layout design procedures which will
facilitate the design of dynamic (multiple) cellular manufacturing systems (DCMS) with improved
material flow handling efficiency (referenced in section 3.4). In a DCMS, there are two types of material
flow: the first is the flow between cells (intercell flow); and the second type is the flow between the
machines within cells (intracell flow). The amount of intercell flow is affected by the cell formation.
Intracell flow movements cannot be avoided and hence affect cell formation. Some of the factors which
affect material flow efficiency are: material flow controls; the layout of machines and cells; and material

handling systems.

This part of the research will focus on those problems that are related to the layout arrangements of

manufacturing facilities. As shown in Table 3.1 which summarises the objectives and tasks of each

58

Chapter 3 Integrated DCMS"s Methodology

problem, these objectives: include cell formations to decide which parts and machines should be grouped
together; layout problems to arrange machine, cells, connecting flow paths, and input/output points of
cells; the integrated design problems to maintain the consistency between the results achieved in cell
formation and layout problems; and the verification and redesign problems to ensure the quality and
feasibility of the final solution. Some of the challenges in this study come from allowing choices in
process and routes. Here, traditionally, if even more than one process plan is considered for each part,
standard part/machine grouping techniques cannot be applied. Similarly, when multiple routings are
considered, techniques that rely on knowing the exact flow between facilities cannot be used either. The
following sections will describe the problems and outline the objectives and tasks required for each

problem.

_ii- Process plans of parts

. Dynamic Cell - —h !
: X] - Demand of parts
F OFmGlion Madule - Machine information (e.g. availability, capability, cost)
B e o oot .- Factory information (e.g. shape and size)
= - Other (ie. material handling costs)
Human Expert's
» Decision & Expectation
¥ >
Integrated DCM Layout || Updated System " L
Design Modul r Behavior
MMachine Lavord. ! Cell Formation Simulation Module
Cell Machine [Diagnosis and Redesign Mod
Layout Layout i‘ Flow Matrices Systom Perf
‘ m Performance
Intracell Flow Path and ; Layout Re - Design Signal £ C S s
Input/Output Location Layout Desin | Cell Simulator ;

Figure 3. 8 - The structure of the design procedure
Figure 3.8 defines the relationship between different design modules. It outlines the tasks in each

module, the information flow between modules, the design process, and the decision and control
variables. Although the integration of different design modules at each individual design module is
required, it’s verification and redesign is still necessary. This is due to the stochastic nature of the
flexible approach of this research. Figure 3.9 shows the major steps of the entire design process which

will be explained in the later section of this Chapter.

1

Dynalmi“ér Cell f bynamic Cell Machine Resource {1 Machine Resource |
Formation — > Formation ~“DCM Layout j DCM Layout Design
Design | Verification |, . Design | || = Verification |

Figure 3. 9 - The main stages of the design procedure

3.5.1. Cell Formation Module - Problem

As mentioned before, the recommended solution should be able to consider the processing and routing
flexibility of parts if they are required. One difficulty in solving the cell formation problem in a flexible
system, is that much information that was usually at hand in a traditional system, is no longer available in
the flexible system. Secondly, the solutions should meet the production goal and resource (machine and
tool) constraints, Thirdly, the solutions should be cost-effective, ie. it should include cost minimisation as

an objective function. Finally, in addition to the basic grouping information, the solutions should provide

59

Chapter 3 Integrated DCMS’s Methodology

information such as, the assignments of each machine, the total cost, etc. The information obtained at this

stage will then become useful for the layout problems.

Once the cell formation result has been formed, the next step is to verify the result. Simulation will be
used for this purpose; the cell formation re-design procedure will be discussed later. Figure 3.10 defines
the relationships of the cell formation module with the other modules and the design process for the cell

formation module.

’ "~ Process plaﬁs of pn;ls
Dynamic Cell Formation Module - Demand of parts :

et~ - Machine information

f Cell Formation Design] - Others
Res]?ffﬁg“ . o rorees SR PPN Initial design_
Simulation | Preparation before Simulation I
Meodule # Human Expert's
- [Call the Simulation Module| ¢ Dcision & Expectation

Cell Formation Result

Flow Matrices (data) Integrated DCM L@Oﬂt Design Module

Figure 3. 10 - The designs steps of the cell formation module and their relationships with other moclules

3.5.2. Layout Module - Problem

Problems which are investigated here include machine layout problems, cell layout problems, flow path
layout problems, and cell input/output location problems. The overall objective is to achieve efficient

intercell and intracell material flow through the layout arrangements of the manufacturing facilities.

Personnel Movement
Material Transfer (Parts and Tools)
Information Flow
Power Transfer
Excess capacity for reassignment of units
Scope for expansion and modification
Floor Space Utilisation
Safety
Ease of Supervision
Non-Flow Sharing of Machine
Frequency of Machine Failure
Air Conditioning
Personnel Needs

Flow

Flexibility

Table 3. 2 - Typical criteria for facilities layout

3.5.2.1. Objectives

The common objective adopted by many layout solution procedures is the minimisation of total flow
distances. Some procedures deal with the minimisation of material handling costs, which are often taken
as functions of total flow distance and the types of material handling systems used. As stated earlier,
because of the ill-structured nature of layout problems, many qualitative characteristics need to be
considered. Some of them are ‘positive’ factors that require closeness of facilities, such as ease of
supervision and communication, whilst some are negative factors, such as remoteness of facilities with

respect to noise, dust, and safety. Common layout criteria can be classified into three groups: flow,

60

Chapter 3 Integrated DCMS’s Methodology
flexibility and non-flow (7able 3.2). The layout approaches usually employ a combination of different

criteria as their objective.

Dynamic Cell Formation Module £:\tmintDesiensSell| Simulation Module

A A -
Cell Formation Result i
| - Number of cells Es;};nated léaygut i Layout
- Machine content rlow e-esign - 57 Juman E)
- Assignment of operations Matrices Signal Design AI.IU Expert's .
) | Decision and Expectation *

Integrated DCM Layout Design Module

Cell Layout Machine Layout =
1. Determining the blocks of cells.) 1. Arrange machine along the infracef] flo
2. Select appropriate intercell flow path configuration. 2. Select the intracell path configtration . L o e e
3. Construct cell layout and flow path layout simultaneously. e - Size and shape of machines

- Alternative intracell flow
path configurations

- cell layout | - machine layout along intracell flow path - Alternative intercell flow
- intercell tlow path layout - intracell flow path characteristic path configurations
PYCIT) = - Factory size
Intracell Flow Path Positioning and Cell Input/Output Location .- Others

Determine how the intracell flow path should be placed within each cell and the input/outpur point locations of each cell.

Figure 3. 11 - Integrated layout module and its relationships with other modules

3.5.3. Integration of Different Layout Design Modules

The objective here is to ensure that the result obtained in one module can be maintained throughout the

entire design process. For example, the result from the cell formation procedure will provide not only the

machines in the cells, but also the assignment of operations to the machines. In other words, the objective

for the cell formation is maintained for the subsequent design modules stage. Other relevant tasks in

these modules include: identifying the relationships between these modules (such as the effects of one

module on others) and ensuring the required information for every module can be obtained appropriately.
Initial layout re-design signal and cell flow matrices :

'
i

¥ B
SN T Cell layout
ﬂ Machine LayOUt ‘ re-design signal
¢ and flow matrices |
K’H DCM Cell Layout l"v[‘f(;lﬁa;;r“\
re-design is necessa
Cell layout x & i
re-design signal Intracell Flow Path e ‘MT:—“E”:LL?:I
and Positioning & Cell Input/Qutput Machine Layout
flow matrices E R K - :
Point Location T ey
Ijm'achi'ne layout : re—des'ign);ignal
i - r ; re-design is necessary “and trices
— Simulation Module el And flow matrices

Figure 3. 12 - Design steps of integrated layout design module
The suggested integrated layout procedure (module) is summarised in Figure 3.11, which shows the
interactions within the integrated layout design procedure module. This procedure contains three
components: the machine layout, the cell layout and the paths within the cell, including the location of
the cells input/output. Figure 3.12 shows a step by step design procedure of the integrated layout design

module.

[n Figure 3.13 the machine layout module is shown, were the main purpose is to determine the

arrangement of the machines along the intracell flow paths. The objective function can be a single

61

Chapler 3 Integrated DCMS’s Methodology
objective or multiple objective function. However, the main purpose of the cell layout module is to

minimise the total intercell flow distance by appropriate arranging the cells and the connecting intracell

tlow paths. Figure 3.13 also defines the relationships of the machine layout module with other modules.

DynamtcCell Formation Module 0 Simulation Module |

kkkk C'elly For;nation Result ﬁc—Dcsign Signal | |Estimated Flow Matrices
(Integrated DCM Layout Design Module
TTTTETT Human Expert's
Machine Layout Decision

and Expectations

The machine tayout module will be activated,
if initial layout design or if re-design signal received
Determine the positions of machines
along the intracell flow paths
Machine layout along
, the flow paths

- Intracell flow path
characteristics :
- Machine size and shape

Machine layout
Cell layout and along the flow

Intracell Flow intercell flow r_j athg
Path Positioning and path layout {Cell Layout |

Cell Input/Output Location

Figure 3. 13 - The relationships of the machine layout with other modules

With the size and shape of the factory known, the number of cells comes from the cell formation module.
Whilst the intercell flow matrix comes from the simulation experiments. However the size and shape of a
cell depends on the total space required for the intracell facilities (machines, flow paths, handling devices
and storage etc.) within the cell, and the intracell flow path configuration. The decision is based on which
feature will provide easier layout solutions, and more efficient material flow between intercell and
intracell flowpaths. Figure 3.14 illustrates the relationships of this component, and the cell layout model

procedure, with other components and modules.

- Dynamic Cell Formation Module Simulation Module } |

e
Cell Formation Result Estimated Flow Matrices
Integrated DCM Layout g E - Faclory size and shape
Dn L .g- M dc‘l y £ Ce“ Layo“t b e Machine size and shcﬁ;e i
esign oauce Machine layout Ifit is an initial layout design or it receives /Il'(':"v‘;:tl/l"::f‘i)'r’”zfg’il
LT) : m
Machine : along the flow paths | re-design signal, activate the cell layout module Others
Layout - Select appropriate intracell flow path
Machine layout configurations if they have not been determined yet
along the flow paths - Determine the blocks of cells if H“!Baﬂ Expert's
M eCision
Intracell Flow Path Celilayout and] they have not been determined yet and Expectations
Positioning and Cell | intercell flow | :

path layout

| Input/Output Location l Build the cells layout and the connecting flow path]

Figure 3. 14 - The relationships between the cell layout model and other modules

3.5.4. Simulation (validation) Module - Problem

The purpose of the simulation module is to ensure the validity and quality of the final solution. Due to
the stochastic nature of the flexible approach of this research, the integration of different design modules
at each individual design module is required. Furthermore it’s verification and redesign is still necessary.

In addition, as described previously, much information is not specific here and needs to be estimated.

This implies that a solution may not always be satistactory.

62

Chapter 3 Integrated DCMS’s Methodology

Cell Formation Result _| Dynamic Cell Formation Module |
T ‘ el
e Layout Re-Design Cell Formation Result ¥ Cell Formation Re-Design Signal
ignal
Integrated DCM~ |l&— 529 :

Zayom‘ Design Module Layout Result — Simulatrfwn Module .

: System Performance [y : . ‘f

% Flow Matrices i3t "~ l}lﬂ_tgr_] il Diagnosis andkmlgnl ;

Figure 3. 15 - The components of the simulation (verification and re-design) module aﬁa’ thei;" ;%laﬁéﬁshtips
To resolve these problems, a simulation module (verification and redesign scheme) is required that can
identify the causes of the problems and address them by a re-design of the system. The simulation
module contains two components: a simulator, and a diagnosis and redesign component. Figure 3.15
shows the relationships between these two components and the relationships between the verification and

redesign module and other modules.

3.5.4.1. Cell Simulator
Simulation is a powerful tool to verify the proposed cell designs. It is especially useful for many complex

and real-world systems with a stochastic nature that cannot be accurately described by mathematical

models. There are many other advantages of simulation. Some of these are:

e Simulation can be used to help analyse a proposed system performance, even with sketchy

input data.

e Once a system model has been built, it can be used repeatedly to analyse proposed system

re-designs.
o Data from simulation models are less costly to obtain than similar data from real systems.

o Analytical models usually require many simplifying assumptions to make them

mathematical tractable; simulation models have no such restrictions.
The simulator must possess the following characteristics:
s be able to model a dynamic, multiple~cell manufacturing system,
o beable to simulate under different layout configurations and flow control strategies, and

e provide all the necessary information for the analysis and verification of the proposed

systems.

An example of a simulation model using “Witness” is shown in Figure 3.16.

Figure 3. 16 - Simulation model using “Witness”’

63

Chapter 3 Integrated DCMS’s Methodology

3.5.4.2. Analysis, Diagnosis, and Redesign

By analysing the simulation results, any discrepancy between the performance of the proposed system
and the expected performance can be detected and the problems identified. After the problems have been
identified, the causes of the problems can be diagnosed and appropriate remedies prescribed. In addition,
to prevent unnecessary re-designs, this procedure should have the ability to determine whether another

re-design and verification cycle is necessary.

Opportunities Recource
; 7 Visualisation Res ources

s

Maturity

Mov Control

Information, Plan,
Change and Control

Figure 3. 17 - Research methodology for design of DCMS’s

3.6. Research Methodologies for Analysis & Design of DCMS'’s

The proposed research methodology (Figure 3.17) develops a flow-based approach for the formation of
dynamic manufacturing cells, which integrates machine grouping, shop layout design and intercell flow
handling. Part families with overlapping machine requirements are assumed to be merged to eliminate the
need to duplicate shared machines amongst competing cells. Machines shared by several cells are
assumed to be retained in functional sections if these cells can be located adjacent to each other. This
adjacency of the cells allows the machine groups for the part families to be dynamic, ie. the handling
system links machines in adjacent cells in order to define the cell for a part family, without necessitating
rigid physical relocation to group the machines. Thus, the machine groups can be “dynamic” ie. parts
from several families can be loaded on a particular machine shared by several cells, or can enable
identical machines to be placed in a functional layout for production flexibility. Another approach to
flexible layout design is to directly incorporate known forecast data changes into the layout problem.
Machines retained in a functional layout can be dedicated to parts from a family without physically
distributing these shared machines amongst two or more cells. Simply by assigning different tools and
fixtures to a machine will dedicate the machine to different part families in successive production periods
with suitable material handling resources.

It is also assumed that shared machines be grouped in a functional section that is equally accessible to all
associated cells. This may require rearranging the internal layout of the cells, so that shared machines are
positioned close to each other, and/or readjusting the overall layout of the cells, so that the intercell

distances between overlapping cells are minimised.

64

Chapter 3 Integrated DCMS’s Methodology

Legend: - -
Y = Directly addresses subproblem B] % = D3
N = Does not do........... "§ 'S‘ 8 v § Q9w .§ § &o S § §
P = Addresses subproblem indirectly § = & = sE|5§8|C%] 8 § S
M = Machine-part matrix Q 5 % 3 ..E § § ¥ ?‘i § = = £
S = Operation sequences = § 2 © § “al~3 |8 S % 5
L = Load calculations § S © RS S | =&
T = Travel chart

Input Data MST | MT | MT { MT | MS | TL | MT | MLT

Machine Groups Y Y Y Y Y Y Y Y

Part Families Y Y Y Y Y P Y Y

Machine Sharing | p Y P Y P P P

Intracell Layout N P N N Y P P N

Intercell Layout P P N N P P P N

Handling Links N N N N P P P N

Multiple Data Sets N N Y N N N N P

Table 3. 3 - Capability analysis of cell formation methods

The traditional implementation of cellular manufacturing becomes problematical under more variables
and dynamic conditions. It is unclear how a cellular arrangement could accommodate part families with
fluctuating demand and/or changeable part mix composition. It is also doubtful as to how independent
cells can be constructed for parts with relatively short life cycles and/or with frequent design and
manufacturing changes. Furthermore, traditional independent cells appear to result in inefficiencies due
to duplication of processing capacity (machines) amongst cells with similar requirements. Since
production volumes for part families rarely correspond to integer machine requirements, duplication of

the same machines amongst different cells can result in poor capacity utilisation and high costs.

The fact that intercell flows are discouraged in traditional CM highlights the additional inefficiencies that
can result from not taking advantage of alternative part routing that are increasingly becoming feasible by
manufacturing integration. This lack of cooperation amongst cells also increases the vulnerability of the
manufacturing system to machine failure and labour shortage. Table 3.3 gives a review of the capabilities
of the different types of cell formation methods. Their evaluation is based on the ability to address the
stated cell formation problems.

Unlike the static cell, which is defined by a fixed grouping of machines, the dynamic cell extends the
traditional cell layout by allowing time sharing of machines with other cells that produce different part
families. The dynamic cellular approach, whereby the principles of family based manufacturing can be
implemented with the flexibility required to meet current demand patterns, has been recognised as an
effective means of enhancing the efficiency of a discrete parts manufacturing shop. The design of such a

dynamic cellular facility (Figure 3.18) can be formulated into three stages:
1. grouping of the production machines into cells,
2. allocation of the machine cells to areas within the shop-floor (intercell or facility layout), and

3. layout of the machines within each cell (intracell or machine layout).

65

Chapter 3 Integrated DCMS’s Methodology

Actual state | Structural
: concept

Design of the
plant i
Planning

resources and suulatw

Figure 3. 18 - DCMSs layout design methodology

3.7. Capabilities of Research Methodologies

The suggested cell formation method must combine the capabilities of several analytical techniques. This
is because the problems that have been discussed have different structures. The feasibility of some of the
most useful analytical methods described in the literature review to solve these problems is presented in

the following sections.

3.7.1. Operations Sequence Approach

The operations sequence approach groups parts, based on their operational sequences, whilst machine
grouping is done simultaneously with part family formation. However, for a large number of parts, these
methods impose a greater computational burden than traditional cluster analysis. Also, the clustering
dendogram showing the part families cannot directly indicate the linear or branched flowline structure
within a cell, or how the cells will be located with respect to each other in the shop. Whilst machine
duplication is possible, the clustering dendogram fails to relate this machine sharing to the overall shop
layout. Finally, these methods mainly address part families and intracell layout, whilst distribution of

machines is partially addressed and intercell layout ignored.

3.7.2. Clustering Approach and Matrix Diagonalisation

Cluster analysis and matrix diagonalisation are useful for identifying the bottleneck (or shared) machines
and parts (parts which use only one machine or only the bottleneck machines) and so on. The bottleneck
diagonalisation can indicate the potential number of cells. However, the efficiency of these methods
reduces if the clusters are not easily distinguishable, or when the intracell and intercell layout must be
planned. The reason is because operation sequences, flow volumes and flow directions are ignored in the
symmetric similarity coefficient matrix. The matrix representation of the groups is inappropriate for two-
dimensional layout design. It fails to model travel distances or machine sharing requirements when cells
can be placed adjacent to each other. Their emphasis on solving both machine grouping and part family
formation with the same method, neglecting layout aspects, is inappropriate. To solve distribution of
machines, a clear-cut knowledge of part family assignments is necessary. This is not always possible if a
large number of shared machines encourages multiple family memberships for the same part. Finally,

these methods solve part families but ignore distribution of machines, and intracell and intercell layouts.

Overlapping cluster analysis can handle multiple input matrices with similarity coefficients or symmetric

66

Chapter 3 Integrated DCMS’s Methodology

travel charts. Given a particular number of clusters, the machines that must be duplicated amongst the

cells, can be identified. Parts, which belong to several families, can also be identified using this method.
However, the difficulty of this method is to determine the number of clusters desired and that the flow
directions cannot be captured. Thus, the clusters cannot directly indicate the relationships between the
intracell and intercell layouts if shared machines are duplicated amongst the clusters. Thus, this method
can interactively solve part families and distribution of machines, but fails to relate them to the layout

and handling issues in intracell and intercell layouts.

3.7.3. Graph Theoretical Approach

Graph theoretical methods can consider flow volumes and asymmetric travel charts to output intracell
and intercell layouts simultaneously. The maximal spanning tree (undirected tree), strong components of
a graph and planar graphs are extremely useful structures for representing machine groups and cellular
layouts. The paths in the Maximal Weighted Directed Spanning Tree implicitly groups machines sharing
high flow volumes, and ensures the shortest feasible travel distances. Since the arcs in a path are directed
they automatically represent CM flowlines with minium distances for backtrack flows. Finally,
distribution of machines, and intracell and intercell layouts, can be solved together, because intercell
flows between adjacent cells or backtrack flows on the same flowline can be modelled. Limited machine
distribution decisions can also be made using only the flow volumes. However, if intercell flows are
observed between nonadjacent cells, then part families and distribution of machines for those parts must
be solved using more detailed machining times for each part operation. The complete operational listing
of the parts must be considered to solve part families completely. Finally, this method needs to be

complemented by the operation sequences grouping and cluster analysis methods.

3.7.4. Mathematical Programming Approach

Mathematical programming methods are useful for planning the assignment of shared machines and parts
experiencing intercell flows. They provide flexibility for modelling machine capacity constraints. The
quadratic assignment problem structure can be used to fit a symmetric travel chart to a variety of layout
configurations. It attempts to group machines connected by high flow volumes in order to minimise the
travel distances for those parts. Furthermore, it can address the machine sharing and distribution problem
after an initial layout and grouping of machines have been identified. The limitations of the QAP are that
it assumes a symmetric travel chart, and is computationally intractable for a large number of machines.
However, these methods can solve distribution of machines, and improve upon initial solutions obtained

for part families, intracell layout and intercell layout by other methods.

3.7.5. Research Methodology

The proposed research uses a travel chart as input data because it is the only data representation which
will allow the integration of the machine groupings, machine sharing and intracell layout and intercell
layout problems for the distribution of machines. It uses mathematical programming models to combine

the necessary graph theoretical programming models to encapsulated the required graph theoretical and

67

Chapter 3 Integrated DCMS’s Methodology

combinatorial optimisation concepts. If independent cells exist, they will be indicated by the absence of

intercell flows. Machine sharing for backtracking within a cell will be accommodated by the appropriate
intracell handling system. An intercell layout of parallel flowlines will allow crisscrossing flows between
adjacent lines for all relevant shared machines. Machine duplication for some intercell flows will be
further avoided by permutating those flowlines to make them adjacent to each other across an
intermediate aisle. This will leave the parts and machines involved in the remaining intercell flows within
the nonadjacent flowlines. These proposals can be seen to reduce part families and distribution of

machines.

3.8. Conclusions

In this chapter the objectives, which comprise the cell formation problem, are described. The interactions
between these problems encourages the design of a dynamic layout to identify the machine groups,
intracell and intercell layouts simultaneously. The capabilities of existing methods for solving these
different problems are also discussed. The suggested method uses a combination of graph theoretical and
mathematical programming models in order to have flow based cluster analytic capabilities. This method
will be presented in the following Chapter 4, with an experimental study in Chapter 5. To improve the
capability of the proposed research methodology some modern optimisation techniques (simulated
annealing and evolution algorithm) will be utilised in Chapter 5. Finally, in Chapter 6 a proposed
methodology, detailing a dynamic cellular layout’s total cost will be optimised (minimised), resulting in a

new optimised (applying SA) dynamic shop floor layout.

68

Chapter 4 Modelling of DCM’s Layout

Mathematical Modelling of Dynamic Cells Layout

4.1. Introduction

This section describes proposed mathematical model-approaches for flow decomposition of machine
grouping and flowline layout design of dynamic cells. The theory of networks and graphs is applied to
model this problem and some basic relevant definitions and notations from network analysis and graph
theory texts [Gibbons 1985; Harary 1967, 1973 & 1980; Lawler 1976 & 1985; Aho 1974, 1980 & 1983
and Tarjan 1985 & 1983] are presented and used. Based on the network analysis and graph structures

observed, a mathematical programming solution approach is developed.

Section 4.5.1 presents a programming model to minimise travel distances for Forward (F) and Backward
(B) arcs, and section 4.5.2 discusses a mathematical programming model derived from section 4.5.1. This
latter model optimises orientation of the weighted directed rooted tree (WDRT) in order to minimise
travel distance and machine duplication for the Crisscrossing (C) arcs. In Chapter 6, section 6.1, a
mathematical model is presented for economical machine duplication, whilst in section 6.2 an optimising
a DCM layout from the stage three and design (machine placement) of the shop layout, using a Simulated

Annealing algorithm (SA), is also developed.

It will be demonstrated that the sequential use of these models efficiently integrates the machine
grouping and layout design issues discussed in the previous Chapter 3. To illustrate the model’s use an
example is presented in Chapter 5, and an approach for developing an approximate layout from the
output is also explained. A review of graph theory and network analysis, justifying proofs and a review

of some NP-complete problems is also discussed (in Appendix A).

4.2. Definition from Graph Theory

From the introduction to this chapter, which mentions network analysis and graph theory texts, a directed
graph, denoted by D(V,A), is a collection of n nodes, denoted by vy,.., vy (vieV, I V’z n) and m arcs,

denoted by a,,..., a, (a; € A, |A | =m), which join the nodes. An arc, denoted by a;; is an ordered pair of

69

S

Chapter 4 Modelling of DCM’s Layout

nodes (v, v;) represented by an arrow connecting the tail (initial) node v; to the head (terminal) node v;

(Figure 4.1 and 4.2).

Figure 4. 2 - Directed graph
Any arc is said to be incident from node v; and incident to node v;. An edge joining the two nodes either
has no direction or can be replaced by two arcs pointing in opposite directions from the node, a; or a;;. A
loop is an arc whose head and tail nodes are the same. The weight of arc (v; vy, denoted as c; (cost), ¢;

(time), f; (flow volume), represents a relationship between nodes v; and v, taken in the direction v; to v;.

Figure 4. 3 - WDRT
A WDRT (Figure 4.3) denoted by T(V,, 4), is a connected graph which contains no circuits (defined in

Appendix A). By definition, if 7 is a WDRT of order m, then it contains (m—I) arcs. It contains no
circuits, but the addition of any arc creates exactly one circuit (or cycle), called a fundamental circuit (or

cycle). If v; and v; are distinct nodes of T, then there is exactly one path between v; and v;.

Figure 4. 4 - Corresponding-spanning WDRT
A spanning WDRT (Figure 4.4) of digraph D(V,4) is a partial graph D(V, =V, 4, < A), ie. all pairs of
nodes are connected by a path or chain. An out-tree is a WDRT in which all the arcs point away from a

root node, which is the only node with zero in-degree. In the case of an in-tree, all arcs are directed

70

Chapter 4 Modelling of DCM’s Layout

towards a sink node, which is the only node with zero out-degree.

Undirected Graphs |Directed Graphs

Edges, £ Arcs, A

Vertices, V Vertices, V

Graph, G (V, E) Directed graph, G (V, A)
Loop Loop

Mapping Directed mapping

Adjacent edges

Adjacent arcs

Parallel edges

Strictly parallel arcs

Isomorphic graph |Isomorphic graph
Hdge sequence Arc sequence
Length Length

Chain Path

Circuit Cycle

Simple chain

Simple path

Simple circuit

Simple cycle

Connected

Strongly connected

Table 4. 1 - Terminology for directed and undirected graphs

Table 4.] shows the terms used in undirected graphs and the corresponding terms in directed graphs.

Detailed reviews of graph theory and network analysis terminology, and definitions used in this research

are presented in Appendix A.

4.3 Arcs Classification in the WDRT

Developing of this classification is in order to apply the concepts of Carrie [1975 and 1976] and Hillier
[1963] on unidirectional flow line design to intercell layout design. The initial design of undirectional
flow lines is necessary because only then can backtrack flows be identified. Their work concerned the
design of the optimum layout sequence for a number of machines through which a variety of products is
processed. Since they considered a single cell, they classified the flows along the flow line as in-
sequence, bypass and backtrack. The heuristics proposed by Hillier used objective functions, which are
maximisations of the number of in-sequence movements and minimisations of the amount of

backtracking on the line.

Hillier's work helps to incorporate the aspects of material handling system capability into the layout
design problem. Carrie enhanced these heuristics in a computer program, which adopted a variety of
strategies, such as machine duplication at multi-functional stations, alternate routing of operations and
allowance for material handling to minimise flow backtracking on the line. With respect to intracell
layout, their classification of the flows is sufficient. Thus a conveyor connecting the machines in the flow
line can provide for easy and rapid in-sequence and bypass flows. Backtrack flows require the services of
a material handler for which queuing might be involved, since this would take more time than in-
sequence moves. Carrie’s machine duplication decisions were limited to a single cell. However, when
applied to intercell layout, an additional type of arc is necessary in order to classify the flows which may
occur between any pair of flow lines. When intercell flows are also considered, it is more important to

minimise the intercell flows, since these will have even higher queuing delays for the parts involved.

71

Chapter 4 Modelling of DCM’s Layout

Intracell machine duplication and throughput delays then become secondary compared to intercell flow

delays and machine duplication.

Classification of all possible flow arcs in the digraph by various authors are as follows:
e an asymmetric Travel Chart for a “shop”, also suggested by Aho [1974 and 1983],
o dominators in a cyclic digraphs, suggested by Ahuja [1974 and 1993],
e strong components in a digraph, suggested by Tarjan [1977], and

e optimum branching in a digraph, suggested by Tarjan [1977 and 1985].

The machine grouping, intracell flowline layout, and intercell layout planning problems can be integrated
through the structure of the Maximal Weighted Directed Spanning Tree (MWDRST). This suits the in-
sequence, bypass and backtrack classification (for intracell flows) and crisscrossing (for intercell flows)
classification of flows in a cellular system. Hence, the MWDRST was preferred over several undirected
graph structures such as cut trees Montreul [1989], maximal spanning trees [Carrie 1975, Heragu 1989
&1990], minimal spanning trees [Srinivasan 1994] and maximal planar graphs [Carrie 1978, Foulds
1985], used to solve the more general problem of facilities (or only intercell) layout design. The
MWDRST has the clustering property of the maximal spanning tree, and it gives the flowline layout for
the group of machines in each path. Since nodes in the MWDRST can have the outdegree greater than
one, this combines the concepts of a functional layout with a tree layout for the shop floor when
flowlines sharing machines are merged. Owing to its directed tree property, it conforms to the in-
sequence bypass or backtrack (for intracell flows) and crisscross (for intercell flows) categorisation of
flows in the travel chart for the shop floor. Being a planar graph, it allows a permutation of its branches
at the branching nodes, such that the distances corresponding to high volume intercell flows can be
minimised after the initial tree layout is obtained. From the above discussion, the complete set of arcs A
in D(V, A), other than those in T, can be decompressed into two sets (explained in more detail in
Appendix A):
A ={a; e T}, and A r=({ay € T},

Based on the paths T, the chords in f(Appendix A) can be classified into one of three sets: F (forward),
B (backward) and C (crisscrossing) arcs, where F & U w C = A 7. In each class the arcs can be further
classified as necessary or redundant, depending upon whether they necessitate machine duplication or
not, respectively. If intracell flow delays are considered smaller in magnitude than intercell flow delays,
then layout and handling solutions can make machine duplication for the (intracell) arcs in F U B
(intracel]) flows redundant. This would ease the machine duplication problem for the necessary arcs in C
(intercell) flows, ie. arcs connecting nonadjacent paths in the WDRT. The following sections will explain

in more detail this classification.

72

Chapter 4 Modelling of DCM’s Layout

Figure 4. 5 - Tree arcs and only forward arcs in WDRT

4.3.1. Forward Arcs

An earlier definition for the length of a path has been the sum of the weights of the k (part or pendant
node) arcs it contains. A k - path between nodes v; and v; on some path in 7, denoted by pi’, where (v; €
p;and v; € py), is a path with k arcs (edges). Any arc a;; € T, or € D(V,A), is therefore a p,~,-". However, if
node v; is reachable from v; by a path in T containing two or more arcs, then a; € T = Jpj for (n-1) 2k
22 in T. This could make a; a redundant forward arc in T, as well as D(V, A), if the length of the path
does not correspond to a significant handling delay between the consecutive machines. There may be
need for machine duplication to reduce travel time for the flow fj, since it can simply bypass all
intermediate machines in the existing flow line or path in 7 from v; to v;. It can also be said that the
forward arcs (Figure 4.5) on any path in T makes the path a unilateral component, because an arc and at

least one path from the corresponding set, connects each pair of nodes.

Carrie’s work resorts to intracell duplication of identical machines in several cells to eliminate backtrack
flows. This is subject to sufficient machine utilisation being ensured in all cells. However, the critical
assumption made in his work is that the intercell machine duplication problem does not constrain the
machine availability within the particular flow line being designed. In contrast, this proposed research

gives a higher priority to the elimination of intercell flows by machine duplication.

The set of arcs in F can be classified as redundant (a; € F,), or necessary (a; € F), where F, U F, =F.
F, contains arcs that do not merit machine duplication. The distance that parts included in these arcs must
flow, can be made less than k by a layout adjustment, or by using a suitable handling system. From a
layout perspective, a U-layout effectively can halve the length of the initial flow line based on the path
connecting machines i and j, without upsetting the previously unidirectional flow. Instead of placing all
machines in a line, as indicated by the paths in 7, it is suggested that machines in the modified layout are
placed on both sides of a central aisle separating two shorter flow lines. In any new layout, parts can
move across the aisle to a machine in the opposite flow line instead of having to bypass several
machines, when a pure linear unidirectional flow line layout is used. This modified layout prevents
intracell machine duplication without increasing the time that parts travel between nonadjacent machines

for consecutive operations.

However, conversion from a pure linear unidirectional intracell flow line layout to a L, U, S, WorZ

shaped layout reduces the intercell accessibility to shared machines. Issues such as:
o how many machines in €ach flow line,
o locations at which these flow line direction changes, and

o left or right directions in which each machine should be located,

73

Chapter 4 Modelling of DCM’s Layout

must also be addressed.

Theoretically, several traditional NP-complete problems must be solved together, in order to consider the
effects of intracell and intercell flow distances simultaneously, because intracell machine locations and
intercell layouts must be determined together. This research assumes that intracell flow delays due to
flowline layout, are preferable to the higher intercell flow delays due to reduced machine adjacencies

when having L, U, S, or Z-shaped layouts for cells.

The arcs in F, correspond to k-path arcs, where k 2 k,p,. Thus, if an arc in F corresponds to a path in T
with (k,,,+ 1), or more arcs, then travel times can become excessive if machine duplication is not done.
Optimal values of k depends on several factors, and in addition, it makes the integrated intracell and
intercell layout problem the standard two-dimensional facility layout problem. This has been proved to
be difficult to solve for a large number of departments (or machines), when their locations are not known
previously.

Forward arcs corresponding to paths in 7 with higher & values can also belong to F,. As an example once
issued from, say, the raw material store, batches of parts included in arcs from F, must traverse the k-path
distance, without queuing at the intermediate nodes. There is no need to duplicate the machines in the tail
nodes of these arcs in order to bring them adjacent to the machines in the head nodes, or vice-versa. It
will not reduce material handling times for those parts. Hence, it is possible to avoid machine duplication
for arcs in F by making F, = @ (explained in more detail within Appendix A.2). For example, it is
claimed that “anywhere from one to fifteen machines are grouped together, typically in a U-shaped
layout” [Sule 1988 see p122] giving k as high a value as 14, if only linear flows are allowed. With the
developments in automated handling systems, network-type flow path configurations could be
encouraged, thereby allowing higher & values. This argument supporting the use of larger k values to
define arcs in F, can be seen in the layouts where all identical machining centers have been placed
together in a functional layout, with no intracell machine duplication, thereby supporting the new CM
philosophy of dynamic cells. Secondly, this type of layout configuration will minimise the intracell flow
delays without allowing machine duplication. Hence, if machine duplication for arcs in F are avoided, it

will leave more machines for eliminating intercell flows.

Another reason for avoiding machine duplication for arcs in F, is that, even after machine duplication,
the additional flow line will essentially still remain adjacent to the existing flow line from which it was
derived. Hence, by eliminating the earlier functional layout with all identical machines located in one
cell, intracell machine utilisation would reduce. So, machine duplication for arcs in F, are preferable

avoided, since the intracell flows can be managed by a handling system.

Machine duplication for arcs in F can also be avoided by replacing the existing conventional machines
with CNC machines (key machine concept), and thus travel times for arcs in F, will be eliminated by
introducing CNC machines which perform consecutive operations on the same part. The effective length

of the flowline, originally comprised of only conventional machines, is then drastically reduced. Based

74

Chapter 4 Modelling of DCM’s Layout

on these arguments, machine duplication for arcs in F need not be considered during the layout design

stage. Furthermore, if WDRT structures for the shop layout and flow line layouts for each cell are
assumed, then these arcs will not contribute to the intercell flow delays. Only if L, U, S, W or Z-shaped

intracell layouts are desired, will the lengths of these arcs feature in the two-dimensional layout problem.

4.3.2. Backward Arcs

All backward arcs (Figure 4.6) on a path in T are chords, which causes the paths in 7 to become strong
components or circuits, when these arcs are added. In order to avoid machine duplication to reduce travel
times for the flows in these arcs, layout as well as handling solutions must be developed. Similar to the
ideas developed for forward arcs, a backward arc (v;, v;) on a path p; in T must also traverse a distance of
k edges instead of arcs, i.e. it is equivalent to a k-chain, since the k-path in 7 is traversed in the reverse
direction (a; points in the reverse direction from p,-jk). Hence, B, will contain all arcs which convert k-
paths into circuits, or strong components, for the specified limiting value of k, where B, =(a; € ﬂ such

that T contains ap,jk .

Figure 4. 6 - Tree arcs and only backward arcs in WDRT

The need for intracell machine duplication to eliminate the travel times for arcs in B may not be
necessary, as discussed earlier for the forward arcs. Again, the handling capabilities of existing FMS's
suggests that the intracell handling delays caused by these arcs is not a problem and can accommodate
such intracell flows. Handling alternatives to eliminate backtracking and to prevent machine duplication
within a flow line, can also be implemented to leave machines for eliminating flows arcs in C,
(crisscrossing arcs). Hence, this further justifies grouping all identical machines at one station in a CM

flow line in the presence of backtracking.

The common representative patterns of workflow clearly indicates that loop flow patterns are viable
within a cell. This pattern would also eliminate intracell machine duplication for backtracking flows
within a cell, which is identical to the sequences of machines observed in the WDRT. Hence, the WDRT
structure can be exploited for intracell as well as intercell layout design. As in the case of forward arcs,
machine duplication for arcs in B, will result in the additional flow line being adjacent to the existing
flow line. Hence, it would be preferable to retain the duplicated machines in their functional sections,

using handling systems to reduce the handling delays due to backtracking.

4.3.3 Crisscrossing Ares

All crisscrossing (C) arcs (Figure 4.7) contained in T are chords, whose addition to T will create a
fundamental circuit (or cycle) which links two paths in T. The flows on these arcs in C constitute the
intercell flows which, as per the existing literature, receive the highest priority for elimination by
machine duplication. These arcs could be further classified as redundant if necessary. Redundant arcs

would correspond to those connecting adjacent paths in the WDRT, whereas the necessary ones would be

75

Chapter 4 Modelling of DCM’s Layout
spanned at these paths. The arguments for avoiding machine duplication for the redundant arcs are

similar to those given earlier for F and B arcs.

Figure 4. 7 - Tree arcs and only crisscrossing arcs in WDRT

For some necessary arc gy, in order to avoid the delays due to intercell flows, the machines to be
duplicated could be:

1. node v; and all the predecessors of node v; in the operation sequences of parts which contain arc

a; placed next to the flow line containing node v;, or

2. node v; and all the successors of node v; in the operation sequences of parts which contain arc a;;

placed next to the flow line containing node v;.

However, as has been emphasised, any kind of machine duplication will lead to utilisation and load
balancing problems, and must be avoided. It is impossible to identify an integer allocation of machines to
cells without utilisation problems, if the loads for the part families are equivalent to noninteger machine
requirements. An approach to this problem, in the case where machine exists for distribution

(duplication), is described in Chapter 5.

4.4. Problem Complexity
The development of a single mathematical programming model for the combined machine grouping,
intercell and intracell layout design problems have proved difficult. For intracell flow line construction

no single model has been able to incorporate all aspects of machine grouping which considers:
e generation of all flow lines in the form of a MWDRST,

e interaction between an intracell flow line configuration (flow distance for forward and backward

arcs) and an intercell layout (flow distances for crisscrossing arcs),
e machine sharing for nonadjacent crisscrossing arcs, and

e optimal left to right order of the flow lines.

Thus it is proposed that the required model be a combination of cluster analysis, constrained spanning
WDRT, permutation generation and two-dimensional facility location problems. The brief review of
existing NP-complete problems (presented in Appendix A) will show that each of the problems listed in
the last paragraph is itself a separate NP- problem (as normally abbreviated for non-deterministic
polynomial time complete problems). However, a common property for NP complete problems is that no
polynomial time algorithms are known for the problem. Thus if one of these problems is solvable in

polynomial time, then all the problems are solvable in polynomial time.

76

Chapter 4 Modelling of DCM’s Layout

Stages | Steps Main Tools Description of Steps
1. Batch quantity for each part Qk
1 Matrix form Input 2. Operational sequences for each part Sk
3. Number of machines of each type available Vi
) MATLAB matrix Compute the distance between every pair of machines { and j and
form construct the distance matrix
3 MATLAB Generate initial digraph D(v,a)
4 MATLAB Chu’s Solve first stage to generate 7 Maximum Weighted Directed Rooted
algorithm Spanning Tree (MWDRST)
5 Tree draw Generate path (1)... path(p) in the MWDRST
6 Tree draw Identify arcs in forward, bacl.(ward and crisscrossing paths of the
digraph D
. With crisscrossing paths and path(1)...path(p), generate combined
7 MATLAB matrix interpath flow rr%alt)rix using[t)otal(ﬂ)owpfor (rﬁ:w%]ines i and j, and
form weighting for the shared machines
8 MATLAB Solve second stage to pivot paths — to rearrange MWDRST
Plan layout based on material flowlines from second stage and path

9 MATLAB matrix . .
adjacencies

Identify arcs in crisscrossing to plan for machine duplication in

10 Tree draw nonadjacent cells

11 MATLAB Design and analysis of approximate DCMS’s flowline layout

12 MATLAB Economical capacity oriented machine duplication
Economical optimisation of DCMS’s layout using SA algorithm

13 MATLAB 5A minimisingp total material handling aﬁd dupIicition C(g)st’s

14 MATILAB SA Shop floor layout displacement

Table 4. 2 - Initial strategy overview of the proposed research methodology

4.5. Mathematical Formulation of the Problem

The definitions presented in the previous sections (networks and graph theory) are sufficient to give an

overview of the mathematical formulation and models for the proposed dynamic cell layout design and

flowline formation method, presented in Table 4.2. This problem is solved in four stages:

Stage I is a mathematical programming model to generate a Maximum Weighted Directed
Rooted Spanning Tree (MWDRST). This implicitly minimises travel distances for Forward (F)
and Backward (B) arcs.

Stage II is a mathematical programming model derived from stage L It finds the optimal
orientation of the WDRT in order to minimise travel distances and machine duplication for the
Crisscrossing (C) arcs.

Stage III is a mathematical model for economic duplication of machines from the stage II
approximation layout and will be explained in Chapter 6.1.

Stage IV is the placement of machines from the approximate flowline layout from stages II and
III (shop floor layout) to generate the final DCM layout, applying the combinatorial optimisation

SA algorithm. This will be discussed in Chapter 6.2.

These four main stages of the design methodology for the DCM flow line layout, just discussed, are

further elaborated in the next sections, focusing particularly on the first two stages. The proposed stages

Il and IV are presented in Chapter 6. Also presented in the next chapter is an illustrative example, and an

77

Chapter 4 Modelling of DCM’s Layout

experimental study with an improved analytical procedure. A detailed mathematical presentation is given

in Appendix A.

4.6. Modelling of Stage I: Steps 1- 6

In this section, application of the graph theory, utilising Edmond’s optimum branching algorithm (dual
solution) to a CM layout is described. Chu [1965], Edmonds [1967] and Bock [1971] have independently
devised an efficient algorithm to find an “optimum branching” (minimum spanning tree) in a directed
graph. Chu’s [1965] proof was entirely graphical; Bock [1971] solved the problem using linear
programming theory and Karp [1972] gave a further proof of Edmond’s [1967] algorithm, which does not
depend on linear programming theory. Tarjan’s [1977 and 1985] modified branching algorithm gave a
new improved running time of 0(n’). Bock [1971] was the first who described the optimum branching
problem, and gave formulation (minimum directed spanning tree - primal problem) to the integer
mathematical programming form (using matrices) as shown in Equation 4.1, and also suggested a
procedure for dual (maximum) problem solution. This algorithm (Bock's) was the initial concept in this

approach for the mathematical description of the model:

Minimise z= Y ¢ Equation 4. 1

LK.
ijes VY

Bock’s objective function (Equation 4.1) is defined for S as the set of positive integers I... n, for a
specified n (with S as subset of S having n, elements) and Q as a set of indices of all the proper subsets
of S. The indices i and j denote the initial and final nodes respectively of the directed links ij of a given
network. Equivalently, { and j are row and column indices of a square matrix and c; are the link values.
The variable x; has the value of / if the corresponding link is in the solution set and 0 if not. An example
for this approach is also included in Bock’s work.

In the proposed approach of this research Equation 4.2 constitutes the first stage, which is a mathematical
programming model for obtaining 7, a maximum weighted directed rooted spanning tree (MWDRST).
This proposed model is different from the original model described by Bock [1971] who presented

Equation 4.1 for minimisation of a directed spanning tree. Thus:

Maximise S OY f.ow(p.x.. V oa.eT Equation 4. 2
j=Rizs ¥ VY Y

where:

fi 20 VS I a; € S i #S; j #R - flow from machine i to machine j (the sum of the batch

quantities of all parts whose operation sequences contain machines 7 and j),
w(py) - 1, if - a, € T weight (length) of the path py,
X; - binary variable to represent the membership of arc a; in 7,
p; - path in T tree connecting machine i to machine j,

R, S - common root (eg. raw material store) and sink (eg. finished goods store) nodes of the digraph

78

Chapter 4 Modelling of DCM’s Layout
D(V,A) (travel chart) occurring in the operational sequences of all parts,

a; - directed arc from machine i to machine j,

Sy - operational sequence of part k, represented as (R, 1, 2, 3, .., n-1, n, S), where i is the machine

required for the i-th operation on the part,
Or - batch quantity for part £, and

T - MWDRST generated by the (linear) programming model in the first stage, (also denoted as
D(Vt,At)).

The objective function given by Equation 4.2, is different than Bock’s original definition, because if the
mathematical programming model is a linear programming model, then this Equation 4.2 is a dual
problem of Bock’s model. As presented the objective function in Equation 4.2 maximises the linear
function of flow (f) and weight (distance w) between machines i and j of the material handling in the flow

lines.

The proposed model from stage I is programmed in LINGO together with the main algorithm (Chu’s
1965), which is used later and programmed (Appendix D) in MATLAB. The results from both programs
are the same as that to be presented in the illustrative study and Chapter 5. However, it should be noted
that Chu’s algorithm originally was given in graphical form for the minimum spanning tree (running time
improved by Tarjan [1985]) and was modified for MWDRST and coded in MATLAB. Interestingly the
reader can refer to Chu’s original paper in this area of work, which has been already mentioned before.

This and the proposed mathematical model are explained in more detail in Appendix A.

Now, after the flow line distances are maximised (MWDRST path), the next step is to solve the problem
of how to optimise (pivot) paths around a MWDRST. Optimisation of the flow line paths orientation is

explained in the next section with the proposed mathematical model.

4.7. Modelling of Stage II: Steps 7 - 11

This section describes the mixed integer programming model, which finds the optimal permutation of the
branches of T to minimise intercell flow distances with adequate definition and terminology. Further
detail description of the stage two mathematical model is presented in Appendix A. The proposed model
for this stage is derived from Love’s model for the two-dimensional location for Euclidean distances
[Love 1973], originally used for solving the QAP [Love 1976] (based on the Gilmore-Lower approach

for solving QAP) as shown in Equation 4.3 It is here adapted to solve the Optimal Linear Arrangement.

Thus;
n-1 n
Minimise 2 2 w, (R,.j +L,+A;+B,) Equation 4. 3
i=l j=itl
where:
n - number of facilities and number of locations,

79

Chapter 4 Modelling of DCM’s Layout

Wi - nonnegative weight or flow between facility 7 and facility j,

Ry - horizontal distance between facility i and j, if facility i is to the right of facility j,
L - horizontal distance between facility i and j, if facility i is to the left of facility j,
Ay - vertical distance between facility i and j, if facility i is above facility j, and

By - vertical distance between facility i and j, if facility i is below facility j.

Interestingly, the reader can refer to Love’s paper or to Francis [1976] and Karisch [1995 and 1998] for
more information about QAP methodology and examples. However, a second stage mathematical

formulation of Equation 4.4 is presented as follows:

L S
Minimise ¥ Y {7, + SWNR, +L,) Equation 4. 4
i=l j=i+] ke PP,
where:
P - number of paths corresponding to the pendant nodes in the 7 (MWDRST) tree,
Fj - ZZ]‘“ Vke Pe P, VIeP ¢ P, ay € C; sum of flow volumes of arcs that
! k

connect paths P; and P; (such that either the head or tail node of each arc lies on P; or P)),

Wy - flow weight assigned to a machine common to paths P; and P,

Rj; - column difference between P; and P;, if P; is to the right of P,

L - column difference between P; and P;, if P; is to the left of P;, and

Qix - assigned position k (path position) in the optimal sequence of pendant nodes.

Stage II was felt necessary because the progressively increasing weights used successfully in the
examples solved later were obtained iteratively from trial runs for each example. As illustrated in later
examples, during the permutation of the branches of T, two critical tasks need to be performed. The first
task is necessary, although it does not influence intercell flow distances. It ensures that if a pair of paths
shares paths, which share the machines at the branching nodes, then such a shared path will always
permute as a group, even if the machines are at two or more levels. The second task is to permute the
branches without violating the restrictions imposed during the first task. This task minimises intercell

flow distances without allowing any machine sharing.

The successful use of this restricted permutation strategy will be shown in later examples, and also in an
experimental study for the second stage. However, later in Chapter 5 and Appendix A, it will be seen that
in the worst case the one dimensional optimal linear arrangement becomes a two dimensional QAP,
which is a NP- problem. Traditionally, an exact solution of the QAP is computationally infeasible for
fifteen or more machines [Francis 1974], necessitating the use of pairwise-interchange heuristics. This is
why a QAP steepest descent pairwise interchanged heuristic, coded (Appendix D) in MATLAB, is applied
in Chapter 5 (An Experimental Study).

80

Chapter 4 Modelling of DCM’s Layout
4.7.1. Evaluation and Analysis of Approximate DCMS Flowline Layout

The DCMS flowline layouts need to be evaluated and analysed, as the main criteria for layout evaluation

is kept simple to focus more on the qualitative aspect, which is a comparison of the total distances moved
by all the parts in both intercell and intracell layout configurations. The objective function is presented

by Equation 4.5 as follows:
2fiid; V(ij) Equation 4. 5

where f; is the flow volume between machines i and j in the DCMS layout, and dj; is the distance between
machines i and j. The distance can be rectilinear, Euclidean, or along the shortest path through a flow
network. This criterion for DCMS layout analysis for each approximate layout evaluation allows a near

feasible solution during the intermediate stage solutions (second stage).

This is a simple but effective measure of the handling and layout capabilities of the proposed method.
That is, the sum of the lengths of the flow arcs in the new layout configuration, weighted by their flow
volumes, have to be evaluated for comparison with those shown for the original layout. This was
achieved using a mathematical model build in MATLAB with certain known assumptions, such as
rectilinear distances, unit lengths and widths for all the departments, and equal department sizes for all

the layout configurations assessed.

4.8. Mathematical Justification of the Methodology

This section contains the mathematical justification of the methodology presented in the first two stages.
Here the use of the MWDRST is compared to the Optimal Linear Arrangement (OLA) or the Directed
Optimal Linear Arrangement (DOLA) analogue for cell formation and layout design (detail justification
is shown in Appendix A).

The OLA is analogous to the Bond Energy Algorithm [McCormick 1972] or TSP for a symmetric chart.
The DOLA of the travel chart is equivalent to a permutation problem or TSP for an asymmetric cost
matrix. The linear arrangement of the machine groups that the OLA presents does not capture the two
dimensional flow and adjacency structure of layout problems. Aspects such as machine sharing by
multiple paths at a branch node, or parallel flowlines to avoid intercell machine duplication, cannot be
considered by them. With the MWDRST, the cluster analysis properties of MWDRST are obtained
together with the flow structure in each group. Being a planar graph, it can also be rearranged to

minimise intercell flow distances.

An aisle in the actual layout can separate each pair of adjacent paths in the MWDRST. This would allow
intercell crisscrossing or intracell forward or backward flows without machine duplication. Machines in
adjacent flowlines can be grouped to form “dynamic” cells. Finally, it will be shown (Appendix A) that
the average travel distances in the MWDRST are less than in a DOLA, and that the mathematical
formulation justification is based on network analysis and graph theory texts [Gibbons 1985, Harary

1967, 1973 and 1980].

81

Chapter 4 Modelling of DCM’s Layout
4.9, Summary of Initial Methodology for the Stages I and II

This section summarises the steps in the first two-stage solution strategy adopted for the proposed
dynamic cell formation and layout methodology shown in Table 4.3. The feature of this part of the
research work was to capture the directionality embedded in the operation sequences of a variety of parts
produced in a facility for the DCM layout design. Also, to consider how to generate machine groups by
identifying a flowline layout for each group, thus indicating which flowlines must be placed adjacent to
each other to minimise intercell flow distances, and furthermore to determine an approximate

configuration of the aisles.

Stages | Steps Main Tools Descriptién of Steps
1. Batch quantity for each part Qk
1 Matrix form Input 2. Operational sequences for each part Sk
3. Number of machines of each type available Ni
2 MATLAB matrix Compute the distance between every pair of machines / and j and
form construct the distance matrix
I 3 MATLAB Generate initial digraph D(v,a)
4 MATLAB Chu’s | Solve first stage to generate T Maximum Weighted Directed Rooted
algorithm Spanning Tree (MWDRST)
5 Tree draw Generate path (1)... path(p) in the MWDRST
6 Tree draw Identify arcs in forward, ba(él,(;::;(; z;;xd crisscrossing paths of the
With crisscrossing paths and path{1)...path(p), generate combine
7 MATLAB matrix interpath flow Ir%ait)rix using fotal(ﬂ)ovf for (rir)lflc%lines i and j, and !
Jorm weighting for the shared machines
8 MATLAB Solve second stage to pivot (permute) paths — to rearrange MWDRST
I 9 MATLAB matrix Plan layout based on materiz;l(ljlil(;\;vr:igzz from second stage and path
10 Tree draw Identify arcs in crlsscrons;lr;%l jt;)cgLz;ncg(l)lrsmachme duplication in
11 MATLAB Design and analysis of approximate DCMS’s flowline layout

Table 4. 3 - Research methodology strategy: stages I and Il

4.9.1. Stage I: Steps 1 -6

Here the operational sequence and batch quantity of the parts is the only input data. To obtain the
MWDRST the travel chart obtained from this data is the input to the Stage I model. Using the MWDRST,

the forward and backward arcs in the original diagraph are eliminated.

4.9.2. Stage I1: Steps 7 - 11

With the crisscrossing arcs only, a matrix showing the intercell flows amongst all pairs of paths in the
MWDRST can then be developed. This matrix is the input to the MWDRST second stage model to
permute the branches of the MWDRST, without dividing any of the branching nodes.

After these steps, additional steps (illustrated in Chapter 5) are required to:
1. identify all the parts whose operation sequences contain the arcs in C,,
2. identify all the machines that must be shared,

3. obtain the setup and operational time data for each operation on a part,

82

Chapter 4 Modelling of DCM'’s Layout

4. solve a mathematical programming model to determine the assignments of shared machines to the

competing cells, and
5. evaluation and analysis of an approximate DCM flowline layout (presented in section 5.7.1).

For mathematical modelling, MATLAB and LINGO (mathematical modelling languages) were used. This
provided an environment to develop, run and modify the mathematical models, since LINGO is a
powerful matrix generator. The program provides all the features required to generate a model in a
simple, efficient, intuitive manner. LINGO allows the expression of a model using conventional
mathematical terms such as subscript variables, sets, operations and general expressions. In addition, the
user has an extensive library of mathematical, probability and financial functions, and the formulation
can also include extensive comments within the model. Most importantly, LINGO allows syntax that is

much more liberal than when expressing formulas.

The main programming tool used in this research was MATLAB, which is another powerful matrix
generator. Using MATLAB, all the mathematical computing was done, which included coding and
building of algorithms and heuristics for TSP, QAP, the Branch and Bound method, and the Mixed
Integer program. This also includes combinatorial optimisation techniques, SA and EA (Evolution
Algorithm) for the TSP, and shop layout displacement. At this stage it may be noted that results from
these programs were initially tested and compared satisfactory with the operation research package

(STORM [1992]).

4.10. Computational Experience

At this stage the first two stages of the proposed research were tested. The primary goal was the NP —
complete problem structure of the second stage, which was a main computational bottleneck, and not
computational efficient. The optimal solutions for the second stage, obtained using an integer
mathematical model, was validated with good results by utilising a LINGO model. Since the stage one
model is a linear programming model with a network structure, solutions were obtained very quickly for
all travel charts applied. However, the second stage problem, with more then 4 nodes, required much
longer time (a hour or more) to obtain the optimal solution. Even when the second stage model was
solved with a new MATLAB mixed integer program, times of more then 30 minutes were recorded. This

result clearly is not suitable for many industrial scenarios having non-stable product or dynamic

production environs.

As referenced in the experimental study and improved procedure Chapter 5, because this methodology
obtains valid intracell and intercell layouts for the first stage, to obtain the MWDRST, the same algorithm
can be used. However, to improve the computational time of the second stage model, the steepest descent
pairwise interchange heuristic (SDPI) was applied (some initial experimental results for the SDPI are
shown in Table 4.4). It may be noted that 16 pendant nodes (problem size) for the second stage OLE
model permutation could be equivalent to a medium size company operating with between 50-100

machines (Table 4.4).

83

Chapter 4 Modelling of DCM’s Layout

Stage 1 (problem size) | Stage 2 (problem size) | Stage 2 Running time (séc) ,
1 4 1 *
12 6 2
14 8 3
20 10 4
25 16 5
40 24 8

Table 4. 4 - Computation time when SDPI algorith‘m utz;Zi.féd in the ;econc;’ s‘t;J(gr;r;ﬁo;i\el
At the time of formatting this research methodology it should be mentioned that a similar result from
literature has only recently been available. Karisch [1998] compared results from the steepest descent
pairwise interchange heuristic (SDPI), with respect to £4 and S4 methods, when applied to the Q4P
problem. Again, the SDPI outcome still gave better performance then the other two methods. Following
Karisch’s positive result the Q4P steepest descent pairwise interchange heuristic was coded (Appendix

D) in MATLAB and is included in Chapter 5 as a part of the experimental study.

4.11. Conclusions

In this chapter the initial design procedure with mathematical modelling of the DCM layout, including
the first two stages, is presented. The goal of this part of the research was to capture the directionality
embedded in the operation sequences of a variety of parts produced in a facility for the DCM layout
design. This goal was achieved by incorporation of directionality into the design flowline skeletons
layout using 2 Maximum Weighted Directed Rooted Spanning Tree (MWDRST), which is a rooted and
directed tree composed of directed flow paths linking departments. Hence it incorporates the first
principle for design of the facility layout, which is the maximisation of directed flows. MWDRST is a
planar graph concept, hence planar embedding is possible and automatically penalises backtrack flows.

These are the two main features, directed flow maximisation and backtrack flow minimisation, which

characterises the MWDRST concept.

S Plan DCM layout based
Input: - ™ on material flowlines
Parts; Batch quantity; Operation "‘{ 'Ge;:er ate paths
sequence and demands; in the MWDRST
Machines (manufacturing ﬂ Duplication of machines !
resources) available; Available T -
capacily; Production period; and Identification and Analysis of ¥
Processing time. path arcs c;,’;gi}‘nm DRST U—Adiust DCM flowline layout l

i i1
Stage 1
: N Stage I1 L
< Generate travel chart > Generate new [| Analyse and Evaluate design
| /z ; ; > » of the DCM flowline layout
¥ . material flow matrix L arme
(Generate initial tree digrapb/ ch‘or Shared_rizitilznes
Adjust
- . p MWDRST
R nging paths ;
Generate MWDRST diagmm\ l?: :;Z f/[lﬂng;l(fS'T — Slowline layo
as a DCM layout skeleton e B _f‘fllllfion

Figure 4. 8 - An interactive (stages I and 1) DCM flowline layout framework based on graph MWDRST theory
A first two-stage mathematical programming approach was used to generate the MWDRST. In stage [, a
linear programming model generated the MWDRST from the travel chart. In stage I, using only the

84

Chapter 4 Modelling of DCM’s Layout

crisscrossing arcs as input to the O - 1 integer- programming model, an optimal planar embedding of this

MWDRST was obtained.

The approach presented shows that the suggested method is a unique combination of network analysis,
graph theory and mathematical programming concepts. Its fundamental assumption is that machine
sharing on a part family basis creates load-balancing problems. Furthermore, shared machines could be
retained in functional layouts as long as machine sharing is within the cell or between adjacent cells.
Finally, an interactive chart for the design of the DCM flowline layout (first two stages of the proposed

research methodology) is presented in Figure 4.8.

This proposed first, of the two stages of this research, generates machine groups, identifies a flowline
layout for each group, indicates which flowlines must be placed adjacent to each other to minimise
intercell flow distances, and an approximate configuration of the aisles. Functional layouts, as well as
machine groupings, are simultaneously encouraged. The classification of arcs used is effective for.
assessing whether material handling or machine sharing, is necessary to minimise intracell or intercell
travel distances respectively. Examples are presented in the next chapter, and compared with three
different CM design methods. This work shows the results obtained by this method, together with an
improved procedure which employs combinatorial optimisation techniques and stochastic optimisation

(SA and Evolutionary Algorithm (EA)).

85

Chapter 5 Experimental Study of Dynamic Cells

Experimental Study of Dynamic Cells and
Machines Layout

5.1. Introduction

In this chapter, to illustrate the proposed model’s use, a rudimentary example and a more detailed study
is presented. Furthermore, a procedure for developing an approximate layout from the model’s output is
also explained, along with comparisons of the proposed MWDRST method with three other established
CM design methods. An improved procedure is also evaluated with respect to these three CM methods.
Combinatorial optimisation algorithms are also employed to solve NP-problems as part of the improved
procedures, which are programmed in the mathematical programming tool MATLAB whose codes are
presented in Appendix D. These optimisation algorithms (such as QAP, SA, TSP, 2-opt and EA) have
been tested and applied to these NP examples. A short review is included in this chapter. However a

more detailed explanation about combinatorial optimisation algorithms used in this research is presented

in Appendix C.

5.2. An Rudimentary Example of Proposed MWDRST Research Model
The proposed MWDRST research model (Table 4.2 and Table 4.3) and the final DCMS layout (first two-

stages I and II of the solution strategy) will be explained using a rudimentary example. It will be
demonstrated that the sequential use of these models efficiently integrates the machine grouping and

layout design issues discussed in the previous Chapters 3 and 4.

5.2.1. Stage I: Steps 1 -6

The problem of the first stage of the research model solved here was to capture the directionality
embedded in the operational sequences of a variety of parts produced in a facility for the DCM layout
design. The operation sequence and batch quantity of the parts is the only input data. The travel chart
(Table 5.2) obtained from this data is the input to this Stage I model illustrative example to obtain the

MWDRST. Thus, utilising the MWDRST the forward and backward arcs in the original digraph can be

86

Chapter 5 Experimental Study of Dynamic Cells

eliminated, Here the example’s initial layout for the shop is shown in Figure 5./ and the number of
machines available of each machine type is also given.
B ‘Le;;gen;ir h
Packaging - PC
o2 Assembly - A
Foundry - F
v%"-— Deburring - DB
g{ Dritling - D

8.4

e ————

Paclca mg I
an
I'ran.rpart

Grinding - G

%@ Milling - M

‘\., Quality Control - QC &
Plating - P
2 Welding - W

i

Figure 5. | - Initial layout

5.2.1.1. Step 1
Analysing the initial layout from Figure 5.1, the Foundry (F), Plating (P), Assembly (4), and Packaging

(PC) sections are assumed indivisible due to the type of functions that they perform and only one Welder
(W) is available. If the fumes from welding make it incompatible with all the other sections, it must be
located on the periphery of the shop. A similar location constraint applies to plating and foundry. The
grinders should preferably be located together since these are usually expensive precision machine tools
(also because of the occupation safety and health regulations). The quality control stations must be

assumed divisible, since quality control is preferably performed at the location where some machining or

assembly is done.

Part Operation Sequence Batch Quantity

| F-DB-D-G-QC-PC 6

F-DB-M-QC-G-P-QC-PC 8
3 F-DB-M-QC-P-QC-PC 7
4 F-DB-D-G-P-QC-PC 7
3 F-DB-D-M-P-QC-PC 7
6 F-DB-M-W-P-A-QC-PC 3
7 E-W-P-A-QC-PC 3
8 F-DB-M-W-P-A-QC-PC 3
9 [-DB-M-A-QC-PC 3
10 F-DB-D-M-A-QC-PC 7
11 F-DB-D-D-A-QC-PC 4
12 F-DB-D-A-QC-PC 3
13 F-DB-D-PC-A-QC-PC 4

Table 5. | - Operation sequence and batch quantity data to provide a numerical solution

The operation sequences of the individual parts and the batch quantity for each part are shown in Table
5.1. The use of a travel chart is preferred instead of using the Muther’s relationship diagram. Part 13 has
a peculiar sequence in that it returns for assembly and quality control after visiting packaging once. Such

“gxceptions” are typical and need to be eliminated by process re-planning.

5.2.1.2. Step 2
Based on this input data (Table 5.1), ignoring parts setup and operation times, the travel chart shown in

Table 5.2 can be developed (utilising MATLAB ot any spreadsheet software). This travel chart, which

was arranged in logical order of the operation sequences, (actual flow matrix as shown in the Table 5.1)

87

Chapter 5 Experimental Study of Dynamic Cells

resulted from the computation of distances between every pair of machines from Table 5.1.

T0 Machine
F|DB|D|G|QoC|PC|M|P|W]|A

F * | 62 3

DB * 138 24

§_D * 113 4 |14 7
£ G x| 6 15 ;
§ (114 8| * | 65 7 ‘
=~ PC * 4
g‘ M 15 * 171610
Y 4 29 * 9
w 9 | * ,
A 30 *

Table 5. 2 - Travel chart used for DCM layout design

Level 1

Level 2,
Legend :
Packaging - PC
o Assembly- 4 ‘
Foundry - F' Level 3
&k Deburring - DB
& Driting-D Level 4
0,._3,{‘ Grinding - G
EBgy piing - M LevelS:

?‘\ Quality Control - QC
Plating - P
Welding - W

~ Pah i Path 2 i ’f'athvjy et e e
Figure 5. 2 - MWDRST maximal spanning distance — after stage |

5.2.1.3. Step 3
Based on the travel chart from Table 5.2 the initial digraph is developed in a graphical (network flow)

manner (Figure 5.1). Analysing this digraph, as mentioned before in step 1, and noting all arcs incident
from the PC node, the exception operation (explained in step 1) corresponding to part 13 can be
recognised by identifying all arcs incident from the PC node. Corresponding to the four quality control
machines available, the arcs incident to and from the QC nodes involve G, 4, M, P and PC. Hence, using
the travel chart (Table 5.2), indivisible bottleneck machines or shared machines which can be duplicated,

or exception operations with low flow volumes, can be identified.

5.2.1.4. Step 4
Using LINGO, the stage I (from Table 4.2 and 4.3) research model, presented in Chapter 4, was solved to

obtain the MWDRST, as shown in Figure 5.2. It will be shown that stage II is a three-node permutation
problem, compared to the ten-node (machines) problem in the original travel chart (Figure 5.2 and
explained in Appendix A).

3.2.1.5. Step 5

Step 5 generates the MWDRST material flowline paths. Thus, from Figure 5.2, a total of three paths can
be identified:

o Pathl:-F—»DB—-D—>G—P;

88

Chapter 5 Experimental Study of Dynamic Cells

o Path2:F—DB—M—W and
o Path3: F—->DB »>M-—>A4—-QC —PC.
Level 1
Level 2
Legend
Packaging - PC fz‘l;;ne
won Assembly - A > :
Foundry - F 5 ﬁ M Level 3
;i- Deburring - DB ! K o
‘g; Drilling - D W . U A Level4’
&EZ Grinding - G o s
&g Milting - M Level 5.
\“'ta Quality Conmrol - QC
Plating - P E
b, Level 6
Welding - W i :
Path 1 . Path2 . Path3 N
Figure 5. 3 - Only forward arcs in the MWDRST
s ,_g o Level 1 :
Level 2
Legend
Packaging - PC
o Assembly - A :
Foundry - FF Level 3
xﬁw Deburring - DB .
‘g Drilling - D Leveld
m?;:‘:' Grinding - G
@@ Milling - M Level 51
zu. Quality Conrol - QC ‘
Plating - P
Welding - W
Pahl Pah 2 . , e
Figure 5. 4 - Ares in MWDRST and backward arcs
Path 1 ‘ Path 2 | Path 3
Path 1
Path 2 D-M (14), M-P (7), W-P (9)
Path 3 D-PC (4), D-A (7), G-QC (6),QC-G (8), QC-P (7), P-QC (29), P—A (9) N 0
Table 3. 3 - Crisscrossing arcs intercell flows
5.2.1.5, Step 6

Classification of arcs in the MWDRST from Figure 5.3, shows that two forward arcs (F — W) and (M —

QC), and one backward arc (PC — 4) exist (Figure 5.4), since they are linking more than one level. The

crisscrossing arcs (Figure 5.5), from Table 5.3, suggest that machine duplication will be required.

3.2.2. Stage II — Steps 7 - 11

From the stage [research model Figure 5.2, machine types DB and M are the two branching nodes. Thus

the head and tail node of any crisscrossing arc will each belong to a different path. Since the MWDRST

stage [l model permutates the branches of the MWDRST without dividing any of the branching nodes,

and uses a symmetric intercell flow matrix, the direction of these arcs does not matter. This approach of

solving stage 1I (Table 4.2 and 4.3) as an optimal linear arrangement problem is valid, for it is only

required to place cells with high flow interactions adjacent to each other.

89

Chapter 5 Experimental Study of Dynamic Cells

Level 1.
Level 2
Legend i
Packaging - PC 24 & ‘ L ii‘;:me
o Assembly - A ‘s
Foundry - F e ; Level 3.
)
sk Deburring - DB ;
&
% Drilling- D Level 4
&5’ Grinding - :
EEg Mitting - M Level 5°
% Quaity Control - OC
Plating - £
Level 6

S elding - W

Path | Path 2 i Path 3

Figure 5. 5 - Arcs in MWDRST and crisscrossing arcs

Pathl | Path2 | Path3
Path 1
Path 2 30
Path 3 70 0

Table 5. 4 - Crisscrossing ares intercell flows
5.2.2.1. Step 7
Converting the crisscrossing arcs to edges, the matrix of intercell flows can be developed. Table 5.4
shows these intercell flows between the three paths in the MWDRST. This table shows the deviation from

planar graph theory, since arcs which cross each other are also considered.

5.222. Step 8
In this step, pivoting (permutations) of the MWDRST paths are considered. If duplication of machines DB

and M is assumed, then the matrix in Table 5.4 is the only input for the stage Il model. Using only this
matrix of intercell flows, the stage II result will yield the MWDRST shown in Figure 5.6. The order of the

paths is P2-P1-P3. This will allow the cells to be independent, but requires machine M to be duplicated.

Level |

Level 2
Legend . Flow
Packaging - PC vohaome

o Assembly - A

Foundry - F Level 3
jjm Debuyring « DB .
& Drilling-D Level d
& Grinding - G
&G Milling - M Level § &
%, Quality Control - QC

Plating - P Level 6 .

Welding - W
Path 2 Path 1

Figure 5. 6 - MWDRST - after stage Il modelling
5.2.2.3. Step 9
Analysing results from step 8, the permutated branches of the MWDRST, it may be observed that path 2

has only one additional machine, the welding station W. The intercell flow from Figure 5.5,

corresponding to machines unique to the path 2, is due only to arc (W,P). Arc (M P) , from Figure 5.5,

90

Chapter 5 Experimental Study of Dynamic Cells

involves a milling machine which could be placed in a functional layout. Thus to avoid machine
duplication completely, stage Il requires a more realistic solution. To avoid the duplication of the milling
machines, paths £2 and P3 can be moved as a group, allowing only the permutations P2-P3 or P3-P2
(either P2 will be adjacent to P/ or P3, not both) as shown in Figure 5. 6. To force paths sharing
branching nodes to be together whilst the MWDRST is permutated, requires the adoption of the weighting

schema (from the previous section and Appendix A.9) shown in Table 5.5.

Machines in Cell Level Weight Assigned
DB 2 210
M 3 210

Table 5. 5 - Shared machine flow weights

5.2.2.4. Step 10
After step 9, where the material flowline layout is planned, the next step is to identify the crisscrossing

arcs for machine duplication. The machine duplication procedure is now presented, where the values for
the wy, used in stage II research model are shown in Table 5.5. Machine DB was assigned a weight of 2/0
(from Table 5.4) max = 70 since p = 3, and in order to make weight > /40, the weight was set =3 x 70=
210). Thereafter, machine M can also be assigned a weight of 270. In this way 420 is made greater than
the weight of DB. This ensures that the stage II research model functions correctly, by forcing paths

sharing a number of branching nodes to move as a group.

By summing the weights of machines common to both paths, any pairs are developed and shown in Table
5.6 (similar to Table 5.4). Combination of Tables 5.4 and Tables 5.6 produce Table 5.7, which shows the
new intercell flows for the stage II research model. The sequence of paths is now forced to be P/-P3-P2

(or P2-P3-P1). The corresponding MWDRST is shown in Figure 5.7.

 Path 1 Path 2 Path 3

Path 1
Path 2 210
Path 3 210 420

Table 5. 6 - Intercell flows (shared machines)
 Pathl | Path2 | Path3

Path 1
Path 2 240
Path 3 280 420

Table 5. 7 - Combined intercell flows - for stage Il modelling
Next the layout from the MWDRST and flowline skeleton shown in Figure 5.7 and Figure 5.8 is

generated. For each path, the machine type with the least number of machines available was chosen.
Using this number as a bound, as many “copies” of that path were created parallel to each other. The
process was repeated for the other paths (two copies of i)ath I could be created and likewise each of the

other two paths) and the resultant intermediate DCM flowline layout is shown in Figure 5.9.

5.2.2.5. Step 11
Finally at the stage II research model, using the crisscrossing arcs, the additional machines of all types

91

Chapter 5 Experimental Study of Dyramic Cells

have to be placed between paths 1 and 3 which have an intercell flow due to arc (D, M) (ie. two DBs, two
Ds and one M) (Figure 5.10). However, their location must be based on flow directions, without losing
the functional layout for each machine type. The two machines included in each crisscrossing arc can
then determine the adjacencies. The quality control machines have been duplicated freely at the four
locations where they are required. A part can be checked immediately after machining or assembly
before it is sent to the next machine in its operational sequence. This decision is supported by one of the
major benefits of CM quality control-cells due to the proximity of machines and immediate feedback

amongst operations within the cells. The final layout is now shown in Figure 5.10.

Level 1 -

Legend Level 2.
Packaging - PC Cj?;ne [
o Assembly - A
5 Foundyy - F Level 3
W Deburring - DB
% Drilling-D " i, W Leveld:
& Grinding - G
&R Milling- M '
N @ & Level 5
e, Quality Control - QC
Plating - P
Level 6
Welding - W e
Path | Path 3 o o Path2
Figure 5. 7 - Stage Il MWDRST wzth no machme dupltcatmn
? . @ fisle
-6 v
- Total -
@ (Flow x Marertal Handling Dtsrance)
= 7 0 J b

Figure 5. 8 - Flowline skeleton for MWDRT w:th no machme duplzcatzon

' ngend

Packaging - PC
Assembly - A
Foundry - F
Deburring - DB
Drilling - D

)

Pac/m ing

5

B ooy b

Iransport ;é

o

f
!

Grinding - G

@@ Milling - M

“\. Quality Control - QC
© Plating - P

B paang
Figure 5. 9 - lﬁtermea’iaté lay&ut from the final MWDRST

5.2.3. Comments

In this section of Chapter 5, an rudimentary example is presented which utilises the proposed research
methodology for the design of the DCM flowline layout. The initial layout for the shop is shown in
Figure 5.1. Machine locations in both layouts (Figures 5.1 and 5.1 0) create identical machine
adjacencies, although the original layout has unnecessary machine duplications. With the proposed
research method, a defined flow structure is obtained. This helps to retain each machine type in a

functional layout and maintain “dynamic” machine groups. The machines allocated to a part can be

92

Chapter 5 Experimental Study of Dynamic Cells

chosen so as to avoid any intercell flows. The flowlines and crisscrossing arcs connecting them also

suggest aisles for a material flow handling network.

Legend

Packaging - PC
Assembly - A
Foundry - F
Deburring - DB
Drilling - D

ddditional
Moachines

@ 0

O‘K.,/ Grinding - G

£ Milling - M

Q""d. Quality Control - QC °
Plating - P]

)ﬁ? Welding - W

Figure 5. 10 - Final DCMS flowline layout
Generally speaking, from a manufacturing point of view, machines grouped consecutively on any path in

the MWDRST could be replaced by CNC machining centres. The conventional machines that are replaced
can then be assigned to the nonadjacent cells to minimise flows across the central aisle. This would

eliminate some crisscrossing arcs.

5.3. Comparison of MWDRST with Other Flowline Graph’s Adjacency Based
Design Procedures

Here the comparison of the MWDRST proposed research methodology (stage I and stage If) for the
design of DCM flowline layouts from Chapter 4, (Table 4.2 and Table 4.3) with two other Graph
Adjacency design procedures is now presented. The same rudimentary example from section 5.1, is
utilised as the input. Before comparing the first two stages of the proposed DCM flowline layout
methodology from Chapter 4, with other graph methods, it is appropriate now to recapitulate some
essential facts. The three main principles for the design of effective directed flowline in a facility layout,

are as follows:

1. Maximise directed material flow.

2. Minimise the total material flow.

3. Minimise the cost of the material flow.
Tompkins and White [1984] state, “A directed material flow path is an uninterrupted material flow path
that progresses from the origin to the destination without backtracking and an uninterrupted material flow
path is a flow path that does not intersect with other paths”. It may be recollected, from Chapter 2 (the
classical model for layout design), the Quadratic Assignment Problem that is embedded in CRAFT fulfils
principles 2 and 3 but overlooks principle 1. The MWDRST is a rooted and directed tree composed of
directed flow paths linking departments - thus it incorporates principle 1. Currently used Adjacency

Graph based flowline design layout methods are:

o Maximum Spanning Tree (MST) (Carrie [1976], Sirnivasan [1994] and Lin [1996]).

93

Chapter 5 Experimental Study of Dynamic Cells
e Cut Trees (Montreuil [1993] and Kandiller [1998]).

o Maximum Weight Planar Graphs (MWPG) (Foulds and Griffin [1985]).

5.3.1. Comparison of Proposed MWDRST with MST Procedure

To compare the illustrative example solution (from the previous section 5.1) with the Sirnivasan [1994]
approach, (similar to Carrie, from the Literature Review) this solution applied MST (Prim’s algorithm,
Appendix B) to CM design in this example, and the program for finding MST was coded and executed in
MATLAB and LINGO. The resulting MST undirectional flowline layout is shown in Figure 5.1/ and the
MST flowline skeleton layout is shown in Figure 5.12, after the MST algorithm is applied.

Lrown]] Level 1

Flow
volume

GHOE

Level 2

Legend

Puackaging - PC

o Assembly - 4 Level 31
Foundry - F 5

:2« Debwrring - DR Level 4
4 Driting - D ‘
&2 Grinding - G Level 5°
Ebg Miting - M Levet 61
l\ Quality Control - QC "‘
Plating - P Level 7 :

o Welding - W Path 1 Path 2 Pah3 Pahs_Pah6 :

Figure 5. 11 - MST flowline layouts
It is clearly visible from section 5.1, noting the MWDRST example figures (Figures 5.2, 5.6, 5.7 and 5.8)

and the MST solution figures (Figures 5.11 and 5.12) that a MWDRST — stage [and stage I, is a much
better design (fewer paths) than a MST flowline skeleton procedure. This also requires using the MST
algorithm as a base for solving the 7SP and Branch and Bound problem, as will be shown later in this

Chapter. Presented now is a short overview of the MST problem (an extended overview is presented in

Appendix B).

® o]

B s Jaeleie)
N\

~

Total (Flowx Material Handling Distance) = 810.5

Figure 5. 12 - MST ji’owline skeletén l?lyout
The MST problem was first formulated in 1926 by Boruvka. It was evolved during the electrification of
Southern Moravia to find out the most economical layout of a power-line network. Some polynomial-
time algorithms have been developed to solve this problem. Amongst them the Prim and the Dijkstra

algorithms are the most famous ones, which are presented in the Appendix B in more detail and also

94

Chapter 5 Experimental Study of Dynamic Cells
coded in MATLAB (source codes also shown in Appendix D). Below is given a summary of the solution

procedure:

o Set all edges emanating from a node as dependents of that node to store the node and edge relationship
o Sef current label |
o Make multiple passes:

- Delete all leaf nodes in each pass until 2 2 nodes remain

- Set label of each deleted leaf node to current label

= Increment current label by I with each pass

o Mark node with maximum label as centre node (if there are 2 nodes with maximum label, see both as
centre node)

Adding temporary nodes and edges

o Ifnecessary, extend length of all subtrees of centre node and all other nodes with label > 1 by adding
temporary nodes and edges to equal the length of the largest subtree

Node placement

e Place centre node at tree of graph

o Place remaining nodes on concentric circles which passes from lower radius circle to higher radius ones
Remaoving temporary nodes and edges

Figure 5. 13 - Cut tree algorithm [Montreuil 1993]
5.3.2. Comparison of Proposed MWDRST with Cut Tree Procedure
The cut tree approach by Montreuil [1993] represents each department by a node. Arcs represent material
flow and layout rearrangement by applying the Gomory-Hu algorithm [1969]. Cut trees arcs are then
manually converted into layouts, and then fed into exchange procedures to obtain better results. The

algorithm for drawing the cut tree is shown in Figure 5.13.

]

¥ Lovel

DB Level 2

Level 3
Legend :
Packaging - PC Level 4
. Assermbly - A
Foundry - F Level 5
A ‘
ny‘g:-‘- Deburring - DB Level 6
g Drilling - D Level 7
gﬁ Grinding - G Level §
gy Milling - M ‘
. w Mg Level9
S, Quality Congrol - QC .
Plating - P Level 10+
Y welding- w :

panl Pakz Pah3 pahd Pahs
Figure 5. 14 - Cut Tree flowline layout solution
To compare the Montreuil approach with the MWDRST proposed research methodology the Cut tree
(Gomory-Hu) algorithm is applied to CM design. In this illustrative example the program for finding the
Cut Tree was coded and executed in MATLAB. The resulting Cut tree undirectional flowline layout is
shown in Figure 5.14 and the Cut tree flowline skeleton layout shown in Figure 5.15, after the Cut tree

algorithm was applied.

95

Chapter 5 Experimental Study of Dynamic Cells
It is clearly visible from section 5.1 noting the MWDRST example figures (Figures 5.2, 5.6, 5.7 and 5.8),

and the Cut tree solution figures (Figures 5.14 and 5.15), that the MWDRST — stage | and stage I - is a

much better design (fewer paths) than the Cut free flowline skeleton procedure.

®~~@~»@
é(/®

@ | [

Total
(Flowx Material Handling Distance) EAW [
=785 .

Figure 5. 15 - Cut Tree flowline skeleton layout solution

Level 1

Level2 :
et Level3
%% Flow
T@%%W' volume
Legend 14 @D ,
Packaging - PC T
“n 7 Level 4
o Assembly - 4 :
Foundry - I Level 5
ié,‘ Deburring - DB Level 6
'g,: Drilling - D Level 7
e Grinding - G .
Level 8
@@ Mitling - M

Level 9

Qm Quality Control - OC
Root Node

Plating - P W %!Il.i Level 10 "
Welding - W Path | Path 2 Path3 __ Path4 _ PahS

Figure 5. 16 - Cut Tree flowline directionality

5.3.3 Flowline Directionality Comparison

Flowline directionality is defined as the maximum uninterrupted length of the operational sequence of a
part that is embedded in each of the design flowline skeletons. For example, the design flowline skeleton
for the MWDRST (from Figure 5.5) and operation sequence (from Table 5.1) has a maximum path length
F-DB-D-G-QC-PC with an operation substring F-DB-D-G of maximum uninterrupted length 3 units.
Comparison of the flowline directionality for all three methods (MST, Cut Tree and MWDRST) and for
all parts, with mean and standard deviations, is given in Table 5.8 (the higher values of the flowline
directionality the better). Standard deviations, from Table 5.8, are derived using the STDEVA

(spreadsheet function) which estimates standard deviation based on an appropriate sample.

Part No. 1121314l slel7]8|9110111]12|13| Mean | Std. Dev,

CutTree | 2111233]o|1(t}3]2}2]2; L77 093
MWDRST | 312121412310 [316]2[2]2 21 2.54 1.39
MST 2131212021210 2f3)2}2{2{2) 2 | 071

Table 5. 8 - Directionality comparison of the flowlines procedures

As is shown in the graph theory review (Appendix A) and explained at the beginning of this chapter,

26

Chapter S Experimental Study of Dynamic Cells

undirected graphs MST and Cut tree lack flowline directionality. To capture flowline directionality
clearly the undirected graphs (MST and Cuz tree) need to be converted into directed graphs. This problem
can be solved with a procedure where splitting of graph vertices into input and output parts is applied to
the undirected graphs. The procedure of splitting the undirected graph vertices into input and output
parts, which helps to capture the directionality of flowlines, has been applied to the MST and Cut tree

solutions. Figure 5.16 shows how this splitting procedure is applied to the Cut Tree example shown in

Figure 5.14.
Part No 1121314151617 (8|91(10(11[12]|13] Total
CutTree |4 |5|414!5[3]|3|3]3]514]144 51
MWDRST |4 |4 2|53 |5]2|5]|5]|5[4([414 52
MST 3{6|!5,5(4|4(3]41414(3[3]3 51
Table 5. 9 - Sum of the total lengths
MST CUT TREE MWDRST
From | To | V | D D VD | D D VD |D| D VD
F DB |62 1 F 62 1 B 62 | 1 F 62
F W 1316 F 18 C 12 {25 F 12
DB D |38]15 C 57 {25 C 114 | 1.5 C 95
DB M 24115 F 36 (2.5 C 36 | 3 F 36
D G | 13|35 F 45.5 135 F 585 (1.5 F 19.5
D PC| 4 |25 F 10 {55 C 18 [7.5 C 22
D M [14] 3 C 42 1 F 28 1 3 C 21
D A | 7165 C 455 145 F 10.5 [4.5 C 17.5
G QC | 6 125 B 15 125 C 9 |5 C 15
G P |I15]15 C 225 115 F 225115 F 225
oc G | 8125 F 20 125 B 12 {5 C 20
QocC PC [65|25 C 16251 1.5 B 975115 F 97.5
ocC P 1711 F 7 4 B 14 | 3 C 14
PC A 1415 C 20 | 3 F 12 | 3 B 12
M P 1712 F 14 | 2 F 28 |25 C 35
M W | 6|35 F 21 {15 F 6 15| F 9
M A {10]35 C 35 135 F 20 115 F 15
P C 129 1 F 29 | 4 F 4351 3 C 58
P A 9 125 C 225 125 F 31515 C 13.5
w P 19115 B 1351 3 F 22515 F 315
A QC 130125 c 75 |15 C 75 |15 F 45
C&B |519.5 C&B | 450 C& B | 259.5
Total weighted travel distances | 810.5 785 740.5

Table 5. 10 Comparison of MWDRST with Cut Tree and MST (legend: F: Forward Flow; B: Backtrack Flow; C:
Cross Flow; 5 - Flow Direction; D: Distance; V: Yolume of Flow; VD: Flow x Distance)

Also presented in Table 5.9 is a comparison of the sum of the total length of substrings in the operation
sequence of a part that is embedded in each of the three design flowline skeletons. How to derive the
total length of substrings is shown in the MWDRST example (section 5.2.1.5). Thus from Figure 5.5 the
maximum path F-DB-D-G-QC-PC from the operational sequence (7able 5.I) has a maximum
uninterupted path F-DB-D-G (length 3 units) and an embedded path QC-PC (length 1 unit) with a total

length of 4 units.

97

Chapter 5 Experimental Study of Dynamic Cells

5.3.4. Comments
Using the illustrative example comparisons compiled with respect to MST and the Cur Tree, the

compared results are shown in Table 5.10. The main conclusions drawn from comparison with the

MWDRST are:

e The total amount of backtrack and cross flows estimated for the layout and MWDRST is 50 %
better than the MST and 42 % better than the Cut Tree (from Table 5.8).

o Comparing the total weighted travel distance (from Table 5.1 0) indicates that the MWDRST is 9
% better than the MST and 6 % better than the Cut Tree.

o The use of the proposed MWDRST is a feasible flowline design skeleton for generating a DCM
layout for a dynamic-product facility.

o Unlike existing design flowline skeletons, the MWDRST embeds directed material flow paths in
the layout. It classifies the flow arcs in a travel chart based on the direction of flow between

different pairs of departments in the actual layout.

5.4. Comparison of MWDRST with Clustering Analysis Technique
5.4.1. Clustering Analysis Data

In this example data from an actual implementation of a cellular layout in the job shop of the General
Electric Company, shown in Figure 5.17 [Koenig 1981], was used. From the original paper, part families
were formed using a cluster analysis to indicate the machines required to produce these families. A
classification and coding analysis was performed to validate that the machines assigned to a part based
on its code, matched the sequence of machines given by its route sheet. A machine loading analysis of

the part families was also performed to determine the machine requirements of their cells as shown in

Table 5.11.

Bearing Area

Inspection)
% . 4
Paint

Cleaning

25

Figure 5.17 - Original GT three cell layout [Koenig 1981}

5.4.2 Stage I: Steps 1-6

5.4.2.1. Step 1
A clustering analysis data analysis performed in section 5.3.1 (machines, the sequence and machines

route sheet) and Table 5.11 was the input for the stage I research model.

98

Chapter 5 Experimental Study of Dynamic Cells

Number of machines required
Available capacity (1 shift/1536 hrs.) | Available capacity (2 shift/3072 hrs.)
Machines | Loading (hrs.)| Number of machines | Computed number | Actual need Computed need
1 1258 1 0.82 1 1.41
2 151 1 0.1 1 0.05
3 1 | 0.00 1 0.00
4 33 1 0.02 1 0.01
5 1153 1 0.75 1 0.37
6 2302 2 1.49 1 0.75
7 124 1 0.08 1 0.04
8 133 1 0.08 1 0.04
9 1154 1 0.75 1 0.37
10 3122 2 2.03 1 1.02
11 3689 3 241 2 1.21
12 2173 2 1.41 1 0.41
13 6 1 0.01 1 0.02
14 4831 4 3.14 2 1.57
15 1815 2 1.18 1 0.59
16 188 1 0.12 1 0.06
17 1771 2 1.15 1 0.57
18 360 1 0.23 1 0.11
19 5545 4 3.61 2 1.81
20 1274 1 0.83 1 0.41
21 1133 1 0.73 1 0.36
22 3580 3 2.33 2 1.23
23 248 1 0.16 1 0.08
Table 5. 11 - Machine loading results [Koenig 1981]
TO machine
1 2 3 4 5 6 9 |10 | 1214 | 15|16 | 17 | 18 | 24 | 26
1 1229 {8150 99 | 14 1020
2 3 1 58 | 35 245 | 24 1635 110 2
3
o4 30
E 5 35 414 | 83
g 6 10 | 18 } 611|795 58
£ 9 21 479 28 18 350
§ 10 1014 145 5545] 112 206
E 12 2563 8 100 | 20 | 217
14 6 670 | 199 2 | 45 8
15 4 351 6 4 10
16 63 | 12 | 14
17 30 | 4 347 2501 11 701 64
18 119 | 28
24 22 350 1014|352 (356 27 | 2 | 104
26 15

Table 5. 12 - Travel chart for GT layout design [Carrie 1977]
5.4.2.2. Step 2 And Step 3
Using the part lot size and their route cards, a step 2 travel chart was generated for the parts flow
analysis, shown in Table 5.12, which is a matrix expression of the initial digraph (D for step 3 from
Chapter 4 of the proposed research model). A comparison of the machines listed in Table 5.11 and Table
5.12 shows that the flow interactions of several machines were not indicated on Koening’s travel chart

(Table 5.12). For instance, machines 26, 7, 8, 11, 13, 19, 20, 21, 22 and 23 have either not been included

99

Chapter 5 Experimental Study of Dynamic Cells

in the travel chart or have not been shown in the original layout. Machines 11 and 21 are multiple
machines used for layout and deburring. Machine 3 is a miscellaneous works multiple machine, whilst
machines 7, 8, 13 and 18 are shared work multiple machines in the bearing area. Hence, the analysis was
restricted to the grouping and layout of the machines showed in the travel chart. It was assumed that

machine 18, which is shared with the bearing area machines, could be relocated.

5.4.2.3. Step 4 and Step 5
The travel chart was the input to the first stage model (Table 5.2), programmed and employed within

MATLAB. Table 5.13 gives a summary of the solution report, the total weight of the MWDRST and the
lists of the arcs contained within it. Figure 5.18 shows this MWDRST rooted at machine 1. The weights
(flows) of the individual arcs can be obtained from Table 5.12. Eight paths (or cells) can be observed, as
well as the sequence of the machines within each cell (Figure 5.18). Path 6 does not corresponds to cell
1, paths 3 and 5 do, in the original layout, except for machine 18. However, cell 2 and cell 3 in the
original layout cannot be directly identified in the remaining paths. Furthermore, the second stage has
been simplified to an OLA (Optimal Linear Arrangement) problem in eight nodes. If the traditional
method of diagonalisation of the travel chart had been used, it would have given an inferior OLA in 16

nodes, and would not have yielded any layout structure.

From node | To node Weight From node | To node Weight
1 2 8150 24 14 356
1 24 1020 24 15 27
2 17 1635 6 9 795
2 18 110 - 9 4 21
24 6 350 9 5 479
24 10 1014 14 12 670
15 26 10 17 3 4
15 16 6 MWDRST with value 14647

Table 5. 13 - Stage | MWDRST output from MATLAB
The cell sizes suggested by the M WDRST range from 3 to 6, and paths 1 and 4 can be eliminated from the

second stage. Both paths have only one extra machine after the branch nodes 6 and 7, respectively. Their
absorption would create a U shaped cell with machines 1, 2, 18, 24 and 10, as shown in Figure 5.18.
However, this was not done prior to the second stage, since this example is extremely useful for

demonstrating the total capabilities of the proposed dynamic cell formation method.

Since machines 2, 24, 9 and 15 are branching nodes, they suggest how the permutation amongst the
different branches of the MWDRST must be limited. Machine 6, which is between machines 24 and 9,
need not be given any weighting (same flowline). The overall nesting of the path permutations can be

described as { [(1,2) 1, [(3,5).4,6,(7,8)] }.

Since paths 1 and 2 branch from machine 2 and generate two permutations, they must remain adjacent.
Also paths 3 to 8 branch from machine 24 and constitute the second major group. Hence, these two major
groups of paths generate two permutations at the highest level in the MWDRST. However, within the

second group, paths 3 and 5, which branch from machine 9, can be permutated. Similarly, paths 7 and 8,

100

% Uﬁf/k@
Chapter 5 Experimental Study of Dyn ¢ Cells

which branch from machine 15, can have two permutations, thus these pairs of paths can be pgm witated

with paths 4 and 6.

Level 1 :

Level 2 ;

Level 3 -

Level 4

s Level 5

Path 1 Path 2 Path 3 Path 6) Path 7 Path 8

Level I+

LevelZ'i

Level3j§:

Vs

T

6 M Level 4 f

Levels’

Path { Path 2 Path 3 Path 4 Patk 5 Path 6 _ Pah7 N Par8

Figure 5. 19 - MWDRST forward and backward arcs

5.4.2.4. Step 6

Figure 5.19 shows forward and backward arcs on the MWDRST identified by inspection of the travel
chart and the MWDRST. Since a flowline layout is assumed for each cell, these arcs can be eliminated
from the second stage. Thus, the traditional two-dimensional QAP with rectilinear distances, simplifies to
an OLA (one-dimensional) problem. For this condition, the two-dimensional QAP would have to
simultaneously analyse the effect of having U or § intracell layouts on intercell layout and machine
sharing, because of reducing the intracell travel distances. However, the disadvantages are that this
reduces the intercell machine adjacencies and increases intercell travel distances, and would necessitate

more intercell duplication of the shared machine types.

pi | p2 | P3| Pe | P5 | P6| P7| P8 ;

PI
P2 | 119
P3 | 117 _| 632
P4 | 1038 | 1412 | 145
Ps | 152 | 667 | O | 145
P6 | 313 | 867 | 82 | 112 | 82
P7 | 24 | 196 | 0 | o O | 4
“ps| 38 | 208 0 [0 [0] 610

Table 5. 14 - Intercell flows (crisscrossing)

101

Chapter 5 Experimental Study of Dynamic Cells

5.4.3. Stage II: Steps 7 - 11

5.4.3.1. Step 7

The travel chart for intercell flows, Table 5.14, is necessary for the second stage which is developed
using only the crisscrossing arcs. Thus, with respect to the definition of a crisscrossing arc, it will

therefore connect any two paths in the MWDRST. This will contribute to the intercell flow between them.

Machine in cell Level Weight assigned
6 2 3000
7 2 3000
15 3 Not applied
56 3 5000
33 4 7000

Table 5. 15 - Flow weights for shared machines

. PI1 P2 P3 P4 P5 P6 P7 P8
Pl
P2 | 3000
P3 0 0
P4 0 0 3000
Ps 0 0 10000 | 3000
P6 0 0 3000 3000 | 3000
P7 0 0 3000 3000 | 3000 | 3000
P8 0 0 3000 3000 | 3000 | 3000 | 8000

Table 5. 16 - Intercell flows (shared machines)

Table 5.15 shows the flow weightings, which are assigned to the machines that are branch nodes relating
two or more paths. These weightings were given arbitrarily high values and were arrived at iteratively.
The goal in this case was mainly to prevent paths, which share indivisible machines, from being assigned
nonconsecutive positions in the OLA for the second stage. The cumulative intercell flow weightings,
which must be added to the values in Table 5.14, are shown in Table 5.16. Note that the larger the
number of shared indivisible nodes in a pair of paths, the higher their intercell flow weighting. This will

ensure that these paths remain adjacent during the permutation process of the second stage.

pr U U s " pe [ps | p6 | P7 | P8

Pl
P2 | 3119
P3 117 632
P4 | 1038 | 14112 | 3145
PS5 152 667 | 10000 | 3145
P6 313 867 3082 | 3112 | 3082
P7 24 196 3000 | 3000 | 3000 | 3004
PS8 38 208 3000 | 3000 | 3000 | 3006 | 8000

Table 5. 17 - Combined intercell flows for stage Il
Table 5.14 and Table 5.16 must be combined to generate the travel chart to be used for the second stage.

These flow values, which will constrain the permutation of the paths in the MWDRST without splitting

the indivisible machines, are shown in Table 5.17.

5.4.3.2. Step 8
Since the second stage is the NP-complete OLA problem in eight nodes, there is need to control the

102

Chapter 5 Experimental Study of Dynamic Cells

branch and bound process in the LINGO integer programming model. Therefore this resulted in writing a
MATLAB version branch and bound integer programming method. If an upper bound for this
minimisation problem is known, it can be used to eliminate non-optimal solutions in the early stages of
the branch and bound search used in integer programming. This approach is used to prune the search tree

of solutions with an objective value greater then the upper bound.

Prior to the execution of the second stage, an upper bound of 271462 (actually 135731 for the symmetric
flow matrix) for the objective function value was obtained using a pairwise-interchange heuristics
routine, written in MATLAB. The linear arrangement of the paths in the MWDRST produced by this
heuristic was 1, 2, 4, 6, 5, 3, 8, 7. For the purpose of comparison, and to check the validity of the second

stage model, the original ordering after the first stage was 1,2,3,5,4,6,7, 8.

MWDRST second stage Column | Distance Weight
With Minimum Value R12 1 0
0f 271462 R13 > 00
R34 0 12580
Path Nodes | Distance Weight R35 0 4000
Al8 1 76816 R36 0 12328
A27 1 12082 R38 1 0
A33 1 -65856 R56 0 12328
A46 1 155424 R68 3 0
A54 1 71632 R78 0 32000
A65 1 78820 L34 3 0
A7l 1 -40448 L56 1 0
A82 1 -17008 L78 1 0

Table 5. 18 - Summary of stage Il output

Table 5.18 gives a brief summary of the second stage output, showing the positions assigned to the
pendant node of each path in the OLA. The right and left values can be obtained from these positions,
with each value for each pair of paths zero. Pairs of paths, with right or left values greater than one,
correspond to parts whose operational sequences contain arcs producing intercell flows between
nonadjacent cells. These parts would have to travel to the end of the aisle containing their cell before
visiting the other cell. This type of linear flow distance is not captured in the standard layout design
programs, where the rectilinear or euclidean distances allow flows across flowlines. This gave the

optimal reorientation of the MWDRST to develop the final layout, which is shown in Figure 5.20.

The layout (Figure 5.20) implicitly avoids machine dividing and minimises intercell flow distances for
the crisscrossing arcs simultaneously. It should be noted that the linear arrangement, obtained by the
MATLAB built SDPI heuristic, was expressed differently as paths 1, 2, 6, 3, 5, 4, 8, 7. This means that
path 1 goes to position 1, path 2 to position 2, path3 to position 6, path 5 to position 5, path 4 to position
3, path 6 to position 4, path 7 to position 8, and path 8 to position7, when it is compared to the initial

path orientation from the MWDRST stage L.

5.4.3.3. Step 9
Figure 5.21 shows the approximate layout developed using the new MWDRST after the second stage,

subject to the current shape of the shop (machines 15, 16 and 26 could not be placed adjacent to machine

103

Chapter 5 Experimental Study of Dynamic Celis
24, where the stock area is shown). As a means of comparison, in Figure 5.22, the arcs in this MWDRST

are also shown in the original layout. Machine 18 has been shown relocated from the bearing areas since
it has significant flow interactions with machines 2 and 17. Certain inconsistencies in the original layout
can also be observed (machines 14 and 15 are shown located together, although there is no flow
interaction between them). It appears that, due to the improper locations of machines such as 24, 18 and
10 in the original layout, a poor flow structure resulted as is observed in Figure 5.22. The material flow
aisles were included to allow the intercell flows from Table 5.14, and ease of material handling for the

backward and forward intracell flows.

Flaw 3
v lume Levell :

Level 2
Level 3 i
26 Leveld ¢
Level §

Path 1 Path 2 Path 4 Path § Path 5 Path3 Path 8 Path 7 :

Figure 5. 20 - MWDRST at stage 11

Bearing Area

“m, Inspection

,
Cleaning Faint

"o Inspection
~h

Cleaning Paint
250 .

5.4.3.4. Step 10

The rounding-off of the theoretical machine requirements to integer values, from Table 5.11,
demonstrates the problem of machine sharing when capacity calculations are performed on a part family
basis. With reference to the number of machines shown in Figure 5.1 7, it is seen that the actual machine

requirements for the two shift/3072 available hours case were used to plan the original layout, except for

104

Chapter 5 Experimental Study of Dynamic Cells

machine 14, of which two were available. Thus, this prevented machine 14 from being duplicated
amongst the nonadjacent cells, because other related machines likewise could not be duplicated.
However, a subsequent analysis to duplicate machines based on capacity calculations for the parts in the
intercell flows was not conducted at this stage, because of the algorithm complexity and time limitations.
Hence, this example becomes a simple application of both stages I and II of flowline DCM layout design

as discussed in the previous chapter.

5.4.3.5. Step 11
The layouts in Figure 5.21 and Figure 5.22 then had to be compared for the total distances moved by all

the parts in both layout configurations, where the objective function = X'f; dj, as presented in Chapter 4.
This was a simple but effective measure of the handling and layout capabilities of the proposed
methodology. That is, the sum of the lengths of the flow arcs in Figure 5.21, weighted by their flow
volumes, had to be compared with those shown for the original layout in Figure 5.22. This was achieved
using a mathematical model built in MATLAB, with certain necessary assumptions such as rectilinear
distances, unit lengths and widths for all the departments, and equal department sizes, for all the layout

configurations evaluated.

:: s S AR ey
@ T HMPNTFOTe| |,

% I P ! I objective function
@b\ @3 :@// i value = 39566

Figure 5. 23 - Original cells configuration as a branched flowline [Vakharia 1990]

O O O]
o retaele| S
D@

= 30765
Figure 5. 24 - Final - proposed layout based on the M WDRST (restricted areas)

®E | ©

S

&0 e

& O PT O |
@ @D e < 30655
O>® B +®

e

Figure 5. 25 Final — proposed layout based on the M WDRST (unrestricted areas)

®
®|®

Figure 5.23 — Figure 5.33 shows the approximate rectilinear grid representation of the original layout
and several alternative configurations suggested by the MWDRST in Figure 5.20. The arcs in these
figures are those in the MWDRST, unless otherwise stated. The flow directions captured in the MWDRST
are also shown in these grids. A large number of machines were shown in the original layout, which did

not feature in the travel chart (Figure 5.17). Hence, the layouts shown can be considered the best

105

Chapter 5 Experimental Study of Dynamic Cells

approximations within the allowed minimum travel distances. As suggested by the proposed method, the
layout shown in Figure 5.24 results in less material flow handling than the original layout shown in
Figure 5.23. However, as shown by the layout in Figure 5.25, the machine groups and cell adjacencies

suggested by the final MWDRST would help to further reduce the total flow distance.

RIS,

e

\») |

Total

#

)

@]

Total

o
9

)

o U

‘ Y objective objective

@ @ @ Junction @ @ @ Sunction
value value

u = 27271 y = 28313

;@\@ g)
Yo'y

®~

Figure 5. 27 - MWDRST final layout

-9

@]

Fzgure 5. 26- MWDRST mtercell shapes layout

6

b

B-@

=

or

IR RN
=
)

A R
aEh

@ @

Total Total

o6 & 08 e s [
S j = 27261 = 28303
©@ >® ® 9

Figure 5. 28 - MWDRST U shaped layout Figure 5. 29 - Another MWDRST U shaped layout

Figure 5.26 and Figure 5.27 show the effect of evaluating a U layout for paths 3 and 5 after both
modelling stages of the flowline DCM layout procedure have been executed. The complication that arises
is that a U layout is effectively two paths instead of the original path. Instead of paths (6 -9 - 5) and (6 ~
9 - 4) attached to machine 24, paths (9 - 5) and (9 - 4) (Figure 5.25) have also be considered. These latter
two paths can permutate with respect to each other whilst travelling from machine 24. Clearly, the layout
in Figure 5.26 results in lower handling costs than the layout in Figure 5.27. Figure 5.28 and Figure 5.29
further demonstrate the possibilities of obtaining efficient cellular layouts by merging the structure of the
MWDRST and an intracell U layout, to reduce the lengths of certain flowlines. However, in comparison

to the previous layouts, these layouts perform poorly in terms of giving an overall rectangular shape.

s /': s : :: : S At A ST ' e A S Y‘/&Wg
PO | 058 | @ 68000, e EH-0 |
) ’Jfoml objective function value = 34244 = %

Figure 5. 30 - Undirectional (one dimensional) QAP flowline layout

Figure 5.30 is the linear one-dimensional QAP solution for travel chart clustering, with equal forward
and backward material flow distances. Here machine 1 has been assumed as the root node and fixed as
the first node in the heuristic solution to the optimal linear arrangement. Surprisingly, it yields a lower
penalty than the original layout configuration implemented in the Koenig [1981] paper. Although the
flows are generally un1d1rect1onal the high total objective function (total distances) value of $34244
shows the basic disadvantage of the OLA model for cell formation. Figure 5.31 is an approximate DOLA
clustering solution to group machines based on the travel chart [Lenstra 1975] and presented in appendix

C. This is a maximum weighted travelling salesman tour, starting and ending at machine 1.

106

Chapter 5 Experimental Study of Dynamic Cells

s R R)

s

ohe @ 040068 alslo | 8 R 0|
Total objective function value = 70567 %

Figure 5. 31 - Directional (one dimensional) QAP flowline layout
This 7SP-problem heuristic method was programmed in MATLAB (code attached in Appendix D) and is

later improved - optimised with SA coded in MATLAB (TSP theory presented in Appendix C and code
attached in Appendix D). This TSP arrangement forces all arcs to be directed away from the source node
in order to model a pure flowline. Initiaily, a tour could not be found, since the graph was not completely
connected. The travel chart was enhanced into a complete digraph by using (10000 - f;;) instead of the
original flow entries. Clearly, the prevention of backtracking to determine a pure flowline layout for the
machine yields an extremely high flow penalty. Furthermore, the arcs included in the TSP and MWDRST
have differing node degree constraints. Figure 5.32 and Figure 5.33 show the same TSP sequence in the
form of a U layout and S layout, respectively. Whilst the U layout for the TSP gives a competetive

solution, the disadvantage with this approach is that the initial clustering shown in the M WDRST is lost.

DO ® ®® 6| 66 .
— objective function
@ @ @ o value = 27477

R

Figure 5. 32 - Directional (one dimensional) TSP flowline layout

@ @
@) | e
@ 8 ®

Figure 5. 33 - Directed one dimensional TSP with S layout

5.4.4. Comments
Here an important observation can be made that the optimal solution for stage 11, obtained by the integer

programming model, was equal to that obtained by the MATLAB heuristic. It has already been mentioned
in Chapter 4 that computational time for the integer model is very long, not suitable for industrial cases,
and from the just presented facts the SDPI solution gives the identical result but in quicker running time.
However, Karisch [1998] recently compared results from the steepest descent pairwise interchange
heuristic (SDPI), with respect to EA and SA methods when applied to a QAP problem, with the outcome
that SDPI still gave better performance then the other two methods. Thus, following Karisch’s result the
QAP steepest descent pairwise interchanges heuristic, coded (Appendix D) in MATLAB will only be
applied in further examples.

Thus, the first stage has a significant effect of reducing the problem to a size where a heuristic applied to
the second stage would also obtain the optimal linear arrangement. This would allow an alternative

optima to be obtained and evaluated for generating other feasible layout configurations.

107

Chapter 5 Experimental Study of Dynamic Cells

Furthermore, results from the proposed method in combination with other techniques and algorithms
(coded in MATLAB), will be compared with results from packages such as STORM. Thus this work will
quickly evaluate a finite number of DCM layout alternatives, which conform to the machine grouping,
flowline layout, and intercell machine adjacencies given by the second stage MWDRST. This will help to
integrate the effects of reducing the lengths of individual material flowlines by increasing the width of

the shop (converting a rectangle to a square with the same area).

These results show that the proposed method correctly models the immediate adjacencies of machines,
and the groups to which they could be assigned, if cells were desired. Flow distances and machine
locations are usually determined subsequently. Hence, the evaluation of alternative DCM flowline
layouts using the simple objective (total distance) function, coded in the MATLAB (or EXCEL) package

is adequate for preliminary analyses.

5.5. Comparison of MWDRST with Operation Sequence Clustering Technique
- A Detailed Study

In this section the example is derived from a paper, which proposed a cell formation method, that relates
within-cell flow sequences of parts (or operation sequences) to the machine sharing problem [Vakharia
1990]. Part families with similar operational sequences are used to generate cells, which have a purely
undirectional flowline structure. Interactions between intercell flows, cell size, intracell flow

backtracking and machine utilisation are also considered.

Barch No. o M/C Operation

Part No. Size Batches peJ: Year Opl | Op2 | Op3 | Op4| Op5 | Op6 | Op7 sequlfmces

1 2 1 1 4 8 9 1,4,8,9

2 3 1 1 4 7 4 8 7 1,4,7,4,8,7

3 1 1 1 2 4 7 8 9 1,2,4,7,8,9

4 3 1 1 4 7 9 1,479

5 2 1 1 6 10} 7 9 1,6,10,7,9

6 1 1 6 10| 7 8 9 6,10,7,8,9

7 2 1 6 4 8 9 6,4,8,9

8 1) 3 5 2 6 4 8 9 3,5,2,6,48,9

9 1 1 3 5 6 4 8 9 3,5,64,8,9

10 2 1 4 7 4 8 4,748

11 3 1 6 6

12 1 1 11 7 12 11,7,12

13 1 1 11 | 12 11,12

14 3 1 11 7 10 11,7,10

15 1 1 1 7 11 | 10] 11 | 12 1,7,11,10,11,12

16 2 1 1 7 11110 | 11 | 12 1,7,11,10,11,12

17 1 1 11 7 12 11,7,12

18 3 1 6 7 10 6,7,10

19 2 I 12 12

Table 5. 19 - Operation sequence and batch quantity [Vakharia 1990]

5.5.1. Stage I: Steps 1-6
5.5.1.1. Step 1

The input data used involves the operational sequences of the parts, batch quantities, setup and run times

108

Chapter 5 Experimental Study of Dynamic Cells

of the parts on the machines. Also considered is the available machine capacity and the number of
machine of each type available for distribution amongst the cells. The operational sequences and batch

quantities of the parts used in the analysis are shown in Table 5.19.

Machine type | Number available | Total load (min.’s/day) Actual machine requirements‘ .
1 2 450 1
2 1 96 1
3 1 288 1
4 2 696 2
5 1 240 1
6 4 504 2
7 5 1280 3
8 1 288 1
9 1 468 1
10 7 1170 3
11 3 1080 3
12 1 340 1

Table 5. 20 - Machine loads and avazlabtltty data [Vakharza l 990]

Table 5.20 shows the loads on the different machine types and the number of machines available of each
type. If the available productive time per day per machine is 480 minutes, excessive machine redundancy
can be observed in this table. This suggests that the number of machines required for changeover to
independent cells, leads to an increase in the number of machines required. It will be shown that using
the proposed method, the flow properties and machines of cells, can be obtained without rigid dedication
of machine cells. Thus, machines can be retained in a functional layout but are assigned to one or more
part families. This will ensure reduction in setup and operation times, yet allows flexibility to re-tool
machines for other part families. Hence, a layout can be generated where all the advantages of functional
layout, cell formation, flowline layout for cells and feasible intercell flows can be exploited. Thus this

will minimise the need for rigid cell formation and machine sharing.

(ell 3

E : "“’;

Figure 5. 34 - Ortgznal cellular layout [Vakharta 1990]
Figure 5.34 shows the intracell and intercell flows and layouts obtained in the considered example

[Vakharia 1990]. The cells are not 100% independent and flows in cell 3 are bi-directional. The author
state that “the fact that the underutilised machines were in the remaining cell 3 helped preserve the
unidirectional flow patterns in the other cells”.

However, close observation of the three flowlines showed that their machines have been placed

consecutively in the flowline, and thus did not have any flow interactions. For example, machine pairs (1,

109

Chapter 5 Experimental Study of Dynamic Cells
3)and (10, 4) in cell 1, or pairs (11, 6) and (10, 12) in cell 2 have been placed consecutively, although no

parts move immediately from the first machine to the second. This problem of no flows between
consecutive machines is expected with a pure undirectional layout. In such a layout two machines at most
can be placed adjacent to any machine. So if a TSP or a linear QAP approach is used, the tendency to
minimise average travel distances will make machines adjacent that may not be flowline connected. In
contrast, MWDRST allows several machines to receive flow from a common predecessor around which
they can be positioned. Furthermore, none of the machines in cell 3 had any immediate flow directions.
In addition, machines 11 and 10 in cell 3, which are strongly connected, could have been placed after
machine 7, to eliminate the backtracking existing in the sequence suggested by the author. A U layout

could also have been designed for the flowline to allow crisscrossing flows to reduce the travel distances.

Cell No. | Parts | Machine No. in cell | Number assigned | Average machine utilisation in cell (%)

1 1 80
3 1 60
5 1 50
2 1 20
6 1 67.50

ro\L3-s 10 I 75
4 1 45
7 2 50
8 1 60
9 2 48.75
11 3 60
6 1 37.50

2 11-19 7 2 68.75
10 2 75
12 1 70.83
1 1 13.75
11 1 45

3 2,10 4 2 50
10 1 18.75
7 1 29.17

Table 5. 21 - Machine utilisation in cells [Vakharia 1990]
Table 5.21 shows the poor machine utilisation when intercell flows are restricted. Machines are

distributed amongstst cells based on capacity calculations on a part family basis, only unidirectional
intracell flow is allowed, and a pure flowline intracell layout is required. Cell 1 has an unusually large
number of machines since it contains ten of the twelve shown in Table 5.20. Cell 3 caters for only two
parts. The author (Vakharia 1990) has shown only machines 4 and 11 as being distributed amongst the
cells (Figure 5.34). However, the intercell flows cause other machines such as 1, 6, 7 and 10 also to be
shared. The cell based machine distribution results in higher flow requirements for machine 1, 4, 7 and
10 than the actual values in Table 5.20. For instance, the required pairs for machines 1,4,6,7,10 and 11
are (2:1), (2:2), (5:3), (4:3) and (4:3), respectively in the original layout. Furthermore, the poor utilisation
of all the shared machines, assuming utilisation on a part family basis, can be clearly observed. For
example, in cell 1, machine type 1 has 80% utilisation, which reduces to 13.75% in cell 3. In cells 1 and
2. the utilisation of machine type 6 is 67.50% and 37.50% respectively. Under a functional layout with
limited intercell flows and intracell backtracking feasible, such poor machine utilisation due to physical

110

Chapter 5 Experimental Study of Dynamic Cells

cell formation can be avoided. Thus these critical intercell machine sharing aspects have not been

addressed in this paper (Koenig 1981).

5.5.1.2.5tep 2 and Step 3
Table 5.22 shows the travel chart (matrix form of the initial digraph) developed from the data of Table

5.19. This assumes that all operational sequences originate at an R (IN or source) node and terminate in

an S (OUT or sink) node to maintain consistency with the original paper.

TO Machine
112131451678 |9|10]11|12|S IR
1 1 8 2|3
2 1
3 2
N 9 [11
2 5 1 1
S & 4 3 3 3
= 7 5 2516|323
ég ; : 123
~ 0 3 3 6
11 5 3 4
12 8
S |
R |14 212 9 6| 2

Table 5. 22 - Travel chart for CM layout design

5.5.1.3. Step 4 and Step 5
The travel chart (Table 5.22) was the only input to the first stage model and executed using MATLAB.

Table 5.23 summarises the MATLAB solution report. It gives the total weight of the MWDRST and lists

the arcs.
From node To node Weight From node To node Weight

R 1 14 4 7 9
R 3 2 4 8 11
R 6 9 7 10 6
R 11 6 8 9 8
1 2 1 9 S 13
1 4 8 11 12 4
3 5 2 MWDRST with value 92

Table 5. 23 - Stage I output
Figure 5.35 shows the corresponding MWDRST rooted at the node R. The weightings of the individual

arcs can be obtained from Table 5.19. Six paths are observed, with paths 4, 5, and 6 being attached to the
root. Since the only branching node for these three paths is the root node (R), they could be attached to
other machine nodes. Thus, from a flow perspective, the volume of backtrack flows would be reduced by

the flows on at least three arcs (R to: 3, 6 and 11).

The basis for this argument is that when stock from the raw material stores reaches machines 3, 6 or 11
(first operation in the flow paths), clearly it has not been machined. Hence, there is no quality

requirement arising from these first operational machines for being located together with other machines.

111

Chapter 5 Experimental Study of Dynamic Cells

For the same reason, machine 2 in path 3 has not been moved. After the stock has been machined on
machine 1, the second operational machine must be located closely. This will eliminate quality solution
problems from the previous modelling stage. Hence, these flow paths could be connected to machines on
other paths, instead of being attached to the root. Essentially, this amounts to selecting, from all arcs
incident to each of machines 3, 6 and 11, these arcs which carry the highest flow volume. From a
modelling perspective, arcs (R, 6) and (R, 11) were eliminated from the stage one, prior to the next stage

of the model's solution.

e

% 3
2

Ry
2§5

Path 4 Path 5 Path6

Puath 3

Leveld
5 Level 5 °
Path 1 Path 2 :)
Figure 5. 35 - MWDRST - stage | flowline
; ‘ o ’ Mchc! I‘ :
Level2 "
Level3
Leveld
TmEER a1 Levels
12 Level6 :
P pant Pathz ‘ Path 6
Figure 5. 36 - Modified stage 1 of MWDRST
From node | To node Wg'ghi From node To node | Weight
R 1 14 4 7 9
R 3 2 4 8 11
7 11 3 7 10 6
1 6 2 8 9 8
! 2 l 9 S 13
| 4 8 11 12 4
3 5 2 MWDRST with value 82

Table 5. 24 - Modified stage I MWDRST

Table 5.24 shows the modified set of arcs that constitutes the MWDRST. Figure 5.36 shows the expected
flow reduction of paths 5 and 6, allowing the earlier backtracking for arcs (1, 6) and (7, 11) to be
eliminated. Path 4 could not be shortened since (R, 3) is the only arc incident to machine 3. Hence, the

modified MWDRST shows an increase in the number of machines acting as branching nodes, giving the

112

Chapter 5 Experimental Study of Dynamic Cells

opportunity to reduce the backtrack flow distances on any flowline in the shop.

Levell *

Level2
Flow S Level3 =
volume 2
imi) 2V

i) Path 5 . :

8@}& Leveld :
L i Level 5
Level 6

8 “ Fath2 . I Path 8 .
Figure 5. 37 - Forward and backward arcs in MWDRST

5.5.1.4. Step 6
Figure 5.37 shows the complete forward and backward arcs of the MWDRST. The effect of their flow

volumes on the layout of the shop need not be analysed until some feasible layout configurations are
developed after the second stage model (optimal permutations of the flow paths branches). The reason is
that they involve flows within a flowline, and will not contribute to intercell flows in any way. This
demonstrates the nature of the MWDRST structure in classifying whether flow arcs causes backtracking
within a cell, or not. Unlike other cell formation methods, backtracking is based on an overall shop

layout structure, instead of the operational sequence of each part.

Level 1

Level2
Flow Level3 :

volume §
8 Level 4
5 Level 5 :
/q Level 6
o 5
L Path] Path2 Pamé

Figure 5. 38 - Initial crisscrossing arcs in MWDRST

5.5.2. Stage II: Steps 7 — 11

5.5.2.1, Step 7
The travel chart of the intercell flows necessary for the first stage, shown in Table 5.25, was developed

by identifying the crisscrossing arcs in Table 5.19. The volume of intercell flows is relatively low. This
suggests that the system of DCM flowlines obtained in the MWDRST has eliminated most of the flow
arcs as forward or backward arcs, in the MWDRST. Since the number of crisscrossing arcs is small, they

have been shown on the MWDRST in Figure 5.38. This permits the permutation of the branches of the

113

Chapter 5 Experimental Study of Dynamic Cells

MWDZRST in the second stage to be observed visually.

Pl | P2 | P3 |P4 |P5 |P6
Pl
P2 | 10
P3 1 1
P4 0 0 1
P5 4 | 10] 1 1
P6 0 6 0|0 0

Table 5. 25 - Intercell flows (crisscrossing)

Machine in cell Level Weight assigned
1 2 100
4 3 300
7 4 0

Table 5. 26 - Flow weights for shared machines

Table 5.26 shows the flow weightings assigned to machines (shared) 1, 4 and 7 since they are branching

nodes relating two or more paths (the weights have been arrived at iteratively; see detailed explanation

section 5.2.2.4). Not all of them need be treated as indivisible. Machines 1 and 4 are common to paths 1,

2 and 3. Only one machine of type 1 is required (two available) and two of type 4 are required and

available. Hence, there is need to keep paths 1, 2 and 3 adjacent to each other while allowing

permutations amongst them. Since machine 7 is common to two paths, and three of its type are required

(five are available), no weighting was assigned to it. Thus, this would allow the second stage solution to

place path 1 between paths 2 and 6, without forcing the dividing of machine types 1 and 4. This is the

approach of constrained machine duplication to minimise intercell flow distances adopted in the

proposed dynamic cell formation method.

Pl P2 P3 | P4 | P5 | P6
Pl
P2 | 400
P3 100 | 100
P4 0 0 0
P5 100 | 100 | 100 | O
P6 | 400 | 400 | 100 | O 100
Table 5. 27 - Intercell flows (shared machines)
_PI P2 P3 | P4 | P5 | P6
Pl
P2 | 410
P3 101 | 101
P4 0 0 1
PS5 | 104 | 110 | 101 1
P6 | 400 | 406 | 100 | O 100

Table 5. 28 - Combined intercell flows for stage Il

5.5.2.2. Step 8

The intercell flow weights due to the shared machines which must be added to the values in Table 5.25

are shown in Table 5.27. The combination of Table 5.25 and Table 5.27 must be the input to the travel

chart for the model second stage (Table 5.28). The upper bound obtained with the SDP! method was $

114

Chapter 5 Experimental Study of Dynamic Cells

6498 (for the material flow unit cost of $1). As shown previously, in section 3.1, this was obtained with a
pairwise interchange heuristic (Appendix C) for solving an OLA in six nodes. The linear arrangement of
the six paths obtained was: 6, 2, 1, 5, 3, 4; compared to the initial arrangement shown previously as 1, 2,

3.4, 5, 6.

™ g Level | ©

14 T8
7{%}“‘\\-‘ 5 :
1 \? ! Level2'
Flow 4 Level 3
volume ",
CTI 4
g Path3 Path 4 ;
5 .
Leveld
Level 5 .
Level 6

Pars T Path? Path ¢ , L
Figure 5. 39 - Crisscrossing arcs after MWDRST stage I

The modified MWDRST output from the second stage of the methodology is shown in Figure 5.39. The

small reduction in the number of arcs spanning nonadjacent paths in the MWDRST leaves arcs 2,4), (5,

6), (6, 7) and (6, 10) creating the intercell flows. A possible approach to conducting a machine analysis to

eliminate these flows, after a preliminary layout has been developed, is discussed in the next section.

=Y
3

\\‘:1% v

Figure 5. 40 - DCM flowline layout after stage II of MWDRST

5.5.2.3. Step 9
Figure 5.40 shows a possible layout developed for the individual flowlines, by providing aisles with

intercell flows, which are allowed amongst adjacent flowlines. The approach used for the rudimentary
example in this Chapter 5 was used initially. Thus, additional machines of each type were inserted into
empty locations adjacent to the previously located machines by inspection of the crisscrossing arcs. The
operational sequence of a part can now be matched to machines, either within a flowline, or in an
adjacent flowline. Hence, without considering part family formation using operational sequences, the
resultant flowlines are defined in layout form by the final MWDRST. Thus all machines have been

retained in functional layouts and the intercell adjacencies have been used as a guideline for locating

115

Chapter 5 Experimental Study of Dynamic Cells

identical machines.

5.5.2.4. Step 10
Arcs (2, 4), (5, 6), (6, 7) and (6, 10) constitute the minimal set of arcs which create intercell flows

between nonadjacent cells. Only those parts whose operational sequences contain these arcs need to be
considered for capacity calculations, process planning or value analysis, in order to eliminate the intercell
machine sharing problems created. The approach that was used breaks the operational sequences in the
predecessor and successor strings (graph theory and network analysis applied to DCM flowline layout

analysis), as shown in Table 5.29.

Ares Part Batch quantity Predecessors Successors
24 3 1 1,2 4,789
5,6 9 1 3.5 6,4,8,9
6,7 18 3 6 7,10
6,10 5 2 1,6 10,79
6,10 6 1 6 | 10789

Table 5. 29 - Data for planning machine sharing

R w@“ﬁm_h&”
9 6 2

Iy
g 5

Additional
e machines

[3

Figure 5. 41 - Resulting DCM Layout aﬁer‘duplicatly'on of'mé‘c;zrinres is applied
With reference to Table 5.29, duplication of machines 3, 5, 8 and 9 is infeasible (since they do not have
any additional machine of its type). Arcs (2, 4) and (5, 6) correspond to exception operations. Neither
their predecessor nor their successor machines can be duplicated. Thus, these arcs will correspond to the
exception operations causing intercell flows for which the alternate routes need to be identified. In the
case of arcs (6, 7) and (6, 10), machines 1 and 6, from Figure 5.41 can be duplicated to eliminate the
intercell flows due to parts 5, 6 and 18, since both machine types 1 and 6 are additional. This figure
shows how the duplication of machines 1 and 6 now allows the operational sequences of these three parts
to be accommodated amongst machines, which are included in the adjacent flowline. It may be noted that

in the successor set of machines, machine 8 does not have any additional machine of its type.

Also, duplication of machines 7, 9 and 10 would require, before economical layout adjustments, for a
larger number of machines and fail to eliminate the intercell flow due to arcs (7, 8) and (8, 9). Hence, the
proposed methods would also consider the detailed part data at a later stage, when only those parts

creating intercell flows and machine sharing problems need to be considered.

116

Chapter 5 Experimental Study of Dynamic Cells

T T R S

Total
objective
Sunction

value = 497

Figure 5. 42 - Original machines as a branched flowline [Vakharia 1990]
5.5.2.5. Step 11
Figure 5.42 - Figure 5.50 shows a variety of layout evaluations that were conducted. Figure 5.42 shows
the original set of three unidirectional flowlines assimilated into parallel flowlines with no machine
duplication. This layout was developed since it was observed that cell 1 contained a disproportionately
larger number of machines compared to cells 2 and 3. Furthermore, cell 3 processed only two parts and
did not contain any unique machines, for example, all its machines were common to the other two cells

or involved in intercell flows.

A S N

E ‘l Ubjé‘ctizg}ﬁnclion

value = 507

e e S e

Figure 5. 43 - Bidirectional flowline layout

Figure 5.43 shows the QAP solution (linear) for a pure flowline for all twelve machines with no intracell
machine duplication. Thus, the flow penalty is only marginally worse than the previous layout. The arcs
in the MWDRST have been shown in this layout to increase in their lengths. Further, it fails to capture the
feature, or the MWDRST required to partition the digraph for the travel chart in directed paths sharing

one or more machines.

]

- j ~ Objectgl;oet,(;lllnctitltz

value = 763

e

Figure 5. 44 - Unidirectional flowline layout

5.5.2.6. Improved Procedures
Figure 544 - 5.47 demonstrates the conversion of a unidirectional flowline obtained, using a new TSP

improved SA algorithm (programmed in MATLAB and presented in appendix C), into U, S and serpentine
layouts to reduce intracell travel distances without affecting flow directions. Dummy costs were used to
convert the travel chart into a complete digraph, with zero cost arcs connecting R and S nodes. This
repositioning requires these two nodes to be at the ends of the route chart. This SA improved algorithm
for the TSP problem is employed here, to test the ability of the algorithm, to learn about how it works,
and was an improved building 2-opt (presented within Appendix C) procedure and local search to bridge
the SA weaknesses. However, more importantly, although when it was employed it gave the same result,
it produced much better computational times and the ability to work with bigger sizes of input data then
commonly TSP employed algorithms. This knowledge was needed as it was very important for the next

two stages of this methodology, where the DCM layout displacernent will be solved automatically.

Figure 5.48 is the layout implemented for the post second stages of the MWDRST. The significantly low
value of the objective function (defined in Chapter 4 as total distance moved by all parts) clearly

demonstrates that, assuming crisscrossing flows amongst flowlines, the proposed method also suggests

117

Chapter 5 Experimental Study of Dynamic Cells

the outer shape that the shop must have, to lower material handling costs for intercell flows. Thus an
aisle between each line (row) of machines can be assumed without affecting the assumption of rectilinear
flow travel distances. This is an improvement on the CRAFT-type design programs, which only work
with pairs of machines, assumes a rectangular perimeter for a layout, and ignores travel distances along

aisles, when flows involve non adjacent pairs of machines.

® @) @)
Total
® 00 BB G O ® @ ® 0 @)
™ objective o
_ 1 function value = 341
@ value = 393 \
Figure 5. 45 - U Unidirectional flowline layout Figure 5. 46 - S layout for unidirectional flowline

v

®
of

Sfunction
value = 297

¢ G| mu

,/ J \ fiunction
@ w{lue =459

& BB @

LS ® | o,
)
~12

e ®

Figure 5. 47 - Serpentine layout for unidirectional flowline Figure 5. 48 - MWDRST final layout

9| Q| @ | © ot
O~ @0 OO

Figure 5. 49 - L shaped layout flowlines

The layout (Figure 5.48), suggested by the MWDRST, shows several vacant nodes in the rectilinear grid.
Figure 5.49 shows the flexibility of the MWDRST to conform to restrictions on the perimeter of the shop
floor. Without losing the original flow or adjacency structures, the longer flowlines have been given an L

shape with minimum effect on the objective function, which was the minimisation of the material flow

distance.

It may be noted that the SA algorithm was utilised for solving the TSP problem of 100 locations, which is
more complicated, although for this example SA gave the same bound solution as the branch and bound
algorithm. Thus the output results are presented in the Appendix C and MATLAB codes in the Appendix
D. In addition to the experimental study EA (Evolutionary Algorithm) is employed to a TSP problem,
with the results presented within Appendix C (including theoretical study) and the MATLAB program
codes in Appendix D. For both combinatorial optimisation algorithms, the same bound is given, with
quicker times then the heuristic algorithms. However, although at this stage SA performed better for the

smaller problem detailed in Appendix C, a further study of EA is needed.

118

Chapter 5 Experimental Study of Dynamic Cells

5.5.3. Comments

The unidirectional flowline alone provides an unfavourable layout configuration for machine sharing.
However, it has the unique property that it can conform to the overall shape of the machine working
envelope, with respect to any other machine, along a circular aisle. Figure 5.50 shows a combination of a
TSP based flowline and a centrally located common facilities section. The flowlines of Figure 5.44 have
been configured around a central group of shared machines (machines 1, 4, 6, 7 and 10, extracted from
the overall sequences of machines). Although this configuration fails to improve upon the MWDRST
based layouts, it is better than the U, S and serpentine configuration tested previously. Hence, the

structures of the MWDRST and TSP have been shown as flexible tools for flowline based layout design.

ool

@ Total

l®
|

Figure 5. 50 - Facilities with flowline layout

5.6. Comparison of MWDRST with Graph-Based Layout Design

This example helps to compare the proposed DCM layout design method with a general purpose package
for functional and cellular layouts, PLANTAPT [Carrie 1977]. This author implemented spanning tree
and maximal planar graph algorithms for layout designs. The package is capable of performing multiple
analysis for cell formation and layout design, such as machine part grouping, part family formation based
on similarity of operational sequences, intracell flowline design and layout planning. Unlike traditional
machine tool metalcutting applications, this package deals with processes such as flame cutting,
presswork, shearing, drilling, planning and welding. Some of these processes, such as flame cutting,
welding, cleaning and fitting, cannot be located in a cell, apart from machines such as presses. Hence,
this example describes flow based cell formation in the operational sequences of the parts, which are

located external to their cell.

Figure 5. 51 - Original layém for guillotine cell with volumes of material flows [Carrie 1977}
The original layout obtained using PLANTAP is presented in Figure 5. 51, where the major flow arcs are
shown prominently. Due to the incompatibility of machines 9, 6, 3, 4, 5 and 10 (burning, welding,
cleaning and fitting), they have been located away from the other machines. Similarly, since machines

119

Chapter 5 Experimental Study of Dynamic Cells

11,12 and 14 appear to perform assembly operations, they have been located adjacent to machines 1 to
15, 13 to 16, 7, 8, and 2. These constraints, based on machine grouping performance, are best considered
using the flow based cell formation method. Table 5.30 lists the machine types and a description of the

basic process performed by each.

Machine type Machine name Operations number

1,15 Guillotine 776
2 Rail bender 182
3 Floor weld 1
4 Floor clean 4
5 Floor fit up 1
6 Profile burn 43
7 6’ Radial drill 137
8 9’ Radial drill 113
9 Hand burn 244
10 Floor clean 14
11 Degrease 10
12 Dip paint 7

13,16 Brake 492
14 Booth 7

Table 5. 30 - Machine loads and availability data

TO Machine
1 2 3 4 5 6 7 8 9 101112 {13 | 14
1 1153 2292188564938 6460 1843
2 17251 930 | 1582 4551
3
4
¥ 5 168
L;: 6 216 150 1504
§ 7 73 | 168 | 75 470 | 246 5688
= 8 1 297 2932 2137
g 9 | 90 | 883 146 540 45 7324
=10 192 397
11 227 40
12
13 503 5191 75 |3990]1509| 75
14

Table 5. 31 - Travel chart for GT layout [Carrie 1977]
5.6.1. Stage I: Steps 1 -6
Table S. 31 shows the travel chart for the material flow between the different machines that were used as
input to the first stage. Since the different stages in the analysis have been described in detail in the

previous two examples, only the essential results for this example are presented.

Figure 5. 52 shows the MWDRST after the first stage. The guillotines, which perform the first operation
on most sheet metal parts, act as the root node for the four paths. An interesting feature is that these paths
have no other intermediate shared machines (MWDRST has no branching nodes). Hence, in the second
stage, which has been sirplified to a simple four-node permutation problem, additional weightings need

not be given to any nodes to force paths containing them to be adjacent to each other.

120

Chapter 5 Experimental Study of Dynamic Cells

Lavel 1 ! Level 1
Level 2 Levei2
1509
0 Level3 10 Level3 ,'
97 .
\gm%; Level4 ‘%} Level4
Level 5 Level5:
Levet 6 Level 6
Path 1 Path 2 Path 3 Path 4 Paih 1 Path 2 Path3 Path4

Figure 5. 52 - MWDRST arcs afier stage [Figure 5. 53 - Forward and backward arcs in MWDRST

The incompatible machines and assembly machines have been temporarily included in the paths. Their
locations were adjusted after the second stage solution was obtained. Figure 5.53 shows the few forward
and backward arcs identified, whilst Figure 5.54 shows the MWDRST with the crisscrossing arcs prior to

the second stage.

pi P2 | m Pd

Pl
P2 2238
P3 5397 1083
P4 11181 8264 | 11539

Table 5. 32 - Intercell flows

Level !

13 Lewvel2

Level 5

Level 6

Path 1 Path 2 Path 3 Path 4 . Pah3 Path il Pahd Path?

Figure 5. 54 - Crisscrossing arcs before stage I Figure 5. 55 - Crisscrossing arcs dfter stage 11

Total

)@ objective function .

value = 162284

e o Edl
o1 d| 6| . o)
@ |8 iy | @
G«

Figure 5. 56 - Original layout [Carrie 1977]

B

&

@<

Figure 5. 57 - Final layout using the proposed method

5.6.2. Stage II: Steps 7 - 11
Table 5.32 shows the intercell flow input to a program for a four node QAP - SDPI heuristic, and the

121

Chapter 5 Experimental Study of Dynamic Cells

solution for the second stage can be expected to be optimal. Optimally is guaranteed, because the SDPI
algorithm gives a optimal solution for a two dimensional OL4, which is a more complicated problem
then the one dimensional OLA problem here. The new configuration for the MWDRST is shown in Figure
5.55.

Figure 5.56 presents the rectilinear grid presentation for the original layout and Figure 5.57 shows the
grid obtained using the final MWDRST. The locations of the incompatible machines and assembly in this
layout were actually obtained from the final MWDRST. The improvement in the objective function
(presented in Chapter 4), the total distance moved by all parts, and the costings by the proposed method
is quite small. However, it is able to correctly group and locate compatible machines, incompatible
machines, and unidirectional assembly machines, which are not possible with the considerable
backtracking in the original layout. This is achieved mainly by the L. - shaped layout for the incompatible

processes section, which allows the machine tools to be reached from two sides.

Figure 5. 58 - DCM layoﬁt develope’z’d froﬁi propbsed method
Figure 5.58 shows a possible approximate layout for the dynamic cell from Carrie’s paper, including
aisles to separate the machine tools from the incompatible processes section. Hence, the machine
sequences and path adjacencies of the MWDRST are a viable alternative for existing layout design
algorithms. Although the final DCM layout (approximate) configuration is currently developed manually,

the process is guided by analytically suggested machine groups and cell adjacencies.

5.7. Conclusion

In this chapter a number of illustrative studies are presented. These studies compare the proposed first
two stages of the proposed methodology with two other graph adjacency methods. Three other different
CM design methods are also detailed. An improved procedure, were the SDPI algorithm is employed, is
also applied with respect to these three methods. Hence, results from the proposed method, in
combination with other techniques and algorithms (which are coded in MATLAB), are compared with
results from packages such as STORM. Thus, this work can quickly evaluate a finite number of DCM
layout alternatives which conform to the machine grouping, flowline layout and intercell machine
adjacencies given by the second stage of the MWDRST. This helps to integrate the effects of reducing the

lengths of individual material flowlines by increasing the width of the shop (converting a rectangle to a

122

Chapter 5 Experimental Study of Dynamic Cells

square with the same area).

These results show that the proposed method correctly models the immediate adjacencies of machines
and the groups to which they could be assigned, if cells were desired. Thus, flow distances and machine
Jocations can be determined subsequently. Hence, the evaluation of alternative DCM flowline layouts,
using the simple objective (total distance) function, coded in the MATLAB package, was adequate for
these analyses. In addition, it is shown that combinations of a TSP based flowline and centrally located
common facilities section fails to improve upon the MWDRST based layouts. However, the structures of

the MWDRST and the TSP have been shown as flexible tools for flowline based layout design.

Stages | Steps Main Tools Description of Steps
1. Batch quantity for each part Qk
1 Matrix form | Input 2. Operation sequences for each part Sk
3. Number of machines of each type available Vi
2 MATLAB matrix | Compute the distance between every pair of machines i and j and construct
form the distance matrix
1 3 MATLAB Generate initial digraph D(v,a)
4 MATLAB Chu- Solve first stage to generate 7 Maximum Weighted Directed Rooted
Tarjan algorithm Spanning Tree (MWDRST)
5 Tree draw Generate path (1)... path(p) in the MWDRST
6 Tree draw Identify arcs in forward, backward and crisscrossing paths of the digraph D
MATLAB matrix With crisscrossing paths and path(!)...pfzth(p.), gegerate corpblr}ed interpath
7 flow matrix using total flow for machines i and j, and weighting for the
form .
shared machines
8 MATLAB QAP Solve second stage to pivot paths ~ to rearrange MWDRST
1 9 MATLAB matrix Plan layout based on material ﬂo‘wlit}es‘ from second stage and path
adjacencies
10 Tree draw Identify arcs in crisscrossing to planc‘(t;(l)lrsmachine duplication in nonadjacent
11 | MATLAB SDPI Design and analysis of approximate DCMS’s flowline layout
I 12 MATLAB Economical capacity oriented machine duplication
Economical optimisation of DCMS’s layout using SA algorithm minimising
v 13 MATLAB SA total material handling and duplication cost’s
14 MATLAB SA Shop floor layout displacement

Table 5. 33 - Improved research procedure after experimental study completed

Combinatorial optimisation algorithms are also employed to solve NP-problems as part of the improved
procedure. These are programmed in the main mathematical programming tool MATLAB and the codes
presented in Appendix D. These optimisation algorithms, QAP, SA, TSP, 2-opt and EA, have been tested
with good results (improved computational time, robustness). Although a short review is included in this
chapter, a more detailed explanation about combinatorial optimisation algorithms used in this research is
presented in Appendix C. The main conclusions from SA and EA is the better performance of SA
compared with EA for cases up to 5000 locations (very good for industrial scenarios). However, the EA
area of research needs further work, especially in applying tree directionality into algorithms (coding and

encoding with “Prufer” number-enumeration of the tree).

The main goal of the first two stages in this proposed research was to capture the directionality

embedded in the operation sequences of a variety of parts produced within a desired facility layout. This

123

Chapter S Experimental Study of Dynamic Cells

goal was achieved by incorporation of directionality into the design skeletons using the Maximum
Weight Directed Rooted Spanning Tree. Adequate theoretical elaboration has been presented with

comparative experimental studies.

The algorithm presented in this chapter groups the production equipment of the manufacturing facility
into dynamic cells, and forms a set of part families, which are processed within these cells. It does not,
however, address the relative placement of the machines within cells or relative placement of the cells on
the shop floor. Both these issues are critical in terms of the total material flow within the shop and are
addressed in the next Chapter 6. The proposed approach is based on the method of simulated annealing,

which also will be presented in Chapter 6.

124

Chapter 6 Oprimisation of DCMS's Layout

Optimising Dynamic Cell Facility (Shop Floor)
Layout — Stages Il & IV

6.1. Introduction

This Chapter describes stage I of the proposed research methodology and considers the economical
machine duplication model with an illustrative example. Also addressed is the proposed research
methodology for stage IV, which is the facility layout problem for a dynamic cell shop consisting of both
cell and independent machines. The major issue here is the placement of manufacturing resources (cells
and machines) within the available area of the facility. A simulated annealing (SA) based algorithm is
developed, improved and utilised to obtain a near optimal solution for the layout problem, which is NP

complete. The general problem is defined along with the solution approach and an illustrative example.

6.2. Stage III Economical Machine Duplication

The stage IT approach, which breaks the operational sequences in the predecessor and successor strings
(graph theory and network analysis applied to DCM flowline layout analysis), was presented in Chapter
S, Table 5.29. In order to eliminate the intercell machine sharing problems created, only those parts
whose operational sequences contain these arcs (predecessor and successor) need to be considered for

capacity calculations, process planning or value analysis.

This section describes the approach for economical duplication of the material flowline layout, which is
an extension of the research methodology presented within stages I and II. Here, in stage I, additional-
system/machine variables are included for finding the required number of the flowline machines. Such

variables are:

® Setup time, duration of the production period, machine capacity, utilisation of each machine

type, flow volume, production volume, operation time, non-operation time, average time between

B

125

Chapter 6 Optimisation of DCMS’s Layout

failures and servicing time of the machine type, and availability of the machine type.

In order to duplicate machines in several flowlines, where machines cannot be freely duplicated, the
mathematical model must compute the total capacity per machine of each type for the entire production

period. This is presented as follows:

Aj = AUjC Equation 6. 1
where:
i —partindex (i = 1,2,3,...,n),
j —machine index (j = 1,2,3,...,m),
A; —total available capacity per machine of type j,
C —duration of production period, and
AU; - utilisation factor of machine type j, and defined as follows:
n _ ST, ST,
S P, PPV,.(»E’L+T0T,,) PPV,.(ﬁé% OT, + NOT,]
AU, == = . = e Equation 6. 2
PA,; MA; PDL; ATBB; +TNS, DL
ATBB; !
where:

PT; - total production time. This is time to produce a batch flow volume during the
production period (in volume units), of the part i on the machine j (time/period time),
and defined by Equation 6.3, ie.

PT, = PPV,(—SL+ TOT, J: PPV,(&+OT.. + NOT, J Equation 6. 3
: l Bi ! l Bi ! !
where:

PPV, —production volume of part i for production period (unit/period time),

ST — setup time for the part i on the machine type j (time/batch),

B, ~ flow volume for the batch, for the part i (unit/batch),

TOT, - total processing time of the part ; on machine j (time/unit),

OT; — operation time for processing part i on the machine type j (time/unit),

NOT; ~ non-operation time for processing part i on machine type j (time/unit), ie. that non-
value added time at machine j, such as machine loading and unloadin g,i and |

PA; ~ availability of the machine type j for the production period (time/period time) defined

by Equation 6.4, ie.

ATBB, +TNS,
——iee—— . P Equation 6. 4

PA,=MA,PDL, =
g ATBB, I

126

Chapter 6 Optimisation of DCMS’s Layout

where:
MA; ~ availability (ratio) of the machine type j (time/production period time as a %),
PDL, — length of the production period for the machine j (time},
ATBB; - average time between failures of the machine type j (time), and
TNS; —average time needed for servicing machine type j (time).

Thus, the numbers of machines required in a flowline can be calculated as follows:

Ty
N, = J 7
Jk Equation 6. 5
-4,
where:
Ny — number of machines of type j required in flowline &, and
T — capacity requirement for operation ¢ on machine type ; in flowline k.

Thus Equation 6.5 gives the economical required integer number of machines for each flowline in the
DCM layout design. This duplication is necessary because the machine type processing time exceeds the
flowline machine’s availability in the dynamic cells (very common in the design of manufacturing
systems). Thus, if the machine is a bottleneck machine then it can be duplicated in the flowlines (paths),
where the corresponding part volumes are required. This procedure is now utilised in an example taken
from Chapter 5, which is now detailed in the next section. Finally, an interactive chart for the design of

the DCM layout (stages three and four of the proposed research methodology) is presented in Figure 6.1.

t"%-\h. . '“N e T T T T .

‘ Inp o B ess s S Stage IT
| Output from Stage I plus, Available machines (manufacturing resources}

\capaczrv Production period; Processing time; Setup time; Utilisation of
{machines; Material flow between manufacturing resources; Number and-
dimensions of manwfacturing resources; Available shop floor area with

| dimensions and Geomeiry of the restriction areas with dimensions.

élage nr

e ¥ Economical duplication
Evaluate objective ﬁmctwn . R T
< (DCM systetn cost) > (of the DCM machines)

atisfactory ?

Yes - Stage IV

04 Genevate new objective [
- function for the DCM system/ .

(manufacturing resources, } v
Optimise the DCM system lay
— - END using SA (Simulated Armeal)
f Y
|
| Ontput: T
{ | -Dynamic cell flowli Yos - -
| |- Dynamic cell shop layon — | Analyse and Evaluate design. Draw (plot).
- Material flow network of the DCM) ystem layout : DCM. system Iayou :

Figure 6. 1 - Interactive stages I[] &1V of the DCM layout framework based on SA

6.2.1. Economical Duplication - Example

In this section the example for consideration is derived from a paper (Vakharia 1990), which was used
also for comparison of the MWDRST in the proposed stage II research methodology in Chapter 5.4.
Detailed analysis of the input data was presented in the section 5.4.1 with the first two stages of the
solution of the proposed research methodology. Table 6.1 presents the minimum input data requirement
for stage I1[, the economical duplication of machines, and the final result (Figure 6.2) from stage II of the

proposed research methodology, together with the From ~ To machine material flow matrix (Zable 6.2).

127

Chapter 6 Optimisation of DCMS’s Layout

Part No. Sequence Total baich time (min’s) per machine | No. of Batches | Batch quantity
1 1,4,8,9 96, 36, 36, 72 1 2
2 1,4,7,4,8,7 36, 120, 20, 120, 24, 20 1 3
3 1,2,4,7,8.9 96, 48, 36, 120, 36,72 1 1
4 1,4,79 96, 36, 120, 72 1 3
5 1,6,10,7,9 96, 72, 200, 120, 72 1 2
6 6,10,7,8,9 36, 120, 60, 24, 36 1 1
7 6,4,8,9 72,36,48, 48 1 2
8 3,5,2,6,4,8,9 144,120, 48,72, 36, 48, 48 1 1
9 3,5,6,4,8,9 144, 120, 72, 36, 48, 48 1 1
10 4,7,4.8 120, 20, 120, 24 1 2
i1 6 72 1 3
12 11,7,12 192, 150, 80 1 1
13 11,12 192, 60 1 1
14 11,7,10 288, 180, 360 1 3
15 1,7,11,10,11,12 15, 70, 54, 45, 54, 30 1 1
16 1,7,11,10,11,12 15,70, 54, 45, 54, 30 1 2
17 11,7,12 192, 150, 80 1 1
18 6,7,10 108, 180, 360 | 3
19 12 60 1 2

Table 6. 1 - Operations sequence and batches data [source Vakharia 1990]
TO Machine
1213|4567 |8|9|10]l11{I12|S8 |R
1 1 8 213
2 1 1
3 2
4 9 [11
=25 1 1
< 6 4 3 3 3
§ 7 5 21516131213
> 8 3 8 2
Q9 13
=10 3 3 6
11 5 3 4
12 8
S
R | 14 212 9 612

Table 6. 2 - Stage Il initial material flow machine matrix

For this illustrative example the first step is to duplicate machines in several material flowline paths

utilising Equation 6.5. Previously, to find the number of machines of each type in each module, it was
assumed that each machine type must be an integer number, shared between material flowlines (shown in

Figure 6.2) and assigned to only one material flowline path. Analysing the available data from Vakharia

[1990] it is clear that all required information (such as setup time and machine availability) is not

available for the short duration of the production period (one shift). However, from the author’s

industrial experience, it is common to assume an average utilisation of 80%. With these assumption, ie.

AU=80% and C=8 hours, the available capacity A=384 minutes, and these are the parameters utilised in

Equation 6.4.

Thus the economical numbers of each type of machine required in the d
table also shows that in certain cases the integer requirements of

ifferent flowlines were calculated

and are shown in Table 6.3. This

machines summed over all the flowlines exceeds the available numbers of machines of each type. This is

128

Chapter 6 Optimisation of DCMS’s Layout

an easy problem to solve if extra machines of these types can be requisitioned for the flowlines (or if
some of the flowlines can be partially replaced by multifunction machines).
Level | &

3 LevelZ ©

¢ 5 S Level3

Path 3 Path 4

Path §

Leveld

Level 5
Level 6
Fath 2 Path | e S

Figure 6. 2 - Muterial flow lines of DCM after stage 11

Machine requirements in the flowline paths Machines
Path 1 | Path 2| Path 3| Path 4 | Path 5 | Path 6 | Available | Stage Il Requirements

! 0 b7 0 0 0 0 2 2

2 0 Y .25 Y 0 0 1 1

3 D { 0 0.75 0 0 1 1

4 1.8125 { 0 0 0 2 2
v 5 0 0 0 0.625 0 0 ! 1
275 [0 0 0 0 113125] 0 4 2
S _ 71372350 0 0 0 0 0 5 4
S 0 0.75 0 0 0 0 1 1

9 0 11.2187 0 0 0 0 1 2

10 129427 0 0 0 0 0 7 3

11 0 0 0 0) 0 2.8125 3 3

2] 0 0 0 0 0 0.89 1 1

Table 6. 3 - Machine requivements for flowline paths

However, after completing the machine requirements for the flowlines, and in order to eliminate the
intercell machine sharing problems, a further part analysis was required. Here the operational sequences
contain arcs. and these were considered for capacity calculations, process planning or value analysis. As
stated previously the approach that was used breaks the operational sequences in the predecessor and

successor strings (graph theory and network analysis applied to DCM flowline layout analysis), as

presented in Chapter 5.

Because of having to change the assignment of the flowlines resulting from introducing a duplication of

the machines, evaluation of the material flowlines network is then required. A new From -- To machine

chart (matrix) is then developed, and presented in Tt able 6.4. This travel chart (Table 6.4) is the main

output of stage 111, and consequently the input for the stage IV, the economical optimisation of the layout

design. Here the objective function is to minimise the total system cost which is made up of the material
handling cost and the duplication cost (presented in the next section).

Table 6.4 presents the material flow between machines in the dynamic cells, where the same machine

type has the same initial number (ie. machine 7 type =
(Table 6.3) of the proposed dynamic cell system, derived from the research methodology, with the

129

Chapter 6 Optimisation of DCMS’s Layout

utilisation of the cellular systern from the Vakharia paper [1990] (Table 5.21), shows improvement in the

average utilisation. From Table 6.3 the average utilisation of the machines in the dynamic cell is 77%
(system utilisation) and is higher than the average utilisation of 51 % from the classical cellular system of

Vakharia (Table 5.21).

TO Machine

NN

NSz Q™
M1 6|2 2 1 2

M1
I
2
3
M4
4
5
M6
6
M9
9
M10
NIO
10
MI11
NI
11
12
R
S

4 11

L=
[\
[\

MI0 1
NIO 1 2 1
10 3 1
MIi1 1 1 1
N11 1 1 3
11 1
12 8
R [13]1 212 9 3111212

FROM Machine
<5
ww ool lw

Table 6. 4 - Travel chart after economical duplication of machines is applied

Analysing the results from the utilisation comparison shows a visible improvement of 50% of the
dynamic cell system organisation compared to the classical cell. In addition, it is seen that in the
proposed research methodology for the design of the DCM, not all the available machines from the

classical cell were utilised, which should give the potential for further increased utilisation.

Thus, the presented utilisation results justify the first three stages of the proposed research methodology.
Additional case studies not recorded in this thesis also showed the same results. It is also recognised
however, that graph theory and network analysis are still valuable tools for presentation and analysis of
the material flows, especially for the directed tree’s theory. However, after the first three stages of the
DCM design, the next stage to consider is the economical optimisation of the DCM layout and machine

plécement on the available shop floor. Here the SA algorithm is utilised and is presented in the next

section.

6.3. Stage IV Shopfloor Machine Placement - Layout Optimisation

The algorithm presented in Chapters 4 and 5, groups the production equipment of the manufacturing

130

Chapter 6 Optimisation of DCMS’s Layout

facility into dynamic cells and forms a set of part families, which are processed within these dynamic

cells. It does not, however, address the relative placement of the machines within cells, or the relative
placement of the cells and machines on the shop floor. Both these issues are critical in terms of the total
material flow within the shop and are addressed in this section. To formulate the shop floor layout design
problem, first of all a geometrical model of the shop floor and of the manufacturing resources is
developed. Subsequently, decision variables are introduced to model a discrete choice in the construction
of the flow network and the location of the resources on the shop floor. Finally, the assumptions guiding

the design are stated and an integer programming formulation of the layout problem is developed.

Unfortunately, the layout design problems described in Chapter 4 and 5 do not exhibit optimal
substructure; each step of layout design has been shown to be NP - complete. Furthermore, when a
greedy algorithm search is applied, the strategy usually stagnates at a local minimum. In many cases there
is a large disparity between the local minimum and the global minimum cost. That is why a search
strategy, which avoids local minimum and finds the global minimum is needed, and simulated annealing

is such a search strategy.

In the following sections the formulation for the discrete block layout problem, which is adequate for
layout and material flow analysis, is now developed with shape constraints. The improved development
now introduces definitions for restriction areas, swap, translation and rotation functions. Numerical
experience with the optimal solution of the dynamic cellular layout formulation is reported, together with
the results of a simulated annealing based heuristic (background of the SA is presented in the Appendix
C) for the dynamic cell discrete block layout formulation. The proposed approach, based on the method

of simulated annealing, is outlined in the next section.

6.3.1. Definition of the Dynamic Cell Discrete Layout Model
It has been noted before (section 2.4.2 background of the SA facility layout), that the facility layout

problem in CMS has not captured researchers’ attention as much as cell formation in the past two
decades. A poorly designed layout will result in poor productivity, increased work in progress, disordered
material handling, and so on. Only a few researches have dealt with this subject. The problem of shop
floor layout can be considered analogous to that of chip placement on a microprocessor circuit board,
since both involve the placement of manufacturing resources in a given two dimensional discrete space.
This analogy has been exploited in the proposed research in order to generate efficient alternatives for
the layout of a manufacturing shop. The machine and cell placement problem is similar, although they
are addressed at different levels in the hierarchy of the manufacturing facility. Thus, they can be solved
using an approach which is now described. Throughout the discussion, the term manufacturing resource
(entities) represents either a machine within a cell, an entire cell within a shop, or an independent

machine, depending on the context in which it is being used.

The layout problem entails the physical placement of manufacturing resources on the shop floor. The

general model framework for the manufacturing shop, upon which this approach is based, considers an

131

Chapter 6 Optimisation of DCMS’s Layout

orthogonal unit imposed on its area as shown in Figure 6.3. This discrete model and solution algorithm
approach identifies both the manufacturing resources to be located, and the shop floor enclosure in which
they have to be placed, into a number of unit blocks. The blocks of a single resource are located closely
on the shop floor and allow the size and location of the resources to vary continuously within the shop
floor area. This approach must define in advance the acceptable geometrical shapes for the resources.

AL

Node n\}——

Are {1 n}

Node !

Manufacturing .

Resirictions <171

Si ho]/

foor

15

Y- dx

4

0 Unit grid (w) X - dxis

Figure 6. 3 - Representation of the shop and the manufacturing resources
6.3.1.1. Geometrical Attributes Representation
A square grid is imposed on the area available for the placement of the resources. The unit length of the
grid is defined such that it is larger than the width of a typical aisle of the material flow handling system,
and it is small enough to adequately capture the geometry of the manufacturing shop, the restricted areas,
and the manufacturing resources.
The manufacturing resources which are going to be placed on the shop floor form the set MR. Each
resource is decomposed into unit square building blocks, as shown in Figure 6.4. Although each building
block is treated as a distinct entity, strong relationships are established between adjacent blocks of the
same resources in order to retain the size of the resources in the final layout solution. For each block £,
[adj(k)], the set of blocks that belong to the same resource is designated and are adjacent to (have a
common edge with) k . The set of building blocks is denoted by B. The manufacturing resources may
occupy one or more nodes of the grid depending on the resource size. Restricted areas are excluded from
this grid as shown in the same Figure 6.4 (no nodes are assigned to these areas).

A,

[Noden

L Manufacturing
-~ resources
=

- Node 1

— SN SR e o - k.
o Unis grid () X~ Axis , w

Figure 6. 4 - Representation of a feasible manufacturing resources shop layout

Each intersection of the grid represents a node of the underlying graph G. Graph nodes are candidate

132

Chapter 6 Optimisation of DCMS’s Layout

positions for the building blocks of the resources, and graph arcs are candidates of the material flow
paths (aisles). The set of nodes that constitute graph G is denoted by Gy. The centroids of the building
blocks of set B are located on grid points, as shown in Figure 6.3. It should be noted that the intersections
of the shop grid, which are inside restricted areas occupied by manufacturing resources in certain layout
configuration (ie. nodes [and n in Figure 6.3), are not considered as nodes available for material flow.
Furthermore, the set of the graph’s undirected arcs which connect the nodes available for material flow is
denoted by A.

This discrete representation of the manufacturing shop and the manufacturing resources facilitates the
introduction of decision variables to model the design problem. Furthermore, this representation also

allows for a simply way to overcome area overlapping conflicts and complex flow path modelling.

6.3.1.2. Assumptions

Given the geometrical representations in the previous section 6.3.1.1, the development of the

mathematical model is based on the following assumptions (made to simplify the analysis):

o The manufacturing resources (machines or cells) are represented by equidimensional square

blocks to be placed in a finite, two-dimensional discrete space.

o The material flow paths are parallel to the building’s walls (which is typical in manufacturing
shops) and include only arcs of the grid imposed on the shop floor.

o The inter resources material flow rates per time period are constant and known. They are
calculated from the production routing’s (sequence of operations) of the products to be

manufactured and the product demand for the planning period.
o The available shop area is predefined and is adequate to fit all manufacturing resources.

e The manufacturing resources of the dynamic cellular manufacturing system are enclosed by

rectangular work areas.
e Restrictions on the shop floor are enclosed by rectangular areas.

s The distances D; between two manufacturing resources is defined as the rectilinear distance

between their geometric centres.

The material flow between each resource pair (i, j)€ MR? is denoted by F;. The value of Fjrepresents the
volume of interactions between i and j, and is calculated from the part routing’s demands over the
planning period and the batch sizes. The levels of material flow are assembled in a square matrix of
dimension equal to | MR | ; this matrix is known as the material flow matrix. A cost C;; is associated with .

each complete move (i, j) € C, and then Cj; is defined as the travel cost from resource i to j, respectively.

6.3.1.3. Definition, Decision Variables and Parameters for DCM Layout Design

One of the main reasons for the limited success in the application of layout algorithms to real world

facilities design projects has been the tendency of the computer-generated layouts to produce

133

Chapter 6 Optimisation of DCMS’s Layout

departments with unacceptable shapes. However, the proposed discrete modelling and design algorithms
approach, is based on the fundamental notion that resources consists of a number of equal-sized squares,
which are called unit squares. The area in which the resources are to be located consists of a number of
equal-sized unit locations. The layout problem then consists of assigning the unit squares to the unit
locations, whilst observing a number of layout constraints and objectives. Several decision variables are
introduced which concern important attributes of the shop design to model the discrete choices. In the

next section the formulations for the discrete block DCM layout problem with shape constraints are

introduced and elaborated.

A) Parameters and Variables in the Layout Design
The problem of selecting the best unit square size is challenging in itself. If resources are represented by

a large number of small unit squares, then the algorithms have substantial flexibility in determining the
shape and location of these resources. This tends to reduce the distance rating for the objective function
(the resources). On the other hand, a large number of unit squares per resource can generate complex
resource shapes that are not acceptable in practice. In addition, the use of small unit squares decreases
the probability that two resources will be located on the same number of unit squares. If resources have
to have equal areas before they can be considered for a pairwise exchange, then using small unit squares
decreases the number of possible exchanges. The parameters and variables definitions, which are used in

this mathematical modelling, are illustrated in the block layout Figure 6.5.

Block centroid Xe, Ye

A

M AR e LEMIB*»/;/ Block k Resource j
g | et Block m
e
—:g; ¥ Nod
A A [~ Node n
.
/ i \\ Are {1, n}

Resowrce i

: Mamufacturing
[—t——resources (Zi}
—— %

Shap
Sloor
| >

" Unit grid {u) X - Axis W

Figure 6. 5 - Block layout variables and parameters

The first of the decision variables models the assignment of blocks of resources to the nodes of G. A
feasible assignment of the building blocks k € B to grid nodes / € N provides a feasible shop layout, in
which the resources retain their size and shape. To model the assignment of block k € B to node / € Gy,
the binary variable is defined as follows:

| if building block k€ Bis located at node/e G,
W= . Equation 6. 6
0 otherwise :
The values of these variables in the final solution provides the locations of the resource on the available
area of the shop floor in the optimal (or near optimal) shop layout. The definition is closely related to the

binary variables employed in quadratic assignment formulations [Willhelm 1987].

134

Chapter 6 Optimisation of DCMS’s Layout

The second set of decision variables determines whether an arc (I, n} € A is active or not in the flow
network. The topology of this network depends on the arc costs, as well as on the arc capacities. The

binary variable associated with each candidate undirected arc {1, n} € A, is defined as follows:

1 if arc{l nj}e Aisactivein the flow network,
Iin = Equation 6. 7

0 otherwise.
Therefore, the values of arc related decision variables in the final solution define the optimal (or near
optimal) material flow network. The cost Fy, (material flow between resources { and j) related to each
edge {1, nj € A depends on the material flow handling cost. Finally, Dj; is the rectilinear distance between
grid points [and n (the summation of the absolute values of the differences between the horizontal and
vertical coordinates of the two point’s / and n). This metric is known, and depends only on the structure

of the grid imposed on the shop floor.

B) Layout Design Definitions

The first decision in the discrete assignment formulation is the determination of the unit square size.
Based on the size of the unit square, the shop floor is divided into R rows by NC columns of unit
locations, and each resource is divided into a number of unit squares. All areas are then normalised by
dividing them by the unit square size, and all distances are normalised by dividing them by the length of

the side of the unit square. The length and width of a manufacturing resource are defined as:

w; = xr; - xj; and L=yt~ ybi . Equation 6. 8

where:

XJ; - leftmost x coordinate of the smallest rectangle enclosing resource i,

Xt - rightmost x coordinate of the smallest rectangle enclosing resource i,

vt - topmost y coordinate of the smallest rectangle enclosing resource i,

vb; - bottommost y coordinate of the smallest rectangle enclosing resource

u - length of the side of the unit square,

W - width along the x axis of the smallest rectangle enclosing resource i, and

l; - length along the y axis of the smallest rectangle enclosing resource i.

As previously referred to, one of the main reasons for the limited success in the application of layout
algorithms to real world facilities design projects has been the tendency of the computer-generated
layouts to contain departments with unacceptable shapes. Thus, a new formulation is proposed which
attempts to avoid these unacceptable shapes by introducing additional shape constraints. Here the shape
ratio of a resource is defined as the maximum of the length to width, or width to length ratios, of the
smallest complete rectangle enclosing the resource, that is the shape ratio of resource is defined by the

following equation:

135

Chapter 6 Optimisation of DCMS’s Layout

i Wi
3

w

maximum value of the shape ratio of resource i, §; = max Equation 6. 9

Basic definitions - Number of unit locations on the shop floor, indexed by /, is defined by Equation 6.10
as the product of the number of rows along the y axis on the shop floor and the number of columns along
the x axis on the shop floor. The number of unit squares for manufacturing resource i is defined by
Equation 6.11 and the total number of unit squares for all resources, indexed by &, is defined by Equation

6.12. All these definitions are as follows:

N=RXNC Equation 6. 10
b= l I; I Equation 6. 11
z
M = Zbi Equation 6. 12
=1
where:
R - number of rows along the y axis on the shop floor,
NC - number of columns along the x axis on the shop floor,
b; - number of unit squares for resource f ,
I; - set of unit squares belonging to resource {,
M - total number of unit squares for all resources, indexed by k ,
VA - number of manufacturing resources, indexed by i, and
N - number of unit locations in the shop floor, indexed by /.

Feasibility Constraints - Based on the input parameters, the feasibility constraints (resource area and

number of unit squares for the resource) can be immediately tested as follows:

z
e g - area of resource i Zai < A (area of the shop floor), and
i=1
z
e b, - number of unit squares for resource i Zb,. <RxNC .

f=

6.3.2. Mathematical Formulation of the Dynamic Cell Layout Approach

The main objective in this stage IV of the proposed research methodology, is to design a conceptual
block layout for a number of manufacturing resources with unequal areas. All manufacturing resources
have to fit inside the confines of a rectangular sh0p floor, and the manufacturing resources cannot
overlap. In addition, the manufacturing resources must satisfy a shape ratio constraint. Furthermore, the
manufacturing resources have material flow affinities. The objective function is to minimise the affinity-
weighted centroid-to-centroid rectilinear material flow cost distance rating. The placement problem
consists of determining the relative positions of the Z manufacturing resources in the set {m;, my,..., m,},
which might be either the set of machines belonging to a cell, or the set of manufacturing cells within the

shop or machines. The criterion involved in the analysis is the minimisation of the total distance travelled

136

Chapter 6 Optimisation of DCMS’s Layout

by the parts between manufacturing resources. After this framework is given, the objective function (TC)
of the layout problem is stated as follows:
z-1 2
Minimise C = Z ZE].DUC,] J#i {k,l}e A Equation 6. 13
i=l j=it]
where:
TC ~ is the total material flow distance cost resulting from part transfers between resources

within a specified production period plan (time horizon),
7 —is the number of manufacturing resources,
F.: — is the material flow (volume flow units) traffic between manufacturing resources Z; and Z;,
C;; — is the per unit traveling cost, and

Dj; — is the distance from manufacturing resource i to manufacturing resource j, and is computed
from the manufacturing resource i to the manufacturing resource j in a manner that avoids
passing through the other manufacturing resources and shop floor restrictions. Here the
distance is measured rectilinearly between manufacturing resources centroids according to
Equation 6.14. The coordinates of the centroid of each department are linked to the
assignment constraints with the following constraints- Equation 6.15 and 6.16. These

equations are as follows:

D=l xi-x 1+ yi-yl ij=1Z i #j Equation 6. 14
N
z Z ne,x,
I 1= .
x; :E—'————II;——————— i=1,...,72 Equation 6. 15
i
N
Z Z I Xy
e f, I=1 .
v, =K i=1..,2 Equation 6. 16
1 b,
where:
ney - column index along the x axis of unit location &,
T - row index along the y axis of unit location &,
X; - x coordinate of the centroid of resource i, and
i - y coordinate of the centroid of resource i .

Here (x; x;) and (y; ;) are the coordinates corresponding to the geometric centres of the manufacturing
resources Z; and Z; respectively. Since the coordinate space considered is discrete and finite, each point in
the space is assigned a unique position number in order to simplify the analysis. The problem thus
consists of determining the position number corresponding to each of the Z manufacturing resources in

order to minimise the objective function of Equation 6.13.

As was stated previously, it is assumed that each position on the grid can completely accommodate a

137

Chapter 6 Optimisation of DCMS’s Layout

manufacturing resource (manufacturing resources do not overlap when they are assigned to adjacent
positions). Thus, the minimisation problem is subject to one simple set of the constraints, which states
that each position can be occupied by not more than one manufacturing resource. The problem then is

subject to the constraints detailed in the following sections:

6.3.2.1. Shop Floor Boundaries
Each machine must be fully located inside the associated boundary. For rectangular shop floors

boundaries the shop floor area (A) is equal to the product of the shop floors width and length and defined

by Equation 6.17 as follows:

A=LxW Equation 6. 17
where:
W - width along the x axis of the shop floor, and
L - length along the y axis of the shop floor.

6.3.2.2. Area Overlap Constraints
This set of constraints ensures that one and only one resource block (Figure 6.3) is assigned to each

node, Equation 6.18, and that each resource block is assigned to a grid node, Equation 6.19.

Z M

N>¥m<t I=L.N, i=L..Z Vie G, Equation 6. 18
i=l k={

zZ N

S>¥Nhy=1 k=L..M; i=1..Z Vke B Equation 6. 19
i=1 [=]

Z N

Shelold k=L..M I=1..N; i=1..,Z Equation 6. 20
i=]

> > hyh,d; =1 Vk,me B :ke adj(m) Equation 6. 21
leGyneGy

h,+y,, <1 Vke B, v{l,nte A

—-{x, +w X, +tw,)J—x Equation 6. 22
s (xk (x, 1)) ((k k) 1) >0 Vi %! quation
e =0+ 1) (e +4)=x)

M Yom € (0, 1} Vi, j)e MR, V(L n} e A VkeB Equation 6. 23

where:

; 1 if block k of resourceiisassigned to location (node) € G,
hy, = Equation 6. 24

0 otherwise
In Equations 6.18 to 6.24, Gy is the number of nodes of the grid, Z is the number of resources, and M is
the number of building blocks required to satisfy the area requirements of manufécturing resource i. The
assignment constraints expressed by Equation 6.18 and 6.19, are at most one resource block and should
be assigned to every grid node. Adjacency constraints (Equation 6.21) force adjacent blocks of each

resource to occupy adjacent grid points between the locations occupied by these blocks, and to be equal

138

Chapter 6 Optimisation of DCMS’s Layout

to the grid length (=7 uniz). Finally, expressions Equation 6.20 and 6.23 ensures that the decision

variables assume binary values.

6.3.2.3. Non Overlapping Condition
The two blocks A, and A are not overlapping provided their respective x and y co-ordinates are

themselves not overlapping. In other words, for two resources not to overlap, they must be separated
either in the x dimension or in the y dimension, or both, defined by Equation 6.22. Two resources are
separated in the x dimension if either resource i is to right of resource j, ot resource j is to the right of
resource i, and furthermore only one of these two conditions can be satisfied at any one time (Equation

6.15, Equation 6.16 and Equation 6.21).

6.3.2.4. Restrictions of the Location
Certain restrictions might exist for the physical location of a machine or cells. For example, consider a

situation where a machine is already installed and its relocation would be economically unjustified.
Subsequently however it was decided that the machine should retain its position in the new layout
configuration. Thus if an area is desired for this machine, the grid blocks (of adequate size) will be
restricted in the layout optimisation design. Location and rectangular size define these area restrictions,
within Equation 6.19 and Equation 6.24.

As previously noted, the layout problem is NP — complete, and thus a heuristic method has been
developed to find a near optimal solution in a reasonable amount of time. The method employs simulated
annealing (SA) in order to avoid local optima, and to provide several alternate solutions from the same

initial configuration.

(START) —-m Accept or reject configuration

nation ™

v Generate a feasible layourA\’
criterion

B |

T

H Al
1 Evaluate objective function

Figure 6. 6 - Flow chart of the simulated annealing based dyﬁamic cell layout methodology

6.3.3. Proposed Solution Using Improved Simulated Annealing

Figure 6.6 illustrates the basic steps of the Metropolis [1953] simulated annealing based method which is
enhanced by an improved S4 approach (Figure 6.13) specifically developed for the solution of DCM
layouts. The proposed SA4 based layout method minimises the objective function of Equation 6.13, which
models the assignment of the manufacturing resources to the nodes of the grid (decision variables Ay, k €
B, | € Gy). The algorithm described in this section provides feasible values to these variables, evaluates
the resulting feasible layouts, and repeats this process until a near optimal shop layout is reached. This
algorithm comprises two basic loops, a global loop that decreases the temperature according to the
cooling schedule and an internal loop with each temperature. The essential components of the proposed

method are:

139

Chapter 6 Optimisation of DCMS’s Layout

s asystematic generator of alternative feasible shop layouts, and

s an annealing schedule that drives the system configuration to near optimal solutions (from larger

to small temperatures).

Constraints (Equation 6.18 — 6.23) are mathematical relationships that express the assignment of each
resource building block to one grid node. The initial distance between all pairs of manufacturing
resources is determined within stages II and TII of the proposed research methodology (utilising the
MWDRST algorithm from the Chapter 4). Also, it is noted from the Appendix C sections that four
elements are essential for the Metropolis algorithm [1953] described by Press [1990]. These elements are

as follows:
» description of possible system configurations,
» generator of random changes in the system configuration,

o an objective function TC (analogous to energy), the minimisation of which is the goal of the

procedure, and

o a control parameter T (analogous to initial temperature) and annealing schedule, which dictates
how T is decreased (how many random configuration changes in each downward step in T is
taken and how large is that step). The initial value of T and the determination of the annealing

schedule, which may require physical insight and/or trial and error experiments.

The Metropolis algorithm searchers for an optimum solution (minimum energy) by modifying the system
configuration. In SA, the system will change from a configuration with energy E; with probability p = €
AT tor E, > E,, or p = [for E; > E,, where k is a constant which relates temperature to energy
(Boltzman’s constant) and T is the temperature of the system. If E; 2 E, the change is always accepted.
Otherwise there is non-zero probability of accepting the uphill solution. In this implementation of
simulated annealing, each resource is considered as a single entity, and based on its location on the shop

floor. Thus, the assignment of building blocks to grid nodes is determined.

Problem specific Generic
Solution space (Configuration) Initial temperature
Configuration changes (Neighbouring) Annealing (Cooling)schedule
Objective function (Configuration cost) Length of the search (Epoch)
Initial feasible configuration (Placement) Stopping criterion (Frozen system)

Table 6. 5 - Parameters used in simulated annealing

It may be noted that the choices the designer of a simulated annealing algorithm has to make can be
classified into two classes, namely problem specific and generic. The terms that must be specified are
shown in Table 6.5. Simulated annealing can be modelled as an algorithm which, given a neighbourhood
structure, constantly attempts to transform the current configuration into one of its neighbours. As
mentioned before this is an approach for solving combinatorial optimisation problems, rather than a

specific algorithm. This is a direct result of the fact that the algorithm designer must specify many of the

140

Chapter 6 Optimisation of DCMS’s Layout

terms which appear in the following sections, ie. inputs.

6.3.3.1. Inputs
The proposed solution for determining the shop floor layout requires the following input information:

s The set of manufacturing resources, and thereby for each resource.

» The size of its rectangular envelope and its moveability status, and data, are provided.
o The input parameters required for the SA algorithm.

e The set of area restrictions, defined by location and rectangular size.

» The geometry of the area that is available for the placement of manufacturing resources. (Also,
note that the dimensions of the shop, the manufacturing resources, and restricted areas, should be

given in the same units.)
e The minimum width of material handling corridors.
» The set of parts (demands, average pallet size, average batch size and part description).

o The traffic between manufacturing resources in terms of the material flow. This information can
be provided either directly, or indirectly, by specifying the unique process plans of all the parts
produced in the system, their production volume over a certain production period, and the

number of units of each part that can be accommodated on a standard pallet.

o In the case of manufacturing resources, the relative sizes and dimensions of the manufacturing
resources are also required in terms of the number of square building blocks required for

representing each manufacturing resource.

As discussed before, a square grid covers the shop area available for the placement of manufacturing
resources, excluding the restrictions. The resolution of this grid is so defined that the basic system
entities (resources, material handling corridors and details of the shop area) can be described adequately.
It is also noted that in order to accommodate material handling corridors between resources, both length
and width of each manufacturing resource are incremented by the corridor width. The definition of all
parameters, which is needed for an adequate problem set up, within the basic elements of the Metropolis

algorithm, is described in the following sections.

6.3.3.2. Problem Set Up

A) Solution Space (Configuration)

The solution space or configuration, is the first problem specific term that appears in Table 6.5 for the SA
based DCM layout. The solution space (configuration) is given by assignment of the manufacturing
resources to the candidate locations. Here Z, the number of manufacturing resources under consideration,
have to be placed on a (R x C) grid, where each point is assigned a unique identification number. It is
noted that only Z of the R x C positions on the grid would be actually occupied throughout the solution

process. The reason for considering such a large solution space is to accommodate even the extreme case

141

Chapter 6 Optimisation of DCMS’s Layout

of a linear facility placement.

B) Description of System Configuration Changes (Neighbourhood)

The second problem specific term from Table 6.5 is the configuration changes (neighbourhood of a
configuration), which consist of those configurations that result from the interchange of the
manufacturing resource locations. Here, for a given initial (feasible) layout configuration, new system

layout configurations are generated by applying the following operations:

o Translate - A move of a manufacturing resource from its current position to another, previously
unoccupied position.
e Swap - A swap of the positions of any two manufacturing resources.

o Rotate — Rotates manufacturing resources by 0°, 90°, 80° or 270",
All these actions involve the exchange of the contents of two positions, at least one of which contains a
manufacturing resource. Exchanges involving more than two positions can also be accommodated,
although this increases the complexity of the method and does not offer substantial advantages. A
random number generator is utilised at each iteration to select the type of operation to perform swap,

translate or rotate.

Swap
Two resources are selected at random, and their positions are interchanged. The algorithm overcomes the

problems imposed by differences in the size of the resources as follows:

e Given two resources selected for swapping, the algorithm identifies the larger one (ie. the one
comprising more building blocks), and swaps it with a set of resources adjacent (and including)
to the second one. The overall size of the resources in this set is almost equal to the size of the

larger one.

- dxis

. Manufacturing

-

Restrictions]

Unit grid () X - Axis W

Shop
Soor

=

-
’

Figure 6. 7 - Swap operation of manufacturing resources

Figure 6.7 illustrates this layout transformation. Resources 1 and 2 have been selected for a swap
operation. However, resource 1 includes many more building blocks than resource 2. Thus, the algorithm
identifies the resources (2, 3 and 4) with resource 1. This identification is accomplished by checking all

resources surrounding 2 and selecting those that, when added to 2, form a set of building blocks that is

142

Chapter 6 Optimisation of DCMS's Layout

similar to 1 (ie. resource 5 in Figure 6.7 is such a candidate that is disregarded since when it is added to

resource 2 it forms a bigger set of building blocks that resource 1).

Rotate
One resource is selected at random and it is rotated counterclockwise around it’s centre of gravity by 90,

180° or 270°. The rotation angle is selected at random. However, as in the case of translation, all three
angles of rotation are examined for feasibility regarding the resulting configuration. Figure 6.8 illustrates
the possible resource rotations.

AL

270° L
Rotation

. 180°
Rotation

NAforriife

ing
resources

Axis

Restrictionsg

. 90°
Rotation

0 Unit grid (u) X - dxis L4

Figure 6. 8 - Rotation of manufacturing resources
Translate
One resource is selected at random and is translated by one grid unit in one of four directions:
Up, down, left or right.
The direction is selected at random. However, if it is not feasible to perform the transformation along the
selected direction, all remaining directions are examined and any feasible one is selected. Figure 6.9
illustrates one possible translations per resource. It is important fo emphasize that several of the
attempted configuration changes may not be feasible because of resource overlapping constraints

(Equation 6.18 - 6.23).

. Left
Transiation

Axis

Up

Restrictions

Shop,
Soor

L. Down
Transiation

) .y
w

7
o R
!
ES i

0 Unitgrid () K- dxis

Figure 6. 9 - Translation of manufacturing resources

Since SA is most effective when small configuration changes are performed, the probability of choosing
between these operations is not uniform. Swap alters the energy of the system the most, and thus, it has
the lowest probability of being selected ¢0.3) (only 30% of the overall configuration changes consists of

swaps of resources). The other two remaining operations, translate and rotate have a smaller (minimal

143

Chapter 6 Optimisation of DCMS’s Layout
changes) impact on the system’s energy, and thus are selected with a probability of 0./ each. These

probabilities of the configuration changes will be justified in this Chapter: Experimental Study Section

6.3.7. (Analysis of Parameters).

C) Objective Function, Total (Configuration) Cost TC (Analogous to Energy E)

The cost of a configuration, or objective function, is the total material flow handling cost, which is the
third problem specific parameter of the simulated annealing algorithm. In this application of simulated
annealing, the objective function to be minimised has been defined by Equation 6.13. The following

parameters are related to the objective function, described as follows:

e TC. is the value of the objective function for an accepted configuration. TC, is related to the

energy function in the SA process.

s TC, is the objective function of a configuration before the decision of acceptance or rejection of

this configuration has been made.

e TC,is the value of the objective function for the best configuration generated by the algorithm.

Here, minimisation of the objective function (configuration cost) is done by utilising simulated
annealing. If the cost ever reaches zero, a dynamic cell layout design has been found and the iteration can

be ended.

D) Initial (Feasible) Configuration
The initial feasible configuration is the fourth problem specific parameter of the simulated annealing

algorithm, which assigns manufacturing entities to locations. The procedure, which is used to construct a
initial feasible assignment, is described in detail in the section step 3 of this chapter. There are two
entities which should be placed on the grid: manufacturing resources and restrictions. All manufacturing
resources and restrictions are randomly placed within the solution space (grid) of the shop area grid
nodes, without violating the related constraints of the DCM layout mathematical model, described earlier

in this chapter (Equation 6.18 - 6.23).

This initial placement configuration is done with the help of a random number generator, which assigns
each manufacturing resource to an empty position. Since restrictions are areas in which no resources may
be placed, the grid is redefined not to include the nodes corresponding to these restrictions. Immovable
resources are first placed onto the grid at user specified locations, and are immovable throughout the

layout analysis. The remainder of the resources are placed randomly onto the available area.

E) Control Parameter, T (Analogous To Initial Temperature)

In the physical analogy the initial temperature should be large enough to heat up the solid until all
particles are randomly arranged in the liquid phase. This means that at the beginning of the annealing
process, the transitions are able to reach all of the configurations. By this property, the algorithm can end

by producing a solution that does not strongly depend upon the initial configuration. The initial

144

Chapter 6 Optimisation of DCMS’s Layout

temperature T, is a first generic parameter (Table 6.6) which controls the highest point of the transition
probability. A smaller 7 value leads to a smoother search process. Again at the limit point, T = 0, the

process becomes deterministic,

,'
1

Current state

Current state
Neighbouring state
- Optimal ssate

L « =« Neighbowring state
<= Optimal state

@rmemmCost e Temperature
7 T

sy G Temperature
Y T

1 | L | § e d i L 1 i i i 1 A { ! i 1]
Hteration f::"—~~~~~2é>‘) Iteration :::‘—_w &

! i J

Figure 6. 10 - Effect of low initial temperature T Figure 6. 11 - Effect of high initial temperature T
Computational experience shows that 7" is an important parameter and should be selected carefully. Thus,
if a very low T is selected, the annealing schedule will quickly reach the freezing point and,
consequently, the stochastic search process becomes deterministic. Once it becomes deterministic, the
current state will never transit to a higher cost (Figure 6.10) and thus there will be no chance to escape a
local minimum. On the other hand, if T is too high, the chance of transition from a current solution to a
worse solution will increase considerably. Thus the current state will simply follow the neighbouring
state pattern (Figure 6.11) and hence the search process deteriorates into an unguided random process,
although this process may not last too long. Therefore, a good initial temperature should be selected in

such a way that the current state will have a better chance of transition to a lower cost (Figure 6.12).

Current state
n - Neighbouring state
- Optimal state

oyt S Temperature

[R

L L. [!) il 1

lteration

Figure 6. 12 - A good initial temperature T
Following the principle of simulated annealing, a proper initial temperature is the one that yields a
probability of close to I for the first iteration. Thus, a more robust guideline for selecting the initial
temperature 7 is now suggested. The initial temperature T can be determined by means of a cost
increasing transition, which would be accepted in the beginning of the annealing process with probability
P, . The mean cost increasing 4, of the cost-increasing transitions, is then computed. In the calculation,
T'is defined as follows:

;- BATC
In(F,)

FEquation 6. 25

where:

T — initial temperature,

145

Chapter 6 Optimisation of DCMS’s Layout

UATC — the mean cost increasing, of the cost increasing transition,
Py — acceptance probability of the annealing process in the beginning (P, = 0.8), and

ATC — the number of transitions attempted for calculating ATC, as a fraction of the total
number of the neighbouring configurations, where the total number (size) of the

neighbouring configuration is of the order of zZ.

It may be noted that the user specifies the control parameter T (Equation 6.25). A high value of T will
result in an initial random search of the configuration space, followed by a more systematic search, as T
assumes lower values. A good initial value for T is given by the maximum possible change in the
objective function [Aarts 1989] and, in addition, a proposed acceptance probability (P, = 0.8) at the
beginning of the annealing process. This will result in the initial acceptance of some random changes.
However solutions of lower energy will be primarily accepted. The change of temperature is dictated by
the annealing schedule, which is also specified by the user. The initial temperature should be sufficiently
large so that virtually all configuration changes are accepted by the criterion presented in the next

section.

F) Annealing (Cooling) Schedule
The annealing (cooling) schedule, the second generic parameter of the SA algorithm, consists of defining

the initial (melting) temperature T and the equation which governs the change in the temperature of the
system at each step of the procedure. This annealing schedule is a constant by which the temperature is
reduced at each temperature iteration. Since the temperature reduces exponentially with the annealing
schedule, its value drops quickly. The temperature change schedule, in its simplest form, can be a
constant positive multiplier with values less than unity. For a certain value of temperature, the
temperature is reduced when the number of transitions reach the upper bound of the Markov (presented
in more detailed within Appendix C) chain length. The control parameter, ie. the reduction ratio of
temperature, usually is chosen for small temperature changes. The Markov chain more easily leads to an

equilibrium state if the temperature change is small. Hence, in this algorithm the decrement rule is

defined as follows:

Ti=Trc XTit Equation 6. 26
T)
c = T Equation 6. 27
I+ logi
where:
T; - is the temperature for the new iteration,
T.; - is the temperature at the current iteration,
Tec - is the annealing schedule temperature decrement factor defined as a logarithmic
function, and

i - is the number of the annealing iterations.

146

Chapter 6 Optimisation of DCMS’s Layout

The control parameter Tr¢ is chosen small, but close to /1. Typical values for Trc lie between 0.85 — 0.95.

An annealing schedule value of 0.9 allows for moderate changes in the objective function under which

SA works best [Aarts 1989]. This value of 0.9 is used in this SA algorithm program as the default setup.

G) Epoch — The Length of the Search (Markov Chain)

The simulated annealing process transfers the current configuration to its neighbours with a certain
probability, this modelling is equivalent to a Markov chain (also known as Epoch — the length of the
search). Thus, it is considered that each value of temperature is modelled as a Markov chain. In fact, the
number of accepted transitions are smaller with lower values of the temperature. The length of each
Markov chain, referred to here as the epoch length L, is the third generic parameter used in SA from
Table 6.5. The epoch length is taken to be equal to a percentage of the total neighbourhood size (Z°), and
should be as large as possible. It should not be significantly dependent on the temperature, but must take
into account the fact that, at low temperatures, the number of moves actually accepted is rather small to
find an upper bound for the epoch length. Otherwise, unnecessarily long Markov chains would exist in

the final stages of the annealing schedules.

The length of the search (Epoch — the number of trials to be performed with the same temperature value),
together with the annealing scheduling, is employed to decrease the temperature after each cooling stage
is completed. Prior to the description of the algorithm, some notation relevant to simulated annealing is

presented as follows:

o Let N, be the total number of temperature changes allowed by the SA procedure, and n; the

number of those iterations at any stage of the algorithm.

o Let Ny be the number of configuration changes allowed within each temperature (internal loop),
and n, the cumulative number of these iterations at any stage of an internal loop (n, is initialised
to 0 when the temperature is decreased, and increases by one for each configuration tested within

this temperature).

e Let N, be the temperature of accepted configuration changes allowed within each temperature T,
and n, the number of accepted configurations at any stage of internal iterations (n, is initialised to
0 when the temperature is decreased, and increases by / for each configuration accepted within

this temperature).

The length of the epoch is determined by the above three parameters with the capital subscript letter, and
in this application of the SA the epoch length is controlled by (two parameters) the maximal allowable
number of times the new solution is accepted and rejected, per epoch. These values are computed for a
constant value temperature, and if one of these numbers, or both, become equal to their maximal
allowable value, the equilibrium state is established and the temperature is reduced in order to start a new

epoch. The default values of the above parameters utilised in this algorithm are as follows:

N, =100 - the total number of temperature changes allowed by the SA procedure,

147

Chapter 6 Optimisation of DCMS’s Layout

Ny =100 xZ - the number of configuration changes allowed within each temperature,

Ny =10xZ - the temperature of accepted configuration changes allowed within each
temperatare T, and

L =20 xZAT + 2) - the length of the epoch (length of the search) Equation 6. 28

Here Z is the total number of the manufacturing resources, T is the initial temperature of the SA, and the

epoch length (L) is defined as a geometric function of Z and T as shown in Equation 6.28. It should be

noted that all these previously-mentioned parameters can also be re-specified by the program user.

H) Stopping Criterion

The fourth generic parameter used in the simulated annealing algorithm, which must be addressed, is the
stopping criterion. The annealing process is terminated when the system is frozen, ie. the value of the
cost function of the solution does not improve after a certain number of consecutive Markov chains. In
addition, and obviously, the execution of the program-algorithm can be discontinued if the expected
improvement in the configuration cost is rather small. In this proposed version of SA, the annealing

process is terminated if either of the following two conditions are satisfied:

1. The process will stop if the number of accepted transitions is less than a given fraction of the

total number of attempted transitions (or below a certain point).

2. The annealing process will also stop if the current best configuration remains unchanged for a

number of temperature reduction steps.

Aarts and Korst [1989 and 1996) have proved that the upper bound of the total number of temperature
reduction steps (ie. the number of Markov chains) is proportional to the solution space that denotes the
finite set of all possible solutions. In the layout problem solved here, the solution space is equivalent to
the factorial of Z (number of manufacturing resources). Most of the elements in the solution space,
however, are infeasible solutions because there are too many constraints, so a number of reduction steps
are used as the upper bound for the number of Markov chains. In addition, it should be noted that the
program default stopping criterion is when a given final temperature of Ty = T/ 800 is reached, and the

user can then redefine the final temperature.

I) Configuration Change Acceptance Criterion
The Metropolis criterion [Metropolis 1953] was selected to govern the acceptance or rejection of

configuration changes. It considers the following cases:

o If the configuration change results in a net reduction in the objective function of Equation 6.13,
then it is accepted.

o If the configuration change increases the objective function, then it is accepted with probability

ATCIT
of e

»

where ATC represents the change in the value of the objective function and T is the
temperature of the system at the time the configuration change is attempted. Thus, the

configuration change is accepted if a randomly generated number between O and [is less than

148

Chapter 6 Optimisation of DCMS’s Layout

- ATC,
the value 7.

(START Step 2 Generate shop floor grid and U
— B i ’
the distance between resources No “Is this placement ,
¥ (overlap conmstraints satisfied) Step 7
Stew 3 Placement of all manufacturing resources configuration feasible’
Input: p and restrictions on the shop floov grid
Parts; Batch quantity | ¥ L Yoy
Operation sequence; Step 4 | Define SA4 algorithm controf parameters w -
Machines the: new ﬂfate{'zal flow total
(manufacturing asts (objective function) Step 8
resources); Material Compute material flow total distance costs, he new placement
Hlow between Step 5 {objective function} for the initial
manufacturing placement e -
resources; Number # V“’"""’[‘;‘]’f“f’ge of mf"‘x’ "I{éﬂow
and dimensions of == —— otal distance cosis
manufacturing Select (randomly) a generator ive fimction) between
resonrces: Available Step 6| (one of three alterative configuration | previous configuration
shop floor area with operations)
dimensions and e Step 9
Geametry of the No T the ch P, N
o e - : : RN
restriction areas with erate random mumber (Ry) between 0 and 1 I< - offthe fotal f-’:m
dimensions. ATC<0
Yes
Y
ew system configuration .
S wene) ng=ng+1 Step 10
CHATC
Ifthe
nyBNgor nzNp Step 11
ST S Step 12
END

Figure 6. 13 - Flow chart for the SA based layout of DCM shop Sfloor
6.3.4. The S4 Layout Algorithm
Once the parameters of the method are completely defined, the method of simulated annealing can be
applied to generate efficient layout alternatives for the manufacturing system. The flow chart of the
proposed algorithm is shown in Figure 6.13. A detailed description of its various steps is given in the

next section. Solutions to the Nugent et al and Bazaraa problems are shown in Figure 6.15.

Step 1 - Data Processing
The number of manufacturing resources to be allocated and the material flow between them are

specified, either directly or indirectly as mentioned in section 6.3.3.2.

Step 2 - Shop Floor Grid Definition
A (R x C) grid is generated for the placement of the Z manufacturing resources, and the distance between

all pairs of resource positions is determined using the rectilinear distance criterion.

Step 3 - Initial Configuration
This Step 3 is actually the fourth problem specific parameter of the SA algorithm. The following

procedure is used to construct an initial feasible assignment of resources to grid nodes. One
manufacturing resource is randomly placed within the solution space (grid) of the shop area grid nodes,

in such a manner that the block interrelation constraints (Equation 6.23) are satisfied. The procedure

149

Chapter 6 Optimisation of DCMS’s Layout

continues with a new manufacturing resource, until either all resources are placed on the shop floor, or
one or more of them cannot be placed on the grid without violating the related constraints (Equation 6.18
— 6.23). This is done with the help of a random number generator, which assigns each manufacturing
resource to an empty position. The user overrides this default option to specify the initial placement of
the manufacturing resources. There are two entities which should be placed on the grid: manufacturing

resources and restrictions,

Since restrictions are areas in which no resources may be placed, the grid is redefined not to include the
nodes corresponding to the restrictions. Immovable resources are first placed into the grid at user
specified locations, and are immovable throughout the layout analysis. The remainder of the resources
are placed randomly into the available area. If the placement of the resources is feasible, the algorithm
proceeds to Step 2, otherwise this configuration is disregarded and Srep 1 is repeated, starting from a

different resource.

Step 4 - SA Control Paramelers

This Step 4 defines the SA annealing control parameters, which are listed in Table 6.6. The annealing
schedule is set up in this step. The initial temperature is determined by identifying the lowest temperature
at which at least 80% of a certain number of random configuration changes would be accepted. The user
can also directly specify the initial temperature. The following parameters, such as: the temperature
reduction factor Ty (<1,0), the number of configuration changes N; to be attempted at each temperature,
the number of successful configuration changes allowed Ns at each step, and the number of temperature

steps in the annealing procedure Ny, are also specified.

Parameters Definition
T Initial temperature
Tre Annealing schedule factor (0.0 - 1.0)
N, Total number of temperature changes
Nr Total number of iterations at each temperature
Ng Number of successes at each temperature before continuing to the next temperature

Table 6. 6 - Definition of the SA variable - control parameters
Step 5 - Evaluating the Objective Function
This step evaluates the objective function of the shop design problem for a given assignment of blocks to
locations that satisfies: the area overlappihg constraints, respects the geometry of the shop, and the
restricted areas (Equation. 6.18 - 6.23). The objective function, the total material flow handling distance
TC between the manufacturing resources, is calculated for the initial placement using Equation 6.13. The

distance D;;, between all pairs of manufacturing resources i, is calculated as before for stages II and III

ijs
(Chapter 4 and 3) utilising the M WDRST algorithm, this also determines the shortest path between these
entities. This path may not pass through other entities and restrictions. The material flow traffic Fj; is
computed from the material flow handling traffic between manufacturing resources i and j. The initial
placement is stored as the best layout and the corresponding value of TC is stored as the minimum

material flow distance.

150

Chapter 6 Optimisation of DCMS’s Layout
If any of the constraints (Equation 6.18 — 6.23) are violated, the configuration is rejected, and the

objective function value is set equal to = . In this case, the algorithm returns to Step 3 to determine a new
start configuration. Otherwise, TC. is given the value of the objective function for the current layout,

setting 7C, «— TC,, and the various SA control parameters initialised (ie. n, = 0, n; = 0 and n; = 0).

Step 6 - Generating a New Layout

Given a feasible shop design layout, the random number generator (transformations) is utilised to select

the type of configuration change (swap, translate or rotate) to generate a new layout. Thus:

Two positions from the solution space, at least one which contains a manufacturing resource, are
randomly selected using the random number generator. The attempted configuration changes
consist of swapping, translating or rotating the contents of these two positions (as explained
using the defined values within the Problem Set Up section 6.3.3.2) ie. the probability of a swap

is 0.3, whilst the probabilities of a translate or a rotate are each 0.10.

Step 7 - Checking for Overlapping
If the solution does not satisfy the area overlap constraint (Equation 6.18 — 6.23), then a new system is

configured, (step 6), otherwise continue to step 8.

Step 8 - Evaluating the New System Objective Function
For the new system configuration, the new objective function value TC, is computed as per step S for the

shop layout design problem according to:
o If any of the constraints of the mathematical model (section 6.3.4) are violated, then the objective
function value TC, is set to ee.

s If no constraints of the mathematical model (section 6.3.4) are violated, then TC, is calculated

(the value of the objective function) for the current layout.

Step 9 - Accepting or Rejecting a Configuration
The usual Metropolis criterion is utilised for accepting or rejecting configurations. The change in total

cost (objective function) ATC (as the change in the material flow handling distance between the current

and previous configurations) is evaluated first, as follows:

ATC =TC,.-TC, Equation 6. 29

Here 7C, is the value of the objective function for the previous accepted configuration and TC, is the
value of the objective function for the layout evaluated in step 8. In order to determine whether the new
configuration is acceptable, a random number R, (R, € [0,1]) is selected and compared to the acceptance

(probability) criterion (¢ "T).

Thus, there exists two possibilities for ATC:

1. If the improved configuration results in ATC < 0 (net reduction in the objective function

151

Chapter 6 Optimisation of DCMS’s Layout

-ATC/T

Equation 6.6) the configuration is always accepted, since the acceptance criterion e > 1.

Thus, because the objective function is improved, and two parameters updates are performed:
o TC.eTC,
o If7C, < TCy, than TC, ¢~ TC,.

Note that 7C, is the value of the objective function for the best (up to this point) configuration.

If the configuration change of energy TC, is greater than TC, , resulting in ATC > 0 (net increase

in the objective function) the configuration is accepted with probability of:

n=e" Equation 6. 30

where ATC represents the change in the value of the objective function, e is the exponential
factor, and T is the temperature of the system at the time the configuration change is attempted.
The acceptance or rejection is accomplished by comparing a randomly generated number (R, €

-ATC/T

[0,1]) with the value of 7= ¢
e If 7> R, then the new configuration is accepted, and TC, «— TC,,
o If 7 < R, then the new configuration is rejected.

At this point the number of overall iterations at the current temperature T'is increased by one (n;
«n, + 1). If the new configuration is accepted, the number of successful changes in temperature
T is also increased by one (n, « n, + I). Thus, the configuration change is accepted if a
randomly generated number (R, € [0,1]) between 0 and I is less than the value 1 = e"" The
probability of acceptance is progressively lowered as the temperature decreases. If the solution is
not accepted, than the counter number of iterations is incremented at a temperature and

continued to Step 11 - otherwise it is continued to the next step.

If the configuration change attempt is successful, the composition of the two candidate positions is

reconfigurated and the value of the objective function is updated. It should be noted that as a result of the

configuration change the objective function might increase, decrease, or remain stationary. At lower

temperatures, however, the probability of an increase in the objective function is significantly lower. If

the material flow handling distance for the resulting layout is less that of the best layout stored in

memory, the former replaces the best layout, and the corresponding material flow handling distance

replaces the minimum distance (stored in memory).

Step 10 — Incrementing the Counters
If the solution is accepted, then TC, = TC, is set and the counters incremented such that:

e n,=number of iterations at a temperature, and

e ng=the number of successes at a temperature.

152

Chapter 6 Optimisation of DCMS’s Layout

Step 11 — Checking Internal Iterations

If the number of internal iterations at the current temperature has not exceeded the maximum number of
iterations at the preset upper bound (ie. n, < Ny and n, < Ns) temperatures, or the number of successfull
(or accepted) iterations at a temperature has not exceeded the maximum number of successfull iterations
at that temperature, then the iterations are continued to the next system configuration. At this stage a new
internal iteration is executed for the current temperature by returning to Step 6. Otherwise, the procedure

is continued to the next temperature, Step 12.

Step 12 - Updating SA Parameters

The number of temperature iterations is then incremented and a set of a number of iterations at the new

temperature is begun, with updating of the following parameters:
e Internal iteration counters are then reset {ie. n, ¢« 0).

o Temperature iterations are then increased by / (ie. n; ¢—n;+ 1).

Step 13 — Checking Temperature Iterations

If the number of temperature iterations exceeds the maximum number of temperature (changes) iterations
(n; = N,), then the execution of the program (algorithm) is halted. Otherwise (n; < N;), when the number

of allowed temperature changes has not been reached, the algorithm is continued to Step 1 4.

Step 14 — Completing Predefined Temperature Steps

The annealing temperature is decreased by the temperature reduction factor Trc. This provides a lower
probability at which an uphill solution is accepted. Steps 3 through to /4 are repeated until the predefined
number of temperature steps is completed (or equals the number of steps). The annealing is also stopped
if the number of successful configuration changes at any temperature, equals zero. The value of the
objective function for the final layout is compared with that of the layout stored in memory, and the
better one is saved. Thus, the objective function value for the best configuration is TC,. This
configuration comprises the layout of the manufacturing resources on the shop floor. Thus, a complete

shop floor design is derived at the termination of the simulated annealing based algorithm.

The output information, obtained from the application of the layout algorithm to the dynamic cell

manufacturing system, is as follows:
o Optimal or near optimal layout of the manufacturing resources (facility).
e Flow paths between all pairs of manufacturing resources for the optimal layout solution.

o Final objective value, which quantifies the total material flow costs distances within the

manufacturing shop (system).

6.3.5. Numerical Implementation
The shop layout displacement of the dynamic cellular manufacturing system, based on the simulated

annealing algorithm was implemented using MATLAB, the main programming tool in this research. All

153

Chapter 6 Optimisation of DCMS’s Layou!

the mathematical computing was done using MATLAB. This included coding and building of the
algorithms, which provided an environment to develop, run and modify the algorithm models. The
MATLAB program, which is a powerful matrix generator, provides all the features required to generate a
model in a efficient, intuitive manner. Output from the DCM shop displacement MATLAB program is
given in two styles:

e matrix output (example presented in the Figure 6.14), and

o graphical interface presentation as shown in the Figures 6.15-18.

0o 3 5 0
0 12 6 2
0 1 4 8
o 117 9
0 12 10 I3

Figure 6. 14 - Example of the matrix style output from the DCM placement program
The computer implementation was tested using illustrative examples. Problems are presented in the next

sections, with detail explanation of the proposed SA4 procedure. However, formal computational
experiments were carried out to validate the performance of simulated annealing, and this is given in

section 6.3.7.

6.3.6. Examples — with Comparisons
The example proposed by Rosenblatt [1989 and 1992] is used in this restricted example with a

comparison. This example was originally proposed by Hillier [1963 and 1966] but is much better known
as the Nugent [1968] examples, and is used in recent literature as the benchmark comparison example for
a twelve resource location problem, ie. for the case of a manufacturing cell with twelve machines. The

manufacturing resources are considered to be equidimensional and the rectilinear distance criterion is

used.

Total
matericl flow -
distance = 293 units

1 1 S

Figure 6. 15 - Final layoﬁt for the example |

6.3.6.1. Equal Dimensions of the Resources

The material flow values between manufacturing resources are shown in Table 6.7 and the S4 algorithm
default control parameters are used (section 6.3.4). The starting temperature T and the reduction factor
are defined as 30 and 0.9 respectively. The program randomly generated the initial layout on the 6 x5
grid. The final layout is shown in Figure 6.15 and corresponds to a total material flow distance of 293

units.

It is noted that the layout presented by Rosenblantt corresponds to a material flow distance of 297 units.

154

Chapter 6 Optimisation of DCMS’s Layout

Consequently, the proposed SA base layout has yielded a marginally better result, and these results
provide some justification for the algorithm used and are indicators of its potential. In addition, in order
to compare various results and to provide some means of quantifying the efficiency, a global efficiency

statement is proposed as follows:

Global efficiency = [ﬂ) Equation 6. 31
PFD
Manufacturing resources
1123 4|s5]6|7]|8]|9|10|11]12
10
. 21510
S 3]2]3]0
S 4/410]0]0
€ sl1[2]0l510
2 glol2]ol2]tw0]o0
£ 7lol2]ol2l0]5]0
S gl6lols]wofolt]w]o
T 9lalalslofo]1]5 0]0
S sofifsi2lols]s5]2 0]olo
fl1lola[s5]1l4]3]5]10]5]0
12]1]ol2|st1jof3]ofo]lofz2]0

Table 6. 7 - Material flow between resources

Here FD is the total material flow handling distance, assuming that all material transfers involve unit
distance, and PFD is the material flow handling distance for the proposed research method. The higher
the value of this criterion, the better the solution. It may be noted that the optimal value of unity can
never be obtained for a practical case involving more than two manufacturing resources (as the number
of resources increases, the value of this criterion tends to decrease). For this example, the global
efficiency is 59.4%, compared to 58.6% for the Rosenblantt solution, which is a small improvement in
the efficiency of 0.8%.

6.3.6.2. Unequal Dimensions of the Resources

The example presented in the previous section is based on the assumption that all sizes of the resources
are of equal dimensions, and can be placed at any of the positions in the solution space. This, however, is
not true in most practical cases. In order to accommodate the approximate size of various resources, each

entity is considered to be composed of an integer number of square building blocks.

Dimension | No. of building blocks 1213|4567
1x3 3 110
1x2 2 21910
1x2 2 3 6 4 0
1x2 2 4101410710
1x1 1 510, 4101410
1x1 1 610 4 4 014 0
Ix1 1 7130014101010

Table 6. 8 - Resource sizes and flow for the unequal size example

To demonstrate the effectiveness of the proposed research approach in the case of unequal resources

sizes, the theoretical example of Figure 6.14 is again considered. The system contains seven resources as

155

Chapter 6 Optimisation of DCMS’s Layout

shown in Table 6.8. The material flow values between the resources is shown in Table 6.8. This data and

a random initial placement of the blocks are used as inputs to the layout procedure.

f !

Toral
material flow
distance = 113 units

Figure 6. 16 - Unequal sizes layout examples
The material flow between identical blocks is assumed as 2 x the maximum traffic between non-identical

blocks. An initial temperature and an annealing schedule from the set up problem section 6.3.3.2 are
used. The layout obtained corresponds exactly to the optimal layout of Figure 6.16. It can be seen that
the blocks representing resources [to 4, which are the ones represented by more than one building block,
have been placed together in the final layout.

TO Resource
o

Sl el D | Dol = =
M1 612 2 1

w07
8
M
9
M
NI
10
M
N1
11
12

('S
~o

4 11

b

=N
Wi

MY
9
MI10
NIO 1 2
10 3
M1l 1 1 1
N11
11
12

Tuble 6. 9 - Travel chart after economical duplication of machines is applied, as input Jfor SA

FROM Resource

6.3.6.3. Vakharia Example
In this section the example for consideration is derived from a paper (Vakharia 1990). This example was

used also for comparison of the MWDRST in the proposed stages IT and III of the research methodology
presented in Chapter 5.4 and Chapter 6.2. Detailed analysis of the input data is presented in section 5.4.1,
together with the first two stages of the solution of the proposed research methodology. Table 6.1
presents the minimum input data requirement for stage Il (the economical duplication of machines), and

the final result (Figure 6.1) from stage 11 of the proposed research methodology, together with the From ~

156

Chapter 6 Optimisation of DCMS’s Layout

To machine material flow matrix (Table 6.2). The economical numbers of each type of machine required

in the different flowlines were calculated and are shown in Table 6.3.

However, after completing the machine requirements for the flowlines, further analysis of the parts
whose operational sequences contained arcs were considered for capacity calculations, and process
planning or value analysis, in order to eliminate the intercell machine sharing problems created.
Evaluation of the material flowline networks is utilised because of having to change the assignment of
the flowlines resulting from introducing a duplication of the machines. A new From — To machine chart
(matrix) is then developed, and presented in Table 6.9. This travel chart (Table 6.9) is the main output of
stage 111, and consequently the input for this stage I'V, the economical optimisation of the layout design.
The same type resources are named, using a combination of a letter and a number, ie. M7 means resource
number M, resource type 7. Here the objective function is to minimise the total system cost, which is

made up of the material handling cost and duplication cost.

Equal Resource Dimensions

For this example a cellular manufacturing system with twenty-four manufacturing resources is
considered (after stage Ill-economical duplication). The manufacturing resources are considered to be
equidimensional and the same rectilinear distance criterion is used as in the previous example. The
material flow between resources is that again shown in Table 6.9. Each resource is assigned a dimension

size of one unit grid, and a material travelling cost of $1 per unit.

The SA algorithm control parameters described and defined in the section 6.3.3.2 were also used. Thus,
the program generated the initial layout on the given shop floor size of the 6 x 6 grid. The final layout is
shown in Figure 6.17, with the total material handling distance of /42 units. In addition, Figure 6.18

presents the change of the annealing temperature during the SA algorithm search of the total material

handling cost.

It may be noted that the layout presented in Chapter S (Figure 5.48, Section 5.5.2.6) corresponds to a
material flow distance of 297 units. However this approximate layout was design manually and for
fourteen manufacturing resources and a different shop floor sizes. The proposed procedure shows a

computanional time of 78 seconds when running a CPU PENTIUM 90; an improvement of 53%.

To compare the approximate layout from Chapter 5 the same example is utilised with the same shop floor
size and 5 x4 grid (without the duplicated resources from stage III). The material flow data input is used
from Table 5.22 (Chapter 5.4) and a uniform cost of $/ per unit lengths for all flows. Results are
presented in Figure 6.19 and the temperature diagraph in Figure 6.20. The material flow distance after
the SA algorithm is utilised corresponds to 232 units, which is an improvement of 22% with respect to the

297 units distance of the approximate DCM layout (Figure 5.48, Section 5.5.2.6).

157

unocecupied

! 4 5 §

Figure 6. 17 - Final SA based DCM layout

Gray=unoccuptied

Totel material flow distance = 232 units

2 4 W
Figure 6. 19 - Final layout for the basic model

Unequal Resource Dimensions

The example presented in the previous section is based on the assumption that all sizes of the resources

¢

Placement eost

Chapter 6 Optimisation of DCMS’s Layout

450

400p -

350%

300} -
250}
200F
1501 i
100 |
10
Temperature) o
Figure 6. 18 - SA search temperature versus cos!
500 T T : :
450
4001
B
I
2
§ 950}
§
Q9
3
300
260} -
200l ; . ;)
- : 10 102
10 Temperature 10‘]

F igure 6.20- Corresponding rt'e}npe‘rdti‘t’r‘é graph

are of equal dimensions, and can be placed at any of the positions in the solution space. However, this is

not true in most practical cases. In order to

accommodate the approximate size of unequal dimensioned

resources, each entity is considered to be composed of an integer number of square building blocks (grid

units).

Total material flow distance = 260 units

2

3 4 5 [

Figure 6. 21 - Final unequal DCM layout

sunoccupied

Black=restricted, Gray

800

700

=Y
S

Placement cost
2
=3
T

400 £

300

200
10°1

Figurer 6.22- Corrésponding 54

i

Hi

100 101 102 103

Temperature e
search temperature

158

Chapter 6 Optimisation of DCMS’s Layout

Dimension No. of building blocks Resource type Cost
1x1 1 1 1
1x4 4 2 1
1x1 1 3 1
1x2 2 4 1
1x1 1 5 1
1x2 2 6 1
2x2 4 7 1
1x1 1 8 1
1x1 1 9 1
2x2 4 10 1
2x2 4 11 1
1x1 1 12 1
1x2 2 Restriction A 1
1x4 4 Restriction B 1

Table 6. 10 - Resource sizes and flow for the unequal size example

Here the initial From - To chart from Table 6.9, together with the resource and restrictions data from
Table 6.10 were the input for the SA DCM layout algorithm. A random initial placement of the resources
is then applied to the shop size of a 12 x 10 grid. The algorithm resulted in a material flow cost distance
of 260 units, with a CPU time of 65 seconds. The optimal DCM layout is presented in Figure 6.21 with

the corresponding temperature graph in Figure 6.22.

6.3.7. Analysis of Parameters

To find the appropriate parameters for the annealing procedures necessitated the testing and comparing
these parameters with the parameters provided by Kouvelis et al. [1992] who changed one parameter at a
time. Parameter values provided by Kouvelis et al. are as follows: Py =0.4, Trc = 0.99 and L = 0.95. The
problem size utilised in the parameter analysis was Z = /2 and is applied to the Nugent [1968] problems.
Ten replications with different random searches were run for each combination of parameters, with the
value of the parameter that had the best average solution quality being chosen. The parameter analysis
results are shown in Tables 6. 11 - 6.14. The standard (default) parameters set used for the simulated

annealing procedures are shown in Table 6.6.

Parameter P,, 02 0.3 0.4 0.5 0.6
AVG cost 289 289 289 | 290 | 292
AVG time (sec) 10.5 11 10 9.5 10

Table 6. 11 - SA parameter Py (probability of the annealing process)
Parameter Tpc 0.99 0.95 0.9 0.85 0.8

AVG cost 291 289 289 | 289 | 290
AVG time (sec) 10 11 10 10 12
Table 6. 12 - SA parameter Trc (temperature decrease factor)
Parameter L 1 0.95 0.9 0.88 0.8
AVG cost 289 289 289 289 289

AVG time (sec) 11 10 11 | 1.5 | 105
Table 6. 13 - SA parameter L (length of the search)
With respect to Tables 6.11 — 6.14 and from papers Kouvelis [1992], Willhelm [1990] and Heragu

[1993], it has been suggested that SA is very sensitive to the annealing parameters. However, these

parameters do not effect the quality of the solutions. Thus, there is a requirement for the multiply running

159

Chapter 6 Optimisation of DCMS’s Layout

of the program for each problem to find the optimum value of the objective function (total travelling
cost).

Parameter Te | 001 | 021 | 02 | 03 | 04
AVG cost 789 | 280 | 289 | 289 | 289
AVGtime(sec) | 125 | 12 | 11 | 10 | 9

Table 6. 14 - SA parameter Tr (stopping temperature)

The next step in this comparative analysis is to analyse the change of the configuration (perturbation) and
the generation factor (swap, translate and rotate). Designing an effective change configuration
mechanism of the random solution is one of the essential components in applying the S4 algorithm, and
is relevant to the proposed research. Focusing on the configuration change of the random permutations, it
is now required to investigate the generation scheme property. The four classical Nugent [1968]
problems are used for this phase of the experiment. The sizes of the problem are eight, twelve, fifteen
and twenty facilities for the Q4P problem. Objective functions (total distance) with optimum minimum
values of 107, 289, 575 and 1285 respectively are selected for these problems. The results of the
experimental evaluation for solving these four problems by the 54 algorithm for these three operations of

the configuration changes are presented in Table 6.15.

Problem size \Change of the configuration Ratio Mean Variance |Number ofthe iieratiori
Swap 84% | 04 0.79
Z=8 Translate 84% | 0.42 (.88 1500
Rotate 80% | 0.78 2.49
Swap 35% | 1.19 0.89
Z=12 Translate 19% | 3.39 3.51 2940
Rotate 5% 5.26 241
Swap 30% | 1.21 0.77
Z=15 Translate 15% | 3.78 1.44 4580)
Rotate 5% 4.36 1.85
Swap 24% | 1.78 0.71
Z =20 Translate 5% 7.14 1.19 5940
Rotate 5% | 696 065 | .
Table 6. 15 - The results of solving QAP by the SA with the three changes of the configuration scheme
90% ¢ 34% 84% 0% Az =8 Swap
80% v . - Oz = 12 Swap
70% Oz = 15 Swap
E1Z = 20 Swap
60%
. B BZ = 8 Translate
50%
""" " 07 = 12 Translate
40%
Bz = 15 Translate
30% ¢ BZ = 20 Translate
20% ¢) . / B Z = 8 Rotate
5% 5% 59
10% . i " B2 = 12 Rotate
0% B2z = I5 Rotate

Swap Translate Rotate

B7 = 20 Rotate

Figure 6. 23 - Comparisons of the configuration changes with regard (o the optimal ratio of the QAP
These results (Table 6.15 and Figure 6.23) show that SA can produce very efficient solutions to
combinatorial optimisation problems, and that the best change of configuration (perturbation) scheme is

160

Chapter 6 Optimisation of DCMS’s Layout
swapping (interchange) of the facilities, or locations, for the QAP or facility layout problem. The second

important configuration scheme (operations) is translation, and the third and last is rotation. These
findings validated the proposed research SA scheme (operations) from section 6.3.3.2. for the change of
configuration. In addition, this comparative analysis shows that the parameters of the SA algorithm,
which are proposed in this research, are adequate in addressing the problem of designing a DCM layout.
It should be noted however that if the proposed SA algorithm is going to be used for other combinatorial

optimisation (configuration) problems, adequate parameter analyses should be undertaken.

6.3.8. Computational Experience

The above simulated annealing procedures used the cooling schedule and parameters in accordance with
Section 6.3.4. and Table 6.6. This procedure was programmed in MATLAB language and run on a PC
with a 90 MHz Pentium CPU. The test problems were randomly generated with feasible resource

dimensions. Each test problem was run twenty times with different random seeds.

Problem size

8 12 15 20 30

Nugent [1968] 107 293 580 1313 3124
Heragu SA [1992] 291 577 1295.6 3107.8
3 Heragu HSA [1992] 289 576.5 1286.8 3069.2
<. Willhelm SA [1987] 291 578.2 1308 3099.8
= Connolly [1990] 2935 | 5833 13054 | 3094.1

Connolly II [1990] 5718 1296.3 3096
Proposed SA method 107 289 575.5 1286.6 3069.3

Table 6. 16 - Comparison between mean costs generated by the proposed and other SA methods

For the equal resource sizes the test data from Nugent [1968] was used. These problems relate to sizes of
twelve to thirty equal shape-size resources and they have been addressed by many researchers to
demonstrate the effectiveness of different algorithms, including simulated annealing. These methods use
different annealing parameters or different changes of the configuration operations (factors) solutions,
and some researchers such as Jajodia [1992], Bazargan-Lari [1996, 1998], Wang [1998] and Kouvelis

[1993] did not report averages over several runs, and thus were not included in this Table 6.16.

In this section, examples for unequal resources size are compared and the two examples of twelve and
fourteen facilities test data from Bazaraa [1975] are used as test data. The material flow and dimensions
of the resources is included in the data set. The material handling cost from one resource to another
resource is assumed (as per in the literature) to be constant ($ 1/ unit distance). Table 6.17 shows the

result obtained by Bazaraa [1975] and the proposed SA method for the twelve and fourteen resources test

problems.
Method 12 Size problem 14 Size problem |
Bazaraa [1975] 14079 8170.5
Proposed SA method 12111 7040

Table 6. 17 - Comparison with Bazaraa’s total cost model

This computational comparison section justifies the superiority of SA based algorithms with respect to

facility layout methods, which has also been conclusively reported by many researchers. In their work

161

Chapter 6 Optimisation of DCMS’s Layout

mainly sets of classical or cell layout problems were solved by several methods, in addition to SA. In all

cases, SA performed better than all the other methods. The proposed research method presented here is

the most advanced version to date of SA based algorithms, since it considers:

e the size of manufacturing resources,
e restricted areas, and

o material flow paths that cannot pass through manufacturing resources and restrictions.

6.4. Conclusions

This chapter has proposed and developed a research methodology for economical duplication of the
manufacturing resources in a DCM system, and a simulated annealing based method for generating shop
layouts. The first section of this chapter describes the stage III approach for economical resource
duplication of the material flowline layout, which is an extension of the research methodology presented
within stages I and 1T (Chapter 4 and 5). In the proposed mathematical model additional system/machine
variables are included for finding the required number of the flowline machines. These variables are:
setup time, duration of the production period, machine capacity, utilisation of each machine type, flow
volume, production volume, operation time, non operation time, average time between failures, and the

servicing time and availability of the machine type.

In addition, the proposed dynamic cell system which considers the economical duplication model for the
research methodology is utilised and compared with an illustrative example from Vakharia [1990].
Comparing the average utilisation of the resources shows promising results; in the dynamic cell it is 77%
(system utilisation) and it is also higher than the average utilisation 5/% from Vakharia [1990] (classical
cellular system). Further analysis clearly shows a visible improvement of 50% in the utilisation of the
dynamic cell system organisation compared to the classical cell. In addition, it is noted that in the
proposed research methodology for the design of the DC, not all the available machines of the classical
cell were utilised, which should give higher utilisation. However, it is suggested that the presented
utilisation results justify the first three stages of the proposed research methodology. It is also recognised,
however, that graph theory and network analysis are still valuable tools for presentation and analysis of

the material flows, especially for the directed tree’s theory.

The second part of this chapter presents the proposed research methodology for stage IV, the facility
layout problem for a dynamic cell. The major issue here is the placement of manufacturing resources
(cells and machines) within the available area of the shop floor. A simulated annealing (SA) based
algorithm is developed, improved and utilised to obtain a near optimal solution for the layout problem,
which is NP complete. The evaluation of the objective function at each step of the proposed research
methodology is accomplished by applying the SA algorithm. Since the shop layout problem is an
assignment problem, local improvement solution approaches are prone to converge to a local minimum,
especially in the cases of shop design in which the objective function comprises several conflicting

factors. The simulated anncaling method has been previously shown to converge to global near optimal

162

Chapter 6 Optimisation of DCMS’s Layout

solutions for the NP problems. This is the main reason it has been utilised in this proposed research
methodology for stage IV, A mathematical model has also been developed to examine resource layout,
and an analysis is presented with various practical aspects. These constraints are the restricted areas,
irregularity shapes of the resources, shop floor shapes, and equal and unequal dimensions of the
resources. It should be noted that most of the past research work concentrates on layout facilities of equal
sizes and shapes, and do not consider the material handling cost. However, the proposed research
methodology advances current work by considering unequal shapes, as well as material handling costs
and the restrictions within a shop floor size. Finally, an interactive chart for the design of the DCM

system layout (stages 1, I, Il & IV of the proposed research methodology) is presented in Figure 6.24.

Input:
Parts; Batch quantity; Operation sequence and de
Machines (mamyfacturing resources) available; Avazlable
capacity; Production period; Processing time; Setup time;
Utilisation of machines; Material flow between manufacturing
resources; Number and dimensions of manufacturing |
resources; Available shop floor area with dimensions and
Geometry of the restriction areas with dimensions.

Ao~

Yes - Stage HI

4

valuate objective function
(DCM system cost)

v

Generate new
material flow matrix
for shared machines)

Srage I Rearranging pat Economical duplication
SE— | _inthe MIWWDRST of the DCMmachines
(manifacturing resources,

naly.se and Evaluate
onomical duplication
of the DCMmachines

Yes - Stage IV

Generate new obfective
function for the DCM system
Y
Optimise the DCM system Iayo;?i’
using 84 (Simulated Annealing):

< Generate initial tree digraph 9

“Generate MWDRST diagram
<Las.a DCM layout skeleton

Generate paths N
in the MWDRST

ntification and Analvws o p&th
rs in the MWDRST diagram

I

Y)
Omput'
B }fy}:;%écc‘;‘;ﬁizw?’w; i Analyse and Evaluate design e Draw (plot)
- Material flow ”‘Z Mao};'k of the DCM system Iayout . DCM system Iayout

Figure 6. 24 - An interactive chart for the design of the DCM system layout (stages L & I V)
In summary, to formulate the shop floor layout design problem, first of all a geometrical model of the

shop floor and of the manufacturing resources is developed. Subsequently, decision variables are
introduced to model discrete choices conceming the construction of the flow network and the location of
the resources on the shop floor. Finally, the assumptions guiding the design are stated and an integer
programming formulation of the layout problem is developed. In addition, the discrete block layout
problem with shape constraints is developed and presented along with the solution approach, an

illustrative example, and comparisons with other algorithm methods from literature case studies.

In the worked examples, parametric analyses of the S4 algorithm is presented and utilised from known
literature problems. This analysis shows an improvement in the responsiveness and effectiveness of the
proposed SA layout procedure. Also reported are the mean values of the objective function (material flow

cost), which also is an improvement with respect to current methodology, because researchers rarely

163

Chapter 6 Optimisation of DCMS’s Layout

include in their reports parametric analysis results. The SA algorithm was coded in MATLAB (attached in
Appendix D), and has matrix and graphical interface outputs, which is again a further step forward in this
research area. Comparison examples are utilised for both equal and unequal resource dimensions, with
the average value of the material flow cost (objective function) comparable with other methodologies. It
should be appreciated however, that running times of the programs (CPU time) are not comparable
because different algorithms, which are presented to date in the literature, were utilised on different

platforms, and with various computer languages or programs.

164

Chapter 7 Summary and Conclusions

Summary and Conclusions

7.1. Introduction

This thesis examines the problem of designing the manufacturing shop system in an innovative and
comprehensive manner. The research motivation stemmed from the significant savings that could be
realised from an effective manufacturing system design in terms of investment (layout design) and
operational costs (material flow handling system). The shop design problem is particularly complex and
here new methods for both the dynamic cell formation and the layout problems are presented. Both
methods address a host of practical issues, some of which have either been ignored or inadequately
treated by past methodologies. In addition, a critical review of state-of-the-art design and layout of
cellular manufacturing systems which details the various judgemental criteria utilised is discussed.
Subsequent analysis introduces the methodologies for the integrations of the manufacturing cells into
dynamic cell configurations.

7.2. Summary and Research Critique

This section contains a summary and research critique of the dynamic cellular manufacturing design
methodology presented in this thesis. The summary section highlights problems in the existing
approaches to cell formation with a focus on the methodology for dynamic cell facility design. In the
research critique section new contributions with major features to the proposed methodology are
described.

7.2.1. Summary

It is noted that existing approaches to the cell formation problem concentrate on simultaneous part family
formation and machine sharing, and leads to cell underutilisation. These approaches do not use flow data,
and they cannot solve together the machine grouping, machine sharing, intracell layout, intercell layout
and handling subproblems. To address these cellular manufacturing design problems clearly part family
formation and machine capacity calculations alone cannot accomplish effective cell design. Thus, this
thesis proposes that decisions concerning machine groupings need to be made after formulating intracell

and intercell layout and handling solutions, to simplify the machine sharing problem. This work

165

Chapter 7 Summary and Conclusions

addresses, for the first time, an analytical approach to the integrated problems of designing the dynamic
cellular manufacturing (DCM) system layout concurrently with its material flow (handling) requirements,
in such a manner that minimises the material handling within the system. For these reasons the proposed
strategy encourages the simultaneous design of a dynamic layout to identify the machine groups,

economical machine duplication, and intracell and intercell layouts.

input:

Parts: Batch quantity; Operation sequence and demands;
| Machines (manufacturing resovrces) available; Available
capacity; Production period: Processing time; Setup time;
| Utilisation of machines; Material flow between manufacturing
| resowrces; Number and dimensions of mamyfacturing
{resources, Available shop floor area with dimensions and

| Geometry of the restriction areas with dimensions.

Yes - Stage [T

| S
nit_,,, ge I

< Generate travel chart §
i

¥

© Generate initial tree digraph j

¥ .
£ Generate MIWDRST dz‘agmn§
< us a DCM layout skeleton

g Gener:rte paths
o in the MWWDRST
¥

on material flowlin

_____ v

ﬂ Duplic;tion of machines.

Analyse and Evaluate des
of the DCM flowline lay

Identification and Analysis of path
arcs in the MWDRST diagram

(I

parameters

e My

It Draw (plot)

I DCM system
lavout

UM

Analyse and Evaluate
design
Il of the DCM system
layout
1

1

Output:
~Dynamic cell flow
1 |- Diynamie cell shop lav

ngﬁwt DCM flowliné layout

Stage IT [-
Generate new - Y
material flow matrix aluate objective function
for shared machine; {DCM system cost)

v

Rearrangi [Economical duplication

__inthe ¥ of the DCM machines
************** - monufacturing resources,
N Nkkaida Ak ree
Plan DCM layout bas

hal’ysé;—and Evaluate
onomical duplication
\ of the DCM machines

Yes - Stage IV

" Generate new objective
\ fimetion for-the DCM system

Optimise the DCM system layout
using 84 (Simulated Annealin

DCM layout SA optimisation |

v 4

Generate shop floor grid and
the distance between resources

¥

Placement of all manufacturing resources
and restrictions on the shop floor grid

| Define SA algorithm control parameters 1

Compute material flow total distance costs
(objective function} for the initial placement

Select (randomly) a generator L

(one of three alternative configuration

Nlacement
(overlap constraints satisfied)

configuration feasible

&Yes

ute the niew material_flow total
costy (objective function)
he new placement

Evaluate change of material flow
total distance costs & TC
v function) between

operations)

revious configuration

\\
If the change™

. af the total cost

ATC<0

Figure 7. 1 An interactive chart for the design of the DCM system layout (stages I, I, Ill & IV)

166

Chapter 7 Summary and Conclusions

The presented methodology for dynamic cell facility design (Figure 7.1) may be used for the redesign of
existing manufacturing shops, and the design of planned facilities with known production period product

demands and defined process routing’s. The methodology compromises four stages:

. formation of dynamic manufacturing cells,
2. evaluation and determination of intercell and intracell layouts,
3. economical duplication of machines-resources in the dynamic cells, and

4. determination of the layout of the dynamic cell resources.

The dynamic cell formation method minimises the intercell material flow within the shop, and the
allocation of identical machines to various cells, in a way consistent with these objectives, whilst
respecting the capacity of each machine. Given a set of production routines for the parts manufactured in
the system, the method also selects specific machines on which these parts are to be processed. Although
the primary application of the system would be to rearrange an existing job shop into dynamic
manufacturing cells, it is equally applicable to the planning of resources with a forecasted production
plan and known manufacturing processes. The major features of the proposed dynamic cell formation

system can be summarised as follows:

e identical machines are assigned to cells based on both material flow traffic and capacity

considerations,

o the sequence of operations is taken into account whilst evaluating the material flow traffic

between resources (machines and/or cells),
» multiple operations on the same machine type are taken into account and are individually treated,

e the method minimises the total number of intercell movements of pallets, as opposed to the

movements of individual parts.

o both setup time and run times, along with the average batch sizes, are used to compute the

capacity requirements for each part, and

o a machine duplication algorithm provides simulations for determining the optimum number of
machines of each type to minimise the material flow traffic, whilst ensuring sufficient capacity
availability.

At stage I (Chapter 4; section 4.6: A dynamic cell shop design method) a comprehensive mathematical
model is formulated which captures the interrelated decisions associated with the placement of the
resources on the shop floor, the design of the material flow network, and the sequence of material flow
operations. The objective here accounts for the fixed costs related to the flow network and for the
variable (operational) costs of material flow handling. Thus the proposed mathematical models are based

on network analysis and graph structures for flowline decomposition of machine groupings, and flowline

167

Chapter 7 Summary and Conclusions

layout design of dynamic cellular manufacturing systems. Therefore, at the first stage, an algorithm is
developed for the flowline solution of the material flow network, which is based on the MWDRST
algorithm-heuristic for the directed network design. To minimise travel distances for forward and
backward material flow arcs, the derived model minimises total travel distances and machine
duplications. In the second stage (Chapter 4; section 4.7) the developed algorithm solves the
crisscrossing flow network arcs, utilising a SDPI heuristic algorithm for the QAP assignment problem.
Consequently, stages I and I of this research generates machine groups, identifies a flowline layout for
each group, indicates which flowlines must be placed adjacent to each other to minimise intercell
distances, and an approximate configuration of the aisles. Thus by capturing the directionality embedded
in the operational sequences of a variety of parts produced, the associated facility layout area can be
optimised. It is concluded that the classification of flow arcs used is effective for assessing whether

handling and layout, or machine sharing, is necessary to minimise intracell or intercell travel distances.

As a development from stages I and II, Chapter 6 stages III (section 6.2) and IV (section 6.3) outlines the
associated economics of machine duplication and layouts of a dynamic cellular manufacturing facility.
Furthermore, by employing simulated annealing algorithms the design (placement) of the shop layout for
these dynamic cells can be optimised. In this chapter the method of economical machine duplication is
also discussed. Thus, the economical duplication model for the third stage is employed for the machine
sharing problem, utilising additional shop floor constraints such as: setup time, utilisation machine
availability and production planning period. Another unique feature of the proposed methodology is the
development of a strong link between the layout and machine duplication processes. In the last stage (IV)
a simulated annealing scheme is adopted for the generation of feasible layouts and the subsequent
convergence to a near optimal dynamic cell shop layout design. The simulated annealing scheme starts
from a randomly generated shop layout - the complementary material flow handling system is designed at
stages I and II - and proceeds by generating altemative adjacent layouts, until certain convergence criteria
are satisfied. Thus the machine duplication and layout design processes are put in an iterative loop
procedure to investigate all machines which are nominated for duplication.

Once the sizes and shapes of the dynamic cells and the manufacturing resources are determined, the shop
layout is designed to minimise the traffic and distance travelled by the parts within the shop. The
resources could consist of both cells and independent machines, or just cells for instance. The simulated
annealing algorithm is utilised to iteratively swap, translate, or rotate resources until a near optimal
solution is obtained. Operations are re-assigned to functionally identical machines according to material

handling considerations where it is appropriate. The major contributions of this stage IV include:
e consideration of the resources (dynamic cells and machines) in a unified manner,

s consideration of physical constraints, such as actual shop size and shape, as well as restrictions,

and

e reassignment of operations to appropriate machines.

168

Chapter 7 Summary and Conclusions

7.2.2. Research Critique

One of the most important contributions of this methodology is its practicality. Major features include:
1. Formation of the dynamic cells, whilst respecting machine capacity.

2. Evaluation of the dynamic cells with respect to savings in material handling and robustness in

demand changes (which is appropriate for agile manufacturing implementation).

3. Economical machine duplication with respect to resource capacity and manufacturing systems

constraints.

4. Design of a dynamic cell shop layout with respect to the resources - particularly appropriate for

the majority of practical manufacturing layout configurations.

5. Inclusion of resource dimensions (or areas) and shapes in the resource size constraints, giving
greater significance to a manufacturing facility containing entities with a wide range of sizes and
shapes.

6. Consideration of the actual shopfloor dimensions, which with walls and other obstacles may

impede regular material flow traffic.

7. Formulation of a integer programming model for the dynamic cell shop design problem, which
integrates the layout of the manufacturing resources and the material flow network (Hitherto

published work has only considered such decisions separately).

8. Development of an effective simulated annealing optimisation based method to systematically
generate and evaluate shop layouts by invoking the material flow network design algorithm.
(This method converges to a near optimal dynamic cell shop design, which includes the layout

design of the resources on the shop floor and the material flow network.)

7.3. Research Overview

The proposed dynamic cellular manufacturing layout method (Chapters 3 to 6) overcomes the major
drawback of other methods that have attempted to address this problem, which have been the dependence
of the final solution on the initial shop configuration. Thus the proposed solution obtained typically
corresponds to a global optimum or a near optimal solution for the given problem. Additionally, several
alternative layouts of nearly the same quality are obtained, the most suitable being selected for
implementation. This is possible since the proposed method is a probabilistic one, and consequently
different solutions can be obtained starting from the same initial solutions. This is not possible in
deterministic heuristics like CRAFT, CORELAP, etc., wherein for a given set of initial conditions, the
same final solution is obtained. Different initial layouts have to be supplied to these methods to generate
alternative solutions. This becomes very difficult and tedious as the physical magnitude of the problem

increases.

An attempt has also been made to account for rectangular resource sizes, which clearly is of practical

significance. This feature, subjected to rigorous testing, has the potential for application to shopfloor

169

Chapter 7 Summary and Conclusions

scenarios wherein the previous assumption of equidimensionality for the resources might lead to
unrealistic solutions. Use of this proposed feature in selected problems from literature has resulted in
some success in obtaining the optimal layout for resources with unequal area requirements. Overall,
integrating the approaches developed for the components (cell formation; layout simulation; machine
sharing & economical duplication and MWDRST intracell and intercell flowline design skeleton) of the
dynamic manufacturing problem produces encouraging solutions. The method proposed in this thesis is

one of only a few to address all the issues related to dynamic shop design in an ‘integrated’ manner.

7.4. Conclusions

The following conclusions were obtained from the development and application of the proposed dynamic

cell facility design methodology:
s A pure cellular arrangement is not practical for many advanced industrial environments.
o The dynamic cell facility design problem is conventionally decomposed as a sequence of the
subproblems, ie. dynamic cell formation, dynamic cell layout and shop layout.
e These subproblems may be solved more than once to arrive at an optimal solution.
e It is necessary to consider a common objective for all stages of the facility design problem.

e Practical issues, such as setup time and production mix, should be considered in the final
solution to have practical significance,

e The objective of minimising material handling within the production shop is critical. This is
validated by implementation of examples from the literature.

e The proposed methodology addresses critical practical issues and provides solutions that result in
improved shop performance.

e Workload criteria such as machine utilisation and availability of machines are incorporated in the

dynamic cell algorithm for the assignment of parts to machines.

7.5. Recommendations for Future Work
Issues that will enhance the applicability of the proposed dynamic cell facility design methodology are

discussed in the following sections.

7.5.1. Cell Formation Stage

Issues that could be addressed by a grouping algorithm which considers the assignment of parts to

machines are:

1. Incorporation of economic considerations, such as cost estimates associated with machine

relocation, and

2. Incorporation of workload considerations, such as machine utilisation and load balancing.

170

Chapter 7 Summary and Conclusions

7.5.2. Intercell Layout Stage

An important issue here is the design of a shop traffic corridor system which prevents material
congestion and is cost effective. In this current study, inter - resource corridors are defined from the
MWDRST between the corresponding resources. However, this may potentially create a very large
number of corridors, which is clearly a cost ineffective solution. In addition, the flow along these
corridors may be unbalanced, resulting in highly congested and/or rarely used flow paths. To address
these issues emphasis should be given to determining intercell avenues where the majority of material

flow should occur.

7.5.3. Intercell and Intracell Material Handling Systems

Clearly a well designed dynamic cell or shop with an inefficient material handling system will perform
poorly. If certain material handling systems are already in place, the rearranged shop layout should be
created with these systems in mind. Alternatively, a methodology that identifies opportunities to use a
new material handling system is desirable. Obviously, the cost of implementation these material-handling

systems should also be considered.

7.5.4. Integration of GT Coding

The integration of GT coding with the proposed methodology should standardise products, as well as
production methods, leading to an effective transformation of the manufacturing system to independent

cells. Thus, planning and scheduling should be simplified.

7.5.5. Physical Criteria as Inputs to the System

Finally, the proposed methods could be enhanced by including part dimensions, weight and volume as
inputs to the system. This feature, coupled to a graphics interface for simulation purposes, would aid

decision making regarding intercell and intracell material handling system requirements.

7.5.6. Integration of an Expert System

The enhanced method (section 7.4.5) could be integrated into an expert system to address the entire
decision making process during the layout design of the manufacturing resources. Such a prototype
expert system would comprise methods for machine selection, machine grouping, shop floor layout, shop
control and system simulation.

Although this thesis proposes a robust design methodology for a dynamic cell shop, the above
enhancements are important in developing optimal or near optimal solutions and will impact both the

facility redesign and new facility synthesis problems.

171

References

1. Aarts E. and Korst J., (/1996), Simulated annealing and Boltzman machines. John Wiley.

2 . Aho A., (1974), The design and analysis of computer algorithms. John Wiley.

3. Aho A, (1983), Data structure and algorithms. Prentice Hall.

<. Ahuja R.K., Magnanti T.L. and Orlin J. B., (1993), Network flows. Prentice Hall.

S . Alfa A.S. and Heragu S.S., (1992), A hybrid simulated annealing based algorithm for the layout
problem. European Journal of Operational Research, Vol. 57, pp. 190-223.

&. Alfa AS., Chen M. and Heragu S.S., (1992), Integrating the grouping and layout problems in
cellular manufacturing systems. Comput. Ind. Eng., No. 23, pp. 55-58.

“7 . Aneke N.A.C. and Carrie A.S., (1984), A comprehensive flowline classification scheme. Inter. Jour.
of Prod. Research, Vol. 22, No. 2, pp. 281-297.

£ . Aneke N.A.G. and Carrie A.S., (1986), A design technique for the layout of multi-product flowlines.
Inter. Jour. of Prod. Research, Vol. 24, No. 3, pp. 471-481.

©. Ang C.L.and Willey P.C., (1984), A comparative study of the performance of pure and hybrid GT
manufacturing systems. nt. Jour. Prod. Res., Vol. 22, pp. 193-233.

1O, Askin R.G. and Zhou M., (1998), Formation of independent flowline cells based on operation
requirements and machine capabilities. //E Transactions, No. 30, pp. 319-329.

1 1 Askin R.G. and Ciarallo F., (1996), A material flow based evaluation of layouts for agile
manufacturing. {n Progress in Material Handling Research, Ed. Graves R.J., pp. 71-90.

12 Apple J.M., (1963), Plant layout and materials handling. Ronald Press, New York.

13 Apple J.M,, (1977), Plant layout, Ronald Press, New Yolrk, John Wiley.

1< Armour G.E. and Buffa ES., (1963), A heuristic algorithm and simulation approach to relative
location of facilities. Management Science, No. 9, pp. 294-309.

1 5 Banerjee P. and Jones M., (Jan 1992), Parallel simulated annealing algorithms for cell placement on
hypercube multiprocessors, [EEE Transactions, Vol., No.1, pp. 91-106.

1 & Bazaraa M.S. and Jarvis 1.J., (1990), Linear programming and network flows. John Wiley.

T

172

References

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

30.

31.

32.

33.

Bazaraa M.S. and Kirca O., (/983) A branch-and-bound heuristic for solving the quadratic

assignment problem. Naval Research Logistics, Vol. 30, No. 2, pp. 287-304.

Bazaraa M.S. and Sherali H.D., (1982) On the use of exact and heuristic cutting plane methods for
QAP. Journal of Operations Management, Vol. 33, pp. 991-1003.

Bazaraa M.S., (1975), Computerised layout design: a branch and bound approach. AlIE
Transactions, Vol. 7, No. 4, pp. 432-437.

Bazargan-Lari M. and Kaebernick H., (/997), An approach to the machine layout problem in a
cellular manufacturing environment. Prod. Plan. and Cont., Vol. 8, No. I, pp. 41-55.

Bazargan-Lari M. and Kaebernick H., (1996), Intra-cell and inter-cell layout designs for cellular
manufacturing. Inter. Jour. of Indus. Engin., No.3, pp. 139-150.

Bazargan-Lari M., (1998), Layout design in cellular manufacturing. European Journal of
Operational Research, No. 112, pp. 258-272.

Ballakur M. and Steudel, H.J., (1987), A within cell utilisation based heuristic for designing cellular
manufacturing systems. Int. Jour. Prod. Res., Vol.25, NoS5, pp. 639-648.

Bentley J.L., (1990a), Experiments on travelling salesman heuristics. In Proc. Ist Ann. ACM- SIAM
Symp. on Discrete Algorithms, SIAM, Philadelphia, PA, pp. 91-99.

Bentley J.L, (1992), Fast algorithms for geometric travelling salesman problems. ORSA Jour.
Comput. No. 4, pp. 387-411.

Bentley J.L and Johnson D., (/996), Experimental analysis for the Held-Karp travelling salesman
bound. Proc. 7th ACM SIAM Symp., Philadelphia,.

Black J.T., (1995), The design of the factory with a future. Prentice Hall.

Bland R.G. and Shallcross D.F., (1989), Large travelling salesman problems arising from
experiments in X-ray crystallography. Operations Res. Lett., No. 8, pp. 125-128.

. Bock F.C., (1971), An algorithm to construct a minimum directed spanning tree in a directed

network. Developments in operations research, ed. B. Avitzak, pp. 29 ~ 44.

Boese K.D., Kahng A. B. and Muddu S, (1994), A new adaptive multistart technique for
combinatorial global optimisations. Operations Res. Lett., No. 16, pp. 101-113.

Bonomi E. and Lutton J.L., (1984), The N-city travelling salesman problem: statistical mechanics
and the Metropolis algorithm. STAM Rev., No. 26, pp. 551-568.

Borovits . and Ein Dor P., (1977), Cost utilisation: a measure of system performance.
Comunications ACM, Vol 20, No 3, pp. 185-191.

Bozer Y.A., Meller R.D. and Erlebacher S. J., (1994), An improvement type layout algorithm for

multiple floor facilities. Management Science, Vol. 40.

173

References

34,

36.

37.

38.
39.
40.
41.
42,

43.

44,

45.

46.

47.
48.

49,

50.

51

52.

53.

Bozer Y.A. and Meller R.D., (/996), A new simulated annealing algorithm for the facility layout
problem. Inter. Jour. Prod. Res., Vol. 34, No. 6, pp. 1675-1692.

_Bozer Y.A. and Meller, R.D., (1997), A reexamination of the distance-based facility layout problem.

HE Transactions, Vol. 29, No. 7, pp. 549-560.
Buffa E.S., Armour G.C. and Vollman, T.E., (1964), Allocation facilities with CRAFT. Harward
Business Review, Vol. 42, No. 2, pp. 136-158.

Buffa E.S., (1995), Sequence analysis for functional layouts. The Journal of Industrial Engineering,
Vol. 12-13, No. 25.

Burbidge J.L., (1979), Group Technology in the Engineering Industry. Prentice Hall.

Burbidge J.L., (1990), Data Base for Production Management. Prentice Hall.

Burbidge J.L., (1971), Production Flow Analysis. Produc. Engineer, No.50, pp. 139-152.

Burbidge J L., (1963), Production Flow Analysis. Produc. Engineer, No. 42, pp. 742-756.

Burbidge J.L., (1977), A manual method of Production Flow Analysis. Production Engineer, No. 10,
pp. 34-38.

Burbidge J.L., (1995), Back to production management. Manufac. Engineering, pp. 66-71

Burkard R.E., (1984), Quadratic assignment problems. European Journal of Operational Reseasrch,
Vol. 15, No. 3, pp. 283-289.

Busacker R.G., (1965), Finite Graphics and Networks: An Introduction with Applications. McGraw-
Hill Book CO., New York.

Carrie A.S., (/974), Numerical taxonomy applied to group technology and plant layout. Inz. Jour.
Prod. Reser., Vol. 11, No. 4, pp. 399-416.

Carrie A.S., (1977), The layout of multiproduct lines. Int. Jo. Pro. Res., No.6, pp.541-557.

Carrie A.S., (1975), Graph theory applied to computer aided plant layout. Proc. 15th International
Conference on Machine Tool Design and Research, Macmillan, London.

Carrie A.S. and Mannion J., (1976), Layout design and simulation of group cells. Proc. 16th Inter.
Conf. on Machine Tool Design and Research, Macmillan, London, pp. 99-105.

Carrie A.S., Moore J., Roczniak M. and Seppanen 1.J., (1978), Graph theory and computer aided
facilities design. Omega, Vol. 6, No4, pp. 353-364.

Casotto A. and Romeo E., (1997), A parallel simulated annealing algorithm for the placement of
macrocells. IEEE Trans. Comp. Aided Des., Vol.CADG6, No.5, pp. 838-847.

Cerny V., (1985), A thermodynamical approach to the travelling salesman problem: an efficient
simulation algorithm. Jour. Optimisation Theory and Appl., No. 45, pp. 41-51.

Chandra B. and Tovey C., (/994), New results on the old k-opt algorithm for the TSP. Proceedings
5th ACM-SIAM Symp. on Discrete Algorithms, Philadelphia, pp. 150-159.

174

References

54.

55.

56.

57.

58.
59.

60.

61.

62.

63,
64.

65.
66.

67.

68.

69.

70.

71.

72.

Chakravatry A.K. and Naik B., (1992), Strategic acquisition of new manufacturing technology. /nz.
Jour. Prod. Reser., Vol. 30, No.7, pp. 1575-1601.

Chen W.H. and Srivastava B., (1994), Simulated annealing procedures for forming machine cells in

GT. European Journal of Operational Research, No. 75, pp. 100-111.

Christofides N., (1976), Worst-case analysis of a new heuristic for the travelling salesman problem.

Report No. 388, GSIA, Carnegie-Mellon University, Pittsburgh, PA.

Chu Y. J. and Liu T. H., (1965), On the shortest arborescence of directed graph. Scientia Sinica,
Vol. XIV, No 10, pp. 1396 - 1440.

Croes G., (1958), A method for solving TSP. Oper. Res. 6, pp. 791-812.

Cummings, G.F., (1980), Simulation model to compare group technology and functional layout.

Summer Computer Simulation Conference, pp. 626-630.

Darema F. and Kirkpatrick S., (May 1987), Parallel algorithms for chip placement by simulated
annealing. IBM Journal of Research and Development, Vol 31, pp. 391-402.

Das S., (1993), A Facility Layout Method for Flexible Manufacturing Systems. International
Journal of Production Research, Vol. 31, No. 2, pp. 279-297.

De Witte, (1980), The use of similarity coefficients in production analysis. Int. Jour. Prod. Reser.,
Vol 18, No. 4, pp. 503-514.
Edmonds J., (/1967), Optimum branching . Jour. Res. Nat. Bur. Stand., 71B, pp 233 — 240.

Emmons H., (1992), STORM Version3: Quantitative modelling for decision support. Englewood
Cliffs, Prentice Hall.

Flood M. M., (1956), The travelling salesman problem. Operations Res. No. 4, pp. 61-75.

Flynn B.B. and Jacobs, F.R., (1986), A simulation comparison of GT with traditional job
manufactaring. Int. Jour. Prod. Reser., Vol 24, No. 5, pp. 1171-1192.

Foulds L.R. and Gibbons, P.B., (1985a), Facilities layout adjacency determination: An experimental
comparison. Operations Research, Vol. 33, No. 5, pp. 1091-1106.

Foulds L.R. and Giffin, J.W., (1985b), A graph-theoretics heuristic for minimising total transport
cost in facilities layout. Inter. Jour. Prod. Res., Vol. 23, No. 6, pp. 1247-1257.

Foulds L.R., (1983), Techniques for facility layout: deciding which pairs of activities should be
adjacent. Management Science, Vol. 29, No. 12, pp. 1414-1426.

Foulds L.R. and Robinson D.F., (1983), Graph theoretics heuristic for the plant layout problem.
Inter. Jour. Prod. Res., Vol 16, No 1, pp. 27-37.

Foulds L.R. and Robinson D.F., (1978) A strategy for solving the plant layout problem. Operations
Research Quarterly, Vol. 27, No. 41, pp. 845-855.

Foulds L.R., (1994), Graph theory applications. Spring-Verlag, New York.

175

References

73.

74.

75.

76.

11.

78.

79.
80.

81.

82.

83.
84.

85.

86.

87.

88.

89.

90.
91.

Foulds L.R., Hamacher H. W. and Wilson J. M., (1998), Integer programming approach to facilities

layout models with forbidden areas. Operations res. proc., Springer-Verlag

Foulds L.R. and Wilson J.M., (1995), Integer programming approach to facilities layout models
with forbidden areas. Res. report 1995-4, University of Waikato, New Zealand.

Francis R.L. and White J.A., (/974), Facilities layout and location: an analytical approach.
Eaglewood, Cliffs, N.J., Prentice-Hall.

Francis R.L. McGinnis Jr., Leon F.Jr. and White John A., (1992), Facility layout and location: an
analytical approach. Prentice Hall, 2nd edition.

Gabow H.N. and Tarjan R.E., (Mach 1991), Faster scaling algorithms for general graph-matching
problems. Jour. Assoc. Comput.,No. 38 pp. 815-853.

Gabow H., (1973), Implementations of algorithms for maximum matching on nonbipartite graphs.
Ph.D Dissertation, Dep. of Computer Science, Stanford University.
Gallaghar C.C. and Knight W.A., (1973), Group Technology. London Butterworth.

Garcia-Diaz and Lee H., (/995), A network flow approach to solve clustering problems in group

technology. Inter. Jour. Prod. Res., Vol. 31, No.3, pp. 603-612.

Garey M.R. and Johnson D.S., (/989), Computers and intractability: a guide to the theory of
NP-Completeness. New York, Freeman W. H.

Gavett J.W. and Plyter N.V., (1966), The optimal assignment of facilities to locations by branch and
bound. Operations Research, Vol. 14, pp. 210-232.

Gibbons A., (1985), Algorithmic graph theory. Cambridge University Press.

Giffin J.W., Foulda L. and Cameron D., (/986), Drawing a block plan from a REL chart with graph
theory and micro-computer. Comp. Ind. Eng., Vol. 10, No. 2, pp 109-116.

Gillmore P.C. and Gomory R.E., (1962), Sequencing a one state-variable machine: a solvable case

of the travelling salesman problem. Operations Res., Vol. 10, pp. 305-313.

Glover F., (1990), Future paths for integer programming and links to artificial intelligence.

Computers and Ops. Res., No. 13, pp. 533-549.

Golden B.L. and Skiscim C.C., (1986), Using simulated annealing to solve routing and location

problems. Naval Research Logistics Quarterly, Vol. 33, pp. 261- 279.

Goldberg D.E., (1989), Genetic algorithms in search, optimisation, and machine learning.

Addison-Wesley, Reading, MA.

Golden B.L. and Stewart W.R., (1985), Empirical analysis of heuristics, the travelling salesman
problem. John Wiley and Sons Ltd., New York, pp. 207-214.

Goldratt EM., (1990), The Haystack Syndrome. Prentice Hall.
Gomory R., (1961), Multi-terminal network flows. SIAM Jour., Vol.9, No.4, pp. 551-570.

176

References

92. Gould R., (1988), Graph Theory. The Benjamin/Cummings Publishing Company, Inc.

93. Gupta R M. and Tompkins J.A., (1982), An examination of the dynamic behaviour of part families
in group technology. Int. Jour. Prod. Res., Vol. 20, No 1, pp. 73-86.

94. Hakimi S. L., (/964), Optimum locations of switching centers and the absolute centers and medians

of a graph. Oper. Res., Vol 12, pp. 450-465.
95. Ham L. and Yoshida T., (/985), Group technology: application to product management.
96. Harary F., (1973), Graphical enumeration. John Wiley.
97. Harary F., (1967), A seminar on graph theory. John Wiley.

98. Harhalakis G., Minis I. and Nagi R., (1996), A practical method for design of hybrid type
production facilities. Inter. Jour. Prod. Res., Vol. 34, No. 4, pp. 897-918.

99. Harhalakis G., (1994), Machine cell formation under random demand. Inter. Jour. Prod. Res., Vol.
32, No.1, pp. 47-64.

100.Harhalakis G. and Proth J.M., (1990), An efficient heuristic in manufacturing cell formation for

group technology applications. Int. Jo. Pro. Res., Vol.28, No.1, pp. 185-198.

101.Harmonosky C. M. and Tothero G.K., (1992), A multifactor plant layout methodology. Inter. Jour.
Prod. Res., Vol. 30, No. 8, pp. 1773-1789.

102.Hayer N.L. and Wemmerlow U., (1989), Cellular manufacturing in the USA industry: a survey of
users. Inter. Jour. Prod. Res., Vol.27, No. 9, pp. 1511-1530.

103.Heragu S.S., (1989.a), Knowledge based approach to machine cell layout. Computers in Industrial
Engineering, Vol. 17, No. 1-4, pp. 37-42.

104.Heragu S.S. and Kusiak A., (1990), Machine layout problem in flexible manufacturing systems.
Operations Research, Vol. 36, No. 2, pp. 258-268.

105.Heragu S.S. and Kusiak A., (1991), Efficient models for the facility layout problem. European
Journal of Operational Research, Vol. 53, pp. 1-13.

106.Heragu S.S., (1993), Group technology and cellular manufacturing. /EEE Transactions in Systems,
Man and Cybernetics, Vol. 24, No. 2, pp. 203-215.

107 Hillier F.S. and Connors, M.M., (1966), Quadratic assignment problem algorithms and the location
of indivisible facilities. Management Sciences, Vol. 13, No. 1, pp. 42-57.

108.Hillier F.S., (1963), Quantitative tools for plant layout analysis. Journal of Industrial Engineering,
Vol. 14, No. 1, pp. 33-40.

109.Ho Y.C., (1993), Two sequence-pattern, matching-based, flow analysis methods for multi flowlines

layout design. Inter. Jour. Prod. Res., Vol. 31, No. 7, pp. 1557-1578.
110.Holland J.H., (1975), Adaptation in natural and artificial systems. Univ. Michigan Press.

111.Hopcroft 1., (1974), Efficient planarity testing. J. Ass. Comp. Mach., Vol.21, pp.549-568.

177

References

112.Hu T. C., (1969), Integer programming and network analysis. John Wiley.

113.Immer J.R., (1950), Layout planning techniques. New York, McGraw- Hill.

114.Ireson W.G., (1952), Factory planning and plant layout. New York, Prentice-Hall.

115.Jacobs F. R., (1987), A layout planning system with multiple criteria and a variable domain
representation, Management Science, Vol. 33, No. 8.

116.Jajodia S.A., Minis I, Harhalakis G. and Proth, .M., (1992), CLASS-computerised layout solutions
using simulated annealing. /nz. Jo. Prod. Res., Vol. 30, No. 1, pp. 95-108.

117.Jajodia S.A., Minis 1. and Harhalakis G., (1990), Manufacturing cell formation with multiple,
functionally identical machines. Manuf. Review, Vol. 3, No. 4, pp. 252-261.

118.Johnson R.V., (1982), SPACECRAFT for multi-floor layout planning. Management science, Vol.
28, No. 4, pp. 407-417.

119.Johnson D., Aragon C. and Schevon C., (/989), Optimisation by simulated annealing: an
experimental evaluation: part 1, graph partitioning. Oper. Res., 37, pp. 865-892.

120.Johnson D. and Rothberg E., (1996), Asymptotic experimental analysis for the Held-Karp travelling
salesman bound. Proc. 7th ACM SIAM Symp. Disc. Algor., Philadelphia,.

121.Junger M., Reinelt G. and Rinaldi G., (1994), The travelling salesman problem. Report No. 92.113,
Angewandte Mathematik und Informatik, Cologne, Germany.

122.Kaebernick H. and Bazargan-Lari M., (1996), An integrated approach to the design of cellular
manufacturing. CIRP Annals, Vol. 45, No. 1, pp. 421-425.

123.Kaku B.K., Thompson, G.L. and Baybars L., (1988), A heuristic method for the multi-story layout
problem. Eur. Jour. Oper. Res., Vol. 37, pp. 384-397.

124 Kaku B.K., Thompson G.L. and Morton T.E., (1991), A hybrid heuristic for the facilities layout
problem. Computers and Operations Research, No. 18, pp. 241-253.

125.Kandiller L., (1998), A cell formation algorithm-Hypergraph approximation — Cut tree. Euro. Jour.
Oper. Res. No. 109, pp. 686-702.

126 Kaplan A., (1993), A probabilistic cost-base due date assignment model for job shops. Inter. Jour.
Prod. Res., Vol 31, No 12, pp. 2817-2834

127 Kaparthi S. and Suresh N.C., (199]), A neural network system for shape based classification and
coding of parts. Inter. Jour. Prod. Res., Vol. 29, No. 9, pp. 1771-1784.

128 Karisch S.E., (1998), Nonlinear approaches for QAP and graph partition problems. SFB Report 120,
University Graz, Austria.

129 Karisch S.E. and Rendl E., (1995), Lower bounds for the quadratic assignment problem via triangle

decomposition. Mathematical programming.

178

References

130 Karp R-M., (1972), A simple derivation of Edmond’s algorithm for optimum branching. Nemworks,
Vol 1, No 3, pp 265 -272.

131 Kern W., (1989), A probabilistic analysis of the switching algorithm for the Euclidean TSP. Math.
Programming, No. 44, pp. 213-219.

132 Kernighan B.W. and Lin S, (1970), An efficient heuristic procedure for partitioning graphs. Bell
Syst. Tech. Jour., No. 49, pp. 291-307.

133.King J.R., (1980 b), Machine-component group formation in group technology. OMEGA, No.8, pp.
193-199.

134 King J.R., (1980a), Machine-component grouping in (PFA) group analysis: An approach using rank
order clustering algorithm. Inter. Jour. Prod. Res., Vol. 18, No. 2, pp. 213-232.

135.King J.R. and Nakornchai V., (1982), Machine-component group formulation in group technology:
Review and extension. Inter. Jour. Prod. Res., Vol. 20, No. 2, pp. 117-133.

136.Kirkpatrick S., Gelatt Jr. CD. and Vecchi M.P., (1983), Optimisation by simulated annealing.
Science, No.220, pp. 671-680.

137 Koenig D., Gongaware T. and Ham L, (1981), Applications of group technology concepts for plant
layout and management for a miscellaneous parts shop. Proceedings of the ninth North America
Manufacturing research Conference, MI, USA, pp. 497-502.

138.Koopmans T.C. and Beckman M.J., (1957), Assignment problems and the location of economic
activities. Econometrica, Vol. 25, No. 1, pp. 53-76.

139.Korte B., (1988), Applications of combinatorial optimisation. Talk at the 13th International
Muathematical Programming Symposium, Tokyo.

140.Kouvelis P., (1992), A simulated annealing procedure for single row layout problems in flexible
manufacturing systems. Inter. Jour. Prod. Res., Vol. 30, No. 4, pp. 717-732.

141.Kouvelis P., Chiang W.C. and Yu G., (1995), Optimal algorithms for row layout problems in
automated manufacturing systems. [[E Transactions, No. 27, pp. 99-104.

142 Kusiak A., (1989), Layout of manufacturing cells. Int. Jo. Pro. Res., No.5, pp. 887-904.

143.Kusiak A., (1987), The facility layout problem. European Journal of Operational Ressearch, Vol.
29, pp. 229-251, 1987.

144 Kusiak A., (/985), The part families problem in flexible manufacturing systems. Annals of
Operations Research, No.3, pp. 279-300.

145.Kusiak A. and Heragu, S.S., (1990), A machine layout: and optimisation and knowledge-based
approach, Inter. Jour. Prod. Res., Vol. 28, No.4, pp. 615-635.

146.Kusiak A. and Chung Y., ([/991), GT/ART: Using neural networks to form machine cells.
Manufacturing Review, No. 4, pp. 293-301.

179

References

147 Kusiak A. and Cho M., (1992), Efficient solving of the group technology problem. Inter. Jour.
Prod. Res., Vol.30, No.11, pp. 263-2646.

148 Kusiak A. and Chow W.S., (1987), An efficient cluster identification algorithm. /[EEE Transactions
on Systems, Manufacturing and Cybernetics, No. 17, pp. 696-699.

149 Langevin A., Montreuil B. and Riopel D., (/1994), Spine layout design. Inter. Jour. Prod. Res., 32,
2, pp. 429-442.

150 Lawler E.L., (1963), The quadratic assignment problem. Manag. Scie., No.9, pp. 586-599.

151.Lawler E.L., (1976), Combinatorial optimisation. Networks and matroids, New York.

152.Lawler E.L., Lenstra J K., Rinnooy Kan A.H. and Shmoys D.B., (1979), The travelling salesman
problem: a guided tour of combinatorial optimisation. Wiley, New York.

153.Lee R.C. and Moore J.M., (1967), CORELAP-Computerised Relationship Layout Planning. Journal
of Industrial Engineering, Vol. 18, No. 3, pp. 195-200.

154 Lenstra J.K., (1995), Clustering a data array and the travelling-salesman problem. Operations
Research, No.22, pp. 413-414.

155.Levin P.H., (1964), Use of graphs to decide the optimum layout of building, Journal of Architects,
Vol. 7, pp. 809-815.

156.Liggett, R.S. and Mitchell W.J., (1981), Optimal space planning in practice. Computer Aided
Design, Vol. 13, pp. 277-288.

157.Lin T.L. and Kumar K.R., (1996), A heuristic based procedure for the weighted production cell
formation problem. IIE transactions, 28, pp. 579-589.

158.Lin S. and Kernighan B.W., (1973), An effective heuristic algorithm for the travelling salesman
problem. Operations Research, No.21, pp. 498-516.

159.Lin S. and Kernighan B.W., (1990), An efficient heuristic for graphs partitioning. Bell Syst. Tech.
Jour., No. 69, pp. 291-307.

160.Love R.F. and Wong I.W., (1976), Solving quadratic assignment problem with rectilinear distances
and integer programming. Naval Research Logistics, Vol.23, pp. 623-627.

161.Love R., (1973), A multi — facility minimax location method for Euclidean distances. Inter. Jour.
Prod. Reser., Vol. 11, No. 1, pp. 37 —45.

162.McAuley J., (1972), Machine grouping for efficient production. The Production Engineer, No. 51,
pp. 53-57.

163.McCormick W.T., Schweitzer P.J. and White T.W., (1972), Problem decomposition and data
reorganisation by a clustering technique. Operations Research, No. 22, pp. 993-1008.

164 Metropolis N., Rosenbluth A., Teller A. and Teller E., (1953), Equation of state calculations by fast
computing machines. Jour. Chem. Phys., Vol. 21 pp. 1087-1099.

180

References

165.Michalewicz Z., (1995), Genetic algorithms+data structures. Springer.

166 Michalewicz, Z., (1996), Genetic algorithms + data structures = evolution programs. Second,
Extended Edition. Heidelberg, New York.

167 Mitrofanov S.P., (1959), Scientific principles of group technology. Leningrad (St. Petesburg),
Maschinostroyenic.

168 Montreuil B., (71989), A modelling framework for integrating layout design and flow network
design. Proc. Material Handling Research Colloquium, Kentucky, pp. 43-58.

169 Montreuil B. and Ratliff H.D., (1989), Utilising cut trees as design skeletons for facility layout. IIE
Transactions, Vol. 21, No. 2, pp. 136-143.

170.Montreuil B. Drolett J.R. and Moodie C.L., (1990), Virtual cellular manufacturing layout planning.
Proc. 1990 Inter. Ind. Eng. Confer., San Francisco, CA, pp. 236-241.

171.Montreuil B., Venkatadri U. and Ratliff H. D., (1993), Generating a layout from a design skeleton.
[IE transactions, Vol. 25, No. 1, pp. 3-5.

{72 Montreuil B. and Tanchoco, J.M.A., (1994), Material flow systems in manufacturing. Published by
Chapman and Hall, Chapter 3, pp. 75-101.

173.Montreuil B. and Lefrancois P., (1996), Organising factories as responsibility networks. In Progress

in Material Handling Research, Ed. Graves R.J., pp. 375-411.

174 Moodie C.L. and Warren G.H., (1994), Cell design strategies for efficient material handling. In
Material Flow Systems in Manufacturing, Ed. Tanchoco J.A, pp. 76-101.

175.Moon Y.B., (1990), Forming part-machine families for cellular manufacturing: a neural network

approach. Inter. Jour. of adv. Manufac. Technology, Vol. 5, No. 4, pp. 277-291.

176.More J., (1976), Facilities design with graph theory and string. Omega, No.2, pp.193-203.

177 Muther R., (1973), Systematic layout planning. Cahers Books, Boston.

178 Muther R., (/961), Systematic layout planning. Industrial Education Institute, Boston.

179 Nahar S., Sahni S. and Shragowitz E., (1984), Experiments with simulated annealing. Report No.
84-36, Computer Science Department, University of Minnesota.

180.Nisanci H.L and Sury R.J., (1981), An application of GT concepts in shoe manufacturing. Inter.
Jour. Prod. Res., Vol. 19, pp. 267-275.

181 Nozari A. and Enscore E.E., (1981), Computerised facility layout with graph theory. Computers
Industrial Engineering, Vol. 5, No. 3, pp. 183-193.

182 Nugent C.E. and Vollman T.E. (1968), An experimental comparation of techniques for the
assignment of facilities to locations. Operation Research, Vol. 16, pp. 150-173.

183.0ng H.L. and Moore J.B., (1984), Worst-case analysis of two travelling salesman heuristics.

Operations Res. Letter, No. 2, pp. 273-277.

181

References

184 Otten R. and Van Ginneken L., (1989), The annealing algorithm. Kluwer Academic.

185 Pardalos P.M., (1997), Network optimisation. Springer-Verlag Berlin.

186.Press W. and Teukolsky W., (1990), Numerical recipes. pp. 326-334, Cambridge Press.

187 Primrose P.L. and Leonard R., (1986), The financial evaluation and economic application of
advanced manufacturing technology. Proc. Inst. of Mech. Eng., Vol.20, No.1, pp.27-31.

188.Proth .M. and Vernadat F., (1991), COALA: A new manufacturing layout approach. Proceedings
of the ASME Winter Meeting, Edited by Black J.T., (ASME), pp. 47-70.

189.Rajagoplan R. and Batra J.L., (1975), Design of cellular production systems: A graph theoretic
approach. Inter. Jour. Prod. Res., Vol.13, No.6, pp. 567-579.

190.Rajamani D. and Singh N., (1992), A model for cell formation in manufacturing systems with
sequence dependence. Inter. Jour. Prod. Res., Vol.30, No.6, pp. 1227-1235.

191.Reinelt G., (1994), The travelling salesman problem: computational solutions for tsp applications.
Lecture Notes in Computer Science 840, Springer-Verlag, Berlin, No. 102.

192.Robinson D. and Ducstein L., (1986), Polyhedral dynamics as a tool for machine-part group
formation. Inter. Jour. Prod. Res., Vol. 24, No. 5, pp. 1255-1266.

193.Ronen B. and Spector Y., (1992), Managing system constraints: a cost/utilisation approach. Inzer.
Jour. Prod. Res., Vol. 30, No. 9, pp. 2045-296 1.

194 Ronen B. and Starr Y., (1990), Service organisation costing: a synchronised manufacturing
approach. Industrial Management, Sept.-Octob., pp. 24-26.

195.Rosenblantt M.J. and Kropp D.H., (1992), The single period stochastic plant layout problem. //E
Transactions, Vol. 24, No. 2, pp. 169-176.

196.Rosenblantt M.J., (1989), A heuristic algorithm for the quadratic assignment formulation to the
plant layout problem. Inter. Jour. Prod. Res., Vol. 27, pp. 293-308.

197.Rosenkrantz J., Stearns R. E. and Lewis P. M., (1977), An analysis of several heuristics for the
travelling salesman problem. SIAM Jour. Comput., No. 6, pp. 563-581.

198.Sahni S. and Gonzales T., (1976), P-complete approximation problem. Journal of Associated
computing Machinery, Vol. 23, No. 3, pp. 555-565.

199 Sarker B. R. and Li Z., (1998), Scheduling virtual cells in cellular manufacturing systems.
Industrial Engineering Research Conference, May 9-10, 1 998, Banff, Canada.

200.Sassani F., (1990), A simulation study on performance improvement of group technology cells.
Inter. Jour. Prod. Res., Vol. 28, No. 2, pp. 293-300.

201.Seifodini H., (1990), A probabilistic model for machine cell formation. Journal of Manufacturing

Systems, Vol. 9, No. 1, pp. 69-75.

182

References

202 Sefoddini H. and Wolfe P.M., (1986), Application of the similarity coefficient method in group

technology. lIE Transactions, No.18, pp. 271-277.

203.Scriabin M. and Vergin R.C., (1985), A cluster analysis approach to facility layout. Management
Science, Vol. 31, No. 1, pp. 33-49.

704 Sechof J.M. and Evans W.O., (1965), Automated layout design program. The journal of Industrial
Engineering, Vol. 18, No. 2, pp. 690-695.

205.Shafer S.M. and Rogers D.F., (1991), A goal programming approach to the cell formation problem.
Journal of Operations Management.

206.Shunk D. and Reed R., (1975), An analytical approach to measure the effects of group technology.
Proc. Third Inter. Conf., pp. 627-634, New York, NY: Chapman & Hall.

207.Smith A., (/715), The wealth of nations.

708 Sirnivasan D.G., Narendran T. and Mahadevan B., (1990), An assignment model for the part-
families problem in group technology. Inter. Jour. Prod. Res., Vol. 28, pp.145-152.

209.Simpson J.A. and Albus 1.S., (1982), The automated manufacturing research facility of the National
Berau of Standards. Jour. of Man. Systems, Vol. 1, No. 1, pp. 17-32.

710.Suresh N.C. and Meredith J.R., (1985), Justifying multi-machine systems: an integrated strategic

approach. Journal of Manufacturing Systems, Vol. 4, No. 2, pp. 117-134.

211.Sule D.R., (1991), Machine capacity planning in group technology. Inter. Jour. Prod. Res., Vol. 29,
No. 9, pp. 1909-1922.

212.Sule D. R., (1994), Manufacturing facilities location, planning, and design. PWS, Boston.

213.Tam K.Y., (1992), A simulated annealing algorithm for allocating space to manufacturing cells.

Inter. Jour. Prod. Res., Vol. 30, No. 1, pp. 63-87.

214.Tarjan E., (1977), Finding optimum branchings. Networks, No. 7, pp. 25 - 35.

215.Tarjan E., (1983), Data structures and network algorithms. John Wiley.

216.Tarjan E., (1986), Algorithms for maximum network flow. Mathematical Programming Study, No.
26, 1-11.

217 Tilsley R., Lewis, F.A. and Galloway D.F., (1 977), Flexible cell production systems: A realistic
approach. CIRP Annals, Vol. 25, No. 1, pp. 269-271.

218. Tompkins J.A. and White J.A., (1984), Facilities planning. John Wiley, New York.

719 Vakharia A.J. and Kaku B.K., (/993), An investigation of the impact of demand changes on a CM
system. Technical Report No. MS/§93-001, Univ. Maryland.

920.Vakharia A.J., (1990), Designing a cellular manufacturing systems: A materials flow approach

based on operation sequences. [1E Trans., Vol. 22, No. 1, pp. 84-97.

183

References

921 Vannelli A. and Kumar K.R., (1986), A method for finding minimal bottleneck cells for grouping

part-machine families. Inter. Jour. Prod. Res., Vol. 24, No. 2, pp. 387-400.

222 Venkatadri U., Rardin R. and Montreuil B., (1997). A design methodology for fractal layout
organisation. IIE Transactions, 29, pp. 911-924.

223.Venugopal V. and Narendran T.T., (1992), Neural network models for design retrieval in
manufacturing systems. Computers in Industry, 20, pp. 11-23.

224.Vidal (Ed.) R.V., (1993), Applied Simulated Annealing. No. 396, Springer, Heidelberg.

925 Volenant T. and Jonker R., (1987), On some generalisations of the travelling-salesman problem.
Journal of Operations Ressearch, Vol.38, No. 11, pp. 1073-1079.

226.Waghodekar P.H. and Sahu S., (1984), Machine-component cell formation in group technology:
MACE. Inter. Jour. Prod. Res., Vol. 22, No.6, pp. 937-948.

227.Wang T, Lin H. and Wuan K., (1998), Improved simulated annealing for facility, layout problems in
cellular manufacturing Systems. Comp. Ind. Eng. Vol. 34, No. 2, pp. 309-319.

228 Webster D.B. and Tyberghein M.B., (1980), Measuring flexibility of jobshop layouts. Inter. Jour.
Prod. Res., Vol. 18, No. 1, pp. 21-29.

229 Wemerlow U., (1988), Production planning and control procedures for cellular manufacturing
systems. APICS.

230. Wemmerlow U. and Hayer N.L., (1987), Research issues in cellular manufacturing. Inter. Jour.
Prod. Res., Vol. 25, pp. 413-431.

231.Wilhelm M.R. and Ward T.L., (1990), Solving quadratic assignment problems by simulated
annealing. [[E Transactions, No.19, pp. 107-119.

232 Zoller K. and Adendorff K., (1972) Layout planning by computer simulation. A//E Transactions,
Vol. 4, No. 2, pp. 116-125.

184

Publications

1. Bajic, M. M. and Baines, K., “Modelling of Virtual cells for dynamic manufacturing
environments”. Accepted for the 16" International conference on computer aided production

engineering in 2000 (CAPE 2000), Edinburgh UK.

2. Bajic M. M., Cresswell C., Baines K. “A cellular manufacturing approach towards virtual
manufacturing”, World Congress Manufacturing Technology Towards 2000, Cairns 1997,

Australia

3. Bajic, M. M. and Baines, K., “Towards virtual manufacturing-recent developments in cellular

manufacturing”, AUTOFACT Asia‘96, International Conference, Singapore, July 1996, SME.

4. Bajic M. M. “An analytical approach for the design of VCMSs”. Transfer Report, The University
of Adelaide, 1996

Appendix A

A.1. Graph Theory Review

From Chapter 4, which mentions network analysis and graph theory texts, this appendix section extends

the definition and terminology used in the mathematical modelling of the DCMS’s layout introduced in
the main text.

The outdegree of a node v;, denoted by d,(v;), is the number of arcs which have the node v; as their tail
node. Similarly, the indegree of the node v;, denoted by d{(v;), is the number of arcs which have the node
v; as their head node. The sum of the indegrees of all nodes of a digraph is equal to the sum of the
outdegrees and its value is the number of arcs, ie. Y d,(vy) Vi=2Xd(v) Vi=m A pendant node ina
graph is a node v, such that d,(vy) +dy(vy) =1, i.e. the total number of arcs incident to and from the node
is one. This definition does not apply to the trivial case of a graph with a single node because the only arc

possible will correspond to a self-loop.

A chain between nodes v;and v, is a collection of nodes vj, v,,..., v, and (p — 1) arcs, one for each pair of
nodes, v;v; OF VaVy, VaVs OF V3V, ..oy Vpot Vpm OF Vp Vi (n 2> p). A path between nodes vy, v,..., Vp and (p—1)
arcs, one for each pair of nodes and the unidirectional sequence of arc is the tail node of its successor arc.
The length of a path py, denoted by w(p;), is the sum of the arc weights appearing in it, ie. w(p) =X c; V'
a; € py. Node v; is reachable from node v; i there is a path from v; to v;. A sequence differs from a path in
that nodes and arcs can repeat in sequence, where as they must be unique in a path. Hence, a sequence
from node v; to v;, plus one more circuit or cycle, starting or ending on any of the nodes on the path, is
either a path (no machines are visited more than once) or a sequence (one or more machines are visited
two or more times) involving one or more machines. A circuit is a path containing arcs a,...a, where the
tail node of a; coincides with the head node of a,. A cycle, which can contain arcs, is a chain containing

arcs a,... a,, where the tail node of a; coincides with the head node of a,.

A partial graph of D(V,A), denoted by D,(V,= V, A, cA), is a digraph with the same number of nodes as
D(V,A) but with only a subset of the arcs of the original graph. A subgraph of D(V, A), denoted by Dy(V;
cV, A, cA), is a digraph which has only a subset of nodes of the original digraph, but contains all the

arcs whose initial and final nodes are both within this subset of nodes, ie. a; € A, [(v; € vs) and (v; € v,)]

186

Appendix A

A digraph D(V, A) is strongly connected if all pairs of nodes v; and v; are mutually reachable (a path
exists from v; to v;, as well as from v; to v). The digraph is unilateral if there exists at least one path
between any pair of nodes, either from v; to v;, or v; to v;. The digraph is weak if all pairs of nodes are
connected by a chain, ie. in the corresponding undirected graph, a set of edges links each pair of nodes. A
digraph is disconnected if it is not weak. Thus each edge of a digraph belongs to some weakly connected
component but does not necessarily belong to a strongly connected component. A strong digraph is

unilateral and a unilateral graph is weak, but the reverse is not true.

A.2. Ares Classification in the WDRT
In this section a further description of WDRT arcs classification is presented. The machine grouping,
intracell flowline layout and intercell layout planning problems can be integrated through the structure of
the Maximal Weighted Directed Spanning Tree (MWDRST). This suits the in-sequence, bypass and
backtrack classification (for intracell flows) and crisscrossing classification (for intercell flows) of flows
in a cellular system. Hence, the MWDRST was preferred over several undirected graph structures such as
cut trees [Montreull 1989], maximal spanning trees [Carrie 1975, Heragu 1989 and 1990], minimal
spanning tree [Srinivasan 1994] and maximal planar graphs [Carrie 1978, Foulds 1985] used to solve the
more general problem of facilities (or only intercell) layout design. Based on the above discussion the
complete set of arcs A in D(V, A) other than those in T, can be decomposed into two sets:
A ={a; €T}, and A 7={a; € T},

ic. those arcs in the co-WDRT T, where (A VA F=A) and (Ar NA 7= @). The residual digraph 'f: or
D(V i A), can be called a co-WDRT of the original digraph D(V, A). Since D(V, A) has n vertices, then

7 has (0°=2n + 1)=(m—n—1)=(Al —n +1) arcs excluding all self loops. Any arc of T is called a
chord of T. The chords, which create the problem of intercell flows and machine duplication within or
between cells, have been ignored in the flowline design and simulation models of Hillier [1975], Carrie
[1976] and Ancke [1984 and 1986]. Also their heuristics ignore the problem of flow line design to

minimise material handling costs.

A.3. Problem Complexity and NP - Problems

This section elaborates further the mathematical model complexity, focusing on the non-deterministic
polynomial time complete problems, normally abbreviated to NP-problems. Garey’s [1989] text was the
primary reference for all the NP-complete problems found to be analogous to the machine grouping and

layout design problems discussed in this section.

Cluster analysis is suitable mainly for machine grouping and detection of shared machines (see p281).
The Bandwidth problem (see p200) assumes a bi-directional flow line for all the machines in the travel
chart. It seeks to minimise the maximum length (travel distance) for any flow arc. Hence, it would fail to
find machine groups, a suitable flow structure for each cell, and the intercell layout for the shop. For

similar reasons, the Optimal Linear Arrangement problem (see p200), which seeks to minimise the total

187

Appendix A

lenigth of all
unsuitable. However, the Directed Bandwidth (see p200) and Directed Optimal Arrangement (see p200)

arcs in the original (undirected) graph when all nodes are arranged in a sequence, is also

problems are analogous to the design of unidirectional flow line. They can also be used for machine
grouping by ordering the machines in sequence such that all the high flow volume clusters form along the
diagonal of the travel chart. However, they lack any ability to locate the individual machines and group
them simultaneously. These two problems are related to the Directed Hamiltonian Path (see p199) and

the TSP (see p211) if the travel chart is converted to a strongly connected digraph by a suitable
transformation of its entities.

The problem encountered in this literature is an enhancement of the traditional QAP (see p218), since the
configuration of the shop and possible locations of the individual machines are to be determined in
parallel. The QAP ignores machine grouping and layout based on flow directions. Here the structures
capture the machine grouping and intercell layout problems accurately, but cannot yield a flow line
layout for each group. If travel distances are to be minimised on the tree extracted from the travel chart
digraph, it becomes equivalent to the Rooted Tree Arrangement problem (see p201). If the number of
paths in the tree have to be a prespecified wirh value K, as when the number of cells desired is fixed, then
this problem is analogous to that of the Maximum Leaf Spanning Tree problem (see p206). When it is
desired that the flow lines be allowed to take nonlinear shapes, ie. when machines in a path can be
located in an Buclidean plane, the layout problem is similar to that of determining a Geometric
Capacitated Spanning Tree (see p207). The spanning tree, which minimises the weighted moments of the
flow distances and chain lengths, becomes equivalent to the Optimum Communication Spanning Tree
problem (see p207). Since the paths in such trees lack direction, the concept of a Maximal Weighted
Directed Rooted Spanning Tree (MWDRST) was adopted. The choice of arcs, which makes the WDRT

maximal, will automatically minimise the path lengths for all pairs of nodes.

Clearly, the aforementioned problems and solutions have serious shortcomings. Thus, it was the
Multiple-Choice Branching problem (see p208), which suggested the solution strategy for the machine

grouping and layout design problems relevant to the proposed research program. This strategy states that:

“Given a directed graph G(V, A), a weight w(a) € Z*, a partition of A into disjoint sets Ay,
A, ..., A, and a positive integer K, it is possible to find a subset A’ € A with 2w(a)2KV
a € A’ such that no two arcs in A’ enter the same vertex, A’ contains no cycles and A’
contains at most one arc from each of the A, where m 2i 2 1. If all A; have |A l =1, the
problem becomes simply that of finding a “maximum weight branching”...that can be
solved in polynomial time (Tarjan 1977)”...that “in a strongly connected graph, a

>

maximum weight branching can be viewed as a maximum directed spanning tree.’

Some simplifications needed to be made in order to avoid starting with a NP-complete problem of size
equal to the number of machines. The MWDRST was used to identify the machine groups and flow line

layouts for the machines in each of its paths. By assuming a strict linear orientation for each path, the

188

Appendix A

”c;)mplexity of simultaneously solving a two-dimensional Euclidean location problem and a QAP was
avoided. Hence, the problem no longer remained NP-complete with respect to the original number of
nodes of the digraph. The NP-completeness was reduced to a permutation of the branches of the WDRT,
and it will be shown in later sections of this chapter that the number of pendant nodes in the WDRT is the

size of this permutation problem.

Theoretically, since the WDRT must have at least two pendant nodes, there will always be a reduction in
the number of nodes for the permutation problem, and thus was solved as a one-dimensional QAP. A
benefit of this approach was that QAP worked with a feasible shop layout. Traditionally, QAP assumes
that the layout for the machines already has a rectangular array form. Only the assignments of machines

to each of the locations need to be determined.

A.4. Mathematical Formulation of the Approximate Layout Problem
The initial formulation of the machine grouping and approximate layout design problem (stage I and
stage I1) which is given in Chapter 4, with no machine duplication to minimise intracell (a; € F < B) and

intercell (a; € C) flow distances, can then be explained in more detail in the next sections.

A.4.1. Stage I
From Chapter 4 the definition from Equation A.I and the constraints in Equations A.2, A.3 and A.4

constitute stage I, which is a linear programming model for obtaining the T tree (maximum weighted
directed rooted spanning tree). The MWDRST is obtained using the Chu [1965] and the improved Tarjan
[1977) optimum branching algorithm (from original graphical procedure, converted - coded and executed

in MATLAB, Appendix D) - and described in integer programming form thus:

Maximise oY fow(p.)x.. V a,.eT Equation A. 1
j#Rizs ¥ YV Y Y

subject to:

XX (ordl,(VJ_)) =]V j#R

Vi v Equation A. 2
=0if j=R
Sx.. (ord (V.)) 20Vi#S
v Y o i '
and J Equation A. 3
=0if i=S
x..=lifa.eT
) / 7
and Equation A. 4
=0 otherwise
where:
T - MWDRST generated by the (linear) programming model in the first stage, (also denoted
as D(vb Al)).'

189

Appendix A

RS - common root (raw material store) and sink (finished goods store) nodes of the digraph

D(V,A) (travel chart) occurring in the operation sequences of all parts,

V, - set of vertices in T tree,

A, - set of arcs in T tree,

Oy - batch quantity for part &,

Sk - operation sequence of part k, represented as (R, 1, 2, 3 ..., n-1, n 8), where i is the

machine required for the i-th operation on the part,

fi=2 0 VS | a; e S, i #5;j #R - flow from machine i to machine j (the sum of the batch

quantities of all parts whose operation sequences contain machines i and j),

Pij - path in 7 tree connecting machine i to machine j,
a;j - directed arc from node i to node j,
d;(V;) -indegree of node V;,
dy(V;) - out degree of node V,,
X - binary variable to represent the membership of arc a; in7,
w(py) = 1if-a. e T weight (length) of the path p;

= kif a, € Fie. node j is reachable from node i by a path p,f containing k arcs,

= ckif a, € A or a; € B ie. the digraph D contains an arcs aj; which, together with the
arcs in the path p[,«k in T, creates a circuit, (the constant C reflects the increase in flow
time for backward arcs compared to the forward arcs),

= w(py) +] CoL(P;) — COL(P)) l where COL(P;) and COL(P;) are the columns to which
paths P; and P; respectively, are assigned if T is embedded in a rectilinear grid.
(Distances being rectilinear w(py) is the vertical travel distances fixed by the solution for

T and l COL(P;) —COL(P})) ‘ is the horizontal between the two paths.),
P, P; - pathsinT tree rooted at R containing nodes i and j, respectively,
P - width of T tree, and

- the number of pendant nodes in T tree

If the digraph contains strong components (good solution), as shown in Appendix A.6, then disjoint
subtrees will be contained initially when T is drawn. Additional constraints (shown in Equation A.5),

assuming each group of nodes in a subtree to be a single node, needs to be added to the model to connect

these subtrees.

. - .
jzRi E,S fl] W(PU) xij) v aij e FUB Equation A. 5

The x; s naturally have values 0/1 because the constraints are of the form B 2AX, X 20 and B is integer-

190

Appendix A

valued with an upper bound of /. Each column of the A matrix will contain only two non-zero entries of

J and —I for the head and tail nodes respectively, of the arc that it represents. The unimodularity of the A
matrix gives an all-integer optimal solution for the Stage I linear program. This will indicate whether the
arc a; is contained in 7, or not. The flow distances w(p;), is equal to / for any a; € T (consecutive
machines in each path are adjacent to each other). Equation A.5 can thus be rewritten as:

S Nk(f,. +cf.)) where a;; € F and a;; € B for arcs in F UB.

jzRizs ¢ Y

If there is a path p;t in T connecting nodes i and j, then w(p;;) will be the distance travelled by the flow in
the arc a; € F, and if aye B backtracking on the same path p; in T'is implied. This results in a higher flow
penalty, given by c;. Since a pure flowline layout is assumed for each path in 7, the flow distances for the
arcs in F U B are automatically fixed. Hence, the linear model from stage I yields a layout which
minimises intracell travel distances, assuming a flowline layout for each cell. Every flowline originates

from a single root, unlike a MST (maximal spanning tree) whose every pendant node can be a root.

y ¥ f{ w(p..)+‘COL(P.)—~COL(P,)H(l«x.. VY a.eC EquationA.6
j#£Ri=S Y ! J Y Y

Every path reaching from the root to a pedant node is connected to one or more other paths by chords
which corresponds to crisscrossing arcs only. Stage 11 was developed because of minimisation of the
intercell flow distances corresponding to the crisscrossing arcs. The WDRT is a planar graph because it
can be drawn in the plane with no edges crossing. However, the different branches can be pivoted about
the root node and any other branching nodes without changing the individual paths (shown in Equation

A.6). If the vertical distances w(p;) in Equation A.6 are ignored, it can be rewritten as:

$¥ S S flcoLr) -cour)| Equation 4.7

i=] j=i+|VkePgP; ViePeP;
This is similar to the objective function for the NP-complete QAP [Francis 1974] restricted to a linear
permutation. It seeks to rearrange the initial WDRT from stage 1 such that total flow distances for the
crisscrossing arcs are minimised. Each path becomes a node in the sequence describing the left-to-right

order of the paths in T.

Traditionally, an exact solution of the QAP is computationally infeasible for fifteen or more machines
[Francis 1974], necessitating the use of pairwise-interchange heuristics. Since the original n-node WDRT
is now being treated as a linear ordering of p nodes (p < n), the resulting QAP could still be solved
optimally, using integer programming. For values of p greater than 15, then possibly a few flowlines
could merge, dependent on whether these paths have several branching nodes in common, or are node
disjointed.

Traditionally, each machine is a node in the QAP, whereas now each set of machines contained in a path
in T is treated as a node. Hence, the WDRT reduces the dimensionality of the original QAP problem and

allows the permutation of its branches to be solved as an Optimal Linear Arrangement problem.

191

Appendix A

Crisscrossing arcs, connecting nonadjacent paths in T after stage II, are the arcs definitely requiring

machine sharing to eliminate their intercell flows. Ignoring the lengths of the arcs in F & B above, then a

simplified explanation is possible. The concept of Tree (T) permutation is explained in the Appendix A8.

A.4.2. Stage 11

This section extends in more detail a mathematical model description given in Chapter 4, which finds the
optimal permutation of the MWDRST branches to minimise intercell flow distances. The term | COL(P;)
- COL(P;) | from the previous section is replaced with the term (Ry + L), where R;'s and L;’s yield (n® -
n) variables and the Ay’s are another (n?) variables. Introducing X;’s dammy variables which describes

the positioning in the linear arrangement to which a path is assigned gives:

Minimise i i{Fu + SWHR,+L,) Equation A. 8
=1 jeist ke PP
subject to:
RU—L,jin~,Lj i=1..,p-lij=1..,pLi#] Equation A. 9
X = ikAlk i=1...,p Equation A. 10
k=1
iAik =1 i=1..,p Equation A. 11
k=1
iAik =] k=1..,p Equation A. 12
i=l
Ap=0,1 Vag | i#ki=1 ,prk=1...p
R; =0 V(i j) Ly 20 V(i j)
where:
P - number of paths corresponding to the pendant nodes in the T tree,
Fy - ZZ]‘“ Vke P eP, VieP &P, o € C, sum of flow volumes of arcs that
Tk
connect paths P; and P; (with either the head or tail node of each arc lying on P; or Py),
W, - flow weight assigned to a machine common to paths P; and P,
R; - column difference between P;and P; if P; is to the right of P},
= (), otherwise,
L - column difference between P; and P; if P; is to the left of P,
= 0, otherwise,
X - position in the linear sequence to which P; is assigned,
Ai = | if P;is assigned to position k in the optimal sequence of pendant nodes, and

= 0, otherwise.

192

Appendix A

Since the intercell flow matrix is symmetric, the value of the objective function could also have been
multiplied by 0.5. In any basic feasible solution, for the stage II problem, either R; or L; will be zero. If
the constraints in Equation A.9 are written in matrix form, then the column of the matrix for some R;; will
be —I times the column for L;. This will make two columns linearly dependent whereas a base consists of
linearly independent vectors [Francis 1974]. In a linear arrangement of nodes, a node i can either be to
the left of node j, or vice versa. Constraints in Equation A.11 and Equation A.I2 force each path to be
uniquely assigned to a particular position in the optimal linear arrangement. The constraints in Equation
A.10 assign a path to any one position of the total of p (number of pendant nodes) available. Equation A.9
is the most important and the x;; from Equation A.10 are directly absorbed into these constraints. The
important part of stage Il is the assignment of the wy, as flow weights to branching nodes common to two
or more paths in the MWDRST. As shown in the next section several conditions need to be fulfilled,

which can be expressed as follows:

» The weight w, assigned to the branching nodes attached to the root node, must be greater than (p

- 1) max (Fy), and
e The w; branching nodes values at levels 3,4, etc., must be greater than or equal to w;.

Stage II was felt necessary because the progressively increasing weights used successfully in the
examples solved later were obtained iteratively from trial runs for each example. As illustrated in later
examples, during the permutation of the branches of T, two critical tasks needed to be performed. The
first task is necessary, although it does not influence intercell flow distances. It ensures that if a pair of
paths shares paths, which share the machines at the branching nodes, then such a shared path will always
permute as a group, even if the machines are at two or more levels. The second task is to permute the
branches without violating the restrictions imposed during the first task. This task minimises intercell

flow distances without allowing any machine sharing.

The successful use of this restricted permutation strategy has been shown in the second stage of the
experimental study. However, in the worst case, where a one dimensional optimal linear arrangement
becomes a two dimensional QAP, then this is a NP- problem. Traditionally, an exact solution of the QAP
is computationally infeasible for fifteen or more machines [Francis 1974], necessitating the use of
pairwise-interchange heuristics. Recently, Karisch [1998] compared results from the steepest descent
pairwise interchange heuristic (SDPI) with respect to EA and SA methods, when applied to the QAP
problem. Here the outcome was that the SDPI still gave better performance then the other two methods.
Following Karisch’s paper result, the QAP steepest descent pairwise interchanges heuristic was coded

(Appendix D) in MATLAB and applied in the experimental study.

A.5. Weighted Directed Rooted Spanning Tree’s Average Path Length - The
Proposed First Theorem
This proposed first theorem proves that the average length of path in an MWDRST is less than that for a

DOLA, ie. Upora 2 Huwprst.

193

Appendix A

, T OldTree

Pinodes @ fg

(n P,+ I)node\' Pa nodes

Figure A. I - Path lengths in a Maximal Spanning Weighted Directed Rooted Spanning Tree

A.5.1. Proof:

Figure A.1 shows the MWDRST D (V;, Ar) rooted at R, Only two branches containing p; and p; nodes
with one branch containing the Sink node have been shown, since a tree with only two pendant nodes
constitutes the dominant case. If the number of pendant nodes in the tree is greater than two, then the
average length of a path in that tree will further decrease due to an increase in the number of paths of the
same length. A further assumption is that all arcs have an equal length of one. Hence, the length of a path
will be the number of arcs in it. The average length of a path may be derived by dividing the sum of the
lengths of all the paths that are possible by the total number of paths. It is required to prove that the
average length of a path or chain in the M WDRST is less than or equal to the average length of a path or
chain in the DOLA with the same number of nodes. Cancelling the number of paths in the denominator

on both sides of the inequality, it can be stated that:

n-p| py—l n-1

Zk[(" p,+D)—k +2k([) k)+2(mik +kj ”H(fM)[EkJrk}Zk(wk) Equation A. 13

Assuming that the inequality in the previous equation is true for a MWDRST in n nodes (including root
and sink nodes), it can be shown by induction on the n-node MWDRST that this inequality is true for
MWDRST with (n + 1) nodes. Thus with reference to Figure A.1, by adding the extra node, a new Root
node R, can be attached to the old M WDRST without increasing the number of pendant nodes in the
tree. This case dominates the other case where the additional node is attached to any intermediate nodes
on either one of the two chains. It can be seen that the chain to which this node is attached is converted
into a tree, which can be proved to have a smaller average path length. However, the following inequality

needs to be proved:

Hflk[(n -p, +2) *k]+[§k(pl ~k) +E£§k’+k j+"+2fm(§jk’+k)sik[(nﬂ)—k]
k=1 k=l k=l k=1 k=1 k=1 k=1

Equation A. 14
Subtracting Equation A.13 from Equation A. 14, begets the following resuit:

n-=py+l1 n-p

N kl(n - pl+l—k)+1+2k[(n p, +)—kl+

k=1

MW(W}Z)(Ek’+kJ " (i*”)[Ek +k)<2 kl(n~k)+ 1]+ Zk(" =)

Equation A. 15

k=1 k=1

194

Appendix A

Simplification of the previous equation gives the following terms:

n-py+! pi-l ni2-(ptpy) ntt=(pitpa)
k=1

Zk+[n+2~(ﬂl+P2)—n—*1+(pl+p2)]2k’+ Yk - Yk)sZk Equation A. 16
k=1 k=1 k=1 k=]

Equation A.16 yields to the following inequality:

—p + ~p, +1 -1 1
(n—p 1)2(” b)+p1(1;i)+n+2_.(pl+p2)gn(n+) Equation A. 17

for the limiting MWDRST case having (n + 1) nodes, max (p; + p;) = n, min (p;) = 2, and max (pz) = (n -
2). Hence, Equation A.17 will be true for all n > 3. This is valid condition since, when n = 3, the
MWDRST is simply a path (or chain) linking the root and sink nodes with the third node located between
them. This is because the arc (R, S) is inadmissible. Only when n is 4 or greater, can a tree or a weighted
directed rooted spanning tree (WDRST) with pendant nodes other than the root or sink nodes be formed.
These results supports the proof that in a tree, due to the existence of pendant nodes, nodes will lie on
different paths but at the same distance from a common branching node. However, paths with equal
weight exist, and in a DOLA no two nodes can be at the same distance from any other node, if the paths

are measured in the same direction.

A.5.2. Usual context

When the DOLA approach is taken to form machine groups along the diagonal of a travel chart, the travel
distances correspond to those for a undirectional flowline. In the case of an MWDRST, since several
groups of machines can be located parallel to each other, the travel distances in each group is reduced.
This is equivalent to breaking up a flowline into different shapes (U, L, S, W). In the worst case, an
MWDRST may be a DOLA since a DOLA is also a WDRST. Otherwise, the MWDRST based layout can be

expected to yield lower travel times and flow density compared to a flowline structure for the entire shop.

A.6. Weighted Directed Rooted Spanning Tree’s Adjacencies - The Proposed
Second Theorem

This proposed second theorem proves that the MWDRST representation for a layout of CM flowlines
allows a higher machine adjacency than the DOLA for the travel chart. Two nodes in the WDRST are said

to be adjacent if they neither:
o lie on the same path in the WDRST and are connected by an arc, not a path, or

e lie on two different paths in the WDRST but can be connected by an arc which does not cross an

intermediate path.

A.6.1. Proof:

Given a digraph for a travel chart, a directed optimal linear arrangement of the n node allows only (n - I)
nodes to be adjacent to each other, as shown in Figure A.2.a because only (n - 1) arcs constitute the path.
The root and sink nodes are adjacent to only one node each. The remaining (n - 2) interior nodes are each

adjacent to a predecessor and a successor node. Even if each node is treated as a machine group, at most

195

Appendix A

three groups can be considered located adjacent to each other.

In contrast, from Figure A.2.b, in the MWDRST each node can be located adjacent to at least four other
nodes. Since a MWDRST is a planar graph, it can be represented in two dimensions with no flow arcs
intersecting each other. However, in a planar (undirected) graph of n nodes, a total of (3n - 6) edges can
be drawn without intersecting in the planars. In comparison, from a flow based layout design perspective,
reachability and adjacency constraints allow only (2n - 4) arcs to be placed in the MWDRST. This
reduction in the number of arcs is due to differences in the concepts of planarity versus reachability and
adjacency in layout design. For example, in Figure A.2.b arc (A, B) is planar and node B is reachable
from node A. However, in the case of arc (A, C), it is nonplanar because it crosses arc (D, E), but node C
is still reachable from node A. Arc (D, E) is planar but node E is not reachable from node D. Since they
lie on neighbouring paths, nodes (D, E) are adjacent and reachable from a layout perspective. From a
flowline layout and machine sharing perspective, the concepts of reachability and adjacency in WDRST
were found to be more relevant to the approach adopted in this research program, compared to the

concept of the planarity of undirected graphs.

N
: Roor and sink each aaf]acent ? X o

; ¢ to one node only F* b) Increased adjacencies in
§ (‘) : an weighted directed rooted,
R spanning tree

é Intermediate nodes adjacent

to two other nodes

a) Adjacencies in a linear
arrangemend

Figure A. 2 - Adjacencies in paths and weighted directed rooted spanning tree

HODOODD

@\ (n~ 2)nades;,rve(n J)adjacenctes
& g
NS

f Bz

(p~1) nnderyve(p 2)(1(1111cemwv

(path pendannwde)

Figure A. 3 - Adjacencies in a weighted directed rooted spanning tree

Figure A.2 shows an n-node WDRST with p pendant nodes, including the root and sink nodes. The arc (R,
S) is not allowed as it implies (say) flow directly from the raw material store to the finished goods store.
There is a path/chain from the root R to all other nodes. Based on the grid graph representation of the
WDRST, the total number of adjacencies possible can be calculated as follows: from Figure A.3 the
number of arcs in rectangle ABCD + number of arcs in the M WDRST + number of arcs in the MWDRST
are eliminated by rectangle ABCD and (p - 1) pendant nodes, ie.
[2(p - 2)+(p - D] + [(n- D]+[(p-1) +(p-2)] =(n+p-2)

Since the maximum number of adjacencies possible is (2n - 4), this 1s greater then (n - 1) for the linear
arrangement, but less than (3n - 6) for a planar graph. If the n-node directed linear arrangement is

reconfigured into the form of a U, the total number of adjacencies (assuming that n is even and

196

Appendix A

e

subtracting / for the inadmissible arc connecting root and sink):

=[(n-1)+2(n2-1)1]=02n-4)
Although this matches the number obtained from the M WDRST, it should be noted that the total weight
of the arcs in the linear arrangement would be less than for the MWDRST, as will be proved later in this
section. In addition, the linear arrangement lacks the structure of the WDRST to find machine groups,
cannot define a flowline layout for each group, and does not show the different flowlines related by
shared machines as branch nodes. However, methods which obtained solutions for the NP-complete
optimal linear arrangement (directed or undirected) problems are not preferable to those for extracting an
MWDRST from the digraph for the travel chart (the MWDRST can be obtained by a polynomial time

algorithm leaving a reduced NP-complete problem for the solution).

A.6.2. Usual Context
In the MWDRST, a path is adjacent to two paths if it is not on the left or right edge of the tree. In that

case, it will be adjacent to only one other path. Thus, each machine can be considered adjacent to at least
four other machines, placed orthogonally around it. Each pair of adjacent flowlines can be assumed
connected by an aisle that allows intercell flows. Hence, with an MWDRST based layout, higher intracell
and intercell machine adjacencies can be expected, which would allow handling to eliminate the need for
machine duplication. Thus, this traditional approach of permuting the rows and columns of travel chart is
bound to give higher machine duplication than necessary because it is mot a two dimensional

representation.

A.7. Weighted Directed Rooted Spanning Tree’s Maximal Weight - The
Proposed Third Theorem

This proposed third theorem proves that the MWDRST representation for the travel chart can have a

weighting at least as good as that obtained by a DOLA solution,

Equ (vaij € MWDRST) 2 ZZfU (‘V’a,.j € DOLA) Equation A. 18
o -~

A.7.1. Proof:
First, utilise Figure A.4 to prove that the weighting of M WDRST is at least as great as that of the arcs

included in DOLA. As shown in Figure A.4.a, if all consecutive nodes in the DOLA are connected by
arcs, then an WDRST with higher weighting need not be sought, because, with the exception of the root
and sink nodes, all intermediate nodes in the DOLA are of the second degree and there are no cycles in

the Hamiltonian path so obtained (it is already in the WDRST).

However, assuming that arc (D,E) does not exist in the DOLA obtained, as has been shown in Figure
A4.b, then for node E in at the most O(n) steps, it is possible to check the weights of all arcs from its
predecessors (with the exception of node D which is the immediate predecessor) in the path. If an arc is
obtained, in this case arc (B,E) whose weight is greater than that of arc (D,E), the path can be changed

into the WDRST shown in Figure A.4.c. Hence, in the general case, assuming that an optimal solution can

197

Appendix A

be found to the NP-complete DOLA problem, it can then be converted to an WDRST of equal or greater

weight in polynomial time solution O(n’) steps, to check all nodes B through S.

OFOFCECE ECEGECEC)

a) Optimal linear arrangement - Haméltonian path

S Acnanstaken :;{jx:’g(rg(g)lf)and

) N
)))
-/ =/ =/

b) Converting the path fo an welghted directed rooted spanning rree

‘\ \\ ¢) Maximal weighted directed
rooted spanning tree

Figure A. 4 - Converting from a path to a weighted directed rooted spanning tree

Clearly, if the traditional travel chart permutation approach is adopted for the machine grouping, a
solution to the NP-complete DOLA problem may fail to obtain a layout for the machine groups. In
contrast, by attempting to first identify an M WDRST whose branches are then permuted, the WDRST in
polynomial time has to be obtained before an NP-complete optimal linear arrangement problem with a

reduced number of nodes (the number of pendant nodes in the MWDRST) can be attempted.

The other advantage of using the WDRST is that, unlike a linear arrangement, several pairs of nodes are
connected by paths of the same length. In the strict linear arrangement no two paths can have the same
length, for example, paths (B — C - D) and (B ~ E - F) have the same length in Figure A4.c, which is
clearly not the case, as shown in Figure A4.a. In the previous section a more rigorous proof for this
condition has been presented. Figure A.5 gives an example of how the DOLA structure for machine
grouping in the travel chart gives rise to longer paths, since, in this linear ordering, the benefits of

adjacency of paths available in the two dimensional WDRST are lost.

Pulh 1 Increased path lengm.s
Lath4 '—————g\
[’nlh 2 m" 3 I EE I I : g

b) Converted 1o a directed linear arrangement

a) Maximum wen,h!ed rl:reazd roaled spanning tree

Figure A. 5 - Increased lengths in linear arrangement

From Figure A.5 it can shown that, the conversion of the MWDRST to a DOLA is analogous to the
determination of a Hamiltonian path or the more complicated QAP. Thus, let Fj be the total weight
(flow) on arcs from nodes in path i to nodes in path j. Using only the arcs not included in the MWDRST, a
flow matrix can be set up (Table A.1). The off-diagonal values of -eoare important to prevent paths 2 and
3 from preceding path I. Path I must proceed these two paths, although it is possible for path 4 to

separate path I from paths 2 and 3 in the DOLA.

Pl1|P2| P3| P4
Pl| -0o | Fiz | Fis | Fuy
P2| -0 | -0 | Faz | Fay
P3| -oo | Fyp | -o0 | Fy
P4| Fyy | Fao | Faz | -o0

Table A. | - Flow matrix for obtaining a Hamiltonian path

198

Appendix A

Enumeration of the tree of the different DOLA’s, which are feasible for the given WDRST, is shown in
Figure A.6. The distances between different pairs of paths depends upon the order in which they are
placed in the DOLA. To find a maximal weight of the Hamiltonian path is the aim, because that will
place paths which have high flow interactions consecutively. However, if the length of each path

(number of arcs) multiplies its flow volume, then the objective becomes the one dimensional QAP.

Path 4 Path 4
ath 2 s Path 3
9/
)
Path 3 th 2 um 3 Puth 2 =
@
Figure A. 6 - Enumeration tree for feasible arrangements

A.7.2. Usual Context

This result implies that the arcs in the MWDRST will include at least the same total flow volume as the

DOILA, even if it lowers the average travel distances. It is unclear why the DOLA model for machine
grouping has been persisted with in so many research papers. When this model is used, the problem is
already NP complete, and thus it is unable to integrate the machine grouping, machine sharing, intercell
layout and location conditions. In contrast the MWDRST has polynomial time algorithms (Tarjan 1977,
1985) and gives a layout, which would have lower travel distances than a pure linear arrangement. The
MWDRST also distinguishes between arcs in F o B v G, that may not merit machine duplication
compared to those in C, which will. It easily separates the handling and machine duplication decisions to

eliminate intercell flows for arcs in C, and C,, respectively.

2{“

®-®-3_g

e O
@ 1 ~®

S \
</ a) Worst case permutation (N — 2) pendant nodes b) Best case permutation ~ 2 pendant nodes =/
Xz

DO® ©
Figure A. 7 - Best and worst case permutations

A.8. Weighted Directed Rooted Spanning Tree and Permutations — The
Proposed Fourth Theorem

T

MM\M

AR

In the DOLA with N nodes the maximum number of permutations that need to be enumerated is (N - 2) .
The locations of the root and sink nodes are fixed at either end of the DOILA. This allows the remaining
(N - 2) nodes to be assigned to an equal number of possible intermediate locations. Figure A.7.a shows
the worst case that can arise in stage II of the suggested cell formation method. Since the arc (R, §)
cannot be allowed in the MWDRST, at least one node A must be located on one path. Thus path (R-A-5)

is equivalent to a pendant node. This makes the maximum number of permutations equal to (N - 2)/.

199

e — Appendix A
Figure A.7.b gives the lower bound for the problem size for stage II, a WDRST with only two pendant

nodes. In this case, it can have only two orientations after the branches are permuted. Hence, for an
MWDRST with p pendant nodes, only in the worst case will the stage II problem be equivalent to the
DOLA.

HBOD DD O

@ a) Initial oriensation of the weighted directed

rooted spanning tree

 linear arrang t advanced
by one node

of two nodes interchanged)

¢) Weighted directed rooted spanning tree with locations @

Figure A. 8 - Approaches for weighted directed rooted spanning tree reorientation

Figure A.8.b shows one interpretation of the stage II problem for the given WDRST shown in Figure
A.8.a. The determination of the optimal linear arrangement of the pendant nodes is equivalent to breaking
an optimal closed TSP tour by deleting one arc. For example, the orientation of the MWDRST shown
initially in Figure A.8.a was obtained by deleting the arc (G, A) from the cycle (A - B-C-D-F-G-
A). Thus, the orientation in Figure A.8.b required the deletion of arc (F, G). If viewed as a one
dimensional QAP, the locations of any pair of nodes can be interchanged if (G-A-B-C—-D-E-F)
as shown in Figure A.8.b. Here the locations of nodes F and D were swapped to obtain the arrangement
in Figure A.8.c. Both the TSP and QAP are analogues of the cluster analysis problem described by
Lenstra [1975].

a) Initial weighted directed rooted
spanning tree with N nodes

b) New weighted directed rooted spanning
tree with (N + 1) nodes

0 BHE ®O)
Figure A. 9 - Weighted directed rooted spanning tree with N and (n + 1) nodes
in this section will now be presented.

R AR R

Using Figure A.9.a a simple analytical derivation for the results

These WDRST nodes have a common predecessor. If the root node is such a predecessor, then the path

corresponding to that node is simply an arc (node D and arc (R, D)). Let p be the number of groups of

pendant nodes, and N; the number of nodes in the i-th group. The total number of permutation of the

branches of the MWDRST can be derived as follows:

i
H (number of permutations with each group))(numb

i=l

er of permutations of the groups)=

— l'p'[N.!|p! Equation A. 19
= P!
i=l

200

Appendix A

A.8.1. Proof

Thus proof is required of the following statement:

P
[]’[Ni!)p! S(N-2)! Equation A. 20
i=1

As before, using the induction approach, it will be assumed that Equation A.20 is valid and the case will
be considered for (N + I) nodes. The addition of this extra node has been shown in Figure A.9.b to be
achieved by attaching an arc (R, H) to the root. This is the worst case scenario, since this additional arc
could have been attached to any one of the existing pendant nodes. Hence, it is required to prove the

following:

(ﬁN,.z}pH)!s(N—l)z or ((ﬂw)p!}pﬂ)s.(N—z)!(N-J) Equation A. 21

Which, on simplification using Equation A.20, requires the prove that (p + 1) <(n - 1). Thatis, (p +2) <
N must be true. With reference to Figure A.10.a, an M WDRST with only the arc (R, S) is inadmissible.
When N = 3, as in Figure A.10.b, the path (R — A - S) could be considered to be a tree with p = 1. Only
when N >4, can operational sequences such as (R-A-S), (R-A-B-S§)or(R- B—-A-3S§)give a
completely connected digraph, from which a WDRST with p = 2 is the result, as shown in Figure A.10.c.
Arcs (B, S) and (B, A) are the only feasible crisscrossing and backward arcs, respectively, in this feasible

WDRST.

a) N = 2 (impossible case) b) N = 3 {only a path is possible) ¢) N =4 (more than one pend(l{z_{ ___________ @

node is possible)
®-©® ®-@-®

Figure A. 10 - Minimum number of nodes for a weighted directed rooted spanning tree

A.9. Weighting Scheme — The Proposed Fifth Theorem

This proposed fifth theorem proves that, given an WDRST with p pendant nodes and maximum intercell

@
R

flow of max (F;) between any pair of paths, a feasible weighting scheme for the branching nodes at the k-

th level of the WDRST can be w, = wy =...= wi (k 22) = P (F).

A.9.1. Proof:

Solving the second stage for any WDRST as an OLA problem requires path adjacencies due to common
branching nodes to be maintained. The paths must be pivoted about one or more of their branching
nodes. This will prevent machine divisioning and altering the structure of the WDRST to minimise the
lengths of the crisscrossing arcs. From Figure A.1l.a, assuming that F;; > Faz > Fyy the desired
permutations should be restricted to paths 3 and 4 about the pivot node C. It is now required to control

paths permutations, starting with pendant nodes at the lowest level in the MWDRST.

However, if the node weighting scheme is not correctly incorporated, it is possible that the stage II
solution can give a sequence such as P4 - P/ - P2 - P3. Thus, for example, if path 4 is placed to the left

of path | as shown in Figure A.11.b, this will minimise the distance between paths 1 and 4. However (R4

201

Appendix A

+ L)=1 and will force a duplication of machine C. Since it is preferred to maintain 2 functional layout
for all machine types, this machine splitting should be prevented. It will be shown that this constrained
permutation of the branches of the MWDRST can be achieved by suitable weighting of the branching
nodes. Therefore, this problem can be solved by having the stage Il model simulate the traditional

pairwise node exchange heuristic adopted in the QAP analogues.

Level | Level 1

Path 1 Path2)
a) Weighted directed Path 4 N
rooted spanning tree Path 3 Level 3 \. Path3 : Level 3
)

without splitting nodes C

Level 2

Figure A. 11 - Splitting of paths sharing a branching node

Assuming the root node at level I can be assigned a weight w, = 0, and the most critical weight is that
given to all branching nodes at level 2, w,, it can be shown that, having decided the value for w,, it 1s
sufficient to set w; = wy =...= wi (k > 2) = w,. No penalty is incurred for nodes that lie on a path that
does not contain any branching node (the pendant nodes A and B at level 2 or nodes D and E at level 3).
The reason is that these paths can be absorbed into the last branching node that they contain without
disrupting the stage II solution. Thus, letting P be the total flow penalty for the WDRST in Figure A.11.a:
P =w;(Rsqg+ Lsg) + Fra (R1s + L14)
Letting P’ be the total flow penalty for the WDRST in Figure A. 11 b:
P =wy(R34+L'3g) +Fry(R14+ L'14)
Since P’>P, it is required to seek a value for w, which will give the result (p — P) > 0, ie.,
wo [(R'34 + L'34) - (Rsa + L3)] - Fra[(Rpa+ Lyg) - (R 14+ L'14)] > 0
given an WDRST with p paths, the minimum value of :
[(R’34 + L’34) - (Rsg + L4)] is 1
and the maximum value of :
[(Ri4+ Lig) - (R’14 + L’ 14)] can be (p - 1), and
hence to make (p’ — p) > 0, it is required that:
Wy>((p-1)Fi.
If a2 maximum intercell flow matrix of max (F;) is assumed due to the crisscrossing arcs, the highest flow
penalty contribution due to any particular intercell flow will be (p — 1) max (F;) . This is obtained by
placing the two paths on either edge of the WDRST (Figure A.11.b). Hence, if w; is set to equal p max
(F;), this will also prevent the divisioning of paths sharing most branching node, such as paths 3 and 4 in
Figure A.l1l.a.
An earlier statement (section A.4.2. Stage II) gave that, having decide the value for w,, it is sufficient to
set wy = wy =...= wi (k> 2) = w, With reference to Figure A.12, it can be seen that the total weight due

to branching nodes common to a pair of paths is directly proportional to the number of branching nodes

202

Appendix A

they share. Path 2, attached to node F, will have a Jower weight due to machine sharing with paths 3 and
4. This is because, at node F, paths 3 and 4 constitute a subtree with an extra common branching node C.
Hence, neglecting the intercell flow between paths 3 and 4, simply by setting wy = ... = w(i+[) = w; =
w(i-1) = ...=w,, will force stage 1l model to permute paths 3 and 4 together, thus avoiding assigning
these two paths to locations such that (Rsy + Lsg) > 1. This is because paths with common branching
nodes at level k will have a machine sharing weight of (k-1)w,, far exceeding the maximum intercell flow

penalty in stage Il from any crisscrossing arcs.

@ / Level (i-1)
-
b -
Arc attached 5. hEN)
to node F ‘i"‘ 3 Level i
@ N @ Level (i + 1)
Path 1 Path?2 _7' o4 .
& B .
Sub-tree attached to node F '. @» '8 Level (i+ 2}
Path3 ™" . . - - 'P%IM\

Figure A. 12 - Weighting of nodes at other levels
Due to the acyclic structure of the WDRST, the number of branching nodes common to two paths also

suggests which pairs of paths should not be split in the second stage OLA solution. In Figure A.12, paths
3 and 4 have an extra branching node C in common compared to path 2. Hence, they should be moved

together when the stage Il model is solved even though they can permute with respect to each other.

203

Appendix B

B.1. Spanning Tree Algorithms
In this Appendix B, spanning tree algorithms, definition and pseudo codes are presented with simple

illustrative examples. Also illustrated are branching and cut tree algorithms.

B.1.1. Minimum Spanning Tree

The minimum spanning tree problem was first formulated in 1926 by Boruvka. Here it was required
during the electrification of Southern Moravia to find out the most economical layout of a power-line
network. Some polynomial-time algorithms have been developed to solve this problem. Amongst them

the Prim and Dijkstra algorithms are the most famous ones.

Now suppose the edges of the graph have weights or lengths. The weight of a tree is just the sum of the
“weights” of its edges. Obviously, different trees have different lengths. The problem is how to find the
minimum length spanning tree. What is a tree? A tree is a connected graph without cycles, with the

following properties:
» Every pair of vertices in a tree is joined by exactly one path.
o If an edge is deleted from a tree, then the resulting graph has exactly two components.
o If a tree has n vertices and m edges, thenm =n - I.

o If a new edge is added to a tree joining a pair of non-adjacent vertices, then there is exactly one
cycle in the new graph.

A spanning tree of a graph G is a subgraph of & such that it is a tree and it contains all vertices of G. A

graph has a spanning tree if and only if it is connected. Now consider an edge-weighted graph G. The

Minimum Spanning Tree (MST) problem asks to find a spanning of G with the minimum weight.
Minimum Spanning Tree Property:
o Let G = (V. E) be a connected graph with the edges - cost (u, v) of the tree.

e Let Ube asubsetof V.

204

Appendix B

e If (4, v) is an edge of lowest cost such that u isin U and vis in V - U, then there is a minimum

spanning tree that includes (i, v).

This problem can be solved by Prim’s algorithm, which builds a tree one vertex at a time, and is one of

its many variations.

Input. An edge-weighted graph G with n vertices represented by adjacent lists.

Output. The set of edges in a spanning tree T.

Begin take a vertex v; count := 0; current vertex :=v; S:={v);T:=%
while count < n - 1 do;
begin label the other vertices i not in S adjacent to current vertex as follows:
if i is not labeled, label it by length(current vertex, i) and let reference(i) be current vertex;
if i is labeled, re-label it by minflabel(i), length(current vertex, i)} and;
if label is changed, reference(i) : = current vertex;
find a vertex u not in S with the minimum label;
add v into S; add the edge (u, reference(u)) in to T: current vertex:= u; Count := count + I;
end; end.
Figure B. 1 - MST Prims algorithm pseudo code

The algorithm from Figure B.1 can be organised into a table. Thus every vertex corresponds to a column
and every step corresponds to a row in the table. When it gets a label, the label and the reference vertex
are listed in the row. Then find a vertex with the smallest label, which is added into S, and the edge
joining this vertex and its reference is added into T. Next, update the label and the reference vertex of all

vertices adjacent to the newest vertex in S.

A[1]: 2(12) - 5(18) - 6(14),

A[2] : 1(12)-3(9) - 4(11) - 5(17),
A[3]: 2(9) - 4(16),

A[4] - 2(11) - 3(16) - 5(10),

A[S]: 1(18) - 2(17) - 4(10) - 6(13),
A[6] : 1(14) - 5(13).

Table B. I - Graphs, adjacency input list

Vertices
1 2 3 4 5 6 S T
0 R
12/1 18/1 | 14/1} 2 | {12}
o2 1121 17/2114/1 | 3 | {23}
1121 17/2) 14/1] 4 | {24}
10/4 | 14/1] 5 | {45}
13/5| 6 | {56}

Table B. 2 - Algorithms procedure
Since each edge added is the smallest connecting T'to G - T, only edges are added that should be part of

the MST. Again, it looks like the loop has a slow step in it. But again, some data structures can be used to
speed this up (use a heap algorithm procedure, for each vertex, the smallest edge connecting T with that
vertex). The complexity of the algorithm is O(r’) and a simple example is shown below. Table B.1 shows
the adjacency lists of the graph. Take vertex [as the first vertex and T = {1), T = *. In the following
Table B.2 vertices that are not labelled are omitted, from were a resulting MST is, T = {12,23,24,45,56).

205

Appendix B

B.1.1.1. Kruskal’s Algorithm
Kruskal’s algorithm (Figure B.2) is now presented, which is the easiest to understand and probably the

best one for solving problems by hand. Note that, whenever an edge (u,v) is added, it is always the
smallest connecting the part of S which is reachable from u with the rest of G, so it must be part of the
MST. This algorithm is known as a greedy algorithm, because it chooses at each step the “cheapest” edge
to add to S. Care is required when trying to use greedy algorithms to solve other problems, since it
usually doesn't work, ie. if the shortest path from a to b is required, it might be a bad idea to keep taking
the shortest edges. The greedy idea only works in Kruskal's algorithm because of the essential property:

sort the edges of G in increasing order by length;

keep a subgraph S of G, initially empty;
for each edge ¢ in sorted order;

if the end points of e are disconnected in S; add e to S;

return S.
Figure B. 2 — Kruskal’s algorithm

The algorithm analysis will show a slow iteration time ie. linear time per iteration, or O(mn) total when
line testing whether two endpoint’s are disconnected. But actually there are some complicated data
structures that enable each test to be performed in close to a repetitive time; this is known as the union-

find problem. The slowest part turns out to be the sorting step, which takes O(m log n) time.

B.1.1.2. Boruvka’s Algorithm
Although this seems a little complicated to explain, it's probably the easiest one for computer

implementation since it does not require any complicated data structures. The idea is to do steps, like
Prim's algorithm, in parallel all over the graph at the same time. Next, in Figure B.3 is presented

Boruvka's algorithm.

make a list L of n trees, each a single vertex;

while (L has more than one tree);

for each T in L, find the smallest edge connecting T to G-T;
add all those edges to the MST (causing pairs of trees in L to merge).

Figure B. 3 - Boruvka's algorithm

As was noted in Prim’s algorithm, each edge added must be part of the MST, so it must be acceptable to
add them all at once. Analysing Boruvka’s algorithm can be found similar to a merging sort (graph theory
algorithm procedure). Each pass reduces the number of trees by a factor of two, so there are O(log n)
passes. Each pass takes time O(m) (first assess which tree each vertex is in, then for each edge test
whether it connects two trees and check if it is better than the ones seen before for the trees on either

endpoint) so the total time is O(m log n).

B.1.2. Minimum Cost Spanning Tree
For the applied MST to find the minimum cost spanning tree (MCST), the defined MCST property is

required as follows:

206

R Appendix B

e Let G=(V, E)be a connected graph where for all (1, v) in E there is a cost vector Cfu,v].
e A graph is connected if every pair of vertices is connected by a path.

e A spanning tree for G is a free tree that connects all vertices in G.

o A connected acyclic graph is also called a free tree.

e The cost of the spanning tree is the sum of the cost of all edges in the tree and usually it is

required to find a spanning tree of minimum cost.
From the previous section, the two main properties of the trees are:
Property 1: A tree with N 2 [vertices has exactly N - 1 edges.

Proof by Contradiction: Let G=(V, E) be the smallest tree that does not satisfy property 1. G must have
more than / vertex, since the only I-vertex tree has 0 edges, which satisfies property 1. Furthermore,
there must be a vertex v with exactly / incident edge (v, w). No vertex can have 0 edges, as it would not
be connected, and so G would not be a tree. If every vertex has at least two incident vertices, consider the
path created from a vertex v, entering and leaving vertices by a different edge. Such paths will eventually
form a cycle, so G is not a tree. If edge (v, w) is deleted, we get a new tree G, produced that satisfies
property | (thus the new tree is smaller than G but is a tree, contradicting the assumption about G). Since

G, has N - I vertices and N - 2 edges, G must have N vertices and N - I edges, also contradicting our

assumption about G.
Property 2: Adding an edge to a tree introduces a cycle.

Proof: According to property 1, every tree has N vertices and N-I edges. If an edge is added to a free tree
than, a connected graph with N vertices and N edges exists. If the edge does not introduce a cycle, than a

connected acyclic graph, with N vertices and N edges, which is a tree that violates property 1 (a

contradiction) could exist.

Minimum Spanning Tree Property was explained in the previous section (B.1.1.), here only a proof by

contradictions is presented, assuming the contrary. Consider T, a MCST for G. According to property 2 of

trees, adding (1, v) to T introduces a cycle involving (4, v). There must be another edge (i, v) in T such

that u, is in U and v; is in V - Us otherwise there is no way for the cycle to leave vertices in U, enter

vertices in V - U, and return without using (1) twice. Deleting (1), breaks the cycle and gets a

. , ' ' tween
spanning tree T. The cost of T; is the costof T - (uz,v), + (w,v). Since () is the least cost edge betw

vertices in U and V-U, the cost of T; is less than or equal to the cost of T. This contradicts the assumption

that a minimum cost spanning tree would not include (1, v).
Prim’s algorithm to find the minimum cost spanning tree exploits this property. Initially, Prim’s algorithm

has one node in the spanning tree, and no edges. The algorithm adds nodes to the spanning tree one at a

time, in order of the edge cost to connect to the nodes already in the tree. Analysis of Prim’s Algorithm

shows:

207

Appendix B

o Prim’s algorithm is O(N?).

e The while loop is executed n-1 times, requiring O(N).

e One vertex to U is added at each iteration.

o Exiting the loop when U = V.

s Finding the lowest cost edge from U to V-U in O(N) time.

e Maintaining two arrays: Closest[v] and Lowcost[v].

s TForvin V-U, Closest[v] is the vertex u in U closest to v.

e Lowcost[v] is the cost of (v,u).

Prim’s Algorithm for finding minimum cost spanning tree, is shown in Figure BA4.

int C[N][N];
PrimMCST (set <edge> *T);
{ set <vertex> U; int Lowcost] NJ, Closest[N]; int Lj.k;
/5 T = set of edges in spanning tree and U = set of all connected vertices ™/,
Insert(U,0);
for(i=1;i<N; i++) { Lowcost{i] = C[O][{]; Closest[i] = 0; };
for (i=1;i<N;i++){;
min = Lowcostf2]; k = 2; for (j =2, j < N; j++);
if (Lowcost[j] < min} ;
{ min = Lowcost[j]; k=j; } /* Add edgeto T, kto U */;
Insert(T k,Closest{k]); Lowcost[k] = INFINITY: /* Adjust costs to enter U */;
for (j=1;j < N;j++)
if (C[k][j] < Lowcost[j] - Lowcost[j] < INFINITY) {;
Lowcost[j] = Cik][j]; Closest[j] = k; } } }] /% PrimMCST %/.

Figure B. 4 - Pseudo code of Prim’s algorithm for MCST

B.1.3. Maximum Spanning Tree

Description of the original maximum spanning tree problem is as follows:

Input: A connected

the graph, and £ = fe;l e = (viv)vi,V

and undirected graph G = (V, E) where V = {v), Va...,vs/ is a finite set of vertices on

€ V } is afinite set of edges representing connections between

vertices. Each edge has an associated positive real number denoted with W = { wy | wy = w(v, v), wy >0,

v;, vj € V] representing weight, distance, cost and so on. The vertices and ed

ges are sometimes referred

to as nodes and links. Thus:

Output: A maximum spanning tree is a spanning tree with
all the vertices in V. Therefore at least one spanning tree can be found in graph

spanning tree, denoted as T* is the spanning tree whose total

let T be a single vertex x;
while (T has fewer than n vertices)
{find the longest edge connecting Tto G-T;
add it to T};

Figure B. 5 Modified Prim's algorithm applied to maximum spanning tree

a maximal set of edges from E that connects
G. The maximum

weight of all edges is maximal. It can be

208

¢
i
|

Appendix B

formulated as follows:

T* = max 3wy Equation B. 1
Prim’s algorithm (Figure B.5), builds a tree one vertex at a time rather than builds a subgraph one edge at
a time. Also, as described before, it finds a minimum (weight) spanning tree. It is easy to see from Figure
B.5, that the simple modification of replacing min by max in algorithm pseudo code, will cause the
algorithm to find a maximum (weight) spanning tree.
begin Let vl be the origin vertex, and initialise W and ShortDist[u] as W := {vl};
ShortDist[v]] :=0;
foreachuinV-{vi};
ShortDist[u] := T[vl,u]; Now repeatedly enlarge W until W includes all vertices in V;
while W < V: Find the vertex w in V - W at the minimum distance from vi;
MinDist := INFINITE;
for eachvinV -W;
if ShortDist[v] < MinDist; MinDist = ShontDist[v]; w := v;

end [if};
end [for}; Add wto W;

W = WU {w)}; Update the shortest distance to vertices in V-W;
foreachuinV—-W; ShortDist{u] : = Min(ShorDist{u}],ShortDist[w] + TIw,u]);
end {while}.

Figure B. 6 - Pseudo code for Dijkstra’s algorithm

B.1.4. Dijkstra’s Algorithm.

This is another greedy technique often known as Dijkstra’s algorithm for finding the shortest path
between a given pair of vertices. The algorithm works by maintaining a set S of vertices whose shortest
distance from the source is already known. Initially, S contains only the source vertex. Each step adds to
S a remaining vertex v whose distance from the sources is as short as possible. Assuming all arcs have
nonnegative costs, finding a shortest path from the sources to v that passes only through vertices in S, is
possible. At each step of the algorithm, an array D is used to record the length of the shortest special path
to each vertex. Once S includes all vertices, all paths are special, so D will hold the shortest distance
from the source to each vertex.

Input. A digraph G with N vertices represented by adjacency lists with a length field, and two vertices S

and 7.
Output. A shortest path from S to 7, and its length.

The Dijkstra algorithm for solving shortest path problems is presented in Figure B.6. There are also other
algorithms to solve these problems. The complexity of the algorithm is O(N%). For simple graphs, this
algorithm can be organised into a table, as in the following example, Table B.3. Below is the adjacency

lists representing a graph G with 8 vertices:

209

Appendix B

All]: 2(2)- 3(8) - 41),

Al2]: K2)-3(6) - 5(1),

A[3]: 1(8)-2(6) - 4(7)- 5(4) - 6(2) - 7(2),
Al4]: I(1)-3(7) - 7(9),

A[S]: 2(1) - 3(4) - 6(3) - 8(9),

Al6] : 3(2)- 5(3) - 7(4) - 8(6),

A[7]: 3(2) - 4(9) - 6(4) - 8(2),

Al8] : 5(9) - 6(6) - 7(2).

Table B. 3 - Graphs adjacency list
In a list Afi], j(I) means an edge v;v; with length . The algorithm for finding the shortest path from vertex

v, the source, to vertex vy the sink, is shown in the following Table B.4, with the resulting shortest path as

Vi~Vy = V5~-V3=-V7- Vs

\J V2 V3 \Z] Vs Vg vy Vg
0
2/v; | 8/v, 1/ v,
2/v;i | 8v, 10/ vy
8/ v, 3/v, 10/ v,
7/ Vs 6/ Vs 10/ Vy 12/ Vs
7/ vs 10/vy | 12/ vs
9 vy 12/ vs

11/V7

Table B. 4 - Result of Dijkstra example
The Dijkstra algorithm (Figure B.7) is applied to the directed graph. For a given directed graph G = (v,

E) (where V — (1...n} and vertex [is the sources), and C is a two dimensional array of costs (where C[},
j] is the cost of going from vertex i to vertex j on arc i —j). If there is no arc i — j, assume that Clijlis
oo, some value much larger than any actual cost. At each step, D[i] contains the length of the current

shortest special path to vertex i.

2. Forl;=2tondo;

3. D[] :=C[1, 1]; {initialise S};

4. Forl:=1ton~Idobegin;

5. Choose a vertex w in V — S such that D [w] is minimum,;

6. Addwto S;

7. For each vertex v inV—Sdo;

8 D [v];=min(D[v], D[w] + C[w, v]);

End; End; [Dijkstra, computes the shortest cost from vertex 1 to every vertex of a directed graph.
Figure B. 7 - Dijkstra’s algorithm for directed graph

Figure B. 8 - Digraph with labelled arcs
Now apply Dijkstra algorithm to the directed graph of Figure B.8. Initially, S = {1}, D[2] = 10, D[3] =

oo, Df4] = 30 and D[5] = 100. In the first iteration of the loop of lines (-4) - (8), w = 2 is selected as the
vertex with minimum D value. Then setting D3] = min (es, 10 + 50) = 60, D(4) and D(5) does not

210

S . - ‘ : : Appendix B
change, because reaching them from / directly is shorter than going through vertex 2. The sequence of D

values after each iteration of the loop is shown in Table B.5.

{teration S w | Df[2] | D[3] | D[4] | D[5]
Initial {1} - 10 oo 30 100
1 {1,2} 2 10 60 30 100

2 {1,2,4)} 4 10 50 30 90

3 {1,2,4,3} 3 10 50 30 60

4 {1,2,4,3,5} | § 10 50 30 60

Table B. 5 - Computation of Dijkstra on diagraph of Figure B.7

B.2. Optimum Branching

Chu and Liu [1965], Edmonds {1967] and Bock [1971] have independently given efficient algorithms for
finding optimum branching in a graph G. The Chu - Liu and Edmonds algorithms are virtually identical,
the Bock algorithm is similar but stated as an algorithm on matrices rather than on graphs. This part of
the research appendix gives an efficient implementation of the Chu ~Liu — Edmonds algorithm. If G has

n vertices and m edges the algorithm is O(m log n) time [Tarjan 1985].

How do these algorithms work? Let G = (V, E) be a weakly connected directed graph, having edge values
¢ (v, w). The Chu — Liu — Edmonds algorithm finds an optimum branching in G. The algorithm constructs
a set of edges H defining a subgraph G (H) such that for each strongly connected component S, there is at
most one edge (v, w) € Hsuch thatw € §, v € V- S.If § is such that no edge (v, w) € H satisfiesw € S, v
€ V- S than it is called S a root component of G (H). Initially H = 0; thus initially each vertex in V
defines both a weakly connected and a strongly connected component of G (H). In the next section are

the main steps of the algorithm for constructing the set H, shown in Figure B9.

Choose any vertex v with an edge (x, v) of value c(x, v) > 0;
Select the edge (u, v) of largest value;
Add (u, v)to H;
Choose any root component S of G(H) having an unexamined edge (x, v) with v € Sand c(x, v) > 0;
Find the largest unexamined edge (u, v) such thatv € S;
If u g S, discard the edge and stop. Otherwise go to step 7;

U gS. Let W be the weakly connected component of G (H) containing v
Otherwise go to step 8;
8 UgS ue W Find the sequence S1, (x1, yi) Sz (¥ Y2) -
connected component of G(H), (x; y)eH yi € S, and x € S
9. Find the edge (x; y;) with minimum value among the (x; yi);
10. For each unexamined edge (%, y) state as Jollows:
11.C(x, y) = c(x, y) — e(xi yi) + €(%p ¥))s
12. Add (u, v) to H (This combines Sp,.... Sk into a single strongly connected ¢
component of G(h).),

N T

Ifug Wadd (u,v) to H and stop.

.. S, (i yi) such that each S; is a strongly
foralli, § =S, (x, yo) = (4, V), andxy € Sy;

omponent which is a root

13. Repeat the general step until there is no root component S of G(H) having an unexamined edge (u, v) with

v e Sand c(u, v)> 0.
Figure B. 9 - Optimum branching algorithm’s step

B.2.1. Maximum Branching Algorithm N
Chu -Liu — Edmonds algorithm from the previous section 1S for minimum br.

anching. Now in the

211

Appendix B

preceding subsection the original algorithm to find maximum branching was modified. A maximum
branching algorithm finds a subgraph of a digraph which is a maximum weight, which does not
necessarily mean a spanning tree, and here a forest of out trees is called a maximum branching. An

outline of the algorithm is shown in Figure B.10.

l. BV «BE < @&

2. ie0;

3. ifBV=Vthengoto 14;

4. For some vertexv & BV and v € Vido;

begin;

BV « BV U {v};

Find an edge e = (x, v) such that W(e) = max {w(y, v) | (y, v) € E; };
if 0 >2w(e) then go to 3;

end;

S

8. if BE U [e] contains a circuit then ;
begin ;
9. iei+l;
10. construct G; by shrinking C; to u; §
11. Modify BE, BV and some edge — weights;
end ;
12. BE ¢~BE U{e};
13. goto3;
14. while i =0 do;
begin;
15. reconstruct G,.; and rename some edges in BE;
16. if u; was a root of an out — tree in BE then BE [ele Ciande # e)
17. else BE[el|e Ciande #e; };
18. i «i-1;
end ;
19. Maximum branching weight ¢ 3, ¢ gr w(e).
Figure B. 10 Pseudo code for algorithm to find a maximum branching

B.2.1.1. Algorithm Procedure

The algorithm traverses the digraph, examining vertices and edges. It places vertices in a so-called
vertex-bucket BV when they have been examined, and edges in an edge-bucket BE if they have been
provisionally chosen for the branching. Throughout the course of the algorithm, BE always contains a
branching, that is an acyclic collection of directed edges with at most one edge incident to any given
vertex. The examination of the vertex v consists simply of choosing an edge of maximum positive weight
e that is incident to v. It may be noted that no edge of negative weight would be chosen for a maximum
branching (a digraph consisting of negative weighted edges only has a maximum branching of zero
weight and no edges). The edge e is checked to see if it forms a circuit with the edges already in BE. If it
does not, then ¢ is added to BE and a new vertex is examined. If it does form a circuit then the graph is
restructured by shrinking this circuit to a single vertex and assigning new weights to those edges which

are incident to this new “artificial” vertex.

212

Appendix B

The process of examining vertices then continues until BV contains all the vertices of the final graph. It
contains just these vertices, several of which may in general be “artificial”, because whenever a circuit is
shrunk to form a new graph, the edges and vertices of the circuit are removed from BE and BV. BE at this
stage contains the edges of a maximal branching for the final graph. The reverse process of replacing in
turn each of the artificially created vertices by its associated circuit then begins. At each replacement the
choice of edges placed in BE is such that for the currently reconstructed graph BE contains the edges of a
maximum branching. The crucial element of the algorithm is the rule for reassigning weights to edges
when circuits are shrunk. It is this rule which forces the choice of edges to be included in the branching

when the reconstruction phase is underway.

B.2.1.2. Application of a Maximum Branching Algorithm
Figure B.11 shows an application of an maximum branching algorithm. The vertices are imagined to be

examined in alphabetical order, with artificial vertices being added at the tail and in the order they are
created. Starting with G, (a) shows the successive graphs G; and G, obtained in the circuit reduction
stage of the algorithm. Coincidentally, for it would not generally be the case, BV and BE are empty when

the processing of G, and G, starts. For G,, G, and G; the final values of BE and BV are shown.

4
/ G,

[

C ={(C A)(A B),(B,C)]
BV =(A B,C)
BE ={(C,A) (A B} }

BV={(D,EF)
BE = ((F, D), (D, E)}

BV={(Hu ,u)=V,
BE = ((u, ,u))=
= maximum branching

Now the successive contents of BE, as G; and G, are constructed, results in a maximum branching with
the weight of 17 [G, : BE = {(u;, uy)}, G,: BE = {(u, E), (E, F), (F, D)}, Gy:BE={(C, E), (E F), (F,
D), (C, a), (B, C)}]. It may be noted that the final set of edges in BE, which define a maximum branching
for G, , is in fact a single out tree rooted at B which does not, incidentally, include the edge of maximum
weight Gy,

If a minimum branching rather then a maximum branching is required, it is easy to modify the maximum
branching algorithm to find one. As has been described, this is achieved by simply replacing the weight
of the edge by it’s negative and then apply the algorithm. Obviously, a maximum branching for the graph

with a modified edge (weights), provides a minimum branching for the original graph.

213

Appendix C

C.1. Quadratic Assignment Problem (QAP) Model

From Chapter 2 the problem of assigning new facilities to sites or location when there is an interchange
between new facilities, is referred to as a quadratic assignment problem (QAP). Kopmanns and
Beckmann [1957] first introduced the QAP, which is a combinatorial optimisation problem. The problem
involves assigning n facilities to m locations so that two total cost matrices can be formatted. One matrix
gives the magnitude of the flow of materials between any two facilities whilst the other specifies the

distance between any two locations.

Due to the complex nature of the QAP, algorithms for producing optimum solutions to the QAP have not
been computationally feasible for the problems with dimension n >15 facilities [Gilmore 1962, Nugent
1968]. Furthermore, the QAP of which the travelling salesman problem (TSP) is a special case, has been
shown to belong to a special class of NP complete. These problems, for which it appears that there exists
no efficient solution algorithm, are considered by Sahni [1976]. Foulds [1983] has suggested that QAP
solution times are likely to be an exponential function of the problem size n. Francis [1992] formulated

the QAP as follows:

n n n n

Minimize 7. = 2, 2, 2, 2 Cieji Xik X Equation C. I

=l j=l k=l l=l

which can be rewritten as:

n n n

n
Minimize 7. = 2. 3, > 3 f;d(a(i),a()) xux; Equation C. 2
==l k=1 l=1
n
subject to : ink =1, k=1,..n Equation C. 3
=1
mezl , i=1,...n Equation C. 4
k=1
1, if facility i is situated at site (location) j
X = if fact ,y ()] Vij=1...n Equation C. 5
0, otherwise
where,
Cik,jl JInteraction cost of having facility i located at location k and facility j located at location

214

Appendix C

I, and Cik,jt is the product of flow volume times distance.
Iy “The flow of material from facility i to facility J.

d(a(i),a(j)) -The distance between facility i at location a(i) and facility j at location a(j). (These are

assumed rectilinear distances).
Notice that if facility i is at location k and facility j is at location /, then the decision variable x; is equal
to 1, as shown in constraint (Equation C.5) and the cost term €, (or, f i dfa(i),a(j))) is included in the

objective function. The constraint (Equation C.3) ensures that exactly one facility is assigned to each

location, and the constraint (Equation C.2) ensures that each facility is assigned to exactly one location.

In addition to its application in facility location problems [Apple 1977, Francis 1992}, the QAP has been
found useful for such applications as production line scheduling, the backboard wiring problem in
electronics, building layout problems, problem of minimising latency in magnetic drums on disc storage

computers, and others.

Coupled with the fact that the QAP arises in such a variety of applications, many researchers have been
drawn towards this class of problem because of the massive computational challenge that it possesses.
Because of its combinatorial complex nature, interest has focused on developing efficient procedures to

find least-cost solutions to the QAP.

C.1.1. Exact Solution Methods

With the exception of total enumeration, most exact algorithms are branch and bound, or implicit
enumeration procedures [Gilmore 1962, Lawler 1963], and cutting plane algorithms [Bazaara 1982,
Burkard 1984] (presented in more detail within Appendix B). These methods do find the least total cost.
Furthermore, these branch and bound algorithms are single construction algorithms (ie. they build up a
solution by adding an assignment at a time). Pair assignment algorithms [Gavett 1966] that add or
exclude two assignments at a time have been found less useful. One exact solution method, the total
enumeration approach, should be ruled out immediately as the size of n increases, since the total

enumeration requires the explicit consideration of all n/assignments.

Although branch and bound and cutting plane methods do guarantee an optimal solution to the OAP,
their computational times depends largely on the hardware used. Both the speed of a computer and the
computer memory capacity affect the outcome.

C.1.2. Integer Linear Programming Problems

In addition to the QAP, several integer linear programming formulations for the facility layout problem
have been developed. Lawler [1963] was the first researcher to formulate the facility layout problem as a
integer linear programming problem.

By defining: Yiu = Xi Xul Equation C. 6
the QAP in these equations (Equation C.8), (Equation C.9), (Equation C.10), (Equation C.11) can be

et

215

Appendix C

represented as an integer linear programming problem, with the objective to:

1] n n
Minimize 2,2, Z > i Vau Equation C. 7

= =l k=l 1=l
subject to: Zm =1 , k=1..,n Equation C. 8
i=l
EXikzl , i=1..,n Equation C. 9
k=1
n n n n
SESD yu=r Equation C. 10
il j=1 k=l =1
xitku—2y;,20, i, ,k,I=1..,n Equation C. 11
xi € {0,1 }, i,j=1..n Equation C. 12
Vi € {0,1 }, Lj.kl=1..n Equation C. 13

Lawler {1963] showed that the integer linear programming formulation and the QAP are equivalent. Love
and Wong [1976] also proposed an integer programming formulation for the QAP. The integer linear
programming solution techniques applied to the facility layout problems by both Lawler and Love are

computationally infeasible, especially for problems with nine or more facilities [Kusiak 1987].

C.1.3. Heuristic Solution Methods

Since there has been limited success in finding exact solution methods for the QAP, attention has turned
to finding better solutions using heuristics. Ham [1985] suggested that superior performance (in terms of
solution quality and computation time) could be achieved by combining a construction method with an
improvement procedure. Liggett [1981] contended that the improvement methods can be used to generate
“good” initial solutions. Subsequently, heuristic solution approaches have been developed since the
beginning of the 80’s. Heuristic solution methods to the QAP do not guarantee optimal solutions,
however their primary purpose is to find solutions near to the optimum. Their major advantage is that
they are computationally feasible, even when n > I5. A number of heuristic procedures have been

developed for solving the QAP [Bazaara 1982, Buffa 1965, Burkard 1984, Volenant 1987].

Another heuristic method by Scriabim [1985] consists of three stages. Firstly, it locates facilities on a
floor plan as a scatter diagram such that the distance between the facilities are inversely related to the
material flows. Then, the space constraints are taken into account for the facility allocation. Finally, a
fine adjustment procedure is applied to obtain an acceptable solution. The heuristic approach by Kaku,
Thompson, and Morton (KTM) [1991] also consisted of three parts. In the first part, several partial
assignments are obtained by the development of a limited bread-first search tree. Serving as starting
points for a construction procedure, these partial assignments are used to construct complete layouts in
the second part. Finally, the third part attempts to improve the constructed layouts in the second part by

applying triple and pairwise exchange routines. Computational experience of KTM shows that the

216

Appendix C

performance of the heuristic as a stand alone solution method deteriorates as the problem gets large ie. n
>15.

Although heuristic procedures have been found useful, they have a major shortcoming which is inherent
in their very nature. It is never possible to tell, except by comparison with the answers provided by exact
procedures, whether or not the final heuristic solutions are least-cost solutions. Sometimes, however,
when a heuristic solution cannot be compared with the exact solution, then it has to be compared with
other heuristic procedures under two major evaluate criteria. These criteria are the total cost of the final
solution provided, and the computational time required for the final solution. Heuristic procedures

resulting in a better solution often involve more computational effort.

C.1.3.1. Pairwise exchange heuristic

A pairwise exchange heuristic (only two machines at time are considered for exchange) is an
improvement procedure where machines trade locations in an attempt to lower the cost for the layout
[Francis 1992, Harmonsky 1992]. A starting layout is needed before a pairwise exchange procedure may

be used. The pairwise exchange heuristic is as follows:

1. Input starting layout.
2. Calculate total cost for the layout.

3. Initialise maximum cost savings for exchanging two machines to zero, and initialise the maximum cost savings
for moving a machine to an unoccupied location to zero.

4. Calculate the cost savings for exchanging each possible pair machines. If the cost savings is greater than the
maximum cost savings, set the maximum cost saving to the cost savings for this exchange and record
machine pair to exchange.

5.1f the shape is to be kept the same then go to step 7, otherwise, continue with step 7.

6.Scan all machines and calculate the cost saving by placing each machine in each unoccupied location. If the
cost savings are greater than the maximum cost savings for a move, then set the maximum cost saving for a
move to this cost saving, and machine numbers and new location are stored.

7.1f the cost saving for both a move and an exchange are equal to zero, then go to step 11, otherwise, go o step 8.

8.If the cost saving for a move is greater than the cost saving for an exchange, then go to step 10, otherwise go to
step 9.
9. Exchange two machines recorded in step 4 and calculate the total cost for the new layout. Go to step 3.

10. Move machines recorded in step 7 to locations recorded and calculate the total cost for the new layout. Go
to step 3.

11. End
In the next section the SDPI algorithm will be explained with a simple example.

C.1.3.2. Steepest-Descent Pairwise-Interchange method (SDPI)

The SDPI procedure is one of the best established and most easily understood heuristic solutions to the
QAP. This procedure considers all possible pairwise interchange of facility locations (there are n(n - 1)
for an asymmetric matrix and n(n - 1)/2 fora symmetric matrix possible pairwise interchange). Then the
pair, which causes the greatest decrease in the total cost, is interchanged, the assignment revised, and the
process repeated until the total cost can be decreased no further. The SDPI heuristic does not guarantee
optimal solution, however, since it only seeks local optima, it does not consider any higher order of

interchange procedures.

217

Appendix C

This heuristic procedure finds a least cost assignment for a given initial assignment ‘a’, a distance matrix
D, and weight matrix W. Thus if a, D, and W are given amongst all the pairwise interchanges of facility
(machines) locations, the one that cause the greatest decrease in the total cost is found and this
interchange made. The assignment is revised, and then the process is repeated until the total cost cannot
be further decreased. The SDPI procedure is stated explicitly, given an initial assignment a and matrices
D and W, in an algorithm as follows:

Compute total cost of initial assignment “a’,

2. Seteto0(eis the maximum and the greatest decrease in total cost of initial assignment ‘a’ found so far for
the given assignment),

3. Setimachine to | and jto 2 machine.

Compute interchanging the location cost of machines.

“n

If interchanging the location cost of machines (assignment ‘a’) is greater then e, go to step 6; otherwise, go
1o step 7.

Set e to interchanging the location cost of the machines (assignment ‘a’), setu to i and set v (o j.

6

7. Ifj =n, go to step 8; otherwise go to step 0.

8. Ifn=n-1, gotostep 11; otherwise go to step 4.
9

Increment j by | and go to step 4.
10. Incrementiby 1, letj=i+ I and goto step 4.
1. If e is positive, go to step 12; otherwise go to step 14.
12. Replace total cost of ‘a’ by total costof a - e.

13. Revise the assignment ‘a’ by interchanging the location of machines u and v and go to step 2.

14. Stop.
The next paragraph explains how the SDPI algorithm works.
The six machines to be located on the shop floor are as shown in Figure C.I.a. Then for a given
assignment of machines a = (2,4, 5, 3, 1, 6) for six site-locations on the shop floor as shown in Figure
C.1.b, with distance matrix D shown in Table C.I and weight W matrix shown in Table C.2. The

distances between locations are assumed to be the rectilinear distances, ie. measured units of location

widths, between centers of locations.

2 | 3

a) b)

5 | &

Figure C. I - Examples of a) locations and b) initial assignment of machines to locations

Sites
plil21314]5]¢6
iTol 1211123

L2 tjofui2ajt]2
S 37211 lol3l2]1
T2 3]0]1]2
sT211 21101
613 |2 112[1]0

Tuble C. 1 - Distance matrix

The total cost for the assignment shown in Figure C.1.b, using the W matrix from Table C.2, is 114.

When the procedure (SDPI algorithm) is applied to the example, for the given assignment (2, 4, 5, 3, 1,

218

Appendix C

6), the values shown in Table C.I and C.2 are computed, and the locations of the machines 2 and 6 are

interchanged, resulting in the assignment (2, 6, 5, 3, 1, 4) with a corresponding total cost of 98. When the
algorithm is applied a second time, given assignment a = (2, 6, 5, 3, 1, 4), the exchange remains zero and
so the procedure stops; thus for the machines: 1 is in Jocation 2; 2 is in 6; 3 is in 5;. 4isin 1, and 6is in 4,

The final assignment is shown in Figure C.2.

Machines
wli1]|21314(5]6
o 1jofl4at6]2]4)4
g 2]4]0]412]2]8
E3]6lal0]2]2]6
§ 421212101612
sl4l2]216]0110
614186 |2]10]0

Table C. 2 - Weight matrix

o

Figure C. 2 - Final assignment of machine locations resulting from applying the SDPI algorithm
A concluding remark made to date [Karisch 1998} is that the SDPI procedure is the best procedure

available for solving the QAP problem. Also Foulds [1998] reported the high computational time needed
for solving integer programming, describing the QAP problem (5000sec seconds on Hewlett-Packard
900) without the assurance of finding an optimal solution. These problems were two dimensional QAP,
and even when they restricted the problem to a one dimensional QAP, the problems were difficult to
solve using the integer programming formulation, with poor computational results being obtained for
such a model. When they modified the model to apply to a more restricted area, ie. a simpler formulation
with up to three facilities per block (cell), computational difficulty occurred again in solving the QAP.

Further details about this modified model are given by Foulds and Wilson [1995].

However, results from previous sections, indicate that only a small size one dimensional problem can be
solved using a formulation which restricts the placement of facilities into blocks, with high

computational time experienced when the problem was formulated in an integer programming form.

These conclusions from Foulds [1998, 1995] research results however were unavailable when the
mathematical modelling of the DCM layout was undertaken. However Karisch’s [1998] analysis states
that the SDPI is still the best algorithm for solving the QAP assignment and the NP-problem
(outperforming SA and EA). Experience from this current research work still confirmed the use of the
SDPI algorithm with integer programming (branch and bound method) to improve the proposed
methodology for the second stage solution. Also, because of the nature of the placement problem these

remarks justify the decision to employ SA for solving the automatic placement of the DCM layout in

stages Il and IV.

219

Appendix C

C.2. Travelling Salesman Problem
C.2.1. Introduction

The Travelling Salesman Problem (TSP) consists of conducting the best possible tour amongst a given
set of cities. This problem seems to be a very simple one at first, but on looking at it with a bit more
attention and detail we find it to be very complex indeed. Thus in the TSP for a given set of cities there is
for each pair of distinct cities a particular distance. The goal is to find an ordering of the cities that
minimises the tour length, where the length of the tour a salesman would make when visiting the cities,

returning at the end to the initial city, is given in the order specified by the permutation.

Consider a set of # cities. The travelling salesman must start from city one (any of the n cities) and travel
to all of the cities exactly once and then return to the first city, for a tour to qualify as valid. Therefore, a
tour is a Hamiltonian Cycle in a graph with ‘a’ nodes. A Hamiltonian Cycle is a path in a graph which
connects all the nodes in the graph exactly once and returns to the starting node. Now the problem is to
find the shortest (or best) path of all the possible paths. The cities may be separated by distances, or their
maybe different costings to travel from one city to another. It can be viewed as a Complete Weighted

Graph for which it is required to find the Shortest Hamiltonian.

The TSP has many applications, from VLSI chip fabrication [Korte, 1988] to X-ray crystallography
[Bland and Shallcross, 1989]. For a detailed history Lawler [1985] may be referenced. The TSP is NP
difficult [Garey, 1989] and so any algorithm for finding optimal tours must have a worst-case running
time that grows faster than any polynomial equation (assuming the widely believed conjecture that Pz
NP). This leaves researchers with two alternatives: either looking for heuristics that merely find near
optimal tours, but do so quickly, or attempt to develop optimisation algorithms that work well in the

“real-world”.

An algorithmic complexity of the TSP is to get the solution of the TSP by examining all possible tours
and selecting the best. However, this would mean that we would be examining n/ possibilities, which
means an algorithmic complexity of O(N/), so although we would be getting our “best” it would not

necessarily be imminent.

Another way in which the TSP may be atypical lies in the high quality of results that can be obtained by
traditional heuristic’s. In addition to the local search approaches, there are many different successive
augmentation heuristics for the T:SP. Such heuristics build a solution (tour) from scratch by a growth
process (usually a greedy one) that terminates as soon as a feasible solution has been constructed. In the
context of the TSP, we call such a heuristic a tour construction heuristic. Whereas the successive
augmentation approach performs poorly for many combinatorial optimisation problems, in the case of the
TSP many tour construction heuristics do surprisingly well in practice. The best typically get within
roughly 10-15% of optimal in relatively little time. Furthermore, “classical” local optimisation
techniques for the TSP yield even better results, with the simple 2-Opt heuristic typically getting within

3-49% of the optimal and the algorithm of Lin and Kernighan [1973] typically getting within 1- 2%.

220

Appendix C

Moreover, for geometric data the above mentioned algorithms all appear to have running time growth
rates that are O(N?), ie., subquadratic, at least in the range from 100 to 1,000,000 cities. These successes
for traditional approaches leave less room for new approaches like tabu search, simulated annealing,

genetic algorithms etc. to make meaningful contributions.

C.2.1.1. The Problem and its Importance

If a salesman, starting from his home city, is to visit exactly once each city on a given list and then return
home, it is plausible for him to select the order in which he visits the cities so that the total of the
distances travelled in his tour is as small as possible. This is assuming that the salesman knows, for each
pair of cities, the distance from one to the other. Then he has all the data necessary to find the minimum,

but it is by no means obvious how to use this data in order to get the answer.

Figure C. 3 - Showing that the salesman must decide which tour will allow him to minimise travel cost

The importance of the TSP comes not from the wealth of applications, since the number of cases where
the mathematical model of the TSP precisely fits an engineering or scientific situation have not to date
been numerous, but from the fact that it is typical of other problems of its type ie. combinatorial
optimisation, which are also trying to minimise the total distance. Thus, the problem is one of
optimisation. Nevertheless, one cannot immediately employ the methods of differential calculus by
setting derivatives to zero, because it’s a combinatorial situation: choice is not over a continuum but over

the set of all tours.

By the late 1960’s it was appreciated that there appeared to be a significant difference between hard
problems such as the TSP, for which the only available optimisation algorithms were of an enumerative
nature, and other problems for which good algorithms existed. Good is a term which was coined by
Edmonds [1965] to describe solution methods whose running time increases polynomially with problem
size. Tt was empirically concluded that the computational effort demanded by problems like the TSP for
their solution would grow as a super polynomial with problem size. Insight emerged that many of the
problems suspected to be inherently hard are all computationally equivalent. Thus, in a sense, a
polynomial time algorithm for one of them could also be used to solve all others in polynomial time.
These problems are called NP-hard. From the discussion above it is clear that not only is the TSP

important for its real world applications but also for the rest of the NP-hard problems.

C.2.2. Methods for Solving the TSP

One of the more practical consequences of the NP-hardness of a problem is that it limits the choice to
three solution strategies. To start with, one may not accept the apparent difficulty of the problem at hand

and try to find some special structure that places it in a well-solved subclass. If that does not work out,

221

Appendix C

there is no guarantee that an optimal solution can be found in a reasonable amount of time. To
compromise on either of the two dimensions one can insist on the optimality of the solution (and risk
spending a lot of time), or insist on a fast solution method (and accept the possibility of a suboptimal
solution). The use of cutting planes and branch and bound and their combinations have impressive
algorithmic consequences. Another enumerative optimisation method, the recursive technique of

dynamic programming, works as follows:

The Dynamic Programming algorithm for the N city problem finds, for each i, the shortest path from
city 1 to city i, that visits all the other nodes in {2, 3... NJ. Once these paths are found, it is a simple
matter to compute the shortest tour. To find these paths, the algorithm solves a more general problem,
Thus for any S ¢ {2, ... ,N}and i € S, letan (S, i) path be a path which starts at city 1, visits each city in
S exactly once, and no other city, and ends up in the city i. Let Cost /S, i] stand for the length of the
shortest (S, i) path. Then Cost [S, i, where § 22, satisfies the following equation:
Cost[S, i] = min {Cost[S—{i}, k] + Crif- KeS-{i}

The algorithm described above *‘builds up’ the values of Cost [S, i] for larger and larger sets of S until
Cost [{2,3, ..., N}, i] is obtained. Thus dynamic programming works by putting together solutions of
bigger and bigger subproblems. The estimated running time of the above described method is omn*2").

The Greedy algorithm travels from the present city to the next nearest city, which has not yet been

visited. This seems to give a very ‘nice’ and close to optimal solution, and simple observation would give

the running time of this method O(n?). This is very fast, but does not necessarily give the best solution as

demonstrated in the diagram below.

FoRO
@ ,w_

Figure C. 4 - Solution of 13 City Problem by Greedy Algorithm

was not achieved. By simple ins

Function Approximate Values
N 10 100 1,000
NlogN 33 664 9,966
N 1,000 1,000,000 10°
10°N’ 10" 1072 10°°
2Y 1,024 1.27 10°° 1.05 10°”
NeeN 2,099 1.93 107 7.89 10”7
N/ 3,628,800 1078 4 167

Table C. 3 - Time complexities and number of calculations

From the diagram above it is clear that even
pection, if the routes had been 9-11-10-12, or (4-12-5 and 7-10-11-9-8-

after following the greedy algorithm the best possible tour

1), both these tours would have yielded better results than the one demonstrated. The greedy algorithm of

course falls in the second option, ie. speed is preferred over optimality. In fact, this second option of

222

Appendix C

approximation is the one most frequently chosen in practice.

As seen in Table C.3 the execution time, on the left-most column, gives the time complexities. It is clear
from the table that while functions with O(N) increase linearly, O(N!) functions have a very visibly
astronomical growth with increase in elements. It is now very clear that a polynomial time complexity
will be much more acceptable (provided it gives a reasonable accuracy), than a 2" or a worse N! order.
Consider for example 20 elements. If the time complexity is N!, then the solution on one of the most
powerful computers, would take a few thousand years, which is not at all acceptable. This only shows

how important it is to take into consideration the time complexity of the considered algorithm.

C.2.2.1. Heuristic Methods
The NP-Hardness of the TSP, as discussed above, makes it unlikely that any efficient algorithm can be

guaranteed to find optimal tours when the number of cities is large. Design of ‘heuristic’ algorithms,
while not guaranteed to find optimal tours, do find what one hopes are ‘near-optimal’ tours. There is the
possibility of polynomial-time heuristics that provide good guarantees for all TSP instances, but this is

only in the unlikely event of P = NP.

C.2.2.1.1. Heuristics for Tour Construction
Every TSP heuristic can be evaluated in terms of two key parameters: its running time and the quality of

the tours that it produces. Presented here is the most important undominated heuristics, where a heuristic
is undominated if no competing heuristic finds better tours and runs more quickly, and four heuristics
that only work for two-dimensional classes. The four tour construction heuristics covered in detail are
Nearest Neighbour, Greedy, Clarke-Wright, and Christofides. Each of these has a particular significance

in the context of a local search.

The first three provide plausible mechanisms for generating starting tours in a local search procedure,
and interesting lessons can be learned by evaluating them in this context. The fourth represents in a sense
the best that tour construction heuristics can currently do, and so it is a valuable benchmark. Readers
interested in the full picture are referred to more extensive studies such as those of Bentley [1990a,

19921, Reinelt [1994], Junger, Reinelt, and Rinaldi [1994], and Johnson and Rothberg [1996].

The Clarke and Wright Savings Algorithm [1964] is as follows. First select any node as the central
depot, and denote it as node one. Compute savings by:

S[j =Cy+ Cij—- C,'_,' f()r i,j =23 ..,1
Order the savings from largest to the smallest. Starting at the top of the savings list and moving
downwards, form larger sub-tours by linking appropriate nodes [and j. Repeat this process until a tour 18

formed. The number of computations is about O(N’logN).

Perhaps the most natural heuristic for the TSP is the famous Nearest Neighbour algorithm (NN). In this
algorithm one mimics the traveller whose rule of thumb is always to go next to the nearest as yet
unvisited location. Now, to construct an ordering ¢ p(1),..., ¢ p(N) of the cities, with the initial city ¢ p(1)

chosen arbitrarily, in general ¢ p(i +) is chosen to be the city ¢, that minimises {d(c p(i) , ¢) - k =/

223

Appendix C

p(j)}. The corresponding tour traverses the cities in the constructed order, returning to ¢ p(1) after visiting
city ¢ p(N) . The running time for NN as described is Q(N 2). No substantially better guarantee is
possible, however, there are instances for which the ratio grows as Q(logN) [Rosenkrantz, Stearns, and

Lewis, 1977].

Some authors use the name Greedy for Nearest Neighbour, but it is more appropriately reserved for the
following special case of the “greedy algorithm” of matroid theory. In this heuristic, an instance as a
complete graph with the cities as vertices and with an edge of length d(c;, ¢;) between each pair {c;, ¢; }
of cities is viewed. A tour is then simply a Hamiltonian cycle in this graph, ie, a connected collection of
edges in which every city has degree two. To build up this cycle one edge at a time, the procedure starts
with the shortest edge, repeatedly adding the shortest remaining available edge, where an edge is
available if it is not yet in the tour, and if adding it would not create a degree three vertex or a cycle of
length less than N. The Greedy heuristic can be implemented to run in time Q(N 2 logN) and is thus

somewhat slower than NN [Ong and Moore, 1984].

The Insertion Procedure for tour construction takes a sub-tour on & nodes at iteration k& and attempts to
determine which node, not in the sub-tour, should join the next subtour (the selection step) and then

determines where it should be inserted in the subtour (the insertion step).

The Nearest Insertion starts with a subgraph consisting of a node x only, then finds a node y such that ¢,y
is minimal and forms sub-tour x-y-x. The selection step, given a sub-tour, finds node y which is not in the
sub-tour closest to any node in the sub-tour. The insertion step finds the arc(x,z) in the sub-tour which
minimizes ¢,y + ¢, — Cx , then inserts y between x and z. The selection and insertion is repeated until a
Hamiltonian cycle is obtained. The number of computations in the nearest insertion algorithm is
O(N’logN).

The next method is the Arbitrary Insertion. Here again a subgraph is started consisting of x only. Then
node y is located such that c,, is minimal and forms subtour x-y-x. Finally node z is arbitrarily select,

which is not in the sub-tour, to enter the sub-tour. The complexity is O(N?).

The Cheapest Insertion starts with a subgraph consisting of x only and finds node y such that ¢, is
minimal and forms sub-tour x-y-x. Then finds (x, z) in subtour and y, such that ¢y,+¢,~Cy, is minimal, then

inserts y between x and z. The number of computations required is O(N?logN).

The Farthest Insertion starts with a subgraph containing only x and finds node y such that ¢,y is minimal
and forms sub-tour x-y-x. Then given a subtour, finds node z which is not in the subtour, and is farthest

from any node in the sub-tour. This again requires O(N’) computations.

The final method for tour construction considered here is the Christofide’s Heuristic [1976], which
begins by finding the minimum spanning tree T of graph G, then identifies all the odd degree nodes using
the original cost matrix. The branches from the matching solution are added to the branches already in T,
obtaining a Euler cycle. In this sub-graph every node is of even degree, although some nodes may have a

degree greater than 2. The next step is to remove the polygons over the nodes with degree greater than 2,

224

Appendix C

and transform the Euler cycle into a Hamiltonian cycle. The number of computations in this procedure is
O(N’). In most cases, the number of odd cases will be considerably less than n [Edmonds 1965, Gabow
1973, and Lawler 1976]. A modification of the Christofides algorithm with the same worst-case
guarantee and an O(NZ‘S) running time, can be obtained by using a matching algorithm and halting once
the matching process is achieved. This is guaranteed to be no longer than / + (1/N) times optimal
[Gabow 1991]. However, this approach has never been implemented, and the competition from local
search algorithms is sufficiently strong that the programming effort needed to do so would not be
justified.

Summarised results obtained by Johnson and Rothberg [1996] for the four tour construction heuristics on

random Euclidean instances and random distance matrices are as follows:

1. Results for instances from the TSPLIB were similar to those for the random Euclidean instances.
2. Running times for instances of similar size were comparable with the tour quality for NN.
3. Greedy being slightly worse on average than for the random instances.

4. The tour quality for Clarke and Wright, and Christofides beihg slightly better.

C.2.2.1.2. Heuristics for Tour Improvements

Tour improvement procedures includes branch exchange heuristics. Branch exchange heuristics work as

follows:

o First, find an initial tour, generally this tour is chosen randomly from the set of all possible tours.

o Improve the tour using one of the branch exchange heuristics.

o Continue trying to improve by the branch exchange heuristic, until an additional improvement
can be made, at which the branch exchange procedure terminates at a local optimum.

o For a given k, define a k-change of a tour as consisting of the deletion of k branches in a tour and
their replacement by k other branches to form a new tour, then a tour is k-optimal if it is not
possible to improve the tour via a k-change.

The following aspects are noted:

o The final two steps in the above procedure will generate this k-optimal tour.

o Since the 2-opt exchange procedure is weaker than the 3-opt exchange procedure, it will
generally terminate at an inferior local optimum.

e Similarly, a k-opt exchange procedure will generally terminate with a better local optimum than
will a 3-opt exchange procedure.

C.2.2.1.3. Other Heuristic Methods
The Composite Procedure can be stated as follows: Obtain an initial tour using one of the tour
construction procedures. Apply a 2-opt procedure to this tour. Then apply a 3-opt procedure to the new

tour. This composite method is found to be relatively fast computationally and gives exceptional results.

225

Appendix C

The idea behind the composite procedure is to get a good initial solution rapidly and hope that the 2-opt
and 3-opt procedures will then find an almost optimal solution. In this way, the 3-opt procedure, which is
the computationally most expensive of the three, need be used only once. T here can, of course, be many
possible variants to the above procedure, some of which are now discussed. One variant would be to run
this procedure without the 2-opt procedure. The next would be to run it without the 3-opt procedure, this
one in particular will give very fast running times and very accurate results but would not expect to out-
perform the basic procedure discussed previously. However, one could also run the procedure a few
times, using different tour construction algorithms every time. This variant does give better results than

the basic procedure.

Next is the Local Search algorithm. The algorithm begins with a notion of a neighbourhood structure of
the set of all feasible solutions (tours). Then define the neighbourhood of a tour T to be all those tours
that can be obtained by changing at most k edges of T. One can search for local k-opt tours by starting
with a random tour T/ and constructing a sequence of tours T/, T2, ... Each tour is obtained from the
previous one by performing a k-change, ie. by deleting k links and reconnecting the loose ends so as to
still have a legal tour. The k-changes are required to decrease the length of the tour. When the process
stops at a tour for which there is no possible improvement under a k-change, the tour is k-opt. In order to

find the globally optimal tour, we have to repeat the search for many other random starts.

C.2.2.1.4. Some Modern Heuristics
Simulated Annealing is used to approximate the solution of very large combinatorial optimisation

problems. Here it is required to find the configuration that minimises a certain cost function flx). The

algorithm can then be formulated as follows:

Starting off at an initial configuration, a sequence of iterations is generated. Each iteration consists of the
random selection of a configuration from the neighbourhood of the current configuration, and the
calculation of the corresponding change in cost function AE. The neighbourhood is defined by the choice
of a generation mechanism, ie. a “prescription”, to generatc a transition from one configuration into
another by a small perturbation. If the change in cost function is negative, the transition is
unconditionally accepted. If on the other hand the cost function increases, the transition is accepted with
a probability based upon the Boltzmann Distribution: P =T where T is the current “temperature” - the
control parameter. This temperature is gradually lowered throughout the algorithm, from a sufficiently
high starting value, to a “freezing”’ temperature, where no further changes occur. In practice, the
temperature is decreased in stages, and at each stage the temperature is kept constant until the thermal
quasi-equilibrium is reached. In order to apply the Simulated Annealing algorithm one must decide in

advance the following: the initial temperature, the termination condition, the reduction function o and the
stopping condition.

The Tabu Search is an iterative procedure for solving discrete combinatorial optimisation problems. It

was first suggested by Glover [1990] and since then has become increasingly used. It has been

226

Appendix C

successfully applied to obtain optimal or sub-optimal solutions to scheduling, timetabling, lay out

optimisation and of course, the TSP.

The basic idea of this method is to explore the search space of all feasible solutions by a sequence of
moves. A move from one solution to another is the best available. However, to escape from locally
optimal but not globally optimal solutions and to prevent cycling, some moves, at one particular iteration,
are classified as forbidden or tabu (or taboo). Tabu moves are based on the short-term and long-term
history of the sequence of moves. A simple implementation, for example, might classify a move as tabu if
the reverse move has been made recently or frequently. Sometimes, when it is deemed favourable, a tabu
move can be overridden. Such aspiration criteria might include the case which, by forgetting that a move
is tabu, leads to a solution that is the best obtained so far. Halting when a certain threshold for an
acceptable solution has been achieved, or when a certain number of iterations have been completed, may

be employed to solve sub-optimal problems.

C.2.2.2. Other Methods for the TSP

Presented in this section are some other earlier methods that were developed and used to solve the TSP.

C.2.2.2.1. Integer Programming
As an introduction for S (path), let S’ be a partition of the integers g = L2..,nie.SNS =Land S

wS’=(1,2,...,n}. For symmetric distances let x,, = O if the undirected arc (p, ¢) is not in a tour and x,, =
1 if the undirected arc (p, g) is in a tour. An optimal tour can be found by solving the integer program:
. q=n q-1

mmZ=Z g=2 Z p=1 Cpg Xpq
subject to: Xpq =0, L (p=1,...,9-1; 4=2,..., n).
The difficulties in finding an optimal tour in solving the integer program of this theorem are the.
enormous number of loop constraints (2! _ 1) and the requirement that the (n’ - n)/2 variables x,, equal 0
or I for symmetric distances. The solution of a linear program with the loop constraints and 0 <x,, <1
generally will not satisfy x,, = 0 or /.
However, in 1954 an optimal solution to a 42-city problem was found using this formulation. A large
number of loop constraints were overcome, beginning with only a few, and then adding new ones only as
they were needed to block sub-tours. Combinatorial arguments were used to eliminate fractional
solutions and to find an optimal tour. Finally, it was demonstrated that for the problem at hand, an
ordinary linear program could be devised whose solution gave integer valued x,,’s representing the
optimal tour. The constraints that rule out some fractional solutions, but no integer solutions, were

forerunners to the ‘cutting plane’ constraints for solving any integer linear program.

C.2.2.2.2. Branch and Bound

Enumerative (branch and bound, implicit enumeration) methods solve a discrete optimisation problem by

breaking up its feasible set in to successively smaller subsets, calculating bounds of the objective

227

Appendix C

function value over each subset, and using them to discard certain subsets from further consideration.
The bounds are obtained by replacing the problem over a given subset with an earlier (relaxed) problem,
such that the solution value of the latter bounds equal that of the former. The procedure ends when each
subset has either produced a feasible solution, or has been shown to contain no better solution than the
one already in hand. The best solution found during the procedure is a global optimum. The outline for

two versions of a branch and bound procedure for the TSP is presented as follows:

Prior to using any of these versions, a relaxation R of the TSP must be chosen. Both versions carry at all
times a list of active subproblems. They differ in that the first version solves a relaxed subproblem R,
only when node £ is selected and taken off the list, whilst the second version solves each relaxed
subproblem as soon as it is created, ie. before it is placed on the list. Although the branch and bound
procedures used in practice differ among themselves in many details, nevertheless all of them can be
viewed as variants of one of these two versions. The first version of the branch-and-bound for the TSP is

as follows:

1. Initialisation: Put TSP on the list (of active subproblems). Initialise the upper bound at U = .

2. Sub-problem Selection: If the list is empty, stop; the tour associated with U is optimal (or, if U = e, TSP
has no solution). Otherwise choose a subproblem TSP, according to the sub-problem selection rule and
remove TSP, from the list.

3. Lower Bounding: Solve the relaxation Ry of TSPy or bound v(R,) from below, and let L; be the value
obtained.

If Ly 2 U, return to the Sub-problem selection step.

5. If Ly < U and the solution defines a tour for TSP, store it in place of the previous best tour, set Ue&Liand
go to the Optional Reduction Step below(Note, L, < U and the solution does not define a tour).

6. Optional Upper Bounding: Use heuristic to find a tour for TSP. If a better tour is found than the current
best, store it in place of the latter and update U.

7. Optional Reduction: Remove from the graph of TSP, all the ares whose inclusion in a tour would raise its
value above U.

8. Branching: Apply the branching rule to TSPy, ie. generate new sub-problems TSPy,... , TSP, , place them
on the list and go back to the Sub-problem selection step.

Second version is as follows:

Initialisation: As in the previous version, but solve R before putting TSP on the list.
Sub-Problem Initialisation: Same as in the version above.

Optional Upper Bounding: Same as in the version above.

Optional Reduction: Same as in the previous version.

Branching: Use the branching rule to define the set of sub-problems TSPy, ..., TSPy, to be generated from
the current sub-problem TSP,.

6. Lower Bounding: If all the sub-problems to be generated from TSPy according to the branching rule have
already been generated, go back to the Sub-problem selection step. Otherwise generate the next sub-
problem TSPy, defined by the branching rule, solve the relaxation Ry of TSPy or bound of v(Ry) from
below, and let Ly be obtained.

SR NN~

If Ly 2 U, repeat this step.

If Ly < U and the solution defines a tour for TSP, store it in place of the previous best tour, set U < Ly and
repeat this step.

If Ly < U and the solution does not define a tour, place TSPy in the list and repeat this step.

In both versions the procedure can be represented by a rooted tree (search tree or branch and bound tree)

228

Appendix C

whose nodes correspond to the sub-problems generated, with the root node corresponding to the original
problem, and the successor nodes of a given node i associated with TSP, corresponding to the sub-

problerns TSPy, ..., TSP defined by the branching rule.

C.3. Solving TSP by Simulated Annealing

The invention of simulated annealing actually preceded that of tabu search, like tabu search simulated
annealing allows uphill moves. However, whereas the tabu search in essence only makes uphill moves
when it is stuck in local optima, simulated annealing can make uphill moves at any time. Moreover,
simulated annealing relies heavily on randomisation, whereas the tabu search in its basic form chooses its
next move in a strictly deterministic manner. Nevertheless, simulated annealing is still basically a local
search algorithm, with the current solution wandering from neighbour to neighbour as the computation
proceeds. The key difference from other approaches is that simulated annealing examines neighbours in
random order, moving to the first one seen that is either better or else passes a special randomised test.
As originally proposed by Kirkpatrick [1983] and Cerny [1985], the randomised test is the one invented
by Metropolis [1953] for simulating the physical behaviour of atoms in a heat bath. It involves a control
parameter called the temperature, and in simulated annealing that control parameter is continually

lowered as the search proceeds in a simulation of the physical annealing process.

The TSP was one of the first problems to which simulated annealing was applied, serving as an example
for both Kirkpatrick [1983] and Cerny [1985]. Since then the TSP has continued to be a prime test for the
approach and its variants. In this section, consideration is given to the resulting TSP algorithms and how
they perform. Most adaptations have been based on the simple schema presented in Figure C.5, with
implementations differing as to their methods for generating starting solutions (tours) and for handling
temperatures, as well as in their definitions of equilibrium, frozen, neighbor, and random. Note that the
test in Step 3.1.4 is designed so that large steps uphill are unlikely to be taken except at high temperatures
T. The probability that an uphill move for a given cost D will be accepted, declines as the temperature is

lowered. In the limiting case, when T = 0, the algorithm reduces to a randomised version of iterative
improvement, where no uphill moves are allowed at all.

I. Generate a starting solution S and set the initial champion solution $* = §.
2. Determine a starting temperature T.
3. While not yet frozen do the following:
3.1. While not yet at equilibrium for this temperature, do the following:
3.1.1. Choose a random neighbour S* of the current solution.
3.1.2. Set D = Length(S’) - Length(S).
3.1.3. If D > 0 (downbhill move):
Set S =8
If Length(S) < Length(S*), set S*=§.
3.1.4 Else (uphill move):
Choose a random number r uniformly from [0,] I3
Ifr <e-D/T, setS=S5.
3.1.5 End “While not yet at equilibrium” loop.

229

Appendix C

3.2 Lower the temperature T.
3.3 End “While not yet frozen”loop.
4, Return §*.
Figure C. 5 - General schema for a simulated annealing algorithm.

From the beginning, there has been a dichotomy between the way the schema of Figure C.5 is
implemented in practice and in theory. In theory, simulated annealing can be viewed as an optimisation
algorithm. The process can be interpreted in terms of Markov chains and proved to converge to an
optimal solution if one ensures that the temperature drops no more quickly than C /log n, where Cisa
constant and n is the number of steps taken so far. Typically, however, the convergence to an optimal
solution under such a temperature schedule will take longer than finding such a solution by an exhaustive

search. Thus, such theoretical results are essentially irrelevant to what can be accomplished in practice.

Instead, starting with Kirkpatrick [1983] and Cerny [1985], researchers have tended to use cooling
schedules that drop the temperatures much more rapidly, say roughly as C* , where C < I. This can be
realised for instance by performing a fixed number of trials at each temperature, after which one
arbitrarily declares “equilibrium” and reduces the temperature by a standard factor, say 0.95. Under such
an exponential cooling regime the temperature will, after a polynomially bounded amount of time, reach
values sufficiently close to zero that uphill moves will no longer be accepted and can be cleared for
freezing to have set in. This happens even when, as Kirkpatrick originally suggested, one starts at a
temperature 7 that is sufficiently high that essentially all uphill moves are accepted. With such a
polynomially bounded cooling schedule, simulated annealing is only an approximation algorithm (like all
our other local search variants), but it would be hard to expect more from SA for an NP-hard problem
like the TSP. Theory so far has little to say about this polynomial-time bounded version of simulated
annealing, except in the context of specially invented problems and neighbourhood structures. Much of
the comments is derived from the study of Johnson [1996], to which the reader is referred for additional

technical details.

The next section presents a baseline implementation similar to that of the original Kirkpatrick paper and
reports on its behaviour. Section C.3.2 describes and evaluates two key ideas, neighbourhood pruning
and low temperature starts. These provide more than constant factor speedups and are essential if

annealing is to be competitive with the more traditional TSP heuristics.

C.3.1. A Baseline Implementation of Simulated Annealing for the TSP
In adapting simulated annealing to the TSP, both Kirkpatrick [1983] and Cerny [1985] suggested using a

neighbourhood structure based on 2-Opt moves, just as was later done for tabu search. Cerny [1985] also
considered the simpler move in which the positions of two cities are interchanged, but the segment
between them is left unchanged. However experiments demonstrated that this was not as an effective
approach. The results in these two original papers were unfortunately limited mainly to small examples
and running times were not reported. Kirkpatrick [1983] did run the algorithm on one problem of

reasonable size (some 6000 cities), but they did not provide any detailed information on the quality of the

230

Appendix C

ation found, other than that, it was “good”. Thus, the value of simulated annealing for the TSP was

sol

initially unclear.

There does, however, appear to be a serious defect in the above straightforward approach to adapting
simulated annealing to the TSP. As will be seen, the number of steps at each temperature (called the
temperature length) needs to be at least proportional to the neighbourhood size if a worthwhile tour
quality is to be contained. This is not too onerous a restriction for problems like graph partitioning, where
typical neighbourhood sizes are O(N) (Kirkpatrick [1983], Johnson [1989]). For the 2-Opt TSP
neighbourhood, however, the size is proportional to N’ , so that even if the number of distinct
termperatures considered does not grow with N, an algorithm is still available whose running time is at

least O(N?) with a large constant of proportionality.

In summary, from Johnson, Aragon and Schevon [1996], this baseline implementation produces worse
tours than 3-Opt on average, whilst taking almost 300 times as long when N = 100, and over 7500 times
as long when N = 1000. With even more annealing time, however, better results can be obtained.
[ncreasing running time by a factor of 10 (by increasing temperature length to /ON(N - 1)) reduces the
average final percentage excess for N = 100 from 3.4% to 1.9%; significantly better than 3-Opt (but

taking 3000 times as long).

Thus if simulated annealing is to be useful for the TSP, more ways are required to get the effect of longer
temperature lengths whilst somehow simultaneously reducing the overall running time substantially. It is
intuitively clear that speeding up the algorithm by simply reducing the temperature length (or using fewer
temperatures) can only make the average tour length worse. Early follow-ups on Kirkpatrick [1983] that
in effect took this approach, such as Nahar, Sahni, and Shragowitz [1984] and Golden and Skiscim
[1986], bear this out. Nahar et. al restricted their runs to just six temperatures (obtained using a reduction
factor of 0.90) and adjusted the temperature length. Golden and Skiscim used 25 temperatures (evenly
rather than geometrically spaced) as well as an adaptive temperature length that varied from temperature
to temperature, but whose average value was not likely to grow as N°. In so far as comparisons can be
made, both resulting algorithms appear to have found worse tours than those found by SA, whilst still
remaining significantly slower than the neighbour list implementations of 3-Opt and Lin - Kernighan

[1990].

C.3.2. Improvement or Speed - Up Techniques

Effective speed - up approaches do exist, fortunately. Bonomi and Lutton [1984] described two key ones

in another early follow - up to the Kirkpatrick [1983] paper.

C.3.2.1. Neighbourhood Pruning
The first (and more crucial) idea was to prune the neighbourhood structure. Although there are O(N)

possible 2-Opt moves that can be made from any tour, a 2-Opt move that introduces a long edge into a
good tour will typically make things much worse, and hence is unlikely to be accepted. If a way can be

found to exclude such moves a priori, it might be able to greatly speed up the algorithm without

—

231

Appendix C

significant loss in performance. Bonomi and Lutton suggested the following approach, applicable to

geometric instances:

e As in the implementation of 2-Opt itself, view: a 2-Opt move as determined by a choice of a city
t;, one of its tour neighbours by f,, and a third city by £; which is to replace ¢, as a tour neighbour

of t,. Now restrict the choice of ¢; as follows:

o Identify the smallest square containing all the cities, and divide it up into m’ grid cells for some
integer m. Then consider for #; only those cities that are either in the same cell as £; or in a

neighboring cell.
Bonomi and Lutton combined neighbourhood pruning with the additional key idea outlined in the next

section.

C.3.2.2. Low Temperature Starts
The second idea was to abandon the high temperature portion of the annealing schedule and instead start

with a relatively low temperature. To reduce the probability that the process might be immediately
trapped in an unproductive region, they (Bonomi and Lutton) proposed using a tour construction
heuristic to generate the starting tour (as in traditional local optimisation). This idea of low temperature
starts was also proposed by Kirkpatrick [1983], who used it without neighbourhood pruning, but still got
sufficient speed-ups to make longer temperature lengths possible and thus improve on the results
obtainable by SA baseline implementations. Using Nearest Neighbour starting tours on 400 and 900 city
random geometric instances, he appears to have obtained average percentage excesses of roughly 2.1%
and 2.4% respectively, only slightly worse than those of Lin-Kernighan. Kirkpatrick used the rectilinear
as opposed to the Euclidean metric, and average percentage eXcesses for 2-Opt, and 3-Opt. Typically LK
are not significantly effected by such a change in the Euclidean metric. He did not compute the
Held-Karp lower bounds for these instances, so his average percentage excess to be estimated based on
the average Held-Karp lower bound for instances of this type and size, are determined using the

techniques of Johnson and Rothberg [1996].

C.3.2.3. Combining the Two
Combining the two ideas of low temperature starts and neighbourhood pruning, as is done by Bonomi

and Lutton [1984], should yield even better results. For starting tours, Bonomi and Lutton [1984] used a
simple heuristic that generates a tour by stringing together tours for the individual cities into one overall
tour, with the tour for each city connected to tours in adjoining cities. They concentrated on random
Euclidean instances and used an annealing schedule consisting of 50 temperatures with an initial
temperature of LN , where L is the side of the square in which the cities are randomly placed. They used
a reduction factor of 0.925. They do not specify their temperature length, but it apparently grew more
slowly than their neighbourhood size, which for random geometric instances can be expected to grow as
O(N). This means that the ratio of their temperature length to neighbourhood size decreased as N

increased. Johnson [1996] suggested that average percentage excess should have increased significantly

232

Appendix C

as N increased, and this indeed seems to have been the case. Although for instances from 200 to 400
cities they claim to have beaten 2-Opt substantially, this is not true for the one large instance they
considered, a 10,000-city random geometric. Based on the Held-Karp estimates of Johnson [1996] for
such instances, the tour length they report is likely to be roughly 6.9% in excess of the Held-Karp bound.
This is far worse than the 5.0% that the neighbour list 2-Opt averaged on tested examples (200 to 400
cities). Just how well their implementation performs for the smaller instances is difficult to judge, as they
only report normalised differences between the annealing and 2-Opt tour lengths, and the quality of the

latter depends heavily on the details of their (unspecified) implementation of 2-Opt.

C.3.3. 2-OPT

In this section, local improvement algorithms for the TSP based on simple tour modifications (exchange
heuristics) are considered. Such an algorithm is specified in terms of a class of operations (exchanges or
moves) that can be used to convert one tour into another. Given a feasible tour, the algorithm then
repeatedly performs operations from the given class, so long as each reduces the length of the current
tour, until a tour is reached for which no operation yields an improvement (a locally optimal tour).
Alternatively, this can be viewed as a neighbourhood search process, where each tour has an associated
neighbourhood of adjacent tours, ie., those that can be reached in a single move, and thus one continually

moves to a better neighbour until no better neighbour exists.

c““d

Figure C. 6 A 2 —opt change: original tour on the left and resulting tour on the right
Among simple local search algorithms, the most famous is the 2-Opt. Croes [1958] first proposed the

2-Opt algorithm, although the basic move had already been suggested by Flood [1956]. This move
deletes two edges, thus breaking the tour into two paths, and then reconnects these paths in the other
possible way. (Figure C.6). Note that this picture is a schematic; if distances were as shown in the figure

depicted here, it would be counterproductive and so would not be performed.

C.3.3.1. Bounds on Expected Behaviour

Many of the questions raised in the previous sections have also been addressed from an overall case
study point of view, in particular for random Euclidean instances and their generalisations to higher
dimensions and other metrics. At present it is not know how to prove tight bounds on the expected
performance ratios for sophisticated TSP heuristics like the 2-Opt in these models. In the 2-Opt, however,
a first step may have been provided by Chandra, Karloff, and Tovey [1994], who have shown that for any
fixed dimension d, the expected ratio of the length of the worst 2-optimal tour to the optimal tour length

is bounded by a constant. This means that on average 2-Opt can be no worse than some constant times

233

Appendix C

optimal, which is a significant improvement over many worse cases.

Analogous improvements have been obtained with respect to the running time, on the assumption of
comparing the unrestricted worst case to the above 2-dimensional average case model. Whereas in the
worst case an exponential number of moves may be required before local optimally is reached, the
expected number of moves (even starting from the worst possible tour) is polynomial bounded by the
two-dimensional model. Under the Euclidean metric the bound is O(N*°logN) and under the rectilinear
metric it is O(N°logN), as shown by Chandra and Tovey [1994], improving on earlier results of Kem
[1989]. Given a method for generating starting tours with expected length cN"? (presumably achieved

from most of the tour construction heuristics), these bounds can be reduced by a factor of N2,

This paragraph summarises the experimental results obtained using the neighbour list implementations of
the 2-Opt by Johnson [1996]. The full picture and results can be found in the reference itself. However it
should be noted that these implementations make certain tradeoffs, giving up the guarantee of true 2-
Optimally in favour of greatly reduced running times. Neither tour quality, nor the numbers of moves
made, appear to be substantially affected by these changes, at least however, for the considered random
Euclidean instances. Interestingly, the presented experimental results from Johnson [1996] show that the

algorithms perform much better in practice than the theoretical bounds might indicate.

C.3.4. SA applied to TSP

To get a clearer idea of the advantages of low temperature starts and neighbourhood pruning for the TSP,
a TSP example is now implemented. An obvious drawback to the pruning scheme of Bonomi and Lutton
[1984] is that its ability to substantially reduce the overall neighbourhood size depends crucially on the
fact that the cities are uniformly distributed. A robust neighbour list 2-Opt is now considered in terms of
the notation described. Thus #; is simply restricted to the nearest 20 neighbours of f,. This results in at
most 40N neighbours for a given tour. All N cities are candidates for f;, both tour neighbours of #; are
candidates for t,, and #, is uniquely determined, given prior choices for t,, t;, and 2. (Note that some of
these 40N neighbours may actually represent the same tour). To improve performance, augmenting the

above static pruning rule for ; can be combined with an additional dynamic one thus:
o At the beginning of each temperature T the neighbour list for each city c is restricted as follows:

o Let ¢’ be the current tour neighbour of ¢ that is farther away. When r, = c¢ at this temperature,
candidates for #; will be restricted to those cities ¢” on the neighbor list for ¢ such that a 2-Opt
move that increases tour length by d(c, ¢”’) - d(c, ¢’) would be accepted with probability at least
0.01, ic. those cities ¢’ for which e e} -die. eWT > 0 0]. Tf the neighbour lists are sorted by
increasing distance, this can be accomplished by simply maintaining a pointer to the last
acceptable city on each list, with the pointers updated once per temperature. As to temperature
length in this dynamic environment, this is fixed at some constant multiple “a” of the total
lengths of the initial neighbour lists. Note that this means that the effective temperature length

actually increases as the dynamic pruning starts shrinking the neighbour lists. The increase is

234

Appendix C

typically from the initial “a” X current total neighbourhood size, to 4 or 5 times that amount.

As to low temperature starts, Kirkpatrick {1983] in this instance uses the Nearest Neighbour starting tour,
utilising Bonomi and Lutton [1984] in letting the initial temperature be proportional to L/ VN for random
Euclidean instances, although the value 1.5 L/W is chosen rather than the L/YN of Bonomi and Lutton
[1984]. This results in an initial acceptance rate of about 50%, and it allows the tour length initially to
grow by about a factor of two from its starting value. For other types of instances 50% initial acceptance
rate is considered as a criterion determining an appropriate starting temperature by trial and error,
although in retrospect it appears that multiplying the length of the Nearest Neighbour tour by (1.5/N)
typically gives a reasonable value, at least for geometric instances. The temperature reduction factor of

0.95 is retained from the previous baseline implementation.

A new improved SA is now used to denote the algorithm obtained from the baseline implementation SA
by adding neighbourhood pruning and low temperature starts. Note that under this new SA the time for an
a = 10 annealing run is substantially less than that for performing 10,000 runs of 2-Opt, and the average
tour quality is better. This illustrates the observed phenomenon that, given enough time, simulated
annealing will outperform multiple runs of the corresponding local optimisation algorithm. Note that if
the new SA is viewed simply as a method for improving a random start 2-Opt, it is very successful. It
reduces the average percentage excess from 290% to 99%, almost a factor of 3, whilst the best of 10,000
runs of random start 2-Opt still has an average excess of 240%.

This improved SA algorithm, which was written-developed in MATLAB and codes, is attached in
Appendix D. Presented now is an example of sample instances from the travelling salesman library

(TSPLIB) in ftp://softlib.es.rice/pub/tsplib on the 100 cities. Here is applied the improved SA with the

nearest neighbour tour construction with 2 - Opt local search and simulated annealing (Metropolis test)

for the 2D Eucledian TSP. Initial data is as follows:

Initial tour =1 47 93 28 67 58 61 51 87 25 81 69

64 40 54 2 44 50 73 68 85 82 95 13
76 33 37 5 52 78 96 39 30 48 100 41
71 14 3 43 46 29 34 83 55 7 9 57

20 12 27 86 35 62 60 77 23 98 91 45
32 1 15 17 59 74 21 72 10 84 36 99

» 38 24 18 79 53 88 16 94 22 70 66 26
65 4 97 56 80 31 89 42 8 92 75 19
90 49 6 63] (cities number)

Cities corresponding to initial tour, X — Y coordinates in km= {1380 939; 2848 96 3510
1671; 457 334; 3888 666; 984 965; 2721 1482; 1286 525, 2716
1432; 738 1325; 1251 1832; 2728 1698; 3815 169; 3683 1533; 1247
1945 123 862; 1234 1946; 252 1240; 611 673; 2576 1676;
928 1700; 53 857; 1807 1711; 274 1420; 2574 946; 178 24;
2678 1825; 1795 962; 3384 1498; 3520 1079; 1256 6L, 1424 1728;
3913 192; 3085 1528; 2573 1969; 463 1670; 3875 598; 298 1513;
3479 821; 2542 236; 3955 1743; 1323 280; 3447 1830; 2936 337,
1621 1830; 3373 1646; 1393 1368; 3874 1318; 938 955; 3022 474
2482 1183; 3854 923; 376 825; 2519 1355 2945 1622; 953 268;
2628 1479; 2097 981, 890 1846; 2139 1806; 2421 1007; 2290 1810;
1115 1052; 2588 302; 327 265; 241 341; 1917 687, 2991 7925

235

Appendix C

2573 599; 19 674; 3911 1673; 872 1559; 2863 558; 929 1766;
839 620, 3893 102; 2178 1619; 3822 899 378 1048; 1178 100;
2599 901, 3416 143; 2961 1605; 611 1384; 3113 885; 2597 1830;
2586 1286; 16l 906; 1429 134, 742 1025; 1625 1651, 1187 706;
1787 1009; 22 987, 3640 43; 3756 882 776 392; 1724 1642,
198 1810; 3950 1558]

After multiply running of the SA program, the best recorded lowest bound (tour length) was 24474,

Presented in Figure C.7 is the number of searched solutions and in Figure C.8 the search temperature

diagram. In addition, the output run from a MATILAB program is as follow:

Temperature_,of__bestﬁtour_length = 8.8097; Solution_count = 189183; Best_tour_length = 24474 km
Besttour= 1 92 8 42 56 80 31 89 54 40 64 2 44 50 8 95 13 76 33 37 5
52 78 96 30 39 8 68 73 69 81 25 9 7 57 87 5l 61 58 67 28 93 47 63 6
49 90 19 75 97 4 65 26 66 70 22 94 16 88 53 79 18 24 38 99 36 84 10

79 21 74 59 17 15 11 32 45 91 98 23 77 60 62 35 86 27 20 12 55 83 34

29 46 43 3 14 71 41 100 48 -1 (cities number)

Search_stop_temperature = 4.9388; Elapsed_time = -2.5918e+006; Solutions _generated = 316533

Floating_point_operations = 3293974

3x 104 Simulnted Annealing with 2 - Gpt local search 3 X 104 Simalated Anneating with 2-Opt local search
\ e
2.9 2.9
\ /
\ - r
2 } 2
328 \\ g2 /
= %
527 it 527
[=
2.6 N\ 2.6
S
2.5 \ 2.5 [e —
_L/...//r~
T e e f"”
2.4L~ 24 ,
0 02 04 06 08 1 12 14 16 18 52 65 10 15 20 25 30 35 40 45 50
Number of Solutions x10 Temperature (not scaled)
Figure C. 7 - Number of solutions vs. tour length Figure C. 8 - Temperature vs. tour length

C.4. Evolutionary Algorithms in TSP

Any abstract task to be accomplished can be thought of as solving a problem, which, in turn, can be
perceived as a search through a space of potential solutions. Finding “the best” solution can be viewed as
an optimisation process. For small spaces, classical exhaustive methods usually suffice; for larger spaces,
special artificial intelligence techniques must be employed. Genetic algorithms (GAs) are amongst such
techniques; they are stochastic algorithms whose search methods model some natural phenomena. The

idea behind genetic algorithms is to do what nature does.

Take rabbits as an example: at any given time there is a population of rabbits, some of them are faster
and smarter than other rabbits. These faster, smarter rabbits are less likely to be eaten by foxes, and
therefore more of them survive to do what rabbits do best: make more rabbits. Of course, some of the
slower, dumber rabbits will survive just because they are lucky. This surviving population of rabbits
starts breeding. The breeding results in a good mixture of rabbit genetic material: some slow rabbits
breed with fast rabbits, some fast with fast, some smart rabbits with dumb ones and so on. In addition,
nature throws in a ‘wild hare’ every once in a while thus mutating some of the rabbit genetic material.
The resulting baby rabbits will (on average) be faster and smarter than those in the original population,

because more faster, smarter parents survived the foxes. A genetic algorithm follows a step-by-step

236

Appendix C

procedure that closely matches the story of the rabbits.

Genetic algorithms use a vocabulary borrowed from natural genetics, which talks about individuals (or
genotypes, structures) in a population. Quite often these individuals are called also strings or
chromosomes. This might be a little bit misleading: each cell of every organism of a given species carries
a certain number of chromosomes (man, for example, has 46 of them); however discussion here is only
about one-chromosome individuals. Chromosomes are made of units — genes arranged in a linear
succession; every gene controls the inheritance of one or several characters. Genes of certain characters

are located at certain places of the chromosome, which are called loci (string positions).

Thus, a GA can be considered as the implementation of a search strategy on a set of potential solutions
(search space). The objective of a GA is to find the best solution in the search space while exploring it.
Now briefly presented is the commonly used representation by GA programmers. Usually representation
of the individuals in the population is in the form of Bit Strings (typically about 20 to 100 bits per
individual), a typical individual may look like:
1100010110111100110111000011

A population of such individuals is common (typically between 20 and 100), per generation. A
generation of individuals is then bred using genetic techniques (normal ones in which two parents are
used to form one or two offspring, a technique called crossovers, and ‘nature’s throw in’, which is called
a mutation). There are of course several breeding techniques to proceed from one generation to the next.
Of course it is not required for the parents from one generation to randomly breed amongst each other to
give the next generation. This occurrence leading to a better next generation would then be pure chance.
Instead the program must select the best individuals from the present population and derive the next
generation using these individuals. In fact the technique is called selection, and plays a very important
role in GA’s. Clearly imitating nature’s selective evolution. First, what exactly is needed for representing
a Genetic Algorithm? According to Michalewicz [1996] the following five components are necessary for

a GA:

o amethod for representing possible solutions,

s a method for generating the initial population,

e afunction to evaluate fitness of the individuals,

o amethod to generate a new population from the existing one by applying genetic operators,

o values for various parameters that the GA uses such as: population size, probability of applying

genetic operators like crossover and mutation, etc.

After initial initialisation of the population, parents are selected based on their relative fitness. In other
words, those individuals with higher relative fitness are more likely to be selected as parents. N children
are created via a recombination from the N parents. The N children are mutated and survive, replacing the
N parents in the population. In a GA mutation, “flip bits” with some small probability are often

considered to be a background operator. Recombination (crossover), on the other hand, is emphasised as

237

Appendix C

the primary search operator. GA s are often used as optimisers.

GA’s belong to the class of probabilistic algorithms, yet they are very different from random algorithms
as they combine the elements of directed and stochastic search. Because of this, GA’s are also more

robust than existing directed search methods. The following figure outlines a typical GA:

Procedure GA
t=10
initialize population P(t)
evaluate P(t)
until (done)
{ t=t+1
parent_selection P(t)
recombine P(t)
mutate P(t)
evaluate P(t) }
Figure C. 9 - Basic procedure for a genetic algorithm

Another important property of such genetic based search methods is that they maintain a population of

potential solutions - all other methods process a single point of the search space.

Hillclimbing - methods here use the iterative improvement technique; the technique is applied to a single
point (the current point) in the search space. During a single iteration, a new point is selected from the
neighbourhood of the current point (this is why this technique is known also as neighbourhood search, or
local search). If a new point provides a better value of the objective function, the new point becomes the
current point. Otherwise, some other neighbourhood point is selected and tested against the current point.
The method terminates if no further improvement is possible. It is clear that the hillclimbing methods
provide local optimum values only, and these values depend on the selection of a starting point.
Moreover, there is no information available on the relative error (with respect to the global optimum) of
the solution found. To increase the chances to succeed, hillclimbing methods usually are executed for a
number (large) of different starting points. There are a few versions of the hillclimbing algorithms. One

version of a simple (iterated) hillclimbing algorithm is illustrated in Figure C 10.

procedure iterated_hillclimber;
begin t <0,
repeat local « FALSE;
select individual randomly (v.);
evaluate v,
repeat;
select 30 new strings in the neighborhood ;
by flipping bits of v, ;
select string v, from the set of new strings;
with the largest value of function f;
iffv) < flva):
then v, €V, ;
else local e~ TRUE;

238

Appendix C

until local t «t + 1;
until t = MAX; end;
Figure C. 10 - A simple version of an iterated hillclimbing algorithm

Initially, all 30 neighbours are considered, and the one v, which returns the largest value of f{v,) is
selected to compete with the current string v.. If f{v.) < f{v,), then the new string becomes the current
string, Otherwise, no local improvement is possible; the algorithm has reached (local or global) an
optimum (local = TRUE). In such a case, the next iteration (¢ «— t + I) of the algorithm is executed with
a new current string selected at random. It is interesting to note that the success and failure of the above

algorithms is determined by the starting string.

C.4.1. Genetic Algorithms: Operators

This section now inspects some operators that are used in GA, with the default representations of

individuals in populations in binary form, and with the crossover as one of the most basic operator.

Crossover - As mentioned earlier, a GA performs a multi-directional search by maintaining a population
of potential solutions and encourages information formation and exchange. Every new population in a

new generation consists of individuals formed from the previous generation by some genetic operation.

Parent 1

Parent 2

Offspring 1

Offspring 2

e AR

Figure C. 11 - Simple one point crossover

Crossover combines the features of two parent chromosomes to form two similar offspring by swapping
corresponding segments of the parents. For example, if the parents are represented by chromosomes (a,
b, ¢, d, e) and (p, q, r, s, t), then crossing the chromosomes after the second gene would produce the
offspring (a, b, r, 5, t) and (p, g, ¢, d, e). The basic idea behind the crossover is to exchange information
of both parents to produce two offspring. A point is chosen at random and that point is where the ‘cut’ is
made in the two participating parents. Then the information “beyond” these points is exchanged with the
information from the other parent. This process is called the Single Point Crossover. This is the most
basic kind of crossover. The idea is simple, having a preset probability of crossover (p.), generates a
random number between 0 and 1, for each individual under consideration, and if it is less than the
probability of crossover, then that individual is selected to be one of the parents. Then two parents are

selected to gave two offspring. This process is demonstrated in Figure C.11.

Similarly, it’s possible to have two cutting points or more, plus the facility to add various flavours to the
two-parent crossover. However there may still exist different variations of the simple crossover, which
involve more than two parents. In such a case two cutting points in the parents can exchange two parts

between three parents, in any of one of eight possible ways, to get three offspring.

239

Appendix C

Mutation - As the name suggests, this operator involves random change of bits, and just like the rare
occurrence of mutation in the real world of evolution, the probability of mutation in the little world of
GA is also much less (typically p, < 0.1). Mutations in the real sense means that one or a few of genes in
the chromosome are altered naturally, on their own, within one generation to the next. Therefore,
mutations may throw in various interesting results. The results of mutations usually produce large steps

in the evolution process.

Similarly, 2 mutation is also the change of a gene in one chromosomed individual. Of course, here it

means a bit flip. So a typical mutation is shown below.

Figure C. 12 - Mutation (Bit Flip)

Now the mutation usually flips a couple or more of bits in the individual. If the individual has floating

point numbers rather than bits, then it simply changes one of the floating point numbers randomly. Then
the bit flip mutation, which is shown in Figure C.12, occurs only when one bit is flipped. A random
number between 0 and 1 is generated. If the number is less than p,, then a bit is selected at random and
flipped.

Inversion - In this operation an individual is selected, and two points are randomly selected in this
individual. Now the individual is cut at these two points and the ‘string’ of genes between them is
reversed, ie. (a, b, ¢, d, e, fi, g h, i) will result as (a, b, f e, d, ¢, g h, i), but at the same time the
positions of c...f are remembered for further use. So for example, ¢ will be remembered as element 3 in
the chromosome, though when fitness is derived, the chromosome will be treated as it appears after
inversion.

Selection - on numerous occasions the word select has been mentioned in the context of picking
individuals from the whole population. To decide which individuals will be the lucky ones to continue
the evolution process, a commonly used selection process called the roulette wheel selection method is

utilised. The construction of the roulette wheel is as follows:

o First of all calculate the fitness value (x;), for each and every individual x; (i = 1, ..., population
size).

o Next find the total fitness of the whole population.

o Thus, total Fitness = Summation (evaluation (x0), ..., evaluation (X,epuiasion._size))-

o Next generate the probability of selection pg for each individual in the population. p; =
evaluate(x;)/Total Fitness.

o Calculate a cumulative probability ¢; for each individual x;

qi= Summation(ps()r -+ +s Pspopulation .\'ize)-
This selection is based on spinning the roulette wheel the number of times equal to the population size, to

generate a random number between 0 and 1, and then to compare it with the respective cumulative

240

Appendix C

probability q for the individual under consideration. If the random number falls in the interval gi.; < r <=
g, ot if it is less than the cumulative probability of the first individual when considering it, then select the
individual. It is very clear from the selection process that some healthy individuals would be selected

more than once, and then weaker individuals have a very small chance of getting selected.

The above description is the basic selection process in the GA, and a couple of variations of the basic
selection process exist. For example, to have a selection method in which weights are associated with
individuals in the population. In this case the individuals are then selected proportional to their rank,

rather than the actual evaluation value. This method is called ranking selection.

One more selection method is called tournament selection. Here, some number i of individuals is selected
and the best one from this set is sent into the next generation. This process is repeated population size
number of times; typically a tournament has a size (i) of 2. Larger tournament sizes increase the selective
pressure. If the whole population size (py) is I, then after every processing time it is very simple to inspect
the whole population for the best individual. This is repeated p; times. Similarly, as i goes on decreasing,

with fewer and fewer individuals available for consideration, the selection space becomes smaller and

smaller.

[Evolutionary Algorithmsj

|

. Y

! I

[No Crossovers!

Other Operators like: - X .
Inversion Mutation I Others like |
wx |
Il o §
EE-RX |1
- E-RX g

Figure C. 13 — Evolutionary approaches to solve the TSP

C.4.2. Genetic Algorithms: Application for solving the TSP

During the past few years, the TSP has become a target for the genetic algorithms community. The use of
genetic algorithms as an approach to optimisation can be traced back at least to the 1970%. See Goldberg
[1989] for some of the history. The best adaptations of this approach to the TSP follow the basic schema
presented in Figure C.14, where each performance of the loop consisting of Steps 3.1 through to 3.5 can
be viewed as the processing of a single generation in the evolutionary process. Note that the operations
on different solutions can be performed in parallel if desired, and so this is sometimes called the parallel
genetic algorithm. As with the schema for simulated annealing in Section C.3, this TSP schema leaves
several operations and definitions unspecified. A specific adaptation of the schema to the TSP needs to
specify: k and k’, the methods for generating starting solutions (tours), the local optimisation algorithm

A, the mating strategy, the nature of the crossover and mutation operators, the selection strategy, and the

criterion for convergence.

1. Generate a population of k starting solutions S = {(Sy,..., Sk}

2. Apply a given local optimisation algorithm A to each solution S’ in S, letting the resulting local optimal solution

241

Appendix C

replace 8™ in S.
3. While not yet converged do the following:
3.1. Select k’ distinct subsets of S of size 1 or 2 as parents (the mating strategy).
3.2. For each 1-element subset, perform a randomised mutation operation to obtain a new solution.

3.3. For each 2-element subset, perform a (possibly randomised) crossover operation to obtain a new
solution that reflects aspects of both parents.

3.4. Apply local optimisation algorithm A to each of the k’ solutions produced in Step 3.3, and let S’ be the
set of resulting solutions.

3.5. Using a selection strategy, choose k survivors from S € S’, and replace the contents of S by these
SUIVIVOTS.

4. Return the best solution in S.
Figure C. 14 - General schema for a genetic optimisation algorithm.

It should be noted that the schema in Figure C.14 is not what was meant by a “genetic” algorithm in such
early references as Holland [1975]. In particular, the application of local optimisation to the individual
solutions in Steps 2 and 3.4 could be viewed as an almost heretical addition. In the context of the original
biological motivation for the genetic approach, it embodies the discredited Lamarckian principle that
learned traits can be inherited. Nevertheless, such local optimisation steps appear to be essential if
competitive results are to be obtained for the TSP, and attention is restricted to what follows to GA’s that

use them.

Even without the local optimisation steps of Figure C. 14, a genetic algorithm can properly be classified
as a variant of a local search. Implicit is a neighbourhood structure in which the neighbours of a solution
are those solutions that can be reached by a single mutation or mating operation. With the local
optimisation steps, the schema can also be viewed simply as a variant on an algorithmic approach
discussed extensively in the previous section, ie. the best-of-k-runs approach to local optimisation. Here,
instead of independent random starts, the genetically motivated operations to construct is used with hope
for better starting tours, ones that incorporate knowledge we have obtained from previous runs. It will be

seen that this latter way of viewing the schema is the more productive.

As presented above, these GA’s also work under the same principle, ie. search for a near optimal solution
from a huge search space by employing populations of potential solutions. This is done similar to what
was described in the previous section, ie. trying and using the same operators (crossover, mutation and
inversion), selecting individuals, and trying for a good solution. The TSP has a simple evaluation
function, all that is needed is to select a valid tour, and to calculate the length of that tour. Also required
is to store the distances between cities in a file, or better to store the co-ordinates of the cities in arrays.
Thus, when needed, one simply calculates the distance between any two cities by using the distance
formula. 1t is also required to maintain a population of tours (say in another array) so that comparing
tours would not also pose a problem. However, care is needed before deciding how to represent the tours,
as this could mean substantial computational time. Thus it is better, first of all, to consider another small

problem, one requiring only slight alteration to the basic operators for the GA'’s.

Thus, it is known that GA’s are usually represented by individuals having binary representation, and that

242

Appendix C

the operators are designed to work essentially with binary operators. Thus the TSP cannot be represented
in binary form without going an “extra mile” to take care of the glitches that would result. Suppose, for a
five city problem (hardly a problem, but just for analogy) the five cities were represented as 00001,
00010, 00011, 00100 and 00101. Consider the tour of 00001000110000110010000101 (the pipe
indicating the cutting point in a simple crossover in the tour 1, 2, 3, 4, 5), and another tour
001010011000001 10001000001 (5, 4, 3, 2, 1). After the crossover, new tours are (1 03 2 Dand (5634
5). Tt is clear that cities 0 and 6 have appeared out of nowhere, the first tour is invalid as cities 4 or 5 is
not seen, and city 1 is repeated. In the second tour, city 5 is repeated, and cities 1 and 2 are missing. The
conclusion of this little experiment is not that it is impossible to use binary representation for the TSP,
but that they must be taken in order of the dependencies, taking care of omissions, duplications, and
some other problems. All of this adds to the computation time, and in the end will probably be

unproductive.

Adjacency Representation - consists of putting down the tour in the form of a list of cities. A city x is
listed in position y if the tour leads from city x to city y. This could be a bit confusing at first, but
consider a straightforward example:
(384921675) represents tour] -3-4-9-5-2-8-7-6.
Simple observation concludes that each tour has only one adjacency list, whilst constructing adjacency
lists requires care, as some of them might represent illegal tours. Thus consider the following:
(384912675) representstour I -3 -4-9-5~-1.

A simple exchange of the 5% and 6 elements makes the above tour illegal. This also indicates that the
classical crossover may not be a very good operator. Thus, a repair algorithm is required to use the
classical crossover. The advantage of this representation is that it allows schemata analysis (allows
specification of natural building blocks), edges in this case, and denotes all tours with edges (5 4) and (8

3). A disadvantage is the poor results the operators give for this representation.

Ordinary Representation - represents a tour of 7 cities such that the x-th city in the list is a number in the
range from 1 to n — x + I (for some ordered list of cities C only serves as a reference point for tours), for
example:
C=(123456789), thenatourT = | —-4-6-9—~3—7~2-8—15is represented as
R=(134623121), sayanothertourS=2—-4—6~8—1—3—5~7—9
is represented as P = (2 34511111).

The best part of this representation is that the classical crossover actually works. To see this concept in
action place the cutting point say, after the 5% olement in the list. So the offspring A and B after the
crossover would be:
A=(134621111)which gives the tour TA = 1-4-6-9-3-2-5-7-8and
B=(234513121)which gives thetourTB=2-4-6~-8~1-7-3-9-5.

Both of these tours are legal tours. However the experimental results associated with this representation

243

Appendix C

and the classical crossover are not very encouraging, and experts deem it not a very appropriate

representation method for the TSP.

Path Representation - is the simplest of all the representations seen so far. It is a natural list of how the
tour reads, for example:

TourT=1-2-5-7~3-4—6-9—8can be represented simplyasR=(1257346938).

The next section presents many powerful operators for the path representation.

C.4.2.1. Operators for the TSP
First consider the operators for the Adjacency Representation. There are three crossovers that will be

presented here: alternating edges, sub-tour chunks and heuristic crossovers.

Alternating-Edges Crossover - builds an offspring by randomly choosing an edge from the first parent.
Then selects an appropriate edge from the second parent. The operator extends the tour by selecting
edges from alternating parents. If now a newly added edge were to introduce a partial tour for the current
child, then the operator instead selects a random edge until the situation is corrected. An example of how
a child might be created from two parents is thus: PI = (238791456)and P2=(751692843),
then the offspring may be Of = (25879 164 3). The process started from the edge (1 2) from the first
parent, with a note that a random edge was introduced during this process. The edge (7 6) was introduced
instead of (7 8), to maintain a legal tour.

Sub-Tour Chunks Crossover - The name of this crossover suggests that the tour is built from small
chunks of sub-tours, and this is the way it works. It randomly selects a subtour from one parent, then
randomly selects another (random length) subtour from the other parent, and so on. If an illegal tour is to
be introduced during this process, it randomly keeps selecting other edges from the remaining, until the
situation is corrected.

Heuristic Crossover - This crossover builds the offspring by choosing a random city as the starting point
for the resulting tour. It then compares the edges in the two parents leaving this city, and selects the
shorter edge. In case of a conflict, a random edge is selected to correct the situation. It continues doing
this until a valid tour is reached.

However, as already stated, the performance of these crossovers and this representation is hardly
encouraging. According to Michalewicz [1995], in three experiments on 50, 100 and 200 cities, the
system found tours within 25%, 16%, and 27% of the optimum, in approximately 15000, 20000, and
25000 generations respectively.

Next is presented the crossovers defined for the path representation. The crossovers presented briefly
here are partially mapped (PMX), order (OX), and cycle (CX).

Partially-Mapped Crossover - Goldberg proposed this. Here the offspring is obtained by choosing a
part from the tour. This part of the tour is the one between two randomly selected cutting points. These

cutting points act as boundaries for swapping operations. Thus:

244

Appendix C

Pl =(12314789156)and
P2=(47511932186).

The above two parents are now considered. First the segments between the two cut points are swapped,

then the rest of the tour marked with X can be read as unknown. Thus:

0l =(XXX119321XX)
02=(XXX147891XX).
This also defines the mapping 1 to 4,9 to 7,3 to 8, and 2 to 9, and further cities are incorporated from

the original parents for which there is no conflict, obtaining the following:

0l =(XXX11932156)
02=(XX5147891X6).

The first step is to decide what will fit in, where the Xs’ are in the offspring. It is very simple to take care

of these remaining empty spots by employing mapping and to obtain the following offspring as a result:

01=(49811932156)
02=(19514789136).

Order Crossover - Here the offspring is built by choosing a sub-sequence of a tour from one parent and
preserving the relative order of the cities from the other parent. Thus consider this systematically through
an example:

Pl =(12314789156)

P2=(47511932186).

Now consider how the offspring are produced. First, the segments between the cut points are copied into
the offspring, thus:

Ol =(XXX147891XX)

02=(XXX119321XX).
Next for 01, start reading the cities in-order from P2, after the second cut, obtaining:

8§-—6-4-7-5-1-9-3-2.
Now ignoring the cities which are already present in O1, which reduces the above to:
6-5-1-3-2.
Now start inserting these cities in O/ after the second cut point, and repeat the same procedure for the
second offspring, thus getting:
0]=(132|4789|65)and 02=(47811932156).
The order crossover exploits the property of the path representation, which states that the order of cities
and not their positions are important, ie., the two identical tours are:
8-—6-4-7-5-1-9-3-2 and 4-7-5-1-9-3-2-8-6.

Cycle Crossover - builds the offspring in such a way that each city and its position comes from one of

the parents. Thus, the CX works as follows:

Pl=(12314789156) and P2=(47519132186),

245

Appendix C

and taking the first city from the first parent to form the first offspring thus:

Ol=(1XXXXXXXX)

Since having to select cities from the two parents and from the same position, there is little choice but to

first see what is in the first position of P2 and fill that position up, thus:

Ol =(1XX4XXXXX)

Similarly, 4 now means 9, which gives:

Ol =(1XX4XX9XX)

Continuing the similarly gives:

Ol =(12X47X89XX).

For the remaining cities just consider the other parent and fill it up as before, getting:

01=(125473986).

The second offspring is obtained by repeating this. Thus CX preserves the absolute position of the
elements in the parent sequence. Most of the operators discussed so far take into account cities, ie. their

positions and order, as opposed to edges (links between cities).

Edge-Recombination (ER) crossover - a relatively new crossover method. The general idea behind the
ER crossover is that the objective function to be minimised is the total number of edges, which constitute
a legal tour, and that the offspring contains edges present in both parents. This is done with the help of an

edge list created from the parent tours. The two parents are first listed as:

Pl=(123456789)and P2=(412876935).

Then an edge list is created, such that each city with all its edges is represented as:

City :924. City2:138. City 3: 2495, City4:351. Ciry5:463.
City6:579. City7:68. City8:792. and City 9: 8 16 3.

During the construction of offspring, the initial city, the first city in the parents with the smallest number
of edges, is selected. With the numbers being equal, a random selection is made and assume city 1 is
selected. This city is directly connected to three other cities: 9, 2, and 4. The next choice is to be made
from these three, thus 4 and 2 have three edges each, and 9 has four. A random choice between 2 and 4,
say 4, is now made. Thus, city 4 now has 3, 5, and 1 in its list. City 1 is already in the tour and city 5 has
lesser edges than 3, so city S is selected and the procedure continuous until the offspring O = (14567

8 2 39) is obtained. This offspring is entirely composed of edges from both its parents.

Next is presented an example of sample instances from the travelling salesman library (TSPLIB) in

fep://softlib.es.rice/pub/tsplib of 30 cities, on which is applied the GA using an order-based

representation. The program was written-developed in MATLAB 5 and codes are attached in Appendix D
(with all codes for GA presentation). The initial data (presented in graphical form in Figure C.15) is as

follows:

Cities corresponding to initial tour, X — Y coordinates (km) =[82, 7; 91, 38; 83, 46; 71, 44; 64, 60;
68, 58; 83, 69; 87,76; 74,78, 71, 71; 58, 69; 54, 62; 54, 67; 37, 84; 41, 94,2, 99; 7, 64; 22, 60; 25, 62;

246

Appendix C

Conclusion
This appendix has surveyed a wide variety of approaches to the TSP. The best ones are all based on local

search in one form or another. Assuming one has enough time to run something more sophisticated than a
simple tour construction heuristic, the first choice would probably be an efficient implementation of one
of the classic local optimisation algorithms, such as the 2-Opt, 3-Opt, and Lin-Kemighan. The last
algorithm comes within 1.5% of optimal for random Euclidean instances with as many as a million cities,
and it is capable of doing almost as well for the real-world instances in TSPLIB. Within the running time
bounds of these algorithms, no tabu search, simulated annealing, genetic, or neural net algorithm has yet
been developed that provides comparably good tours. If shorter tours are wanted and significantly more
time is available, both simulated annealing and genetic algorithms can, for many instances, find better
tours than could be found in the same time by performing multiple independent runs of the Lin-
Kernighan algorithm. These SA and GA approaches also have the advantage that one can use them

without the detailed coding required to implement the Lin-Kernighan.

T — R D
400
-500 | Best "/a“::—*’f
e v
600 - o
= ,_[//\/ Average
e
700 - -
800 - 4
-900 -
-1t00 T
r
1100 H 1
1200
1300 H
1400 : - . .
20 40 60 80 100

Figure C. 19 - The best and average function distribution across the GA generation

C.5. Background of the Simulated Annealing Algorithm

Simulated annealing, or SA for abbreviation, is a combinatorial optimisation method, where the aim 1is to
find the best solution among a finite number of possible solutions. Simulated annealing is good at finding
near optimal solutions with a reasonable amount of computing. However, it must be noted there is still
uncertainty if the best solution found is the global optimum. This restricts the use of the algorithm to

cases where a good local optimum is also acceptable.

C.5.1. Introduction

Simulated annealing is a technique for finding an optimal or near optimal solution for combinatorial
optimisation problems, or problems which have discrete variables. It was proposed by Kirkpatrick 1983
and has been successfully applied to cell formation, VLSI, circuit partitioning, placement, and routing in

the physical design of integrated circuits.

The goal of a combinatorial optimisation algorithm is to find the state of lowest cost (or energy) from a

248

Appendix C

discrete space of admissible configurations S. For each problem, a cost function must be defined which
maps each state to a real number denoting its cost. For many problems, the number of possible states
grows exponentially with the size of the input. Optimising becomes the process of searching for the state
of lowest cost in a hyper dimensional space. With a large number of possible states to visit the “brute
force” method of visiting all configurations becomes impractical. Clearly, a search strategy is required to

uncover the lowest cost solution in the jungle of states.

For many problems the states of the configuration space are related. A problem exhibits optimal
substructure if an optimal solution to the problem contains within it optimal solutions to the
subproblems. Either a “greedy” or a “dynamic” programming algorithm may solve these cases. In a
greedy choice problem a globally optimal solution can be found by making a locally optimal (greedy)
decision. The best choice is made at each moment, thus at each step the ramifications of the previous
choice is solved. The choice made by a greedy algorithm can not depend on future decisions or solutions
to subproblems. In dynamic programming a choice is made at each step that may depend on the solutions
to the problems. Solving an optimal substructure problem will require a greedy or dynamic strategy

depending on the nature of the problem.

C.5.2. Local Optimisation

The basic concepts of simulated annealing comes from local optimisation; also called an iterative
improvement. A combinatorial optimisation problem can be characterised by a set of solutions and a cost
function, which attaches a cost to every solution. Here the goal is to find the solution with minimum cost.
(A maximisation problem can be turned into a minimisation problem easily by reversing the sign of the

cost function).

In local optimisation one must first define a procedure to perturbate the solutions in order to get new
ones. Perturbation is accomplished by small changes to the current solution. Solution S’ is a neighbour of
another solution S, if S’ can be obtained from S by one such change. The neighbourhood of a given

solution S is the set of all neighbours of S.

The local optimisation algorithm takes an initial solution, which can be random or based on some
heuristic procedure, and then starts to investigate its neighbourhood. If it finds a solution in the
neighbourhood whose cost is lower than the present cost, it moves to that solution. This procedure is
iterated until no further improvements can be made. The solution this algorithm finds is necessarily a
local optimum, but it is usually not the global optimum. It is possible, of course, to apply the method

many times with different initial solutions and hope that the best solution found is the global optimum.

C.5.3. Simulated Annealing

The term simulated annealing comes from a physical point of view. Annealing is a physical process
where a crystal is cooled down from the liquid phase to the solid phase in a heat bath. If the cooling is

done carefully enough (instead of rapid quenching), the energy state of the solid at the end of the cooling

249

Appendix C

is at its minimum {(or very near to it).

At the heart of the simulated annealing algorithm is the Metropolis Monte Carlo [Kirkpatrick 1983]
procedure, which was introduced to provide an efficient simulation of a collection of atoms in
equilibrium at a given temperature. The Metropolis procedure is the inner loop of the simulated
annealing algorithm as shown in Figure C.20. Whilst the “greedy” algorithm forbids changes of state that
increase the cost function, the Metropolis procedure allows moves to states that increases the cost
function. Kirkpatrick suggested that the Metropolis Monte Carlo method could be used to simulate the
physical annealing process and to solve combinatorial optimisation problems. They suggested adding an
outer loop, which lowers the temperature in slow stages from a high melting temperature, until the
system freezes, and no further changes occur. At each temperature the simulation must proceed long
enough for the system to reach a steady state. The sequence of temperatures, and the method to reach
equilibrium at each temperature, is known as an annealing schedule. They showed that this same
technique could be applied to combinatorial optimisation problems if a cost function is used in place of

the energy, and the temperature is used as a control parameter.

Simulation of the physical cooling can be done with the Metropolis algorithm [Kirkpatrick 1983] first
proposed in the early days of computing. It generates sequences of states of the solid in the following
way: given a current state i of the solid with energy E, then the next state j is generated by applying a
small perturbation to the solid, for instance moving a particle. The energy of the next state is Ej. If the
energy difference E; - Ej is less than or equal to zero, the state j is accepted as the new current state.

Otherwise the state j is accepted with a probability given by:

E M E,
expl ————— Equation C. 14
k, T
where:
T — is temperature of the solid, and
Ky — denotes the Boltzmann constant.

If the lowering of the temperature is done slowly enough, the solid reaches thermal equilibrium at each
temperature. In the Metropolis algorithm this is achieved by applying a sufficiently large number of

perturbations at each temperature.

Physical system Optimisation problem
State Feasible solution

Energy (Internal) Cost (Objective function)

Atomic position Decision Variables
Ground state Optimal solution

Rapid quenching Local search

Careful annealing Simulated annealing

Cool into a stable , low energy state Find a near optimal configuration

Table C. 4 - The analogy between the physical system and the optimisation problem.
The SA algorithm [Kirkpatrick 1983] can be viewed as a process analogous to the simulation of cooling

250

Appendix C

down a solid by the Metropolis algorithm. The analogy between SA (combinatorial optimisation) and the
physical situation (cooling down a solid) is presented in Table C.4. Using this analogy, the simulated

annealing algorithm in Figure C.20 can be produced. Thus:

1. Estimate an initial solution S and an initial temperature T .
2. If stop criterion not satisfied do the following:
(a) While inner loop criterion not satisfied do the following:
i. Select a neighbour S”of S.
ii. Let A = cost(S) — cost(S)
iii. < 0 (downhill move), set S = S=T.
iv. 0 (uphill move), set S = S’ with probability Pl
(b) Reduce temperature T .
3. Return to S.
Figure C. 20 - Simulated annealing.

SA can be viewed as an extension to local optimisation. Local optimisation finds new solutions by
making small transformations to the current solution in such a way that every new solution is better than,
or equal to, the previous solution. In simulated annealing, even a move that makes a current solution
worse is accepted with probability as follows:

P =€XP (:_f‘é}: exp (_ cost(S); cost(S)) Equation C. 15

where:
cost(S) - denotes the cost function assigned to the current solution,

cost(S’) - denotes the cost function assigned to the proposed next solution,

A - is the cost change, and
T - the “temperature” T is simply a control parameter in the same units as the cost function.

Ideally, when the local optimisation is trapped at a poor local optimum, simulated annealing can “climb”
out of the poor local optimum.

The criterion for stopping the iteration (detecting when the process is “frozen”) in step 2 in Figure C.20
varies depending on the literature sources. One possible solution sourced is to give a required percentage
of accepted moves. When the actual percentage of accepted moves is below this required level, for at
least a given number of successive executions of steps 2a and 25, and no improvement of the best
solution found so far is recorded, the process is considered frozen. Another possible solution is to stop

when the cost function at the end of step 2a is the same for a given number of consecutive temperatures.
In step 2(a)i, S”is usually selected randomly amongst all the neighbours of the current solution, with the
same probability for atl neighbours. However, with a complicated neighbourhood structure, a non-
uniformly random selection might be appropriate.

A common inner loop criterion (step 2a) is to perform the loop a constant (L) number of times. The value

of L should be large enough so that the equilibrium is achieved before reducing the temperature. A rule

251

Appendix C

of thumnb is to take L equal to, or proportional to, the size of the neighbourhood [Aarts 1989]. The new

temperature in step 25 is usually calculated according to :

T'=rxT Equation C. 16
where:
T — is the new temperature, and
r — is typically in the range 0.95 - 0.99.

Some other cooling schedules have also been studied (see for example [Johnson 1989]), but this
exponential schedule (Equation C.15) seems to be not only one of the most efficient, but also very
robust. It can be shown that simulated annealing converges asymptotically to the set of globally optimal

solutions if some conditions are fulfilled [Aarts 1989, Chapter 2-3].

Unfortunately, pushing the probability of finding a global optimum provably to a given level, requires
very slow cooling schedules, and long iterations at each temperature. Hence, it can take more time than
what it would take to accomplish an exhaustive manual search in the solution space. Furthermore, it is
still not known whether or not an actual global optima has been reached. Nevertheless, in practice, SA
often finds very good local optima with a reasonable amount of computing. The main problems when

implementing the simulated annealing algorithm are:

Selection of the cost function. Cost functions usually employ some heuristic related to the problem at
hand. If there are difficulties whilst applying the algorithm, it is difficult to say whether the problem is

too hard or whether the cost function is poor.

Efficiency. Perturbations and the corresponding cost change calculations should be simple enough to

perform, so that the algorithm can perform iterations very fast.

It has been shown that the simulated annealing algorithm, when started in an arbitrary state and given an
appropriate annealing schedule, will eventually converge to a global optimum. Although these results
required an infinite amount of computation time to guarantee convergence, in practice, simulated
annealing has been extremely successful when applied to circuit partitioning, placement problems, cell
formation, chip placement and microprocessor layout. A substantial body of literature has focused on the
NP - complete problems, which addresses the placement of chips on a microprocessor circuit board in
order to optimise certain design parameters, such as wire density in channels, total wiring length, etc.
(Kirkaptrick [1983], Darema [1987], Vidal [1993] and Casotto [1997]); it has outperformed all other

known algorithms.

252

Appendix D

D.1. Maximum Undirected Spanning Tree

9% Finds the maximum undirected spanning tree of an undirected graph. % function [Z_tree, cost] = maxtree(-C, Zin,
Zout). % input: % C Cost (distant) matrix where C = C”and C(i,i) = NaN. % Zin Arcs forced in. Arc list. % Zout
Arcs forced out. Arc list. (could also be given as NaN in C). % output: % Z_tree The maximum undirected spanning
tree. Arc list. % cost Total cost.
function [Z_tree, cost] = maxtree(C1, Zin, Zout)
C=-Cl;
if nargin < 3
Zout = [];
if nargin <2
Zin={];
End; end;
fori = l:size(Zout,1); % Exclude the arcs in Zout from C;
C(Zout(i,1),Zout(i,2)) = nan;
C(Zout(i,2),Zout(i, 1)) = nan;
end
m = size(C,1); % Number of nodes
Z tree = []; % The maximum undirected spanning tree
cost = 0; 9% The maximum undirected spanning tree cost
setlist = 1:m; % Let all nodes be members of different sets
fori = l:size(Zin,1); % Include the arcs in Zin in Z_tree;
Z_tree = [Z_tree;Zin(i,:)];
cost = cost+C(Zin(i,1),Zin(1,2)); % Update setlist. %onewset = min(setlist(Zin(i,1)),setlist(Zin(i,2))); %index =;
find(max(setlist(Zin(i, 1)),setlist(Zin(i,2)))==setlist);
newset = setlist(Zin(i,1));
index = find(setlist(Zin(i,2))==setlist);
setlist(index) = newset¥ones(1,length(index));
C(Zin(i,1),Zin(i,2)) = nan; % Exclude the arc from C ;
C(Zin(i,2),Zin(1,1)) = nan;
end
while size(Z_tree,l) < m-1
[row,col]=tind(C==min(C(finite(C)))); % Find the arc with minimum cost;
if setlist(row(1))~=setlist(col(1)) % Add arc k if it does not give a cycle (nodes belong to different sets);
Z._tree = [Z_tree;[row(1) col(D]];
cost = cost+C(row(1),col(1)); % Update setlist. Fonewset = min(setlist(row(1)),setlist(col(1)));
newset = setlist(row(1)); %index = find(max(setlist(row(1)),setlist(col(1)))==setlist);
index = find(sctlist(col(1))==setlist);
setlist(index) = newset*ones(1,length(index));
end
C(row(1),col(1)) = nan; % Exclude the arc from C;
C(col(1),row(1)) = nan;
End; cost=-cost;

253

Appendix D

D1.1. Output of Maximum Undirected Spanning Tree

»c:[000800000000;...000010000000;...000020000000;...00000414110000;...00000
1000OOO;...O00000000000;,..000000000980;...000OO0009000;...000000000000;...0
OOO()O000000',.,.000000000004;,..000000000000]

¢ =

o 0 0 8 00 0 O0 O0OO0O0O0
o 0 6 0 1 0 0 0 0 0 0 O
o 00 0 20 00 0 000
0 0 0 0 0 414 11 0 0 0 0
0o 0 0 0O 1 00 0000
o 00 00O 0 00 0 0 00
o 00 0 00 0O0 0 9 80
o 0 0 0 0 0 00 9 000
o o 0 OO0 00 0 0 0 0
c o 0 0 00 0O O0OCO0 00
o 0 0 0 0000 0 0 0 4
o 0 00 060 00 0 000
» maxtree(c)

ans= 4 7, 4 8 8 9, 7 10; 1 4 7 11; 4 6 11 12, 3 5 2 5 5 6

» [z,cost]=maxtree(c)
2:47;48;89;710;14;711;46;1112;35;25;56
cost=-71

D.2. Minimum Undirected Spanning Tree

% Finds the minimum spanning tree of an undirected graph. % function [Z_tree, cost] = mintree(C, Zin, Zout); %
input:% C Cost (distant) matrix where C = C' and C(i,i) = NaN; % Zin Arcs forced in. Arc list.; % Zout Arcs forced
out. Arc list. (could also be given as NaN in C); % output: % Z_tree The minimum undirected spanning tree. Arc
list.; % cost Total cost.
function [Z_tree, cost] = mintree(C, Zin, Zout)
if nargin < 3
Zout =[};
if nargin < 2
Zin ={];
End; end;
for i = 1:size(Zout,1); % Exclude the arcs in Zout from C ;
C(Zout(i,1),Zout(i,2)) = nan;
C(Zout(i,2),Zout(i,1)) = nan;
end
m = size(C,1); % Number of nodes
Z _tree =[]; % The minimum undirected spanning tree
cost =0; % The minimum undirected spanning tree cost
setlist = 1:m; % Let all nodes be members of different sets
for i = 1:size(Zin,1); % Include the arcs in Zin in Z_tree;
Z_tree = [Z_tree;Zin(i,:)];
cost = cost+C(Zin(i, 1),Zin(i,2)); % Update setlist; %onewset = min(setlist(Zin(i, 1)),setlist(Zin(1,2)));
newset = setlist(Zin(i,1)); %index = ﬁnd(max(sctlist(Zin(i,1)),setlist(Zin(i,Z)))::setlist);
index = find(setlist(Zin(i,2))==setlist);
setlist(index) = newset*ones(1,length(index));
C(Zin(i,1),Zin(i,2)) = nan; % Exclude the arc from C;
C(Zin(i,2),Zin(1,1)) = nan,
end
while size(Z,_tree,1) < m-1
[row,col}=find(C==min(C(finite(C)))); % Find the arc with minimum cost;
if setlist(row(1))~=setlist(col(1)); % Add arc k if it doesnot give a cycle (nodes belong to different sets);
Z_tree = [Z_tree;[row(1) col(1)]];
cost = cost+C(row(1),col(1)); % Update setlist; Joncwset = min(setlist(row(|)),setlist(col(1)));
newset = setlist(row(1)); %index = find(max(setlist(row(1)),setlist(col(1)))==setlist);
index = find(setlist(col(1))==setlist);
setlist(index) = newset*ones(1,length(index));
end,;
C(row(1),col(1)) = nan; % Exclude the arc from C;

254

Appendix D

C(col(1),row(l)) = nan;
End.

D.3. Maximum Weighted Directed Spanning Tree

function [arcs,trceJ = mwdrst(A); %Maximum weighted directed spanning tree ; % [arcs,tree] = mwdrst(A); % A -
input direc ted graph in form of a matrix; % A(i,j) = 5 designates an arc from vertex; % i to vertex j, with cost 5; %
iree - weighted directed spanning tree of a directed graph; % Step 1 - ; % List all arcs
(nrows ncols] = size(A);
if nrows ~= Ncols, error(’input matrix must be square’);end
if nrows < 3. error(trivial case, less than 3 vertices’);end
narcs = O;
for j=1:ncols
for i=1:nrows

if A, ~=0
narcs = narcs + 1;
arcs(narcs,1) =1; 9% source of arc
arcs{narcs,2) = j; % terminal vertex
arcs{narcs,3) = A(i,j); % cost

end; end;end;
rx_vertex = arcs(1,2);
ix_vertex = arcs(1,1);
max_cost = arcs(1,3);
cnt = 0
for i=2:mwdrst
if (arcs(i,2) ~= rx_vertex)
cnt = cnt + 1;
tree(cnt, 1) = tx_vertex;
tree(cnt,2) = rx_vertex;
tree(cnt,3) = max_cost;
rx_vertex = arcs(i,2);
tx_vertex = arcs(i, 1);
max_cost = arcs(i,3);
else
if arcs(i,3) > max_cost
rXx_vertex = arcs(1,2);
tx_wvertex = arcs(i,1);
max__cost = arcs(i,3);
end; end; end
ent=cnt + 1;
tree(ent, 1) = tx_vertex;
tree(cnt,2) = rx_vertex;
tree(cnt,3) = max_cost;
if; (cnt < nrows); % Step 2;%error(this graph has no weighted directed spanning tree);
else
[stree,ind] = sort(tree(:,3));
tree = tree(ind(1:nrows-1),:);
end
!?UPS = check_loops(tree,nrows); % Step 3; % check if there are loops;
if not(isempty(loops))
[f"‘ t?] = size(loops);
fprintf("There are %d loops\n’,b)

end
function [loops] = check_loops(atree,nrows)
atree = [atree zeros(size(1:nrows-1))7;
nloops =
loops = [];
while surmndatree(;,4)) < nrows-1

start = {].

i=0;

wf_ul.e isempty(start)

1=p41

255

Appendix D

if atree(i,4)==0
start = atree(i, 1);
next = atree(i,2);
atree(i,4) = 1; % done with this arc in tree
loop = [
Joop(1l) = start;
loop(2) = next;
Ip_cnt=2;
end; end
if (sum(atree(:,4)) < nrows-1 & i+1 <= nrows-1)
repeat = 1,
while repeat
repeat = 0;
for j=i+1l:nrows-1
if (atree(j,1) == next)
atree(j,4)=1;
next = atree(j,2);
if (next == start)
m = length(loop);
loop = [loop zeros(size(1:nrows-m))1’
loops = [loops loop];
else
Ip_cnt = lp_cat+ 1;
loop(lp_cnt) = next;
repeat = 1,
end
end; end; end; end; end.

D.3.1. Output of a MWDRST

»C=[06200000030;003800024000;,000130414007;,00006 001500;,00080650700;.0
000000004:000015007610;.00002900009,.,0000000900;,00003000000];

» save C;
» [arcs,tree} = mwdrst(C);
» {ree
treezll0;220;130;140;150;160;170;180;290.
» C
C:
062 0 0 0 0 0 0 3 O
0 0 38 0 0 024 0 0 O
0 0 0 13 0 4 14 0 0 7
0 0 0 0 6 0 015 0 O
0 0 0 8 065 0 7 0 O
0 0 o 0 0 0 0 O 0 4
6 0 0 0 15 0 O 7 6 10
0 0 0 0 29 0 0 0 0 9
0o 0 0 0 0 0 0 9 0 O
0 0 0 0 30 0 0 0 0 O
» [arcs,tree] = mwdrst(C);
» {ree
free = 1 2 62
2 3 38
3 4 13
10 5 30
5 6 65
2 7 24
4 8 15
7 9 6
7 10 10

D.4. Dijkastra Algorithm

% function [pred,dist] = dijkstra(s,P,Z,c);% input parameters;%s: The starting node s;%P: Pointer vector to start

256

Appendix D
each node in Z-matrix; %Z: Arcs outgoing from the nodes in increasing order;% Z(:,1) Tail. Z(:,2) Head.; %c: Costs
related to the arcs in the Z-matrix; % output parameters;%pred: pred(j) = Predecessor of node j;%dist:distance from
each node to s;
function [pred,dist] = dijkstra(s,P,Z,c)
fprintf(’dijkstra: Start node %5.0f \n’,s);

n = size(Z,1); % m = number of nodes. n = number of arcs.
m = length(P) - 1;
dist = Inf*ones(m,1);
pred = zeros(m,1);
dist(s) = 0;
S=5;
B=[1:s-1s+1:m];
for j = P(s):P(s+1)-1
node = Z(j,2);
dist(node) = ¢(j);
pred(node) =s;
xprint(dist,dist:’,” %6.21°,10)
end
while length(S) ~=m
[min_dist k] = min(dist(B)); % Node selection;
i=B(k);
S=[Si];
B = [B(1:k-1) B(k+1:length(B))];
for arc = P(i):P(i+1)-1
node = Z(arc,2);
if dist(node) > dist(i)+c(arc)
dist(node) = dist(i)+c(arc);
pred(node) = i;
end
fprintf((Node i, Node j, Arc) =%3d %3d %3d\n’,i,node,arc)
xprint(dist, dist:’,’ %6.2f,10)
end
end % while.

D.5. QAP Algorithm Codes — SDPI Solution

function[TC,a]=sdpi(a0,W,D,C);Steepest Descent Pairwise Interchange Heuristic.%[TC,a]=sdpi(a0,W,D,C); %
Determines final assignment vector a with minimum total cost TC;% M = number of activities;% N = number of
sites;% a0 = 1 x N initial assignment vector;% W = M x M weight matrix;% D = N x N site distance matrix;% C =
M x N fixed cost matrix (optional);% Requires that M = N;% error checking

error(nargehk(3,4,nargin));

[a0c,N] = size(a0y;

if a0c ~= 1 error('Argument a0 not a row vector.’);

end

if any(sort(a0) ~= [1:N]) errorCArgument a0 not a feasible assignment.’);

end

[Dr,Dc] = size(D);

if Dr ~=Dc errorCArgument D not N x N square matrix.’);

end

if Dr ~= N error('N in argument D not the same as N in a0.’);

end

[M,Wc] = size(W);

if M ~=Wc errorCArgument W not M x M square matrix.’);

end

if N~=M error(M in argument W not the same as N in a0 and D.");
end

if nargin ==

if any(size(C) ~= [M,N])
errorCArgument C does not have same M and/or N as a0, W, and D.”);
end; end
% internal variables;% ba = best a;% ca = current a;% cba = current best a found;% bTC = best TC;% kswitch = will
make an interchange;% si = i index of interchange;% sj = j index of interchange;% main

257

Appendix D

if nargin == 3
bTC = sum(sum(W{a0,a0) .* D)),
else
D = D + diag(diag(ones(N)));
pTC = sum(sum{(W(a0,a0) + diag(diag{C(a0,:)))) .* D));
end
if nargout ==
disp(");
disp(Initial TC =":disp(bTC);
disp(Initial a =");disp(a0);
end
ba = al;
kswitch = 1;
TCM = zeros(M,M);
while kswitch == 1
kswitch = 0;
fori=1:M
forj=1+1:M
ca = ba([l:i-1ji+1g-11j+1:M]);
if nargin == 13
cTC = sum(sum(W(ca,ca) .* D));
else
¢TC = sum(sum((W(ca,ca) + diag(diag(C(ca,)))) .* D));
end
TCM(i,j) = cTC;
if cTC < bTC
bTC = cTC;
cba = ca;
kswitch = 1;
si=1;s) =J;
end; end; end;
if kswitch == 1; % TCM;
ba = cba;
if nargout ==0
disp(sprintf(Interchange %.0f and %.0f:",s1,8)));
disp(’ Current TC =));disp(bTC);
disp(’ Current a =));disp(ba);
end; end; end;
if nargout == 0; % output final results;
disp(Final TC =7;disp(bTC);
disp('Final a=");disp(ba);

else
TC = bTC;
a=ba; end.
D.5.1. SDPI Output
»d:[012123;101212;210321;123012;212101;321210]
d= o 1 2 1 2 3
1 0 1t 2 1 2
2 1 0 3 2 1
1 2 3 0 1 2
2 1 2 1 0 1
32 1 2 1 0
»w=[046244;404228;640226;222062;4226010;4862100]
W= 0 4 6 2 4 4
4 0 4 2 2 8
6 4 0 2 2 6
2 2 2 0 6 2
4 2 2 6 0 10
4 8 6 2 10 0
»a0d=[{245316]
a0=2 4 5 3 1 ©

258

Appendix D

» ce=zeros(6)

cc = 0O 0 0 0 0 ¢
0 0 0 0 0 0
0 0 0 0 0 O
0O 0o 0 0 0 0
0O o 0 0 0 0
0 0 0 0 0 0

» [te,al=sdpi(a0,w,d,cc);

» [C

tc=184

»a

a=2 6 5 3 1 4
» [tc,al=sdpi(a0,w,d);

» tC

tc= 184

D.6. TSP Using Branch and Bound Algorithm

% function [Tour, f_tour, OneTree, {_tree, w_max, my_max, optPar] = ;% salesman(C, Zin, Zout, my f_BestTour,
optPar); % input:% C Cost (distance) matrix where C = C' and C(i,i) = NaN;% Zin Arcs forced in. Arc list.;% Zout
Arcs forced out. Arc list. (could also be given as NaN in C);% my Lagrange multipliers;% f_BestTour Cost (total
distance) of a known tour ; % optPar User specified parameters (see goptions.m);% salesman.m is using:%
optPar(1) Print level : <=5 No output; >5 Convergence results; % >6 Output every iteration; (<=4 could be used ina
B&B-rutin;% calling salesman as a subroutine);% optPar(15) Maximal duality gap in percent of best dual
objective;% optPar(25) Fail tolerance for dual objective ;% optPar(18) Step length parameter eps; % optPar(21)
Maximal # of iterations the dual objective can fail to ;% increase until eps is reduced ;% optPar(27) Maximal # of
iterations the dual objective can fail to ;% increase until routine terminates ;% optPar(14) Maximal # of iterations.
max(10*dim(x),100) is default.;% optPar(24) Wait flag, pause each iteration if set true;% output:;% Tour Best tour
found. Arc list.;% f_tour Cost (total distance) of best tour found;% OneTree Best 1-tree found. Arc list. ;% f_tree
Cost of best 1-tree found;% w_max Best dual objective; % my_max Lagrange multipliers at w_max; % optPar(28)
Exit flag :;% = 0 => OK;% =1 => Max # of iterations. ;% =2 => Infeasible problem, no tour exists.
function [Tour, f_tour, OneTree, f_tree, w_max, my_max, optPar] = salesman(C, Zin, Zout, my, f_BestTour, optPar)
if nargin < 6
optPar={];
if nargin < 5
f_BestTour={];
if nargin < 4
my=[];
if nargin < 3
Zout=[];
if nargin <2
Zin=(];
End; end; end; end; end;
m = size(C,1); % Number of nodes
if isempty(f_BestTour), f_BestTour = inf; end
if isempty(my) , my = zeros(m,1) ; end
if isempty(optPar)
optPar=IpDef; % Must be corrected!
optPar(1) =7,
optPar(14) = max(10*m*(m-1),100);
optPar(15) = 0.0001;
optPar(18) = 0.1; % Should be near 2 if f_upper was better
optPar(21) = 3;
optPar(24) = 0;
optPar(25) = 0.01;
optPar(27) =5,
end
PriLev = optPar(1); % Print level
Wait = optPar(24); % Pause flag
C = C+diag(nan*ones(m, 1)); % Check so C is OK
differ = C-C’;
if max(max(abs(differ(finite(differ))))) > 0

259

Appendix D

if PrilLev>5
fprintf(An--- Algorithm terminates.\n’)
fprintf(" Matrix C is not symmetric, no solution found.\n’)
end
optPar(28)=2;
return
end
for i = l:size(Zout,1); % Exclude the arcs in Zout from C
C(Zout(i,1),Zout(i,2)) = nan;
C(Zoui(i,2),Zout(i,1)) = nan;
end
nodedegree = sum(finite(C)); % Number of arcs connected to each node
ndeg_in = zeros(1,m); % Number of arcs connected to each node in Zin
if size(Zin,1)>0
fori=l:m
ndeg_in(i) = length(find(Zin==1));
end; end;
setlist = 1:m; % Let all nodes be members of different sets; % Are the arcs in Zin giving a cycle?
cycle=0; % Cycle flag
for 1 = 1:size(Zin,1)
if setlist(Zin(i,1))~=setlist(Zin(i,2)); % Update setlist if the nodes belongs to different sets
newset = min(setlist(Zin(i,1)),setlist(Zin(i,2)));
index = find(max(setlist(Zin(, 1)),setlist(Zin(1,2)))==setlist);
setlist(index) = newset*ones(1,length(index));
else
if i==m&i==size(Zin,1)
cycle = 2; % The m'th and last arc gave a cycle, i.e. a tour
else
cycle = 1;
end
break % A cycle is found
end; end
if min{nodedegree)<2lmax(ndeg_in)>Zlcycle==1
Tour = {];
f_tour = inf;
OneTree = [J;
f_tree = inf;
w_max = -inf;
my_max= [];
if PrilLev>5
fprintf(An--- Algorithm terminates.\n’)
fprintf(’ Problem infeasible, no solution found.\n’)
if min(nodedegree)<?2
fprintf(’ There is a node with less than two arcs (caused by Zout?).\n)
elseif max(ndeg_in)>2
fprintf("’ More than two arcs are connected to the same node in Zin.\n’)
elseif cycle==
fprintf(’ The arcs in Zin gave a cycle.\n)
end; end
optPar(28)=2;
return
elseif cycle==2
Tour = Zjn;
f_tour = O;
fori=1:m
f_tour = f_tour+C(Tour(i, 1), Tour(i,2));
end
OneTree = Tour;
f_tree =t tour;
w_Inax = -inf;
my_max=[];
if Prilev=5

260

Appendix D

fprintf(An--- Algorithm terminates.\n’)

fprintf(C The arcs in Zin is a tour with the cost %.6f \n’,f_tour)
end
optPar(28)=0;

return
end
w_max = -inf; % Best dual objective found so far
iter = 0; 9, Number of iterations since w_max was found
my_max = []; % Lagrange multipliers at w_max
Tour = []; % Best tour found so far
f tour = inf; % Best tour cost found so far
OneTree = []; % Best 1-tree found so far
f_tree = inf; % Best 1-tree cost found so far

max_iter = optPar(27); % Maximal # of iterations the dual can fail to incr.

max_loop = optPar(14); % Maximal # of iterations
w_last = inf*ones(1,max_iter); % Last # of w

DualGap = optPar(15); % Maximal duality gap in percent of w_best

DObjTol = optPar(25); % Fail tolerance for dual objective
eps = optPar(18); % Step length parameter in the dual problem

RedEps = optPar(21); % Reduce eps if w_best fails to incr. in RedEps iter

f_upper = 0; % Best tour upper bound.
not_jet = ones(1,m);
for i=1:size(Zin,1)
f_upper = f_upper+C(Zin(i, 1),Zin(i,2));
not_jet(Zin(i,1)) = 0;
end
for i=1:m
if not_jet(i)==
f_upper = f_upper+max(C(finite(C(:,1)),1});
end; end;
if size(Zin,1)>0
index = find(Zin(:,1)~=m&Zin(:,2)~=m);
Zinm_1 = Zin(index,:);
else
Zinn_1 = [];
end
if size(Zout,1)>0
index = find(Zout(:,1)~=mé&Zout(:,2)~=m);
Zoutm_1 = Zout(index,:);

else

Zoutm_1 =[];
end
loop = 0;

while loop < max_loop % Main loop starts
loop = loop+1;
C_hat=C;
fori=l:m
C_hat(:,i) = C_hat(;,i)-my(iy*ones(m,1);
C_hat(i,:) = C_hat(i,:)-my(i)*ones(1,m);
end
[Z_tree,c_tree] = mintree(C_hat(1:m-1,1 :m-1),Zinm_1,Zoutm_1);
Zm = C_hat(:,m);
if size(Zin,1)>0
index = find(Zin(:,1)==mlZin(;,2)==m); % These arcs must be in
Zm(min(Zin(index,:)")) = -inf*ones(length(index),1);
end
[Zm_sort,index] = sort(Zm);
Z_ltree = [Z_tree;lindex(1) m];[index(2) m]};
¢_ltree = ¢_tree+C_hat(index(1),m)+C_hat(index(2),m);
fori=1:m
deg(i) = length(find(Z_ I tree==1));
end

261

Appendix D

deg=deg(:);
f org =0;
for i=1:m
f org = f_org+C(Z_1tree(i,1),Z_1ltree(i,2));
end
if f orgf _tree
f tree = f_org;
OneTree = 7Z_ltree,
end
if min(deg)==2&max(deg)==2&f org<f_tour
f_tour = {_org;
Tour = 7Z_ltree;
f_upper = {_org;
end
w = 2*sum(my)+c_1ltree; % The dual objective
w_last = [w w_last(1:max_iter-1)];
if w>w_max & iter>0

w_max = w;
my_rmax = my;
iter=1;

else
iter = iter+1;

end

g = -(deg-2*ones(m, 1)); % Subgradient
g_norm = norm(g);
if g_norm>0.0001

t = eps*(f_upper-w)/g_norm; % Should t be resticted to prevent big steps.

my = my-+t*g/g_norm;

else
my = my+g; % Take a one step, just to prevent dividing by zero.
end
if iter >= RedEps
eps = eps/2;
end

if (max(wﬁlast)—min(w,last))<=DObjTol { w_max>={_BestTour | ...
(((f_upper-w)<:DualGap*w_max)&iter>=2)

if Prilev>5

fprintf(An--- Algorithm terminates. ITER = %d \n’,Joop)

if finite(f_tour)

fprintf’ Total cost of best tour found is %.6f.\n’,f_tour)
fprintf(\n Best dual objective found is %.6f\n’,w_max)
fprintf’ The duality gap is %.3f percent’(f_upper-w)/w_max)

fprintf(’ of the best dual objective.\n’)
fprintf(\n Best tour found is : \n)
mPrint(Tour’, Tour’,’ %4.0f,15);

else
fprintf(C No tour is found.\n")

fprintfC Best dual objective found is %.6f.\n’,w_max)

end; end
optPar(28)=0;
return
end
if PrilLev>6
fprintf(An Iteration %d \n’loop)
fprintfC Dual objective : %.6f. W)
if finite(f_tour)

fprintf(An Total cost of best tour found is %.6f.\n’f_tour)

else
fprintfC No tour is found\n’)
end; end
if Wait&Pril.ev>6

pause

Appendix D

end; end
if Prilev>5
fprintf(\n--- Algorithm terminates.\n’)
fprintfC Too many iterations. ITER = %d \n’,loop)
if finite(f_tour)
fprintfC Total cost of best tour found is %.6f\n’ f_tour)
fprintfC Best dual objective found is %.6f\n\n’,w_max)
fprintf(C The duality gap is %.3f percent’,(f_upper-w)/w_max)
fprintf(’ of the best dual objective.\n’)
fprintf(\n Best tour found is : \n’)
mPrint(Tour’, Tour’,” %4.0f",15);
else
fprintfC No tour is found.\n’)
fprintf(C Best dual objective found is %.6f\n’,w_max)
end; end;
optPar(28)=1;

D.6.2. TSP Branch and Bound Routine (Balas Method)

9 Branch & Bound algorithm for binary IP using Balas method.;% Solving binary IP in the form: min c*x subject to
A x <= b, x 0/1.;% The clements in A, b and ¢ are restricted to be integers.;% The first meq= optPar(13) are
equalities.; % function [x, optPar] = balas(A, b, ¢, optPar); % input: % OptPar is the standard parameter vector
defined by IpDef and goptions;% If optPar is empty, IpDef is called. ;% balas is using:% optPar(1) Print level: =0
No output; >0 Convergence results; % >1 Output every iteration;% optPar(13) meq = Number of equality
constraints (the first meq equations);% optPar(14) Maximal number of iterations. max(10*dim(x),100) is default.;%
optPar(24) Wait flag, pause each iteration if set true ;% output:% x Solution x;% optPar(28) Exit flag.;% =0 =>
OK:% = 1 => Max # of iterations. No solution found.;% =2 => Problem infeasible.;% optPar(8) Objective ¢™x at

optimum x (or last iterate x if no convergence)
function [x, optPar] = balas(A, b, ¢, optPar)
if nargin < 4
optPar = [1;
end
b=b(); c=c(2);
if is empty(optPar), optPar = IpDef; end;
if length(optPar)<29,0ptPar = IpDef([],{],optPar); end ;
PriLev = optPar(1);
wait = optPar(24);
meq = optPar(13); % The first meq constraints are equalities
A = [-A(1:meq,:);A];
b = [-b(1:meq,:);b];
n = length(c);
m = length(b);
max_iter = optPar(14);
if max_iter==0, max_iter = max(10*n,100); end
f best=1inf; % Best feasible solution found so far, objective value

x=[]; 9% Best feasible solution found so far

pred = 0; % Predictor (=0: root of branch tree)

problem = [0 nan]; % Variable number "0" is in this subproblem set to "nan"
L=1; % List of nodes still to branch

Nol =0; % Number of variables fixed to one at L

AA =[c3AL

bb = [{_best-1;b]; % Look for a PFS that is better

m=m+l;

for iter=1:max_iter % Main loop starts
if Prilev > 1
fprintf(\n= branch = Iteration Iod\n\n’iter);
end
if length(L)=0
if I_best=inf % Empty feasible sct
optPar(28)=2;
if PriLev > 0
fprintf(’ No Feasible Solution to IP Problem\n’)
end

263

Appendix D

else
optPar(28)=0;
if Prilev >0
fprintf(\n--- Optimal Solution Found! ITER = %d \n’,iter)
fprintf(An Optimal Objective = %d \n’f_best)
xprint(x,’ x = ’,'%6.11,10);
end; end
return % Terminate program
end
[maxones,index] = max(Nol);
j = L(index);
L = [L(1:index-1);L(index+1:length(L.))];
Nol = [No!(1:index-1);Nol(index+1:length(No1))];
ij=j; % This problem
JO = []; % Variables set to zero
J1 = []; % Variables set to one
while pred(j) >0
if problem(j,2)==0
JO = (JO problem(j,DI;
elseif problem(j,2)==1
J1 = [J1 problem(j,1)];
end
j = pred@);
end
bb(1) = _best-1;
LHS = -bb; % Left Hand Side: should be less than zero when feasible
Ifree = []; % Variables not yet fixed
fori=l:n
if any([J0,0]==1)
% Add zero to LHS
elseif any([J1,0]==1)
LHS = LHS+AAC(,1);
else
LLHS = LHS+min([zeros(im,1);AAGL) DS
Ifree = [Ifree i];
End; end
if Prillev > 1
if ~isempty(JO)
xprint(JO, Index of Variables Fixed to Zero:’ %6.0f,6);
else
fprintf(’ No Variables Fixed to Zero.\n’)
end
if ~isempty(J1)
xprint(J1,” Index of Variables Fixed to One: ’,'%6.0F,6);
else
fprintf(’ No Variables Fixed to One\n’)
end; end
ENDTREE = 0; % Flag : end of branch tree
if max(LHS)>optPar(4) % Subproblem is infeasible
ENDTREE = [;
else % Subproblem is feasible
if length(Jfree)==0 % All variables are fixed
x_k = zeros(n,1);
x_k(J1) = ones(length(J1),1);
if c*x_k<f_best % Is this the best solution found so far?
f best =c*x_k;
optPar(8) = {_best;
X =x_k;
if Prilev > 1
fprintf(’ Update Best PFS Found: %d\n’,f_best)
xprint(x,’ x = ,’%6.1,10);
end; end; ENDTREE = 1;

264

Appendix D

else % there are still variables not fixed
BRANCH = |, % Flag : shall we branch?
for i=1:length(Jfree)
[maxviolation,ii]=max(LHS+abs(AA(:,Jfree(i))));
if maxviolation>optPar(4) % Construct one new subproblem
if is empty(L)
L = [size(problem,1)+1];
else
L = [L;size(problem,1)+1];
end
if is empty(Nol)
Nol = max ones;
else
Nol = [Nol;max ones];
end
if AA(ii,Ifree(i))>0
problem = [problem;[Jfree(i) 0]]; % Variable set to zero
pred = [pred;jj];
else
problem = [problem;[Jfree(i) 1]]; % Variable set to one
pred = [pred;jjl;
end
BRANCH = 0;
break
end; end
if BRANCH % construct two new subproblems
fixvar = Jfree(1);
if is empty(L)
L = [size(problem, 1)+1;size(problem,1)+2];
else
L = [L;size(problem, 1)+ 1;size(problem,1)+2];
end
if is empty(No1)
Nol = [max ones;max ones+1];
else
Nol = [Nol;max ones;max ones+1];
end
problem = [problem;[fixvar O];[fixvar 1]};
pred = [pred:jj;jils
end; end; end
if PriLev>1 & ENDTREE
fprintf(’ End of Tree.\n’)
end
if PriLev>2
if ~is empty(L)
xprint(L(:),’ New List L: ’,%6.0f,6);
else
fprintf(’ List L is Empty. \n\n)
end; end
if wait & PriLev>1
pause
end; end % Main loop
if PriLev>0
fprintf(\n--- TOO MANY ITERATIONS. ITER = %d \n’iter)
end;
optPar(28)=1;

D.7. TSP SA Baseline Codes

function [S,cost] = tsp_sa(x,stop_crit); % Travelling salesmen problem - SA; % S = tsp_sa(x); % x - cities; % S -

sequence of cities; % cost
n = length(x);

265

Appendix D

S={l:n};
cost = cities_cost(S,x);
incr = 1el0;
1=0;
dzaba = 0;
while (incr > stop_crit & dzaba < 70)
S1 = gen_seq(S);
costl = cities_cost(S1,x);
if (rand < 0.35 & cost1 < cost)
incr = (cost - costl);
S =81,
cost = costl;
dzaba = 0;
else
dzaba = dzaba + 1;
end
1=1+1;
fprintf("%d cost = %f incr = %f\n’|i,cost,incr);
end
plot(x(2,:),x(3,:),’07;
hold on;
for i=1:n-1
ind1 = S(i);
ind2 = S(i+1);
plot([x(2,ind1),x(2,ind2)],[x(3,ind1),x(3,ind2)]);
end
hold off;
function cost = cities_cost(S,x);
9 cost = cities_cost(S,x); % S - sequence of cities; % X - id, coordinates of cities;
n = length(S);
total_dist = O;
for i=1:n-1
idl = SG);
id2 = S@i+1);
dist = sqrt((x(2,id1) - x(2,id2))*2 + (x(3,id1)-x(3,1d2))*2);
total_dist = total_dist + dist;
end
cost = total_dist;
function S = gen_seq(S90);
S =S0; % S = gen_seq(S0);% from input sequence SO generate; % another slightly different S1;
n = length(S0);
n_swaps = n/10+1;
for i=1:n_swaps
ind1 = round(rand*n) + 1;
if (ind1 > n) ind1 = n; end
ind2 = round(rand*n) + 1;
while ind1 == ind2
ind2 = round(rand*n) + 1;

end
if (ind2 > n) ind2 = n; end
S1=S;
Y = Si(ind1);
S1(ind1) = S1(ind2);
S1(ind2) = Y;
§=S1;
End.

D.7.1. Improved SA - TSP with 2-opt

function Best_tour_length= tspsiman(EUC_2D);% A Symmetric 2D Euclidian TSP; % Nearest Neighbour tour
construction + 2-Opt local search + SA/Metropolis test;% This function makes use of the following function/s and
data file/s:;% tourdist; % Input;% Weights or lengths must be given in x-y coordinates (EUC_2D). Data file must be
saved as a text file for it Lo be processed by the MATLAB program. :% Output;% Best_tour_length; %

266

Appendix D

Temperature_of_best_tour_length;% Solution_count; % Search_stop_temperature;% Elapsed_time % In seconds; %
Solutions_generated - number of solutions generated; % Floating_point_operations; % Graphs;% Temperature vs.
Tour Length;% Number of solutions vs. Tour Length.
flops(0) ;
t0= clock ;
xy=EUC_2D;
n_cities= fength(xy) ;
rand(’state’,sum(100*clock));
distance_matrix = zeros(n_cities) ;
for n_cities_x = 1: n_cities,
for n_cities_y = 1:n_cities_x
X = xy(n_cities_x, 1) ;
y = xy(n_cities_x, 2) ;
xx = xy(n_cities_y, 1) ;
yy = xy(n_cities_y, 2) ;
distance_matrix(n_cities_x, n_cities_y)= ceil(sqrt((x - xx)*2 + (y - yy)*2)) ;
distance_matrix(n_cities_y, n_cities_x)= distance_matrix(n_cities_x, n_cities_y) ;
end; end
lenbestNN= inf ;
pbestNN=[] ;
prand= randperm(n_cities) ; % A random selection of the starting city
f=find(prand==1) ;
prand(f)= prand(1) ;
p= [1 prand(2)] ;
i= prand(3) ;
count=3;
while count <= n_cities
NNdist=inf ;
pp=1i;
for j= 1: n_cities
if (distance_matrix(i, j) < NNdist) & (j~=i) & ((j~=p) == ones(1,length(p)))
NNdist= distance_matrix(i, j) ;
PP=1j;
end; end;
p=[ppp);
1=pp ;
count= count + 1 ;
end
len= tourdist(p, distance_matrix) ;
if len < lenbestNN
lenbestNN= len ;
pbestNN=p ;
end
solnn= (] ;
lenn= [] ; temp={] ;
soln=1;
Iencurr= lenbestNN;
Best_tour_length= lenbestNN
peurr= pbestNN ;
pbest= pbestNN ;
restart=1 ;
Tstart= 30 ; % Start temperature
Tend= 1 ; % Stop temperature
Tred=0.97 ;
T= Tstart ;
Nochange= 2 ; % If after Nochange neighborhood searches, no improvements break search.
lenn= [lenn lencurr] ;
temp= [temp T] ;
solnn= [solnn soln] ;
bb=0;
while T >= Tend
big= n_cities - | ;

267

Appendix D

while big >=13
small= big - 2 ;
while small >= 1
curropt= distance_matrix(pcurr(big),pcurr(big+1)) + distance_matrix{pcurr(small),pcurr(small+1)) ;
swap2= distance_matrix(pcurr(small),peurr(big)) + distance_matrix(pcurr(small+1),pcurr(big+1)) ;
soln=soln + 1 ;
if swap? < curropt
order2= 1: n_cities ;
order2={1:small big:-1:small+1 big+1:n_cities] ;
peurr= pcurr(order2) ;
lencurr= tourdist(pcutr, distance_matrix) ;
lenn= [lenn lencurr] ;
temp= [temp T] ;
solnn= [solnn soln] ;
if lencurr < Best_tour_length
Best_tour_length= lencurr
pbest= pcurr ;
Temperature_of_best_tour_length="T
Solution_count= soln

T="Tred *T;
ifT<=3
T=50;

End; end

Teurr=T ;

bb=0;

big= n_cities- 1 ;

small=big -1

ifT<=3
T=10;

end

if T <=Tend ;
big=29 ;
break

end

else if swap2 > curropt
%r= abs(randn) ;
= rand; % where r ranges from 0.0 to 1.0
diff= swap?2 - curropt ;
%il 1 < exp(-(diff) / T)
if r <= exp(-(diff) / T)
order2= 1: n_cities ;
order2=[1:small big:-1:small+1 big+1:n_cities] ;
peurr= peurr(order2) ;
lencurr= tour dist(pcurr, distance_matrix) ;

T=Tred *T;
bb=0;
end; end
small= small - 1;
end
big=big-1;
end
bb=bb+1;
if T <= Tend | bb > No change ;
cle

Best_tour_length
Best tour= [pbest -pbest(1)]
Temperature_of_best_tour_length
Solution_count
Search_stop_temperature= T
Elapsed_time= etime(clock, t0) % In seconds
Solutions_generated= soln
Floating_point_operations = flops

268

Appendix D

if bb > No change
No_change= bb
end
disp(’Press ENTER to display plot (Temperature vs. Tour Length) or CtrIrC to end search.’)
pausc
cle
plot(temp, lenn)
title(Simulated Annealing w/ 2-Opt local search))
xlabel('Temperature (not scaled)))
ylabel("Tour Lengths/Costs’)
grid
disp(Press ENTER to display plot (Number of Solutions vs. Tour Length) or Ctrl*C to end search.’)
pause
cle
plot(solnn, lenn)
title(’Simulated Annealing w/ 2-Opt local search’)
xlabel('Number of Solutions’)
ylabel("Tour Lengths/Costs’)

arid
disp(’Press ENTER to restart search (if var restart > 0) or CtrlrC to end search.))
pause
if restart > 0
cle
T= Tstart ; bb=0;
solnn= []; lenn= [J; temp=[] ;
9 This time randomly generate tours and restart annealing
prand= randperm(n_cities) ;
f=find(prand==1) ;
prand(f)= prand(1) ; prand()=1;
lencurr= Best_tour_length peurr= pbest ;
end; end;end; % End of local search

function tour_distance = tour dist(tourvec, distance_matrix);

n_cities = length(tourvec);

city = 1;

tour_distance = 0;

while city <= (n_cities - 1),
tour_distance = tour_distance + distance_matrix(tourvec(city), tourvec(city+1));
city = city + 1;

end; tour_distance = tour_distance + distance_matrix(tourvec(n_cities), tourvec(1));

D.8. Genetic Algorithm — TSP Order Based Example Routine

% This routine code shows how to use the ga using an order-based representation.; % Setting the seed to the same
for binary

rand(‘seed’,156789)

% 6 city problem

t=[92.6112 59.0801; 49.1155 50.0000; 12.5000 57.9436; 75.0000 19.3703; 8.6504 13.7113; 36.8786 92.9628];
t=100*rand(15,2);

sz=size(t, 1);

distMatrix=dists(t,t);

% Order-based Representation Crossover Operators; % cyclicXover; % erXover; % enhancederXover; %
linerorderXover; % orderbasedXover; % partmapXover; % singleptXover; % uniformXover;

xFns = cyclicXover uniformXover partmapXover orderbasedXover’

xFns =[xFns,singleptXover linerorderXover’;

% xFns = [xFns,’enhancederXover linerorderXover’); % xFns = [xFns, linerorderXover singleptXover’]

xOpts = [2:2:2;2:2:21:% 252, 2; 23 2:2:2%;

% Order-based Mutation Operators; % inversionMutation;% adjswapMutation; % shiftMutation; % swapMutation %
threeswapMutation;

mFns = ‘inversionMutation adjswapMutation shiftMutation swapMutation threeswapMutation’,

mOpts = [2;2;2;2;2];

termPFns = ‘maxGenTerm’; % Termination Operators;

termOps = [100]; % 200 Generations

269

. — : — Appendix D
selecttn = normGeomSelect’ % Selection Function; =

selectOps = [0.08];

evalln = tspEval’ % Evaluation Function;

evalOps = [;

type tsplival

bounds = [sz]; % Bounds on the number of cities in the TSP:

ga()[;)ts:[le-6 1 11‘]; % GA Options [epsilon float/binar disple;y];

startPop = initializeoga(80,bounds, tspEval’ [le- ;% initiali i i

pause; % Lets run thf GA; %Hit a retIL)Jrn t(1> ’g)(rjlt?mll]e);, " Generate an iniialise pPopulation of size 20

[x endPop bestPop tracc]:ga(bounds,evaan,evalOps,startPop,gaOpts,...
tcrmfns,tcrmOps,selectFn,selectOps,ans,xOpts,ans,mOpts);

x; %o % is the best solution found;

pause; % endPop is the ending population: endPop; %Hit a return to continue; %pause; % bestPop is the best
solution tracked over generations

bestPop

pause

trace; % trace is a trace of the best value and average value of generations;
pause

clf; % Plot the best over time;
plot(trace(:,),trace(:,2));
pause; % Add the average to the graph
hold on
plot{trace(:, 1),trace(:,3)); %Hit a return to continue;
pause; % figure(2)
clf
A=ones(sz,82);
A= xor(triu(A),tril(A));
[xg ygl=gplot(A,1);
cif
plot(xg,yg, b’ MarkerSize’,24),
h=gca;
hold on
ap=x;
plot(t(x(1:82), 1), 1(x(1:(s2)),2),1-")
plot(t([x(1),x(sz)],1),t([x(1),x(s2)].2),1-)
plot(xg,ye,b.’, MarkerSize',24);
=1
for i=1:sz
str=sprintf('C-%d’));
if 1(1,1)<50
=it
text(t(i,1)-7,1(1,2),str);
else
=+l
text(t(i, +2,1(1,2),str);
end; end;
legend(’Path’, Best Found Path)

D.9. SA Layout Placement 1

% Automatic placement via Simulated Annealing; % Input: arcs - array of
@ * end vertex (machine); %* flow; % * cost; % area -axb
a must be greater; % or equal the total area of all
example; % load(arcs); % loc =

function [mach,cost] = place(m‘cs,area);
arcs described by ; % * start vertex (machine);
(assumption is that each machine is; % 2x2 and therefore are :
machines; % Output: mach - location (placement) of vertices (machines); %
place(arcs,[10 10); % list first all vertices (machines)
[A n] = size(arcs);

if (n ~= 4) error(*wrong input arcs’);end

nmach = 2;

mach(1,1) = arcs(1,1);

mach(2,1) = -1,

mach(1,2) = arcs(1,2);

mach(2,2) = -1;

270

Appendix D

for a=2:A
for ind=1:2
m = arcs(a,ind); % check if this machine is already in mach array
flag = 0;
for n = 1:nmach
if (mach(1,n) == m), flag =1, end
end
if (flag == Q)
nmach = nmach + 1;
mach(1,nmach) = m;
mach(2,nmach) = -1; % initial placement at 0,0
end; end; end; % check if area big enough;
given_area = area(1)*area(2);
if given_area < nmach, error(area too small’}y;end; % Initial placement
i=0;
=05
while (sum(mach(2,))==-1) > 0)
a = fix(rand*(nmach-1) + 1.5);
if (mach(2,a) == -1)
mach(3,a) =1; % y axis
mach(2,a) = j; % x axis
if (j < area(2)-1)

j=)j+ 1
else
if (i < area(l)-1),
i=i+1;
i=0
end; end; end; end

cost = placementwcost(mach,nmach,arcs,A);
new_mach = swap(mach,nmach);
costl = placement_eost(new_mach,nmach,arcs,A);
Tstart = 5*abs(cost-costl); % Temperature
if (Tstart == 0), Tstart= L;end;
Tend = Tstart/500;
Tred = 0.91;
T = Tstart;
1=0;
nsol = 0;
while (T >= Tend)
I=1+1;
uphill_cnt = 0;
for k=1:10*nmach/(T+2)

if (rand < 0.75)

new_mach = swap(mach,nmach);
else

new_mach = move(mach,nmach,area);
end

nsol =nsol + 1;
new_cost = placemenLcost(new__mach,nmach,arcs,A);
if new_cost < cost
mach = new_mach;
cost = new_cCost;
else
r = rand;

diff = new_cost - cost; % fprintf(’ r=%f e = %f\n’,r,exp(-diffT));

if (r < exp(-(difH)/T))
uphill_cnt = uphill_cnt + 1;
mach = new_mach;
cost = new_cost;
end; end; end
T="Tred *T;
fprintf('Temp = %f cost= %f uphill_cnt = %d\n’,T,cost,...

271

Appendix D

uphill_cnt);

Temp() =T,

Cost(l) = cost;
end
plot(Temp,Cost,’o-");grid
xlabel("Temperature’);
ylabel(’Placement cost’);
function cost = placement_cost(mach,nmach,arcs,narcs);
cost = 0;
for i=1:narcs
ml = arcs(i, 1); % distance;

ind1 = find(mach(1,;) == ml);

plx = mach(2,ind1);

ply = mach(3,ind1);

m?2 = arcs(,2);

ind2 = find(mach(l,:) == m2);

p2x = mach(2,ind2);

p2y = mach(3,ind2);

d = abs(plx - p2x) + abs(ply - p2y);

cost = cost + ares(i,3)*arcs(i,4)*d;
end
function new_mach = swap(mach,nmach);
a = fix(rand*(nmach-1) + 1.5);
b = fix(rand*(nmach-1) + 1.5);
while (b ==a)

b = fix(rand*(nmach-1) + 1.5);
end
new_mach = mach;
new_mach(2,a) = mach(2,b);
new_mach(3,a) = mach(3,b);
new_mach(2,b) = mach(2,a);
new_mach(3,b) = mach(3,a);
function new_mach = move(mach,nmach,area);
a = fix(rand*(nmach-1) + 1.5);
nonempty = zeros(area(l Yrarea(2),2);
for n=1:nmach

i = mach(2,n);

j = mach(3,n);
nonempty(i+1,j+1) = 1; % fprintf("%d %d n=%d\n’,i+1,j+1,n);
end
[ind] ind2] = find(nonempty == 0);
L = length(ind1);
ifL.>1

k = fix(rand*(L-1) + 1L.5);
else

k=1;
end
new_mach = mach;
new_mach(2,a) = ind1(k)-1;
new_mach(3,a) = ind2(k)-1;

D.9.1. SA Layout Placement 1 - Output Example

example
load(arcs);
Joc = place(arcs,[10 101);
» load arcs
» loc = place(arcs,[4 4])
Tstart = 20
Temp = 18.000000 cost = 27.000000 uphill_cnt = 85
Temp = 16.200000 cost = 36.000000 uphill_cnt = 84
Temp = 14.580000 cost = 35.000000 uphill_cnt = 88

272

Appendix D

Temp = 0.075142 cost = 14.000000 uphill_cnt =0
Temp = 0.044371 cost = 14,000000 uphill_cnt = 1
loc = Columns 1 through 14

i1 2 3 4 5 6 7 & 9 11 10 12 13 14
11 2 0 1 3 0 1 2 3 0 2
o 1 2 1 2 1 2 2 3 1 0 3 3 3
» loc'
ans = 110
2 1 1
3 2 2
4 0 1
5 1 2
6 2 1
7 3 2
g 0 2
9 1 3
11 3 1
10 2 0
12 3 3
13 0 3
14 2 3
» arcs = 1 2 1 1
2 3 1 1
2 4 1 1
2 5 1 1
3 6 1 1
37 1 1
4 8 1 1
5 9 1 1
6 11 1 1
6 10 1 1
7 12 1 1
8 13 1 1
9 14 1 1

D.10. Improved SA Layout Placement

function {mach,cost] = placev2(nodesl,arcs,vacant_area);% [foc,cost] = place(nodes,arcs,area);% Automatic
placement via SA;% Input: nodes - array of nodes (machines) to be arranged;% on a rectilinear grid. Consists of;% *
node number;% * width;% * height;% arcs - array of arcs described by ;% * start vertex (machine);% * end vertex
(machine);% * flow;% * cost;% vacant_area - this is a 2D array which defines;% the area to be used for the layout;%
NB - vacant fields are denoted by 1,;% while forbidden fields are set to 0.;% Output: mach - location (placement)
of vertices (machines);% example;% load nodes.dat; % load arcs.dat; % area = ones(10,8); % loc =
place(nodes,arcs,area);

global nodes;

tt=cputime;

nodes = nodes};

[nmach dummy] = size(nodes);

if (dummy ~= 3), error('wrong nodes array');end

[A n] = size(arcs); % list first all vertices (machines)

if (n ~= 4) error('wrong input arcs');end

mach = zeros(3,nmach);

mach(1,:) = nodes(:,1)"

mach(2,:) = -ones(1,nmach); % initial placement (x)

mach(3,:) = -ones(1); % initial placement {y)

required_area = sum(nodes(:,2) .* nodes(:,3));

given_area = sum(sum(vacant_area)); % check if area big enough

if given_area < required_area, error(‘area too small’);end

{areal area2] = size(vacant_area);

num_forb_fields = sum(sum(vacantﬂareaz:O));

floorplan = (-1)*(1-vacant_area); % occupancy of the area; % Initial placement

273

Appendix D

ent=0;
while (sum(mach(2,:)==-1) > 0)
cnt=cnt +1;
if ent == nmach*100,
error(CArea too small for initial placement!!!’);
end
a = fix(rand*(nmach-1) + 1.5); % random node index
if (mach(2,a) ==-1)
Width = nodes(a,2);
Height = nodes(a,3);
xloc = fix(rand*(areal-1) + 0.5);
yloc = fix(rand*(area2-1) + 0.5);
if (xloc+ Width <= areal & yloc+Height <= area2)
vacant= 1; % TRUE
for g=1:Width
for h=1:Height
if not(floorplan(xloc+g,yloc+h)==0)
vacant =0; % FALSE
break
end; end; end
if (vacant)
mach(3,a) = yloc; % y axis
mach(2,a) = xloc; % x axis
for g=1:Width
for h=1:Height
floorplan(xloc-+g,yloc+h) = a;
end; end; %floorplan; %report(mach,ﬂoorplan,vacantﬁarca,[],[]);pause; end; end; end;end
cost = placement_cost(mach,nmach,arcs,A); %floorplan; %report(mach,ﬂoorplan,vacant__area,[],[]);pause
[new_mach,new_{loorplan] = swap(mach,nmach,floorplan);
costl = placement__cost(new~mach,nmach,arcs,A);
Jonew_floorplan; %report(new«mach,new__floorplan,vacant_area,[],[]);pause; % -- Temperature Control --
Tstart = 4*abs(cost-cost1);
if (Tstart == 0), Tstart = L;end;
Tend = Tstart/800;
Tred =0.91;
T = Tstart;
I=1;
Temp(l) =T;
Cost(l) = cost;
nsol = 0;
while (T >= Tend)
1=1+1;
uphill_cnt = 0;
for k=1:20*nmach/(T+2)
if (rand < 0.25); %fprintf('Checking SWAP\); %floorplan;
[new_mach,new_floorplan] = swap(mach,nmach,ﬂoorplan);
occup_area = sum(sum(new_floorplan ~= 0)); %new_floorplan; %pause
if (occup_area ~= num_forb_fields + required_area),
error(bad floorplan- (swap)’);
end; else; %fprintf(’Checking MOVE\n); %floorplan; %report(mach,ﬂoorplan,vacant_area,[],[]);pause
[new_mach,new_floorplan] = move(imach,nmach,floorplan); %new_floorplan; %pause;
occup_area = sum(sum(new_floorplan ~= 0)); %report(new__mach,new_ﬂoorplan,vacant_area,[],[]); pause;
if (occup_area ~= num_forb_fields + required_area),
error(’bad floorplan- (move)’);
end; end
nsol =nsol +1;
new_cost = placemcnt_cost(newwmach,nmach,arcs,A);
if new_cost < cost
mach = new_mach;
COSt = new_cCoSt;
floorplan = new_floorplan;
clse

274

Appendix D

r = rand;
diff = new_cost - cost; % fprintf(’ r = %f e = %f\n’;rexp(-diff/T));
if (r < exp(-(diff)/T))
uphill_cnt = uphill_cnt + 1;
mach = new_mach;
cost = new_cost;
floorplan = new_floorplan;
end; end; end
T="Tred *T;
fprintf('Temp = %f cost = %f uphill_cnt = %d\n’,T,cost,...
uphill_cnt);

Temp(l) =T,
Cost(l) = cost;
end

total_cpu_time = cpulime-tt;
fprintf('CPU time (sec): %f\n’total_cpu_time);
floorplan
report(mach,ﬂoorplan,vacantmarea,Temp,Cost);
function cost = placement_cost(mach,nmach,arcs,narcs);
global nodes;
cost = 0;
for i=1:narcs
ml = arcs(i, 1); % distance
ind1 = find(mach(1,:) == ml); % central position of first machine;
plx = mach(2,ind1) + nodes(ind1,2)/2;
ply = mach(3,ind1) + nodes(ind 1,3)/2;
m?2 = arcs(i,2);
ind2 = find(mach(l,:) == m2);
p2x = mach(2,ind2) + nodes(ind2,2)/2;
p2y = mach(3,ind2) + nodes(ind2,3)/2;
d = abs(plx - p2x) + abs(ply - p2y); %fprintf(from %d %d costs %6.2f\n’ind 1,ind2,d);
cost = cost + arcs(i1,3)*arcs(i,4)*d;
end
function [new_mach, new_floorplan] = swap(mach,nmach,floorplan);
global nodes;
new_mach = [];
[areal area2] = size(floorplan);
while is empty(new_mach)
a = fix(rand*(nmach-1) + 1.5);
b = fix(rand*(nmach-1) + 1.5);

while (b == a)
b = fix(rand*(nmach-1) + 1.5);
end

Width_a = nodes(a,2);
Height_a = nodes(a,3);
xloc_a = mach(2,a);
yloc_a = mach(3,a);
Width_b = nodes(b,2);
Height_b = nodes(b,3);
xloc_b = mach(2,b);
yloc_b = mach(3.b);

if (Width_a == Width_b & Height_a == Height_b); % Check sizes; % Identical; %fprintf(‘identical\n’);

new_floorplan = floorplan;
new_mach = mach;
new_mach(2,a) = mach(2,b);
new_mach(3,a) = mach(3,b);
new_mach(2,b) = mach(2,a);
new_mach(3,b) = mach(3,a);
mask = (floorplan == b);
new_floorplan = floorplan - (b-a)*mask;
mask = (floorplan == a);
new_floorplan = new_floorplan - (a-b)*mask;

275

Appendix D

else;
if (Width_a == Height_b & Height_a == Width_b); % Need to rotate by 90 deg;
ofprintf(rotate\n’);
new_floorplan = floorplan;
new_mach = mach; %
new_mach(2,a) = mach(2,b);
new_mach(3,a) = mach(3,b);
new_mach(2,b) = mach(2,a);
new_mach(3,b) = mach(3,a);
temp = nodes(a,2:3);
nodes(a,2:3) = nodes(b,2:3);
nodes(b,2:3) = temp;
mask = (floorplan == b);
new_floorplan = floorplan - (b-a)*mask;
mask = (floorplan == a);
new_floorplan = new_floorplan - (a-b)*mask;
end; end;end
function [new_mach,new_floorplan] = move(mach,nmach,floorplan);
global nodes;
new_mach = [J;
rareal area2] = size(floorplan);
while is empty(new_mach)
a = fix(rand*(nmach-1) + 1.5); % select randomly a machine to be moved;
Width = nodes(a,2);
Height = nodes(a,3);
[ind 1 ind2] = find(floorplan == 0); % select randomly a new position;
L = length(ind1);
for Y=1:10 % try 10 times to find a vacant block;
ifL>1
k = fix(rand*(L.-1) + 1.5);
else
k=1;
end
vacant = 1;
if (ind 1(k)-1+Width <= areal & ind2(k)-1+Height <= areal)
for g=1:Width
for h=1:Height
if not(floorplan(ind1(k)-1+g,ind2(k)-1+h)==0)
vacant = 0;
end; end; end;
eise
vacant = 0;
end
if vacant, break;end
end
if vacant
new_mach = mach;
new_floorpian = floorplan;
new_mach(2,a) = ind1(k)-1;
new_mach(3,a) = ind2(k)-1;
mask = (floorplan == a);
new_floorplan = floorplan - a*mask;
for g=1:Width
for h=1:Height
new_floorplan(ind1(k)-1+g,ind2(k)-1+h) = a;
end; end; end; end
function report(mach,floorplan,vacant, Temp,Cost)
[dummy nmach] = size(mach);
figure(1);
set(1,Position’, [432 233 365 326]);
aux = ones(size(vacant));
v = nmach*vacant - aux;

276

Appendix D

colormap(gray);

imagesc(floorplan + v);
title(’Black=restricted, Gray=unoccupied’);

axis('i));axis(on’);grid on

figure(2);

set(2, Position’, [59 232 365 326]);

semilogx(Temp,Cost,'0-);grid

axis(’square’);
xlabel(‘Temperature’),

ylabel(Placement cost);

D.10.1. Improved SA Layout Placement ~ Output Example

» load(‘arcs.dat’);

» arcs
arcs = 1 2 1 1
2 3 1 1
2 4 1 1
2 5 1 1
36 1 1
37 1 1
4 8 1 1
5 9 1 1
6 11 1 1
6 10 1 1
7 12 1 1
8 13 1 1
9 14 1 1
1415 1 1
» load nodes.dat;
» nodes
nodes = 1 1 2
2 2 2
3 2 1
4 2 3
5 1 1
6 2 2
7 1 2
g 2 2
9 1 1
10 3 2
) N
12 1 3
13 1 2
14 2 2
15 1 1
» area = ones(12,10);
sarea= 1 L 1 1 1 1 1 1 1 1
t 1 1 1 1 1 &t 1 1 1
1 1 1 1 1 1 1 1 11
r 11 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 11
tr 1 1 1 L 1 1 1 11
1 1 1 1 1 1 1 1 1 1
1 ¢t 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
! 1 1 1 1 1 1 1 1
1 1t 1 1 1 1 1 1 1 1
1 1 1 1 1t 1 1 1 11
» area(5,3)=0;
» area = ! 1 1 1 1t 1 1 1 1 1
! 1 1 1 1 t 1 1 11
t 1t 1 1 1L 1 1 1 1 1

277

Appendix D

— e e e i e et e et

— o R et e lemd ek

—_— e O

1

1

= et = e e e ek e

1

» 10c=p1acev2(nodcs,arcs,area);
Temp = 3.640000 cost = 81.500000 uphill_cnt= 11
Temp = 3.312400 cost = 70.500000 uphill_cnt=16

Temp = 3.014284 cost = 63.500000 uphill_cnt =9

Temp = 0.005432 cost = 28.500000 uphill_cnt =0
Temp = 0.004943 cost = 28.500000 uphill_cnt =0

CPU time (sec): 44.120000

floorplan =
0 0 0
0 0 O
0 0 0
0 0 0O
13 13 -1
g§ 8 0
g & 0
0 0 0
0 0 O
6 0 DO
6 0 0O
60 0 90

OO O, OOOO

QOOOO#-&:AOQSO

OO O, PPN ONN—O

(o]

[\

COoOO0OCO —NPW-d— O

10
10
10

S OO O Lw o W

e e e e ek i

10
10
10
6
6
1§
14
14
15
0
0
0

0

COCOERESOS oo

Pkt et e paid e

1
1
1
1
1
1
1
1
1

278

