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Abstract
It is known that transient effects limit the efficiency of phase conjugation using

Stimulated Brillouin Scattering (SBS). Most of the present knowledge of transients

in SBS is due to experimental observations, supported by greatly simplified theo-

retical models which makes the present knowledge of transient SBS incomplete. In

this thesis, a one and three dimensional transient model of SBS are developed to

investigate the transient regime of SBS and recognize different transient phenomena

that affect the performance of SBS. A one dimensional model of transient SBS is

initially developed. This model includes the initiation of SBS from noise in a finite

cell geometry. Using this model, two transient phenomena are examined carefully;

1) the deterministic threshold oscillations at the beginning of the Stokes pulse and

2) the stochastic intensity fluctuations in the output Stokes pulse. It is shown that

the threshold oscillations depend on the phonon lifetime of the SBS material and

the immersion length of the laser beam into the SBS cell. It also becomes clear that

the pulse compression phenomenon can be understood in terms of the threshold

oscillations. The intensity fluctuations in the Stokes pulse, contrary to the thresh-

old oscillations, have stochastic nature. Their occurrence, position in the pulse and

their energy content are all random. The effects of the phonon lifetime, immersion

length, input energy and pulse duration on these fluctuations are examined. The

best parameter space for excelleni SBS performance is determined.

Next, the one dimensional model is developed into a three dimensional cylin-

drically symmetric model. We use a decomposition method to expand the Stokes,

pump and sound fields in terms of transverse spatial modes. By introducing block-

vectors and matrices, App. B, and using a noniterative method employed by Chu eú

aI. l7l, we have developed a numerical algorithm that enables us to treat compactly

any arbitrary finite number of spatial modes of the Stokes and pump fields. This

efficient numerical algorithm could also be useful for the simulation of broad-band

SBS, where many temporal modes exist in the input pulse. The model provides an

opportunity to study the effects of transient phenomena on the efficiency of phase

conjugation (fidelity) by SBS and the mode structure of the Stokes and pump pulse

inside the SBS cell. The effect of parameters such as phonon lifetime, input pulse
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shape and input energy on the transient fidelity of SBS is investigated. A new

transient phenomenon which causes SBS frdelity degradation at high focal intensity

(short Rayleigh range) is examined.
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List of Symbols and abbreviations

Throughout this thesis, several symbols will be used repeatedly to represent

specific quantities or parameters, the following is a list of these symbols and short

descriptions for the readers convenience. This list is not exhaustive but every effort

has been made to maintain conformity of symbols used here. Whereever possible

standard symbols and notation have been used which appear in most laser texts.

SBS Stimulated Brillouin Scattering

.gRS Stimulated Raman Scattering

PC Phase Conjugation

FW M Four-Wave Mixing

DFWM Degenerate Four-Wave Mixing

,S,9 Stimulated Scattering

Go Steady state gain of SBS process (for non-focusing geometries)
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Chapter 1

Introduction

Phase conjugating mirrors using stimulated Brillouin scattering (SBS) have been

used extensively since 1971 [6] to compensate for optical aberrations in high power

laser systems, resulting in lasers with greatly improved beam quality. SBS in certain

materials is thus capable of producing efficient and high fidelity phase conjugation of

high power input radiation, but only for a restricted range of laser parameters. Much

research has gone into extending this range of parameters, with most of the research

concentrating on characterizing SBS materials and the type of spatial aberrations

which can be compensated. The emphasis has thus been on the improvement of

average beam quality during a laser pulse, with comparatively little emphasis on time

dependent phenomena. This approach is reasonable as long as the time dependent

phenomena represent a small fraction of the total energy in a pulse, as is often the

case for single frequency, Q-switched solid state lasers. There are however laser

systems where transient effects are not negligible, including many high power, short

pulse lasers, and systems where short coherence lengths are required, such as range

finders and phase conjugated oscillators. For these applications some investigations

of transient phenomena have been made, but mostly for restricted parameter regimes

andgeometries [7,8,9, 10, 1I,12,13, 1, 74,I5,16,77,18, 19,20], leavingtheoverall

understanding of transient phenomena incomplete. As a consequence the use of SBS

in these applications has been very limited.

It is known that transient effects limit the effi.ciency and fidelity of phase con-

jugated systems. Experimental [15, 16, 19, 2] and theoretical [9, 10, 11, 13, 20]

15
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investigations suggest that a complete understanding of SBS must include transient

effects. Most of the present knowledge of transients in SBS is due to experimental

observations, supported by greatly simplified theoretical models. Tþansient effects

are responsible for threshold oscillations [1, 17,20], temporal and spatial fidelity

degradation due to amplitude and phase jump fluctuations [9, 11, L3, 2,20], and

the reduction in fidelity for input pulses with sharp rise times [15, 2]. Furthermore,

the transient regime is essential for SBS of pulses with amplitude variations on time

scales comparable to the response time of the material, represented by the phonon

Iifetime of the material, as is often the case for broad band lasers.

Analytical solutions of one-dimensional differential equations describing transient

SBS (e.g. refs. [8, 13] and references given therein) as well as numerical simuiations

of two and three dimensional, steady state SBS (e.g. ref. [2I, 22]) exist for the

undepleted pump approximation, valid only near the threshold of SBS. Numerical

models of depleted steady state SBS, for one 123,24] and three 125,26,27,28,29]
dimensions have also been reported. There are also published reports on the depleted

and transient regime of SBS for one [7, 1I, 7, 20] and three dimensions [17] (zero-

order solution). One-dimensional numerical models are not able to simulate the

measured fidelity of SBS, which is the main characteristic of the SBS process and

represents the degree of phase conjugation of the Stokes return. Two or three-

dimensional models of SBS have been considered both in fibers 125,26,27, 30, 171,

where electric fields are expanded according to propagation modes of the waveguide,

and in the cell geometry 122,27 ,28,291, where electric fields are expanded in terms of

Hermite-Gaussian 127, 28, 29] or Laguerre-Gaussian [22] functions. However, these

models are for either undepleted 127,22] or steady state [25, 26,30,27,28,29]

regimes of SBS.

The objective of this thesis is to develop generalized, practical models of

phase conjugating SBS mirrors, in conjunction with experimental investigations

which are already being undertaken, in order to: 1) understand the physics of the

limitations on phase conjugation using SBS, especially in the transient and short

coherence length regimes, 2) help the experimental studies to find an extended

parameter regime for excellent SBS and 3) eventually develop models capable of
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handling the SBS process of short coherence length lasers

The experimental studies, initiated at the University of Adelaide, concentrated

on two main experiments 1): SBS experiment in a cell geometry for long and short

coherence length lasers [2, 19], 2): SBS oscillators with one and two SBS mirrors

l3L, 4, 321. Using two 1.86 GHz (Sdb frequency) transient digitizers (Tektronix

SCD1000), the temporal profile of the input, output, reflectivity and fidelity of the

SBS process in Fleon 113 was examined experimentally. In addition to the poor

performance of SBS for short coherence length lasers, the experimental observations

showed new limitations on SBS possibly caused by stochastic fluctuations in the

intensity and phase of the Stokes beam [2].

The theoretical studies were initially concentrated on developing a transient, real-

fields, one-dimensional model of SBS initiated from constant noise, based on previous

works by Chn et al. [1] and Menzel et al. [24]. This model then was improved to

include a focusing geometry using the idea of Menzel et al. 124]. At the next stage,

the constant noise term in the SBS equations was replaced by a Gaussian random

noise, enabling the model to simulate the initial thermal fluctuations in the material,

which are the source of the SBS process. At the final stage of the development,

complex fields were introduced into the model to simulate the possible existence of

phase and intensity fluctuations. This model was very successful in 1) explaining

the nature of phase and intensity modulations in the Stokes output, 2) providing the

best focusing geometry and material parameters for avoiding these fluctuations, 3)

understanding the threshold oscillations, 4) determining the parameters that affect

the threshold oscillations. The results of this model were published in Phys. Rev.

A [20] (App. E), IQEC'96 [19], CLEO/Pacific Rim'97 [33] and AOS XI [3a]. The

one-dimensional model, although very successful, did not enable the study of fidelity

due to its one-dimensional nature. The next generation of the model was â three-

dimensional one with cylindrical symmetry. In addition to having all the features

of one-dimensional model, this new model enabled, for the first time, the study of

transient SBS fidelity. In this model, we developed a new efficient algorithm, which

made the computer code run more quickly and efficiently. We believe that our new

algorithm can be used in the modeling of the SBS process of short coherence length
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lasers. The model was very successful. It did not only produce results consistent

with experiments on SBS phase conjugation in the transient regime but also predict

a ne\M transient phenomenon that has not yet been observed experimentally. The

results of this model were published at CLEO'gg [35] and accepted for publication

in Journal of Nonlinear Optical Physics and Materials (App. E).

This thesis reports the details of the theoretical models and their re-

sults. Chap. 2 of this thesis reviews the phase conjugation phenomenon and the

nonlinear interaction of light and matter. These are the two fundamental concepts

behind nonlinear optical phase conjugation. We concentrate on the two main meth-

ods of phase conjugation, Stimulated Scattering (SS) and Degenerate Four-Wave

Mixing (DFWM). A brief review of phase conjugation using DFWM is given at the

end of Chap. 2. A review of phase conjugation using SS is provided in Chap. 3.

It is shown that all of the SS process can be discussed uniquely in the framework

of parametric interaction. The main SS process that is used for phase conjugation

is SBS. In Chap. 3, we review the SBS process and develop the basic theoretical

formulas that describe SBS. A summary of transient SBS and its effect on different

aspects of SBS is given at the end of Chap. 3. Chap. 4 is devoted to the details

of our one dimensional model and its results. The extension of our one dimensional

model to a three dimensional one with cylindrical symmetry is described in Chap.

5. The results of the model and discussion are given at the end of this chapter.

The summary and conclusion of the whole study including possible ways of further

investigations are presented at Chap. 6. Attached in App. E are the papers which

have been published on the subject of this thesis. The content of Chaps. 4 and 5 is

very similar to that of the papers I and II in the App. E.



Chapter 2

Phase Conjugation

In this chapter, we first describe the principle of phase conjugation (PC) and different

methods of achieving PC. Next, a general theoretical description of the interaction

of light and matter is developed by introducing polarization field. This together

with the Maxwell's equations are then employed to derive the basic wave equations

governing the nonlinear optical processes which result in PC. Degenerate Four-Wave

Mixing (DFWM) is then studied as an explicit example of a nonlinear optical process

that leads to PC.

2.L Principle of Phase Conjugation

Optical phase conjugation (OPC) is a technique to reverse both the propagation

direction and the overall phase of an arbitrary light wave relative to its propagation

direction [36, 37, 38, 39]. The concept of phase conjugation can be understood in

terms of üme-reuersal 137 ,38, 39]. By time-reuersal, we mean transforming t -+ -t
in the wave equation of motion. Consider a light beam,

E(r,t) : e(r) cos[øú - kz I d(.)],

19



20 CHAPTER 2. PHASE CONJUGA?IO¡{

propagating along the z direction. The time-reuersedwave, obtained by transforming

t ------+ -t in E(r, ú), is a wave propagating along -z direction with phase -d(r)'

8,",(r,t): Ce(r) cos[øú + kz - þ(r)]

Here, C is a constant and E,.u(r,t) : C E(r, -¿). Considering E(r, ú) and E,"o(r,t)

as the real parts of

E(r,t)

Er"u(r,t)

: Re['(r)e-'ut"rlhz-þ(r)]] : Re[e(r)e-,,te,a(,)1, e*(r) : 61.¡,

: C Re[e(r) e -tt''tt 
"-zftez-þG)J 

1 
: C Re[e (r)e -tut 

"-Ñ(t)1,

it is seen that the time-reuersedbeam 8,",(r,ú) can be obtained from E(r,t) by

replacing e'Õ(") by its complex conjugat" 
"-zÕ(r). 

Therefore, the process of time-

reuersal is mathematically equivalent to a phase conjugation process. The concepts

of time-reuersal andphase conjugation can be understood by a hypothetical example.

Consider an optical process in which a laser beam is diffracted by a nonabsorbent

transparent media into small beams of different directions as shown in Fig. 2.7(a).

Then, one can think of the time-reversed process: small multidirectional light beams

incident on a transparent media produce a highly directional beam as shown in Fig.

2.1 (b). In order for this to happen, the light beams incident on the media in Fig.

2.1(b) have to be the t'ime-reuersed or phase conjugate of the diffracted beams in

Fig. 2.1(a). This is very exciting because if one can find a mirror that refl.ects beams

into their phase conjugated ones and use it in the experiment shown in Fig. 2.1, then

it will be possible to reconstruct the original beam before diffraction (see Fig. 2.2).

This hypothetical mirror is a phase conjugating mirror. In reality, there are some

nonlinear optical processes that can be used in the PC mirrors. Although, there is

always some energy loss in these nonlinear optical processes, in some processes one

can achieve reflectivity and phase conjugation efficiency (defined as fidelity and will

be discussed in the next chapter) of more than 90 %.

The wavefront reconstruction concept and its promising applications have mo-

tivated many experimental and theoretical investigations. The early work on the

wavefront reconstruction was the invention of holography by Gabor 140, 47]. Ga-
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Diftacted beams lncident

Transparent Transparent
media

Incident beam beam

(a) (b)

Figure 2.1: Time reversal concept. In (a) an incident beam is diffracted by a trans-
parent media. The time reversal phenomena of (a) is shown in (b): multi=directional
diffracted beams are incident on the transparent media and produce a highly direc-
tional beam.

Transparent
media

Incident beam

Reconstructed
beam

(a)

Phase conjugator

IIUIÏOÍ

Figure 2.2: A hypothetical phase conjugating mirror is used to phase conjugate the
incident beams. Phase conjugated beams reconstruct the initial incident beam in
pa.ssing through the transparent media.
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bor had the idea of using holography to improve the resolving power of an electron

microscope by reading a hologram and compensate for spherical aberrations. This

idea didn't turn out to be of much practical use due to spatial coherence and in-

tensity requirements of beams, necessary for writing and reading of the hologram.

The development of the iaser with a high degree of temporal and spatial coherence

and high intensities in 1960's, opened the doors for practical development of holog-

raphy. A group of researchers at the University of Michigan were the first to report

a successful demonstration of holography [42,43]. Soon after that, holograms were

used to correct the static phase distortion introduced into an optical wavefront by

stationary objects 144, 45, 461. The possibility of extending static holography to

real-time (dynamic) holography was introduced by Gerritsen [a7] who observed that

holograms can be stored temporarily in media whose index of refraction depends on

the intensity of light. Later on, the first demonstration of using dynamic holography

to compensate for wave front distortion was reported by Stepanov [48]. In the early

1970's a team of Russian scientists led by Dr. B. Ya. Zel'dovich [6] noticed that

the back scattered pulses generated by stimulated Brillouin scattering exhibited ex-

cellent spatial quality even though they had passed through a distorter in front of

the SBS medium. In 1972, Nosach et al. [49] demonstrated wavefront correction

using Brillouin scattering. The phase reversed or phase conjugated back scattered

beam can compensate the distortion effects of the distorter by passing back through

it. Much later, Yariv [50] showed that real-time holography (dynamic holography)

was equivalent to a certain type of phase conjugation achieved by a process called

Degenerate Four-Wave Mixing (DFWM).

Over the past few decades, remarkable progress has been achieved in the field of

nonlinear optical phase conjugation and this phenomenon has been the topic of in-

tense research efforts. In addition to being considered as a technique for all optical,

real time adaptive optical compensation, the field of nonlinear optical phase con-

jugation has grown to encompass a large variety of potential applications for both

high-power and low-power systems, including propagation compensation, novel op-

tical cavities and oscillators, energy scaling, optical data computing and processing,

remote sensinq and diagnostics (includine spectroscopic investigations), low-noise
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free-space and guided-v¡ave communication systems, compensated image transmis-

sion, metrology, nondestructive testing, and data storage and cache memories, to

mention a few [51].

2.2 Different methods of phase conjugation

Phase conjugation has been observed in a variety of nonlinear phenomena including

degenerate four-wave mixing, stimulated (Brillouin, Raman and Rayleigh) scattering

and photorefractive effect.

Under certain conditions phase conjugation is possible via backward stimulated

scattering. One of the required conditions for phase conjugation is that the phase

mismatch (ke - k,)L must be small, where (ko - k,) : 2rnLu lc is the wavenumber

difference between the incident pump and the scattered Stokes pulses arrd L is the

interaction length. In Raman scattering, (since (k, - k") is usually large, of order

,ko), phase conjugation is seen in specific circumstances of short interaction iengths,

high intensity and high gain [51]. Phase conjugation by Raman scattering was

demonstrated by Zel'dovich et al. [52]. They were successful in restoring an aber-

rated laser beam using stimulated Raman scattering from the 656-cm-1 excitation

of liquid CSz. Kurdriavtseva et al. [53] observed phase conjugation in stimulated

Raman scattering with short pulses of.25 ns duration. They also achieved image

reconstruction at Stokes frequency shift of less than 5 cm-1. Raman scattering

is not very useful in effi.cient laser systems however, because the Stokes beam is

frequency shifted outside the gain. Since the Brillouin phonon lifetime is usually

longer than the Raman phonon lifetime, stimulated Raman scattering dominates

stimulated Brillouin scattering for very short pulses.

Stimulated Brillouin scattering (SBS), FWM and the photorefractive effect are

the main nonlinear mechanisms for phase conjugation. SBS-based phase conjuga-

tors are typically used in applications requiring high power or energy such as laser

oscillators whilst the photorefractive mechanism is used in low power applications

such as optical data processing [51]. SBS does not require pump waves of high

quality for good phase conjugation whereas sufficient quality pump beams, which

23
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are difficult to obtain when using high power lasers, and delicate alignments are

required in FWM. Overall, SBS is the easiest and most popular method of phase

conjugation when using intense puised laser sources.

The theory of stimulated scattering (SS) and phase conjugation using SS will be

discussed in the next chapter with emphasis on SBS. It can be shown that all of

the stimulated scattering phenomena and FWM can be treated in the framework

of a nonlinear parametric interaction. In parametric interactions a few intense laser

beams interact with a nonlinear medium and induce a nonlinear polarisation. Next,

this nonlinear polarisation itself is a source of a new laser beam with a new frequency.

In general the frequency of the new emitted laser beam is equal to either the sum, the

difference, or the combination of sum and difference of the initial frequencies. This

classifles the nonlinear interaction as either sum-frequency generation, difference-

frequency generation, and combination of sum and difference-frequency generation.

The parametric interaction is a difference-frequency generation, for which the fre-

quency of the new laser beam is the difference of the incident frequencies.

In the next section, rüe discuss the theory of nonlinear interaction to: 1) under-

stand parametric interactions and 2) develop the theory of DFWM and stimulated

scatterings (which will be discussed in the next chapter).

2.2.L Nonlinear interaction of light and material

The key element of nonlinear optics is the induced polarization P(t) and its relation

with the driving electric field E(ú). Upon the incidence of a beam or beams of light on

a nonlinear material, the total electric field interacts with the material at the atomic

or molecular level and induces different processes such as exciting the system to a

higher energy level, changing the charge or density distribution and so on. The

effects of these induced processes regardless of their nature can be summarised in

an induced polarization field P(ú). This polarization field can be described in terms

of a power series as

p(¿) : p(0)(¿) + p(1)(¿) * 
"tz)1r) 

+ ...+ 
"{")1t) 

+ (2.r)
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where p{t)(ú) is linear in the total electric field, p{z)(t) is quadratic, and so on.

P(0)(ú) is the static polarization that exists in some crystals and is independent

of electric field. For a general case, where we assume that the response of the

medium to the electric field is not instantaneous, one can relate different orders of

the polarization field to the electric field as

p(1)(¿)

p(2)(ú)

p{t)(ø)

p(z)(ø)

p{")(r)

p{")(r) tg drt t_: drnR(")(rr,... ,rn)lE(ú - ,t)."8(t - r*)I
Here, 1¿(')(1,...rn) is a real (n f 1)-rank tensor indicating the polarization re-

sponse function of the medium and the vertical bar (l) represents the tensorial

product. ¡1(')(1,...r.) is zero if any of the r¿ is negative and its components

Rf,)r...**(rr,. . .r,,) areinvariant under any n! permutation of pairs (or,rr), . . ' ,(an,r,-).

Eqs. (2.1) describe the polarization response of the material in the time domain.

Using the Fourier transform o¡ p(")(t) and E(ú) i.e.,

l_: d,uP*) (a) exp(-wt),

I d.uø (u)exp ( -2r,.,ú),

(2.2)

E(ú)

one can derive the equivalent frequency domain equations:

p(') (ø)

: ,, I_: d,utry$)1-ao,wt)lE(ø1)ó(ø - ao), Q'3)

: ,, I_: ^, I** 
d,a2yQ)ç-uo,o)t,ø2)lE(ø1)E (a2)6(u - uo),

f+oo: tt I_: d,utt'. l_: d'tny@)(-ro;o)r,"',ø,)lE(ø1) "'E(ø,)ó (, - r,),

where *(n)(uo;u)r¡...,ø,,) is a (n-ll)-rank tensor called susceptibility tensor and

uro:u)r*az*...*an is the sum of optical driving frequencies. One can think of
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different sets of (rr,... ,an) with a sum (ro. :atluz*..'*un.The convenience

of using (-ro;o)t¡.. ,ø,) as the argument of the susceptibility tensor will become

clearer later when we find the induced polarization due to monochromatic electric

fields at frequencies ø1, .'. ,un. It will be shown that (Eq. 2.9) the induced polar-

ization field at the frequerrcy ao depends on the susceptibility tensors with different

sets of (rt,... ,Øn) but same o)o: u)rluz+." iun. The susceptibility tensor can

be explicitly evaluated according to the detailed interaction of the system with the

electric fields. Like the time domain representation, P(ø) can be written as a power

serles:

oo

(2.4)
r:0

The above equations apply generally for any incident electric fields. As an applica-

tion, we consider monochromatic incident waves, which can be represented in the

time domain as

E(¿) : ;D[E., exp(- w't) + F--,, expþu't)] where Eî,, : E-,, ,

P(ø) : !er"l1ø¡.

or equivalently in the frequency domain as

u')0
(2 5)

(2.6)

(2.7)

(2.e)

For such an electric field one can write p{")(t) in the same form as E(ú) in Eq. 2.5

i.e.,

E(ø) : ;Dlr-,,6(u - r') +E-,,6(a+ r')1.
ut)0

p(")(t) :TD,[Pf)u*p(- wt) *P9J exp(zøt)]
ø)0

where (Pf))- : PgJ

(2.8)

By substituting (2.7) ínto (2.3), a compact but general relation, which can be used

to describe all different nonlinear processes, is obtained as

PY') : to I K(-r";u)¡t... ,rn)x(")(-ro;ü)rt'.' ,un)18,, ' ' 'F,,n,
u
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in vectorial form or,

@E\r: eo D Do(-,"1at, "','òxf),.-o-(-'o;'r,

27

,a,)(8.,)o, . . .(8,^)o^.

(2.10)

(2.11)

O¿l...dn U

in component form. In the former, the first sum is over the components of the tensor

a and the vectors E, and the second sum is over all possible distinct combinations

of (ø1,...,u',) whichsatisfy utl...iun:u)o.K(-r";o)rt...,ø,r) isanumerical

factor that depends on the number of distinct permutations of (ø1,...,ø,) and

the order of the nonlinearity. As an example for n : 3, the third order nonlinear

processes are given [54] in Table 2.1. A1l of these processes are contributing in the

total third ord.er nonlinear polarizatio" (P8)), through Eq. 2.I0. However, due

to resonance enhancement, phase matching or spectral selectivity there is only one

nonlinear process that gives rise to the dominant polarization in Eq. 2.10 and thus

should be considered [5a].

'Wave Equations

Starting from Maxrvell's equations, one can easily derive the wave equation for the

electric fleld inside a nonlinear material as [5a]

V x v x E(r) : -J#nP¡-¡toffieçt¡,

in the time domain or

(2.12)

in the frequency domain. Ignoring the static polarization in 2.4 and substituting

P(ø) in (2.I2) using (2.3) and (2.4), we find

V x V x E(ø) :!rçr¡*a2 p,sP(u),

V x V x E(ø) :lurrrta2¡tsesy(r)(-ø;ø)lE(ø) +a2p4PNL(a),

(2.13)

u2
D e(ø) lE(ø) +w2 psPN L (u),
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Table 2.1: The X3 form and K factors for different third order nonlinear processes.

Process X3(-uo;u1,u2,t,,3) K

d.c. Kerr effect (quadratic
electro-optic effect)

d.c.-induced second harmonic generation

Third harmonic generation

General four wave mixing

Third-order sum and difference
frequency mixing

Coherent anti-Stokes Raman scattering

Stimulated Raman scattering
stimulated Brillouin scattering

self focusing
degenerate four-wave mixing

Two-photon absorption/ionisation/
emission

X3(-w;0, 0, ø) 3

x3(-2u;0,u,u) i
x3(-3u;u,a,w) i
X3(-uq,;a1,a2,.,s) Z

X3(-ws;*,w1,u2,w2) 1

X3(-u,q.s;wp,ap1us) i

Xs(-us;ap, -upr., s) i

x3(-a;u,-w,a) i

X3 (-ut -u2, -a2, .,-1)

or 3

x3(-w;a,-a,a)
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where e(ø) :1+a(t)1-u;w) and, Pt'(r) : DËzp(")(ø). We assume that E(ø)

consists of infinite, colinear, and monochromatic plane v/aves propagating in an

arbitrary direction e.9., z a,s)

\Me also assume that the direction of the field vector E(ø) is perpendicular to the

propagation direction. Such an assumption requires that the medium is isotropic,

which is not generally true, but works for the stimulated scattering processes that

we study here. Finally, we consider the slowly varying envelope approximation, in

which v/e âssume that the spatial variation of E(ø) (both in amplitude and phase)

is small such that

l#''"''tl*l-*nQ'ùl
The real significance of the slowly varying approximation, as pointed out by Shen

[55], is that it is equivalent to neglecting the component of the E, generated by

P*"(r), which is propagating in the direction opposite to the input electric field.

With the help of the above assumption \Me can replace V x V x E(ø) by -02El(u) l0r'
in (2.13), ignore the second derivativ a2E AE

," fi U f A, 
and rewrite (2.13) as

E(ø) : å f [E,, exp(zk ¡ z) 6 (u - a ¡) +F;i, exp(-* ¡ z) 6 (a + u i)]'
- .ruo

!t,,:*P!! exp(-ú"2)
ôz 

wø 
2ko ud (2.r4)

This equation describes how the propagation of the electric field at frequency øo

and wavevector ko in the medium can be determined by the nonlinear polarization

PI""@). The nonlinear polarization is coupled to all other electric fields existing

in the medium with different frequencies through Eqs. (2.a) and (2.9). All orders

of nonlinearity are involved in Pf;,¿(ø) but as mentioned before, usually due to

resonance enhancement, phase matching, spectral selectivity or some other discrim-

inating feature, only one order (say n,) needs to be considered. This means PI,"@)
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can be written as

PI: : esK(-uo;u)r¡. . . ,rn)x(n)(-ro;(iL¡. .. ,un)18,,...E,nexp(tkrz),
(2.15)

where uo:uí+... .*ø,, and kp:lq+...+ lcn.By substituting Eq. (2.15) inEq

2.14 and expressing the results in scalar form, one finds

, un) Err . . . E.n exp(-t A^kz),

(2.16)

where g,ri : E¡e¡, L,k : k, - ko is the phase mismatch term and X(n) is the scalar

form of the tensor X(') defined as

,(n) (-w o; o)r t . . ., o,,.) : e;'y(") ç-u o, uL, " ., un)|.r....r.

The vectors e7 ar€ unit vectors along the polarisation direction, and scalars -Ð¡

and X(') are the components of electric field and susceptibitity tensor along the

polarisation directions.

2.2.2 Degenerate Four-'Wave Mixing (DFWM)

DFWM is a nonlinear process in which two colinear counter-propagating pump

beams, (E,kr,ø) and (Er,kr,a), arc incident on a nonlinear material. There is

also a weaker probe beam, (Ee,ks,ø), which is incident at a small angle to the

pump beam, (Er,kr,ø). The pump and the probe beams produce an induced po-

larisation or grating. This induced grating scatters the probe beam into a signal

beam, (En,kn,ø), where k¿ : -ks and the signal beam is the phase conjugate of the

probe beam. The setup for a DFWM experiment is shown in Fig. 2.3. DFWM was

first proposed theoretically in lg77 by Hellwarth [56]. The first DFWM experiment

was reported by Bloom and Bjorklund [57]. They used CS2 as the nonlinear media

and a frequency-doubled Q-switched Nd:YAG laser and its reflection from a mirror

as the two counter-propagating pump beams. They successfully demonstrated the

!*u,,: #* K ?, " ; u) r ¡ . . ., u ) y@) q- u o i Ø 7 ¡
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(2.17)

(2.18)

E2 @ackwudpunp)

Et(Forward pump)

z=L

Figure 2.3: Schematic of degenerate four-wave mixing. E1 and E2 are two colinear

counter-propagating pump beams. E3 is a weaker probe laser beam incident at a
small angle to the pump beams. Ea is the output and is phase conjugated of Es.

aberration correction of an Airforce resolution chart using the reflected and phase

conjugated signal beam of DFWM. The first Continuous Wave (CW) experiments

of DFWM were reported by Liao and Bloom [58]. DFWM has proven to have lots

of applications in image processing [59, 60, 61], aberration correction [62], frequency

stabilization of lasers [63], narrow band optical filters [59, 64, 65], optical switching

[66], and temporal auto-correlating devices [67].

Referring to Fig. 2.3, using the phase matching condition Ak: O, and the fact

that kr - -kz, one can deduce that k¿ - -k3 which means that the signal wave

retraces the probe beam. For DFWM the dominant term in the polarisation is the

third order nonlinear polarisation which is proportion to *@(-u;u,-a,ø) with

a K factor of K(-uiu,-u,u): å tf¿]. This can be used in Eq. (2.16) to find

equations that describe the propagation of the probe and the signal beam as

Ea(SiSnal) +

Eserob€) -+
nonlineu optical

medium

z=0

ftø^ 
: ,ffi*tt) (-r; a , -a , w) E1E2E[ : zn* El ,

*t, : ,ffi*rt) ?r;u, -u,u)EiEiEa: zKEt

where o. : ffi*(s)(-ø; u,--u,u)Tfl2

Using the undepleted pump approximation, Eqs. (2.17) and (2.18) can be solved for

the geometry shown in the Fig. 2.3 to obtain [50, 5]

E+(r)
cos lrcl z K* sin lrcl (z - L\
#En(¿) +,#Eä(0), (2.1e)
cos l/rl , lKl cos |trl ¿

lrclsin lrcl z -, . -, cos lrcl (" - L)
-Lt 

''--'-'t -'t - EiØ) + #E'3(0) (2.20)
rc* cos lrcl .L + \ ' lrcl cos lrcl I

Es(r)
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Since only the probe beam is incident on the medium at z :0, and Ea is due to

the scattering of the probe beam from the grating lhen, Ea(L) : 0 and Eq. (2.19)

becomes

Ea(z):
rc* sin lnl (z - L)

E'ä(0) (2.21)
K cos KIL

This clearly indicates that the signal beam Et(O) is the phase conjugate of the

incident beam Eä(0).

2.3 Summary

In this chapter, we first studied the concept of phase conjugation. Then, a general

formulation of the interaction of light and matter was developed. We employed

this formulation to study Degenerate Four Wave Mixing DFWM as a third order

nonlinear process. This formulation will be used at the beginning of the next chapter

to indicate the similarity among all of the stimulated scattering processes. It will be

noted that the differential equations describing the stimulated scattering processes

are identical. The only term that distinguishes between different processes is a third

order nonlinear susceptibility X3 that depends explicitly on the nature of material

excitation for each stimulated process. In the rest of the next chapter, we discuss

the theory and properties of the Stimulated Brillouin Scattering (SBS) as one of the

most common rü¡ays of achieving phase conjugation.



Chapter 3

Theory of Phase conjugation using

SBS

3.1 Introduction

This chapter is devoted to the theory of Stimulated Brillouin Scattering as a phase

conjugating nonlinear process. First, it is indicated that the formulations of Ra-

man and Brillouin scattering processes are similar in the context of the parametric

interaction. What makes these processes different is the mechanism of the initial

excitation of the material. Next, the detailed theory of the SBS is examined. This

includes the behaviour of the SBS process in the steady state regime, where there

are analytical solutions of the SBS equations, and the transient regime, where only

approximated solutions of the SBS equations exist. We explain how the SBS process

leads to phase conjugation and define a parameter that indicates the efficiency of

the phase conjugation of SBS.

3.2 Stimulated Light Scattering

Stimulated Raman and Brillouin scattering processes, in general, are very similar in

nature. First an initial intense laser beam is frequency shifted and scattered from

noise. Next, this scattered beam interferes with the incoming beam inducing a non-

linear polarization in the material. This nonlinear polarization is the main source

33
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(3.1)

of further stimulated scattering. The initial noise is different for different scattering

phenomena. These two stimulated scatterings can be treated in the framework of a

parametric interaction, in which the incident light beam at frequency at interacts

with the material excitation wave at frequency f) to produce a light beam at fre-

quency u)2 : o)t- CI. It can be shown [55] that these stimulated scatterings are third

order parametric interactions. This means that the equations for the electric fields

amplitudes at frequencies ø1 and a2 are driven by third order nonlinear polarisa-

tions P,jÍN¿) and P::*") that are proportion aI to lÙ2l2 E1 and.l4rl' Er,respectively.

Flom this point of view, the differential equations governing the different kinds of

stimulated scattering processes (Brillouin or Raman) are similar. Using Eqs. (2.15),

(2.16) and Table 2.I, they are given (in the steady state and slowly varying approx-

imation) as

õz

ôz
a

E, : #r@) Çur;o)rt -u)2,rù lùzlzEl exp[-z( ltt - kz i kz - kr)z],

E2 *(s) (az;u)tt -ü)r¡uz) lErl2 E2exp[-i(h - h i kz - k")r],

(3.2)

where the two phase mismatch terms in Eqs. (3.1) and (3.2), (h - lez I k2 - k)z
and (k1 -lq-llc2-k2)2, are identically zero. Stimulated Raman and Brillouin scat-

terings can be treated using Eqs. (3.1), (3.2) and different nonlinear susceptibilities

X(3). X(3) summarizes the nature of the material excitation and it therefore depends

explicitly on the mechanism of material excitation (i.e. electronic and vibrational

in Raman, density wave in Brillouin) for different stimulated scattering processes.

Stimulated Brillouin scattering (SBS) is discussed in detail in the next section.

Due to the similarity between stimulated Brillouin and Raman scattering, many

of the results in the next section can be extended to stimulated Raman scattering

process.

a

ßuZ
2k2c2
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3.3 Stimulated Brillouin Scattering

The optical properties of any medium, usually dielectric constants, fluctuate due to

thermal or quantum mechanical effects. The scattering of iight from these fluctua-

tions is called spontaneous scattering. The intensity of. spontaneously scattered light

is usually very weak in comparison to the incident light. For example, one part in

105 of incident pov/er is scattered spontaneously it passing through 1 cm of liquid

water [5]. In contrast, stimulated scattering occurs when an intense beam of light

is scattered from fluctuations induced by the light itself. An example of sti,mulated

light scattering is sti,mulated Brillouin scattering (SBS) fstimulated Mandelstam-

Brillouin scattering according to Russian literature] in which strong monochromatic

laser light is scattered from induced density fluctuations in the medium. Using

material density variation to describe Brillouin scattering was an approximation

first used by Einstein [68] and then by Briilouin [69]. The density p of a material

is a function of pressure (p) and entropy (s). Any changes in the density can be

associated with changes in the pressure and entropy as,

Lp: (7plAfl"Ap + @plAs)oAs

In this regard Ap d.escribes an acoustic wave and As describe an entropy wave[55].

An illustration of the SBS experiment is shown in Fig. 3.1. A laser beam of

frequency ø¿ is incident on a SBS medium and is scattered from refractive index

variations associated with frequency O. The acoustic wavefronts move away from

the pump beam causing the frequency of the scattered beam (Stokes beam) to

be Doppler shifted down to a" : at - {1. This scattered beam interferes with

the incoming beam to produce a component frequency CI which acts as a source

term for the acoustic wave and magnifies its amplitude. This magnified sound

wave together with the incoming laser beam reinforces the Stokes return. Under

certain circumstances, the above mechanism repeats over and over leading to the

exponential growth of the Stokes beam. The production of the sound wave as a

result of the interference between the laser and the Stokes beam can be explained by

electrostriction. Electrostriction causes the material to become more dense in the
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Induced acoustlc wave Thermal nolse

-l
@"

z
Lo

Figure 3.1: SBS experimental setup. Input pump pulse with frequency a/¿ is
diffracted initially from thermal noise. The diffracted and the incoming beam induce
an acoustic'ù/ave CI which propagates in the same direction as the input pulse.

region of high optical intensity. It can be described [5] by considering a capacitor

immersed in a dielectric liquid and finding the pressure exerted on the dielectric

liquid due to electric field. The energy density associated with an existing total

electric freld, E, in a medium is u : e7218¡r, where e is the dielectric constant of

the medium. For a capacitor immersed in a dielectric liquid, the dielectric liquid is

attracted and compressed to the area of high electric fields between the capacitor

plates. As a result of this compression the density of the liquid changes by Ap. This

change in the density results in a change in the dielectric constant from e to e * Ae,

where

ae : Lm.
0p

Consequently, the change in the energy density is

This change in the energy density must be equal to the work done to compress a

unit volume of the liquid i.e.,

Combining Eqs. (3.3) and (3.4), yields the pressure

-o -,. E' Ez.ðe.Âu: :-Àe : -(=)Ap8¡r 8r'ðp

LV L'PAz: Âu: þ- - -pJ.'V 'p

(3.3)

(3.4)

(3.5)p: -p
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(3.6)

(3.7)

(3 8)

_0,
\¡/here "y. : p: is the electrostrictive constant. Aty changes in the total elec-

op
tric field E cause variation in the pressure p which in turn produces a sound wave

(through the Navier-Stokes equation, Eq. 3.9 ).

Stimulated Brillouin scattering was first observed by Chian et al. [70] They

studied the scattering of a Q-switched ruby laser from qts.artz or sapphire. Using

a Fabry-Perot interferometer, they detected a frequency shifted component in the

scattered laser beam. The process has a high conversion efficiency for transparent

materials; up to about 90% of input energy can be reflected back (for optimum

configuration). The backscattered laser beam should be isolated from the laser

system since otherwise it can damage or add a down shifted frequency component

to the laser system.

The SBS process can be described as a coupling between the laser, Stokes and

the sound u¡aves which can be represented by plane waves of central frequencies ø¿,

ø" and f), respectively.

E¿ (r, ú) : 
|lu,{r,t)e'@ú+ktz) 

I c.c.l,

E"(r, ú) : 
|lt"{r,t)e"(u"t-tc"z) 

+ c.c.),

p: po +|@{r,t)e'(ot+øz) -f c.c.l.

Here the incident laser beam and the acoustic field propagate from right to

left and the Stokes field propagates from left to right (Fig. 2.1), Q : u)t - u)s¡

e : kt -f k" N 2k¡, and ps is the mean density of the medium. Et, E" and Q are

the amplitudes of the laser, Stokes and acoustic waves, respectively and vary slowly

as a function of time. Using the usual dispersion relation between the wave vectors

q, Ie¿ and k" and the wave frequencies O, ø¿ and ø", one can find the sound wave

frequency O as

çt:?nu" r,,
c

where r'" is the speed of sound in the material and n is the refractive index of the
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medium. The material density obeys the Navier-Stokes equation [71]

where f : -Yp is the driving source term, which represents the change in the

density of the material due to the pressure exerted by electric field. Using Eq. (3.5)

in Eq. (3.9), we find

-# + u!Y2 p + o,ftv' o: -v..f,

-# + u!v2 p + u,ftv' o : #o'='

(3.e)

(3.10)

(3.11)

In this equation uo is the kinematic viscosity, and E is the total electric field in the

material given by:

E : E¿(r, t) + E"(r, t)

Substituting Eqs. (3.11) and (3.6)-(3.8) in Eq. (3.10) yields an equation, which

relates the amplitudes of the laser, Stokes and acoustic fields. This equation has

a large number of terms which can be simplified using the following relations and

approximations [8].

1) The ordinary dispersion relation for the sound wave q2u!: f)2.

2) q > ô(all fields)f 02, or equivalently \"oun¿( or À¿) < ðzl}(all fields) since

e : 2kt : 2n f Àç"ouna¡, which means that the wavelength of the sound wave is small

compared to the length over which the electric and sound fields change considerably.

This approximation is similar to the slowly varying approximation that is usually

considered for the electric fields.

3) O > }l}t. This approximation requires that f,) should be greater than the

pump bandwidth, l/(pump pulse duration), and the SBS decay rate I (as defined

below). These conditions are usually met for long coherence length lasers and most

of the materials (see [5]) but some broad-band lasers do not match these conditions.

4) 2llu" Þ 0f02, which means that the phonon propagation distance must

be short compared to the distance over which the electric and sound fields vary

significantly. This condition is usually met since hypersonic phonons are strongly
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damped and thus propagate only over very short distances before being absorbed

(thetypicalabsorptioncoefficientof thesoundwaveis eþound):llu" - 105--t[5]).

Using these assumptions, the simplifred equation for the sound wave that is

commonly used (see [8] and references therein) is given by:

(3.12)

where 91 is the coupling coefficient constant between the electric fields and the

acoustic v¡ave, I : Il2r is the decay rate of the sound wave in the material and r
is the phonon lifetime of the material.

The coupled equations for the electric fields can be derived from the rñ/ave equa-

tion

f**f)Q: -ry18¿E!,

v'=- (:)' 4¡r 02P:--
c2 0t2'

o'á
ðt,

(3.13)

in which P is the induced and nonlinear polarisation of the material and is given by

[5]

,- | 
^, ^=- 4nPo rer''

The left hand side of Eq. 3.13 includes components of electric fields at frequencies

ø" and u.r¿. Thus, on the right hand side only those terms of pE that contribute to

frequencies terms ø" and ø¿ should be considered. In addition to this, one can use

the Slowly Varying Approximation (SVA), which requires

s

to simplify the left and right hand side of Eq. 3.13, using Eqs. (3.6)-(3.8) and (3.11)

This yields the following equations

o2Eu

022

o2En

0tz

, OE¿

'02
õE¿*' 
at

for L

,fr"f .:&+ filø": -isze*Et,

(#,"1 . :* - *rt, : -iszQ E,
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Like 91 in Eq. (3.12), 92 is the electric and the acoustic fields coupling coefficient

and Vf is the transverse derivative operator. These two equations together with Eq.

3.I2 arc the three main coupled differential equations that describe SBS. These three

coupled differential equations, or approximate versions of them, are the starting

equations for most of the theoretical and numerical studies of SBS 17, 8, 7, I7l

3.3.1 Steady state regime of SBS

In the steady state and one-dimensional regime, we can ignore the time and trans-
ã

verse derivatives, i andVf , of all the fields and rewrite Eqs. (3.1a) as
òt' 

Ll

fi"":ryl+,l'E"
*t,:ffw"r r,.

Here, lE,l' ir the intensity of the pump \Mave. \Me can multiply both sides of these

equations bV Ei and Ef respectively to obtain

,fr"r . :*r + fr) ø, : -,iszQ* Et,

,#,"1 .:*- *rt,: -'iszQn",

f**f)Q: -ry18¡E!.

!1": sI¿1,oz

!r,: eI¿\",oz

(3.1aa)

(3.14b)

(3.1ac)

(3.15)

(3.16)

(3.17)

(3.18)

where 1¿ and .I, are given as

L: lÛil2 k I": lq"l2

Here, g :2gßzll is the gain coefficient of the material and is given by [71, 5]

19:9t^,1* 
ç6r¡1y,,
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Table 3.1: Flequency shift, linewidth and gain coefficient of SBS for some materials.
Except Fluorinert and Freon 113, values have been quoted from " Nonlinear Optics"

by Boyd [5].

Substance \Mave
Iength
À

Frequency
shift
Ql2r

Band
width
t l2r

Gain
factor

9Maa
nm

CSz 694 5850

Fluorinert FC72 1060 1100

Fleon 113 1064 i800
694 4600

MHz) MHz
52.3 0.15

270 0.0060-0.0065
190 0.0062

224 0.02

Toluene 694 5910 579 0.013

CC14 694 4390 520 0.006

Methanol 694 4250 250 0.013

Ethanol 694 4550 353 0.012

Benzene 694 6470 289 0.018

HzO 694 5690 3t7 0.0048

Cyclohexane 694 5550 774 0.0068

CHa(140 atm) 694 150 10 0.1

Optical glasses 694 11000-16000 10-106 0.004-0.025

sio2 694 17000 78 0.0045

in which L,u : u -Q is the deviation from the Brillouin frequency. This shows that

the SBS gain has aLorentzian shape with a maximum at u :0 and half width [-

The maximum value of the gain factor gmo, is given as,

where 7, is the electrostrictive coefficient, c and u a,re the light and sound wave

velocities respectivel¡ n is the refractive index of the material and ps is the mean

density of the material. Some typical values of Brillouin frequency shift f), gain

band width I and g¡¡o, f.or different materials are given [71, 5] in Table 3.1.

In the undepleted pump regime, where the interaction between the pump and

Stokes beam is not strong and we can ignore ôI¿f 0z,E,q. (3.17) can be solved for

1" to give

I" : I"oe7I'Li^ - IroeGo,
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where 1,0 is the initial Stokes intensit¡

Gs: gI¡L¿^ (3.1e)

is the usual steady state gain of the SBS process and L¿^n is the immersion length

of the laser beam into the SBS medium.

Eqs. (3.17) and (3.18) should be solved simultaneously in the pump depleted

regime. Using these two equations, we can show that

(3.20)

where a is a constant showing the percentage of the input energy not reflected into

the Stokes pulse. For a I00% reflection a:0. Eq. (3.20) can be used in Eq. (3.17)

to find

a I" :2gI? I 2agI,. (3.21)
0z

This, and a similar equation for I¿, can be solved for ,I" and 1¿ by changing the

variables I, ---+ Lf I" and 1¿ --+ lf I¡ and using the geometry shown in the figure 3.1.

The final solutions are,

I"(z) : alI¡(L) - al
(3.22)

I¿(z) :
I/L)es"Q-a - [I¿(L) - a]'

aI¿(L)
(3.23)

I,(L) - lI,(L) - ale-sa(L-z)'1

where I¿(L) is the input pump intensity. In the limit of I00% reflection (ø --+ 0)

these two equations become

L(z\:1"(z\: IúL)
0\ / u\ / 7+ I¿(L)9(L- 

")
(3.24)

Although Eqs. (3.17) and (3.13) are derived for one dimensional SBS processes,

\¡/e can still introduce the focusing geometry into the SBS equatíons 124,20].

First, rù/e assume that the pump and the Stokes beams are unaberrated and have
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(3.26)

I
d

o
Stokes

Figure 3.2: Introducing focusing geometry to SBS process.

Gaussian spatial profiies with the same Gaussian beam parameters i.e.,

I¡ n P,

7TA2

!,,oz
I nP,

TU2

where

and I"

,' :a|lr+ (TYl

Here, uo is the beam ',¡/aist at the focus, zs is the position of the focus inside the

cell, as shown in Fig. 3.2, and zn: ¡rnuï/À is the Rayleigh range of the laser beam.

Using the assumption that the pump and Stokes intensities are changing not only

because of the nonlinear interaction with the material but also because of the change

in the area of the beams, the source terms in the right hand sides of Eqs. (3.17)

and (3.18) can be modified to include the terms that represents the change in laser

intensities due to the change in their area. To this end, we add -lI"ltu2l@l7z)
and, -lI¡lru2l(?102) to the right hand side of Eqs. (3.17) and (3.18), respectively.

By adding these two terms and changing the variables I" ---+ P" and 1¿ --+ P¿, Eqs.

(3.17) and (3.18) can be rewritten as

g
(3.25)P" PtP",

ôz ru2
0

In the limit of small input power, P¿, where there is not a strong interaction between

the pump and the medium, the pump \Mave passes through the medium without

É

SBS cell

>
lens
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much depletion. Therefore, P¿ can be approximated to be constant throughout the

medium. We use this approximation to integrate Eq. (3.25) from the focus to the

entrance to the cell (see Fig. 3.2) to find

, P" gnØ) ¡entrance:Lln--- I
Pro Taï J ¡o.u":",

zntan-'çL-:3s¡,
dz sn@)

ra8

dz

(3.27)

(3.28)

(3.2e)

snØ)
I tan-rfll:c

and therefore

Here,

P"(L): P"oeG

G : G(zo) - 
gP'(!) 

¡entrance:LltUõ J Jocus:zs

P"(L)
H.- 

-
nQ)

(3.30)

is the steady state gain (including focusing geometry), À is the wavelength of the

laser beams and P,o : P"(zo) and P¿o : Pt(zo) are the pump and the Stokes pov/ers

at the focus. We have also assumed that the SBS process initiates at the focus from

Stokes photons P"6, created by the spontaneous Brillouin scattering of the pump

photons P¿s at the focus. Thus, we expect that the Stokes power at the focus P"o to

be proportional to the pump power P¿o i.e.,

P,o: f Ro. (3.31)

The reflectivity of the SBS process is defined as the ratio of the Stokes power at the

entrance to celi to the input power i.e.

(3.32)

Using Eqs. (3.29) and (3.31) and the fact that in the undepleted pump regime the
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pump po\Mer remains constant throughout the cell, we can rewrite Eq. (e.eZ) as

t)ls0
(3.33)R "":f"'DtLo

Experimental results show that to obtain a reflectivity of order of .R - 0.1, namely

threshold reflectivity, G should be order of Gtn - 25-30 [7a]' This is connected with

the fact that the SBS process is initiated from spontaneous scattering of the pump

beam from fluctuations in the material density. For .B - 0.1 and G¿¡ - 25 - 30, I
can be evaluated from Eq. (3.33) to be,

I - e-G'n : ee25)-(-30) - 1¡-12 - 10-11 (3.34)

which is similar to the value obtained by Zel'dovich et al. [3] from the physical

properties of spontaneous scattering. Flom this value of the steady state threshold

gain G¿¡ - 25 - 30, one can estimate the threshold po'ù/er, P¿¡, necessary to initiate

the SBS process as [using Eq. (3.2S)],

(Pt)rn:T
tan-I(=a¡

1
(3.35)

This indicates that the threshold power depends oL g, the gain coefficient of the

material, L the length of the SBS cell and zp the Rayleigh range of the focused

beam. However, plotting (k)rn as a function of L - zo (see Fig. 3.3) shows that for

SBS cell length larger than about 2.SxRayleigh range the threshold power remains

constant. This suggests that the effective interaction length for SBS is approximately

2.SxRayleigh range and the length of the SBS cell does not affect the threshold power

as long as it is larger than 2.SxRayteigh range. This result was found experimentally

by Munch et aI. 172]. In fact, in their experiment they have shown that the effective

interaction length for SBS at the threshold is the shorter of the following parameters:

the cell length, 3 times the coherence length or 2.5 times the Rayleigh range of the

input laser radiation.

Eqs. (3.25) and (3.26) can also be solved for the depleted pump, when the input

power is above the threshold power. In this regime it is clear from Eqs. (3.25) and
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Figure 3.3: Threshold power is examined as a function of cell length/Rayleigh range.
For cell lengths over 2.SxRayleigh range the threshold power remains constant.

(3.26) that

(3.36)

and therefore

P¿(z):P"(z)+a. (3.37)

Here, ¿ is a constant indicating the degree of pump depletion and is given by

o: k(L) - P"(L) : n@)0 - A).

Using Eqs. (3.37) and (3.28) and changing the variables P" and Pl to If P" and If Pt,

one can solve Eqs. (3.25) and (3.26) to yield,

P,(L): aPro
(3.38)

n@):
P¿se-GO-n) - Pro'

aPrc
(3.3e)

Pto - P"oeG(1-'?)'

!r": !n,oz oz

t\-
t\

The SBS reflectivity R: P,(L)lnØ) can be calculated using Eqs. (3.38), (3.39),



3.3. STIMULATED BRILLOUIN SCATTERING 47

.l.0

0.8

0.6

o.4

0.2

0.0

-0.2
-2 0 2 4 6 I 10

G/G"

Figure 3.4: Reflectivity as a function of GlGrn where G: ryÁn-I(L=zt) and

Gtn:25. Threshold reflectivity.R - 0.1 occurs at G: Gn'

(3.34) and (3.31) as

É.

oo
o
É.

(3.40)

which can be rearranged to give

G L + G;hrIrLR

Grn L-R (3.41)

Using this equation to plot.R vs Gf G¡¡ (see Fig. 3.4) shows clearly that the SBS

process has a threshold i.e., its reflectivity rises rapidly for values of G larger than

G*.

This simple threshold behaviour of SBS has been confirmed by experiment [73,

75,21and our numerical model (see next chapter and [20]). Figures 3.5 and 3.6 show

the numerical (calculated according to our 1D modet) and experimental results [2],

respectively, for the pump pulse, Stokes pulse and the reflectivity" Both theory and

experiment show that the Stokes pulse gro\Ã/s rapidly just after a certain threshold

power is reached.
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Figure 3.5: Numerical results of the input, Stokes and transmitted pulse. The SBS
reflectivity as a function of energy is shown in the right graph . E¿¡ is the threshold
energy. The numerical results are calculated according to our lD model developed
in Chap. 4.

3.4 Phase conjugation property of SBS

An interesting property of the SBS process is that the reflected beam retraces the

incident beam. This property was first observed in 1964 by Brewer [76]. In an

SBS experiment with a ruby laser Brewer noticed that "...the back-scattered light

retraces the path of the exciting laser beam".

Zel'dovich et al 16l were the first group to observe that in a SBS experiment the

back-scattered beam is a phase conjugate of the incident beam. The setup of their

experiment is shown in the Fig. 3.7. They focused a single mode ruby laser beam

into a SBS cell filled with methane gas at 125 atmospheres. They used two cameras

to observe the intensity distribution of the incident (measured by camera 1) and

reflected (measured by camera 2) beams. To distort the wavefront of the incident

beam, they used a glass plate before focusing the beam into the SBS cell. The Stokes

return of the SBS mirror then passed through the glass plate into camera 2. It was

observed that the Stokes intensity distribution matches that of the incident beam

implying that the reflected beam is the phase conjugate of the incident one.

An important practical application of phase conjugation rvas demonstrated by

Nosach eú ø/. [a9]. In their experiment, a SBS mirror (a celt filled with CS2) was

used to compensate the distortion in a laser beam (6943 ,4.), caused by a ruby laser

amplifier. The reflected beam of this SBS mirror retraces the incident beam and

8060102008060200

E/8"
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Figure 3.6: Typical experimental results [2] for the pump and Stokes pulses. The

reflectivity as a ftrnction of energy is shown as v/ell. Experimental results were

obtained for FYeon-113. En is the threshold energy.

is the phase conjugate of the incident beam. The distortion in this beam is then

compensated in passing back through the ruby amplifi.er. The experimental set up

was the same as in Fig. 3.7 except the phase-distorting plate was replaced by a

ruby laser amplifier. This resulted in the extraction of a high power beam with

undistorted wavefront.

In degenerate four-wave mixing the phase conjugation property of the reflected

beam can be clearly seen from the Equations describing this phenomena. In Eq.

(2.2L) it is seen that the reflected beam in DFWM is proportion to the complex

conjugate of the incident beam and retraces it (Ka : -Kz). In the case of SBS

phenomena, however, the fact that the Stokes beam is the phase conjugate of the

incident beam is not obvious from the equations. If we ignore 0l0t in Eq. (3.14c)

[i... the steady state regime] solve for Q and substitute it into Eq. (3.14a), we

obtain

(h"f .Ï*+ fi)n": etezll,l' E,

Stokes

output
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Figure 3.7: The experimental setup to demonstrate the phase conjugation property
of SBS. The plate distorts the phase front of the passing beam. The cameras Cland
C2 record the input, and backscattered beam profiles, respectively. The SBS cell is
filled with methane. Figure is based on flgures in [3]

This shows that the driving force of the Stokes pulse is proportional to lE,l'8",
which contains no phase information of the incident beam. A reason why SBS leads

to phase conjugation can be given as follows [37, 5]. For an aberrated input beam

the information about the phase distortion of the beam is translated to an intensity

pattern once it is focused into the focal volume (far field). The intensity pattern of

a highly aberrated beam is highly non-uniform in the focal volume (i.e. a volume

speckle pattern). Next, this nonuniform-intensity beam scatters off the density noise

of the material. It is initially scattered to the all possible spatial modes but, only

the mode that can best match the far field pattern of the incident beam has the

maximum gain. This mode is in fact the phase conjugate of the input, and when it
grows it will suppress all the other modes.

The degree of phase conjugation câ,n be quantified by defining a parameter,

namely fideli,ty [37], as

I E,(r, z,t)E"(r, z,t)d2r 2

H(z,t) : (3.42)
I lE¡(r, z,t)l d,, I l4"(r, z,t)l

in which 0 < H < 1. The numerator expression shows the correlation between the

laser and the Stokes fields. For perfect replication of the laser pulse H : I otherwise

H < L This definition for the fidelity, although useful for numerical modeling, is very

hard to measure in experiments. In SBS experiments using short pulse lasers, fidelity

is usually measured using the power-in-bucket technique U2,771. In this method the

d2r'
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Figure 3.8: Diagram of the Near and Far field diagnostic technique for the measure-

ment of the time resolved and time averaged fidelity [2].

transmission of the SBS Stokes return power is measured through a single diffraction

limited pinhole located at the far field of a lens. This power, divided by the near

field Stokes porü\¡er and multiplied by the chosen, theoretical transmission factor of

the pinhole, gives a Stokes beam merit (merit is here proportional to the square

root of the conventional definition of beam quality). Fidelity can be obtained, once

the Stokes beam merit is compared to that of the original laser beam. A typical

schematic of the diagnostic technique for measuring fidelity [2] is shown in Fig. 3.8.

By measuring the pump and the Stokes porvers at the Near and Far fields, one can

define the fidelity by

Ll4

SBS beam meritFidelity:-, where
Iraser DeAm mefrt

(3.43)

SBS beam merit : Far SBS power through pinhole
and

Laser beam merit:

Near field SBS power x TTo

Far field laser power through pinhole
(3.45)

Near field laser power x T%

Numerical and experimental plots (see Fig. 3.9) of frdelity versus input energy show

that it grov/s very rapidly when the input energy is close to the threshold energy

and saturates at values of the order of 90% for very high input energies.
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Figure 3.9: (a) Typical numerical (see Chap. 5 for details) and (b) experimental [2]
results for the fidelity of SBS. Experimental results are obtained for Fbeon-113.

3.4.L Transient regime of SBS

The transient regime of SBS is usually considered when the duration of the pump

beam, úo, is shorter than the phonon lifetime of the SBS material (to < r). Most

numerical models of SBS deal with pump pulses whose durations are much longer

than the phonon lifetime of the SBS material. This enables them to use the steady

state approximation. However, as Wandzura [9] and Afshaaruahid et al. [20, 35]

pointed out, in reality there is no steady state regime for SBS. The steady state

regime of SBS fails to give a true picture of SBS, even with pump pulses longer than

the phonon lifetime of the SBS material. Two reasons can be given for this: 1) the

threshold behaviour of SBS and 2) the observation of large scale fluctuations in the

output Stokes pulse.

1) The SBS process has a threshold, i.e., at a certain input power the reflectivity

increases rapidly. Such a rapid increase causes a relaxation oscillation in the Stokes

puise which is due to the transient behaviour of the SBS process at the threshold.

This will be studied in Chap.4.

È.e

:o!

È{

oE

zo

(a)

(b)



3.4. PHASE CONJUGATIO]V PROPERTY OF SBS 53

2) Depending on focusing geometr¡ input intensity and pulse duration, there

is always a frnite probability to have large scale fluctuations in the Stokes pulse.

However, there are conditions for which this probability decreases. Flom this point

of view, the steady state regime of SBS can be considered as the parameter regime

of SBS which results in the minimum probability of observing fluctuations. We will

discuss this in the rest of this section and in Chap. 4.

The SBS process starts from spontaneous emission of thermal noise. This noisy

spontaneous emission is amplified through two main regions, namely region I and II

[18], which are discussed as follows. In region I, the initial Stokes signal is amplified

exponentially where its intensity becomes the order of. - 0.ITo of the pump pulse.

The gain coeffi.cient of the amplification in this region is roughly gI¿¡ where.I¿¿ is the

threshold intensity of the SBS process [37, 13]. At the end of this region the Stokes

intensity is a noise-like signal. This is expected, since in this region the pump pulse

is almost undepleted and the SBS medium behaves like a linear amplifier for the

spontaneous emission initiated from thermal noise. This thermal noise initiation of

SBS can be included in the SBS equations by adding a Langevin noise term f Q,t)

to the right hand side of Eq. (3.14c) as

f**r)O : -ry18¿E! + f (z,t)-

Aø:f h'^2
,rl c

(3.46)

(3.4s)

Assuming that the pump depletion is negligible and neglecting the transverse deriva-

tives, Eqs. (3.14a), (3.14b), and (3.46) can be solved to find [78, 79, 13]

E"(L,t) : zsz*t I_*"' l,
L

¿"r"_(r)(t_r,) f*(", ,t,) x Is( 2Glz,(tt - t) lL),

(3.47)

where -Is is the zeroth-order modified Bessel function. Using the above equation,

one can show [13, 11, 80, 81] that the spectrum linewidth of the Stokes pulse in this

region (for G > 1) is

This indicates that the spectrum of the Stokes field narrows as G increases. Depend-
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ing on the focusing geometry and input energy, the duration of temporal fluctuations

in the Stokes pulse at the end of region I can be the order of 4r - fr" tttt.

The final and main amplification of the Stokes pulse occurs in the region II [1S]

or the depletion region [13]. The length of this region (which can be shown [20] to

be the length over which the Stokes intensity drops to If e of its maximum) is given

as l¿"o : l¡^*/Go [13, 18, 20], where l¿,nn is shown in Fig. 3.2. The propagation

time through this region, T¿o"o, the duration of the temporal variations in the Stokes

pulse at the beginning of this region, ?", and the phonon lifetime of the material,

r are crucial parameters in determining the dynamics of the temporal variations in

this region. In fact a useful parameter

TIo"o hl¿^ nlI- T cGsr Go
(3.4e)

can be introduced to classify the dynamics of the temporal evolution of the Stokes

pulse in the depletion region (see the following discussion).

Consider the following boundary conditions for the depletion region (see Fig.

3.1)

n@) :
P'(L - la.o,t) :

input pump power

,t'(t) Stokes power at the beginning of the depletion region

In the steady state regime, when the duration of the temporal variations in the

Stokes puise at the beginning of the depletion region is much longer than both the

phonon lifetime and the propagation time through the depletion region i.e.,

7r>rÞTra"p,

one can find

(3.50)1:+<< 1+ # * 1+ Go > ?ir

Using Eqs. (3.25), (3.26), (3.36), (3.37), the pump and Stokes power P¡(z) and P"(")
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can be solved as a function of z and input pump po'ü¡er P¡(L) as

55

(3.51)

(3.52)

In the limit of 100% conversion of the pump energy to the Stokes energy i.e. ø -+ 0,

one can show that

Þ.(.\ - 
aPt(L)

t t\'t - Pt(L) - lP,(L) - afe-"G(")/Pt@)'

P,(L): Iim P"(z\ã;¡ d\ / L+G(z)

Ç*. *ru,: -isze*Et,

Ç*- !*rr,: -iszel,,

t**r)Q: -is1E¿Ei,

(3.53)

This indicates that for Go > TI and a heavily depleted pump , the Stokes pulse

variations at the beginning of region II causes only a slight change in the output of

the Stokes pulse and therefore fluctuations will be smoothed in the output of the

Stokes pulse.

For a pulsed pump, however, Go -- gI¿(t)L¿^," is a function of time. Therefore,

the SBS gain G6 is highest for the middle part of the input pulse and decreases

towards the beginning and end of the input pulse. From the above discussion, two

conditions Go ) Ijl and r K T" are necessary to avoid fluctuations in the output

Stokes pulse. Applying these conditions for a pulsed input pump imply that; a) the

probability of observing fluctuations in the middle part of the output Stokes pulse

decreases because in this region Go ) ?¿l and b) the fluctuations in the Stokes

pulse, if any, have durations of order of. {r, thus containing very little energy.

By considering the time dependent SBS equations (in one dimension, see Eqs.

3.I4a,3.14b and 3.14c)

(r)nlim
a+0

(3.54)

(3.55)

(3.56)

one can generalise the above simple discussion to a more realistic condition in which

the phonon lifetime, r, the propagation time, Tro"o, und the duration of temporal
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variations in the Stokes pulse, 7", a,Íe finite. Eqs. (3.54)-(3.56) can be rewritten for

intensities I¿(z) and I"(r), if we ignore the change in the sign of the phase of the

fields (this is not generally speaking true and in the next chapter a more realistic case

will be considered). At a frrst order of approximation the solution of the intensity

equations can be written as a stationary part plus a small non-stationary part, i.e.,

ríz,T):rl(4+rlø,T),
r,(z,T):r!(4+r:Ø,T).

(3.57)

(3.58)

Here, If(y' and I!(y' are the stationary parts, given by Eqs. (3.22) and (3.23),

4ø,T) and, I!(V,T) are the small non-stationary parts, and I : tf Tto"o and. V :
zGsf l¿^ are dimensionless time and position inside the SBS medium. These rela-

tions [Eqs. (3.57) and (3.58)] can be substituted in the SBS equations for intensities

to find a set of differential equations lor I|(V,ã) and I:Ø,T). These equations can

then be solved using Laplace transform [82, 1S]. A specific and interesting example

is when the Stokes intensity at the beginning of the depletion region is

I 
"(L,T) 

: I? (L) + Asin(uT), (3.5e)

i.e., the Stokes intensity is the stationary part plus a small intensity noise term

4Ø,ð : Asin(wT). Here tr is the length of the depletion region in dimensionless

coordinates. It can be shown that for such a boundary condition, one can solve the

differential equations [18] for the Stokes pulse and find the output Stokes intensity

at the entrance window as

I"(L,l): I:(L) * nAsin(uT+ þ),

where rc is the response function given by

¡a: lG(iu)1,

G(s) : (2L +t)'*'Jn)'/t
,r /z 

"s 
/2lK o*, {i) + K "(;)l



3.4. PHASE CONJUGATIO¡ü PROPERTY OF SBS c/

Here a : 
=t 

f i and, K,(r) is the Bessel function. The response function, rc, shows
2(t + s)

how the intensity modulation Asinut at the beginning of the depletion region is

magnified through this region and appears at the output as nAsinøú. The behavior

of rc as a function of ø is quite different for different values of 7. This is shown in

Fig. 3.10, in which rc is plotted as a function of ø for different values of 7. For

7 ) 1 =+ Go << f?i (7: - in Fig'3.10),

there is no maximum in the response function, which indicates that all the frequency

components of the Stokes intensity modulation at the beginning of the depletion

region will be magnified and thus the spectrum of the Stokes pulse does not change

in passing through the depletion region. Therefore, it is most likely that the intensity

fluctuations appear in the final Stokes output when Go ( l?i [fS]. For

j N L + Go È-f,T¿ (7 : 1.5,1.,0.5 in Fig.3'10),

the response function has a pronounced peak at frequencies ø N'y or

I Tto..
.'--¡4ru-

t/Tto.o, T

This means that the medium has the property to amplify selectively those fl.uctu-

ations for which Ts: r. Since T, - 4r - lr, in the regime when 7 = 1, only
10

fluctuations with Ts : r will be magnified and all the other fluctuations will be

smoothed out in the output Stokes intensity. Finally, when

7 ( 1 è Go > lT (7 : .1, 0.005 in Fig.3.10),

there is no maximum in the response function and it becomes smaller for smaller 7.

Plotting the maximum of the response function K as a function of 7 shows (see Fig'

3.11) how rapidly the maximum of rc decreases for small values of 7. This results in
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0
Freq uency

Figure 3.10: Response function as a function of frequency for different values of 7.
There is no maximum for large and small values of 1. L is a dimentionless length
paprameter and is L :40 for the above plot.

(using Eqs. 3.58 and 3.59) a smaller (noise intensity)/(total intensity) ratio as

(noise intensity) I:(L) rcAsinat
(total intensity)

::
I9Ø) + I,r(L) RIúL) t nAsinat'

where fi is the reflectivity. For 7 ( 1 or Go ) l?¿ the reflectivity approaches

1 while the noise intensity decreases, resulting in a smaller (noise/total) intensity

ratio. This indicates that in the regime of Go > l?j the fluctuations in the Stokes

pulse are suppressed.

3.5 Summary

In this chapter we have reviewed the general behaviour of the SBS process and its

application as a phase conjugator. The fundamental equations that describe SBS

were developed. Simple analytical solutions of the SBS process (in the steady state

regime and one dimension) were discussed. It was shown that these solutions can

explain the simple experimental observations of the SBS process. In the transient

regime, an approximated analytical solution of the SBS process in the depleted
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Figure 3.11: Maximum value of the response function rc as function of 7. For small
-y i.e., Go ) l?j, the maximum of the response function is very small resulting a
smaller ratio of noise/(total stokes intensity).
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region (a region over which the Stokes signal gains the most of its amplification) was

explained. This solution gave a qualitative description of the dynamics of the Stokes

signal evolution through the depletion region. Introducing a parameter 1 - Ttl lGo,

it was shown that for 7 ) 1 the Stokes signal at the end of depletion region may

show large amplitude fluctuations. Contrary to this, for 7 ( 1, there is no amplitude

fluctuations in the Stokes signal.

Although, simple analytical or numerical solutions of the SBS process, can ex-

plain most of the experimental observations, they cannot, explain some important

experimental aspects of the SBS process, especially for the focused cell geometry.

One example of this is the use of SBS in practical applications that require consid-

erations of transients or short coherence length regimes. In chapters 4 and 5, we get

to the heart of this thesis and develop two transient (one and three dimensional)

numerical models of SBS to examine the transient phenomena that affect the SBS

performance. In the next chapter, we develop a transient one dimensional numerical

model of SBS in the focused cell geometry. The model is then employed to examine

in detail two different transient phenomena, threshold oscillations and stochastic in-

tensity fluctuations. It will be shown how these phenomena affect the performance

of the SBS in the transient regime.



Chapter 4

l-dimensional model of SBS

4.L Abstract

In this chapter, we develop a transient one dimensional numerical model of SBS.

In our model, we have simulated the noise initiation of SBS for a focused beam in

a finite length cell. The details of the numerical method is explained. We then

use the model to study two different transient phenomena: 1) threshold oscillations

and 2) stochastic fluctuations in the Stokes intensity. For each phenomenon, the

effects of parameters such as phonon lifetime, immersion length and input energy

are examined and compared with the available experimental results.

4.2 Introduction

The original motivation to develop a l-dimensional model of SBS came from some

unexplained experimental observations. Some fluctuations were observed (see Fig.

4.1) in the reflected Stokes pulse in SBS experiments using Freon, (Experiment

setup is shown in Fig. 3.8). Further experiments revealed that these fluctuations

had stochastic nature i.e., they sometimes appeared and sometimes did not, in the

output Stokes pulse, even though the experimental setup was the same for every

shot. It was also observed that the temporal positions of these fluctuations within

each pulse as well as their durations and heights were different from shot to shot.

In addition to these, the measurement of the phase of the Stokes pulse also showed

61
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Figure 4.1: Typical occurrence of fluctuation in the output of Stokes pulse in SBS
experiment using Fleon 113. After V. Devrelis [2]

some random sudden changes, phase jumps as shown in Fig. 4.2. Early experi-

mental observations of the presence of phase jumps and amplitude fluctuations in

SBS were reported in 1980 [83, 81, 80]. More recent theoretical and experimental

investigations of these fluctuations in optical fibers have been made by Dianov et

al.[11], Gaeta and Boyd [13] and Kuzin et al [18]. Intensity and phase fluctuations

have been investigated experimentally also for short interaction lengths typicai of a

focused geometry 172, 74, 16]. These fluctuations are important in practical appli

cations since they reduce the coherence length of the scattered beam [1a] as well as

the temporal and spatial fidelity of the SBS process [10, 12, 19, 2]. Simultaneous

fluctuations in the Stokes amplitude and beam quality have been observed [12] as

have actual variations in the phase of the Stokes beam, and measured directly by

heterodyne detection [1a]. In addition, the effect of experimental parameters such

as the interaction length and input energy on these simultaneous fluctuations have

been reported [16, 19]. Numerical models have also shown simultaneous occurrence

of jumps in the Stokes phase and fluctuations in the Stokes reflectivity and fidelity

[9, 10]. These fluctuations are important in practical applications since they reduce

't5#
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Figure 4.2: Experimental results showing the occurrence of phase jumps in the phase

of the output Stokes pulse. After V. Devrelis [2]

the coherence length of the scattered beam [14] and have been observed to reduce

the temporal and spatial fidelity of SBS [10, 12, 19].

A Review of the SBS literature indicated that \Mhile the intensity fluctuations in

the Stokes pulse had been studied mainly in fibers, they had not been fully examined

and understood, specially for the finite cell geometries. Most of the publications in

this field were conference papers that had reported (theoretically or experimentally)

some aspects of these fl.uctuations. Theoretical and numerical studies of these phe-

nomena had been especially difficult due to the transient nature of these fluctuations

and the fact that these fluctuations depend on the focusing geometry. In fact at

the time that we started our study there was not a published unified theoretical

or numerical study of this phenomena that could explain all aspects of this phe-

nomenon. This lack of understanding together with the fact that these fluctuations

are important in practical applications motivated us to study (experimentally and

theoretically) three main questions:

1. The source of these fluctuations,

2. How the intensity fluctuations and phase jumps are related,
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3. What experimental parameters affect these fluctuations, in SBS experiments
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in a focused cell geometry and how we can achieve the best parameter space

for excellent Stokes beam quality.

1. The source of intensity fluctuations

The SBS process starts from thermal density fluctuations of a medium. This

stochastic initiation of the SBS process is believed to be the cause of the large scale

fluctuations in the intensity and phase of the Stokes output 137,9, II,79,13, 16].

Similar phenomena are observed in superfluorescence [8a] and stimulated Raman

scattering (SRS). Vacuum fluctuations of the radiation field are thought to be the

origin of the spontaneous noise that initiates the SRS process. Such a spontaneous

noise initiation leads to the existence of solitons in the depleted pump pulse due

to a r phase shift in the Stokes seeds [85, 86, 87, 88, 89, 90, 91, 92]. Including a

Gaussian random noise term in the transient SBS equations enables us to simulate

the noise initiation of the SBS process and to study the temporal behaviour of the

Stokes intensity fluctuations.

2. How the intensity fluctuations and phase jumps are related

Experimental observations suggest that the intensity fluctuations and phase

jumps can be simultaneous 112, 14]. It is also believed that, like SRS, the phase

jumps are responsible for the intensity fluctuations [11, 13]. In some studies (e.g.

[93, 1]) researchers have omitted the phase of the fields from the SBS equations by

considering a phase locked relation between the phase of the pump, Stokes and the

acoustic field i.e., ü - ó" - óq : f (this will be discussed later in this chapter). Such

a simplification leads to SBS coupled differential equations of real fields. However,

such a simplification can not simulate the relation between the phase jumps and the

Stokes intensity fluctuations. In our model, complex differential equations are con-

sidered in order to study the underlying mechanism of the phase-intensity relation

in the SBS process.

3. What experimental parameters affect these fluctuations

The effect of experimental parameters on the intensity fluctuations for the fo-

cused cell geometry has not been fully investigated. There are some unpublished
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studies on the effects of interaction length and the input energy on these fluctuations

[16]. Although, our model is a one dimensional modei, we have used an approach,

similar to that of Menzel and Eichler l2a] (discussed in detail in Sec. 4.3.2), to in-

troduce the focusing geometry to the SBS equations. This enables us to investigate

the effect of different focusing geometries on the intensity fluctuations.

4.3 Theory

The equations describing our 1-dimensional model are the transient Eqs. (3.54)-

(3.56) i.e.,

except that we have added / to the right hand side of Eq. (4.3) to represent a

Langevin noise source that describes the thermal initiation of the acoustic wave.

4.3.L Langevin noise

Before lve carry on with the solution of Eqs. (4.1)-(4.3), it is necessary to discuss the

statistical property of the Langevin noise term /. We can divide the whole nonlinear

material volume into small sub-volumes of AV : A,rL,ALz centered around any

arbitrary point ni,Ui.,z¿ and with a mean density of Q¿. In the absence of driving

electric fields, one can rewrite Eq. (a.3) for sub-volume i as

Ç*. *r"": -.'i,sze*Et,

Ç&- *,u,: -'iszQE,,

t**r)O : -isfi¿Ei r f(z,t),

r**r)Qn: rnþ),

(4.1)

(4.2)

(4.3)

(4.4)

where /,(ú) denotes the Langevin noise term f (r,A,z,t) averc,ged over subregion'd.

We assume that fi is a Gaussian random variable with zero mean i."., (/n) : 0, and
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(4 5)

(4.6)

This relation indicates that for an ensemble of similar cells the value of / in a ceil

¿ at time ú is uncorrelated with the value of / in a cell j at time tt. To find the

coefficient ã *" integrate Eq. ( .a) to find the Q¿:

Qn(t): L "r(t-r) ¡n(r)d,r.

is ó correlated in the sense that

(rn(Ð r; þ')) : ãontolt - t')

This and Eq. (a.b) can be used to evatuate (Aft)AiØ>

(a,(Ða;çt¡¡ :(
l__

d,r1 dr2¿t (t-n) 
¡ nçr) er ('-n) 

f ; Gr))

L d,r1ar2st(t-n)"t(t-r2) (trtnl¡;f"¡> (4.7)

G

The quantity (Q¿(t)Qi(t)) can be related to the total energy in the sub-volume i
The energy density of a sound wave is given by (see Eq. 6a.1 [9a])

(u):|n(v,) *T,, (Q,) lpo

Thus the total sound wave energy in a the sub-volume i is

(Er*"¿)n: (|oo V') +!æ <a?) lpo)^v.

According to the equipartition theorem, the contribution of each term in the total

energy is Il2(Kf) therefore,

1

2
u2 (?t(t)Qi(t)) lp6)Lv :

6¿jf

1

2

1

2
,' (A?> lpo)Lv :

{t

(?ít)Qi(t)) : 2KTpo

u2 LV

KT,
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Comparing this with Eq. (4.7), we find

G
2KTpsl
u2LV

In the continuum limit, the Langevin term is /(r, ú) with zero mean and an auto-

correlation function:

(/(r, ¿)/.(r' ,t'))

(4.8)

(4.e)G

Gó(r-r')ó(ú -t'),
where

ãw:'*T{" .

Here ps is the mean density of the material, T is the temperature, o is the speed

sound in the material, and K is the Boltzman constant. The Langevin term / has a

Gaussian distribution with zero mean. Thus the distribution function has the form

_f2
. ..l

pff): *e 2o ,

Itr )'t o o

where a is the variance. Consider

then the correlation function (/("r, t)f*Gr,ú')) can be calculated to be

lþt,t)
f Ør,t')

(/(rr, t)f.(r2,t'))

(/("r, t)f.(r2,t'))

ft,

lz,

t2 t2
-Jt -J2

fif2eÐ eF a¡ra¡,(/("r, t)r*tr,ú')) o ) l_:
Evaluating the above integral, we find

: o if å*rr,
o( o if fr: ¡,
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Comparing this result with Eq. (4.9), we can see that

Gxo,
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(4.10)

i.e., the variance of the Gaussian distribution is proportional to the constant G :
2KTpslfu2. In App. (A), the generation of random variables with a Gaussian

distribution is discussed.

4.3.2 Numerical Solution of the SBS Equations

In Eqs. (4.1)-(4.3), E¿(z,t), E"(2,ú) and QQ,t) are complex amplitudes. To find the

equations for the real amplitudes and the phase of the fields we write the complex

amplitudes Q and .Ðo (where p: s,l) as

Ep : Aoe-iÓo,

a Aoe-iÓ,,

where the A's and the þ's are real functions. Substituting the new definition into

the above equations results in a set of six coupled differential equations:

& - î*¡r: -s2sin(/o - ó, - ón)AoA"

t* * i*ro" : s2 sin(þ, * ós - ó,)AoA,

f**t)Aq:e1sin(þ, * óq- þr)A"Ao-t ft

.A n0,
( 
ð" - ; *)Ór: -szcos(þo - Ó' - Ón)

AnA,
Ae

(4.11a)

(4.11b)

(a.11c)

(4.11d)

(4.1 1e)
.A nô.
( u * ; *)ó" 

: s2cos(þ, * óq - óo)

.4,
( a)ót: 9r cos(d 

" 
* óq - þo)

AoAo

A"
A,Ao *r, (4.11Ð

Aq

Here, fi and fz a¡e two Langevin noise terms representing the noise initiation of the

SBS process for amplitude and phase.
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As mentioned above, some authors (e.g. [93, 1] ) have used the phase locked

condition for which

sin(po - Ó, - Óò : L + Óp - Ó" - Ós :

and the SBS process has the highest gain. \Mhen SBS starts from noise, a random

noise distribution of óp- ó, - ón is initially present. But as the phase-locked waves,

(those with /o - ó" - óq : i), have the highest gain in the medium, they become

the dominant Stokes v¡âves in the medium. By applying the phase locked condition

to the equations (4.11), they are simplified to a set of three real coupled equations

for the amplitudes. However, in order to explain the experimental observation of

the simultaneous occurrence of intensity fluctuations and phase jumps[14], we have

retained. the complex equations since this is the only way that the phase of the

Stokes field can be coupled to its intensity.

The equations (4.11) are nonlinear due to the terms sin(Q"Iþq-lo) and cos(/o-

ó, - óo). These equations are useful for showing the qualitative behaviour of the

fields and their phases. However, solutions of the equations require that we rewrite

them for the real and imaginary parts of the fields. Using

Ee
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1t

t

P:1,s,

in Eqs. (4.1)-(4.3), the equations for the real and imaginary parts of the fields are:

a

: we+ive

: wq+ivq
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&-î*v,
,&*ï*¡"

tft*'¡,,

: -92(WnV" + VnW")

: gz(WnV - VrWù

: -g{W¿V" -VW") * Ít

: Sz(WnW, - VnV")

: -Sz(WnW, +WU)

: -e{WtW"+Wò * fz

(4.12)

(4.13)

The focusing geometry required for simulation of experiments is introduced using

an approach similar to Menzel and Eichler l2\. Although, SBS is primarily used to

compensate for optical aberrations, we have chosen not to include spatial aberrations

in this treatment, but concentrate entirely on temporal fluctuations or the "temporal

fidelity" of the Stokes beam. This is important, because lack of temporal fidelity

leads to the degradation of the Stoi<es return and hence a reduction in the average

reflectivity and efficiency of a phase conjugated laser system [10, 12, 79]. In this

initial model, 'ù¡e are thus using spatially unaberrated Gaussian beams for both the

pump and Stokes fields, and we have made the further approximation that both

these fields have the same Gaussian beam parameters (see figure 4.3):

a2 (z¡ : ,z 1+ (æ)

where øo is the radius at the waist of the beam, ) is the wavelength and n is the

appropriate index of refraction as a function of z. This is a reasonable approximation

in an efficient phase conjugating system where the fields are well above threshold and

is justifred by experimental results showing that the beam quality and divergence

of the Stokes beam are indistinguishable from those of the pump beam when well

above threshold.
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(distributed tbrough out the cell) Stokes

Figure 4.3: Geometry used for modeling of the SBS process

As a result, the pump and Stokes intensities , It : W? + V' o, I" : W? + V:,

change not only because of the nonlinear interaction with the material but also

because of the change in the area of the beams. Keeping in mind that, for a Gaussian

beam, the electric field amplitude has a a(z) inthe denominator, v¡e add - 
y'!- !

a(z) ôz
v"a

a(z) or -ffi *r(z) to the right hand side of the equations for Wo or Vp (p : I

or s) to represent the change in the int rnsity due to the focussing geomefiy l2a].

Defining

Ee
Èo w;,.v;
,r(r): r(t)-',u(r)
w, + Lu,E,O

and hence,

we
W;

ve

,(z)
V;

u(z)'

it can be easily seen that lnLf : l4ol' , r'(r) is proportional to the local power of

the pump or the Stokes fields. Substituting the prime fields into Eq. (4.12) we frnd:

SBS cell

lens
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(

(

A n0

0 nô

ðz cðt
A n0
-r__ôz' cðt

at- ¿at
A nô
-r__õz' c\t

)W; : -gr(WoVJ +VrW:)

)W: : Sz(WnY,'-VrW)

t**r)wo -#,olr*;vl -viw!) +å

(a.Laa)

(4.14b)

@.Iac)

(4.r4d)

@.7ae)

(4.74r)

(4.15a)

(4.15b)

(4.15c)

(

(

: gr(wnw, - wv)
: -gr(WoWi +VnU')

tft+r¡v, : -furr;wi+u'v)+ 12

)u'

)v:

We see that the new equations have a form similar to equations @.12). The only

difference is that the prime fields are the porü/er components instead of the intensity

components in equations (4.12). The same procedure can be done for equations

(4.11) to obtain the following equations for the Stokes, pump and acoustic grating

pOr'¡/eI:

.ð n0..,
\¿-;æ)4,
.A nð..tlu*¿a)4"

{ft+r¡a,

: -g2sin(þ¡ - ó, - óq)AqA:"

: g2sin(þ" -f óq - ó¿)AoAt

: el sin(/, -r óq - Olffi * n

The equation for the acoustic field shows how the amplitude of the field depends

on the intensity of the Stokes and pump v/aves, implying a high acoustic field at

high intensities of the pump and the Stokes fields.
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Numerical Method

The phonon fields in Eqs. @Jac) and (4.14f) can be integrated to yield
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(4.16)

(4.17)

(4.18)

(4.1e)

wq

w

+ [' d,"-,r,-,)l-W;v: -U'w:)+ å],
u2(z) J o

+ [' d,r"-rr,-ùl-W;w:+U'v:) + fz)
u2(z) lo

If we substitute Wn and Vo into the remaining equations (4.14), \Ã/e can reduce the

equations to four coupled differential equations for the field amplitudes. The numer-

ical analysis starts with these four equations. To solve these equations numerically,

we change the continuous field amplitudes W¡(z,t),V(z,t),W"(2,ú) and V"(z,t) to

discrete field amplitudes WrT,VT,W, i andV"l, where rTù : 0,L,2, '...M ate time

indices (t : rn\t) and 7 -- I,2,...n 11 are space indices (z : jL'z and .L : n\z).

Referring to Fig. 4.3, it is clear that W" f and V" i (i.e., Stokes field at z : Lz)

are the boundary conditions for the Stokes freld. For SBS generators these values

are always zero i.e.,

w" : 0 at all times

: 0 at all timesv"

Similarly, WtT+t,VT+t [i.e., laser field at 2 : (n-ll)L,z] are the boundary conditions

for the laser field and are determined by the input laser field to the cell. We can use

Simpson's rule
frz 1

J,, f 
(r)dn : io"ll(*r) t f@ù1,

and the discrete field amplitudes W T,V T,W" i and V' i to find the acoustic

frelds WniandVoT @"oustic field at time t: mLt and positiorr z: jAz) in Eqs.

(4.16) and (4.17)

rn
1

TTL

1

woT : s,+r= 
r!,, 

rr; TV: T -u' TW:T) + r,T + P,T-';,

vnT : s'+t!,, w; Tw:T +u' TV: T) + r,i + Pzi-,)'
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Here, ptT-' and P2 î-t (".'alnated at the time slot rn- 1) are related to Pff-2 and.

p, T-' by

74

P1

P2

m-t
J

m-I
l

p, o¡

o0t2 j

"-'o'{p,.ï-'+4-åw; T-v: m-! -u' T-'w:T-\ + rri-\},

"-'o'{prT-'+r¡, åw; i-w:i-'+u' T-'v: T-\ + Íri-\},
where finally

"-'o'¡-Lfwi lvio, -u' ',wi') + Íro¡1,

"-'*¡-Lfwi iwl? +u' iv: ') + r,?1.

We use a differenceing method to convert the differentiation of the fields to the

difference between discrete fields e.g.,

L,Z

î*,; 
:

**;:

n
cLt
1

(W; T*, - W; T),

(w; -W;m1'lj+t m*I
J )

Using this and the discrete acoustic field amplitudes [Eqs. (a.18) and (4.19)], we can

rewrite Eqs. (4.14a), (4.14b), (4.14d) and (4.14e) for the discrete field amplitudes

A,S
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W; T¡, -W; (w; -w; Tm,+l
j

nL,z

cLt
1

m*L
J
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(4.20)

- gV"i*t L,zLt
2 lr'l¡

)

(w; i*tv: T*, - v' T*tw', T*') + r, T*, + h Tl

- ew, T*'o'f,t ? l"rhw; T*'w: T*' +v' T*'vi î*') + rrT*' + PzTl

w: Tl,' - w: T*' + ffiW: T*' - w: T) :
oV i,\ë? WW; T*,v: T*' - V' T*rw', T*\ + Í, T*' + p, 

Tl

- sw¿ T*'o'rot tftw; T*'w" T*' + v' T*'vJ T*\ + r, T*' + p, 
Tl

(4.21)

u' Tlr' -V' ry*' -#rr' T*' -V' i¡:
ow,i+r\4tftfw; T*,vlT*, -V' T*rw'"7*\ + frî*, + prTl

- gv, T*t tftw; T*'w'"7*'+u' T*'v: T*\ + rrT*'+ PrTl

(4.22)

L,zLt
2

v: Ti,' - v: T*' - H(v: T*' - v: T) :
- swtT*'o'rottfirw; T*tvJ T*'-v' T*'w',,7*\ + ÍrT*'+ prTl

- sv T*'oît t-.ã(w; T*'w: i*' + v' T*'v! T*\ + r, T*' + P, Tl

(4.23)

On the right hand side of Eqs. (4.20)-(4.23) there are nonlinear coefficients of

either lw,T*'l',lv,T*'l',lw,T*t1' o, IVT*tl'. As a linear approximation (in

our model) we have replaced these coefficients with the same coefficients evaluated
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at the time slot rn instead of. m 11 [1]. To justify the validity of the linearization

assumption, we used the field amplitudes at time slot rn * 1 to reevaluate iteratively

the nonlinear coefficient involved on the right hand side of Eqs. (4.20)-(4.23). An

improvement of only 4To was achieved after 5 iterations. Eqs. (4.20)-(4.23) can be

written in a matrix form by introducing field vectors at the time (rn * 1)Aú:

rn*'l rnll

fim+t

:Wpt

Wpz

wrn

wrz

wrs

. | /'rn+r
t vp

Vpt

Vpz

Von

V"z

V"s

m*7 rn1'l

frrn+t : 1lm+L -Vs

Ws n+I Vs n+l

where n is the total number of discrete points in space aîdWe n+t, Vp n+r¡ Ws 1 and

Vs 1 ã,rE the boundary values. The equivalent matrix forms of Eqs. (4.20)-(4.23) are

¡m.ffm+I + C^ñ*+r ¡ pmfm+L :
Brnfrm+t + F*W;,"+t ¡ çmfm+r :
¡mfm+r _ D^fi*+t ¡ gmfrn+r :
gmfrn+\ _ G*ú*+t ¡ pmfm+t :

V

U

fr,
----+
Z

(4.24)

(4.25)

(4.26)

(4.27)

Here, A^ is upper tridiagonal, C*, D^,8* are lower tridiagonal and Fm, and G^
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are diagonal n x r¿ coefficient matrices evaluated at time mLt and are given as

77

oþ2 1

0"

0

1

^rnU: 0

0

h 10 0

o 'Yn

00
'Yz 0

00

0

0

o -rrn

0

AMIt:

D^

0

000
00
Qz0

00 Tn

00

0

0

1

A2

0

1

0 In

Q,N

0

0

0

1

E^0

0

'Yz

'Yt

0

0

0

0

0

-Tt 0

0 -rl,

0

0

F^ /.I'TTLLr:

0

00

Here,

i - + - nl^'!t 
tV" Tl' + lw" Tl]1,cLt 2r,-

oL,zLt
Tf¡rT+P2T),
oL,zLt
TU,T+P',T),
-1 + Lz -n\'lt luTl, +lw,Tl\.¡ | c\t 2r1

The right hand side of Eqs. (4.24)-(4.27) i.e.,1,t,fr and,7 ur" nxI vectors

containing boundary conditions for the pump and Stokes at time ¡: (m)Lt They

p"

In

Tn

o¿n
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can be calculated as

v^

U^

+
W*

+Z^

f 'm+t

W|^+t

-rtv"T -.yrw", - l3rrr
T

rTL

3

-we

-atW' T
L,Z

"LtAz

m*\ L" .,r, 
"nn*l - 

-", 
n

+*w"T
W,T

w" n-¿

3cLt

#r"r

fn
nve

Lt ,, 
"n

ñ.n" n

Using Eqs. (4.25) and (4.27), one can easily show that

(G'+ F\-tl-G8ff"*+t - FEî,^+'+cfr + FZ\,
(G' + r2)-tl+Gtf"*+r - FEil,*+' - GZà + Ffrl.

(4.28)

(4.2e)

These two equations in turn can be substituted in Eqs. (4.24) and (4.26) to find
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Wi*+r and I{-+t u.

(H L-r H + L)ñ^+1 :

fim+t :
P - ut'-'P,
L-'P + L-t Hî*+r,
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(4.30)

(4.31)

where known matrices H, L and, vectorsJt and (? are given as

H : -A(G'+ F\-|GE - D,

L : -A(G'+F2)-|FE+c,

P : Wà - A(G'+ F2)-t(Gúñ + FZà),

P : vñ - A(G' + F2)-L (Ftñ - czÅ).

Using the above matrices and vectors, \Me can calcul aæ f;*+t in Eq. (4.30) and

substitute it into Eq. (4.31) to obtain frrn+t. Once the Stokes fields have been

calculated they can be substituted into Eqs. (4.28) and (4.29) to find the laser

fields. The advantage of the above method is that the set of equations can be solved

numerically without the need for iteration. The matrix coefficients and vectors 7,
t, fr and,Z are evaluated. recursively using the initial values of the Stokes and

pump fields at t :0. Here the freld amplitudes at any time slot m t 7 have been

determined from those at the preceding time slot rn.

4.4 Results of the l-dimensional model

Depending on the geometry of the SBS process and the energy of the input pulse,

the model results in Stokes oscillations or fluctuations similar to those observed

experimentally [83, 81, 80, L2,19,2] as will be discussed below. \Me shall see that the

intensity modulation can be categorised into two groups: A) deterministic amplitude

oscillations at the time when the energy of the pump reaches the threshold energy

and B) stochastic fluctuations due to noise in the amplitude and phase of the Stokes

beam.
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4.4.L Model parameters and geometry

Solutions of equations (4.2a)-(4.27) arc found for a Gaussian pump pulse with an

electric field of the form Esexp(-2tffft,where úo is the pulse width. Referring

to figure 4.2, we apply the following geometrical and material parameters to examine

the typical results of the SBS process: cell length : 60 cm, focal length : 50 cm,

immersion length : 15 cm, initial waist of the beam :0.4 cm, input energy :320

mJ, gain of the medium (Freon 113) : 0.0063 cm/MW, phonon lifetime : 0.85

ns and arbitrary index of refraction, rz : 1.0. The above parameters v/ere chosen

arbitrarily for the numerical study only. There is a free parameter in our computer

code that determines the strength of the initial random noise. Experimental results

are necessary to set the value of this parameter. The results in this chapter show

the general behaviour of SBS for an arbitrary value of the free parameter resulting

in arbitrary units for the Stokes and pump polÃ/ers. However, in Chap. 5 we use

experimental parameters to set the free parameter of our computer code and make

accurate comparisons between the numerical and experimental results.

4.4.2 A: Deterministic Threshold Oscillation

The finite phonon lifetime provides an energy interchange mechanism between the

Stokes and laser fields via the acoustic field. In the case of Gaussian pump beams, it

takes some time for the energy contained in the pump to reach the threshold energy

required for Stokes initiation. At the threshold, the Stokes power increases very

rapidly and overshoots the pump po\Mer resulting in the depletion of the pump field

and reduction of the gain. Because of this gain reduction, the Stokes power also

decreases causing an increase in the pump energy which in turn causes an increase

in the Stokes field again. This energy interchange between the Stokes and pump

fields continues and resembles a relaxation oscillation (see figure 4.4). The rate of

this energy interchange is controlled by the reaction time of the acoustic field, i.e.

phonon lifetime. Such an energy interchange mechanism has also been discussed

in Ref. [7] and [1]. Chu et al. [1] report relaxation oscillations which are visible

in the transmitted pulse. However, our simulation results show that for a long cell

and a geometry in which the laser beam has been focused deeply into the cell, we
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o 40 60 EO

o 40 80
Time (ns)

Figure 4.4: (a) Typical threshold oscillation in the Stokes beam obtained for the

following parameters: cell length1OO cm, focal length 100 cm, immersion length 70

cm, phonon lifetime 0.85 ns, medium gain 0.006 cm/MW, FWHM pulse length 20

ns, and input energy 114 mJ. (b) shows no corresponding variation in the phase of
the Stokes.

predict relaxation oscillation in the Stokes return as shown in Fig. 4.4. Experimental

evidence of such a oscillation is reported by Damzen and Hutchinson [7], although

they used tapered waveguides in their experiments. In the focused cell geometry, the

relaxation oscillation has not been observed (to the best of our knowledge) to the

extent that is observed in Chu et al. [1] and our results (Fig. a. ). However, there

are some experimental results that show the first peak of the relaxation oscillation in

the Stokes pulse. Fig. 4.5 shows the experimental results of SBS in Fleon reported

by O'Connor [a]. The first peak of the relaxation oscillation is apparent in the output

Stokes pulses. He observed that the position and the magnitude of the first peak

was very reproducible from shot-to-shot. He also observed no degradation in the

time-resolved phase fidelity during the relaxation oscillation. The amplitude of the

first peak is a function of focusing depth. When the focusing depth is less than few

centimeters no apparent peak is observed. However, as the focusing depth increases,

the amplitude of the first peak also increases, see Fig. 4.5. This is in a qualitative

agreement with the numerical results of our model. Numerical results, Figs. 4.4 and

4.13, show that the threshold oscillations are present for long focusing depth and

disappeared for short focusing depth (detailed comparisons are not possible due to

lack of sufficient experimental details in [4], see Sec. 5.5).
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Figure 4.5: Experimental results showing: (a) Near field temporal profile of laser
input pulse, (b) Near freld temporal profiles of Stokes returns for different focusing
depths. After M. O'Connor [+]

In order to categorise the behaviour of threshold oscillation v/e use the following

parameters (in the simulation): Cell length 100 cm, focal length 100 cm, immersion

length 70 cm, phonon lifetime 0.85 ns, gain of the medium 0.006 cm/M\M and input

energy 114 mJ. Any changes to these pa,rameters are specified in the figure captions.

Figure 4.4 shows a typical threshold oscillation in the Stokes beam. Different pa-

rameters such as phonon lifetime, laser intensity at the focal point and immersion

length affect the behaviour of the threshold oscillation. There are no predicted phase

jumps corresponding to these oscillations.

Effect of Phonon Lifetime on the Threshold Oscillation

If the finite phonon lifetime is responsible for the relaxation oscillation at the thresh-

old energy, we would expect that the behaviour of the threshold oscillations depends

on this parameter. Figure 4.6 shows the threshold oscillation for two different phonon

lifetimes. Defining To to be the time interval over which the threshold oscillations

are observable (see figure 4.6), our simulation predicts that 7. is reduced for long
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Figure 4.6: Threshold oscillations are reduced for longer phonon lifetime. (a) Phonon

Iifetime is 0.5 ns and (b) phonon lifetime is 1.25 ns. Other parameters are as those

of Fig. 4.4.

phonon lifetimes (see figure 4.7). It is seen that for longer phonon lifetimes, oscil-

Iations in the Stokes return come to equilibrium faster than those for short phonon

Iifetimes. Our model permits a detailed investigation of the above mentioned relax-

ation oscillation and the role of the phonon lifetime.

The acoustic field is described by equation (4.11c). For early times in the process,

the first source term in the right hand side of the equation may be ignored and for

the second term we can write h : Dn a, cos a¡,t. Equation (a.11c) can then be solved

to yield

Ao : Asre-t' + D ¿o cos u¡,t+ t b'o sin a¡"t,
kk

in which a'n: anl(12 +a2)-1 and b't": akak(f'+ rZ)-'. In the limit of a long

phonon lifetime i.e. f --+ 0(r -- oo) we find aL:0 and ö'* - 
ak 

,, which results in ao (r)k'

solution of üo : Dn I sinu*t for the acoustic field. Comparing this result with the'* ut"
source term fi, it is seen that, in the limit of a large phonon lifetime, the medium

wiil not respond to the rapid fluctuations in the source term, but rather responds

to the integral of rapid changes. In the other limit of I + oo(z -- 0), bi t 0 and

o'r: # Eq. (4.1lc) gives a solution of üo - D- f cosu¡,t.In this case the medium

0

T

o)mu Pow €P
Stoke Po

b
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Figure 4.7: A shorter relaxation oscillation is achieved for long phonon lifetime. The
graph shows how ?l (a time interval over which the oscillations are visible, see Fig.
4.6) is reduced for long phonon lifetime.

can cope with the rapid changes in the source term, thus resulting in a modulated

Stokes pulse. As an example, we have tried a periodic driving force fi, with period

2rfb, given by

o.4 0.6 0.8 1.0
Phonon lifetime (ns)

1.2 1.4

over one period,f{r) : Alrl: 0<r<nlb
-rlb<ø<0

Ar

-Ar

where A is a constant. This function represents a zig-zag function with a width of

2rfb (see the solid curves in Fig. 4.8) and can be expanded using the Fourier series:

Ag

an

fr@):ro+Ia,-cosnbr,
oo
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Using the above discussion, one can find the acoustic response function as

An: Asre-"'+ D¿*cosa¡"t + t b'¡sínu¡,t,

85

k k

where

0, alo
as Atr
f 2bl

bn 4b

¡z ¡ þ2n2 rn2
f4b

n: Lr3r5,

n:113,5,

Ignoring the first term in the acoustic response function and plotting it as a function

of time, reveals that in the limit of

r Þ 2rlb + I < bf 2r,

where the phonon lifetime is much longer than the width of the zig-zag modulation

in the driving force, the acoustic fietd response is the integral of the driving force,

Fig 4.8a and 4.8b. On the other hand, in the limit of

r<2rfb+f>bf2n,

the acoustic field can respond to the rapid changes in the driving force, Fig 4.8c and

4.8d. Fig. 4.8 also shows that for very short phonon lifetime, the delay between the

driving force and the response function is reduced while the modulation depth of

the response function approaches that of the driving force. The above discrrssion is

applicable not only for the beginning of the process but also for any rapid changes in

the source fields of the acoustic field. The phonon lifetime thus represents a measure

of the inertia of the acoustic field. The larger the phonon lifetime, the higher is the

inertia of the acoustic fi.eld and the slower is the response of the medium to the

rapid changes in the Stokes and the laser fleld. This is similar to the response of a

low bandwidth electronic analog amplifler to a short pulse. The amplifier can not

respond quickly to the pulse, resulting in a broadened output pulse.

bio

nb

an
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Figure 4.8: Response of the acoustic field to a ng-zag driving force. The driving
force is shown as solid lines in graphs (a)-(¿). The responses of the acoustic field
are shown for different r¡alues of I as dashed-lines. The width of the driving force
is 2n fb, where b : I. See the text for explanation.

Effect of the laser intensity at the focal pl,ane

According to the equation (4.15c), the amplitude of the acoustic fletd depends on

the intensity of the input pulse. A shorter focal length results in a higher intensity

at the focal plane hence a higher pov¡er acoustic wave. As a result, the gain for the

Stokes field amplitude, which depends on the pump and acoustic field amplitudes

through Eq. (a.15b), does not reduce very quickly after the initial overshooting of

the Stokes pulse, i.e., the Stokes pulse can use the energystored in the acoustic field.

Thus, the Stokes amplitude does not reduce a.s quiekly after the first peak, which

in turn causes a shorter duration of the relaxation oscillation. This is illustrated in

figure 4.9.

Effect of the ímmersíon length

As it was discussed in section 3.4.I, the dynamics of the Stokes return pulse is greatly

affected by the depletion region of SBS. This is a region close to the entrance window

of the SBS medium in whicb mo,st of the depletion of the pump pulse occurs. The

b)f=O.t

c) l=l.O force dlf=10
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Figure 4.9: Smaller focal spot (higher intensity) results in a suppression of threshold
oscillations. Oscillations are reduced in graph (b) (focal length 60 cm) in comparison
with graph(a) (focal length 90 cm). Other parameters as in Fig. 4.4.

I.
length of this region is given by I¿., : T, where l¿*,n is the immersion length

(see Fig. 4.3) and Gs is the steady state gain of SBS. The smoothing of the Stokes

modulation occurs if the propagation time through this region is much less than the

temporal variation of the modulation in the Stokes pulse at the beginning of this

region, i.e., Tro"o K 7,. According to this discussion reducing the depletion length

by decreasing the immersion length, smooths out the modulation in the Stokes

pulse. We have tried the effect of immersion length on the threshold oscillation

by changing the distance between the cell and the lens. As expected, a shorter

relaxation oscillation is obtained when shorter immersion iength is used. Figure

4.10 shows the behaviour of the threshold oscillation for two different immersion

Iengths. For a smaller immersion length, Fig. 4.10 (b), the depletion region of the

pump beam is confined to a small region at the entrance of the cell resulting in a

shorter relaxation oscillation.

Flom another point of view, the first peak of the threshold relaxation oscillation

is due to the strong saturation of the pump wave by the leading edge of the counter-

propagating Stokes wave. The characteristic of the first peak then depends on the

60

o
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Figure 4.10: Modulations present in (a) (focal length:1O0 cm, immersion length:40
cm) are almost suppressed in (b) (focal length:1O0 cm, immersion length:l0 cm).
Shorter immersion length provides a better suppression. Other parameters as in
Fis. 4.4.

threshold and the time it takes the Stokes return to propagate to the front entrance

of the SBS cell. By increasing the immersion length the interaction time between

the pump and counter propagating Stokes return increases resulting in a longer

relaxation oscillation, Fig. 4.I0a.

Pulse Compression

As mentioned previously, the threshold relaxation oscillation is due to the energy

interchange between the pump and the Stokes fields, which causes the saturation of

the pump wave by the leading edge of the Stokes return. Thus, v/e can expect to

achieve a single and narrow Stokes pulse (pulse compression) if we do not provide

the appropriate amount of energy for the Stokes pulse to rebuild after the first

impulse of relaxation oscillation. Considering the effect of the focal and immersion

length, one can find a focusing geometry resuiting in a threshold oscillation with

few peaks. For such a focusing geometry, reducing the input power should remove

the secondary impulses in the Stokes return after the first peak. Figure 4.11 shows

how the relaxation oscillation converts to a compressed pulsed as the input energy
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is reduced from graph a) to d).
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Figure 4.11: Pump and Stokes as function of time at the entrance to the cell. By
reducing the pump energy, we remove extra oscillations from the threshold oscilla-
tions, resulting in a pulse compressed beam. Cell length:80 cm, focal length:8O
cm and immersion length :70 cm with atl other parameters as in Fig. 4.4. In 9(d)

the delay in peak Stokes and peak pump is due to the round trip time of the cell

and building to threshold.

The process of pulse compression can be seen better if we look at the 3D graph of

the Stokes power, figure 4.I2. At early times of the process, the center of maximum

reflectivity (maximum of the Stokes pulse) is close to the focal region. This center

moves towards the entrance of the cell at a later time. As a result, latter parts of the

incoming pulse are traveling a shorter distance before generating the Stokes return,

resulting in pulse compression [95, 7].

Summary of the results

We have shown how the focusing geometry affects the threshold relaxation oscilla-

tion. By choosing appropriate focusing parameters, we are able either to avoid them

or to make them apparent in the Stokes return pulse. Long cell and deep focusing

results in apparent threshold oscillation while short cell and shailow focusing result
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Figure 4.72: 3D graph of pulse compressio" [(d) in Fig. 4.11]. Stokes power in time
and space shows how the center of maximum reflectivity moves towards the entrance
of the SBS cell (z : 80 cm) resulting in pulse compression. Parameters as in Fig.
4.tt.

in smooth Stokes output. Numerical results show that for short focal and immer-

sion lengths the threshold oscillations disappear in the Stokes pulse, as shown in

Fig. 4.13.

4.4.3 B: Stochastic fluctuations of phase and amplitude

Noise initiation of the SBS process results in large scale fluctuations in the Stokes

output. These fluctuations are of stochastic nature in the sense that there is a ran-

dom probability for the occurrence of the fluctuations as well as for their temporal

position in the output Stokes pulse. The inclusion of the Langevin forces into the

SBS equations, Eq. (4.3), does produce intensity fluctuations and phase jumps in

the output Stokes pulse. The computer code can be run for different initial noise dis-

tributions resulting in different output results. For some initial noise distributions,

intensity fluctuations are apparent in the output Stokes intensity. Fig. 4.74 shows

an example of this and also shows that corresponding and simultaneous to these

fluctuations in the Stokes power, there are some rapid changes in the Stokes phase.

The simultaneous occurrence of phase jumps in the Stokes phase and fluctuations

in the stokes po\¡/er can be understood by looking at the main equations governing

SBS i.e. equations (4.11). On the right hand side of these equations we have two
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Figure 4.13: Threshold oscillations disappear for short focal length and immersion
Iength. Immersion length :20 cm and focal length :60 cm, other parameters as

standard set shown in Fig. 4.4.

effective gain terms, g sin( óq-f ó" - ôò or g cos( óc-l ó" - ór) which are affected by

rapid changes in the phase of the fields. Figure 4.L4 (b) shows how the normalized

effective gain g sin( {o + ó" - @o) suffers a reduction at the time when a phase jump

occurs in the Stokes field. Depending on the size of the phase jump and the phase

behaviour of the pump and acoustic field, the effective gain can be reduced to a

smaller positive value or even to a negative value, which interchanges the role of

Stokes and pump field i.e. the pump field gains while the Stokes freld depletes. This

is similar to what happens in the generation of solitons in stimulated Raman scat-

tering [S7]. The final temporal position of the phase jumps as well as the shape of

fluctuations in the output of the Stokes phase and power depend on how they prop-

agate and amplify from the initiation point (focal point) towards the entrance of the

cell. Stokes pulses, initiated from noise, are amplified through two main regions as

they propagate towards the output of the cell. In the first region, basic amplifrcation

and spectral changes of the Stokes beam take place [80, 96, 97, 73,98, 18] and in

the other one (namely depletion region specified by depletion length ld,.p :'ry1
L7o

the final amplification of the Stokes power to a level approximately equal to the

pump por¡/er occurs. The final Stokes output can be greatly affected by the dynamic

processes in the depletion region. As we discussed, this region plays a crucial role in
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Figure 4.14: Corresponding and simultaneous to each fluctuation in the Stokes out-
put (a) there is a jump in the Stokes phase [dashed curve in (b)]. Parameters are set

as: cell length 60 cm, focal length 60 cm, immersion length 30 cm, Phonon lifetime
0.85 ns, gain of the medium 0.0063 cm/MW, refractive index 1.36 and input energy
119 mJ.

suppression of fluctuations (existing in the Stokes signal) in the case when T¿o"o 17l,.

For the case of Tto"o ) ?,, fluctuations in the Stokes pulse at the beginning of this

region experience amplification and appear in the finai output [18]. Depending on

the phonon lifetime and the length of this region, different spectral components of

the fluctuations in the Stokes pulse experience different gain and as a result, the

spectrum of the fluctuation varies as it propagates through the depletion region

[98, 1S]. Considering this and the fact that the depletion lengths corresponding to

different temporal parts of the Stokes pulse are different [since Go(¿) : gl¿(t)l¿*,,],

we expect that the shape of the fluctuation varies while propagating towards the

output of the cell. For example, figure 4.15 (a)-(d) shows how the temporal position

of the phase ju-p and the beginning of the fluctuation in the figure 4.74, vary from

39 ns at position z : 0.46L inside the cell (a) to 55 ns at the entrance, z : L, of

the ceil(d) (where ,L is the length of the medium, see figure 4.3 ).

The focusing geometry of the SBS cell, input energy and phonon lifetime of the

material affect the phase jump fluctuations. Due to the stochastic nature of the
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Figure 4.15: The temporal position of phase jump and the beginning of the ampli-
tude fluctuation (in Fig. 4.14) as they initiate at about z : 0.46L (a) inside the
cell (where ,L is the cell length) and propagate through points z : 0.56L (b) and

z :0.7IL (c) to the entrance of the cell (d).

fluctuations, the width, magnitude and the number of fluctuations vary from pulse

to pulse. As a result, we have chosen the fraction of the Stokes energy contained

in the fluctuations i.e. a # > (where <> means statistical average over all

number of pulses) as the best parameter to show the importance of the fluctuations

to a practical deployment of SBS in a laser system. Unless otherwise stated, the

following parameters are used in the numerical simulations: cell length : 60 cm,

focal length : 60 cm, immersion length : 30 cm, input beam radius at window

: 0.3 cm, input energy : 119 mJ, gain of the medium : 0.0063 cm/MW, phonon

lifetime : 0.85 ns, and refractive index : 1.36.

Phonon lifetime effect on the phase jump fluctuations

As was previously discussed, the phonon lifetime is a measure of the acoustic field

inertia. For a medium with a long phonon lifetime, the acoustic field can not respond

quickly to the rapid fluctuations in the noise initiated Stokes freld, and it thus

broadens and smooths out the fluctuations in the Stokes field. This is illustrated

in Fig. 4.8 in which the response of the acoustic field to a zig-zag driving force for
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Figure 4.16: The average of the fluctuation energies (normalised to output energy)
reduces for longer phonon lifetimes. Other parameters are as in Fig. 4.14.

different values of phonon lifetimes is examined. For a long phonon lifetime, the

response function is just the integral of the noisy driving force. To examine the

effect of phonon lifetime on the phase jump fluctuations, the simulation v/as run

with different initial noise distributions for three different phonon lifetimes. The

fluctuation energy (normalised to the output energy and averaged over a certain

number of shots) is calculated for these different phonon lifetimes. Figure 4.16 shows

how the energy of the fluctuations decreases for higher phonon lifetimes, indicating

a better suppression of the fluctuations.This is consistent with the condition Go )
17¿, Eq. (3.50), required for smoothing the fluctuations. The longer the phonon

lifetime, the smaller is I and the better is the fulfillment of Go > f?j.

Effect of immersion length:

As mentioned previously, the two key parameters in suppressing the fluctuations are

the propagation time through the depletion region Ttn", and the temporal variation

of the Stokes signal, 7l, which reaches the depletion region. In the case when

Tr,-^ < ?, the fluctuations in the Stokes signal are suppressed as they pass through
"dep

the depletion region while in the other case, T¡o"o > 7,, they are magnifi.ed and
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appear in the final Stokes output. The depletion length l¿"o depends (roughly) on

the steady state gain Gs and the immersion length l¿*,n (l¿.p ='ff) By controlling

Go and l¿pp wê are thus able to change the length of depletion region. FTom the

condition Tto"o ) fl, it is clear that reducing T¿o"o, implies a reduction on the number

of fluctuations as well as their durations in the frnal Stokes output.

A shorter depletion length can be obtained for a short immersion length (achieved

by long cell-lens separation) and as a result, we would expect a better suppression of

the fluctuations. Figure 4.17 shows how the averaged fluctuation energy a u# , %

(normalised to the output energy) changes as a function of the immersion length.

We thus conclude that a small immersion length, achieved by large cell to lens

separation, provides better suppression of fluctuations. Experimental results predict

0.25

0.20

0.15

0.05
0 20 40 60

lmmersion length ("-)

Figure 4.77: The effect of the energy fluctuations, measuredby (E¡m"f Eou*ùTo is

reduced for shorter immersion lengths (constant focal length and large cell to iens

separation).

similar effects: the intensity fluctuations are suppressed for short immersion lengths.

In Fig. 4.18 l2l the amplitude of the fluctuations as a percentage of the Stokes

peak, and averaged over 1600 pulses, has been plotted for different values of the

immersion length. It indicates that in SBS experiments, focusing geometries with

shorter interaction lengths can be used to suppress the Stokes intensity fluctuations.

Such a behaviour has also been reported previously [11, 13, 92].
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Figure 4.18: Experimental results of the effect of the immersion length on intensity
fluctuations. Average of the fluctuation amplitudes as a percentage of the Stokes
peak versus the immersion length. After V. Devrelis [2].

Effect of input energy:

Another parameter that can affect the depletion length is the input energy. A

higher input energy results in a higher gain, Gs, which in turn reduces the depletion

length, l¿",p, of. the SBS. As discussed above, we thus expect that fluctuations in the

output Stokes beam have smaller duration i.e. they carry less energy. In order to

examine the effect of input energy, we have studied the output Stokes beam of 500

simulated pulses with different initial noise distributions and at different energies.

Considering the histogram of ffi for these 500 pulses, where Eou¿ is the mean

energy of all output pulses, and fitting a Gaussian function to it, we find that the

width of the Gaussian fit is reduced at higher energy i.e. the variation in output

energy per pulse around the mean value is reduced for high energy (see figures

4.79). Another parameter that can show how fluctuations are suppressed for high

energies is the average of the fluctuation energy (normalised to output energy).

Simulation results in figure 4.20 show a reduction in the averaged fluctuation energy

for higher input energies. This result is consistent with the experimental results

shown in Fig. 4.2I l2l in which higher input energies result in better suppression of
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Figure 4.21: Experimental results of the effects of the input energy and interaction
length on intensity fluctuations. Average of fluctuation amplitudes as a percentage

of the Stokes peak versus the input energy for two focusing geometries. For focal
length :100 mm, the interaction length is 100 mm and for focal length : 300 mm,
the interaction length is 300 mm. After V. Devrelis [2].

fluctuations.The Experimental results of Dianov et al. [11] (in fibers) shows that the

depth of the intensity modulation reduces when the excess energy over the threshold

energy increases. Gaeta et al. [13] as well reported less Stokes intensity modulation

for larger values of G6.

Effect of pulse duration:

In the above section, we kept the duration of the input pulse constant and we studied

the effect of parameters such as input energy and beam area on the fluctuations.

In order to observe the role of pulse duration, we have chosen to keep the input

energy of the pulse constant and reduced the pulse duration, i.e. we increase the

peak injected power. Simulation results show a dramatic reduction in the number

of fluctuations for short pulse durations which in turn results in a smaller averaged

fluctuation energy (figure 4.22).
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Figure 4.22: For a constant energy, reducing the duration of the input pulse dra-

matically suppress the fluctuation in the output Stokes. The effect of pulse duration
on the suppression of fluctuations is shown for two energies: 115 mJ and 205 mJ.

4.4.4 Conclusron

To describe different kinds of temporal amplitude and phase modulations in Stimu-

lated Brillouin Scattering, we extended the plane-wave equations, for complex fields

describing SBS in a finite cell, to include focusing geometry and initiation from a

Gaussian random noise distributed over space and time. Two kinds of modulations

were found:

(1) Deterministic relaxation oscillation at the threshold energy'

(2) Random fluctuations in the output Stokes power.

The finite phonon lifetime of a material is responsible for an energy interchange

between the pump and Stokes field resulting in relaxation oscillations at the thresh-

old. There is no modulation of the Stokes phase corresponding to these oscillations.

It is predicted that materials with shorter phonon lifetimes can exhibit relaxation

oscillations of longer duration than those with long phonon lifetimes. It was found

that an initially stronger acoustic wave ( resulting from a high focal intensity de-

termined by the focal length of the lens) shortens the relaxation oscillations at the

threshoid energy since the Stokes pulse can use the energy stored in the acoustic field
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after initially overshooting. Also, a small immersion length achieved by a large cell

to lens separation reduces the threshold relaxation oscillations. Altogether, short

focal length, short immersion length and large phonon lifetime provide the best pa-

rameter space for removing the threshold relaxation oscillations. Experimental and

numerical results are in a qualitative agreement, see Figs. 4.5, 4.9, 4.70 and 4.13.

They indicate that the threshold oscillations are present for long focusing depth

and disappeared for short focusing depth. Although weak threshold oscillations are

usually observed in experiments, they have, to the best of our knowledge, not previ-

ously been the subject of investigation, and have not been described to the extend

predicted in our model.

Stimulated Brillouin Scattering initiated from microscopic noise shows large scale

stochastic amplitude modulation in the output Stokes beam. Simultaneous jumps

in the Stokes phase are found. We have determined a parameter regime where this

modulation is minimised or eliminated, thus predicting conditions for optimised,

reliable SBS:

1) Longer phonon lifetime provides a better suppression of instabilities in the

Stokes pulse.

2) Depending on the input energy and focused spot size, the pump and Stokes

field can be confined to a small region near the entrance of the cell (high energies,

short immersion length) or distributed towards the focal point for low energies and

long immersion length. For high input energies or short immersion length the time

for propagation through this region Tro"oi, small enough to suppress mâny of the

fluctuations reaching this region with duration 7" ) Tr¿"o. Short immersion length,

achieved by large cell to lens separation, is more desirable since T¿o"o càrt be reduced

more effectively and a higher reflectivity can be achieved, but will in practice be

limited by optical break down of the SBS material or cell window. These results are

in qualitative agreement with experimental results, see Figs. 4.2I and 4.I8.

3)Another parameter that can be used effectively to suppress the fluctuations is

the pulse duration. Our results showed that for a shorter pulse duration (i.e. higher

peak power) the number of fluctuations was reduced dramatically.

In this chapter, we examined thoroughly for the first time, the Stokes intensity
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modulations phenomenon in the cell geometry. As it will be shown in the next

chapter, these intensity fluctuations degrade the temporal and spatial frdelity of

the SBS experiment. Thus the significance of our findings, specially in practical

applications, is that they can be used to determine the best parameter space for

excellent Stokes beam quality.

The model developed here is one of the most complete and effi.cient one dimen-

sional numerical models of SBS. It includes all important features of SBS such as

transience, focusing geometry and initiation from noise. The model can be used in

the designing of a variety of practical laser systems wherever a SBS mirror is needed

either as a phase conjugating mirror or pulse compressor.
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Chapter 5

3-Dimensional model of SBS

5.1 Abstract

Our previous l-dimensional numerical model is extended to a 3-dimensional one with

transverse circular symmetry in this chapter. The model describes a cylindrically

symmetric, S-dimensional, transient SBS process initiated from noise. We use a

decomposition method and a new efficient numerical algorithm to solve the SBS

equations. The details of this numerical algorithm are presented. The model is

then used to examine the effects of transient phenomena on the efficiency of phase

conjugation of aberrated and unaberrated circularly symmetric beams by SBS. The

model is also employed to study the spatial mode structure of the Stokes and pump

pulses inside the SBS cell. The effect of parameters, such as phonon lifetime, input

pulse shape and input energy, on the transient fidelity of SBS is investigated. A new

transient phenomenon which causes SBS fidelity degradation at high focal intensity

(short Rayleigh range) is examined.

5.2 Introduction

The one dimensional model developed in the previous chapter enabled us to study

the transient phenomena that affect the temporal fidelity and reflectivity of the SBS

process. However, it does not enable us to study the phase conjugation frdelity with

an aberrated input beam due to its one-dimensional nature. To overcome this prob-
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lem, the model should be extended to three dimensions. The mathematical approach

to develop three dimensional model of SBS is straight forward [28]. Although such a

model enables us to study the phase conjugation of astigmatic and aberrated input

laser beams, it requires an extensive computational effort to solve the SBS equations.

For this reason and in order to reduce the computational effort, here, I developed a

three dimensional numerical model with transverse circular symmetry i.e., the laser

fields have circular symmetry in the plane perpendicular to the propagation direc-

tion. Thus, only one transverse dimension is considered in the SBS equations. This

Iimits the current model to cylindrically symmetric aberrations, but the approach

used can in principle easily be expanded to non-symmetric three dimensions. The

model developed here has the following characteristics: (i) it is a three-dimensional

numerical model of SBS in the cell geometry with transversal circular symmetry

i.e., the laser fields have radial symmetry, (ii) the process is initiated from a Gaus-

sian random noise [11, 13, 20] for both amplitude and phase to simulate the actual

thermal fl.uctuations in the density of the medium and (iii) transient equations and

a depleted pump have been used to study the threshold, saturation and transient

regime of SBS, and to provide an understanding of the transient fidelity of SBS. This

new model enables us to study the transient behaviour of the phase fidelity of SBS.

We have used a decomposition method to expand the fields in terms of transverse

spatial modes. By introducing block-vectors and matrices, App. B, and using a

noniterative method employed by Chr et aI. [1], we have developed a numerical

algorithm that enables us to treat compactly any arbitrary finite number of spatial

modes of the Stokes and pump fields. This efficient numerical algorithm could also

be useful for the simulation of broad-band SBS, where many temporal modes ex-

ist in the input pulse. To the best of our knowledge, a complete numerical model

of broadband transient SBS, which takes focusing into account, has not previously

been developed.
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(5.3)

(5.4)

5.3 Theory

The equations describing the pump, Stokes and acoustic fi,elds propagating along

the z direction in the SBS process are [Eqs. (3.14a)-(3.14c)]

,fr"? . :* + filn" : -'isze* Et,

,#,"t . :* - *rr, : -iszQ E,,

f**r)Q: -zs1lfl!.

E¿(r¡, z,t) I.o*(",t)A,,(r¡, z),

(5.1)

(5.2)

Here Vf refers to the derivatives in the transverse directions z and !, fi aîd 92

are coupling constants, n is the refractive index of the medium and k" = ,k¿ are the

Stokes and pump wave numbers, respectively. In the transverse directions, IMe use a

decomposition method [99, 2I, 22, L00, 27.,28] to expand the electric fields in terms

of orthonormal bases modes A* and B*,

E,(r¡, z,t) : DU^(",t)8,,(r¡, z), (5.5)

n'¿

'¡TL

where 11 is the position vector in the plane perpendicular to the propagation direc-

tion z, and the particular set of A* and B- used in our model will be given below.

By substituting Eqs. (5.4) and (5.f) into Eqs. (5.1) and (5.2) and assuming that

A* arrd B- satisfy the homogeneous Maxwell equations, i.e.,

,fr"| + !*la.,tr-., z) :
,hol + frln,.frt,z) :

0,

-i'gzQ* Et, (5.6)

0

these equations can be rewritten as

Ð"^Ç**

Ð^^i*-
fiv*:
*r"^ : -igzQE" (5 7)
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The expansions of the electric fields in Eqs. (5.4) and (5.5) can also be used in the

right hand side of the acoustic field equation, Eq. (5.3), to write

f**f)Q : --isrÐAo(rt, z)B|(r.,, z)la¿(z,t)bj(z,t) + f¿¡(z,t))

(5.8)

Like the one-dimensional model, to represent the noise initiation of the SBS process,

we have added a term for the Langevin noise term f4Q,t) to the right hand side

of Eq. (5.8), with spatial and temporal Gaussian distributions [13, 20]. Í;¡ are 6

correlated functions in the sense that

Un¡(",t)fitQ' ,ú')) : Q"6¿¡6¡¿6(z - z')6(t - t'),

where Qo is given in chapter 4 by

Here K is the Boltzman constant, T is the temperature, po is mean density, u

is the velocity of sound in the material. The acoustic field in Eq. (5.8) can be

integrated to yield

a

aa
at- a,

2KT p"l
O- a'ù'

Q : -lgtl ¿,(.t, z)B|(rt, z)c¿¡(z,t),
x'J

t:C¿¡(z,t) : la¿(2, r)bj (2, r) + f 4 Q, r¡le-r(t-') ¿,

(5.e)

(5.10)

This expression for Q in turn can be substituted in Eqs. (5.6) and (5.7) to obtain

a0_r_
ôt' ôz

(5.11)f a-(3'c )b^ : øozl Ai A¡,8 ¡Ci,a¡,
i,i,kfTL

)o^ : - 9t9zD lng; u nC¿¡bn.
rn i,j,k

(5.12)
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(5.14)

(5.13)

Since A* and B,n are orthonormal bases, we cân multiply both sides of Eqs.

(5.11) and (5.12) bV Bi and Ai, respectively and integrate over space to find the

following differential equations for ó,, and an:

.nð("æ*
ôz

.nô A
I __\côt ðz

a
)b* : e*zlci¡on [** ororB¡Bid,2r,

i,i,k / -oo

)on : -etezDcniur l_: A¿B¡"B1Aid,2r
á,i,k

In Eqs. (5.13) and (5.1a), obtained for any general form of A¿ and 83, the only

term that depends on the form of A¿ and B¡ is the tensor

I AiA¡B¡Bid2r (5.15)

Our model can thus equivalentiy be developed for any kind of orthonormal bases ,4¿

arrd B¡ that satisfy the paraxial wave equation. Since v¡e are interested in the phase

conjugation properties of SBS, we chose the complex conjugate of. An as the basis for

the Stokes wave, i.e., .B,"(r1 , z) : ALþt,z). This enables us to examine how much

of the energy in a particular input mode is reflected into the conjugated mode. For

the basis An, we have examined two important cases: (1) the Hermite-Gaussian

functions used by Moore and Boyd [2S] and (2) the Laguerre-Gaussian functions

used by Miller et al. 122]. For the case (t) a Hermite-Gaussian function is used for

each transverse directions r,g í.e.,

An (ry z) : An(r, z)A,,(y, z),

where An(r, z), for example, is given by

9nø.¡

An(r, a : fllf Q nlu (z))| 
"lt',+|)'t'tò 

H n(
tEr
u(z)

kr2 12)e*p[-izne)-@]
(5.16)

For the case (2) a cylindrically symmetric Laguerre-Gaussian function is used as the
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basis for the transverse direction i.e., [101]
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An(r, z) :

where r :
r1¡, 

ha@+ä)ú(z) 
Ln(

l"rl : @'+a')'/'.

kr2 12)"*p[-int¿ ,ey),
2r2

,(z)'

Here, Hn and Ln are the n-th order Hermite and Laguerre functions, respectively

and the spot size, ,'(r), radius of curvature, R(z) and Gouy phase angle, þ(z), are

given by

(5.17)

(5.18)

(5.1e)

(5.20)

a2Q):r'olt+(Tfl,
-2

R(z):z-zo*å, andz-zo
. z _ Zo,,þ("): tan-r (" -").

Zp

As usual, zs is the position of the beam waist, the Rayleigh range z¡ is related

to the beam waist radius øs (for the fundamental mode) and wave length À as

zn: ¡rwïnl\, n is the refractive index of the SBS material, and øs is related to the

input fundamental beam radius ûJ1 and its curvature .R1 (see Fig. D.1). In App. D

we have shown how øs (the beam radius) and its location inside the SBS cell I is

related to ø1 and R1.

For odd values of n, Hermite-Gaussian functions Anhave odd parity i.e., An(-n) :

-A"(*) so they play a less important role than the even modes. These functions are

suitable for the modeling of the aberrated beams that are not cylindrically symmet-

ric (e.g. when there is astigmatism). The disadvantage of choosing these functions

as the basis is that we need one basis set for the r-direction and another one for the

y-direction which, when combined to represent the three-dimensional model, pro-

duce complicated equations that are difficult to solve numerically. This necessitates

a further approximation of circularly symmetric electric fields i.e., an : amn ãrtd

bn : b*n to reduce the numerical effort (see [27, 28]). In the case of Laguerre-

Gaussian functions there is no parity consideration and the functions are cylindri-

cally symmetric with the fields completely determined by their values at any trans-

verse position r : lrll and along the direction of propagation z. The mathematical
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development of equations for both Laguerre-Gaussian and the Hermite-Gaussian

bases is similar. We have used our numerical approach for both the Laguerre-

Gaussian basis and the Hermite-Gaussian basis with radial symmetry. Here we

present just one approach using Laguerre-Gaussian functions. Utiiizing the expres-

sions for the basis An,F,q. (5.17), the two integrals in Eqs. (5.13) and (5.14) can

be evaluated as

AiAkBjB;d,2r:
ei(k+r,-i-i)1þ(z)

,(r)' Ienij t (5.21)9r"nt¡ : I-:
,ln¿¡ : l::

where €¡n¿¡ is a symmetrical real tensor given by the overlap integral:

úBkB;A;d,2r:ffr*,,

€kn¿j : f?-¡ lr. dre-2'L¡(n)L.(n)L¿(r)L¡(n) (5.22)

The gain tensor gnnt¡ depends on the phase mismatch factor ei(k+",-i-i)1þ(') and the

mode coupling constant €¡n¿¡. It will be shown that the overall gain of any mode is

entirely determined by these two factors. Some values of. e¡n¿¡ are shown in the table

5.1, while the recurrence relations for €¡xn¿¡ ã,re given in App. C. The defrnition of

the gain tensor 9nø¡,E,q. (5.27), can be used in Eqs. (5.13) and (5.14) to write

.n(-
c

aa_r_
ot' oz

aô
æ02

)bn: G f Ci¡a¡g¡.¿¡(z), (5.23)

(5.24)

i,i,k

.n(-
c )on: -G t C¿¡b¡"gf,.¿¡(z),

i,i,k

where G : gtgr.We have developed a numerical algorithm to solve these equations.

We change the continuous field amplitudesb,'(2,ú) and an(z,t) to discrete amplitudes

(b")i*t and (a.)fi+r. Here, n,i,j,lç:0,1,2,...,p a,re the spatial mode indices in

the transverse direction, a : 0, 1, 2,..., M are time indices (t : c"\t) and B :

0,!,2,...,1{ * 1 are space indices in the propagation direction (z : p\'z and L :

NL,z). Referring to Fig. 5.1, it is clear that (b,)i+1 and (o")i'|tr (i.e., complex

amplitudes of the Stokes freld at z : L,z and the pump field at z : Lz * tr) are

the boundary values for the Stokes and pump fields. Both SBS generators and
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amplifiers can be considered in our model. In amplifiers the SBS process starts from

an injected Stokes signal. For SBS generators, however, there is no external seeding

and the process starts from noise. Thus, the boundary value of the Stokes field is

always zero i.e.,

(ö,)i+1 : 0 for all o and all modes n.

(o")iåt/" are the pump input fields at the time slot (o+l)At. Any temporal function

can be considered as an input. In addition, by considering a linear combination of

the functions (a")ftrfl, one can introduce any spatial aberration to the input pulse.

Similarl¡

(b")oB

@ò'B

0 for all B

0forallBexcept þ:N+7

are the initial values of the Stokes and pump fields. Using Simpson's rule

l,'," r{ùor:}n^r¡¡(r,) + l@r)1,

and the discrete field's amplitudes (ó,)i+t and (a,)ftr|1r, r¡/e can evaluate C,¡ in Eq.

(5.10) as

(cu¡)i*' : oltr"sV*'þ;)i*' 
+ ffn¡)i*' + (k¡)il, (5.25)

where

@)i : "-r^'{(nj)i-' + zl(a¿)fi(uj)i + Uo¡)il},

and.

@)'p : "-' 
o'l@o)oB(bÐ'p + Uòtpl

This expression for C¿¡ cal then be substituted in Eq. (5.23) and (5.24) to find the
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following algebraic equations for the discrete field amplitudes

and

(b.)i+i - þ.)i*' . xlþ*).p*, - (b.)il :
c ^+ f;f" rli*' l@î)i*' þ i)fi*' + ( Í n i)fi*' + (pî ¡)il g u,n ¡,

111

(5.26)

(5.2e)

@;iii - @,)i*' - ffitr^)i*' - (o,)il :
c\$f {ao)ff*'l-u)i*'þî)Ë*' + (Ít¡)fi+, + (pn¡)ilgi'n¡

i,i,k

as

(5.27)

Next, we introduce the Stokes and pump vectors in the transverse modes subspace

--+
b (5.28)1

to convert Eqs. (5.26) and (5.27) to a matrix form:

d+
B

b1

bz

be

di*t

A1

A2

o,p

,li#+ [(-1 + *V - FË]?i*' - Giz:i*' : #ri,
-?i+i+ [(-1 - #r, - EË]ìi*, - ni7i*' : +di

(5.30)

Here, l is the unit matrix and the elements of the four matrices Ffi, Gfr, Efi añ
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Dft (elements in the transverse modes subspace) are
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(Fi)n¡ ry\@r)7{,i)fior*¡,
tk

(Gi)n¡ ryDN¡*li+eix)ils¡un,

(5.31)

(5.32)

(øfi)u ryDtalËtai)igi,n¡,,

lle

TK

Lle

d+1

(5.33)

(5.34)

(5.35)

(Dft)u ryD,N¡*ti+(ko)ilgî*n'

By representing the Stokes and pump field as a "block-vector" (see below and App

B) fields (7¡'+t ana (ã)'+1 at the time (o * 1)Aú as

;(ã)'*' :

o*1
Ë
bs

A1

o,,i

J
b

a+
)

ñ; +
o,ñ

r¡/e ca,n compact the two Eqs. (5.29) and (5.30) into matrix equations

:-r-
Cc( å')CI+r - D"(d)'*' : (V)", (5.36)

--H'(3)'*'- K'( b'¡"+' : (U)". (5.37)

Block-vectors (7¡'+1 and (?)"*t are lú x 1 vectors, whose elements are vectors

I B and. î B, rcpresenting the electric fields at the point 7 : BL,z. Each of the
----+
b p and d B are themselves p x 7 vectors whose elements represent the different

spatial modes of the electric fields. Co, Do, Ho and Ko are .lú x ,^/ upper or lower

tridiagonal //block-matrices" evaluated at time aAú with elements that are p x p
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matrices in transverse modes subspace. They are given as

113

(5.41)

100 0

0

0NiI 0

00 0 ¡trft

Gi 0 0

0

00

0

0MiI0 0

Mi
::0
0 0 MfrI

NroIo

,Do:

Gi

0

0

/1dlr:

HO:

0 (5.3s)

o Git

000 0

0Di 0 0

0 ,Ko - Di
::0
0 0 Dfr 0

I (5.3e)

where

Mi (-1 + Xrt-FË,
(-1 - #r,-EË,
and Gfi and Dft are given in Eqs. (5.32) and (5.34)

The known block-vectors (7)o and (i)" can be evaluated, using the boundary

conditions and the values of the fields at the time slot aAú, as

-Mïîî*' + *îî
A,z -Ìo
c\t"2 (5.40)

Diîî*, - #dr
Az àa
c\t*2

NË

A.z-ìa
cÂ.t"N

=(u)" :
-?i[i - kax
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(5.42)

From Eq. (5.36), block-vector (?)'+1 can be determined:

(?).*t : (D')-1C'1f¡.+r - (o"¡-r,l)",

this can be in turn substituted in Eq. (5.37) to find

(5.43)

Using the method describing in the App. B, we can solve Eqs. (5.42) and (5.43) for

the fietd amplituder (?) and (ã) at any time slot o * 1 using the values at time

slot o. We used an Alpha Digital Workstation 500 Au, with a 500 MHz processor

and 256 Mb RAM to solve the SBS equations numerically.

5.4 Results and Discussion

The geometry of the process is shown in Fig. 5.1. An input laser beam is focused

from right into a SBS cell whose refractive index is n2. The refraction of light at

the boundaries air to the entrance window (thickness ú and refractive index n1) and

optical propagation through the entrance window to the SBS material has been

considered. In App. D, we have calculated the position and waist of the laser beam

inside the SBS cell. As for the one-dimensional model discussed in Chap. 4, we use a

temporally Gaussian pump pulse of the form -86 exp{ - 2 [(ú - to) lto]'] , where úo is the

pulse width. Unless otherwise stated, the other parameters are as follows: cell length

60 cm, focal length 50 cm, immersion length 40 cm, input energy 140 mJ, phonon

iifetime 0.85 ns, gain of the medium 0.006 cm/MW, FWHM pulse length 20 ns, and

an arbitrary chosen index of refractio[, n2:1.Q. The above parameters were chosen

arbitrarily for the numerical study only. There is a free parameter in our computer

code that determines the strength of the initial random noise. Experimental results

are necessary to set the value of this parameter. The results in this chapter show

the general behaviour of SBS for an arbitrary value of the free parameter resulting

in arbitrary units for the Stokes and pump po\Mers. However, in Sec. 5.5 we use
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(5.44)

z
o

L,z

0 Gaussian Random Noise

(distributed through out the cell) Stokes

Figure 5.1: The geometry used for the SBS process. Input beam parameters are

shown at input plane 1.

experimental parameters to set the free parameter of our computer code and make

accurate comparisons between the numerical and experimental results.

5.4.L Single-mode input beams

Before discussing the results of the 3D model in the transient regime, we develop

a simple argument to show how phase conjugation using SBS works in the steady

state regime. In the steady state regime of SBS [i.e., ignoring ail @l0t)], Eqs. (5.8)

and (5.9) can be simplified to frnd Cr¡ (ignoring f¿):

1
Çu oubi.

This value of. C¿¡ then can be substituted in the Eq. (5.23) to yield

(*) u^: lDo" ooibiooen't¡(z)

\Me assume a single mode input pump pulse (rn) to be the only dominant pump

mode inside the cell. Thus, with the help of Eq. (5.21), the sum in Eq. (5.44) can

be written as

(*)u^:H\^^ i"t'(n-i)tþ(z)6' (5'45)

SBS cell

Iens



116 CHAPTER 5. S-DIMENSIONAL MODEL OF SBS

Rewriting this equation for the phase conjugated mode b- and the two adjacent

modes ö-a1 yields

(*) '* 
: 

H(€^ 
,n*bn, i €mmmm+te-i'Þ(")b**r * €rnmm'rn-rei'l'(")b*-t + "'),

(5.46a)

(*) brn+r: 
ffin-mm*^+tbm+r 

* €mmm ¡1eiú(")b,n ¡ )

(5.46b)

(*) bm-r : 
ffiu-n,n-rrn-rbm-t 

* €* * -re-i't'(")6- f ...).

(5.a6c)

The first terms on the right hand side of these equations are phase-matched terms

and the second and third terms are non-phase-matched terms. In our model we

have solved Eqs. (5.23) and (5.2a) for the conjugated and non-conjugated modes

simultaneously, including the phase-matched and non-phase-matched terms.

Above the threshold, it is assumed lhat bn K b* for n f rn. This assumption is

valid if the phase conjugated mode has suppressed the other modes in competition

for gain through the threshold. In reality, there are conditions for which the phase

conjugated mode is not the dominant mode after the threshold has been reached.

To study these conditions we require the time dependent equations and this will be

discussed later in this chapter. Ignorin1bm+t and all the other higher order modes

on the right hand side of Eq. (5.46ø), results in

(*)u:H€**b,n' (5'47)

This indicates that in this model the gain of the phase conjugated mode in the

steady state regime is determined mainly by the phase matched coupling constant

€mmmm. The numerical value of €* *r, is smaller for higher order modes (see table

5.1) resulting in lower reflectivity for these modes as will be shown in Fig. 5.I7

(u). This is expected since the far field diffraction pattern of higher order modes

will have finer spatial details, that are less likely to correlate with other modes,

hence reducing the overlap integral in Eq. (5.22). Ignoring ba¡1 aîd all the other
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Table 5.1: Numerical values of e¡"n¿¡

non-conjugated modes on the right hand side of Eq. 5.46b yields

n
0

1

1

1

1

2

2

2

2

3

3

3

J
0

0

1

1

1

1

2

2

2

2

3

3

L

0

0

0

1

1

1

1

2

2

2

2

3

k
0

0

0

0

1

1

1

1

2

2

2

3

c,ç Kn'LJ

0.3183

0.1592

0.1592

0.0796
0.1592

0.0796
0.0995
0.0547

0.1094
0.0547

0.0746

0.0846

rt7

(5.48)

a Glo^l'
t: 

@€mrnrnmlL
bro*

"ir/'(z)6^,0z

which shows that the gain of non-conjugated modes is determined by non-phase

matched terms. This equation can be combined with Eq. (5.a7) to find

|ur^*, - 
€mtnmtnlr etúa)!b*

OZ €rn n ntn OZ

Numerical calculations of €-** show that €rnmrntnl!: €ntrnmm-r: €mmmrnl2 (see

table 5.1) i.e., the gain of the phase conjugated mode is twice that of the nearest

modes. This discrimination against non-conjugated modes, acts to suppress them in

the competition for gain with the conjugated mode, resulting in a dominant phase

conjugated pulse at the output in the steady state regime.

F\rndamental mode

Next, we examine the SBS process of a single mode input by focusing into an SBS

cell a perfect Gaussian beam, which is described totally by the fundamental mode

of the Laguerre-Gaussian functions with the beam radius of a¿:0.5 cm. The input

pulse is Gaussian both in space and in time. The quality of phase conjugation by

SBS is studied, using the following definition for the fidelity[37]
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Figure 5.2: Typical results for the Stokes, pump and transmitted pulses obtained
when a perfect Gaussian beam (fundamental mode of the Laguerre-Gaussian func-
tions) is focused into a SBS cell with the standard set of parameters: cell length
60 cm, focal length 50 cm, immersion length 40 cm, input energy 140 mJ, phonon
lifetime 0.85 ns and refractive index, n:1.0.

which can be simplified, using Eqs. (5.4) and (5.5), to

trt - +\ _ lÏ ør(rt, z,t)E,(r¡, z,t)d,2rl2tr\''I') - fTil,fr;;æ dzr I lE,(rt,z,t)12 d2r-'

trl- +\ - lDobn(",t)a¿(z,t)12
-r-r\þtt ) -

(5.4e)

(5.50)

Figure 5.2 shows the typical results for the Stokes, pump and transmitted pulses

with an overall reflectivity of 78% and fidelity of 94%. The time-resolved reflectivity

and fidelity at the entrance of the ceII (z : L * Az, Fig. 5.1) is shown in Fig. 5.3.

In our previous model discussed in Chap. 4, we showed that there exist some fluctu-

ations in the Stokes intensity and phase due to noise initiation of the SBS process.

These temporal fluctuations in the Stokes pulse have been observed experimentally

to cause degradation in the fidelity of the SBS process [10, 12,19,2], but our current

3-D model was required to study the behaviour of the spatial fidelity. The numerical

- - - Tronsmitled
Power
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Pump Power

....-. Stokes Power
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Figure 5.3: Time-resolved reflectivity and fidelity. Other parameters as in Fig. 5.2.

results indicate that intensity fluctuations do cause degradation in the time-resolved

and overall fidelity as shown in Fig. 5.4.

The mode structure of the pump and Stokes fields can be examined by the 3-D

model. Focusing the fundamental Laguerre-Gaussian mode, different modes of the

Stokes field existing in the noise source term are initiated. The gains for each of

these modes are different and given by Eq. (5.21). The distribution of the output

energy in the different Stokes modes is shown in Fig. 5.5, which indicates that

the main part of the reflected energy (93.3%) is in the conjugated mode (i.e., the

fundamental mode). The energy in the other Stokes modes is decreasing as the mode

number increases (mode I 4.2%, mode II 0.7%, mode III 0.6%, mode IV 0.3%, and

so on). The initiation of the different modes of the Stokes field at the focal point

and their propagation towards the entrance of the cell at the specific instant t: 40

r¿s are shown in Fig. 5.6. The model predicts that when the zero order mode of the

Laguerre-Gaussian function is incident on the cell it initiates the other modes, not

only in the Stokes field but also in the pump field. Although the input energy of

all non-zero modes is zero, energy is coupled into the non-zero modes of the Stokes

and pump fields, propagating in the backward and forward directions, respectively.

Fig. 5.7 shows how the zero mode of the pump field decays from the entrance of

119

- 
Fidelity

...... Ref lectivity
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Figure 5.4: Time-resolved fidelity [solid line in graph (b)] shows a rapid reduction,
simultaneous to the fluctuation in the Stokes pulse.
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Figure 5.5: The relative distribution of the Stokes energy, into different modes,

EilErú(%). Other parameters are as in Fig. 5.2
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Figure 5.6: Different modes of the Stokes pulse are initiated at the focal plane
(z : 20 crn) and propagated towards the entrance of the cell. The distribution of
the fi,elds inside the cell is shown at time t : 40 ns. The entrance of the cell is at

z:60 cm. See Fig 5.1 for the focusing geometry and propagation directions. Other
parameters as in Fig. 5.2
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Figure 5.7: The fundamental mode of the pump beam is depleted as it propagates
towards the end of the cell (z:0 cm). The other modes of the pump are initiating
at the entrance (z:60 cm) and propagating to the end of the cell. Fields are shown
inside the cell at the time f : 40 ns. See Fig 5.1 for the focusing geometry and
propagation directions. Other parameters as in Fig. 5.2.

the cell to the end of the cell while the first and second modes are arising at the

front of the cell and are growing towards the end of the cell. As a result, part of

the transmitted energy is carried by the non-zero modes (see Figs. 5.5 and 5.8).

Another parameter that is related to the mode structure of the fields inside the cell

is the beam spot size W'(r) which is important for the evolution of beam quality or

fidelity. We follow the convention used by Siegman [102] and define the beam spot

size at any plane along the direction of propagation z of. the beam as

W'(r):4ol(z), (5.51)

where o,(z) is the effective radius of the beam or so called [102] the standard devia-

tion of the time-averaged beam intensity in the r directioÌr, at plane z, and is given

by'

Pump mode 0

10 x Pump mode I

100 x Pump mode ll

Focol poinl

(5.52)
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Figure 5.8: The transmitted po\¡/er for different modes is shown as a function of
time. Not only the fundamental mode but also all the other modes contribute in
the transmitted power.

By using the explicit form of the basis functions 4,"(ø), i.e., Eq. (5.17), and the

recurrent relation for the Laguerre functions i.e.,

(n i L)L.¡t(r) : (2n 1- t - r)L.(r) - nL.a(r),

one can evaluate the integr"I I Ir2l(r,z)d2r for the pump and the Stokes beam

respectively as
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where an and bn are the pump and the Stokes field coefficients as in Eqs. (5.a) and

(5.5) and C.C. is the complex conjugate. The mode structure of the fields appears in
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Figure 5.9: The spot sizes of the Stokes and pump beams are compared with the
spot size of the fundamental mode as functions of z. The entrance of the cell is at
z:60 cm. See Fig 5.1 for the focusing geometry and propagation directions.

the expression for 
"7Q) 

which affects the spot size of the fields. Fig. (5.9), shows the

spot size of the Stokes, pump [calculated according to Eq. (5.51)] and fundamental

mode [calculated according to Eq. (5.1S)], as a function of z . At the entrance to

the cell, at z :60 cm, the pump and the fundamental mode have the same spot

size indicating that the input pulse is purely in the fundamental mode but inside

the cell they are different, which is due to the mode structure of the pump field.

Effect of Energy Using the fundamental mode of the Laguerre-Gaussian function

as an input and the set of geometrical and material parameters given above, we find

that the fidelity of SBS increases as a function of energy and saturates at some level

(see Fig. 5.10). This result, although seemingly simple, has been a matter of great

debate over the past 15 years. There was much discussion about the behaviour of

the phase conjugation fidelity at high energy between two groups of researchers, one

believing that the fidelity at high energy decreases (theoretical work by [103, 30]

and experimental work by[104, 105]) while the other one claiming that the fidelity

increases (theoretical investigation by [106, 37] and experimental investigation by

llz,107,108]). This was resolved by observing that the lack of high fidelity at high
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energy rvas related to the shape of the input pulse and transient effects. It had been

reported earlier that poor phase conjugation fidelity could be obtained for input

pulses whose duration was significantly shorter than the phonon lifetime of the SBS

material[lOg, 103]. But later, Dane et al. $51showed that even for long pulses, the

time scale of the leading edge of the input pulse compared to the phonon lifetime,

plays a key role in determining the fidelity of SBS at high energy. For input pulses

with a fast rise time, materials with phonon lifetimes long compared to the time

scale of the leading edge of the pulse show large fluctuations and poor fidelity at

high energ¡ while materials with phonon lifetimes comparable to or shorter than the

time scale of the leading edge show small fluctuations and high fidelity. To examine

the predicted effect of pulse shape on the fidelity of SBS at high energy, we calculated

the case of two input pulses focused into the SBS cell, one with a rapid rise time of

0.8 ns and one with a slow smooth rise time as shown in Fig. 5.11. For both input

pulses, the simulation model was run for a range of energy extending from below, to

well above the threshold energy and for two different phonon lifetimes, r : 2.0 ns

and r : 16.0 ns. For each input pulse and parameter set, the code rvas run for 100

different noise source terms and the mean value and standard deviation of fidelity

was calculated. For the fast rise time input, the mean value of the fidelity is reduced

at high energy for both phonon lifetimes, Fig. 5.11(a) and 5.11(c), although in the

case of r : 16.0 ns the reduction is more obvious. Also for a smooth input pulse,

Fig. 5.11(b) and (d) indicate that fidelity, like reflectivity, increases and saturates.

We found that the mode structure of the Stokes and pump flelds behave quite

differently as a function of energy inside the cell. Near the threshold the reflected

Stokes energy is widely distributed among the different modes as shown in Fig. 5.12.

As the input energy increases, the energy content of the non-zero modes decreases

and most of the energy is concentrated in the conjugated mode. At low input energy,

when the pump mode just passes through the cell without an appreciable depletion,

just mode 0 exists in the pump field and contains all of the energy. At the higher

energy, however, the mode structure of the pump field becomes richer, with higher

modes also contributing to the transfer of energy. Figure 5.13 shows how the energy

content of the transmitted pump modes vary as the input energy increases.
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are as in Fig. 5.2.
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As a result of the variation in the mode structure of the Stokes and pump fields

(for different energies), the spot size of the Stokes and pump beams changes as a

function of energy. At low energies, when the pump field inside the cell can be

described entirely by the fundamental mode, its spot size faccording to Eq. (5.52)]

is very close to that of the fundamental mode whereas the Stokes pulse has a rich

mode structure with a spot size far from that of the fundamental mode as shown

in Fig. 5.1a(a). At high energies, when the fidelity is high, additional modes of the

pump field contribute to the transfer of energy, resulting in a deviation of the pump

spot size from that of the fundamental mode, whereas the Stokes beam energy is

mainly concentrated in the fundamental mode resulting in a smaller spot size, Fig.

5.14(b). The behaviour of the output Stokes beam spot size as a function of energy

is shown in Fig. 5.15. Close examination of the Stokes and pump spot sizes near

the focal plane (z - 20 cm), Fig. 5.16, reveals that the Stokes beam has a smaller

spot size than that of pump beam, which causes the Stokes beam to be diffracted

more than the pump beam in propagating toward the entrance to the cell. This is

expected, since the pump intensity drops off (in the transverse direction) towards

its wings and there are points where the pump intensity is not enough to initiate

the SBS process. As the input energy increases, the initial Stokes spot size increases

and approaches to that of the pump beam. This in turn results in a smaller Stokes

spot size at the entrance to the cell, as shown in Fig. 5.15.

Non-fundamental modes

The 3D model can be used to investigate phase conjugation of spatially aberrated,

cylindrically symmetric input beams, by describing them as a sum of higher order

spatial modes. Initially we chose Laguerre-Gaussian modes, and calculated the SBS

reflectivity and fidelity for each mode separately as shown in Fig. 5.17. Consistent

with expectations, the model predicts lower reflectivity for higher order modes,

because higher order modes have a smaller gain due to a smaller coupling constant

e*,nnn (Sec. 5.4.1). We also found that the fidelity decreases for higher modes

even in regimes of saturated reflectivity, Fig. 5.17(b). F\rrther, we calculated the

fidelity for different intensities in the focal plane. This was done by varying the
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Figure 5.14: The behaviour of the Stokes and pump spot size at low (a), 23mJ, and

high energy (b), 392mJ, are shown. The entrance of the cell is at z:60 cm. See Fig
5.1 for the focusing geometry and propagation directions.
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fundamental beam parameter u)i: u)t (see Fig. 5.1), which changes the input spot

size of higher order modes through Eqs. (5.17) and (5.18). Input beams with a

larger spot size at the lens have a smaller spot size at the focal plane resulting in a

higher intensity at the focal plane. In Fig. 5.17(b) the fundamental beam parameter

a¿ : 0.5cm. A higher fidelity is obtained when the parameter u¿ is reduced to

u¿ : 0.3cm, i.e., the focal plane intensity is reduced. The fidelity and reflectivity

results for different values of ø¿ and different input modes are shown in Fig. 5.18.

It shows a decrease in the fidelity of all higher order modes when ø¿ is increased

beyond 0.3 cm (Rayleigh range smaller than 0.94 cm) due to high focal volume

intensity. We investigated this behaviour further by selecting the conditions for the

best and worst fidelity for mode II in Fig. 5.18, Iabelled "4" and "B" respectively,

and calculating the temporal variation in reflectivity and fidelity for both cases, as

illustrated in Fig. 5.19. The poor fidelity obtained for a high intensity in the focal

plane may be explained using arguments similar to those for our one-D model in

Chap. 4, where a threshold relaxation oscillation \Ã/as found. In Chap. 4 we found

that for high pump intensities in the focal volume, the threshold intensity for SBS

was significantly exceeded before the Stokes radiation could saturate the SBS gain.

Thus for a large input beam spot size, when the interaction length is short and

the pump intensity is high in the focal volume, the rate of change of the Stokes

intensity is large and threshold for SBS will be greatly exceeded. This implies that

the competition between the phase conjugating mode and all the other possible,

non-phase conjugating modes is reduced, and reflectivity from other modes above

threshold is more likely to occur, thereby reducing the fidelity. The results in Fig.

5.19 show a behaviour consistent with this explanation: using a large input beam

spot size results in a poor fidelity at the threshold and throughout the pulse as

shown in Fig. 5.19(B).

The simulations also showed that whenever the fidelity for a particular mode was

low, and the total reflectivity high, the excess energy was coupled primarily into the

next lower mode. This can possibly be explained by comparing the phase matched

coupling constants (€rn*rnn,€mrnrntrmtrt€mmn¿-!m-r) of Eqs. (5.46) for a specific

single mode, e.g. rn: 2 (see table 5.1). The coupling constants are given by the
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overlap integral, Eq. 5.22, which is a measure of the transverse spatial correlation of

the Stokes mode with the pump mode. How quickly a mode grows at the threshold

thus depends on the focal intensity and what fraction of this intensity is coupled into

the particular mode. At high focal intensities, modes with higher phase matched

coupling constants grow faster at threshold and have better chance to compete with

the phase conjugated mode. This explanation is consistent with the results shown

in Fig. 5.20, in which the temporal variation of the fidelity for a single mode (mode

II) is shown for various mode II to mode I coupling constants. Close examination of

the threshold fidelity shows that it reduces as the coupling constant between mode

II and mode l, €22tr, increases.

A possible explanation of this behaviour can be given based on equations similar

to Eqs. (5.46). For a short time interval around the threshold, and in a small volume

close to the focus the spatial derivative term (0102) in Eq. (5.23) can be ignored.

F\rrthermore, we ignore the (010t) term for the acoustic field in Eq. (5.3). This can

be shown to be equivalent to approximating (02b.10t2) <.1@l}t)b,i.e., the slowly

varying approximation. Applying these approximations and using Eq. (5.21), one

A
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in which we have assumed that the SBS cell has been pumped by mode rn and that

this is the only dominant pump mode inside the cell. Expanding this equation for

the phase conjugated mode b^ and the nearest modes bmrr, results in equations

similar to Eqs. (5.46)

These equations describe how the Stokes modes grow and compete through the

threshold. The phase matched terms on the right hand side of these equations

result in a solution of the form

no, Gl" P

¿äu* : 
ffiG^** 

brn * €mmmrn+re-i'þQ)6**11 €rnnnn-re'i'þ(")6*-, + "'),
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(5'53a)
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b¿

(where e¿

,,G la*12 co( exvl(¡ffieùt),
: €m¡nrn¡nr€mmm*lm*l1rnmm-Lm-Lf.or i: rrùtrn l Trm - 1 respectively).

This shows that the rate of temporal change of the Stokes modes, at the threshold,

depends on: (1) the pump intensity and (2) the phase matched coupiing constants,

which is consistent with the above discussion and results in Figs. 5.19 and 5.20.

Our model has demonstrated the effect of the phase matched coupling constants

on transient fidelity. By their very nature, steady state models [27,28] have omitted

this transient phenomenon. These models are based on equations similar to Eqs.

(5.46), which describe the growth of the backward Stokes modes above the threshold

and in the steady state regime (see Sec. 5.4.1 andl27,28]). Therefore, they do not

give a complete description of the growth and competition of the Stokes modes

through the threshold.

The transient phenomenon predicted in our model is similar to the transient
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a

effect of a sharp leading edge of the pump, which was studied by Dane et al.l75] and

discussed here in Sec. 5.4.1. The significance of our finding is that the fidelity is

degraded at high energy not only when there is a sharp rise in the leading edge of

the pump pulse but also when there is a sharp rise in the Stokes pulse.

5.4.2 Aberrated input beams

We next examined the behaviour of multi-mode beams as an approximation to

aberrated beams. As an example we have considered an input beam with energy

distributed among the different modes as follows: 4.5% in mode 0,44.5% in mode II

andSITo in mode IV. As in the single-mode case, we found a geometry that resulted

in maximum frdelity. Fig. 5.21 shows the input and output intensity distributions

for two geometries: one resulting in low fidelit¡ and one resulting in the highest

fidelity. In this figure, we have kept the input intensity constant, but have changed

the size of the beam at the input to the cell. As before this was done by changing

the fundamental beam parameter, u)i: ø1, from ü)L:0.5 cm in Fig. 5.21(a) to

0.35 cm in Fig. 5.21(b). In figure 5.21, the input por'¡/er has thus been reduced to

keep the intensity constant. Examination of the reflectivity and fidelity for a range

of ø1 (or Rayleigh range) in Fig. 5.22, shows a behaviour similar to the single mode

results from above: the fidelity of the aberrated beam is degraded for beams with

large input spot sizes (short Rayleigh range).

In the above example we chose an input beam with energy arbitrarily distributed

among several modes. The model allows us to use any arbitrary, cylindrically sym-

metric aberrated input beam with any mode distribution. Assume an arbitrary

input spatial profile of

E¿(r,z-L):f(r,L).

Using the orthonormal property of the Gauss-Laguerre functions, one can expand

E¿(r, L) in the transverse direction as

E¡(r,L) : r]a.A.(r,tr), where (5.54)

l,*0'd AL?, L)l?, L)d2r ( 5.55)
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parameter ø1 is 0.5 cm (Rayleigh-range 0.34 cm) and the input energy is 823 mJ,

while in (b) ø1 is 0.35 cm (Rayleigh-range 0.70 cm) and the input energy is 403 mJ.

A fidelity of 88% is achieved for (b) while only 47% frdelity is obtained for (a).
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Here løol2 gives the contribution of the a-th mode in the total input energ-y. Finding

øo's from Eq. (5.55), rü/e can use them as inputs to our computer code to study

the SBS fidelity and reflectivity for any aberrated input beam. This is thus an

enabling theory and code to be used in future studies and detailed comparison with

experiments.

5.5 Comparison between numerical and experi-

mental results

Just recently, after visits by Prof. Ralf Menzel and Dr. A. Heuer of The University of

Potsdam, Germany, we have initiated a collaboration between the two optics groups

to compare in detail experimental results from Potsdam with the predictions of our

present numerical model. Experiments have been done on the overall reflectivity

and the temporal profiles of the Stokes pulses in the SBS process for two materials

with extreme (short and long) phonon lifetimes; 1) Fleon 113 with phonon lifetime

r :0.84 ns and 2) SF6 gas at 20 bar pressure with phonon lifetime r : L7.4 ns.

Using the experimental parameters (including geometrical, material and input pulse

parameters) in our model, we have produced primary numerical results that are

in a excellent agreement with the experiments. In the following, we present both

the experimental and numerical results which are the initial results for a detailed

collaboration pâ,per currently in initial presentation.

5.5.1 SBS experiment using Freon 113

The experimental and numerical parameters are as follows; cell length 200 mm,

focal length 120 mm, distance between the lens and the entrance window 45 mm,

entrance window thickness 2 mm (BK7), phonon lifetime 0.84 ns, gain of the medium

0.0062 cm/MW, index of refraction, n:1.36, Laser wavelength 1064 nm, input beam

radius 1.45 mm and input beam radius of curvature 2403 mm. The experimental

and numerical results for the overall reflectivity and the temporal profiles of the

Stokes pulses at different energies are shown in Figs. 5.23 and 5.24. We have used

the experimental results of the overall reflectivity as a function of energy, Fig. 5.23,
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Figure 5.23: Experimental and Numerical results of the SBS reflectivity vs. energy

for Fleon 113. The triangles are the experimental results obtained by A. Heuer and

R. Menzel. The solid line is the numerical model results.

to set the free parameter of our computer code. Once the free parameter is set, we

have kept it constant for all the other results. The numerical curves in Figs. 5.23

and,5.24 have been obtained for free parameter of 2.79 x 10-8.

6.5.2 SBS experiment using SFo

The following experimental and numerical parameters rü¡ere used for the SBS exper-

iment in a cell filled with pure SF6 at a pressure of 20.5 bar; cell length 139 mm,

focal length 120 mm, distance between the lens and the entrance window 45 mm, en-

trance window thickness 2 mm (BK7), phonon lifetime 17.3 ns, gain of the medium

0.014 cm/MW, index of refraction, n:1.023, Laser wavelength 1064 nm, input beam

radius 2.0 mm and input beam radius of curvature 2403 mm. The experimental and

numerical results for the overall reflectivity and the temporal profiles of the Stokes

pulses at different energies are shown in Figs. 5.25 and 5.26. Like the Fleon case, we

have used the experimental results of the overall reflectivity as a function of energy,

Fig. 5.25, to set the free parameter of our computer code for SF6. Once the free

parameter is set, we have kept it constant for all the other results. The numerical

curves in Figs. 5.25 and 5.26 have been obtained for free parameter of 1.194 x 10-8.
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Figure 5.25: SBS reflectivity vs. energy for pure SF6 at 20 bar pressure. The
triangies are the experimental results obtained by A. Heuer and R. Menzel. The
solid line is the numerical results. The error bars are showing the range of numerical
values for the reflectivity for different initial noise term.

5.6 Conclusions

We have developed an efficient numerical model to investigate the phase conjugat-

ing properties of stimulated Brillouin scattering. By retaining transverse and time

derivatives in the coupled differential equations and using a spatial mode decompo-

sition model, we have developed a new and efficient algorithm, which has made it

uniquely possible to study the fidelity and mode structure of the Stokes and pump

beams in the transient regime, for single or multi-mode, cylindrically symmetric

input pulses.

Among the experimental and theoretical studies of intensity fl.uctuations in the

Stokes pulse of SBS [10, 12, Il, 79, 13, 16, 79, 2], only a few have indicated that

these fluctuations degrade the SBS fidelity 1I0,12,19,21. Using our model we have

confirmed numerically that these fluctuations do degrade the SBS fidelity. In our

model we have included a Langevin force noise term with a spatial and temporal

Gaussian distribution in the SBS equations, which not only simulates the shot to

shot variation of fidelity and reflectivity but also demonstrates the reduction in

the time-resolved and overall fidelity of SBS due to intensity fluctuations in the

Stokes puLse. This result together with the results of the previous chapter, Chap

t4l

A
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4 are important in practice since they can be used to select the best experimental

parameter space for excellent fldelity in applications of SBS.

It was determined that, due to transient effects, the temporal shape of the input

pulse can greatly affect the fidelity of SBS at high energy. Input pulses with a

sharp rise, Ieading edge show poor ability for producing a phase conjugated return

at high energy, although this ability improves for short phonon lifetimes. This is in

agreement with the experimental work by Dane et.al. lL1].

There have been many experimental and theoretical studies of SBS of broad-

band laser pulses including [8, 110, 74,L2,71!,I72,113, 114, 115, 116, 2, 117]. It is

generally accepted that the fidelity of phase conjugation is degraded for short coher-

ence length lasers. This degradation is usually attributed to the onset of competing

nonlinear optical phenomena such as break down, stimulated Raman scattering and

self focusing, at high pump intensities 174, L2, \77,172,113, 114, 716,21. Although

our model is a single frequency simulation of SBS, the results suggest that this

problem is an integral problem of SBS itself. Our model predicts a ne\M transient

phenomenon: fidelity degradation due to a very rapid build up of the Stokes pulse

at the threshold for smooth input pulses, which enables energy to be absorbed by

the non-phase conjugated modes and thus reduce the overall fidelity. The rate of

build up of the Stokes radiation at the threshold depends on the focal intensity

and the phase matched coupling constants. Thus, apart from the well known fact

that a sufficiently high intensity is needed to achieve a good fidelit¡ an excess focal

intensity result in poor fidelity. The usual discrimination between conjugated and

non-conjugated modes (the steady state gain of conjugated mode is almost twice

that of non-conjugated modes) does not work when ail the Stokes modes turn on

suddenly. To ensure phase conjugation, the Stokes modes should reach the thresh-

old adiabatically. This result can be used to explain why phase conjugation of

broad band lasers is not successful even if the interaction length is shorter than the

coherence length.
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Chapter 6

Conclusion and F\rture works

Theoretical studies of SBS have usually considered only the steady state regime

of SBS. Although it makes the coupled equations describing the process easy to

understand, this approach does not give a complete picture of the SBS process.

In fact, there are phenomena and practical regimes that cannot be treated in the

steady state. Throughout this thesis we have focused on the transient regime

and examined, in detail, those phenomena and regimes in which the steady state

approximation fails to work.

We developed a transient one-dimensional model of SBS initiated from noise and

including cell geometries (see Chap. 4 for detailed explanations). Two transient

phenomena were studied using the 1-D model:

1) Intensity and phase modulation in the Stokes intensity pulse,

2) Threshold oscillations at the beginning of the Stokes pulse.

Rapid thermal fluctuations in the density of the medium are initial sources of

SBS. Under certain circumstances these initial fluctuations can be amplified through

the SBS process and appear in the Stokes intensity and phase. Numerical results

suggest that these fluctuations are likely to be seen in the SBS process, using mate-

rials with short rather than long phonon lifetimes. Experimental setups with long

interaction lengths and low energies are more likely to encounter intensity fluctua-

tions. However, even when there are no intensity fluctuations in the Stokes pulse,

there are still shot-to-shot fluctuations in the Stokes energy. More stable output

energy can be obtained at high input energies. These fluctuations degrade the fi-

t45
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delity (degree of phase conjugation) of the SBS process. It was demonstrated by our

three-dimensional model (developed in Chap. 5) that fluctuations in the Stokes in-

tensity cause a reduction in the time-resolved and overall fidelity of the SBS process.

These findings are of practical importance for designing high power laser systems

with excellent beam quality using phase conjugating SBS mirrors.

SBS is a threshold process, meaning a certain amount of input polver is required

before the process is initiated. The time dependent growth of the stokes pulse at

the threshold is exponential. It was shown that this exponential growth of the

Stokes pulse sometimes leads to overshooting of the input power and resembles a

relaxation oscillation in the Stokes power. This relaxation oscillation is a function

of the phonon lifetime, the intensity of the pump at the focus and the immersion

length. It was also shown that the pulse compression phenomena can be explained

in the context of a threshold oscillation in which the first peak of the oscillation has

been magnified and the other peaks have been omitted. Flom this point of view,

even for pulses much longer than the phonon lifetime, (the usual condition for the

steady state regime) the transient regime must be considered at the threshold.

The three-dimensional model has been developed in Chap. 5. By introducing

block-vectors and block-matrices, we have developed a new and efficient algorithm

that uses the advantageous of having lots of zero elements in the coefficient matrices

in the SBS differential equations. This algorithm enabled us, for the first time, to

solve numerically the transient SBS equations in three dimensions for cylindrically

symmetric laser fields.

A transient effect that can be investigated by our model is the effect of the

input pulse leading edge on the SBS fidelity. It was shown that the SBS fidelity

can be degraded, especially at high energies, if the time scale of the leading edge

is shorter than the phonon lifetime of the material. Using the model, a new and

interesting transient phenomenon has been predicted: the SBS fidelity degrades

when the focal intensity is too high. High focal volume intensity causes all the

spatial modes (conjugated and non-conjugated) to grow so rapidly at the threshold

that the usual gain differences between modes (gain of the conjugated mode is almost

twice as much as non-conjugated modes) can not discriminate the conjugate mode
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over the non-conjugated ones

6.1 Future u¡ork

The algorithm developed here for the three-dimensional model with cylindrical sym-

metry (see Chap. 5 and App. B) treats the transverse direction as discrete modes of

some orthonormal functions. What is new about our algorithm is that it avoids the

computationally intensive calculations using the large coefficient matrices and in-

stead allows calculations using small matrices in the sub-space of transverse modes.

We believe that this key element of our algorithm can be used in the next genera-

tions of SBS models, where the laser beam is not cylindrically symmetric or is not

single frequency. For such a case of for example non-symmetric or astigmatic laser

beams, two sets of orthonormal bases (modes) are necessary to represent the sub-

space of the transverse directions. \Me have proposed to carry on the development

of our model to short coherence length (multi-frequency) and non-symmetric laser

beams. We believe that our present model will contribute to the future development

of phase conjugation of short coherence length and astigmatic laser beams.
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Appendix A

Generatittg a Gaussian

Distribution

Consider a probability density function p(ø), for which p(r)dr gives the probability

of frnding the variable r in the range ln,n I dr]. lf. we introduce a nerw variable

A : f @), then there will be a new probability density function q(A) i" the y space,

which describes the probability density function of g. However, the probability of

having a state in a certain range in the u space should be equal to the probability

of having that state in the corresponding range in the g space. i.e.,

p(r)dr: q(a)da (A.1)

Giving the two probability density function p(r) and q(g), one ca,n use Eq. 4.1 to

find the relation between the two variables ø and A [i.e., A : f @\.

As an example, consider a uniform distribution in the gr space (over the range

[0,1]) such that

q(a) : r,

and an exponential distribution in the ø space:

P(r) : )'e-^'

r49
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Then , using Eq. (4.1), we find

APPENDIX A, GE]VERATIIVG A GAUSSIA]V DISTRIBUTION

\e-^'dr dy

I e \, df a,

:

:

.1,

(A.2)

Hence, given the variable y is uniformly distributed over [0,1] then the variable ø,

defined in Eq. A.2,is exponentially distributed over [0,*).

Consider two variables 21, n2that have a Gaussian distributions with mean values

of r¡12 aîd a variance o of:

_1

t tnlt - s¡

(ør-q)t\nz-rz)
'T

-êif o¿

:x

Then using the following transformations and variables

l-al

It : II - It A,[IO. f2: 12 - fr2

r : ,'r' + ,'r' and tan I :

one can show that

r2

r7

1

(rr-rr)t(*r-*r)
02

,'r2 + *'r2
1

TA'
02 d,r'rdr'r:

-u
\"7 auae,
7f o'

-P
¡ro2"

dr1dr2 :
.>

-r't-j=" o2 rd,rd,Q :
To¿

where LL : 12 . Hence, if the variable z is generated exponentiatly (probability density

function #e-"/oz¡ over [0, oo) and variable d is generated uniformly over [0, zr], then

the two variables

ry : qltQt,cos?,

-.fr2 : rzl{usin?,
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will be distributed normally over (-oo, *oo) with variance ø and mean values ît,Í2.

We have used these two variables to generate Langevin noise terms in our 1D and 3D

model. To generate the variable u over [0, *) with the probability density function

þe-"/oz one can use Eq. (4.2) to find

,tL: -o2ln(1 - g),

where gr is distributed uniformly over [0,1]



r52 APPENDIX A. GE¡üERA?I/VG A GAUSSIA]V DISTRIBUTION



Block-matrices

Appendix B

This appendix deals with square matrices of. n x n, whose elements themselves are

pxp matrices (referred to here as block-matrices). As an example, Sa¡a is given by

where A, 8, ..., P are all p x p matrices. Consider the multiplication of two such

4x 4 matrices S and T:

Ao*o

Eoro

Ioro

Mo*,

Boro

F
'pxp

Jr*o

No*o

Doro

Hory

Lor,
Dt pxp

lo*o

EL,O

IL,,

Mrro

Èr*o

Fo*,

Jor,

Noro

4x4

cL"o

doro

KL,,

doro

do*o

HL,o

L,,,O

t)'t pxp

S-

crro

Go*o

Ko*o

oo*o

Arro

Fupxp

Iory

M,,,

Boro

Foro

Jr*o

Nory

cory

Goro

Koro

orro

Drro

Horo

Lo*o

Prro

X

4x4 4x4

xi*o

Ei,o

Ii,o
Mi,o

Brro

F,,'pxp

Jory

Ni*,

ci*o

di,o
pxpD

Ki*o

Hi,o

lo*o

di,o Pi,,
4x4

It can be shown that the multiplication rule for ordinary matrices can be applied
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to find the elements of the resultant matrix S x T i.e.,

APPENDIX B. BLOCK-MATRICES

(SxT),r:tS¿¿XT¿¡,
le

where x is the matrix multiplication operator and S¿r and T¡ç¡ arcp xp matrices

As an example, for the above 4 x 4 block matrices we find

A" : Ax A' tBxE' +Cx1'+ DxM',

B" : AxB' -lBxF' +Cx J' +DxN',

P" : M xD'fl/x H' +OxL' +PxP'

As an application of this multiplication rule, the inverse of a diagonal block-

matrix can be written as

(At)r"o o

0 (Ar)o"o

0 0

0

0

-1

nxn
(A*)r,o

(AL)&e o

0 (A,)ilo

0

In the theory section of Chap. 5, Sec. 5.3, where we developed a three-

dimensional model of SBS, we obtained a final algebraic equation for 1?¡"+t, Eq.

(5.43), in the form:

(8.1)

JJ

In this equation, A is ablock-matrix n x n with blocks pxp and 7 and I are

block vectors n x I with blocks p x 1. In our model, the matrix ,4 turns out to be

0

0

(A.);),0
fLXTL

ì
Ab' : X
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a tridiagonal block matrix of the form

(bùo"o

(or)o*,

0

("r)r*
(br)o"o

(ot)o,o

0

0 ...

("r)o*, o

(bt)r"r.

0

0

o (1")r", (I)o"o

It is interesting that Eq. (B.1) is similar to the equations obtained for the one-

dimensional model in Chap. 4. The only difference is that for the one-dimensional

mod.el, the matrix A is an ordinary tridiagonal matrix and 1 and b+ are ordinary

vectors. In other words, in the three-dimensional model ordinary elements of matri-

ces and vectors are replaced with p x p matrices and p x 1 vectors in the subspace

pxp ofthe spatial modes. To solve Eq. (B.1), (similar to ordinary matrices) we ap-

ply a LU decomposition method to decompose ,4. to a lower and a upper tridiagonal

block-matrices of L and U of the form

nxn

nxn

(I)o",

(tr)o",

0

0

(ut)o,o

0

0

0

(I)o",

(ls)r"o

0

(ct)r,o

(rt)r,o

0

0

0

0

(I)o"o

0

0

and

L-
0

0

0

("r)r*o

(ut)o,o

0

0

0

(J-

0 nxn
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such that A : L x U. Here, (I)o", is the unit matrix of the spatial modes

subspace. Using the above multiplication rules for the block matrices, it can be

shown that

: bt,

: an x (un)-t,

: bn - an x (uò-r x cn-t

U1

ln

un

Now, the decomposed form of ,4 can be utilized to solve the equation

and then substituted back into the equation

Ub:Y

Lx(U

Lx

?r
?

î,

ì,

first for Y

=to find the solution for b .



Appendix C

Recurrence Relation

According to the definition of e¿¡¡n (5.22), one can write €¿¡¡çn¡1 ã,s

2^ _tcijkn*l - \ dn e-2' L ¿(r) L ¡ (r) L ¡,(r) L 
"+t(n) 

. (c.1)

*ftr-6¡ : nLn(r) - nLn-1(r),

yields

l3n+1-i,-i-k]", _ n ,
,(" + L) ciitcn - Ñ"n'r"-t
1

* 
,1, * Ulirn-t¡on 

* i€¿i-*n I ke¿¡¡-61.

)
7l

Replacing L,,¡1ín C.1 according to the recurrence relation for Laguerre functions

(p. 1037 in ref. [118]) i.e.,

(n * I)L.¡t(r) : (2n + | - r)L"(r) + nL"-r(n),

and integrating by parts taking into account

€¿jkn+t :

A specific case of this recurrence relation is when i: j : Iç : n which results in

In
çnnnn-lL- e'ttftfln r <erùnrvl-L' zlnt|) n+L

L57

(c.2)



158 APPENDIX C. RECURRENCE RELATION

A useful recurrence relation can be obtained for eooo- using the integral (p. 8aa

in ref. [118])

t,
+oo

e-b' L*çr¡dn : (b - l)m6-rn-r

Then

2
c000rn ,.- -

lt lo** "-2'L*7r¡¿r:Ï2-*-' 
: 

#roooo.
(c 3)



SBS focusing system

Appendix D

The focusing geometry used in the SBS model is shown in Fig. D.1.

A laser beam with radius ûr1 and curvature .Rr is focused into a SBS cell using a

lens of focal length /. The thickness of the entrance window is ú and the refractive

indices of the window and the SBS material are r?,1 and rù2, respectively. Given the

input beam radius and curvatür€ r/1 and .R1, one can find the radius and curvature

of the beam anywhere inside the cell by finding the position of the waist inside the

cell, l, and its radius øs. Once we know these two parameters, the beam radius and

curvature at any other point inside the cell are

,2Q) : ullt+tj;fl,

R(r)
D

-roRa-T-
7

I

Figure D.1: Focusing geometry used for SBS process

(D.1)

I

d
0

1l'

R1

ul
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where z is the distance from the focus, ø¡ is the beam radius at the focus and the

Rayleigh range, zp, is related to the beam waist radius ø" (for the fundamental

mode) and wave length ). as zp: ¡ruZnl\.

The ABCD matrix that transfers beam parameters from plane 1 to plane 0 (see

Fig. D.1) is

ABCD :

JL

ABCD :

1

t- !w
Í'

)(;

1

0

1

0

tl+-+- I d+
fl,1 rL2

1
(D.2)

nzÍ

Beam parameters at plane 1 and plane 0 can be related using the above ABC D

matrix as [119]

Aqt+ B
(D.3)d^--

"- cqr.+D'

where q at any point is

(D.4)
11,\

-L;-q R' "nr,r)2'

Inverting both sides of Eq. (D. ) and introducing ner,¡/ variables a and B, one can



write q as
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(D.5)

(D.6)

(D.8)

(D.e)

q - d.+ip,
t

(nnr- \rR.'l/
(T')'* n'

o¿

.,

-(
n7fu

)R')p

(T')'* n'

At plane 0, the curvature of the laser beam is oo and thus

irnafi A(ot + iþ) + B
u¡r--- 

--YU- I 
u4tL 

c@r+iB)+D'

where we have used Eq. (D.3)-(D.5). Equating the real part of the right hand side

of Eq. (O.0) to zero and imaginary part to -z¿, we find

(Ao, + B)(cq + D) + AC P?

(Cot + D)Aþt - (Ao' + B)C Pl (D.7)Zg

Eq. (D.7) can be solved for I to find

0

(cor+D)+c2P?

Substituting this value of I into Eq. (D.7) yields

u!
), (Aq + B)C h - (Co' + D)API

(cot+D)z+c2Bln1t
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The dynamics of stimulated Brillouin scattering (SBS)
has been widely investigated because of its importance in
optical phase conjugation [1,2]. pulse compression [3,4], and
beam combination [5-7]. SBS is a nonlinear process 'uvhere
energy is exchan_eed from the laser beam to the Stokes beam
through an interaction with a.sound wave. When used in an
optical element, SBS is usually deployed eirher as an ampìi-
fier with an externally applied Stokes field, or as a SBS gen-
erator. The theory of SBS amplifìers is simpler than that of
SBS generators since rhe Stokes fìeld is extemally applied.
whereas the analysis of SBS generators requires the inclu-
sion ol the thermal density fluctuations of the medium as the
source for the initiation of the process. This stochasric initia-
tion of SBS leads to fluctuations in the Srokes lìeld's ampli-
tude and phase [1,8-12]. These fluctuarions are importanr in
practical applications since they reduce the coherence length
of the scattered beam It3] and have been observecl to reduce
the temporaland spatial fidelity of the SBS process [14-17].
Early experimental observations of the presence of phase
jumps and amplitude fluctuations in SBS were reported in
I980 [18-20]. N{ore recent rheoretical and experimental in-
vestigations ol these fluctuations in optical fibers have been
made by Dianov et al. l9), Gaera and Boyd Il t], and Kuzin
et al. l2ll. Their investigarions showed thar large scale fluc-
tuations in the Stokes intensity occur rvhen the transit time
through the interaction region is much greater than the pho-
non lifetime. Intensity and phase fluctuations have been in-
vesti-gated experimenrally also for short interaction lengths
typical of a focused geomerry [15,13,12.16]. Simultaneous
fluctuations in the Stokes amplitude and beam quality have
been observed [15] as has actual variation in the phase ofthe
Stokes beam. measured directly by heterodyne detection
It:]. ln addition, the et-fect on these simulraneous fluctua-
tions of experimental parameters such as the interaction
length and input energy have been reported U2,16). Numeri-
cal models have also shown simultaneous occurrence of
jumps in the Stokes phase and fluctuarions in the Stokes
reflectivity and fidelity [8,14]. Similar flucruarions were also

MAY 1998

predic ted 122,231 and observed 124,251 i n s rimu lated Raman
scattering and recognized as solitons.

Most published theoretical studies of SBS have dealt with
SBS ampliñers or generators in the undepleted or steady
state regime rvhere the Stokes wave was either applied ex-
ternalll' or initiated inside the medium from a constant or
localized source. In this paper we present a single unified
theoretical approach to SBS in a focused cell geometry, for
the t¡ansient and depleted regimes while seeded from distrib-
uted random noise typical of most practical applications. We
hal'e developed a numerical model to examine in detail horv
the scattered Stokes beam is initiated from noise and propa-

,eated through the nledium, and what parameters affect its
amplitude and phase modulation. We use a Gaussian random
noise distribution [9.] l] (both in space and rime) as a source
tbr the SBS process in order to simulate the actual thermal
fluctuations in the density of the medium.

Our model predicts trvo kinds of amplitude modulation:
(a) deterministic relaxarion oscillations at the threshold due
to fìnite phonon lilerime ancl (b) stochastic flucruations
caused by the random noise soLtrce. An extensive examina-
tion of the behavior of the deterministic oscillations includes
the fbllorving parameters: phonon lifetime, focal length, im-
mersion length. and input energy, and it reveals under what
parameter re-eimes these oscillations result in a pulse-
compressed Stokes bearn. This is followed by the study of
stochastic fluctuations and their dependence on parameters
such as phonon lifletime, immersion length, input energy, and
pulse duration. Although many authors identify these fluc-
tuations as being due to phase jumps, our model shows that
phase and intensity fluctuations are coupled via the nonlinea¡
interaction, and thus occur simultaneously, denying the exis-
tence of a causal relationship to the phenomenon. This was
determined by tracing the fluctuations back to the time of
initiation. The parameter regime required for achieving ex-
cellent beam quality (amplitude and phase fidelity) is evalu-
ated.

II. THEORY

The equations describing the SBS process are derived
from Maxrvell's equations for the electric fields and Navier-
Stokes equation for the acoustic field inside the material.
Writing the electric and acoustic fields as [26]
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where O is given by [10]

(l)

5

r o:f,W of r,t)e¡('ot+koz) ¡*[(z,t)e- ¡t,p,+ kp,)),

r, :f,lv,{ r, ¡¡ ¿ 
i (',r - k, z) ¡ g 

T k, t) 
" 

- i (,"r - tsz) 
1,

I
E n:1Lú ,k,t) ei('qt+ kq:) ¡ ú[ (z,t)e- i{,nr+ koz)f

(where E o , E, , and E o a¡e the pump, Stokes, and acoustic
fields, respectively), neglecting the transverse field varia-
tions, and using the slowly varying envelope approximation,
the following coupled wave equarions can be derived [27].

I A n ð\
\n-; a')v ':i6¡vnv"

I a n a\
la*; *)v'=-is$[*o' Q)

ld \
l;+f JVn:-isllrrvf .\dt 1,,' t' r

Here 6, and 62 are coupling coefficients, f is the dampin_e
rate (i.e., f : l/2¡ where ¡ is the phonon lifetime ol thè
medium), and n is the refracrive index of the medium.

In order to find the equations tbr the amplitudes and the
phases of the fields we write the complex amplitudes V,,
(where p.: p,s ,q) as

'* 
': 

A re-¡ór"

where A, and þ* are real functions. Substituting the new
defrnition into the above equations results in a set of six
coupled diflerenrial equarions:

lo -: 
d \o -- ^\ar-; al^r: -3' sin( ÓP- Ó,- Ór)A,,A,, (3a)

i a n à'\

lA 
* ; *)o': t¡ sin(/,+ Óo- ó;eoto, (3b)

la \

l;*r;or:s2 sin( ó,+ óq- öo)A,Ao+¡r, (3c)

la nð\ AA
\e- ; alÓ,: -s ¡ cos( Óp- Ó,- Óì1, (¡¿)

ld na\ A^A_

I e * ; *) Ó,= t ¡ cos( /, + ór- ö):l' (:e¡

la\ A.A-
\A) ør: t, cos( /, + óo- ójff + ¡, . (3Ð

Here k is the Boltzmann constant, ?" is the temperature, pe it
mean density, u is the velocity of sound in the material, an<

A is the cross sectional area of the interaction region.
For the phase-locked condirion [i.e., sin(/,+ ón-ó;:t

and the steady state regime of SBS [i.e., ignoring al
(ð/ðt)Apl, Eq. (3b) can be writren as

*o,:'#AlA,, (4"

which has a solution of A,:A,e exp[(g1g2lf)A;/i..] \'alid
near th¡eshold and without pump depletion. This leads di-
rectly to the usual expression for the steady state gain. given
by G: gIpl¡^^, where ^Io is the input pump intensity, /imm is
the active medium immersion length, and g:grgzf -1.

Some authors (e.g., 128,29)) have used the phase-locked
condition for which SBS has the highest gain, i.e., öp- ó,
-Ón: a/2. When SBS starts from noise. a random noise
distribution o¡ öe- ó,- rþq is initially presenr. But as the
phase-locked r,"'aves (those with óp- ó,- ón: nl2) have
the hi-ehest gain in the medium, they suppress other Stokes
waves u'ith unlocked phases. By applying this condition to
Eqs. (3). they are simplified to a set of three real coupled
equations for the amplitudes. However, in order to explain
the experimental observation of the simultaneous occurrence
ol intensity fluctuations and phase jumps [13], we hare re-
tained the complex equations since this is rhe only way that
the phase of the Stokes lìeld can be coupled to its intensity.

Equations (3) are nonlinear due to the terms sin(<þ,+ þo
-Ó) or cos(/o- ó,-ó,ì Althou-eh the behavior of the
fields and their phases is seen better by these equations, and
we use them whenever we want to provide a qualitative ex-
planation, solutions of the equations require that rve re',r'rite
them for the real and imaginary parrs of the fields. Using

9 *:Wr* iV,

the equations for the real and imaginary parts of the fields are

Focal length

i Imnrersion length

>
To represent the noise initiation of the SBS process, we have
added two Langevin forces /¡ and f 2, with spatiat and tem-
poral Gaussian distributions Itl]. Both/¡ and f2 are 6 cor-
related functions in the sense that

(f ik't)fI k',t' )) : Q 6(z - z' ) õ(t - t' ),

zo

0 Gauss¡rn Random Noise
(distributed through out the cell)

L z

Stokes

SBS cell

lens

FIG. l. The geometry used for the SBS process.
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(*-: *)',= - s v(tv nv,+ v qw,),

(i-,. : *)*,: , t(w,tv,- v qw P),

(*..) w q= - I z(vv ev,- v,,w,) * f t,

la nô\t----l\r¿ c dtJ

(i-,. : *) r,:,,(w qw P+ v nv,),

v i. w! v'u
V-: ' - 

v r;-" a(z) r¿(:) - ø(z)'

and hence,

1q.',: w'r+ ¡v , '
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(7b)

W

(s)
r.,(¡)'

\,,v
V,

v o: B 1(w rw,- \'rv,),

v q: - gz(w pw,I v rv,) * f t

r¿(¿)'

a
-*fdt

it can be easily seen that lVj,lz:lV,l2ar2l:) is the local
po_wer of the pump or the Stokes fields. Adding
-lW, / a(z))çdl dz) co(;) or -|V,,/ a(z)l( d/ ít:.) a(z) To the
right hand side of equarions for W, or V, [i.e., Eqs. (5)] and
rewriting these equations tbr prime fields, u.e find

I A n ð\
l\¿ - ; u)tv': -sr( rt"lv:+\/'tr\"')' (6a)

ð n0
-+--A?. c r)t

d\

i, n f 
) 
tt,,,= - -ì1, Ir,; r,; - r,;,*': t - J I

' (u 1-.,
(6c)

(* - : i)r;,:.-,(w',tt',':- v,t"',). (6d)

fhe focusing geometry requirrd for simulation of experi-
nents is introduced using an approach sintilar to that of
{enzel and Eichler [30]. Although SBS is primarily used ro
rompensate for optical aberrations, we have chosen not to
nclude spatial aberrations in this treatment, bur concentrate
:ntirely on temporal fluctuations or .,temporal fidelity'. oi
he Stokes bearn. This is important, because lack ol temporal
idelity leads to degradation of the Stokes return and hence a

,'(z):rrft- ( )'l

ní)
t' i)t

)tt'l:r t(w,tv;,- v,tt\';), (6b)

\':: - rr(ll',,tt'j +V,t\';,). (6e)

¿here ¿oo is the radius at the waist o[ the beam. À is the
¿avelength, and n is the appropriate index of refraction as a
rnction of e. This is a reasonable approximarion in an effi_
ient phase conju_eating sysrem where the fields are rvell
bove results
rowi Stokes
3am beam'hen 

this is
nly an approximation but is justified in our case where we
)ncentrate on the temporal fidelìty only.
As a result, the-pump and Stokes intensities, Ie:Wì
V| or I,:V4* vi, are changing nor only because of the

rnlinear interaction with the material but also because of
e change in area of the beams. Keeping in mind that for
Gaussian beam rhe elect¡ic field amplitude has ø(z) in
e denominator, we add - lW,/ø(ùle/A=) a(z) or
lV ,l a(z)lQ/ ðz) o¡(z) to the right hand iide of equarions
r W, or V, (v: p or s) to represent the change in the
tensity due to focusing geometry [30]. Defining

trl \

l¡.r']lr,,,:- å( ir';u'i +v;,t',)+f.. (ói)

We see that the neri' equarions har.e a tbrrn sirnilar to Eqs.
(5). The only diltèrence is rhat the prime fìelcts are the power
components instead of intensitl' componenrs in Eqs. (5). The
same procedure can be done for Eqs. (3) ro get the folloiving
equations for the Stokes. pump. ancl acoustic gratin,s power:

i a n r)\
\A- ; a,)A;,:-s¡ sin( ör- ö,- ö,,\,tnt',, (ia)

(:-ze)À.

l!*\ r):.

lr. : *)o,:, sin( /,+ ó,,- ó,)t,,A;,

)
1t@0n

ia \ nt¿'
lr*a;o,,:s, sin( ó,+ó,1-ó,)74+f ,. (ic)

The equation for the acoustic field shorvs horv the amplitude
of the field depends on the intensity of the Stokes ancl pump
waves, implying a high acousric fìeld at high intensiries of
the pump and the Stokes fields.

Integrarin-e the phonon fìelds [Eqs. (6c) antj (6t)] and sub_
stituting in the rest ol Eqs. (6). reduces the set of equations
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(6a)-(6f) to four coupled differential equations for the field
amplitude. The numerical analysis starts with these four
equations. An efflcient noniterative algorithm is used in
which Simpson's rule is applied to approximate the phonon's
integral and an implicit finite differencing in time and back-
ward differencing scheme in space are used to write the

equations for discrete field amplitudes Woi , Voi , Wi,
and %i, where m=0,1,2, . . . ,M are time indices (r
:m\t) and j:0,1,2,...,n'll are space indices (z: jLz)
[29]. Field vectors at the time (m+ l)Lt a¡e defined as
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where n * I is the total number of discrete points in space

and Wrn+t, Vpu+ I , l!',t, and V, 1 are the initial values at

boundaries.
Using the linearization scheme defined by Chu et al. 129),

we obtain the final form of the set of algebraic equations for
the vector fields as

FIC. 2

pulse.

width. Relening to Fig. 1, we apply the following geometri-

cal and material pârameters to examine the typical results of
the SBS process: cell length 60 cm, focal length 50 cm,

immersion length 15 cm, initiai waist of the beam 0.4 cm,

gain of the medium 0.0063 cm/MW, input energy 320 nl,
full width at half maximum (FWHM) pulse length 20 ns,

phonon lifetime 0.85 ns, and index of refraction, n:1.0,
with results shown in Fig. 2.

III. RESULTS AI.iD DISCUSSION

Depending on the geometry of the SBS process and the

energy of the input pulse, our model results in Stokes oscil-
lations or ffuctuations similar to those observed experimen-
tally [18-20, l5-17]. The intensity modulation can be cat-

egorized into two groups: (a) deterministic amplitude
oscillations at the time when the energy of the pump reaches

the threshold energy and (b) stochastic fluctuations due to
noise in amplitude and phase of the Stokes beam.

A. Deterministic threshold oscillation

The finite phonon lifetime provides an energy interchange

mechanism between the Stokes and laser field via the acous-

tic field. In the case of Gaussian pump beams, it takes some

time for the energy contained in the pump to reach the

threshold energy for Stokes initiation. At the th¡eshold, the

Stokes power increases very rapidly and overshoots the

pump power, regulting in the depletion of the pump field and

reduction of gain. Because of this gain reduction the Stokes

power drops, causing an increase in the pump energy which

in turn causes an increase in the Stokes field again. This

energy interchange between the Stokes and pump fields con-

tinues and resembles a relaxation oscillation (see Fig. 3). The

rate of this energy interchange is controlled by the reaction

time of the acoustic field, i.e., phonon lifetime. Such an en-

ergy interchange mechanism has also been discussed in Refs.

[4] and [29]. Chu et at. 129) report relaxation oscillations
which are visible in the transmitted pulse. However, our

simulation results show that for a long cell and a geometry in

which the laser beam has been focused deeply into the cell,

relaxation oscillation should be visible in the Stokes return as

shown in Fig. 3.

io^*':lì/ n,* 
r -

ii'* :m*l-

m+l

t'

rn*l

W,

Wsn+l Vsn+l

A^ù,;* t ¡ çn yl¡n+ t * pn ln + t - i,

6n1i¡t+t + r^iVi't +G^û,;,*t:¡,

+nin+t _ D^ùi*I +C^iy*t:¡,

E^i'i*' - c^lÛï'*t + F^ù';*t:2.

(8)

Here, A', C"', E"', F^, D^, and C^ are nxn upper or

lower tridia,eonal matrices evaluated at time mLt andi, Ú,

fr, and 2 ate nX I vectors containing boundary conditions
on the pump and Stokes at time ¡:(m+ l)At. This set ol
equations can be solved numerically without the need for

iteration. The matrix coefficients and vectors i, Ú, fi, anð,

2 a¡e evaluated recursively using the initial values of the

Stokes and pump fields at l:0. Here the field amplitudes at

any time slot m + I have been determined from those at the

preceding time slot m. To justify the validity of the linear-
ization assumption, we used the field amplitudes at time slot
m* I to reevaluate iteratively the nonlinea¡ coeffrcient in-
volved in the differential equations. An improvement of only
4Vo was achieved after five iterations.

Solutions of Eqs. (8) are found for a Gaussian pump pulse

of the form Esexp{-21(t-ts)ltr]2}, where ro is the pulse

---. Pump Power

- 
Stokes Power

,...,, Tronsmilied
Power



oPump
Sloka

Power
s Power

57 NATURE OF INTENSITY AND PHASE IVIODULATIONS

60 80

1.2

_1965

1.1

08^ 2.5

? z.o
f
j 1.5

9 t.o

i o.s
oÀ o.o

ç
o

P 0.6:!
o
!
Jc
o 0.4
!
o

=o
E
b o.z
z.

Þ

00

E4
ItOô

o3o
o-
¡-2
oJ
:-4ttl

0 20 40

20 10
Time (ns)

20 40
Tlme (ns)

60

60 80

0

0

06o.480 0.8 1.0
Phonon lifetlme (ns)

FIG. 3. (a) Typical threshold oscillation in the Stokes beam

obtained for the following parameters: cell length 100 cm. fbcal
length 100 cm, immersion length 70 cm, phonon lifetime 0.85 ns,

medium gain 0.006 cm/lvlW, FWHM pulse length 20 ns, and inpuc

energy Il4 mJ. (b) shows no corresponding variation in the phase

of the Stokes.

In order to categorize the béhavior of threshold oscillation
we use the follorving parameters to run the simulation: Cell
length 100 cm, focal len_sth 100 cm, immersion length 70
cm, phonon lifetime 0.8-5 ns, gain of the mediunr 0.006 cm/
MV/, FWHM pulse length 20 ns, and input ener_sy 114 mJ.
Any changes to these parameters are specifìed in the captions
of the figures. Figure 3 shows a typical threshold oscillation
in the Stokes beam. Different parameters such as phonon
lifetime, laser intensity at the focal point, and immersion
length affect the behavior of the threshold osciltation. There
are no phase jumps predicted corresponding to these oscilla-
tions.

1. Effect of phonotr liJetime on llte lhresltold oscillatiott

If the finite phonon lifetime is responsible for the relax-
ation oscillation at the threshold energy, we would expect
that the behavior of the threshold oscillations depends on this
parameter. Figure 4 shows the threshold oscillation for trvo

10 60 80

FIG. 5. A shorter relaxation oscillation is achieved for lone

phonon lifetime. The graph shorvs how Z6 (a tinre interval over
which the oscillations are visible, see Fi,e. 4) is reduced for lon-u

phonon litètime.

different phonon lifeti¡nes. Defining Ts to be the time inter-
val over which the threshold oscillations are observable (see

Fig. a), our simulation predicts that Îs is reduced for lon-s

phonon lifetime (see Fig. 5). It is seen that fbr lon-ser phonon

litètimes, oscillations in the Stokes retLlrn conìe to an equi-
librium faster than those for short phonon ìit'etirnes. Our
model permits a detailed investi,eation ol the above men-
tionecl relaxation oscillation and the ¡ole of the phonon lile-
tlme.

The acoustic fìeld is describeci by Eq. (-3c). For early times
in the process, the first source tenn in the right hand side oi
the equation may be i_qnored and for the second term we c¿ìrl

ririte f ¡:)¡rr¡ sin u-r^t. Equation (3c) crn then be solvecl as

\V,,:'ü¡,,e l'+ ) rri sin ar¡r +> bi cos rd¡l,

in w'hich ai:¿rrf(f'+roi)-r ancl bi:-nrr^rr'
+ ,i) -r . In the lirnit of a long phonon lilètinre, i.e.. f
-0(r--;, rve tìnd ai:0 and bi: -rt¡lø¡. rvhich resLrlts

in a solution ol Vo:)¡-(41lo¡)cos ('rr¡ for the acoustic
field. Comparing this result with the source terni f ¡, it is

seen that in the limit ol a large phonon liletir¡e the medium
rvill not respond to the rapid fluctuations in the source term.

but rather responds to the integral ol rapid changes. In the

other limit of f..æ(r-0), åí-0 and a'o:a¡lf rvhich
gives a solution of V.,=)¡(n¡lf )sin rr.r¡i'. In this case the

medium can cope with the rapid chan,ees in the source term.
thus resulting in a modulated Stokes pulse. The above dis-
cussion is applicable not only for the beginning ol the pro-
cess but also fbr any rapid chan-9es in the source fields of the

acoustic fìeld. The phonon lifetime thus represents a measure
of the inertia of the acoustic field. The larger the phonon
lifetime, the higher is the inertia of the acoustic fietd and the

slower is the response of the medium to the rapid changes in
the Stokes and the laser fìeld.

2. Elfect of laser intensity at tlrc focal plane

According to Eq. (7c), the amplitude of the acoustic fìeld
depends on the intensity oi the input pulse. A shorter focal
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FIC. 4. Threshold oscillations are reduced for longer phonon
lifetime. (a) Phonon lifetime is 0.5 ns and (b) phonon lifetime is

1.25 ns. Other parameters are as those of Fig. 3.
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FIG. 7. Modulations present in (a) (focal length 100 cm, immer-

sion length 40 cm) are almost suppressed in (b) (focal length 100

cm, immersion length l0 cm). Shorter immersion length provides a

better suppression. Other parameters as in Fig. 3.

/i*-
l¿rp- -d (10)

for highly depleted pump (i.e., 1r-0), and using the deñni-
tion of G.

A parallel physical explanation of conditions under which
temporal fluctuations are suppressed is given by Gaeta and

Boyd Il l]. They discuss how a spike with temporal va¡iation
Z,:f -' ir rujp..rr.d when G>lTt (where T,:nl¡^^c-l
is the transit time and G:glol¡^* is the steady state gain).

This condition (G>f f,) is simitar to the Kuzin er al.l2lf
condition (i.e., T¡u.o{7,), il we use the depletion length

given by Eq. (10).

Keeping constant all other parameters and varying only
the immersion length, by changing the cell to lens separation,

we can examine the elfect of immersion length on the thresh-

old oscillations. Figure 7 shows the behavior of the threshold

oscillation for two different immersion lengths. For a smaller
immersion length, Fig. 7(b), the depletion region of the

pump beam is confined to a small region at the entrance of
the cell resulting in a shorter relaxation oscillation.

It thus appears possible to use the advantages of a short

focal length and a short immersion length to smooth out the

oscillations. These conditions are confirmed to provide the

best temporal fidelity of pump pulse in SBS process, Fig. 8'

and appear to agree with preliminary experimental results

132]. A more complete experimental investigation is planned

for a later publication.

4. Pulse compression

As mentioned previously the th¡eshold relaxation oscilla-
tion is due to the energy interchange between the pump and

the Stokes fields. We can expect to achieve pulse compres-

sion if we do not provide the appropriate amount of energy

for the Stokes pulse to rebuild after the first impulse of re-

laxation oscillation. Figure 9 shows how the relaxation oscil-

lation converts to a compressed pulse as input energy ls re-

duced from (a) to (¿). The process of pulse compression can

be better seen if we look at the three-dimensional (3D) graph
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FIG. 6. Smaller focal spot (higher intensity) results in a suppres-

sion of threshold oscillations. Oscillations are reduced in (b) (focal

length 60 cm) in comparison rvith (a) (focal length 90 cm). Other
parameters as in Fig. 3.

length results in a higher intensity at the focal plane hence a

higher power acoustic wave. As a result of this strong acous-

tic field, the Stokes amplilude does not reduce as quickly
after overshooting, rvhich in turn causes a shorter duration of
the relaxation oscillation. This is illustrated in Fig. 6.

3. Effect ol innersion length

Kuzin et al. l2ll have discussed the influence of the

depletion length (the length over which the laser pump beam

experiences most of its depletion) on the suppression of fluc-
tuations in the Stokes freld. They emphasized that if the

propagation time through the depletion length l¡o.o is smaller

than the temporal variation of the Stokes field at the begin-

ning of the depletion region f, , a smoothing of the Stokes

field towards the output of the cell would take place. In this

case we are in the steady state regime of SBS, and can re-

write Eqs. (3) in the phase-locked condition, as

ð

arln:29[rl,'
(e)

ð

Arl,:2glol,

Moving the origin of ¿ to the entrance of the cell and writing
Ir(z):1,(z)+lt l3l] (where 1r is a constant indicating the

degree of pump depletion), we can solve the differential
equations (9) to find

r ( -\: 1r1"(o)
¡r\'/ 

lo(o)exl( -2gIø)-1,(o)'

Defining the depletion length as the length over which the

Stokes intensity drops to l/e of its maximum [i.e., /"(/¿"0)
: ( l/e)1,(0)1, we find

I I /,(e-l)\
ta,v:7¡,lnl r + ìõ'/'

which can be approximated as
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FIG. 8. Th¡eshold oscillations disappear for short focal length
and immersion length. Immersion length 20 cm and focal length ó0
cm, other parameters as standard set shown in Fig. 3.

of the Stokes power, Fig. 10. At early times of the process,
the center of maximum reflectivity (maximum of the Stokes
pulse) is close to the focal region. This center moves towards
the entrance of the cell at a latér dme. As a result, latter parts
of the incoming pulse are traveling a shorter distance before
generating the Stokes return, resulting in pulse compression
13,41.

B. Stochastic fluctuations of phase and amplitude

Noise initiation of the SBS process results in lar-ee scale
fluctuations in the Stokes output. These fluctuations are of
stochastic nature in the sense that there is a random probabil-
ity for the occurrence of the fluctuations as well as tbr their
temporal position in the output Stokes pulse. Conesponding
and simultaneous to these fluctuations in the Stokes power,
there are some rapid changes in the Stokes phase (see Fi_e.

FIG. 10. 3D graph of pulse compression [(d) in Fig. 9]. Stokes
power in time and space shows how the center of maximum reflec-
tivity moves towards the entrance of the SBS cell (z:80 cm) re-
sulting in pulse compression. Parameters as in Fig. 9.

l l). The simultaneous occurrence of jumps in the Stokes
phase and fluctuations in the Stokes power can be understood
from the main equations governing SBS [Eqs. (3)]. On the
right hand side of these equations there are two effective gain
terms, 8 sin(@n+ ó,- ó) or g cos(/n+ ó,- ór) which are af-
fected by rapid changes in phase of the fields. Figure Il(b)
shows how the normalized effective gain g sin(d,/+ó,-óp)
suffers a reduction at the time when a phase jump occurs in
the Stokes field. Depending on the size of the phase jump
and the phase behavior of the pump and acoustic field, the

effective gain can be reduced or even become negative,
which interchanges the role of Stokes and pump field, i.e.,
the pump field gains while the Stokes field depletes. This is

similar to what happens in the generation of solitons in
stimulated Raman scattering [33]. The final temporal posi-
tion of, phase jumps as well as the shape of the fluctuations in
the output of the Stokes phase and power depend on how
they propagate and amplify from the initiation point (focal
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FIG. 9. Pump and Stokes power as tunction of time at the entrance to the cell. By reducing the pump energy, we remove extra oscillations
lrom the threshold oscillations, resulting in a pulse-compressed beam. Cell tength 80 cm, focal length 80 cm, and immersion length 70 cm
with all other parameters as in Fig. 3. In (d) the delay in peak Stokes and peak pump ls due to the round-trip rime of the cell and building
:o threshold.
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rience different gain depending on the phonon lifetime and
the length of this region 136,211. As a result, the output spec-
trum of the fluctuations is different from the input when
propagating through the depletion region 136,21). Consider-
ing this and the fact that the depletion lengths /¿.0 corre-
sponding to different temporal parts of the Stokes beam a¡e

different [see Eq. (10), where the gain G(t): gIr(t)/¡.. is a

function of time], lead to changes in the shape of fluctuations
as well as the temporal position of corresponding phase
jumps in propagating through the depletion region. The re-
sults from our model also display such behavior, as shown in
Fig. 12. It shows the temporal position of the phase jump and
the beginning of the fluctuation in Fig. 1l as a function of
time at different positions in the cell.

The focusing geometry of the SBS cell, input energy, and
phonon lifetime of the material affect the phase jump fluc-
tuations. Due to the stochastic nature of the fluctuations, the
rvidth, magnitude, and the number of fluctuations vary from
pulse to pulse. As a result, we have chosen the fraction of the
Stokes energy contained in the fluctuations, i.e.,
(E¡u./Eou,or,) (rvhere ( ) means statistical average over all
number of pulses) as the best parameter to sho*' the impor-
tance of the fluctuations to a practical deployment of SBS in
a laser system. Unless otherwise stated, the following param-
eters are applied for the numerical simulations: cell length 60
cm, focal len-eth 60 cm, immersion length 30 cm, phonon
lifetime 0.85 ns. input beam radius at window 0.3 cm, gain
of the medium 0.0063 cm,/MW, input energv I 19 mJ,
FWHÌvl pulse len-uth 20 ns, and reliactive index 1.36.

I. Phonon lifetime effect on tlrc phase jump fluctuations

As rvas previously discussed, the phonon lifetime is a

measure of the acoustic ñeld inertia. For a medium with a

long phonon litètime, the acoustic field cannot respond
quickly to the rapid fluctuations in the noise initiated Stokes
field, and it thus broadens and smoothens out the fluctuations
in the Stokes field. To examine the effect of phonon lifetime

0 20 40

?o ,f0
Tlme (ns)

FIC. 1l. Corresponding and simultaneous to each fluctuation in
the Stokes output, (a), there is a jump in the Stokes phase ldashed
curve in (b)1. Parameters are set as cell length 60 cm, focal length
60 cm, immersion length 30 cm, phonon lifetime 0.85 ns, gain of
the medium 0.0063 cm/MW, refractive index 1.36, FVy'HM pulse
length 20 ns, and input energy 1 l9 mJ.

point) towards the entrance ,gf the cell. Stokes pulses, initi-
ated from noise, are amplified in two main regions as they
propagate towards the output of the cell. In the first region,
initial amplification and spectrum narrorving of the Stokes
beam ,erorving from noise take place 120,34,35,11,36,2 l].
The second region of length i¿.0 lEq. (10)J is where the final
amplification of the Stokes beam to a level approximately
equal to the pump power occurs. The final Stokes output can
be greatly affected by the dynamic processes in the depletion
region. As previously discussed, this region plays a crucial
role in the suppression of fluctuations in the Stokes signal
w'hen ?rto"o(?n,. For T,u,orT, however, fluctuations in the

Stokes pulse experience amplification and spectrum changes,
and appear in the final output [21]. It has been shorvn that
different spectra of the fluctuations in the Stokes pulse expe-
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FIG. 13. Averaged fluctuation's energy (normalized to output
energy) reduces for longer phonon lifetimes. Other parameters are

as in Fig. ll.

on the phase jump fluctuations, the simulation model was run
with different initial noise distributions for three different
phonon lifetimes. The fluctuation energy (normaÌized to the
output energy and averaged over a certain number of shots)

is calculated for these diffelent phonon lifetimes. Figure 13

shows how the energy of the fluctuations decreases for
higher phonon lifetime, indicating a better suppression of
fluctuations for long phonon lifetimes.

2. Effect of immersion lengrh

As mentioned previously, the two key parameters in sup-
pressing the fluctuations are the propagation time through the

depletion region 7"¡o.o and the temporal variation of Stokes

signal 7" which reaches the depletion region. In the case
when Z¡u"o(T, the fluctuations in the Stokes signal are sup-

pressed as they pass throu-eh the depletion region while in
the other .¿5e, Iru"r> T, , they are ma_enified and appear in

the final Stokes output. The depletion length /¿"0 depends
(roughly) on the steady state gain G and the immersion
length /¡*. [see Eq. (10)]. By controlling G and i ¡,,, we are

thus able to change the length of depletion region. From the
condition T,o"orT, it is clea¡ that reducing T¡u.o implies a

o.25

8 o.zo

I
ñ o.to

0.05
20 40

lmmersîon length ("-)
60

FIG. 14. The elfect of the energy fluctuations, measured by
(Enu. /Eourpur ) 7o , is reduced for shorter immersion lengths (constant

focal length and large cell to lens separation).

FIG. 15. Histogram of output energies (normalized to the mean)

for trvo different energies 387 mJ and 205 mJ. Operating at high
input energy reduces the effect of fluctuations.

reduction in the number of fluctuations as well as their du-
rations in the frnal Stokes output.

A shorter depletion length can be obtained for a short
immersion length (achieved by long cell-lens separation) and

as a result, we rvould expect a better suppression of fluctua-
tions. Figure l4 shorvs how averaged fluctuation energy

(Eou"lEuu)V" (normalized to output energy) changes as a

function of the immersion length. Vy'e thus conclude that a

small immersion len-eth achieved by large cell to lens sepa-

ration provides better suppression of fluctuations.

3. Effect of input energy

Another parameter that can affect the depletion length is
input energy. Higher input energy resuhs in a higher gain C,
which in turn reduces the depletion length /¿.0 of the SBS.

As discussed above. rve thus expect that fìuctuations in the

output Stokes beam have smaller drrration, i.e., they carry
less energy. In order to examine the effect ol input energy,
we have studied the output Stokes beam of 500 simulated
pulses with different initial noise distribution and at different

energies. Considerin-e the histogram ol E,u,/(Eou,) for these

500 pulses, where Eou, is the mean ener-sy of all output
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FIG. 17. For a constant energy, reducing the duration ol the

input pulse dramatically suppresses the fluctuation in the output

Stokes. The effect of pulse duration on the suppression of fluctua-

tions is shown for two energies: ll5 mJ and 205 mJ.

pulses, and fitting a Gaussian function to it, we find that the

width of the Gaussian fit is¿educed at higher energy, i.e., the

va¡iation in output energy per pulse around the mean value is

reduced for high energy (see Fig. 15). Another parameter

that can shorv horv fluctuations are suppressed for high en-

ergies is the average of the fluctuation energy (normalized to

output energy). Simulation results in Fig. l6 shorv a reduc-
tion in the averaged fluctuation energy for higher input en-

erSres.

4. Effect of pulse duratio¡t

In the above section, we kept the duration oi the input
pulse constant and 

"ve 
studied the effect of parameters such

as input energy and beam area on the fluctuations. In order to

observe the role of pulse duration, rve have chosen to keep

the input energy of the pulse constant and reduced the pulse

duration, i.e., we increased the peak injected power. Simula-
tion results show a dramatic reduction in the number of fluc-
tuations for short pulse durations which in turn results in a

smaller averaged fluctuation energy (Fig. l7).

IV. CONCLUSION

To describe different kinds of temporal amplitude and

phase modulations in SBS, we extended the plane-wave

equations for complex fields describing SBS in a finite cell to
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Ë
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include focusing geometry and initiation from a Gaussian
random noise distributed over space and time. Two kinds ol
modulations were found: (l) Deterministic relaxation oscil-
lation at the threshold energy and (2¡ random fluctuations in
the output Stokes power.

The finite phonon lifetime of a material is responsible for
an energy interchange between the pump and Stokes field
resulting in relaxation oscillations at the threshold. There is

no modulation of the Stokes phase corresponding to these

oscillations. It is predicted that materials with shorter phonon

lìfetimes can exhibit relaxation oscillations of longer dura-

tion than those with long phonon lifetimes. It was found that

an initially stronger acoustic wave (resulting from a high
focal intensity determined by the focal length of the lens)

shortens the relaxation oscillations at the threshold energy

since the Stokes pulse can use the energy stored in the acous-

tic field after initially overshooting. Also, a small immersion
Iength achieved by a large cell to lens separation reduces the

threshold relaxation oscillations. All together, short focal
length, short immersion length, and large phonon lifetime
provide the best parameter space for removing the threshold

relaxation oscillations.
SBS initiated from microscopic noise shows large scale

stochastic amplitude modulation in the output Stokes beam.

Simultaneous and corresponding jumps in the Stokes phase

are observed. We have determined a parameter regime where

this modulation is minimized or eliminated, thus predicting

conditions for optimized, reliable SBS.
(l) Longer phonon litètime provides a better suppression

of instabilities in the Stokes pulse.
(2) Depending on the input energy and focused spot size,

the pump and Stokes field can be confined to a small region
near the entrance of the cell (hi-eh energies, short immersion
length) or distributed towards the focal point for low ener-

gies and long immersion length. For high input energies or

short immersion length the time for propagation through this

region l¿u"o is small enough to suppress many ol the fluctua-

tions reaching this region rvith duration T.)>T¿rr. Short im-
mersion length achievecl by large cell to lens separation is

more clesirable since T,u"o aon be reduced more effectively

and a higher reflectivity can be achieved. but will in practice

be limited by optical breakdown of the SBS material or cell
window.

(3) Another parameter that can be used effectively to sup-

press the fluctuations is pulse duration. Our results showed

that for a shorter pulse cluration (i.e., higher peak power) the

number of fluctuations rvas reduced dramatically.
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