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Abstract

It is known that transient effects limit the efficiency of phase conjugation using
Stimulated Brillouin Scattering (SBS). Most of the present knowledge of transients
in SBS is due to experimental observations, supported by greatly simplified theo-
retical models which makes the present knowledge of transient SBS incomplete. In
this thesis, a one and three dimensional transient model of SBS are developed to
investigate the transient regime of SBS and recognize different transient phenomena
that affect the performance of SBS. A one dimensional model of transient SBS is
initially developed. This model includes the initiation of SBS from noise in a finite
cell geometry. Using this model, two transient phenomena are examined carefully;
1) the deterministic threshold oscillations at the beginning of the Stokes pulse and
2) the stochastic intensity fluctuations in the output Stokes pulse. It is shown that
the threshold oscillations depend on the phonon lifetime of the SBS material and
the immersion length of the laser beam into the SBS cell. It also becomes clear that
the pulse compression phenomenon can be understood in terms of the threshold
oscillations. The intensity fluctuations in the Stokes pulse, contrary to the thresh-
old oscillations, have stochastic nature. Their occurrence, position in the pulse and
their energy content are all random. The effects of the phonon lifetime, immersion
length, input energy and pulse duration on these fluctuations are examined. The

best parameter space for excellent SBS performance is determined.

Next, the one dimensional model is developed into a three dimensional cylin-
drically symmetric model. We use a decomposition method to expand the Stokes,
pump and sound fields in terms of transverse spatial modes. By introducing block-
vectors and matrices, App. B, and using a noniterative method employed by Chu et
al. [1], we have developed a numerical algorithm that enables us to treat compactly
any arbitrary finite number of spatial modes of the Stokes and pump fields. This
efficient numerical algorithm could also be useful for the simulation of broad-band
SBS, where many temporal modes exist in the input pulse. The model provides an
opportunity to study the effects of transient phenomena on the efficiency of phase
conjugation (fidelity) by SBS and the mode structure of the Stokes and pump pulse

inside the SBS cell. The effect of parameters such as phonon lifetime, input pulse
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shape and input energy on the transient fidelity of SBS is investigated. A new
transient phenomenon which causes SBS fidelity degradation at high focal intensity

(short Rayleigh range) is examined.
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Chapter 1

Introduction

Phase conjugating mirrors using stimulated Brillouin scattering (SBS) have been
used extensively since 1971 [6] to compensate for optical aberrations in high power
laser systems, resulting in lasers with greatly improved beam quality. SBS in certain
materials is thus capable of producing efficient and high fidelity phase conjugation of
high power input radiation, but only for a restricted range of laser parameters. Much
research has gone into extending this range of parameters, with most of the research
concentrating on characterizing SBS materials and the type of spatial aberrations
which can be compensated. The emphasis has thus been on the improvement of
average beam quality during a laser pulse, with comparatively little emphasis on time
dependent phenomena. This approach is reasonable as long as the time dependent
phenomena, represent a small fraction of the total energy in a pulse, as is often the
case for single frequency, Q-switched solid state lasers. There are however laser
systems where transient effects are not negligible, including many high power, short
pulse lasers, and systems where short coherence lengths are required, such as range
finders and phase conjugated oscillators. For these applications some investigations
of transient phenomena have been made, but mostly for restricted parameter regimes
and geometries [7, 8, 9, 10, 11, 12, 13, 1, 14, 15, 16, 17, 18, 19, 20], leaving the overall
understanding of transient phenomena incomplete. As a consequence the use of SBS

in these applications has been very limited.

It is known that transient effects limit the efficiency and fidelity of phase con-

jugated systems. Experimental [15, 16, 19, 2] and theoretical [9, 10, 11, 13, 20]

15



16 CHAPTER 1. INTRODUCTION

investigations suggest that a complete understanding of SBS must include transient
effects. Most of the present knowledge of transients in SBS is due to experimental
observations, supported by greatly simplified theoretical models. Transient effects
are responsible for threshold oscillations [1, 17, 20], temporal and spatial fidelity
degradation due to amplitude and phase jump fluctuations [9, 11, 13, 2, 20], and
the reduction in fidelity for input pulses with sharp rise times [15, 2]. Furthermore,
the transient regime is essential for SBS of pulses with amplitude variations on time
scales comparable to the response time of the material, represented by the phonon

lifetime of the material, as is often the case for broad band lasers.

Analytical solutions of one-dimensional differential equations describing transient
SBS (e.g. refs. 8, 13] and references given therein) as well as numerical simulations
of two and three dimensional, steady state SBS (e.g. ref. [21, 22]) exist for the
undepleted pump approximation, valid only near the threshold of SBS. Numerical
models of depleted steady state SBS, for one [23, 24] and three [25, 26, 27, 28, 29]
dimensions have also been reported. There are also published reports on the depleted
and transient regime of SBS for one [7, 11, 1, 20] and three dimensions [17] (zero-
order solution). One-dimensional numerical models are not able to simulate the
measured fidelity of SBS, which is the main characteristic of the SBS process and
represents the degree of phase conjugation of the Stokes return. Two or three-
dimensional models of SBS have been considered both in fibers [25, 26, 21, 30, 17],
where electric fields are expanded according to propagation modes of the waveguide,
and in the cell geometry [22, 27, 28, 29], where electric fields are expanded in terms of
Hermite-Gaussian [27, 28, 29] or Laguerre-Gaussian [22] functions. However, these
models are for either undepleted [21, 22] or steady state [25, 26, 30, 27, 28, 29]
regimes of SBS.

The objective of this thesis is to develop generalized, practical models of
phase conjugating SBS mirrors, in conjunction with experimental investigations
which are already being undertaken, in order to: 1) understand the physics of the
limitations on phase conjugation using SBS, especially in the transient and short
coherence length regimes, 2) help the experimental studies to find an extended

parameter regime for excellent SBS and 3) eventually develop models capable of
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handling the SBS process of short coherence length lasers.

The experimental studies, initiated at the University of Adelaide, concentrated
on two main experiments 1): SBS experiment in a cell geometry for long and short
coherence length lasers 2, 19], 2): SBS oscillators with one and two SBS mirrors
[31, 4, 32]. Using two 1.86 GHz (3db frequency) transient digitizers (Tektronix
SCD1000), the temporal profile of the input, output, reflectivity and fidelity of the
SBS process in Freon 113 was examined experimentally. In addition to the poor
performance of SBS for short coherence length lasers, the experimental observations
showed new limitations on SBS possibly caused by stochastic fluctuations in the

intensity and phase of the Stokes beam [2].

The theoretical studies were initially concentrated on developing a transient, real-
fields, one-dimensional model of SBS initiated from constant noise, based on previous
works by Chu et al. [1] and Menzel et al. [24]. This model then was improved to
include a focusing geometry using the idea of Menzel et al. [24]. At the next stage,
the constant noise term in the SBS equations was replaced by a Gaussian random
noise, enabling the model to simulate the initial thermal fluctuations in the material,
which are the source of the SBS process. At the final stage of the development,
complex fields were introduced into the model to simulate the possible existence of
phase and intensity fluctuations. This model was very successful in 1) explaining
the nature of phase and intensity modulations in the Stokes output, 2) providing the
best focusing geometry and material parameters for avoiding these fluctuations, 3)
understanding the threshold oscillations, 4) determining the parameters that affect
the threshold oscillations. The results of this model were published in Phys. Rev.
A [20] (App. E), IQEC’96 [19], CLEO/Pacific Rim’97 [33] and AOS XI [34]. The
one-dimensional model, although very successful, did not enable the study of fidelity
due to its one-dimensional nature. The next generation of the model was a three-
dimensional one with cylindrical symmetry. In addition to having all the features
of one-dimensional model, this new model enabled, for the first time, the study of
transient SBS fidelity. In this model, we developed a new efficient algorithm, which
made the computer code run more quickly and efficiently. We believe that our new

algorithm can be used in the modeling of the SBS process of short coherence length
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lasers. The model was very successful. It did not only produce results consistent
with experiments on SBS phase conjugation in the transient regime but also predict
a new transient phenomenon that has not yet been observed experimentally. The
results of this model were published at CLEO’99 [35] and accepted for publication
in Journal of Nonlinear Optical Physics and Materials (App. E).

This thesis reports the details of the theoretical models and their re-
sults. Chap. 2 of this thesis reviews the phase conjugation phenomenon and the
nonlinear interaction of light and matter. These are the two fundamental concepts
behind nonlinear optical phase conjugation. We concentrate on the two main meth-
ods of phase conjugation, Stimulated Scattering (SS) and Degenerate Four-Wave
Mixing (DFWM). A brief review of phase conjugation using DFWM is given at the
end of Chap. 2. A review of phase conjugation using SS is provided in Chap. 3.
It is shown that all of the SS process can be discussed uniquely in the framework
of parametric interaction. The main SS process that is used for phase conjugation
is SBS. In Chap. 3, we review the SBS process and develop the basic theoretical
formulas that describe SBS. A summary of transient SBS and its effect on different
aspects of SBS is given at the end of Chap. 3. Chap. 4 is devoted to the details
of our one dimensional model and its results. The extension of our one dimensional
model to a three dimensional one with cylindrical symmetry is described in Chap.
5. The results of the model and discussion are given at the end of this chapter.
The summary and conclusion of the whole study including possible ways of further
investigations are presented at Chap. 6. Attached in App. E are the papers which
have been published on the subject of this thesis. The content of Chaps. 4 and 5 is
very similar to that of the papers I and II in the App. E.



Chapter 2

Phase Conjugation

In this chapter, we first describe the principle of phase conjugation (PC) and different
methods of achieving PC. Next, a general theoretical description of the interaction
of light and matter is developed by introducing polarization field. This together
with the Maxwell’s equations are then employed to derive the basic wave equations
governing the nonlinear optical processes which result in PC. Degenerate Four-Wave
Mixing (DFWM) is then studied as an explicit example of a nonlinear optical process

that leads to PC.

2.1 Principle of Phase Conjugation

Optical phase conjugation (OPC) is a technique to reverse both the propagation
direction and the overall phase of an arbitrary light wave relative to its propagation
direction [36, 37, 38, 39]. The concept of phase conjugation can be understood in
terms of time-reversal [37, 38, 39]. By time-reversal, we mean transforming ¢ — —¢

in the wave equation of motion. Consider a light beam,

E(r,t) = e(r) cos[wt — kz + ¢(r)],

19
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propagating along the z direction. The time-reversed wave, obtained by transforming

t — —t in E(r,t), is a wave propagating along —z direction with phase —¢(r):
Erey(r,t) = Ce(r) cosjwt + kz — ¢(r)].

Here, C is a constant and E,.,(r,t) = CE(r, —t). Considering E(r,t) and E,.,(r,t)

as the real parts of

E(r,t) = Rele(r)e e 0] = Re[e(r)e™te®™)], &*(r) = (1),

E're'u (r, t) = C Re[s(r)e_u”te_l[kz_d’(r)]] S CRe[E(r)e_u‘Jte_“p(r)],

it is seen that the time-reversed beam E,.,(r,t) can be obtained from E(r,t) by

—1®(r), Therefore, the process of time-

replacing ') by its complex conjugate e
reversal is mathematically equivalent to a phase conjugation process. The concepts
of time-reversal and phase conjugation can be understood by a hypothetical example.
Consider an optical process in which a laser beam is diffracted by a nonabsorbent
transparent media into small beams of different directions as shown in Fig. 2.1(a).
Then, one can think of the time-reversed process: small multi-directional light beams
incident on a transparent media produce a highly directional beam as shown in Fig.
2.1 (b). In order for this to happen, the light beams incident on the media in Fig.
2.1(b) have to be the time-reversed or phase conjugate of the diffracted beams in
Fig. 2.1(a). This is very exciting because if one can find a mirror that reflects beams
into their phase conjugated ones and use it in the experiment shown in Fig. 2.1, then
it will be possible to reconstruct the original beam before diffraction (see Fig. 2.2).
This hypothetical mirror is a phase conjugating mirror. In reality, there are some
nonlinear optical processes that can be used in the PC mirrors. Although, there is
always some energy loss in these nonlinear optical processes, in some processes one

can achieve reflectivity and phase conjugation efficiency (defined as fidelity and will

be discussed in the next chapter) of more than 90 %.

The wavefront reconstruction concept and its promising applications have mo-
tivated many experimental and theoretical investigations. The early work on the

wavefront reconstruction was the invention of holography by Gabor [40, 41]. Ga-
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Figure 2.1: Time reversal concept. In (a) an incident beam is diffracted by a trans-
parent media. The time reversal phenomena of (a) is shown in (b): multi-directional
diffracted beams are incident on the transparent media and produce a highly direc-
tional beam.

Transparent

Incident beam _ ‘
4 [
Reconstructed / 3
beam [
()
Phase conjugator
mirror

Figure 2.2: A hypothetical phase conjugating mirror is used to phase conjugate the
incident beams. Phase conjugated beams reconstruct the initial incident beam in
passing through the transparent media.
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bor had the idea of using holography to improve the resolving power of an electron
microscope by reading a hologram and compensate for spherical aberrations. This
idea didn’t turn out to be of much practical use due to spatial coherence and in-
tensity requirements of beams, necessary for writing and reading of the hologram.
The development of the laser with a high degree of temporal and spatial coherence
and high intensities in 1960’s, opened the doors for practical development of holog-
raphy. A group of researchers at the University of Michigan were the first to report
a successful demonstration of holography [42, 43]. Soon after that, holograms were
used to correct the static phase distortion introduced into an optical wavefront by
stationary objects [44, 45, 46]. The possibility of extending static holography to
real-time (dynamic) holography was introduced by Gerritsen [47] who observed that
holograms can be stored temporarily in media whose index of refraction depends on
the intensity of light. Later on, the first demonstration of using dynamic holography
to compensate for wave front distortion was reported by Stepanov [48]. In the early
1970’s a team of Russian scientists led by Dr. B. Ya. Zel’dovich [6] noticed that
the back scattered pulses generated by stimulated Brillouin scattering exhibited ex-
cellent spatial quality even though they had passed through a distorter in front of
the SBS medium. In 1972, Nosach et al. [49] demonstrated wavefront correction
using Brillouin scattering. The phase reversed or phase conjugated back scattered
beam can compensate the distortion effects of the distorter by passing back through
it. Much later, Yariv [50] showed that real-time holography (dynamic holography)
was equivalent to a certain type of phase conjugation achieved by a process called

Degenerate Four-Wave Mixing (DFWM).

Over the past few decades, remarkable progress has been achieved in the field of
nonlinear optical phase conjugation and this phenomenon has been the topic of in-
tense research efforts. In addition to being considered as a technique for all optical,
real time adaptive optical compensation, the field of nonlinear optical phase con-
jugation has grown to encompass a large variety of potential applications for both
high-power and low-power systems, including propagation compensation, novel op-
tical cavities and oscillators, energy scaling, optical data computing and processing,

remote sensing and diagnostics (including spectroscopic investigations), low-noise
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free-space and guided-wave communication systems, compensated image transmis-
sion, metrology, nondestructive testing, and data storage and cache memories, to

mention a few [51].

2.2 Different methods of phase conjugation

Phase conjugation has been observed in a variety of nonlinear phenomena including
degenerate four-wave mixing, stimulated (Brillouin, Raman and Rayleigh) scattering

and photorefractive effect.

Under certain conditions phase conjugation is possible via backward stimulated
scattering. One of the required conditions for phase conjugation is that the phase
mismatch (k, — ks)L must be small, where (k, — ks) = 2rnAv/c is the wavenumber
difference between the incident pump and the scattered Stokes pulses and L is the
interaction length. In Raman scattering, (since (k, — ks) is usually large, of order
k,), phase conjugation is seen in specific circumstances of short interaction lengths,
high intensity and high gain [51]. Phase conjugation by Raman scattering was
demonstrated by Zel’dovich et al. [52]. They were successful in restoring an aber-
rated laser beam using stimulated Raman scattering from the 656-cm™" excitation
of liquid CS,. Kurdriavtseva et al. [53] observed phase conjugation in stimulated
Raman scattering with short pulses of 25 ns duration. They also achieved image

reconstruction at Stokes frequency shift of less than 5 cm™!.

Raman scattering
is not very useful in efficient laser systems however, because the Stokes beam is
frequency shifted outside the gain. Since the Brillouin phonon lifetime is usually
longer than the Raman phonon lifetime, stimulated Raman scattering dominates

stimulated Brillouin scattering for very short pulses.

Stimulated Brillouin scattering (SBS), FWM and the photorefractive effect are
the main nonlinear mechanisms for phase conjugation. SBS-based phase conjuga-
tors are typically used in applications requiring high power or energy such as laser
oscillators whilst the photorefractive mechanism is used in low power applications
such as optical data processing [51]. SBS does not require pump waves of high

quality for good phase conjugation whereas sufficient quality pump beams, which
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are difficult to obtain when using high power lasers, and delicate alignments are
required in FWM. Overall, SBS is the easiest and most popular method of phase

conjugation when using intense pulsed laser sources.

The theory of stimulated scattering (SS) and phase conjugation using SS will be
discussed in the next chapter with emphasis on SBS. It can be shown that all of
the stimulated scattering phenomena and FWM can be treated in the framework
of a nonlinear parametric interaction. In parametric interactions a few intense laser
beams interact with a nonlinear medium and induce a nonlinear polarisation. Next,
this nonlinear polarisation itself is a source of a new laser beam with a new frequency.
In general the frequency of the new emitted laser beam is equal to either the sum, the
difference, or the combination of sum and difference of the initial frequencies. This
classifies the nonlinear interaction as either sum-frequency generation, difference-
frequency generation, and combination of sum and difference-frequency generation.
The parametric interaction is a difference-frequency generation, for which the fre-

quency of the new laser beam is the difference of the incident frequencies.

In the next section, we discuss the theory of nonlinear interaction to: 1) under-
stand parametric interactions and 2) develop the theory of DFWM and stimulated

scatterings (which will be discussed in the next chapter).

2.2.1 Nonlinear interaction of light and material

The key element of nonlinear optics is the induced polarization P(t) and its relation
with the driving electric field E(¢). Upon the incidence of a beam or beams of light on
a nonlinear material, the total electric field interacts with the material at the atomic
or molecular level and induces different processes such as exciting the system to a
higher energy level, changing the charge or density distribution and so on. The
effects of these induced processes regardless of their nature can be summarised in
an induced polarization field P(¢). This polarization field can be described in terms

of a power series as

P(t) = PO(t) + PU() + PO@) +-- + PU(t) + -, (2.1)
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where PO)(t) is linear in the total electric field, P(®(t) is quadratic, and so on.
P© (t) is the static polarization that exists in some crystals and is independent
of electric field. For a general case, where we assume that the response of the
medium to the electric field is not instantaneous, one can relate different orders of

the polarization field to the electric field as

PO@1) = & / +oodTR(l)(T)IE(t—T),

oo

+00 +00
P(2)(t) B Eo/ dTl/ deR(2)(T1,T2)|E(t - Tl)E(t - 7'2),

+00 +00
PO () — so/ dn---/ A RO (ry o Bt —71) -+ Bt — 7).

—00 —00

Here, R™(7y,---7,) is a real (n + 1)-rank tensor indicating the polarization re-
sponse function of the medium and the vertical bar (|) represents the tensorial
product. R™(r,---7,) is zero if any of the 7; is negative and its components
R,(fé)l._,an (71, - - T,) are invariant under any n! permutation of pairs (a1, 71), ++ , (Gn, Ta)-
Eqs. (2.1) describe the polarization response of the material in the time domain.

Using the Fourier transform of P(™(t) and E(t) i.e.,

PM(t) = /+°° dwP ™ (W) exp(—uwt), (2.2)

—00

+00
Et) = / dwE(w) exp(—wt),

—0o0

one can derive the equivalent frequency domain equations:

PYw) = & /_+°° duwrx M (—we; w1) | E(w1)6(w — ws), (2.3)

+o0 +00
POW) = & / iy / X ® (=g wr, wa) [Ewr) E(w)8(w — we),

+o0 +00
PO = eo [ dus--- / duonx™ (=i wr, - ) |Ew1) -« - B(wn)(w — w),
where x™ (wy; w1, -+ ,wn) is a (n + 1)-rank tensor called susceptibility tensor and

Wy = Wy + Wy + + + - 4+ wy, is the sum of optical driving frequencies. One can think of
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different sets of (wq,- -« ,wy,) with a sum w, = w; + wy + - - - + w,. The convenience
of using (—wy;wq, -+ ,wy,) as the argument of the susceptibility tensor will become
clearer later when we find the induced polarization due to monochromatic electric
fields at frequencies wy, -+ ,wy,. It will be shown that (Eq. 2.9) the induced polar-
ization field at the frequency w, depends on the susceptibility tensors with different
sets of (wy,-++ ,wy) but same wy = wy + wy + - - - + wy,. The susceptibility tensor can
be explicitly evaluated according to the detailed interaction of the system with the
electric fields. Like the time domain representation, P(w) can be written as a power

Pw) =Y POw). (2.4)

The above equations apply generally for any incident electric fields. As an applica-
tion, we consider monochromatic incident waves, which can be represented in the

time domain as

1
E(t) = > Z [E.r exp(—w't) + E_, exp(w't)] where EX, =E_,,,

w'>0

(2.5)
or equivalently in the frequency domain as (2.6)
1
E(w) = = > [Bwbw —w') + E_yb(w + w')]. (2.7)
w'>0

For such an electric field one can write P(™(t) in the same form as E(t) in Eq. 2.5

ie.,

1
P™(t) = 5 Z [P™ exp(—wwt) + P™ exp(uwt)] where (P™)* = P™.

w>0

(2.8)

By substituting (2.7) into (2.3), a compact but general relation, which can be used

to describe all different nonlinear processes, is obtained as

P™ = ¢ ZK(—wU;wl, e W)X ™ (—weswiy ..y wh)|Bo,y - B,
“ (2.9)
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in vectorial form or,

(PM™), = & Z Z K(~ws;w, .- - ,wn)xl(f;)l”_an(—wg;wl, ooy W) (Buey -+ (B, ) an-
1...0n W (210)

in component form. In the former, the first sum is over the components of the tensor
x and the vectors E, and the second sum is over all possible distinct combinations
of (wy, ... ,wy,) which satisfy w1 + ... +w, = we. K(—ws;w1,... ,wy) is a numerical
factor that depends on the number of distinct permutations of (wy,...,w,) and
the order of the nonlinearity. As an example for n = 3, the third order nonlinear
processes are given [54] in Table 2.1. All of these processes are contributing in the
total third order nonlinear polarization (Pu(,z))p through Eq. 2.10. However, due
to resonance enhancement, phase matching or spectral selectivity there is only one
nonlinear process that gives rise to the dominant polarization in Eq. 2.10 and thus

should be considered [54].

Wave Equations

Starting from Maxwell’s equations, one can easily derive the wave equation for the

electric field inside a nonlinear material as [54]

VxVxEl) = -~ L Byl ) (2.11)
=~ @t HogaP ) '
in the time domain or
w2
V x V x E(w) =§E(w)+w2,u0P(w), (2.12)

in the frequency domain. Ignoring the static polarization in 2.4 and substituting

P(w) in (2.12) using (2.3) and (2.4), we find

w2

V % V x Ew) = 5 Bw)+wtoeox ™ (—w; ) [EW) + w0’ P (),

(2.13)

w2

= —5¢(@)|B@)+w*uP" W),
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Table 2.1: The x® form and K factors for different third order nonlinear processes.

Process X3 (~we; w1, wa,ws) K
d.c. Kerr effect (quadratic X} (~w;0,0,w) 3
electro-optic effect)
d.c.-induced second harmonic generation x3(—2w;0,w,w) %
Third harmonic generation X} (—3w;w, w, w) 2
General four wave mixing X3 (—wa; w1, we, ws) 3
Third-order sum and difference X3 (—ws; £wi, wa, wo) %
frequency mixing
Coherent anti-Stokes Raman scattering  x3(—was;wp, wp,ws) %
Stimulated Raman scattering x}(—ws;wp, —wp,wg) 3
stimulated Brillouin scattering
self focusing (~w;w, —w,w) 3
degenerate four-wave mixing
Two-photon absorption/ionisation/ X3 (—w1; —wa, —wg, w)
emission or 3

X (~wsw, —w,w)
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where e(w) = 1+ xY(—w;w) and PNE(w) = 3%, P (w). We assume that E(w)
consists of infinite, colinear, and monochromatic plane waves propagating in an

arbitrary direction e.g., z as,

E(w) = Z [Eu, exp(1k;2)8(w — wj)+EL, exp(—tk;z)8(w + w;)].
wJ>o

We also assume that the direction of the field vector E(w) is perpendicular to the
propagation direction. Such an assumption requires that the medium is isotropic,
which is not generally true, but works for the stimulated scattering processes that
we study here. Finally, we consider the slowly varying envelope approximation, in
which we assume that the spatial variation of E(w) (both in amplitude and phase)
is small such that

‘—E zZ,w)

0
< ‘kaE(z,w) .

The real significance of the slowly varying approximation, as pointed out by Shen
[55], is that it is equivalent to neglecting the component of the E, generated by
PYI(w), which is propagating in the direction opposite to the input electric field.
With the help of the above assumption we can replace V x Vx E(w) by —0*E(w)/ 02

2

n (2.13), ignore the second derivatives Z—E < kg—E and rewrite (2.13) as
z

9 w2
—E,,= 2O PIE exp(—1ky2). (2.14)

This equation describes how the propagation of the electric field at frequency w,
and wavevector k, in the medium can be determined by the nonlinear polarization
PNL(w). The nonlinear polarization is coupled to all other electric fields existing
in the medium with different frequencies through Eqs. (2.4) and (2.9). All orders
of nonlinearity are in\volved in PYX(w) but as mentioned before, usually due to
resonance enhancement, phase matching, spectral selectivity or some other discrim-

inating feature, only one order (say n) needs to be considered. This means PY%(w)
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can be written as

ng’ = oK (—wy;wy, . .. ,wn)x(")(—wc,;wl, ooy w) By, .. By, exp(tkyz),

(2.15)

where wy, = wi +....+wy, and kp, = ky + ... + k,,. By substituting Eq. (2.15) in Eq.

2.14 and expressing the results in scalar form, one finds

2
0 (274

=
0z ° 2k,c?

K(~woiwi, - wn)X™(~woiwiy ... ,wn) By, . .. B, exp(—1Akz),
(2.16)

where E,, = Eje;, Ak =k, — k, is the phase mismatch term and x™ is the scalar

form of the tensor x(™ defined as
x(n)(—w(,;wl, cee W) = e;.x(n)(—wa;wl, ooy wy)ler..ey.

The vectors e; are unit vectors along the polarisation direction, and scalars E;
and x™ are the components of electric field and susceptibility tensor along the

polarisation directions.

2.2.2  Degenerate Four-Wave Mixing (DFWM)

DFWM is a nonlinear process in which two colinear counter-propagating pump
beams, (E1,k;,w) and (Es, ko, w), are incident on a nonlinear material. There is
also a weaker probe beam, (Es,ks,w), which is incident at a small angle to the
pump beam, (Ei,k;,w). The pump and the probe beams produce an induced po-
larisation or grating. This induced grating scatters the probe beam into a signal
beam, (Ejy, k4, w), where ky = —k3 and the signal beam is the phase conjugate of the
probe beam. The setup for a DFWM experiment is shown in Fig. 2.3. DFWM was
first proposed theoretically in 1977 by Hellwarth [56]. The first DFWM experiment
was reported by Bloom and Bjorklund [57]. They used CS, as the nonlinear media
and a frequency-doubled Q-switched Nd:YAG laser and its reflection from a mirror

as the two counter-propagating pump beams. They successfully demonstrated the
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E, (Signal) ¢—— nonlinear optical /
E» (Backward pump)
E 3 (Probe) ———» medium
E (Forward pump) l— E B
70 z=L

Figure 2.3: Schematic of degenerate four-wave mixing. E; and E; are two colinear
counter-propagating pump beams. Ejs is a weaker probe laser beam incident at a
small angle to the pump beams. E,4 is the output and is phase conjugated of Es.

aberration correction of an Airforce resolution chart using the reflected and phase
conjugated signal beam of DFWM. The first Continuous Wave (CW) experiments
of DFWM were reported by Liao and Bloom [58]. DFWM has proven to have lots
of applications in image processing [59, 60, 61], aberration correction [62], frequency
stabilization of lasers [63], narrow band optical filters [59, 64, 65], optical switching
[66], and temporal auto-correlating devices [67).

Referring to Fig. 2.3, using the phase matching condition Ak = 0, and the fact
that k; = —ko, one can deduce that k; = —ks which means that the signal wave
retraces the probe beam. For DFWM the dominant term in the polarisation is the
third order nonlinear polarisation which is proportion to x® (—w;w, —w,w) with
a K factor of K(—w;w,—w,w) = 3 [54]. This can be used in Eq. (2.16) to find

equations that describe the propagation of the probe and the signal beam as

—F; = z—zx(g’)(—w;w, —w,w)Ey BBy = B3, (2.17)

aE’; . ’L%x(?’)(—w;w, —w,w)ETEsEy = 1kEy (2.18)

3
where k* = —wx(3)(—w;w, —w,w)E Ey
8nc

Using the undepleted pump approximation, Egs. (2.17) and (2.18) can be solved for
the geometry shown in the Fig. 2.3 to obtain [50, 5]

cos |k| z k*sin |k| (z — L)
Ei(z) = Ey(L) +1 E3(0), (2.19)
cos || L |k| cos |k| L
k|sin|k|z cos |k|(z — L
E3(z) = —zu-‘——E’Z(L) + ——L)'E3(0). (2.20)

k* cos |k| L |k| cos |k| L
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Since only the probe beam is incident on the medium at z = 0, and E, is due to
the scattering of the probe beam from the grating then, E4(L) = 0 and Eq. (2.19)

becomes

By(e) = Sm i 2 = L) b (2.21)

|k| cos |k| L

This clearly indicates that the signal beam FE4(0) is the phase conjugate of the
incident beam E3(0).

2.3 Summary

In this chapter, we first studied the concept of phase conjugation. Then, a general
formulation of the interaction of light and matter was developed. We employed
this formulation to study Degenerate Four Wave Mixing DFWM as a third order
nonlinear process. This formulation will be used at the beginning of the next chapter
to indicate the similarity among all of the stimulated scattering processes. It will be
noted that the differential equations describing the stimulated scattering processes
are identical. The only term that distinguishes between different processes is a third
order nonlinear susceptibility x® that depends explicitly on the nature of material
excitation for each stimulated process. In the rest of the next chapter, we discuss
the theory and properties of the Stimulated Brillouin Scattering (SBS) as one of the

most common ways of achieving phase conjugation.



Chapter 3

Theory of Phase conjugation using

SBS

3.1 Introduction

This chapter is devoted to the theory of Stimulated Brillouin Scattering as a phase
conjugating nonlinear process. First, it is indicated that the formulations of Ra-
man and Brillouin scattering processes are similar in the context of the parametric
interaction. What makes these processes different is the mechanism of the initial
excitation of the material. Next, the detailed theory of the SBS is examined. This
includes the behaviour of the SBS process in the steady state regime, where there
are analytical solutions of the SBS equations, and the transient regime, where only
approximated solutions of the SBS equations exist. We explain how the SBS process
leads to phase conjugation and define a parameter that indicates the efficiency of

the phase conjugation of SBS.

3.2 Stimulated Light Scattering

Stimulated Raman and Brillouin scattering processes, in general, are very similar in
nature. First an initial intense laser beam is frequency shifted and scattered from
noise. Next, this scattered beam interferes with the incoming beam inducing a non-

linear polarization in the material. This nonlinear polarization is the main source

33
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of further stimulated scattering. The initial noise is different for different scattering
phenomena. These two stimulated scatterings can be treated in the framework of a
parametric interaction, in which the incident light beam at frequency w; interacts
with the material excitation wave at frequency €2 to produce a light beam at fre-
quency wg = wy — ). It can be shown [55] that these stimulated scatterings are third
order parametric interactions. This means that the equations for the electric fields
amplitudes at frequencies w; and w, are driven by third order nonlinear polarisa-
tions le(NL) and P‘%NL) that are proportional to |Es|* Ey and |E;|* Es, respectively.
From this point of view, the differential equations governing the different kinds of
stimulated scattering processes (Brillouin or Raman) are similar. Using Egs. (2.15),

(2.16) and Table 2.1, they are given (in the steady state and slowly varying approx-

imation) as
0 3w? :
;0= 2k1612X(3)(—w1;w1, —wy,ws) | Eo|* By exp[—i(ky — ka + k2 — k1)2],
(3.1)
d 13w :
EEz = 2k2c22 x® (~wy; w1, —w1, ws) |B1|? By expl—i(ky — k1 + kg — kq)z],
(3.2)

where the two phase mismatch terms in Egs. (3.1) and (3.2), (k1 — ko + k2 — k1)2
and (k; — k1 + ko — ks) 2, are identically zero. Stimulated Raman and Brillouin scat-
terings can be treated using Egs. (3.1), (3.2) and different nonlinear susceptibilities
x®. x® summarizes the nature of the material excitation and it therefore depends
explicitly on the mechanism of material excitation (i.e. electronic and vibrational

in Raman, density wave in Brillouin) for different stimulated scattering processes.

Stimulated Brillouin scattering (SBS) is discussed in detail in the next section.
Due to the similarity between stimulated Brillouin and Raman scattering, many
of the results in the next section can be extended to stimulated Raman scattering

Process.
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3.3 Stimulated Brillouin Scattering

The optical properties of any medium, usually dielectric constants, fluctuate due to
thermal or quantum mechanical effects. The scattering of light from these fluctua-
tions is called spontaneous scattering. The intensity of spontaneously scattered light
is usually very weak in comparison to the incident light. For example, one part in
10° of incident power is scattered spontaneously in passing through 1 cm of liquid
water [5]. In contrast, stimulated scattering occurs when an intense beam of light
is scattered from fluctuations induced by the light itself. An example of stimulated
light scattering is stimulated Brillouin scattering (SBS) [stimulated Mandelstam-
Brillouin scattering according to Russian literature] in which strong monochromatic
laser light is scattered from induced density fluctuations in the medium. Using
material density variation to describe Brillouin scattering was an approximation
first used by Einstein [68] and then by Brillouin [69]. The density p of a material
is a function of pressure (p) and entropy (s). Any changes in the density can be

associated with changes in the pressure and entropy as,
Ap = (8p/0p)sAp + (0p/0s)pAs.

In this regard Ap describes an acoustic wave and As describe an entropy wave[55).

An illustration of the SBS experiment is shown in Fig. 3.1. A laser beam of
frequency w; is incident on a SBS medium and is scattered from refractive index
variations associated with frequency Q. The acoustic wavefronts move away from
the pump beam causing the frequency of the scattered beam (Stokes beam) to
be Doppler shifted down to w, = w; — Q. This scattered beam interferes with
the incoming beam to produce a component frequency 2 which acts as a source
term for the acoustic wave and magnifies its amplitude. This magnified sound
wave together with the incoming laser beam reinforces the Stokes return. Under
certain circumstances, the above mechanism repeats over and over leading to the
exponential growth of the Stokes beam. The production of the sound wave as a
result of the interference between the laser and the Stokes beam can be explained by

electrostriction. Electrostriction causes the material to become more dense in the
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Figure 3.1: SBS experimental setup. Input pump pulse with frequency w; is
diffracted initially from thermal noise. The diffracted and the incoming beam induce
an acoustic wave {2 which propagates in the same direction as the input pulse.

region of high optical intensity. It can be described [5] by considering a capacitor
immersed in a dielectric liquid and finding the pressure exerted on the dielectric
liquid due to electric field. The energy density associated with an existing total
electric field, =, in a medium is u = €=2/8x, where ¢ is the dielectric constant of
the medium. For a capacitor immersed in a dielectric liquid, the dielectric liquid is
attracted and compressed to the area of high electric fields between the capacitor
plates. As a result of this compression the density of the liquid changes by Ap. This
change in the density results in a change in the dielectric constant from € to € + Ag,
where
Oe

Ae = —Ap.
€ app

Consequently, the change in the energy density is

A EZA 52 Oe A
u=g-le= 8_7r(6_p) p- (3.3)

This change in the energy density must be equal to the work done to compress a

unit volume of the liquid i.e.,

AV Ap
Au=Aw = p— = —p—. 3.4
u=du=pt) = = 3.9

Combining Egs. (3.3) and (3.4), yields the pressure

=2 Oe =2

P==r5:(3,) = g G
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O¢ . .
where v, = pa— is the electrostrictive constant. Any changes in the total elec-
p
tric field Z cause variation in the pressure p which in turn produces a sound wave

(through the Navier-Stokes equation, Eq. 3.9 ).

Stimulated Brillouin scattering was first observed by Chiao et al. [70]. They
studied the scattering of a Q-switched ruby laser from quartz or sapphire. Using
a Fabry-Perot interferometer, they detected a frequency shifted component in the
scattered laser beam. The process has a high conversion efficiency for transparent
materials; up to about 90% of input energy can be reflected back (for optimum
configuration). The backscattered laser beam should be isolated from the laser
system since otherwise it can damage or add a down shifted frequency component

to the laser system.

The SBS process can be described as a coupling between the laser, Stokes and
the sound waves which can be represented by plane waves of central frequencies wy,

ws and 2, respectively.

1
El(r,t) = E[El(l‘,t)ez(wlt-’—klz) + C.C.], (36)
1
Es(r,t) = §[Es(r,t)ez(“”t'k”‘) + c.c.], (3.7)
p= o+ H[Q, 0O 1+ cc) (33)

Here the incident laser beam and the acoustic field propagate from right to
left and the Stokes field propagates from left to right (Fig. 2.1), @ = w — w,
q = k; + k; ~ 2k;, and po is the mean density of the medium. Ej, E; and Q are
the amplitudes of the laser, Stokes and acoustic waves, respectively and vary slowly
as a function of time. Using the usual dispersion relation between the wave vectors
g, k; and k, and the wave frequencies 2, w; and ws, one can find the sound wave
frequency 2 as

2nv
Q=- swl,
c

where v, is the speed of sound in the material and n is the refractive index of the
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medium. The material density obeys the Navier-Stokes equation [71]

?p d
ry V2p+v,—V?p=—V.f, 3.9
gz TV Pt 0V f (3.9)
where f = —Vp is the driving source term, which represents the change in the

density of the material due to the pressure exerted by electric field. Using Eq. (3.5)
in Eq. (3.9), we find
0%p 5 s 9 o Ye w22
—— — = —V*=~ 3.10
YD +v;Vip+uw atV p 87rv (3.10)

In this equation v, is the kinematic viscosity, and = is the total electric field in the

material given by:
(1, t) + Es(r, t). (3.11)

Substituting Egs. (3.11) and (3.6)-(3.8) in Eq. (3.10) yields an equation, which
relates the amplitudes of the laser, Stokes and acoustic fields. This equation has
a large number of terms which can be simplified using the following relations and

approximations [8].
1) The ordinary dispersion relation for the sound wave ¢*v? = Q2.

2) ¢ > O(all fields)/0z, or equivalently Asouna( or A;) < 9z/8(all fields) since
q =2k, =2r/ A(sound), Which means that the wavelength of the sound wave is small
compared to the length over which the electric and sound fields change considerably.
This approximation is similar to the slowly varying approximation that is usually

considered for the electric fields.

3) © > 0/0¢t. This approximation requires that 2 should be greater than the
pump bandwidth, 1/(pump pulse duration), and the SBS decay rate I (as defined
below). These conditions are usually met for long coherence length lasers and most

of the materials (see [5]) but some broad-band lasers do not match these conditions.

4) 2I'/vs > 0/0z, which means that the phonon propagation distance must
be short compared to the distance over which the electric and sound fields vary

significantly. This condition is usually met since hypersonic phonons are strongly
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damped and thus propagate only over very short distances before being absorbed

(the typical absorption coefficient of the sound wave is (sounay = I'/vs ~ 10° m~1[5]).

Using these assumptions, the simplified equation for the sound wave that is

commonly used (see [8] and references therein) is given by:

0
(5 +T)Q =~ BiE;, (3.12)

where ¢, is the coupling coefficient constant between the electric fields and the
acoustic wave, I' = 1/27 is the decay rate of the sound wave in the material and 7

is the phonon lifetime of the material.

The coupled equations for the electric fields can be derived from the wave equa-

tion
V2E - (%) T (3.13)

in which P is the induced and nonlinear polarisation of the material and is given by

[5] 1
P = ——~.p=.

4mpo
The left hand side of Eq. 3.13 includes components of electric fields at frequencies
w, and w;. Thus, on the right hand side only those terms of p= that contribute to
frequencies terms w, and w; should be considered. In addition to this, one can use

the Slowly Varying Approximation (SVA), which requires

0*FE; < k'BE,-

022 ‘0z |’

82E,~ i

EY? K wiﬁ for i = s, 1,

to simplify the left and right hand side of Eq. 3.13, using Egs. (3.6)-(3.8) and (3.11).
This yields the following equations
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Like g1 in Eq. (3.12), g2 is the electric and the acoustic fields coupling coefficient
and V? is the transverse derivative operator. These two equations together with Eq.
3.12 are the three main coupled differential equations that describe SBS. These three
coupled differential equations, or approximate versions of them, are the starting

equations for most of the theoretical and numerical studies of SBS [7, 8, 1, 17]

i n o 0 .
(_2K Vi + Py T 5)!33 = —ig: Q" E, (3.14a)
t2, 0 0., _ .
(2Kl i + c at az)El - ngQES7 (314b)
0
(a +IQ = - B E. (3.14c)

3.3.1 Steady state regime of SBS

In the steady state and one-dimensional regime, we can ignore the time and trans-

verse derivatives, % andV?, of all the fields and rewrite Eqs. (3.14) as

0 9192

—E,=2Z|E’E, 3.15
P T | By (3.15)
0 g192 2

—E =222|E,|*E,. 1
52 =T |Es|” By (3.16)

Here, |Ej|* is the intensity of the pump wave. We can multiply both sides of these

equations by E} and E} respectively to obtain

0

—I, =gl 1
o gl (3.17)
0

—1I, =gl1,, )
az l g lI (3 18)

where [; and I; are given as
I =|E® & I,=|E.

Here, g = 2¢192/T is the gain coefficient of the material and is given by [71, 5]

1

g= gMazm,
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Table 3.1: Frequency shift, linewidth and gain coefficient of SBS for some materials.
Except Fluorinert and Freon 113, values have been quoted from ” Nonlinear Optics”
by Boyd [5].

Substance Wave Frequency Band Gain

length shift width  factor

A Q/2m I'/27  gMaz

(nm) (MHz) (MHz) cm/MW
CS, 694 5850 52.3 0.15
Fluorinert FC72 [72] 1060 1100 270 0.0060-0.0065
Freon 113 (73] 1064 1800 190 0.0062
Acetone 694 4600 224 0.02
Toluene 694 5910 579 0.013
CCly 694 4390 520 0.006
Methanol 694 4250 250 0.013
Ethanol 694 4550 353 0.012
Benzene 694 6470 289 0.018
H,O 694 5690 317 0.0048
Cyclohexane 694 5550 774 0.0068
CH,4(140 atm) 694 150 10 0.1
Optical glasses 694 11000-16000 10-106 0.004-0.025
Si0Oy 694 17000 78 0.0045

in which Aw = w — ) is the deviation from the Brillouin frequency. This shows that
the SBS gain has a Lorentzian shape with a maximum at w = Q and half width T".
The maximum value of the gain factor g, is given as,

Vowy

Moz = 2nwed pol’

where 7, is the electrostrictive coefficient, ¢ and v are the light and sound wave
velocities respectively, n is the refractive index of the material and py is the mean
density of the material. Some typical values of Brillouin frequency shift 2, gain

band width T" and gpq. for different materials are given [71, 5] in Table 3.1.

In the undepleted pump regime, where the interaction between the pump and
Stokes beam is not strong and we can ignore 8I;/0z, Eq. (3.17) can be solved for
I, to give

L Limm G
Is b IsOeg ! = IsOe 0,
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where I is the initial Stokes intensity,
GO i gIlLimm (319)

is the usual steady state gain of the SBS process and L;y, is the immersion length

of the laser beam into the SBS medium.

Egs. (3.17) and (3.18) should be solved simultaneously in the pump depleted

regime. Using these two equations, we can show that

O s ) = L(2) +a, (3.20)
0z 0z

where a is a constant showing the percentage of the input energy not reflected into
the Stokes pulse. For a 100% reflection a = 0. Eq. (3.20) can be used in Eq. (3.17)
to find

0
—1I, = 29I + 2agI,. 3.21

This, and a similar equation for I;, can be solved for I, and I; by changing the
variables I, — 1/I, and I; — 1/I; and using the geometry shown in the figure 3.1.

The final solutions are,

B a[L,(L) — a

" I(L)esst—) — [I(L) — a]’
_ al,(L)

B Il(L) - [Il(L) — a]e—ga(L—z)’

(3.22)

(3.23)

where I;(L) is the input pump intensity. In the limit of 100% reflection (a — 0)

these two equations become

_ I(L)
1+ 4(L)g(L-2)

I(2) = L,(2) (3.24)

Although Eqgs. (3.17) and (3.18) are derived for one dimensional SBS processes,

we can still introduce the focusing geometry into the SBS equations [24, 20].

First, we assume that the pump and the Stokes beams are unaberrated and have
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Figure 3.2: Introducing focusing geometry to SBS process.

Gaussian spatial profiles with the same Gaussian beam parameters i.e.,

P, 5
Ij=— and I,=
: Tw? Tw?
where
W = w31+ (E=2)7.

Here, w? is the beam waist at the focus, 2o is the position of the focus inside the
cell, as shown in Fig. 3.2, and zg = mnw?/) is the Rayleigh range of the laser beam.
Using the assumption that the pump and Stokes intensities are changing not only
because of the nonlinear interaction with the material but also because of the change
in the area of the beams, the source terms in the right hand sides of Egs. (3.17)
and (3.18) can be modified to include the terms that represents the change in laser
intensities due to the change in their area. To this end, we add —[I,/nw?](9/0z)
and —[I;/mw?)(8/8z) to the right hand side of Egs. (3.17) and (3.18), respectively.
By adding these two terms and changing the variables Iy — P, and I; — P}, Eqs.
(3.17) and (3.18) can be rewritten as

0 g

S p=-Lnp, 2
3ZP 7rw2PlP (3 5)
0 g

—P, = —PP,. 3.26
9z ' mw? : ( )

In the limit of small input power, P;, where there is not a strong interaction between

the pump and the medium, the pump wave passes through the medium without
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much depletion. Therefore, P, can be approximated to be constant throughout the
medium. We use this approximation to integrate Eq. (3.25) from the focus to the

entrance to the cell (see Fig. 3.2) to find

Ps P L entrance=L d L _
In— = gh(L) / z — gPZ(f)than_l(——ZO),
P, s0 '/Tw(z) focus=2zg (Z = 29)2 Wy ZR
[l (3.27)
z
R
L _
_ghl) k=) _q (3.28)
A ZR
and therefore
P,(L) = PyeC. (3.29)
Here,
P L entrance=L d
G = Glz) = gﬂ‘u()g ) / (zz = (3.30)
0 focus=zg ]
[1+——]
2R

is the steady state gain (including focusing geometry), A is the wavelength of the
laser beams and Py = P,(29) and Py = Pi(2g) are the pump and the Stokes powers
at the focus. We have also assumed that the SBS process initiates at the focus from
Stokes photons P;g, created by the spontaneous Brillouin scattering of the pump
photons Fjy at the focus. Thus, we expect that the Stokes power at the focus Py to

be proportional to the pump power Py i.e.,
Py = fPy. (3.31)

The reflectivity of the SBS process is defined as the ratio of the Stokes power at the

entrance to cell to the input power i.e.

p= @) (3.32)
P(L)

Using Egs. (3.29) and (3.31) and the fact that in the undepleted pump regime the
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pump power remains constant throughout the cell, we can rewrite Eq. (3.32) as

P
R==2¢% = feC, (3.33)
Py

Experimental results show that to obtain a reflectivity of order of R ~ 0.1, namely
threshold reflectivity, G should be order of Gy, ~ 25—30 [74]. This is connected with
the fact that the SBS process is initiated from spontaneous scattering of the pump
beam from fluctuations in the material density. For R ~ 0.1 and Gy, ~ 25 — 30, f
can be evaluated from Eq. (3.33) to be,

f=e 0 =380 1072 — 107H, (3.34)

which is similar to the value obtained by Zel’dovich et al. [3] from the physical
properties of spontaneous scattering. From this value of the steady state threshold
gain Gy, ~ 25 — 30, one can estimate the threshold power, Fis, necessary to initiate

the SBS process as [using Eq. (3.28)],

(3.35)

This indicates that the threshold power depends on g, the gain coefficient of the
material, L the length of the SBS cell and zx the Rayleigh range of the focused
beam. However, plotting (P;):, as a function of L — z (see Fig. 3.3) shows that for
SBS cell length larger than about 2.5xRayleigh range the threshold power remains
constant. This suggests that the effective interaction length for SBS is approximately
2.5xRayleigh range and the length of the SBS cell does not affect the threshold power
as long as it is larger than 2.5x Rayleigh range. This result was found experimentally
by Munch et al. [12]. In fact, in their experiment they have shown that the effective
interaction length for SBS at the threshold is the shorter of the following parameters:
the cell length, 3 times the coherence length or 2.5 times the Rayleigh range of the

input laser radiation.

Egs. (3.25) and (3.26) can also be solved for the depleted pump, when the input

power is above the threshold power. In this regime it is clear from Eqs. (3.25) and
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Figure 3.3: Threshold power is examined as a function of cell length/Rayleigh range.
For cell lengths over 2.5x Rayleigh range the threshold power remains constant.

(3.26) that
0 0
—P,=—PF, 3.36
0z 9z ( )
and therefore
P(z) = Py(2) + a. (3.37)

Here, a is a constant indicating the degree of pump depletion and is given by
a= P(L)— P,(L) = R(L)(1 - R).

Using Egs. (3.37) and (3.28) and changing the variables P; and P; to 1/P; and 1/P,,
one can solve Egs. (3.25) and (3.26) to yield,

P
P,(L) = — : (3.38)
Pe~GU-R) — P,
P
P(L) =10 (3.39)

N Pyo — PyeC(-R)’

The SBS reflectivity R = P,(L)/P,(L) can be calculated using Eqgs. (3.38), (3.39),
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Figure 3.4: Reflectivity as a function of G/Gy, where G = %ﬁ tan‘l(L—z_fQ) and
Gy, = 25. Threshold reflectivity R ~ 0.1 occurs at G = Gy

(3.34) and (3.31) as
R =—— = feC0-R), (3.40)

which can be rearranged to give

G 1+Gt_h11nR
Gwn  1—-R

(3.41)

Using this equation to plot R vs G/Gy, (see Fig. 3.4) shows clearly that the SBS
process has a threshold i.e., its reflectivity rises rapidly for values of G larger than

Gih.

This simple threshold behaviour of SBS has been confirmed by experiment [73,
75, 2] and our numerical model (see next chapter and [20]). Figures 3.5 and 3.6 show
the numerical (calculated according to our 1D model) and experimental results [2],
respectively, for the pump pulse, Stokes pulse and the reflectivity. Both theory and
experiment show that the Stokes pulse grows rapidly just after a certain threshold

power is reached.
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Figure 3.5: Numerical results of the input, Stokes and transmitted pulse. The SBS
reflectivity as a function of energy is shown in the right graph. Ey; is the threshold
energy. The numerical results are calculated according to our 1D model developed
in Chap. 4.

3.4 Phase conjugation property of SBS

An interesting property of the SBS process is that the reflected beam retraces the
incident beam. This property was first observed in 1964 by Brewer [76]. In an
SBS experiment with a ruby laser Brewer noticed that ”...the back-scattered light
retraces the path of the exciting laser beam”.

Zel'dovich et al [6] were the first group to observe that in a SBS experiment the
back-scattered beam is a phase conjugate of the incident beam. The setup of their
experiment is shown in the Fig. 3.7. They focused a single mode ruby laser beam
into a SBS cell filled with methane gas at 125 atmospheres. They used two cameras
to observe the intensity distribution of the incident (measured by camera 1) and
reflected (measured by camera 2) beams. To distort the wavefront of the incident
beam, they used a glass plate before focusing the beam into the SBS cell. The Stokes
return of the SBS mirror then passed through the glass plate into camera 2. It was
observed that the Stokes intensity distribution matches that of the incident beam
implying that the reflected beam is the phase conjugate of the incident one.

An important practical application of phase conjugation was demonstrated by
Nosach et al. [49]. In their experiment, a SBS mirror (a cell filled with CS,) was
used to compensate the distortion in a laser beam (6943 A), caused by a ruby laser

amplifier. The reflected beam of this SBS mirror retraces the incident beam and
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Figure 3.6: Typical experimental results [2] for the pump and Stokes pulses. The
reflectivity as a function of energy is shown as well. Experimental results were
obtained for Freon-113. FE, is the threshold energy.

is the phase conjugate of the incident beam. The distortion in this beam is then
compensated in passing back through the ruby amplifier. The experimental set up
was the same as in Fig. 3.7 except the phase-distorting plate was replaced by a
ruby laser amplifier. This resulted in the extraction of a high power beam with

undistorted wavefront.

In degenerate four-wave mixing the phase conjugation property of the reflected
beam can be clearly seen from the Equations describing this phenomena. In Eq.
(2.21) it is seen that the reflected beam in DFWM is proportion to the complex
conjugate of the incident beam and retraces it (K, = —K3). In the case of SBS
phenomena, however, the fact that the Stokes beam is the phase conjugate of the
incident beam is not obvious from the equations. If we ignore 8/0t in Eq. (3.14c)
[i.e. the steady state regime] solve for @ and substitute it into Eq. (3.14a), we
obtain

i nd O

(2stt + c at + az)Es 9192 |El| Es-
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Plate

Figure 3.7: The experimental setup to demonstrate the phase conjugation property
of SBS. The plate distorts the phase front of the passing beam. The cameras C;and
C, record the input, and backscattered beam profiles, respectively. The SBS cell is
filled with methane. Figure is based on figures in [3]

This shows that the driving force of the Stokes pulse is proportional to |El|2 E,,
which contains no phase information of the incident beam. A reason why SBS leads
to phase conjugation can be given as follows [37, 5]. For an aberrated input beam
the information about the phase distortion of the beam is translated to an intensity
pattern once it is focused into the focal volume (far field). The intensity pattern of
a highly aberrated beam is highly non-uniform in the focal volume (i.e. a volume
speckle pattern). Next, this nonuniform-intensity beam scatters off the density noise
of the material. It is initially scattered to the all possible spatial modes but, only
the mode that can best match the far field pattern of the incident beam has the
maximum gain. This mode is in fact the phase conjugate of the input, and when it

grows it will suppress all the other modes.

The degree of phase conjugation can be quantified by defining a parameter,

namely fidelity [37], as

| Ei(r,z,t)Ey(r, 2, t)(127'|2

H Z,t = )
(1) f|El(r,z,t)]2 d2rf|Es(r,z,t)|2d2r

(3.42)

in which 0 < H < 1. The numerator expression shows the correlation between the
laser and the Stokes fields. For perfect replication of the laser pulse H = 1 otherwise
H < 1. This definition for the fidelity, although useful for numerical modeling, is very
hard to measure in experiments. In SBS experiments using short pulse lasers, fidelity

is usually measured using the power-in-bucket technique {12, 77]. In this method the
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Figure 3.8: Diagram of the Near and Far field diagnostic technique for the measure-
ment of the time resolved and time averaged fidelity [2].

transmission of the SBS Stokes return power is measured through a single diffraction
limited pinhole located at the far field of a lens. This power, divided by the near
field Stokes power and multiplied by the chosen, theoretical transmission factor of
the pinhole, gives a Stokes beam merit (merit is here proportional to the square
root of the conventional definition of beam quality). Fidelity can be obtained, once
the Stokes beam merit is compared to that of the original laser beam. A typical
schematic of the diagnostic technique for measuring fidelity [2] is shown in Fig. 3.8.
By measuring the pump and the Stokes powers at the Near and Far fields, one can

define the fidelity by

Fidelity = Sl menf, , Where (3.43)
Laser beam merit

Far SBS power through pinhole

Near field SBS power x T%

. Far field laser power through pinhole
Laser beam merit = . (3.45)
Near field laser power x T%

SBS beam merit = and (3.44)

Numerical and experimental plots (see Fig. 3.9) of fidelity versus input energy show
that it grows very rapidly when the input energy is close to the threshold energy

and saturates at values of the order of 90% for very high input energies.
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Figure 3.9: (a) Typical numerical (see Chap. 5 for details) and (b) experimental [2]
results for the fidelity of SBS. Experimental results are obtained for Freon-113.

3.4.1 Transient regime of SBS

The transient regime of SBS is usually considered when the duration of the pump
beam, t,, is shorter than the phonon lifetime of the SBS material (¢, < 7). Most
numerical models of SBS deal with pump pulses whose durations are much longer
than the phonon lifetime of the SBS material. This enables them to use the steady
state approximation. However, as Wandzura [9] and Afshaarvahid et al. [20, 35]
pointed out, in reality there is no steady state regime for SBS. The steady state
regime of SBS fails to give a true picture of SBS, even with pump pulses longer than
the phonon lifetime of the SBS material. Two reasons can be given for this: 1) the
threshold behaviour of SBS and 2) the observation of large scale fluctuations in the

output Stokes pulse.

1) The SBS process has a threshold, i.e., at a certain input power the reflectivity
increases rapidly. Such a rapid increase causes a relaxation oscillation in the Stokes
pulse which is due to the transient behaviour of the SBS process at the threshold.
This will be studied in Chap.4.



3.4. PHASE CONJUGATION PROPERTY OF SBS 53

2) Depending on focusing geometry, input intensity and pulse duration, there
is always a finite probability to have large scale fluctuations in the Stokes pulse.
However, there are conditions for which this probability decreases. From this point
of view, the steady state regime of SBS can be considered as the parameter regime
of SBS which results in the minimum probability of observing fluctuations. We will
discuss this in the rest of this section and in Chap. 4.

The SBS process starts from spontaneous emission of thermal noise. This noisy
spontaneous emission is amplified through two main regions, namely region I and II
[18], which are discussed as follows. In region I, the initial Stokes signal is amplified
exponentially where its intensity becomes the order of ~ 0.1% of the pump pulse.
The gain coefficient of the amplification in this region is roughly gl;, where Iy, is the
threshold intensity of the SBS process [37, 13]. At the end of this region the Stokes
intensity is a noise-like signal. This is expected, since in this region the pump pulse
is almost undepleted and the SBS medium behaves like a linear amplifier for the
spontaneous emission initiated from thermal noise. This thermal noise initiation of
SBS can be included in the SBS equations by adding a Langevin noise term f(z,1)
to the right hand side of Eq. (3.14c) as

0
(-a—t +1)Q = - EE; + f(2,t). (3.46)
Assuming that the pump depletion is negligible and neglecting the transverse deriva-

tives, Eqs. (3.14a), (3.14b), and (3.46) can be solved to find [78, 79, 13]

¢ L
Ey(L,t) = zng[/ dt’/ dz'e D) £ (5! ') x Ih(y/2GT2 (¢’ — t)/L),
—00 0
(3.47)

where I, is the zeroth-order modified Bessel function. Using the above equation,
one can show [13, 11, 80, 81] that the spectrum linewidth of the Stokes pulse in this
region (for G > 1) is

In 2

Aw =T/ —. 3.48
w=T\/= (3.48)

This indicates that the spectrum of the Stokes field narrows as G increases. Depend-
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ing on the focusing geometry and input energy, the duration of temporal fluctuations

1
in the Stokes pulse at the end of region I can be the order of 47 ~ " [18].

The final and main amplification of the Stokes pulse occurs in the region II [18]
or the depletion region [13]. The length of this region (which can be shown [20] to
be the length over which the Stokes intensity drops to 1/e of its maximum) is given
as lgep = limm/Go [13, 18, 20], where li,m, is shown in Fig. 3.2. The propagation
time through this region, Tj,_, the duration of the temporal variations in the Stokes
pulse at the beginning of this region, Ty, and the phonon lifetime of the material,
T are crucial parameters in determining the dynamics of the temporal variations in

this region. In fact a useful parameter

. T;dep . nlimm _ I
- T N CGo’T N G()

o (3.49)

can be introduced to classify the dynamics of the temporal evolution of the Stokes

pulse in the depletion region (see the following discussion).

Consider the following boundary conditions for the depletion region (see Fig.

3.1)

P(L) = input pump power

Py(L — lgep,t) = F(t) Stokes power at the beginning of the depletion region

In the steady state regime, when the duration of the temporal variations in the
Stokes pulse at the beginning of the depletion region is much longer than both the

phonon lifetime and the propagation time through the depletion region i.e.,

Ts >> T >> ﬂdep’

one can find

T, iR
y = ; <<1=>-é—<<1:>G0>>TtI‘. (3.50)
’ 0

Using Eqgs. (3.25), (3.26), (3.36), (3.37), the pump and Stokes power Pj(z) and Ps(z)
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can be solved as a function of z and input pump power P (L) as

() = el , (3.51)
B(L) — [P(L) — a]e~aG=)/RX)
Py(2) = a[P(L) — a] 552

P(L)ese@/AE — [R(L) - ]

In the limit of 100% conversion of the pump energy to the Stokes energy i.e. a — 0,

one can show that

lim Py(z) = lim P,(z) = _AlL) (3.53)
a0 a0 1+ G(2)

This indicates that for Gy > TiI" and a heavily depleted pump , the Stokes pulse
variations at the beginning of region II causes only a slight change in the output of
the Stokes pulse and therefore fluctuations will be smoothed in the output of the

Stokes pulse.

For a pulsed pump, however, Go = gI;(t) Limm is a function of time. Therefore,
the SBS gain Gy is highest for the middle part of the input pulse and decreases
towards the beginning and end of the input pulse. From the above discussion, two
conditions Gy > TiI' and 7 <« T are necessary to avoid fluctuations in the output
Stokes pulse. Applying these conditions for a pulsed input pump imply that; a) the
probability of observing fluctuations in the middle part of the output Stokes pulse
decreases because in this region Gy > TiI' and b) the fluctuations in the Stokes

pulse, if any, have durations of order of $ 7, thus containing very little energy.

By considering the time dependent SBS equations (in one dimension, see Egs.

3.14a, 3.14b and 3.14c)

n o 0 . .
(ZE + 5)E3 = —1g, Q" E, (3.54)
n o 0 .
(z‘a—t - a)El = —1g2QF;, (3'55)
0 . .
(a +D)Q = —ig1 B ES, (3.56)

one can generalise the above simple discussion to a more realistic condition in which

the phonon lifetime, 7, the propagation time, Tj,,, and the duration of temporal
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variations in the Stokes pulse, T, are finite. Eqgs. (3.54)-(3.56) can be rewritten for
intensities [;(z) and I4(2), if we ignore the change in the sign of the phase of the
fields (this is not generally speaking true and in the next chapter a more realistic case
will be considered). As a first order of approximation the solution of the intensity

equations can be written as a stationary part plus a small non-stationary part, i.e.,

o~

Il(z’?) = Ilo(z) £5 Ill(z’ ) (3.57)
L(Z,1) = J(Z) + I;(,1). (3.58)

Here, IP(Z) and I2(Z) are the stationary parts, given by Eqs. (3.22) and (3.23),
I}Z,t) and IX(Z,%) are the small non-stationary parts, and t = t/T} wp and Z =
2Go/limm are dimensionless time and position inside the SBS medium. These rela-
tions [Egs. (3.57) and (3.58)] can be substituted in the SBS equations for intensities
to find a set of differential equations for I}(Z,%) and I(Z,t). These equations can
then be solved using Laplace transform [82, 18]. A specific and interesting example

is when the Stokes intensity at the beginning of the depletion region is
I,(L,t) = I(L) + Asin(wt), (3.59)

i.e., the Stokes intensity is the stationary part plus a small intensity noise term
I}(L,t) = Asin(wt). Here L is the length of the depletion region in dimensionless
coordinates. It can be shown that for such a boundary condition, one can solve the
differential equations [18] for the Stokes pulse and find the output Stokes intensity

at the entrance window as
I(L,t) = I°(L) + kAsin(wt + ¢),
where £ is the response function given by

k= |G(w)],
(27r)1/2

G(s) = (2L + 1)+ 5 s
31/263/2[Ka+1(§) + Ka(3)]
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Y

2(y + s)
how the intensity modulation Asinwt at the beginning of the depletion region is

Here a = and K,(z) is the Bessel function. The response function, x, shows
magnified through this region and appears at the output as kA sinwt. The behavior
of k as a function of w is quite different for different values of +. This is shown in

Fig. 3.10, in which & is plotted as a function of w for different values of «. For
7> 1= Gy < I'T; (v = o in Fig.3.10),

there is no maximum in the response function, which indicates that all the frequency
components of the Stokes intensity modulation at the beginning of the depletion
region will be magnified and thus the spectrum of the Stokes pulse does not change
in passing through the depletion region. Therefore, it is most likely that the intensity
fluctuations appear in the final Stokes output when Go < I'T; [13]. For

va 1= Go~TT, (y=15,1.,0.5 in Fig.3.10),

the response function has a pronounced peak at frequencies w =~ « or

1 . ﬂdep

R >t~
t/ﬂdepl 0

This means that the medium has the property to amplify selectively those fluctu-
1

ations for which T; = 7. Since T, ~ 41 — ik in the regime when v =~ 1, only

fluctuations with 7, = 7 will be magnified and all the other fluctuations will be

smoothed out in the output Stokes intensity. Finally, when
v <« 1= Go>TIT; (y=.1,0.005 in Fig.3.10),

there is no maximum in the response function and it becomes smaller for smaller .
Plotting the maximum of the response function « as a function of v shows (see Fig.

3.11) how rapidly the maximum of x decreases for small values of y. This results in
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Figure 3.10: Response function as a function of frequency for different values of ~.
There is no maximum for large and small values of . L is a dimentionless length
paprameter and is L = 40 for the above plot.

(using Eqgs. 3.58 and 3.59) a smaller (noise intensity)/(total intensity) ratio as

(noise intensity) INL) kAsinwt

(total intensity)  I9(L) + I}(L) N RI(L) + kAsinwt’

where R is the reflectivity. For v < 1 or Gy > I'T; the reflectivity approaches
1 while the noise intensity decreases, resulting in a smaller (noise/total) intensity
ratio. This indicates that in the regime of Gy > I'T; the fluctuations in the Stokes

pulse are suppressed.

3.5 Summary

In this chapter we have reviewed the general behaviour of the SBS process and its
application as a phase conjugator. The fundamental equations that describe SBS
were developed. Simple analytical solutions of the SBS process (in the steady state
regime and one dimension) were discussed. It was shown that these solutions can
explain the simple experimental observations of the SBS process. In the transient

regime, an approximated analytical solution of the SBS process in the depleted
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Figure 3.11: Maximum value of the response function « as function of v. For small
7 i.e., Gy > I'T;, the maximum of the response function is very small resulting a
smaller ratio of noise/(total stokes intensity).
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region (a region over which the Stokes signal gains the most of its amplification) was
explained. This solution gave a qualitative description of the dynamics of the Stokes
signal evolution through the depletion region. Introducing a parameter v = T;I'/ G,
it was shown that for v > 1 the Stokes signal at the end of depletion region may
show large amplitude fluctuations. Contrary to this, for v < 1, there is no amplitude
fluctuations in the Stokes signal.

Although, simple analytical or numerical solutions of the SBS process, can ex-
plain most of the experimental observations, they cannot, explain some important
experimental aspects of the SBS process, especially for the focused cell geometry.
One example of this is the use of SBS in practical applications that require consid-
erations of transients or short coherence length regimes. In chapters 4 and 5, we get
to the heart of this thesis and develop two transient (one and three dimensional)
numerical models of SBS to examine the transient phenomena that affect the SBS
performance. In the next chapter, we develop a transient one dimensional numerical
model of SBS in the focused cell geometry. The model is then employed to examine
in detail two different transient phenomena, threshold oscillations and stochastic in-
tensity fluctuations. It will be shown how these phenomena affect the performance

of the SBS in the transient regime.



Chapter 4

1-dimensional model of SBS

4.1 Abstract

In this chapter, we develop a transient one dimensional numerical model of SBS.
In our model, we have simulated the noise initiation of SBS for a focused beam in
a finite length cell. The details of the numerical method is explained. We then
use the model to study two different transient phenomena: 1) threshold oscillations
and 2) stochastic fluctuations in the Stokes intensity. For each phenomenon, the
effects of parameters such as phonon lifetime, immersion length and input energy

are examined and compared with the available experimental results.

4.2 Introduction

The original motivation to develop a 1-dimensional model of SBS came from some
unexplained experimental observations. Some fluctuations were observed (see Fig.
4.1) in the reflected Stokes pulse in SBS experiments using Freon, (Experiment
setup is shown in Fig. 3.8). Further experiments revealed that these fluctuations
had stochastic nature i.e., they sometimes appeared and sometimes did not, in the
output Stokes pulse, even though the experimental setup was the same for every
shot. It was also observed that the temporal positions of these fluctuations within
each pulse as well as their durations and heights were different from shot to shot.

In addition to these, the measurement of the phase of the Stokes pulse also showed

61



62 CHAPTER 4. 1-DIMENSIONAL MODEL OF SBS

VOLTS (V)

@] 10 20 30 40 50
TIME (ns)

Figure 4.1: Typical occurrence of fluctuation in the output of Stokes pulse in SBS
experiment using Freon 113. After V. Devrelis [2]

some random sudden changes, phase jumps as shown in Fig. 4.2. Early experi-
mental observations of the presence of phase jumps and amplitude fluctuations in
SBS were reported in 1980 [83, 81, 80]. More recent theoretical and experimental
investigations of these fluctuations in optical fibers have been made by Dianov et
al.[11], Gaeta and Boyd [13] and Kuzin et al [18]. Intensity and phase fluctuations
have been investigated experimentally also for short interaction lengths typical of a
focused geometry [12, 14, 16]. These fluctuations are important in practical appli-
cations since they reduce the coherence length of the scattered beam [14] as well as
the temporal and spatial fidelity of the SBS process [10, 12, 19, 2]. Simultaneous
fluctuations in the Stokes amplitude and beam quality have been observed [12] as
have actual variations in the phase of the Stokes beam, and measured directly by
heterodyne detection [14]. In addition, the effect of experimental parameters such
as the interaction length and input energy on these simultaneous fluctuations have
been reported [16, 19]. Numerical models have also shown simultaneous occurrence
of jumps in the Stokes phase and fluctuations in the Stokes reflectivity and fidelity

[9, 10]. These fluctuations are important in practical applications since they reduce
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Figure 4.2: Experimental results showing the occurrence of phase jumps in the phase
of the output Stokes pulse. After V. Devrelis [2]

the coherence length of the scattered beam [14] and have been observed to reduce
the temporal and spatial fidelity of SBS [10, 12, 19].

A Review of the SBS literature indicated that While the intensity fluctuations in
the Stokes pulse had been studied mainly in fibers, they had not been fully examined
and understood, specially for the finite cell geometries. Most of the publications in
this field were conference papers that had reported (theoretically or experimentally)
some aspects of these fluctuations. Theoretical and numerical studies of these phe-
nomena had been especially difficult due to the transient nature of these fluctuations
and the fact that these fluctuations depend on the focusing geometry. In fact at
the time that we started our study there was not a published unified theoretical
or numerical study of this phenomena that could explain all aspects of this phe-
nomenon. This lack of understanding together with the fact that these fluctuations
are important in practical applications motivated us to study (experimentally and

theoretically) three main questions:

1. The source of these fluctuations,
2. How the intensity fluctuations and phase jumps are related,

3. What experimental parameters affect these fluctuations, in SBS experiments
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in a focused cell geometry and how we can achieve the best parameter space

for excellent Stokes beam quality.

1. The source of intensity fluctuations

The SBS process starts from thermal density fluctuations of a medium. This
stochastic initiation of the SBS process is believed to be the cause of the large scale
fluctuations in the intensity and phase of the Stokes output [37, 9, 11, 79, 13, 16].
Similar phenomena are observed in superfluorescence [84] and stimulated Raman
scattering (SRS). Vacuum fluctuations of the radiation field are thought to be the
origin of the spontaneous noise that initiates the SRS process. Such a spontaneous
noise initiation leads to the existence of solitons in the depleted pump pulse due
to a m phase shift in the Stokes seeds [85, 86, 87, 88, 89, 90, 91, 92]. Including a
Gaussian random noise term in the transient SBS equations enables us to simulate
the noise initiation of the SBS process and to study the temporal behaviour of the

Stokes intensity fluctuations.
2. How the intensity fluctuations and phase jumps are related

Experimental observations suggest that the intensity fluctuations and phase
jumps can be simultaneous [12, 14]. It is also believed that, like SRS, the phase
jumps are responsible for the intensity fluctuations [11, 13]. In some studies (e.g.
[93, 1]) researchers have omitted the phase of the fields from the SBS equations by
considering a phase locked relation between the phase of the pump, Stokes and the
acoustic field i.e., ¢; — ¢s — ¢y = % (this will be discussed later in this chapter). Such
a simplification leads to SBS coupled differential equations of real fields. However,
such a simplification can not simulate the relation between the phase jumps and the
Stokes intensity fluctuations. In our model, complex differential equations are con-
sidered in order to study the underlying mechanism of the phase-intensity relation

in the SBS process.
3. What experimental parameters affect these fluctuations

The effect of experimental parameters on the intensity fluctuations for the fo-

cused cell geometry has not been fully investigated. There are some unpublished



4.3. THEORY 65

studies on the effects of interaction length and the input energy on these fluctuations
[16]. Although, our model is a one dimensional model, we have used an approach,
similar to that of Menzel and Eichler [24] (discussed in detail in Sec. 4.3.2), to in-
troduce the focusing geometry to the SBS equations. This enables us to investigate

the effect of different focusing geometries on the intensity fluctuations.

4.3 Theory

The equations describing our 1-dimensional model are the transient Eqs. (3.54)-

(3.56) i.e.,

n o 0

(Za + a)Es = —’LQQQ El, (41)
n o 0 .
(Za - 5;)1-*71 = —1g2Q L, (4.2)
0
(a + F)Q = _iglElE: + f(za t)a (43)

except that we have added f to the right hand side of Eq. (4.3) to represent a

Langevin noise source that describes the thermal initiation of the acoustic wave.

4.3.1 Langevin noise

Before we carry on with the solution of Egs. (4.1)-(4.3), it is necessary to discuss the
statistical property of the Langevin noise term f. We can divide the whole nonlinear
material volume into small sub-volumes of AV = AzAyAz centered around any
arbitrary point x;,¥;, z; and with a mean density of @;. In the absence of driving

electric fields, one can rewrite Eq. (4.3) for sub-volume 7 as

d

(a +I)Qi = fi(t), (4.4)

where f;(t) denotes the Langevin noise term f(z,y, z,t) averaged over subregion .

We assume that f; is a Gaussian random variable with zero mean i.e., (f;) = 0, and
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is § correlated in the sense that
(fi ) fr(t) = Gé6(t —t'). (4.5)

This relation indicates that for an ensemble of similar cells the value of f in a cell
i at time ¢ is uncorrelated with the value of f in a cell j at time ¢'. To find the

coefficient G we integrate Eq. (4.4) to find the Q;:
t
Qu(t) = / &) £, (7)dr. (4.6)
This and Eq. (4.5) can be used to evaluate (Q;(t)Q}(t)):

Q@) = < / dTldeer(t_”)fi(Tl)er(t_Tz)ff(Tz)>

= /t dTldeeF(t_ﬁ)er(t—m) <fi(7-1)f;(7-2)> (4.7)
¢
r

The quantity (Q;(¢)Q}(t)) can be related to the total energy in the sub-volume i.
The energy density of a sound wave is given by (see Eq. 64.1 [94])

1 1
(W) = 2o (V) + 302 (@) /1
Thus the total sound wave energy in a the sub-volume 17 is
1 on Loy
(ETotal)i = (EPO (V?) + 5v (Q?) /po)AV.

According to the equipartition theorem, the contribution of each term in the total

energy is 1/2(KT) therefore,
1 2 2 1 2 * 1
7Y (QF) /po)AV = 5Y (Qi(t)Q7 (1) /po)AV = §KT,

2KTPO
VAV

(@:1)Qi () =
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Comparing this with Eq. (4.7), we find

G=—
vZAV

(4.8)
In the continuum limit, the Langevin term is f(r,t) with zero mean and an auto-

correlation function:

(fr,0)f*(c', 1)) = Go(r—r)6(t 1),

where

v2

G = GAV = (4.9)

Here pg is the mean density of the material, T is the temperature, v is the speed
sound in the material, and K is the Boltzman constant. The Langevin term f has a

Gaussian distribution with zero mean. Thus the distribution function has the form

_f2
p(f) = e
where ¢ is the variance. Consider
f(r,t) = fi,
flro,t') = fo

then the correlation function (f(r1,%)f*(rs,t')) can be calculated to be

- Sk
s @) o« = [ fifse 207 ¢ 20 dfudfs.

0?2 J_o

Evaluating the above integral, we find

(f(rr,t)f*(rz, ') = 0 if fi # fo,
(f(ry,0)f*(r2,t)) x o if fi = fo.



68 CHAPTER 4. 1-DIMENSIONAL MODEL OF SBS

Comparing this result with Eq. (4.9), we can see that
G x o, (4.10)

i.e., the variance of the Gaussian distribution is proportional to the constant G =
2KTpol'/v?. In App. (A), the generation of random variables with a Gaussian

distribution is discussed.

4.3.2 Numerical Solution of the SBS Equations

In Egs. (4.1)-(4.3), Ei(z,t), Es(z,t) and Q(z,t) are complex amplitudes. To find the
equations for the real amplitudes and the phase of the fields we write the complex

amplitudes @ and E, (where p = s,1) as

E, = Ape_iq’P,

Q = Aqe_i‘ﬁq,

where the A’s and the ¢s are real functions. Substituting the new definition into

the above equations results in a set of six coupled differential equations:

(% - %%)Ap = —gosin(gy — de — 65) AgAs (4.11a)
(2 4+ 224, = gosin(ds + dy — ) Ay (4.11b)
(% + D) A = gisin(¢s + ¢g — ¢p) AsAp + f1 (4.11c)
(35— =) = —gmoosliy — s — ) 4" (411
(5 + 22060 = g cos(d + b — ) 22 (4.11¢)
(2)6y = grcos(a + b — 622 4 (.11

q

Here, f; and f, are two Langevin noise terms representing the noise initiation of the

SBS process for amplitude and phase.
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As mentioned above, some authors (e.g. [93, 1] ) have used the phase locked

condition for which
) T
Sln(¢p—¢s_¢q)=1:>¢p_¢s—¢q=§:

and the SBS process has the highest gain. When SBS starts from noise, a random
noise distribution of @, — ¢s — @, is initially present. But as the phase-locked waves,
(those with ¢, — ¢ — ¢ = I), have the highest gain in the medium, they become
the dominant Stokes waves in the medium. By applying the phase locked condition
to the equations (4.11), they are simplified to a set of three real coupled equations
for the amplitudes. However, in order to explain the experimental observation of
the simultaneous occurrence of intensity fluctuations and phase jumps[14], we have
retained the complex equations since this is the only way that the phase of the
Stokes field can be coupled to its intensity.

The equations (4.11) are nonlinear due to the terms sin(¢,+¢dq— ¢p) and cos(d,—
¢s — ¢,). These equations are useful for showing the qualitative behaviour of the
fields and their phases. However, solutions of the equations require that we rewrite

them for the real and imaginary parts of the fields. Using

Ep

Wp+iV, p=1,s,
Q = W,+iV,

in Eqs. (4.1)-(4.3), the equations for the real and imaginary parts of the fields are:
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(o= 22Wi = W,V + VW)
% + %%)Wa = g(WVi - V,W)
(5 + W, = ~(WAV, — VW) + f
(4.12)
(=220 = oW, W, = V,V)
(s + 220 = —ga(WyWi+ YY)
(?% +0)V, = —g(WiW, +ViVi) + fo

The focusing geometry required for simulation of experiments is introduced using
an approach similar to Menzel and Eichler [24]. Although, SBS is primarily used to
compensate for optical aberrations, we have chosen not to include spatial aberrations
in this treatment, but concentrate entirely on temporal fluctuations or the ”temporal
fidelity” of the Stokes beam. This is important, because lack of temporal fidelity
leads to the degradation of the Stokes return and hence a reduction in the average
reflectivity and efliciency of a phase conjugated laser system [10, 12, 19]. In this
initial model, we are thus using spatially unaberrated Gaussian beams for both the
pump and Stokes fields, and we have made the further approximation that both

these fields have the same Gaussian beam parameters (see figure 4.3):

w(z) = w?

1+ (%)1 , (4.13)

where w, is the radius at the waist of the beam, A is the wavelength and n is the
appropriate index of refraction as a function of z. This is a reasonable approximation
in an efficient phase conjugating system where the fields are well above threshold and
is justified by experimental results showing that the beam quality and divergence
of the Stokes beam are indistinguishable from those of the pump beam when well

above threshold.
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Figure 4.3: Geometry used for modeling of the SBS process.

As a result, the pump and Stokes intensities, [, = W2 + V}* or I, = W2+ V2
change not only because of the nonlinear interaction with the material but also

because of the change in the area of the beams. Keeping in mind that, for a Gaussian

W,
beam, the electric field amplitude has a w(z) in the denominator, we add - ( 5 ] %
V, 0O
w(z) or - (’; ) b—zw(z) to the right hand side of the equations for W, or V;, (p = |
or s) to represent the change in the intensity due to the focussing geometry [24].
Defining
p i
w(z) w(z) wlz)
e = W,+iV,
and hence,
WI
W, = £
T w(?)
VI
Vo = Es,

€

(2)

it can be easily seen that |EI',|2 = |E,|* x w?(2) is proportional to the local power of

the pump or the Stokes fields. Substituting the prime fields into Eq. (4.12) we find:
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8 6 ' 7 '
(5; = =W = —@(WoV +V,W,) (4.142)
0z «cOt
6 n 3 ' ' ’
(a + Z&)Ws = W,V — VW) (4.14b)
a _ q1 . ]
(g *DWa =~ MV, = VW) + f (4.140)
8 8 ' ! !
(5= ==V = @(W,W, —V,V) (4.14d)
0z «c¢Ot
6 n 6 ] ' '
(a + ZQ)VS = —g(W,W, +V,V}) (4-14e)
a _ a1 ’ ' 1o
(a+F)Vq = —W(Wst‘HﬁVL)*'fz (4.14f)

We see that the new equations have a form similar to equations (4.12). The only
difference is that the prime fields are the power components instead of the intensity
components in equations (4.12). The same procedure can be done for equations
(4.11) to obtain the following equations for the Stokes, pump and acoustic grating

power:

5 n o '

(5; 2 = —9asin(d— s~ $a) AgA, (4.15a)
a 8 ! !

(5 * %%)As = g2sin(¢s + ¢ — 1) A4, (4.15b)
9 . A4

(& +T)A; = gisin(ds + ¢g — ¢l)w2(z) + fi (4.15¢)

The equation for the acoustic field shows how the amplitude of the field depends
on the intensity of the Stokes and pump waves, implying a high acoustic field at

high intensities of the pump and the Stokes fields.
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Numerical Method

The phonon fields in Eqgs. (4.14c) and (4.14f) can be integrated to yield

t

W, = g1 /dTe_P(t_T)[—(Wz’Vs,—W’W;)‘*'fl]: (4.16)
w?(z) Jo
t

V, = = /dTe'F(t_T)[—(WzIW;+V2'Vsl)+f2]- (4.17)
w2(z) Jo

If we substitute W, and V, into the remaining equations (4.14), we can reduce the
equations to four coupled differential equations for the field amplitudes. The numer-
ical analysis starts with these four equations. To solve these equations numerically,
we change the continuous field amplitudes Wi(z,t), Vi(2,t), Wi(2,t) and V,(2,t) to
discrete field amplitudes W, 7*, V; 7', W, 7* and V; 7', where m = 0, 1, 2,....M are time
indices (t = mAt) and j = 1,2,..n + 1 are space indices (z = jAz and L = nAz).
Referring to Fig. 4.3, it is clear that W, " and V; T* (i.e., Stokes field at z = Az)
are the boundary conditions for the Stokes field. For SBS generators these values

are always zero i.e.,

W, 7" = 0 at all times

Vs " = 0 at all times.

Similarly, W; ™, 1, Vi 4, [i.e., laser field at z = (n+1)Az] are the boundary conditions
for the laser field and are determined by the input laser field to the cell. We can use

Simpson’s rule

[ feyie = 3alf@) + a2,

and the discrete field amplitudes W; 7',V 7, W, 7" and V, 7" to find the acoustic
fields W, T"and V; 7* (acoustic field at time ¢ = mAt and position z = jAz) in Egs.
(4.16) and (4.17)

m At 1 Im Im Im /m m m—
Wej = 917[_[w2].(szVsj —ViIW AT+ AT (418)
J
m At 1 " myxs m "my/s m m .
Voj = 91?[—[w2]-(VVlesj TV PV, P+ RTHRTT] (419)
J
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Here, P, T‘l and P ;.""1 (evaluated at the time slot m — 1) are related to P{;‘_2 and

P2 ;n——2 by

P m—1 _ e—I‘At{Pl m—2 + 2[__

(W, 77y, P =y mtw, )+ Y,

’ ! [w 2]; T
Ry = BT A O W T Y PV T 4 £ 7,
where finally
R = e-m[—@«w; AR !
PO = oML [Q]J(Wl HUSER B A I )

We use a differenceing method to convert the differentiation of the fields to the

difference between discrete fields e.g.,

na ' - -

“ow, = cAt(VVl W T,
0 ' m -

aZVVl = E(VVZ j+—li1_VVl 7 +1

Using this and the discrete acoustic field amplitudes [Eqgs. (4.18) and (4.19)], we can
rewrite Egs. (4.14a), (4.14b), (4.14d) and (4.14e) for the discrete field amplitudes

as
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’ nAz ’
I/Vlm+1—VVlm+1 (I/Vlm+1_VVl;n)=
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W m+1 W/ m+1+nAz(W, 7.T"+1—WI m):
s j+1 CAt 8 j 8 7
m AZAt 1 m (- Im m - m
Vi PHES e W P P =V T T + A R
J
AZAt 1 ' ] '
m+1 +1 m+1 +1 m+1 m+1 m
-9 [—[ z]j(VVz;'n W, 7+ Vm Vsj+)+f2j++P2j]
(4.21)
"m ' nAz ' =)
Vo - = S oW )
- AZAt 1 ’ " m ' m - -
gWs =Gl W PV, 7 = VU PR T+ AT B
J
AZAt 1 '
m+1 m+1 m+1 m+1 m+1 m--1 m
—9Vs; 2 [wz]j(VVlJ W, +V/ Vo )+ o i+ P
(4.22)
! a1 B s nAZ " mal "'m
‘/sjﬁ—vvs'Jr_'c'A_Z(‘/;ij_V;j):
m AZAt 1 / m 1l 7= il -~ i
—gW, T [—[ 2]( LTV T - W Y+ AT AT
J

-~ AZAt 1 - . m "'m - -

- ¥ B e 0 PR, PV TRV T + £ TR T
J

(4.23)

On the right hand side of Eqgs. (4.20)-(4.23) there are nonlinear coeflicients of
either |W, 7' N v, 7+ 2 |W, ;-’1+1|2 or |V; ;-""'1|2. As a linear approximation (in

our model) we have replaced these coefficients with the same coefficients evaluated
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at the time slot m instead of m + 1 [1]. To justify the validity of the linearization
assumption, we used the field amplitudes at time slot m + 1 to reevaluate iteratively
the nonlinear coeflicient involved on the right hand side of Egs. (4.20)-(4.23). An
improvement of only 4% was achieved after 5 iterations. Eqgs. (4.20)-(4.23) can be

written in a matrix form by introducing field vectors at the time (m + 1)At:

m+1 m+1
/ :Wpl \ ( ‘/pl \
sz ‘/;72
W_/;m+1 ;Vp)m+1:
\ W \ % )
m+1 m+1
( W 2 \ ! ( Vs o \
W 3 Ves
W;m+1 . ' ;V;m+1= . 3

\ Wi ni1 \ Vo nt1

where n is the total number of discrete points in space and W), py1, Vp ny1, W5 1 and

Vs 1 are the boundary values. The equivalent matrix forms of Egs. (4.20)-(4.23) are

AW 4 o, 4 DY = T (4.24)
EMW,mH 4 FrPW g = T (4.25)
ATV, Dt oy = (4.26)
E™V,™ _ grW,mH 4 prym . = (4.27)

Here, A™ is upper tridiagonal, C™, D™ E™ are lower tridiagonal and F™, and G™
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are diagonal n x n coefficient matrices evaluated at time mA¢t and are given as

(B 1 0 - 0) [0 0 o s 0)
0 B, 1 . 0 Yo 0 . e 0
1 0
\ 0 0 v oer B \ 0 0 - 7 0
(0 0 o w0 [0 0 o)
n 0 . .0 a 1 . .0
D™ = 0 e te. el Er=| t o e i |,
0 : 0
\0 0 -+ m 0) \00--- on 1)
[ 0 s s 0 ) [~ 0 o o0 \
0 ,.),2 . 0 0 —772 i vi, 0
F™ = : ™ =
0 0
\ 0 0 =+ 0 m ) \ 0 0 - 0 -7 )
Here,
B Az  gAzAt 2 s
ﬂn - 1 CAt 2w72L (|V5‘n| +|W3n )7
Az At
T = (R T+ P D),
AzAt
o= o (AT+RD),
_ Az gAzAt, ., 2
Qnp = 1+CAt 2w72L (|‘/ln| +|I/Vln|)

The right hand side of Eqs. (4.24)-(4.27) ie., V, U, W and 7 are n x 1 vectors
containing boundary conditions for the pump and Stokes at time t = (m)At. They
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can be calculated as
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Using Egs. (4.25) and (4.27), one can easily show that

_)m+1
v,

A7 m+1
Wp

(Vi =, = By )

m )

1

(G% + FA)Y[~GEW,™ — FEV,™" + GU™ + FZ™], (4.28)
(G2 + F2) Y +GEV,™" — FEW,™" — GZ™ + FU™]. (4.29)

These two equations in turn can be substituted in Eqgs. (4.24) and (4.26) to find
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Wt and V. ™+ as

(HL*H + L)V,™' = ™ - HL7'&™, (4.30)
Wsm+1 = [~

1™ LTV, (4.31)

where known matrices H, L and vectors?{ and 5_"{ are given as

-A(G?*+ F*)"'GE - D,
= —A(G*+ F)7'FE +C,
= W™ — A(G*+ F*)Y(GU™ + FZ™),

e -

= V™ — A(G? + F)YFU™ — GZ™).

Using the above matrices and vectors, we can calculate V,mtl ip Eq. (4.30) and
substitute it into Eq. (4.31) to obtain W,m+1. Once the Stokes fields have been
calculated they can be substituted into Egs. (4.28) and (4.29) to find the laser
fields. The advantage of the above method is that the set of equations can be solved
numerically without the need for iteration. The matrix coeflicients and vectors T/’,
7, W and 7 are evaluated recursively using the initial values of the Stokes and
pump fields at ¢ = 0. Here the field amplitudes at any time slot m + 1 have been

determined from those at the preceding time slot m.

4.4 Results of the 1-dimensional model

Depending on the geometry of the SBS process and the energy of the input pulse,
the model results in Stokes oscillations or fluctuations similar to those observed
experimentally [83, 81, 80, 12, 19, 2] as will be discussed below. We shall see that the
intensity modulation can be categorised into two groups: A) deterministic amplitude
oscillations at the time when the energy of the pump reaches the threshold energy
and B) stochastic fluctuations due to noise in the amplitude and phase of the Stokes

beam.
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4.4.1 Model parameters and geometry

Solutions of equations (4.24)-(4.27) are found for a Gaussian pump pulse with an
electric field of the form Ej exp(—Z[%P), where t, is the pulse width. Referring
to figure 4.2, we apply the following geometrical and material parameters to examine
the typical results of the SBS process: cell length = 60 cm, focal length = 50 cm,
immersion length = 15 cm, initial waist of the beam = 0.4 cm, input energy = 320
mJ, gain of the medium (Freon 113) = 0.0063 cm/MW, phonon lifetime = 0.85
ns and arbitrary index of refraction, n = 1.0. The above parameters were chosen
arbitrarily for the numerical study only. There is a free parameter in our computer
code that determines the strength of the initial random noise. Experimental results
are necessary to set the value of this parameter. The results in this chapter show
the general behaviour of SBS for an arbitrary value of the free parameter resulting
in arbitrary units for the Stokes and pump powers. However, in Chap. 5 we use
experimental parameters to set the free parameter of our computer code and make

accurate comparisons between the numerical and experimental results.

4.4.2 A: Deterministic Threshold Oscillation

The finite phonon lifetime provides an energy interchange mechanism between the
Stokes and laser fields via the acoustic field. In the case of Gaussian pump beams, it
takes some time for the energy contained in the pump to reach the threshold energy
required for Stokes initiation. At the threshold, the Stokes power increases very
rapidly and overshoots the pump power resulting in the depletion of the pump field
and reduction of the gain. Because of this gain reduction, the Stokes power also
decreases causing an increase in the pump energy which in turn causes an increase
in the Stokes field again. This energy interchange between the Stokes and pump
fields continues and resembles a relaxation oscillation (see figure 4.4). The rate of
this energy interchange is controlled by the reaction time of the acoustic field, i.e.
phonon lifetime. Such an energy interchange mechanism has also been discussed
in Ref. [7] and [1]. Chu et al. [1] report relaxation oscillations which are visible
in the transmitted pulse. However, our simulation results show that for a long cell

and a geometry in which the laser beam has been focused deeply into the cell, we
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Figure 4.4: (a) Typical threshold oscillation in the Stokes beam obtained for the
following parameters: cell length100 cm, focal length 100 cm, immersion length 70
cm, phonon lifetime 0.85 ns, medium gain 0.006 cm/MW, FWHM pulse length 20
ns, and input energy 114 mJ. (b) shows no corresponding variation in the phase of
the Stokes.

predict relaxation oscillation in the Stokes return as shown in Fig. 4.4. Experimental
evidence of such a oscillation is reported by Damzen and Hutchinson [7], although
they used tapered waveguides in their experiments. In the focused cell geometry, the
relaxation oscillation has not been observed (to the best of our knowledge) to the
extent that is observed in Chu et al. [1] and our results (Fig. 4.4). However, there
are some experimental results that show the first peak of the relaxation oscillation in
the Stokes pulse. Fig. 4.5 shows the experimental results of SBS in Freon reported
by O’Connor [4]. The first peak of the relaxation oscillation is apparent in the output
Stokes pulses. He observed that the position and the magnitude of the first peak
was very reproducible from shot-to-shot. He also observed no degradation in the
time-resolved phase fidelity during the relaxation oscillation. The amplitude of the
first peak is a function of focusing depth. When the focusing depth is less than few
centimeters no apparent peak is observed. However, as the focusing depth increases,
the amplitude of the first peak also increases, see Fig. 4.5. This is in a qualitative
agreement with the numerical results of our model. Numerical results, Figs. 4.4 and
4.13, show that the threshold oscillations are present for long focusing depth and
disappeared for short focusing depth (detailed comparisons are not possible due to

lack of sufficient experimental details in [4], see Sec. 5.5).
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Figure 4.5: Experimental results showing: (a) Near field temporal profile of laser
input pulse, (b) Near field temporal profiles of Stokes returns for different focusing
depths. After M. O’Connor [4]

In order to categorise the behaviour of threshold oscillation we use the following
parameters (in the simulation): Cell length 100 cm, focal length 100 cm, immersion
length 70 cm, phonon lifetime 0.85 ns, gain of the medium 0.006 cm/MW and input
energy 114 mJ. Any changes to these parameters are specified in the figure captions.
Figure 4.4 shows a typical threshold oscillation in the Stokes beam. Different pa-
rameters such as phonon lifetime, laser intensity at the focal point and immersion
length affect the behaviour of the threshold oscillation. There are no predicted phase

jumps corresponding to these oscillations.

Effect of Phonon Lifetime on the Threshold Oscillation

If the finite phonon lifetime is responsible for the relaxation oscillation at the thresh-
old energy, we would expect that the behaviour of the threshold oscillations depends
on this parameter. Figure 4.6 shows the threshold oscillation for two different phonon
lifetimes. Defining T, to be the time interval over which the threshold oscillations

are observable (see figure 4.6), our simulation predicts that T, is reduced for long
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Figure 4.6: Threshold oscillations are reduced for longer phonon lifetime. (a) Phonon
lifetime is 0.5 ns and (b) phonon lifetime is 1.25 ns. Other parameters are as those
of Fig. 4.4.

phonon lifetimes (see figure 4.7). It is seen that for longer phonon lifetimes, oscil-
lations in the Stokes return come to equilibrium faster than those for short phonon
lifetimes. Our model permits a detailed investigation of the above mentioned relax-

ation oscillation and the role of the phonon lifetime.

The acoustic field is described by equation (4.11c). For early times in the process,
the first source term in the right hand side of the equation may be ignored and for
the second term we can write f; = Y, acoswit. Equation (4.11c) can then be solved
to yield

Ap= Ape T + Z ay, cos wyt + Z b, sin wyt,
k k

in which @} = a,T'(I'? + w?)™! and b, = apwe(? + wi)™'. In the limit of a long
phonon lifetime i.e. I' — 0(7 — oo) we find a}, =0 and b, = %, which results in a
Wk
solution of ¥, = >, %% sin wyt for the acoustic field. Comparing this result with the
W

source term fi, it is seen that, in the limit of a large phonon lifetime, the medium
will not respond to the rapid fluctuations in the source term, but rather responds

to the integral of rapid changes. In the other limit of I' — oo(r — 0), b, — 0 and
Qg

Eq. (4.11c) gives a solution of ¥, = Ik cos wgt. In this case the medium
r ? kT

iy ==
ap =
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Figure 4.7: A shorter relaxation oscillation is achieved for long phonon lifetime. The
graph shows how T, (a time interval over which the oscillations are visible, see Fig.
4.6) is reduced for long phonon lifetime.

can cope with the rapid changes in the source term, thus resulting in a modulated
Stokes pulse. As an example, we have tried a periodic driving force f;, with period
27 /b, given by
Az O<z<m7/b )
filz) =Alz| = over one period,
—Az —7w/b<z<0
where A is a constant. This function represents a zig-zag function with a width of

27 /b (see the solid curves in Fig. 4.8) and can be expanded using the Fourier series:

filz) =ao+ Z an cos nbzx,

n=1
where
T
= AX
a0 %
4b
a, = — forn=13,5---.

™2
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Using the above discussion, one can find the acoustic response function as

Ay = Age™ M+ Z ay, cos wit + Z b, sin wit,
k P

where
, ag Am

b, = 0, =—_=—
0 WET T or

' bn 4b

b = 55 159 o5 . 17315a"'
" I'? + b2n2 mn? "

p r b

a, = -—-—-:4— n=1,3,5.

" I'2 + b2n2 mn?2

Ignoring the first term in the acoustic response function and plotting it as a function

of time, reveals that in the limit of

> 2r/b=T < b/2m,

where the phonon lifetime is much longer than the width of the zig-zag modulation
in the driving force, the acoustic field response is the integral of the driving force,

Fig 4.8a and 4.8b. On the other hand, in the limit of

T <2r/b=T >b/2m,

the acoustic field can respond to the rapid changes in the driving force, Fig 4.8¢c and
4.8d. Fig. 4.8 also shows that for very short phonon lifetime, the delay between the
driving force and the response function is reduced while the modulation depth of
the response function approaches that of the driving force. The above discussion is
applicable not only for the beginning of the process but also for any rapid changes in
the source fields of the acoustic field. The phonon lifetime thus represents a measure
of the inertia of the acoustic field. The larger the phonon lifetime, the higher is the
inertia of the acoustic field and the slower is the response of the medium to the
rapid changes in the Stokes and the laser field. This is similar to the response of a
low bandwidth electronic analog amplifier to a short pulse. The amplifier can not

respond quickly to the pulse, resulting in a broadened output pulse.
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Figure 4.8: Response of the acoustic field to a zig-zag driving force. The driving
force is shown as solid lines in graphs (a)-(d). The responses of the acoustic field
are shown for different values of I' as dashed-lines. The width of the driving force
is 2w /b, where b = 1. See the text for explanation.

Effect of the laser intensity at the focal plane

According to the equation (4.15¢), the amplitude of the acoustic field depends on
the intensity of the input pulse. A shorter focal length results in a higher intensity
at the focal plane hence a higher power acoustic wave. As a result, the gain for the
Stokes field amplitude, which depends on the pump and acoustic field amplitudes
through Eq. (4.15b), does not reduce very quickly after the initial overshooting of
the Stokes pulse, i.e., the Stokes pulse can use the energy stored in the acoustic field.
Thus, the Stokes amplitude does not reduce as quickly after the first peak, which
in turn causes a shorter duration of the relaxation oscillation. This is illustrated in

figure 4.9.

Effect of the immersion length

As it was discussed in section 3.4.1, the dynamics of the Stokes return pulse is greatly
affected by the depletion region of SBS. This is a region close to the entrance window

of the SBS medium in which most of the depletion of the pump pulse occurs. The
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Figure 4.9: Smaller focal spot (higher intensity) results in a suppression of threshold
oscillations. Oscillations are reduced in graph (b) (focal length 60 cm) in comparison
with graph(a) (focal length 90 cm). Other parameters as in Fig. 4.4.

limm
G b
(see Fig. 4.3) and Gy is the steady state gain of SBS. The smoothing of the Stokes

length of this region is given by lgep = where U, is the immersion length
modulation occurs if the propagation time through this region is much less than the
temporal variation of the modulation in the Stokes pulse at the beginning of this
region, i.e., Tj,,, < Ts. According to this discussion reducing the depletion length
by decreasing the immersion length, smooths out the modulation in the Stokes
pulse. We have tried the effect of immersion length on the threshold oscillation
by changing the distance between the cell and the lens. As expected, a shorter
relaxation oscillation is obtained when shorter immersion length is used. Figure
4.10 shows the behaviour of the threshold oscillation for two different immersion
lengths. For a smaller immersion length, Fig. 4.10 (b), the depletion region of the
pump beam is confined to a small region at the entrance of the cell resulting in a
shorter relaxation oscillation.

From another point of view, the first peak of the threshold relaxation oscillation
is due to the strong saturation of the pump wave by the leading edge of the counter-

propagating Stokes wave. The characteristic of the first peak then depends on the
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Figure 4.10: Modulations present in (a) (focal length=100 cm, immersion length=40
cm) are almost suppressed in (b) (focal length=100 cm, immersion length=10 cm).
Shorter immersion length provides a better suppression. Other parameters as in
Fig. 4.4.

threshold and the time it takes the Stokes return to propagate to the front entrance
of the SBS cell. By increasing the immersion length the interaction time between
the pump and counter propagating Stokes return increases resulting in a longer

relaxation oscillation, Fig. 4.10a.

Pulse Compression

As mentioned previously, the threshold relaxation oscillation is due to the energy
interchange between the pump and the Stokes fields, which causes the saturation of
the pump wave by the leading edge of the Stokes return. Thus, we can expect to
achieve a single and narrow Stokes pulse (pulse compression) if we do not provide
the appropriate amount of energy for the Stokes pulse to rebuild after the first
impulse of relaxation oscillation. Considering the effect of the focal and immersion
length, one can find a focusing geometry resulting in a threshold oscillation with
few peaks. For such a focusing geometry, reducing the input power should remove
the secondary impulses in the Stokes return after the first peak. Figure 4.11 shows

how the relaxation oscillation converts to a compressed pulsed as the input energy
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is reduced from graph a) to d).
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Figure 4.11: Pump and Stokes as function of time at the entrance to the cell. By
reducing the pump energy, we remove extra oscillations from the threshold oscilla-
tions, resulting in a pulse compressed beam. Cell length=80 cm, focal length=80
cm and immersion length =70 cm with all other parameters as in Fig. 4.4. In 9(d)
the delay in peak Stokes and peak pump is due to the round trip time of the cell
and building to threshold.

The process of pulse compression can be seen better if we look at the 3D graph of
the Stokes power, figure 4.12. At early times of the process, the center of maximum
reflectivity (maximum of the Stokes pulse) is close to the focal region. This center
moves towards the entrance of the cell at a later time. As a result, latter parts of the
incoming pulse are traveling a shorter distance before generating the Stokes return,

resulting in pulse compression [95, 7).

Summary of the results

We have shown how the focusing geometry affects the threshold relaxation oscilla-
tion. By choosing appropriate focusing parameters, we are able either to avoid them
or to make them apparent in the Stokes return pulse. Long cell and deep focusing

results in apparent threshold oscillation while short cell and shallow focusing result
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Figure 4.12: 3D graph of pulse compression [(d) in Fig. 4.11]. Stokes power in time
and space shows how the center of maximum reflectivity moves towards the entrance
of the SBS cell (z = 80 cm) resulting in pulse compression. Parameters as in Fig.
4.11.

in smooth Stokes output. Numerical results show that for short focal and immer-
sion lengths the threshold oscillations disappear in the Stokes pulse, as shown in

Fig. 4.13.

4.4.3 B: Stochastic fluctuations of phase and amplitude

Noise initiation of the SBS process results in large scale fluctuations in the Stokes
output. These fluctuations are of stochastic nature in the sense that there is a ran-
dom probability for the occurrence of the fluctuations as well as for their temporal
position in the output Stokes pulse. The inclusion of the Langevin forces into the
SBS equations, Eq. (4.3), does produce intensity fluctuations and phase jumps in
the output Stokes pulse. The computer code can be run for different initial noise dis-
tributions resulting in different output results. For some initial noise distributions,
intensity fluctuations are apparent in the output Stokes intensity. Fig. 4.14 shows
an example of this and also shows that corresponding and simultaneous to these
fluctuations in the Stokes power, there are some rapid changes in the Stokes phase.
The simultaneous occurrence of phase jumps in the Stokes phase and fluctuations
in the stokes power can be understood by looking at the main equations governing

SBS i.e. equations (4.11). On the right hand side of these equations we have two
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Figure 4.13: Threshold oscillations disappear for short focal length and immersion
length. Immersion length =20 cm and focal length =60 cm, other parameters as
standard set shown in Fig. 4.4.

effective gain terms, gsin( ¢4+ ¢s — Pp) or g cos( ¢q + ¢s — ¢p) which are affected by
rapid changes in the phase of the fields. Figure 4.14 (b) shows how the normalized
effective gain gsin( ¢4+ ¢s — ¢p) suffers a reduction at the time when a phase jump
occurs in the Stokes field. Depending on the size of the phase jump and the phase
behaviour of the pump and acoustic field, the effective gain can be reduced to a
smaller positive value or even to a negative value, which interchanges the role of
Stokes and pump field i.e. the pump field gains while the Stokes field depletes. This
is similar to what happens in the generation of solitons in stimulated Raman scat-
tering [87]. The final temporal position of the phase jumps as well as the shape of
fluctuations in the output of the Stokes phase and power depend on how they prop-
agate and amplify from the initiation point (focal point) towards the entrance of the
cell. Stokes pulses, initiated from noise, are amplified through two main regions as
they propagate towards the output of the cell. In the first region, basic amplification
and spectral changes of the Stokes beam take place [80, 96, 97, 13, 98, 18] and in
the other one (namely depletion region specified by depletion length lgep, = llGﬂ)
the final amplification of the Stokes power to a level approximately equal to t?he

pump power occurs. The final Stokes output can be greatly affected by the dynamic

processes in the depletion region. As we discussed, this region plays a crucial role in



92 CHAPTER 4. 1-DIMENSIONAL MODEL OF SBS

2.5
i -

= 2.0F

: =

a8 1.5F

5 :

~ 1.0F

L :

o -

2 0.5

2 -

% 0.0k

0

S 14

5 e — : (b)_.2 c
£ | 2 3
b -.—. Stokes phase K Jo ¢
2 — Effective gain B s .. | I
. 1, &
8 1725
4

Jl ) " i -4
@ 20 40 60 80

Time (ns)

Figure 4.14: Corresponding and simultaneous to each fluctuation in the Stokes out-
put (a) there is a jump in the Stokes phase [dashed curve in (b)]. Parameters are set
as: cell length 60 cm, focal length 60 cm, immersion length 30 cm, Phonon lifetime
0.85 ns, gain of the medium 0.0063 cm/MW, refractive index 1.36 and input energy
119 mJ.

suppression of fluctuations (existing in the Stokes signal) in the case when T}, < Ts.
For the case of T, > T, fluctuations in the Stokes pulse at the beginning of this
region experience amplification and appear in the final output [18]. Depending on
the phonon lifetime and the length of this region, different spectral components of
the fluctuations in the Stokes pulse experience different gain and as a result, the
spectrum of the fluctuation varies as it propagates through the depletion region
[98, 18]. Considering this and the fact that the depletion lengths corresponding to
different temporal parts of the Stokes pulse are different [since Go(t) = gI;(t)limm),
we expect that the shape of the fluctuation varies while propagating towards the
output of the cell. For example, figure 4.15 (a)-(d) shows how the temporal position
of the phase jump and the beginning of the fluctuation in the figure 4.14, vary from
39 ns at position z = 0.46L inside the cell (a) to 55 ns at the entrance, z = L, of
the cell(d) (where L is the length of the medium, see figure 4.3 ).

The focusing geometry of the SBS cell, input energy and phonon lifetime of the

material affect the phase jump fluctuations. Due to the stochastic nature of the



4.4. RESULTS OF THE 1-DIMENSIONAL MODEL 93

2 Ea B
5 i kS
0 Y
; = €
> ; i i o
" ~ 8
z 2 . u} £
o Loy t 3 .
o _4lStokes Powerx10™® _4} — Stokes Powerx10™ -4
20 30 40 S0 60 70 80 20 30 40 S50 60 70 80
il NI - | I i @
DL N
a 1 ] ] o
5 0 S 1 0 ~o 10 &
T T 3
3 ~2[ __ Stokes Phase 1 —2r 1-2 £
& — Stokes Powerx10™ _ 4} — Stokes Power 1_
-4 . A h 4 . h : : 4
20 30 40 50 60 70 80 20 30 40 50 60 70 80
Time (ns) Time (ns)

Figure 4.15: The temporal position of phase jump and the beginning of the ampli-
tude fluctuation (in Fig. 4.14) as they initiate at about z = 0.46L (a) inside the
cell (where L is the cell length) and propagate through points z = 0.56L (b) and
z = 0.71L (c) to the entrance of the cell (d).

fluctuations, the width, magnitude and the number of fluctuations vary from pulse
to pulse. As a result, we have chosen the fraction of the Stokes energy contained
in the fluctuations i.e. < % > (where <> means statistical average over all
number of pulses) as the best parameter to show the importance of the fluctuations
to a practical deployment of SBS in a laser system. Unless otherwise stated, the
following parameters are used in the numerical simulations: cell length = 60 cm,
focal length = 60 cm, immersion length = 30 c¢m, input beam radius at window

= 0.3 cm, input energy = 119 mJ, gain of the medium = 0.0063 cm/MW, phonon

lifetime = 0.85 ns, and refractive index = 1.36.

Phonon lifetime effect on the phase jump fluctuations

As was previously discussed, the phonon lifetime is a measure of the acoustic field
inertia. For a medium with a long phonon lifetime, the acoustic field can not respond
quickly to the rapid fluctuations in the noise initiated Stokes field, and it thus
broadens and smooths out the fluctuations in the Stokes field. This is illustrated

in Fig. 4.8 in which the response of the acoustic field to a zig-zag driving force for
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Figure 4.16: The average of the fluctuation energies (normalised to output energy)
reduces for longer phonon lifetimes. Other parameters are as in Fig. 4.14.

different values of phonon lifetimes is examined. For a long phonon lifetime, the
response function is just the integral of the noisy driving force. To examine the
effect of phonon lifetime on the phase jump fluctuations, the simulation was run
with different initial noise distributions for three different phonon lifetimes. The
fluctuation energy (normalised to the output energy and averaged over a certain
number of shots) is calculated for these different phonon lifetimes. Figure 4.16 shows
how the energy of the fluctuations decreases for higher phonon lifetimes, indicating
a better suppression of the fluctuations.This is consistent with the condition Gg >
I'T;, Eq. (3.50), required for smoothing the fluctuations. The longer the phonon
lifetime, the smaller is I' and the better is the fulfillment of Gy > I'T;.

Effect of immersion length:

As mentioned previously, the two key parameters in suppressing the fluctuations are
the propagation time through the depletion region T}, , and the temporal variation
of the Stokes signal, T,, which reaches the depletion region. In the case when

T,,., < T, the fluctuations in the Stokes signal are suppressed as they pass through

de

the depletion region while in the other case, T;,,, > T;, they are magnified and
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appear in the final Stokes output. The depletion length l4., depends (roughly) on
the steady state gain Gy and the immersion length lipm (laep = Lgf-) By controlling
Go and l;ynm we are thus able to change the length of depletion region. From the
condition Tj,,, > Ty, it is clear that reducing 7j,,,, implies a reduction on the number
of fluctuations as well as their durations in the final Stokes output.

A shorter depletion length can be obtained for a short immersion length (achieved
by long cell-lens separation) and as a result, we would expect a better suppression of
the fluctuations. Figure 4.17 shows how the averaged fluctuation energy < %% > %
(normalised to the output energy) changes as a function of the immersion length.
We thus conclude that a small immersion length, achieved by large cell to lens

separation, provides better suppression of fluctuations. Experimental results predict
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Figure 4.17: The effect of the energy fluctuations, measured by (Efiuc/Eoutput) % is
reduced for shorter immersion lengths (constant focal length and large cell to lens
separation).

similar effects: the intensity fluctuations are suppressed for short immersion lengths.
In Fig. 4.18 [2] the amplitude of the fluctuations as a percentage of the Stokes
peak, and averaged over 1600 pulses, has been plotted for different values of the
immersion length. It indicates that in SBS experiments, focusing geometries with
shorter interaction lengths can be used to suppress the Stokes intensity fluctuations.

Such a behaviour has also been reported previously [11, 13, 92].
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Figure 4.18: Experimental results of the effect of the immersion length on intensity
fluctuations. Average of the fluctuation amplitudes as a percentage of the Stokes
peak versus the immersion length. After V. Devrelis [2].

Effect of input energy:

Another parameter that can affect the depletion length is the input energy. A
higher input energy results in a higher gain, G, which in turn reduces the depletion
length, lgep, of the SBS. As discussed above, we thus expect that fluctuations in the
output Stokes beam have smaller duration i.e. they carry less energy. In order to
examine the effect of input energy, we have studied the output Stokes beam of 500
simulated pulses with different initial noise distributions and at different energies.
Considering the histogram of (%fﬁh) for these 500 pulses, where E,y; is the mean
energy of all output pulses, and fitting a Gaussian function to it, we find that the
width of the Gaussian fit is reduced at higher energy i.e. the variation in output
energy per pulse around the mean value is reduced for high energy (see figures
4.19). Another parameter that can show how fluctuations are suppressed for high
energies is the average of the fluctuation energy (normalised to output energy).
Simulation results in figure 4.20 show a reduction in the averaged fluctuation energy

for higher input energies.  This result is consistent with the experimental results

shown in Fig. 4.21 [2] in which higher input energies result in better suppression of
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Figure 4.21: Experimental results of the effects of the input energy and interaction
length on intensity fluctuations. Average of fluctuation amplitudes as a percentage
of the Stokes peak versus the input energy for two focusing geometries. For focal
length =100 mm, the interaction length is 100 mm and for focal length = 300 mm,
the interaction length is 300 mm. After V. Devrelis [2].

fluctuations.The Experimental results of Dianov et al. [11] (in fibers) shows that the
depth of the intensity modulation reduces when the excess energy over the threshold
energy increases. Gaeta et al. [13] as well reported less Stokes intensity modulation

for larger values of Gj.

Effect of pulse duration:

In the above section, we kept the duration of the input pulse constant and we studied
the effect of parameters such as input energy and beam area on the fluctuations.
In order to observe the role of pulse duration, we have chosen to keep the input
energy of the pulse constant and reduced the pulse duration, i.e. we increase the
peak injected power. Simulation results show a dramatic reduction in the number
of fluctuations for short pulse durations which in turn results in a smaller averaged

fluctuation energy (figure 4.22).
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matically suppress the fluctuation in the output Stokes. The effect of pulse duration
on the suppression of fluctuations is shown for two energies: 115 mJ and 205 mJ.

4.4.4 Conclusion

To describe different kinds of temporal amplitude and phase modulations in Stimu-
lated Brillouin Scattering, we extended the plane-wave equations, for complex fields
describing SBS in a finite cell, to include focusing geometry and initiation from a
Gaussian random noise distributed over space and time. Two kinds of modulations

were found:
(1) Deterministic relaxation oscillation at the threshold energy,
(2) Random fluctuations in the output Stokes power.

The finite phonon lifetime of a material is responsible for an energy interchange
between the pump and Stokes field resulting in relaxation oscillations at the thresh-
old. There is no modulation of the Stokes phase corresponding to these oscillations.
It is predicted that materials with shorter phonon lifetimes can exhibit relaxation
oscillations of longer duration than those with long phonon lifetimes. It was found
that an initially stronger acoustic wave ( resulting from a high focal intensity de-
termined by the focal length of the lens) shortens the relaxation oscillations at the

threshold energy since the Stokes pulse can use the energy stored in the acoustic field
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after initially overshooting. Also, a small immersion length achieved by a large cell
to lens separation reduces the threshold relaxation oscillations. Altogether, short
focal length, short immersion length and large phonon lifetime provide the best pa-
rameter space for removing the threshold relaxation oscillations. Experimental and
numerical results are in a qualitative agreement, see Figs. 4.5, 4.9, 4.10 and 4.13.
They indicate that the threshold oscillations are present for long focusing depth
and disappeared for short focusing depth. Although weak threshold oscillations are
usually observed in experiments, they have, to the best of our knowledge, not previ-
ously been the subject of investigation, and have not been described to the extend

predicted in our model.

Stimulated Brillouin Scattering initiated from microscopic noise shows large scale
stochastic amplitude modulation in the output Stokes beam. Simultaneous jumps
in the Stokes phase are found. We have determined a parameter regime where this
modulation is minimised or eliminated, thus predicting conditions for optimised,

reliable SBS:

1) Longer phonon lifetime provides a better suppression of instabilities in the

Stokes pulse.

2) Depending on the input energy and focused spot size, the pump and Stokes
field can be confined to a small region near the entrance of the cell (high energies,
short immersion length) or distributed towards the focal point for low energies and
long immersion length. For high input energies or short immersion length the time
for propagation through this region 7j, is small enough to suppress many of the
fluctuations reaching this region with duration Ty > Tj,_ . Short immersion length,
achieved by large cell to lens separation, is more desirable since T}, can be reduced
more effectively and a higher reflectivity can be achieved, but will in practice be
limited by optical break down of the SBS material or cell window. These results are

in qualitative agreement with experimental results, see Figs. 4.21 and 4.18.

3)Another parameter that can be used effectively to suppress the fluctuations is
the pulse duration. Our results showed that for a shorter pulse duration (i.e. higher

peak power) the number of fluctuations was reduced dramatically.

In this chapter, we examined thoroughly for the first time, the Stokes intensity
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modulations phenomenon in the cell geometry. As it will be shown in the next
chapter, these intensity fluctuations degrade the temporal and spatial fidelity of
the SBS experiment. Thus the significance of our findings, specially in practical
applications, is that they can be used to determine the best parameter space for
excellent Stokes beam quality.

The model developed here is one of the most complete and efficient one dimen-
sional numerical models of SBS. It includes all important features of SBS such as
transience, focusing geometry and initiation from noise. The model can be used in
the designing of a variety of practical laser systems wherever a SBS mirror is needed

either as a phase conjugating mirror or pulse compressor.
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Chapter 5

3-Dimensional model of SBS

5.1 Abstract

Our previous 1-dimensional numerical model is extended to a 3-dimensional one with
transverse circular symmetry in this chapter. The model describes a cylindrically
symmetric, 3-dimensional, transient SBS process initiated from noise. We use a
decomposition method and a new efficient numerical algorithm to solve the SBS
equations. The details of this numerical algorithm are presented. The model is
then used to examine the effects of transient phenomena on the efficiency of phase
conjugation of aberrated and unaberrated circularly symmetric beams by SBS. The
model is also employed to study the spatial mode structure of the Stokes and pump
pulses inside the SBS cell. The effect of parameters, such as phonon lifetime, input
pulse shape and input energy, on the transient fidelity of SBS is investigated. A new
transient phenomenon which causes SBS fidelity degradation at high focal intensity

(short Rayleigh range) is examined.

5.2 Introduction

The one dimensional model developed in the previous chapter enabled us to study
the transient phenomena that affect the temporal fidelity and reflectivity of the SBS
process. However, it does not enable us to study the phase conjugation fidelity with

an aberrated input beam due to its one-dimensional nature. To overcome this prob-

103
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lem, the model should be extended to three dimensions. The mathematical approach
to develop three dimensional model of SBS is straight forward [28]. Although such a
model enables us to study the phase conjugation of astigmatic and aberrated input
laser beams, it requires an extensive computational effort to solve the SBS equations.
For this reason and in order to reduce the computational effort, here, I developed a
three dimensional numerical model with transverse circular symmetry i.e., the laser
fields have circular symmetry in the plane perpendicular to the propagation direc-
tion. Thus, only one transverse dimension is considered in the SBS equations. This
limits the current model to cylindrically symmetric aberrations, but the approach
used can in principle easily be expanded to non-symmetric three dimensions. The
model developed here has the following characteristics: (i) it is a three-dimensional
numerical model of SBS in the cell geometry with transversal circular symmetry
i.e., the laser fields have radial symmetry, (ii) the process is initiated from a Gaus-
sian random noise [11, 13, 20] for both amplitude and phase to simulate the actual
thermal fluctuations in the density of the medium and (iii) transient equations and
a depleted pump have been used to study the threshold, saturation and transient
regime of SBS, and to provide an understanding of the transient fidelity of SBS. This
new model enables us to study the transient behaviour of the phase fidelity of SBS.
We have used a decomposition method to expand the fields in terms of transverse
spatial modes. By introducing block-vectors and matrices, App. B, and using a
noniterative method employed by Chu et al. [1], we have developed a numerical
algorithm that enables us to treat compactly any arbitrary finite number of spatial
modes of the Stokes and pump fields. This efficient numerical algorithm could also
be useful for the simulation of broad-band SBS, where many temporal modes ex-
ist in the input pulse. To the best of our knowledge, a complete numerical model
of broadband transient SBS, which takes focusing into account, has not previously

been developed.
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5.3 Theory

The equations describing the pump, Stokes and acoustic fields propagating along

the 2 direction in the SBS process are [Egs. (3.14a)-(3.14c)}

I T L R P
(QKSVt + Cat + az)Es = ’ngQ El, (51)
St 0 9. _ .
(2Kl Vi + T az)El = —1g2QFE;, (5.2)
0
(5 +T)Q = ~ s BiF;. 53

Here V2 refers to the derivatives in the transverse directions z and y, g1 and g»
are coupling constants, n is the refractive index of the medium and k, =~ k; are the
Stokes and pump wave numbers, respectively. In the transverse directions, we use a
decomposition method [99, 21, 22, 100, 27, 28] to expand the electric fields in terms

of orthonormal bases modes A,, and B,,,
Ery,z,t) = Y am(2,t)An(rL,2), (5.4)
By(r1,z,t) = ) bn(2,t)Bm(ry,2), (5.5)
where r is the position vector in the plane perpendicular to the propagation direc-
tion z, and the particular set of A,, and B,, used in our model will be given below.

By substituting Eqs. (5.4) and (5.5) into Egs. (5.1) and (5.2) and assuming that

A, and B, satisfy the homogeneous Maxwell equations, i.e.,

1

0
— 2 JR— .
iy O ~

these equations can be rewritten as

n o 0 C

;Bm(za + a)bm = —igQ*E,, (5.6)
n o 0 )

ZAm(Ea — a)am = —’ngQEs. (57)

m
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The expansions of the electric fields in Egs. (5.4) and (5.5) can also be used in the
right hand side of the acoustic field equation, Eq. (5.3), to write

(gt —zgle r1,2)B}(ry, 2)[ai(z,t)b}(2,t) + fi;(2,1)].

(5.8)

Like the one-dimensional model, to represent the noise initiation of the SBS process,
we have added a term for the Langevin noise term f;;(2,¢) to the right hand side
of Eq. (5.8), with spatial and temporal Gaussian distributions [13, 20]. f;; are 6

correlated functions in the sense that

(fii(2, ) fu(2,)) = Qobinbn6(z — 2 )6(t — 1),

where @), is given in chapter 4 by

9KTp.T
v2

Qo =

Here K is the Boltzman constant, T is the temperature, p, is mean density, v
is the velocity of sound in the material. The acoustic field in Eq. (5.8) can be

integrated to yield
= —zgle ry,z)Bi(rL,2)Ci(2,t), (5.9)
where
¢
Cij(z,t) = / [ai(Z,T)b;(zaT) + fij(zaT)]e_P(t_T)dT. (5.10)
0

This expression for @ in turn can be substituted in Egs. (5.6) and (5.7) to obtain

n 6 0
ZB + 5. )bn = 0192 Y Ai AcB;Can, (5.11)
.4,k
nd O
> An(S5 = 5-)am = 9192 Y AsB; BiCibs. (512)
=, i,k
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Since A,, and B,, are orthonormal bases, we can multiply both sides of Egs.
(5.11) and (5.12) by B} and A;, respectively and integrate over space to find the

following differential equations for b, and an:

nd 0 e [T . 12
(Co+p)tn = 0192 > Cax A} Ay B;Bd?r, (5.13)
i,k B
nd 0 Eh e
(Za - b—z)an = —0192 Z Cijbk A;By B} A d’r. (5.14)
i,k —

In Egs. (5.13) and (5.14), obtained for any general form of A; and Bj;, the only

term that depends on the form of A; and B; is the tensor

+00
Gknij = AIAkBjB;d2r (5.15)

—oQ

Our model can thus equivalently be developed for any kind of orthonormal bases A;
and B; that satisfy the paraxial wave equation. Since we are interested in the phase
conjugation properties of SBS, we chose the complex conjugate of A,, as the basis for
the Stokes wave, i.e., Bn(ry,2) = A} (ry, z). This enables us to examine how much
of the energy in a particular input mode is reflected into the conjugated mode. For
the basis A,, we have examined two important cases: (1) the Hermite-Gaussian
functions used by Moore and Boyd [28] and (2) the Laguerre-Gaussian functions
used by Miller et al. [22]. For the case (1) a Hermite-Gaussian function is used for

each transverse directions z,y i.e.,

Anm(rJ_y z) = An(xa Z)Am(y7 Z)7

where A,(z, z), for example, is given by

T,z) = 22 ol (2)) 5 i) _@ exp | — i ke 2P
Anf0,2) = (D@ nla() P PO B (L) exp | — iz - Tl

(5.16)

For the case (2) a cylindrically symmetric Laguerre-Gaussian function is used as the
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basis for the transverse direction i.e., [101]

2ell I o 2r? kr? r?
= (2)32 int+3)¥(2) |, . —
An(’l",Z) (71') U.)(Z)e 2 n(w(z)z)exp[ ILZR(Z) UJ(Z)2],
where r = [r)| = (22 4+ y?)Y2 (5.17)

Here, H, and L,, are the n-th order Hermite and Laguerre functions, respectively

and the spot size, w?(z), radius of curvature, R(z) and Gouy phase angle, 1(z), are

given by
wi(z) = w1 + (=27, (5.18)
ZR
22
R(z) =z — 20+ —2—, and (5.19)
Z2— 2
¥(z) = tan~t (2=22). (5.20)
2R

As usual, z; is the position of the beam waist, the Rayleigh range zp is related
to the beam waist radius wp (for the fundamental mode) and wave length A as
zg = Twin/ )\, n is the refractive index of the SBS material, and wy is related to the
input fundamental beam radius w; and its curvature R; (see Fig. D.1). In App. D
we have shown how wy (the beam radius) and its location inside the SBS cell [ is

related to wy, and R;.

For odd values of n, Hermite-Gaussian functions A, have odd parity i.e., A,(—z) =
—A,(z) so they play a less important role than the even modes. These functions are
suitable for the modeling of the aberrated beams that are not cylindrically symmet-
ric (e.g. when there is astigmatism). The disadvantage of choosing these functions
as the basis is that we need one basis set for the z-direction and another one for the
y-direction which, when combined to represent the three-dimensional model, pro-
duce complicated equations that are difficult to solve numerically. This necessitates
a further approximation of circularly symmetric electric fields i.e., ap;m = amy, and
bnm = bms to reduce the numerical effort (see [27, 28]). In the case of Laguerre-
Gaussian functions there is no parity consideration and the functions are cylindri-
cally symmetric with the fields completely determined by their values at any trans-

verse position r = |r, | and along the direction of propagation 2. The mathematical
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development of equations for both Laguerre-Gaussian and the Hermite-Gaussian
bases is similar. We have used our numerical approach for both the Laguerre-
Gaussian basis and the Hermite-Gaussian basis with radial symmetry. Here we
present just one approach using Laguerre-Gaussian functions. Utilizing the expres-
sions for the basis A,, Eq. (5.17), the two integrals in Egs. (5.13) and (5.14) can

be evaluated as

+o0 eilktn—i=j)p(z)

gois = | ALABBLdr = —— e, (5.21)
. e g eilEnmimi()
Gknij = . A;ByB; Ardr = MO Eknijr

where gxni; is a symmetrical real tensor given by the overlap integral:
2. [t
chn = (2) [ doe Laa) (@) i) Ly o) (5.2
0

The gain tensor gin;; depends on the phase mismatch factor e(F+m~i=9¥(=) and the
mode coupling constant €xy,,;. It will be shown that the overall gain of any mode is
entirely determined by these two factors. Some values of £x,;; are shown in the table
5.1, while the recurrence relations for e,;; are given in App. C. The definition of

the gain tensor ginij, Eq. (5.21), can be used in Egs. (5.13) and (5.14) to write

n (9
(C 6t b =G Z ak:gk:my (523)
7-77
n o 0 .
(S5~ 3,00 =—C > Ciibrginii (2), (5.24)
4,5,k

where G = g1g2. We have developed a numerical algorithm to solve these equations.
We change the continuous field amplitudes b,(z,t) and a,(z,t) to discrete amplitudes
(bn)g,‘+1 and (an)g“. Here, n,i,7,k = 0,1,2,...,p are the spatial mode indices in
the transverse direction, @ = 0,1,2,..., M are time indices (t = aAt) and § =
0,1,2,...,N + 1 are space indices in the propagation direction (2 = Az and L =
NAz). Referring to Fig. 5.1, it is clear that (b,);™ and (a.)3; (ie., complex
amplitudes of the Stokes field at z = Az and the pump field at z = Az + L) are
the boundary values for the Stokes and pump fields. Both SBS generators and
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amplifiers can be considered in our model. In amplifiers the SBS process starts from
an injected Stokes signal. For SBS generators, however, there is no external seeding
and the process starts from noise. Thus, the boundary value of the Stokes field is

always zero i.e.,

(b,)$™ =0 for all @ and all modes n.

(an)}"vtrll’ s are the pump input fields at the time slot (a+1)At¢. Any temporal function

can be considered as an input. In addition, by considering a linear combination of

the functions (a,)%'; one can introduce any spatial aberration to the input pulse.

Similarly,

(bn)j = Oforall 3

(an)g = Oforall Bexcept 6=N+1

are the initial values of the Stokes and pump fields. Using Simpson’s rule

[ fayis = 3alf@n) + (aa),

and the discrete field’s amplitudes (b,)3"" and (a,)%%}, we can evaluate Cj; in Eq.

(5.10) as

(Cag™ = @ G5 + ()5 + (Po)g), (5.25)

where

(Py)g = e "{(Py)5~" +2(a:)5(8))5 + (fis)5]},

and

(Pi)s = e [(a)(57)5 + (fis)3)-

This expression for C;; can then be substituted in Eq. (5.23) and (5.24) to find the
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following algebraic equations for the discrete field amplitudes

a3 [ AZ « (a2
(bn)ﬂi} - (bn) i +— oAt (b ) - (bn)ﬁ] =
AzAt . N o o
G > (ae)g M @)g T )5 + (Fi)g T+ (053l gknss,
igk
(5.26)
and
Az
a+1 a+l a+1 o)
(an)gL - (a'ﬂ)ﬂ N (an)g - (an)ﬂ] =
AzAL a a *\ O @ Q] _*
G 5 Z (bk),@+1[(ai)ﬁ+1(bj)ﬂ+l it (fij)ﬂ+1 i (pij)ﬁ]gkm'j‘
ijk
(5.27)

Next, we introduce the Stokes and pump vectors in the transverse modes subspace

as

bl ay

—y by N as

bgt st =] | (5.28)
by Gp

to convert Eqgs. (5.26) and (5.27) to a matrix form:

Az

AZ——>

ot +[(-1+ —11- FSb et - Gyagt = — b (5.29)
Az — —Az

—)a+1 —ra+1 o a+1 —>

I'agt; + [(— 1——t)I E] ﬁ“L—Dﬁbﬂ+ —-—Ctaﬂ.

(5.30)

Here, I is the unit matrix and the elements of the four matrices Fg, G, Eg and
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Dj (elements in the transverse modes subspace) are

o GAzAtL P
(F5)is = Z(a’k)ﬂ(al)ﬂgkﬂj, (5.31)
2 Ik
N GAzAt « e
(Gplis = 5 Z[(flk)ﬁ"‘(sz)ﬂ]gjuk, (5.32)
Ik
GAzAt A %
(B = > G500 iy (5.33)
2 Ik
N GAzAt o —
(Dg)is = 5 Z[(flk)ﬂ‘*‘(Plk)ﬂ]gjizk- (5.34)
1k

By representing the Stokes and pump field as a “block-vector” (see below and App.
=
B) fields (5 )**! and (7@)°+! at the time (a + 1)At as

a+1 a+1
(&) e
by @
= ;
(7)) = (@)™ = , (5.35)
=y \ % )
we can compact the two Egs. (5.29) and (5.30) into matrix equations:
=
c(B)* - D@ = (V) (5.36)
=
Ho(F)* — K*(5)* = (T)". (5.37)

Block-vectors (%;)0‘*‘1 and (%’)D‘*'1 are N x 1 vectors, whose elements are vectors
?[3 and @ g, representing the electric fields at the point z = SAz. Each of the
_b)ﬂ and @ are themselves p x 1 vectors whose elements represent the different
spatial modes of the electric fields. C%, D* H* and K® are N x N upper or lower

tridiagonal “block-matrices” evaluated at time aAt with elements that are p x p
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matrices in transverse modes subspace. They are given as

(1 0o o 0 ) e
Mg I 0 0 0 G
co=| ¢ g ,D* = 0
: 3 0
\ 0 0 Mg 1) \ 0 0
[(Ne I 0 0\ [0 o
0 Ng I 0 D$ 0
He = 0 K*=| : Dpg
; .
\ 0 0 0 Ng \ 0 0
where
Az o
Mg = (-1+—)I - F5,
Az
Nj = (-1-—)I-Ej,

and G§ and Dj are given in Eqgs. (5.32) and (5.34).

0
0

[

113

(5.38)

(5.39)

The known block-vectors (?)0‘ and (?)a can be evaluated, using the boundary

conditions and the values of the fields at the time slot aAt, as

a 5 a+l Az T o
Az Pa
(?)a — cAt 7 2
Az Fa
\ cAt b N
—
a a+1 z —a
( DY b7 — &0t
_Az 2a
(T = oot @3
—ra+t1 Az —a
\ “ON1 T At N

(5.40)

(5.41)
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From Eq. (5.36), block-vector (%‘)"‘Jr1 can be determined:
(s 7 o\ — o :; o o\ — o3
(@)™ = (D°)1C(B)™+ - (D°)H(V)", (5.42)

this can be in turn substituted in Eq. (5.37) to find

(7)°* = [HD"'C — K|"*HD{(V)° + [HD"'C — K] (7).

(5.43)

Using the method describing in the App. B, we can solve Egs. (5.42) and (5.43) for
the field amplitudes (?) and (%;) at any time slot @ + 1 using the values at time
slot a. We used an Alpha Digital Workstation 500 Au, with a 500 MHz processor
and 256 Mb RAM to solve the SBS equations numerically.

5.4 Results and Discussion

The geometry of the process is shown in Fig. 5.1. An input laser beam is focused
from right into a SBS cell whose refractive index is n,. The refraction of light at
the boundaries air to the entrance window (thickness ¢ and refractive index n;) and
optical propagation through the entrance window to the SBS material has been
considered. In App. D, we have calculated the position and waist of the laser beam
inside the SBS cell. As for the one-dimensional model discussed in Chap. 4, we use a
temporally Gaussian pump pulse of the form Ey exp{—2[(t—t0)/t,]*}, where t,, is the
pulse width. Unless otherwise stated, the other parameters are as follows: cell length
60 cm, focal length 50 cm, immersion length 40 c¢m, input energy 140 mJ, phonon
lifetime 0.85 ns, gain of the medium 0.006 cm/MW, FWHM pulse length 20 ns, and
an arbitrary chosen index of refraction, no=1.0. The above parameters were chosen
arbitrarily for the numerical study only. There is a free parameter in our computer
code that determines the strength of the initial random noise. Experimental results
are necessary to set the value of this parameter. The results in this chapter show
the general behaviour of SBS for an arbitrary value of the free parameter resulting

in arbitrary units for the Stokes and pump powers. However, in Sec. 5.5 we use
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Figure 5.1: The geometry used for the SBS process. Input beam parameters are
shown at input plane 1.

experimental parameters to set the free parameter of our computer code and make

accurate comparisons between the numerical and experimental results.

5.4.1 Single-mode input beams

Before discussing the results of the 3D model in the transient regime, we develop
a simple argument to show how phase conjugation using SBS works in the steady
state regime. In the steady state regime of SBS [i.e., ignoring all (9/0t)], Egs. (5.8)
and (5.9) can be simplified to find C;; (ignoring f;;):

1 *
Cij = Faibj .

This value of C;; then can be substituted in the Eq. (5.23) to yield
0 G .
(5) bn e F ; a, bjakgkm'j(z)‘ (544)

We assume a single mode input pump pulse (m) to be the only dominant pump
mode inside the cell. Thus, with the help of Eq. (5.21), the sum in Eq. (5.44) can

be written as

G |am
( % > |aml” me =iy, (5.45)

Tw2(z)
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Rewriting this equation for the phase conjugated mode b,, and the two adjacent

modes b+ yields

) G lam|? —iy(=) i (2)
— by = (5mmmmbm + Emmmm+1€ bm+1 + Emmmm—1€ bm-1 + )7

0z T Tw?(2)
(5.46a)
0 G |am|? .
a_ bm = =\ Emmm+1im bm + Emmmm e“ﬁ(z)bm + i)y
(5.46b)
o G |am|2 .
a_ bm— = Emmm—1m— bm— + Emmmm— _“/}(z)bm +...).
(8,2) ! F'w?(z) ( e a B )
(5.46¢)

The first terms on the right hand side of these equations are phase-matched terms
and the second and third terms are non-phase-matched terms. In our model we
have solved Eqs. (5.23) and (5.24) for the conjugated and non-conjugated modes

simultaneously, including the phase-matched and non-phase-matched terms.

Above the threshold, it is assumed that b, < by, for n # m. This assumption is
valid if the phase conjugated mode has suppressed the other modes in competition
for gain through the threshold. In reality, there are conditions for which the phase
conjugated mode is not the dominant mode after the threshold has been reached.
To study these conditions we require the time dependent equations and this will be
discussed later in this chapter. Ignoring b,,+1 and all the other higher order modes

on the right hand side of Eq. (5.46a), results in

(6)17 _ Glan| b (5.47)

This indicates that in this model the gain of the phase conjugated mode in the
steady state regime is determined mainly by the phase matched coupling constant
Emmmm- Lhe numerical value of &,mmm is smaller for higher order modes (see table
5.1) resulting in lower reflectivity for these modes as will be shown in Fig. 5.17
(a). This is expected since the far field diffraction pattern of higher order modes
will have finer spatial details, that are less likely to correlate with other modes,

hence reducing the overlap integral in Eq. (5.22). Ignoring b,,+; and all the other
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Table 5.1: Numerical values of €gp;;-

k ? J n Eknij

0 0 0 0 0.3183
0 0 0 1 0.1592
0 0 1 1 0.1592
0 1 1 1 0.0796
1 1 1 1 0.1592
1 1 1 2 0.0796
1 1 2 2 0.0995
1 2 2 2 0.0547
2 2 2 2 0.1094
2 2 2 3 0.0547
2 2 3 3 0.0746
3 3 3 3 0.0846

non-conjugated modes on the right hand side of Eq. 5.46b yields

o G ||

by = —— Wy,
0z ™ T Tw?(z)

Emmmm+1€
which shows that the gain of non-conjugated modes is determined by non-phase
matched terms. This equation can be combined with Eq. (5.47) to find

: Emmmmt1 i) O (5.48)

b;bm+l =

Emmmm 8

Numerical calculations of €mmmm Show that €mmmmi1 = Emmmm—1 = Emmmm/2 (see
table 5.1) i.e., the gain of the phase conjugated mode is twice that of the nearest
modes. This discrimination against non-conjugated modes, acts to suppress them in
the competition for gain with the conjugated mode, resulting in a dominant phase

conjugated pulse at the output in the steady state regime.

Fundamental mode

Next, we examine the SBS process of a single mode input by focusing into an SBS
cell a perfect Gaussian beam, which is described totally by the fundamental mode
of the Laguerre-Gaussian functions with the beam radius of w; = 0.5 cm. The input
pulse is Gaussian both in space and in time. The quality of phase conjugation by

SBS is studied, using the following definition for the fidelity[37]
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Figure 5.2: Typical results for the Stokes, pump and transmitted pulses obtained
when a perfect Gaussian beam (fundamental mode of the Laguerre-Gaussian func-
tions) is focused into a SBS cell with the standard set of parameters: cell length
60 cm, focal length 50 cm, immersion length 40 cm, input energy 140 mJ, phonon
lifetime 0.85 ns and refractive index, n=1.0.

| Eu(r.,2,t)Ey(ry, 2,t)d2r|*

H(z,t) = s 5.49
(1) [1Ei(ry, 2,t)* d2r [|Ey(ry, 2,t)|° d?r (5.49)
which can be simplified, using Eqgs. (5.4) and (5.5), to
; Vi<, () )t i
H(Z,t) —_ |Zzb (Z t)a (Z )| (550)

(i lailz, 1) %) (3 [ba(=, 6)I°)

Figure 5.2 shows the typical results for the Stokes, pump and transmitted pulses
with an overall reflectivity of 78% and fidelity of 94%. The time-resolved reflectivity
and fidelity at the entrance of the cell (z = L 4+ Az, Fig. 5.1) is shown in Fig. 5.3.
In our previous model discussed in Chap. 4, we showed that there exist some fluctu-
ations in the Stokes intensity and phase due to noise initiation of the SBS process.
These temporal fluctuations in the Stokes pulse have been observed experimentally
to cause degradation in the fidelity of the SBS process [10, 12, 19, 2], but our current
3-D model was required to study the behaviour of the spatial fidelity. The numerical
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Figure 5.3: Time-resolved reflectivity and fidelity. Other parameters as in Fig. 5.2.

results indicate that intensity fluctuations do cause degradation in the time-resolved

and overall fidelity as shown in Fig. 5.4.

The mode structure of the pump and Stokes fields can be examined by the 3-D
model. Focusing the fundamental Laguerre-Gaussian mode, different modes of the
Stokes field existing in the noise source term are initiated. The gains for each of
these modes are different and given by Eq. (5.21). The distribution of the output
energy in the different Stokes modes is shown in Fig. 5.5, which indicates that
the main part of the reflected energy (93.3%) is in the conjugated mode (i.e., the
fundamental mode). The energy in the other Stokes modes is decreasing as the mode
number increases (mode I 4.2%, mode II 0.7%, mode III 0.6%, mode IV 0.3%, and
so on). The initiation of the different modes of the Stokes field at the focal point
and their propagation towards the entrance of the cell at the specific instant ¢ = 40
ns are shown in Fig. 5.6. The model predicts that when the zero order mode of the
Laguerre-Gaussian function is incident on the cell it initiates the other modes, not
only in the Stokes field but also in the pump field. Although the input energy of
all non-zero modes is zero, energy is coupled into the non-zero modes of the Stokes
and pump fields, propagating in the backward and forward directions, respectively.

Fig. 5.7 shows how the zero mode of the pump field decays from the entrance of
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simultaneous to the fluctuation in the Stokes pulse.
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Figure 5.5: The relative distribution of the Stokes energy, into different modes,
E;/E74(%). Other parameters are as in Fig. 5.2
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Figure 5.6: Different modes of the Stokes pulse are initiated at the focal plane
(z = 20 cm) and propagated towards the entrance of the cell. The distribution of
the fields inside the cell is shown at time ¢ = 40 ns. The entrance of the cell is at
z=60 cm. See Fig 5.1 for the focusing geometry and propagation directions. Other
parameters as in Fig. 5.2
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Figure 5.7: The fundamental mode of the pump beam is depleted as it propagates
towards the end of the cell (z=0 cm). The other modes of the pump are initiating
at the entrance (z=60 cm) and propagating to the end of the cell. Fields are shown
inside the cell at the time ¢ = 40 ns. See Fig 5.1 for the focusing geometry and
propagation directions. Other parameters as in Fig. 5.2.

the cell to the end of the cell while the first and second modes are arising at the
front of the cell and are growing towards the end of the cell. As a result, part of
the transmitted energy is carried by the non-zero modes (see Figs. 5.5 and 5.8).
Another parameter that is related to the mode structure of the fields inside the cell
is the beam spot size W?(z) which is important for the evolution of beam quality or
fidelity. We follow the convention used by Siegman [102] and define the beam spot

size at any plane along the direction of propagation z of the beam as
W2(z) = 402(2), (5.51)

where o,(2) is the effective radius of the beam or so called [102] the standard devia-

tion of the time-averaged beam intensity in the r direction, at plane z, and is given

by:

o2(z) = / ff fr Iﬁf’z;’;‘:rr. (5.52)
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Figure 5.8: The transmitted power for different modes is shown as a function of
time. Not only the fundamental mode but also all the other modes contribute in
the transmitted power.

By using the explicit form of the basis functions A,(z), i.e., Eq. (5.17), and the

recurrent relation for the Laguerre functions i.e.,
(n+1)Lypi(z) = (2n+ 1 — ) Ly(z) — nLlp-1(x),

one can evaluate the integral [ [r2I(r,z)d?*r for the pump and the Stokes beam

respectively as

//erl(r,z)d2r - Zana / r2A,(r, 2) AL (r, 2)d?
. Zanafnei(n_m)“p(")/ Ly (x) Lo (x)e dx

0

w?(2n+1) w?(n + 1) ~
= C I = D e 400

//ers(r,z)d2r = Z@;_l)|bn|2—zﬂ[b*b+ e 4 0.0,

n n

where a, and b, are the pump and the Stokes field coefficients as in Eqs. (5.4) and
(5.5) and C.C. is the complex conjugate. The mode structure of the fields appears in
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Figure 5.9: The spot sizes of the Stokes and pump beams are compared with the
spot size of the fundamental mode as functions of z. The entrance of the cell is at
2=60 cm. See Fig 5.1 for the focusing geometry and propagation directions.

the expression for o2(2) which affects the spot size of the fields. Fig. (5.9), shows the
spot size of the Stokes, pump [calculated according to Eq. (5.51)] and fundamental
mode [calculated according to Eq. (5.18)], as a function of z . At the entrance to
the cell, at z = 60 cm, the pump and the fundamental mode have the same spot
size indicating that the input pulse is purely in the fundamental mode but inside

the cell they are different, which is due to the mode structure of the pump field.

Effect of Energy Using the fundamental mode of the Laguerre-Gaussian function
as an input and the set of geometrical and material parameters given above, we find
that the fidelity of SBS increases as a function of energy and saturates at some level
(see Fig. 5.10). This result, although seemingly simple, has been a matter of great
debate over the past 15 years. There was much discussion about the behaviour of
the phase conjugation fidelity at high energy between two groups of researchers, one
believing that the fidelity at high energy decreases (theoretical work by [103, 30]
and experimental work by[104, 105]) while the other one claiming that the fidelity
increases (theoretical investigation by [106, 37] and experimental investigation by

[12, 107, 108]). This was resolved by observing that the lack of high fidelity at high



5.4. RESULTS AND DISCUSSION 125

energy was related to the shape of the input pulse and transient effects. It had been
reported earlier that poor phase conjugation fidelity could be obtained for input
pulses whose duration was significantly shorter than the phonon lifetime of the SBS
material[109, 103]. But later, Dane et al. [15] showed that even for long pulses, the
time scale of the leading edge of the input pulse compared to the phonon lifetime,
plays a key role in determining the fidelity of SBS at high energy. For input pulses
with a fast rise time, materials with phonon lifetimes long compared to the time
scale of the leading edge of the pulse show large fluctuations and poor fidelity at
high energy, while materials with phonon lifetimes comparable to or shorter than the
time scale of the leading edge show small fluctuations and high fidelity. To examine
the predicted effect of pulse shape on the fidelity of SBS at high energy, we calculated
the case of two input pulses focused into the SBS cell, one with a rapid rise time of
0.8 ns and one with a slow smooth rise time as shown in Fig. 5.11. For both input
pulses, the simulation model was run for a range of energy extending from below, to
well above the threshold energy and for two different phonon lifetimes, 7 = 2.0 ns
and 7 = 16.0 ns. For each input pulse and parameter set, the code was run for 100
different noise source terms and the mean value and standard deviation of fidelity
was calculated. For the fast rise time input, the mean value of the fidelity is reduced
at high energy for both phonon lifetimes, Fig. 5.11(a) and 5.11(c), although in the
case of 7 = 16.0 ns the reduction is more obvious. Also for a smooth input pulse,

Fig. 5.11(b) and (d) indicate that fidelity, like reflectivity, increases and saturates.

We found that the mode structure of the Stokes and pump fields behave quite
differently as a function of energy inside the cell. Near the threshold the reflected
Stokes energy is widely distributed among the different modes as shown in Fig. 5.12.
As the input energy increases, the energy content of the non-zero modes decreases
and most of the energy is concentrated in the conjugated mode. At low input energy,
when the pump mode just passes through the cell without an appreciable depletion,
just mode 0 exists in the pump field and contains all of the energy. At the higher
energy, however, the mode structure of the pump field becomes richer, with higher
modes also contributing to the transfer of energy. Figure 5.13 shows how the energy

content of the transmitted pump modes vary as the input energy increases.
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As a result of the variation in the mode structure of the Stokes and pump fields
(for different energies), the spot size of the Stokes and pump beams changes as a
function of energy. At low energies, when the pump field inside the cell can be
described entirely by the fundamental mode, its spot size [according to Eq. (5.52)]
is very close to that of the fundamental mode whereas the Stokes pulse has a rich
mode structure with a spot size far from that of the fundamental mode as shown
in Fig. 5.14(a). At high energies, when the fidelity is high, additional modes of the
pump field contribute to the transfer of energy, resulting in a deviation of the pump
spot size from that of the fundamental mode, whereas the Stokes beam energy is
mainly concentrated in the fundamental mode resulting in a smaller spot size, Fig.
5.14(b). The behaviour of the output Stokes beam spot size as a function of energy
is shown in Fig. 5.15. Close examination of the Stokes and pump spot sizes near
the focal plane (z ~ 20 c¢m ), Fig. 5.16, reveals that the Stokes beam has a smaller
spot size than that of pump beam, which causes the Stokes beam to be diffracted
more than the pump beam in propagating toward the entrance to the cell. This is
expected, since the pump intensity drops off (in the transverse direction) towards
its wings and there are points where the pump intensity is not enough to initiate
the SBS process. As the input energy increases, the initial Stokes spot size increases
and approaches to that of the pump beam. This in turn results in a smaller Stokes

spot size at the entrance to the cell, as shown in Fig. 5.15.

Non-fundamental modes

The 3D model can be used to investigate phase conjugation of spatially aberrated,
cylindrically symmetric input beams, by describing them as a sum of higher order
spatial modes. Initially, we chose Laguerre-Gaussian modes, and calculated the SBS
reflectivity and fidelity for each mode separately as shown in Fig. 5.17. Consistent
with expectations, the model predicts lower reflectivity for higher order modes,
because higher order modes have a smaller gain due to a smaller coupling constant
Emmmm (Sec. 5.4.1). We also found that the fidelity decreases for higher modes
even in regimes of saturated reflectivity, Fig. 5.17(b). Further, we calculated the

fidelity for different intensities in the focal plane. This was done by varying the
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fundamental beam parameter w; = w; (see Fig. 5.1), which changes the input spot
size of higher order modes through Egs. (5.17) and (5.18). Input beams with a
larger spot size at the lens have a smaller spot size at the focal plane resulting in a
higher intensity at the focal plane. In Fig. 5.17(b) the fundamental beam parameter
w; = 0.5cm. A higher fidelity is obtained when the parameter w; is reduced to
w; = 0.3cm, i.e., the focal plane intensity is reduced. The fidelity and reflectivity
results for different values of w; and different input modes are shown in Fig. 5.18.
It shows a decrease in the fidelity of all higher order modes when w; is increased
beyond 0.3 cm (Rayleigh range smaller than 0.94 cm) due to high focal volume
intensity. We investigated this behaviour further by selecting the conditions for the
best and worst fidelity for mode II in Fig. 5.18, labelled " A” and "B” respectively,
and calculating the temporal variation in reflectivity and fidelity for both cases, as
illustrated in Fig. 5.19. The poor fidelity obtained for a high intensity in the focal
plane may be explained using arguments similar to those for our one-D model in
Chap. 4, where a threshold relaxation oscillation was found. In Chap. 4 we found
that for high pump intensities in the focal volume, the threshold intensity for SBS
was significantly exceeded before the Stokes radiation could saturate the SBS gain.
Thus for a large input beam spot size, when the interaction length is short and
the pump intensity is high in the focal volume, the rate of change of the Stokes
intensity is large and threshold for SBS will be greatly exceeded. This implies that
the competition between the phase conjugating mode and all the other possible,
non-phase conjugating modes is reduced, and reflectivity from other modes above
threshold is more likely to occur, thereby reducing the fidelity. The results in Fig.
5.19 show a behaviour consistent with this explanation: using a large input beam
spot size results in a poor fidelity at the threshold and throughout the pulse as
shown in Fig. 5.19(B).

The simulations also showed that whenever the fidelity for a particular mode was
low, and the total reflectivity high, the excess energy was coupled primarily into the
next lower mode. This can possibly be explained by comparing the phase matched
coupling constants (€mmmm, Emmm-+1m+1s Emmm—1m—1) Of Eqs. (5.46) for a specific

single mode, e.g. m = 2 (see table 5.1). The coupling constants are given by the
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Figure 5.19: Time-resolved reflectivity and fidelity for the two points ”A” and "B?,
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overlap integral, Eq. 5.22, which is a measure of the transverse spatial correlation of
the Stokes mode with the pump mode. How quickly a mode grows at the threshold
thus depends on the focal intensity and what fraction of this intensity is coupled into
the particular mode. At high focal intensities, modes with higher phase matched
coupling constants grow faster at threshold and have better chance to compete with
the phase conjugated mode. This explanation is consistent with the results shown
in Fig. 5.20, in which the temporal variation of the fidelity for a single mode (mode
I1) is shown for various mode II to mode I coupling constants. Close examination of
the threshold fidelity shows that it reduces as the coupling constant between mode
IT and mode I, £99;1, increases.

A possible explanation of this behaviour can be given based on equations similar
to Eqgs. (5.46). For a short time interval around the threshold, and in a small volume
close to the focus the spatial derivative term (9/8z2) in Eq. (5.23) can be ignored.
Furthermore, we ignore the (8/0t) term for the acoustic field in Eq. (5.3). This can
be shown to be equivalent to approximating (82b,/8t?) < I'(9/0t)b, i.e., the slowly

varying approximation. Applying these approximations and using Eq. (5.21), one
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Figure 5.20: Reflectivity and fidelity as a function of time. The value of the mode
IT to mode I phase matched coupling constant, €991, has been changed manually
from (a) €9211 = 0.0 to (b) €9211 = 008, (C) €211 = 00995, and (d) E9211 = 0.11.
The threshold fidelity (indicated by circles) decreases from (a) to (d). The total
reflectivity (time averaged) for all of the (a)-(d) curves is 90%, while the the total
fidelities (time averaged) are 90%, 82%, 69% and 35% for (a), (b), (c) and (d)
curves, respectively. The value of 9217 = 0.0995 for curve (c), is the actual value of
€9211 calculated according to Eq. 5.22.
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can write

n 6 G ‘aml
1(n J)w(Z)b
c at Fw2 Z Emm

in which we have assumed that the SBS cell has been pumped by mode m and that
this is the only dominant pump mode inside the cell. Expanding this equation for
the phase conjugated mode b, and the nearest modes b,,11, results in equations

similar to Eqgs. (5.46)

n 0 G |am|” —itp(z ip(z
Zgzbm = szz;) (6mmmmbm + Emmmm+1€ W )bm+1 + Emmmm-—1€ W )bm—l + )7
(5.53a)

n o G |‘1m|2 ih(z
Zabm+1 = m(€mmm+1m+1bm+1 + Emmmmi1€ ¥ Dby + ..2), (5.53b)
n o G |am|2 )
——bp1 = —————(Emmm—tm—10m—-1 + Emmmm— e W@y 4+ ). 5.53¢
c 8t 1 FU)2(Z) ( il 1 1 1 ) ( )

These equations describe how the Stokes modes grow and compete through the
threshold. The phase matched terms on the right hand side of these equations

result in a solution of the form

G lam|* ¢
b; o exp|(———¢;)t
o el(pareel
(where &; = Emmmm,Emmm+im+1,Emmm—1m—110r i = m, m + 1, m — 1 respectively).

This shows that the rate of temporal change of the Stokes modes, at the threshold,
depends on: (1) the pump intensity and (2) the phase matched coupling constants,

which is consistent with the above discussion and results in Figs. 5.19 and 5.20.

Our model has demonstrated the effect of the phase matched coupling constants
on transient fidelity. By their very nature, steady state models [27, 28] have omitted
this transient phenomenon. These models are based on equations similar to Egs.
(5.46), which describe the growth of the backward Stokes modes above the threshold
and in the steady state regime (see Sec. 5.4.1 and [27, 28]). Therefore, they do not
give a complete description of the growth and competition of the Stokes modes

through the threshold.

The transient phenomenon predicted in our model is similar to the transient
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effect of a sharp leading edge of the pump, which was studied by Dane et al.[15] and
discussed here in Sec. 5.4.1. The significance of our finding is that the fidelity is
degraded at high energy not only when there is a sharp rise in the leading edge of

the pump pulse but also when there is a sharp rise in the Stokes pulse.

5.4.2 Aberrated input beams

We next examined the behaviour of multi-mode beams as an approximation to
aberrated beams. As an example we have considered an input beam with energy
distributed among the different modes as follows: 4.5% in mode 0, 44.5% in mode II
and 51% in mode I'V. As in the single-mode case, we found a geometry that resulted
in maximum fidelity. Fig. 5.21 shows the input and output intensity distributions
for two geometries: one resulting in low fidelity, and one resulting in the highest
fidelity. In this figure, we have kept the input intensity constant, but have changed
the size of the beam at the input to the cell. As before this was done by changing
the fundamental beam parameter, w; = w;, from w; = 0.5 cm in Fig. 5.21(a) to
0.35 cm in Fig. 5.21(b). In figure 5.21, the input power has thus been reduced to
keep the intensity constant. Examination of the reflectivity and fidelity for a range
of wy (or Rayleigh range) in Fig. 5.22, shows a behaviour similar to the single mode
results from above: the fidelity of the aberrated beam is degraded for beams with
large input spot sizes (short Rayleigh range).

In the above example we chose an input beam with energy arbitrarily distributed
among several modes. The model allows us to use any arbitrary, cylindrically sym-
metric aberrated input beam with any mode distribution. Assume an arbitrary

input spatial profile of
E(r,z=L)= f(r,L).

Using the orthonormal property of the Gauss-Laguerre functions, one can expand

Ey(r, L) in the transverse direction as
E(r,L) = Z aqAx(r, L), where (5.54)

4 = /OOOA;(r,L)f(r,L)dzr. (5.55)
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Figure 5.21: Input (solid lines) and output (dashed lines) intensity distributions for
an aberrated input beam at two different geometries. In (a) the fundamental beam
parameter w; is 0.5 cm (Rayleigh-range 0.34 cm) and the input energy is 823 mJ,
while in (b) w; is 0.35 cm (Rayleigh-range 0.70 cm) and the input energy is 403 mJ.
A fidelity of 88% is achieved for (b) while only 47% fidelity is obtained for (a).
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Here |aq|? gives the contribution of the a-~th mode in the total input energy. Finding
a,’s from Eq. (5.55), we can use them as inputs to our computer code to study
the SBS fidelity and reflectivity for any aberrated input beam. This is thus an
enabling theory and code to be used in future studies and detailed comparison with

experiments.

5.5 Comparison between numerical and experi-
mental results

Just recently, after visits by Prof. Ralf Menzel and Dr. A. Heuer of The University of
Potsdam, Germany, we have initiated a collaboration between the two optics groups
to compare in detail experimental results from Potsdam with the predictions of our
present numerical model. Experiments have been done on the overall reflectivity
and the temporal profiles of the Stokes pulses in the SBS process for two materials
with extreme (short and long) phonon lifetimes; 1) Freon 113 with phonon lifetime
7 =0.84 ns and 2) SFg gas at 20 bar pressure with phonon lifetime 7 = 17.4 ns.
Using the experimental parameters (including geometrical, material and input pulse
parameters) in our model, we have produced primary numerical results that are
in a excellent agreement with the experiments. In the following, we present both
the experimental and numerical results which are the initial results for a detailed

collaboration paper currently in initial presentation.

5.5.1 SBS experiment using Freon 113

The experimental and numerical parameters are as follows; cell length 200 mm,
focal length 120 mm, distance between the lens and the entrance window 45 mm,
entrance window thickness 2 mm (BK7), phonon lifetime 0.84 ns, gain of the medium
0.0062 cm/MW, index of refraction, n=1.36, Laser wavelength 1064 nm, input beam
radius 1.45 mm and input beam radius of curvature 2403 mm. The experimental
and numerical results for the overall reflectivity and the temporal profiles of the
Stokes pulses at different energies are shown in Figs. 5.23 and 5.24. We have used

the experimental results of the overall reflectivity as a function of energy, Fig. 5.23,
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Figure 5.23: Experimental and Numerical results of the SBS reflectivity vs. energy
for Freon 113. The triangles are the experimental results obtained by A. Heuer and
R. Menzel. The solid line is the numerical model results.

to set the free parameter of our computer code. Once the free parameter is set, we
have kept it constant for all the other results. The numerical curves in Figs. 5.23

and 5.24 have been obtained for free parameter of 2.79 x 1078,

5.5.2 SBS experiment using SFg

The following experimental and numerical parameters were used for the SBS exper-
iment in a cell filled with pure SF6 at a pressure of 20.5 bar; cell length 139 mm,
focal length 120 mm, distance between the lens and the entrance window 45 mm, en-
trance window thickness 2 mm (BKT), phonon lifetime 17.3 ns, gain of the medium
0.014 cm/MW, index of refraction, n=1.023, Laser wavelength 1064 nm, input beam
radius 2.0 mm and input beam radius of curvature 2403 mm. The experimental and
numerical results for the overall reflectivity and the temporal profiles of the Stokes
pulses at different energies are shown in Figs. 5.25 and 5.26. Like the Freon case, we
have used the experimental results of the overall reflectivity as a function of energy,
Fig. 5.25, to set the free parameter of our computer code for SFs. Once the free
parameter is set, we have kept it constant for all the other results. The numerical

curves in Figs. 5.25 and 5.26 have been obtained for free parameter of 1.194 X 1078,
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Figure 5.24: The temporal profiles of the input and output (Stokes) pulses in the
SBS experiment in Freon 113. The solid lines are the experimental results obtained
by A. Heuer and R. Menzel. The dashed lines are the results of the numerical model.
In all cases the input pulses for the experiment and numerical model are the same.
All the powers are in MW but have been normalised to peak pump power of IMW
to make the comparison easier.
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Figure 5.25: SBS reflectivity vs. energy for pure SFg at 20 bar pressure. The
triangles are the experimental results obtained by A. Heuer and R. Menzel. The
solid line is the numerical results. The error bars are showing the range of numerical
values for the reflectivity for different initial noise term.

5.6 Conclusions

We have developed an efficient numerical model to investigate the phase conjugat-
ing properties of stimulated Brillouin scattering. By retaining transverse and time
derivatives in the coupled differential equations and using a spatial mode decompo-
sition model, we have developed a new and efficient algorithm, which has made it
uniquely possible to study the fidelity and mode structure of the Stokes and pump
beams in the transient regime, for single or multi-mode, cylindrically symmetric
input pulses.

Among the experimental and theoretical studies of intensity fluctuations in the
Stokes pulse of SBS [10, 12, 11, 79, 13, 16, 19, 2|, only a few have indicated that
these fluctuations degrade the SBS fidelity [10, 12, 19, 2]. Using our model we have
confirmed numerically that these fluctuations do degrade the SBS fidelity. In our
model we have included a Langevin force noise term with a spatial and temporal
Gaussian distribution in the SBS equations, which not only simulates the shot to
shot variation of fidelity and reflectivity but also demonstrates the reduction in
the time-resolved and overall fidelity of SBS due to intensity fluctuations in the

Stokes pulse. This result together with the results of the previous chapter, Chap
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Figure 5.26: Temporal profiles of the input and output pulses in a SBS experiment
using pure SFg at 20 bar pressure. The blue lines are the experimental results
obtained by A. Heuer and R. Menzel. The red lines are the numerical model results.
All the powers are in MW but have been normalised to peak pump power of IMW

to make the comparison easier.
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4 are important in practice since they can be used to select the best experimental
parameter space for excellent fidelity in applications of SBS.

It was determined that, due to transient effects, the temporal shape of the input
pulse can greatly affect the fidelity of SBS at high energy. Input pulses with a
sharp rise, leading edge show poor ability for producing a phase conjugated return
at high energy, although this ability improves for short phonon lifetimes. This is in
agreement with the experimental work by Dane et.al. [15].

There have been many experimental and theoretical studies of SBS of broad-
band laser pulses including [8, 110, 74, 12, 111, 112, 113, 114, 115, 116, 2, 117]. It is
generally accepted that the fidelity of phase conjugation is degraded for short coher-
ence length lasers. This degradation is usually attributed to the onset of competing
nonlinear optical phenomena such as break down, stimulated Raman scattering and
self focusing, at high pump intensities [74, 12, 111, 112, 113, 114, 116, 2]. Although
our model is a single frequency simulation of SBS, the results suggest that this
problem is an integral problem of SBS itself. Our model predicts a new transient
phenomenon: fidelity degradation due to a very rapid build up of the Stokes pulse
at the threshold for smooth input pulses, which enables energy to be absorbed by
the non-phase conjugated modes and thus reduce the overall fidelity. The rate of
build up of the Stokes radiation at the threshold depends on the focal intensity
and the phase matched coupling constants. Thus, apart from the well known fact
that a sufficiently high intensity is needed to achieve a good fidelity, an excess focal
intensity result in poor fidelity. The usual discrimination between conjugated and
non-conjugated modes (the steady state gain of conjugated mode is almost twice
that of non-conjugated modes) does not work when all the Stokes modes turn on
suddenly. To ensure phase conjugation, the Stokes modes should reach the thresh-
old adiabatically. This result can be used to explain why phase conjugation of
broad band lasers is not successful even if the interaction length is shorter than the

coherence length.
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Chapter 6

Conclusion and Future works

Theoretical studies of SBS have usually considered only the steady state regime
of SBS. Although it makes the coupled equations describing the process easy to
understand, this approach does not give a complete picture of the SBS process.
In fact, there are phenomena and practical regimes that cannot be treated in the
steady state. Throughout this thesis we have focused on the transient regime
and examined, in detail, those phenomena and regimes in which the steady state
approximation fails to work.

We developed a transient one-dimensional model of SBS initiated from noise and
including cell geometries (see Chap. 4 for detailed explanations). Two transient
phenomena were studied using the 1-D model:

1) Intensity and phase modulation in the Stokes intensity pulse,

2) Threshold oscillations at the beginning of the Stokes pulse.

Rapid thermal fluctuations in the density of the medium are initial sources of
SBS. Under certain circumstances these initial fluctuations can be amplified through
the SBS process and appear in the Stokes intensity and phase. Numerical results
suggest that these fluctuations are likely to be seen in the SBS process, using mate-
rials with short rather than long phonon lifetimes. Experimental setups with long
interaction lengths and low energies are more likely to encounter intensity fluctua-
tions. However, even when there are no intensity fluctuations in the Stokes pulse,
there are still shot-to-shot fluctuations in the Stokes energy. More stable output

energy can be obtained at high input energies. These fluctuations degrade the fi-
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delity (degree of phase conjugation) of the SBS process. It was demonstrated by our
three-dimensional model (developed in Chap. 5) that fluctuations in the Stokes in-
tensity cause a reduction in the time-resolved and overall fidelity of the SBS process.
These findings are of practical importance for designing high power laser systems

with excellent beam quality using phase conjugating SBS mirrors.

SBS is a threshold process, meaning a certain amount of input power is required
before the process is initiated. The time dependent growth of the stokes pulse at
the threshold is exponential. It was shown that this exponential growth of the
Stokes pulse sometimes leads to overshooting of the input power and resembles a
relaxation oscillation in the Stokes power. This relaxation oscillation is a function
of the phonon lifetime, the intensity of the pump at the focus and the immersion
length. It was also shown that the pulse compression phenomena can be explained
in the context of a threshold oscillation in which the first peak of the oscillation has
been magnified and the other peaks have been omitted. From this point of view,
even for pulses much longer than the phonon lifetime, (the usual condition for the

steady state regime) the transient regime must be considered at the threshold.

The three-dimensional model has been developed in Chap. 5. By introducing
block-vectors and block-matrices, we have developed a new and efficient algorithm
that uses the advantageous of having lots of zero elements in the coefficient matrices
in the SBS differential equations. This algorithm enabled us, for the first time, to
solve numerically the transient SBS equations in three dimensions for cylindrically

symmetric laser fields.

A transient effect that can be investigated by our model is the effect of the
input pulse leading edge on the SBS fidelity. It was shown that the SBS fidelity
can be degraded, especially at high energies, if the time scale of the leading edge
is shorter than the phonon lifetime of the material. Using the model, a new and
interesting transient phenomenon has been predicted: the SBS fidelity degrades
when the focal intensity is too high. High focal volume intensity causes all the
spatial modes (conjugated and non-conjugated) to grow so rapidly at the threshold
that the usual gain differences between modes (gain of the conjugated mode is almost

twice as much as non-conjugated modes) can not discriminate the conjugate mode
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over the non-conjugated ones.

6.1 Future work

The algorithm developed here for the three-dimensional model with cylindrical sym-
metry (see Chap. 5 and App. B) treats the transverse direction as discrete modes of
some orthonormal functions. What is new about our algorithm is that it avoids the
computationally intensive calculations using the large coeflicient matrices and in-
stead allows calculations using small matrices in the sub-space of transverse modes.
We believe that this key element of our algorithm can be used in the next genera-
tions of SBS models, where the laser beam is not cylindrically symmetric or is not
single frequency. For such a case of for example non-symmetric or astigmatic laser
beams, two sets of orthonormal bases (modes) are necessary to represent the sub-
space of the transverse directions. We have proposed to carry on the development
of our model to short coherence length (multi-frequency) and non-symmetric laser
beams. We believe that our present model will contribute to the future development

of phase conjugation of short coherence length and astigmatic laser beams.
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Appendix A

Generating a Gaussian

Distribution

Consider a probability density function p(z), for which p(z)dx gives the probability
of finding the variable z in the range [z,z + dz]. If we introduce a new variable
y = f(z), then there will be a new probability density function g(y) in the y space,
which describes the probability density function of y. However, the probability of
having a state in a certain range in the z space should be equal to the probability

of having that state in the corresponding range in the y space. ie.,

p(z)dz = q(y)dy. (A1)

Giving the two probability density function p(z) and ¢(y), one can use Eq. A.1 to

find the relation between the two variables z and y [i.e., y = f(z)].

As an example, consider a uniform distribution in the y space (over the range

[0,1]) such that

and an exponential distribution in the x space:

p(x) = Ae™2.
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Then , using Eq. (A.1), we find

de™dz = dy,
)\/ e Mdr = vy,
Jo
!
-1
B = Tln(l—y). (A.2)

Hence, given the variable y is uniformly distributed over [0,1] then the variable z,

defined in Eq. A.2, is exponentially distributed over [0, co).

Consider two variables x1, x5 that have a Gaussian distributions with mean values

of Z,, T2 and a variance o of:

—e
wo?
Then using the following transformations and variables

’

— 4 —
Ty = T1—T and z, =y — Ty
!
' ' Zo
r = z?+z; and tanf = —,
51
one can show that
— —_ 12 l2
X (1 —Z1) + (29 — T2) z° + x4
- 1 - ’ ’
—e o? dridry = —se o2 dr,dz, =
2 2
o o
1 2 1 2
——e 0° rdrdd = —e 0 dudf,
o o

where u = 2. Hence, if the variable u is generated exponentially (probability density
function e~/ %) over [0, 00) and variable 8 is generated uniformly over [0, 7], then

the two variables

T1 = T+ +/ucosb,
Ty = To++/usinb,
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will be distributed normally over (—oo, +-00) with variance o and mean values Ty, Zo.
We have used these two variables to generate Langevin noise terms in our 1D and 3D
model. To generate the variable u over [0, c0) with the probability density function

Le~4/?* one can use Eq. (A.2) to find
u=—oc’In(l — y),

where y is distributed uniformly over [0, 1].
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Appendix B

Block-matrices

This appendix deals with square matrices of n x n, whose elements themselves are

p x p matrices (referred to here as block-matrices). As an example, Ssx4 is given by

Apxp  Bpxp Cpxp Dpxp
S — Epxp  Fpxp Gpxp Hpxp ’
Ipxp  Jpxp Kpxp  Lpxp
Mpxp Npxp Opxp  Fpxp A
where A, B, ..., P are all p X p matrices. Consider the multiplication of two such
4 x 4 matrices S and T:
Apxp Bpxp Cpxp  Dpxp A;’XP lea><p Coxp 'D;’XP
Epxp Fpxp Gpxp Hpxp 2 Ezl7><p F;t:xxa G;»<p H;xp _
Ioxp  Joxp Epxp Lpxp IzIJXp Jz’»@ K;xzv L;’XP
MPXP NPXP OPXP PPXP e M;pr N;pr O;:pr P;lixp A
Apo Boxp Coxp Do
EzI;><p F, z';><p G;xz) HZI;XP
Lo oo Epxo Lo
M . N O P

4x4
It can be shown that the multiplication rule for ordinary matrices can be applied
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to find the elements of the resultant matrix S x T i.e.,

SXT ZsszTk],

where X is the matrix multiplication operator and S,z and Ty; are p X p matrices.

As an example, for the above 4 x 4 block matrices we find

"

= AxA+BXE +CxI +DxM,

n

= AxB +BxF +CxJ +DxN/,

P'" = MxD +NxH +0xL +PxP.

As an application of this multiplication rule, the inverse of a diagonal block-

matrix can be written as

-1

(A1)pxp 0 - 0
0 (A2)p><p 0 _
0 0 (Adpes | .
(Al);ip 0 0
0 (A2);>}p 0
0 0 (An)pp
In the theory section of Chap. 5, Sec. 5.3, where we developed a three-
dimensional model of SBS, we obtained a final algebraic equation for (?)0‘“, Eq.
(5.43), in the form:
AT =X (B.1)

=
In this equation, A is a block-matrix n x n with blocks p x p and b and ? are

block vectors n x 1 with blocks p x 1. In our model, the matrix A turns out to be



a tridiagonal block matrix of the form:

( (b)pxp  (€1)pxp 0

(a2)pxp (B2)pxp (C2)pxp O

0 (an)PXP (bn)po )

0

(Cn—l)po

nXn
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It is interesting that Eq. (B.1) is similar to the equations obtained for the one-

dimensional model in Chap. 4. The only difference is that for the one-dimensional

model, the matrix A is an ordinary tridiagonal matrix and X and b are ordinary

vectors. In other words, in the three-dimensional model ordinary elements of matri-

ces and vectors are replaced with p X p matrices and p x 1 vectors in the subspace

p % p of the spatial modes. To solve Eq. (B.1), (similar to ordinary matrices) we ap-

ply a LU decomposition method to decompose A to a lower and a upper tridiagonal

block-matrices of L and U of the form

[(Dpy 0 0
(2)pxp (Dpxp 0
0 (l3)p><p (I)pxp-

L =
0
\ 0
and
/(ul)PXP (Cl)pxzo 0
0 (“2)p><p (02)p><p
U= 0 0 (u3)p><p'
0 .

0

(ln)PXP

nxn
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such that A = L x U. Here, (I)pxp is the unit matrix of the spatial modes

subspace. Using the above multiplication rules for the block matrices, it can be

shown that
Uy = bl)
I, = a,X (un)_l,
Up = bp—ap X (u,)™! X cpy.

Now, the decomposed form of A can be utilized to solve the equation

Lx(U?) = ?ﬁ

L x ? == ?,
first for ? and then substituted back into the equation

vy =7,

to find the solution for ?



Appendix C

Recurrence Relation

According to the definition of €k, (5.22), one can write €;xn+1 as

cimis = (2) [ doe L)Ly @) 4(o) B 2. (€.)

™

Replacing L, in C.1 according to the recurrence relation for Laguerre functions

(p. 1037 in ref. [118]) i.e.,

(n+1)Lpy1(z) = (2n+ 1 — z) Ly (2) + nLlpq (),

and integrating by parts taking into account

m%Ln(ac) = nL,(z) — nLy—1(x),

yields

[3n+1—i—j—k'] n

Eiikn — ——ECijkn—
2(n +1) T om 1) T
1

+2(n + 1)

€ijkn+1

[€im1jkn + JEij—1kn + KEijk—1n].
A specific case of this recurrence relation is when ¢ = j = k = n which results in

n
Ennnn T ———Ennnn—1. C.2
2(n + 1) n+1 ' (©2)

Ennnnt+l =
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A useful recurrence relation can be obtained for egoom using the integral (p. 844
in ref. [118])
+o00
/ e L (2)dz = (b— 1)1,
0

Then

2 1

2 2 m
= - T Ly (x)dr = =27 1= — 5 C.3
€000m /0 e (:E) X om £€0000 ( )



Appendix D

SBS focusing system

The focusing geometry used in the SBS model is shown in Fig. D.1.

A laser beam with radius w; and curvature R; is focused into a SBS cell using a
lens of focal length f. The thickness of the entrance window is ¢ and the refractive
indices of the window and the SBS material are n; and no, respectively. Given the
input beam radius and curvature w; and R;, one can find the radius and curvature
of the beam anywhere inside the cell by finding the position of the waist inside the
cell, I, and its radius wg. Once we know these two parameters, the beam radius and

curvature at any other point inside the cell are

W z) = WAL+ ()Y,
2 .
R(z) = z+2E& (D.1)

ny

Figure D.1: Focusing geometry used for SBS process.
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where z is the distance from the focus, wy is the beam radius at the focus and the
Rayleigh range, zg, is related to the beam waist radius w, (for the fundamental

mode) and wave length X as zp = mw2n/\.

The ABCD matrix that transfers beam parameters from plane 1 to plane 0 (see

Fig. D.1) is
1 1 10 1t
ABCD = o X
01 0 == 01
L)
1 0 1 d 1 0
1 =1
0 — 01 — 1
n f
4
1 t l t !
1-=d+—+—] d+=—+—
ABCD = fromon nyoone | (D.2)
na f ng

Beam parameters at plane 1 and plane 0 can be related using the above ABC'D

matrix as [119]

A+ B

= =T D.3
Ca D’ (D-3)

o

where ¢ at any point is

1_1.. A
g R nrw?’

(D.4)

Inverting both sides of Eq. (D.4) and introducing new variables o and 3, one can
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write g as

q = a+if,
2
('m;\w )2R
a = - (D.5)
(mrw )2—|—R2
2
_(mrw )R2
A
IB a n7rw2
2 R2
(B +

At plane 0, the curvature of the laser beam is co and thus

imnw? _ Aoy +i8)+ B
= —1Zp = 5
X\ R™ Clar+if) + D

(D.6)

where we have used Eq. (D.3)-(D.5). Equating the real part of the right hand side
of Eq. (D.6) to zero and imaginary part to —zg, we find

(Aa1 + B)(C’al + D) + ACﬂlz = 0
(Cal + D)A,Bl — (AOll + B)C,Bl

= —z D.7
(Cay + D) + C*} "’ 0
Eq. (D.7) can be solved for [ to find
2 _ =
= naf[B; — a(f 051)]. (D.8)

B+ (f — en)?
Substituting this value of [ into Eq. (D.7) yields

i (Aa1 -+ B)C,Bl - (0011 + D)A,@l
nmw (Cay + D)2 + C?f3? ‘

2 _
wyp =
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Nature of intensity and phase modulations in stimulated Brillouin scattering

Shahraam Afshaarvahid,* Vladimyros Devrelis,” and Jesper Munch
Department of Physics and Mathematical Physics, The Universiry of Adelaide, Adelaide, South Australia 5005, Australia
(Received 14 August 1997)

The nature of stimulated Brillouin scattering (SBS) temporal modulations for a focused beam in a finite-
length cell with homogeneous medium is examined numerically. The finite phonon lifetime produces deter-
ministic oscillations at the threshold while the inclusion of the random noise as an initiation source of SBS
leads to stochastic fluctuations in Stokes intensity and phase. A unified study of both modulations under
different parameters is presented. The results indicate a large useful parameter space for excellent Stokes beam

quality. [S1050-2947(98)05405-5]

PACS number(s): 42.65.Es, 42.65.Hw

L INTRODUCTION

The dynamics of stimulated Brillouin scattering (SBS)
has been widely investigated because of its importance in
optical phase conjugation [1,2], pulse compression [3,4], and
beam combination [5-7]. SBS is a nonlinear process where
energy is exchanged from the laser beam to the Stokes beam
through an interaction with a sound wave. When used in an
optical element, SBS is usually deployed either as an ampli-
fier with an externally applied Stokes field, or as a SBS gen-
erator. The theory of SBS amplifiers is simpler than that of
SBS generators since the Stokes field is externally applied,
whereas the analysis of SBS generators requires the inclu-
sion of the thermal density fluctuations of the medium as the
source for the initiation of the process. This stochastic initia-
tion of SBS leads to fluctuations in the Stokes field's ampli-
tude and phase [1,8~12]. These fluctuations are important in
practical applications since they reduce the coherence length
of the scattered beam [13] and have been observed to reduce
the temporal and spatial fidelity of the SBS process [14-17].
Early experimental observations of the presence of phase
jumps and amplitude fluctuations in SBS were reported in
1980 {18-20]. More recent theoretical and experimental in-
vestigations of these fluctuations in optical fibers have been
made by Dianov er al. [9], Gaeta and Boyd [11], and Kuzin
et al. [21]. Their investigations showed that large scale fluc-
tuations in the Stokes intensity occur when the transit time
through the interaction region is much greater than the pho-
non lifetime. Intensity and phase fluctuations have been in-
vestigated experimentally also for short interaction lengths
typical of a focused geometry [15,13,12,16]. Simultaneous
fluctuations in the Stokes amplitude and beam quality have
been observed [15] as has actual variation in the phase of the
Stokes beam, measured directly by heterodyne detection
[13]. In addition, the effect on these simultaneous fluctua-
tions of experimental parameters such as the interaction
length and input energy have been reported [12,16]. Numeri-
cal models have also shown simultaneous occurrence of
jumps in the Stokes phase and fluctuations in the Stokes
reflectivity and fidelity [8,14]. Similar fluctuations were also

*Electronic address: shahraam @physics.adelaide.edu.au
"Present address: DSTO, Salisbury SA 5108, Australia.
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predicted [22,23] and observed [24,25] in stimulated Raman
scattering and recognized as solitons.

Most published theoretical studies of SBS have dealt with
SBS amplifiers or generators in the undepleted or steady
state regime where the Stokes wave was either applied ex-
ternally or initiated inside the medium from a constant or
localized source. In this paper we present a single unified
theoretical approach to SBS in a focused cell geometry, for
the transient and depleted regimes while seeded from distrib-
uted random noise typical of most practical applications. We
have developed a numerical model to examine in detail how
the scattered Stokes beam is initiated from noise and propa-
gated through the medium, and what parameters affect its
amplitude and phase modulation. We use a Gaussian random
noise distribution [9.11] (both in space and time) as a source
for the SBS process in order to simulate the actual thermal
fluctuations in the density of the medium.

Our model predicts two kinds of amplitude modulation:
(a) deterministic relaxation oscillations at the threshold due
to finite phonon lifetime and (b) stochastic fluctuations
caused by the random noise source. An extensive examina-
tion of the behavior of the deterministic oscillations includes
the following parameters: phonon lifetime, focal length, im-
mersion length. and input energy, and it reveals under what
parameter regimes these oscillations result in a pulse-
compressed Stokes beam. This is followed by the study of
stochastic fluctuations and their dependence on parameters
such as phonon lifetime, immersion length, input energy, and
pulse duration. Although many authors identify these fluc-
tuations as being due to phase jumps, our model shows that
phase and intensity fluctuations are coupled via the nonlinear
interaction, and thus occur simultanéously, denying the exis-
tence of a causal relationship to the phenomenon. This was
determined by tracing the Auctuations back to the time of
inttiation. The parameter regime required for achieving ex-
cellent beam quality (amplitude and phase fidelity) is evalu-
ated.

II. THEORY

The equations describing the SBS process are derived
from Maxwell's equations for the electric fields and Navier-
Stokes equation for the acoustic field inside the material.
Writing the electric and acoustic fields as [26]

3961 © 1998 The American Physical Society
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1 . .
Ep=5[W,(2,0)e o 503+ Wk (z,1)e = Hept Hipt)],

1
E,~=x

> [‘I’S(Z,I)ei(w—“'—kfz)‘f‘ \I;;k(z’t)e—i(wsr—k:z)]' (1)

1 ) .
E =50 (2,0 0 5+ 0 (7,1)e {00 4]

(where E,, E;, and E_ are the pump, Stokes, and acoustic
fields, respectively), neglecting the transverse field varia-
tions, and using the slowly varying envelope approximation,
the following coupled wave equations can be derived [27].

'i i ¥, =ig, ¥ ¥
e A
8.4 YV, =~ig,V* ¥ 2
(7:+;(7f s T8 g *p>r ()
17 ) *
—at+r V,=—ig, ¥, V.

Here g, and g, are coupling coefficients, I" is the damping
rate (i.e.,, ['=1/27 where 7 is the phonon lifetime of the
medium), and # is the refractive index of the medium.

In order to find the equations for the amplitudes and the
phases of the fields we write the complex amplitudes L
(where u=p,s,q) as

N -id
‘I’#—A#e u,
where A, and ¢, are real functions. Substituting the new

definition into the above equations results in a set of six
coupled differential equations:

[ 9 n o .
(E_ZE,AP:‘S’I5‘“(-¢p—¢s—¢q)Aqu, (3a)
9 n o .
(E-'-;'()—[)Ax:glSln(¢s+¢q—¢p)A4Ap, (3b)

7
(E+F)Aq=g2 Sin(¢:+¢q_¢p)AsAp+fl’ (30)

d n 8) B AA;

E_EE ¢p—_g| COS(¢F_¢J—¢¢7) Ap ’ (3d)
d n 8) B A,
E"“;g b,=g COS(¢:+¢q—¢p) A, (3e)

(a) B AA,
E ¢q_82 COS(¢s+¢q_¢p) Aq +f2 (30

To represent the noise initiation of the SBS process, we have
added two Langevin forces f| and f,, with spatial and tem-
poral Gaussian distributions [11]. Both £, and f, are & cor-
related functions in the sense that

(Flz.O)fF ' ' )=068(z—z2")8(t—1"),

where Q is given by [10]

2kTp,l"
(=
v-A

Here k is the Boltzmann constant, 7 is the temperature, p,, i
mean density, v is the velocity of sound in the material, anc
A is the cross sectional area of the interaction region.

For the phase-locked condition [i.e., sin(¢,+ b~ d)=1
and the steady state regime of SBS [i.e. ignoring al
(9/9t)A ], Eq. (3b) can be written as

=glg2A2A (4:

J
—As T piso

9z

which has a solution of A;=A exp[(g182/T) A limn] valid
near threshold and without pump depletion. This leads di-
rectly to the usual expression for the steady state gain, given
by G=gl,limm, where 1, is the input pump intensity, /iy, is
the active medium immersion length, and g=g,g,I""".
Some authors (e.g., [28,29]) have used the phase-locked
condition for which SBS has the highest gain, i.e., ¢,— ¢,
—¢,=7/2. When SBS starts from noise. a random noise
distribution of @,— d,— ¢, is initially present. But as the
phase-locked waves (those with ¢,— ¢ ,— ¢,=m/2) have
the highest gain in the medium, they suppress other Stokes
waves with unlocked phases. By applying this condition to
Egs. (3). they are simplified to a set of three real coupled
equations for the amplitudes. However, in order to explain
the experimental observation of the simultaneous occurrence
of intensity fluctuations and phase jumps [13], we have re-
tained the complex equations since this is the only way that
the phase of the Stokes field can be coupled to its intensity.
Equations (3) are nonlinear due to the terms sin(¢,+ qbq
—¢,) or cos(¢,— &~ ¢,). Although the behavior of the
fields and their phases is seen better by these equations, and
we use them whenever we want to provide a qualitative ex-
planation, solutions of the equations require that we rewrite
them for the real and imaginary parts of the fields. Using

Y, =W, +iV,,

the equations for the real and imaginary parts of the fields are

Focal length
7 i Immersion length H
. > L g\
SBS cell : -

/ O T
S v
0 Gaussian Random Noise L z

(distributed through out the cell) Pump Stokes

FIG. I. The geometry used for the SBS process.
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iy Wp=—g1(Wqu+VqW_r),
Jd n ¢

5‘*‘;5 Wx=g|(Wqu—Vq"Vp),
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(E‘Fr) Wq=—g2(WpVJ—VPW:)+f, N

d n 9
=z o Vp=gl(WqW:— Vqu),

Jd n g
()—z"f‘-{;a V:=g,(Wqu+Vqu),

ey |
(E+l‘) Ve=—g2(W,W,+V,V,)+f,.

The focusing geometry required for simulation of experi-
nents is introduced using an approach similar to that of
Menzel and Eichler [30]. Although SBS is primarily used to
:ompensate for optical aberrations, we have chosen not to
nclude spatial aberrations in this treatment, but concentrate
‘ntirely on temporal fluctuations or *‘temporal fidelity™" of
he Stokes beam. This is important, because lack of temporal
idelity leads to degradation of the Stokes return and hence a
eduction in average reflectivity and efficiency of a phase
onjugated laser system [14-16]. We are thus using spatially
naberrated Gaussian beams for both pump and Stokes
ields, and we have made the further approximation that both
hese fields have the same Gaussian beam puarameters (see

ig. 1):
5 79N ;
wz(;)=w6{l+(£—;{-}—) }’
Twyh

'here wg is the radius at the waist of the beam. \ is the
ravelength, and n is the appropriate index of refraction as a
inction of z. This is a reasonable approximation in an effi-
lent phase conjugating system where the fields are well
bove threshold and is justified by experimental results
1owing that the beam quality and divergence of the Stokes
zam are indistinguishable from those of the pump beam
hen well above threshold. For an unaberrated beam this is
nly an approximation but is justified in our case where we
oncentrate on the temporal fidelity only.

As a result, the pump and Stokes intensities, 1,,=W:',
V!z, or [,= W§+ Vf, are changing not only because of the
>nlinear interaction with the material but also because of
e change in area of the beams. Keeping in mind that for
Gaussian beam the electric field amplitude has w(z) in
e denominator, we add —[W,/w(z)](4/dz) w(z) or
[V, /0(2)](8/6z)w(2) to the right hand side of equations
rW,orV, (v=p or s) to represent the change in the
tensity due to focusing geometry [30]. Defining
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v W v

) w(z)

V=W +iv

and hence,
W,
W, = e
v
e

it can be easily seen that |V !|?=|W¥ |*w?(z) is the local
power of the pump or the Stokes fields. Adding
—[W,/0(2)](3/9z) w(z) or ~[V. /() (d/dz)w(z) to the
right hand side of equations for W, or V, [i.e., Egs. (5)] and
rewriting these equations for prime fields, we find

d na , ey p
(E_EE ‘Vp=—gl(HqVJ_+‘qHX_), (6a)
() ’l (? ! I3 vl V “!’) 6b)
E—F;E “J_gl(ufq n q'"ph (
|7 y‘ £ ,
—_ 7o— Sa= VIR VAT ; .
1(7[+F)uq_ (W= VIWOHf L (6e)
/ o™ {Z)
( oo e W Wli—v. v (6d)
Z (_E p_-ql( g5 g ,\')*
Py I v W W +v v (6e)
St == V=g (W WYV, e
- ¢ At 3 &l( g p q'p
i 5B e i :
_—+1‘)v:— o (WIW VIV R fe. (66
ot ) " (1)2(:) Pl Pl

We see that the new equations have a form similar to Egs.
(5). The only difference is that the prime fields are the power
components instead of intensity components in Egs. (5). The
same procedure can be done for Egs. (3) to get the following
equations for the Stokes. pump. and acoustic grating power:

) n r)) , ) ) 7,
(Z‘;;,A,F—gl sin(@,— b=, )A AL, (Ta)
[0 nd , ) ,

(z+g(9—r A;=gysin(p+d,—d,)A,A,, (Tb)

. AA]
(5;+F Ay=gysin(g+d,— ¢, )——+f. (7c)

14
w(z

The equation for the acoustic field shows how the amplitude
of the field depends on the intensity of the Stokes and pump
waves, implying a high acoustic field at high intensities of
the pump and the Stokes fields.

Integrating the phonon fields [Egs. (6¢) and (6f)] and sub-
stituting in the rest of Egs. (6). reduces the set of equations
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(6a)—(6f) to four coupled differential equations for the field
amplitude. The numerical analysis starts with these four
equations. An efficient noniterative algorithm is used in
which Simpson’s rule is applied to approximate the phonon’s
integral and an implicit finite differencing in time and back-
ward differencing scheme in space are used to write the
equations for discrete field amplitudes W,7", V.7, W7,
and V:j , where m=0,1,2,...,M are time indices (¢
=mAt) and j=0,1,2,...,n+1 are space indices (z=jAz)
[29]. Field vectors at the time (m+ 1)At are defined as

m+ | m+1
W, Vi
Wp2 V2
v om+l 7 om+1
W, V= ;
WP" VP"
w m+1 1% m+1
52 52
w 1%
53 53
.'
v omtl__ Gom+ 1 _
Wt i= poml= ;
Wsn+l v.rn+|

where n+ 1 is the total number of discrete points in space
and W, 4, V W, and V| are the initial values at
boundaries.

Using the linearization scheme defined by Chu et al. [29],
we obtain the final form of the set of algebraic equations for
the vector fields as

pn+ 1> K

AMW;H- | +om ﬁ/;n-*- | +Dm V;Vl* I — ‘7,
Elrl‘vlrl+l+Fn1Wm+[+Gm vm+1 0

Arer;l+l_Dme+I+Cmvm+l W

Em"};n*—l Gm“V’”+1+Fm m+l =7

Here Am CHI E"! Fm Dm
lower tridiagonal matrices evaluated at time mA¢ and Vv, U,

and G™ are nXn upper or

W, and Z are nX | vectors containing boundary conditions
on the pump and Stokes at time t=(m+ 1)A¢. This set of
equations can be solved numerically without the need for

iteration. The matrix coefficients and vectors V 17 W and

Z are evaluated recursively using the initial values of the
Stokes and pump fields at t=0. Here the field amplitudes at
any time slot m+ 1 have been determined from those at the
preceding time slot m. To justify the validity of the linear-
ization assumption, we used the field amplitudes at time slot
m+1 to reevaluate iteratively the nonlinear coefficient in-
volved in the differential equations. An improvement of only
4% was achieved after five iterations.

Solutions of Egs. (8) are found for a Gaussian pump pulse
of the form Egexp{—2[(t—ty)/t,]’}, where t, is the pulse
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FIG. 2. Typical results for the Stokes, pump, and transmitted
pulse.

width. Referring to Fig. I, we apply the following geometri-
cal and material parameters to examine the typical results of
the SBS process: cell length 60 cm, focal length 50 cm,
immersion length 15 cm, initial waist of the beam 0.4 cm,
gain of the medium 0.0063 cm/MW, input energy 320 mJ,
full width at half maximum (FWHM) pulse length 20 ns,
phonon lifetime 0.85 ns, and index of refraction, n=1.0,
with results shown in Fig. 2.

III. RESULTS AND DISCUSSION

Depending on the geometry of the SBS process and the
energy of the input pulse, our model results in Stokes oscil-
lations or fluctuations similar to those observed experimen-
tally [18-20,15-17]. The intensity modulation can be cat-
egorized into two groups: (a) deterministic amplitude
oscillations at the time when the energy of the pump reaches
the threshold energy and (b) stochastic fluctuations due to
noise in amplitude and phase of the Stokes beam.

A. Deterministic threshold oscillation

The finite phonon lifetime provides an energy interchange
mechanism between the Stokes and laser field via the acous-
tic field. In the case of Gaussian pump beams, it takes some
time for the energy contained in the pump to reach the
threshold energy for Stokes initiation. At the threshold, the
Stokes power increases very rapidly and overshoots the
pump power, resulting in the depletion of the pump field and
reduction of gain. Because of this gain reduction the Stokes
power drops, causing an increase in the pump energy which
in turn causes an increase in the Stokes field again. This
energy interchange between the Stokes and pump fields con-
tinues and resembles a relaxation oscillation (see Fig. 3). The
rate of this energy interchange is controlled by the reaction
time of the acoustic field, i.e., phonon lifetime. Such an en-
ergy interchange mechanism has also been discussed in Refs.
[4] and [29]. Chu er al. [29] report relaxation oscillations
which are visible in the transmitted pulse. However, our
simulation results show that for a long cell and a geometry in
which the laser beam has been focused deeply into the cell,
relaxation oscillation should be visible in the Stokes return as
shown in Fig. 3.



57 NATURE OF INTENSITY AND PHASE MODULATIONS ... 3965

—~ 2.5F 3

= oF — Pump Power 0)_.

5 2.0F 7 stokes Power 3

4 1.5F E

5 1 3

~ 1.0 ~

3 3 E c

z 05F ke A

nc: 0.0 E - = E
0 20 80

c

9

o

2

St

o

n

o

£

o

n

Q

>

2

“ o 20 40 80 80

Time (ns)

FIG. 3. (a) Typical threshold oscillation in the Stokes beam
obtained for the following parameters: cell length 100 cm. focal
length 100 c¢m, immersion length 70 c¢m, phonon lifetime 0.85 ns,
medium gain 0.006 c/MW, FWHM pulse length 20 ns, and input
energy 114 ml. (b) shows no corresponding variation in the phase
of the Stokes.

In order to categorize the béhavior of threshold oscillation
we use the following parameters to run the simulation: Cell
length 100 cm, focal length 100 c¢m, immersion length 70
cm, phonon lifetime 0.85 ns, gain of the medium 0.006 cm/
MW, FWHM pulse length 20 ns, and input energy 114 mJ.
Any changes to these parameters are specified in the captions
of the figures. Figure 3 shows a typical threshold oscillation
in the Stokes beam. Different parameters such as phonon
lifetime, laser intensity at the focal point, and immersion
length affect the behavior of the threshold oscillation. There
are no phase jumps predicted corresponding to these oscilla-
tions.

1. Effect of phonon lifetime on the threshold oscillation

If the finite phonon lifetime is responsible for the relax-
ation oscillation at the threshold energy, we would expect
that the behavior of the threshold oscillations depends on this
parameter. Figure 4 shows the threshold oscillation for two
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FIG. 4. Threshold oscillations are reduced for longer phonon
lifetime. (a) Phonon lifetime is 0.5 ns and (b) phonon lifetime is
1.25 ns. Other parameters are as those of Fig. 3.
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FIG. 5. A shorter relaxation oscitlation is achieved for long
phonon lifetime. The graph shows how T, (a time interval over
which the oscillations are visible, see Fig. 4) is reduced for long
phonon litetime.

different phonon lifetimes. Defining Ty to be the time inter-
val over which the threshold oscillations are observable (see
Fig. 4), our simulation predicts that T is reduced for long
phonon lifetime (see Fig. 5). It is seen that for longer phonon
lifetimes, oscillations in the Stokes return come to an equi-
librium faster than those for short phonon lifetimes. Our
model permits a detailed investigation of the above men-
tioned relaxation oscitlation and the role of the phonon life-
time.

The acoustic field is described by Eq. (3c). For early times
in the process, the first source term in the right hand side of
the equation may be ignored and for the second term we can
write f|=2a; sin ay. Equation (3¢) can then be solved as

‘Ifq:‘l’()qe" ’+; ay sin wkr-i—; b cos wyt,

in which a;=a,[(T+w)™" and b= —a,w (T
+w£)". In the limit of a long phonon lifetime, ie. I
—0(1t—=), we find ak'.=0 and b,:_:—uk/a)k. which results

in a solution of W =2, ~(a;/w;)cos w for the acoustic
field. Comparing this result with the source term f, it is
seen that in the limit of a large phonon lifetime the medium
will not respond to the rapid fluctuations in the source term.
but rather responds to the integral of rapid changes. In the
other limit of I'—x(7—0), b;—0 and a;=a,/I" which
gives a solution of ¥ =3, (a,/I')sin wy. In this case the
medium can cope with the rapid changes in the source term.
thus resulting in a modulated Stokes pulse. The above dis-
cussion is applicable not only for the beginning of the pro-
cess but also for any rapid changes in the source fields of the
acoustic field. The phonon lifetime thus represents a measure
of the inertia of the acoustic field. The larger the phonon
lifetime, the higher is the inertia of the acoustic field and the
slower is the response of the medium to the rapid changes in
the Stokes and the laser field.

2. Effect of laser intensity at the focal plane

According to Eq. (7¢), the amplitude of the acoustic field
depends on the intensity of the input pulse. A shorter focal
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FIG. 6. Smaller focal spot (higher intensity) results in a suppres-
sion of threshold oscillations. Oscillations are reduced in (b) (focal
length 60 cm) in comparison with (a) (focal length 90 cm). Other
parameters as in Fig. 3.

length results in a higher intensity at the focal plane hence a
higher power acoustic wave. As a result of this strong acous-
tic field, the Stokes amplitude does not reduce as quickly
after overshooting, which in turn causes a shorter duration of
the relaxation oscillation. This is illustrated in Fig. 6.

3. Effect of immersion length

Kuzin et al. [21] have discussed the influence of the
depletion length (the length over which the laser pump beam
experiences most of its depletion) on the suppression of fluc-
tuations in the Stokes field. They emphasized that if the
propagation time through the depletion length T,dep is smaller
than the temporal variation of the Stokes field at the begin-
ning of the depletion region 7, a smoothing of the Stokes
field towards the output of the cell would take place. In this
case we are in the steady state regime of SBS, and can re-
write Egs. (3) in the phase-locked condition, as

9
o 1r=280,1.,

0
;Ix=2g1p1s.

Moving the origin of z to the entrance of the cell and writing
1,(z)=1,(z) +1; [31] (where I, is a constant indicating the
degree of pump depletion), we can solve the differential
equations (9) to find

) 11,(0)
)= 1 0yexp(— 2810~ 1,(0)°

Defining the depletion length as the length over which the
Stokes intensity drops to 1/e of its maximum [i.e., 1 (L gep)
=(1/e)I,(0)], we find

11(5‘_1))

ldepz'zg_ll ln( 1+ IP(O)

which can be approximated as
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FIG. 7. Modulations present in (a) (focal length 100 cm, immer-
sion length 40 c¢m) are almost suppressed in (b) (focal length 100
cm, immersion length 10 cm). Shorter immersion length provides a
better suppression. Other parameters as in Fig. 3.

[;
ldepz—? (10)

for highly depleted pump (i.e., /,—0), and using the defini-
tion of G.

A parallel physical explanation of conditions under which
temporal fluctuations are suppressed is given by Gaeta and
Boyd [11]. They discuss how a spike with temporal variation
T,=T " is suppressed when G>I'T, (where T,=nlmmc "
is the transit time and G=g/,liny is the steady state gain).
This condition (G>I'T,) is similar to the Kuzin er al. [21]
condition (i.e., T,d€p< T.), if we use the depletion length
given by Eq. (10).

Keeping constant all other parameters and varying only
the immersion length, by changing the cell to lens separation,
we can examine the effect of immersion length on the thresh-
old oscillations. Figure 7 shows the behavior of the threshold
oscillation for two different immersion lengths. For a smaller
immersion length, Fig. 7(b), the depletion region of the
pump beam is confined to a small region at the entrance of
the cell resulting in a shorter relaxation oscillation.

It thus appears possible to use the advantages of a short
focal length and a short immersion length to smooth out the
oscillations. These conditions are confirmed to provide the
best temporal fidelity of pump pulse in SBS process, Fig. 8,
and appear to agree with preliminary experimental results
[32]. A more complete experimental investigation is planned
for a later publication.

4. Pulse compression

As mentioned previously the threshold relaxation oscilla-
tion is due to the energy interchange between the pump and
the Stokes fields. We can expect to achieve pulse compres-
sion if we do not provide the appropriate amount of energy
for the Stokes pulse to rebuild after the first impulse of re-
laxation oscillation. Figure 9 shows how the relaxation oscil-
lation converts to a compressed pulse as input energy is re-
duced from (a) to (d). The process of pulse compression can
be better seen if we look at the three-dimensional (3D) graph
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FIG. 8. Threshold oscillations disappear for short focal length
and immersion length. Immersion length 20 cm and focal length 60
cm, other parameters as standard set shown in Fig. 3.

of the Stokes power, Fig. 10. At early times of the process,
the center of maximum reflectivity (maximum of the Stokes
pulse) is close to the focal region. This center moves towards
the entrance of the cell at a latér time. As a result, latter parts
of the incoming pulse are traveling a shorter distance before
generating the Stokes return, resulting in pulse compression
[3.4].

B. Stochastic fluctuations of phase and amplitude

Noise initiation of the SBS process results in large scale
fluctuations in the Stokes output. These fluctuations are of
stochastic nature in the sense that there is a random probabil-
ity for the occurrence of the fluctuations as well as for their
temporal position in the output Stokes pulse. Corresponding
and simultaneous to these fluctuations in the Stokes power,
there are some rapid changes in the Stokes phase (see Fig.

FIG. 10. 3D graph of pulse compression [(d) in Fig. 9]. Stokes
power in time and space shows how the center of maximum reflec-
tivity moves towards the entrance of the SBS cell (z=280 cm) re-
sulting in pulse compression. Parameters as in Fig. 9.

11). The simultaneous occurrence of jumps in the Stokes
phase and fluctuations in the Stokes power can be understood
from the main equations governing SBS [Egs. (3)]. On the
right hand side of these equations there are two effective gain
terms, g sin(@,+ @,— ¢,) or g cos(¢p,+ ¢,— ¢,) which are af-
fected by rapid changes in phase of the fields. Figure 11(b)
shows how the normalized effective gain g sin(¢q+¢s—¢p)
suffers a reduction at the time when a phase jump occurs in
the Stokes field. Depending on the size of the phase jump
and the phase behavior of the pump and acoustic field, the
effective gain can be reduced or even become negative,
which interchanges the role of Stokes and pump field, i.e.,
the pump field gains while the Stokes field depletes. This is
similar to what happens in the generation of solitons in
stimulated Raman scattering [33]. The final temporal posi-
tion of phase jumps as well as the shape of the fluctuations in
the output of the Stokes phase and power depend on how
they propagate and amplify from the initiation point (focal
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FIG. 9. Pump and Stokes power as function of time at the entrance to the cell. By reducing the pump energy, we remove extra oscillations
from the threshold oscillations, resulting in a pulse-compressed beam. Cell length 80 cm, focal length 80 cm, and immersion length 70 cm
with all other parameters as in Fig. 3. In (d) the delay in peak Stokes and peak pump is due to the round-trip time of the cell and building
‘o threshold.



3968

- 3 ]
= F. -.-. Pump Power (o) 3

2.0 P ]
5 . —— Stokes Powaer, E
a 1.5F 3
I ;
~ 1.0F E
@ 3 -
3 osf _ E
[=] 3 o 3
@ 0.0k am”

0 20

T s = 5
s 3 . i"' PR —— (b) 3
3 2 Q! i : 42 £
L i : 8
E OW y -.-. Stokes phase t["‘-- Ao é
& Ui Effective galn  TTmeeee -1 3
S NI b
x “2fNs NS 1-2
Y o 20 40 60

Time (ns)

FIG. 11. Corresponding and simultaneous to each fluctuation in
the Stokes output, (a), there is a jump in the Stokes phase [dashed
curve in (b)). Parameters are set as cell length 60 cm, focal length
60 cm, immersion length 30 cm, phonon lifetime 0.85 ns, gain of
the medium 0.0063 cm/MW, refractive index 1.36, FWHM pulse
length 20 ns, and input energy 119 mJ.

point) towards the entrance of the cell. Stokes pulses, initi-
ated from noise, are amplified in two main regions as they
propagate towards the output of the cell. In the first region,
initial amplification and spectrum narrowing of the Stokes
beam growing from noise take place [20,34,35,11,36,21].

The second region of length Iy, [Eq. (10)] is where the final *

amplification of the Stokes beam to a level approximately
equal to the pump power occurs. The final Stokes output can
be greatly affected by the dynamic processes in the depletion
region. As previously discussed, this region plays a crucial
role in the suppression of fluctuations in the Stokes signal
when T,dep< T,. For T,drp> T, , however, fluctuations in the
Stokes pulse experience amplification and spectrum changes,

and appear in the final output [21]. It has been shown that
different spectra of the fluctuations in the Stokes pulse expe-
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rience different gain depending on the phonon lifetime and
the length of this region [36,21]. As a result, the output spec-
trum of the fluctuations is different from the input when
propagating through the depletion region [36,21]. Consider-
ing this and the fact that the depletion lengths I, corre-
sponding to different temporal parts of the Stokes beam are
different [see Eq. (10), where the gain G(t)=gI,(t)lipy is a
function of time], lead to changes in the shape of fluctuations
as well as the temporal position of corresponding phase
jumps in propagating through the depletion region. The re-
sults from our model also display such behavior, as shown in
Fig. 12. It shows the temporal position of the phase jump and
the beginning of the fluctuation in Fig. 11 as a function of
time at different positions in the cell.

The focusing geometry of the SBS cell, input energy, and
phonon lifetime of the material affect the phase jump fluc-
tuations. Due to the stochastic nature of the fluctuations, the
width, magnitude, and the number of fluctuations vary from
pulse to pulse. As a result, we have chosen the fraction of the
Stokes energy contained in the fluctuations, i.e.,
(Efuc/Eoupur) (Where () means statistical average over all
number of pulses) as the best parameter to show the impor-
tance of the fluctuations to a practical deployment of SBS in
a laser system. Unless otherwise stated, the following param-
eters are applied for the numerical simulations: cell length 60
cm, focal length 60 cm, immersion length 30 c¢m, phonon
lifetime 0.85 ns. input beam radius at window 0.3 c¢m, gain
of the medium 0.0063 cm/MW, input energy 119 ml,
FWHM pulse length 20 ns, and refractive index 1.36.

1. Phonon lifetime effect on the phase jump fluctuations

As was previously discussed, the phonon lifetime is a
measure of the acoustic field inertia. For a medium with a
long phonon lifetime, the acoustic field cannot respond
quickly to the rapid fluctuations in the noise initiated Stokes
field, and it thus broadens and smoothens out the fluctuations
in the Stokes field. To examine the effect of phonon lifetime
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FIG. 13. Averaged fluctuation’s energy (normalized to output
energy) reduces for longer phonon lifetimes. Other parameters are
as in Fig. 11.

on the phase jump fluctuations, the simulation model was run
with different initial noise distributions for three different
phonon lifetimes. The fluctuation energy (normalized to the
output energy and averaged over a certain number of shots)
is calculated for these different phonon lifetimes. Figure 13
shows how the energy of the fluctuations decreases for
higher phonon lifetime, indicating a better suppression of
fluctuations for long phonon lifetimes.

2. Effect of immersion length

As mentioned previously, the two key parameters in sup-
pressing the fluctuations are the propagation time through the
depletion region T,dep and the temporal variation of Stokes
signal 7, which reaches the depletion region. In the case
when T,dep< T, the fluctuations in the Stokes signal are sup-

pressed as they pass through the depletion region while in
the other case, T,dcp> T,, they are magnified and appear in
the final Stokes output. The depletion length /4., depends
(roughly) on the steady state gain G and the immersion
length I [see Eq. (10)]. By controlling G and [, we are
thus able to change the length of depletion region. From the
condition T,d=p> T;, it is clear that reducing T,dep implies a
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0.05 . :
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FIG. 14. The effect of the energy fluctuations, measured by
(Epuc/ Equpu ) %, is reduced for shorter immersion lengths (constant
focal length and large cell to lens separation).
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FIG. 15. Histogram of output energies (normalized to the mean)
for two different energies 387 mJ and 205 mJ. Operating at high
input energy reduces the effect of fluctuations.

reduction in the number of fluctuations as well as their du-
rations in the final Stokes output.

A shorter depletion length can be obtained for a short
immersion length (achieved by long cell-lens separation) and
as a result, we would expect a better suppression of fluctua-
tions. Figure 14 shows how averaged fluctuation energy

(Efuc!Eon )% (normalized to output energy) changes as a
function of the immersion length. We thus conclude that a
small immersion length achieved by large cell to lens sepa-
ration provides better suppression of fluctuations.

3. Effect of input energy

Another parameter that can affect the depletion length is
input energy. Higher input energy results in a higher gain G,
which in turn reduces the depletion length /4., of the SBS.
As discussed above. we thus expect that fluctuations in the
output Stokes beam have smaller duration, i.e., they carry
less energy. In order to examine the effect of input energy,
we have studied the output Stokes beam of 500 simulated
pulses with different initial noise distribution and at different

energies. Considering the histogram of E ., /(E,,) for these
500 pulses, where £, is the mean energy of all output
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FIG. 16. A reduction in averaged fluctuation
({E e/ E gupue ) %) occurs at high energies.
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FIG. 17. For a constant energy, reducing the duration of the
input pulse dramatically suppresses the fluctuation in the output
Stokes. The effect of pulse duration on the suppression of fluctua-
tions is shown for two energies: 115 mJ and 205 ml.

pulses, and fitting a Gaussian function to it, we find that the
width of the Gaussian fit isyeduced at higher energy, i.e., the
variation in output energy per pulse around the mean value is
reduced for high energy (see Fig. 15). Another parameter
that can show how fluctuations are suppressed for high en-
ergies is the average of the fluctuation energy (normalized to
output energy). Simulation results in Fig. 16 show a reduc-
tion in the averaged fluctuation energy for higher input en-
ergies.

4. Effect of pulse duration

In the above section, we kept the duration of the input
pulse constant and we studied the effect of parameters such
as input energy and beam area on the fluctuations. In order to
observe the role of pulse duration, we have chosen to keep
the input energy of the pulse constant and reduced the pulse
duration, i.e., we increased the peak injected power. Simula-
tion results show a dramatic reduction in the number of fluc-
tuations for short pulse durations which in turn results in a
smaller averaged fluctuation energy (Fig. 17).

IV. CONCLUSION

To describe different kinds of temporal amplitude and
phase modulations in SBS, we extended the plane-wave
equations for complex fields describing SBS in a finite cell to

include focusing geometry and initiation from a Gaussian
random noise distributed over space and time. Two kinds of
modulations were found: (1) Deterministic relaxation oscil-
lation at the threshold energy and (2) random fluctuations in
the output Stokes power.

The finite phonon lifetime of a material is responsible for
an energy interchange between the pump and Stokes field
resulting in relaxation oscillations at the threshold. There is
no modulation of the Stokes phase corresponding to these
oscillations. It is predicted that materials with shorter phonon
lifetimes can exhibit relaxation oscillations of longer dura-
tion than those with long phonon lifetimes. It was found that
an initially stronger acoustic wave (resulting from a high
focal intensity determined by the focal length of the lens)
shortens the relaxation oscillations at the threshold energy
since the Stokes pulse can use the energy stored in the acous-
tic field after initially overshooting. Also, a small immersion
length achieved by a large cell to lens separation reduces the
threshold relaxation oscillations. All together, short focal
length, short immersion length, and large phonon lifetime
provide the best parameter space for removing the threshold
relaxation oscillations.

SBS initiated from microscopic noise shows large scale
stochastic amplitude modulation in the output Stokes beam.
Simultaneous and corresponding jumps in the Stokes phase
are observed. We have determined a parameter regime where
this modulation is minimized or eliminated, thus predicting
conditions for optimized, reliable SBS.

(1) Longer phonon lifetime provides a better suppression
of instabilities in the Stokes pulse.

(2) Depending on the input energy and focused spot size,
the pump and Stokes field can be confined to a small region
near the entrance of the cell (high energies, short immersion
length) or distributed towards the focal point for low ener-
gies and long immersion length. For high input energies or
short immersion length the time for propagation through this
region Tldcp is small enough to suppress many of the fluctua-

tions reaching this region with duration T,>Tg.,. Short im-

mersion length achieved by large cell to lens separation is

more desirable since T, ~can be reduced more effectively
ep

and a higher reflectivity can be achieved. but will in practice
be limited by optical breakdown of the SBS material or cell
window.

(3) Another parameter that can be used effectively to sup-
press the fluctuations is pulse duration. Our results showed
that for a shorter pulse duration (i.e., higher peak power) the
number of fluctuations was reduced dramatically.
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