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SINÍI{ARY

Propagation and reflectj.on of 1or¿ frequency sound in síngle

and coupled pairs of straight and curved ducts ís investígated with

and wíthout flow of the propagating rnedíum. The work ís dívided ínto

three sections.

The first section deals wíth gene::al propagatíon theory in

straight and curved radíal ducts of rectangular cross section r^¡Íth

and wíthout uniform f1ow. The effecËs of flow on the propagation of

energy and the cut-off frequencies of higher modes are investigated

experinentally and theoretically. A theore-tica.l explanation ín terms

of wave nurrber of why the cut-off frequency is independenÈ of dírectíon

of propagation of sound relative to the floru ís presenÈed. The

behaviour of phase velocity and group velocity near cut-on Ís also

cons ídered.

. Sound propagatíon in radial ben<ls of rectangular cross section

is investigated using Ërvo metho<ls, the first of which util:|-zes the

tradítional soluLíon of the wave equation ín cylindrical co-ordinates.

An iteratíve method of soluËíon of the characteristic equation ís

discussed and used to predíct the acoustíc pressure and partícle

velocity distributions of two propagating modes. Comparison is made

with experimenÈal results and the resul-ts of other workers. Good

agreemenÈ is obtaíned. The theoretical investigation using cylindrical

co-ordinates is limiLed to the- case without flow.

An approxímate method of analysis of 1ow frequency souncl in



::adial bends is developed using conformal mapping techníques" As vrell

as overcoming the need to evaluate couplicaÈecl expressions of Bessel

and Neunann functions, Èhis approach allows theoretical consideration

of the effect.s of flow. Sirnple e.quations are deve-loped whieh p,'-'edÍ-ct

the angular rira-ve numbers of the (0r0) mode and higher evanescent lnodes

as well as the cut-off frequencies of higher modes with and withor.rt f1ow.

The results of the analysis agree with results obtained by other workers

using cylindrical co-ordinate,s solution. The effects of flow on Èhe

pressure distribuÊion and cut-off frequencies of higher modes are

cons iderecl .

The seconcl part of the thesis is concerneci r¿íth sound generation

and propagation ín duct systems. Sound generated in a rectangrrlar

straíght duct with rigid walls by a dipole piston source Ís theoretically

investigated. The pístons are of equal- area and fill the cross se.ction

of the duct. The characteristic írnpedance and radíation efficíency of

the source is invesËígated for varyíng phase angle betrseen pisÈons. The

source is shown to be an extremely good racliator of sound rn'hen the

pistons are ín phase and to radiate no sound por/er aÈ all below the cut-

off frequency of the fÍrst cross mode of the duc.t when the pístons are

n radians out of phase.

The effects of a curved axial partiËion on the impedance

of a curved bend are investígaled theoretically and experimentally.

trIhereas previous invesÈigations have esËablíshed thaÈ a curved bend

provides negligible cliscontinuity Ëo acoustJ-c propagation, the presence

of a central partition is found to drastically modífy the propagational

characteristics of the be.nd resulting in high reflection of sound at a

number of discrete frequencies. By contrasË' preselìce of a central

parÈítí.on in a straight duct would have no effect at all be-l-ow the



cut*off frequency for the first cross niode of the duct.

The third part of the work deal.s with the devel-opment- and

testing of t¡¿o reactive attenuators, based upon a principle menËioned

by Rayleigh (Theory of Sound, Vo1. II, p.63) and attributed to

Herschel. Soun<l propagaËíon in a single duct is caused to split

ínto two parts which t.ravel along sePaTate parallel ducts and when

recombiued produce non-propagating modes. The sound ís thus reflected

and the device becomes an effective attenuaËor in plescrj-bed frequencies.

Such attenuators míght be used for rigid ¡oalled ducts.

The first attenuato:: is designed to fit into a 90 degree

bend in a rectangular duct system and relies on a center body to

create an irnpedance mismatch aÈ the attenuator exit. The center

body is shaped Ëo provide a low pressu.re drop across Ehe device. The

performance of the attenuator is theoreti.cally analysed wit.h and

without flow. The analysis allows the reclesign of the confíguration

of the aÈtenuator to optimize íts performance. An optimurc attenuator

ís developed which provide-s a transmission loss of at least l0 dB over

three quarters of an octave and losses of 30 to 50 dB at a nunibe.r of

discrete frequencies in the thre-e quarters octave frequency range.

Flow is found to substantialJ-y reduce the high aÈtenuatíon

obtained at the cliscrete frequencies buÈ a Ëransmission loss of 10 dB

is stí1l obtained over Ëhree quarters of an octave Í.or a flow rate of

If =0.08 ín the upstream straight duct. The effects of flow on the

design frequency and the pïessure reflectÍcrn coeffícíent are quantÍfied.

The secolcl attenuaÈor is designeci for use in straíght ducts

of circular cross section ancl re1íes on an acoustic clelay líne to

generate a series of evanesc.ent modes and a resulÈant impedance

mismatch at ttre device exit. The a.Ëtenuator: ís ínvestigated



experimentally r^ríth and wíthout flow for speeds uP to M = 0.37. the

device ls shown to provlde higher levels of attenuatlon and a 10 dB

rejecÈion band over an octave for the case without flow. The dís-

turbance Ëo the fluid flon ln Ëhe maín duct ís negllgible. A

theoretíeal analysis of the delay line attenuator over its operating

frequency range is noË attempted. However, it may be theoretíca1ly

descríbed for Ëhe very low frequency porËion of lËs range usi.ng a

lúurped círcuit analys:ls. The theory predicLs reasonably wel-l the

posÍÈions of the amplífícation of sound, measured in the very low

frequency range.
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GENERAI INTRODUCTION

As the demand for fasLer flow in duct systenrc increases so

does the noíse gener:ated by the fan and fluid-ducÈ interaction. Part

of the noj-se generated by the fan and flow ís of long vravelength

relative to the dj-mensíons of the duct, and the level of thís low

frequency noise is ofte-n unacceptable in such applicaÈíon as líbraries

or sound studíos. In Èhe usual methocl of low frequenc.y noíse control

a system of resonators oI lined e.xpansion chambers may be employe<i,

buË Ëhese devíces have- the disadvantage of excessíve size or large

pressure drop and usually operate over a narro\.v f requency range,

Alternatively liníng the duct wíth absorbent material is relaÈive1y

íneffectíve'at low frequencies and unsuitable for low frequency noíse

control.

The príncipal aím of thís research work is thus to develop

an alternative atÈenuator suitable for control of low frequency sound

ín rigid walle-d ducts. It is hopecl to eliminate the stated problems

of excessive size and pressure drop as well as narrolt opel:ating band.

The operaÈion of Èhe attenuaËor is based on a principle descríbed by

Rayleígh and attributed to Hershel. It depends upon the generatíon of

impe.dance mismatches at planes across the duct surface which then cause

reflection <¡f sound. The degree of ímpedance misruatch is controlled by

the clegree to which series of evanescent modes are generated at these

surfaces. The performance of the al-teriuator j-s indepenclenÈ of the

downstream tenninating i.mpedance, a cliaracleristic rn'hich distinguí-shes

it from Èhe usual r:eacfive devices st¡ch as an expansíon chamber'
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Two configurations of the attenuator are Í-nvestígatecl; one

suitable fo:: use in bends ín ducts of rectamgular cross section arrd

the other desígned for use in straight ducts <¡f cÍrcula.r cross sectíon.

Investigatíon of the effects of flow on Èhe performance of Èhese devj-ces

ís included ín the study.

Necessary Èo the theoretical understanding of the performance

of the rea.ctive atLenuator is a det.aíled understanding of propagat,ion

theory in hard-walled ducÈs with and without flow. Such factors as

the effect of flow on the cut-off f::equencies of higher mo<les, sound

propagation Ín curved bends ¡.¡ith and wíthout flow and the irnpedance of

a surface whose pressure dÍsÈril-lution is approximaÈed by a Fourier sum

of evanescent nodes are closely related to the perfor:mance of the

attenuator and are carefully consíde-red in the invest.igatíon. A large

part of the thesis ís therefore dedicated to a Ëheoretical and experi-

mental sEudy of propagatíon of low frequency sound in hard-walled ducts

with and without fl-ow. The remainder is concerned with ínvestigatíon

of the proposed attenuator.
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PAIìT 1 PROPAGATION TIIEORY

CHAPTER 1

SOUND PROPAGATION IN STRAIGHT DUCTS OF

RECTANGULAR CROSS SECTION .

1.1 INTRODUCTION

The basíc analysis of sound propagation in straight ducËs

of rectangular cross section wíth no rnean flow has been investigated

thoroughly and is well documente<l in several texts such as Rschevkin

(l-963) and Morse and Ingard (1968). Perhaps the first to work on Èhe

p::oblem of sound propagation in straight ducts was Rayleigh (1877).

His work outlined the essential harmoníc nature of sound propagation

and showed how the wave equation can be solved in terms of a veloci-ty

potential consistíng of an ínfiníte Fouríer sun of \^raves. The first

major work to outlj-ne acoustic distríbutions and propagation parameters

of sound in ducts was due to Morse- (1939). Morse consídered the

case of one absorbing wall in a re-ciangular duct and laíd dovrn the

standard boundary conditions used Ëo match general solutions to a

parËicular case. The basíc ground work of duct theory has lately

been extended to include the more subtle points of propagatíon with

nc mean f1ow. Two papers by Doak (L973) summarize well the more

complex cases of moclal propagation. He conside.rs the generalized

relationshíps for acoustic por¡/er and pressure distributions as well

as the effecÈ of different types of sources on spatial distribution

of acoustic parameters. Doak also considered the effect of different:

duct terminations on rnoclal coupling r¡ithin the duct.

In recent years most work c.oncerning sound propagation in

rectangular ducts has been cenÈered on the c¡ffect of convection of

the propagation medj-um (partíctrlarly on the- attenuation obtained due
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to lined duct r.,'alj-s) . Although Lhe basic de-rivatíon of the wave

equation ancl símple solutj.on have been wel-l dj-scussed srrch as by

Morse ancl Ingard (f968) there are still particular problens thaÈ

need more investigation. Two of these, the effect of flor¿ on mod¡.l

cut-.off alìd energy propegat-ion, will be discussed in this Èhesis.

The fírst signíficant r,rork on sound propagation in ducts

v¡ith shear flow was publishecl by Pri<imore-Brown (1958) . In a comp-

rehensive anal-ysis Pridmore-Brown devel-oped equations for the variation

in sound pressure acl:oss the duct rshich is brought abouL by the

presence of a flow gradíent. Ile also considered tl-re effect of flow on

Lhe atte-nuatíon obtaíned from lined walls for both upstream artd clor,¡n-

streem cases. His work rvas followed by a spout of others of whi-ch

most have been concerned with attenuatíon ín lined ducts with flow.

The adve.nt of the computer allowed a numerical approach to the solution

of the eigen equation, which prevíous1y vlas prohibitively tinie

coltsuming. Sj-nce the follovring analysís is limit.ecl to rígid walled

ducts only those relevant rvorks will be discussed.

Iugard (1959) considered the reflection of waves from a

boundary betv¡een tvlo flrrids moving at different relative velocities and

showed that the normal impedance was increased by (1+M sinO) v¡here

0 is the arigle of incidence of the acoustic wave. More importantly

his r¿ork íllustrated the nece-ssity to use continuity of particle

displacement as a boundary condition ín thj-s case rather than continuity

of particle velocíty (as used in the no flov¡ case). Morfey (1971) has

publ ished a series of importa-nt papers concerned with \,üave propagatíon

in f1orv. He developed relaËionshíps for the impedance and intensity

of travelli.ng waves in rígíd ducts for higher modes above or belov/

cut-cff as well as the plane \¡/ave. ln particul-ar he found t-hat uniform

flovr has the effect (for modes r,¡e1.1 above cut-off) of i.ncreasing the



r
.J

sound por^/er transmittecl by a sÍngle mode by the facÈor (1-t- t't) 2 in the-

direction of f1ow and of decreasing the Porder transmitted by t-he

factor (1-li)2 i-n the clírection opposite to the flow.

Mason (1969) has experinientally and theoretically investígated

the effect of fl-ow on the modal cut.-off fr:equerrci-es in circular ducts.

He define<l cut-off as the frecluency above which propagation occurs with-

out attenr-ratjon and found that ".he cuL-off frequency decreased by a

L

fact,or of (t--¡a2¡'" independent of the directíon of propagation relatíve

to flow. However his ptrysical explanatíon for rvhy the cut-off frequenc-y

ís independent of direcËion of propagation oi sound relatíve to flow

ís hard to follorrr so that the physical explanation vrill be considered

i-rl detail in this thesis.

From the experimental point of view Alfreclson (1970) in

\Árork on exhaust mufflers, has deveJ.oped oquatí.ons for correctly using

the impedance tube method for determining refl-ection coefficients wíLh

flow. He shows frotn an energy EransporË vieru that the reflectíon

coefficíent can have a maximum of R*"* = (1+l'l)/(1- M) before flux

reversal occurs for downstream propagation of sound. Thus Al-fredson

modífied the usual standing wave theorlr to allow deËermination of

reflection coeffícients greater than unity.

In thís chapter the equations for sound propagation ín

straight ducts with and without flor^¡ are developed. The case of no

flow, although well knovm, will serve to illustrate the method of

solution for the less familiar cases of sound propagation in straight

ducts \nrith flo\,/ and in curved ducts r,rith and without flow, The

equatíons wíll also be used in analyses in 1-ater chapters. For the

case of fiow the basic equations are <leveloped artd discrrssed. Consj.d-

eration is given both theoretically and experÍ.rnentally to the effect

of flow on modal cut-off frequencies. A. physic-al explanation of why
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cut-off frequencies are independent of direction of propagation relative

Èo flow is proposecl . Relatioushíps for the pressure and potver v'eflectiorr

coeffic-ients as well as po\,/er transmíssion coefficients for the (0r0)

mocle of propagatÍ-on are developed and the effects of flow on these

parameters al:e discussed.

L.2 STRÁIGHT RECTANGULAR DUCTS IIIITHOUT FI,OI^I

In a straíght infiníte duct with rigid walls the propagating

acoustic r¡ave has two major forms. When the wavelengÈh of sound trans-

mitted is much larger than the transverse duct clinensions, the fluct-

uations travel as a plane \Árave with a constant pressure and veloci-ty

anrplitude across the ducÈ. Hower,'er when the wavelength is sma1l relatj-ve

to the transverse <luct dimensions, an increasirrg set of non-uniform

r{aves appear, as well as the plane wave. The propagatÍonal character-

istics of the non-uniform r¡raves are determined by the bounda.ry condítions

of the duct. Equations describíng this type of behaviour are- obtaíned

f rom a soluÈion of the \^/ave equaËíon in rec,tangtrlar co-ordinates. The

assumptions ínvolved in Èhe derivation of the differenE forms of the

T^rave equation used are discussed ín Appendix 1.

Assuming sínusoidal oscillation, the wave equation takes

the well lcnovm form of the Helmholtz equation

v2o - k2p =0 (1.1.)

where the wave number ko = ut/co. (The constanË ko will be shown to

have ímportant physical signífícance). The deri-vation of the equations

re1atilg. pressure and partic-1-e velocíty in the acoustic field as

dictaÈed by equatíon (1..1) is well knov'rn but rn'ill be revíerved here as

ít- will serve as a convenient basis for consideration of other less well

hnown properties. The v¡ave ís assurned to propagaËe in a semi-infiniÈe
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rig-L<l ru'alled duc.t, The x axis of Èhe co-ordinate system is chosen

paral-lel to the directi.on of propagation and the plane normal to t.l.te

x axis is bounded by the rsalls of the ducl-. The ori-gin of the rect-

angular co-ordinate sysËem i.s chosen to be the 1<¡wer corner of

one of Èhe ducË wal1s as shorvn in Figu::e 1.1.

A ge"neral solution of equati-on (1.1) in separable recÈangular

co-ordinates is

p(x,y,z,t) = X(x) Y(V) Z(z)explir¡t] (1.2)

After subst.Ítuting into the wave equation we obtain using separatíon

of variables

= -k2 Yrt
1n2 and

nrr ,Y (1. 3)

where the prime ( I ) indicates differentíation with respect Èo the

relative co-ordinate.

SoluÈions to the equations (1.3) are

X(x) = exp [-i- k*r* ] (1. 4)

Y(y) = cos(k*v) (1.5)

Z(z) = cos(krz)

l= -u|

(1.6)

Thus substituting into equation (1.2) vte obtain the general form of the

solutÍon of the wave equation

@ @

m

xtt
X

P(xryrzrt) I I A* ú*., (y ,") exp I i (r¡t - k r,*) ] (1.7)
m=o n=o

where
,l,o*(v,z) = cos(k y)co.s(knz) (1. B)



B

X
z

0

FreuRe 1,1, The rectairgular co-ordínate system.
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úr*(l,z) is called the characterístic functrlon. It h¡rs special sign-

ifícance in that it describes the variation ín pressttre and velocity

amplitucle ovel a plane normal to the di-r..ect-ion of propagal-ion (the x

axis) bounded bY the duct walls.

SubstiÈrrtiou of equation (1.7) back into the wave equation

(f.1) provides an equatíon relating Èhe wave numbers in the direction

of each axÍs of the co-ordj-nates system as

k2 =y2-L2 y2
n

(1. e)
mn o m

values of k* and k, are obtained by applying the- relevant

boundary condj-Ëíons aÈ the duct walls. In thjs analysis Ëhe- duct walls

are assumed perfectly rigid, therefore the normal acoustic particle

velocity at the wall surface is zero. Hence,

rrl..=" =o - urlr=n =Q (1.10),ly=ny , t_ --z

Trom these boundary conditions Ít follov¡s that

k = mn/h and k = nn/h (1.11)
m v n z

where h and h are the transverse duct dÍmensions in the y and zyz
directions respecÈively. Equatíons (1.11-) prorride eigen values for

the particular problem which govern the natural oscíllations in the

y-z pl.ane and determíne how the wave will propagate'

The modal wave numb.r k*o whích determines sound propagation

ín the x dírectíon ís obÈained from solutíons of the characterístic

equation (1.9) . Thus

k =+[k2- (¡¡¡1n/h)2- (nn/h_)2]
mn'oYz

for m, n= 0r112

,4
(t-.L2>
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The t sigrrs of the scluâre r:oot imply pl:opagatic;il in lhe t x d.i.rection

respectively. Each parIj-cular combination of inLegers m ancl n rePlesent

differenl: mode-s of Lhe correspor-Ìding acoustíc rüave. The characte.ïístícs

of lhe corresponding acoustíc wave are thus deLermined by the noclal

wave number k V,Ie note Ëlìe pcrssibilíty foragíven m and n, not both
mn

zero, Èhat f or lou' r¡alues of ko, the- value of k* may be ímaginary. In

this case the corresponding mode j-s cut-off a-ncl no \^rave propagâte-s.

If k is real or fol: frequencies such that
üln

k (1 .13)

propagation of the- (*rn) mode as described by equation (1.7) vrill occtlr

in the x direction wíthout attenuati.cn. If r¿ and n are both zero it

can be seen that the characteristic functíon rf*, will trave a value of

unity inde,pendent of y and z and the corresponding wave will have uníform

amplitu<le ac.ross the cluct. símilarly from equation (1.12) koo = t ko

and thus thís rrrave number rvill always be::eal for all frequencíes. The

(0,0) mode is the well knov¡n plane wave whích propagates witltouË

attenuatíon and has uniform phase velocÍ.ty aL all frequencíes. A wave

such as Ëtris ís calle-d non-disper:síve, that Í-s, its phase velocity is

índependent of frequencY.

If m and n are both not zero then the (mr.t) mode rn'ill have

anplitucle variation in the y-z plane as described by equation (f.B).

l{aves of this type- are amplíEude modulated over the rsave-front. It

can be seen Èhat symmetrical dístributions about the duct centerline

wi]-l occur for even values of m and n v¡hi.le odd vah.res of m ancl n will

give rise Ëo asymrnetric distributions. The Pressure auiplitude dj st-

ríbutions for Èhe (0,0), (1,0) and (2r0) rnocles are shor.m in Figure 1.2.

Phase- ve1-ocity, f-he velocity at ¡¿hích the phase angle of

a simplc har-monic lv'âv€ of frequenci' u/2tt progresses along the duct

2
o

kz + k2nm
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v

(0,0)

vY
Y=hy

y=0

(1,0) (2,0)

Pressure amplítude distributíon for three modes ín a
rectangular hard r^¡alled duct.

Ficune 1,2,



(more gcneral.ly the rv¿rve velocity) follows frcm equation (1.9) AS

=u/ û_)

c k

12

(1" 14)

(1.16)

p mn Ik2-*,2+k2l\-omn

Inlhen m and n are both zero equation (1.14) shows that the phase speecl

c of Èhe corresponding plane wave ís the same as that of a plane r\lave
p

in free space. Thus when m and n are not both zero the phase velocity

of the (*rn) mode is higher than the speed of sound in free space.

The plane wave whose phase velocity is índe-penclenÈ of frequency is

said to be non-dispersive. By contrasÈ equation (1.1/r) shows that the

phase velocities of the hígher modes are. all frequency dependent and

are thus dispersive.

The group velocity is defíned as the velocíty of progress of

a center of v¡aves contaíning a narro\,ü range of frequencies. Morse and

Ingard (1968) give the followj-ng expressíon for the grouP velocity

c
= àul/âk' tnn

(1.ls)

From equation (1.12) it follows that

c

(k2 + k2) /k2l-m n o
%c =ctl -g o-

The group velocíty provides an approximaËe inclÍcation of tlie raÈe

of propagation of energy. Tigure 1.3 shovrs a theore.tical ploË of the

group and phase velociÈies for three uode-s plotted as functions of the

non-dimensional frequency parameter koh.

ConsiderÍng equation (1.12) again, if either m and n aIe not

zero Èhere will always be a 
,frequency 

belor,s which k'o- ís J-maginary

and Èhe corresponding (mrn) rtode r+ill not propagate. At Èhís frequency

commonly ca11ed the "cut-off" frequency def ined by equatíor.l (1.17)
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,4
(c /2r) [t<2 + t<2]omn (1.17)

tlre correspondíng modal vrave number k has the value zero. At these

discrete frequencies Èhe r^rave consists of standíng Iraves in the y-z

plane and the r^/ave as such does not propagate. Furthermore aÈ the cut-

off frequency the mode under consideration can be seen from equation (1.14)

to have an infinj-te phase velocity; all oscillations are in phase along

Èhe x axís. As such the vi-bratíons are induced dor,¡n the ducÈ rather

than propagaËed. Equatíon (1.16) predícts that the group velocity rvi1l

be zero at cuÈ-off and thís írnplies that all energy flow away írom the

generatíng surface ceases.

For frequencies below Ëhe cut-off frequency of a part.icular

moderk*, Ís ímaginary. Thus from eguation (1.7) the mode does not

propagate; the disturbance decays exponentíally with ínereasing distance

x ar{ay from the generating surface by the factor "-l in a distance

L I k . thus as the drivÍng frequency of an evanescenÈ mode approaches'mn
cut-off the rate of decay wÍth distance decreases. Furthermore the

axial acoustic particle velocity of the non-propagaÈíng evanescent mode

is in quadraËure with the acoustic pressure so that an evanescent mode

carries no nett energy away form the generating surface. Such a mode

might be thought of as a sÈanding r¡rave in the y-z p1'ane whose amplítude

decays r4rith distance x.

Frorn the above considerations we conclude that acoustic r¡raves

ín straighÈ ducts may consist of a plane wave and the sum of a large

number of propagaÈing or non-propagating modes as well. The Fouríer

amplitude coeffÍcients A*, of these waves are determined by applying

boundary conditions at the generating surface in the y-z p1-ane r^¡hich

may be taken aÈ the origin of the x axis (x= 0) for convenience. Higher

nodes are usual1-y generated in ducts by discontinuities such as a step

E_
I_ c
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change in area of the duct or by non-uniforrniËies in the drívíng surface.

Higher modes, below cut*off, generated at such a discontínuíty wilJ-

decay rapidly away from Ëheir origin leaving the lorver modes to transmít

energy along Ehe duct.

It is useful here to íntroduce the concept of t'r"yt'propagation.

Higher propagatíng modes in straight ducts r,riLh rigíd rvalls can be

imagined in terms of plane acoustj-c \^raves called t'rays" which travel Ín

straighÈ l-ines at, an angle y to the x axis wíth propagational speed c.o

as shor,¡n in Fi.gure 1.4 for the two-dimensional case (z= 0).

The direction of propagation of the waves is given by

k
cosY: t 'mo (1'18)-k

o

Here advantage has been taken of the vecÈorial properties of the v-ave

nunbers. The wave field aÈ any point is obÈained by vectorial super-

position of these üraves. AÈ the cut-off frequency for each mode the

rays travel in a transverse directíon to the x axis and there is no

propagaÈion. At frequencies below cut-off this representation is

not possíb1e however, as all quantities includíng the resulting angles

of propagation are imaginary. Figure 1.4 can also be described in

Ëerms of vectorial wave numbers. For the two-dimensional case for

which k = O,equaLion (1.9) can be seen to satísfy the arrangement
n

of Figure 1.4 where kor' i" the wave number vector parallel to the x

axís. k is the wave number Ín the Eransverse dírectÍon aud k the'mo
vecÈor of the pJ-ane wave fronË.

The acoustic intensity of propagatíng \¡taves wiÈhout flow is

defined as

I x
(1. 1e)
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F¡gURg 1,4. Ray theory of, propagation.
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On the other hand the particle velocity of a plane r^rave is gíven by

p/poco thus reference to Figure 1.4 and equaÈion (1.18) gíves the

following for the component of particle velocity vx

fiìrl
p

1

k
v= (1.20)

(t.22)

ock'o o o
x

Therefore the intensJ-Ëy in the x direetíon is

tlpl'(knn/ko)
(1.21)Ix

where the + signs refer to int.e-nsity in the positive and negative x

clirections respectively. Below cut-off the íntensity is Ímaginary and

thus no nett energy ís propagated.

For two plane lraves el^ an.i ff^ travelling in opposite directions'oooo
ín a rigíd rva1l duct of constant cross section Èhe pressure reflectíon

coefficient is defÍned as

o
co'o2

ft= /Plpttoo oo

where Pr and Ploo oo

respectíve1y.

are complex aurplitudes of incÍdent and reflected rnraves

(1.23)

The ratio of reflected power to incídent po\^rer ís called the

porrTer reflectíon coefficient and is defined as

or I P'olP:o I 

2

On Èhe other hand the raÈio of transmitted energy to incídent energy

is called the transmission coefficíent and ís defined as



1B

¡rto/roio I 

t (L.24)

t
P is the resultant pressure amplitude of the propagating \¡rave. From

oo

conservation of acoustic energy the plane reflecËion and transmission

coefficients are related by

(1.2s)

1.3 STRAIGHT RECTANGULAR DUCTS I^IITH UNII'ORM FLOI^I

The propagation of sound in straíght ducËs wíth uniform flors of

the propagating medium is characterized, as for straight ducts with no

flow, by modes which decay with dÍsËance aË low frequencies anci prop-

agate at high frequencíes. llowever the frequency at r,rhich these modes

rrcut on or off" is not as clearly defined as in t.he case wíthout f1ow.

The wave equaÈíon for sound propagation wi-th uníform flow of

the propagating medíum is accordíng to lulorse and Ingard (1968)

2
o

(a/ât+v.v)'r=o

ctt

cr {-c =ltr

c Q.26)

=Q

The solution of the wave equation (I.27) is obtained using a similar

procgss to the case r.rithout flow and can be written in separable recË-

angular co-ordinat,es as

P
2V

whereV =V í+.V i +V z ís Èhevector describíng themagnítude and------- tu 'X^, yi Zry

dírection of the fluid flow. In the followíng analysis the fluíd flow

Ís assumed uniform, irrotatíonal, ínviscid and parallel to the x axis

buÈ independent of x.

tr'or flow in the x direction, paralleI to the dÍrection of

propagation, equation Q.26) reduces to

"'or'p - (a2/aE2 + zvxà2/a*at + v2 a2 /axz)p (L.27)
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p(x,y, z, t) = X(x) Y(y) Z(z) exp [ír¡t] (1.28)

As previously afÈer substitution of equaËion (1.2-8) into the v¡ave

equation Q.27) and separation of variables we arrive aÈ Èhe general

fonn of Èhe pressure solutíon for sound propagatíon ín straight ducts

rvith superimposed flow,

@ æ

p(xryrzrt) I I Prr"o"(kJ)cos(koz)expIi(ort lk rrx)I
(r.2e)

m=o n=o

Substitution of equation (L.29) into the oríginal \^rave equatíon provídes

the following relation betr¿een Ëhe wave numbers

k2 (1- M2)
MD

(k2 + k2\-m n' -k2=0 (1.30)+2Mkk +oIIìn o

Equatíon (1.30) describes dor^mstream sound propagatíon. In contrast to

the case without flow (see equaEion L.Lz) the relation is now dependent

upon the Mach number of the flow M = V*/co.

RaËher Èhan use one form of the exponential Ín equation (I.29)

and let the t signs determine Èhe directíon of propagaÈion it ís clearer

in this case to assume that sound propagates in the positive x direction

and consider upstream and dor^mstream sound propagatíon by appropriate

choice of the sígn of the Mach number. Thus for upstream propagation

y2 (1-M2) - zMk_k + (k?+k?)rnn' - o mn u n k2=O (1.31)
o

Equations (1.30) and (1.31) are the characteristie equaËions

determiníng modal propagaÈion characteristícs with f1ow. Solutíons of

Èhe quadratic equations provide values of modal wave numbers for the

do!Ínstream and upstream cases, for varyíng Mach numbers, as follows,

kd
mn

[-Mko + (k3 - (1-u2)(r.å+ u?r>>Vlttt-M2] (L.32)
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and ku (1.33)

In equations (1..32) and (1.33) superscrípÈs d and u denote downstream

and upstream propagation of sound respectívely.

Biger-r values of k, and ko are derived by applying Èhe boundary

condition for rígid walls. As the particle ve.locity ís normal to the

walls ít is sufficíent to use continuity of normal particle velocÍty.

The resulÈ is the same as the case wiÈhout flow fot perfectly rigid

wal1s.

k =mn/h , k =nn/h (1.34)mynz

For m= n= o equations (I.32) and (1-.33) reduce to

d (1. 35)k

k

= ko/ (1{- M)

= kol (1_ M)

mn lMko + (u3 - (1-M2) (kå* *'zu)þ I / tl -M2l

oo

u
oo

(1. 36)

The characteristíc function r¡(y,z)tsidentícal to the case without flow

and js equal to unity. Thus the (0'0) mode with superímposed flow

also has uniform pressure and velocíÈy amplitude across the duct.

Equaticns (1.35) and (1.36) inply that flow has the effect of íncreasing

the wavelength for the (0r0) mode for dornrnstreau propagation and

decreasing the wavelength for upstream Propagatíon. Sinilarly, as the

acousËic r¡Iaves will travel at co relative to the flow, the speed of

propagatíon of Ëhe (0r0) mode relatíve to the <iuct is

dc =c(l+M) (1.37)oo

and c (1- u) (1_. 38)
o

Thus for an observer at resË the frequency measured is the same irres-

pective of the direction of propagaÈion and is unchanged by superimposed

u
o

c



flow of the propagating medíum.

The phase velocity relative to the duct co-ordinate system

is more generally

27

(1. 3e)

(1.40)

(1.41)

d
p

c t/t d
mn

and

SubstiËution of m=n=o ín equatíons (1.39) and (1.40) gíves the same

value of phase speed or vrave velocity as gíven by equations (1.37) and

(1.38) deríved on the basís of relativisËic consideraÈíons.

The group velocíÈy "g "" defined by equatíon (1.15), remains

unchanged. Thus for the case of downstream flow, usíng equations

(1.ls) and (1.32)

u ,-uc = (l)/[cpnn

-t I arc=dK /au =
-M

g rnn c [1- u2]
o

where =y2¡y22
I

i;
m n

1-tHence c =
[1-M2]

[-M+(o3-(1-M2)Ë1) 1

t-
lc

Bc o
o

1 _ -M(k3 - (1-M2)ü?)% + ko,
="o,r-u2lI 

G¿ - c-t')k'rþ I

l

1

c
o t1- M2l



Thus c
o (.1.42)
1 - Mtl- (1- M2) {lËr/u;z l%

The case for upstrean flow is obtained by changing the sign of the Mach

number. IIence

d

Pr

c lt- uzl tl - (1- M2) <irlt ¡'l'

co[1 - M2] [1- (r- u2) ([r lu.o)z]4

22

(1.43)

(1.44)

uc=I r+M[l - (r - M2) {a.r/uo)2 )h

For M= 0 equaËions (I.42) and (1.43) reduce to

o [1 -

which is identical to the case without florv given by equation (1.16).

Figure 1.5 shows a plot of theoretical phase and group velocities for

a flo¡^¡ of M= 0.1. Inspection of equation (1.29) and use of equations

(1.34) pr:ovides the character:ístic functíon Ú(y,z) with flow

þ(y,z) = cos[ (m"/hr)y] cos[ (nr /hr)21

<ir/u;'t\

This is exactly of the form given by equatíon (1.B) for

¡'rÍthout. flow. Thus the amplitude dístribution of modes

transverse to the direcÈÍon of propagation is ídentical

without flow and Èhus the rnode shapes will be identical

in Figure 1.2.

cc
g

the case

in the plane

to the case

to those gíven

1.3.1 Cut-off Freouencies with Flow

As for the case of propagatíon of sound in a staËionary medium,

modal propagatíon ín a medium that is convecting relative to the ducË

q'alls ís charactetized by frequencies at which the propagational

behaviour of the mode, other than the plane \¡7ave, will drastically

change. In the case wíthout f1ow, thís frequency is defined clearly

as r¿hen the modal wave numb"t krn, ís zero. AÈ thís frequency the ptrase
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veloetty of the mode Ís infinite as previously discussed and for a1l

frequencíes less than the cut-off the ¡,¡ave nurnber ís irnaginary ancl

no $rave propagaEes: the dísÈurbance decays exponentially with distance"

x along Ëtre duct. Similarly the group velocity ís zero at the cut-off

frequency ín the case without flow. All of these marked changes in

the propagational. characterístics of a parLÍcular mode occur at one

díscrete frequency, thus there ís no difficulÈy in defining the cut-off

freque¡cy. However in Ëhe case of convection of the propagating

medium, the defínítion of cut-off ís noÊ quite so clear' as some of the

prevíous rnentioned characterístics occur at differenÈ frequencies.

To discuss this matter r¿e define two impor:tant ürave numbers

y2 =y2 ¡y2
I m --n (1.45)

uz= (1 -M2){r<fr+tfr>.i.2,M<l (1.46)

The explanaËion of mode behaviour with frequency will be based upon the

parameters of group velocity, phase velocÍty and vectoríal wave number.

For discussion of the latter Palamete-r- equatíons (1.30) and (1.31)

can be rewríËten as

1*2
nn

+ 0<2 + u2'm n ) tk -Mk 12' o mfl'
(L.47)

(r_.48)and yz +(k2 +k2)mn -m n'
k12

mn'
(k'o +M

for the downstream and upstream cases respecËivel.y. On inspection

of equations (L.47) and (1.4S) it can be seen that each term

represent,s vectoríal components, Èhe sum of which can be

represented graphícally. The components, assumed travellíng in

their correcÈ dÍrections (i..., k 
' 

j-n t,he x Círection) and the
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resultant angl-es of propagation of the hiave front discussed previously

in the ray theory are shown ín Fj.gtr,re 1.6 for different frequency

ranges to be discussed next. lle shal1 consider the case. of downstream

propagaÈion of sound first. In this case ectruation (1.32) can be

rearranged as

k:- = k^ [-M + (1 - (1 - M2) G1/k?o)>'zl ttL - M2] ( r.4s)mno

Thus when k > k, the modal wave nurnber k , is a posítive real numberolnn
and the 1rave propagates dovmstream as assumed. This siEuation ís

shown vectorially in Fígure 1.6.

Ilhen ko = k, equation (1.49) reduces Èo

kd = k_[.-M+M]/[1-M2]mno

co[l-M2]tt- (1- vtz)14

=Q (1. s0)

Thus vrhen ko = Ë, the modal wave number is zero arrd as given by equation

(1.39) the phase velocity is infinite. Thus aÈ this frequency, identÍcal

to the no-f1ow cut-off frequency, the acoustic oscillatíons along the

duct are in phase índependent of x. In the case wiÈhout flow, Èhís

conditíon gave a group velocity of ze'ro ímplying no energy propagation.

In the case of superimposed flow the group velocíty is not zero and is

g 1-M[l - Q -M,]U

[1- u2]Mc
o

[1-M2]

=cMo

-vx
(1. s1)

Ilquation (1.51) ímplies Èhat for ko = Ë, (dov¡nstream pïopagation)
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the wave motion consists of a series of convected standing v/aves,

Lransverse to the x axís, wíth no real acoustic propagation. As all

acoustic vibrations are ín phase, índe-pendent of x (ín the posiÈive

x.direction) no energy is propagated due t.o aioustic motion (as implied

by an infiníte phase velocíEy), the resultant energy flux being due

entirely to convection of the fluid (as implíed by a group velocíty

equal to the velocity of the flow). Thus convectj-on of the propagatíng

medíum gíves rise to a "psuedo vraverr at k^ = i<., for downstream propagation.
OI

This characteristic is also demonst-raËed vectorially in Fi.gure 1.6.

Ask decreases in magnitude until ko = k, , the locus of the solution,
L'o

moves as sho\,rr in Figure 1.6 for the dor¡nstream case untí1 when k = k'ol

there is no resultant acoustic propagation (since k, and ko are parallel).

However to obtain the actual flow induced propagation the effect of flolz

velocíty has to be consídered. This will be. discussed in more det.ail-

at the cut-off condítíon.

l,lhen k, , ko t t, fot downstream proPagatíon of sound the modal l¡/ave-

number rn¡il-l be

k
Inn

=lç [-M +o
(L - k7/k3>41 t tl- M2l (L.s2)

which is a negaÈive real number as shown vectorially in Figure 1.6. The neg-

ative value of the wave number does not írnply that the acoustic \^lave is

nor{r propagating Ín the opposite direction (i.e. upstream) to what was

initially assume<l, as convectíon of the particle velocitíes relative

to phase speed and wave numbet has to be considered. This will be

discussed in more detaíl in the next frequency range. Sinilarly the

group velocity from equatíon (1.42) can be seen to have a positive value

ín the frequeney range ür t ko t i., fuptyíng clownstream propagatíon of

energy as assumed initÍally. Thus the direction of vectorial. wave

irumbers derived from equatíon (L.52) are relaËive to k .convecÈing rvith
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the flow. Thj.s siÈuation is shown vectorially in Figure 1.6. It urust

be rememberecl for i., > k- > ü^ ttl"t since k - change-s sÍ-gn so does k Ift o- 2 mn nn

and thís component changes direction vectorially.

When ko = ür.quution (1.43) predicts that the group velocity will

be zero and there wÍll be no propagaËion of energy due to eíther: tu'ave

moÈion or convecËíon. AÈ this frequency the modal wave number is

knn = -Mk I lL -M2l (r_. s3)
o

(1. s4)

as demonstrated vectorially in Fígure 1.6. If one imagines a co-ordinate

system convecting with the flow (i.e. Èhe plane wave has a phase speed

equal to c rather than c-(1+M) and considers the propagation Ín termso o'
of the vectorj-al "ray modelt' discussed in the case without flow then

the angle y at which the plane wave fronÈ w111 propagate ís derived

from the vector diagram of Figure 1.6 as

and equation (1.47) becomes (in a magnitude sense) for ko = k,

)2+2
m

k [1, (ko +Mk
mn

k
mn

COSY = :-----:-k +Mkonn
kr(ko.k, (1. s5)

To obtain the actual direction of the wave, however, one has to vectorially

add the flow velocity Èo resËore the sítuaÈion to the state T^re !/ere

initially considering. In terms of veloeities (since this is the

physically measureable parameÈer of the flow) a flow velocity of V*

must be subtracted vectoriall.y from the wave travelling at co at an

angle y to the transverse axis to obÈain Ëhe direction of propagation

of the "r"y" relatíve Èo Èhe sÈationary duct walls. It must be remembered

that the movíng co-ordinate system is only used to determíne angles of
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propagat-ion of Ehe I'rays" to visuaLize the direcEions of wave fronts.

Actual magniÈudes of wave nurnbers and phase speeds are still determined

from equaÈíons (1.32) and (1.33) and equaÈíons (1.39) and (1.40)

respectively. At cut-off the particles will vibrate in normal dírectíon

to the stationary duct walls. Thís situaÈion is shown in Fígure 1.7.

From this figure the angle Y necessary to produce a natural standíng

wave wj-th flor¿ (and no nett propagation of the wave) can be seen to be

V
CoSY = 

- o

= !.1[ (1. s6)

Thus equating the condition for cuË-off as defined by equatíon (r.s6) to

vüe see thatthe vecÈoríal representation of wave numbers for i..' t k^ > ü.ro2

k
mn

+Mk
mn

M

k
o

Hence + M2knnMK =lç
o mn

MK
and at cut-off o (1.57)

(1- M2)

As demonstrated prevíously the frequency at which k 
' 

assumes the value

given by equarion (1.57) ís rhaÈ given Ay iz. Thus when ko =ir= (1-M2)i;1

the particles will vibraÈe normal to the walls and there will be no

resultant propagation. Thts ís identical Èo the physical condítion,

ín Ëerms of direcÈion of particle velocity, of the no flor¿ case. Belor,r

this frequency Ëhe wave does not Propagate.

It can also be seen from Fígure 1.7 that although the phase

speed is negative for Ë' t t^ t Ë^ the resultanË propagatíon after consid-'- --- --I o 2

eration of convecÈion is dorrmstream as assumed.

k
mn
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FteUnE 1,7, The vector condítion at cut-:off .



Fork.Ë the model wave nurnber is ttre following complex
o t
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(1. s B)

(1. se )

number

k
nn = -(fro/[r-uz]) - Í G7 - u|>%ttl-M2l

In thís case Èhe \,irave process consísts of a series of standing \¡Iaves

whose ampl-itudes decay wíth íncreasing dístance downstream. The real

part of the expression is identical to k 
' 

when ko = Ë, and thus as

disc.ussed previously ensure,s that the particles are vibrating norural

to the duct wa11s after superposition of convection. As such no \^Iave

propagatíon or energy propagation occurs. In this frequency range the

group velocity Ís inaginary ímplying no propagaËion of energy.

For upstream propagation of sound the modal wave nurnber is

derived from equation (1.33) .

trrrhen k- t ü, the wave number is a positíve real number and
OI

propagation v¡i1l occur ín the upstream directíon as assumed (noÈe

corresponding form of the exponentíal in the upstream case). The

vecÈorj-al representation of the wave numbers for the upstream case

given by equation (1.48) is shown in Figure 1.6.

I.Ihen k k the modal rnrave nuuiber is
o t

k =2Mknno ll,L-tÊl + o

Hence at thís frequency for the upstream case the phase veloci-ty ís not

lnfiniÈe as for the downstream case and Propagation will continue

upstream purely due to acoustic motion. The correspondíng group

velocity aÈ this frequency is negative and hence there is a nett energy

flux upsÈream. As ko decreases towards Ë, tn. locus of the vector ko

moves as implied in Figure 1.6.

For k, > k > k^ the rnodal wave number for the upstream case isIoZ

a positive real number given by
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(1. 60)k = k []f + (1- t?/o.'>41ttr-u2lmno:l()

From the vector <iiagram of Figure 1.6, the airgle at whích this ray

propagates relative to a rn/ave travelling at speed co upstream is less

than the angle y discussed previously, necessary for cut-off. Thus

even though the flow convects Èhe parÈícles downstream there is still

a nett propagation of the wave uPstIeam. This also is expressed by

the val-ue of group velociEy in this frequency range which is still

negative indicating uPsËream Pl:opagaËion of energy.

When k i.; for the uDstream case2'o

k = M k_ /lL- ì"PlÍìn o
(r .61)

The vecËoríal arrangement of Èhe wave numbers for ko = k, and upstream

propagation of sound is shown in Fígure 1.6. As can be seen from the

figure and deduced from equation (1.48) the vectorial arrangement of

wave numbers for the upstream case ís ídentical to Ëhe downsÈream case'

due to reversal of the sígn of k.r, ít the frequency rangu i., t Oo t t,

for the downstream case. Hence the resultant angle of propagaËion relative

to a moving co-or<linate system is identj-cal to the downstream case. Thus

at this frequency the upstream r^7ave motion will also consist of a

transverse standíng hrave with a resultant partícle velocity normal- to

the duct wal1. At this frequency the group velocity is also zero and

hence there is no nett energy of propagation uPstream.

hlhen k . ü^ tte wave number k-- is complex and the wave pïocesso 2 'InrL

wí1-1 consist of a series of attenuated standing waves. In this freq-

uency range there is no energy or rrzave propagation.

Thus íf one chooses energy propagatiorr as the determination

of a cut-off frequency as ít is identical for boËh the upstream and

downstrearn cases, then the frequencies at rqhích modes cut-off are given by,
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(1. 62)

The precedlng anal.ysis also shows why the cut-off frequency

is ídentical iuclependent of the direction of propagatíon of souncl

relative to the flow. This phenonena, whích appears confusing if

one tries to de-termine the cut-off frequency in terms of wavelength

considerations, ís due to the negatíve value of phase speed and

wave number which occuïs r,¡fren ü^ S k . Ë, for the downsÈream case.
¿ol

The abc¡ve equations shor,r that the axíal wave numbers for

hígher modes are reaL for k^ > i.^ an¿ complex for k^ < i<". ror k^ > k,O 2 --- o z O z

the corresponding wave numb.t k*r, may be either positive or negatíve

for downstream propagatíon of sound. As Morfey staËes "it ís v¡orth

noting that the * and - sígns (of the exponential) do not necessarily

correspond to positive and negative phase velocities in x direcl-ion.

I^Ihat they do correspond to ís direction of energy transmissíon along

the duct'r. Morfey came Ëo thís conclusíon by developing equations for

the intensity of sound in ducts with flow. These equations will be

discussed Ín a later section.

EquaÈíon (I.62) predicts that the cuÈ-off frequency wíll

decrease with íncreasing Mach number of the convectíng f1ow. This

effect has been experimental-ly observed by Mason (1969). Ìfason also

proposed a vecÈorial arrangement Ídentícal to Figure 1.7 to predict

the frequency at whích the particle velocíty is normal to the wall.

However Mason explains Ëhe fact that the cut-off is ídentícal for

both upstream and dorsnstrean proPagatíon by sÈatíng that in a figure

ídentical Èo Fígure 1.7 "no assumption has been made concerning the

basic direction in which the sound is propagatíngrr.

The analysís presented here clearly demonstrates that the

independence of cuË-off frequency from direction of propagatíon of

Í c
(e ol 2'ir)tr<fr + t;f I L - M2l%
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sound Ís due to the ídentícal sign and magnitucle of phase velocíty for

the. upstream and dournstream. cases when k- = i¿^. llasonf s clerivatíonoz
of the cut-off frequency depends upon the assurnpti.on that the ratio

of tfie duct radius to the acoustic wavelength is invariant hTith flor{

speeds, and the result only holds for: low Mach rrumbers. However the

analysis here ín terms of convected wave numbers exacily predicts the

cut-off frequency for all Mach numbers less than unity.

It is useful to expand Fígure l-.5 for the srnalI frequency

reqíon ,ru". Ë and îi.- to demonstrate the difference in phase velocity
2

for the downstream and upstream cases near cut-off. Figure 1.8 shows

that the phase velocity of the downstrean PropagaEing higher mode

approaches posítive infíníty for ko apploaching itt. Iühen ko < ü,

however the phase velocity changes sígn to negati've and reduces to a

fíxed value of c-/c- = -(1-M2)/u when k = Ë^. The phase velocÍty-p'-o o 2

of the upstream propagating mode never: approaches ínfínity but steadil-y

íncreases as ko approache" ü., to a constant value of -(1-M\ /t"t when

k =Ë^, a value equal in sign and magniÈude to the upstream case.
o¿

1 3.2 Enersv Transmíssion

The equatíons describing sound por^rer transmissíon along a duct

with mean flow have been derived by Morfey (1971). Assuming a pressure

form of Èhe wave equatíon wíÈh flow Ëhe axial particle velocÍtíes for

the for¡.rard and reflected \^7aves are derived from the línearized

momentum equation and are,

v
d = ( -+) (e -u)/(r-eM)xoc 'o o

(1.63)

.r] = -( 
Ë) 

(e+M)/(1+ er"t) (r.64)
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r"'here ¿- [1 -
t-

{ä, /r.o)'(t - t"t2)l'' (1. 6s)

(1.66)

(r-. 68)

(1. 6e)

From equations (1.63) and (1.64) Ít can be seen Èhat the particle

vel-ocities of the (0r0) mode will reduce Èo

dvx

v
>+ x

o "2'o o

and as derived by Morfey are

v2
I = <ovx^x <o2> + x <ov >* o v .u2,' c2 ' x ox x

p

c

uv=
p

(L.67)
p c

Thus flow does not effect the acoustic ímpedance of the plane vlave.

However for hígher modes Èhe acoustíc ínpeclance r"¡i1l be urodified due

to cofivection terms retained in the Lineatized momentum equatíon.

The for:ward and backward wave intensitÍes are obÈained from

the generaLized defínitíon of acoustic intensity in an isenÈropic

irrotaËional flow

p
oo

x
oo

o

rd=x , lel' )e(1- þP)2 r(1- eM)2
2oc'o o

ru = -, lnlt 
) e(l -vp)2 /(t+et"r)2x Zpoco

(1.70)

Equations (1.69) and (1.70) hold for r^raves above cut-off . For T¡Iaves

below cut-off, e is lmaginary, and I*= 0. Hence belor¿ cut-off there

is no energy propagaÈion along the duct for either the uPstream or

downstream case. This result should be compared to the value of gr:oup
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velocíty obtained at and belor¡ cut-off.

In the case of Èhe plane \¡/ave' for which E= 1, equntions (1.69)

and (1.70) predíct that fl-ow will have the effect of increasing down-

stream intensity by a factor of (1+M)2 arrd decreasíng upstream íntensity

by (1 -M)2. Fl-ow can Èhus be expected to modífy power reflection and

transmission coeffícíents due to convecËion of energy.

For a duct of constant cross sectíon, ín which two plane r¡Iaves

are propagatíng in opposit.e dírections aÈ the. same frequency, the ratio

of reflected energy to incident energy with flow can be written as

2

d 1-M 2
(1_. 71)r ( )1+M

oo

r 2
P

oo
PT

_l_
P

cl

.+++ ,
2

and
oo (L.72)o
a

P
oo

where Pi and Pr are the pressure amplitudes of the incident and
oo -- oo

reflected hraves resPectivelY.

The power transmission coeffícíent defíned as the raÈi-o of

transmitted energy (or actual energy propagation) Èo incident energy

propagatlon is
t 2

Poo

u
r

(1. 73)

for both upstïeam and downstream propagation of sound, Pto ís the

transmitted pressure amplitude of Pí, and PT^.o( oo

Equation (1.73) predicts that oa wÍll be the sarue irrespectíve

of directíon and magnitude of the florn'. Any changes in pol^rer trans-

missíon coefficient will be due to cha.nges in ímpedance of the reflecÈing

surface and not due to convecËi-on of energy.

Pí
o=t

oo
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Fr:om conservation of acousti.c energy, as for the no flor¿ case

CT = 1- c (L.7 4)t r

Hence as o. is ídentical for both upstream and downstream cases thent
or, from equation (1.74) must also be identical for both cases. By

examining equations (1.71) and (1.72) it is logically deduced that

the ídentical nature of a, for upstream and downstream propagation

occurs due to flow induced changes in the pressure reflection coefficient

R, defined to be the ratio of reflected wave pressure amplitude to

incídent- \¡/ave pïessure amplitude, Thus con.¡ection of the propagating

medium must have the effect of íncreasing the no flow reflection

coeffícient by a factor of (1+M)/(1-M) for downstream Propagatíon

and decreasing the no flow pressure reflection coeffícient by a factor

of (1-M)/(1+M) for upstream propagation.

This agrees wíth predictions determíned by Alfredson (1970)

who showed that the pressure reflection coefficient can exceed unity

çiíthout reversal of flux of energy in a duct with mean downstream flow.

In particular, the maximum value of pressure reflectíon coeffícíent

for downstrean propagation before reversal of flux is

(1+u¡/(1-M) (1.75)

In the no flow case, the maxÍmum value R.r* ."o take is unity

when total reflecÈion of sound occurs, thus equation (1.75) agrees

wíth the predictions of this analysis. It c.an be seen from the ídent-

ical nature of ou and cld that R wíll be increased by a factor of
tt

(1+M)/(1-M) for all values of R and not only when R=*,o"*.

Thus flow can be seen Ëo alter the pressure reflectíon coeff-

ícients clue to clifferences ín raËes of convection of energy for the

upstream and dornmstream cases. In fact thj,s is necessary for the

Rr
max
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system to maíntaín conservatíon of energy.

The major effects of flow on rrave amplitudes and energy flr-rx

of waves propagating in a sÍ-ngle mode can be summarízed asz

(1) an increase and a decrease in the pressure reflectíon

coeffícient for dortrnstream and upstream propagation respectively,

(2) an increase and decrease ín Èhe wave intensity for

downstream and upstrean propagation respectively,

(3) no alteration in the specífíc acoustic impedance of the

(0,0) mode,

(4) an alteration ín the specifíc acoustíc Ímpedance of hígher

modes,

(.5) no alteration, due to convected energy, in the po\^¡er

reflection and transmissíon coefficients of the (0r0) mode.

Most of these factors are wel-l illustrated in the analysis of a reactíve

acoustic atÈenuator Ëo follow in Chapters 5 and 6.

L.4 EXPERIMENTA], INVESTIGATION - EQUIPMENT. PROCEDURE AND RESULTS

In thís section the effect of flow on phase velociËy and cut-

off frequency is to be ínvesËigated. It is hoped to ísolate the two

dÍscrete frequenci"" ü, and ü, of the precedíng analysis and show rhat

the phase velocity is Ínfinite at ü" = 0 for the downstrearn case provingI

that propagaËion of energy at this frequency ís due purely to convection

and not acoustíc moÈÍon.

The arrangement of the experimental apparatus used is shovm in

Fígure 1.9. The duct system has a 0.0635 x O.L27 meters internal cross

sectíon and was constructed in removable sections from 0.0254 meter

thick wood líned wíth laminex on the insíde to fu1fi1 the rigÍd wa1l

boun<lary conditíon. A centrifugal fan driven by a varíable speed D.C.

motor provides air flow through the duct system at different Mach numbers.
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FleuRE 1,9, ArrangeurenÊ of the experimenËal apparatus fordetection of modal cut-off frequencies and. phase
speeds with f1ow.



4L

Flou' velocity profiles were measured by traversing a pitot statíc tube

across the duct and an equivalenÈ unif orm velocity rnras calculated frorn

the. flow distributíon. At the maxirnum rating of the motor a flow rate

of M= 0.1 vras measured in the íncídent duct. A fan rnuffler was positioned

clorvnstream of t-he fan to reduce fan generated noise and to attenuate

negatíve travelling waves.

For rneasurements of sound propagating wiÊh the flovr Èhe sound

soul:ce, was positioned 1.5 meters fr<¡m the Ëest sectíon at which disËance

any locally gerreraËed urrwanted cross modes have sufficj-ently decayed to

be negligíble. To eliminate reflections from the exit of the duct,

and resultant modal coupling, the downstream cluct was anechoic.ally

terminated. For measurements of the sound Propagating with the flow

the anechoíc termination \üas removed and the sound source posítioned

wel-l downstream of the test section. In this case the fan muffler

acts as an anechoic te-rmination to r^raves travellj-ng upstream.

The mode to be ínvestigated is the (1r0) cross mocle. Thls was

achíeved by mounting ËrÀro Toa 35 watt horn drívers on opposite wall-s of

the larger dimensíon of the duct and driving the horns 1B0o out of

phase with a pure tone. This arrangemenË resulted in a strong generation

and propagation of the (1r0) mode above the cut-off frequency. Below

the cut-off frequency of the (1r0) mode, the (0r0) rnode was ProPagated

very weakly due to phase Ínterference of the horn drivers. At the cut-

on of the (1r0) mode, sound pressure levels recorded at the wall in the

test section consistently rose sharply to 30 dB above that recorded

for the (0,0) mode alone (i.e. just belor¿ cut-off).

The main pj-ece of experimenÈal equipment used r¡ras a Brüel & Kjaer

Ileterodyne Anal-yser (tlA). Thís instrument has the capabílity to be used

as a narrov¡ band filËer and also as a BeaÈ I'requency OscillaÈor (nfO)

símultaneously. The center frequency of the band beíng filtered
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corresponds exacÈly to the frequency of the BFO output signal. Thus

when the output of the BFO is anplifíecl and used to drive the horn

drivers and the- same ínsËt:ument is used to filter the measur:ed sound

levels, the operator is ensured that the center fregueney of the band

is exactly on the signal being measure-d. Thís characteristic of a

trackíng filter ís partícularly desirable íf one is using a very riarro\¡/

fílter band and ís traversing the acoustic signal over a range of frequen-

cies. However a disadvantage of the HetercrJyne Analyser is that its

outpLlt sígnal ís at a constant frequency and thus cannoÈ be used for

phase measurements. For phase measurements a Briiel and Kjaer Constant

Percentage Bandwídth Filter was used (set to a I0"/" bandwídth) Ín

conjuncÈion with a Brüel and Kjaer Digital Phase Meter.

Ât the maxirnum flow rate of the fan, rvith the (1'0) mode above

cut-off, the HA when seÈ to a 3.16íz bandwidth provided a signal to

noíse raÈio of greater than 50 dB , while the Constant PercenËage Filter

provided a sÍ-gnal to noise ratío of greater than 30 dB at maxímum flow.

Three parameters hTere investígated experímentally. The transverse

pressure distribution of the (1r0) mode propagaÈing dor¿nstream \das

measured in the test section by traversíng a microphone probe across

the duct and recording the sound pressure levels at known distances.

The sound pressure level was then normalized to the value recorded aË

y= 0. Experinrental values of relative pressure ampl-itude, defined by

equatíon (L.76) are shown in Figure 1.10 with the theoretical distríb-

ution derived fron equation (1.44) for M= 0.1

ReraLive pïessuïe amplitude = 10AdB/20

where AdB is obtaíned from the sound pressure level data as

AdB = S.P.L
v

S. P.L
y=0

(L.76)
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The phase velocíËies of the (0,0) mode and the (1,0) mode wel'e

measured by traversing a microphone probe down the duct a known

distance X. The change in phase A 0n over thís distance- was measured

using a Brüe1 and Kjaer Phase MeËer. Particular care was taken to

ensure Ëhe probe tip moved parallel to Ëhe duct wall, as in the case

of the (1r0) mode Èhere is phase variation acloss the duct wall as

well as along its length. The phase velocíty is then

c = (l)x/40 G.77)p P

Phase velocíties of the (0r0) mode and the (1,0) mode measured

for the zero flov¡ case are plotted in Figure 1.3. Values of tlìe phase

velocity of the (0,0) mode and (1,0) mode for a flow rate of M=0.1

and dor,rnstïeam propagaËion are plotted ín Fígure 1.5.

The phase velocÍty of the (1r0) mode was measured for small

frequency incremenËs near cut-off with and without flow. For the

consideration of flow both the upsÈream and downstream cases \¡/ere

measured, wÍÈh a flow rate of M= 0.1. The frequency of interest \nras

gradually lowered and Èhe phase difference measured, unËi1 the mode

had "cut-off'r. Values of measured phase velocity for the (1,0) mode

without flow are given in Table 1.1. Values of measured phase velocity

for the (1r0) mode propagating in the downstream and uPstream cases

are given in Tables L.2 a¡d 1.3 respectívely. In each case the dístance

X over which the phase dífference \^ras measured was standardized to

.17 meters. The values of phase vel-ocity measured for the case- of

flow shoul-d be compared to the theoreÈical phase velocity plot of

Figure 1.8.

The t'cut-off" frequency of the (1,0) mode was investigated at

flow rates of M= 0, M= 0.05 and M= 0.1 for both dov¡nstream and upstream
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Table 1.1 : ?hase Velocities of the (1,0) Mode Near Cut-Off, M= 0

Frequency

(I{z)

Measured

Phase Difference
(radians)

c lc
P o

1400

1380

1356

t_355

L354

1_353

L352

135r_

1350

-2.68

.39

.17

- .16

- .l_5

. t-6

- .l_B

.18

.20

1.63

1_0. 9 3

24.84

26.37

28.LL

26.33

23.39

23.37

2t.02
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Phase VelocíËies of the (1,0) Mode Near Cut-Off, M= 0.1,

Downstream Propagation of Sound

Frequency

(Hz)

Measured

Phase Difference
(radians)

c /cPo

1_400

1380

1370

1368

1367

]-366

1365

]-364

1360

1355

1350

L349

1348

-1. 38

-.36
_ .10

.07

- .04

.01

+ .05

+ .05

+ .13

+ .13

+ .01

- .04

.03

+ 3.159

+ LL.94

+ 42.66

+ 60.86

+LO6.42

+425.39

- 85.01

- 84.9s

- 32.58

- 32.46

-420.40

+l_05.02

+ 24.69
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Phase. Velocitíes of the (1,0) Mode Near CuÈ-Off, M= 0.1,

Upstream PropagaLlon of Sound

Frequency

(Hz)

Measured

Phase Differenee
(radíans)

c Ic
p o

1400

1370

1360

13s5

135 3

L352

1351

1350

+1.05

+1-.00

+ .42

+ .46

+.5
+ .3

+.5
+ .48

- 4,rs2

- 4.27

-10.08

- 9.L7

- 8.43

-14. 03

- 8.4L

- 8.76



4B

propagation of sound. Detection of the frequency at whic.h cut-on of

the mode occurred was by means of an observed rise ín sound pressure

level in the duct. To detect this a microphone probe was morrnted

flush with the duct inside wall in the test section. The Heterodyne

Analyser T¡/as connected to a Brüel and Kjaer Level Recorder by a

mechanical drive. Thus the frequency of the acoustic signal was s1ow1y

and uniformly increased and the resulting sound pressure levels at

the duct wal1 rtrere recorded graphically on frequency scaled paper by

the Level Recorder. As discussed prevÍously the filter,seÈ to 3.16Hz

bandwídth, tracks the acoustic sÍ.gna1-.

Figure 1.11 shows a typical frequency response of the sounC

pïessure level in the test duct section for the no flow case. Figure

1.12 shows a similar frequency response for a flow rate of M=0.1 and

downstream propagation. From these figures it can be clearly seen

that the "cut-ont' of Èhe (1r0) mode is characterized by a rapid increase

in sound pressure leve1 at the duct wall as the BFO sweeps through

frequencies near cut-on. To accurately find this frequency' the BFO

frequency was s1ow1y íncreased manually unËÍ1 the recorded sound pressure

level first started to rise rapidly. The frequency at which this

occurred was taken as the t'cut-off" frequency of the (1'0) mode and

was read from the BFO Nixie display of frequency of generatíon. The

accuracy of this measured frequency for cut-off of the (1'0) mode r^ras

considered to be !LHz.

values of cuË-off frequency found experimentally using this

meÈhod for M= 0, M=0.05 and M=0.1 are shown in Table 1.4 for both

downstream and upstïeam propagatíon of sound. These values are also

plotted in Figure 1.13 for comParíson with a theoretÍcal curve of

ttcut-off" frequency derived from equation (L.62).
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Experimentall-y Measured Cut-off Frequencies of the (1r0)

Mode with Flow

Cut-off Freq. (Hz)

Mach Number 0.0 0.05 0.1

Downstream

Upstream

1353

L352

l_350

1350

L346

1348

I

L

I

I
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1-.5 DISCUSSION OF RESULTS

Before Ëhe propagation characteristics of the (1r0) mode coul<l

be Ínvestigated it was necessary to check that Ëhis mode in fact was

propagaÈíng Èhrough the test section. Figure 1.10 shows a comparison

between the theoretical and expe::irnentally measured pressure ampiiÈude

dístribuËion of the (1r0) mode ín the test sectíon. The results of

thís figure shows that the arrangement of horn drj-vers employed results

in a strong driving of the (1r0) mode for frequencies above cut-off.

Below Èhe cut-off frequeney of Èhe (1r0) rnode a very weak'plane wave

remains. The experirnental values agree very well with the theoretícal

dístributíon. The small errors in the mínimum at the duct centerline

and aÈ the duct h7a11 (y = hy) are attributed to the presence of a rn'eakly

propagating (0,0) mode. The ampl-itude of (0,0) mode was quite weak

in comparison to the (1r0) mode above cut-off, the sound pressure 1eve1

at the duct wall increasing in the order of 20 to 30 dB through Èhe

cut-off frequency.

The experimental values of phase velocity for both the (0r0)

mode and the (1r0) rnode are seen from Figures 1.3 and 1.5 to agree with

their correspondíng theoreÈical values for M= 0 and M= 0.1 respectively.

The phase velocity of the (0r0) mode wi-th no flow was measured to be

330 m/sec . For an ambient temperature of 22"C xecorded during the

experimenE, Ëhe corresponding theoretical speed of sound (equal to the

phase speed of the (0,0) mode) is 343.8n/sec. For a flow rate of

M=O.l- and downstream pïopagation of sound the phase speed of the (0r0)

mode was measured Èo be 418 m/sec . This compares with the theoretical

phase speed of

c c (1+M)
o

d
o

= 378m/sec for M= 0.1

(1. 78)
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The above phase measurements hrere made at 1 kHz .

Thus as theory predicËs, flow has the effect of increasing

the phase speed of the (0r0) mode by a facÈor of (1+M) for dornmstream

propagation of sound.

As expected from the analysis the phase velocíÈy of the (1r0)

mode wíthout flow ís very large near cut-off. Table 1.1 shows that

the largest phase velocity measured was cn/co = 28.11 at L354Hz. It

was hoped to measure an infinite phase velociËy (Í.e. zero phase

variation along the duct) for the (1r0) mode exacËly at the cut-off

freqeuncy, but this proved diffÍcult. At cuË-off, the (0r0) mode wtrj-ch

is propagating weakly appears to ínterfere r¡ith the phase characËer-

istics of the (1,0) mode. As well as this, dímensíonal varíations ín

the cross sectíon along Ëhe length of the duct lead to a slight

varíation in cut-off freguency aÈ dífferent positíons in the duct.

Ilence in the no flow case the cut-off frequency was taken as the

frequency at which the híghest vatrue of phase velocity was measured.

The measured cut-off frequency of the (1r0) mode for Èhe experimental

rig was f = L354Hz (or ü, = 24.8) f.or zero f1o¡¡. The correspondingc'l

theoretical value of cut-off frequency for the (1r0) mode in a ducÈ

of dímensÍons h,, = 0.L27 meters, frorn equation (1.62), is equal to)

1350.5H2 " The slÍght dífferences between the theoretical- and exper-

imental result was thought Lo be due to dímensional inaccuracÍes in

the duct size and the presence of the weakLy propagaÈing (0r0) mode.

For the case of flow and downstream propagation of sound, Table

1.2 shows ËhaË the phase velocity of the (1,0) node approaches infínity

at a frequency of. L366Hz. This frequency corresponds to ü, of the

analysis. However the theory predi-cÈs that ü, should be identical to

Ëhe no flow cut-off frequency. the error between the measured no flow

cut-off frequency and Ëhe measured value of ü, Ís Èhought to be due to
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the non-unlform flow in the ducÈ. Refraction of r¡raves at the boundary

layer surface may cause an alteration in the angle of particle velociÈy

vibrations. Theory predicts that for the dovnstream case that the phase

velociÈy should change sign as the frequency is traversed through Ë,

as shown graphíeally in Fígure 1.8. This predíction is verified in the

experimental results of Table 1.2 ¡¿here the phase velocity changes from

a positive value to a negative value as Ehe frequency decreases through

L366 Hz. It ís interesËing to note Èhat the sÍgn of the phase velocity

changes back Ëo positíve at 1350 Hz whích corresponds more closely to

the expecËed cuÈ-off frequency with flow. Thus it apPears that the

frequency k, at which the phase velocity is theoretically infíníte for

the downstream case ís most affecÈed by Ëhe non-uníform flow.

This effecË is also demonstrated in the phase measurements

of the (1r0) mode propagating upstream, the resulÈs of which are given

in Table 1.3. The phase speed is seen to sËeadi1-y inerease to a max-

imum at L352 Hz and then decrease again. This maximum of phase velocity

for Èhe upstream case is seen from FÍgure 1.8 to occur at the cut-off

frequency kr. similarly for the upsÈream case no change in sign of

the phase speed !üas measured at i., t" opposed to the downsËream case

and demonsÈrated theoretically in Ïigure 1.8. The phase speed of the

upstream propagating mode does not approach infinity at i2 but approaches

a maximum value of cn/co = -(1 -M\ll{. For a flow raÈe of M=0.1 the

theoretical maximum phase speed ís cn/co = -9.9. At Èhe experimentally

measured value of k, (1352 Hz) Ëhe phase speed llas measured to be

c lc = -L4.O3. The experimental result is seen to be of the same orderpo
as Ëhe theoretical predicËion. The discrepancy between experÍment and

predicÈion is most likely due to duct cross dimension variation and perhaps

due Èo the presence of the flow boundary layer as prevíously discussed.

The result of Tables 1.2 a¡.d 1.3 for the (1,0) mode supports
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the predÍcÈion of the analysis that for the downstream case there is a

discreËe frequency ü, at r¡hich the phase velocity is infínite everi-I

though the mode sti1l propdgat.es do¡n¡nsÈream, while cut-off of propagatíon

of energy occurs at the lower frequency ür. Since the phase velocity

of the mode is infiníte aË ËI as suggested by experimenÈal results here,

energy propagation at this frequency is due to convection of the prop-

agating medium and not due to acoustic wave motíon. Thj-s result ís

also supported by theoretical group velocity considerations as discussed

previously. The results also show that the phase ve1-ocíty of the (1,0)

node propagaÈing upstream never approaches infiníty but reaches a
..

maximum at kr, the cuË-off frequency.

The frequency response of the wa11 pressure spectrum in the

test sectíon shows that the use of a rise in sor:nd Pressure l-evel is

quite successful in detecting the cut-off frequency of the (1r0) node

with and wíÈhout flow. The experímenËal val-ues of cut-off frequency

found using this meËhod agree r^rell with those predicted by theory as

gíven in Figure 1.13. The small error was thought to be due to dimen-

sional inaccuracies and non-uniform flor¿ in the ducÈ. IË should also

be noËed that some reductÍon ín cut-off frequency is due to the cooling

of the ambient air as ít is drawn into the flow rig. The statÍc ËemP-

erature of air flow at Mach number M in this case will be

T
(t_.7e)o

v -1
l- + 's 

M2
2

Thus the speed of propagation of sound in the flow duct will be for air

T
s

cro__---o / r+ o.2M2
(1.80)
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and equation (1.62) v¡ill be modified to (M.K. Bu11-, personal conm-

unlcation),

f = f"l[1+0.2M2]% (1. 81)
c

where ft ís the "cuÈ-offt' frequency with flow and reductlon of temp-
c

erature taken into consíderation. Thís variatíon rnay account for

some of the result,ant error. The no flow cut-off frequency r^ras

determined to be I352Hz using the pressure method. Thís agrees well

wj-th the cut-off frequency deÈermined by the phase velocÍty method.

Flgure 1.13 demonsËrates that the cut-off frequency decreases

^ 
lr<

by a factor of [1-Mt]'for increasing flow rates independent of the

direction of propagation of sound relative to the flow. Hence Ëhe

experimental results here compare well with Ëhose obtained prevíously

by Mason (1969).

1.6 SUMMARY

Propagation of Èhe (0,0) and (1,0) rnode ín a rectangular

hard r¡alled straight duct has been examined theoreÈically and exper-

irnentally. It is found that Ëhe amplitude dístribution of the (0,0)

mode and the (1,0) node are ídentícal to those in a rectangular duct

wiËh no mean flow.

Flow is found to lower Èhe cut-off frequency by a factor
t-

of [1 -Mz]t irrespective of direcËíon of propagation wíth respect, to

flow. The reason for the Ídentícal nature is determined to be the

negatíve value of k 
' 

occuring for downstream propagation in the

frequency range Ër t ko ,Ë".

Thet'cut-offn condition is demonstraÈed vectorially using

wave nuuibers and the frequency at which Èhe particle velociËy is normal

Èo the duct wal1s (i.e. cut-off) is derived exactly.



57

Although cut-off occurs in an energy sense at k, there

remaíns a discrete frequency tr, equal to the no flow cut-off frequency,

aÈ which the phase velocity of the mode ís infinite for the dor,mstream

case. At this frequency propagation is Ín the form of a "psuedo h/averl

purely due to convection and not acoustic motion.

Expressions are derived for Èhe group and phase velocíty of

modes vríth floT¡r and these are found to indicate well the important

frequencies that establish the propagational characteristícs of acoustic

rüaves Ín rectangular ducÈs with uniform flow. The phase velocity of

the (0,0) mode ís found to be increased by a facÈor of (1+M) for

downstream propagation as índícated by theory.

The theoretical effect of flovr on the pressure and power

reflection coefficients of the (0r0) mode are examined. Flow is found

to increase the no flow reflection coefficíent for all values by a

facËor of (1+l,t¡/(1- M) for downstream propagation and decrease the

coefficient by (1- M)/(1+M) for upstream propagation. The po\¡rer

reflection coefficienË Ís found to be unaffecÈed by changes in energy

flux due Ëo convection of the propagating medium.
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CHAPTER 2

SOIJND PROPAGATION IN RADIAI BENDS OF RECTANG'I]LAR CROSS SECTION

2.I INTRODUCTION

The complex case of sound propagation i-n curved bends has

unÈil recently defíed satisfactory solution, although sound propagaËion

in straight ducts has been well covered. None-Èhe-less in most. practical

cases, such as aír eondiÈioning or jet engine duct.s, bends are a

necessary part of the systen and in such cases they play an integral

part in any resulËant sound propagation. IÈ ís Èherefore necessary to

understand the acoustícal behaviour of bends with and without flow.

The earliesÈ consideratíon of the problem of propagation of

sound in curved bends was probably by Rayleigh (L877). Rayleigh showed

that motion of rÂraves of long wavelength in narrow ducts of large radius

of curvature behaved exactly as in straight ducts of sinilar length.

Thís conclusion provides Ëhe limit to which all equations developed to

describe sound propagation in curved ducLs musÈ tend.

I,Iork on curved bends was initially concentraÈed on the

propagation of electromagnetic hraves. Bucholz (L939) íntroduced the

use of separaÈion of varÍables to solve the r,rave equation in cylindrical

co-ordinates and was the fÍrst to consider the problem of Ëravelling

l¡IAVeS.

Krasnushkin (1945) also used separation of variables to

solve the wave equatíon and separated the vtave propagatíon constant

that determines the propagational characterísËics of eaeh mode and

subsequently called thís the I'angular wave number". However Krasnushkin

only considered the case of slíghtly bent tubes. Grigoryan (1963)

developed equations which correctly predícted Ëhe sound field ín Èhe
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curved duct but again his results for the angular r¡rave number are only

applicable Èo a very narrow pipe.

UnÈil recently all the analyses were characÈerízed by a

sirnplification in the boundary condiÈions in order to solve the problem

and in mosÈ cases, although the basic analytic procedure of use of

separation of variables was clearly laid out, the results obtained

were of limÍted direcË usefulness. RecenÈ advances, however, have

led to a more complete understanding of the mechanism of sound prop-

agation in curved bends.

RosÈafinski has attacked the problem from various stages.

Firstly Rostafinski (L972) limited his analysis to long wavelengths

and thus used símplified expressíons for the power seríes expansions

of the Bessel Functions which appear in the characterisÈic equaÈion

of the problem. IIe consídered two cases of an infiníte bend (with a

píston source) and the junction between a stTaight ducÈ and a semi-

infíniÈe curved bend of rectangular cross section. He deríved expressíons

for the particle velocity (tangentíal and radial) disÈribution of both

the (0r0) propagating mode and non-propagating higher modes generaÈed

aÈ the discont,ínuíËy. Although his analysís is limíted to low freq-

uencíes it does highlight the naËure of the sound field ín a curved duct

sectíon.

Rostafinski (L974) next extended his analysÍs to higher

propagatlng modes by using a closed form of the Bessel FuncÈíon of

order (n +'¿) to ínterpolate curves of angul-ar wave number for any non-

dimenslonal frequency. In thís analysis, he also compared the curved

duct veloeity distributions of hÍgher modes to the equivalent mode in

a straíghÈ duct section. Ite found theoretically that at low frequencies

(koR, < 1), the radial distributíon of tangentíal velocíties r'ras that

of a potential vortex, ínversely proportional to radíus, while for
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higher frequencies (koRr= 3.0), the distributíon *¡as closer to a forced

vortex, proportíonal to radius. l{hereas ín a straight ducË the (0r0)

mode wave speed ís independent of frequency (i.e. it is non-díspersive)

ín a curved duct the angular hlave speed is sÈrongly dependenÈ on freq-

uency for all modes including the (0,0) node (i.e. the plane wave mode

is dispersíve).

Finally Rostafinski (1976) considered non-proPagating modes

at high frequencies by solving the curved duct characteristic equatíon

wíth Bessel Functions of purely ímagínary order using relationships for

such Bessel Functíons developed by Buckens. Values of angular v/ave

number for evanescent modes were found and used to predict the velocity

distributlon of evanescerit modes at increasing angles into the curved

duct. The analysis showed that as for straight ducts non-proPagatíng

modes decay rapidly $ríth increaslng dístance from the generatíng surface.

Cumníngs (1974) has investígated the problem more generally

wÍth particular consideration given to the practical application of the

derived equatíons. As well as investigating the discontinuity eaused

by a 180o bend, Curmings investigated theoretically and experimentally

Ëhe radial variation in pressure anplítude in the bend and the ímpedance

of a bend terminated with a rigid r¡a1l. Fron these invesÈigatíons he

proposed a model by which curved ducts could be considered as straíght

ducts of adjusted length. The adjustment arises from Èhe cortsideration

that Ëhe wave number across the curved duct equals ko at values other

than the mean radíus. Currmings also gave brief consíderaLlon to the

effect of mean flow, propagation ín "softtt walled ducts and curved ducts

of circular cross section.

Other work on curved ducts has been carrled out separately by

Osborne (L974),(L976)and Ko and IIo (L977). Osborne (L974) coricentrated

on solving the characteristlc equatíon of the currred duct. He proposed
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a numerical method, suitable for use on a computer, by which the angular

wave numbers could be obtained without any limitation in frequency or

boundary condi-tíon. He (L976) also investigated higher mode propagatíon

in short curved bends and he gives theoreËical and experímental values

of pressure dj-stri-bution in a practical curved duct-straight ducÈ system.

His results show that sound propagation of hígher modes through curved

bends is also characterized by a lack of discontinuity.

I,Iork on sound propagation in curved ducts wíth aËtenuating

walls has recently been compleÈe<i by Ko and Ho (L977). They found Èhat

the (0r0) rnode was the least attenuated. They considered the effect

of aspect raÈío, bend angle and acoustic inpedance on the sound atten-

uation obtained and found that the total attenuaËíon obtalned íncreased

with an increase in bend angle.

All of the above work have used a cylíndrÍca1 co-ordínaËes

solutíon of the \ôrave equatíon and except for a brief consideratÍon by

CurourÍngs (L974) all of the analysís have been without flow of the prop-

agating medium. Presumably flow has been neglected and analyses thus

far have been restricted to a section of a cylinder because of the

complexity of the characterisLíc equatíons. Its use for Èhe determination

of appropriat.e angular wave numbers has been the principle concern of

the analyses thus far.

Recently Fuller and Abel1 (1978) have proposed a method of

solution of the curved duct problem using conformal mapping. They

have developed símple equations for the angular wave numbers of the

(Or0) node as well as evanescent modes at low frequencies (koh < 2.O)

with and wíthout flow. They also derÍved simple expressíons for values

of the cut-off frequencies for higher modes wiÈh and withouÈ flow.

In this chapter the solutíon of sound propagation in radial

bends of rectangular cross section is investÍgated using tr^to procedures.
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Firstly the classícal procedure of solution of the wave equation ín

cyll-ndrical co-ordínates Ís used. A nunerical solution, ís developed

to find values of angular v/ave number for different frequencies and

geomeËries of ducts. The numerícal soluÈion is used to predict the

pressure distributíon of the (0,0) mode and higher modes in curved

ducts at various frequencíes. The effects of varying frequency and

radií on the radial pressure dÍsËríbutions are díscussed.

Secondly the problem is solved using the non-classical

approach of conformal mapping. Conformal urapping hás been used prev-

fously by Morse and Feshbach (1953) to províde equatÍons for the

impedance of right angled ben<ís in duct systems and by Morse and

Ingard (1968) to símilarly deseribe the equivalent resistance and

ínductance of an orifice of a thín width in a two dimensíonal duct.

Cu'rmings (L975) has also used the nappíng technique or I'potenÈial

flowtt model to predieÈ the transmission coeffÍcÍent of a 180o bend

1n a straight duet sysÈem. He compared the results obËained to that

of a modal solution of Èhe same problem and showed that the I'potentíalrl

model gave good agreement aÈ low frequencies.

The basíc assr:nption used is that for low frequencies, for

which the wavelengÈh of sound is much longer than the transverse duct

dimensíon, Ëhe velocity potential solution of the acoust,íc wave equation

will approximate a solution of Laplacets equation. Hence the name

rrpotentíal flow" model. The soluÈíons will- thus obey the Cauchy-

Riemann equations and can be transferred from various eonplex planes

uslng napplng procedures. trIhereas ín the previous mapping analyses of

Morse and Ingard (1968) and Cummíngs (1975) the Schwartz-Chrístofell

transformation was used to reduce the physícal shape of an orifíce or

a rÍght angled duct to an arrangement affording simpler solutions of the

boundary conditions, in Èhe fol-lowing analysis a similar but far simpler
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approach is used and the derived mappíng equations are less complicated.

Equations are developed which predict the angular hrave number

for Èhe (0,0) mode of propagaÈion and higher evanescenÈ modes in the

frequency ïange koh" S 2.0 with and without mean flow. Simple equations

are derlved whích predict the cut-off frequencies of higher mocles r"rith

and without f'low. Values of these parameters for the no flow case are

compared to values obtained from a cylindrical co-ordinate solution of

the problem. Diserepancies between Èhe Èwo methods are discussed and

the range of applicabilíËy of the conformal nappíng method ín terms of

frequency and aspect ratío ís discussed.

The conformal maPPing also provídes approximate predíctions

of the pressure and velocity dístríbutions of the (0r0) mode and evan-

escent modes. These are compared to values derived from the cylindrical

solut.ion and to experimental values of the pressure dístríbution wÍth

and vrithouÈ flow. The analysís al-so predicts the irnpedance of Èhe bend

relative to a straíghÈ duct with and wíthout flow and this is ínvestigated

experimenËally for both cases.

2.2 CYLINDRICAL CO-ORDINATES SOLUTION WITHOUT FLOT^I

The equations for sound propagation in radíal bends with

rectangular cross section are obÈaíned from solutions of the wave equatíon

ín separable cylindrícal co-ordínates as íllustrated ín Fígure 2.1. The

r^rave equation has the forn

Y2p = (l/co) a2plat2 (2.1)

where from Appendix 1 for cylindrical co-ordinates

(à21àr2 + (1/r) (A/âr) + (t/12)Q2làe\ + è2laz\ p (2.2)v2p

Following Grigoryan (1963) r,re assume a solutlon of equatíon
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FteURg 2.1, The cylíndrical co-ordinaËe system.
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AS

(2.1) 1n separable cylÍ-ndrical co-ordinates for the pressure distríbutíon

p(r,0,2,t) = R(r)e (e)Z(z)T(t) (2.3)

I¡le assume a harmonic solutíon so that this may be reduced to

p(r,0 ,z,t) = R(r)0 (0)Z(z)expIiot] (2.4)

By substÍtutíon of equation (2.4) into equation (2.1) and separatíon of

variables we obtain

0"10 = -y2 , (2. s)

n" + (l/r)n' + (k'" - rz lrz)R. = o (2.6)

and Z" fZ = -k2 (2.7)

General- solutions of equations (2.5), (2.6) and (2.7) are

e(0) = exp[-iv'] (2.8)

R(r) = Ju(krr) * \"r(krt) (2.e)

and Z(z) = cos(krz) (2.10)

where the radíal- wave number is related to the wave number Ín t}:.e z

directfon by

2 (2. 11)n

Thus the general solutíon of equaËíon (2.L) in cylindrical- co-ordinates

can be written as

k=k2 -o
k2r

æ æ

p(r'0 'z't) ="lo 
,,lot!r,ttu" 

(krt) * \\ (krt) I coslk.,'l expIi(-u"0 + ot) ]

(2.L2)



66

The constants of equation (2.L2) can be determined by the

application of the appropriate boundary condítions. The FourÍer

coefficient C:- Ís deterrnined by matching the acoustic distribution ofsn

the driving surface at the bends entrance to the distributíon within the

bend (thi-s will be díscussed in a 1aÈer section). The varíable v" is

called the angular hrave number and determines the mode propagation

characteristics of waves ín the curved sectíon.

If one assumes that the duct walls are perfectly rigid then

the particle velocity normal to the walls is zero Í.e.

r=R2
ur =0 (2.L3)

r=R I

z=h
z

u =Q (2.r4)

(2.ls)

(2.L6)

z
z=O

where R, and R, are the ínsíde and outside duct radii and h, is the

duct width ín the z direction.

Using the cylindrical form for the derivation of vel-ocity

from pressure from Appendix 1

ù, = -(1/íoocoko)ap/ar

we obtain from equatíon (2.L2) at r=R,

tJ",ur*,) * \Yü (krRr)

Thus the corisranr \ = -d (kr*rr7yri" (krRl)

=Q

r¿here the príme (t) denotes differentiation with respect to r.

(2.L7)
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Applicatíon of the boundary condition at " = h, results in

sín(kh)=0
l1 2

(2.18)

Thus as for the straíght duct case

k = nr/h n = 0r1r2 (2.re)
n z

The characteristíc function úl(r,r)sn
describing anpl-ítude

variation across art t-z plane in the curved duct is

As one would intuitively expect for a cyllndrical co-ordinat.e solution,

aeoustic moÈion in a curved duct obeys a radial dependence in r direction

and a rectangular (or similar to straight duct soluÈion) in the z

dírection wlth respecÈ to amplÍtude.

Applying the boundary eondltion at t = R2 results in

,lr" (r,z)
sn

(k r)-rv
S

.1" {t.nr) )vu" (krr) I cos Ikrrz ] (2.2o)

t (or*r)vj (r.nr, - .r.1" (krRr)y,i" (krRl)

r*t )J (k /v

=Q (2.2L)

Alternatively using expressíons for Neumann Functions in terms of

Bessel Functions from Mclachlan (1934), the characteristic equation

can be rewríÈten as

Jrl"(trnr)Jlu" (krRz) - Jri" (krR2){u" (krRr) = 0 (2.22)

EquaÈion (2.22) is the characËeristic equation of the curved duct

system. Solutíons of equation (2.22) for the angular wave number vs

determine Èhe propagational characteristics of a particular mode for

a given duct geometry.

Inspection of equation (2.22) demonstrates why the theory of

sound propagation in curved ducts has not been completed until recently.
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Due to the complicated form of equation (2,22) in order to obtain

values of angular rì/ave number vs some símplifying assumpÈíons have

to be made (e.g. low frequency by Rostafinski or slightly curved bends

by Krasnushkin). However wíth the advent of modern compuLer Èechniques

equation (2.22) can be solved using an iterative numerieal process.

In the present analysis equation (2.22) rdas written in terms

of power series expansions of Bessel Functions and values of angular

wave number v_ at which zetos of equatíon (2.22) oceurred were found
o

using an iteraÈing process on a computer. In this process an iniÈial

value of v^ close to ze'Eo rvas assumed at a particular frequency. UsÍng
o

thís value of vo, equatioî (2.22) was evaluated at points obtaíned by

adding successive increments to the inítíal value of vo untíl a change

1n sígn of equation (2.22) occurred. trIhen a change Ín sígn of the

characteristic equation occurred the added íncrement. was halved and

the process returned to Ëhe point before which a change Ín sígn occurred.

In this way the process was conEínued until equatioî (2.22) was evaluated

to a value of less than 10-4. The point at r4thich this occurred was

taken as v
o

As shor¡n by equaÈíon (2.22) the values of angular wave number

are dependent upon the ínner and outer duct radii R, and Rr. The

dependence of the angular wave number on these radií may be expressed

in terms of the dímensíonless parameter a = Rr/R, which r.¡ill be ca11ed

the aspect ratío. The value of the aspect ratío nay range between one

and ínfíníÈy.

Fígure 2.2 shows a typical soluÈion of the angular wave number

of the (0r0) mode of propagation in curved ducts of various aspecË

raÈios plottecl against -a non-dimensional frequency Uon". As application

of the curved ducÈ theory of propagation in laËer chapters is linited

to 1ow frequeneÍes less than cut-off of the (1r0) node equatíon (2.22)

was on1-y solved continuously for this frequency range. Ho¡^rever the
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technique is applícable with modification, by orderíng the zeros of

Èhe characteristíc equaÈion to find Èhe angular krave number of hígher

propagating nodes. In thís case the first zero found corresponds to

Ëhe wave number of the highest propagatÍng mode. The progress ís

then contínued on with íncreasing angular r^¡ave number unÈi1 successive

zeros are found corresponding to successive lower modes (above cut-off).

Two discrete point.s rnrere found by thís rnethod and used to determine

the pressure distributíon of higher modes for later cl.iscussíon.

Values of angular wave nuuber derived by RosÈafinskí who

used a closed form solut,ion of the Bessel Functíon of order (n+k) are

also shoum in Figure 2.2 for comparison. It can be seen from Figure

2.2 tt.at the angul-ar r{ave number of the (0r0) mode is strongly depend-

ent on ducË geometry and frequency as compared to the wave number of

the (0r0) mode in a sÈraight duet. the agreement is considered good.

Values of angular rìrave number for the evanescent modes (1r0),

(2,0) and (3,0) for frequencies less Èhan cut-off were obtaíned by

solving equatíon (2.22) usÍng the iterative process outlined but using

Bessel Functíons of purely ímaginary order. As for straíght ducts

the angular \¡rar/e number of non-propagating modes (Ín rigid walled ducts)

r/as assumed Èo be purely imaginary. Cur¡¡rnings (L974) has shown from

an energy flow point of view that this assumption is llkely to be

true and the assumpÈion is borne out by the results of the analysís.

Thus val-ues of angular wave number of three evanescent modes derived

using the method outlined are shown ín Îigure 2.3.

As for sÈraight ducts with rigid walls, Íraves in curved

radíal bends wí11- eiÈher propagaÈe withouÈ attenuaËion when v" is

real or decay with distance when v" is imaginary. As Rostafinski (L972)

has shown, the angular wave number of the (0,0) mode is always real,

thus this mode will always propagate. However as discussed later the
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amplítudes of the (0r0) mode are not uniforn across the duct cross

section as opposed to st.raighÈ ducts.

The cut-off frequency at whích a mode changes from non-

propagating Èo propagating is given by the zero order roots of

Jå(kr*r)yr (krR2) - J'(krRz)Y' (krRt) = 0 (2.23)

Values of non-dímensional cuÈ-off frequency koR, for ducts of different

aspect ratio, derived by Osborne (I976) using an iterative solution

of equation (2.23) are gíven in Table 2.1.

The varíation in radíal amplitude of waves ín a curved ducÈ

nay be obtaíned using the curved duct characteristic equation. For

convenience Èhe radial varíation in absoluËe pressure amplitude may

be defined as the ratio of pressure amplitude at r to the pressure

anplitude at R, thus

(rl,
c

relatíve pressure amplitude =
SO r (2.24)

)

(û"o)l 
= n,

RelatÍve pressure amplitude was ínvestígaËed for two modes,

the (0,0) mode and the (1,0) mode. Figures 2.4 ar.d 2.5 show radial

variation in pressure amplitude of the (0r0) node for curved ducts of

dif ferent aspect ratios at tr,ro díf f erent frequencíes.

Figure 2.6 shows the radial variatÍon in pressure anplitude

of the (1r0) mode for a curved duct of aspect raËio a=2 ar.d two non-

dimensional frequencies. The tangentíal particie velocity Ís given by

re = -G/r) (1/íoocoko)al/ao (2.2s)

Hence the variaËion in absoluÈe tangential velocity aurplítude across
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Table 2.L z Cut-off Frequencies of Higher Modes for Two Dimenslonal-

Ducts of Different Aspect Ratio, Derived by Osborne (L976) .

Roots of Equation (2.23), koRl

R2lRt S=1 2 3 4 5 6

L.2

1.5

2.O

2.5

3.0

4.0

6

L5.728

6.322

3.L97

2.L57

L.636

L.LLz

3.832

3L.426

L2.586

6.3L2

4.223

3.L79

2.L34

7 .016

47.L3L

r_8.863

9.445

6.307

4.738

3.170

LO.L74

62.837

24.L43

L2.58L

8.395

6.303

4.21.O

L3.324

78.544

3L.424

L5.720

r_0.486

7.870

5.253

L6.47L

94.25r

37.706

18.860

12.576

9.44L

6.298

L9.6L6
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the curved duct is given by

(Rr /r) (2.26)
I

where the distribution ís no'rmalízed Ëo the anplitude at Rr.

The theoretical variation in tangential vel-ocity amplitrrde

for the (0r0) mode is shornm in Figures 2.7 and 2.8 for Èhe same curved

ducts and frequencies as those used in the pressure amplitude disË-

ributíon (Figures 2.3 and 2.4 respectively). The tangential velocíty

distríbution for the (1r0) mode for a curved duct of aspect ratío a=2

ís shornm in Fígure 2.9 .

2.3 ANAT,YSIS OF SOI]ND PROPAGATION IN RADIAL BENDS BY CONFORMAL MAPPING

Conformal nappÍng as described by Korn and Korn (1968) is a

method by which an analytic complex function in a given region may be

napped onto a region with sírnpler geomeBry affording an easier solution

for the complex poÈential at Ëhe boundaries. The resulting solution

when transforned back to the oríginal (physical) plane by the developed

equations wí11 provide the soluÈion to the problem. The practícal

importance of conformal mappíng resulLs from Èhe fact that harmonic

functions of Ëwo real variables remain harmonic under a change of

variables arísing fron a confornal transformatíon. However before a

particular complex function may be mapped it must obey the Cauchy-

Riemann equations in the domain being consídered. These are defined as

ân/ax = àØ/ãy (2.27)

and - ân/ãy = -aß/ây (2.28)

where the complex funcÈion r,r = n(xry) + i$(x,y). If these equations

are satísfied for a complex function in a domain K then Èhat function

to=
R

)
c
SO

) /(,þr
(,1.,''so
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is said to be analytic in K. This can be physícally ínterpreted as

vrhen two intersecÈÍng curves of an analyÈie function are mapped, then

the íncluded angle of these curves is preserved in magnitude and

sense.

Thus Ëo solve the problem of sound propagat.ion in a radíal

bend it is proposed Èo map the curved boundary condítions of the X

plane shown in Flgure 2.10 onto the straíght duct boundary conditions

of the ¡ plane shown in the same Figure. The problem is necessarily

l-imited to a thTo-dimensÍonal one and vibration in Xl¡.e z direction

(i.e. out of the plane of the paper) ís ignored. The frequency range

Ís necessaríLy kept low such that the wavelength of sound is long

compared to the duct width. As most practical acoustic problems in

ducts are associated wj-th low frequencíes Èhis is noË thought t,o

severely lÍmit the application of the technigue.

Sínple equations relating the angular v¡ave number of the (0,0)

mode and hígher non-propagating modes Èo the driving frequency are

developed. An equatíon which predicts the cut-off frequencies of

hígher modes is given. Values obtained for the case withouÈ flow are

compared Ëo results of oÈher workers using cylindrical co-ordinates.

The analysis is extended to include mean flow of the prop-

agating medium. In the practical case the flow profile ís far from

uni-formand an approxímate method ís proposed. Equatíons for the

angular wave number of the (0,0) mode and hlgher evanescent modes with

mean flow are developed and Èhe effect of flow on Ëhe cut-off frequencies

of higher modes is quantified.

A liniÈed experímental invesÈigation inÈo the pressure dist-

rfbutíon and impedance of a curved bend is underÈaken with and w-ithout

flor¿. The results are compared to the approximate prediction of the

napping analysÍs.
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2.3.L Derívation of Mapping Equations

Consider the X and ¡ planes as defined in Tigure 2.LO. The

conplex function mapped in the ¡ plane is gíven by n = x * íy and the

function mapped in the X plane ís given by X = r< * i6.Using the trans-
i

formaÈion X = e'l we see that

re i0 ix-y (2.2e)e

where the left hand side of equatíon (2.29) is the polar co-ordinate

0<0<n

equivalent in the X plane.

Thus t.lo = .-Yu l_x from which,

x= 0 (2.30)

and y = -lnr ; r < 1 (2.31)

Equations (2.30) and (2.31) define the correspondence of poÍnÈs ín

the n and X planes of Figure 2.10 under Èhe mapping X = "iî.

2.3.2 Sound Propagation in Radial Bends I,Jithout Mean Flow

The r¡ave equatíon in velociËy potential forn is

v2þ+(urlco)tq=o (2.32)

where 0(x,y) is the velociÈy potential.

A general solution of equation (2.32) in separable rectangular

two-dimensional co-orCinates is

æ

0 (x, y, t) = [ Aro"os (krv) exp [+i (-kmox+ r¡t) ] (2.33)
m=o

where the x axis ís parallel to Ëhe dírection of propagation. The r¿ave

number k__ whích describes sound propagation ín the x directíon is
mo
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ko=itk3-nål !z^

(2.34)

hrhere for a rigid walled duct k, = mfi/hs, while ko = ut/co.

Following Morse and Ingard (f968) , aÈ lornr frequencies (u: + 0) ,

for which the wavelength of sound is much larger than the Èransverse

duct dimension, 0(xry) will approximate a solut,ion of Laplacers eqpation

V2O = O. In this case Q(x,y) will be the real part of a function of

Èhe complex variable ¡ = x*iy defined as

F(n)=0(x,y)+íy(x,y) (2.3s)

and the velocity potentÍal 0(xry) and the sËream funcÈion y(xry) will

be related by the Cauchy-Riemann equations to the requirements of the

method. Hence the x and y components of the acoustic particle velociÈy

and pressure are

u = Real âF/ân = *âó/Ax (2.36)
x

u, = -Imag ãF/ân = +àþ/ày (2.37)

P - lgor Real F =-ipor$ (2.38)

Slnce the analysis is linited to 1ow frequencies for which

the (0r0) rnode will be the only mode propagating it is only necessary

to consider the m=o part of equation (2.33). The acoustí-c particle

velocíÈies and pressure for the (0r0) mode ín the sËraíght duct (n Plane)

are from equaËions (2.36), (2.37) and (2.38)

=-ik óo'
(2.3e)

u'
v

ux

=Q (2.40)

p = -iporo (2.4L)



The phase speed of the (0,0) mode in the straight ducÈ

(n plane) is determined símply by

c = xlt
o

83

(2.42)

Appl-ying mapping equaÈion (2.30), the straight duct (0,0) mode phase

speed transforms back Ëo Ëhe X (physical) plane as t

c_ ru 0/t (2.43)
o

where time t ís ínvaríant under transformation. EquaËion (2.43) deter-

mÍnes the basíc non-dimensíonal requirement of the solution in the

X plane and can be rewritten as

co n, (Ur).t(.) (2.44)

where cc(r) is a linear phase speed which varies ínversely wíth radius

across the curved section.

Thus the straight duct wave number ko is seeri to map to the

curved (physical) plane as

k^ ru rt"(r) (2.45>
o

EquaËion (2.45) agrees wiÈh theoretícal predietíons obtaÍned from a

cylindrical co-ordinate solution of the problem. RosÈafinskL (1972)

has theoretically demonstrated that the wavelength of low frequency

sound Ín radial bends for tb.e (0r0) mode varj.es linearly across the

duct, being larger aË the outer than the inner radius. Thís most basic

naÈure of low frequency sound propagation ín curved ducts ís thus

determined sinply by the napping procedure withouÈ any prior assumptions.

As kc is a functíon of r, to est,ablish a usable value and

relate it to the driving frequency ko, ít is averaged across the duct

and denoted equal to ko aÈ the average position. Tr¿o different averages

f the symbol 't Ís used Èo mean trmaps tott.



are investigated. A siurple arithmetic average would lead Èo

k
o oI (a+L)/2

while a geometric average of wave number across the curved section

would províde

,4

tukR

atukRk
oo

B4

(2 " 46)

(2.47>I

EquaËions (2.46) and (2.47) define correspondences between

the respective wave numbers of the straight duct ¡ plane and the curved

(physical) plane. The curved duct wave number has been previously

called the angular \¡rave number vo due to íts non-dimensional nature.

Thus uo = koRr G+ L) /2 (2.48)

or vo = koRlat2 Q.4g)

depending upon Ëhe form of averaging assumed.

Rayleigh has shown that waves in curved ducts of large radius

should propagaËe as if Èhe duct were straight. In equations (2.48) and

(2.49) as a+l iË can be seen thaË vo * koRr. Thus equatÍons (2.48) and

(2.49) fulfíl the liniting Rayleigh condition.

Va1ues of angular hrave number were derived using both equations

(2.48) ar'd (2.49) for ducÈs of different aspecË raËio. Equation (2.48)

was found to mosË accuraËely predíet the angular lrave numbers of Èhe (0r0)

mode over the widest frequency range and values derived from thís equation

for dífferent aspect raÈÍos are plotted in Figure 2.11 as a function of

vrave nunber non-dimensionalízed against the curved duct width. Figure

2.11 also shows for comparison values of angular hrave number derived by

RostafÍnski who used a closed forn solution of the cylíndrical charact-

erlsÈic equation. As Rostafinskirs analysls is lirnited. Èo ducts of aspect
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ratio a52.5, values of vo for two bends of aspect ratio a = 4 and

a = 10 determined by Ëhe iteratíve solution of the cytlndrical char-

acterisÈic equation as discussed previously are given. In practice

the curved duct rvave number equals ko aË some other position than

the arithmetic mean radius, as discussed by Cummíngs (L974), but

for the low frequency range considered, thís is found to cause only

marginal error Ín the analyÈic results partÍcularly in curved ducts

of aspect ratio a.< 4. This wíll be discussed in a later secÈion.

It should be noted at this stage, that although'equatíon (2.48)

could have been arrived at largely by physical reasoning, Ëhis would

involve an initial assumpÈíon of the wave number dfstribution in the

curved duct or a prior knowledge of curved duct wave behavíour, whereas

in Èhis analysis the relatíonship is a simple result of the non-

dimenslonal naÈure of the napping process without any prior assumptíons

or knowledge of curved duct behaviour.

The angular r,rave number of hígher non-propagaÈing modes ín

curved ducts can be derived from Èhe straight duct characterísÈic

equation (2.34) writËen ín complex form as

-y2 l'4 (2. s0)o

Using the mappíng equatíons (2.30) and (2.31) the angular

wave numbers for evanescent modes in the curved duct (physical) plane

are given by Èhe mapped solution of equation (2.50). Thus since

kro = 1it(¡nn/hs)2

-sh = y2 yt

hs ¡, -lnR, f lnR,

hs n, lna (2.s1)



the angular wave numbers of evanescent modes are
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(2. s2)

(2. s3)

u2 l%
om

v= i[ (rnn/ln ù2 -

It was found for the case of evanescent modes thaÈ the geometric aver-

aged form of vo used Ín equaÈíon (2.52) provided Èhe closesË agreement

with values deríved from a cylindrical analysis. Values of v* for

three decayíng modes, D= 1,2r3 derived from equation (2.52) for a curved

duct of aspect ratio a= 2 are plotted in Figure 2.L2 wÍ-tl;r curves

obtained by Rostafinski for comparison. IË should be noted thaL at

low frequencies (koR, + 0) equaËíon (2.52) reduces to

v
m

+ imn/lna

which is identical to the result of the extensive cylÍ-ndrícal analysís

of Rostafinski for koR, << 1.

The agreemenÈ shornm by Figure 2.L2 f.or vm approaching zero

(i.e. near cuÈ-on) encourages Ëhe development of an equation for the

cut-off frequencies of higher modes in the curved section. AË cut-off

from equation (2.52)

v = mn/1na (2. s4)
o

Thus using equatiorL (2.49) we see that cut-off frequencies ín terms of

the non-dínensional driving frequency are given by

kR. =mn/(þ:-;nù (2.ss)
OI

Cut-off frequencíes derived from equatíon (2.55) for ducts of different

aspect ratio and three nodes are shovm in Table 2.2. These values should

be compared t.o those of Table 2.1 which are cut-off frequencies derived

by Osborne usíng an iterative soluEion of the cylindrical characteristíc

equation.
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CuÈ-off Frequencies for Hígher Modes for Curved Ducts

of Different, Aspect Ratio Derived Using Conformal Mapping

Cut-off Frequency, koRl

a = Rr/R, m=1 m=2 m=3

L.2

1_.5

2.O

2.5

3.0

4.0

L5.72

6.33

3,20

2.L7

1.65

1.13

3L.46

L2.65

6.4r

4.34

3.3

2.27

47.L9

18.98

9.6L

6.51

4.95

3.40
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The particle velocities and pressure of the (0r0) mode in the

curved duct plane are obtained from the mapped solutíon of the straight

duct equatíons. Before this mapping procedure can be underËaken, we

must discuss the mappíng of po. As for the analysis leading to equatíon

(2.48) from both the dimensíonal form of the napping and a consideratíon

of relative areas of the X and ¡ planes it. can be seen that the constarìt

density of Èhe ¡ plane wí11 map to a densíty that varies linearly with

radíal disÈance ín the X plane.

1. e. (2.56)

This result follows from the streÈchíng of the line elements involved

1n the mapping from the n plane to the X plane. Thus as with phase

velocity, if we arÍttrnetically average the mapped density in the X

plane and denote this approximately equal to go, we see that

po t goRl G+ L) /2 approximately (2.57)

To derive the pressure and velociÈy distributions for the (0,0)

mode within Èhe curved ducÈ we apply the derived rnappÍng equations (2.30)

and (2.31) to the soluËion of the velocity poËential in the n plane,

equatíons (2.39), (2.4O) and (2.41), and thus transform them back to the

(physical) X plane. In this case the curved duct solutíons are

to expIi(-voO + ot) ]

po tu rpc(r)

= -iv Aooo (2.s8)

(2. se)u -0r

P = -íoOoR¡Aoo.*pIi(-vo0 + r¡t) ] (2.60)

where R is the mean radíus of the curved section. Usíng equation (2.-48)

for the mean value of vot the ímpedance of the curved sectíon, defÍned



AS the raÈio of pressure to parÈícle velocity is thus

zc

0rlo = Arocos(kny)expIi(-k ox + t¡t) ]
m=l

and the corresponding soluËions for parÈic1e velocity and pressure

distributíon withln the straíght duct are

pcoo
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( 2. 61)

(2.62)

(2.63>

These equatlons wíll be discussed in a later section

The pressure and velocity distributions of evanescenË modes

close to the.generating surface can be determined by inapping the

corresponding distribution for evanescent modes ín the straíghË duct

plane. The solution of the velocity poËenËial 1n the ¡ pJ.ane for

hlgher modes is

I

u =-ík Ixlnoþ exP I í(-k x -l- r¡È) I cos (k v

æ

m=I
A

mo )mo m

@

u
v
* +ik Imu A.o"*p I i (-k 

ox * trrt) ] sin (krV') (2.64)
m=I

@

and p= - oipo Aro"*p[í(-k ox * oË) ] cos (krl')I

o

(2.6s)
m=1

Applying mapping equations (2.30) and (2.31) to transform Èhese solutions

back to the X (physical) curved piane the corresponding curved ducË

acousÈÍc dÍstríbuÈions for evanescenË modes are

te i Aro"*pli(-vr0 f r¡t) I cos [ (mn/l-n a) ln(r/Rr) I Q.66)= -ivm

æ

m=l

ur í(nn/lna) I A
m=l

mo
exp[í(-vr0 * t¡rr) ] sín[ (nn/ln a) ln(r/Rr) ] (2.67)
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æ

o
RTm& mo

m=1

where from Ì'igure 2.10 it can be seen using equation (2.31) that

v =l-12

Yr ¡, -lnr + lnR

P= - olP A expIi(-vrO + urt) ] cos [ (nnlln a) ln(r/Rr) 1 (2.68)

I

n, -tn (r/R, ) (2.6e)

From Ëhese equations the characterístíc functíon describing anplitude

variation radially across the curved duct for evanescenË modes is

determined to be;

for tangential particle velocity and pressure:

üio = cos[ (rnn/ln a) ln(r/Rr) J Q.7,0)

for radial particle velocity:

c (2.7L)rl, = sÍn[ (mn/1n a) ln(r/Rr) I
mo

Figure 2.13 shows a theoretical tangentíal- velocíty distribution deríved

from equatíon (2.70) for ducts of dífferent aspecÈ ratio. Figure 2.1-4

shows a similar radial velocíty distribution deríved from equaËion (2.7L).

Values of velocity distribution derived by Rostafinski G976) usÍng an

approximate solution in cylíndrícal co-ordinates are shown for comparíson.

The characËerístic function for evanescent modes índícates

that the amplitude dj-stribution will be either a distorted cosine or

sine. The position at which a minfmum in anplitude occurs for pressure

and Èangential velocity and a maximum for radial velocity amplitude is

given approxímately by setEíng Ëhe argument of equations (2.66) ' (2.67)

and (2.68) equal to ¡/2. Thus
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Fleune 2,73,
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(2.72)

(2.74)

r /R-ItrI -d

The acousti-c distribution functíons, equations (2.66) anð, (2.67) also

provide us wíth information about the domínance of an evanescent mode.

From the harrnonic term of these equatíons, sínee vm is ímaginary, the

qraves attenuate by a factot of .-l in an angle of propagation (ín radians)

of 0 = Llv_. Angles for r,rhích the ampliËude of the (1,0) mode has
m

decayed by a facÈor of .-l for Ëwo different aspecÈ ratios are shown ín

Figure 2.1-5.

2.3.3 Sound Pr tion in Radial Bends with Mean Flow

The derívatíon of the curved duct equaËions with mean flow

follows exactly the same procedure as the cased wíthout flow except

Èhat convection of the propagating medíum must be Èaken ínto account.

The urave equatíon with convection is

v2þ + (^1"J2 (1 + i(l/t¡) Y. v)'o = o (2.7 3)

where V=V 1+Vj +V z is thevelocityvector descríbingmagnitude-x-Y*z-
and direction of flow. For flor¿ paral1e1- to Ëhe x axis a general two-

dimensional soluÈion of equaËi-on (2.73) ís

æ

m=o

where the modal wave number, as derived in Chapter 1 ís gíven by

O = I Aro.o"(k r) exp[i(-kro* + r¡t) ]

kd
mo

L-

lkz - (r-u2¡ (k\fl ll,L-M2lom[-Mk + (2 .75)
o

For the (0,0) uode, equatíon (2.15) predicts that flow wíll have the

ef fect of decreasíng the dorn¡nstream \¡rave number by a factor of 1/ (1+ M)
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and íncreasing the upsÈream r\rave number by L/ (1 - I'f ) .

For low frequencíes (ko*0) solutions of equaÈíon (2.73) are

approxim¡te soluËions of Laplacers equation V2q=6. Thus using Èhe

complex form derived in the case wiÈhouÈ flow the acoustic partícle

velociÈy components and pressure are for Ëhe (0r0) node

97

(2.76)u=-ix 0kd

oc u'o o x

oo

u
v

=Q (2.77)

p (2.78)

The acousËic pressure Ís hr-ritten in simplifíed form applieable to the

(0r0) mode to eliminate the convectíon term (see section 1.3.2).

It is assumed that Èhe flow has a uniform velocity profile Ín

the sËraight duct ¡ plane. Thus when this profile is mapped to Ëhe

curved X plane, the resultant flow distribution is found to vary

linearly as for the phase speed i.e.

v_ "v (t/r) vc (r) (2 .79)x

Hence at each radial position r across the curved duct the

flow will have the effecÈ of lncreasing the phase speed ty Vc(r) for

downstream propagatíon, thus equatíon (2.54) of the no flow analysís

is rnodífied to

x
n, (1/r)cc(r) + (r/r)vc(r) (2.80)

hence (1+u) ' ."(t) (1/r) (r+uc) (2.81¡
o

since cc(r) is Èhe speed of propagation of sound aË radíal position r.

AríÈhmetíea1l-y averaging equatíon (2.81) and settíng the result equal

o
V+c

c



to c at the mean radius Ëhus p::ovides the angular wave numbers with
o

flow

(L - (Mc>2)'2
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(2.82)

(2. 83)

(2. 85)

d IKR
o

(a+1)
v

2(1+Mc)

for dornrnstream propagatÍon of sound. Ior upstream propagaÈion of

sound the sign of the Mach number is reversed, thus the angular wave

numbers for upstream propagation is

o

u
o

v - 
ko*r (a + 1)

2 (1- Mc)

In practíce the curved duct velocity profile would be far different

from the potenËíal form used here. Ilowever an aPProxínaËe value Mc

can be defíned as the average of M across the curved duct whích may

then be used. This, in fact, ís whaÈ the mapping process of averaging

1nplíes.

The wave numbers of evanescenÈ modes r¿-ith flow are obtained

fron equation (2.75) transformed back to Èhe (physical) X plane and are

o
ti[(]- -

where v_ is the angular lrave number in a stationary medium given by
o

equaËion (2.49).

The cut-off frequencies of higher modes wÍth flortr are thus

v= [-u"u (r"rt)2 ) (nnlln ù2 - u? l'. I LL - (1,r")21 (2.8a)
m

k Rt
o

for both upst.ream and downstream proPagation of sound.

The acoustíc particle velocitíes and pressures for the

mode are obtaÍned approximately frour equatlon (2.76) ' (2.17) and

(0,0)

(2.78)



transformecl back to the (physical) X plane and are,
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(2. 86)

(2.87)

(2.88)

rå =-tuu expIi(-ud o + ûrÈ) ]

u u
u

.u
=-l_v exp I i (-v e + ot)]

e o o

for downstream and upstream propagation respectively. The radial

particle velocíty is

u gQ
t

for both upstream and downstream propagation and the acoustic pressure

is approxÍrnaÈeIy

P- to (2.8e)

for both doumstream and upstream propagaËion.

Thus the impedance of the curved section úrith flor,r for the

(0,0) mode is approximaÈely

(2.e.0>

2.3.4 Ranse of Applicabílity of the Conformal Mapping Method

For the solution of the acoustic !'rave equation to be an

approxímaËe solution of Laplacers equation, the frequency is liníted

such that the wavelength of sound is much greater than Èhe transverse

duct dímensions in the straight duct in the plane. Obvíously this ís

an arbitrary definition and some choíce of the applicable range of

frequency has to be made. The upper liniting frequency is chosen

to be such that k^hs = 2 in the straight ducÈ plane. At this frequency
o

Èhe wavelength is approximately three times the urajor duct width. To

obtaín a frequency f-imit in the curved plane, the straight duct límit

oc'o o

zc oc'o o
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must be transformed back to the X plane, thus

lna
o o

Substituting equation (2.48) and using the relation

= ko*, (a - 1)

!ç þs 't, 9 (2.eL>

Q.e2)
o

rüe see that the 1ímit on the driving frequency ín Èhe curved duct is

Ëhus

4(a- 1)

o
(2.e3)

ln a(a + 1)

where the wave number is non-dimensionalized agaínst curved duct width.

This frequency lirnit is plotted ín Fígures 2.LI and z.LZ for

dlfferent aspect ratios to índÍcate Ëhe expected range of the equation.

In the case of mean f1ow, equation (2.93) is modified for

do¡,,mstream and upstream propagatíon respectively as follows

4(a - r) (r + uc)
(2.e4)

1na(a+1)

4(a- 1) (1- Mc)
and (2.es)

o lna(a-1)

2.4 EXPERIMENT AL INVESTIGATION - EQUIPMENT AND PROCEDIJRE

The experímental equipment and layout used to investigate curved

ducË wave behaviour wíth and without flow is shown in Figure 2.L6. The

duct system has a 0.L27 x 0.635 meÈer rectangular cross sectíon and is

constructed in removable sectíons from 0.0254 meter thick wood lined

with laminex to fulfil the rigid wa1l boundary conditions. The basic

khc

khc=

khc=
o

khc=
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Stand ing weve epparatus
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or pitot

pr obe
tube

Anechoic termination

Pitot static tube

Speaker

Fan muffter

y'Centrif ugat f an

Flgme 2,16, Arrangement of the experimental apparatus.
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parts of the apparatus lrere as used in the experimentaL investigation

of straight duct behaviour with flor¡. Two bends were ínvesËígated

-experlmentally. Both had a total angle of 90o but differing aspect

ratios of a= 3.5 and a= 2.25. These bends v/ere constructed from

machi.ned hardwood.

The sound source hlas a single cone 15 watt loudspeaker and

was positioned 1.7 meters upsÈream of the bend aÈ r^rhÍch dístance any

locally generated cross modes wíll have decayed sufficiently to be

negligible. To eliminate reflectíons from the exit plane of the bend

the downstream duct was anechoically terninated. For upstream proP-

agation of sound, Èhe anechoic terminatÍon Íras removed and replaced

by Èhe sound source. In Ëhis case the irnpedance of the bend is

invesÈigated on the source side of the bend.

Fluid flor¿ was achieved by a centrifugal fan as discussed Ín

section 1.4. A Heterodyne Analyser nas used for all pressure measure-

ments and as a signal generatoT. In the case of the experimental

apparatus of Fígure 2.16 ttre analyser provided a signal to nolse ratio

of greater than 50dB at M=0.1 ín the upstream duct.

The radial pressure distribution in Èhe curved bend was

measured by traversing a microphone probe radíally across Ëhe duct at

an angle of 45o from the bend ínlet. AÈ this angle any evanescent

modes generated at the straíght duct - curved duct j-nÈerface would

have decayed to be negligible. The case wíthout flow was considered

flrst. ExperímenÈal values of relatíve pressure amplitude for the

(0r0) mode in the bend of aspect ratío a= 2.25, defined by equation

(2.96) are shown ín Figure 2.5 for conparison wiÈh the theoretícal

results. The followíng equatíon r¡ras used to defíne Lhe experímental

poínts in the figure.

Relatíve Pressure .Amp = 10^dB/20 Q.g6)
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where AdB is obtaíned from the sound pressure Ievel data as:

ÂdB=SpL(r)-SpL(Rr) (2.e7)

For the case of the conformal mapping analysis the bend of aspecÈ raÈio

a= 3.5 was ínvest.igated experirnentally. This was chosen to represent

a "sharp" be-nd and thus provide a relatively severe test for the theory.

For a bend of aspect ratio a=3.5 the proposed upPer límit to the

theory given by equation (2.93) ís kohc < L.76. Hgnce Èhe bend was

invesÈígated for Ëhe case withouÈ flow for three non-dimensional

frequencíes, kohc = 0.5, 1.0 and 1.5. The no flow distributions for

these frequencies are shown in Figure 2.L7. For the case of flow

one frequency kohc = 1.0 at dífferent flow rates of M=0.04 and M=0.08

was considered for downsÈream and upsËream proPagatíon respecËively.

These dístributions are plotted in Fígures 2.18 and 2.19 respectively.

The inpedance of the bend with and without flow was invest-

igated with the standíng r,rave apParaÈus shown Ín Figure 2.L6. The

inpedance was determined by analysing the acousÈíc pressure standing

wave in the incident duct to the bend.

To aid rllith laÈer discussions the flow profiles in the bend

(at M=0.04 and I'l=0.08 in the upstream duct) r^rere measured by trav-

ersing a stagnation tube radially across the curved sectíon aË an

angle of 45" from the bend inlet. The nouth of the stagnation tube

was flattened to a openíng of 2um to enable accuraËe readíngs. Due

to the non-uniform flow ín the curved sectíon the st.aÈic Pressure

hTas measured at the incident straight duct wall and the value recorded

was taken as the average static pressure in the bend. This approximaËion

was thought to be sufficlently accurate for the 1ow flow velocíties

investigated. Curved duct flow profiles for M=0.04 and M= 0.08 in

the upstrearn straight duct are shown in Figure 2.2O. The average
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velocity of the flow in the curved section r^ras calculated to be Mc=.038

and Mc = .078 from Ëhe distributions for the Ër"¡o flow speeds.

2.5 DISCUSSION OF RESIILTS

2.5.L The Cvlindrícal Solut ion of the l{ave EquaËion

As for straighË ducts the acoustic notion of waves in curved

ducts is charactexlzed by a seË of modes each of whÍch is either

propagating or evanescent (apart from the (0'0) node) dependíng upon

whether the mode is above or below cut-off. Differences in propagatíon

between straight and curved ducÈs are to be expected, however, and

the main difference occurs with the (0r0) mode. In a straight ducÈ

the phase speed of the (0r0) mode is independent of duct geometry

being equal Ëo co at all frequencies but in a curved duct the phase

speed of the (0r0) mode is strongly dependent on duct geometry and

frequency. This ís borne out Ín FÍgure 2.2 wl:ricÞl shows angular wave

numbers of the (0r0) mode. The angular I¡Iave nunber can be seen from

this diagram to be vasÈ1y different for ducts of different aspect

ratios. Thus whíle the (0,0) mode ín a straight duct is non-dispersive,

the (0r0) node ín a curved duct is dispersíve. This essential difference

between straight and curved bends r¿ill be shorun in a later chapter to

have far reaching consequences on the propagatÍonal characteristics of

the bend. Figure 2.2 aLso shows good agreement, between the iterative

soluÈion of the characteristÍc equation used here and a closed form

solutíon used by Rostafinskí (L974).

Figure 2.2 shows that as the aspect ratio of the curved duct

approaches unity, the corresponding angular wave number approaches

infinity and when â= 1, the plot will be rePresenÈed by the vertical

axis. It. can also be shown that if in Figure 2.2, angular wave number

r{as plotted agaínsa koRt rather than kohc, then as the aspecÈ ratio

approaches uníty, the plot will tend towards a straíght line at 45"



to each axis (for both axis having equal scaling) thus as a+lr

v^ + k_R, . Hence the cylindrical co-ordinate solution for angularool

wave numbers is seen to obey the Rayleigh condítion that waves in a

curved duct of l-arge radii (i.e. a+ 1) will propagate as if the duct

were straight.

For the curve.d ducË the angular phase velocity of the (0r0)

mode is seen to be

c^ = (r)/v90
(2.e8)

The angular phase velocity can be converËed Ëo an equivalent linear

phase velocity c* at the mean radíus R, as,

.o=,? R
DVM

koR, (a + 1)
(2.100)

(2.ee)

The ratio of the straight duct phase velocity, given by equation (l-.14)

and the averaged curved dueË phase velocity is thus

c*/c
P o v

o

KR
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(2.10 1)

average

in straight

(re7 4)

the reverse

mo

khc (a+ 1)
c* lc oor

P 2v (a- 1)
o

From the results of Figure 2.2 tt can thus be seen that the

curved duct phase velocity is always marginally higher than

ducts for the frequency range kohc < 1.5. Ijlowever Cunrmíngs

has demonstrated thaË for frequencies, such thaÈ kohe > tt/2

is true.

2vo

o
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Figure 2.3 shows, the angular wave numbers of three evanes-

cent modes. As for straight ducts the angular rÁ/ave number of evanes-

cent modes \^ras implícitly assumed to be imaginary. This assumptÍon is

borne out by energy considerations and will be díscussed in more deËaíl

in the section dealing with the results of the conformal mapping analysís.

Rostafínski (L972) has shown that at low frequencies (kRt<<1.0) values

of angular r¡/ave number of evanescent modes are gíven by

v = ísn/lna, s=0rIr2.....
S

In Lerms of the duct width the expeeted applicable range of the above

equation is kohc<< (a - 1) . For the duct of Figure 2.3 of asPect ratio

a=1.5, the agreement with Rostafínskits equation at low frequencies

is seen to be good.

Fron Table 2.L of cut-off frequencies of higher modes derived

fron equatíon (2.23) by Osborne (1976) Ít can be seen Èhat increaslng

Èhe aspecË ratío has the effect of loweríng Ëhe non-dimensíonal cut-

off frequency koRr. Thus wider bends tend to admit hígher mocies more

readily. If the values of Table 2.1 are rewritten in Èerms of

o
(a - 1) it can be seen that íncreasing Èhe aspecÈ ratio has

the effecË of increasing the non-dímensÍonal cut-off frequency k^hc.
o

Thus for a bend of constanÈ widËh íncreasing the sharpness tends to

decrease the ability of the bend to admit higher modes. The dependence

of modal admittance of curved bends on the asPect ratío ís clearly

shown by Ëhe conformal mapping analysis and wíll be discussed ín this

section.

I.Ihereas in a sÈraíghÈ duet the (0,0) mode is a plane wave with

consËant amplitude across Èhe duct, Èhe (0'0) mode in a curved duct ís

found from Fígures 2.4 and 2.5 to be non-plane. Hor¿ever due to the

rectangular cross section of the bend the amplitudes will be plane in

tlae z direction. From Figures 2.4 arrd 2.5 it can be seen ÈhaË either

khc=kR
o I



111

increasíng the frequency. or the aspect ratio independently leads to

an lncreased variation in pressure amplitude across Èhe duct. These

flgures also show that for bends of low asPecÈ ratío or at very low

frequencies the pressure disËribution does not vary drastically and

is close to that of a plane wave. This agrees wíth the coriclusíons

of Cumrings who shor^red that the pressure distríbution tended towards

uniformity for bends of large dimensions (i.e. a+1). The experimen-

tally measured values of pressure amplitude distrÍbutíon are seen from

FÍgure 2.5 to agree well with Èhe theoreËical predietíons. The small

error apparent as r+Rr, is most líkely due Ëo dimensíonal inaccuracies

1n Ëhe bend.

Figure 2.6 shows the varÍation in pressure amplitude distribu-

Ëion of the (1r0) mode in a duct of aspect ratio a=2 at two frequencies.

The dístributíon at Èhe lower frequencíes ís very close to the díst-

ribution of the (1r0) mode ín a straighE ducÈ, the sLiníma occuríng at

a val-ue greaÈer than the mean radius. However for the higher frequency

Èhe disÈribuËion is far more distorted and the ninima occurs closer towards

Ëhe ouÈsíde bend radius.

The tangenËial velocÍty dísËribuËíon of Èhe (0,0) mode, shornm

ln Figures 2.7 and 2.8, shows an opposite Ërend Èo Èhat of the Pressure

distribution. At low frequencíes Èhe distribution is non-uniform.

Increasíng the aspect ratío and frequency leads the tangential velocíty

distribution to become more uniform. Thus the increase in varíatÍon

of pressure amplítude dístri-bution discussed previously is balanced by

a simultaneous decrease in variation of tangenËial velocíty arnpliÈude.

This is well surrnarized by Rostafinski (L974) who showed that the

Èangential velocity distríbutlon of the (0'0) mode follows closely

that of a potential vortex for low frequencies (koRl < 1) and is

close to a forced vortex at higher frequencies (koR, = 3).
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2.5.2 The Conformal Mapping Solution r^-ithout Mean Flow

Frorn the results of the analysls it can be seen thaÈ conformal

mappÍng demonsÈraÈes Ëhe most basic characteristic of the propagation

of the (0r0) rnode in a curved bend; the stretching of phase speed

radially across the bend. This ímportant result reveals the mechanísm

of hor,r sound propagates around the bend. Rather than ËransniÈting by

a "ray" Èype process, reflecting from the walls, the r¡raves travel by

bending around the curved surfaces maíntainÍng a constant phase radÍa11y.

A similar occurrence has been observed by boÈh Cunmings (L974) and

RosÈafÍnski Q972) using the courplex cy1Índrical co-ordinate solution

to Èhe probleu. This radÍal variation of magnitude implies that the

curved duct parameters of propagation will be non-dimensional as

opposed to the inverse units of length in the straíght duct case.

From Figuxe 2.LL, Èhe sínple relatÍonship for Èhe angular wave

number of the (0,0) mode derived by thís analysís gives good agreement

with values determíned using cylíndrícal co-ordinates in the range

of frequencies consÍdered as the 1írniË. As expected, for the wavelength

of sound approaching the transverse dimensions of the duct the error is

increasingly apparenÈ. However for the range of frequencies considered

by thÍs analysis the error between solutions derived by a cylíndrical

co-ordinaËes solution and Èhose derived usíng conformal mapping are

greatest at low frequencies (trr + 0) . Increasing the aspect ratio of

the bend increases the magnitude of Èhe error. For a duct of aspect

ratfo a=4 fot ko*O the maxímum error between the results of this

analysis and a cylindrieal co-ordinate solution ís 6 percent. Hence

fron the results of Fígure 2.II an aspect, ratio of aS4 ís tentatively

suggested. In this range equation (2.48) ís seen to accurately and

símply predict the angular \^rave number of the (0,0) mode for

4(a- L)
o

khc lna(a+1)
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This result should be compared to Ehe practical guide for recÈangular

section bends proposed by Cummings (L974). To facilítate analysis of

curved bends he developed a design chart for rect.angular bends,

reproduced in Figure 2.21, which provides t"/t^ aË the mean racLj.us
o

of the bend as a funct.Íon of dríving frequency and aspect ratio. The

values of the chart were deríved usÍng a cylíndrical co-ordínates

solut.ion. Cumuúngs compared the reactance of Èwo bends of aspect

ratio a=1.587 and a=10.309 derived by consÍdering Ëhe bend as an

equívalent sËraight duct and usíng kc = k^ aÈ the mean radius and kc"o
adjusted aË the mean radius by the design chart of Figure 2.2L.

Whereas the adjusted círcular wave number definítely improved the result

at high frequencies (k-trc+n¡ at lower frequencies (0<k-hc <Tr/2) the'oo'
discrepancy between the two resúlts is minimal, especÍally in the less

sharp bend. Thus in Èhe range of frequency proposed, the simple

equatíon for the angular wave number of the (0r0) mode, established by

deriving the circular rrrave number distribution by rnapping techniques
o

and equatlng k-(r) to ko at Èhe mean radius provides suffíciently

accurate values for pracËíca1 use.

Figure 2.2L aLso demonstraËes why the aríthmeËíc mean provides

the most accurat.e est,inaÈe of angular vrave number over the widest

frequency ïange. As shown in the Figure when kohc = r/2, independent

of aspect ratio, equatÍon (2.48) ¡,¡i11 exactly predict the correct

value of angular r¡/ave number whereas for frequencíes lower or higher

than this point the eguat,íon wÍll respectívely underestimate or over-

estimate the actual value. Thus the sÈraíght line ploÈ of equaÈíon (2.48)

provides an average of the acËual plot obtained by a cylindrÍcal-

co-ordinaËes solution.

Sinilarly, the approxímate solution for evanescent modes,

equation (2.52¡ is shor^m in Figure 2.!2, to accurately and sirnply
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predict Èhe evanescent angular wave number for low frequencies without

the protracted analysis involved in Étre irnaginary roots solutíon of

Ëhe characteristíc equation writÈen in cylindrical co-ordinates. In

facË a direct result of the mapping analysis ís that evanescent modes

will have a purely imaginary rn¡ave number. This fact has been implicitly

assumed by prevlous workers. For very low frequencíes (koR, + 0) the

analysÍs gives an identical result to a rel-ation derived by Rostafinski

(Le74).

A comparíson beËween Èhe results of Tables 2.1 and 2.2 shows

that equation (2.55) provídes an accurate estimate of the cut-off

frequeneíes of higher modes up to rn (or s) = 3. The agreement is seen

to be particularly good for the (1r0) mode but decreases with increasing

aspect ratÍo and modal number. Equatíon (2.55) predícts that increasing

the aspecË rat.io decreases Èhe non-dimensional cut.-off frequency ko*r.

Thus as concluded ín Èhe cylindrícal result, wider curved ducts admit

hígher modes more readily whíle "sharper" bends tend to ínhíbit higher

mode t.ransmission.

tr{hereas Ëhe rnappíng Ëheory is found to accurately predict Ëhe

behaviour of the angular wave numbers of the (0r0) urode and evanescent

modes, the same agreement is not shor^m in the predicted pressure amp-

litude distributÍons. The napping theory predicts that the pressure

anplltude distribution of the (0r0) mode j-n the curved ducË is approx-

fnately plane. This is shown to be true for the experimental resulÈs

of Figure 2.L7 aE Ëhe two lower frequencies of kohc=0.5 and kohc=1.0,

however at the higher frequency of k-hc=1.5, which is stil1 withino'
the proposed range of the analysis, the amplitude shows considerable

radÍal varíation. Cummings (I974) has shornm that the pressure dist-

ribution Ëends towards uniformity f.or bends in whích the aspect ratio

approaches unity, thus the agreement is 1ikely to be improved ín r'less
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sharp" bends. Líkewise t.he analysis indicates Èhat Èhe Pressure

dlstributíon tends t.or¿ards uniformiÈy with decreasing frequency and

this is borne out by experimental results. Equatíon (2.59) predícts

thaË Èhe radial particle velocÍty amplitude is extremely smal1. This

agrees with results obtained by Rostafinski (1974), who estimated the

radÍal velocity amplitude of the (0'0) mode to be two orders of a

magnitude smaller than the tangential velocity anplitude at low freq-

uencies.

The approximate relationships developed here for Ëhe amplitude

dÍstríbutions of evanescent modes at low frequencies comPare well

with sirnilar values derived by RosËafinski. These distributions are

seen Èo be a dístorted sine or cosine shape and an equatÍon which

predicts the position of maxÍmum or mínimum pressure respectively is

given. Figure 2.15 shows the influence of aspect ratio and frequency

on the decay rate of evanescent modes. It can be seen Ëhat both

increasing the frequency (below cut-off) and the asPecÈ ratío leads

¡o a reduced decay rate and the evanescent node distríbution extends

further inËo Ëhe curved section. Therefore even though increasing

the aspect ratio of a bend of constant htídth tends to increase the

cut-off frequencies of higher modes, evanescent modes wíll be trans-

mitted further into the curved section away from the surface at which

they were generated. Generally speakíng, evanescent modes are seen

from Figure 2.15 to decay very quickly away from the generaËing surfaee

except very close Ëo cut-on where the evanescent mode is seen to

propagate well into the curved section before decayíng substanti-ally.

Therefore evanescefiË modes just below cut-off can be expeeted Èo

modify the pressure distribution at angles of propagation well into the

curved bend. Doak (1973) has shown that evanescent modes ríght on

cut-on can in fact dominate the sound Pressure field in a straight

duct.
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The experimental investigation of the standing wave in the

acoustic íncidenÈ duct Èo the bend revealed that, as predícted, the

bend of aspect ratio a= 3.5 províded neglígible discontinuity to

acoustic propagation. Thís was also investigated by Curnmings (1974)

and his results indicaËe similar behaviour.

2.5 3 The Conformal Mappine Solution with Mean Flow

As intuitively expected, flow is seen Èo sinply rnodífy the

angular wave nunber of the (0r0) mode by a urultiplying facËor of

U(1+M) or L/(1-M) for dov¡nstream and upstream ProPagatíon resPect-

ively. Thus as for sËraíght ducts, convection of Èhe propagating

medíum results in an íncreased phase speed for downsÈream propagation'

and a decreased phase speed for upstreau ProPagation. Equation (2.84)

predicts that the angular wave nurrbers of evanescent modes will be

complex raÈher than purely imaginary. Furthermore flow ís predicted

to lower the cut-off frequencies of hígher modes by a factor of

(t-U2)'" independent of the direction of propagation of sound relative

Èo the direction of the flow.

The relatíonshíp for the Pressure disÈribution, equatíon

(2.89), predícËs that, the pressure amplitude distríbution for the

(O,O) mode is stÍll essentially plane with superimposed flow of the

propagating medlum. The experimental upstream results of Figure 2.19

agree well with thís prediction, however the downstream pressure

distribution of Figure 2.18 is far fron plane. The sítuation ís

obvlously complicated by the fact that the flow profile shown in

Figure 2.2O ís far from what potentÍal theory predicts. It is

Ínteresting to note Ëhat downsËream flow causes an íncrease in ver-

iaËion in pressure amplitude while upstream flow causes a decrease

in aurplitude varíaÈion.
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An investigatíon of the stancling wave in the acoustic

íncident duct showed that, as predicted, flow did not cause ariy

drastic change in the reflection characteristics of the bend. The

bend was still found to provide negligible discontÍnuity to acoustic

propagation with a flow rate of M=0.08, in the incídent straight

duct.

2.6 SI]MMARY

Sound propagation ín curved bends has been investigated

by the tvro approaches of a cylindrical co-ordinates solution and a

conformal rnappíng technique.. The results of the cylíndrieal

analysis agree well with experimental values and Ëhe results of

previous \¡rorkers. The conformal mappíng techníque likewise gives

good agreemenË wíth the rnore exact cylindrical analysis and with

experiment buÈ wíth a very great sínplifícation of the required

analysis.

Simple equations have been developed, usíng a confornal

napping procedure whích accurately predict the angular wave numbers

of the (0r0) mode and evanescent modes for frequencies such that

non" a 4(a- f)/t(a+ 1)1nal Ín curved d.ucËs of aspect ratio as 4.

Beíng much simpler Èhan those derived usíng cylindrícal co-ordinates,

the relationships make analysis of low frequency propagation of sound

in curved duct, systems an easier task.

The Èheory in fact is found to agree quite well outside

the proposed frequency limiË and an equation whÍch accuraËely predicts

the cut-off frequencies of hÍgher modes ís given.

The analysis is Èhen extended to develop new equations

for sound propagaÈion in curved ducts with mean flow. As expecËed

flow has Èhe effect of decreasíng the dorrrnstream angular wave number

by (1+M)-1 arrd increasing the upstream angular wave nurnber by (1-M)-i
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Flow is also predicted to Lower the cut-off frequencies of higher

modes (1n ducts of aspect ratio as 4) by a factor of (r- G"t")2)%.

In general the mapping theory does not provfde an accurate

predÍctlon of the radial pressure amplitude distribution withln the

bend wfth and wiËhout flow. Ilowever the theory did indicate Ëhe tend-

ency for the pressure distributlon to become more uniform for decreasing

frequency. As predicted by the results of the anal-ysis Èhe bend was

found to provide negligible disconÈinuity to acoustlc propagation

both with and without f1ow.
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?ART II: DUCT SOIIRCES AND SYSTEMS

CHAPTER 3

souND RADIATION FROM A DIPOLE PISTON SOIIRCE IN A SM.{I-INFINITE

RECTANGI]LAR DUCT

3.1 INTRODUCTIOI{

The radiatíon impedance of a vibratíng surface is an írnportant

theoretical quantity used to describe the mechanical couplÍng of a

vibrating surface to an acoustical field in the surroundíng medíum.

In general it is a complex quantity,the real part of whích descríbes

the transmissíon of power and Èhe complex part of whích describes

the time rate of change of energy stored in the acoustic near field.

The real parÈ may be positive or negative descrÍbing respectively

either por¡/eï flow from the vibrating surface to the surrounding medium

or povrer flow from the medium to the surface. Símilarly the sígn

of the reacÈÍve part may be given interpretatíon ín terms of the mass

or stíffness loading of the medium on the surface.

The radiatíon impedance ís conveniently described in Èerms

of a dimensionless quantíty, the radiatíon raÈio or radíation

efficíency by comparing the power radiated by a source to that which

would be radiated by an equal area of an lnfinitely plane !ìrave source.

Defíned in this $ray the radÍation effíciency may be greater than unity

contrary to the usual definitíon of efficiency so that some authors

prefer radíation ratío. However the Parameter does descríbe the

relative efficiency of radiation of a source and thus other authors

prefer radÍation efficíency. The latter conventl-on will be adopted

here.

Morse and Ingard (1968) have briefly discussed the case of
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a non-uníform generating surface and have pointed out that, ín this

case, the corresponding radíation impedance will contaín both a

real and reactj-ve part in contrasË to a perfectly uniform generatíng

surface whích has a purely real or resistive part.

Doak (l-973) has considered the effect of source dístribution

and arrangemenÈ on the sound fíeld in a hard walled duct ín much

detail. He uses superposition of sound fíel-ds due to indívidual

souïces as a means of representing the radiation of complex vibraEíng

surfaces. His analysis shows that the position of sources in a

duct has a sígrrificant effect on the duct sound fíe1d due to modal-

couplíng and excítaÈion.

Doak has considered the case of a dipole point source Ín a

duct and discussed the energy distribution among the various modes

of propagation. Directly relevanË to Èhis analysis he has consÍdered

the cases of a number of víbrating pistons mounted in the duct r¡alls

(as opposed to the ducÈ cross secËíon of this anal-ysis) and has

investigated the rel-atíonship between síze and velocity of the písËons

fn terms of the exciËed sound pressure field. An interescing result

{s that higher modes are ínherently better matched Èo a símple source

for transmíttíng acoustic Pos/er than ís Èhe pl-ane ríave. Doak cal-

culates that each hígher order mode may be able to carry up to four

times the power of the plane vlave mode.

In thls chapter the radíation of a dipole pisÈon source

mounted at the end of a semi-infínite reetangular duct. is ÍnvestigaËed.

The source is assumed to consist of Èwo pistons of equal area which

fill the duct cross sectíon as íllustrated in Figure 3.1. The pístons

are assumed to vibrate harmonicall-y at the same frequency but with

arbítrary relative phase. The anal-ysis is restricted to Éwo dímen-

sfons as shovrn in the figure.
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FtgURg 3,1, Atrangemen-t of the dipole piston source'
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The sound field excited by the dípole piston source is

fnvestigated theoretically by using a method of superposj.tion. The

velociÈy potential due Èo one piston coveríng,half the duct area is

derived and added Èo the velocíty potential due to the other píston with

an assumed phase difference. The resulting pressure field is derived

from the velocity potential and used in conjunction wiËh the velocity

amplitude of the vibratíng surface to derive relationships for specific

acoustic ímpedance, radiation efficiency and Èransmission coefficient.

For the sake of the analysis it will be convenient inítially

to think of the two pístons as solid surfaces forced to move harm-

onícally at a specified frequency and with a specÍfied relative

phase between them. However, Èhe moving surfaces could just as \^re11

represent a vibrating air surface and indeed ít hrill be convenient

when considering porqer radíaËion from two ducts joined to a single

duct Ëo think of the vibratíng surfaces as conceptual boundaries

which are dríven by incídent plane sound \¡/aves.

the duct ínto whÍch the source radiates is assumed to have

perfectly rígid walls and no mean f1ow. The frequency of the analysis

is límited to less than the cut-off frequency of the (1r0) mode in

the ducÈ. The effecÈ of phase difference between the two písÈons on

radíation efficíency and the relationship betr¿een higher modes and

the resultant sound field ís discussed.

3.2 ANALYSIS

In the following analysis a píston ís defined as a surface

of constant normal velocity. The arrangement of the pístons mounted

ín the duct and the appropriaËe two-dimensional rectangular co-

ordinate system used are shor,m in Figure 3.1-. The origin of the

co-ordínaÈe system ís assumed to be Èhe point corresponding to the
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bottom mosÈ corner of píston B. As there is no discontinuíty in the

z directíon a t\^/o-dimensional co-ordinate system ís satisfacËory. The

pístons are assumed of equal area and to move ín simple harmonic

motíon. The normal velocities of the pistons are represented by

pisÈonA v=vosin(urt+r¡) h>,y>hl2 (3.1)

plstonB u=uosin(ot) h/2>y>0 (f.Z)

where u^ and v^ are the velocity amplitudes and { ís the.phase angleoo
by whích piston A leads piston B.

The wave equation in velocity pot.ential form for sound

propagatíon with no mean flow is

v2O+(r/"J20 = o (3.3)

From ChapÈer l- a general solution of equation (3.3) in separable rect-

angular co-ordinates is

o

0 (x,y, t) I n cos(k y)cos(ot-mom- -k x+Iþ) (¡. +)
mo

m=o

This forn of the velocity potential is used rather than the exponential

form as ít highlights the role of Ëhe phase angle rf.r in the analysís.

The relationship between the modal r¿ave number in the x directlon

k and Èhe eigen values of the boundary solutions, k_,has been derivedmo'm-
ín Chapter 1 and is

k = +Ík2mo-o -y2 fr, (3.5)
m

r¿here for rígid walled ducts k, = mn/h. As discussed previously, those

modes for which ko t k* wíll have a real r'rave nurnber and will propagate

r¿ÍthouÈ attenuatíon whereas Èhose modes for which ko. k* will have an



L25

imagínary wave number and will decay rapidly away from Èhe generating

surface. As stated earlier Èhe analysis presented here will- be

concerned entirely with modes of the latter type and the plane wave

mode.

To solve the problem a method of superposition is used. It

is well known thaÈ the velocity potentials of two separate wave systems

in a duct can be superimposed and used to deríve the result.ant acoustic

sound ftel-d, (a standing wave is a good exarnple). Thus it ís proposed

to find the potentíals due Èo piston A and piston B separately and

by superimposing the two potentials derive the resultant sound field

in the ducÈ. The arrangements of the two separate pístons as ernplôyed

by the anal-ysis are shown in Figure 3.2. In this case the parË of

the generatíng surface not considered as a piston ís rePresented by

an area wiËh zero particle velocíÈy.

trIe shall proceed by deriving the potential 0O due to píston

A and follow by deriving the poËentíal 0U due Èo Piston B. The resul-È-

anÈ potential due to the dípole source will then be 0 = 0e* Ôr. Thus

for plsËon A as shown ín Figure 3.2 we require for h/2 < y < h and at

x= 0

vosin(ot +r¡) (3.6)v

and for O *y <hlz

x

vx

x=0

=0 . (3.7)

x=0

These are the boundary condítíons used to relate the aurpl-itude of the

velocity poÈenEial in Êhe dou'nsÈream duct to the velocity distríbuticn

of the genera¡ing surface. Equation (3.4) can be written ín expanded

form for piston A as
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{.

FleURf 3.2, Velocíty ôistributl-ons of the í¡dívÍdual pístons.



0 I A*o"o"(k v) [cos(otI rf)cos(k*o*) * sin(t¡t+rf)sin(knox) 1 (3.8)
æ

m=o

x

m=o

Thusatx=0

ux

We let

In"mo k cos (k l) sín (ot + rl)

A

ifn#n

ifm=n
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(3. e)

(3.10)

(3. u)

(3. 14)

(3.ls)

The axial particle velociÈy due to this potentíal is

u = àQ/âx

= I R k cos(k y) [sín(urt * rj.r)cos(k-^x) - cos(urt+ rl)sín(k-^x) ]!--mo-mO---.--m..- -mO- mO

æ

x= o m=o
mo

f(y) = (kv
m-

)I Akcosmo mo
IIFO

then the boundary condition of continuity of axial particle veloeíty

aÈ the generating surface given by equatíons (3.6) and (3.7) requires

that for

O <y <h/2 f (y) = 0 (3.L2)

and trl2<y(h f(y) =v (3.13)
o

Equation (3.10) conslsts of an infinite sum of indivldual

modes with separate Fouríer coefficienÈs. To determine these coeff-

ícients índividually, use is made of the orthogonalíty property of

the cos(k v) function. As is well known
m-

cos (k*I) cos (k ry) dv =Q

*o



hence

Now

l"
f (y)cos(k*v) = 0 if m # n

l:

l:

A k._cos2(k_y) dy lf m I n
mo mo m'-
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(3.16)

(3.17)

(3.18)

(3.Ie)

(3.20)

(3.21-)

k, = mn/h and thus

f(y)cos(mny/h) dy

(A'mo l:k )lz [1 * cos(2mrylh)] dy
mo

ThusLfm=0

On the other hand if n # 0 then

l:

= (ArIc o)/2 [y + sin(2rnry/h)Czrnnltrl-tJf

¡h

I 
rtr> ar = Aookooh

rh
Aoo = [ 1/ (kooh) t 

Jo 
r cvl avand

f (y)cos(nny/h) dy = A*oko,o(}:,l2)

and

The integral can be sp-lit into Ëwo ranges represented by equatíons

(3.12) and (3.13).

Aro = [2/(knoh) rlnr,rrcos(nny/h) dy
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Hence

= voh/2 for m= 0

vh h
or = [ o sin(mny/h)] hlzMT

vh
mfi

forn#0

Thus the Fouríer coeffÍcienÈs of equaËion (3.4) are

Aoo = [u(kooh)]lvot./2)

o

oo

fnr,rrcos(rnny/h) 
dy = o * 

fr".cos(mry/h) 
dy

=(
2 ) (Ë) [-sÍn (rn/z)]

v

2k

(3.22)

(3.23)

(3.24)

(3.2s)

(3.26)

and A
mo kh

mo
InT

2v-
= - 

t 
sin(mn/2)

mnk o

Aecordíng to equation (3.25) for even values of m, Aro í" zero and

the corresponding mode does not exíst ín the sound field. Thís wil-l-

be discussed later. The resulting Potential due to piston A alone is

thus
æ

0A=IAro"o"(kr)cos(o
m=o

r-k x + tlr)
mo

wi-th coeffícíents given by equations (3-24) and (3.25) -

To determine the Fourier coeffícients of Ö, due to píston B

an ldentícal procedure is used except the velocíty disÈributíon

represented by B of Figure 3.2 is used. Thus we may develop a functíon
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g(y) whfch w111 be used to derÍve Ëhe potentfal 0U due to piston B

alone

For A <y <h/2

g(y) = uo

and for h/2<y<h

g(y) = I to'ok o.os(k v)
m=o

where B
mo

are the modal Fourler coefficlents of potential ö,

g(v) = 0

Using the same procedure as used previously ín the derivaÈion of ÖO

we then have

æ

(3.27)

(3.28)

(3.2e)

(3.30)

( 3. 31)

(3.32)

(3. 33)

(3. 34)

fr<rl cos (k 
ov) dv = f:'

,¿, I
o

2
Thus

Hence

and

uocos(k v) dy + 0

= u}¡.l2
o

for m= 0

uh
= o sln(nur/2) forn#0

m'lf

B
oo

(zt<
o

)

2t
B = j sín(nn/2)mo nrk o

and

with coeffícfents gJ-ven by the above relations. The toÈ41 potential

Ín the duct due to the plstons vlbratlng sirnultaneously ís

or=ltro cos (k y) cos (urt 
= k o*)

m=o



0=0o+0,

thus usíng equations (3.26) and (3.34) \^Ie may rrriËe

0

æ

Ia"mo cos (k v) cos (r¡r-k x+{,)
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(3.3s)

(3. 36)

Itr=O
mo

uit-k x
moi, cos (k y) cos (mo m-

)+

æ

m=o

m=o

[ "o"(k v) [ (Arocos(,|,) + Bro) cos (urt - kro*)

-A mo

For the ÍnvestÍgatíon of specifie acousËic impedance it is

convenient to relrrite equation (3.35) Ín exponenËial form,

æ

sín(rl) sin(urt - k o*) l

O = I Ao.o"o"(k r) exp[i(*trrt- k o* + {,) ]

@

p(x,y,t) = - too, I {A,oo.o"(krr)exp[i(urt -k*ox+ú) ]
m=o

thus
m=o

+ cos (k y) exp [i (or-k x)l (3. 37)
mo m mo

The result,anÈ pressure fÍeld due to the velocity potential

may be deríved from

p (x,y, t) = - oo â 0 /ât (3. 38)

Therefore the pressure distribution in the duct may be written as

I B

m=o

* B*o"o"(k v) exp Ii(ot - k*o*) ] ] (3.3e)
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and the axial particle velocíty disÈríbution in the duct is derived from

r* = * ãQ/Ax

€

m=o
u*(x,y,t) = -il {A*ocos(t<rnv) exp[í(oÈ - k*ox + rf) ì

+ B cos(k v)exp[Í(ot - k x)]]kmo m-' mo mo
(3.40)

The specific acoustíc impedance aÈ the dípole piston surface is defined

as the ratío of the acoust,ic pressure to the normal acoustic parÈícle

velocity and thus ís at x = 0

Z=ol:ux
(3. 41)

(3.42)

(3.43)

x=0

ko cos(krv).íü * Bro.o"(krr) Ii
m=o

A
moz

p
o A

mo mo

If the Èwo pistons of the dípole source have equal velociÈy anplitude

I cos(k l).íü * Bro.o"(k v)1

then u =v- and from equatíons (3.25) and (3.33) A = -$ for all---- o o ---- -r-- mo mo

m#0, thus equation (3.42) reduces to,

c
k

m=o

z
koooolsíÚa 1) + ko("iÚ- r) 

I 
oro"o"(k v)

k
mo

í{., - 1) I
I

t_
p c

e +1) + (e A cos (k y)
m-mo

We note that when the pistons are ín phase and r/ is 0 or 2n, equation

(3.43) reduces to the characteristíc impedance of a plane !ùave'

o 'looo
KA (

Z=oc'o o
(3 .44)
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Thus as expected when the dipole piston source acts as a síng1e píston

the plane Trave is the only mode radiated. However if ,þ + 0 or 2n then

the radíation impedance v¡ill conËain an imaginary palt representing

Èhe reactive loading of the air on the source as below cut-off

the k are imaginary. In partícular if the pistons are exactly
mo

oppositeinphaseandrþ=fitheSpecíficacousticímpedancewillbe

purely reactíve everywhere over Èhe surface of the source p1ane.

If we liniÈ our attention to Ehe fj.rsÈ Èerms only of the

series in the numerator and denominator equaËíon (3.43) reduces to

n (.iÛ + 1) - 4(ko/kr0) cos (k,i(eiÚ - l-)

zlp c
l_{,

(3.4s)

(3. 46)

o o n(e + 1) - 4cos(krlXe 1)

Values of resÍstíve and reacÈíve impedance derived from equation (3.45)

are plotted in Iigures 3.3 and 3.4 respectívely for different phase

angles beÈween Pístons.

Our nexË consíderaÈion will be the radiation efficiency of

the source. To obtain this we have to deternine the power radiated

by the source. Reverting baek to the original form of the total

potenÈia1-

irI

O = I cos(k y)t(A cos(rf)t u m-' mO
)cos(ot-k x)

mo

æ

m=o

+B
mo

A.osln(r!) sin(ot - kro*) l

The resultanÈ pressure field P = - 9o à0 /at i-s

p(x,y,t) = goo [ .o"(krv) [(A*ocos('.1.,) + B*o) sin(urt- krox)
m=o

* Ao'osín(rf ) cos (ot - k*ox) l (3.47)
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The power radíaËed and Ëransmitted lnto the downstream

secÈion of the duct Ís the time averaged and integrated product of

pressure multiplíed by velocity 1.e.
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(3.48)

(3. s0)

where T 1s the perlod of notion. Therefore in thfs partícular case

the power radiated is

rT ¡h
t¡f = (Ur)f I pu*dvdt

'o'o

¡T ¡}:.t^
gf = -(Ur).J" 

.|"'¿ 
uosin(urt)p dy dt

:(=o

dy dt (3.4e)
x=o

therefore substítuËing equaËion (3.47) ir'to (3.49) gives for the PoIÀter

radiated

(L I r) fÏ, rvosín 

(.,t + t) p

rT ,hlZ æ

!{=-(L/T) I t f ''ooruosin(rt) I cos(kv)[-Arocos({,) +Bro)sin(ot)
'o 'o m=o

- A sin(rl) cos(r¡t) I dy
mo

gourvosin(ot + ú) [ "o" 
(k f) [- (Arocos ({,) + Bro) sín(urt)r, m=o

- A -sin(rJ¡)cos(r,rt) I dy I dt
mo



Therefore trI = | (L/z)o (¡)u I cos (k l) lAo,ocos (ú) + B*o ] dyf:''

Ë,

¡h

Jo,,

o o

æ

m=o

]-37

( 3. 51)

+

+

Í(L/2)por ro cos (rf) [ cos(k V) lAo'ocos(ú) + Uro] dt
@

m=o

m=o
l(Ll2)por rosin2 (r!) f Aroco"(k v) 1 dr

,^I = 
9ot,

2
l"o I

m#o

æ

and

Thus fínally

A cos(rf) * Bro(h/rnn) sin(mn/2)
mo

æ

- vosÍn2(r¡) I oro(h/mn) sín(nr/2)
mfo

* to(Aoo"os(ú) * too) $12) * vocos(r¡,') (Aoocos(ú) + Boo) (h/2)

* vosin2 ({.,)Aoo $12) l (3.52)

t¡| = (oou/z) (h/2) lro(Aoo.os(ü) + too) * ro(Aoo +B cos(ú))oo

æ

+ L Qt*n>sin(nn/2) {uo(Arocos (,1,) + to,o) - to(A*o t Brocos(,I) ) } l
m=l

(3.s3)

In equatíon (3.53) the power radíated ínto the dor,mstream ducÈ has

been spliÈ ínËo two terms. The first on Èhe right hand side ís the

po\Ârer carried by the (O,0) mode and Ëhe second consists of an ínfínite

sum representing the power carríed by the hi-gher order modes. In

partícular if one assurues that piston A and B have the same velocity



amplitudes i.e. to = to then equation (3.53) reduces Èo

b oulz¡ 
(]nl2) lvo (cos (ì1.,) + 1) (Aoo * too)I^I
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(3. s4)

to= Vo

+ I (2lurtr)sin(mn/2)vo(cos(,1) - 1) (Amo - to.o) l
m=1

If uo = vo equaÈions (3.26>

equations (3.21¡ and (3.34)

(3.54) further reduces to

and (3.33) require that Aoo=Boo while

reouire Èhat A = -S, . thus equatíon--r--- mo mo''

lü (ooorh/Z¡ [roooo (cos (rf ) + 1)

+ I Q/nn)sin(mn/2)toAo,o
m=l

to=to

(cos(rf) - 1)l (3. ss)

(3.s7)

(3. s8)

If r¡r = 0 the dipole source can be consídered as a urriform piston over

the whole duct cross section and the resulË of equatíon (3.55) reduces

to plane wave radiation in the duct. Thus

!ü (o oh)vA +0'ooo (3. s6)
uo=vo

Now

hence

A =v o
lQt< ) = v lQk)oooooo

!ü =p
uo=vo

hc
oo

v2
o

2

ú= 0

Equation (3.58) is the relation for nett Por^rer flow of the

(0rO) mode in a recËangular duct. Thus when uo=vo and Ú= 0, al-l input

por^rer to the pÍston dípole source is radiated.



Radiatíon efficíency o is defined as the ratio of the po\¡rer

radiaÈed by the source to the po\^rer radíated by an equal area of

an ínfínite plane $Iave. Accordíng to Cremer, Heckl & Ungar (1973)

the power radiated by such a source of area .f with velocity amplitude

v l-s
o

wpiston =p c (3. se)
o

æ
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(cos(ü) - 1) L Q/*Ò2 sírr2 (wr12) (ko/kr'o) ( 3. 61)
m=1

o

.L

A^
u2

o

2

In a two-dimensíonal system .f ""rr be replaced by h. Thus the radíation

efficíency of the dípole píston source wÍth velociÈy of pisËon A equal

to piston B Ís

ú = (kolvo) [Aoo(cos({,) + 1)

*i
m=l

(zlwr) sín(nn/2) A_^ (cos (ü) - 1) l (3.60)

SubsËituÈÍn8 for Aoo from equations (3,24) and (3.25) we obtalnand A
mo

(cos(ü) + r)
v=--

2

Às previously, the first term represents the radiation efficíency due

to the (0r0) mode and the second term sums the radiation efficiency

of all the hígher modes. If rl¡ = 0 the radiatÍon ef f iciency o = 1 from

equation (3.61).

This result is not surprising since equatíon (3.61) predicts

that when rf = 0 the sound poriler radiaËed wíl-1 be identícal to a píston

of equívalent area. Thus when rp = 0 the dípole píston source becomes

a monopole source and is an extremely efflcient radiator.

!,le now consider the Èransrnisslon of sound Po\^/er past a

Junction of two smaller duct.s with one larger duct. The juncLions of

the small ducts to the larger form the pistons A and B where consístent

with our earlier stated assumption ùre are concerned only wíth frequencies
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below cut-off for the higher order modes.

In the case of ro # to the inpuË poÌ¡¡er (or incident power) at

the generating surface can be written as

L
= o c nu? lz'o o L

(3.62)

If the input pohTer is constant, then it can be ¡,¡ritten as

!ü

pch
o c h w? 12 = +9- (u2 +v2)'o o a 4 0 0

(3.63)

( 3.64)

Hence the ratío of sound po\¡/er radiated to the ínpuÈ poI¡7er (more

specifícally the sound por,rTer Èransmission coefficient) is

t t_

lle subsrírure equations (3.53) and (3.63) into equation (3.64)

obtain

oË = (to/(uf +v2)) [ro(Aoo"os({.,) * too) * to(Aoo+Boocos(rf))

/w= {¡Jot

@

m=l

_ cos (tl.') + 1

2

+

t

I fzl*ùsín(mn/2) (uo(Arocos(rf) + B*o) -v (¡, +Bomomo cos (rl) ) l

to

(3.65)

(3.66)

For u = v thís relation reduces wíËh the aíd of equaÈíons (3.24),
oo

(3.25), (3.32) and (3.33) to

c[ l, <zl*,>2 =lrr.2 
(wr /2) (ko/kno) (cos (rl) - 1)

m=I

which ís identical to the expression for radiation efficiency given

by equation (3.61).

The evaluation of the equations derived in the analysis is

limited to frequencies below the cut-off of the (1,0) mode in Èhe
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dor,onstrean duct. The cut-off wave- number for the (1r0) mode in a

rlgid walled duct is given by setting ktrlo=0 in equatíon (3.5), thus

(k,)o Tr lh

and the modal wave number for \,Íaves below cut-off is

(3. 67)

(3.68)ko=ti[(mn/h)2 -o'o]"

Thus for frequencies belor¿ cut-off of the (1,0) mode, koo will be

real, but k will be imaginary for all hígher modes. Thus Èhe'mo
expression for radiation efficíency can be considered as separated

into real and ímaginary parts. The radiatíon efficiency is then

(cos(rf) + 1)
O=

2
L Q/*n)' sinz(m¡/2) (ko/kmo) (cos(rl) - 1) (3.6e)
æ

m=1

where for Èhe frequency range considered, the first Ëerm represents

the resistive radiation efficiency and gives the actual power radiated

while the second Ëerm ís the reacËj-ve radiatÍon efficiency and descríbes

the fluid loadíng on the PísËon. If r¡=n then equaËion (3.69) reduces

to

@

o = O +21, Qlnn)zsirr2(mn/2)(kolkno) (3. 70)

m=l

which is entirel-y reactí-ve inplying no actual radiation of sound po!üer.

The resistive radiation efficiency, from equation (3.69) ís independ-

enÈ of frequency but is dependent on the phase difference rf between

plsÈons. The variation in resísÈive radiaËion efficiency with phase

angle is shown in Figure 3.5.

It will be of interest to consider the reactive part of

equaËion ß.69 ).
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(3. 71)

(3.72)

(3.74)

m=1

For a fírst order modal solution (i.e. the infínite sum truncated

at m= 1) equatíon (3.71) becomes

o (react)
m=l

where

\ <uont[r2 - {totr )2]") (cos (rþ) - 1)

Or alternatívely writing the reactive radiation efficiency as a phase

dependent factor we obÈain

orru(react) = (cos(rl) - 1) (3.73)

4
o .(react) = o(react)/( 

"n(l ' T' >2

¡n2 - 1t<otr¡ 
21

Values of reactíve radiaËÍon effíciency factor are plotted in Figure

3.6.

The reactive radiaËíon efficiency is dependent upon the

frequency parameLer (ko/kno) as well as upon the phase angle {'

For even values of m Èhe reactive efficiency ís seen to be equal

to zero thus

O

o (react) l, <ztrn)2{t o/t.o) (cos(,1) - 1) (3.7s)
IIr=1r3r5...

To determine the dependence of the accuracy of the final

result of reactive radiation effícíency on modal truncation, the

lnfinite sum of equat-ion (3.75) v/as truncated aÈ gl= 1 and ¡r= 3 and

the results compared. Values of theoreÈÍcal reacÈive radíation

efficiency are plotted againsÈ phase angle for various non-dimensional
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frequencÍes, koh, in Fígure 3.7 for the two different truncation

values. Apparently the higher order terms contrÍbute very little

to the sum.

It has been demonstrated previously that the power Ëransmissíon

coef f icient can be separated into tvro terms. The po\^rer transrnitted

by the second of these terms, represented by an infinite sum, now

will be discussed. As the higher modes are below cut-off, Èhe axial

particle velocity and the pressure of these higher modes are ín

phase quadraÈure and they Èhus propagate no net.È energy flux away from

Èhe generatlng surface. Thus one would expect the hígher evanescent

modes not t.o contribute to netÈ energy propagation. This will be

proved Ín Èerms of the previ-ous analysís.

For the non-propagaÈíng modes t"a Uro = -íkr . The general

velocíty potential for these modes will then be

co

0*o = | "o"(k*v) [ (Arocos(V) + B*o)sín(ot)expt-Çxl
m=l

* A.osin (rf ) cos (urt) exp t -tåo"l

and the acoustic pressure Ís thus

- Arosin(tl;) sín (t¡t) exp [ -k' ox]

p = - pot i cos (k l) [ (Arocos (qr) + B*o) cos (r¡t) exp[-kL*]
In= I

(3.76)

(3.77)



l46

U
(ú
0.,¡-

b

L)
c
o
L'
;
t¡.,

c
o
(ú

E
o

c,

(,
(ú
c,

É.

30

0. t,

0.?

0.1

0 rrl 2 T(

Phase ang te ,

2rr

ReacËive radiatíon efficíency of the dipole piston source.
, first order modal solut.ion; , third order

modal solution.

3¡ l2

v

h=1.5k

\
\
\
\
\
\

h=3.0k 0

h=1.0k
0

k9h = 0.5

Frcuae 3,7 ,



L47

Thus the por^rer transmitted by higher modes

cos(ot)exp[-krox1 - A,oosín(rÞ)sín(r¡t)exp[-kr x] dy

rT th/z @

=-r./T I att[ -ooruosin(ot) [_.o"( )[(Arocos(ú)+Bno)
Jo Jo m=I

X!t
m>o

+

and

Ë,

æ

por tosin(urt + rf) | co"(krv) [ (Arocos(ú) + B,oo)cos(r,rt)expt-t t"]
m=l

Arosín(rfr) sin(ot) exp{-kr oxi I dy l (3.78)

I^I
m>o

-72 oû)'o uoI A sin(rf) exp [-k' xl (h/mn) sin(rnn/2)
@

m=1
mo

-ÐzP (¡) to I Bnosin ({,) exp [ -k I 
ox] 

(h/mn) sÍn (nn / 2)
o

X

æ

m=l

2uv

(3.7e)

(3. Bo)
@

ft_-- = -lzg ^usin(ú) t I (rooro * B*oto)exp[-kr x] (h/mn)sÍn(un/2) lm>oool

now from equations (3.25) and (3.33)

2v
A =- o sin(nrn/2)mo mnk'o

2u
B = o sin(nn/2)

mo mnk
mo

@ 2uv
%ro = -rzeousín(ri.,)f I {-j"sín(mn/2) + o o sin(¡nn/2)}' -r]r mnk*o ttk 

o
Hence

=0

exp [-k'ox] (h/run) sín(urr/2) l

X
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The higher modes for frequencies belor¿ cut-off transmit no energy

independent of tor to and rf and the ratio of actual poI¡/er radiated

to input por,rer of the dipole source can be r^rritten as

(cos (r1.,) + t)
(3. 81)

2

The transmíssion coefficient of the source is therefore identical to

the resistive radiaËion effíciency and thus is also p1-otted ín Figure

3.5 .

3.3 DISCUSSION

In the frequency range under consíderaÈion (koh 5 n) the

resistive radiaÈion effíciency and the power Ëransmissíon coefficient

are identical. This result follows from the defÍnítion of radíation

efficiency. The discussion ís thus limited to the parameters of

radiation efficiency and characteristic Ímpedance.

Equation (3.45) provides the characteristíc impedance of the

dipole source. If Ú = 0, or in other words the generating surface is

a perfect píston, Ëhe radiaËion Ímpedance is a posiÈive real number

equal Èo p c . Thus the resulting induced wave motion ín the down-' 'o o

stream duct will be a plane !/ave. However íf Ú*0, the generating

surface wíll noE be a perfect piston, the characterístíc impedance

will be complex and a series of higher order evanescent modes will

be generated. Although these modes do not carry nett PohTer away from

Ëhe source, nor propagate substantíally into the ducË, the evanescent

modes effect Èhe irnpedance of Èhe source. As these modes are below

cut-off, their axíal wave nuuber is imaginary and the characterístic

lmpedance of the generating surface expressed by equaÈion (3.45) will

conËain an imaginaïy Part as r¿el1 as a real part. The imaginary Part

is called the reactive impedance and is a measure of the fluid mass

c[ t
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reactance or loading on the driving surface. In physical terms Èhe

reactive ímpedance describes the ttsloshingt' of fluíd or the transfer

of energy back and forth from one part of the generating surface to

another. The real part of the impedance on the other hand describes

acËual propagation of enelgy away from the generating surface.

The resisËive and reacÈive parts of the impedance are plotted

Ín Figures 3.3 and 3.4 respectively for different phase angles. IË

is inÈeresting to note from Figure 3.3 when þ = 3tr/2 or piston B leads

piston A the plot of resistive ímpedance implies that pibton B t'pushes"

the aír in front of ít over Èo the part of the generating surface

represenÈed by piston A. In thís region (0.5 -< y/tr < t.O) the resisÈíve

ímpedanee is seen to be posÍtive irnplyíng that piston A then does rnost

of the work in radiating energy. Of course the converse is true when

þ=r/2. Thís phenomenon is afsodemonstrated by the reactíve part of

the inpedance shown in tr'ígure 3.4 where in the region of piston A

for rf.r =3¡¡/2 the ploË demonstrates greater mass loading of air than

the region represented by pÍston B.

hlhen rlr = n Èhe characterisËíc impedance is seen from equaËion

(3.45) Èo be entirely reactive. In Èhis case there ís no nett Prop-

agatíon of energy away from Ëhe source due to the phase quadrature

between pressure and velocity and the acoustlc rnotion consists

entÍrely of a mass loading on Èhe generating surface. Physícally

this means that the aír in the near field of the generatíng surface

wíll be entirely sloshing backwards and forwards between the regions

of pisÈons A and B. Si-rnilarly when Q=n, the resultant acoustic

moÈion ín the ducÈ wfl1 consist of a series of evanescenË modes and

no plane wave mode is generated.

The resistive radíation efficiency (or transmíssion coefficient)

ís seen from Fígure 3.5 to .rary between zero and unit,y for different
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phase angles between the motion of the pisÈons. As expected when

V=nn¡ î= Or2,4... the resistive radiation efficiency ís unity and

the dipol-e source is an exÈremely effi-cient radÍator of sound energy.

This case of a perfect drivíng pÍsÈon, as discussed prevíously, results

in an excitation of a plane wave and no hígher modes. I,rlhen ü = nn,

n=1r3r5... the resístive radíation efficiency is zeto and Èhere is

no pohrer radiated Ínto the downstream ducÈ. In thls case the dipole

source ís an extremely inefficient radíator of sound pohter. For

inÈermediaÈe phase angles the radiaËion efficiency prediets that some

(but not all) input power will be radiated to the dorsnstream duct as

determined by equatíon (3.81).

EquaËion (3.45) shows that for frequencíes less than the

cut-off of the (1r0) uode Èhe resisÈive radiatíon effíciency is

entírely deËerrníned by the (0r0) mode of propagation (as evanescent

modes carry rio nett power). Thus in terms of real pohTer flux away

frour the generating surface it ts only necessary to consider the

(0r0) mode for frequencÍes such that koh I r. However Ít must be

remembered ÈhaË the degree of exciËation of the (0'0) mode is deter-

mined by the mass loading or reactive Part of Èhe characteristic

impedance of the source.

The reactive radiaËion efficiency is seen frour equation (3.75)

to be dependenÈ upon driving frequency as well as phase angle. Figure

3.6 demonstrates ËhaÈ when rf = nn, D= 0r214... the reactive radiation

efficíency ís zero and Èhere is no mass loading on Ëhe source. Thís

ís the case of the perfect piston discussed previously. When { = Drr

o= 1r3r5... the reactive effíciency is seen to Ëake a maximum value,

while at the same time the resístive efficíency is zero. Thus the

acousÈíc motíon consisÈs entírely of a locaLízed mass loading on the

pistons (or in other words a generation of only evanescen¡ nodes).
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The degree of this mass loadíng is seen from Fígure 3.7

to strongly increase wíth frequency. In fact equation (3.75) predicts

that the reactive radiaÈion efficiency becomes infinite as koh + n

or in other words Èhe (1r0) mode riears cut-on. Thus theoretically

although there is no nett energy of propagation, an infinite force

is needed to drive the rnass loading in the infínitely long dor,¡nstream

duct. This can be thought of as an evanescent (1rO) mode excited to

infinity Ín the dor'mstream duct. Of coulse resistive losses, which

have been neglecÈed prevent Ëhis from occurring, however this result

provides a reason why cut-off cannot be preeisely observed experimentally,

that is, the reactive term theoretically becomes infinite at cut-off!

Figure 3.7 also demonsÈraEes Èhat the reactive radiatíon

efficiency is determined quite accuraËely by a fÍrst order modal

soluÈíon, that is, the infinite sum of equatíon (3.75) truncated at

El= I. Thís result is also reflected in the rel-ation for characterisËic

impedance. Physically, this result implies ÈhaË Èhe particular arrange-

ment of dipole source considered results in a very strong driving of

the (1r0) rnode when Ëhere is a substantial phase difference between

pístons. Of course when there is no substantial phase dífference

the resulË is a sÈrong driving of the plane wave mode. Thus for a

continuity condition ínvolving an arrangement símílar to Fígure 3.1

it would be sufficiently accurate Èo truncate the modal sum of the

downsËream generated wave at m= 1. Although the evanescent mode

does not contribuÈe to nett por^rer flow it must be included Ëo take

account of the mass loading on the generating surface and thus the

degree of exciÈation o.f the (0r0) mode.

It ís also inËeresting to note from equatíon (3.75) that only

modes for which m is odd are excited. Thus the dípole source would

theore¡ically only generate symmeÈric modes whether they be evanescent

or propagatlng.



L52

3.4 SUM},IARY

Equations have been developed r¿hích Èheoretically predict the

radiaÈion efficíency and characterístic iurpedance of a dipole piston

source mounÈed in the end of a hard walled semi-infinite rectangular

duct. The relaÈions have been used to investigate the behaviour of

Èhe source for different phase angles and non-dimensional dríving

frequencies. Explanations for the differenÈ radiatíon characËeristics

are given in Èerrns of modal excitatíon and propagation.

The source is found to be an extremely effícient radíator for

phase angle differences between pisËcns of 9=nr' n=0,2r4... and

an extremely poor radiaÈor for phase angles of rp=nTT'.n= 1r3r5...

and reasons for Èhis behavíour are given. Nett por¡/er radlated has

been shown to be due purely to the (0,0) node while the role of the

reactive or nass loading on Èhe degree of excíÈation has been high-

lighted. The physical behaviour of the source near field at different

phase angles has been discussed and related to the various Parameters.

The analysís also demonstrates that for frequencies such

that k h S n a first order modal sum provides a sufficienËly aecuraEe
o

description of Ëhe resultant sourid field-
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CHAPTER 4

PROPAGATION OF SOUND IN A CURVED BEND CONTAINING A CURVED AXIAL

PÀRTITION

4.I, INTRODUCTION

In recenË years attention has been focused on Ëhe probl-em

of sound propagation in radial bends of rectangular cross section.

Most of the early work ín electromagnetic and acoustÍc waves is

descríbed in the introduction to Ctraptet 2. lJork performed in the

last ten years, relative to the problem of this chapter will be

revised here.

Rostafinskí (L974, L976) has theoretícally Ínvest,igated

the acousÈÍc velocity distríbution of propagating and evanescent modes

within radial bends. Cummings (L974) has theoretically and experÍ-

menËally investigated the acoustic discontínuity caused by a 180o

radial bend of severe curvature in a straÍght duct system of

rectangular cross sectíon. He found that even for bends of severe

curvaËure, near Ëhe cut-off frequency of the (1'0) mode in the curved

section, the bends caused neglígible reflectíon of sound. Osborne

(Lg76) consídered the more complex case of higher rnode propagation in

short curved bends, but sËi1l found no apPreciable discontinuity in

the acoustic propagation through the duct system. The main practical

conclusion of these works is that curved duct bends' even of severe

sharpness, have a 1ow refleetion coefficient. All the above work was

based on a cylindrical coordinates solution Ëo Èhe wave equation'

More recently, Fuller and Abell (1978) have approached the problem
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differently, using conformal rnapping to develop equations for the

angular wavenumber of Èhe (0r0) mode and higher evânescent modes in

curved bends with and without rnean flow. Their analysis is límited

to low frequencies where the velocity potentíal solution of the r¿ave

equation ís an approxímate solution of Laplacefs equation. Fuller and

Bies (1978 A) have also investigated the case of sound propagation in

a curved l¡end containing a curved axial partition and found that the

pârtition profoundly alÈers the acoustíc characteristícs of the bend.

In thís chapÈer the disconÈinuity and natural oscillations

caused by a 180" bend dívided by a curved partitíon are considered.

Thís problem has been briefly discussed by Rostafinski (L976) to

íllustrate the dispersive nature of the (0r0) mode Ín curved ducÈs

as opposed to the (0,0) mode Ín straight ducts with rigíd wall-s.

Three parameters, poríer reflectlon coefflcíenÈ, characteristÍc

ímpedanee and transmission loss are investigated. Experimentally

measured values of these parameters are gÍven and compared with

theoreËÍcal predictions. The presence of the partít.ion is shovrn to

drastically alter the acoustic properties of the bend and reasons for

thÍs different behaviour as opposed to a stralght duct with a partition

are given.

The partition effectively dÍvides the curved bend into

tÍro concenÈric bends. The duct system conÈainíng the concentric

bends is investigated Ëheoretically by applying equations for sound

propagatÍon in straight and curved ducts of rectangular cross section

to the respectíve parts. The propagating medium is assumed stationary.

Contínuity of acoustic pressure and axial partÍcle velocities at

adjoíning interfaces beËween straight and curved sections is postulated

to determine the Fourier coefficienÈs of waves in each sectíon. The

analysís is línited to frequencies less than the cut-off frequency of
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the (1r0) mode ín both straight and curved ducts.

4.2 ANALYSIS

The arrangement of the compound bend to be investígated

is shor^¡n ín Figure 4.1. For analysis Èhe bend has di.mensíons

R = O.L27 meters, R = 0.1905 meters and R = 0.254 meters and ís to123
be analysed by díviding into sections wíth coordínate systems and

adjoiníng interfaces as shovm ín Figure 4.1. Thus sound propagati_on

ín sections l- and 4 Ís to be descrÍbed by straight duct equaËions rqiËh

no mean flornr as deríved Ín Chapter 1, while sound propagation ín

sections 2 and 3 is to be described by the curved duct, cylindrícaI

equatíons with no mean flow of Chapter 2.

The Fourier coefficienÈs of the íncident and reflected

vraves in secÈions 1 to 4 as shown in Figure 4.L are obtaíned by

applying contÍnuity conditions across interfaces A and B between the

straight and curved ducts. Contínuity Írnplies that acoustic pressure

and particle velocity are equal on the interface between respective

duct sections. In this analysis contínuity of axial particle velocÍty

is postulated. This is supported by Èhe fact that, as the frequencies

to be considered are well below the cut-off frequency (1r0) mode, the

radial particle velocities ín the curved sections are very small.

The validity of this assumption ís borne out by experimental results.

As there is no discontinuity in the z direction it is satisfactory

to use a two dimensional coordinate system, i.e. kr, = 0.

. Both sides of each equatÍon, obÈaÍned by continuity of

axial particle velocity and pressure, are mutlíplied by cos[(mnyih)]

and integrated with respecÈ to y, lt or r. The orthognality property

of cos[(¡nn/h)y] allows determínation of the coefficients of the üraves

necessary to determine the propagation characteristícs of the bend.
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Thus applying continuity of acoustic pressure at

interface A where x = 0, 0 = 0 we obtain, assuníng a pressure form

solution of the wave equaÈion

i æ r - æ cí .,jrc +crrlrctä. *JO P'o cos [ (mn /h) vl ="Ig so , so oo , oo
(4. 1)

(4.2¡

dr (4. 3)

forR <r<R
I 2
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f-'
2

Diso

and

n#0,

*rIo P
o

forR <r< R where superscrípEs Íand rirnply íncídent,
23

and reflected waves resPectívely.

Multiplying borh sides by cos[(nn/h)y] and integrating

over the duct interfaee we obtain
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+Dr {,
c cos[(mn/h) (r-R )]dr

I
(4.4)

2

Símílarly continuíty of tangential particle velocity at interface A

provides

D=0,
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o/r) cos [ (nn/h) (r-R, ) I dr (4. 6)

The equations obtained by this urethod at Ínterface B are

gfven in Appendíx 2. At both interfaces an infínite series of modes

wíl1 be generated. As the frequency over whích the bend wíll be

lnvestigaÈed is limited to less than the cut-off frequency of the

(1,0) mode in boÈh straight and curved sections these ínfinite sets

will consist of one propagating and an infinite number of evanescent
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modes. rn order to determine the coefficients it is necessary to

truncate each infínite sum at. a value determined by two factors:

(1) Since the number of unkno¡nrn coefficients generated musÈ egual Èhe

number of equatíons, the nurnber of modes considered in straight

sections 1 and 4 is truncated at tr¡rice the number considered in curve<i

sectíons 2 and 3 (ttris relation is deríved in more detail in Chapter

5). (2) The accuracy of the analysis Ís deter¡ríned by the number of

modes considered.

Cunrníngs (L974) and Osborne (1976) have both shorrm that

non-propagating modes have only a sna1l effect on Èhe sound propagatícn

ln a curved bend. Thus in the equations developed prevíously from

continuity conditions, the number of modes considered ín the curved

sections will be Ëruncated at one while in the straight sections, one

propagating and one non-propagaÈing mode will be considered. This

símplifÍcatíon ís jusÈified, as wíll be sho\,m, by the comparíson

betr¿een theoretical and experimental results. The two modes considered

Ín both straight sections are necessary t.o provÍde contÍnuÍty across

adjoining interfaces.

4.3 E)CERIMENTAI APPARATUS AND METHOD

The bend was investigated with the arrangement shor"¡n in

Fígure 4.2. The duct system has a 0.0635 x O.L27 meter cross sectíon

and was constructed from a O.0254 meter thick wood lined with laminex.

The compound bend was machined from laninated wood and the curved

partition was rolled from 1.5mr alumínium sheet to the requíred

dlmensions and is shown in Plate 1. The sound source was posítioned

1.7 meters upstream from the entrance to the bend at whích distance

any evanescent modes are sufficíenÈly attenuated to be negligible.

The straight duct downstream of the bend was terminated røith an
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anechoic muffler with a pressure reflection coefficj-ent of less than

o.L2.

The acoustic sígnal used tras a pure tone and was measured

using a Brüel and Kjaer One Third Octave Filter. Standing hTave out-

puts from Èhís Ínstrument were fed to a Brtiel and Kjaer Graphic Level

Recorder for visual examination. Three parameters r^7ere measured.

The power reflection coefficient, an indication of how much sound

energy is reflected back towards the source, and the characteristic

impedance, and indícatíon of how severe a discontÍnuity the bend

presents to acoustic propagation were obtained by measuring the stand-

íng wave in the uPstream duct with a Brüel and Kjaer standing wave

apparatus set, and applying standing wave theory as outlined in

Beranek (1950). Values of experimental pornler reflection coefficíent

plotted against a non-dimensíonal frequency parameter koh are.shor^m in

Figure 4.3. Sínce the analysis is linite-d to less than the cut-off

frequency of the (1,0) mode in the straight duct section, for which

k h = n. values of k h are ÈerminaËed at k^h = 3.O2. Experímental'o "' - o o

values of resistive impedance Rr/po"o rt. shown in Figure 4.4 whíle

those of the reacÈive part y./po"o tt. shor¿n in Figure 4.5.

The transmission loss, a measure of the attenuation in

decibels of the incident trave, was measured by traversing a calibrated

nicrophone in the upstream duct until a maximum ín sound Pressure

level pta*(dg) ¡,¡as recorded. The sound pressure 1evel of the
oo

propagatíng $rave Eao(dB) in the downstrean duct I^Ias measured with a

calibraËed microphone inserted through the duct wall at a distance of

1 meter from the bend exit. The transmission loss rnras then

calculated from equation (4.7) and is plotted ín Figure 4.6.



163

C
.9

a)
o
(J

C
.9
u
(u

(u

(u

ì
o(L

t.0

0.8

0.6

0.1

0.2

30 1 2 t,

Wave number parameter, kgh

FlgURg 4,3, Sound Power reflection coefficíent of the compound

bend. ,theoretical;O rexperimental'

o
o

o o

oo
oo

oto o

o
o

ooo @



L64

C'
C,
C'

a*

É.

"(J
c
(!
E
a,
o-

E

c,
.t
Ut

ln
t,

É.

B

l0

6

t,

2

l.0 123
num ber par ameterWave k h0

FtgURf 4.4, Resistive part of the characteristic impedance of the
the compount bend , Èheoreticall
O , exPerimenÈal.

o



C'
L.l

C'
a_

x

"(,c
o
E
¡)
CL

E

t

L,
nt
c,

É.

5

r_65

l,

0

5

-r0
0

Wave number Parameter. koh

Reactíve part of Ëhe characterisÈic impedance of the
corrpound bend. ,theoretical-; O experímental'

2 3

10

Freunr 4,5,



L66

co
E

U)
Ul
o

C
.9

U¡
Ul

E
Uì
c
(ú

50

lr0

30

?0

o

r0

%

2

Wave number paramet er , kOh

Transmissíon loss of the compound bend.
, theoretical; O, exPerimental.

30 1 l.

o

FreuRe 4,6,



oo
Prm*

a

(1 + l*llrå"

L67

(4. s¡

Hence tr:ansmíssíon loss (dn¡ = Pt"*(dB) -2o roglo tr + Inll

1- E^ (dB) (4.7)oo'

In equaÈion (4.7) R ís the measured pressure reflection coeffícíent.

It should be noted that equation (4.7) holds only for equal values

of temperature and area of the inlet and outlet sections.

4.4 THEORETICAL PREDICTIONS

The radial terms of equatíons (4.3) to (4.6) and those of

AppendÍx 2 were expressed es po!'rer series expansions of Bessell and

Neumann fr:nctions from Mcl,achlan (1941) and integraËed using

Slmpsonrs rule by a CDC 6400 courpuËer. The resulting coefficients of

the equations were then set in an eight by eight matrix as given in

Appendíx 3 and the varíables of the uratrix were obÈaíned by a

computer program based on Croutfs rule described ín Fröberg (1970).

For convenience a reference amplítude of p1^ = 1 - 0i was assumed.
oo

The theoretical po\¡/er reflection coefficient is given by

P (dB)
oo

r
oo

The characteristíc impedance is

= PMx(dB) -zo loslo tl + lRll

zlp c /p c

P

Pi

2

dr
oo

o
(xrlooco) i+

o
R

o

(P

L o

i +pt )/(P l_

oo oo -Pr )oo

where Pi and Pr
oo oo

are complex anplitudes.

oo
(4.e)
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The theoretical transmission loss ís

T.L. = -10 logt' [t - or) (4.10)

All three parameÈers are shor^m rsith the respective experimental

values for comparison ín Fígures 4.3 to 4.6.

4.5 DISCUSSION

4.5.L Power Reflection Coefficient

As can be seen in Figure 4.3 there ís close agreement

between theoretical and experímentally measured values of the

frequencies at which maxíma occur. The small discrepancies are

thoughÈ to be due to dimensional ínaccuracies and variaËion in

ambíent tenperature during the course of experimentation.

The magnitude of the experímental reflection coefficient

is consÍstently less than predícted at the maxima. This was thought

to be due to the difficulty of deËerminíng accurately the standing

vrave ratio when it is quite large. In the case of large standíng wave

ratio the minima are quíte sharp and very easÍ1y obscured by, for'

exampl-e, overtones due to a sma1l dÍstortion in the signal. They are

thus very dífficult to measure and the measured magniËude of sound

pressure leve1 ís always too high. The standíng wave raËlo and Ëhus

the correspondíng pohrer reflectÍon coefficient in this case will always

be too small.

As can be seen in Figure 4.3, a curved 180o bend wíth a

partítíon positíoned on iÈs centrelÍne provides a large disrupti.on

to sound propagaËion. In fact the theory developed here predicts thaÈ

at the dimensionless frequencies gíven in Table 4.1-, the po\.rrer

reflecÈion coefficient is very close Èo uníty. This is in direct

contrast to a normal curved bend. Curnmings (1974) studied two 180o

bends, one of radius ratio *r/*, = 0.097 representing a very sharp

bend, at frequencíes belor¿ the cut-off frequency of the (1,0) mode and
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Table 4.1: Characterístic Frequencies of a Compound 180'

Bend for R /R = I3t

Characteristic Freq. (kh *
)o

0.6 r-.18 1.80 2.O8 2.25 2.86

*
Only frequencies below cut-off (koh = r) for the (1,0) node

in the sEraight duct are incl-uded.
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found that the pressuïe transmission coeffícíent of the (0r0) rnode

does not fall below 0.975. Thus it can be seen that positioning a

splítter or turning vane in a curved bend of a duct system leads to

drasÈical-ly differenË acoustic behaviour for frequencies below the

cut-off for the first cross mode.

The reason for the markedly different effect of a partíÈion

in a straíght and curved duct ís due to the resulting variation in

paËh length and phase of the tr^ro parts of the acoustic disturbance

propagatíng in the two parts of the compound curved duct. l{ithout the

partition the phase of the (0,0) node r¿ill be maíntained radially

across Èhe duct and wí1l be deteruined approximately by the cenÈre-

line propagation disÈance. The partition effectively prevents the

inplied redistrlbution of the disturbance across the oríginal bend,

contaÍníng it to the two seParate concentric bends formed by the

partition.

The effect of curvaËure on sound propagatíon in a curved

ducÈ in contrast to Propagatíon in a straight ducÈ l-s reflecÈed in

the respective solutions of the characterisÈic equation in cylindrical

coordinates and the straíght duct characÈerisËic equaÈion. For the

(0r0) mode ín a straj-ght duct the wavenumber is independent of duct

dimensíons, whereas in a curved duct the corresponding angul-ar wave-

number is strongly dependent on the radii of the curved section as

díscussed by Rostafinski (L976). Thus the waves Èravelling Í-n the

separaÈe curved sections, shown ín Figure 4.1, have the same amplítude

but different relative phases at each angle 0 of propagatíon, due Ëo

different values of angular wavenumber. Thereín lies the explanation

for the effect of the partition in a curved ducË'

At interface B, shown in Fígure 4.1, the two incidenÈ waves
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fn sections 2 and 3 have a phase difference induce.d by the different

Values of respectíve angular wavenumber. l.Ihen these tïlo \^/aves

recombine aÈ B, the phase difference leads to generation of non-

propagatíng cross modes and the resultíng impedance mísmatch causes

reflection of sound. Interface B is very similar to the dipole

piston source discussed in Chapter 3. Síurilarly reflected waves from

B will have a phase difference at A and an impedance mismatch results

here as well. I^Ihen these phase dífferences are close to T' large

reflection of sound occurs.

4.5.2. Characteristic Impedance

Theoretícal and experimental values of resistive and

reactlve parts of the cttaracterístÍc impedance are in excellent

agreement as shor,m in Fígure 4.4 and 4.5.

It can be seen that at Èhe dimensionless frequencíes of

koh, given in Table 4.1, a large í.npedance mismatch relatíve to the

characteristic Ímpedance go.o of the íncídent I^Iave is generated.

Thus one would expect large reflectíon of sound aË these frequencíes.

This is demonstrated in Figure 4.3, which shows high reflectíon of

sound at Ëhe characteristíc frequeneíes of Table 4.1.

At the intermediate frequencies the characteristíc

ímpedance Z/Ooeo of the bend is relatívely closer to unity than at

the bend characteristic frequencies and íncident sound ís thus mostly

transmítted at these intemediate frequencies.

As the non-dimensional frequency koh approaches n the

reactive part of the characterísËic impedance changes its general

shape demonstrated at lower frequencies. This was thought to be due

to the effect of evanescent (1r0) mode in the straighÈ ducÈ becoming

predorninant near cut-off .
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4.5.3 Transmission Loss

Much closer agreement is denonstrated by comparison of

experimental and theoretical values of transmissíon loss shown in

Figure 4.6 than reflection coefficient shown prevÍously in Figure

4.3. This observatíon supports the argument Presented previously to

explain the discrepancies shown in the latÈer figure.

At k h = 2.0 a transmission loss of 45.5 dB was measured.
o

Thus an incident pLrre tone at this frequency would be virtually

completely reflected. Such high levels of atÈenuation'suggest the use

of the díscontinuity províded by the bend as a reactive aËtenuator'

An aÈtenuator based on Èhe impedance mismatch generated by a center

body placed in a 90" bend is díscussed by Fuller and Bies (1978 B)

and also in ChaPter 6.

4.6 SUMMARY

Sound transmission in a duct system containing a curved

180o bend with a central partítion has been discussed. Theoretícal

and experimental values have been given and good agreement ls

obtained.

The partition was found to significantly alter Èhe sound

propagatíon Èhrough the bend, resultiIlg in high reflection of sound

aË a number of discrete frequencies.

The problem dlscussed illustrates the essential difference

between sound Propagation in straíght and curved ducts' Narnely, the

angular wavenumber of the (Or0) mode in curved ducts ls dependent on

the boundary condítions, whereas in the straight duct the wavenumber

ís índependent of duct geonetry.
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PART III: REACTIVE ATTENUATORS

CHÄPTER 5

A REACTIVE ACOUSTIC ATTENUATOR

5.1 INTRODUCTION

Despite extensive previous investígations, the conÈrol of

sound propagating in ducts conËinues Èo be a problem requiring

research. One particular aspect of this problem, the conÈrol of low

frequency sound, has until recently defied satisfactory solution.

Proposed attenuators invariably suffer the disadvantage of excessive

size or large.pressure drop. Attenuators fall generally j-nto two

categoríes; reactive devices which trap acousËíc energy and store it

r¡ntíl it is dissípated by snall losses inherent in the system and

dissipaÈive devices rn-hích encourage the propagation of sound into some

medium, generally líníng the wall-s of the devíce, in whích the sound

is subsequently dÍssipated.

Dissípative devíces work well for sounds of medium or

high frequencies, but are j-neffective at 1ow frequencies where the

wavelength of sound is comparable to the duct dimensíons. Reactive

attenuators usually follow the well knor,rn form of either a quarÈer

wave Ëube, a Hemholtz resonator or an expansion chamber. As well as

having a narrorÀr frequency response, these deviees tend to be bulky and

cause a high pressure drop to the flow through the duct.

In a paper by Fuller and Bies (1978 B) a reactive acousÈÍc

attenuator r¡ras described whích combined high transmissíon loss over

a faírIy broad frequency band r¿itb a low pressure drop. The attenuator r
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based upon a principle described by Rayleigh (1877) may be fitËed into

a 90" bend ín the duct system. A símilar attenuator has been

invesËigated experirnentally by Luxton (1968). Other work on reactive

aÈËenuatíon, apart from Lhe traditional methods of resonators and

plenum chambers, has largely been centred on the application of

Swinbankrs method for the control of sound in a ducË. The basic idea

of this meÈhod is Ëo introduce an antiphase copy of the sound ín the

ducË. Ideally the added sound does not cancel the incident sound in

an energy sense but causes an impedance mísmatch and thus reflection

of sound. The liniting facÈor is to generate the antiphase sígnal

such that it propagates only in Èhe direction of propagation of the

original sound. Poole and Leventhall (1976) have, with limited success,

developed a reactive attenuator based on Swinbankts proposal. They

constructed a suitable source wiÈh oronÍdirectional characterisÈícs as

proposed by Swinbank (1973) and measured the atÈenuation of íncident

pure tones and band-limited noise. The tesË rÀras carried out for low

frequeneÍes and staÈionary medium of propagation. Poole and Leventhall

measured aÈtenuatíon of pure Ëones of greaÈer than 50 dB but found

that the band-lÍmíted noíse tests gave far less encouraging results.

However, they concluded that the system proposed hras not a practical

replacement for a passive silencer as the attenuaÈion achieved was

over a very narrow frequency range. In conclusíon Pool anC Leventhall

stated that for Swínbankr s method Ëo work two requiremenÈs have to be

satisfied: (1) no sound propagation from the cancelling sources

towards the acÈual noíse source, (2) the sound introduced must be an

accurate, but phase inverÈed copy of the noíse to be cancelled.

Patríck (L967) has considered the transmission loss of

duct systems containing a seríes of ducÈs aligned in parallel, either
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wíth lined or unlined walls. He applies maÈrix techniques usually

used in the analysis of electrical círc.uíts to develop a systenatic

urethod for determíning the acousÈical characteristics of complicated

ducÈ arrays.

In this chapter, a reacËive acoustic attenuaÊor is

investigated which makes use of inherent differences in Path lengths

of the inner and outer portions of a bend fitted with a splitter Èo

generate an impedance mísmaÊch at the inlet and exit of the devíce,

causing reflectíon of sound. The atÈenuator, when fiÈÈed ínto any

convenient bend in the duct system, combines high rejection of lorv

frequency sound over a frequency range of three quarters of an octave

wíth a low pressure drop coefficient (0.46). The attenuator also

provícles very high atÈenuation in the order of 30 to 50 dB at a number

of discrete frequencíes.

Equations character izi:ng sound PropagaËíon in straight

and curved ducts (cylindrícal coordinates solution) are used to

descríbe the device without f1ow. The effect of flow on the performance

of the aËtenuator is considered ín Chapter 6. The predicted results

agreé well with those measured experímentally. An understanding of

the perfornance of the attenuator has allowed a redesign of its shape

to opÈÍmize í:-s performance. By the nature of the device the analysis

ís necessarily limited to frequencies less than the cuÈ-off frequency

of the (1r0) node in the incídent duct. Two ParameÈers' Pohter trans-

mission coeffícient and transmíssion loss are investigated and small

discrepancies between theoretícal and experimental results are

discussed.
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5.2 DESIGN

The arrangemenË of the attenuator fitted into a right

angled bend in the duct system is shown in Fígure 5.1. The frequency

range over r¡hích the attenuator is expected to be useful lies below

the cuË-off frequency of the (1,0) mode in the straighÈ sections of

the duct upstream of interface A and dornmsÈream of interface D. An

impedance mismatch ís generated aÈ interface D by the phase differe-nce

between the propagatíng \¡Iaves Ín the t\,7o separate duct sytexns. The

phase difference is achieved by placing a profí1ed center body in the

duct bend which divides the Íncident acoustic plane riTave aÈ interface

A ínto two halves that recombine at D. The relative phase of the two

separaËe propagating rüaves aÈ D is approximately determined by the

mean path difference of the tl^7o seParate channels- At the desígn

frequency, for which the mean path difference beÈween the inner and

outer channels is one half wave length, a plane wave incident at

interface A will be converÈed Èo a seríes of non-propagating cross

modes at ínterface D and at this frequency all íncídenË sound energy

to the attenuator will be reflecÈed.

As the center body is shaped wiLh gradual bends it acÈs

as a Èurning vane and a low pressure drop results across Èhe device'

The desígn frequency of the aÈtenuator was chosen to be

844 Hz corresponding to a 0.2 meter path difference in the experímental

duct. This was achieved with the crescent shaped center body of the

shape shown in Fígure 5.1, of whích two variations were Ínvestigated'

5.3 ANALYSIS

The theory of Chapter 3 provides an approxímate indication

of the power transmitted and refl,ected at interface D of the attenuator.

The analysis accurately described the reflection of sound poü/er aË the
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design frequency buÈ faíled to accounE for observed major reflections

at oÈher frequencies also in Èhe range considered. The theory of

Chapter 3 also revealed the mechanism thaÈ causes reflectÍon of sound,

namely an impedance mismatch generated by a series of non-proPagating

cross modes. Thus Ëhe attenuator was described by dividing it into

sections and considering propagation and reflecÈion of acoustíc ¡^¡aves

in each. I^Iíth the coordinate systems and joiníng ínterfaces shown ín

tr'igure 5.1, sound propagation may then be described by stTaíght duct

equatíons 1n sect.íons 1, 2, 4 arrd 6 and by curved duct equations in

sections 3 and 5.

The coefficients of each hTave r¡Iere obtained by applyíng

continuíÈy conditi-ons across each ínterface. ContinuiËy irnpl-ies that

acoustic pressure and particle velocity nust be continuous across

the plane joiníng the Êwo duct. systems. Since there is no disconÈinuity

ín the z direction ít ís satisfacËoïy to use a tr¡/o dímensj-onal co-

ordinate system i.e. k- = 0. For convenience a reference ampliÈude

iof pr = 1 - 0i will be used for the incídent r¡ave in the upstream
oo

duct.

At each díscontinuity (interface) an infinite set of

higher order modes will be generated. As Èhe frequency is límíÈed to

less than the cuË-off frequency of the (1r0) mode in all straight duct

sections, the higher modes in Èhe straight ducts will decay and only

the (0,0) mode will- propagate without attenuation. similarly the

frequencies considered are well below the cut-off frequency of the

(1,0) mode in both curved sections and only the (0'0) mode will

propagate in the curved secEions 3 and 5 wÍthout atÈenuation. Ilence

Èhe waves arr,iÐ¿ng at each interface will be 1írnited to the (0'0)

mode as all other modes will have decayed to be neglÍgible, however

the waves LeaUing each interface will consist of an infiniÈe seríes
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of higher modes as well as the (0'0) mode.

The requiremenÈ for continuity of particle velocity ruill

be simplifíed to conËinuity of tangential particle velocity along

the direction of the duct centerline. This sÍmplifÍcatíon is supported

by the considerati-on that no cross modes Propagate and thus cannot

conÈrÍbute to the nett por,rer flow. However ulÈímate justificaÈion

for the siurplificaÈion rests vrith the agreement between the results

of experiment and predictions of theory. On this basis the simplí-

fícatíon is justífied and thus continuity of acoustic pressure and

tangential particle velocity at each interface ís postulated.

The Fourier coeffícients are obtaíned by multiplying both

sides of the equatíons by cos (mry/tr) and integratíng with respect to

y, !t, y" or r as applies. Since Èhe functions cos(urny/h) ere

orÈhogonal the Pr^ coefficients can be separated.
mo

Thus continuíty of acoustíc pressure aÈ interface A where

x = 0, xt = 0 and 0 = 0 Provides

i r (s.r¡+ P cos [ (nny/h) ]
æ
x

oo oo s=0

for R <rl R
2

and P
l_ Í+P cos [ (nny/h) ] (5.2>oo oo

for O <y' <hlz

Mulriplying borh sides of equaËíons (5.1) and (5.2) by cos(nny/h) and

integrating with resPect to y, yt and r leads Ëo
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The equations derived by continuity conditions at inter-

faces B, C, and D are given in Appendíx 2.

The above system of equations consÈitute an Ínfinite seÈ

with an infinite number of unknowns. In order Èo proceed, it ís

necessâry to truncate the varÍous infínite series. TruncaÈion of each

series is determíned by tv¡o considerations. firstly, the accuracy of

the resultíng mathemat.ical expression which is desired when compared

with experimental results and, secondly the number of eqrrations

necessary to determine all of the unknor^m coefficients in the several

truncated series.

' Let the number of modes in straight sections I and 6

truncate aÈ L, in straíghÈ sections 2 and 4 aÈ Q and in curved sections

5 and 3 at N. In thís case the total number of unknown coefficÍents

Uis

ü=2L=4N=4Q (5.7)

r¡hi1e the toÈa1 number of equatíons G is

G = 4L = 4Q (5.8)

Cunmings (L974) has shovm for an interface between a

straight and curved cut the number of modes in each duct section must

be equal for solution, hence

N = Q (5.9)
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Therefore equating the number of unknor,ms u and equations

G gives

L = 2N = 2Q (5.10)

Hence the series describing propagatíon in sections 1 and

6 must be truncated at twíce Èhe number of terms of the serÍes describ-

ing sectÍons 2, 3, 4 and 5.

At each díscontinuity ín the duct system an infínite

number of higher order modes are generated. Cumnings (1974) has shown

that at frequencies well below the cut-off frequency of the (1r0) node,

non-propagaÈing modes have only a sma1l effect on sound propagation

through a curved duct-st.raight duct interface. On comparing the

theoretícal and experimentally measured impedance (assumed ent.irely

reactíve) of a 180" curved bend terminated by an Ínfinite impedance,

cuurnings found good agreement with prediction when the analysis was

truncated at the (0r0) mode. For thís reason and in the interest of

economy of computíng tÍme, the present analysis is 1íurited to

consíderation only of the (0,0) mode. Hence we set N and Q of equati-on

(5.9) equal Èo unity and thus L of equation (5.10) equal to trnro.

Therefore the number of modes considered ín straighË secËions 1 and 6

will be limited to tr¡ro, one propagating and one evanescent mode, while

only one propagaËÍng mode will be consídered in all other sections of

the attenuaËor.

This sirnplification Ís also supported by the analysis of

Chapter 3, where it vras shonm a first order modal truncation gave a

very accurate prediction of'the reacÈive radÍatíon Ímpedance of a

surface similar to interfaces A and D.

5.4 E)GERIMENTAL APPARATUS AND METHOD

The atËenuator vras investÍgaÈed with the arrangemenË shown
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in Figure 5.2. The ducÈ system basícally consisted of the apParatus

used Èo test Èhe compound bend of ChaPter 4, having a 0.0635 x 0-L27

meter rectangular cross section. The aÈtenuator was construcËed from

machined l-aminated wood painted on the inside wÍth a hard esÈapol

varnish to approximate the rigid wa1l conditions. As in ChapÈer 4

the sound source was positioned 1.7 rneters upstream from the entrance

to the attenuator at !,/hich distance all cross modes generaÈed locally

by the speakers would have decayed to be negligibl-e. Thus the incident

trave at interface A of Èhe attenuator hTas plane with constant pressure

and velocity aurplitude across Èhe duct.

The downsÈream duct was terminated with an anechoic

termínaEíon of Èhe arrangement shor^m ín Figure 5.2. The pressure

reflectíon coeffícient of thís terminaÈion \^ras measured separately over

the frequency range considered and found to be less than 0.1. Ilence

the downstream duct appears infínite to the exit of the attenuaËor

and only one \¡rave wfth coefficíent U]^ need be assumed to be proPagatíng
oo

in the straight ducÈ sectíon 6.

The original attenuator ínvestigated consÍsts of a crescent

shaped center body and surrounding duct with dimensions R, = 0.229

meters, R = 0.292 meters, R_ = 0.051 meters and R = 0.114 meËers'2-34
where the corresponding radii are shown in FÍgure 5.1. This arrange-

ment ïesults in a path difference of 0.2 ueters between the mean center

línes of the tl^ro seParate ducts. The corresponding desígn frequeney,

assr-míng plane wave proPagation in all sections is 844 Hz.

!Íhen the analysis of the present chapter had been completed

and verífied a second, optimum, attenuator \^Ias constructed and tested.

It had dimensíons R = .0184 meters, R = o.248 meters, R- = 0.006-?-3

meËers and R = 0.07 meters and is shornm in Plate 2'
4

Two parameters, sound power t.ransmission coefficient and
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5

PUff 2, The optimr:m attenuator
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transmissíon loss r^Iere measured. The sound Power transmíssion

coefficient provides a measure of how much energy t-he aEtenuator wí11-

reflect and vras obrained by measuring the acoustic standíng wave in the

upstream duct with a probe as indicated in Figure 5.2. Maxímum and

ur-inÍmum pressures hlere measured and recorded as in Chapter 4 using a

Brüel and Kjaer Spectrometer set to a one-thírd octave filtering band

and a Graphíc Level Recorder. The transmission coefficient rrras obÈaíned

from the measured standing I¡Iave raLio ns using equatíon (5.11) and is

shown plotÈed Ín Figure 5.3 for the original attenuaÈor.

(s. 11)t

The transmissíon loss of Èhe attenuator is defined as the

reductíon in decibels between the sound pressure level of the incident

w".r" Pí and the transmítted wave fl^. Transmission loss provides an
oooo

indication of the performance of the attenuator as it shows to what

degree the sound Pressure level in the duct will be reduced by its

installaÈions. As the duct downstream of the attenuator is terminated

anechoically, and Èhus apPears ínfiníÈe, values of transmission loss

in this case will be i-denÈical to values of inserËíon loss for the same

arrangement. The procedure of Chapter 4 ¡¡as used to determine Ëhe

experimenËal transmission 1oss. A calibrated microphone was Èraversed

in the upstream duct until a naximum in sound pressure level Ptt* t""

reached. The sound pressure level of Èhe transmitted wave Eio tt"

measured ì¿ittr a calibraÈed microphone positioned midstream in the

acoustic flow 0.3 meters from the exit of the atÈenuator' The trans-

mission loss of the attenuator is then given by equatíon (4'7) of

Chapter 4, rePeated here.

ct
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TransmissÍon Loss = rll"{an) -20 logr0 [1 + lnl I

1 (s. rz¡-E (dB)
oo

r¡here R is the measured pressure reflection coefficíent. Values of

experimental transmission loss determÍned from equation (5.12) for the

original atteriuator are plotted in Tigure 5.4.

The transmissÍon loss of the attenuator rvas also measured

using broad band noíse ín one-third octave bands. To determine the

transmission loss in this case, sound pressure levels vlere measured in

the incidenÈ straight ducË terminated directly with the anechoic

terminatíon. The ínput voltage leve1 to the speaker hlas recordeci in

each one-Ëhírd octave band for later use. The attenuator was then

placed in position between the Íncident duct and the anechoic termination,

the inpuÈ voltage level to the speaker r¡Ias set to the identíca1 value

as used previously in each one-Èhírd octave band, and the sound Pressure

1evel tras recorded dormstream of the atÈenuaËor. The transmission

loss (for broad band noise) was then, directly the difference beÈv¡een

the two measured values of sound pressure level. Thís EechnÍque over-

comes the diffículty in determÍning the incídent sound pressure level

from the recorded sound pressure level in the uPsËream duct with the

attenuator in posiÈÍon. Experimental values of transuíssion loss with

band lin-ited broad band noíse determined by this nethod are shown in

Figure 5.5.

5.5 THEORETICAL PREDICTIONS

The radial terns ín equatíons (5.3) to (5'6) and of

Appendix 2 were expressed as por¿ier series expansions of Bessel and

Neumann funcÈions from Mclachlan (1934) and integrated using Simpsonrs

rule on the computer as ín secÈion 4.4 of Chapter 4 fox the compound
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bend. Each series hlas sunrned untíl an error of less Èhan 10-4 was

obtained. The resulting constants for each equation were then set Ín

a L2 x 12 complex matrix, shoum in Appendíx 3, and the variables of

each wave (Fouríer coefficients) were obtained by solving Ëhe matrix

using a computer program based on Croutrs rule. The predicted values

of power transmission coeffícient r^¡ere then evaluated from Èhe

obÈaíned coefficients by

q -1-r- (s.13)t

The theoretical values obÈained for the original attenuator

are shown in Fígure 5.3 where sound po$/er Èransmissj-on coefficíent is

plotted against a nondimensÍonal frequency parameter, koh. Experimental

values are also shor^m Ín the fígure for comparison.

The theoretical transmissíon loss ís evaluated as in

Chapter 4 as

T.L. = _10 1og (a.) (5.14)

where oa is the theoretical por,/er transmission coeffícient.

5.6 DISCUSSION OF RESIILTS

5.6. 1 Power Transmíssion CoeffÍcíent

As shown in Figure 5.3, close agreemenÈ Ís observed between

the predicted and measured frequencies at whích minima in the trans-

mission coefficient are observed, especially at l-ower frequencíes.

Slight dÍscrepancies between the theoretÍcal and experimental frequencies

of mi¡rímun transmission coefficient are thought to be due to

dimensional inaccuracies in the geometry of the attenuator affecting

the mean path dífference, between Ëhe two ducts. At low frequencies

the wavelength of the incident sound is very nuch larger Ëhan the duct

srrall scale dimensions and smal1 discrepancies result. However, aÈ

2
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high frequencies (koh + 3.0) this is no longer Èrue and the díscrepancies

are larger. Another possible cause of discrepancy may have been ambíent

temperature fluctuation during the course of experimentation.

The magnitude of the transmission coeffícíent which agrees

closely at low frequencies ís progressively greater than predícted at

increasing frequencies. Three possible reasons for this behaviour

are suggesËed as follows:

(1) The wal1s of the experimental duct are riot absolutely rigÍd

as supposed by theory. In fact they were found to víbrate and radíate

sound. Thus víbraÈion through the walls acts as a flanking PaÈh to

increase the apparent transmission through the attenuator (as detected

by measurement of the upstream sËanding wave).

(Z) The minima of the standing rüave measured in the upstream

duct becones sharper wÍth increasing frequency, particularly for large

values of standing wave ratio n". Large íncreases or decreases in

measured sound pressure level Ín this case hrere found to occur in very

small changes ín posítíon of the standing wave probe. Thus Èhe accuracy

of the minima detecÈed is lirnited by the síze oî. the probe end hole

(some end effect is apparenË) plus small distortions in the sígnal

causing the actual posítíon of the míníma to fluctuate slightly. This

effect obviously becomes rrorse wiÈh increasÍng frequency as the mínima

of the standing wave becomes sharper. The detection of the maxima of

the standing wave is much more accurate as it ís characterized by a

gradual change in sound Pressure level with dístance x in the duct'

(3) The duct dímensions are not exactly as described by theory.

Minimum Ëransmission at the desígn frequency may be fully

accounted for i¡r terms of reflecÈion at the bends exit plane, interface

D of Fígure 5.1. In fact, the theory of Chapter 3 which describes the

exit plane as composed of two vÍbraÈing pistons (aír) but wiÈh variable
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relative phase, dependent upon the wavelength to path difference ratío

descríbes quite h7e11 Èhe overall transmission of the attenuaËor.

However the presence of additional minima ín the experimentally

determined transmissÍon coefficíent Èhat occur at values of koh = 0.6,

1.3, 2.6...shown in Figure 5.3 cannot be explained by considering

reflection'at the exit interface D alone. The additional miníma are

due to multí-reflections at interfaces A and D and are fully accounted

for by the more exact theory presented in this chapter. The frequencies

at which additional minima occur depend upon Ëhe uragnítude of the path

difference relatíve to the mean lengÈhs of either of the ducts in the

corrpound bend. For convenience ¡,re will take the ínside mean length as

the standard length for comparison. Thus the ratio of the inside duct

mean length to paEh difference determines Èhe frequencies of addítional

minima.

The following strategy ís now possible. choíce of the path

difference determines the design frequency while independent choice of

the mean insíde path length to path dífference ratío determines the

frequencies of additíonal minima. Thus for a given design frequency

the ratio can be chosen to optimize the rejection characteristics of

the attenuator by appropriate adjustment of the frequencies of the

additional minima. Optímum performance in this particul-ar case is

taken as a ten decibel transmission loss over as wide as possible a

frequency range. FÍgure 5.4 shor¡s that the transmíssion loss of the

original attenuator is charaeterized by a series of hígh rejectíon peaks

interspaced by 1ow rejection of sound at a number of discrete

frequencies. If the peaks could be moved closer to each other, centred

on the design frequency then the minima between peaks may be increased

to greater or equal to Een decibels.

In practíce one proceeds by keeping Èhe path lengÈh difference
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between the insÍde and outside ducts in the bend consÈant and varyíng

their total leugths or equívalently the raÈío of their lengths. The

raÈÍo of lengths of the original attenuator whose transmissíon co-

efficient is shown in Figure 5.4 is 2.00, however Ëhe optimum ratío

of lengths for a crescent shaped center body wjth a desígn frequency

of 844 Hz lnas been determined by these investigation,s to be L.67.

I^Ilth thís choice the position of the extra minima are moved closer to

the desÍgn frequeney and a continuous rejectíon band of greater than

ten decíbels over three quarters of an octave is achieved.

The attenuator designed for optimal attenuation

characteristics has Ehe following dimensions. Referring Èo Figure 5.1

its radii are R = 0.184 meters, R = 0.248 meters, R^ = 0.006 meters
I23

andR =0.07meters.
4

The theoretícal and experímentally measured transmíssion

coeffici-ent val-ues of this attenuator are shown in Figure 5.6. It

can be seen that the extra minima have índeed moved closer Èo the

design frequency than those shovm Ín FÍgure 5.3. In the model

attenuator a rejectÍon band of 430 Hz centered at a desígn frequency

of. 844 Hz r^ras achieved.

Closer agreemenÈ is obtained ín the posíÈion of theoretical

and experimentally measured mÍ¡rima produced by Ëhe optímum attenuator.

This ís due to more accurate machíning of eomponents ín the aÈtenuator

thus achievíng the correct mean path lengths.

5.6.2 Transmission Loss

Theoretical and experinentally measured values of trans-

mission loss for the optimum attenuator are shown in Figure 5'7 f'or

a pure tone, while Èhe tralsmission loss of the opÈímum aÊtenuator

wÍth broad band noise source is shor'¡n in Figure 5'8'

At the design frequency the rejection of sound is very
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nearly complete so that the transmíssion loss in a narrovl frequency

band about the design frequency depends upon the bandwídth. The

narror¡/er the bandwidth the greater the transmission 1oss. The peaks

shown ín FÍgures 5.4 and 5.7 approach infinity (dB) for a narrowing

frequency band. In the analysis used Èo derive the theoretÍcal

transn-ission losses of Figure 5.4 and 5.7 a bandr¡idth of. 25 Hz l:as

been used but as pure tones r^rere used for measureuent of the trans-

mission loss, occasionally very much greater rejectíon levels than

predicËed were observed. Subsequent investigations with narrower

theoretícal bandwidÈh incremerits shor^red that Èhese high anomolous

val-ues could always be accounted for on Èhe basis of Èhe analysis

presented here.

Srnal-l discrepancies between the theoretical predictions and

the experímenÈal measurements are Èhought Èo be due to small

dimensional inaccuracies in the models as prevíously discussed.

However, much closer agreement Ís obtained betr¿een the actual magnÍ-

tude of Èhe theoretical Èransmission loss and that measured

experimentally, than that, shown by the Èransmission coefficíents in

Fígures 5.3 and 5.6. Thus the attenuator perforns far better than

shown by measuríng the sËandíng r.¡ave al-one. For example, the power

transmission coefficient of the optimum attenuator rüas measured to

be 0.13 at the design frequency. Interpolating the experímental

transulission loss from this value, using equation (5.14) one obtains

an inËerpolated experÍmental Ëransmission loss of 15.6 dB. However

the acÈually measured Ëransmisslon loss at the design frequency of

the optÍ-mum attenuator is seen from Figure 5.7 to be 45 dB. This

result tends Ëo supPort reason number (2) presenÈed previously to

explaín the díscrepancies betr,¡een the magniÈude of experimenÈal and

LheoreÈícal transmíssíon coefficient. Hence measurement of the
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standing rvave alone i.s a poor indication of the performance of an

attenuator, unless special precautions are underÈaken to increase the

sensitivity of the microphone probe r^riÈh distance and increase the

stability of the acoustic signal. This especially applies at higtrer

frequencies.

Figure 5.7 shows thaÈ the opÈimum attenuaÈor achieves a

hígh transmission loss aÈ a number of characterisÈic frequencíes

corresponding Èo the naÈural reflections between interfaces A and D

of the attenuator. At these frequencíes' a PuIe tone would be

virtually completely reflected. As well as this a continuous

rejection band of ten decibels over three quarters of an octave is

obtaíned by careful choíce of the attenuator dímensions as discussed

previously. This result should be compared to the much narro\^rer

operating band of the origínal attenuator.

The transmission losses measured for the original and

opÈimum attenuators wíth a broad band noise source, shovm in Fígures

J.5 and 5.8, also índicates the wider operating band of the optímum

attenuator. For the opËímum aËtenuaÈor greater than ten decibels

transmission loss ís obÈained over tvlo one-third octave bands' It

is also interestíng to note frorn these figures Èhat by superimposing

the corresponding pure tone transmission loss the broad band trans-

míssion loss is seen to be approximately a logaríthmic sum Of the

pure tone Ëransmíssion Ioss, as one would expect. The figures also

show that the attenuaÈor substantially reduces broad band noise'

5,6.3 Curved Duct Radial Pressure Dístribution

It Ís appropriate to the understanding of the perfomance

of the attenuator to introduce the concept of curved duct radíal

pressure dj.sÈríbution. Values of theoretical and experimentally

Deasured curved duct pressure arnplítude distríbution for a duct of
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aspect ratÍo a = 2.25, which corresponds to curved section 3 of the

original att.enuator have been discussed in Chapter 2 an.d are shown

in Figure 2.5. It can be seen that aË lorv frequencíes' correspondÍng

Ëo values of the dimensionless frequency koh a 1.5 acoustic waves

propagate wíth only a small variation in pressure amplitude across the

duct for a bend of aspecÈ ratío a= 2.25. However as the frequency

increases, the variation in sound pressure amplitude across the duct

becomes more marked. If one had assumed plane l^tave propagation in

Èhe attenuator at all frequencíes (below the cut-off frequency of the

(1,0) rnode) iÈ would apPear thaË this assumption would hold at lower

frequencies but be inaccuraÈe at higher frequencies due to non plane

propagatlon in the curved secÈions. Ilowever later work has shor'¡n

thÍs not to be the case. The actual variation in Pressure or velocity

amplítude of the (0r0) urode has líttle effect on the ímpedance of the

curved duct. The effect the curved duct does have is Èo change the

effectíve paÈh lengÈh of the wave slíghtly as discussed by Cuurmings

(Lg74). For the frequencies and aspect ratios used here this effect

is consídered marginal.

5.7 GENERAI DESIGN GUIDE OF ATTENUATOR

The design guíde proposed is intended to be approximate

and apply only for low flow velocitíes in the ducÈ system. Flow

effects at higher velociÈies will be considered in the nexÈ chapter.

The basic assumpËion is that the acousÈíc waves propagate as plane

rüaves wíth phases determined approximately by the mean path length of

Èhe duct Ín all sections of the aEÈenuator. In thís case' any shape

as well as the crescent shaped center body may be used to give the

required dímensíons.

The basic design steps are:
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(1) Calculate the path difference necessary to give the

requÍ-red deisgn frequency.

(2) Optirnize the band\^ridÈh by careful choice of duct dimensíons

using a trial and error method based on this analysís.*

(3) Adjust Èhe shape of the center body to give the combínation

of most compact shape requíred with the leasÈ sharp bends

to give the lowest pressure drop.

* This step may be changed if for ínstance it is desíred to cancel fan

harmonics, then the frequencíes at which maxíma occur may be adjusËed

by choice of dimensions to correspond to the frequencies of the fan

harmonics.

5. B SUMMARY

An attenuator with an inherently low pressure drop

coefficient whích rnay be inst'alIed in a duct bend has been described.

The attenuator when optínally designed Í-s capable of providÍng a

transmÍssion loss of greater Èhan Ëen decibels over a frequency range

of three quarters of an octave in the very 1ow frequency range.

Optinization of design is facilitated by a theoretícal deseription

that has provided good agreement between theory and experiment.

The attenuator also provides large transmissíon losses at

a seríes of discrete frequencies all below the cut-off frequency for

the first cross mode Ín the duct. The presence of these discrete

frequencies ís explained by reflection of íncident sound at the exit

and enËrance of the attenuaÈor. TheÍr relative distribution is

determÍned by the geoneÈry of the aÈtenuator.

It Ís found Ëhat measurement of the standing wave alone

gives a poor indícaËion of the performance of the attenuator due to

dÍfficulty in measur-ing accuraËely the minima of the generated standing

wave when rejection is high.
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CHAPTER 6

THE EFFECT OF FLOW ON THE PERFORMAN CE OF A RNACTIVE ACOUSTIC

ATTENUATOR

6.1 INTRODUCTION

In Chapter 5 a reactive acoustic attenuatol: \'üas

descríbed which combined high transmission loss rsith 1ow pressure

drop. Although the laËÈer chapter established that high levels of

aËtenuation can be combined rn'iËh good aerodynamic propertÍes, it did

not consider convection of the ProPagating medium.

Previous ínvesÈigatíons into the effecÈ of florv in the

attenuatíon obÈained in lined ducts and ducts with sÍde branch

resonators have shown t.hat flow can sígnificantly alÈer the performance

of an attenuaror. l"lechel (L962) and Kurze and Al-len (1971) found that

flow in the dírection of propagation of sound in a lined duct reduced

the atÈenuatíon obtained while flow in the direction opposíte to the

direction of propagaÈíon of sound increased the attenuatíon. Theory

shows that to a first approxímaÈion the effect may be accounted for

by an increase or decrease ín wave sPeed due to convectíon.

Lambert (1956) calculated theoretically the insertion loss

of a side branch resonaÈor as a function of Mach number in Ëhe main

ducË and found the theoreÈical insertion loss characteristics

sensiËive to flow especially at frequencíes near resonance. He

found that small ehanges in Mach number could consÍderably alter the

lnsertíon loss obtained near resonance and showed this Ëo be due to

flow índuced changes in Ímpedance at the various junctions' It is
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also interesting to note that Lanbert could not confirm these resulÈs

experimentally due to noise generated by the air flow excíËing the

air column Ín Èhe quarter wave tube. This result poinÈs out that

a sÍmplifíed approach to Èhe problem of fluíd convection may lead

to misleading theoretical results.

In this chapt.er the effect of Mach number on the performance

of the attenuator díscussed previously Ín Chapter 5 is consídered.

The effecËs of flow have been prevíously discussed by I'uller and Bies

(1978 C) and (1978 D). As the performance of the attenuator is based

upon ímpedance mj-smatches generated by differences in arrival times

of propagating lraves, and is thus crítically dependent upon \^rave-

number, it ís expected that flow will sígnificantly affect the

operaEing characteristics of the device.

Equations recently developed by conformal mappíng

Èechniques descríbed in Chapter 2 which describe low frequency sound,

propagaÈion in the curved ducts wiÈh flow are used to analyse sound

propagation in the curved parts of the attenuaÈor. Equations for

sound propagation in straíght ducts hrith floh7 are used to descríbe

the straighÈ parÈs of the attenuator. The analysis closely follows

the procedure of Chapter 5 except that flow of the propagatíng medíum

is considered. As described in ChapËer 2,fLow is expected to modify

the energy as well as wavenumber dependent propertj-es of the

attenuator.

Four parameters, pressure reflection coeffÍcient, po\^rer

reflection coefficíent, po$rer Ëransmíssíon coefficient and transmission

loss are invesÈigated theoretically and experÍurentally for varying

Mach numbers. Good agreement is obtained and small discrepancies

between predíction and measurement are discussed. These four parameters
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are all necessary to show the varied effect of flow on the operating

characÈeristics of the attenuaÈor. The two cases of sound propagatíng

wiÈh and against flow through the attenuaEor are considered. By Ehe

naÈure of the device the analysís Ís necessarily lÍmited to frequencies

less than the cutoff frequency of the (l-r0) mode in Ëhe upstream

incident duct at the highesË value of Mach number considered. The

fluid flow is assumed to be uniform, homogenous and irrotational and

due to practícal experimental considerations is liurited to values of

Mach number less than 0.1. Convection of the propagatíng medium ís

found to alter the perfornance of the attenuator sígnificantly due Ëo

both r,ravenumber and energy propagatíon effects.

6.2 ANALYSIS

The equaÈions to be used in the analysis for sound

propagation in straight ducts and curved ducÈs with flow have been

prevíously di-scussed in Chapters 1 and 2. It ís worth noting at this

stage that Ëhe modes considered in each section will be exactly as the

no-flow case i.e. one mode, the (0r0), in each sub-sectíon of Ëhe

attenuator and two modes in the incident and exít duct of the attenuator.

Thus the curved duct equations will be limíted to Èhose describing

the (0r0) mode. If one considers equations (2.86) and (2.89)' which

described sound propagatíon in curved ducts with mean flow by

conformal urappíng techníques, ín relaËion to a curved duct of angle 0

ít can be shown that Èhese equations for downstre¡m propagaËion of

sound reduce to

p" = Coo.xp[koR, R (1+M)
m

X1 (6.1)

1to=c kooo(])p
o

(1+M) explkoRtr' * arb-, (6.2)
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In both these equations the harmoníc function exp[-íot] has been

omítted, n (=X/0) is the mean radius of the curved section and X is
m

the mean centerlíne distance of Èhe curved duct. Thus in the case

of only the (0,0) mode, equations (6.1) and (6.2¡ show that one is

effectively consideríng the curved duct section as an equívalent

straight duct. Hence by considering only the exít and inlet

interfaces of the attenuaËor and applying straíght duct equations

with f1o¡^r and with relative phase determined by the mean centerline

distance one would arrive at exactly the same ansvier as the analysis

proposed here. However use of the conformal mapping equations has

the advantage of enabling Ëhe analysis to be exten<ied to include

higher non-propagating modes generated aË Ehe interfaces of straight

and curved ducts with flow, íf a greater acculacy of the analytícal

result is required. Due to the low frequencíes and gradual bends

considered, the sma1l change in radÍal position from the mean radius

aÈ ¡,rhich the angular llavespeed equals the phase speed of the (0'0)

mode in the straight duct is thought to have only a marginal effect

on Èhe analysis.

The meÈhod of analysÍs follor,rs very closely that ouÈlined

in chapter 5 except ÈhaÈ equations describÍng sound propagation in

ducts with convectlon of the Propagating medium are used. The

procedure is Ëo: (1) divide the aÈtenuaÈor into sectÍons wiËh relative

coordinate systems i Q) match pressure and acoustíc velociÈies of

propagat.ing and evanescent v/aves across interfaces of each section

using conÈinuity conditions; (3) obtain the requíred Fourier coefficienËs

for deterrúnation of transmission coefficients and transmíssion loss

by using the orthognalíty propelty of the cos(nmy/h) function.

Condítion (2) implies continuiÈy of pressure and particle

velocity at each interface. In the case of flow of the propagating
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medium, the particle velocÍty musÈ include the convection term

normally ignored in the no-flow case. As both wave systems on either

sj-de of a particular inÈerface are travelling in a medium convecting

at the same velocity vector, then t.his continuiÈy condition is correct.

However for the case of a \¡rave strikíng a boundary between Èwo fl.uids

moving at different velocitíes then contínuity of parÈicle riisplace-

ment raÈher than velocity must be used (Ingard (1959)).

As described by equations (1.63) and (1.64) of Chapter 1

the particle velocities are related to the acoustic pressure by

dux

uux

p _dç
mo

(6.3)

and

9o0

ou)'o
ruc-mo

-u

_p (6 .4)

where E*. = ko(e-M)/(1-eM) and Elo = ko(e*M)/(l+eM). These svmbols

wÍl1 be used in the following analysís. Tor the (0,0) urode

=tç.o
The arrangement of the attenuator, rvith coordinate

systems and acoustic waves considered, is shornm in Fígure 6.1. As

mentioned previously the number of modes considered will be exacÈly

as the no-flow case. Thus only the (0r0) mode 1s shown in the sub-

sections of the attenuator. Two varíations of the atteriuator shown

in Figure 6.1 will be investigated. These are the optimum attenuator

with dimensions R = 0.184 ueters, R = O-284 meters, R- = 0'006
i23

meters and R = 0.076 meters and the original attenuator with
4

dimensions R = O.229 meÈers, R = O.292 meters, R^ = 0.051 meters and
123

R = 0.114 meteïs. The attenuator is acoustically described by
4

dividing ít into sections with suítable coordinate sysÈems as shovm

and considering soun-d propagation and reflectíon of travelling \ÁIaves

Ín each section. As there is no discontinuíÈy in Èhe z directíon, a

_dg
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two dímensional coordinate system is used.

Since the frequencies consídered are well below the cut-

off frequency of Ëhe (1r0) mode in the curved sectíons only the (0,0)

mode is consídered in Èhese parts of the attenuator. Evanescent

curved duct modes generated at the ínterfaces are also ignored. This

sÍrnplificaËíon gave an accurate result ín the no-flow case of Chapter

5 and is used again here. As explained in Chapter 5 since the number

of modes considered in the curved sectÍons is l-imited to one, for a

solution to be obÈained at inËelfaces B and C then the number of

modes considered in sÈraíghÈ subsections 2 and 4 wíll also be one each.

Similarly as ín Chapter 5 continuity of axial and tangential particle

at the interfaces Ís postulated. This approximation gave aR accurate

result in the no-flow case and r¿i1l be used again here.

Hence at interface Ar where x = 0, 0 = 0, Xt = 0 continuity

of acoustic pressure provides equaËions (6.S) and (6.6)

Plo e*pli(urt - oåo"rf #o Pro cos[(mn/h)v] exp[i(r¡t + kto*)]

= aoto exp[i(r,it - uåtll * tlo exp[i(urt + vue¡1

for0<y<t,lz

(6.s)

L exp[i(urt - r<fox)] *.Eo t cos [ (mn/h)y] exp[i(t¡t + k[ox)J

= Ai expli(ot - kdoo oo
xr)l * A exp[i(ot - kÏo"')] (6.6)

r
moand P

oo

t
oo

fort./2<ysh

In equatíons (6.5) and (6.6) and equations to follow

superscripÈ i and r denote íncídent and reflected wave amplitudes in

the attenuator respectively, while superscripts d and u denote doron-

stream and upstream propagation of sound respectively'
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The Fourier coefficíenËs are obtained by urultiplyíng both

sides of the continuity equatÍons by cos [ (mn/h)y] and integrating

over the interface surface wíth respect co y, Ir or r. The

orÈhognality property of the latfer function a11ows determination of

the PI and Ei coefficients for m = 0 , L, 2... as given in equaÈíonsmo mo

(6.7) and (6. B) .

il = 0,

ml0,

n#0,

pí h + pr h = ci nlz + ct hlz + Aí :nl2 + Ãr hlzoo oo oo oo oo oo
(6.7)

rroh/2 = .å"(#) tl - (-l)Inl * .lo,#/ 11 - (-l)ml

-A o

Símilarly continuity of tangential particle velocity at A provides

D = 0,

a

it h-Prk h=coo oo oo oo
k

k

(h/2) - coo oo

"(th) 
tl - (-r)'t - Aåocflo'"> rr - (-1)1ol (6.8)

P

T
mo

i

+Aaoo

tk
oo oo

(h/2)

r(]nlz) - A k (t,l2)oo oo
(6. e)

oo

-P

(6.10)

The equations derived for continuity of pressure and axial

particle velocity at Ínterfaces B, C and D are gíven in Appendíx 2.

It can be seen that these equations consist of an infinite set wíth

an infinite number of unknornms. In order to proceed r¿e shal1 Èruncate

the series so Èhat Èhe number of unknowns equals the number of

e[ocr,lzl = colokoo,*; tr -(-l)In] - clokoo(#n) tl -(-l)Itrl

- ei^k-,o<fr1 tl -(-1)'l + lfotoo,#, tl -(-t)Inlooc
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of equations. As already stated Èhe number of modes consí<lered

in Sect.ions 2, 3, 4 and 5 are limited Èo one each. Thus to solve

Ëhe problem two modes musÈ be consídered in Sections 1 and 6, as

described in the prevíous chapt,er. The two modes considered in

Sections 1 and 6 are necessary to provide contínuÍÈy across

interfaces A and D when the propagating hraves in the minor ducÈs are

out of phase.

6. 3 E)QERIMENTAL APPARATUS AND I"IETHOD

The performance of the attenuator with flow was

investígated wíth the arrangement shown in Figure 6.2. The duct

sysËem is basically the apparatus used for previous investígations

lnËo sound propagation in ducts, having a 0.0635 x O.I27 meter cross

section fabricated in removable sections from 0.0254 meter thick

wood. A centrifugal fan driven by a variable speed D.C. motor

provides air flors through the duct sysÈem at dífferent Mach numbers.

Fl-ow velocities \¡rere measured midstream using a pitot-stat.ic Èube

positíoned as in Figure 6.2. Due Èo flow separation in the

attenuator it was not thought necessary Èo measure Èhe flow velocity

using a more accurate meËhod than at midstream. At the maximum

ratíng of the moËor a flow rate of M = 0.08 was measured in t.he

upstream duct. A nuffler was posiËioned downsÈream of the fan to

reduce fan generated harmonics and at.tenuate negative travellíng

!¡aves.

For measurements of sound propagating wíth flow the sound

source was posiËioned 1.7 meters from the entrance to the attenuator.

To eliminate reflections from the exíE plane of the straight duct

section, the dcwnstrearn duct was anechoícally terrninated. For

measuremenÈs of sound propagatíng agaínst flow the anechoic termination
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was removed and the sound source positíoned L.7 meters downsÈream.

In this case the fan muffler acËs as an anechoic termination to

v/aves leaving the attenuator. The expelimental apparatus arranged

for measurement of the upsÈream case ís shor'¡n in Plate 3.

A pure tone was used as the acoustic signal and tlhen

measured with a Brüel and Kjaer HeËeroclyne Analyser with a 3.16 Hz

bandwidth provided a sígnal Èo noise ratio greater than 50 dB at

maximum fl-ow. A large signal to noíse ratio is necessary to detect

maxima of transmission 1oss. The frequency range investigated was

from 200 to 1200 Hz which is less than the evanescent cut-off frequency

of the (1r0) mode at M = 0.3. tr'our parameters l^lere measured r'rhich

ïrere pressure reflection coeffícíent' po\^rer reflection and transmíssion

coef fícÍents and transmission l-oss.

The pressure reflection coeffÍcient defined as the'ratio

of the reflected pressure amplitude to the incident pressure amplitude

was obtained by measuring Èhe acoustic standing wave in the incident

duct. As discussed by Alfredson (1970) it is possible with mean

downstream flow to measure a Pressure reflecËion coeffícíent bf greater

than unity. In this case the usual standing wave theory (Beranek (1950))

ís urodified to keep the nett energy flux in the correct direction'

Thus for the reflection coefficient R greater than unity,

the standing wave raËio n" ís gíven by

n (1 + R)/(R - 1) (6.11)

and for R less Ëhan unítY

n (1+R)/(1-R) (6.L2)

hlhether-R is greater or less than unity can be determíned

byobservingtheminimaofthestanrling$/aves.IfR>1themínima

s

s
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wiLL deCZ,eC¿Se a.s the probe moves towards the source and equation

(6.11) mrrst be used Eo determine R. If R < 1 the miníma will

incz.ease as the probe moves Èowards the source and equaÈion (6.L2)

must be used.

Values of experimental pressure reflection coefficíent

for the optímum attenuator are plotÈed in Fígures 6.3(a), 6.3(b) and

6.3(c) for both upstream and downstream propagation of sound for flow

speeds of M = 0, 0.04 and 0.08 respectívely.

The experimental po\^rer reflection and transniission

coeffícíent r^rere deËermined from measured values of pressure reflection

coefficíenÈ. In Ëhe no-flow case the power reflection coefficíent

ís simply the square of the pressure reflection coeffícient. Hor'rever

with mean flow as discussed previously the Pov;er reflecÈion and

transmission coeffícienÈs are relaÈed for both upstream and down-

stream cases to the pressure reflection coefficÍent by

d
T

CI n'zc{fir'z

*'(ig-r)'

(6.13)

g ( 6. 14)

and ot 1-s r (6. ls)

Values of experimental power reflection coefficient for the optímum

at,tenuator are plotted in Figures 6.4(a), 6.4(b) and 6.4(c) for

M = 0, 0.04 and 0.08 and values of experimental pov'rer transmission

coefficÍent are plotted ín Figures 6.5(a), 6.5(b) and 6.5(c.) for the

same flow conditions.

The transmission loss was measured as in the no-flo\^l case

u
r
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by travers!-ng a Brüel and Kjaer- one-quarter ineh calib::ated mícro-

phone in the incidenÈ duct untíl a maximum in sound pressure level vras

recorded. A nose cone \^/as fitted Ëo the microphone to minimíze noise

generaÈed due Ëo flor¿ turbulence. The sound pressuTe level of the

plane ¡^rave leaving the aÈtenuator \¡/as measured by a calibrated

microphone mounted flush with the duct inside wall and perpendicular

to the flow. The transmissíon loss vras then calculated from equation

(5.12) of Chapter 5 and is plotted in Fi-gures 6.6(a), 6.6(b) and

6.6(c) for Ëhe opËimum attenuaÈor and in Figures 6.7(a), 6.7(b) and

6.7(c) for the original attenuator for flow speeds of M = 0' 0.04

and 0.08 and upstream and downst,ream propagaÈíon of sound.

6.4 THEORETICAL PREDICTIONS

The coefficients of equations (6.7) to (6.10) and of

Appendix 2 were obtained using the procedure ouElÍned j-n Chapter 5.

The constants of Èhe equations were evaluated sírnply (as no Bessel

functions were present) and set inËo a matrix given iri Appendíx 3.

The complex matrix !üas solved as in Chapter 5 using a Program based

on Croutts rule.

The ÈheoreÈical power reflection coefficient is given

sinply by

P
r

P.= oo

P
l-

(6.16)

for both upstream and dovmstream cases. The theoretícal power

reflectíon coeffícient for dov¡nstream and upstream ProPagation ís

relaÈed to the theoretical reflection coefficienÈ by equations

(6.13) and (6.14) resPectivelY.

The theoretical po\7er transmÍssion coefficíenÈ ís

oo
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(6.17)

for both dor.¡nstream and upstream cases. Fínally the theoretical

Ëransmission loss ís related Èo the theoretical ÈransmÍssion

coefficient by

T.L. = -10 1og (a.) (6.ra)

for both dorsnstream and upstream cases.

The four theoretical parameters are plotEed in Figures

6.3 to 6.7 f.or comparison wíÈh Èhe respective experimental results.

Fígures 6.8 and 6.9 show theoretical transmíssíon losses

for flow rates up Ëo M = 0.3 for Èhe optimum and oríginal aËtenuator

respectívely.

6.5 DISCUSSION OF RESULTS

6.5.1 Pressure Refl-ection Coefficient

As can be seen in Figures 6.3(a), 6.3(b) and 6.3(c) there

is reasonable agreement between experiment and theory. The nain reason

for error in the experimentally measured reflection coeffÍcient is due

to diffículty in measuring standing wave minima. As encountered in

the no-flo'h¡ case of Chapter 5, if Ëhe standing wave ratio is large,

the minima are quite sharp and very easily obseured by, for example,

overtones due to small- distorËíon ín the sígnal. The minima are

thus very diffícult to measure accurately and the measured magnítude

of sound pressure 1evel is always too high. The sEanding wave ratio

and thus the corresponding reflection coeffícient in this case will

always be too small.

Figures 6.3(b) and 6.3(c) deuonstrate a Èheoretícally

predicted pressure reflecÈíon coefficient greater than unity for

cf,=t
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downstream propagaÈion. The raËio of Ëhe maximum reflection

coefficienÈ at l"f = 0.08 Ëo the maximum reflection coefficient at

1"1 = 0 frorn Figures 6.3(c) and 6.3(a) Í-s approximately 1.16. Using

the relationship discussed in Chapter 1 that R*"* b.fore flux

reversal occurs is gíven bY

R = R(l+M)/(1 - M) (6. le)
max

we thus obËain ËheoreÈically for M = 0.08, R = 1,

R = L.L74
max

Siurilarly for the upstream case from Figure 6.3(c) and 6.3(a) a ratio

is determined to be approximately 0.84 whíle for M = 0.08, R = 1 r¿e

theoretically obtain

R = R(l - M) / (1 +M) (6.20)
nax

= 0.852

Thus ignorÍng slight changes in perfornance due to

convected wave number effects, Ëhe najor effect of convectíon of the

propagating medíum on the pressure reflection coeffícienÈ is to increase

it by a factor of (1 +M)/(1-M) for the downstream case and decrease

it by a factor of (1- - M)/(1 + M) for the upstream case.

The experimental pressure reflectÍon coeffícients measured

for the upsËream and downstream cases confirm Èhe effect that flow

has on Èhe pressure reflection coefficienÈ. MeasuremenËs for the

upsËream case show a definite Èrend to reduction r¿ith increasing f1-ow

rates. The dov¡nstream case however does not agree quite as vrell. The

evaluation of the dornmstream pressuïe reflection coeffícient for R > 1

depends upon detection of the change ín rnagnitude of the ninína with

distance traversed by the probe. As discussed prevíously the minima
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are difflcult to measure accurately and Èhus this ínformaÈíon \¡/as

obscured.

6.5.2 Power Reflection and Transmíssi-on Coefficients

The theoretical por^rer reflection coefficient plotted in

Flgures ø.4(a), 6.4(b) and 6.4(c) ís shown to be the same for both

upstream and downstream propagation of sound. This supports Ëhe

theoretÍcal predícÈions of SectÍon l-.3.2 of Chapter 1. The experiuental

values agree well with the Èheoretical predictions. However the

downstream experímental power reflection coefficÍent ís found Èo be

consistently less Èhan the uPstream coefficíenÈ. The díscrePancy

between upstream and dovmstïeam experimental values I^tas Èhought to be

due to flow separation in the attenuator and is discussed Ín more

detail- IaÈer.

The theoretícal polrer transmission coeffícient in Figures

6.5(a), 6.5(b) and 6.5(c) demonstraËes similar agreement with

experÍmental results. Although Èhe power transmission coefficient was

theoreÈically evaluaÈed independenÈly it can be seen that for the same

flow rates the portrer ÈransmissÍon coefficient plus the po\^7er reflection

coeffÍcient equals uniËY.

Thus although flow has the effecÈ of increasing or

decreasing Èhe Pressure reflectíon coeffícient markedly due to

convectíon of energy the same effect is noË shown in the Por¡/er

reflectÍon and Ëransmission coefficients. The small changes ín the

ÈheoreÈical power coefficÍents are due to changes in the convected

wavenumbers Ëhus alteríng the relaÈíve phases at ínterfaces A and D

of reflecÈed and incídent hraves. úIavenumber effects are more aPparent

ln a reductÍon of tranmíssíon loss and will be discussed in the next

section.
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6.5,3 Transrnission Loss

Figure 6.6(a) demonstrates that the analysis provides a

very accurate description of the performance of the optinum attenuaÈor

without flow. This figure should be compared to the corresponding

Fígure 5.6 of Chapter 5 whe-re the theoretical curve was derived more

exactly using cylindrical co-ordinates for sound propagation in the

curved sectíons. A comparison of these two figures shows that Èhey

are nearly identícal and that the conformal urappíng equatJ-ons give a

very good result in the case of no flow. In Fígure 6.6(a) the small

discrepancies between theoretical and experinentally measured values

of Ëhe frequencies at which maxima occur were thought to be due, as

previously, to dírrensional ínaccuracies and variations in ambient

temperature durÍng the course of experimentaÈion. However, for

íncreasing Mach nuuber, the theoretical predíctíon shown in Fígures

6.6(b) and 6.6(c) is decreasíngly reli.able at the maxÍma. At

M = 0.08 good agreement Ís obtained at. all frequencies excePÈ at the

peaks where theory underestimates the measured transmission loss.

The dlscrepancy may be due Eo flow separation in the

curved sections of the aÈEenuator. The theory assr-lmes thaÈ flow is

unÍform at the interfaces and boundary layers are ignored. However,

at flow velocities of M > O.O4 the flor,¡ is líkely to seParate from

the curved sections of the attenuator and thus effectívely t'slolnl"

the wave propagatíon over a parË of the reflecting ínterfaces of the

attenuator. This explanatíon is supported by the experimental

results of Eransmission loss of the original attenuator shornm l-n

Figures 6.7(a), 6.7(b) and 6.7(c) which demonstrate beËÈer agreement

between theory and experíment than the optimum attenuator, especially

at M = 0.04. The original aÈtenuator has less severe curved se-cEíons
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than the optimum attenuator and separation is thus 1ike1y to occur

at a higher flow vei-ocity leading Èo improved agreement due to more

uniform flow over the exit and i-nlet surfaces.

The theory predicts that convection of the propagating

medíum will reduce Èhe magnitude of the transmissíon loss peaks wíth

increasing Mach number. This can be understood by considering that

the rejectíon peaks are crítically dependent on the arrival times of

!/aves at interfaces A and D. Flow is found Èo disËurb the sensitive

phase balance needed for high reflectíon of sound: This reduction in

naxima of transmission loss ís dernonstrated in the experimental

values of Figure 6.6(c) but not to the magnitude predicted.

A theoreËical comparÍson of transmission loss values for

flow raÈes up to M = 0.3 for the optirnum attenuator is sho¡¿n in

Fígure 6.8. At M = 0.3 rejection ís reduced to a single narrow peak

centered on the design frequency. AÈ Èhís velocity the aÈtenuator

rrould ÈheoreËically only have a satisfactory transmission loss over

a very narror¡r frequency band. Figure 6.8 also shows that Èhe design

frequency has reduced with increasíng Mach number independent of

direction of propagation of sound. As Ëhe design frequency is

determined ín the no-flow case by wavelength consideratíons ' one

would intuitively expect the design frequency to íncrease wiÈh sound

propagaÈing with the flow and decrease r¿ith sound propagating against

the flow. I{owever, thís reduction ís similar to a reduction in

resonant frequency of a tube open at both ends vríth the proPagating

medium convecting at Mach number M. The new resonanÈ frequency of

the tube is given by fr = (1 - M2)f. Simílarly íf Èhe desÍgn

frequency of the aËtenuator without flow is 844 Hz then a flow

veloeiÈy of M = 0.3 would theoretically reduce it to 769 Hz. This

value agrees well with the new desígn frequency determined theoretically
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by the analysis and shornm in Figure 6.8 for a flow rate of M = 0.3.

This also explains why the aÈtenuator theoretically

provides the same transmission loss independenÈ of Èhe direction of

Ëhe flow. In either case Ëhe travelling hraves are slowed or

increased in speed on one leg and více versa on the return leg of

the round trip between interfaces. Similarly as díscussed in

Chapter 1 the theoretical transmission loss is unaffected by the

direction of convection of the propagatíng medium. ExperimenËal

values of transmission loss differ however, depending on the direction

of flow. The effect r^ras most likely due to separation. For dornrn-

stream propagaÈion of sound separatíon occurs near the acousÈic exit

of the atteriuaÈor and interferes wíth Èhe major reflecting interface

A. For upstream propagation of sound separatíon occurs at the

acoustíc inleÈ ínterface and thus has a secondary effect. The

velocity profile at the aeoustic exít ínterface in thís case, would

be close to uniform.

Figure 6.9 demonstraËes that a flow raËe of M = 0.3 has

virtually desÈroyed all theoretícal attenuatÍon obtained using the

original attenuator. Thus it is imporÈant to optímize the design of

the aÈtenuator Ëo reduce the effects of flow on the magnitude of

transmíssion loss Èo be expected as well as providing the broadest

operating band possible of useful (10 dB) transmíssion loss.

In the velocity range considered experimentally, the

results show that although flow severely reduces the magnitude of the

rejecËion peaks a continuous band of at least 10 dB Ëransmission loss

is still obtaíned over Èhree quarters of an octave vrhen usíng Èhe

optimum attenuator rLargeLy due to separation in Èhe bend. Thus the

attenuat,or still performs well for incident duct velocities of

M S 0.08. Different configuratíon attenuators with differenË radii
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may lead Èo dífferent separaÈíon characteristies and altered

experimental values but at the flow velocÍties for which the

attenuator is most líkely to be used this ís unlikely to reduce the

effectiveness of the aÈtenuator.

6.6 SU}ß{ARY

The investígaËion demonstraËes clearly that convection

of the propagatíng medium affects the operating characteristics of

the attenuator quite markedly. Even at low values of Mach number

(M < 0.04) the high levels of aËtenuation obtained aL the peaks in

the no-flo'r¡I case are reduced subsËanÈially.

Flow has been shorn¡n to increase the pressure reflectíon

coeffícient by a facÈor of (1 + l"D/(I - M) for dor^¡nstream

propagation of sound and decrease the coefficient by a factor of

(1 - M)/(1 + M) for the upsÈream case.

Theory predicts that the attenuator performs identi.cally

from an energy point of vievr with sound propagating wíth or against

the flor^r. Changes in energy transmission are found to be due to

changes in wavenumber arísing from increased or decreased phase

speed with flor¿. ExperimenÈs' however, show that flow has a greaËer

detrimental effect r^rhen sound propagates against the flow through the

attenuator.

Flow also has Èhe effect of lowering the desígn frequency

by a factor of (1 - M2) índependent, of direction of propagation of

sound relative Èo flow.

Although the maxima of transmission loss are reduced, Í.ot

flow speeds of ì4 S 0.08 a continuous band of at least 10 dB transmissíon

loss Ís still measured over three quarters of an ocËave when using an

optimized attenuator.
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CHA?TER 7

A DELAY LINE REACTIVE ATTENUATOR FOR USE IN

FLOI^I DUCTS OF CIRCULAR CROSS SECTION

7.I INTRODUCTION

The Ínvestigations of Chapters 5 and 6 have established that

the princíple of reacËive attenuatíon can be applied very successfully

to low frequency sound ín ducÈs rrrit.h and wíthout flor,r of the prop-

agating medium. However the arrangemenÈ of the attenuator díscussed

in Chapters 5 and 6 nust be fitted ínto a bend ín the ducE sysËem to

obtain the necessary path dífference for reflection of sound, hence

thls arrangement is unsuitable for use in straíght ducts. As many

ducË systerns are straight and are usually of circular cross sectíon

it would be useful Ëo develop a reactíve attenuator based upon the

same principles applÍed to the attenuator of Chapters 5 and 6 but

applicable to straight ducts of circular cross secËion.

It can be seen from Chapter 5 that the high levels of

attenuation obtaÍned are achieved by iurpedance mísmaÈches generated

at the exit and inleË surfaces of the aEËenuator. MulÈí-reflections

between the ínlet and exít surfaces havc- also been shov¡n to give ríse

to a broad operating band as opposed to the narror^7 frequency resPonse

obtained by the more conventional forms of reactíve attenuators such

as a quarter wave tube or a llelmholËz resonator. As discussed

previously the impedance mismatch results from Èhe generation of non-

propagaËing cross modes at the exit and ínlet of the attenuator due

Ëo phase differences between Èhe sound hTaves propaga!Íng in Èhe

separate duct sections of the attenuator. AÈ the design frequency Èhe
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impedance at the exit surface is purely reactive and the wave

rnotion of sound leaving the attenuator consists entirely of a series

of evanescent modes. Thus at this frequency all íncidenÈ sound Èo

the aÈtenuator is theoretically reflected.

In thÍs chapter a reacËive at.tenuator suitable for application

in straight ducts of cireular cross sectíon and based upon the

princÍples of the aitenuator discussed ín Chapter 5 ís investigated

experimentally and Èheoretically with and without flow. The prlnciple

aim of the investigation is to establish wheÈher high levels of

attenuation can be obtained wíÈh the proposed arrangement and thus

the invest.igatíon concentraÈes on the experimental side. However Èhe

attenuator may be modelled in terms of an equivalent electrical

círcuit at very low frequencies and by this means it is analysed

theoretícally at very 1ow frequencíes, using Ëhe lumped elements

approach for Èhe case without flow of the propagating medium. AnalysÍs

at hígher frequencies and Ín the presence of flow is not attempted.

The two parameters of pressure transmission coefficient and

transmissíon loss are investigated experímentaLLy for flow speeds of

M = 0, M = O.22 and M = 0.37 for sound propagating dornmstream and

M = 0, M = O.22 for sound propagaÈing upstream against Èhe flow. The

invesËigaÈion is liuríted to frequencies less than the cuË-off

frequency of the (1r0) mode in Èhe incident duct.

IÈ ís proposed to obtain atÈenuation by creating an impedance

mismatch over a cross sectíon of the duct. The resulting impedance

mismatch wíll generate a series of evanescent modes and will cause

high reflectíon of 1ow frequency sound. This approach to reacËive

attenuation should be compared to that of Poole and Leventhall- (1976)

who inÈroduced an anÈiphase rrcopy" of the incident sound in a



242

rectangular duct by neans of an arrangement of speakers mounted in

the duct rvall and dríven from an amplÍfied, electronically phase

shifted signal from a microphone positioned so as to sense the

incident sound field. As Poole and Leventhall explained, the sound

fj-eld generated by the speakers does not cancel or desËroy the energy

of the ÍncÍdent $taves but causes an ímPedance mismatch and hence

reflection of sound.

Pool-e and Leventhall met l¡ith limited success in the experí-

nental implementat.ion of their ídea, a major problem being that the

introduced sound field tended to proPagate upstream to\4tards the

sensing microphone. Poole and Leventhall obtaÍned reasonably high

attenuatíon of sound, however the attenuation was limited to a very

narror¡r frequency band. Furthermore the device was complicated by the

need for electronics to obtain Ëhe necessary delay in phase. Any

change in Èhe speed of propagation oi the hlave due to flow of the

propagat.ing medium or variaÈion in ambient temperature required an

adjustment of the delay necessary to keep the required frequency

centered on the narro\r frequency band where satisfactory attenuaÈion

was obtained. Poole and Leventhall did not investigate the effect of

flor¿ on their attenuator.

It is expected that the attenuaÈor discussed in thís chapter

will overcome the problems of narrow band width and thus sensítivity

to lrave speed. IÈ is also intended to obtaín the delay by purely

physical means (without changing the cross sectional shape of the

pipe), thereby elininating the need for electronic supporÈ equipment.
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7.2 DESIGN OF THE ATTENUATOR

The basic arrangement of the attenuator is shou'n diagramatically

in a section vÍew in Figure 7.1. The attenuator is designed to operate

as follows. When íncídent plane- vrave sound reaches interface A some

of the incident sound propagates through a series of slots in the

ducÈ wa1l whíle the remainder travels on wíth phase speed co downstream.

The sound that passes through the slots and out of the main drrct

travels through a serÍes of volumes and orifices contaíned in a tube

positíonecl on the same centerlíne on the major ducË, as shoum. The

orifÍces and capacitances form an acoustÍc delay line (Morse and

Ingard, (f968)) so Èhat the sound travelling through them is delayed

and hence Ëhe speed of propagation of sound ín this part of thä

atÈenuator is less than co. trIhen the r.raves in the outside (delay)

secËj-on of the attenuaËor reach interface B they are substantially

out of phase with the vraves that have Ëravelled in the maín ducÈ to

interface B. The amount of phase shift can be adjusted by varying

the size of the volumes and orifices. The actual delay in phase in

simple delay lines sÍmi1ar to Èhat of the aÈtenuator of Figure 7.1

can be calculaÈed usíng an analogous electrical circuít. approach as

described by Morse and Ingard (1968). However this procedure is

lirrÍted to very low frequencies and aÈ higher frequencÍes t.ransmission

líne theory should be used. Due to the cornplicated physícal shape of

the atÈenuator, transrnission iine theory is not attemPted here.

The sound that Èravels ín the delay line sectíon of the

aÈtenuator is out of phase with the sound in the duct r¿hen Ít reaches

the secondary slots at interface B. The sound that has travelled in

the delay line radiates through the slots at interface B and induces

a pressure field over a portion of the inside pe:riphery of the major
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duct. The induced pressure field is thus out of phase wiÈh the

incídent pressure fíeld over the remainder of the duct cross section

at B. The slots can be thought of as similar to loud speakers

positioned radíally on the duct wall. The approximate Pressure dis-

tribuÈíon índuced ín the main duct corresponds to thaÈ of the (011)

mode in a circular duct with rigid walls (Rschevkin (1963)). This

mode, Íllustrated ín Fígure 7.2, tras a cut-on frequency much greater

than the frequencÍes over whích this attenuator ís to be invesÈigated.

If the phase and pressure dístribuÈion of the (0,1) mode ís faithfully

induced aÈ interface B then high reflection of sound should be

achj-eved. Sinilarly ít is expected that rnulti-reflecËions will be

set up between interfaces A and B of the attenuator, and these will

cause high reflection of sound at a number of frequencies and thus

províde a broad oPerating band.

7.3 CONSTRUCT ION OF THE ATTENUATOR

The dímensíons of the attenuator '$/ere chosen nomínally

except for the internal diameter of the maín ducÈ which vras chosen to

be 0. O724 m to correspond to the inside diameter of the |tsuck down"

flow rig Èubing already.in use at the universiÈy of Adel-aide. The

size of the annul-ar orifÍce plates was fixed for all tests aÈ

R =.054 m and R. = .076 rn. VariaËíon ín phase delay Èhrough the
¡2

delay section of the attenuator and corresponding changes in design

frequency !üere to be invesÈigated by varying the number of orifíce

p1-ates used and hence the volume between orifice plates.

All parts of the attenuator rårere constructed from mild steel-.

The eight rectangular slots in the wa1l of the main duct aË interfaces

A and B were rnilled aË equidistant circumferential positíons' Each

sloË was chosen Èo have dimensions of .075n x '013 m, which presented
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equal open area to incident sound to the attenuator as the main duct

itself. For ease of ínsertion of the orÍfice plates the delay line

cenÈer casÍng rvas split into Èwo halves. Each orifice plate was fítted

with an Ot ring 1n iÈs ouEside periphery to ensure Ëight sealíng with

the ínside surface of the casíng. l,Ihen placed in positíon the orifice

plate forms an anrrular, symmetrical orifice wíth the outside diameter

of the major ducE. The posíÈíon of the orifice plates can be adjusted

by sIíding the plate backwards or forvtards on the bore of the delay

line casÍng. For all tests the orifice plates were posiÈioned such

that the distance between plates and the distance between the end plates

and the cenËer of the interface slots were equal.

To seal the whole attenuaEor the halves of the atÈenuaËor

casing were threaded. The major duct was attached PermanenÈly to one

half of the casíng and when the other half of the casing r¡Ias screwed

into position an Or ring at the other end of the major ducÈ províded

the necessary seal. The whole arrangement constitutes a robustrcompact

and simple atteriuator. The arrangement is also seen likely Ëo cause

little disturbance and hence negligibl-e pressure drop Ëo high speed

flows tn the major duct. The finíshed attenuator split ínto trso

halves, for adjustment of the orifíce plates, ís shown in Plate 4.

7.4 EXPERIMENTAL EOUIPMENT AND PROCEDURE

7.4.I. The Stand ine Wave Aooaratus

As the attenuator r^ras to be ínvestígated for relatively high

speeds of flow of Ëhe propagaËing medium a special standing wave

apparaËus was constructed. The t.q,..lit"*"nts of this standing r'ave

device were that. it be: (1) quick actíng, (2) provide no disÈurbance

to Ehe flow in the duct system and (3) be able to wiÈhstand lor¿

staÈic wall pressures induced by hígh speed flows.
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The apparatus r,ras constructed from a L.4 neter length of

mild steel circular duct with the same int.ernal radíus as the

attenuator and the fl-ow rig. A .7mm wide slot was npchined over a

dístance of 1 meÈer in the duct wall Ëo enable the traversing of a

mÍcrophone carríage. To seal the ducË at posiLions other Èhan where

the carriage q¡as l-ocated, the mÍcrophone carriage r¡/as connected to a

long piece of t'Teflon" stríp on either end, which riras chosen to fit

tightly in the slot yet slide easily when pulled. The sÈrip was sealed

by two rods positioned lengthways on both outside edges. One encl of

the I'Teflon" strip rùas corinected to a toothed rubber belt which could

be fed into a matching drive pulley driven through a reduction gear

box by a variable speed Èhree-phase motor. Thus to perform an ínvest-

lgation of the standing r^rave in the duct automatically, the toothed

belt was disengaged from the drive pu1ley and the mícrophone carriage

pulled back manually to its starting position. The toothed belË was

then engaged with the drive pulley and when required, the microphone

carríage was traversed under po\¡rer by switching on the drive mot.or.

The motor was switched off automatically when Èhe carriage had reached

the maximum traverse distance by a fixed mÍcro-svritch. Different

traversing speeds could be obtained by varying the input voltage to

the drive motor. AË hÍgh voltages, fast traversing speeds (of the

order of 20 cn/sec) could be obtained. The total distance traversed

!üas .84 meter which linited Èhe lowest usable frequency of the

apparatus to 204 Hz.

For rneasurements of sound pressure level in the standing wave

tube, a Brüel and Kjaer one eighth inch mi-crophone was used. The

normal diaphragm cover rìras removed and replaced wíth a perspex tip,

the arrangement of vrhich is shovm in Fígure. 7.3. A very small hole

r'ras used as a pressure inlet to increase the accuracy of detection
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of the miníma of the standing vrave. A small bleed hole was drilled

1n the side of the tip to connect to a small channel in the mícro-

phone carriage and equalize the static pressure over the back and front

of the microphone diaphragur. The cavity between the diaphragm and

inside of the tip was kepÈ to .1 mm ín height to reduce the possibility

of resonances affecting the measured values. The microphone and

probe tip were rnounËed in the microphone carriage with the probe típ

sittíng in a machined meÈal holder mounted ín the t'Teflont' strÍp.

The top surface of the probe tip was flush with the inside surface of

the "Teflonil stríp. Plate 5 shows the microphone carriage and the

t'Tef lontt stríp.

The arrangement allor'red fast detectíon of the standing 'h¡aves

wiËhout disturbances to Èhe flow in the duct. As the probe hole was

aligned perpendicular to the flow, the noise due to turbulenÈ

fluctuations Ín the flow was minírnized"

7.4.2. The ttSuck Dovm" Flow Rig

To obtain flov¡ through the test section, the I'suck dovrn" flow

pipe facílity at the University of Adelaide was used. The flow rig

was desígned to investigaËe the couplíng of pipes, excited with

internal flow, with the acoustíc response of the surrounding medium

(Rennison (1976)), as ¡sel1 as more recenÈly the sound generated by

flow through bends and orifice plates. The arrangement of the flow

rÍg is shorn¡n diagramatically in Figure 7.4. The píping system consists

of st.eel circular sections with an internal diameter of .724 meLet.

Each section has a male and female flange aÈ either end which- enables

close alignnent of the bore. Sealing at the flanges was achieved by

Or ríngs mounted in each female flange.

The downstream end of Èhe rig rnras connected Èo a system of
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tanks of total. volume equal to 75m3 which were slo¡¿ly evacuated to

a pressure of 25 kPa. During the evacuation procedure'the tanks are

isolated from the tesE secÈion by a butterfly valve. The butterfly

valve can be operated remotely by an electric switch. To start the

flow the butterfly valve Ís opened and aír is drawn into the pípe

through a smooËh be1-1-shaped inlet. The flow speed in the test

secÈÍon is conÈroL1ed by use of various choked nozz1-es of differenÈ

Ëhroat areas whích ere nounted in the pipe sysÈem upstream of the

butterfly valve. The flow speed in the test section was measured by

traversing a pitot tube across the pipe (Rennison (L976)). The

statíc pressure vras measured aÈ the pipe wa1l. The mean velocíty ín

the test section was then calculated from the measured profiles. For

this ínvestigation the sonic chokes which induced a mean flow speed

ofYI= 0.22 (whích Ís the lowest speed of flow possible) and M = 0.37

were used. Hlgher values of flow speed were impract.ícable due to a

poor signal Eo noise ratío. Since the flow speed nozz,Les were choked,

no sound can propagate upstream through the throat ínto the Èest

section. Sínilarly the nozzLe was found to have a low reflectíon

coefficient. to sound propagating downstream. Mechanical noise trans-

niÈted through Ëhe pipe walls is ísolated from the test sectÍon by a

series of vibration ísolators as shown in Fígure 7.4.

Measurements of Èhe flow velocíty in the test section showed

Èhat steady flow condítions are obtaíned wj-Èhin one second of openíng

the butterfly valve. The length of running time 1s dependent on the

choice of the choked nozz1e used. For M = 0.22 the running time was

approximately 15 seconds while for M = 0.37 the running time was

approximately I seconds. The time taken to re-evacuate the Ëanks

between runs is of the order of 10 to 15 minutes depending upon the
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test conditions. Hence a series of tests at different frequencies

using this rig is a lengthy procedure.

7.4.3 Experimental Procedure

To test Èhe performance of the aËtenuator with f1ow, the

devÍce r¡/äs mounted in the flo¡,r rig as shown in tr'igure 7.4. For sound

propagating downstream with the flow the standing wave apparatus l^/as

positioned directly upstream of the attenuator. The acoustic sígnal

was achíeved by using a Tao 35 waËt horn driver posiÈioned 2.25

meters upstream from the entrance to the attenuator. A ntuffler r^ras

positíoned between the sound source and Èhe flow inlet to attenuate

sound travelling upsËream and radíatíng out of the inlet. The pressure

refl-ection coefficient of the muffler ralas meesured separately and

found to be less than 0.2. Use of Ëhe nuffler allowed the sound

source to be dríven at hígh levels without endangering the hearíng of

the person operatíng the apparaÈus. The apparatus arranged for the

testing of downst.ream proPagation of sound is shown in Plate 6.

For sound Propagating upstream, the standing tólave apParaEus

was positioned dovmstream of Èhe atÈenuator. In this case the muffler

acts as an anechoíc Ëermínation to ralaves leavÍng the attenuator. For

M = 0 the attenuaEor was tested in the upstream posiÈion due to Ehe

nature of the sonic choke, as discussed previously.

The standíng wave in the upstream duct was measured wíth a

Brüe1 and Kjaer one-eighth ínch mícrophone. The sígnal from the nicro-

phone preamplifier was fíltered using a Brüel and Kjaer Heterodyne Analyser

(H.4.) set to a 3.16 Hz bandwídth. As used in the experimental

inve.stígation of Chapter 6, the Beat Frequency Oscillator section of

Èhe analyser rrJas employed as the acoustic signal, thus the fí1ter

center frequency and the acoustic signal r,¡ere always locked. The
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PLqfg 6, The experimenra.l apparatus for downstream propagatlon of sound, (FI) flow ín1et, (M) rnuffler'

(HD) horn driver, (SI{A) standing lrave apparatus, (DLA) delay line attenuator' (DM) downstream

uricrophone, (ttA) heterodyne analyser, (CD) carriage drive'
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output of the analyser Ì^Ias recorded graphically with a Brüel and

Kjaer Level Recorder for laLer evaluation. The sound levels of

waves leaving the attenuator \¡Iere measured with a Brüe1 and Kjaer

one quarter inch microphone mounted flush with the pipe inside wall,

1.5 meters from the exit of the device. Due to the shorÈ runníng

tirne of the flow rÍg and the fact that only one signal could be

measured by the H.A. at any one tíme, the input volt.age to the horn

dríver r^ras kept constant at each frequency investigated and the

standing wave distribution and sound pressure level of rnraves leaving

the attenuator lt/ere measured separately on tT¡/o consecutive rrrns.

However, the results obtained were still consistent due Èo Èhe very

stable flow condiÈions Ín the tesË section.

Two parameters were investigated. The power transmission

coefficient was obtained by measuring the sËanding wave in the up-

stream duct and applyíng Ëhe sÈandlng wave theory developed by

Alfredson (1970) for flow and described in Chapter 6. However meas-

uremeriÈ of the standing wave minlma erere found Èo be inaccurate above

L2OO Hz and only the case of 5 orifíce plates and M = 0 is presenÈed

in Figure 7.5, wherepower transmíssioncoefficient is plotted against

Èhe dímensionless quanËity hlave number multiplied by the main duct

internal diameter. This result wíll be discussed in more detail

later.

The Ëransmíssion loss was obtained from the standíng wave

maximum and the transmitted sound pressure level usÍng the method of

chapter 5 and given by equaÈion (5.L2), and is plotted in Fígures

7.6 to 7.10 for 1 to 5 orífíce plates and M = 0. The investígation

was limited to 5 plates due to the "effectíve length'r of orifices

used. This will be discussed in ntore detaíi later. For the case

of flow the arrangement of the attenuator rqith 5 plates alone (due
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to the J-engËh of tirne betv¡een runs) ¡,ras ínvestÍgated for both upstreant

and downstïeam propagation of sound. Figure 7.11 shorvs the transmission

loss of the 5 plate attenuator f or a f 1or.¡ raEe of M = 0.22 and the up-

stream and downstream cases. Figure 7.12 shows the Èransmissíon loss

of the same attenuator for M = 0.37 and sound propagating downstre-am.

The upstream case vlas not presented for M = O.37 due to a poor signal-

to noise ratío.

The frequencíes investigated were linited to less than the

cut-off frequency of the (1r0) mode. For a círcular pipe of internal

diameÈer of .0724 m with rígid walls, the cut-off frequency of the

(1,0) mode was calculated to be 277I Hz (Morse and Ingard (1968))

hence fre-quencies investígated were limitecl to less than 2500 Hz.

7.5 ANAIYSIS

In many cases of sound propagatíng ín tubes the dimensions of

the various parts of the tube are snall compared with Èhe wavelength

of sound. In this case the behavÍour of the sound ín the tube is

analogous to the behavíour of an electric circuit with suitable lumped

circuít elemen¡s of capacitance, inductance and resistance. For higher

frequencies transmissíon effecËs must be taken into account; the duct

system must be described by Ëransmission line Èheory. In lumped

circuít analysís, acoustíc pressure ís analogous to Ëhe voltage drop

across the correspondíng part of Èhe equívalent electrical circuít while

acoustic volume velociÈy is the analogue of current. Duct systems or

attenuators basícal1-y consíst of constrícËions and volumes. To

correctly analyse the resulting circuit it ís necessary to develop

expressions for the electrieal analogues of volumes and constríctions

(orÍfices). The appropriaÈe derívation of these relations is r^rell

explained by Morse and Ingard (1968).

Cavities or volumes are analogous to electrical capacitors as

an additional volume of fluid introduced into Ëhe volume causes an
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increase in pressure. Thus cavities or volumes store energy in

potential form. rf one considers the acoustically índuced cyclíc

flow through a constrícÈion or orifice in the duct system it is

apparent ttrat the acousËic energy wí11 pass through the orifice

large1-y in the form of kinetÍc energy. The impedance of such an

orifíce for low sound pressure levels and zero flow of the propagating

medium ís essentially inductive. I,'Ihen Èhere is an energy loss in

the duct system due to radiation of sound from an outlet or losses

due to viscosityrthe a.nalogous electrical element used is resistance.

Lumped circuit analysís is only applicable to low frequencies

such that. Èhe wavelengÈh of sound is much longer than the filter

element, major dimensions. Est.inates of the maximum raËio of major

device dimension to wavelength alJ-owable, range from 1/é to L/2 a

wavelength. In thís analysÍs the proposed frequency limit of the

analysís wí1l be taken as when the ratío of the major atÈenuator

dimension to wavelengÈh is 0.5. . The ruajor dí¡rension of the attenuator

is 0.4 n thus the upper limitíng frequency of the analysis will

approximately be 430 Hz or koD. = 0.58, however as will be shor¿n the

theoretical predictions agree quite well for frequencies above thís

upper linitÍng frequeney.

The attenuator of Figure 7.1, model-led in terms of analogous

electrical elements of capacítance and inciuctance is shown Ín Figure

7.L3 for a 5 plate arrangement. As shown in FÍgure 7.I3 a small

1 ohm resistor ís ínserted in the main duct líne (between nodes 1 and

9) to avoíd a loop of inductances, a condit,íon under which analysis

of the cÍrcuíÈ is noÈ possible. The value of resistor used, although

it makes analysis possible, does not affect the result

substantially. Viscosity effects at all orifices are ígnored and

thus the impedance of the orifíces is assumed purely inductive.. The
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downstream duct is assumed to loolt ínfinite to waves leaving the

attenuator and can be represented as an impedance with a value of

Z = goc/A,^U where Ao,d i" the cross sectional area of the main duct.

The impedance of the main duct is represented by either an inductance

or capacitance, depenclíng upon the driving frequency and is in

parallel rnrith the delay line duct. This will be discussed in more

detail later.

The equivalent electrical capacítance values of the cavities

bet¡¿een orífÍces in the delay line are given by

a"o = A¿t x¿ y/eo"oz (7.1)

where AUO ís Èhe cross sectíonal area of the delay line and XdU í"

the length between plates. Thus for the 5 plate attenuator of the

diuensions of Figuxe 7.1 spaced evenly aPart Èhe value of equivalent

capacíÈance is

Ç = 4.473 nFaradseq

The inductance of the orífices or constríctÍon is given by an

equivalent inductance such that
o9,

- 'o eL = -__-- (7.2¡eoA^o
ís the I'effective length" of Ëhe orificewhere A is the area and .Q,

o

and is given by

e

e. = t + .BlÃ- (Z.s)
eoo

and È is the orifÍce Èhickness. The "effective lengthrr allows for
o

the fact Èhat there will be a small volume of air some.what larger

than the actual orifice whích will participate in the induced motion.

For the orifíce plates of Figure 7.1, the effective length is thus
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.007 -t- 0.04899

= 0.056 m

Thus for the main casing of .4 m ín length the maxímum number of

plaÈes used in the investigation was limiÈed to 5 to ensure t-hat

adjacent orífices díd not acoustically interact with each other,

therefore affecting the delay líne. Equation (7.3) is Ídeall-y deríved

for a cj-rcular orifice in a circular pl-ate but was thought to

approxímately apply at very low frequencíes to the annular orÍfices

used he.re. The ínductance of the orifice openings in the delay line

is Èhus

t"q = 18.069 Henrys

Morse and Ingard (1968) gíve an expression, shown in

equation ,(7.4) for the equivalenË electrícal Ínductance of rectangular

holes or circular orifíces. In the lack of oËher inforrnation this

expression is used to describe approximately the Ímpedance of the

slits in the nain ducË wal1 leadíng to the delay line. As 8 slits

were used at the same posiËion, arranged círcumferenËia1ly, Ëhe total

inducËance of the arrangemenE can be consídered as all 8 inductances

ln parallel. Víscosity effects through the slits were ígnored. This

assumptíon r^las thought to be justified as the slíts are reasonably

wide ( .07 rn) .

Thus,

oX
Equivalent Inductance of one slit = ät Q -4)

s

where X is the circumferential length of Èhe orifice and A- 1s Èhe'----- - --S S

area of the slit, Thus Èhe Èota1 induct.ance of each arl:angement of 8

slits is

L
e
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L (uB) (27.302s)
eq

3.L428 Henrys

Ilarris (1957) gives the impeda¡rce of a secËion of duct wíth an open

end as

Z = Í9oco tan lko (X + 2a*) l (7. s)
A

md

r¡here in this case cl* is the end correction facÈor given by

cl* = 0. B2R (z.o)
2

Xis the lengËh of duct, Amd is the cross sectíonal area of the main

duct and R the outside di-aneter of the ducË.
2

length of the main duct of the attenuaÈor is

Thus the effecÈive

| -.375+.059e

= 0.434 n '

. It can be seen that for varying frequencies equation (7,5)

wÍll be eiÈher positive or negatíve and thus the impedance of the maÍn

duct will be either inductive or capacitíve dependÍng upon the driving

frequency, For 0 < ko¿e < n/2 the íurpedance is inductíve and the

analogous electrical- value of Èhe main duct of Èhe attenuator can be

determined from

o'o
tarr (7 .7)A-k

mcl o

trrlhen the lravelengËh of sound is much larger than the length of the

rnain duct, tan(kol,.) = kol" and equation (7.7) reduces to

o9,'o e

(kose)
eq

L

L
eq A.

mcl

(7.8)
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rnrhích ís íde.ntical to equatíon (7 .2). Thus f or very lorv f requencies

the impedance of the main duct is approximaÈely constant and

fnducÈlve and íts value is

Indrrctance of maín duct I27.56 Henrys

while f or higher f requencÍes such that ko.c" < 1r /2 the ínductánce

will be gíven by equatíon (7.7).

lJhen n/2 . ko[" < n the impedance of the main duct given by

equation (7.5) is negative and is thus capacitíve. In this case the

equivalent electrical value is given by

A
md cot (k[") (7 .e)ceqp c2k

o

Values of equívalent inductance and capaeitance for frequencíes from

200 to 1400 Hz r,¡ere derived from equations (7.7) and (7.9) to be

used ín the later analysis. The performance of the analogous

el-ecÈrical cj-rcuit of Figure Z'.t: was analysed using a compuÈer

library program "SPICE" and a Cyber 6400 courputer.

t'SPICE" is a general purpose circuit simulation program

for nonlínear D.C., nonlinear transient and linear A.C. analyses.

Circuits may contain resístors, capacítors, ínductors, independent

voltage and current sources and other electrÍcal parameters. 'TSPICEn

uses a dynarníc memory management to store elements, models and out-

put values and can Èhus be used for very complex cj-rcuits wíth up to

500 nodes.

The drívíng vo1-Èage across the input to Èhe equivalenÈ

clrcuit üras assumed Ëo be 1vo1t. Thus without any aËtenuat,or the

current Ehrough the impedance which represenËs the dor,¡nstream duct

wÍll be l/Res where Res = Po"o/A,nd and Èhe po\^Ier radíated downsËre-am

oo



27r

will be l/nes Ílatts. I^Iith Èhe attenuator irr position the voltage

drop across the impedance representing the downstream duct ís cal-

culaÈed from "SPICE" to be V (where the subscrípts imply nodal
80

position in the equivalent electrical círcuiÈ). Thus Ëhe Power

radiated dor.rnstream wÍth Èhe attenuator ín position Ís V 2Res. The
80

theoretical transmission loss of Èhe attenuator given by the lumped

circuit analysis is

Transmission Loss = -20 log (7.10)

For the case of ínfinite downstream dueË Èhe theoretícal transmission

l-oss is i<lentical to insertion loss. Values of theoretical trans-

mission loss derived using the lumped clrcuit analysis for the 5 plaÈe

attenuator w1Èh no flow are plotted Ín Figure 7.10 for comparison

wfth experímental results. The broken lÍne at higher frequencíes

índícates when the theory tends to be increasingly unreliable due to

a shortening of wavelength relative to the major aËtenuator

dímensions. The theory hras not deríved for other arrangements of the

attenuator with fewer orifice plates due to length of computing

time.

For the very 1ow frequency range (0 to 20A Hz) the 5 plate

attenuator.ralas analysed theoretícalIy usíng equation (7.8) for the

fnductance of the main duct of the device and was found to provide

neglígible transmisslon loss ín thís frequency range.

7 .6 DISCUSSION OF RESIILTS

7 .6.1. No Flow of the Propagating Medium

tr'lgures 7.6 to 7.10 which shor¿ the transmissíon loss of

the attenuator wiËh no flow and wíth 1 to 5 orifice plates de-monsÈraÈe

that Èhe attenuator provides excellent rejectíon of sound over a
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broad frequency range. Increasing the nurnber of plates ís seen both

to lncrease the aÈtenuation obtained at the maxímunt ancl increase the

bandwidttr over whích a minímum of 10 dB transmission loss ís obtained.

The best transmission loss characteristics shown in Fígure 7.10 were

obtained wiEh a 5 plate arrangement of the attenuator, where a con-

tinuous rejection band of greater than 10 dB was obtained from

k_D, = 1.4 to k D,. = 2.95 which corresponds Èo a bandwidth of greaÈer
oL oL

than an octave. As well as this high levels of rejection of greater

than 20 dB were measured over 322 Hz centered on a frequency of

uaximum rejecÈion of 1640 Hz. Figures 7.6 to 7.10 show that increasing

the number of orífice p1aËes increases the design frequency until the

design frequency stabílizes r¿hen four orifice plates are used. Further

increases in design frequency are probably limited by Èhe end effect

of the orífice in the delay lÍne.

As stated previously Èhe rejecÈion of sound of the delay

líne attenuator ís dependent upon an impedance mismatch generated at

the device exit. by a series of evanescent cross modes. Thr-rs the

performance of the attenuator is independent of the irnpedance of the

termÍnation of Èhe downsÈream duct, as opposed to reactive devices

such as an expansion Eube muffler where performance depends upon the

}ength of the downsÈream duct. To verify thj-s the Èransmiseion loss

of the attenuator with a . 83 m length of open duct as a termination

rras measured experimentally. In thís case the sÈandíng waves up-

stream and downsÈream of the attenuator \¡¡ere measured separately and

the transmíssíon loss calculated from the measured maxima and

reflectíon coeff,icient. The experimental transmission loss of the

5 plate atteriuator ís shovm in Figure 7.14 without flow. As can be

seen the measured val-ues are very similar to those shor,¡n ín Flgure
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7. 10 r'rhich are f or the 5 plate âttenuator wi-th a dorvnstream anechoic

termination. This result confirms that the performance of the

attenuator is índependent of the lmpedance of the downstream duct

Èermination.

The electrical analogy of the transuíssion loss of the

attenuator shown for the 5 plate arrangemenÈ in Figure 7.10 is found

to provÍde a reasonably accurate predíction of the performance of Èhe

attenuator at low frequencies (koDi < I.75). The analysis Ín fact ís

found to agree for frequencies well in excess of the half-wavelength

ltmit proposed. Thís was thought to be due to the use of the frequency

dependent impedance of the main duct of the atÈenuat.or. As discussed

previously the expression used approximately describes resonance in

this duct section. Hence this sectíon of the attenuator Ís actually

rnodelled as a transmíssion line element.

The theory shown in Fígure 7.10 appears to be displaced to

higher frequencies with respect to experímental results. This could

be due Èo variation in effective length of the main duct. If a

longer effective lengÈh was used ín the Ëheoretical analysis the

theoretical curve would agree very closeiy to experínental- values.

IË can be seen from Figure 7.10 that at higher frequencies

the theory does not match peaks dÍsplayed Ín the experimentally

measured transmissÍon loss. These peaks are due to resonant conditions

Ín sections of Èhe attenuator and the values of transmission loss

obtained are limited by viscosity effects through Èhe orífices.

Viscosity has been ígnored in the lumped circuit analysís and this

may lead Èo inaccuracÍes at resonant condítions.

Fígure 7.10 shows thatwhen koD. = 0.5 and koD. = 1.1 a

negaÈive Èransmission loss was measured. 'Ihis result was also
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indicated by the theoretical result. as wel1, al- values close Èo

these frequencies. The amplification of sound at particular

frequencies is characteristic of reactive mufflers and ís due to

resonances in elements of the attenuaÈor.

The theoretical result is seen to be inaccurate aÈ higher

frequencies {t-O, > 1.7) and to fully describe the Ëheoretícal"oa

performance of the atÈenuator, transmissíon line methods must, be used

ín this higher frequency range. IÈ vras proposed to model the

aÈtenuator ín Ehe higher frequency range by caiculating the phase

speeds of waves through the delay line section aÈ different fre-

quencies using transmíssion line theory. By using a ttblack boxtt

approach and only considering the inlet and exít inËerfaces of the

attenuator and usíng the effective phase speed of waves in the delay

line section one could determine the relative phases of travelling

r,raves at. each interface. The theoretical transmíssion loss could

then be derived using a procedure of matchíng continuity conditions

as in Chapters 5 and 6. In this case the equations used vrould be

for sound propagaEion in straight circular ducts and the pressure

distribuÈion assumed at boÈh interfaces would be that of Fígure 7.2

with relative phase deternined by the delay line theory. However

due to tine limitations and lack of knowledge of the inductances of

the annular orifices (as opposed to circular orifices) and the inlet

sl1ts, thÍs vras noË aÈtemPted.

Referring to Figure 7.13 which ís the equivalent electrícal

circuit of the at.Ëenuator, ít can be seen that nrhen the ínpedânce of

Èhe main duct is zero then the delay líne secÈion will be completely

shorEed out and zeíotl.arLsmission lossrsill occur. The frequencies at

which this should theoretically occur are given by kol. = Dr r



276

n = 0, 1, 2 .... One can thus conclude that to optimize the band-

wiclth of the attenuaÈor, i.e. move the minima to lower frequencies,

the main duct of the attenuator should be made as long as possj-bIe.

However length considerations are also detel¡rined by the desired

compactness of Èhe attenuator and a compromise must be sought.

The por¡Ier transmission coeffÍcient of the attenuator

rneasured from the standing wave is seen to give a reasonably accurate

predicÈion of the perforur,ance of the device up Eo L2O0 Hz. However

above this frequency, as discussed ín Chapters5and 6, the minima of

the standing wave are too sharp to detecÈ accurately.

7.6.2 With Flow of the Prooaeatins Medium

Due to the length of time of experiments Ínvolved hrith flow,

the invesËigation was limited to the atÈenuator r^Iith 5 orifÍce plates.

This arrangemenË provided the best performance ín Èhe no-flow case.

Flow of the propagatíng medíum at M = O.22 ís seen to affecÈ the

lower frequencies more than the higher frequencies. Figure 7.11 shows

thår at M = 0.22 th'e 10 dB bandwidÈh ís reduced substantíally to 0.7

of an octave. However high levels of attenuation are stíll obÈained

at k D, = 2.2 as for the no flow case. Flow was thus found not to
ol-

lower the design frequency as occurred in the investigation of Chapter

6. Figure 6.11 also shows that Èhe atÈenuator amplifies the incídent

sound at some particular frequencies (indicated by a negative trans-

mfssion loss). I^Ihile some of this amplification is undoubtedly due

to resonance within the attenuator, the noise generated by Èhe fluid

flow over the slits in the main duct wall ¡vas thought to contribute

slgnifícantly also. This problem could be reduced by careful design

of the slits wÍËh EhoughÈ to the fluid flow.

Figure 7.11 demonst-rates Èhat the attenuator performance ís
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basically independent. of direction of sound propagation relatj-ve to

flow. ThÍs can be understood by assuming there ís no fl-ow ín the

delay line section of the attenuaÈor. As discussed prevíously the

impedance of the main duct ís governed by natural oscillations. Flow

has the effect of lowerÍng the natural frequencíes of such a tube by

a factor of (1-M2) independent of dírection. Thus in this case flow

is l-ikely to have an identical effect on the Ímpedance of the main

ducË f,or either direction of propagation.

Figures 7.10 and 7.11 show clearly that flors also has the

effect of decreasing Èhe magnitude of the negaÈive transmission losses

obtained at 1ow frequencies. This effect is most likely caused by the

flow "blowing awayil the masses of air contained in the slits in che

ducË wa1l which provide the necessary inductance.

The main dífference between experímental upstrearr and down-

stream values occurs at lower frequencíes where dornrnstream flow

reduces the attenuat.ion obtained by a greater amount than for the

upstream case. The reduction in attenuation at low frequencíes may

also be due to the flow reducíng Èhe masses of aír contained in the

slÍts in the duct wall and consequently affecting the slit inductance.

The flow rate of M = 0.37 substantíally reduces the

attenuaÈion obtaíned at the peaks but provides a broader operating

band. The reduction in Ëhe attenuaÈion at the peaks rnay be due to

flow regenerated noise but ís mosÈ likely due to the changes in

inductance of the slits and orifÍces as discussed previously. The

broader bandwidth is due Èo a reductíon ín resonant frequency of Èhe

main duct due to flow and a corresponding decrease in frequency at,

whích zero Èransmission loss occurs. The flow thus effectively

lengÈhens the rnain duct. The attenuator v¡as also found to perform

beÈÈer at lower frequencies for a flor¿ rate of M = 0.37 but an increase
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fn arnplÍficatfon of sound was apparent.

7.7 SUMMARY

A reactive acoustic attenuator for use in stralght ducËs

of circular cross sectíon has been investígated experimentally and

theoretÍcally. The attenuator is found to provide excellent rejection

of low frequency sound over a broad operating band with and w1Èhout

Èhe presence of high speed flo¡¿s (M = 0.37). The attenuaÈor is

robust, compact and cheap to manufacture.
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CHAPTER 8

GENERAL CONCLUSIONS

Propagation and reactíve attenuation of low frequency sound

in hard-walled ducts have been studíed. The investigatíon has established

that reacÈive attenuaÈion can be employed to control low frequency sound

without the usual disadvantages of low pressure drop, excessive size or

narror¡r operating band. The effect of flow on the performance of the

attenuators has been investigated and it has been shown thaÈ Ëhe devíces

perform well in the presence of a convecting propagatÍng medíum. The

proposed attenuators are simple Ín concept and thus should be cheap to

manufacÈure.

' The effects of flow on the cut-off frequencies and propagaÈíon

of energy of higher modes have been investigated. The independence of

cuÈ-off frequency from directíon of sound propagation relative Ëo flo¡,q

has been clarified.

A dípole piston source is studied and the theoretical resulËs

provÍde ínsight into some of the physícal aspects of Êhe performance of

the attenuator and the effecÈ of fl-ow on modal propagation. Thís

investígation establÍshes that reflecËion of sound at an interface

símilar Èo the exiÈ plane of the attenuator is entirely due to generaÈíon

of a series of evanescent modes. Líker¿ise the investigaEion demonsÈrates

that the reacËive impedance of such a surface, which closely approxímates

Ëhe phase dístribution of a (1,0) urode when the phase discrepancy beÈween

pistons i.s n radians,becomes infinite at cr¡t-on of the (1r0) mode. This
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resulE Ís impossible in practice and explains why the cut-on frequency

of an evanescent mocle is always difficult to determine and cannot be

measured r¿ith the precísion impliecl by the analysis.

A sirnple method for analysing propagatíon of low frequency

sound in curved bends has been developed. This method, although it

relies on an.approxÍmation, accurately and sirnply predicts Èhe vari-ables

ne.cessary to analyse curved duct systens in Ëhe low frequency range wíth

and without. f1ow. It elimínates the need Èo consider complicated

Bessell and Neumann functions in its range of appl-ícation. The analysis

is subsequently used to analyse an attenuaËor with flow.

The difference betvreen sound propagation in curved bends and

straight ducts is highlighted by an anal-ysís which considers the effect

of a partítion in a curved bend. The partition is found to cause high

reflection of sound at a number of frequencies due to the dependence of

the curved duct wavenumber on the bend geonetry, whereas the correspond-

ing sÈraíght ducÈ wavenumber is independenÈ of duct dimensions.

The thesis leaves unans\¡rered many questions. 0f those areas

needing more research, perhaps the Ètreoretical analysis of the attenuator

of Chapter 7 Ëakes priority. To fully understand the perfonnance of

the delay lÍne attenuator some preliminary'investigations into the

phase speed through the annular delay line would have to be undertaken.

conbined wíth the t'black box" model proposed in chaptex 7, thís know-

ledge would provide a theoreËical descríption of the attenuator, lrith-

ouÈ which it is hard to predicÈ design frequencíesand optímize band

widths. However due to tiure límitaÈions this was not attenìPted'

It would be of ínterest to experímentally study the effect

of flow on the cut-off frequencies of higher orcler modes. A particularly

clear demonstration of this effect might be possible in a ripple tank'
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The mode under study could be driven by Èwo t'dabberstr exciting the

surface of Èhe qrater at the requlred frequency near cut-on, while

convectíon could be sÍmulated by means of a sÈeady flow of water

through the tank. It would be extremel-y inËerestlng to see the angle

of propagation of wavefronts for the downstream case as the mode

approaches cut-on.

These and other problens uncovered in the work of thÍs thesis

remaln as research work for the fut.ure.
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APPENDIX 1

THE I^IAVE EOUATION

As all propagation theory stems from sol-utíons of the wave

equation in different coordinaËe systems it is appropriate here to

describe the dífferenË forms of the r/rave equatíon used and the

assumptions made in their derivaÈions.

Perhaps the rcost complete derívation of Èhe rvave equation

ís given by Morse and Feshbach (1953). In terms of the velocity

poÈential, whose partial derivatives with respect Ëo the axís of the

chosen coordínate system are the components of velocity ín those

direcÈions, it can be written as

v2ö = (L/ c?) ð2+ /òt2 (4.1)

where c2 = X^/eO. X* is the bulk modulus and po ís the undistrrrbed

densiÈy of the propagating mediurn.

The - r{ave equation can be ínterpreted as physícal1y stating

(from Rschevkin (1963)) "an excess concentration causes a decrease ín

the raËe at which concentration Íncreases, and a defect in concentration

results in an increase ín this rate."

The assumptions made in the deriviation of the wave equation

are well documented in Rschevkin (1963). The main points, relevant

Èo the following analyses, are sunmarized here.

Main ass tions made ín the derívatí.on o f the wave equation

1

2

The medíum is assumed inviscid.

The mean pressure and densíÈy are assumed c.onstant'
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3. Spatíal forces are neglecl.ed.

4. The steady velocíty components and theír gradienLs are

assumed small.

5. The oscillatory velocity components and theÍr gradÍents

are assumed small.

6. The motion is assumed to be irroEational.

7. 0n1.y sma11 deformations of the- meclium are assumed to occur,

vrith deformations beíng linear.

B. The propagating medium ís assumed uniform.

Some of the rnajor ímplicatÍons of these assumptions are:

1. Assumpti-on (1) í.mplies that viscosity Ís ignored, thus acoustic

energy is noÈ dissipated through conversion Ëo heat.

2. Assumption (5) Ímplíes that Èhe l¡Iave equation ís only

applicable to s1owly (relatively) oscillating pressures and

not Èo sudden disturbances such as shock \¡Iaves.

3. Assumption (5) irnplies that the convected velocity terms in
the case of no flor^' of the propagating medíum ís small and

that this part of the momentum balance can be ígnored.

4. Assumptíon (7) limits the application of the wave equation

to snall deformatíons of the particles and thus places an

upper bound ín terms of sound pressure 1evel (= 160 dB in
air) at which the rnrave equation can still be considered 1ínear.

If Èhe particle oscillatory noËion ís harmonÍc, the time

componenË can be separated. For exanple the solutíon ín Èerms of the

potentÍa1- function may be written as

0(xry rzrt) = rl(xryrz)eiot (4.2)

where r! is a characteristÍc funct.ion solely of the coordinates and

r¡ 1s the angular frequency of oscillation. In Èhis case equatÍon

(4.1) reduces Èo the well known Hemholtz equation

v2þ + t<2o,i, = o (A.3)
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where k Ís equal to r¡/c and is cal-Iecl the wave number.o'o
From the definÍtion of the velocity potential expressÍons

for the particle velociÈy of the acoustlc motion foilow:

g = +V0 (4.4)

I{hen the convected velocity term is snall the acoustíc pressure is

given by the following:

p =-poaQ/AË (4.5)

In thís case according to equatíon (4.5), Èhe hrave equation can be

written in the alternative well used form

v2p = G/c|)àzp/?tz (4.6)

The form of vector operators in the coordinate sysËems used

ín the analysis of the Èext are as follornrs:

Rectangular coordínates

Vó* âQ/ðx, 00, Aþ/èy, YQ, = àþ/ðz (A.7)

and v2þ = a2¿-/ax2 + ð2þ/ayz + a2þlð22 (A.B)

Clvindrícal coordinates

V0, â0/âr, VÖo = (1/r)âQ/ae , Yþ, = àþ/ðz (4.9)

and v2O = a2þ/èr + (Ur)ãô/âr + (t/x2)a2þ/¿02 (4.10)

If a pressure form of the vlave equation as glven by equation (4.6) is

used then the particle velocities in terms of the pressure solution

- (1/ipocou

are

k)vp
o

(A.11)
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The l,Iave Equation with Convection of the Propasatins Medium

The der'ívation of the l¡rave equation with uníform flow is

well explained by Morse and Ingard (1968). In addition to the

assumpÈions previously made, the medium is assumed to travel r¿ith

uniform velocity independe.nt of the dírection of sound propagation.

Hor¿ever it must be noted that assuurption (5) cannot be applíed here.

tr{hereas in the no flow case the convected velocity of the particles

is the acoustic parËicle velocity and therefore very small, in the

case of flow of the propagating medium thís convected velocíty tern

w111 be replaced by the velocity of the medium and therefore cannot

be ignored.

Assumption (1) also has important iroplicatÍons in the case

of flow of the propagating medium. Due to the lack of viscosity such

fluíd properties as boundary layers and separation are ignored and

the flow is assumed uniform (poÈential).

Thus the lÍnearized momentum equation relating Particle

velocíty and acousÈic pressure for flow of the medium ís

(a/At+V.V)u=-ðp/âx (A.12)
o

where V = V í + V i + V z is Èhe vector descríbing veloeíty magniÈude- x- Y't z-

and direction of the medium.

The wave equation with florrr can thus be written in velocity

potentÍal form as (fron Morse and Ingard (1968))

Glc!) (ð/ât + Y.v)2þ = v2þ (A.13)

The acousÈic PartÍcle velocíty is given sÍrnply by

p

: = +vo (A.14)

since the convective acceleration is not negligible,Hor,¡ever
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ln the one dimensional case equation (4.12) becomes for fluid flor.+ in

the x direction

- âp/Ðx = poâu*/ât f goV*âux/âx

Now u = tð0/ðxx

rhen âp/ðx =-poà2q/âtâx - oo(40/Ax) Q2þlðx2)

Since G/2)ð(âO/ax)'/a* = (a0/ax) Q2þ/axz)

then â/âx [p + poðQ/ðt + (Ll2)po(aQ/ðx)2¡ = 0

LeÈting the constanË of integration equal zero this becomes

p= - poao/at - G/2)oo(ð0/âx)2 (4.15)

More general-l-y in Èhree dimensions

P=-eo ao/ar - G/2)PoV'o (4.16)

Hence Íf V is large then u = V * u fs large and Ín this casexxx

p = -poâQ/ât - eoV*ã$/ax (4.17)

The wave equatÍon can also be r^rritLen in terms of a pressure

soLution as for the no flow case. ThÍs well used form (Morse and

Ingard (1968))

Gtcf,) (a/at + V.v)2p = Y2p (4.18)

llhen the motion Ís governed by a harmonic time dependence, the

Hemholtz equation with flow follows.

vzp+ (trlco)z(t+ i(l/t¡)Y.v)2p = o (4.19)



287

The form of the hlave equatlon j.n terms of the Pressure

solutlon is identical to the form of the \^rave equation Ín terms of

Lhe poÈenÈial functlon as may be seen by comparlng eqr.rations (4.13)

and (4.18), thus p and Q must dj-ffer by a multiplicatíve consEant.

Hence hre conclude that the partlcle velocÍty nay agaln be determined

from the pressure solutj-on usíng equation (4.11).

The convectíon terms íntroduced by flow will be for¡nd to

sígnlficantly modify the soluËíons of the Ì7ave equation.
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APPENDIX 2

CONTINUITY EQUATIONS OF TT1E ANALYSES

OF CHAPTERS 4 5 AI{D 6

2.A CONTINUITY EQUATT ONS AT INTERFACE B OT THE ANALYSIS OF

CHAPTER 4

Continuity of pressure at B where xr = 0, 0'= T

t|'
c
oo

æ
exp[-ív nldr * Xv-¡rL -.O"r-- s=0 ' Vlo expIiv"n]drc

t Ulo expl-ivonlar +"Es ":. f

fl' t:" exp[-ivon] cos[(mn/tr) (r-Rr)ldr

z

*"io olo Il' *:" expIiv"n] cos[(nn/h)(r-R,)Jdr

2

['
I

r
so

R

R

R

R

I

+
R

R
Dí t ,lrlo exp[iv"n]dr (A.20)

oo
2 2

m#0,
rR

EL ;¡l2 = ci f ' ülo exp[-ivon] cos[(mn/h) (r-Rr)Jdr
oo os JR

t

rR

.J*' *!" exp[ív"n] cos[(nn/h) (r-R,) Idrcrso
*"Io

Di
oo

I

+

( A.21)
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h = c:^ l*' ul^{uo/t¡ exp[-ívon]droe JR 'oo

rR
-"äo .lo 

.J*t ,1"(v"/r) expIiv"n]dr

c

J.'
2

-"Eo olo fi' r;.,"
2

'rR
h/2 = aoto 

.J*2 
ù!o(vo/t) exp[-ívon]cos[(rnn/h) (r-Rr) ìdrEt

mo

flt *:"(v"/r) expliv"nlcos[(nn/h) (r-Rr) ldr

ú!o(v"ir) expIiv"n]cos [ (mn/h) (r-Rr) ldr

¡R
I + .,lt dr'
iR 'oo

R
oo:.1

Continuity of tange.ntial partícle velocity at B provides,

il = 0,

l-
E koo oo

I

a
ù (vo/r) exp [-ivon]droo

+D

I

R
3

R
2

oo

(^.22)

G.z¡)

"/r) 
expIiv"n]dr

m#0,

k
mo

cÏ
so

úfo(voi r) exp[-ivon]cos [ (nn/h) (r-Rr) Jdr

@
x

s=
I

0

DÍ

¡R
-"Eo olo 

.l*t

+
oo

2

2.8 CONTINUITY EQUATIONS AT INTERFACES B, C AND D OF TIIE ANALYSIS

OF CHAPTER 5

Continuity of pressure at B where xf = X and 0t=0 Provides,

l=0,

alotr'lzl exp[-íkoox] + A:o $/Ð explikooxl

R
DT4 lr" d.t +'so

æ
x

s=
33

( A. 24)oo
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,1, = 0,

e' + o,

provides,

[=0,

DI

'rR
Alo(h/4)exrIlkoox] =*Eo o:" 

.J*u 
ú!o"o" Í(zp.r /n)(r'-nr) ldr'

â

rR
* otoo 

.|*u tlo"osl(2e.¡/h) (r'-n,) Jdr'
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(A.2s)

3

Continuity of tangential particle velocíty aL B provides,

aiokoo{t / 2) expl-ikoox] - ef,otoo(hl 2) explikoox]

ú!o(vo/r') dr' G.26)f.'
3

rRjl- t:. expl-rvon lzidr' *"Eo t:" I-- ü!o "*p[1v"n/2]dr'
33

æf
=X-D-s=U so Ii- t;",'"/r')dr'i - D

r
oo

3

-Arokso(h /4)explikrox] ="Eo o1. I*u 
ü!o(u=/r')cos l(zt"r/h) (r'-n,) Jdr'

R

3

-Doo
3

Continuity of pressure at C where xtt = -X and 0t= t¡/2

olr') cosl(2l'r lh) (r'-Rr) ldr t (a"27)

(A.28)

r rR

J*u t;otu

rlott/zl expIikooxl + nfo{n12) expl-ikoox]

oo
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L + 0,

tlott l+> exp [íkuox]

rR

J*u *1. exp[-ivon l2]cosf (2re"l:r-) (r'-Rr) Jdr'

Jl- *:. exp [ív"n/2]cos l(zttn' lh)(r'-nr) Jdr'Dt
SO

flt *:" (vo/r' ) exP [-ivon/2] dr t

nf^ |r*u *:^a, -/r')exp[iv"n/ 2]drl
"o Jn 'so' s-

3

rR

J*u *;",u 
"/r')exp[iv"n/2]cos 

l(ze'n/n) (r'-R,) ldr'
3

ol
oo

(A.29)

3

Contínuity of tangenËial particle velocíty at C provídes,

*"Eo

ríotoo{t,/2) exp Iikoox] - nf,otoo(h/2) exp [-ikoox]

3

3

3

R

R

ri
oo

.C = 0,

t'+o

provides,

Itr = 0,

Elh=oo

(A.30)
co

-tså0

nfot*o {ttl 4) exp I ikrox]

a ü!o{ro/r' ) exp l-ív or l2l cosl(Zn'r lh) (r'-R.) ldr'

DT
SO

Dioo

(A.31)æ
-ts!0

ContinuiÈy of pressure at D where xt' = 0 and 0 = rl2

' Ufo"*p Í-iron/2tdr +sE' .:. f-' ü!o"*p[iv"n/2]drcfoo

I hl2

R

R II

t S
B (A.32)dyttLo

rl
o

Lo¡¡z +yis
oo

+B



n#0,

ur # 0,

+ c
s=0

ci
R

a
E h/2 = 2

mo oo
R

- rf.cff',l tr - (-r)Inl

uít h=cioo oo oo !o 
(vo/r) exp [-luon / 2] dr

fJ *:"(v"/r)exp [ív"n/2] dr
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(A.33)

dy" (A.34)

t|, exp [-ivon /2lcos [ (rnn/h) (r-R, ) J drc
oo

I

@
x

r
so

rR

.| *' 
*lo."p [Ív"n/2] cos [ (mnlh) (r-Rr) ldr

I

¡l¡^/2r I .st;" J üio cos[(nn/h) (y" * hl2)]dy"
o

|'*' ,J¡
I

nlok oh/2 = .1o fjt ,;.,"o/r)exp l-ívon/2lcos[(unrlh)(r-Rr)ìdr

- 
"io 

flt *:.(v"/r)exp[lv"n/2] cos[(nn/h) (r-R,) ldr

@
x+

.C=0

Continrrity of tangentlal particle velocíty at D provides,

IIt = 0,

æxc
s=o so

t-+B koo ooh/2 - i.
tok.q,o

I

r hl2

o

s
9"o

B {,
l,=0

I

I

- rlouoo <fr1 tl- (-l)Inl

hl2
sr

B

0

@s

\= Lo
k

.Q,o
o

q/
Lo

cos [ (urnlh) (y" + hl2) ]dy" (A.3s)
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2.C CONTINUITY EQUATIONS AT INTERFACES B, C AND D OF T}IE ANAIYSIS

OF CHAPTER 6

Continuity of pressure at B where xr = X and 0 | = 0

provides

eioCrrlzl exp[-ikdoxJ + Aro $/2) expIikuox]

(h/2) * olo (hlz)

elotoo{t/z) exp[-ikdox] - A:o(h/2) exptikjoxl

= oiokoo{h/2) - oäokoo $/z)

nlo{r,lzl explikdoxl + BIo 6/2) exp[-ikuox]

= oío(h/2) expt-ivjn/zJ * oão ftl2) explivun/21

a=! oo

Continuíty of tangentíal partícle velocity at B provides

(A.36)

(A.37)

(A.38)

Conti-nuíty of pressure at C where xtt= -X and 0t = r/2 provides,

rlotoo{t/z) explikdoxl - Bäoko o(h/2) exp[-ikuox]

= oiokoo{h/2) "*p[-ivdn /2] - olonoo 6/2) exp[ivun/2] (A.39)

Continuity of pressure at D where xt' = 0r x = 0 and 0 = r/2 provides

D = 0,

uloo = clo<ntz> exp[-ivdn /2] + croo(hlz) explivun/21

Continuity of tangenÈíal partícle velocÍËy at C provides

l_+B
oo

(h/2) * ulo $/2) (4" 40)
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n#0,

tio<t'lzl = .åo expt-ivjn /21(#)t1- (-l)ml

* .lo exp [ívun/2] (#*) t1 - (-1)'trl

Bi
oo(#n) tl- (-l)ml - rä"(#") tr - (-l)Inl

GonÈÍnuity of tangential particle velocity at D provides,

il = 0,

tlokooo = clotoo{trlz) expl-ivfn l2l - c:okoo(h/2) exp[Ívun/2]

(A.41)

(A.42)

(A.43)

+ nioroo{t'lz) - B
r
ookoo(h/2)

nlo,
rf,oeflornlzl = cioroo(rrl2) exp l-ivjn /4 (*)t1 - (-1)']

- cfotoo{t/z) exp[ívf,n/2](#,r) t1- (-1)tol

rl.n".<*'p tl - (-l)ml

+ nforoo{**,, t1- (-l)ml
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APPENDIX 3

MATRICES OF THE ANALYSES OF CHAPTERS 4 5AND6

The equations obtained by continuity aÈ the interfaces of

straíght and curved sections for the analyses of Chapters 4,5 and 6

Trere set into a complex matríx system such that A, * X, = Bo,. A, is

the matrix of the complex variables of each Fourier coefficient, X,

Ís the matrix of Fourier coefficÍents or the courplex amplÍtude of each

acoustic wave considered and B, is the matrix of coeffÍcients obtained

by moving the coefficient f]^ to one sid.e of the eguaÈions.oo

Thus at each particular frequency the coefficj-ents of each

ürave hrere evaluated and the matríx system solved for the Fourier

constants Xr, by a computer program based on CrouÈts rule.

For siurplificatÍon of the matrices the followÍng syurbols wil-l-

be used:

(A.44)

c

I

', = Il' ú!o a'

rR
tr= )o'r

t

rRt, = J*' úlo(vo/r)dr
I

rR
= .l*' ufoc'Í4

I

oo
cos [ (mn/h) (r-R ) ]dr

t
(A.4s)

(A.46)

/ r) cos [ (mn/h) (r-Rr) ldr (^.47)

I

!,Ihere Èhe integral not.at.ion refers to the outside or inside

curved section of the bend or attenuator ís indicated by marking the

natrix coluuur.

o
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APPENDIX 4

REDUCTION OF HARI,IONIC NOISE GENERATED BY A

CENTRIFI.]GAL FAN

4.A INTRODUCTION

Fans are a necessary part of every ventilating and air-

conditíoníng syst.em. However as the dernand for faster flow in such

ducts increases so does the noise generated by the fan. This noise

generally can be divided into t-wo parts: (1) the harmoníc noise

generated by inÈeraction between the airstream and the rotating

impeller, and (2) broad band noíse most 1íkely generated by flor+

interaction with the fan and housing. Many attempts have been made

to reduce both these causes of noise and the major works have been

well summaxizeð by Neise (L976). Due to the more obvious naËure of

the harmoni-c part of the noise generated most work has been concenÈrated

on reducing this part. In this case staÈed simply, the fan blades

chop the air stream causing regíons of 1o¡¿ and hígh pressure and

correspondíng radíatíon of sound. The frequency of the radiated

sound Ís thus determined by the number of blades and the angular speed

of the rotor.

The most effective reduction of the harmonic part has been

gained by varying Ëhe distance between the fan rotor blade tip and the

scroll cut-off. The reducÈion in l-evel at Ehe blade passing frequency

was found to be sensitive to the shape of the cut-off as well as the

clearance (Ploner and Herz (1969)). In general the reduction obtained

by varying the cut-off clearance varied between 6 and 20 dB dependíng

upon the shape of the cuÈ-off and the operating condition of the fan



303

(Embleton (1963), Smith (L974), Leidel (1969)). Increasing the cut-

off clearance \Á/as shornm to have an ínsignifj-cant effect on the broad

band noise (Leidel (1969)).

Ernbleton (1963) investigated inclined blades for multivane

impellers an<i also rotors with backr¿ard curved blades. For multi-

vane rotors Embleton measured a reduction of L2 dB in the noise

generated at the blade passing frequency. For backward curved blades

the reduction was far less, ín the order of 2 to 3 dB. Khoroshev and

Petrov (1971) obtained a reduction of 16 dB by angling the cut-off

through 70 degrees. They also obtained a reduction of I to 10 dB

in the broad bancl noíse.

I.lollherr (1973) invesÈigated the effect of different outlet

duct lengths on the sound radiated into the ínlet duct. He found

that varying the fan ouÈ1et duct length caused a 17 dB variatíon in

the sound level at the blade passi-ng frequency in the inlet duct.

Changing the length of the outlet duct effectívely changes the internal

impedance of the fan íncluding Èhe outlet duct. Liker¿ise Baade (1977)

has shown thaÈ varying the length of the outlet duct strongly affects

the sound radiated into free space at a particular frequency.

Finally Lyons and PlaÈter (1963) investígated a configuraÈion

of double inlet f ans. The blades of each rotor r¡7ere angularly dis-

placed so that the blades of one rotor lay half vray between the blades

of the other rotor. I'líth this arrangemenË Lyons and Platter measured

a reductíon of the noise generated at the blade passing frequency of

L0 dB due Ëo local cancellation of pressures generated at the cuÈ-off

edges.

In this appendix the effect of a skewe<1 (or angled) cut-off

on Ëhe sound generated ín a centrifugal fan is considered. The fan
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has four backward curved blades and the skewed cut-off is arranged to

cover two blades símultaneously. No atÈempt is made Eo reduce the

broad band noise. The results obtained are compared to those obtained

by other workers. A method of impedance loading of Ehe fan outlet is

proposed which can be used wiÈh fans r,ríth tr,ro rotors. Theoretícally

the proposed arrangemenË should courpletelJ¡ attenuate all sound at the

blade passing frequency.

4.8 THE SKEI,üED CUT-OFF

Experimental Eouioment and Procedure

The fan to be investigated is shown in PlaÈe 7 r+ith inlet

section and part of the f an casíng removed ' The sker'red cut-of f is

shown in posítion. The fan has four back¡¿ard curved blades with

insÍde and outside diameters of .22 m and .52 m respectively. The

skewed cut-off was designed to cover at least two blades and thus

had a total angle of 90". The skewed cut-of f !,Ias mounted in positíon

as shown in Plate 7 by botÈs through slotted tabs on the edge of the

cut-off. Thus the radial clearance of the cuÈ-off to the tip of the

fan rotor could be varied through approximately I centimeters.

The fan inlet duct was of circular cross secËion of diameter

.206 n and was 2 ur in lengÈh. The fan outlet duct was a .132 m x

.33 n rectangular cross section. The outlet duct length was chosen

to be .9 m which approximately corresPonds to the half wave length

of the blade passing frequency. Thus the noise generatecl aÈ the

blade passing frequency should be radiated well from the outleË duct

to examine effects of the harmonic noise aÈ thís particular frequency.

The fan rotated at 304 radians/sec. The corresponding theoretícal

blade passing frequency for this fan is thus 193'5 Hz'
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PUfE 7 , The skewed fan cut-off

Plnff 8, Position of experimental apparatus for investigation

of fan noíse.
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Measureme.nts \^rere made at a position one meter from the

exl-t of the fan using a Brüel and Kjaer Sound Level Meter and 1/3

Octave Band Analyser as shown in Plate 8. It can be seen from Plate

B that the exit duct does not radiate inÈo free space due Ëo several

reflectíng surfaces nearby. llowever the ÍnvestigaÈion is of a

comparative naËure and not absolute, so that Ëhe test condítÍon was

thought satÍ-sfactory. The two cases of the fan with a straighË cut-

off and with an angled cut-off were analysed in 1/3 octave bands and

Ín narrow constant frequency bandwidÈhs. For the 1/3 octave analysís

the Sound Level Meter \.ras set to slow and the readíngs taken as the

fan was running. The two cases of sor¡nd leve1s with a straÍght cut-

off and with a skerued cut-off are shown in Figure 4.1 for 1/3 octave

bands.

For narrow band analysis the output of the Brüel and Kjaer

Sound Level Meter rras recorded on a Nagra taPe recorder. From this

recording continuorrs tape loops were made to obtain a consistent

l-evel. The output of the Nagra recorder when played back with

Èhe tape loops fítted was fed ínto a Brüel- and Kjaer Heterodyne

Ana1yser. The narrow band Heterodyne Analyser rnras set to a 10 Hz

bandwidth and Èhe input \^Ias averaged over 3 secs. Thus with this

averaging ÈÍme and the tape loop arrangement an averaged readÍng r^/as

achíeved. The Analyser r^ras connected to a Brüel and Kjaer Graphic

Level Recorder by means of a mechanÍcal drive cable rshÍch enabled

synchronízed sweeping of frequency (at a L0 Hz bandwidth) to be

achieved. The output of the Analyser was set to a D.C. current (and

the level recorder set to D.C. accordingly) thus the ouÈput of the

analyser \^ras averaged by 3 secs. The narrovl band frequency analysís

of the fan noíse r,¡ith a sËraight cut-off and skewed cut-c¡ff usÍng
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the above method are shown in Figures .{.2 and 4.3 respeetively.

The souncl pressure level of the fan noise was also recorded

during running at the I meter positÍon using a sound level meter set

to "slo\¿". For the case of straight cut-off edge the level ¡¿as Ll-z

dB(lin) and wíth a skewed cuË-off edge the level at the same position

hras 107 dB(lin) giving a reduction in overall sound pressure level

of 5 dB(lin).

The effect of radíal clearance of the cut-off was ínvesË-

igated by relocating the cut-off as requíred but was found to

insignificantly effect the results. Thus results for a clearance of

5mm between the rotor tips and cuÈ-off are presented in Èhe figures.

4.C DISCUSSIOII OF SKEI,üED CUT-OFF E)PERIMENTAL RESIiLTS

FÍgure 4.2 which is a narrow band analysís of the fan noise

with a straight cut-off fitted shows that the fan noise is character-

j,zed by a broad band noise r,rith a series of nuch louder discrete

peaks. The fÍrst major peak is seen to occur at a frequency of

approximately 196 Hz which correspoflds closely to the theoretical

blade passing frequency of the fan. The other peaks occur at multiPles

of the blade passing frequency and are thus thought to be harmonics.

Thus as one would expect, the major contributor to fan noise is that

parË caused by the blade-flow interactíon at Èhe cuË-off edge of the

fan scrol1.

The narrow band frequency specÈrum of the fan with a skewed

or angled cut-off is shown Ín Figure 4.3. ![ith the skewed cut-off

fitted the sound pressure level generaÈed at the blade passing

frequency ís seen to be substantially reduced by 9.5 dB, and the

harmonícs are reduced ín the order of 4 to 5 dB. The same reductíon

is reflected in the 1/3 octave analysis of the same cut-off condítions.
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At the blade passing frequency Figure 4.1 shows a reduction 6 dB in

the sound pressuïe level when a skewed cut-off is fitted.

Thus the fitting of a skewed cut-off is seen to substantially

reduce the noise generated by centrifugal fans at the blade passing

frequency. The values of reduction in level obtained here should be

compared to those of 2 to 3 dB obtained by Embleton (1963) for fans

wÍth backward curved blades. Ilowever it is not clear what type of

frequency analysís Embleton used.

The values of dB (lin) measured with a straight cut-off and

a skewed cut-off show a 5 dB reduction. Thus even though the sound

pressure level at the blade passing frequency is substantially

reduced, the overal-l level is only reduced by 5 dB rnrhen an angled cut-

off is fitted. This was thought to be due to an íncrease in broad

band noise when a skewed cuË-off is used.

4.D I}ÍPEDANCE LOADING OF THE FAN

Figure 4.4 shows the arrangement by which this method could

be used. It is only suiËable for application to twín rotor fans.

The. rotors are separated by a solid partítíon which is placed

parallel to the f1ow. The rotor blades are arrarLged such that one set

of blades lie half way between the blades of the oËher rotor. Thus

the sound generated at the blade passing frequency of one rotor ¡'¡ould

be close to being 180" ouÈ of phase wíth the other roËor. The

dínensíons of the separate ducts forned by the subpartitions are

adjusted such that only Èhe (0,0) mode will Propagate at the blade

passing frequency. This method ís likely Èo be limíÈed Èo multi-

bladed fans in orcler to maintain reasonable duct dimensions' The

partitÍon is long enough such that. all evanescent modes generated at

the ctrt-off have decayed and are negligible. Thus aË Èhe exiÈ of Ehe
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partitlon, at the blade passing frequency, there are t\¡Io vibratíng

pisËons, 180" ouÈ of phase. By the theory of chapter 3, for this

arrangement, all sound would theoretically be reflected at thís

frequency.

Due Ëo the fact thaÈ parËitíon is parallel Ëo the flow ít

is not. llkely to modify the performance charact,eristics of the fan.
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AP?ENDIX 5

PUBLICATIONS

Journal of Sound and Vibration (1978) 56(t), 4159

5.4 A REACTIVE ACOUSTIC ATTENUATOR

C. R. Fur,ren,c,ND D. A. Blrs

D ep ail me nt of M e c hani c a I Eng íræ e r wg, U ní u e r s í t y oJ. Ade I aide,

Adelaide, South Australia 500,O

(Receìued 9 May 1977, ond ìn reoísed form 24 August 1977)

A reactive acoustic attenuator that combines high reflection oflow frequency sound with
low pi.essure drop coeffi and theoretically by using

"quoiionr 
for sound prop Good agreement is obtained

and th" theory is used to um transmission loss of telr

decibels ôver à frequency Small discrepancies between

theoretical and experimental results are discussed.

I. INTRODUCTION

As the demand for faster flow in air conditioning duct systems increases so does the noise

generated by the fan and the fluid flow. The noise generated by the fan and flow is usually of

long wavelength relative to the dimensions of the duct, rendering it unsuitable to attenuation

by lining the walls with acoustic absorbent material, and the level of this low frequency

n-oise is ãften unacceptable in such appiications as libraries or sound studios. In the usual

method of control a system of resonators or lincd expansion chambers may be empioyed

but these devices have the disadvantage of excessive size or large pressure drop and usually

oP€rate over a narrow frequency range.

In this paper, an attenuator described by Luxton [t] is investigated. This attenttator,

when frtteã into any convenient bend in a duct system, combines high rejection of low

frequency sound over a broad frequency range of three-quarters of an octave with a low

pt.i*ur" drop coefficient (0'46). The attenuator makes use of the inherent difference in path

iengfhs of the inner and outer portions of a bend fitted with a splitter to generate an impedance

mismatch at the inlet and exit of the device, causing reflection of sound.

Equations characterizing sound propagation in straight and curved ducts are used to

desciibe the device without flow. The predicted results agree well with those measured

experimentally. An understanding of the performance of the attenuator has allowed re-

design of its shape to optimize its performance.

2. SOUND PROPAGATION IN RECTANGULAR SECTION DUCTS

2.1. n¡rxlre RECTANcULAR STRAIcHT Ducrs

Equations for sound propagating in an inf,nite rectangular straight duct have been weli

discussed [2]. As the more important conclusions will be of importance to the understanding

of this paper änd can also serve as a guide to thc less familiar propagation in curved ducts they

will be brlefly reviewed and summarized here.

The geaeral solution of the wave equation (v2 +(alc)2)p:0 in separable rectangular

co-ordinates is

p(x,y,z,r): i 2 r^,þ'^,(y,z)expli(ott-k^,x)j, (l)

where the ¡ axis is parallel ," ,h, dli;;on of propagation of sound.
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The characteristic function describing variation in pressure amplitude in the duct over a

surface ir^ the y-z plane is

t*^U,z): cosfmnylhrlcoslnnzlh2l' (2)

where å1 and å, are dimensions of the duct in the y and z directions, respoctively'

The weve number k,n which describes sound propagatiott in the duct in the x direction is

given by
kl,:l(alc)2 - (mrlhr)2 - (nnlh)zl. (3)

If k,n is real then propagation will occur without attenuation. If ø and n ale zero then /coo is

atrvays real and the coriesponding wave will have constant amplitude across the duct' The

(0,0) mode is a plane wave which propagates at all frequencies. However if either or both rn

and n are not zero there will always be a frequency below which k.n is imaginary and the

corresponding(m,n) mode will not propagate. Thus if &', is irnaginary the corresponding

disturbance will decay exponentially along the duct axis. The discretc frequency for cut-off

of such modes, below which they are non-proPagating and above which they are propagating,

is given by

¡^,: (cl2)l@lhr)' + (nlh)2lttz. (4)

As the acoustic axial (x) particle velocity of a non-propagating mode is always in phase

quadrature with the acoustic pressure, non-propagating modes carry no nett power away

from the generating surface'

2.2. wrrxtrn REcTANcULAR R DIAL BENDs

The equations for sound propagation in radial bends with rectangular cross-sections arc

obtained from the wave equãtion in separable cylindrical co-ordinates. The sound pressure

distribution in the curved duct may be clescribcd as follows:

p{r,0,2,t): : i a", þi^Q,z)cxp[i(art-v"0], (5)
¡-Oa-O

where the characteristic function is

ú'^^(r,z): [J,,(k-r) - AY,,(k^r))cos]mnzlhrl, k2: k2 - k?' (6)

We suppose the walls of the duct are rigid; thus the normal acoustic velocity at the walls is

7þfo.
Using the general relation

u,: -(l lipck'¡ùplðr Q\

one obtains, at r:Ìr,
A : J'".(k^¡Rr)/YJ.(t' Âr), (8)

where the prime (') implies differentiation with respect to r'
The variable vn, callerl the angular wave number, is obtained by applying thc boundary

condition al r : Rz and solving the resulting characteristic equation:

!'".(k^ R)YJ,(k' Rr) - JJ.(t. 
'q') 

YJ'(k. AJ : 0" (9)

Values of the angular wave number were obtained from the characteristic equation (9) by an

iterative process on a computer, pov/er series expansions for the Bessel and Neumann func-

tions [3] teing used. Repråsentatìve values obtained ate shown in Figure l' They agree well

with the values interpoláted from a solution by Rostafinski [4] who useci a closed form of the

Bessel function of order (n + | l2).
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7.O

o'0
Wove number poromelet, lbh

Figu¡e l. Solutions of the curved duct characteristic equation. a:RzlRt. 
-, 

Iterative solution: 
^,

Rostaf.nski's values.

One assumes that vn follows the form of k,n in straight ducts ; then if the value of v, obtained

by solving equation (9) is real, the wave will propagate with constani amplitude. If v,, is

imaginary the wave corresponding to that mode will not propagate; rather the disturbance

will rapidty decay with distance along the curved duct. Differences in propagation in straight

and curved ducts are to be expected, however. The main difference occurs with the (0,0)

mode. In a straight duct the wave number is independent of duct dimensions and the acoustic

ampl¡tude is constant across the duct. However in a curved duct the angular lvave number

depincls upon the magnitudes of the inside and outside radii as well as on frequency.
-Rostafinski 

[4] has shown that the tangential velocity distribution for the (0,0) mode

follorvs closely that of a potential vortex for low frequencies (kR¡ < I ) and is close to that of a

forced vorteKat higherlrequencies (kÃ, - 3.0). At low frequencies in graCual bends, how-

ever, the pressure amplitudé does not vary markedly across the ducr in a radial direction and

is close tó that of a plane wave. This has been confirmed experimentally by Cummings [5]'

3. THE ATTENUATOR

3.1. peslcN

The arrangement of the attenuator fitted into a right-angled bend in the duct system is

shown in Figure 2. The frequency range over which the attenuator is expected to be useful

lies below the cut-off frequency of the (1,0) mode in the straight sections of duct upstream of

interface,4 and downstreàm olinterface D. An impedance mismatch is generated at interface

D by the phase differenc¡ between the propagating waves in the two se.Darate duct systems'

The phase difference is achieved by placing a profiled center-body in the duct bend which

divides the irrcident acoustic plane wave at interface A into two halves that recombine al D.

The relative phase of the two separate propagating waves at D is approximately determined

by the mean path difference of the two separate channels. At the design frequency, for lvhich

the mean poih ,liff"r.nce between the inner and outer channel is one'half wave length, a

plane wavi incident at interface I will be converted to a series of non-propagating cross

modes at interface D and at this frequency all sound wiil be reflected.

As the center-body is shaped with gradual bends it acts as a turning vane and a low pressure

drop results across the device.
Various shapes were constructed to this design requircment at different design frequencies

and tested explrimentally. However only two variations of the crescent shaped center-body

wittr 0.2 meter mean poth diff.t.nce, corresponding to a design frequency of 844 Hz in the

experimental duct, were amenable to the analysis presented here. Thus discussion will be

confined to the latter coufiguration,

5.O

4.O

2.O

.o

oì
oc

Þì
9
loc

o = l.?8

ø .2.25



316

C. R. FULLER AND D. A. BIES

u D
I

Bi. 8Á
4

óao o ¿o<_ <_

D:.

<--

-> 
Løo b

h
-.->
Lno
<-

c)

Q,à

I ¡*J

r'1 rtJ,

\
a-

N

\r,t

\sî \E,t

i,*1 ¡tJ (D

\-- 1_

Figure 2, Arrangement and co-ordinate system ofattenuator

3.2. lxlrvsls
The attenuator was fìrst investigated by considering only the power transmitted and

reflected at interface D. The analysis accurately described the reflection of sound powel at

the design frequency but failed to ãccount for observeci major reffections at other frequencies

also in in" rung, considered. The attenuator was therr described by dividing it into sections

and considering propagation ancl reflection in each. With the co-ordinate systems and joining

interfaces shown in Flgure 2, sound propagation may then be described by straight duct

equations in sections 1i2,4 and 6 and byiurved duct equations in sections 3 and 5'

The coeffìcients of each wave were obtained by applying continuity conditions across

each interface. continuity implies that acoustic pressure and particle velocity must be

continuous across the plaåe joining the two duct systems. Since there is no discontinuity in

the z direction it is saiisfactory to use a two-dimensional co-ordinate'system: i'e', k':0'
For convenience a reference amplitude of Pfo: I - 0i wili be used for the incident wave in

the upstream duct.
At each discontinuity an infinite set of higher order modes will be generated' As the

frcquency is limited to irss than the cut-offfrequency of the (1,0) mode in all straight duct

sectìons, the higher modes in the straight ducts will decay and only the (0,0) mode will

propagate without attenuation. Similarly it can be shown by solving characteris¡ic equation

tgl if,", ,nly the (0,0) mode will propagaie in the curved sections 3 and 5 without attenuation

in the frequency rarlge considered.

The reiuirement ior continuity of particle velocity rvill be simptiried to contiuuity of

tangential particle velocity along ihe direction of the r1uct center line. This simplification is

suplorted 
-by 

the consìdeiation that no cross-modes propagate and thus cannot contribute

to'the nett io*., flow. Horvever ultimate justilìcation for the simplilìcation rests with the

agreement ù.t*..n the results of experiment and predictions of theory' On this basis the
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simplification is justified and thus continuity of acoustic pressure and tangential particle

velocity at each interface is postulated.

Henòe at interface l, rvhere x :0, 0 :0, x' : 0, continuity of acor:stic pressure provides

P[s exp [i(cor - koo x)] + i -p;o co s[(mrlh) vlexp [i(ør -r k'e x)]
ñ-O

@: j C,i" úíoexp [i(cor - v"0)]+ Cóo r/6oexp [i(ør + vo0)] for 0 < y <hlz (10)
a-O

and

P[6 exp I i(a.rl - koo x)] + i p í'cosÍ(nnlh) v)exp [i(o.rt + k.s x)]

: !,rfo"os fQ^ilh);';:xp[i(or-lr,sx')]*,4[oexp[i(ør+k*x')] for hl2< v < h'
r-o (l l)

The Fourier coefÊcients are obtained by multiplying both sides of the equation by

cosf(mrlh)y] and integrating over the interface surf'ace with respect to y, y' or r. The orthog-

naliiy proferty of the latter function allows determination of the Pie coefûcients for m : O,

1,2,..,, as follolvs:

m: o: R¡ tr2 ht2

p¿oh+Påoh: å.;" ! ú:"or+có,,|ú[od{+ .i nl"[ ,t'u¡r'+ A'oohlz, (12)

' r-o ß¡ ß¡ '-o ö

m *O: R2 R¡
.ol

Piohl2: : C,lo I ú;o"o, l(mnlh)(r - À,)l dr * C6oJ Ú6o"ot [(mnlh)(r - R,)]dr
¡-o ;., R¡

+ .inl"f **"o, l(mnlh)(t' + n¡z¡]dv' - A'ooØl2mn)ft- (-l)'l' (13)
t-oo.

Similarly, continuity of tangential particle velocity at l'provides
m:0: Rz ß2

Phkooh - P6okooh : i cl, I Ú'^"fn,lr)dr - c,i. f ú;"tr, lr)dr +
'-o Ë, ir

@ hl2

+ i ,qlok,o I úio¿v' - A'ooko(,h1z, (14)
l-O ;

m*0
ßz

I
R¡

-Phok^ohl2: 2 clo /'je(v"ir)cos [(mnlh)(r - R')]dr -
R2

- CS" I rl$s(velr)cos l(mnlh)(r - R,)l dr +
ß¡

ù12

ry'iocos l(^nl|/' + hl2)ldy' +

r-O

+ i,eto;t,o Ir-o á

+ A6okoo{hl2mn)U - (-l)'1. (15)

The equations derived by continuity of p.ressure and particle velocity at interfac¡s B, C and D

are given in the APPendix.
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The above system of equations (12) to (15), and equations (Al) to (Al2), constitute an

infirrite set rvith an infinite number of unknowns. In order to proceed, it is necessary to
truncate the various infinite series. Truncation of each series is determined by two considera-

tions: lìrstly the accuracy of the resulting mathemarical expression lvhich is desired when

compared with experimental results, and secondly the number of equations necessary to
determine all of the unknown coefficients in the several truncated series.

Let the nunrber of modes in straight sections I and 6 truncate at L, in straight sections 2

and 4 at M and in curved sections 5 and 3 at ¡f. In this case the total number of unknown
coefficients U is

U :2L + 4N + 4M, (ló)

while the total number of equatiorts I/ is

V:4L+4M. (17)

Cummings [5] has shown for an interface between a straight and curved duct that the

number of modes in each duct section must be equal for solution: hence

N: M. (t8)

Therefore, equating the number of unknowns Uand equations I/gives

L=2N:2M. (19)

Hence ths series describing sections I and 6 must be truncated at lrvice the number of terms

of the selies describing sections 2,3, 4 and 5.

At each discontinuity in the duct system an infinite number of higher order modes are

generate<!. Cummings has shown that at frequencies well below the cut-off freguency of the

(1,0) mode, non-propagating modes have only a small effect on sound propagation in a
curved duct. On comparing the theoretical and experimentally measured impedance (as-

sumed to be entirely reactive) of a 180" bend, Cummings found good agreement with pie-

diction in the curved section when the analysis was truncated at the (0,0) mode. For this

reason and in the interest of economy of computing time, the present analysis is limited to

consideration only of the (0,0) mode. Hence we set N and M of equation (18) equal to unity

andZ of equation (19) equal to trvo. Therefore the number of modes in straight sections I and

6 will be limited to two, one propagating and one non-propagating mode.

4. EXPERTMENTAL APPARATUS AND METHOD

The attenuator was investigated rvith the arrangement shown in Figure 3. The duct system

consisted of a 0.0635 x O'127 meter rectangular section and was constructed from 0'0254

meter thick wood lined with Laminex on the inside to fulfill the rigid wall boundary condition.

The scund source shown schematicaliy in Figure 3 was placed in the duct side wall l'7
meters upstream from the flttenuator. At this distance, all locally generated cross-modes will
be sufliciently attenuated to be negligible at the entrance to the attenuator. Thus the incident

wave at interface I was plane with constant pressure and velocity amplitude across the

duct.
The downstream duct was terminated with an anechoic ter¡nination of the arrangement

shown in [figure 3. The pressure reflection coefficient of this termination was measured

separately over the frequency range considered and found to be less than 0'1. Hence the

downstream duct appears infinite to the exit of the attenuator and only one EI¡wave need be

assumed to be propagating in the section 6 straight duct.

The original attenuator investigated consists of a crescent-sha¡ted center-body and sur-

rounding duct with dimensions h:0'229 meters, Rz:0'292 meters, A¡ : 0'051 meters and
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Allenuolor Ânechoic rermrnol¡on

Spe oker

Mrcrophone lroverse

Figure 3. Experimental apparatus'

À+:0.114 meters, where the corresponding radii are shown in Figure 2. This arrangement

results in a path difl'erence of 0'2 meters between the mean center-iines of the two separate

ducts. The borresponding design frequency, for plane waves propagating in all sections, is

844H2.
The three parameters sound power transmission coefficient, transmission loss and varia-

tion in pressure amplitude across the curved duct were measured.

The sound powcr transmission coefficient provides a measure of how much energy the at-

tenuator will reflect and was obtained by measuring the acoustic standing wave in the up-

stream duct with a probe as indicated in Figure 3. Maximum and minimum pressures \+'ere

measured and recorded by using a spectrometer'and a level recorder' The transmission

coefficient was obtained from the measured standing tvave ratio, n, by using

d,: I - l(n- l)l(n + l)l'. (20)

The transmission loss of the attenuator is defined as the reduction in decibels bctween the

sound pressure level of the incident wave Pj6 and the transmitted wave .Ejo. Transmission lcss

providàs an indication of the performance of the attenuator as it shows to what degrec the

sound pressure level in the duct will be reduced by its installation. Experimental values of

transmlssion loss were obtained by measuring the maximum pressure level of the standing

wave in the upstream duct rvith a calibrated microphone, traversed until a maximum was

reached. The sound pressure level of the transmitted wave Eis was measured by using a

calibrated microphone positioned midstream in the acoustic flow 0'3 rneters from the exit of

the attenuator. The transmission loss of the attenuator is then given by

transmission loss : (.F-",) dB - 20log,o (l + aI) - (EL) dB' (21)

where øo is the sound power reflection coefficient measured from the standing wave.

Variation in pressure amplitude across the curved duct sections indicates the degree to

which non-plane propagation occurs in these sections, and was measured in the outside

duct curvefl sectìon by traversing a probe from tlie inside to the outside radius' The values ob-

tained were normalized relative to that on the inside wall-

A
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5. THEORETICAL AND EXPERIMENTAL RESULTS

5.1. sotrNp po\ryER TR.ÀNsMIssIoN coEFFlcIEllr

The radial terms in equations (12) to (15) and (Al) to (Al2) were expressed as polver

series and integrated by using Simpson's rule on a computer. Each series was summed until
an error of less than l0-a was obtained. The resulting constants for each equation were then

set in a 12 x 12 matrix and the coefficients of each wave were obtained by solving the matrix

by using a program based on Crout's rule. The predicted values of transrnission coefrcient

were then evaluated from

d,--l-lPi,olPtol'.

The theoretical values obtained for the original attenuator are shown in Figure 4, where

sound po\ryer transmission coefficient is plotted against a non-ciimensiorral frequency para-

meter, ,t6lr. Measured values are also shown in the figure for comparison.

0

o.o o 4.O

Wove number Poromeler, f9â

Figure 4. Power transmission coefficient of original attenuator. 

-, 
Theoretical curve; o, experimental

value.

As shown in Figure 4 close agreement is observed between thc predicted and measured

frequencies at which minima in the transmission coefñcient are observed, especially at lolver

frequencies. Slight discrepancies between the theoretical and experimental frequencies of
minimum transmission are thought to be due to dimensional inaccuracies in the geomctry of

the attenuator, affecting the mean path difference between the two clucts. At low frequencies

thewavelength of the incident sound is very much larger than the duct's small scale dimensions

and thus only a small discrepancy results. However, at high frequencies this is no longer

true and tire discrepancies are larger'
The mag¡itude of the measured transmission coefficient, which agrees closely '¡'ith that

predictecl at low frequencies, is progressively greater than predicted at increasing frequencies.

Three possible reasons for this observation are suggested, aS follows.

(l) The walls of the experimental duct are not absolutely rigid as supposed by theory. In

fact they v¿ere found to vibrate and radiate sound. Thus vibration through the v¿alls acts as a

flanking path to increase the apparent transmission through the attenuator. (2) The minima

of the itãnding wave nìeasured in the upstream duct become sharper with increasing fre-

quency, particularly at large valucs ofthe standing wave r¡tio n. This leads to error in evalua-

úng túe magnitude of the minimum pressure and results in a higher value of transmission

coefûcient than predicted. (3) The duct dimensions are not exactly described by the theory.
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Minirnum transmission at the design frequency may be fully accounted for in terms of
reflection at the bend exit plane, interface D of Fìgure 2, In fact a simple theory which des'

cribed the exit plane as composecl of two vibrating pistons but with variable phase, deperrdent

upon the wavelength to path difference ratio, describes quite weli the overall transmission of

the attenuator. However the presence of the additional minima in the experimentally deter-

mined transmission coefficient that oecur at values of koh:0'6, l'3, 2'6,'.., as shown in

Figure 4, cannot be explained by considering leflections at the exit plane alone. The addi-

tional minima are due to multi-reflections at interfaces A and D and are fully accounted ior
by the more exact theory presented here. The frequencies at which additional minirna occur

dãpend upon the magnitude of the path difference relative to the mean lengths of either of the

o

o.o
Wove ¡umber goromeler, kgh

Figure 5, Power transmission coefficient of optimum attenuator, 

-, 
Theoretical curve; o, experimental

values

ducts in the compound bend. For convenience we will take the inside duct mean length as the

standard length Ìor comparison. Thus the ratio of the inside duct length to path difference

determines the frequencies of additional minima.

The following strategy is now possible. Choice of the path difference determines the design

frequency while independent choice of the mean inside path length to path difference ratio

determines the frequencies of additional minima. Thus for a given design frequency the

ratio can be chosen to optimize the rejection characteristics of the attenuator by appropriate

adjustment of the frequencies of the additional minima. For the purpose of this paper optirnal

atienuation has been taken to mean at least l0 dB transmission loss over as rvide a continuous

frequency range as possible, centered on the design frequency. In practice one proceeds by

keeping ihe palh length difference between the inside and outside ducts in the bend constant

"od 
u"ryingih.ir totul lengths, or equivalently the ratio of their lengths. The ratio of lerrgths

of the attenuator rvhose transmission coefficient is sho',vn in Figure 4 is 2'00; however the

optimum ratio of lengths for a crescent-shaped center-body has been determined by these

investigations to be 1.67. With this choice the position of the extra minima are moved closer

to the ãesign frequency and a continuous rejection band of greater than ten decibels over

three-quarters of an octave is achieved.

An ãttenuator designed for optimal attenuation characteristics has the following dimen-

sions: with reference to Figure 2 its radii are R, : 0'184 meters, Àz : 0'248 meters' Ä¡ : 0'006

meters and JRo:0'070 meters'

The theoretical and experimentally measured transmission coefficient values of this

âttenuator are shorvn in Figure 5. It can be seeir that ttre extra minima have incÍeed moved
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closer to the design frequency than those shorvn in Frgure 4. In the model attenuator a

rejection band of430 Hz centered at a design frequency of844 Hz has been achieved'

Closer agreement is obtained in the position of theoretical and experimentally measured

mininra produced by the optimum attelìuator. This is due to more accurate machining of

components in the attenuator, thus achieving the correct mean path lengths.

5.2. nsrnrloN Loss

The theoretical transmission loss is predicted by

transmission loss: -lOlog(a'). (23)

Theoretical and experimentally measured values of transmission loss for the original attenua-

tor are shown in Figure 6 while those for the optirnum attenuator are shown in Figure 7.

At the design frequency the rejection of sound is very nearly complete so that the trans-

mission loss in a narrow frequency band about the design frequency depends upon the band

width. The narrower tlre l¡and width the greater the transmission loss. In the analysis shown

in lrigures 6 and 7 a band width of 25 Hz has been used but as pure tones were used for the

measurement of the tlansmission loss, occasionally very much, greater rejection levels than

predicted were observed. SubsequenÌ investigation with narrorüer band wicith increments

50

o.o 2.O 3.O

Wove number poromeler, *o/,

Figure 6. Transmission loss of original attenuator. _-, Theoretical curve; o, experimental values'

50

o
o.o 2.Q

Wo!e number Porometer, to,

Figure 7. Transmission loss of optimr.rm af:enuator. 

-, 
Thcoretical curve; o, experimental values.
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50

oo o o oôo ó o oso @ @ ô
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Figure 8. Experimentally measured transmission loss of original attenuator in 1/3-octave bands with
white noise source.

5.l

40

6
I

.9
aI
ezo
cg
t--

0

@Þ

o
c
.9

E
a
Þ
F

RRsgH 3 g g

Eond cenler frequency (Hz)

Figure 9. Experimental rneasured transmission loss of optimum attenuator in I/3-octave bands with

white noise source,

showed that these high anomalous values could ahilays be accounted for on the basis presented

here.
Small discrepancies betrveen the theoretical predictions and the measurements are rhought

to be due to small dimensional inaccuracies in the models as previously discussed. However,

much closer agreement is obtained, between the actual magnitude of the theoretical trans-

mission loss and that measured experimentally, than that shown by the transmission coef-

frcients in Figures 4 and 5. Thus the attenuator performs far better than shown by measuring

the stan,ling wave alone. This supports the argument presented for discrepancies between

the magnitude of experimental and theoretical transmission coefficient.

The ãxperimentally ¡neasured transmission losses of the original and optimum attenuator

in one-tlird octave bands with a white noise source are shown in Figures 8 and 9, respectively.

5.3. cunv¡p DUcr RADIAL PRESSURE DISTRIBUTIoN

The theoretical variation in pressure amplitude across the duct was evaluated by using the

following expression:
relative sound press,.tre : (Ú60),/(ú6o)*,, (24)

where rrfiq is the characteristic function of the (0,0) mode.
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In equation (24) the radial pressure amplitude distribution across the duct has been nor-

malized to that at the inner wall. Representative values lbr the inside bend of radius ratio

a:RrlRt:1.28 are shown in Figure l0 while those for the outside bend, a:2'25, arc

shown in Figure I l.

Rod¡ol pos¡l¡on

a =1.28

Figure I0. variation in pressure amplitude lor bcnd a: l'?ß. 

-, 
Theoretical values.

Rod¡ol posilìon
o.?'25

Figurc ll. Variation in pressure amplitude for bend ¿ = 2'2,5, 

-,Theoretical; 
o, expcrimental.

Experimental values for the variation in pressure amplitude across the outer bend,4:2'25,
are shown in Figure I I for comparison with the predicted values. The agreement is considered

to be good. The small error apparent at high frequencies is thought to be due to dimensional

inaccuracies in the radii ofthe curved sections.

It can be seen that at low frequencies, corresponding to values of the dimensionless fre'
quency /ro å ( I .5, acoustic waves propagate \ilith only a small variation in pressure amplitude

acrossthe duct, for bends cf radius ratio shown in Figures t0 and I l. Hence at lorv frequencies

the basic design assumption that acoustic \ilaves propagate as plane waves in ali sections cf
the attenuator wouid lead to a negligible error. flowever as the frequency increases, the

variation in sound pressure amplitude across the duct becomes more pronounced, particu-

larly in the sharper bend. Thus for sharp bends at high frequencies the assumption of plane

"rune 
ptop"gation does not hold. This conclusion is in agreement with results obtained by

Cummings [5].

6. CONCLIJSTONS

An attenuator with an inherently low pressure drop coeffi.cient has been described which

may be installed i¡ a duct bend. The attenuator when optimally designed is capable of pro-

viding a transmission loss greaier than ten decibels over a frequency range of three'quarters
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of an octave in the very low frequency range, Optimization of design is facilitated by a

theoretical description tirat has provided good agreement between theory and experiment'

The attenuator provi'Jes large transmlsston loss at a series of discrete frequencies all

below the cut-offfrequency for the first cross-mode in the duct. The presence of these discrete

frequ.nri., is explained by reflection of inciclent sound at the exit and entrance to the attenua-

tor. Thei. relative distribution is determined by the geometry of the attenuator'

The variation of sound pressure amplitude of a travelling wave in a curved tluct is ade-

quá,.ty described by the theory. Large departure from uniform pressure amplitude is pre-

dicted an,l observed for curvediucts àf tmàll raclius near but stili below cut-off of the lowest

order rnode for straight ducts of the same cross-section. Thus in the latter case the assumption

of plane wave propagation in the curved duct is inadequate; curved duct equations must be

used to describe the sound propagation'
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APPENDiX:CONTINUITYEQUATIONSATINTERFACESB,cANDD

At interface B, x,' : X and 0' : 0, continuity of pressure þrovides

/: 0: n.
o

R¡

t+0 ß4

Atso$12).expl-ikoÐ Xi + A[,oØ12)exP [ikoo X7: 5 D'^o ú"odr'+ Ðå. I Ú6odr" (Al)
Âa

I
ß3

I+0: R4

-Aiok,oØ14)e xp [ik¡6 Xl : i Dlo I Úío!,n/r') cos l(2hlh)(r' - R3)]dr'-
n:o i,

Â¡

- O'* I ry'fie(velr') cos Í(2hlh)(r' - ^R.)] dr'

R¡

AioØ|4)exp [ik,o Xi: i n',o [ 'lt¡ocosÍ(2hlh)(r' - R.)] dr'
¡_o i,

^4
+ D6,o J ú6".ot l(2lnlh)(r'- ,Rr)l dr"

Ãr

Continuity of tangential velocity at .B provides

J:O
AtookaoØ]2)exp [-iko6 Xi - A'ook;o$12)explikoo Xl

R4 R¡

= î o:o | ú"^oo,lÒdr'- D6o ! ú'*{v;ûat'
r-o ;, tr3

(A4)
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At interface C, x' :-X and 0' : xl2, continuity of pressure provides

/:0 R¡

Rt
Ra

B|oú|z)explikoo X1+ B6o(hl2)exp[-ikss X]: Dåo J '/åot*o [-ivorl2)dr'*
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(As)

(A7)

(A8)

(Ae)

+
å. 

rt 
J 

úîo exp liv ̂n l2l dr',

l#0: ft¡

R¡
Ra

Continuity of tangential velocity at C provides

I:0:
BUkooØ|z)exp [ikoo Xl - Bó" kooØ12) exp [-ikoo X]

l jLOi R¡

m*O: ß2

Blo(hlil)exp [ik,o X) : Dåo J,/6o.*o l-ivsnl2]cosl?lnlh) (r' - Rr)l dr' -f

+ 3 ¿; lr ú;o.*o liv,nl2]cos[(2/r//r)(r'- rR3)]dr'
t=O ;,

(A6)

Rl-tr¡

- o¿" I ün¡olÒexp[-ivo nl2ldr' - årot [ Úî,tu,lr)rxp[iv^npldr',
tr¡ tr¡

Blok,o$14)exp [ik,6 Xl: Din J ú8otro/t') exp [-iv6 nl2lcosl(2lnlh)(r' - R.)] dr' -

At interface D, x' : o, 0 : nl2 and ¡ : 0, continuity of pressure at D provides

m:o: R2 _ R:

E[oh : ,¿" i ú6o exp l-ivonl2ldr * io a; ! f 
^exp 

[iv" tl2ldr
ßr R¡

- 
hl-2

+ Btoohl2+ 2 Bio I Úìodt',r-o õ

R¡

ß4
@t

- 2 Di,o I ú:o(r^lt)exp [iv, rl2)cosl(zhlh)(/ - R.)]dr'.
r-O ;,

Ã¡

ht2

J 7å"o' l@nlh)(v'+ hlz)ldY'.
6

+2Bio
¡,o

E'^ohrl2- C¿. J úáoexP l-ivsxl2lcosÍ(mnlh)(r - R,)ldr

+

R¡

ß2
@

:
l-O

C¡ [ þ;oexpliv,rl2]cos[(mnlh)(r - R,)] dr - B[oØl2mn)lt - (-l)'] +

(Ar0)
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Continuity of tangential velocity at D provides

m:0:

m*O:
tr2

X¡

ll2

nr

À2.*

E|okooh: Cåo ! ú|otrolÒexp[-ivsnl2l¿r - Ë CS I V:"tr^lr)exp[iv,rl2]dr
f,¡ r-o í,

6 hl2

+ B¿akoohlz-,!oaío*,o ! ,l'ï"af ,
o

E:^ok^ohlz: Cåo ! úi,otrolr)"xp [-ivo fl2lcosÍ(mrlh'l| - .Rr)] dr
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5. B.

Propasation of sound in a cl¡rved bend containing a
curveel axial partition

Christopher R. Fuller and David A. Bies

Deportmcnt of Mechanicol Engineering, University of Adelaide, South Australiq, 5001

Sound transmission in r 180 bend containing a curved partition positioned on the axial centcr line is

investigated theoretically and experimentally using equations for sound propagation in straight and curved

ducts. Good agreerrent is obtained and small discrepancies are discusscd. The partition is found to

signifìcantly alter the scund propagation through thc bend and reasons for ¡he differcnt acoustic behavior

are glven,

PACS numbers: 43.20.1v1v, 43.20,8i

INTRODUCTION

In recent years attention has been focused on the
problem of sound propa.gation in curved-duct bends.
Rostafinskil-3 has thec¡reticaliy investigated the acoustic
velocity distribution of propagating anci nonpropagating
modes within curved bends. Cummingsa has theoreti-
cally and experimentally investigated the acoustic dis-
continuity caused by tu-o 180" bends of dilferent curva-
ture in a straight-duct system of rectangular cross sec-
tion. He found that even for bends of severe curvature,
near the cutoff frequency of the (1,0) mode in the curved
section, the bends provided negligible reflection of
sound. OsborneS considered the more cornplex case of
higher-mode propagation in short curved bends, but
still found no appreciable discontinuity in the acoustic
propagation through the d.uct system.

In this paper the discontinuity caused by a bend di-
vided by a curvecl partition is considered. As suggested
by Rostafinski the introduction of the partition creates
essentially new boundary ccnditions and modifies the
original distribution of pressures and velocities.3
Three parameters, power reflection coeff icient, char-
acteristic impedance, and insertion loss are investi-
gated. Experimental values of these paranreters are
given aud compared with theoretical predictÍons. The
presence of the partition is shown to drastically alter
the acoustic properties of the bend.

The partition effectively divides the curved bend into
bwo concentric bends. The duct system containing the
concentric bends is investigated theoretically by applying
equations for sound propagation in straight and curved
ducts to the respective sections. Continuity ol acoustic
pressure and ar<ial particle velocity at adjoining inter-
faces between straight and curved sections is postulated
to determine the Fourier coefficients of e¿rch wave. The
analysis is limited to frequencies less thrn the cutoff
frequency of the (1r 0) mode in both curved and straight
ducts.

I. SOUND PROPAGATION IN RECTANGULAR
SECTION DUCTS

Sound propagation in an iilinite straight duct of rect-
angular cross section may be described as followss:

Þ(x,y,r,l) = ËË P^ú'^(y,z) exp]i(at - Þ;x)J. (1)
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In Eq. I the r æcis is parallel to the direction of propa-
gation of sound and the characteristic function tt^(y,z),
assuming rigid vralls is given by Eq. (2).

ú"^(y , z) = cos lþn /hr)y)cos[(nn /h2)zl , Q)

where h1 ard h, are dirnensions of the duct in the y and e

directions, respectivoly.

The wave number Þ- is a solution of the cha¡'acteris-
tic Eq. (3)

a^=l(o/c\z -(mr/ht)z -(nn/hrlzlttz. (3)

tf Þ- is real propagation occurs without attenuation.
However, if Þ^ is imaginary the corresponding (zrr, n)

mode does not propagate; the disturbance decays ex-
ponentially arvay from the generating surface.

Sound propagation in an infinite curved bend of rect-
angular cross section may be described by a solution of
the wave equation in cylindricat coordinates as follorvs?:

þ(r,0,2,ú) =ËË contlt"on(r,z)exp[¿(r^,¿ -y"0)]. (4)
c.0 n'0

In Eq. (4) uo is the angular wave number in the curved
duet. The cha¡acteristic function l)i|rzl and the chlrr-
acteristic equation are obtalned by applying tlte bound-
ary conditions of rigid duet walls, that is, at r =Br ând

r =Rz the radial comp,lnents of particle velocity are
zera.

The characteristic lunction is

úï(r, r) ={J, o(Þ,rl - ÍJ'" 
"(þ,R 

lt i Y I 
"G ^R 

rll

x Y"o(h^rfi cosLfut/n)zj , (5)

where

þ1=þ3-Èl and þ,=n¡/hz.

The characteristic equation is

Jt,(þ,Rr)Yi.(þß")-J:,,(þ^R)Y|"(ÞniR¡)=0. (6)

Solutions of Bq. (6) using an iterative process anC a

computer provide vaiues of the angular wave numbet /o.
As for straight ducts there rvill be frequencies below
which solutions of Eq. (6) will be inraginary a¡rd the cor'-
responding mcxie vill be evanescent. Above these cut-
off frequencies, the mode will propagate viihout atterìua-
tion.
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as shown in the figure. Sound propagation is descril¡ed
by straight-duct equations in sections 1 and 4 ancl curved_
duct equations in sections 2 and S of the bend.

The frequencies to be considered are well below the
cutoff frequency of the (1,0) moCe in both curved sec-
tions, thus any radial po.rticle vetocity wiIl be small and
negligible so that it witl be sufii,:ient to postutate con-
tinuity of axial particle velocity. As there is no discon-
tinuity in the e direction it is satisfactory to use a two-
dimensional coordinate systern, i. e. , Þ, -Q.

The Fourier coefficients of each lvave were obtained by
applying continuity conditions of acoustic pressure and par_
ticle velocity across interfaces A and B. Both sides of
each equation are multipl.ied by cosl(mr/tt)y] ar,d inte-
grated with respect to y, y,, or r. The orthogonality
propelty of the tatter functions allows deter¡nination of
the coefficients Pi¡ antl Ej6, for n¿ =0r lr2, ....

The general equations obtained are

(?)

2

3

il:
B:I

I
I

'lp; t;

nG. 1. r\rrangement a¡¡d coordi¡raþe system of berd wlth par-
tltlon.

II. ANALYSIS

The arrangement of the duct sl,stem is shown in Fig.
1. The bend has dimensions rl, =0.L27 ñ, Rz=0.1905
D, As =0.254 m, and was analyzed by dividing it into
sections with coordinate systems and joining interfaces

mtO,

Prnsà h =

Contíwity of presvre d A (f =0,9 =0)

nl =0,

ptoh+p;oh=å"r, 
I^*r'rroor*c6ol**rtv;oar*iotol**rtr2oor*o6ol**",1,6o0r,

where superscript i refcrs to incident waves and superscript r to reflected waves;

\ry, - n ;t)ar * 
"'* I.i' vt """ [ff r" - ",r]

* o6o I*"r' úoo "."ff ç - nlfar .

Contírutity of tangential þartícte uelacity at A

m-0,

Ptokooh -P6oþçnh= å "r.
m*0,

- p,^oþ 
^o*, = Ð "',o l**r' 

ú20 î "*W {" - n,l] dr - ci6 I:r" ru ? *"W

. å r:, lo*.' 
r^? ;*lT(" - n,¡] dr - D6o I,*,' ru'; *,W

Contirwìty of preswre et B (tc'=Or0 =Í)
m=0,

Eloh=ctof 
,'*U"*, -ivstrldr+Ð"r, I.i'frrexp(ivon)dr+oh Jrl'Vil"xpl-;vonlar

.+ fRs
+ LDio l_ (tisexpfv,Í)dr;

q-0 JRz

o: .â o¡f"l' *r,.o" fr w - *,10,Ë ":, f 
*'.¡;o"ou

c0 tRt

üof, a,ü,| ar*Ð"r, I_,'n^? *-otoI**r'rro'; o'- 
"'* I.:

(8)

(e)

(10)

(l 1)

n*0,

n[oà n -ctooI.i" rrrexp(- izsTr)*o.[# (" - n,l] dn *Ë"h 
I*'r'ù"*exp(ivotr) "'"1ry ø,. orla,

*4o I^^r'i/"*exp(-r'usn)"""[î (r-n,l] ¿,*Ëoîo I**'v""o"xr(iy"Í)coslz,J ç-nrlar.
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Eåofroor¿=cåo I**r'rro? "*t-ìvoùctr-Ð"r, I"*r'**?uryQr.o)dr+D[o I.i'rUîu*,- ivon)dt

Ð"r, I**r' riouf exp(iv¡r) dr ;

¡niO,

n¡on.oÈh=c;ol.i'rr"?u*t- ¡,onl"o"lff{"-nr{ n-irz,llr'.¡"",rro/r)exp(ìvonl"o'ffç-*¡)0,

* oto 
I**r' ú"*? "*<' troo) "o"ff{r - n,l] ¿, -Ë ri, 

I""r' vzrh exp(ìv o¡t) "o"W ç - or\0, .
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Conlirutìlt of tangenlial þarticte uelocity at B

t¡t =O ,

At both interfaces an inlinite series of modes wilt be
generated. As the frequency over which the bend will
be investigated is limiteC to less than the cutoff fre-
quency of the (1,0) mode in both straight and curved
sections these infinite sets will consist of one propa-
gating and an infinite number of higher-order evanes-
cent modes. In order to determine the coefficients it
is necessary to tru¡rcate each infinite sum at a value de-
termined by two factors: (1) Since the number of un-
known coefficients genera.ted must equal the number of
equations, the number of modes considered in straight
sections 1 and 4 is truncated at twice the number con-
sidered in curved sections 2 and 3. (2) The accuracy
of the analysis is determined by the nunrber of modes
considered.

Cummingsl and Osbornet have both shown that non-
propagating modes have only a small effect on the sound
propagation in a curved bend. Thus in Eqs. (7)-(1a) the
number of modes considered in the curved sections will
be truncated at one while in the straight sections, one
prop¿gating and one rronpronagating mode wlll þe con-
sldered. Thls stmpttflcatlon ls Justified, ae wltl be
shown, by the conrparlson Þetween theoretical a¡rd ex-
perimental results. The fwo modes considered in both
straight sections are necessary to provide continuity
across adjoining interfaces.

lll. EXPERIIytENTAL APPARATUS AND METHOD

The bend was investigatecl witt¡ the arrangement
shown in Fþ. 2. The duct system has a 0.0635 x 0.12?-
ml cross section and v¡as constructed frorn 0.0254-m-
thick wood lined wittr laminex. The sound source was
positioned 1.? m upstream from the entrance to the bend
at which ciistance any nonpropagating modes are su-f-
ficiently attenuated to be negligible, The straight-duct
downstream of the bend was ternrinatect by an anechoic
termination with a pressure ¡eflection coefficient of less
than 0.12.

Three parameters we¡e measured. The power reflec-
tion coefficient, an indication of how much sound is re-
flected back towards the s.rurce, and the characteristic
impedance, an indication ci how severe a discontinuity
the þend presents to acoustic propagation, v/ere obtained
by nreasuring the standing ¡flave in the upstream straight

¡t.T.

(14)

duct and applying standing-wave theory. E Values of the
experimenbal reflection coefficient plotteC against a ¡ton-
dirnensional frequency parameter Þsh are shown in Fig.
3. Since the alalysis is limited to less than the cut-oif
frequency of the (lr 0) mode in the straight-duct section,
for which þú=r, values of Ëç& are terminated at å¡lr
=3.02. Experimental values of ',he resistive impedance
R/pc arc shown in Fig. 4 while those of the reactive
part X/pc are shown in Fig. 5.

The insertion loss, I r¡Èeaaure of the attenuation in
decibels of the incidsnt wovc, was measu¡.ed by tr.a-
versing a calibrated tnicropt¡one in the upstrea¡n cluct
until a mæ<imum in sound pressure tevel Pånou !üas re-
corded. The,sound presõure level of the propagating
wave Elo in the clownstream cluct .¡¿as ¡neasured with a
calibrated microphone inserted through the duct wall.
The insertion loss is defined to be the difference in
decibels of Påo -Eå0. Thus using starrding-wave theory
It can be shown that,

Pf;ss=(1 +dltzlPh,
.'. P8or¡(rta) . 20 togro(1 + ot/¡) + Pto(dB),

.'. P¿o =Pñu - 20 tog,q(l + o,r,ta) ,

Hence the insertion loss of the bend is

measured insertion loss {dB) =Pfou(dB) - 20tog¡6(1 + o',t')

-.Ð60(dB). (15)

In Eq. (tS) a, is the measured power reflection coef-
ficient.

IV. THEORET¡CAL PREOICTIONS

The radial tcrms in Eqs. (?)-(14) were expressed as
I)ower-series expansion of Bessel and Neumann func-

AL [1.P.

fIG. 2. Arrargement of experlmental apparatue. (M. T. )
microphone traverge, (S) epe;rker, (C.E}.) compou¡d bend,
(Ä..T.) anecholc ler¡ninaLion, antl (l\{..P.) mlcrophone probe.

(1s )
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r0 0

-t0 r.l

0.0 1.0 ?.0 3.0 q.0
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FIG. 5. Reactive part of characte ristic impedance of com-
pound bend, 

-theoretical 

curve, <--r experimental values.

accuracies and variation i¡ ambient temperature during
the course of e>çeriment¡tion.

The magnitude of the ex.oeli¡nental reflection coeffi-
cient is consistently less than predicted at the maxima.
Thls was thought to be due to tlte difficutty of deter-
mining accurately the standing weve ratio lvhen it is
quite large. In the case of lalge standing wave ratio
the minima are quite sharp and very easily obscu¡ed
by, for example, overtones due to small distortion in
the signal. They are thus very difficult to measu¡e a¡rri

the measured rnagnitude of sou¡¡d pressure level is al-
vrays too high. The standing wave ratio and thus the
corresponding power reflection coefficient in this case
will always be too small.

As canbe seen in Fig. 3, a curved 180'bend with a
partition positioned on its centreline provides a la.rge
dismption to sound propagation. In fact the theory de-
veloped here predicts that at the dimensionless fre-
quencies of Þl given in Table I the power reflection
coefficient is very close io unity. This is in direct
contrast to a normal curved bend. Cummings{ studied
two bends, one of radius t^üo nL/Rz=O.097 represent-
ing a very sharp benrl, at frequencies below the cut-off
frequency of the (1,0) moCe and lound that the plessurê

I

I
c
z
G

H 5'U

x

z
Ë oo
ù
f

=*- -S'0c

0
0fJ l.ù ¿0 J.tJ

t¡RvE NUI,IBER PÊnÊHEIeR t koh )

q.0

FfG. 3. Sound power reflection coefficfeut of compound bend,

-theoretical 

curve, o experimental values.

tionse ard integrated using Simpson's rule by a com-
puter. The resulting equations wcre then solved using
a program based on C¡out's rule. r0 For convenience
a reference amplitude of Pb = I - Oi was assumed.

The theoretical power reflection coefficient is given
by Eq. (16)

o,=lr5oTrlol¿. (16)

The characteristic impedance is

Z /pc = R/pc + (X/pc)i = (På. +P6c)/e¡ù -P6o) . (1?)

The theoretical insertion loss is

I.L. =-2olog¡s(l - a)ttz. (18)

All three pararneters are showr with respective experi-
mental values for comparison in Figs. 3-6.

v. DrscussroN

A. Power r€flection coefficient

As can be seen in Fig. 3 there is close agreement
between theoretical and experimentally measured values
of the frequencies at which maxima occur. The emall
discrepancies are thought to be due to dirnensional in-

r0.0

3.0 !.0
,.IRVE IUI.SER PflRffI{¿IER I KOhì

FIG. 4. Iìcsletive part or'characLerÌ¡Jäc inrpedance of com-
pourd bend' 

-theoretical 

curve, o experlmental values.

0 ¿.0 1.0 .r,0

¡€vL riutlEER PAßR¡iEÌER f toh )

FIC. 6. rn-qertio¡ loas cf compou¡d bend, 

-¡heoretical
curve, o experlmental values.

50

,.t0ô a.o
e

=
9 6.0
¿îo
È
f

- 9'o

2

-- ?'u

a

;30
ó
J
2
3¿o
t
#
= l0

00
0 U

u
00 1.0 2C

0
o

o

o
o

$,
o

OO,$o ú

I
-Å

o I

o

J. AcÕurt Soc. Am,, Vrrl. 63, No. 3, March -'¡978



332
G. R. Fullor and D. A. Bies: Propaqation ol ¡ound in a cr¡rvod band

tlansmission coefficieni of the (0,0) mode does not fall
l¡elow 0.9?5. 'l'hr¡s it can be seen that positioning a
splitter or turnitìg vane in a curved bend of a duct sys-
tem leads to quite dilferent acoustic behavior for fre-
quency belsw cutoff for üle first cross mode.

The reason for the markedly diJferent effect of a
partition in a straight and curved duct is due to the re-
sulting variation in path length zurd phase of the hwoparts
of the acoustic disturbance propagating in the two parts
of the compound curved duct. Without the partition the
phase of üre (0,0) mode vill be maintained radi:ally
across the duct and will be determined approximately
by the center-line propagation distance. The partition
effectively prevents the implied redistribution of the
disturbance acr.oss the original bend conlining ít to the
turo sepalate concentric ducts formed by the partition.

The effect of curvature on souncì propagation in a
curved duct ln contrast to propagation in a straight duct
ls reflected in the respective solutions of characteristic
Eqs. (3) anct (6). For ttre (0,0) mode ln a stratght duct
tìe rvave number is tndependent of ctuct dlmensions,
whereas in a curved duct the correapondlng angutar
wave number is dependel¡t on the radii of the curved
section as suggeated in Ref. 3. Thus the wavea travel-
ling in the separate cursed sections, shown in Fig. l,
have the same amplitude but different r.elative phases at
each angle 0 of prçagation, due to different values of
angular wave nuniber. Therein lies the ex¡rlanation for
the effect of the partition in a curved duct.

At interface B, shown in Fig. l, the two incident
rraves in scctions 2 and 3 have a phase difference in-
duced by the diJferent values o! respective anguiar wave
number. When these two waves recornbine at B, the
phase difference leads to generation of nonpropagating
cross nodes and the resulting impedance mismatch
cauees reflection of sound. Similarly reflected waves
from å have a phase dilference at A and an impedauce
mlsmateh results here ag vell. lVhen ..hese phase
dlffere¡rces are close to rr large reflectione óf sound
occur.

B. Cha¡aæøristic Impedanco

Theoretical and e:{eerimental values of the resistive
and reactive parts of the characteristic lmpedance are
in good agreement as shown in Figs. 4 and 5.

It can be seen that at dimensionless frequencies of
Þelz given in Table I a large impedance mismatch rel:a-
tive to the characteristic impedance pc of the incident
c¡ave is generated. Thus orie would expect large reflec-
tion of sound at these frerluencies. Thisisdemonstrated
in Fig. 3 which sl¡ows high reflection of sound at the
characteristic frequenciee of Table I.

At intermediate frequencies the châracteristic imped-
ance Z/pc of the benci is rel;rtively closeeto unity than
at tJre charactelistic freqi:encies and incident sound is
thus mostly transmitteC at tìese intermediate frequen-
cies.

As the nondimensional frequency Ëefr approaches r the
reactive part of the characteristic impedance changes its

1.'ABLE l. Characberistic frequenctes of a compounil 1g0. b€rrl
fot R3/Rr=2.

Characterlstfc freq. (Èol¡)a

0.6 r. 18 1.30 2.08 2.30 2. 86

-

6iy f."q"""ct"s lr"t"ñ;æffi
the otralght duct are lncluded.

general shape demonstrated at lower frequencies. This
was thought to be due to the effect of tJre evanescent
(1r0) møe in the straight duct becoming predominant
near cutoff.

C. lnsertion loss

Ivfuch closer agreenrent ie demonstrated by conrpari-
son of experimental and tleoretical. valuee of insertion
loss shown in Fig. 6 than reflection coefficient shown
prevlously in Fig. 3. This observation supporto the
argument presented previoucly to explaln the discrepan-
clee ahown in tho latter gigure.

At þsh =2. 1 an ingprtion loss of 4õ. 5 dB vfíùs moilBured.
Thus an incident pute tone at this frequer:cy would be
virtually completely reflected. Such high levels of at-
tenuation suggest the use of the discontinuil.y provided
by the bend as a reactiv¿ attenuator. An attei.ruator
based on the impedarrce mismatch generated by a center
body placed in_a 90" bend is discusged in a paper by Ful-
ler and Bies. tl

vr. coNcLusroNs

Sound transrnission in a duct system contalning a
curved 180' bend with a central partition hae been dis-
cusged. Theoretical and experimenlal values havo
been given and good agreement obtained.

The partition was found to significanily alter tire por¡nd
propagation through the bend, resulting inhigh reflection
of sound at a number of discrete frequencies.

Tïe problem dlscuesed illustrates the eseential dff-
ference between sound propagatlon ln etralghtandcurved
ducts. Namely, the angular wave number of the (0,0)
mode in curved ducts is dependent on boundary condi-
tions whereas in a straight duct tlrc wave number is i¡r-
depencient of duct geomeÈry.
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