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Elected Silence, sing to me

And beat upon my whorled ear,
Pipe me to pastures still and be
The music that I care to hear.

from "The Habit of Perfection"
by G.M. Hopkins.



Propagation and reflection of low frequency sound in single
and coupled pairs of straight and curved ducts is investigated with
and without flow of the propagating medium. The work is divided into
three sectioms.

The first section deals with general propagation theory in
straight and curved radial ducts of rectangular cross section with
and without uniform flow. The effects of flow on the propagation of
energy and the cut-off frequencies of higher modes are investigated
experimentally and theoretically. A theoretical explanation in terms
of wave number of why the cut-off frequency is independent of direction
of propagation of sound relative to the flow is presented. The
behaviour of phase velocity and group velocity near cut-on is also
considered.

Sound propagation in radial bends of rectangular cross section
is investigated using two methods, the first of which utilizes the
traditional solution of the wave equation in cylindrical co-ordinates.
An iterative method of solution of the characteristic equation is
discussed and used to predict the acoustic pressure and particle
velocity distributions of two propagating modes. Comparison is made
with experimental results and the results of other workers. Good
agreement is obtained. The theoretical investigation using cylindrical
co-ordinates is limited to the case without flow.

An approximate method of analysis of low frequency sound in



radial bends is developed using conformal mapping techniques. As well
as overcoming the need to evaluate complicated expressions of Bessel

and Neumann functions, this approach allows theoretical consideration

of the effects of flow. Simple equations are developed which predict
the angular wave numbers of the (0,0) mode and higher evanescent modes
as well as the cut-off frequencies of higher modes with and without flow.
The results of the analysis agree with results obtained by other workers
using cylindrical co-ordinates solution. The effects of flow on the
pressure distribution and cut-off frequencies of higher modes are
considered.

The second part of the thesis is concerned with sound generation
and propagation in duct systems. Sound generated in a rectangular
straight duct with rigid walls by a dipole piston source is theoretically
investigated. The pistons are of equal area and fill the cross section
of the duct. The characteristic impedance and radiation efficiency of
the source is investigated for varying phase angle between pistons. The
source is shown to be an extremely good radiator of sound when the
pistons are in phase and to radiate no sound power at all below the cut-
off frequency of the first cross mode of the duct when the pistons are
m radians out of phase.

The effects of a curved axial partition on the impedance
of a curved bend are investigated theoretically and experimentally.
Whereas previous investigations have established that a curved bend
provides negligible discontinuity to acoustic propagation, the presence
of a central partition is found to drastically modify the propagational
characteristics of the bend resulting in high reflection of sound at a
number of discrete frequencies. By contrast, presence of a central

partition in a straight duct would have no effect at all below the



cut-off frequency for the first cross mode of the duct.

The third part of the work deals with the development and
testing of two reactive attenuators, based upon a principle mentioned
by Rayleigh (Theory of Sound, Vol. II, p.63) and attributed to
Herschel. Sound propagation in a single duct is caused to split
into two parts which travel along separate parallel ducts and when
recombined produce non-propagating modes. The sound is thus reflected
and the device becomes an effective attenuator in prescribed frequencies.
Such attenuators might be used for rigid walled ducts.

The first attenuator is designed to fit into a 90 degree
bend in a rectangular duct system and relies on a center body to
create an impedance mismatch at the attenuator exit. The center
body is shaped to provide a low pressure drop across the device. The
performance of the attenuator is theoretically analysed with and
without flow. The analysis allows the redesign of the configuration
of the attenuator to optimize its performance. An optimum attenuator
is developed which provides a transmission loss of at least 10 dB over
three quarters of an octave and losses of 30 to 50 dB at a number of
discrete frequencies in the three quarters octave frequency range.

Flow is found to substantially reduce the high attenuation
obtained at the discrete frequencies but a transmission loss of 10 dB
ig still obtained over three quarters of an octave for a flow rate of
M =0.08 in the upstream straight duct. The effects of flow on the
design frequency and the pressure reflection coefficient are quantified.

The second attenuator is designed for use in straight ducts
of circular cross section and relies on an acoustic delay line to
generate a series of evanescent modes and a resultant impedance

mismatch at the device exit. The attenuator is investigated



experimentally with and without flow for speeds up to M = 0.37. The
device is shown to provide higher levels of attenuation and a 10 dB
rejection band over an octave for the case without flow. The dis-
turbance to the fluid flow in the main duct is negligible. A
theoretical analysis of the delay line attenuator over its operating
frequency range is not attempted. However, it may be theoretically
described for the very low frequency portion of its range using a
lumped circuit analysis. The theory predicts reasonably well the
positions of the amplification of sound, measured in the very low

frequency range.
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GENERAL INTRODUCTION

As the demand for faster flow in duct systems increases so
does the noise generated by the fan and fluid-duct interaction. Part
of the noise generated by the fan and flow is of long wavelength
relative to the dimensions of the duct, and the level of this low
frequency noise is often unacceptable in such application as libraries
or sound studios. 1In the usual method of low frequency noise control
a system of resonators or lined expansion chambers may be employed,
but these devices have the disadvantage of excessive size or large
pressure drop and usually .operate over a narrow frequency range.
Alternatively lining the duct with absorbent material is relatively
ineffective at low frequencies and unsuiteble for low frequency noise
control,

The principal aim of this research work is thus to develop
an alternative attenuator suitable for control of low frequency sound
in rigid walled ducts. It is hoped to eliminate the stated problems
of excessive size and pressure drop as well as narrow operating band.
The operation of the attenuator is based on a principle described by
Rayleigh and attributed to Hershel. Tt depends upon the generation of
impedance mismatches at planes across the duct surface whichthen cause
reflection of sound. The degree of impedance mismatch is controlled by
the degree to which series of evanescent modes are generated at these
surfaces. The performance of the attenuator is independent of the
downstream terminating impedance, a characteristic which distinguishes

it from the usual reactive devices such as an expansion chamber.



Two configurations of the attenuator are investigated; one
suitable for use in bends in ducts of rectangular cross section and
the other designed for use in straight ducts of circular cross section.
Investigation of the effects cf flow on the performance of these devices
is included in the study.

Necessary to the theoretical understanding of the performance
of the reactive attenuator is a detailed understanding of propagation
theory in hard-walled ducts with and without flow. Such factors as
the effect of flow on the cut-off frequencies of higher modes, sound
propagation in curved bends with and without flow and the impedance of
a surface whose pressure distribution is approximated by a Fourier sum
of evanescent modes are closely related to the performance of the
attenuator and are carefully considered in the investigation. A large
part of the thesis is therefore dedicated to a theoretical and experi-
mental study of propagation of low frequency sound in hard-walled ducts
with and without flow. The remainder is concerned with investigation

of the proposed attenuator.



PART 1: PROPAGATION THEORY

CHAPTER 1

SOUND PROPAGATION IN STRAIGHT DUCTS OF

RECTANGULAR CROSS SECTION

1.1 INTRODUCTION

The basic analysis of sound propagation in straight ducts
of rectangular cross section with no mean flow has been investigated
thoroughly and is well documented in several texts such as Rschevkin
(1863) and Morse and Ingard (1968). Perhaps the first to work on the
problem of sound propagation in straight ducts was Rayleigh (1877).
His work outlined the essential harmonic nature of sound propagation
and showed how the wave equation can be solved in terms of a velocity
potential consisting of an infinite Fourier sum of waves. The first
major work to outline acoustic distributions and propagation parameters
of sound in ducts was due to Morse (1939). Morse considered the
case of one absorbing wall in a rectangular duct and laid down the
standard boundary conditions used to match genergl solutions to a
particular case. The basic ground work of duct theory has lately
been extended to include the more subtle points of propagation with
no mean flow. Two papers by Doak (1973) summarize well the more
complex cases of modal propagation. He considers the generalized
relationships for acoustic power and pressure distributions as well
as the effect of different types of sources on spatial distribution
of acoustic parameters. Doak also considered the effect of different
duct terminations on modal coupling within the duct.

In recent years mést work councerning sound propagation in
rectangular ducts has been centered on the effect of convection of

the propagation medium (particularly on the attenuation obtained due
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to lined duct walls). Although the basic derivation of the wave
equation and simple solution have been well discussed such as by
Morse and Ingard (1968) there are still particular problems that
need more investigation. Two of these, the effect of flow on modal
cut-off and energy propagation, will be discussed in this thesis.

The first significant work on sound propagation in ducts
with shear flow was published by Pridmore-Brown (1958). In a comp-
rehensive analysis Pridmore-Brown developed equations for the variation
in sound pressure across the duct which is brought about by the
presence of a flow gradient. He also considered the effect of flow on
the attenuation obtained from lined walls for both upstream and down-
stream cases. His work was followed by a spout of others of which
most have been concerned with attenuation in lined ducts with flow.

The advent of the computer allowed a numerical approach to the solution
of the eigen equation, which previously was prohibitively time
consuming. Since the following analysis is limited to rigid walled
ducts only those relevant works will be discussed.

Ingard (1959) considered the reflection of waves from a
boundary between two fluids mcving at different relative velocities and
showed that the normal impedance was increased by (1+M ;ine) where
6 is the angle of incidence of the acoustic wave. More importantly
his work illustrated the necessity to use continuity of particle
displacement as a boundary condition in this case rather than continuity
of particle velocity (as used in the no flow case). Morfey (1971) has
published a series of important papers concerned with wave propagation
in flow. He developed relationships for the impedance and intensity
of travelling waves in rigid ducts for higher modes above or below
cut—off as well as the plane wave. In particular he found that uniform

flow has the effect (for modes well above cut-off) of increasing the
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sound power transmitted by a single mode by the factor (1+M)? in the
direction of flow and of decreasing the power transmitted by the
factor (1-M)?2 in the direction opposite to the flow.

Mason (1969) has experimentally and theoretically investigated
the effect of flow on the modal cut-off frequencies in circular ducts.
He defined cut-off as the frequency above which propagation occurs with-
out attenuvation and found that the cut-off frequency decreased by a
factor of (l---Mz)l/2 independent of the direction of propagation relative
to flow. However his physical explanation for why the cut-off frequency
is independent of direction of propagation of scund relative to flow
is hard to follow so that the physical explanation will be considered
in detail in this thesis.

From the experimental point of view Alfredson (1970) in
work on exhaust mufflers, has developed equations for correctly using
the impedance tube method for determining reflection coefficients with
flow. He shows from an energy transport view that the reflection
coefficient can have a maximum of Rmax = (L+M)/ (1~ M) before flux
reversal occurs for downstream propagation of sound. Thus Alfredson
modified the usual standing wave theory to allow determination of
reflection coefficients greater than unity.

In this chapter the equations for sound propagation in
straight ducts with and without flow are developed. The case of no
flow, although well known, will serve to illustrate the method of
solution for the less familiar cases of sound propaga&ion.in straight
ducts with flow and in curved ducts with and without flow. The
equations will also be used in analyses in later chapters. For the
case of flow the basic equations are developed and discussed. Consid-
eration is given both theoretically and experimentally to the effect

of flow on modal cut-off frequencies. A physical explanaticn of why



cut-off frequencies are independent of direction of propagation relative
to flow is proposed. Relationships for the pressure and power reflection
coefficients as well as power transmission coefficients for the (0,0)
mode of propagation are developed and the effects of flow on these

paramefters are discussed.

1.2 STRATIGHT RECTANGULAR DUCTS WITHOUT FLOW

In a straight infinite duct with rigid walls the propagating
acoustic wave has two major forms. When the wavelength of sound trans-
mitted is much larger than the transverse duct dimensions, the fluct-
uations travel as a plane wave with a constant pressure and velocity
amplitude across the duct. However when the wavelength is small relative
to the transverse duct dimensions, aﬁ increasing set of non-uniform
waves appear, as well as the plane wave. The propagational character-
istics of the non-uniform waves are determined by the boundary conditions
of the duct. Equations describing this type of behaviour are obtained
from a solution of the wave equation in rectangular co-ordinates. The
assumptions involved in the derivation of the different forms of the
wave equation used are discussed in Appendix 1.

Assuming sinusoidal oscillation, the wave equation takes

the well known form of the Helmholtz equation
v2p - kgp =0 (1.1)

where the wave number ko = w/co. (The constant ko will be shown to
have important physical significance). The derivation of the equations
relating pressure and particle velocity in the acoustic field as

dictated by equation (1.1) is well known but will be reviewed here as

it will serve as a convenient basis for consideration of other less well

known properties. The wave is assumed to propagate in a semi-infinite



rigid walled duct. The x axis of the co-ordinate system is chosen
parallel to the direction of propagation and the plane normal to the
x axis is bounded by the walls of the duct. The origin of the rect-
angular co-ordinate system is chosen to be the lower corner of
one of the duct walls as shown in Figure 1.1.

A general solution of equation (1.1) in separable rectangular

co-ordinates is
p(x,y,z,t) = X(x) Y(y) Z(z)exp[iwt] (1.2)

After substituting into the wave equation we obtain using separation

of variables

X" " AL
E =_k§m’ Y—=—k§1 and ?—=—k121 (1.3)

where the prime (') dindicates differentiation with respect to the
relative co-ordinate.

Solutions to the equations (1.3) are

X(x) = exp[—ikmnx] (1.4)
Y(y) = cos(k y) (1.5)
2(2) = cos(k,_z) (1.6)

Thus substituting into equation (1.2) we obtain the general form of the

solution of the wave equation

oo

p(x,yz) = | L A% (y,2) expli(ut-k_ x)] (1.7)
m=0 N<0

where
wmn(y,z) = cos(kmy)cos(kmz) (1.8)



Ficure 1.1, The rectangular co-ordinate system.



wmn(y,z) is called the characteristic function. It has special sign-

ificance in that it describes the variation in pressure and velocity

amplitude over a plane normal to the direction of propagation (the x

axis) bounded by the duct walls.

Substitution of equation (1.7) back into the wave equation

(1.1) provides an equation relating the wave numbers in the direction

of each axis of the co-ordinates system as

k2 ___k2_k2_k2
mn o m Il

(1.9)

Values of km and kn are obtained by applying the relevant

boundary conditions at the duct walls. 1In this analysis the duct walls

are assumed perfectly rigid, therefore the normal acoustic particle

velocity at the wall surface is zero. Hence,

v =0 v_ =0
Yy=n, , Ple=m

From these boundary conditions it follows that

k = mn/h and k = nrn/h
™ v n z

where hy and hZ are the transverse duct dimensions in the y and z

(1.10)

(1.11)

directions respectively. Equations (1.11) provide eigen values for

the particular problem which govern the natural oscillations in the

y-z plane and determine how the wave will propagate.

The modal wave number kmn which determines sound propagation

in the x direction is obtained from solutions of the characteristic

equation (1.9). Thus

mn

for m, n=0,1,2 ...

k =% kf; - (mw/hy)2 - (mr/hz)z]/2

(1.12)
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The + signs of the square root imply propagation in the *x direction
respectively. Each particular combination of integers m and n represent
different modes of the corresponding acoustic wave. The characteristics
of the corresponding acoustic wave are thus determined by the modal
wave number kmn' We note the possibility foragiven m and n, not both
zero, that for low values of ko,the value of kmn may be imaginary. In
this case the corresponding mode is cut-off and no wave propagates.

1f kmn is real or for frequencies such that
k2 z k2 + k? (1.13)
o m n

propagation of the (m,n) mode as described by equation (1.7) will occur
in the x direction without attenuation. If m and n are both zero it
can be seen that the characteristic function wmn will have a value of
unity independent of y and z and the corresponding wave will have uniform
amplitude across the duct. Similarly from equation (1.12) koo =:tko
and thus this wave number will always be real for all frequencies. The
(0,0) mode is the well known plane wave which propagates without
attenuation and has uniform phase velocity at all frequencies. A wave
such as this is called non-dispersive, that is, its phase velocity is
independent of frequency.

If m and n are both not zero then the (m,n) mode will have
amplitude variation in the y-z plane as described by equation (1.8).
Waves of this type are amplitude modulated over the wave-front. It
can be seen that symmetrical distributions about the duct centerline
will occur for even values of m and n while odd values of m and n will
give rise to asymmetric distributions. The pressure amplitude dist-
ributions for the (0,0), (1,0) and (2,0) modes are shown in Figure 1.2.

Phase velocity, the velocity at which the phase angle of

a simple harmonic wave of frequency w/2w progresses along the duct
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Y
y=hy l}
Poo
y=0 |
(0,0) (1,0) (2,0)

FIGURE 1.2, Pressure amplitude distribution for three modes in a
rectangular hard walled duct.
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(more generally the wave velocity) follows from equation (1.9) as

e, = 0l = 2 < (1.14)

mn [k2_k2+k2]]/2
o] m n

When m and n are both zero equation (1.14) shows that the phase speed
cp of the corresponding plane wave is the same as that of a plane wave
in free space. Thus when m and n are not both zero the phase velocity
of the (m,n) mode is higher than the speed of sound in free space.
The plane wave whose phase velocity is independent‘of frequency is
said to be non-dispersive. By contrast equation (1.14) shows that the
phase velocities of the higher modes are all frequency dependent and
are thus dispersive.

The group velocity is defined as the velocity of progress of
a center of waves containing a narrow range of frequencies. Morse and

Ingard (1968) give the following expression for the group velocity

cg = Bw/akmn . (1.15)

From equation (1.12) it follows that

1
ey = c [1 - (k;4-k§)/k§]2 (1.16)

The group velocity provides an approximate indication of the rate
of propagation of energy. Figure 1.3 shows a theoretical plot of the
group and phase velocities for three modes plotted as functions of the
non-dimensional frequency parameter koh.

Considering equation (1.12) again, if either m and n are not
zero there will always be a frequency below which kmn is imaginary
and the corresponding (m,n) mode will not propagate. At this frequency

commonly called the "cut—off" frequency defined by equation (1L.17)
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Ficuwre 1.3, Phase and group velocity of the (0,0) and (1,0) mode
in a rectangular duct. , theoretical;
O , experimental c /c0 for (0,0) mode;0,experimental
cp/co for (1,0) mode.
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1
£, = (co/zﬂ) [k§l + krzl] 2 (1.17)

the corresponding modal wave number kmn has the value zero. At these
discrete frequencies the wave consists of standing waves in the y-z

plane and the wave as such does not propagate. Furthermore at the cut-
off frequency the mode under consideration can be seen from equation (1.14)
to have an infinite phase wvelocity; all oscillations are in phase along
the x axis. As such the vibrations are induced down the duct rather

than propagated. Equation (1.16) predicts that the group velocity will

be zero at cut-off and this implies that all energy flow away from the
generating surface ceases.

For frequencies below the cut-off frequency of a particular
mode,kInn is imaginary. Thus from equation (1.7) the mode does not
propagate; the disturbance decays exponentially with increasing distance
X away from the generating surface by the factor e ! in a distance
1 /kmn . Thus as the driving frequency of am evanescent mode approaches
cut—-off the rate of decay with distance decreases. Furthermore the
axial acoustic particle velocity of the non-propagating evanescent mode
is in quadrature with the acoustic pressure so that an evanescent mode
carries no nett energy away form the generating surface. Such a mode
might be thought of as a standing wave in the y-z plane whose amplitude
decays with distance x.

From the above considerations we conclude that acoustic waves
in straight ducts may consist of a plane wave and the sum of a large
number of propagating or non-propagating modes as well. The Fourier
amplitude coefficients Amn of these waves are determined by applying
boundary conditions at the generating surface in the y-z plane which
may be taken at the origin of the x axis (x=0) for convenience. Higher

modes are usually generated in ducts by discontinuities such as a step
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change in area of the duct or by non-uniformities in the driving surface.
Higher modes, below cut-off, generated at such a discontinuity will
decay rapidly away from their origin leaving the lower modes to transmit
energy along the duct.

It is useful here to introduce the concept of "ray" propagation.
Higher propagating modes in straight ducts with rigid walls can be
imagined in terms of plane acoustic waves called "rays" which travel in
straight lines at an angle y to the x axis with propagational speed c,
as shown in Figure 1.4 for the two-dimensional case (z=0).

The direction of propagation of the waves is given by

cosy = & — (1.18)

Here advantage has been taken of the vectorial properties of the wave
numbers. The wave field at any point is obtained by vectorial super-
position of these waves. At the cut-off frequency for each mode the
rays travel in a transverse direction to the x axis and there is no
propagation. At frequencies below cut-off this representation is
not possible however, as all quantities including the resulting angles
of propagation are imaginary. Figure 1.4 can also be described in
terms of vectorial wave numbers. For the two-dimensional case for
which kn = 0,equation (1.9) can be seen to satisfy the arrangement
of Figure 1.4 where kmn is the wave number vector parallel to the x
axis, km is the wave number in the transverse direction and ko the
vector of the plane wave front.

The acoustic intensity of propagating waves without flow is

defined as

T = <pv> (1.19)



Ficure 1.4,

Ray theory of[ propagation.
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On the other hand the particle velocity of a plane wave is given by
p/poco thus reference to Figure 1.4 and equation (1.18) gives the
following for the component of particle velocity Vo

mn

Ve =5 c & P (1.20)

Therefore the intensity in the x direction is

2
tlp| (k. /k)
I = L L. (1.21)

2poco

where the * signs refer to intensity in the positive and negative x
directions respectively. Below cut-off the intensity is imaginary and
thus no nett energy is propagated.

For two plane waves Pio and on travelling in opposite directions
in a rigid wall duct of constant cross section the pressure reflection

coefficient is defined as

(1.22)

_ r i
= IPoo/PooI

i . S
where on and Poo are complex amplitudes of incident and reflected waves
respectively.
The ratio of reflected power to incident power is called the

power reflection coefficient and is defined as

2
| (1.23)

r i
o = lP /P
r 00’ 00

On the other hand the ratio of transmitted energy to incident energy

is called the transmission coefficient and is defined as
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o, = IPOO/POOI (1.24)

t . . g
Poo is the resultant pressure amplitude of the propagating wave. From
conservation of acoustic energy the plane reflection and transmission

coefficients are related by
o, +a =1 (1.25)

1.3 STRAIGHT RECTANGULAR DUCTS WITH UNIFORM FLOW

The propagation of sound in straight ducts ﬁith uniform flow of
the propagating medium is characterized, as for straight ducts with no
flow, by modes which decay with distance at low frequencies and prop-
agate at high frequencies. However the frequency at which these modes
"ecut on or off" is not as clearly defined as in the case without flow.

The wave equation for sound propagation with uniform flow of
the propagating medium is according to Morse and Ingard (1968)

292, _ ) 2p =
COV P (3/3t + X Vp=20 (1.26)

where V=V i +V j +V z 1is the vector describing the magnitude and
v Xn Y Zn

direction of the fluid flow. In the following analysis the fluid flow

is assumed uniform, irrotational, inviscid and parallel to the x axis

but independent of x.

For flow in the x direction, parallel to the direction of

propagation, equation (1.26) reduces to
cg v2p - (32/3t2 + ZVXBZ/axat + vi 32 /9x®)p =0 (1.27)

The solution of the wave equation (1.27) is obtained using a similar
process to the case without flow and can be written in separable rect-

angular co-ordinates as
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p(x,y,2z,t) = X(x) Y(y) Z(z) exp [iwt] (1.28)

As previously after substitution of equation (1.28) into the wave
equation (1.27) and separation of variables we arrive at the general
form of the pressure solution for sound propagation in straight ducts

with superimposed flow,

o

p(xs}':z,t) = z Z
m=0 n=

i +
0Pmncos(kmy)cos(knz)exp[1(wt._kmnx)] (1.29)
Substitution of equation (1.29) into the original wave equation provides

the following relation between the wave numbers
k2 (1-M2) + 2Mk k. + (k2+k2) - k2 =0 (1.30)
mn o mn m n o

Equation (1.30) describes downstream sound propagation. In contrast to
the case without flow (see equation 1.12) the relation is now dependent
upon the Mach number of the flow M = Vx/Co'

Rather than use one form of the exponential in equation (1.29)
and let the + signs determine the direction of propagation it is clearer
in this case to assume that sound propagates in the positive x direction
and consider upstream and downstream sound propagation by appropriate

choice of the sign of the Mach number. Thus for upstream propagation
k2 (1-M2) - 2Mk_k  + (kZ2+k2) - k2 = 0 (1.31)
mn 0o mn m n o

Equations (1.30) and (1.31) are the characteristic equations
determining modal propagation characteristics with flow. Solutions of
the quadratic equations provide values of modal wave numbers for the

downstream and upstream cases, for varying Mach numbers, as follows,

d _ 2 %
ko= [-Mk + (2 - (1-47) (2 +K2))*V/[1-M?] (1.32)
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and k:m = [Mk_ + (kg - (1—M2)(kl?l-1+kf—l))1/2]/ [1-M2] (1.33)

In equations (1.32) and (1.33) superscripts d and u denote downstream
and upstream propagation of sound respectively.

Eigen values of km and kn are derived by applying the boundary
condition for rigid walls. As the particle velocity is normal to the
walls it is sufficient to use continuity of normal particle velocity.
The result is the same as the case without flow for perfectly rigid

walls.

km = mTr/hy . kn = nTr/hz (1.34)

For m=n=o0 equations (1.32) and (1.33) reduce to

d
k00 = ko/(l-I-M) (1.35)
u
koo = ko/(l-M) (1.36)

The characteristic function Y(y,z)isidentical to the case without flow
and is equal to unity. Thus the (0,0) mode with superimposed flow

also has uniform pressure and velocity amplitude across the duct.
Equaticns (1.35) and (1.36) imply that flow has the effect of increasing
the wavelength for the (0,0) mode for downstream propagation and
decreasing the wavelength for upstream propagation. Similarly, as the
acoustic waves will travel at , relative to the flow, the speed of

propagation of the (0,0) mode relative to the duct is

c, = ¢, (1+M) (1.37)
and ‘ cz = co(l-M) (1.38)

Thus for an observer at rest the frequency measured is the same irres-

pective of the direction of propagation and is unchanged by superimposed
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flow of the propagating medium.
The phase velocity relative to the duct co-ordinate system

is more generally

g = m/kd (1.39)
P mn

and ¢ = w/ku (1.40)
P mn

Substitution of m=n=o0 in equations (1.39) and (1.40) gives the same
value of phase speed or wave velocity as given by equations (1.37) and
(1.38) derived on the basis of relativistic consideratiomns.

The group velocity cg as defined by equation (1.15), remains
unchanged. Thus for the case of downstream flow, using equations
(1.15) and (1.32)

= - __ M 1 2 _ (1 _wm2yn2y"H
cg Bkmnlaw + (ko (1-M )kl)

co[l-M?—] [1-M?]

where ﬁz = k2 + k2,
1 m n

1
_ M2
co[l M4 ]

aal
-1 - 2 _ (1-M2)2)?
Hence cg [-M +_(k0 (1-M )kl) ko]

Ko

e T2y Tt =
Cpl1=M"] &2 - (1-M2)k2)

S M2~ (1-MD)KDT + ke
= [ ]
2 2 - (1-M2Yk2)ks
c [1-M7] (k2 - (1-M*)k3)
1 M - (- 42) (ky /k )PE + 1

- [ > ]
c [1-M2] © (- @-Mu2)(k [k )%
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d e [1-M*1[1 - (1-}42)(1%1/1&0)2]1/2
Thus ¢ = = : (1.42)
g 1 - M[1- (1--M?)(1<1/1<0)2]/2

The case for upstream flow is obtained by changing the sign of the Mach

number. Hence ) . o
[1-M2]{1- (1-M?)(k,/k )12
QU o i (1.43)
B 14+ ul1 - (1-M2)(k [k )2 )%

For M=0 equations (1.42) and (1.43) reduce to

S
ey = oIl = (k [k )?]

which is identical to the case without flow given by equation (1.16).
Figure 1.5 shows a plot of theoretical phase and group velocities for
a flow of M=0.1. Inspection of equation (1.29) and use of equations

(1.34) provides the characteristic function ¢(y,z) with flow

y(y,z) = cos[(mﬂ/hy)y] cos{(mr/hz)Z] (1.44)

This is exactly of the form given by equation (1.8) for the case
without flow. Thus the amplitude distribution of modes in the plane
transverse to the direction of propagation is identical to the case
without flow and thus the mode shapes will be identical to those given

in Figure 1.2.

1.3.1 Cut-off Frequencies with Flow

As for the case of propagation of sound in a stationary medium,
modal propagation in a medium that is convecting relative to the duct
walls is characterized by frequencies at which the propagational
behaviour of the mode, ;ther than the plane wave, will drastically
change. 1In the case without flow, this frequency is defined clearly

as when the modal wave number kmn is zero. At this frequency the phase
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Ficure 1.5, Phase and group velocity of the (0,0) and (1,0) mode

with downstream propagation of sound at M= 0.1.
, theoretical; Q , experimental cp/c0 for (0,0)
mode; 3 , experimental cp/c0 for (1,0) "mode.
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velocity of the mode is infinite as previously discussed and for all
frequencies less than the cut-off the wave number is imaginary and

no wave propagates: the disturbance decays exponentially with distance
x along the duct. Similarly the group velocity is zero at the cut-off
frequency in the case without flow. All of these marked changes in
the propagational characteriétics of a particular mode occur at one
discrete frequency, thus there is no difficulty in defining the cut-off
frequency. However in the case of convection of the propagating
medium, the definition of cut-off is not quite so clear, as some of the
previous mentioned characteristics occur at different frequencies.

To discuss this matter we define two important wave numbers

22 — 1.2 2
ki =kt h (1.45)

k2 = - M2) (k2 2 2
k2 (1 - M) (kS + k) < k1 , M<1 (1.46)

The explanation of mode behaviour with frequency will be based upon the
parameters of group velocity, phase velocity and vectorial wave number.
For discussion of the latter parameter equations (1.30) and (1.31)

can be rewritten as
2 2 112 Y = _ 2
kmn + (km + kn ) (k0 M kmn) (1.47)
2 2 4+ 1,2y = 2
and kmn + (km + kn) (ko + M kmn) (1.48)

for the downstream and upstream cases respectively. On inspection
of equations (1.47) and (1.48) it can be seen that each term
represents vectorial components, the sum of which can be
represented graphically. The components, assumed travelling in

their correct directions (i.e., kmn in the x direction) and the



resultant angles of propagation of the wave front discussed previously
in the ray theory are shown in Figure 1.6 for different frequency
ranges to be discussed next. We shall consider the case of downstream
propagation of sound first. In this case equation (1.32) can be

rearranged as
d

K=k (M4 (L- (1-2) (k3 /K2))2)/[1- 1] (1.49)

Thus when k0>-k1 the modal wave number kmn is a positive real number
and the wave propagates downstream as assumed. This situation is
shown vectorially in Figure 1.6.

When ko = k1 equation (1.49) reduces to

d _ ., . w27 =
kmn = ko[ M+M]/[1-M“] 0 (1.50)

Thus when ko = El the modal wave number is zero and as given by equation
(1.39) the phase velocity is infinite. Thus at this frequency, identical
to the no-flow cut-off frequency, the acoustic oscillations along the
duct are in phase independent of x. In the case without flow, this
condition gave a group velocity of zero implying no energy propagation.

In the case of superimposed flow the group velocity is not zero and is

e [1-12][1- (1-42)]”

c =

8 1- M1 - (L-M2)]%
2
) co[l—M ™
[1-M?]
=cM
[o]
= v, (1.51)

Equation (1.51) implies that for k0 = El (downstream propagation)
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Ficure 1,6, Vectorial representation of wave numbers with
uniform flow.
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the wave motion consists of a series of convected standing waves,

transverse to the x axis, with no real acoustic propagation. As all

acoustic vibrations are in phase, independent of x (in the positive

x direction) no energy is propagated due to acoustic motion (as implied

b; an infinite phase velocity), the resultant energy flux being due

entirely to convection of the fluid (as implied by a group velocity

equal to the velocity of the flow). Thus convection of the propagating

medium gives rise to a "psuedo wave" at ko = El for downstream propagation.
This characteristic is also demonstrated vectorially in Figure 1.6.

As ko decreases in magnitude until ko = El , the locus of the solution,

moves as shown in Figure 1.6 for the downstream case’until when ko = kl
there is no resultant acoustic propagation (since El and ko are parallel).
However to obtain the actual flow induced propagation the effect of flow
velocity has to be considered. This will be discussed in more detail

at the cut-off condition.

When £1>>ko>-£2 for downstream propagation of sound the modal wave-

number will be

k = ko[—M + (1—k§/kg)2] / [1-M2] (1.52)

which is a negative real number as shown vectorially in Figure 1.6. The neg-
ative value of the wave number does not imply that the acoustic wave is

now propagating in the opposite direction (i.e. upstream) to what was
initially assumed, as convection of the particle velocities relative

to phase speed and wave number has to be considered. This will be

discussed in more detail in the next frequency range. Similarly the

group velocity from equation (1.42) can be seen to have a positive value

in the frequency range'£1> k0>’£2 implying downstream propagation of

energy as assumed initially. Thus the direction of vectorial wave

numbers derived from equation (1.52) are relative to km'convecting with
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the flow. This situation is shown vectorially in Figure 1.6. It must
be remembered for k1> k > k_ that since k__ changes sign so does k M
o’ 2 , mn mn
and this component changes direction vectorially.
When ko = Ez equation (1.43) predicts that the group velocity will

be zero and there will be no propagation of energy due to either wave

motion or convection. At this frequency the modal wave number is
= —M2
kmn MkO/ [1-M“] (1.53)

and equation (1.47) becomes (in a magnitude sense) for ko = ﬂz

km + ko= (k +Mk_) | (1.54)

as demonstrated vectorially in Figure 1.6. If one imagines a co-ordinate
system convecting with the flow (i.e. the plane wave has a phase speed
equal to <, rather than co(li-M» and considers the propagation in terms\
of the vectorial "ray model" discussed in the case without flow then
the angle vy at which the plane wave front will propagate is derived
from the vector diagram of Figure 1.6 as
k ) )
cosy = ———— k2 3 ko <k, (1.55)
ko + Mkmn

To obtain the actual direction of the wave, however, one has to vectorially
add the flow velocity to restore the situation to the state we were
initially considering. In terms of velocities (since this is the
physically measureable parameter of the flow) a flow velocity of VX
must be subtracted vectorially from the wave travelling at c, at an
angle y to the transverse axis to obtain the direction of propagation

of the "ray" relative to the stationary duct walls. It must be remembered

that the moving co-ordinate system is only used to determine angles of



29

propagation of the "rays'" to visualize the directions of wave fronts.
Actual magnitudes of wave numbers and phase speeds are still determined
from equations (1.32) and (1.33) and equations (1.39) and (1.40)
respectively. At cut-off the particles will vibrate in normal direction
to the stationary duct walls. This situation is shown in Figure 1.7.
From this figure the angle y necessary to produce a natural standing

wave with flow (and no nett propagation of the wave) can be seen to be

cosy s
o

=M (1.56)

Thus equating the condition for cut-off as defined by equation (1.56) to

the vectorial representation of wave numbers fox k1 > ko P k2 we see that

k
M == mn
X + Mk
(o] mn
Hence MT{ + Mz_l_c_ =k
(o] mn mn
Mk

and at cut-off (1.57)

mn - (l—MZ)
As demonstrated previously the frequency at which kmn assumes the value
given by equation (1.57) is that given by EZ. Thus when ko==£2==(l-—M2)£§
the particles will vibrate normal to the walls and there will be no
resultant propagation. This is identical to the physical condition,
in terms of direction of particle velocity, of the no flow case. Below
this frequency the wave does not propagate.

It can also be seen from Figure 1.7 that although the phase
speed is negative for E1> ko>'E2 the resultant propagation after consid-

eration of convection is downstream as assumed.



Ficure 1.7.

The vector condition at cut-off.

30



31

For ko< El the modal wave number is the following complex
number

a - 2.%
k= —(Mko/[l—Mz]) - 1(k2 - k) /[1-M2] (1.58)

In this case the wave process consists of a series of standing waves
whose amplitudes decay with increasing distance downstream. The real
part of the expression is identical to kmn when ko = Ez and thus as
discussed previously ensures that the particles are vibrating normal
to the duct walls after superposition of convection. As such no wave
propagation or energy propagation occurs. In this frequency range the
group velocity is imaginary implying no propagation of energy.

For upstream propagation of sound the modal wave number is
derived from equation (1.33).

When ko > El the wave number is a positive real number and
propagation will occur in the upstream direction as assumed (note
corresponding form of the exponential in the upstream case). The
vectorial representation of the wave numbers for the upstream case
given by equation (1.48) is shown in Figure 1.6.

When ko = kl the modal wave number is

k= 2Mko/[1—M2] #0 (1.59)

Hence at this frequency for the upstream case the phase velocity is not
infinite as for the downstream case and propagation will continue
upstream purely due to acoustic motion. The corresponding group
velocity at this frequency is negative and hence there is a nett energy
flux upstream. As ko decreases towards El the locus of the vector ko
moves as implied in Figure 1.6.

For £1> ko>-£2 the modal wave number for the upstream case is

a positive real number given by
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o

o ) L o
kmn = kO[M + (1 kzlko) 1/ [1-M4] (1.60)

From the vector diagram of Figure 1.6, the angle at which this ray
propagates relative to a wave travelling at speed <, upstream is less
than the angle y discussed previously, necessary for cut-off. Thus
even though the flow convects the particles downstream there is still
a nett propagation of the wave upstream. This also is expressed by
the value of group velocity in this frequency range which is still
negative indicating upstream propagation of energy.

When ko = Ez for the upstream case

k = Mko/[l—Mz] (1.61)

The vectorial arrangement of the wave numbers for ko = k, and upstream
propagation of sound is shown in Figure 1.6, As can be seen from the
figure and deduced from equation (1.48) the vectorial arrangement of
wave numbers for the upstream case is identical to the downstream case,

due to reversal of the sign of kmn in the frequency range £1> koak2
for the downstream case. Hence the resultant angle of propagation relative
to a moving co-ordinate system is identical to the downstream case. Thus
at this frequency the upstream wave motion will also consist of a
transverse standing wave with a resultant particle velocity normal to

the duct wall. At this frequency the group velocity is also zero and
hence there is no nett energy of propagation upstream.

When ko < Ez the wave number kmn is complex and the wave process
will consist of a series of attenuated standing waves. In this freq-
uency range there is no energy or wave propagation.

Thus if ome chéoses energy propagation as the determination

of a cut-off frequency as it is identical for both the upstream and

downstream cases, then the frequencies at which modes cut-off are given by,
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1
2z

£o= (e /20 K2 +12T7 [1-M2] (1.62)

The preceding analysis also shows why the cut-off frequency
is identical independent of the direction of propagation of sound
relative to the flow. This phenomena, which appears confusing if
one tries to determine the cut-off frequency in terms of wavelength
considerations, is due to the negative value of phase speed and
wave number which occurs when £251k0<:ﬂ1 for the downstream case.

The above equations show that the axial wave numﬁers for
higher modes are real for ko 2 i&z and complex for ko< k2 For ko 2.1‘<2
the corresponding wave number kmn may be either positive or negative
for downstream propagation of sound. As Morfey states "it is worth
noting that the + and - signs (of the exponential) do not necessarily
correspond to positive and negative phase velocities in X direction.
What they do corfespond to is direction of energy transmission along
the duct". Morfey came to this conclusion by developing equatilons for
the intensity of sound in ducts with flow. These equations will be
discussed in a later section.

Equation (1.62) predicts that the cut-off frequency will
decrease with increasing Mach number of the convecting flow. This
effect has been experimentally observed by Mason (1969). Mason also
proposed a vectorial arrangement identical to Figure 1.7 to predict
the frequency at which the particle velocity is normal to the wall.
However Mason explains the fact that the cut-off is identical for
both upstream and downstream propagation by stating that in a figure
identical to Figure 1.7 "no assumption has been made concerning the
basic direction in which the sound is propagating".

The analysis presented here clearly demonstrates that the

independence of cut-off frequency from direction of propagation of



sound is due to the identical sign and magnitude of phase velocity for
the upstream and downstream cases when ko = Ez' Mason's derivation

of the cut-off frequency depends upon the assumption that the ratio

of the duct radius to the acoustic wavelength is invariant with flow
speeds, and the result only holds for low Mach numbers. However the
analysis heré in terms of convected wave numbers exactly predicts the
cut-off frequency for all Mach numbers less than unity.

It is useful to expand Figure 1.5 for the small frequency
region near il and Ez to demonstrate the difference’in phase velocity
for the downstream and upstream cases near cut-off. Figure 1.8 shows
that the phase velocity of the downstream propagating higher mode
approaches positive infinity for ko approaching ﬂl' When k0<:£l
however the phase velocity changes sign to negative and reduces to a
fixed value of cp/c0 = -(1-M2)/M when ko = Ez. The phase velocity
of the upstream propagating mode never approaches infinity but steadily
increases as ko approaches il to a constant value of -(1-M2)/M when

k =k

= 9s & value equal in sign and magnitude to the upstream case.

1.3.2 Energy Transmission

The equations describing sound power transmission along a duct
with mean flow have been derived by Morfey (1971). Assuming a pressure
form of the wave equation with flow the axial particle velocities for
the forward and reflected waves are derived from the linearized

momentum equation and are,

d_, P
v, = ( pc)co) (e-M)/(1-eM) (1.63)
v = = ( pp(; ) (e+M)/ (1L+ et) (1.64)

(o]
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where e = [1- (i&l/k0)2(1~M2)]’2 (1.65)

From equations (1.63) and (1.64) it can be seen that the particle

velocities of the (0,0) mode will reduce to

p
v3 wi— (1.66)
X p.cC
[e N e}
p
v = e s (1.67)
X P C
[ N o]

Thus flow does not effect the acoustic impedance of the plane wave.
However for higher modes the acoustic impedance will be modified due
to convection terms retained in the linearized momentum equation.
The forward and backward wave intensities are obtained from
the generalized definition of acoustic intensity in an isentropic

irrotational flow

v vi
= < > + <pls> + < s+ 0 V <v2> .
I PV, 5 P . PV, PV, < Vi (1.68)
p c c
oo )

and as derived by Morfey are

d |p]?

19 = ( Ye (1 -M2)2 /(1 - eM)? (1.69)
& 2pOcO

u - IPIZ 2 2

I = —( Yy e(l-M2)"/(1+eM) (1.70)
X 205C0

Equations (1.69) and (1.70) hold for waves above cut-off. TFor waves
below cut-off, ¢ is imaginary, and IX==0. Hence below cut~off there
is no energy propagation along the duct for either the upstream or

downstream case. This result should be compared to the wvalue of group
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velocity obtained at and below cut-off.

In the case of the plane wave, for which e= 1, equations (1.69)
and (1.70) predict that flow will have the effect of increasing down-
stream intensity by a factor of (1+M)2 and decreasing upstream intensity
by (1-M)2. Flow can thus be expected to modify power reflection and
transmission coefficients due to convection of energy.

For a duct of constant cross section, in which two plane waves
are propagating in opposite directions at the same frequency, the ratio

of reflected energy to incident energy with flow can be written as

2
d PZO 1-M .2
= |2t | (Tew) e 21)
[e]e]
Pr ?
2
and ol = o0 g Es=tl ) (1.72)
r Pl 1-M
[e]o]

where Pio and on are the pressure amplitudes of the incident and
reflected waves respectively.

The power transmission coefficient defined as the ratio of
transmitted energy (or actual energy propagation) to incident energy

propagation is
2

o = | — (1.73)

t .
for both upstream and downstream propagation of sound,P00 is the
, . i r
transmitted pressure amplitude of Poo and Poo'
Equation (1.73) predicts that o, will be the same irrespective
of direction and magnitude of the flow. Any changes in power trans-—
mission coefficient will be due to changes in impedance of the reflecting

surface and not due to convection of energy.



From conservation of acoustic energy, as for the no flow case

a = l—-ar (1.74)

Hence as at is identical for both upstream and downstream cases then
s from equation (1.74) must also be identical for both cases. By
examining equations (1.71) and (1.72) it is logically deduced that

the identical nature of o for upstream and downstream propagation
occurs due to flow induced changes in the pressure reflection coefficient
R, defined to be the ratio of reflected wave pressure amﬁlitude to
incident wave pressure amplitude. Thus convection of the propagating
medium must have the effect of increasing the no flow reflection
coefficient by a factor of (1+M)/(1-M) for downstream propagation
and decreasing the no flow pressure reflection coefficient by a factor
of (1-M)/(1+M) for upstream propagation.

This agrees with predictions determined by Alfredson (1970)
who showed that the pressure reflection coefficient can exceed unity
without reversal of flux of energy in a duct with mean downstream flow.
In particular, the maximum value of pressure reflection coefficient

for downstream propagation before reversal of flux is
] = + -
Rmax a+u/(a-m (1.75)

In the no flow case, the maximum value Rmax can take is unity
when total reflection of sound occurs, thus equation (1.75) agrees
with the predictions of this analysis. It can be seen from the ident-
ical nature of a: and ai that R will be increased by a factor of
(1+M)/(1-M) for all values of R and not only when R= Rmax'

Thus flow can be seen to alter the pressure reflection coeff-

jcients due to differences in rates of convection of energy for the

upstream and downstream cases. In fact this is necessary for the
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system to maintain conservation of energy.

The major effects of flow on wave amplitudes and energy flux
of waves propagating in a single mode can be summarized as:

(1) an increase and a decrease in the pressure reflection
coefficient for downstream and upstream propagation respectively,

(2) an increase and decrease in the wave intensity for
downstream and upstream propagation respectively,

(3) no alteration in the specific acoustic impedance of the
(0,0) mode,

(4) an alteration in the specific acoustic impedance of higher
modes,

(5) no alteration, due to convected energy, in the power

reflection and transmission coefficients of the (0,0) mode.

Most of these factors are well illustrated in the analysis of a reactive

acoustic attenuator to follow in Chapters 5 and 6.

1.4 EXPERIMENTAL INVESTIGATION - EQUIPMENT, PROCEDURE AND RESULTS

In this section the effect of flow on phase velocity and cut-
off frequency is to be investigated. It is hoped to isolate the two
discrete frequencies El and Ez of the preceding analysis and show that
the phase velocity is infinite at £1= 0 for the downstream case proving
that propagation of energy at this frequency is due purely to convection
and not acoustic motiomn.

The arrangement of the experimental apparatus used is shown in
Figure 1.9. The duct system has a 0.0635 x 0.127 meters internal cross
section and was constructed in removable sections from 0.0254 meter
thick wood lined with laminex on the inside to fulfil the rigid wall
boundary condition. A centrifugal fan driven by a variable speed D.C.

motor provides air flow through the duct system at different Mach numbers.
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FIGURE 1,9, Arrangement of the experimental apparatus for
detection of modal cut-off frequencies and phase
speeds with flow.
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Flow velocity profiles were measured by traversing a pitot static tube
across the duct and an equivalent uniform velocity was calculated from
the flow distribution. At the maximum rating of the motor a flow rate
of M=0.1 was measured in the incident duct. A fan muffler was positioned
downstream of the fan to reduce fan generated noise and to attenuate
negative travelling waves.

For measurements of sound propagating with the flow the sound
source was positioned 1.5 meters from the test section at which distance
any locally generated unwanted cross modes have sufficiently decayed to
be negligible. To eliminate reflections from the exit of the duct,
and resultant modal coupling, the downstream duct was anechoically
terminated. For measurements of the sound propagating with the flow
the anechoic termination was removed and the sound source positioned
well downstream of the test section. In this case the fan muffler
acts as an anechoic termination to waves travelling upstream.

The mode to be investigated is the (1,0) cross mode. This was
achieved by mounting two Toa 35 watt horn drivers on opposite walls of
the larger dimension of the duct and driving the horns 180° out of
phase with a pure tone. This arrangement resulted in a strong generation
and propagation of the (1,0) mode above the cut-off frequency. Below
the cut-off frequency of the (1,0) mode, the (0,0) mode was propagated
very weakly due to phase interference of the horn drivers. At the cut-
on of the (1,0) mode, sound pressure levels recorded at the wall in the
test section consistently rose sharply to 30dB above that recorded
for the (0,0) mode alone (i.e. just below cut-off).

The main piece of experimental equipment used was a Briel & Kjaer
Heterodyne Analyser (HA). This instrument has the capability to be used
as a narrow band filter and also as a Beat Frequency Oscillator (BFO)

simultaneously. The center frequency of the band being filtered
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corresponds exactly to the frequency of the BFO output signal. Thus
when the output of the BFO is amplified and used to drive the horn
drivers and the same instrument is used to filter the measured sound
levels, the operator is ensured that the center frequency of the band
is exactly on the signal being measured. This characteristic of a
tracking filfer is particularly desirable if one is using a very narrow
filter band and is traversing the acoustic signal over a range of frequen-
cies. However a disadvantage of the Heterodyne Analyser is that its
output signal is at a constant frequency and thus cannot be used for
phase measurements. For phase measurements a Briel and Kjaer Constant
Percentage Bandwidth Filter was used (set to a 10% bandwidth) in
conjunction with a Bruel and Kjaer Digital Phase Meter.

At the maximum flow rate of the fan, with the (1,0) mode above
cut-off, the HA when set to a 3.16 Hz bandwidth provided a signal to
noise ratio of greater than 50 dB, while the Constant Percentage Filter
provided a signal to noise ratio of greater than 30dB at maximum flow.

Three parameters were investigated experimentally. The transverse
pressure distribution of the (1,0) mode propagating downstream was
measured in the test section by traversing a microphone probe across
the duct and recording the sound pressure levels at known distances.
The sound pressure level was then normalized to the value recorded at
y=0. Experimental values of relative pressure amplitude, defined by
equation (1.76) are shown in Figure 1.10 with the theoretical distrib-

ution derived from equation (1.44) for M=0.1

AdB/20

Relative pressure amplitude = 10 (1.76)

where AdB is obtained from the sound pressure level data as

AdB = S.P.L - S.P.L
y y=0
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Ficure 1,10, Transverse pressure distribution of the (1,0) mode.
, theoretical; O , experimental.
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The phase velocities of the (0,0) mode and the (1,0) mode were
measured by traversing a microphone probe down the duct a known
distance X. The change in phase A GP over this distance was measured
using a Bruel and Kjaer Phase Meter. Particular care was taken to
ensure the probe tip moved parallel to the duct wall, as in the case
of the (1,0) mode there is phase variation across the duct wall as

well as along its length. The phase velocity is then

= wX/A6 : .
cp wX/ : (L.77)

Phase velocities of the (0,0) mode and the (1,0) mode measured
for the zero flow case are plotted in Figure 1.3. Values of the phase
velocity of the (0,0) mode and (1,0) mode for a flow rate of M=0.1
and downstream propagation are plotted in Figure 1.5.

The phase velocity of the (1,0) mode was measured for small
frequency increments near cut-off with and without flow. For the
consideration of flow both the upstream and downstream cases were
measured, with a flow rate of M=0.1. The frequency of interest was
gradually lowered and the phase difference measured, until the mode
had "cut—off". Values of measured phase velocity for the (1,0) mode
without flow are given in Table 1.1. Values of measured phase velocity
for the (1,0) mode propagating in the downstream and upstream cases
are given in Tables 1.2 and 1.3 respectively. In each case the distance
X over which the phase difference was measured was standardized to
.17 meters. The values of phase velocity measured for the case of
flow should be compared to the theoretical phase velocity plot of
Figure 1.8.

The "cut-off" frequency of the (1,0) mode was investigated at

flow rates of M=0, M=0.05 and M= 0.1 for both downstream and upstream
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Table 1.1 : Phase Velocities of the (1,0) Mode Near Cut-Off, M= 0
Frequency Measured
(Hz) Phase Difference cp/c0
(radians)
1400 -2.68 1.63
1380 - .39 10.93
1356 - .17 24.84
1355 - .16 26.37
1354 - .15 28.11
1353 - .16 26.33
1352 - .18 23.39
1351 - .18 23.37
1350 - .20 21.02
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Table 1.2 : Phase Velocities of the (1,0) Mode Near Cut-0ff, M=0.1,

Downstream Propagation of Sound

Frequency Measured
(Hz) Phase Difference cp/c0
(radians)

1400 -1.38 + 3.159
1380 - .36 + 11.94
1370 - .10 + 42.66
1368 - .07 + 60.86
1367 - .04 +106.42
1366 - .01 +425,39
1365 + .05 - 85.01
1364 + .05 - 84.95
1360 + .13 - 32.58
1355 + .13 - 32.46
1350 + .01 ~-420.40
1349 - .04 +105.02
1348 - .03 + 24,69
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Table 1.3 Phase Velocities of the (1,0) Mode Near Cut-0Off, M=0.1,

Upstream Propagation of Sound

Frequency Measured
(Hz) Phase Difference cp/c0
(radians)
1400 +1.05 - 4,152
1370 +1.00 - 4.27
1360 + .42 ~-10.08
1355 + .46 - 9.17
1353 + .5 - 8.43
1352 + .3 -14.03
1351 + .5 - 8.41
1350 + .48 ~ 8.76
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propagation of sound. Detection of the frequency at which cut-on of
the mode occurred was by means of an observed rise in sound pressure
level in the duct. To detect this a microphone probe was mounted

flush with the duct inside wall in the test section. The Heterodyne
Analyser was connected to a Bruel and Kjaer Level Recorder by a
mechanical drive. Thus the frequency of the acoustic signal was slowly
and uniformly increased and the resulting sound pressure levels at

the duct wall were recorded graphically on frequency scaled paper by
the Level Recorder. As discussed previously the filter,set to 3.16 Hz
bandwidth, tracks the acoustic signal.

Figure 1.11 shows a typical frequency response of the sound
pressure level in the test duct section for the no flow case. Figure
1.12 shows a similar frequency response for a flow rate of M=0.1 and
downstream propagation. From these figures it can be clearly seen
that the "cut-on'" of the (1,0) mode is characterized by a rapid increase
in sound pressure level at the duct wall as the BFO sweeps through
frequencies near cut-on. To accurately find this frequency, the BFO
frequency was slowly increased manually until the recorded sound pressure
level first started to rise rapidly. The frequency at which this
occurred was taken as the "cut—off" frequency of the (1,0) mode and
was read from the BFO Nixie display of frequency of generation. The
accuracy of this measured frequency for cut-off of the (1,0) mode was
considered to be * 1Hz.

Values of cut-off frequency found experimentally using this
method for M= 0, M=0.05 and M=0.1 are shown in Table 1.4 for both
downstream and upstream propagation of sound. These values are also
plotted in Figure 1.13 for comparison with a theoretical curve of

"cut-off" frequency derived from equation (1.62).
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FiGuUrE 1.12. Frequency response of the sound pressure level in the
test duct near cut-on of the (1,0) mode with a flow

rate of M = 0.1.
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Table 1.4 : Experimentally Measured Cut-off Frequencies of the (1,0)

Mode with Flow

Cut-off Freq. (Hz)

Mach Number 0.0 0.05 0.1

Downstream 1353 1350 1346

Upstream 1352 1350 1348
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FIGURE 1.13. Variation in cut-off frequency of the (1,0) mode for
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1.5 DISCUSSION OF RESULTS

Before the propagation characteristics of the (1,0) mode could
be investigated it was necessary to check that this mode in fact was
propagating through the test section. Figure 1.10 shows a comparison
between the theoretical and experimentally measured pressure amplitude
distribution of the (1,0) mode in the test section. The results of
this figure shows that the arrangement of horn drivers employed results
in a strong driving of the (1,0) mode for frequencies zbove cut-off.
Below the cut-off frequency of the (1,0) mode a very weak plane wave
remains. The experimental values agree very well with the theoretical
distribution. The small errors in the minimum at the duct centerline
and at the duct wall (y==hy) are attributed to the presence of a weakly
propagating (0,0) mode. The amplitude of (0,0) mode was quite weak
in comparison to the (1,0) mode above cut-off, the sound pressure level
at the duct wall increasing in the order of 20 to 30 dB through the
cut-off frequency.

The experimental values of phase velocity for both the (0,0)
mode and the (1,0) mode are seen from Figures 1.3 and 1.5 to agree with
their corresponding theoretical values for M=0 and M= 0.1 respectively.
The phase velocity of the (0,0) mode with no flow was measured to be
330 m/sec. For an ambient temperature of 22°C recorded during the
experiment, the corresponding theoretical speed of sound (equal to the
phase speed of the (0,0) mode) is 343.8m/sec. For a flow rate of
M=0.1 and downstream propagation of sound the phase speed of the (0,0)
mode was measured to be 418 m/sec . This compares with the theoretical

phase speed of

¢]
I

co(l-FM) 1.78)

378 m/sec for M=0.1
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The above phase measurements were made at 1 kHz.

Thus as theory predicts, flow has the effect of increasing
the phase speed of the (0,0) mode by a factor of (1L+M) for downstream
propagation of sound.

As expected from the analysis the phase velocity of the (1,0)
mode without flow is very large near cut-off. Table 1.1 shows that
the largest phase velocity measured was cp/co = 28,11 at 1354 Hz . It
was hoped to measure an infinite phase velocity (i.e. zero phase
variation along the duct) for the (1,0) mode exactly at the cut-off
freqeuncy, but this proved difficult. At cut-off, the (0,0) mode which
is propagating weakly appears to interfere with the phase character-
istics of the (1,0) mode. As well as this, dimensional variations in
the cross section along the length of the duct lead to a slight
variation in cut-off frequency at different positions in the duct.
Hence in the no flow case the cut-off frequency was taken as the
frequency at which the highest value of phase velocity was measured.
The measured cut-off frequency of the (1,0) mode for the experimental
rig was fc = 1354 Hz (or El = 24.8) for zero flow. The corresponding
theoretical value of cut-off frequency for the (1,0) mode in a duct
of dimensions hy = 0.127 meters, from equation (1.62), is equal to
1350.5Hz . The slight differences between the theoretical and exper-
imental result was thought to be due to dimensional inaccuracies in
the duct size and the presence of the weakly propagating (0,0) mode.

For the case of flow and downstream propagation of sound, Table
1.2 shows that the phase velocity of the (1,0) mode approaches infinity
at a frequency of 1366 Hz. This frequency corresponds to ﬂl of the
analysis. However the theory predicts that il should be identical to
the no flow cut-off frequency. The error between the measured no flow

cut-off frequency and the measured value of El is thought to be due to
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the non-uniform flow in the duct. Refraction of waves at the boundary
layer surface may cause an alteration in the angle of particle velocity
vibrations. Theory predicts that for the downstream case that the phase
velocity should change sign as the frequency is traversed through El

as shown graphically in Figure 1.8. This prediction is verified in the
experimental results of Table 1.2 where the phase velocity changes from
a positive value to a negative value as the frequency decreases through
1366 Hz. It is interesting to note that the sign of the phase velocity
changes back to positive at 1350 Hz which corresponds more closely to
the expected cut-off frequency with flow. Thus it appears that the
frequency El at which the phase velocity is theoretically infinite for
the downstream case is most affected by the non-uniform flow.

This effect is also demonstrated in the phase measurements
of the (1,0) mode propagating upstream, the results of which are given
in Table 1.3. The phase speed is seen to steadily increase to a max-
imum at 1352 Hz and then decrease again. This maximum of phase velocity
for the upstream case is seen from Figure 1.8 to occur at the cut-off
frequency iz' Similarly for the upstream case no change in sign of
the phase speed was measured at il as opposed to the downstream case
and demonstrated theoretically in Figure 1.8. The phase speed of the
upstream propagating mode does not approach infinity at iz but approaches
a maximum value of cp/c0 = —(1-—M2)/M. For a flow rate of M=0.1 the
theoretical maximum phase speed is cp/c0 = -9.9., At the experimentally

measured value of Ez (1352 Hz) the phase speed was measured to be

cp/co = -14.03. The experimental result is seen to be of the same order

as the theoretical prediction. The discrepancy between experiment and
prediction is most likely due to duct cross dimension variation and perhaps
due to the presence of the flow boundary layer as previously discussed.

The result of Tables 1.2 and 1.3 for the (1,0) mode supports
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the prediction of the analysis that for the downstream case there is a
discrete frequency El at which the phase velocity is infinite even
though the mode still propagates downstream, while cut-off of propagation
of energy occurs at the lower frequency iz' Since the phase velocity

of the mode is infinite at il as suggested by experimental results here,
energy propagation at this frequency is due to convection of the prop-
agating medium and not due to acoustic wave motion. This result is

also supported by theoretical group velocity considerations as discussed
previously. The results also show that the phase velocity of the (1,0)
mode propagating upstream never approaches infinity but reaches a
maximum at iz’ the cut~off frequency.

The frequency response of the wall pressure spectrum in the
test section shows that the use of a rise in sound pressure level is
quite successful in detecting the cut-off frequency of the (1,0) mode
with and without flow. The experimental values of cut-off frequency
found using this method agree well with those predicted by theory as
given in Figure 1.13. The small error was thought to be due to dimen-
sional inaccuracies and non-uniform flow in the duct. It should also
be noted that some reduction in cut-off frequency is due to the cooling
of the ambient air as it is drawn into the flow rig. The static temp-

erature of air flow at Mach number M in this case will be

T = (1.79)

ot = =t (1.80)
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and equation (1.62) will be modified to (M.K. Bull, personal comm—

unication),

1
£! = fc/[1+o.2M2]”Z (1.81)

where fé is the "cut-off" frequency with flow and reduction of temp-

erature taken into consideration. This variation may account for

some of the resultant error. The no flow cut-off frequency was

determined to be 1352 Hz using the pressure method. This agrees well

with the cut-off frequency determined by the phase velocity method.
Figure 1.13 demonstrates that the cut-off frequency decreases

]1/2

by a factor of [l--M2 for increasing flow rates independent of the
direction of propagation of sound relative to the flow. Hence the

experimental results here compare well with those obtained previously

by Mason (1969).

1.6 SUMMARY

Propagation of the (0,0) and (1,0) mode in a rectangular
hard walled straight duct has been examined theoretically and exper-
imentally. It is found that the amplitude distribution of the (0,0)
mode and the (1,0) mode are identical to these in a rectangular duct
with no mean flow.

Flow is found to lower the cut-off frequency by a factor
of [1--M2]li irrespective of direction of propagation with respect to
flow. The reason for the identical nature is determined to be the
negative value of kmn occuring for downstream propagation in the
frequency range iél > ko 2 k2

The "cut-off" condition is demonstrated vectorially using

wave numbers and the frequency at which the particle velocity is normal

to the duct walls (i.e. cut-off) is derived exactly.
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Although cut-off occurs in an energy sense at Ez there
remains a discrete frequency El’ equal to the no flow cut-off frequency,
at which the phase velocity of the mode is infinite for the downstream
case. At this frequency propagation is in the form of a "psuedo wave"
purely due to convection and not acoustic motion.

Expressions are derived for the group and phase velocity of
modes with flow and these are found to indicate well the important
frequencies that establish the propagational characteristics of acoustic
waves in rectangular ducts with uniform flow. The phase‘velocity of
the (0,0) mode is found to be increased by a factor of (1+M) for
downstream propagation as indicated by theory.

The theoretical effect of flow on the pressure and power
reflection coefficients of the (0,0) mode are examined. Flow is found
to increase the no flow reflection coefficient for all values by a
factor of (1+M)/(1- M) for downstream propagation and decrease the
coefficient by (1- M)/(1+M) for upstream propagation. The power
reflection coefficient is found to be unaffected by changes in energy

flux due to convection of the propagating medium.
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CHAPTER 2

SOUND PROPAGATION IN RADIAL BENDS OF RECTANGULAR CROSS SECTION

2.1 TINTRODUCTION

The complex case of sound propagation in curved bends has
until recently defied satisfactory solution, although sound propagation
in straight ducts has been well covered. None-the-less in most practical
cases, such as air conditioning or jet engine ducts, bends are a
necessary part of the system and in such cases they play an integral
part in any resultant sound propagation. It is therefore necessary to
understand the acoustical behaviour of bends with and without flow.

The earliest consideration of the problem of propagation of
sound in curved bends was probably by Rayleigh (1877). Rayleigh showed
that motion of waves of long wavelength in narrow ducts of large radius
of curvature behaved exactly as in straight ducts of similar length.
This conclusion provides the limit to which all equations developed to
describe sound propagation in curved ducts must tend.

Work on curved bends was initially concentrated on the
propagation of electromagnetic waves. Bucholz (1939) introduced the
use of separation of variables to solve the wave equation in cylindrical
co-ordinates and was the first to consider the problem of travelling
waves.

Krasnushkin (1945) also used separation of variables to
solve the wave equation and separated the wave propagation constant
that determines the propagational characteristics of each mode and
subsequently called this the "angular wave number'. However Krasnushkin
only considered the case of slightly bent tubes. Grigoryan (1963)

developed equations which correctly predicted the sound field in the
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curved duct but again his results for the angular wave number are only
applicable to a very narrow pipe.

Until recently all the analyses were characterized by a
simplification in the boundary conditions in order to solve the problem
and in most cases, although the basic analytic procedure of use of
separation of variables was clearly laid out, the results obtained
were of limited direct usefulness. Recent advances, however, have
led to a more complete understanding of the mechanism of sound prop-
agation in curved bends.

Rostafinski has attacked the problem from various stages.
Firstly Rostafinski (1972) limited his analysis to long wavelengths
and thus used simplified expressions for the power series expansions
of the Bessel Functions which appear in the characteristic equation
of the problem. He considered two cases of an infinite bend (with a
piston source) and the junction between a straight duct and a semi-
infinite curved bend of rectangular cross section. He derived expressions
for the particle velocity (tangentialland radial) distribution of both
the (0,0) propagating mode and non-propagating higher modes generated
at the discontinuity. Although his analysis is limited to low freq-
uencies it does highlight the nature of the sound field in a curved duct
section.

Rostafinski (1974) next extended his analysis to higher
propagating modes by using a closed form of the Bessel Function of
order (n + %) to interpolate curves of angular wave number for any non-
dimensional frequency. In this analysis, he also compared the curved
duct velocity distributions of higher modes to the equivalent mode in
a straight duct section. He found theoretically that at low frequencies
(k0R1< 1), the radial distribution of tangential velocities was that

of a potential vortex, inversely proportional to radius, while for
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higher frequencies (koRf=3.0), the distribution was closer to a forced
vortex, proportional to radius. Whereas in a straight duct the (0,0)
mode wave speed is independent of frequency (i.e. it is non-dispersive)
in a curved duct the angular wave speed is strongly dependent on freq-
uency for all modes including the (0,0) mode (i.e. the plane wave mode
is dispersive).

Finally Rostafinski (1976) considered non-propagating modes
at high frequencies by solving the curved duct characteristic equation
with Bessel Functions of purely imaginary order using relationships for
such Bessel Functions developed by Buckens. Values of angular wave
number for evanescent modes were found and used to predict the velocity
distribution of evanescent modes at increasing angles into the curved
duct. The analysis showed that as for straight ducts non-propagating
modes decay rapidly with increasing distance from the generating surface.

Cummings (1974) has investigated the problem more generally
with particular consideration given to the practical application of the
derived equations. As well as investigating the discontinuity caused
by a 180° bend, Cummings investigated theoretically and experimentally
the radial variation in pressure amplitude in the bend and the impedance
of a bend terminated with a rigid wall. From these investigations he
proposed a model by which curved ducts could be considered as straight
ducts of adjusted length. The adjustment arises from the comnsideration
that the wave number across the curved duct equals k0 at values other
than the mean radius. Cummings also gave brief comsideration to the
effect of mean flow, propagation in "soft" walled ducts and curved ducts
of circular cross section.

Other work on curved ducts has been carried out separately by
Osborne (1974), (1976) and Ko and Ho (1977). Osborne (1974) concentrated

on solving the characteristic equation of the curved duct. He proposed
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a numerical method, suitable for use on a computer, by which the angular
wave numbers could be obtained without any limitation in frequency or
boundary condition. He (1976) also investigated higher mode propagation
in short curved bends and he gives theoretical and experimental values
of pressure distribution in a practical curved duct-straight duct system,
His results show that sound propagation of higher modes through curved
bends is also characterized by a lack of discontinuity.

Work on sound propagation in curved ducts with attenuating
walls has recently been completed by Ko and Ho (1977). They found that
the (0,0) mode was the least attenuated. They considered the effect
of aspect ratio, bend angle and acoustic impedance on the sound atten-
uation obtained and found that the total attenuation obtained increased
with an increase in bend angle.

All of the above work have used a cylindrical co-ordinates
solution of the wave equation and except for a brief consideration by
Cummings (1974) all of the analysis have been without flow of the prop-
agating medium. Presumably flow has been neglected and analyses thus
far have been restricted to a section of a cylinder because of the
complexity of the characteristic equations. Its use for the determination
of appropriate angular wave numbers has been the principle concern of
the analyses thus far.

Recently Fuller and Abell (1978) have proposed a method of
solution of the curved duct problem using conformal mapping. They
have developed simple equations for the angular wave numbers of the
(0,0) mode as well as evanescent modes at low frequencies (kohc§,2.0)
with and without flow. They also derived simple expressions for values
of the cut-off frequencies for higher modes with and without flow.

In this chapter the solution of sound propagation in radial

bends of rectangular cross section is investigated using two procedures.
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Firstly the classical procedure of solution of the wave equation in
cylindrical co-ordinates is used. A numerical solution, is developed
to find values of angular wave number for different frequencies and
geometries of ducts. The numerical solution is used to predict the
pressure distribution of the (0,0) mode and higher modes in curved
ducts at various frequencies. The effects of varying frequency and
radii on the radial pressure distributions are discussed.

Secondly the problem is solved using the non-classical
approach of conformal mapping. Conformal mapping has been used prev-
iously by Morse and Feshbach (1953) to provide equations for the
impedance of right angled bends in duct systems and by Morse and
Ingard (1968) to similarly describe the equivalent resistance and
inductance of an orifice of a thin width in a two dimensional duct.
Cumnings (1975) has also used the mapping technique or "potential
flow" model to predict the transmission coefficient of a 180° bend
in a straight duct system. He compared the results obtained to that
of a modal solution of the same problem and showed that the "potential
model gave good agreement at low frequencies.

The basic assumption used is that for low frequencies, for
which the wavelength of sound is much longer than the transverse duct
dimension, the velocity potential solution of the acoustic wave equation
will approximate a solution of Laplace's equation. Hence the name
"potential flow" model. The solutions will thus obey the Cauchy-
Riemann equations and can be transferred from various complex planes
using mapping procedures. Whereas in the previous mapping analyses of
Morse and Ingard (1968) and Cummings (1975) the Schwartz-Christofell
transformation was used to reduce the physical shape of an orifice or
a right angled duct to an arrangement affording simpler solutions of the

boundary conditions, in the following analysis a similar but far simpler
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approach is used and the derived mapping equations are less complicated.

Equations are developed which predict the angular wave number
for the (0,0) mode of propagation and higher evanescent modes in the
frequency range kohc5§2.0 with and without mean flow. Simple equations
are derived which predict the cut-off frequencies of higher modes with
and without flow. Values of these parameters for the no flow case are
compared to values obtained from a cylindrical co-ordinate solution of
the problem. Discrepancies between the two methods are discussed and
the range of applicability of the conformal mapping method in terms of
frequency and aspect ratio is discussed.

The conformal mapping also provides approximate predictions
of the pressure and velocity distributions of the (0,0) mode and evan-
escent modes. These are compared to values derived from the cylindrical
solution and to experimental values of the pressure distribution with
and without flow. The analysis also predicts the impedance of the bend
relative to a straight duct with and without flow and this is investigated

experimentally for both cases.

2,2 CYLINDRICAL CO-ORDINATES SOLUTION WITHOUT FLOW

The equations for sound propagation in radial bends with
rectangular cross section are obtained from solutions of the wave equation
in separable cylindrical co-ordinates as illustrated in Figure 2.1. The

wave equation has the form

v2p = (1/c_)3%p/at? (2.1)
where from Appendix 1 for cylindrical co-ordinates

v2p = (32/3r2 + (1/r)(3/3r) + (1/r2)(32/362) + 32/322)p (2.2)

Following Grigoryan (1963) we assume a solution of equation



F1Gure 2.1.

The cylindrical co-ordinate system.
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(2.1) 1in separable cylindrical co-ordinates for the pressure distribution

as

p(r,0,z,t) = R(r)6(6)Z(2)T(t) (2.3)
We assume a harmonic solution so that this may be reduced to
p(r,08,z,t) = R(r)6(0)Z(z)exp[iut] C(2.4)

By substitution of equation (2.4) into equation (2.1) and separation of

variables we obtain

8"/8 = —v2 , (2.5)
R" + (1/x)R' + (kg - VvZ/rHR =0 (2.6)
and /7 = —ki (2.7)

General solutions of equations (2.5), (2.6) and (2.7) are

8(0) = exp[-ive] (2.8)
R(r) = Jv(krr) + Ava(krr) (2.9)
and Z(z) = cos(knz) (2.10)

where the radial wave number is related to the wave number in the z

direction by

ki = kg - ki (2.11)

Thus the general solution of equation (2.1) in cylindrical co-ordinates

can be written as

2]

p(r,8,z,t) =SZ° nZoczn[{%;(krr)i-Abx% (krr)] cos[knz]exp[i(-vse4-wt)]

(2.12)
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The constants of equation (2.12) can be determined by the
application of the appropriate boundary conditions. The Fourier
coefficient C:n is determined by matching the acoustic distribution of
the driving surface at the bends entrance to the distribution within the
bend (this will be discussed in a later section). The variable vS is
called the angular wave number and determines the mode propagation
characteristics of waves in the curved section.

If one assumes that the duct walls are perfectly rigid then

the particle velocity normal to the walls is zero i.e.

r=R2
u_ =0 (2.13)
r=R1
z=h
Z
== =0 (2.14)
z=0

where R1 and R2 are the inside and outside duct radii and hz is the
duct width in the z direction.
Using the cylindrical form for the derivation of velocity

from pressure from Appendix 1

ﬁr = —(l/ipocoko)ap/ar (2.15)

we obtain from equation (2.12) at r==R1

| ] —
va(krRl) + Asg% (krRl) =0 (2.16)
Thus the constant = -J'" (k.R)/Y" (k. R,) (2.17)
Ab Vg T 17 v, 1

where the prime (') denotes differentiation with respect to r.
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Application of the boundary condition at z = hz results in
51n(knhz) =0 (2.18)
Thus as for the straight duct case
kn = nTr/hz n=0,1,2 .... (2.19)

s : c - .
The characteristic function ﬂﬂsr,z) describing amplitude
variation across an r-z plane in the curved duct is

v (r,2) = [JVS (k_1) - (J\;S (e R /Y (e RY, (e r)] coslk 2] (2.20)

As one would intuitively expect for a cylindrical co-ordinate solution,
acoustic motion in a curved duct obeys a radial dependence in r direction
and a rectangular (or similar to straight duct solution) in the z
direction with respect to amplitude.

Applying the boundary condition at r=R, results in
' ' _ 1! 1 =
JQS(krRl)YQS(krRZ) va(krRZ)sz(krRl) 0 (2.21)

Alternatively using expressions for Neumann Functions in terms of
Bessel Functions from McLachlan (1934), the characteristic equation

can be rewritten as
1 ' _ T 1 -
va(krRl)J—Vs(krRZ) Jbs(krRz)J;vs(krRl) 0 (2.22)

Equation (2.22) is the characteristic equation of the curved duct
system. Solutions of equation (2.22) for the angular wave number Vg
determine the propagational characteristics of a particular mode for
a given duct geometry.

Inspection of equation (2.22) demonstrates why the theory of

sound propagation in curved ducts has not been completed until recently.
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Due to the complicated form of equation (2.22) in order to obtain
values of angular wave number vs some simplifying assumptions have

to be made (e.g. low frequency by Rostafinski or slightly curved bends
by Krasnushkin). However with the advent of modern computer techniques
equation (2.22) can be solved using an iterative numerical process.

In the present analysis equation (2.22) was written in terms
of power series expansions of Bessel Functions and values of angular
wave number vo at which zeros of equation (2.22) occurred were found
using an iterating process on a computer. In this process an initial
value of Vo close to zero was assumed at a particular frequency. Using
this value of vo, equation (2.22) was evaluated at points obtained by
adding successive increments to the initial value of Vo until a change
in sign of equation (2.22) occurred. When a change in sign of the
characteristic equation occurred the added increment was halved and
the process returned to the point before which a change in sign occurred.
In this way the process was continued until equation (2.22) was evaluated
to a value of less than 10_4. The point at which this occurred was
taken as Ve

As shown by equation (2.22) the values of angular wave number
are dependent upon the inner and outer duct radii R, and R,. The
dependence of the angular wave number on these radii may be expressed
in terms of the dimensionless parametér a= RZ/RI which will be called
the aspect ratio. The value of the aspect ratio may range between one
and infinity.

Figure 2.2 shows a typical solution of the angular wave number
of the (0,0) mode of propagation in curved ducts of various aspect
ratios plotted against -a non-dimensional frequency kohc. As application
of the curved duct theory of propagation in later chapters is limited
to low frequencies less than cut-off of the (1,0) mode equation (2.22)

was only solved continuously for this frequency range. However the
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technique is applicable with modification, by ordering the zeros of
the characteristic equation to find the angular wave number of higher
propagating modes. In this case the first zero found corresponds to
the wave number of the highest propagating mode. The progress is
then continued on with increasing angular wave number until successive
zeros are found corresponding to successive lower modes (above cut-off).
Two discrete points were found by this method and used to determine
the pressure distribution of higher modes for later discussion.

Values of angular wave number derived by Rostafinski who
used a closed form solution of the Bessel Function of order (n+%) are
also shown in Figure 2.2 for comparison. It can be seen from Figure
2.2 that the angular wave number of the (0,0) mode is strongly depend-
ent on duct geometry and frequency as compared to the wave number of
the (0,0) mode in a straight duct. The agreement is considered good.

Values of angular wave number for the evanescent modes (1,0),
(2,0) and (3,0) for frequencies less than cut-off were obtained by
solving equation (2.22) using the iterative process outlined but using
Bessel Functions of purely imaginary order. As for straight ducts
the angular wave number of non-propagating modes (in rigid walled ducts)
was assumed to be purely imaginary. Cummings (1974) has shown from
an energy flow point of view that this assumption is likely to be
true and the assumption is borne out by the results of the analysis.
Thus values of angular wave number of three evanescent modes derived
using the method outlined are shown in Figure 2.3.

As for straight ducts with rigid walls, waves in curved
radial bends will either propagate without attenuation when Vo is
real or decay with distance when Vg is imaginary. As Rostafinski (1972)
has shown, the angular wave number of the (0,0) mode is always real,

thus this mode will always propagate. However as discussed later the
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amplitudes of the (0,0) mode are not uniform across the duct cross
section as opposed to straight ducts.
The cut-off frequency at which a mode changes from non-

propagating to propagating is given by the zero order roots of
' ' _ T ' =
Ik RIY (kR - T (kRIYI(kR) =0 (2.23)

Values of non-dimensional cut-off frequency kOR1 for ducts of different
aspect ratio, derived by Osborne (1976) using an iterative solution
of equation (2.23) are given in Table 2.1.

The variation in radial amplitude of waves in a curved duct
may be obtained using the curved duct characteristic equation. For
convenience the radial variation in absolute pressure amplitude may
be defined as the ratio of pressure amplitude at r to the pressure

amplitude at R, thus

relative pressure amplitude (2.24)

Relative pressure amplitude was investigated for two modes,
the (0,0) mode and the (1,0) mode. Figures 2.4 and 2.5 show radial
variation in pressure amplitude of the (0,0) mode for curved ducts of
different aspect ratios at two different frequencies.

Figure 2.6 shows the radial variation in pressure amplitude
of the (1,0) mode for a curved duct of aspect ratio a=2 and two non-

dimensional frequencies. The tangential particle velocity is given by

! vy = —(1/r)$1/ipocoko)3p/36 (2.25)

Hence the variation in absolute tangential velocity amplitude across
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Table 2.1 : Cut-off Frequencies of Higher Modes for Two Dimensional

‘Ducts of Different Aspect Ratio,Derived by Osborne (1976).

Roots of Equation (2.23), koR1

R2/R1 S=1 2 3 4 5 6
1.2 15.728 31.426 47.131 62.837 78.544 94.251
1.5 6.322 12.586 18.863 24.143 31.424 37.706
2.0 3.197 6.312 9.445 12.581 15.720 18.860
2.5 2.157 4.223 6.307 8.395 10.486 12.576
3.0 1.636 3.179 4.738 6.303 7.870 9.441
4.0 1.112 2:134 3.170 4.210 5.253 6.298
© 3.832 7.016 10.174 13.324 16.471 19.616
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the curved duct is given by

Cc Cc
vy = (R)/1) (wso)r/ (lbso)Rl (2.26)

where the distribution is normalized to the amplitude at Rl'

The theoretical variation in tangential velocity amplitude
for the (0,0) mode is shown in Figures 2.7 and 2.8 for the same curved
ducts and frequencies as those used in the pressure amplitude dist-
ribution (Figures 2.3 and 2.4 respectively). The tangential velocity
distribution for the (1,0) mode for a curved duct of aspect ratio a=2

is shown in Figure 2.9.

2.3 ANALYSIS OF SOUND PROPAGATION IN RADIAL BENDS BY CONFORMAL MAPPING

Conformal mapping as described by Korn and Korn (1968) is a
method by which an analytic complex function in a given region may be
mapped onto a region with simpler geometry affording an easier solution
for the complex potential at the boundaries. The resulting solution
when transformed back to the original (physical) plane by the developed
equations will provide the solution to the problem. The practical
importance of conformal mapping results from the fact that harmonic
functions of two real variables remain harmonic under a change of
variables arising from a conformal transformation. However before a
particular complex function may be mapped it must obey the Cauchy-

Riemann equations in the domain being considered. These are defined as

an/ox 3B/ 3y (2.27)

-3B/3y (2.28)

and ~ an/dy

where the complex function w = n(x,y) + iB(x,y). If these equations

are satisfied for a complex function in a domain K then that function



Ficure 2.7,

F1Gure 2.8.

77

o 1.50 |
©
et
=
£
©1.25 ol
Sy
e
ot
S k.hC=1.5

1.00 F—————— 0 -
> kgh©=0.75
w
K7 1
X 0.75

R1 R2

Radial position

Tangential velocity amplitude distribution of the (0,0)
mode in a curved duct of aspect ratio, a = 1.28,.

—
w

o

o
(8]

Relative velocity amplitude

o
Py
Py
N

Radial position

Tangential velocity amplitude distribution of the (0,0)

mode in a curved duct of aspect ratio, a = 2.25,



2.0

— -—
o (5]

velocity amplitude

o
(8

Relative

Ficure 2.9.

78

R1 Rm _ RZ
Radial position

Tangential velocity amplitude distribution of the (1,0)
mode in a curved duct of aspect ratio, a = 2.



79

is said to be analytic in K. This can be physically interpreted as
when two intersecting curves of an analytic function are mapped, then
the included angle of these curves is preserved in magnitude and
sense.

Thus to solve the problem of sound propagation in a radial
bend it is proposed to map the curved boundary conditions of the ¥
plane shown in Figure 2.10 onto the straight duct boundary conditions
of the n plane shown in the same Figure. The problem is necessarily
limited to a two-dimensional one and vibration in the z direction
(i.e. out of the plane of the paper) is ignored. The frequency range
is necessarily kept low such that the wavelength of sound is long

Icompared to the duct width. As most practical acoustic problems in
ducts are associated with low frequencies this is not thought to
severely limit the application of the technique.

Simple equations relating the angular wave number of the (0,0)
mode and higher non-propagating modes to the driving frequency are
developed. An equation which predicts the cut-off frequencies of
higher modes is given. Values obtained for the case without flow are
compared to results of other workers using cylindrical co-ordinates.

The analysis is extended to include mean flow of the prop-
agating medium. In the practical case the flow profile is far from
uniform aad an approximate method is proposed. Equations for the
angular wave number of the (0,0) mode and higher evanescent modes with
mean flow are developed and the effect of flow on the cut-off frequencies
of higher modes is quantified. '

A limited experimental investigation into the pressure dist-
ribution and impedance of a curved bend is undertaken with and without
flow. The results are compared to the approximate prediction of the

mapping analysis.
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2.3.1 Derivation of Mapping Equations

Consider the x and n planes as defined in Figure 2.10. The
complex function mapped in the n plane is given by n = x + iy and the

function mapped in the X plane is given by x = « + iz.Using the trans-

i
formation y = e " we see that

r'ele= e XY ; 0<06 < (2.29)

where the left hand side of equation (2.29) is the polar co-ordinate

equivalent in the x plane.

Thus 'reie = e—ye1x from which,

x =0 (2.30)

and vy = -Inr r <1 (2.31)

we

Equations (2.30) and (2.31) define the correspondence of points in

the n and x planes of Figure 2.10 under the mapping ¥ = eln.

2.3.2 Sound Propagation in Radial Bends Without Mean Flow

The wave equation in velocity potential form is
v2¢ + (w/c0)2¢ =0 (2.32)

where ¢(x,y) is the velocity potential.
A general solution of equation (2.32) in separable rectangular
two-dimensional co-ordinates is

o

o(x,y,t) =mZOAmocos(kmy)exp[+i(—kmox+-wt)] (2.33)

where the x axis is parallel to the direction of propagation. The wave

number kmo which describes sound propagation in the x direction is
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Y
ko= [k - k2" (2.34)

where for a rigid walled duct km = m'rr/hs, while ko = w/co.

Following Morse and Ingard (1968), at low frequencies (w-—0),
for which the wavelength of sound is much larger than the transverse
duct dimension, ¢(x,y) will approximate a solution of Laplace's equation
V2¢ = 0. In this case ¢(x,y) will be the real part of a function of

the complex variable n = x+iy defined as
F(n) = ¢(x,y) + iv(x,y) (2.35)

and the velocity potential ¢(x,y) and the stream function ¥(x,y) will
be related by the Cauchy-Riemann equations to the requirements of the
method., Hence the x and y components of the acoustic particle velocity

and pressure are

u = Real 5F/5n = +5¢/0x (2.36)
uy = -Imag 3F/3n = +3¢/9y (2.37)
P = ipow Real F =—1pow¢ (2.38)

Since the analysis is limited to low frequencies for which
the (0,0) mode will be the only mode propagating it is only necessary
to consider the m=o part of equation (2.33). The acoustic particle
velocities and pressure for the (0,0) mode in the straight duct (n plane)

are from equations (2.36), (2.37) and (2.38)
u = —ik0¢ (2.39)
u =0 (2.40)

P= —ipode (2.41)
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The phase speed of the (0,0) mode in the straight duct

(n plane) is determined simply by

c, = x/t (2.42)

Applying mapping equation (2.30), the straight duct (0,0) mode phase

speed transforms back to the ¥ (physical) plane as i
co " e/t (2.43)

where time t is invariant under transformation. Equation (2.43) deter-
mines the basic non-dimensional requirement of the solution in the

X plane and can be rewritten as
c, v (1/x)c"(x) (2.44)

c . . ; ; . . .
where ¢ (r) is a linear phase speed which varies inversely with radius
across the curved section.

Thus the straight duct wave number ko is seen to map to the

curved (physical) plane as
k, v Tk (r) (2.45)

Equation (2.45) agrees with theoretical predictions obtained from a
cylindrical co-ordinate solution of the problem. Rostafinski (1972)
has theoretically demonstrated that the wavelength of low frequency
sound in radial bends for the (0,0) mode varies linearly across the
duct, being larger at the outer than the inner radius. This most basic
nature of low frequency sound propagation in curved ducts is thus
determined simply by the mapping procedure without any prior assumptions.
As k© is a fﬁ;ction of r, to establish a usable value and

relate it to the driving frequency ko, it is averaged across the duct

and denoted equal to ko at the average position. Two different averages

t the symbol ~ is used to mean "maps to'".
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are investigated. A simple arithmetic average would lead to
k vk R (a+1)/2 (2.46)

while a geometric average of wave number across the curved section

would provide

1
ko N koRlaz (2.47)

Equations (2.46) and (2.47) define correspondences between
the respective wave numbers of the straight duct n plane and the curved
(physical) plane. The curved duct wave number has been previously

called the angular wave number R due to its non-dimensional nature.

Thus v, = koRl(ai-l)/Z (2.48)

or v =k R.a (2.49)

depending upon the form of averaging assumed.

Rayleigh has shown that waves in curved ducts of large radius
should propagate as if the duct were straight. In equations (2.48) and
(2.49) as a+1 it can be seen that v, -+ koRl' Thus equations (2.48) and
(2.49) fulfil the limiting Rayleigh condition.

Values of angular wave number were derived using both equations

(2.48) and (2.49) for ducts of different aspect ratio. Equation (2.48)

was found to most accurately predict the angular wave numbers of the (0,0)

mode over the widest frequency range and values derived from this equation

for different aspect ratios are plotted in Figure 2.11 as a function of
wave number non-dimensionalized against the curved duct width. Figure
2.11 also shows for comparison values of angular wave number derived by

Rostafinski who used a closed form solution of the cylindrical charact-

eristic equation. As Rostafinski's analysis is limited to ducts of aspect
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ratio a 2.5, values of vo for two bends of aspect ratio a = 4 and

a = 10 determined by the iterative solution of the cylindrical char-
acteristic equation as discussed previously are given. In practice
the curved duct wave number equals ko at some other position than

the arithmetic mean radius, as discussed by Cummings (1974), but

for the low frequency range considered, this is found to cause only
marginal error in the analytic results particularly in curved ducts
of aspect ratio a<4. This will be discussed in a later section.

It should be noted at this stage, that although ‘equation (2.48)
could have been arrived at largely by physical reasoning, this would
involve an initial assumption of the wave number distribution in the
curved duct or a prior knowledge of curved duct wave behaviour, whereas
in this analysis the relationship is a simple result of the non-
dimensional nature of the mapping process without any prior assumptions
or knowledge of curved duct behaviour.

The angular wave number of higher non-propagating modes in
curved ducts can be derived from the straight duct characteristic
equation (2.34) written in complex form as

k= ti[(mr/h®%)? - K2]% (2.50)
mo o

Using the mapping equations (2.30) and (2.31) the angular

wave numbers for evanescent modes in the curved duct (physical) plane

are given by the mapped solution of equation (2.50). Thus since

h™ =y, -y,

=y
13

v =1nR, + 1nR,

h™ ~ 1lna (2.51)
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the angular wave numbers of evanescent modes are
1
v, = i[ (mr/1n a)2 - \)g‘ ]/2 (2.52)

It was found for the case of evanescent.modes that the geometric aver-
aged form of vo used in equation (2.52) provided the closest agreement
with values derived from a cylindrical analysis. Values of vm for
three decaying modes, m=1,2,3 derived from equation (2.52) for a curved
duct of aspect ratio a= 2 are plotted in Figure 2,12 with curves
obtained by Rostafinski for comparison. It should be noted that at

low frequencies (%ﬁi -+ 0) equation (2.52) reduces to

v, imn/1na (2.53)

which is identical to the result of the extensive cylindrical analysis
of Rostafinski for %ﬁl << 1.

The agreement shown by Figure 2.12 for Vo approaching zero
(i.e. near cut-on) encourages the development of an equation for the
cut-off frequencies of higher modes in the curved section. At cut-off

from equation (2.52)

v, = mrn/ina (2.54)

Thus using equation (2.49) we see that cut-off frequencies in terms of

the non-dimensional driving frequency are given by

1
koR1 =~ mn/(a°ln a) (2.55)

Cut-off frequencies derived from equation (2.55) for ducts of different
aspect ratio and three modes are shown in Table 2.2, These values should
be compared to those of Table 2.1 which are cut-off frequencies derived
by Osborne using an iterative solution of the cylindrical characteristic

equation,
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Table 2.2 : Cut-off Frequencies for Higher Modes for Curved Ducts

of Different Aspect Ratio Derived Using Conformal Mapping

Cut-off Frequency, koR !

a"Rz/R1 n=1 m=2 m= 3
1.2 15.72 31.46 47.19
1.5 6.33 12.65 18.’98
2.0 3.20 6.41 9.61
2.5 2.17 4,34 6.51
3.0 1.65 3.3 4.95
4.0 1.13 2.27 3.40
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The particle velocities and pressure of the (0,0) mode in the
curved duct plane are obtained from the mapped solution of the straight
duct equations. Before this mapping procedure can be undertaken, we
must discuss the mapping of Por As for the analysis leading to equation
(2.48) from both the dimensional form of the mapping and a consideration
of relative areas of the X and n planes it can be seen that the constant
density of the n plane will map to a density that varies linearly with

radial distance in the ) plane.

i.e. P, ™ rpS (1) (2.56)

This result follows from the stretching of the line elements involved
in the mapping from the n plane to the x plane. Thus as with phase
velocity, if we arithmetically average the mapped density in the ¥

plane and denote this approximately equal to Pys We see that

Py " poRl(a+-1)/2 approximately (2.57)

To derive the pressure and velocity distributions for the (0,0)
mode within the curved duct we apply the derived mapping equations (2.30)
and (2.31) to the solution of the velocity potential in the n plane,
equations (2.39), (2.40) and (2.41), and thus transform them back to the

(physical) x plane. In this case the curved duct solutions are

ug = —ivvooexp[l(—voe + wt)] (2.58)
ur = Q0 (2.59)
p = ﬁiwpoRonoexp[i(—voe + wt)] (2.60)

where R is the mean radius of the curved section. Using equation (2.48)

for the mean value of Vs the impedance of the curved section, defined
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as the ratio of pressure to particle velocity is thus

z€ = p C (2.61)

These equations will be discussed in a later section.

The pressure and velocity distributions of evanescent modes
close to the generating surface can be determined by wmapping the
corresponding distribution for evanescent modes in the straight duct
plane. The solution of the velocity potential in the n plane for

higher modes is

=]

¢m#0 = mZIAmocos(kmy)exp[i(—kmox + wt) ] (2.62)

and the corresponding solutions for particle velocity and pressure

distribution within the straight duct are

- s 0 T
u = 1kmon£1AmoexP[l( kmox + wt)]cos(kmy ) (2.63)
o0
. s (— . [] P
uy== +1km uIZIA.moexp[J.( kmox + wt)]51n(kmy ) (2.64)
== wi i (- i
and wip mZlAmoexp[l( kmox + wt) ] cos(kmy ) (2.65)

Applying mapping equations (2.30) and (2.31) to transform these solutions
back to the x (physical) curved plane the corresponding curved duct
acoustic distributions for evanescent modes are

o]

ug= =iy m2=1 A_exp[i(-v_6 + wt)]cos [(mr/lna) In(z/R))] (2.66)

u = i(mw/lna)nglAmoexp[i(—vme + wt)]sin[(mn/lna)ln(r/Rl)] (2.67)
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o

=.-wipORmmzlAmoexp[i(—vme + wt)]cos[(mﬂ/lnia)ln(r/Rl)] (2.68)

where from Figure 2.10 it can be seen using equation (2.31) that
y=y-y2

y' v -Inr + 1nR1

e

—ln(r/Rl) (2.69)

From these equations the characteristic function describing amplitude
variation radially across the curved duct for evanescent modes is
determined to bej;

for tangential particle velocity and pressure:

v = cos{(mr/1n a) In(x/R )] (2.70)

for radial particle wvelocity:

w;o = gin[(mr/1n a) ln(r/Rl)] (2.71)

Figure 2.13 shows a theoretical tangential velocity distribution derived

from equation (2.70) for ducts of different aspect ratio. Figure 2.14

shows a similar radial velocity distribution derived from equation (2.71).

Values of velocity distribution derived by Rostafinski (1976) using an

approximate solution in cylindrical co-ordinates are shown for comparison.
The characteristic function for evanescent modes indicates

that the amplitude distribution will be either a distorted cosine or

sine. The position at which a minimum in amplitude occurs for pressure

and tangential velocity and a maximum for radial velocity amplitude is

given approximately by setting the argument of equations (2.66), (2.67)

and (2.68) equal to m/2. Thus
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rm/R =a” (2.72)

The acoustic distribution functions, equations (2.66) and (2.67) also
provide us with information about the dominance of an evanescent mode.
From the harmonic term of these equations, since Vo is imaginary, the
waves attenuate by a factor of e—1 in an angle of propagation (in radians)
of 6 = llvm. Angles for which the amplitude of the (1,0) mode has
decayed by a factor of e—1 for two different aspect ratios are shown in

Figure 2.15.

2.3.3 Sound Propagation in Radial Bends with Mean Flow

The derivation of the curved duct equations with mean flow
follows exactly the same procedure as the cased without flow except
that convection of the propagating medium must be taken into account.

The wave equation with convection is

V29 + (w/c)®(1 + 1(1/w) V-N)2¢ = 0 (2.73)

where V = in + Vyj + Vzg is the velocity vector describing magnitude
and direction of flow. For flow parallel to the x axis a general two-

dimensional solution of equation (2.73) is

$ =mZOAmocos(k.my) exp[i(-k__x + wt)] (2.74)

where the modal wave number, as derived in Chapter 1 is given by

d _ 2 _ M2 2 s M2 :
kmo = [—Mko + [k0 (1-M )(km)]z] / [1-M?2] (2.75)

For the (0,0) mode, equation (2.75) predicts that flow will have the

effect of decreasing the downstream wave number by a factor of 1/(1+M)
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and increasing the upstream wave number by 1/(1-M).

For low frequencies (k6+0) solutions of equation (2.73) are
approximate solutions of Laplace's equation v2$=0. Thus using the
complex form derived in the case without flow the acoustic particle

velocity components and pressure are for the (0,0) mode

. 1,d
Ux= —lkoo¢ (2. 76)
=0 2.77
e | ( )
P = poco Ux (2.78)

The acoustic pressure is written in simplified form applicable to the
(0,0) mode to eliminate the convection term (see section 1.3,2),

It is assumed that the flow has a uniform velocity profile in
the straight duct n plane. Thus when this profile is mapped to the
curved x plane, the resultant flow distribution is found to vary

linearly as for the phase speed i.e.

v (1/2)vE(x) (2.79)

Hence at each radial position r across the curved duct the
flow will have the effect of increasing the phase speed by Vc(r) for
downstream propagation, thus equation (2.54) of the no flow analysis

is modified to
c +V_n (1/r)cS(x) + (1/o)vi(x) (2.80)
hence c°(14-M) N cc(r)(llr)(li-Mc) (2.81)

since cc(r) is the speed of propagation of sound at radial position r.

Arithmetically averaging equation (2.81) and setting the result equal
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to c, at the mean radius thus provides the angular wave numbers with

flow
d_ koRl(ai-l)

| Sessm—m—— (2.82)
2(1+M7)
for downstream propagation of sound. For upstream propagation of
sound the sign of the Mach number is reversed, thus the angular wave
numbers for upstream propagation is
k R, (a+1)
1
Vz = —2———~—E—— (2.83)
2(1-M7)
In practice the curved duct velocity profile would be far different
from the potential form used here. However an approximate value M©
can be defined as the average of M across the curved duct which may
then be used. This, in fact, is what the mapping process of averaging
implies.
The wave numbers of evanescent modes with flow are obtained

from equation (2.75) transformed back to the (physical) x plane and are

v = [—Mcvoi if@ - M?) (@r/1na)? - vg P2/ 11 - %3] (2.84)

where v, is the angular wave number in a statiomary medium given by
equation (2.49).

The cut-off frequencies of higher modes with flow are thus

mm 1
kR = (—— ) (1 - @))% (2.85)
o1 2
a’lna
for both upstream and downstream propagation of sound.
The acoustic particle velocities and pressures for the (0,0)

mode are obtained approximately from equation (2.76), (2.77) and (2.78)
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transformed back to the (physical) x plane and are,

d .. d , d
ug ==iv exp[l(-voe + wt)] (2.86)
u . U N u
ug 2-iv ] exp[l(-voe + wt)] (2.87)

for downstream and upstream propagation respectively. The radial

particle velocity is

u_ =20 : (2.88)

for both upstream and downstream propagation and the acoustic pressure

is approximately

p=pc u (2.89)

for both downstream and upstream propagation.
Thus the impedance of the curved section with flow for the

(0,0) mode is approximately

Z- = pec (2.90)

2.3.4 Range of Applicability of the Conformal Mapping Method

For the solution of the acoustic wave equation to be an
approximate solution of Laplace's equation, the frequency is limited
such that the wavelength of sound 1s much greater than the transverse
duct dimensions in the straight duct in the plane. Obviously this is
an arbitrary definition and some choice of the applicable range of
frequency has to be made. The upper limiting frequency is chosen
to be such that kohS = 2 in the straight duct plane. At this frequency
the wavelength is approximately three times the major duct width. To

obtain a frequency limit in the curved plane, the straight duct limit
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must be transformed back to the ¥ plane, thus
k h° v v Ina (2.91)
o o

Substituting equation (2.48) and using the relation

(o4
- - 2
koh koRl (a-1) (2.92)

we see that the limit on the driving frequency in the curved duct is
thus
e 4(a-1)

kh = —— (2.93)
Ina(a+1)
where the wave number is non-dimensionalized against curved duct width.
This frequency limit is plotted in Figures 2.11 and 2.12 for
different aspect ratios to indicate the expected range of the equation.

In the case of mean flow, equation (2.93) is modified for

dowvnstream and upstream propagation respectively as follows

. 4(a-1)(1+M%)
k h° = (2.94)
lna(a+1)

4(a-1)(1-M%)
and k h™ = (2.95)
o Ina(a-1)

2.4 EXPERIMENTAL INVESTIGATION -~ EQUIPMENT AND PROCEDURE

The experimental equipment and layout used to investigate curved
duct wave behaviour with and without flow is shown in Figure 2.16. The
duct system has a 0.127 x 0.635 meter rectangular cross section and is
constructed in removable sections from 0.0254 meter thick wood lined

with laminex to fulfil the rigid wall boundary conditions. The basic
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parts of the apparatus were as used in the experimental investigation
of straight duct behaviour with flow. Two bends were investigated
-experimentally. Both had a total angle of 90° but differing aspect
ratios of a=3.5 and a=2.25. These bends were constructed from
machined hardwood.

The sound source was a single cone 15 watt loudspeaker and
was positioned 1.7 meters upstream of the bend at which distance any
locally generated cross modes will have decayed sufficiently to be
negligible. To eliminate reflections from the exit plané of the bend
the downstream duct was anechoically terminated. ¥For upstream prop-
agation of sound, the anechoic termination was removed and replaced
by the sound source. In this case the impedance of the bend is
investigated on the source side of the bend.

Fluid flow was achieved by a centrifugal fan as discussed in
section 1.4. A Heterodyne Analyser was used for all pressure measure-
ments and as a signal generator. In the case of the experimental
apparatus of Figure 2.16 the analyser provided a signal to noise ratio
of greater than 50dB at M=0.1 in the upstream duct.

The radial pressure distribution in the curved bend was
measured by traversing a microphone probe radially across the duct at
an angle of 45° from the bend inlet. At this angle any evanescent
modes generated at the straight duct - curved duct interface would
have decayed to be negligible. The case without flow was considered
first. Experimental values of relative pressure amplitude for the
(0,0) mode in the bend of aspect ratio a=2.25, defined by equation
(2.96) are shown in Figure 2.5 for comparison with the theoretical
results. The follo&ing equation was used to define the experimental

points in the figure.

AdB/20

Relative Pressure Amp = 10 (2.96)
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where AdB is obtained from the sound pressure level data as:
AdB = SPL(r) - SPL(Rl) (2.97)

For the case of the conformal mapping analysis the bend of aspect ratio
a=3.5 was investigated experimentally. This was chosen to represent
a "sharp" bend and thus provide a relatively severe test for the theory.
For a bend of aspect ratio a= 3.5 the proposed upper limit to the
theory given by equation (2.93) is kohc < 1.76. Hence the bend was
investigated for the case without flow for three non-dimensional
frequencies, kohc = 0.5, 1.0 and 1.5. The no flow distributions for
these frequencies are shown in Figure 2.17. For the case of flow
one frequency kohc = 1.0 at different flow rates of M=0.04 and M=0.08
was considered for downstream and upstream propagation respectively.
These distributions are plotted in Figures 2.18 and 2.19 respectively.
The impedance of the bend with and without flow was invest-
igated with the standing wave apparatus shown in Figure 2.16. The
impedance was determined by analysing the acoustic pressure standing
wave in the incident duct to the bend.
To aid with later discussions the flow profiles in the bend
(at M=0.04 and M=0.08 in the upstream duct) were measured by trav-
ersing a stagnation tube radially across the curved section at an
angle of 45° from the bend inlet. The mouth of the stagnation tube
was flattened to a opening of 2mm to enable accurate readings. Due
to the non-uniform flow in the curved section the static pressure
was measured at the incident straight duct wall and the value recorded
was taken as the average static pressure in the bend. This approximation
was thought to be sufficiently accurate for the low flow velocities
investigated. Curved duct flow profiles for M=0.04 and M=0.08 in

the upstream straight duct are shown in Figure 2.20. The average
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velocity of the flow in the curved section was calculated to be M®=.038

and M® = .078 from the distributions for the two flow speeds.

2.5 DISCUSSION OF RESULTS

2.5.1 The Cylindrical Solution of the Wave Equation

As for straight ducts the acoustic motion of waves in curved
ducts is characterized by a set of modes each of which is either
propagating or evanescent (apart from the (0,0) mode) depending upon
whether the mode is above or below cut-off. Differences in propagation
between straight and curved ducts are to be expected, however, and
the main difference occurs with the (0,0) mode. In a straight duct
the phase speed of the (0,0) mode is independent of duct geometry
being equal to c, at all frequencies but in a curved duct the phase
speed of the (0,0) mode is strongly dependent on duct geometry and
frequency. This is borne out in Figure 2.2 which shows angular wave
numbers of the (0,0) mode. The angular wave number can be seen from
this diagram to be vastly different for ducts of different aspect
ratios. Thus while the (0,0) mode in a straight duct is non-dispersive,
the (0,0) mode in a curved duct is dispersive. This essential difference
between straight and curved bends will be shown in a later chapter to
have far reaching consequences on the propagational characteristics of
the bend. Figure 2.2 also shows good agreement between the iterative
solution of the characteristic equation used here and a closed form
solution used by Rostafinski (1974).

Figure 2.2 shows that as the aspect ratio of the curved duct
approaches unity, the corresponding angular wave number approaches
infinity and when a=1, the plot will be represented by the vertical
axis. It can also be shown that if in Figure 2.2, angular wave number
was plotted against koR1 rather than kohc, then as the aspect ratio

approaches unity, the plot will tend towards a straight line at 45°
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to each axis (for both axis having equal scaling) thus as a>l,
vo-*koRl. Hence the cylindrical co-ordinate solution for angular
wave numbers is seen to obey the Rayleigh condition that waves in a
curved duct of large radii (i.e. a— 1) will propagate as if the duct
were straight.

For the curved duct the angular phase velocity of the (0,0)

mode is seen to be

cq = w/\)o (2.98)

The angular phase velocity can be converted to an equivalent linear

*

phase velocity cp at the mean radius Rm as,

c* = \)ﬂ R_ (2.99)
P 0]

The ratio of the straight duct phase velocity, given by equation (1.14)

and the averaged curved duct phase velocity is thus

koRm
ckfe =
p o \)0
k Rl(ai-l)
= s (2.100)
2V0
| kohc(a+ 1)
or c*/ec = —mm (2.101)

P o -
2vo(a 1)

From the results of Figure 2.2 it can thus be seen that the average
curved duct phase velocity is always marginally higher than in straight
ducts for the frequency range kohc < 1.5. However Cummings (1974)

has demonstrated that for frequencies, such thgt kohc > /2 the reverse

is true.
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Figure 2.3 shows, the angular wave numbers of three evanes-
cent modes. As for straight ducts the angular wave number of evanes-
cent modes was implicitly assumed to be imaginary. This assumption is
borne out by energy considerations and will be discussed in more detail
in the section dealing with the results of the conformal mapping analysis.
Rostafinski (1972) has shown that at low frequencies (kR1<<l.0) values

of angular wave number of evanescent modes are given by
v, = ist/lna, s=0,1,2.....

In terms of the duct width the expectea applicable range of the above
equation is kohc<<(a-1). For the duct of Figure 2.3 of aspect ratio
a=1.5, the agreement with Rostafinski's equation at low frequencies
is seen to be good.

From Table 2.1 of cut-off frequencies of higher modes derived
from equation (2.23) by Osborne (1976) it can be seen that increasing
the aspect ratio has the effect of lowering the non-dimensional cut-
off frequency koRl‘ Thus wider bends tend to admit higher modes more
readily. If the values of Table 2.1 are rewritten in terms of
kohc E koRl(a— 1) it can be seen that increasing the aspect ratio has
the effect of increasing the non-dimensional cut-off frequency kohc.
Thus for a bend of constant width increasing the sharpness tends to
decrease the ability of the bend to admit higher modes. The dependence
of modal admittance of curved bends on the aspect ratio is clearly
shown by the conformal mapping analysis and will be discussed in this
section.

Whereas in a straight duct the (0,0) mode is a plane wave with
constant amplitude across the duct, the (0,0) mode in a curved duct is
found from Figures 2.4 and 2;5 to be non-plane. However due to the
rectangular cross section of the bend the amplitudes will be plane in

the z direction. From Figures 2.4 and 2.5 it can be seen that either
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increasing the frequency.or the aspect ratio independently leads to

an increased variation in pressure amplitude across the duct. These
figures also show that for bends of low aspect ratio or at very low
frequencies the pressure distribution does not vary drastically and

is close to that of a plane wave. This agrees with the conclusions

of Cummings ﬁho showed that the pressure distribution tended towards
uniformity for bends of large dimensions (i.e. a+1). The experimen-
tally measured values of pressure amplitude distribution are seen from
Figure 2.5 to agree well with the theoretical predictions. The small
error apparent as r-+R2, is most likely due to dimensional inaccuracies
in the bend.

Figure 2.6 shows the variation in pressure amplitude distribu-
tion of the (1,0) mode in a duct of aspect ratio a=2 at two frequencies.
The distribution at the lower frequencies is very close to the dist-
ribution of the (1,0) mode in a straight duct, the minima occuring at
a value greater than the mean radius. However for the higher frequency
the distribution is far more distorted and the minima occurs closer towards
the outside bend radius.

The tangential velocity distribution of the (0,0) mode, shown
in Figures 2.7 and 2.8, shows an opposite trend to that of the pressure
distribution. At low frequencies the distribution is non-uniform.
Increasing the aspect ratio and frequency leads the tangential velocity
distribution to become more uniform. Thus the increase in variation
of pressure amplitude distribution discussed previously is balanced by
a simultaneous decrease in variation of tangential velocity amplitude.
This is well summarized by Rostafinski (1974) who showed that the
tangential velocity distribution of the (0,0) mode follows closely
that of a potential vortex for low frequencies (k0R1<<1) and is

close to a forced vortex at higher frequencies (k°R1= 3).
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2.5.2 The Conformal Mapping Solution without Mean Flow

From the results of the analysis it can be seen that conformal
mapping demonstrates the most basic characteristic of the propagation
of the (0,0) mode in a curved bend; the stretching of phase speed
radially across the bend. This important result reveals the mechanism
of how sound propagates around the bend. Rather than transmitting by
a "ray" type process, reflecting from the walls, the waves travel by
bending around the curved surfaces maintaining a constant phase radially.
A similar occurrence has been observed by both Cummings (1974) and
Rostafinski (1972) using the complex cylindrical co-ordinate solution
to the problem. This radial variation of magnitude implies that the
curved duct parameters of propagation will be non-dimensional as
opposed to the inverse units of length in the straight duct case.

From Figure 2.11, the simple relationship for the angular wave
number of the (0,0) mode derived by this analysis gives good agreement
with values determined using cylindrical co-ordinates in the range
of frequencies considered as the limit. As expected, for the wavelength
of sound approaching the transverse dimensions of the duct the error is
increasingly apparent. However for the range of frequencies considered
by this analysis the error between solutions derived by a cylindrical
co-ordinates solution and those derived using conformal mapping are
greatest at low frequencies (w-=0). Increasing the aspect ratio of
the bend increases the magnitude of the error. For a duct of aspect
ratio a=4 for ko-+0 the maximum error between the results of this
analysis and a cylindrical co-ordinate solution is 6 percent. Hence
from the results of Figure 2.11 an aspect ratio of ag4 is tentatively
suggested. In this range equation (2.48) is seen to accurately and

simply predict the angular wave number of the (0,0) mode for

c 4(a-1)

k0h Ina(a+1l) °
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This result should be compared to the practical guide for rectangular
section bends proposed by Cummings (1974). To facilitate analysis of
curved bends he developed a design chart for rectangular bends,
reproduced in Figure 2.21, which provides kc/ko at the mean radius

of the bend as a function of driving frequency and aspect ratio. The
values of the chart were derived using a cylindrical co-ordinates
solution. Cummings compared the reactance of two bends of aspect
ratio a=1.587 and a= 10.309 derived by considering the bend as an
equivalent straight duct and using k€ = ko at the mean radius and k©
adjusted at the mean radius by the design chart of Figure 2.21.
Whereas the adjusted circular wave number definitely improved the result
at high frequencies (kohc->ﬂ) at lower frequencies (O<<kohc<'n/2) the
discrepancy between the two results is minimal, especially in the less
sharp bend. Thus in the range of frequency proposed, the simple
equation for the angular wave number of the (0,0) mode, established by
deriving the circular wave number distribution by mapping techniques
and equating kc(r) to ko at the mean radius provides sufficiently
accurate values for practical use.

Figure 2.21 also demonstrates why the arithmetic mean provides
the most accurate estimate of angular wave number over the widest
frequency range. As shown in the Figure when kohc = /2, independent
of aspect ratio, equation (2.48) will exactly predict the correct
value of angular wave number whereas for frequencies lower or higher
than this point the equation will respectively underestimate or over-
estimate the actual value. Thus the straight line plot of equation (2.48)
provides an average of the actual plot obtained by a cylindrical
co-ordinates solution.

Similarly, the approximate solution for evanescent modes,

equation (2.52) is shown in Figure 2.12, to accurately and simply
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predict the evanescent angular wave number for low frequencies without
the protracted analysis involved in the imaginary roots solution of

the characteristic equation written in cylindrical co-ordinates. In
fact a direct result of the mapping analysis is that evanescent modes
will have a purely imaginary wave number. This fact has been implicitly
assumed by previous workers. For very low frequencies (koR1—>0) the

analysis gives an identical result to a relation derived by Rostafinski

(1974).

A comparison between the results of Tables 2.1 and 2.2 shows
that equation (2.55) provides an accurate estimate of the cut-off
frequencies of higher modes up to m (or s) = 3. The agreement is seen
to be particularly good for the (1,0) mode but decreases with increasing
aspect ratio and modal number. Equation (2.55) predicts that increasing
the aspect ratio decreases the non-dimensional cut-off frequency koRl'
Thus as concluded in the cylindrical result, wider curved ducts admit
higher modes more readily while '"sharper'" bends tend to inhibit higher
mode transmission.

Whereas the mapping theory is found to accurately predict the
behaviour of the angular wave numbers of the (0,0) mode and evanescent
modes, the same agreement is not shown in the predicted pressure amp-
litude distributions. The mapping theory predicts that the pressure
amplitude distribution of the (0,0) mode in the curved duct is approx-
imately plane. This is shown to be true for the experimental results
of Figure 2,17 at the two lower frequencies of kohc==0.5 and kohc==l.0,
however at the higher frequency of kohc= 1.5, which is still within
the proposed range of the analysis, the amplitude shows considerable
radial variation. Cummings (1974) has shown that the pressure dist-
ribution tends towards uniformity for bends in which the aspect ratio

approaches unity, thus the agreement is likely to be improved in "less
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sharp" bends. Likewise the analysis indicates that the pressure
distribution tends towards uniformity with decreasing frequency and
this is borne out by experimental results. Equation (2.59) predicts
that the radial particle velocity amplitude is extremely small. This
agrees with results obtained by Rostafinski (1974), who estimated the
radial velocity amplitude of the (0,0) mode to be two orders of a
magnitude smaller than the tangential velocity amplitude at low freq-
uencies.

The approximate relationships developed here for the amplitude
distributions of evanescent modes at low frequencies compare well
with similar values derived by Rostafinski. These distributions are
seen to be a distorted sine or cosine shape and an equation which
predicts the position of maximum or minimum pressure respectively is
given. Figure 2.15 shows the influence of aspect ratio and frequency
on the decay rate of evanescent modes. It can be seen that both
increasing the frequency (below cut-off) and the aspect ratio leads
to a reduced decay rate and the evanescent mode distribution extends
further into the curved section. Therefore even though increasing
the aspect ratio of a bend of constant width tends to increase the
cut-off frequencies of higher modes, evanescent modes will be trans-
mitted further into the curved section away from the surface at which
they were generated. Generally speaking, evanescent modes are seen
from Figure 2.15 to decay very quickly away from the generating surface
except very close to cut-on where the evanescent mode is seen to
propagate well into the curved section before decaying substantially;
Therefore evanescent modes just below cut-off can be expected to
modify the pressure distribution at angles of propagation well into the
curved bend. Doak (1973) has shown that evanescent modes right on
cut-on can in fact dominate the sound pressure field in a straight

duct.
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The experimental investigation of the standing wave in the
acoustic incident duct to the bend revealed that, as predicted, the
bend of aspect ratio a= 3.5 provided negligible discontinuity to
acoustic propagation. This was also investigated by Cummings (1974)

and his results indicate similar behaviour.

2.5.3 The Conformal Mapping Solution with Mean Flow

As intuitively expected, flow is seen to simply modify the
angular wave number of the (0,0) mode by a multiplying factor of
1/(1+M) or 1/(1-M) for downstream and upstream propagation respect-—
ively. Thus as for straight ducts, convection of the propagating
medium results in an increased phase speed for downstream propagation,
and a decreased phase speed for upstream propagation. Equation (2.84)
predicts that the angular wave numbers of evanescent modes will be
complex rather than purely imaginary. Furthermore flow is predicted
to lower the cut-off frequencies of higher modes by a factor of
(l-—Mz)l/2 independent of the direction of propagation of sound relative
to the direction of the flow.

The relationship for the pressure distribution, equation
(2.89), predicts that the pressure amplitude distribution for the
(0,0) mode is still essentially plane with superimposed flow of the
propagating medium. The experimental upstream results of Figure 2.19
agree well with this prediction, however the downstream pressure
distribution of Figure 2.18 is far from plane. The situation is
obviously complicated by the fact that the flow profile shown in
Figure 2.20 is far from what potential theory predicts. It is
interesting to note that downstream flow causes an increase in var-
iation in pressure amplitude while upstream flow causes a decrease

in amplitude variation.
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An investigation of the standing wave in the acoustic
incident duct showed that, as predicted, flow did not cause any
drastic change in the reflection characteristics of the bend. The
bend was still found to provide negligible discontinuity to acoustic
propagation with a flow rate of M=0.08, in the incident straight

duct.

2.6 SUMMARY

Sound propagation in curved bends has been investigated
by the two approaches of a cylindrical co-ordinates solution and a
conformal mapping technique. The results of the cylindrical
analysis agree well with experimental values and the results of
previous workers. The conformal mapping technique likewise gives
good agreement with the more exact cylindrical analysis and with
experiment but with a very great simplification of the required
analysis.

Simple equations have been developed, using a conformal
mapping procedure which accurately predict the angular wave numbers
of the (0,0) mode and evanescent modes for frequencies such that
kohc € 4(a-1)/[(a+1)Ina] in curved ducts of aspect ratio a<4.
Being much simpler than those derived using cylindrical co-ordinates,
the relationships make analysis of low frequency propagation of sound
in curved duct systems an easier task.

The theory in fact is found to agree quite well outside
the proposed frequency limit and an equation which accurately predicts
the cut-off frequencies of higher modes is given.

The analysis is then extended to develop new equations
for sound propagation in curved ducts with mean flow. As expected
flow has the effect of decreasing the downstream angular wave number

by (l-I-M)_1 and increasing the upstream angular wave number by (l-—M)—1
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Flow is also predicted to lower the cut-off frequencies of higher
modes (in ducts of aspect ratio a< 4) by a factor of (1-(Mc)2)%.

In general the mapping theory does not provide an accurate
prediction of the radial pressure amplitude distribution within the
bend with and without flow. However the theory did indicate the tend-
ency for the pressure distribution to become more uniform for decreasing
frequency. As predicted by the results of the analysis the bend was
found to provide negligible discontinuity to acoustic propagation

both with and without flow.
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PART TI: DUCT SOURCES AND SYSTEMS

CHAPTER 3

SOUND RADIATION FROM A DIPOLE PISTON SOURCE IN A SEMI-INFINITE

RECTANGULAR DUCT

3.1 INTRODUCTION

The radiation impedance of a vibrating surface is an important
theoretical quantity used to describe the mechanical coupling of a
vibrating surface to an acoustical field in the surrounding medium.

In general it is a complex quantity,the real part of which describes
the transmission of power and the complex part of which describes

the time rate of change of energy stored in the acoustic near field.
The real part may be positive or negative describing respectively
either power flow from the vibrating surface to the surrounding medium
or power flow from the medium to the surface. Similarly the sign

of the reactive part may be given interpretation in terms of the mass
or stiffness loading of the medium on the surface.

The radiation impedance is conveniently described in terms
of a dimensionless quantity, the radiation ratio or radiation
efficiency by comparing the power radiated by a source to that which
would be radiated by an equal area of an infinitely plane wave source.
Defined in this way the radiation efficiency may be greater than unity
contrary to the usual definition of efficiency so that some authors
prefer radiation ratio. However the parameter does describe the
relative efficiency of radiation of a source and thus other authors
prefer radiation efficiency. The latter convention will be adopted
here.

Morse and Ingard (1968) have briefly discussed the case of
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a non—-uniform generating surface and have pointed out that, in this
case, the corresponding radiation impedance will contain both a

real and reactive part in contrast to a perfectly uniform generating
surface which has a purely real or resistive part.

Doak (1973) has considered the effect of source distribution
and arrangement on the sound field in a hard walled duct in much
detail. He uses superposition of sound fields due to individual
sources as a means of representing the radiation of complex vibrating
surfaces. His analysis shows that the position of sources in a
duct has a significant effect on the duct sound field due to modal
coupling and excitation.

Doak has considered the case of a dipole point source in a
duct and discussed the energy distribution among the various modes
of propagation. Directly relevant to this analysis he has considered
the cases of a number of vibrating pistons mounted in the duct walls
(as opposed to the duct cross section of this analysis) and has
investigated the relationship between size and velocity of the pistons
in terms of the excited sound pressure field, An interesting result
is that higher modes are inherently better matched to a simple source
for transmitting acoustic power than is the plane wave. Doak cal-
culates that each higher order mode may be able to carry upto four
times the power of the plane wave mode.

In this chapter the radiation of a dipole piston source
mounted at the end of a semi-infinite rectangular duct is investigated.
The source is assumed to consist of two pistons of equal area which
fi11l the duct cross section as illustrated in Figure 3.1. The pistons
are assumed to vibrate harmonically at the same frequency but with
arbitrary relative phase. The analysis is restricted to two dimen-

sions as shown in the figure.
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A
A p———= vgsin (wt+y)
h — — ¢
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B |——= ugsin(wt)
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Ficure 3.1, Arrangement of the dipole piston source.
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The sound field excited by the dipole piston source is
investigated theoretically by using a method of superposition. The
velocity potential due to one piston covering half the duct area is
derived and added to the velocity potential due to the other piston with
an assumed phase difference. The resulting pressure field is derived
from the velocity potential and used in conjunction with the velocity
amplitude of the vibrating surface to derive relationships for specific
acoustic impedance, radiation efficiency and transmission coefficient.

For the sake of the analysis it will be convenient initially
to think of the two pistons as solid surfaces forced to move harm-
onically at a specified frequency and with a specified relative
phase between them. However, the moving surfaces could just as well
represent a vibrating air surface and indeed it will be convenient
when considering power radiation from two ducts joined to a single
duct to think of the vibrating surfaces as conceptual boundaries
which are driven by incident plane sound waves.

The duct into which the source radiates is assumed to have
perfectly rigid walls and no mean flow. The frequency of the analysis
is limited to less than the cut-off frequency of the (1,0) mode in
the duct. The effect of phase difference between the two pistons on
radiation efficiency and the relationship between higher modes and

the resultant sound field is discussed.

3.2 ANALYSIS

In the following analysis a piston is defined as a surface
of constant normal velocity. The arrangement of the pistons mounted
in the duct and the appropriate two—di@ensional rectangular co-
ordinate system used are shown in Figure 3.1. The origin of the

co-ordinate system is assumed to be the point corresponding to the



bottom most corner of piston B. As there is no discontinuity in the
z direction a two-dimensional co-ordinate system is satisfactory. The
pistons are assumed of equal area and to move in simple harmonic

motion. The normal velocities of the pistons are represented by

piston A v vosin (wt +9) h>y>h/2 (3.1)

piston B

e
I

uosin(wt) h/2>y=20 (3.2)

where Uy and v, are the velocity amplitudes and { is the phase angle
by which piston A leads piston B.
The wave equation in velocity potential form for sound

propagation with no mean flow is

v2¢ + (w/c)’¢ = 0 (3.3)

From Chapter 1 a general solution of equation (3.3) in separable rect-

angular co-ordinates is

¢ (x,y,t) = z Amocos(kmy)cos(wt-kmox4-w) (3.4)
m=0
This form of the velocity potential is used rather than the exponential
form as it highlights the role of the phase angle ¥ in the analysis.
The relationship between the modal wave number in the x direction
kmo and the eigen values of the boundary solutiomns, km,has been derived
in Chapter 1 and is

i
|, =l [kg - kﬁl]z (3.5)

where for rigid walled ducts km = mn/h. As discussed previously, those
modes for which ko> km will have a real wave number and will propagate

without attenuation whereas those modes for which k0< km will have an
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imaginary wave number and will decay rapidly away from the generating
surface. As stated earlier the analysis presented here will be
concerned entirely with modes of the latter type and the plane wave
mode.

To solve the problem a method of superposition is used. It
is well known that the velocity potentials of two separate wave systems
in a duct can be superimposed and used to derive the resultant acoustic
sound field, (a standing wave is a good example). Thus it is proposed
to find the potentials due to piston A and piston B separately and
by superimposing the two potentials derive the resultant sound field
in the duct. The arrangements of the two separate pistons as employed
by the analysis are shown in Figure 3.2. 1In this case the part of
the generating surface not considered as a piston is represented by
an area with zero particle velocity.

We shall proceed by deriving the potential ¢A due to piston
A and follow by deriving the potential ¢B due to piston B. The result-

. Thus

ant potential due to the dipole source will then be ¢ = ¢A4-¢B

for piston A as shown in Figure 3.2 we require for h/2<y<h and at

x=0

= vosin(wt-+w) (3.6)

and for 0y <h/2

=0 < (3.7)

These are the boundary conditions used to relate the amplitude of the
velocity potential in the downstream duct to the velocity distributicn
of the generating surface. Equation (3.4) can be written in expanded

form for piston A as
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FIGURE 3.2.

Velocity distributions of the individual pistons.
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=mZOAmocos(kmy)[cos(wt%-w)cos(kmox) + sin(wt4-¢)sin(kmox)] (3.8)

1\

The axial particle velocity due to this potential is

=
I

90 /9x%

z Amokmocos(kmy)[sin(wt*-w)cos(kmox) - cos(wti-w)sin(kmox)]

m=0
(3.9)
Thus at x = 0
u = z Amokmocos(kmy)sin(mt-Fw) (3.10)
m=o
x=0
We let f(y) = ) Amokmocos(kmy) (3.11)

m=0

then the boundary condition of continuity of axial particle velocity
at the generating surface given by equations (3.6) and (3.7) requires

that for

]
o

0<y<h/2 £(y) (3.12)

and h/2<y<g<h f(y) (3.13)

"
<

Equation (3.10) consists of an infinite sum of individual
modes with separate Fourier coefficients. To determine these coeff-
icients individually, use is made of the orthogonality property of

the cos(kmy) function. As is well known

h
J cos(kmy)cos(kny)dy = 0 ifm#n (3.14)

o
#0 if m=n (3.15)



hence

Now

0 ifm#n

h
J f(y)cos (kmy)
o

h
2
L Amokmocos (kmy) dy difm#n

km = mn/h and thus

h
J f(y)cos(mmy/h) dy
0

Il

h
(Amokmo)/Z L [1 + cos(2mmy/h) ] dy

(Amokmo)/Z [y + sin(2mny/h) (2m1r/h)_1]:

Thus if m = 0

and

h
I £ G = Aookoo
(o]

_ h
A, = [1/Ck 0 ]L £(y) dy

On the other hand if m # 0 then

and

h
J f(y)cos(mry/h) dy = Amokmo (h/2)
o

h
A= [2/(kmoh) ]L f (y) cos(mmy/h) fly
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(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

The integral can be split into two ranges represented by equations

(3.12) and (3.13).
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h h
Hence J f(y)cos(mmy/h)dy = 0 + LI Vocos(mny/h)dy
o] /2
= voh/Z for m=0 (3.22)
v h h
or = [ sin(mny/h)]
mn h/2
v h
= - E%—-sin(mﬂ/Z) form# 0 (3.23)

Thus the Fourier coefficients of equation (3.8) are

™
Il

oo = [1/(k_ )1lv /2]

v
o

(3.24)
oo

2 v h

and A = ( ) (=2
mo k h mw

) [- sin (mm/2)]

2vo
= - sin(mm/2) (3.25)

Ui
m kmo

According to equation (3.25) for even values of m, Amo is zero and
the corresponding mode does not exist in the sound field. This will
be discussed later. The resulting potential due to piston A alone is

thus

=m£0Amocos(kmy)cos(wt - kmox + ) (3.26)

17\

with coefficients given by equations (3.24) and (3.25).
To determine the Fourier coefficients of ¢B due to piston B
an identical procedure is used except the velocity distribution

represented by B of Figure 3.2 is used. Thus we may develop a function
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g(y) which will be used to derive the poténtial ¢B due to piston B
alone.

For O0<sy<h/2

n
[

g(y) (3.27)

and for h/2<y<h

]
o

g(y) (3.28)

Using the same procedure as used previously in the derivation of ¢A

we then have

g(y) =m§oBmokmoc°S<ka) (3.29)

where Bmo are the modal Fourier coefficients of potential ¢B.

h h/y
Thus J g(y)cos(k y)dy = J u cos(k y)dy + 0
= m B o m
= uoh/2 for m=0 (3.30)
u h
= -2 sin(mr/2) for m#0 (3.31)
mm
Hence B =u/(2k) (3.32)
0o o o
2u
and Bmo = — sin(mnw/2) (3.33)
and ¢B = z Bmocos(kmy)cos (wt - kmox) (3.34)

m=0

with coefficients given by the above relations. The total potential

in the duct due to the pistons vibrating simultaneously is
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¢ = b, *+ by

thus using equations (3.26) and (3.34) we may write

b = mZoAmocos(kmy)cos(wt - kmox + )

+ mzoBmocos(kmy)cos(wt-—kmox) (3.35)

= mZOCOS(kmy)[(AmOCOS(¢) + Bmo)cos(wt-kmox)

- Amosin(w) sin(wt —-kmox)] (3.36)

For the investigation of specific acoustic impedance it is

convenient to rewrite equation (3.35) in exponential form,

thus ¢ = z Amocos(k y)exp[i(i—wt-—kmox + 9)]
m=0 =
+ mZoBmocos(km y)expli(wt -k x)] (3.37)

The resultant pressure field due to the velocity potential

may be derived from

P(X,Y,t) b -poa¢/at (3.38)

Therefore the pressure distribution in the duct may be written as

p(x,y,t) = - ipow z {Amocos(kmy)exp[i(wt-kmox-kw)]
m=0 :

+ Bmocos(kmy)exp[i(wt-—kmox)]} (3.39)
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and the axial particle velocity distribution in the duct is derived from

u, = + 3¢4/3x

ux(x,y,t)=-—izo{Amocos(kmy)exp[i(wt-kmox + )]

+ Bmocos(kmy)exp[i(wt— kmox)]}kmo (3.40)

The specific acoustic impedance at the dipole piston surface is defined
as the ratio of the acoustic pressure to the normal acoustic particle

velocity and thus is at x =0

Z = p/u (3.41)

komZO[Amocos(kmy)e + Bmocos(kmy)]

e = (3.42)
iy
mZokmo[Amocos(kmy)e + Bmocos(kmy)]

. e c
pO

If the two pistons of the dipole source have equal velocity amplitude
then u =v and from equations (3.25) and (3.33) A = -B for all
o o mo mo

m#0, thus equation (3.42) reduces to,

koA (e™V+1) + k_(e™-1) ] A costk v
= 2 (3.43)
1y 19
kvoo(e +1) + (7 -1) g kmoAmocos(kmy)

We note that when the pistons are in phase and y is O or 2m, equation

(3.43) reduces to the characteristic impedance of a plane wave,

Z=pc (3.44)
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Thus as expected when the dipole piston source acts as a single piston
the plane wave is the only mode radiated. However if ¢ #0 or 2w then
the radiation impedance will contain an imaginary part representing
the reactive loading of the air on the source as below cut-off
the kmo are imaginary. In particular if the pistons are exactly
opposite in phase and Y =7 the specific acoustic impedance will be
purely reactive everywhere over the surface of the source plane.

1f we limit our attention to the first terms only of the

series in the numerator and denominator equation (3.43) reduces to

n(eiwi-l) - 4(ko/k10)cos(k1ﬁ(eiw— 1)
Z /poc0 = e 0 (3.45)
m(e” "+ 1) - 4cos (kly)(e -1

Values of resistive and reactive impedance derived from equation (3.45)
are plotted in Figures 3.3 and 3.4 respectively for different phase
angles between pistons.

Our next consideration will be the radiation efficiency of
the source. To obtain this we have to determine the power radiated
by the source. Reverting back to the original form of the total

potential

o = E cos(kmy)[(Amocos(w) + Bmo)cos(wt-kmox)

m=0
- Amosin(w)51n(wt—-kmox)] (3.46)
The resultant pressure field p = —p03¢/3t is

p(x,y,t) = powmzocos(kmy)[(Amocos(w) + Bmo)sin(wt- kmox)

+ Amosin(w)cos(wt-kmox)] (3.47)
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section of the duct is the time averaged and integrated product of

pressure multiplied by velocity i.e.

: T ¢h
W= (1/T)( I pu_ dy dt
o’o

(3.48)

where T is the period of motion. Therefore in this particular case

the power radiated is

T h/2
W= —(1/T)f f uosin(wt)p dy dt
o’0

X=0

dy dt
X=0

Trh -
- (l/T)J f v sin(ut+¢)p
o hVZ .

(3.49)

Therefore substituting equation (3.47) into (3.49) gives for the power

radiated

=
0

o m=0

Ahosin(w)cos(wt)]dy

h =)
- [ powvosin(wt-+¢) X cos(kmy)[-(Amocos(w)-FBmo)sin(wt)

E& m=0

Amosin(w)cos(wt)] dy ] dt

T h/ o
_(1/T)J [ J 2pou)uosin(wt) z cos(kmy)[—(Amocos(w) + Bmo)sin(wﬁ
. N ,

(3.50)



h/2

Therefore W = JO [(1/2)powl%)mzocos(kmy)[Amocos(w) + Bmo]dy

h o

+ f [(l/2)pduvocos(w) Z cos(kmy)[Amocos(w) + Bmo]dy
h/ m=o

2

h o0

+ L} [(1/2)powvosin2(¢) ) A cos(k y)]dy (3.51)
/2 m=0
Py & )

and W= - [uoméoAmocos(w) + Bmo(h/mn)51n(mn/2)

- vosinz(w)mzoAmo(h/mw)sin(mﬂ/Z)

+ uo(Aoocos(w) + Boo)(h/Z) + vocos(w)(Aoocos(w) + Boo)(h/Z)

+ vosinz(w)Aoo(h/Z)] (3.52)

Thus finally

W= (pow/Z)(h/Z)[uo(Aoocos(w)+-B00) + VO(A004-B00cos(w))

+ 21(2/mﬂ)sin(mn/2){uo(Amocos(w)4—Bmo)—'vo(Amoi-Bmocos(w))}]
m=

(3.53)

In equation (3.53) the power radiated into the downstream duct has
been split into two terms. The first on the right hand side is the
power carried by the (0,0) mode and the second consists of an infinite
sum representing the power carried by the higher order modes. 1In

particular if one assumes that piston A and B have the same velocity
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amplitudes i.e. u = v0 then equation (3.53) reduces to

W = (pow/Z) (h/2) [vo(cos (W) +1) (Aoo+ Boo)

Y%=V

+m21(Z/m“)sm(m"/”"o(c°s("’) - DA B )] (3.54)
If u = v equations (3.26) and (3.33) require that A_ =B while
o o oo 00
equations (3.27) and (3.34) require that Amo=—Bmo’- thus equation

(3.54) further reduces to

Wuo:vo = (powh/Z)[vvoo(cos(w) + 1)

+ 1 (2/am)sin(un/2)v A (cos(¥) - 1)] (3.55)
m=1
If $ =0 the dipole source can be considered as a uniform piston over
the whole duct cross section and the result of equation (3.55) reduces

to plane wave radiation in the duct. Thus

WUO=V° = (powh) vvoo +0 (3.56)
Now Aoo = vo/(2koo) = VO/(Zko) (3.57)
-
hence Wu Y =0, -? h (3.58)
o~ Vo
v=0

Equation (3.58) is the relation for nett power flow of the
(0,0) mode in a rectangular duct. Thus when v =V, and ¥ =0, all input

power to the piston dipole source is radiated.
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Radiation efficiency o is defined as the ratio of the power
radiated by the source to the power radiated by an equal area of
an infinite plane wave. According to Cremer, Heckl & Ungar (1973)
the power radiated by such a source of area A with velocity amplitude
v, is

=p cC

v2
o %
piston 0o 2

A (3.59)
In a two—-dimensional system A can be replaced by h. Thus the radiation

efficiency of the dipole piston source with velocity of piston A equal

to piston B is

o= (ko/vo)[Aoo(COS(w) + 1)

+ ] (2/un) sin(mr/2) A_ (cos(¥) - 1)] (3.60)

m=]

Substituting for Aoo and Amo from equations (3.24) and (3.25) we obtain

g = iEQES%li;ll - (cos(¥) - 1) ) (2/mw)zsin2(nm/2)(ko/km0) (3.61)
m=1

As previously,the first term represents the radiation efficiency due
to the (0,0) mode and the second term sums the radiation efficiency
of all the higher modes. If y=0 the radiation efficiency o=1 from
equation (3.61).

This result is not surprising since equation (3.61) predicts
that when § =0 the sound power radiated will be identical to a piston
of equivalent area. Thus when Y =0 the dipole piston source becomes
a monopole source and is an extremely efficient radiator.

We now consider the transmission of sound power past a
junction of two smaller ducts with one larger duct. The junctions of
the small ducts to the larger form the pistons A and B where consistent

with our earlier stated assumption we are concerned only with frequencies
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below cut-off for the higher order modes.
In the case of uo#wq)the input power (or incident power) at

the generating surface can be written as
- 2
Wi pocohui /2 (3.62)

If the input power is constant, then it can be written as

pocoh

4

2 2 42

= + .
pocoh Wi /2 (uo vo) | (3.63)
Hence the ratio of sound power radiated to the input power (more

specifically the sound power transmission coefficient) is

a, = W /W, (3.64)

We substitute equations (3.53) and (3.63) into equation (3.64) to
obtain

a, = (ko/(uﬁ-+v§))[u0(Aoocos(w) + Boo) + vo(Aoo-FBoocos(w))

+mzl(2/mﬂ)sin(m1r/2) (u (A Jcos(¥)+ B - vo(Amo+BmOcos(¢))]

(3.65)

For u =V, this relation reduces with the aid of equations (3.24),

(3.25), (3.32) and (3.33) to

cos(P)+1 . 2 5
ay BEem———— = 2 (2/nm) sin“(mn/2)(k /k_ ) (cos(y) - 1) (3.66)
2 o=l o’ mo
which is identical to the expression for radiation efficiency given
by equation (3.61).

The evaluation of the equations derived in the analysis is

limited to frequencies below the cut-off of the (1,0) mode in the
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downstream duct. The cut—off wave number for the (1,0) mode in a

rigid walled duct is given by setting kmo= 0 in equation (3.5), thus
(k) = 7/n (3.67)
and the modal wave number for waves below cut-off is
k= xi{(mn/h)? - K2]°
o - T tl(mr - 0] (3.68)

Thus for frequencies below cut-off of the (1,0) mode, koo will be
real, but kmo will be imaginary for all higher modes. Thus the
expression for radiation efficiency can be considered as separated

into real and imaginary parts. The radiation efficiency is then

[o ]

o= L3N v sin? (un/2) (k /k_ ) (cos(h) - 1) (3.69)

2 n=1 o mo
where for the frequency range considered, the first term represents
the resistive radiation efficiency and gives the actual power radiated
while the second term is the reactive radiation efficiency and describes
the fluid loading on the piston. If y =7 then equation (3.69) reduces
to

o =0 +2 ] (2/um)?sin?(mn/2) (k_[k ) (3.70)

m=1]
which is entirely reactive implying no actual radiation of sound power.
The resistive radiation efficiency, from equation (3.69) is independ-
ent of frequency but is dependent on the phase difference between
pistons. The variation in resistive radiation efficiency with phase
angle is shown in Figure 3.5.
It will be of interest to consider the reactive part of

equation (3.69 ).
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o(react) = - z (2/mﬂ)zsin2(mﬂ/2)(ko/kmo)(cos(w)-l) . (3.71)
m=1

For a first order modal solution (i.e. the infinite sum truncated

at m=1) equation (3.71) becomes

o(react) = —= (k h/[n2~- (k 1)2T2) (cos (§) - 1) (3.72)
m=1 m © N

Or alternatively writing the reactive radiation efficiency as a phase

dependent factor we obtain

ond(react) = (cos(P) -1) (3.73)

k h
o

[72 - (k)22

where cnd(react) = og(react)/( (3.74)

72

Values of reactive radiation efficiency factor are plotted in Figure
3.6.

The reactive radiation efficiency is dependent upon the
frequency parameter (kolkmo) as well as upon the phase angle V.
For even values of m the reactive efficiency is seen to be equal
to zero thus

(2]

o(react) = - |  (2/mm)’(k [k ) (cos(¥) - 1) (3.75)
M=15355¢¢- '

To determine the dependence of the accuracy of the final
result of reactive radiation efficiency on modal truncation, the
infinite sum of equation (3.75) was truncated at m=1 and m=3 and
the results compared. Values of theoretical reactive radiation

efficiency are plotted against phase angle for various non-dimensional
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frequencies, koh, in Figure 3.7 for the two different truncation
values. Apparently the higher order terms contribute very little
to the sum.

It has been demonstrated previously that the power transmission
coefficient can be separated into two terms. The power transmitted
by the second of these terms, represented by an infinite sum, now
will be discussed. As the higher modes are below cut-off, the axial
particle velocity and the pressure of these higher modes are in
phase quadrature and they thus propagate no nett energy flux away from
the generating surface. Thus one would expect the higher evanescent
modes not to contribute to nett energy propagation. This will be
proved in terms of the previous analysis.

For the non-propagating modes let kmo = —ik;o. The general
velocity potential for these modes will then be

(o]

o =mzlc°s(km}') [(A cos(¥)+B_sin(wt)exp[-k® x]

LS

- 1.1
+ Am031n(¢)cos(wt)exp[ kmox] (3.76)
and the acoustic pressure is thus

oo

P = —(%wmzlcos(kmy)[(Amocos(w)4—Bmo)cos(wt)exp[—k;0x]

- Amosin(w)sin(wt)exp[—k&ox] (3.77)
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Thus the power transmitted by higher modes

T h/y o
wm>o = -1/T L)dt[L) P uosin(wt)mzlcos(kmy)[(Amocos(w)+-Bmo) x

1! _ . . 1t
x cos(wt)expl kmox] Am051n(w)31n(wt)exp[ kmox] dy

h o
+ J pow'vosin(wti-w) z cos(kmy)[(Amocos(w)4—Bmo)cos(wt)exp[—k%ox]

}VZ m=1
- Amosin(lp)sin(wt) exp{-kl'nox} l1dy] (3.78)
LW =k powuomzlAmosin(w)exp[—kI;lox](h/mTr)sin(mTr/Z)
S LRA mlemosin(w)exp[—kl;lox] (h/mm)sin(mm/2) (3.79)
W= e wsin(d) [nzl (u A +B v )expl-k! x] (h/mr)sin(mr/2)]  (3.80)

now from equations (3.25) and (3.33)

2v
A =- sin(mm/2)
mo ok, o
2u
and = sin(mm/2)
mo mrk
mo
o 2uovo 2uovo
Hence W __ = %pwsin(W[ ) {- sin(mm/2) + sin(mw/2)} x
no © m=1 Wk, L

X

exp[—k&ox](h/mﬁ)sin(mﬂ/Z)]

=0
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The higher modes for frequencies below cut-off transmit no energy
independent of uss Vo and ¥ and the ratio of actual power radiated
to input power of the dipole source can be written as

(cos(P) +1)

o (3.81)

t 2

The transmission coefficient of the source is therefore identical to
the resistive radiation efficiency and thus is also plotted in Figure

3.5.

3.3 DISCUSSION

In the frequency range under consideration (kohs'n) the
resistive radiation efficiency and the power transmission coefficient
are identical. This result follows from the definition of radiation
efficiency. The discussion is thus limited to the parameters of
radiation efficiency and characteristic impedance.

Equation (3.45) provides the characteristic impedance of the
dipole source. If y=0, or in other words the generating surface is
a perfect piston, the radiation impedance is a positive real number
equal to I Thus the resulting induced wave motion in the down-
stream duct will be a plane wave. However if Y # 0, the generating
surface will not be a perfect piston, the characteristic impedance
will be complex and a series of higher order evanescent modes will
be generated. Although these modes do not carry nett power away from
the source, nor propagate substantially into the duct, the evanescent
modes effect the impedance of the source. As these modes are below
cut-off, their axial wave number is imaginary and the characteristic
impedance of the generating surface expressed by equation (3.45) will
contain an imaginary part as well as a real part. The imaginary part

is called the reactive impedance and is a measure of the fluid mass
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reactance or loading on the driving surface. In physical terms the
reactive impedance describes the "sloshing" of fluid or the transfer
of energy back and forth from one part of the generating surface to
another. The real part of the impedance on the other hand describes
actual propagation of energy away from the generating surface.

The resistive and reactive parts of the impedance are plotted
in Figures 3.3 and 3.4 respectively for different phase angles. It
is interesting to note from Figure 3.3 when ¢ = 3r/2 or piston B leads
piston A the plot of resistive impedance implies that piston B '"pushes"
the air in front of it over to the part of the generating surface
represented by piston A. In this region (0.5<y/h<1.0) the resistive
impedance is seen to be positive implying that piston A then does most
of the work in radiating energy. Of course the converse is true when
¢=7/2., This phenomenon is also demonstrated by the reactive part of
the impedance shown in Figure 3.4 where in the region of piston A
for ¥ = 3n/2 the plot demonstrates greater mass loading of air than
the region represented by piston B.

When y =7 the characteristic impedance is seen from equation
(3.45) to be entirely reactive. In this case there is no nett prop-
agation of energy away from the source due to the phase quadrature
between pressure and velocity and the acoustic motion consists
entirely of a mass loading on the generating surface. Physically
this means that the air in the near field of the generating surface
will be entirely sloshing backwards and forwards between the regions
of pistons A and B. Similarly when y =7, the resultant acoustic
motion in the duct will consist of a series of evanescent modes and
no plane wave mode is generated.

The resistive radiation efficiency (or transmission coefficient)

is seen from Figure 3.5 to vary between zero and unity for different
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phase angles between the motion of the pistons. As expected when
y=nr, n=0,2,4... the resistive radiation efficiency is unity and
the dipole source is an extremely efficient radiator of sound energy.
This case of a perfect driving piston, as discussed previously, results
in an excitation of a plane wave and no higher modes. When Y =nm,
n= 1,3,5...-the resistive radiation efficiency is zero and there is
no power radiated into the downstream duct. In this case the dipole
source is an extremely inefficient radiator of sound power. For
intermediate phase angles the radiation efficiency.predicts that some
(but not all) input power will be radiated to the downstream duct as
determined by equation (3.81).

Equation (3.45) shows that for frequencies less than the
cut—-off of the (1,0) mode the resistive radiation efficiency is
entirely determined by the (0,0) mode of propagation (as evanescent
modes carry no nett power). Thus in terms of real power flux away
from the generating surface it is only necessary to consider the
(0,0) mode for frequencies such that koh$1n However it must be
remembered that the degree of excitation of the (0,0) mode is deter-
mined by the mass loading or reactive part of the characteristic
impedance of the source.

The reactive radiation efficiency is seen from equation (3.75)
to be dependent upon driving frequency as well as phase angle. Figure
3.6 demonstrates that when y=nw, n=0,2,4... the reactive radiation
efficiency is zero and there is no mass loading on the source. This
is the case of the perfect piston discussed previously. When ¢ =nm,
n=1,3,5... the reactive efficiency is seen to take a maximum value,
while at the same time the resistive efficiency is zero. Thus the
acoustic motion consists entirely of a localized mass loading on the

pistons (or in other words a generation of only evanescent modes).
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The degree of this mass loading is seen from Figure 3.7
to strongly increase with frequency. In fact equation (3.75) predicts
that the reactive radiation efficiency becomes infinite as koh-+w
or in other words the (1,0) mode nears cut-on. Thus theoretically
although there is no nett energy of propagation, an infinite force
is needed to drive the mass loading in the infinitely long downstream
duct; This can be thought of as an evanescent (1,0) mode excited to
infinity in the downstream duct. Of course resistive losses, which
have been neglected prevent this from occurring, however this result
provides a reason why cut-off cannot be precisely observed experimentally,
that is, the reactive term theoretically becomes infinite at cut-off!

Figure 3.7 also demonstrates that the reactive radiation
efficiency is determined quite accurately by a first order modal
solution, that is, the infinite sum of equation (3.75) truncated at
m=1. This result is also reflected in the relation for characteristic
impedance. Physically, this result implies that the particular arrange-
ment of dipole source considered results in a very strong driving of
the (1,0) mode when there is a substantial phase difference between
pistons. Of course when there is no substantial phase difference
the result is a strong driving of the plane wave mode. Thus for a
continuity condition involving an arrangement similar to Figure 3.1
it would be sufficiently accurate to truncate the modal sum of the
downstream generated wave at m=1. Although the evanescent mode
does not contribute to nett power flow it must be included to take
account of the mass loading on the generating surface and thus the
degree of excitation of the (0,0) mode.

It is also interesting to note from equation (3.75) that only
modes for which m is odd are excited. Thus the dipole source would
theoretically only generate symmetric modes whether they be evanescent

or propagating.
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3.4 SUMMARY

Equations have been developed which theoretically predict the
radiation efficiency and characteristic impedance of a dipole piston
source mounted in the end of a hard walled semi-infinite rectangular
duct. The relations have been used to investigate the behaviour of
the source for different phase angles and non-dimensional driving
frequencies. Explanations for the different radiation characteristics
are given in terms of modal excitation and propagation.

The source is found to be an extremely efficienf radiator for
phase angle differences between pistcns of y=nm, n= 0,2,4... and
an extremely poor radiator for phase angles of y=nm, n=1,3,5...
and reasons for this behaviour are given. Nett power radiated has
been shown to be due purely to the (0,0) mode while the role of the
reactive or mass loading on the degree of excitation has been high-
lighted. The physical behaviour of the source near field at different
phase angles has been discussed and related to the ﬁarious parameters.

The analysis also demonstrates that for frequencies such
that kohISN a first order modal sum provides a sufficiently accurate

description of the resultant sound field.
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CHAPTER 4

PROPAGATION OF SOUND IN A CURVED BEND CONTAINING A CURVED AXTAL

PARTITION

4.1. INTRODUCTION

In recent years attention has been focused on the problem
of sound propagation in radial bends of rectangular cross section.
Most of the early work in electromagnetic and acoustic waves is
described in the introduction to Chapter 2. Work performed in the
last ten years, relative to the problem of this chapter will be
revised here.

Rostafinski (1974, 1976) has theoretically investigated
the acoustic velocity distribution of propagating and evanescent modes
within radial bends. Cummings (1974) has theoretically and experi-
mentally investigated the acoustic discontinuity caused by a 180°
radial bend of severe curvature in a straight duct system of
rectangular cross section. He found that even for bends of severe
curvature, near the cut-off frequency of the (1,0) mode in the curved
section, the bends caused negligible reflection of sound. Osborne
(1976) considered the more complex case of higher mode propagation in
short curved bends, but still found no appreciable discontinuity in
the acoustic propagation through the duct system. The main practical
conclusion of these works is that curved duct bends, even of severe
sharpness, have a low reflection coefficient. All the above work was
based on a cylindrical coordinates solution to the wave equation.

More recently, Fuller and Abell (1978) have approached the problem
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differently, using conformal mapping to develop equations for the
angular wavenumber of the (0,0) mode and higher evanescent modes in
curved bends with and without mean flow. Their analysis is limited
to low frequencies where the velocity potential solution of the wave
equation is an approximate solution of Laplace's equation. Fuller and
Bies (1978 A) have also investigated the case of sound propagation in
a curved bend containing a curved axial partition and found that the
partition profoundly alters the acoustic characteristics of the bend.
In this chapter the discontinuity and natural oscillations
caused by a 180° bend divided by a curved partition are considered.
This problem has been briefly discussed by Rostafinski (1976) to
illustrate the dispersive nature of the (0,0) mode in curved ducts
as opposed to the (0,0) mode in straight ducts with rigid walls.
Three parameters, power reflection coefficient, characteristic
impedance and transmission loss are investigated. Experimentally
measured values of these parameters are given and compared with
theoretical predictions. The presence of the partition is shown to
drastically alter the acoustic properties of the bend and reasons for
this different behaviour as opposed to a straight duct with a partition
are given.
The partition effectively divides the curved bend into
two concentric bends. The duct system containing the concentric
bends is investigated theoretically by applying equations for sound
propagation in straight and curved ducts of rectangular cross section
to the respective parts. The propagating medium is assumed stationary.
Continuity of acoustic pressure and axial particle velocities at
adjoining interfaces between straight and curved sections is postulated
to determine the Fourier coefficients of waves in each section. The

analysis is limited to frequencies less than the cut-off frequency of
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the (1,0) mode in both straight and curved ducts.

4.2  ANALYSIS

The arrangement of the compound bend to be investigated
is shown in Figure 4.1. TFor analysis the bend has dimensions
R1 = 0.127 meters, R2 = 0.1905 meters and R3 = 0.254 meters and is to
be analysed by dividing into sections with coordinate systems and
adjoining interfaces as shown in Figure 4.1. Thus sound propagation
in sections 1 and 4 is to be described by straight duct equations with
no mean flow as derived in Chapter 1, while sound propagation in
sections 2 and 3 is to be described by the curved duct, cylindrical
equations with no mean flow of Chapter 2.

The Fourier coefficients of the incident and reflected
waves in sections 1 to 4 as shown in Figure 4.1 are obtained by
applying continuity conditions across interfaces A and B between the
straight and curved ducts. Continuity implies that acoustic pressure
and particle velocity are equal on the interface between respective
duct sections. In this analysis continuity of axial particle velocity
is postulated. This is supported by the fact that, as the frequencies
to be considered are well below the cut-off frequency (1,0) mode, the
radial particle velocities in the curved sections are very small.

The validity of this assumption is borne out by experimental results.
As there is no discontinuity in the 2z direction it is satisfactory
to use a two dimensional coordinate system, i.e. kn = 0.

Both sides of each equation, obtained by continuity of
axial particle velocity and pressure, are mutliplied by cos[(mny/h)]
and integrated with respect to y, y' or r. The orthognality property
of cos[(mm/h)y] allows determination of the coefficients of the waves

necessary to determine the propagation characteristics of the bend.



Ficure 4.1,

Arrangement and co-ordinate system of the compound bend.
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Thus applying continuity of acoustic pressure at
interface A where x = 0, 8 = 0 we obtain, assuming a pressure form

solution of the wave equation

i © _r e i c r ,C
P o Tmko Po cos [ (mn/h)y] =520l %5 "o ool 56 (4.1
for R <r ¢ R
1 2
i ] r _ 2 i ¢ r ,C
and Poo +m§0 Pmo cos [(mn/h)y] 's§0 Dsowso Ll Doowoo (4.2)

for R < r g R3 where superscripts i and r imply incident
2
and reflected waves respectively.
Multiplying both sides by cos[(mm/h)y] and integrating

over the duct interface we obtain

m = 0,
i r « 1 (R r ¢
PPh+P h=3 ¢ szcdr+c sz dr
oo 00 s=0 “so so 00 00
R R
1 1
e i R3 c r R3 c
+. Iy DSOJ wsodr+D00J v dr (4.3)
R R
2 2
m+ 0,
T i b c
=5 2 .
Pmo(h/Z) SEO CSo JR wso cos[ (mm/h) (x Rl)]dr
1
r R2 [od
+ Coo IR woo cos[(mn/h)(r—Rl)]dr

R
o i 3 ,C
+ . D J Yoo cos[(mﬂ/h)(r—Rl)]dr
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R
+ Dgo JR3 wgocos[(mﬂ/b) (r—Rl)]dr (4.4)

2

Similarly continuity of tangential particle velocity at interface A

provides

R . R R
1 r . % 1 2 ,C r 2 ,C
ookooh - Pookooh _SEO Cso [R wso(\)s/r)dr - Coo JR lpoo(\)o/r)dr
1 1
+§ ot R3C(/)d—])r R3‘:(/d 4.5
s=0 80 Jp lPso IV oo o lpoo Yo r)dr  (4.5)
2 2
m # 0,
-P  k _n/2=7% ct ch(/) [(mm/h) (r-R_)]1d
moXmo 2 s=0 so | wso v /T)cos|(mm T ; r
1
r R2 C
- Coo JR woo(vo/r)cos[(mﬂ/h)(r—Rl)]dr
1
L4 i R3 Cc
+S£0 DSo JR wso(vs/r)cos[(mﬂ/h)(r—Rl)]dr
2
r R3 c
- Doo JR woo(vo/r)cos[(mﬂ/h)(r-Rl)]dr (4.6)

2
The equations obtained by this method at interface B are
given in Appendix 2. At both interfaces an infinite series of modes
will be generated. As the frequency over which the bend will be
investigated is limited to less than the cut-off frequency of the
(1,0) mode in both straight and curved sections these infinite sets

will consist of one propagating and an infinite number of evanescent
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modes. In order to determine the coefficients it is necessary to
truncate each infinite sum at a value determined by two factors:

(1) Since the number of unknown coefficients generated must equal the
number of equations, the number of modes considered in straight
sections 1 and 4 is truncated at twice the number considered in curved
sections 2 and 3 (this relation is derived in more detail in Chapter
5). (2) The accuracy of the analysis is determined by the number of
modes considered.

Cummings (1974) and Osborme (1976) have both shown that
non-propagating modes have only a small effect on the sound propagation
in a curved bend. Thus in the equations developed previously from
continuity conditions, the number of modes considered in the curved
sections will be truncated at one while in the straight sections, one
propagating and one non-propagating mode will be considered. This
simplification is justified, as will be shown, by the comparison
between theoretical and experimental results. The two modes considered
in both straight sections are necessary to provide continuity across

adjoining interfaces.

4.3 EXPERIMENTAL APPARATUS AND METHOD

The bend was investigated with the arrangement shown in
Figure 4.2, The duct system has a 0.0635 x 0.127 meter cross section
and was constructed from a 0.0254 meter thick wood lined with laminex.
The compound bend was machined from laminated wood and the curved
partition was rolled from 1.5mm aluminium sheet to the required
dimensions and is shown in Plate 1. The sound source was positioned
1.7 meters upstream from the entrance to the bend at which distance
any evanescent modes are sufficiently attenuated to be negligible.

The straight duct downstream of the bend was terminated with an
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anechoic muffler with a pressure reflection coefficient of less than
0.12.

The acoustic signal used was a pure tone and was measured
using a Briel and Kjaer One Third Octave Filter. Standing wave out-
puts from this instrument were fed to a Briiel and Kjaer Graphic Level
Recorder for visual examination. Three parameters were measured.

The power reflection coefficient, an indication of how much sound
energy is reflected back towards the source, and the characteristic
impedance, and indication of how severe a discontinuity the bend
presents to acoustic propagation were obtained by measuring the stand-
ing wave in the upstream duct with a Briiel and Kjaer standing wave
apparatus set, and applying standing wave theory as outlined in
Beranek (1950). Values of experimental power reflection coefficient
plotted against a non-dimensional frequency parameter koh are shown in
Figure 4.3. Since the analysis is limited to less than the cut-off
frequency of the (1,0) mode in the straight duct section, for which
koh = 7, values of koh are terminated at koh = 3.02. Experimental
values of resistive impedance Ri/poco are shown in Figure 4.4 while
those of the reactive part xi/poco are shown in Figure 4.5.

The transmission loss, a measure of the attenuation in
decibels of the incident wave, was measured by traversing a calibrated
microphone in the upstream duct until a maximum in sound pressure

level Pmax
0o

(dB) was recorded. The sound pressure level of the
propagating wave Eio(dB) in the downstream duct was measured with a
calibrated microphone inserted through the duct wall at a distance of

1 meter from the bend exit. The transmission loss was then

calculated from equation (4.7) and is plotted in Figure 4.6.
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max _ i
Poo = (1 + |R|)Poo
. i _ pmax
o P (dB) =P “(dB) -20 log,, [1 + IR|]

max

Hence transmission loss (dB) = P00 (dB) -20 log10 1+ |R|]

i
- Eoo(dB) 4.7)

In equation (4.7) R is the measured pressure reflection coefficient.
It should be noted that equation (4.7) holds only for equal values

of temperature and area of the inlet and outlet sectioms.

4.4 THEORETICAL PREDICTIONS

The radial terms of equations (4.3) to (4.6) and those of
Appendix 2 were expressed as power series expansions of Bessell and
Neumann functions from McLachlan (1941) and integrated using
Simpson's rule by a CDC 6400 computer. The resulting coefficients of
the equations were then set in an eight by eight matrix as given in
Appendix 3 and the variables of the matrix were obtained by a
computer program based on Crout's rule described in Frdberg (1970).
For convenience a reference amplitude of Pio = 1 - 01 was assumed.

The theoretical power reflection coefficient is given by

Pt |2
a = =22
r pi (4.8)
00

The characteristic impedance 1is

Z/poco = Ri/poc0 + (xi/ooco)i
- i r i _ p¥
(Poo + Poo)/(P00 Poo) (4.9)

where Pi and P are complex amplitudes.
00 oo
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The theoretical transmission loss is
T.L. = =10 log10 [1 - ar] (4.10)
All three parameters are shown with the respective experimental

values for comparison in Figures 4.3 to 4.6.

4.5 DISCUSSION

4.5.1 Power Reflection Coefficient

As can be seen in Figure 4.3 there is close agreement
between theoretical and experimentally measured values of the
frequencies at which maxima occur. The small discrepancies are
thought to be due to dimensional inaccuracies and variation in
ambient temperature during the course of experimentation.

The magnitude of the experimental reflection coefficient
is consistently less than predicted at the maxima. This was thought
to be due to the difficulty of determining accurately the standing
wave ratio when it is quite large. 1In the case of large standing wave
ratio the minima are quite sharp and very easily obscured by, for
example, overtones due to a small distortion in the signal. They are
thus very difficult to measure and the measured magnitude of sound
pressure level is always too high. The standing wave ratio and thus
the corresponding power reflection coefficient in this case will always

be too small.

As can be seen in Figure 4.3, a curved 180° bend with a
partition positioned on its centreline provides a large disruption
to sound propagation. 1In fact the theory developed here predicts that
at the dimensionless frequencies given in Table 4.1, the power
reflection coefficient is very close to unity. This is in direct
contrast to a normal curved bend. Cummings (1974) studied two 180°
bends, one of radius ratio Rl/R2 = 0,097 representing a very sharp

bend, at frequencies below the cut-off frequency of the (1,0) mode and
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Table 4.1: Characteristic Frequencies of a Compound 180°

Bend for R /R = 2
3 1

*
Characteristic Freq. (koh)

0.6 1.18 1.80 2.08 2.25 2.86

*
Only frequencies below cut-—off (koh = 7m) for the (1,0) mode

in the straight duct are included.
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found that the pressure transmission coefficient of the (0,0) mode
does not fall below 0.975. Thus it can be seen that positioning a
splitter or turning vane in a curved bend of a duct system leads to
drastically different acoustic behaviour for frequencies below the
cut-off for the first cross mode.

The reason for the markedly different effect of a partition
in a straight and curved duct is due to the resulting variation in
path length and phase of the two parts of the acoustic disturbance
propagating in the two parts of the compound curved duct. Without the
partition the phase of the (0,0) mode will be maintained radially
across the duct and will be determined approximately by the centre-
line propagation distance. The partition effectively prevents the
implied redistribution of the disturbance across the original bend,
containing it to the two separate concentric bends formed by the
partition.

The effect of curvature on sound propagation in a curved
duct in contrast to propagation in a straight duct is reflected in
the respective solutions of the characteristic equation in cylindrical
coordinates and the straight duct characteristic equation. For the
(0,0) mode in a straight duct the wavenumber is independent of duct
dimensions, whereas in a curved duct the corresponding angular wave-
number is strongly dependent on the radii of the curved section as
discussed by Rostafinski (1976). Thus the waves travelling in the
separate curved sections, shown in Figure 4.1, have the same amplitude
but different relative phases at each angle 6 of propagation, due to
different values of angular wavenumber. Therein lies the explanation
for the effect of the partition in a curved duct.

At interface B, shown in Figure 4.1, the two incident waves
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in sections 2 and 3 have a phase difference induced by the different
values of respective angular wavenumber. When these two waves
recombine at B, the phase difference leads to generation of non-
propagating cross modes and the resulting impedance mismatch causes
reflection of sound. Interface B is very similar to the dipole
piston source discussed in Chapter 3. Similarly reflected waves from
B will have a phase difference at A and an impedance mismatch results
here as well. When these phase differences are close to T, large

reflection of sound occurs.

4,5.2. Characteristic Impedance

Theoretical and experimental values of resistive and
reactive parts of the characteristic impedance are in excellent
agreement as shown in Figure 4.4 and 4.5.

It can be seen that at the dimensionless frequencies of
koh, given in Table 4.1, a large impedance mismatch relative to the
characteristic impedance PoCo of the incident wave is generated.
Thus one would expect large reflection of sound at these frequencies.
This is demonstrated in Figure 4.3, which shows high reflection of
sound at the characteristic frequencies of Table 4.1.

At the intermediate frequencies the characteristic
impedance Z/poc0 of the bend is relatively closer to unity than at
the bend characteristic frequencies and incident sound is thus mostly
transmitted at these intermediate frequencies.

As the non-dimensional frequency koh approaches 7 the
reactive part of the characteristic impedance changes its general
shape demonstrated at lower frequencies. This was thought to be due
to the effect of evanescent (1,0) mode in the straight duct becoming

predominant near cut-off.
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4.5.3 Transmission Loss

Much closer agreement is demonstrated by comparison of
experimental and theoretical values of transmission loss shown in
Figure 4.6 than reflection coefficient shown previously in Figure
4.3. This observation supports the argument presented previously to
explain the discrepancies shown in the latter figure.

At koh = 2.0 a transmission loss of 45.5 dB was measured.
Thus an incident pure tone at this frequency would be virtually
completely reflected. Such high levels of attenuation suggest the use
of the discontinuity provided by the bend as a reactive attenuator.
An attenuator based on the impedance mismatch generated by a center
body placed in a 90° bend is discussed by Fuller and Bies (1978 B)

and also in Chapter 6.

4.6 SUMMARY

Sound transmission in a duct system containing a curved
180° bend with a central partition has been discussed. Theoretical
and experimental values have been given and good agreement is
obtained.

The partition was found to significantly alter the sound
propagation through the bend, resulting in high reflection of sound
at a number of discrete frequencies.

The problem discussed illustrates the essential difference
between sound propagation in straight and curved ducts. Namely, the
angular wavenumber of the (0,0) mode in curved ducts is dependent on
the boundary conditions, whereas in the straight duct the wavenumber

is independent of duct geometry.
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PART I1T1: REACTIVE ATTENUATORS

CHAPTER 5

A REACTIVE ACOUSTIC ATTENUATOR

5.1 INTRODUCTION

Despite extensive previous investigations, the control of
sound propagating in ducts continues to be a problem requiring
research. One particular aspect of this problem, the control of low
frequency sound, has until recently defied satisfactory solution.
Proposed attenuators invariably suffer the disadvantage of excessive
size or large .pressure drop. Attenuators fall generally into two
categories; reactive devices which trap acoustic energy and store it
until it is dissipated by small losses inherent in the system and
dissipative devices which encourage the propagation of sound into some
medium, generally lining the walls of the device, in which the sound
is subsequently dissipated.

Dissipative devices work well for sounds of medium or
high frequencies, but are ineffective at low frequencies where the
wavelength of sound is comparable to the duct dimensions. Reactive
attenuators usually follow the well known form of either a quarter
wave tube, a Hemholtz resonator or an expansion chamber. As well as
having a narrow frequency response, these devices tend to be bulky and
cause a high pressure drop to the flow through the duct.

In a paper by Fuller and Bies (1978 B) a reactive acoustic
attenuator was described which combined high transmission loss over

a fairly broad frequency band with a low pressure drop. The attenuator,
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based upon a principle described by Rayleigh (1877) may be fitted into
a 90° bend in the duct system. A similar attenuator has been
investigated experimentally by Luxton (1968). Other work on reactive
attenuation, apart from the traditional methods of resonators and
plenum chambers, has largely been centred on the application of
Swinbank's method for the control of sound in a duct. The basic idea
of this method is to introduce an antiphase copy of the sound in the
duct. 1Ideally the added sound does not cancel the incident sound in
an energy sense but causes an impedance mismatch and thus reflection
of sound. The limiting factor is to generate the antiphase signal
such that it propagates only in the direction of propagation of the
original sound. Poole and Leventhall (1976) have, with limited success,
developed a reactive attenuator based on Swinbank's proposal. They
constructed a suitable source with omnidirectional characteristics as
proposed by Swinbank (1973) and measured the attenuation of incident
pure tones and band-limited noise. The test was carried out for low
frequencies and stationary medium of propagation. Poole and Leventhall
measured attenuation of pure tones of greater than 50 dB but found
that the band-limited noise tests gave far less encouraging results.
However, they concluded that the system proposed was not a practical
replacement for a passive silencer as the attenuation achieved was
over a very narrow frequency range. In conclusion Pool and Leventhall
stated that for Swinbank's method to work two requirements have to be
satisfied: (1) no sound propagation from the cancelling sources
towards the actual noise source, (2) the sound introduced must be an
accurate, but phase inverted copy of the noise to be cancelled.
Patrick (1967) has considered the transmission loss of

duct systems containing a series of ducts aligned in parallel, either
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with lined or unlined walls. He applies matrix techniques usually
used in the analysis of electrical circuits to develop a systematic
method for determining the acoustical characteristics of complicated
duct arrays.

In this chapter, a reactive acoustic attenuator is
investigated which makes use of inherent differences in path lengths
of the inner and outer portions of a bend fitted with a splitter to
generate an impedance mismatch at the inlet and exit of the device,
causing reflection of sound. The attenuator, when fitted into any
convenient bend in the duct system, combines high rejection of low
frequency sound over a frequency range of three quarters of an octave
with a low pressure drop coefficient (0.46). The attenuator also
provides very high attenuation in the order of 30 to 50 dB at a number
of discrete frequencies.

Equations characterizing sound propaéation in straight
and curved ducts (cylindrical coordinates solution) are used to
describe the device without flow. The effect of flow on the performance
of the attenuator is considered in Chapter 6. The predicted results
agree well with those measured experimentally. An understanding of
the performance of the attenuator has allowed a redesign of its shape
to optimize its performance. By the nature of the device the analysis
is necessarily limited to frequencies less than the cut-off frequency
of the (1,0) mode in the incident duct. Two parameters, power trans-
mission coefficient and transmission loss are investigated and small
discrepancies between theoretical and experimental results are

discussed.
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5.2 DESIGN

The arrangement of the attenuator fitted into a right
angled bend in the duct system is shown in Figure 5.1. The frequency
range over which the attenuator is expected to be useful lies below
the cut-off frequency of the (1,0) mode in the straight sections of
the duct upstream of interface A and downstream of interface D. An
impedance mismatch is generated at interface D by the phase difference
between the propagating waves in the two separate duct sytems. The
phase difference is achieved by placing a profiled center body in the
duct bend which divides the incident acoustic plame wave at interface
A into two halves that recombine at D. The relative phase of the two
separate propagating waves at D is approximately determined by the
mean path difference of the two separate channels. At the design
frequency, for which the mean path difference between the inner and
outer channels is one half wave length, a plane wave incident at
interface A will be converted to a series of non-propagating cross
modes at interface D and at this frequency all incident sound energy
to the attenuator will be reflected.

_ As the center body is shaped with gradual bends it acts
as a turning vane and a low pressure drop results across the device.

The design frequency of the attenuator was chosen to be
844 Hz corresponding to a 0.2 meter path difference in the experimental
duct. This was achieved with the crescent shaped center body of the

shape shown in Figure 5.1, of which two variations were investigated.

5.3 ANALYSIS

The theory of Chapter 3 provides an approximate indication
of the power transmitted and reflected at interface D of the attenuator.

The analysis accurately described the reflection of sound power at the
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FIGURE 5,1, Arrangement and co-ordinate system of the attenuator.
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design frequency but failed to account for observed major reflections
at other frequencies also in the range considered. The theory of
Chapter 3 also revealed the mechanism that causes reflection of sound,
namely an impedance mismatch generated by a series of non-propagating
cross modes. Thus the attenuator was described by dividing it into
sections and considering propagation and reflection of acoustic waves
in each. With the coordinate systems and joining interfaces shown in
Figure 5.1, sound propagation may then be described by straight duct
equations in sections 1, 2, 4 and 6 and by curved duct equations in
sections 3 and 5.

The coefficients of each wave were obtained by applying
continuity conditions across each interface. Continuity implies that
acoustic pressure and particle velocity must be continuous across
the plane joining the two duct systems. Since there is no discontinuity
in the z direction it is satisfactory to use a two dimensional co-
ordinate system i.e. kn'= 0. For convenience a reference amplitude
of Pio =1 - 0i will be used for the incident wave in the upstream
duct.

At each discontinuity (interface) an infinite set of
higher order modes will be generated. As the frequency is limited to
less than the cut-off frequency of the (1,0) mode in all straight duct
sections, the higher modes in the straight ducts will decay and only
the (0,0) mode will propagate without attenuation. Similarly the
frequencies considered are well below the cut-off frequency of the
(1,0) mode in both curved sections and only the (0,0) mode will
propagate in the curved sections 3 and 5 without attenuation. Hence
the waves arriving at each interface will be limited to the (0,0)
mode as all other modes will have decayed to be negligible, however

the waves leaving each interface will consist of an infinite series
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of higher modes as well as the (0,0) mode.

The requirement for continuity of particle velocity will
be simplified to continuity of tangential particle velocity along
the direction of the duct centerline. This simplification is supported
by the consideration that no cross modes propagate and thus cannot
contribute to the nett power flow. However ultimate justification
for the simplification rests with the agreement between the results
of experiment and predictions of theory. On this basis the simpli-
fication is justified and thus continuity of acoustic pressure and
tangential particle velocity at each interface is postulated.

The Fourier coefficients are obtained by multiplying both
sides of the equations by cos(mny/h) and integrating with respect to
vy, ¥', y"' or r as applies. Since the functions cos(mny/h) are
orthogonal the P;o coefficients can be separated.

Thus continuity of acoustic pressure at interface A where

x =0, x' =0 and & = 0 provides
i r _ = i c r c
P, TP, cos[(mmy/h) ] _SEO Csowso + Coo¢oo (5.1)
for R <rg R
1 2
i r _ @ i s T .S
and P +P cos{(mry/h)] —220 Alowﬁo +A Voo (5.2)

for 0 <y'<h/2
Multiplying both sides of equations (5.1) and (5.2) by cos(mmy/h) and

integrating with respect to y, y' and r leads to
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Similarly continuity of tangential velocity at interface A provides

m= 0,
- Ro R2 -
PPk n-P'k h=F% Ct J v€ (v _[r)dr - cF J $€ (v_/r)dr
00 00 00 00 S=0 SO R SO S Q0 R 00 (o}
1 1
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+£§0 Ay koo Jo w gy Aookooh/z (5.5)
m# 0,
i Rz c -
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R
T J 2 ¢
- C00 R woo(vo/r)cos[(mﬂ/h)(r - Rl)]df

1

Y2
+£Zo A;okzo J wio cos[(mn/h) (y* + h/2)]dy’
. 0

T h m
+A kGl - (17 (5.6)

The equations derived by continuity conditions at inter-
faces B, C, and D are given in Appendix 2. .

The above system of equations constitute an_infinite set
with an infinite number of unknowns. 1In order to proceed, it is
necessary to truncate the various infinite series. Truncation of each
series is determined by two considerations. Firstly, the accuracy of
the resulting mathematical expression which is desired when compared
with experimental results and, secondly the number of equations
necessary to determine all of the unknown coefficients in the several
truncated series.

' Let the number of modes in straight sections 1 and 6
truncate at L, in straight sections 2 and 4 at Q and in curved sections
5 and 3 at N. In this case the total number of unknown coefficients
U is

U= 2L = 4N = 4Q (5.7)
while the total number of equations G is

G = 4L = 4Q (5.8)

Cummings (1974) has shown for an interface between a
straight and curved cut the number of modes in each duct section must

be equal for solution, hence

N =2Q (5.9
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Therefore equating the number of unknowns U and equations
G gives
L = 2N = 2Q (5.10)

Hence the series describing propagation in sections 1 and
6 must be truncated at twice the number of terms of the series describ-
ing sections 2, 3, 4 and 5.

At each discontinuity in the duct system an infinite
number of higher order modes are generated. Cummings (1974) has shown
that at frequencies well below the cut-off frequency of the (1,0) mode,
non-propagating modes have only a small effect on sound propagation
through a curved duct-straight duct interface. On comparing the
theoretical and experimentally measured impedance (assumed entirely
reactive) of a 180° curved bend terminated by an infinite impedance,
Cummings found good agreement with prediction when the analysis was
truncated at the (0,0) mode. For this reason and in the interest of
economy of computing time, the present analysis is limited to
consideration only of the (0,0) mode. Hence we set N and Q of equation
(5.9) equal to unity and thus L of equation (5.10) equal to two.
Therefore the number of modes considered in straight sections 1 and 6
will be limited t6 two, one propagating and one evanescent mode, while
only one propagating mode will be considered in all other sections of
the attenuator.

This simplification is also supported by the analysis of
Chapter 3, where it was shown a first order modal truncation gave a
very accurate prediction of the reactive radiation impedance of a

surface similar to interfaces A and D.

5.4 EXPERIMENTAL APPARATUS AND METHOD

The attenuator was investigated with the arrangement shown
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in Figure 5.2. The duct system basically consisted of the apparatus
used to test the compound bend of Chapter 4, having a 0.0635 x 0.127
meter rectangular cross section. The attenuator was constructed from
machined laminated wood painted on the inside with a hard estapol
varnish to approximate the rigid wall conditions. As in Chapter 4

the sound source was positioned 1.7 meters upstream from the entrance
to the attenuator at which distance all cross modes generated locally
by the speakers would have decayed to be negligible. Thus the incident
wave at interface A of the attenuator was plane with constant pressure
and velocity amplitude across the duct.

The downstream duct was terminated with an anechoic
termination of the arrangement shown in Figure 5.2. The pressure
reflection coefficient of this termination was measured separately over
the frequency range considered and found to be less than 0.1. Hence
the downstream duct appears infinite to the exit of the attenuator
and only one wave with coefficient Eio need be assumed to be propagating
in the straight duct section 6.

The original attenuator investigated consists of a crescent
shaped center body and surrounding duct with dimensions R1 = 0,229
meteré, R2 = 0.2§2 meters, R3 = 0.051 meters and Rh = 0.114 meters
where the corresponding radii are shown in Figure 5.1. This arrange-
ment results in a path difference of 0.2 meters between the mean center
lines of the two separate ducts. The corresponding design frequency,
assuming plane wave propagation in all sections is 844 Hz.

When the analysis of the present chapter had been completed
and verified a second, optimum, attenuator was constructed and tested.
It had dimensions R1 = ,0184 meters, R2 = 0.248 meters, R3 = 0.006
meters and RL+ = 0.07 meteré and is shown in Plate 2.

Two parameters, sound power transmission coefficient and
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transmission loss were measured. The sound power transmission
coefficient provides a measure of how much energy the attenuator will
reflect and was obtained by measuring the acoustic standing wave in the
upstream duct with a probe as indicated in Figure 5.2, Maximum and
minimum pressures were measured and recorded as in Chapter 4 using a
Britel and Kjaer Spectrometer set to a one-third octave filtering band
and a Graphic Level Recorder. The transmission coefficient was obtained
from the measured standing wave ratio n_ using equation (5.11) and is
shown plotted in Figure 5.3 for the original attenuator.

n_ - 1

Ott =1 - H;—ﬁ (5.11)

The transmission loss of the attenuator is defined as the
reduction in decibels between the sound pressure level of the incident
wave Pio and the trangmitted wave Eio. Transmission loss provides an
indication of the performance of the attenuator as it shows to what
degree the sound pressure level in the duct will be reduced by its
installations. As the duct downstream of the attenuator is terminated
anechoically, and thus appears infinite, values of transmission loss
in this case will be identical to values of insertion loss for the same
arrangement. The procedure of Chapter 4 was used to determine the
experimental transmission loss. A calibrated microphone was traversed

. . ] max
in the upstream duct until a maximum in sound pressure level Poo was

, i
reached. The sound pressure level of the transmitted wave Eoo was
measured with a calibrated microphone positioned midstream in the
acoustic flow 0.3 meters from the exit of the attenuator. The trans-

mission loss of the attenuator is then given by equation (4.7) of

Chapter 4, repeated here.
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max
P
00

Transmission Loss = (dB) -20 log10 1+ |R|]

i
- Eoo(dB) (5.12)

where R is the measured pressure reflection coefficient. Values of
experimental transmission loss determined from equation (5.12) for the
original attenuator are plotted in Figure 5.4.

The transmission loss of the attenuator was also measured
using broad band noise in one-third octave bands. To determine the
transmission loss in this case, sound pressure levels were measured in
the incident straight duct terminated directly with the anechoic
termination. The input voltage level to the speaker was recorded in
each one-third octave band for later use. The attenuator was then
placed in position between the incident duct and the anechoic termination,
the input voltage level to the speaker was set to the identical value
as used previously in each one-third octave band, and the sound pressure
level was recorded downstream of the attenuator. The transmission
loss (for broad band noise) was then, directly the difference between
the two measured values of sound pressure level. This technique over-
comes the difficulty in determining the incident sound pressure level
from the recorded sound pressure level in the upstream duct with the
attenuator in position. Experimental values of transmission loss with
band limited broad band noise determined by this method are shown in

Figure 5.5.

5.5 THEORETICAL PREDICTIONS

The radial terms in equations (5.3) to (5.6) and of
Appendix 2 were expressed as power series expansions of Bessel and

Neumann functions from McLachlan (1934) and integrated using Simpson's

rule on the computer as in section 4.4 of Chapter 4 for the compound
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bend. Each series was summed until an error of less than 10 * was
obtained. The resulting constants for each equation were then set in
a 12 x 12 complex matrix, shown in Appendix 3, and the variables of
each wave (Fourier coefficients) were obtained by solving the matrix
using a computer program based on Crout's rule. The predicted values
of power transmission coefficient were then evaluated from the

obtained coefficients by

(5.13)

The theoretical values obtained for the original attenuator
are shown in Figure 5.3 where sound power transmission coefficient is
plotted against a nondimensional frequency parameter, koh. Experimental
values are also shown in the figure for comparison.

The theoretical transmission loss is evaluated as in
Chapter 4 as

T.L. = =10 log (at) (5.14)
where o is the theoretical power transmission coefficient.

5.6 DISCUSSION OF RESULTS

5.6.1 Power Transmission Coefficient

As shown in Figure 5.3, close agreement is observed between
the predicted and measured frequencies at which minima in the trans-
mission coefficient are observed, especially at lower frequencies.

Slight discrepancies between the theoretical and experimental frequencies
of minimum transmission coefficient are thought to be due to

dimensional inaccuracies in the geometry of the attenuator affecting

the mean path difference, between the two ducts. At low frequencies

the wavelength of the incident sound is very much larger than the duct

small scale dimensions and small discrepancies result. However, at
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high frequencies (koh -+ 3.0) this is no longer true and the discrepancies
are larger. Another possible cause of discrepancy may have been ambient
temperature fluctuation during the course of experimentation.

The magnitude of the transmission coefficient which agrees
closely at low frequencies is progressively greater than predicted at
increasing frequencies. Three possible reasons for this behaviour
are suggested as follows:

(D The walls of the experimental duct are not absolutely rigid
as supposed by theory. In fact they were found to vibrate and radiate
sound. Thus vibration through the walls acts as a flanking path to
increase the apparent transmission through the attenuator (as detected
by measurement of the upstream standing wave) .

(2) The minima of the standing wave measured in the ubstream
duct becomes sharper with increasing frequency, particularly for large
values of standing wave ratio n_. Large increases or decreases in
measured sound pressure level in this case were found to occur in very
small changes in position of the standing wave probe. Thus the accuracy
of the minima detected is limited by the size of the probe end hole
(some end effect is apparent) plus small distortions in the signal
causing the actual position of the minima to fluctuate slightly. This
effect obviously becomes worse with increasing frequency as the minima
of the standing wave becomes sharper. The detection of the maxima of
the standing wave is much more accurate as it is characterized by a
gradual change in sound pressure level with distance x in the duct.

(3) The duct dimensions are not exactly as described by theory.

Minimum transmission at the design frequency may be fully
accounted for in terms of reflection at the bends exit plane, interface
D of Figure 5.1. 1In fact, the theory of Chapter 3 which describes the

exit plane as composed of two vibrating pistons (air) but with variable
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relative phase, dependent upon the wavelength to path difference ratio
describes quite well the overall transmission of the attenuator.
However the presence of additional minima in the experimentally
determined transmission coefficient that occur at values of koh = 0.6,
i.3, 2.6...shown in Figure 5.3 cannot be explained by considering
reflection at the exit interface D alone. The additional minima are
due to multi-reflections at interfaces A and D and are fully accounted
for by the more exact theory presented in this chapter. The frequencies
at which additional minima occur depend upon the magnitude of the path
difference relative to the mean lengths of either of the ducts in the
compound bend. For convenience we will take the inside mean length as
the standard length for comparison. Thus the ratio of the inside duct
mean length to path difference determines the frequencies of additional
minima.

The following strategy is now possible. Choice of the path
difference determines the design frequency while independent choice of
the mean inside path length to path difference ratio determines the
frequencies of additional minima. Thus for a given design frequency
the ratio can be chosen to optimize the rejection characteristics of
the attenuator by appropriate adjustment of the frequencies of the
additional minima, Optimum performance in this particular case is
taken as a ten decibel transmission loss over as wide as possible a
frequency range. Figure 5.4 shows that the transmission loss of the
original attenuator is characterized by a series of high rejection peaks
interspaced by low rejection of sound at a number of discrete
frequencies. If the peaks could be moved closer to each other, centred
on the design frequency then the minima between peaks may be increased
to greater or equal to ten decibels.

In practice one proceeds by keeping the path length difference
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between the inside and outside ducts in the bend constant and varying
their total lengths or equivalently the ratio of their lengths. The
ratio of lengths of the original attenuator whose transmission co-
efficient is shown in Figure 5.4 is 2.00, however the optimum ratio
of lengths for a crescent shaped center body with a design frequency
of 844 Hz has been determined by these investigations to be 1.67.
With this choice the position of the extra minima are moved closer to
the design frequency and a continuous rejection band of greater than
ten decibels over three quarters of an octave is achieved.

The attenuator designed for optimal attenuation
characteristics has the following dimensions. Referring to Figure 5.1
its radii are R1 = 0.184 meters, R2 = 0.248 meters, R3 = 0.006 meters
and Rq = 0,07 meters. |

The theoretical and experimentally measured transmission
coefficient values of this attenuator are shown in Figure 5.6. It
can be seen that the extra minima have indeed moved closer to the
design frequency than those shown in Figure 5.3. 1In the model
attenuator a rejection band of 430 Hz centered at a design frequency
of 844 Hz was achieved.

Closer agreement is obtained in the position of theoretical
and experimentally measured minima produced by the optimum attenuator.
This is due to more accurate machining of components in the attenuator

thus achieving the correct mean path lengths.

5.6.2 Transmission Loss

Theoretical and experimentally measured values of trans-
mission loss for the optimum attenuator are shown in Figure 5.7 for
a pure tone, while the transmission loss of the optimum attenuator
with broad band noise source is shown in Figure 5.8.

At the design frequency the rejection of sound is very
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nearly complete so that the transmission loss in a narrow frequency
band about the design frequency depends upon the bandwidth. The
narrower the bandwidth the greater the transmission loss. The peaks
shown in Figures 5.4 and 5.7 approach infinity (dB) for a narrowing
frequency band. In the analysis used to derive the theoretical
transmission losses of Figure 5.4 and 5.7 a bandwidth of 25 Hz has
been used but as pure tones were used for measurement of the trans-
mission loss, occasionally very much greater rejection levels than
predicted were observed. Subsequent investigations with narrower
theoretical bandwidth increments showed that these high anomolous
values could always be accounted for on the basis of the analysis
presented here.

Small discrepancies between the theoretical predictions and
the experimental measurements are thought to be due to small
dimensional inaccuracies in the models as previously discussed.
However, much closer agreement is obtained between the actual magni-
tude of the theoretical transmission loss and that measured
experimentally, than that shown by the transmission coefficients in
Figures 5.3 and 5.6. Thus the attenuator performs far better than
shown by measuring the standing wave alone. For example, the power
transmission coefficient of the optimum attenuator was measured to
be 0.13 at the design frequency. Interpolating the experimental
transmission loss from this value, using equation (5.14) one obtains
an interpolated experimental transmission loss of 15.6 dB. However
the actually measured transmission loss at the design frequency of
the optimum attenuator is seen from Figure 5.7 to be 45 dB, This
result tends to support reason number (2) presented previously to
explain the disérepancies between the magnitude of experimental and

theoretical transmission coefficient. Hence measurement of the
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standing wave alone is a poor indicatiom of the performance of an
attenuator, unless special precautions are undertaken to increase the
sensitivity of the microphone probe with distance and increase the
stability of the acoustic signal. This especially applies at higher
frequencies.

Figure 5.7 shows that the optimum attenuator achieves a
high transmission loss at a number of characteristic frequencies
corresponding to the natural reflections between interfaces A and D
of the attenuator. At these frequencies, a pure tone would be
virtually completely reflected. As well as this a continuous
rejection band of ten decibels over three quarters of an octave is
obtained by careful choice of the attenuator dimensions as discussed
previously. This result should be compared to the much narrower
operating band of the original attenuator.

The transmission losses measured for the original and
optimum attenuators with a broad band noise source, shown in Figures
5.5 and 5.8, also indicates the wider operating band of the optimum
attenuator. For the optimum attenuator greater than ten decibels
transmission loss is obtained over two one-third octave bands. It
is also interesting to note from these figures that by superimposing
the corresponding pure tone transmission loss the broad band trans-
mission loss is seen to be approximately a logarithmic sum of the
pure tone transmission loss, as omne would expect. The figures also

show that the attenuator substantially reduces broad band noise.

5.6.3 Curved Duct Radial Pressure Distribution

It is appropriate to the understanding of the performance
of the attenuator to introduce the concept of curved duct radial
pressure distribution. Values of theoretical and experimentally

measured curved duct pressure amplitude distribution for a duct of
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aspect ratio a = 2.25, which corresponds to curved section 3 of the
original attenuator have been discussed in Chapter 2 and are shown

in Figure 2.5. It can be seen that at low frequencies, corresponding
to values of the dimensionless frequency koh < 1.5 acoustic waves
propagate with only a small variation in pressure amplitude across the
duct for a bend of aspect ratio a = 2.25. However as the frequency
increases, the variation in sound pressure amplitude across the duct
becomes more marked. If one had assumed plane wave propagation in
the attenuator at all freqﬁencies (below the cut-off frequency of the
(1,0) mode) it would appear that this assumption would hold at lower
frequencies but be inaccurate at higher frequencies due to non plane
propagation in the curved sections. However later work has shown

this not to be the case. The actual variation in pressure or velocity
amplitude of the (0,0) mode has little effect on the impedance of the
curved.duct. The effect the curved duct does have is to change the
effective path length of the wave slightly as discussed by Cummings
(1974). For the frequencies and aspect ratios used here this effect

is considered marginal.

5.7 GENERAL DESIGN GUIDE OF ATTENUATOR

The design guide proposed is intended to be approximate
and apply only for low flow velocities in the duct system. Flow
effects at higher velocities will be considered in the next chapter.
The basic assumption is that the acoustic waves propagate as plane
waves with phases determined approximately by the mean path length of
the duct in all sections of the attenuator. In this case, any shape
as well as the crescent shaped center body may be used to give the
required dimensions.

The basic design steps are:



(L Calculate the path difference necessary to give the

required deisgn frequency.

(2) Optimize the bandwidth by careful choice of duct dimensions

using a trial and error method based on this analysis.

(3) Adjust the shape of the center body to give the combination
of most compact shape required with the least sharp bends

to give the lowest pressure drop.
* This step may be changed if for instance it is desired to cancel fan
harmonics, then the frequencies at which maxima occur may be adjusted
by choice of dimensions to correspond to the frequencies of the fan

harmonics.

5.8 SUMMARY

An attenuator with an inherently low pressure drop
coefficient which may be installed in a duct bend has been described.
The attenuator when optimally designed is capable of providing a
transmission loss of greater than ten decibels over a frequency range
of three quarters of an octave in the very low frequency range.
Optimization of design is facilitated by a theoretical description
that has provided good agreement between theory and experiment.

The attenuator also provides large transmission losses at
a series of discrete frequencies all below the cut-off frequency for
the first cross mode in the duct. The presence of these discrete
frequencies is explained by reflection of incident sound at the exit
and entrance of the attenuator. Their relative distribution is
determined by the geometry of the attenuator.

It is found that measurement of the standing wave alone
gives a poor indication of the performance of the attenugtor due to
difficulty in measuring accurately the minima of the generated standing

wave when rejection is high.
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CHAPTER 6

THE EFFECT OF FLOW ON THE PERFORMANCE OF A REACTIVE ACOUSTIC

ATTENUATOR

6.1 INTRODUCTION

In Chapter 5 a reactive acoustic attenuator was
described which combined high transmission loss with low pressure
drop. Although the latter chapter established that high levels of
attenuation can be combined with good aerodynamic properties, it did
not consider convection of the propagating medium.

Previous investigations into the effect of flow in the
attenuation obtained in lined ducts and ducts with side branch
resonators have shown that flow can significantly alter the performance
of an attenuator. Mechel (1962) and Kurze and Allen (1971) found that
flow in the direction of propagation of sound in a lined duct reduced
the attenuation obtained while flow in the direction opposite to the
direction of propagation of sound increased the attenuation. Theory
shows that to a first approximation the effect may be accounted for
by an increase or decrease in wave speed due to convection.

Lambert (1956) calculated theoretically the insertion loss
of a side branch resonator as a function of Mach number in the main
duct and found the theoretical insertion loss characteristics
sensitive to flow especially at frequencies near resonance. He
found that small changes in Mach number could considerably alter the
insertion loss obtained near resonance and showed this to be due to

flow induced changes in impedance at the various junctions. It is
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also interesting to note that Lambert could not confirm these results
experimentally due to noise generated by the air flow exciting the
air column in the quarter wave tube. This result points out that

a simplified approach to the problem of fluid convection may lead

to misleading theoretical results.

In this chapter the effect of Mach number on the performance
of the attenuator discussed previously in Chapter 5 is considered.
The effects of flow have been previously discussed by Fuller and Bies
(1978 ¢) and (1978 D). As the performance of the attenuator is based
upon impedance mismatches generated by differences in arrival times
of propagating waves, and is thus critically dependent upon wave-
number, it is expected that flow will significantly affect the
operating characteristics of the device.

Equations recently developed by conformal mapping
techniques described in Chapter 2 which describe low frequency sound,
propagation in the curved ducts with flow are used to analyse sound
propagation in the curved parts of the attenuator. Equations for
sound propagation in straight ducts with flow are used to describe
the straight parts of the attenuator. The analysis closely follows
the procedure of Chapter 5 except that flow of the propagating medium
is considered. As described in Chapter 2,flow is expected to modify
the energy as well as wavenumber dependent properties of the
attenuator.

Four parameters, pressure reflection coefficient, power
reflection coefficient, power transmission coefficient and transmission
loss are investigated theoretically and experimentally for varying
Mach numbers. Good agreement is obtained and small discrepancies

between prediction and measurement are discussed. These four parameters
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are all necessary to show the varied effect of flow on the operating
characteristics of the attenuator. The two cases of sound propagating
with and against flow through the attenuator are considered. By the
nature of the device the analysis is necessarily limited to frequencies
less than the cutoff frequency of the (1,0) mode in the upstream
incident duct at the highest value of Mach number considered. The
fluid flow is assumed to be uniform, homogenous and irrotational and
due to practical experimental considerations is limited to values of
Mach number less than 0.1. Convection of the propagating medium is
found to alter the performance of the attenuator significantly due to

both wavenumber and energy propagation effects.

6.2 ANALYSIS

The equations to be used in the analysis for sound
propagation in straight ducts and curved ducts with flow have been
previously discussed in Chapters 1 and 2. It is worth noting at this
stage that the modes considered in each section will be exactly as the
no-flow case i.e. one mode, the (0,0), in each sub-section of the
attenuator and two modes in the incident and exit duct of the attenuator.
Thus the curved duct equations will be limited to those describing
the (0,0) mode. If one considers equations (2.86) and (2.89), which
described sound propagation in curved ducts with mean flow by
conformal mapping techniques, in relation to a curved duct of angle ©
it can be shown that these equations for downstream propagation of

sound reduce to

c _ X 1
P = G ERplic R R_ = | (6.1)
1 X 1
Uy = Cooko wp0(1+M) eXp[koRm Rm (1+M)] (6.2)
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In both these equations the harmonic function exp[-iwt] has been
omitted, Rm(=X/6) is the mean radius of the curved section and X is
the mean centerline distance of the curved duct. Thus in the case
of only the (0,0) mode, equations (6.1) and (6.2) show that one is
effectively considering the curved duct section as an equivalent
straight duct. Hence by considering only the exit and inlet
interfaces of the attenuator and applying straight duct equations
with flow and with relative phase determined by the mean centerline
distance one would arrive at exactly the same answer as the analysis
proposed here. However use of the conformal mapping equations has
the advantage of enabling the analysis to be extended to include
higher non-propagating modes generated at the interfaces of straight
and curved ducts with flow, if a greater accuracy of the analytical
result is required. Due to the low frequencies and gradual bends
considered, the small change in radial position from the mean radius
at which the angular wavespeed equals the phase speed of the (0,0)
mode in the straight duct is thought to have only a marginal effect
on the analysis.

The method of analysis follows very closely that outlined
in Chapter 5 except that equations describing sound propagation in
ducts with convection of the propagating medium are used. The
procedure is to: (1) divide the attenuator into sections with relative
coordinate systems; (2) match pressure and acoustic velocities of
propagating and evanescent waves across interfaces of each section
using continuity conditions; (3) obtain the required Fourier coefficients
for determination of transmission coefficients and transmission loss
by using the orthognality property of the cos(mmny/h) function.

Condition (2) implies continuity of pressure and particle

velocity at each interface. In the case of flow of the propagating
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medium, the particle velocity must include the convection term
normally ignored in the no-flow case. As both wave systems on either
side of a particular interface are travelling in a medium convecting
at the same velocity vector, then this continuity condition is correct.
However for the case of a wave striking a boundary between two fluids
moving at different velocities then continuity of particle displace-
ment rather than velocity must be used (Ingard (1959)).

As described by equations (1.63) and (1.64) of Chapter 1

the particle velocities are related to the acoustic pressure by

d _p .d
ux B PoW Emo (6.3)
u_ _p ,u
and u 0 Emo (6.4)

where Eio = kO(E—M)/(l—eM) and E;o = k0(€+M)/(1+eM). These symbols

will be used in the following analysis. TFor the (0,0) mode

The arrangement of the attenuator, with coordinate
systems and acoustic waves considered, is shown in Figure 6.1. As
mentioned previously the number of modes considered will be exactly
as the no-flow case. Thus only the (0,0) mode is shown in the sub-
sections of the attenuator. Two variations of the attenuator shown
in Figure 6.1 will be investigated. These are the optimum attenuator
with dimensions R = 0.184 meters, R2 = 0.284 meters, R3 = 0.006

1

0.076 meters and the original attenuator with

meters and Rh

dimensions R 0.229 meters, R = 0.292 meters, R3 = 0.051 meters and
2
R = 0.114 meters. The attenuator is acoustically described by
L
dividing it into sections with suitable coordinate systems as shown

and considering sound propagation and reflection of travelling waves

in each section. As there is no discontinuity in the z direction, a
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FIGURE 6.1, Arrangement of the attenuator with co-ordinate systems
and modes considered in the analysis.
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two dimensional coordinate system is used.

Since the frequencies considered are well below the cut-
off frequency of the (1,0) mode in the curved sections only the (0,0)
mode 1is conside&ed in these parts of the attenuator. Evanescent
curved duct modes generated at the interfaces are also ignored. This
simplification gave an accurate result in the no-flow case of Chapter
5 and is used again here. As explained in Chapter 5 since the number
of modes considered in the curved sections is limited to one, for a
solution to be obtained at interfaces B and C then the number of
modes considered in straight subsections 2 and 4 will also be one each.
Similarly as in Chapter 5 continuity of axial and tangential particle
at the interfaces is postulated. This approximation gave an accurate
result in the no-flow case and will be used again here.

Hence at interface A, where x = 0, 6 = 0, x' = 0 continuity

of acoustic pressure provides equations (6.5) and (6.6)
Pi expli(ut - kd x)] + $ Pt cos[(mr/h)y] expli(wt + K x) ]
0o oo m=0 "mo mo
_ A1 . d r . u
= Coo expl[i(uwt - voe)] + C00 exp[i(wt + voe)] (6.5)
for 0 <y < h/2
and P:.L expli(wt - kd x)] + T Pt cos[(mm/h)y] expli(wt + k" x) ]
00 oo m=0 ~mo o

_ i . _ 4 T . A
= A00 exp[i(wt koox )] + Aoo expli(wt koox )] (6.6)

for h/2 <y < h

In equations (6.5) and (6.6) and equations to follow
superscript i and r denote incident and reflected wave amplitudes in
the attenuator respectively, while superscripts d and u denote down-

stream and upstream propagation of sound respectively.
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The Fourier coefficients are obtained by multiplying both
sides of the continuity equations by cos[(mn/h)y] and integrating

' or r. The

over the interface surface with respect to y, y
orthognality property of the latter function allows determination of

r i . . R : i
the Pmo and Emo coefficients form = 0, 1, 2... as given in equations

(6.7) and (6.8).

m = 0,
i T i r i r
Pooh + Pooh = Cooh/z + Cooh/2 + Aooh/Z + Aooh/Z (6.7)
m # 0,
b
PX h/2 = Co R [1 - (-D™ + ¢GRI 1 - (<D™
Al G- (DT - AL GE L - (<D™ (6.8)

Similarly continuity of tangential particle velocity at A provides

m= 0,
+ AL k__(n/2) - AL k_(h/2) (6.9)
m# 0,
-PITIOEIIIJIO(h/Z) = COOkOO(ZmT\')[l —( 1) ] OO OO(Zm'lT) [1 -( l) ]

i
- Aookoo(ZrmT)[l -1 ] i Aookoo(ZmTr

)L -(-1)™]
(6.10)
The equations derived for continuity of pressure and axial
particle velocity at interfaces B, C and D are given in Appendix 2.
It can be seen that these equations consist of an infinite set with

an infinite number of unknowns. In order to proceed we shall truncate

the series so that the number of unknowns equals the number of
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of equations. As already stated the number of modes considered

in Sections 2, 3, 4 and 5 are limited to one each. Thus to solve
the problem two modes must be considered in Sections 1 and 6, as
described in the previous chapter. The two modes considered in
Sections 1 and 6 are necessary to provide continuity across
interfaces A and D when the propagating waves in the minor ducts are

out of phase.

6.3 EXPERIMENTAL APPARATUS AND METHOD

The performance of the attenuator with flow was
investigated with the arrangement shown in Figure 6.2. The duct
system is basically the apparatus used for previous investigations
into sound propagation in ducts, having a 0.0635 x 0.127 meter cross
section fabricated in removable sections from 0,0254 meter thick
wood. A centrifugal fan driven by a variable speed D.C. motor
provides air flow through the duct system at different Mach numbers.
Flow velocities were measured midstream using a pitot-static tube
positioned as in Figure 6.2. Due to flow separation in the
attenuator it was not thought necessary to measure the flow velocity
using a more accurate method than at midstream. At the maximum
rating of the motor a flow rate of M = 0.08 was measured in the
upstream duct. A muffler was positioned downstream of the fan to
reduce fan generated harmonics and attenuate negative travelling
waves.,

For measurements of sound propagating with flow the sound
source was positioned 1.7 meters from the entrance to the attenuator.
To eliminate reflections from the exit plane of the straight duct
section, the downstream duct was anechoically terminated. For

measurements of sound propagating against flow the anechoic termination
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FIGURE 6,2, Arrangement of the experimental apparatus.
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was removed and the sound source positioned 1.7 meters downstream.
In this case the fan muffler acts as an anechoic termination to
waves leaving the attenuator. The experimental apparatus arranged
for measurement of the upstream case is shown in Plate 3.

A pure tone was used as the acoustic signal and when
measured with-a Briiel and Kjaer Heterodyne Analyser with a 3.16 Hz
bandwidth provided a signal to noise ratio greater than 50 dB at
maximum flow. A large signal to noise ratio is necessary to detect
maxima of transmission loss. The frequency range investigated was
from 200 to 1200 Hz which is less than the evanescent cut-off frequency
of the (1,0) mode at M = 0.3. Four parameters were measured which
were pressure reflection coefficient, power reflection and transmission
coefficientsand transmission loss.

The pressure reflection coefficient defined as the ratio
of the reflected pressure amplitude to the incident pressure amplitude
was obtained by measuring the acoustic standing wave in the incident
duct. As discussed by Alfredson (1970) it is possible with mean
downstream flow to measure a pressure reflection coefficient of greater
than unity. In this case the usual standing wave theory (Beranek (1950))
is modified to keep the nett energy flux in the correct direction.

Thus for the reflection coefficient R greater than unity,

the standing wave ratio o is given by

n_ = 1+R/R-1 (6.11)
and for R less than unity
n_ = (L +R)/(1 -R) (6.12)

Whether R is greater or less than unity can be determined

by observing the minima of the standing waves. If R > 1 the minima



PLATE 3.

(SWA) standing wave apparatus,

The experimental apparatus for upstream propagation of sound,

(S) speaker, (A) attenuator, (HA) heterodyne analyser, (GLR) graphic level recorder, (MP) microphone,

(PSP) pitot static probe, (M) muffler, (CF) centrifugal fan, (FC) fan control.

€Le
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will decrease as the probe moves towards the source and equation
(6.11) must be used to determine R. If R < 1 the minima will
increase as the probe moves towards the source and equation (6.12)
must be used.

Values of experimental pressure reflection coefficient
for the optimum attenuator are plotted in Figures 6.3(a), 6.3(b) and
6.3(c) for both upstream and downstream propagation of sound for flow
speeds of M = 0, 0.04 and 0.08 respectively.

The experimental power reflection and transmission
coefficient were determined from measured values of pressure reflection
coefficient. In the no-flow case the power reflection coefficient
is simply the square of the pressure reflection coefficient. However
with mean flow as discussed previously the power reflection and
transmission coefficients are related for both upstream and down-

stream cases to the pressure reflection coefficient by

1-M

= o 2
o R 1+M) (6.13)
u _ L2 M
o R (l—M) (6.14)
and a, = 1- o (6.15)

Values of experimental power reflection coefficient for the optimum
attenuator are plotted in Figures 6.4(a), 6.4(b) and 6.4(c) for

M= 0, 0.04 and 0.08 and values of experimental power transmission
coefficient are plotted in Figures 6.5(a), 6.5(b) and 6.5(c) for the
same flow conditionms.

The transmission loss was measured as in the no-flow case
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by traversing a Brilel and Kjaer one-quarter inch calibrated micro-
phone in the incident duct until a maximum in sound pressure level was
recorded. A nose cone was fitted to the microphone to minimize noise
generated due to flow turbulence. The sound pressure level of the
plane wave leaving the attenuator was measured by a calibrated
microphone mounted flush with the duct inside wall and perpendicular
to the flow. The transmission loss was then calculated from equation
(5.12) of Chapter 5 and is plotted in Figures 6.6(a), 6.6(b) and
6.6(c) for the dptimum attenuator and in Figures 6.7(a), 6.7(b) and
6.7(c) for the original attenuator for flow speeds of M = 0, 0.04

and 0.08 and upstream and downstream propagation of sound.

6.4 THEORETICAL PREDICTIONS

The coefficients of equations (6.7) to (6.10) and of
Appendix 2 were obtained using the procedure outlined in Chapter 5.
The constants of the equations were evaluated simply (as no Bessel
functions were present) and set into a matrix given in Appendix 3.
The complex matrix was solved as in Chapter 5 using a program based
on Crout's rule.

The theoretical power reflection coefficient is given

simply by

r

00
R —

00 (6.16)

for both upstream and downstream cases. The theoretical power
reflection coefficient for downstream and upstream propagation is
related to the theoretical reflection coefficient by equations
(6.13) and (6.14) respectively.

The theoretical power transmission coefficient is



225

50 1
=0

m A()__ -

w

n

2 30ik -

c o

o

@ 20 d

= A

£

w

c

(1"

— 10 | -

A
K
(o)
0 1.0 2.0 3.0 4.0
Wave number parameter, kyh

FIGURE 6.6 (A)l Transmission loss of the optimum attenuator with flow.
‘ M= 0. , theoretical curve; O , experimental

values for downstream propagation of sound;
A , experimental values for upstream propagation.



226

M=0.04

50

40 —

ap’

SS0)

uolssiwsuedj

4.0

koh

parameter ,

number

Wave

0.04. .

M=

Ficure 6.6 (B).



227

50 ] |

M=0.08
40 |- A

, dB

loss

Transmission

Wave number parameter , kyh

FiGure 6.6 (C). M = 0,08,



228

50 T I I |
m l.O— o
g ol
0
o 30+ n
S ° A
o 20 A e -
E .
pd A
(g
= 10 | -

%39
| |
0 1 A

Wave number parameter , kjh

Ficure 6.7, (p) Transmission loss of the original attenuator with flow.
M=0. , theoretical curve, O , experimental
values for downstream propagation of sound;

A , experimental values for upstream propagation.




229

50 i — —

M=0.04
40} }

, dB

loss

30 ‘ =

20 |-

Transmisstion

10 |-

Wave number parameter, kgh

Ficure 6.7, (B), M = 0.04.



230

50 J [ 1 I T I T
M=0.08
D W -
(V4]
wn
° 30+ -
A
cC
= o
‘w
w200 =
E
wn
[
(41
[
~ 10 ]
| L
0 3 4

Wave number parameter, kgh

Ficure 6.7. (¢). M = 0.08.



231

t i (6.17)

for both downstream and upstream cases. Finally the theoretical
transmission loss is related to the theoretical transmission
coefficient by

T.L. = =10 log (at) (6.18)

for both downstream and upstream cases.
The four theoretical parameters are plotted in Figures
6.3 to 6.7 for comparison with the respective experimental results.
Figures 6.8 and 6.9 show theoretical transmission losses
for flow rates up to M = 0.3 for the optimum and original attenuator

respectively.

6.5 DISCUSSION OF RESULTS

6.5.1 Pressure Reflection Coefficient

As can be seen in Figures 6.3(a), 6.3(b) and 6.3(c) there
is reasonable agreement between experiment and theory. The main reason
for error in the experimentally measured reflection coefficient is due
to difficulty in measuring standing wave minima. As encountered in
the no-flow case of Chapter 5, if the standing wave ratio is large,
the minima are quite sharp and very easily obscured by, for example,
overtones due to small distortion in the signal. The minima are
thus very difficult to measure accurately and the measured magnitude
of sound pressure level is always too high. The standing wave ratio
and thus the corresponding reflection coefficient in this case will
always be too small.

Figures 6.3(b) and 6.3(c) demonstrate a theoretically

predicted pressure reflection coefficient greater than unity for
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downstream propagation. The ratio of the maximum reflection
coefficient at M = 0.08 to the maximum reflection coefficient at
M = 0 from Figures 6.3(c) and 6.3(a) is approximately 1.16. Using
the relationship discussed in Chapter 1 that Rmax before flux

reversal occurs is given by

Rmax = R(1+M)/(1 - M) (6.19)

we thus obtain theoretically for M = 0.08, R =1,
R = 1.174
max

Similarly for the upstream case from Figure 6.3(c) and 6.3(a) a ratio
is determined to be approximately 0.84 while for M = 0.08, R =1 we

theoretically obtain

=
I

ax R(1L -M)/A+M (6.20)

0.852

Thus ignoring slight changes in performance due to
convected wave number effects, the major effect of convection of the
propagating medium on the pressure reflection coefficient is to increase
it by a factor of (1 + M) /(1 ~-M) for the downstream case and decrease
it by a factor of (1 - M)/(1 + M) for the upstream case.

The experimental pressure reflection coefficients measured
for the upstream and downstream cases confirm the effect that flow
has on the pressure reflection coefficient. Measurements for the
upstream case show a definite trend to reduction with increasing flow
rates. The downstream case however does not agree quite as well. The
evaluation of the downstream pressure reflection coefficient for R > 1
depends upon detection of the change in magnitude of the minima with

distance traversed by the probe. As discussed previously the minima
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are difficult to measure accurately and thus this information was

obscured.

6.5.2 Power Reflection and Transmission Coefficients

The theoretical power reflection coefficient plotted in
Figures 6.4(a), 6.4(b) and 6.4(c) is shown to be the same for both
upstream aﬁd downstream propagation of sound. This supports the
theoretical predictions of Section 1.3.2 of Chapter 1. The experimental
values agree well with the theoretical predictions. However the
downstream experimental power reflection coefficient is found to be
consistently less than the upstream coefficient. The discrepancy
between upstream and downstream experimental values was thought to be
due to flow separation in the attenuator and is discussed in more
detail later.

The theoretical power transmission coefficient in Figures
6.5(a), 6.5(b) and 6.5(c) demonstrates similar agreement with
experimental results. Although the power transmission cocefficient was
theoretically evaluated independently it can be seen that for the same
flow rates the power transmission coefficient plus the power reflection
coefficient equals unity.

Thus although flow has the effect of increasing or
decreasing the pressure reflection coefficient markedly due to
convection of energy the same effect is not shown in the power
reflection and transmission coefficients. The small changes in the
theoretical power coefficients are due to changes in the convected
wavenumbers thus altering the relative phases at interfaces A and D
of reflected and incident waves. Wavenumber effects are more apparent
in a reduction of tranmission loss and will be discussed in the next

section.
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6.5.3 Transmission Loss

Figure 6.6(a) demonstrates that the analysis provides a
very accurate description of the performance of the optimum attenuator
without flow. This figure should be compared to the corresponding
Figure 5.6 of Chapter 5 where the theoretical curve was derived more
exactly using cylindrical co-ordinates for sound propagation in the
curved sections. A comparison of these two figures shows that they
are nearly identical and that the conformal mapping equations give a
very good result in the case of no flow. In Figure 6.6(a) the small
discrepancies between theoretical and experimentally measured values
of the frequencies at which maxima occur were thought to be due, as
previously, to dimensional inaccuracies and variations in ambient
temperature during the course of experimentation. However, for
increasing Mach number, the theoretical prediction shown in Figures
6.6(b) and 6.6(c) is decreasingly reliable at the maxima. At
M = 0.08 good agreement is obtained at all frequencies except at the
peaks where theory underestimates the measured transmission loss.

The discrepancy may be due to flow separation in the
curved sections of the attenuator. The theory assumes that flow is
uniform at the interfaces and boundary layers are ignored. However,
at flow velocities of M > 0.04 the flow is likely to separate from

"SlOW"

the curved sections of the attenuator and thus effectively
the wave propagation over a part of the reflecting interfaces of the
attenuator. This explanation is supported by the experimental
results of transmission loss of the original attenuator shown in
Figures 6.7(a), 6.7(b) and 6.7(c) which demonstrate better agreement

between theory and experiment than the optimum attenuator, especially

at M = 0.04. The original attenuator has less severe curved sections
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than the optimum attenuator and separation is thus likely to occur
at a higher flow velocity leading to improved agreement due to more
uniform flow over the exit and inlet surfaces.

The theory predicts that convection of the propagating
medium will reduce the magnitude of the transmission loss peaks with
increasing Mach number. This can be understood by considering that
the rejection peaks are critically dependent on the arrival times of
waves at interfaces A and D. Flow is found to disturb the sensitive
phase balance needed for high reflection of sound. This reduction in
maxima of transmission loss is demonstrated in the experimental
values of Figure 6.6(c) but not to the magnitude predicted.

A theoretical comparison of transmission loss values for
flow rates up to M = 0.3 for the optimum attenuator is shown in
Figure 6.8. At M = 0.3 rejection is reduced to a single narrow peak
centered on the design frequency. At this velocity the attenuator
would theoretically only have a satisfactory transmission loss over
a very narrow frequency band. Figure 6.8 also shows that the design
frequency has reduced with increasing Mach number independent of
direction of propagation of sound. As the design frequency is
determined in the no-flow case by wavelength considerations, one
would intuitively expect the design frequency to increase with sound
propagating with the flow and decrease with sound propagating against
the flow. However, this reduction is similar to a reduction in
resonant frequency of a tube open at both ends with the propagating
medium convecting at Mach number M. The new resonant frequency of
the tube is given by f' = (1 - M2)f. Similarly if the design
frequency of the attenuator without flow is 844 Hz then a flow
velocity of M = 0.3 would £heoretically reduce it to 769 Hz. This

value agrees well with the new design frequency determined theoretically
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by the analysis and shown in Figure 6.8 for a flow rate of M = 0.3,

This also explains why the attenuator theoretically
provides the same transmission loss independent of the direction of
the flow. 1In either case the travelling waves are slowed or
increased in speed on one leg and vice versa on the return leg of
the round trip between interfaces. Similarly as discussed in
Chapter 1 the theoretical transmission loss is unaffected by the
direction of convection of the propagating medium. Experimental
values of transmission loss differ however, depending on the direction
of flow. The effect was most likely due to separation. For down-
stream propagation of sound separation occurs near the acoustic exit
of the attenuator and interferes with the major reflecting interface
A. For upstream propagation of sound separation occurs at the
acoustic inlet interface and thus has a secondary effect. The
velocity profile at the acoustic exit interface in this case, would
be close to uniform.

Figure 6.9 demonstrates that a flow rate of M = 0.3 has
virtually destroyed all theoretical attenuation obtained using the
original attenuator. Thus it is important to optimize the design of
the attenuator to reduce the effects of flow on the magnitude of
transmission loss to be expected as well as providing the broadest
operating band possible of useful (10 dB) transmission loss.

In the velocity range considered experimentally, the
results show that although flow severely reduces the magnitude of the
rejection peaks a continuous band of at least 10 dB transmission loss
is still obtained over three quarters of an octave when using the
optimum attenuator,largely due to separation in the bend. Thus the
attenuator still performs well for incident duct velocities of

M € 0.08. Different configuration attenuators with different radii
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may lead to different separation characteristics and altered
experimental values but at the flow velocities for which the
attenuator is most likely to be used this is unlikely to reduce the

effectiveness of the attenuator.

6.6 SUMMARY

The investigation demonstrates clearly that convection
of the propagating medium affects the operating characteristics of
the attenuator quite markedly. Even at low values of Mach number
(M < 0.04) the high levels of attenuation obtained at the peaks in
the no-flow case are reduced substantially.

Flow has been shown to increase the pressure reflection
coefficient by a factor of (1 + M /(1 - M) for downstream
propagation of sound and decrease the coefficient by a factor of
(1 - M)/(1L + M) for the upstream case.

Theory predicts that the attenuator performs identically
from an energy point of view with sound propagating with or against
the flow. Changes in energy transmission are found to be due to
changes in wavenumber arising from increased or decreased phase
speed with flow. Experiments, however, show that flow has a greater
detrimental effect when sound propagates against the flow through the
attenuator.

Flow also has the effect of lowering the design frequency
by a factor of (1 - M2) independent of direction of propagation of
sound relative to flow.

Although the maxima of transmission loss are reduced, for
flow speeds of M < 0.08 a continuous band of at least 10 dB transmission
loss is still measuréd over three quarters of an octave when using an

optimized attenuator.
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CHAPTER 7

A DELAY LINE REACTIVE ATTENUATOR FOR USE IN
FLOW DUCTS OF CIRCULAR CROSS SECTION

7.1 INTRODUCTION

The investigations of Chapters 5 and 6 have established that
the principle of reactive attenuation can be applied very successfully
to low frequency sound in ducts with and without flow of the prop-
agating medium. However the arrangement of the attenuator discussed
in Chapters 5 and 6 must be fitted into a bend in the duct system to
obtain the necessary path difference for reflection of sound, hence
this arrangement is unsuitable for use in straight ducts. As many
duct systems are straight and are usually of circular cross section
it would be useful to develop a reactive attenuator based upon the
same principles applied to the attenuator of Chapters 5 and 6 but
applicable to straight ducts of circular cross section.

It can be seen from Chapter 5 that the high levels of
attenuation obtained are achieved by impedance mismatches generated
at the exit and inlet surfaces of the attenuator. Multi-reflections
between the inlet and exit surfaces have also been shown to give rise
to a broad operating band as opposed to the narrow frequency response
obtained by the more conventional forms of reactive attenuators such
as a quarter wave tube or a Helmholtz resonator. As discussed
previously the impedance mismatch results from the generation of non-
propagating cross modes at the exit and inlet of the attenuator due
to phase differences between the sound waves propagating in the

separate duct sections of the attenuator. At the design frequency the
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impedance at the exit surface is purely reactive and the wave
motion of sound leaving the attenuator consists entirely of a series
of evanescent modes. Thus at this frequency all incident sound to
the attenuator is theoretically reflected.

In this chapter a reactive attenuator suitable for application
in straight ducts of circular cross section and based upon the
principles of the attenuator discussed in Chapter 5 is investigated
experimentally and theoretically with and without flow. The principle
aim of the investigation is to establish whether high levels of
attenuation can be obtained with the proposed arrangement and thus
the investigation concentrates on the experimental side. However the
attenuator may be modelled in terms of an equivalent electrical
circuit at very low frequencies and by this means it is analysed
theoretically at very low frequencies, using the lumped elements
approach for the case without flow of the propagating medium. Analysis
at higher frequencies and in the presence of flow is not attempted.

The two parameters of pressure transmission coefficient and

transmission loss are investigated experimentally for flow speeds of

M=0, M=0.22 and M = 0.37 for sound propagating downstream and

M

0, M= 0.22 for sound propagating upstream against the flow. The
investigation is limited to frequencies less than the cut-off
frequency of the (1,0) mode in the incident duct.

It is proposed to obtain attenuation by creating an impedance
mismatch over a cross section of the duct. The resulting impedance
mismatch will generate a series of evanescent modes and will cause
high reflection of low frequency sound. This approach to reactive

attenuation should be compared to that of Poole and Leventhall (1976)

who introduced an antiphase "copy" of the incident sound in a



242

rectangular duct by means of an arrangement of speakers mounted in
the duct wall and driven from an amplified, electronically phase
shifted signal from a microphone positioned so as to sense the
incident sound field. As Poole and Leventhall explained, the sound
field generated by the speakers does not cancel or destroy the energy
of the incident waves but causes an impedance mismatch and hence
reflection of sound.

Poole and Leventhall met with limited success in the experi-
mental implementation of their idea, a major problem being that the
introduced sound field tended to propagate upstream towards the
sensing microphone. Poole and Leventhall obtained reasonably high
attenuation of sound, however the attenuation was limited to a very
narrow frequency band. Furthermore the device was complicated by the
need for electronics to obtain the necessary delay in phase. Any
change in the speed of propagation of the wave due to flow of the
propagating medium or variation in ambient temperature required an
adjustment of the delay necessary to keep the required frequency
centered on the narrow frequency band where satisfactory attenuation
was obtained. Poole and Leventhall did not investigate the effect of
flow on their attenuator.

It is expected that the attenuator discussed in this chapter
will overcome the problems of narrow band width and thus sensitivity
to wave speed. It is also intended to obtain the delay by purely
physical means (without changing the cross sectional shape of the

pipe), thereby eliminating the need for electronic support equipment.
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7.2 DESIGN OF THE ATTENUATOR

The basic arrangement of the attenuator is shown diagramatically
in a section view in Figure 7.1. The attenuator is designed to operate
as follows. When incident plane wave sound reaches interface A some
of the incident sound propagates through a series of slots in the
duct wall while the remainder travels on with phase speed < downstream.
The sound that passes through the slots and out of the main duct
travels through a series of volumes and orifices contained in a tube
positioned on the same centerline on the major duct, as shown. The
orifices and capacitances form an acoustic delay line (Morse and
Ingard, (1968)) so that the sound travelling through them is delayed
and hence the speed of propagation of sound in this part of the
attenuator is less than ot When the waves in the outside (delay)
section of the attenuator reach interface B they are substantially
out of phase with the waves that have travelled in the main duct to
interface B. The amount of phase shift can be adjusted by varying
the size of the volumes and orifices. The actual delay in phase in
simple delay lines similar to that of the attenuator of Figure 7.1
can be calculated using an analogous electrical circuit approach as
described by Morse and Ingard (1968). However this procedure is
limited to very low frequencies and at higher frequencies transmission
line theory should be used. Due to the complicated physical shape of
the attenuator, transmission line theory is not attempted here.

The sound that travels in the delay 1line section of the
attenuator is out of phase with the sound in the duct when it reaches
the secondary slots at interface B. The sound that has travelled in
the delay line radiates through the slots at interface B and induces

a pressure field over a portion cof the inside periphery of the major
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duct. The induced pressure field is thus out of phase with the
incident pressure field over the remainder of the duct cross section
at B. The slots can be thought of as similar to loud speakers
positioned radially on the duct wall. The approximate pressure dis-
tribution induced in the main duct corresponds to that of the (0,1)
mode in a circular duct with rigid walls (Rschevkin (1963)). This
mode, illustrated in Figure 7.2, has a cut-on frequency much greater
than the frequencies over which this attenuator is to be investigated.
If the phase and pressure distribution of the (0,1) mode is faithfully
induced at interface B then high reflection of sound should be
achieved. Similarly it is expected that multi-reflections will be
set up between interfaces A and B of the attenuator, and these will
cause high reflection of sound at a number of frequencies and thus

provide a broad operating band.

7.3 CONSTRUCTION OF THE ATTENUATOR

The dimensions of the attenuator were chosen nominally
except for the internal diameter of the main duct which was chosen to
be 0.0724 m to correspond to the inside diameter of the "suck down"
flow rig tubing already <in use at the University of Adelaide. The
size of the annular orifice plates was fixed for all tests at
R1 = ,054 m and R2 = .076 m. Variation in phase delay through the
delay section of the attenuator and corresponding changes in design
frequency were to be investigated by varying the number of orifice
plates used and hence the volume between orifice plates.

All parts of the attenuator were constructed from mild steel.
The eight rectangular slots in the wall of the main duct at interfaces

A and B were milled at equidistant circumferential positions. Each

slot was chosen to have dimensions of .075m x .013 m, which presented
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FIGURE 7,2, Pressure distribution of the (0,1) mode in a hard walled
circular duct.
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FIGURE 7,3, The perspex tip used on the microphone of the standing
wave apparatus - dimensions in mm.
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equal open area to incident sound to the attenuator as the main duct
itself. TFor ease of insertion of the orifice plates the delay line
center casing was split into two halves. Each orifice plate was fitted
with an O' ring in its outside periphery to ensure tight sealing with
the inside surface of the casing. When placed in position the orifice
plate forms an annular, symmetrical orifice with the outside diameter
of the major duct. The position of the orifice plates can be adjusted
by sliding the plate backwards or forwards on the bore of the delay
line casing. For all tests the orifice plates were positioned such
that the distance between plates and the distance between the end plates
and the center of the interface slots were equal.

To seal the whole attenuator the halves of the attenuator
casing were threaded. The major duct was attached permanently to one
half of the casing and when the other half of the casing was screwed
into position an O' ring at the other end of the major duct provided
the necessary seal. The whole arrangement constitutes a robust,compact
and simple attenuator. The arrangement is also seen likely to cause
1ittle disturbance and hence negligible pressure drop to high speed
flows in the major duct. The finished attenuator split into two

halves, for adjustment of the orifice plates, is shown in Plate 4.

7.4 EXPERIMENTAL EQUIPMENT AND PROCEDURE

7.4.1. The Standing Wave Apparatus

As the attenuator was to be investigated for relatively high
speeds of flow of the propagating medium a special standing wave
apparatus was constructed. The reqdirements of this standing wave
device were that it be: (1) quick acting, (2) provide no disturbance

to the flow in the duct system and (3) be able to withstand low

static wall pressures induced by high speed flows.



PLaTE L, The delay line attenuator (split into two halves

for adjustments of the orifice plates)

PLATE § The microphone carriage of the standing wave apparatus

- 1
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The apparatus was constructed from a 1.4 meter length of
mild steel circular duct with the same internal radius as the
attenuator and the flow rig. A .7mm wide slot was machined over a
distance of 1 meter in the duct wall to enable the traversing of a
microphone carriage. To seal the duct at positions other than where
the carriage was located, the microphone carriage was connected to a
long piece of "Teflon" strip on either end, which was chosen to fit
tightly in the slot yet slide easily when pulled. The strip was sealed
by two rods positioned lengthways on both outside edges. One end of
the "Teflon" strip was connected to a toothed rubber belt which could
be fed into a matching drive pulley driven through a reduction gear
box by a variable speed three-phase motor. Thus to perform an invest-
igation of the standing wave in the duct automatically, the toothed
belt was disengaged from the drive pulley and the microphone carriage
pulled back manually to its starting position. The toothed belt was
then engaged with the drive pulley and when required, the microphone
carriage was traversed under power by switching on the drive motor.
The motor was switched off automatically when the carriage had reached
the maximum traverse distance by a fixed micro-switch. Different
traversing speeds could be obtained by varying the input voltage to
the drive motor. At high voltages, fast traversing speeds (of the
order of 20 cm/sec) could be obtained. The total distance traversed
was .84 meter which limited the lowest usable frequency of the
apparatus to 204 Hz.

For measurements of sound pressure level in the standing wave
tube, a Briiel and Kjaer one eighth inch microphone was used. ‘The
normal diaphragm cover was removed and replaced with a perspex tip,
the a;rangement of which is shown in Figure 7.3. A very small hole

was used as a pressure inlet to increase the accuracy of detection
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of the minima of the standing wave. A small bleed hole was drilled
in the side of the tip to connect to a small channel in the micro-
phone carriage and equalize the static pressure over the back and front
of the microphone diaphragm. The cavity between the diaphragm and
inside of the tip was kept to .1 mm in height to reduce the possibility
of resonances affecting the measured values. The microphone and
probe tip were mounted in the microphone carriage with the probe tip
sitting in a machined metal holder mounted in the "Teflon'" strip.
The top surface of the probe tip was flush with the inside surface of
the "Teflon" strip. Plate 5 shows the microphone carriage and the
"Teflon" strip.

The arrangement allowed fast detection of the standing waves
without disturbances to the flow in the duct. As the probe hole was
aligned perpendicular to the flow, the noise due to turbulent

fluctuations in the flow was minimized.

7.4.2. The "Suck Down'" Flow Rig

To obtain flow through the test section, the "suck down" flow
pipe facility at the University of Adelaide was used. The flow rig
was designed to investigate the coupling of pipes, excited with
internal flow, with the acoustic response of the surrounding medium
(Rennison (1976)), as well as more recently the sound generated by
flow through bends and orifice plates. The arrangement of the flow
rig is shown diagramatically in Figure 7.4. The piping system consists
of steel circular sections with an internal diameter of .724 meter.
Each section has a male and female flange at either end‘which,enables
close alignment of the bore. Sealing at the flanges was achieved by
0' rings mounted in each female flange.

The downstream end of the rig was connected to a system of
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tanks of total volume equal to 75m3 which were slowly evacuated to

a pressure of 25 kPa. During the evacuation procedure ‘the tanks are
isolated from the test section by a butterfly valve. The butterfly
valve can be operated remotely by an electric switch. To start the
flow the butterfly valve is opened and air is drawn into the pipe
through a smooth bell-shaped inlet. The flow speed in the test
section is controlled by use of various choked nozzles of different
throat areas which are mounted in the pipe system upstream of the
butterfly valve. The flow speed in the test section was measured by
traversing a pitot tube across the pipe (Rennison (1976)). The
static pressure was measured at the pipe wall. The mean velocity in
the test section was then calculated from the measured profiles. For
this investigation the sonic chokes which induced a mean flow speed
of M = 0.22 (which is the lowest speed of flow possible) and M = 0.37
were used. Higher values of flow speed were impracticable due to a
poor signal to noise ratio. Since the flow speed nozzles were choked,
no sound can propagate upstream through the throat into the test
section. Similarly the nozzle was found to have a low reflection
coefficient to sound propagating downstream. Mechanical noise trans-
mitted through the pipe walls is isolated from the test section by a
series of vibration isclators as shown in Figure 7.4.

Measurements of the flow velocity in the test section showed
that steady flow conditions are obtained within one second of opening.
the butterfly valve. The length of running time is dependent on the
choice of the choked nozzle used. For M = 0.22 the running time was
approximately 15 seconds while for M = 0.37 the running time was
approximately 8 seconds. The time taken to re-evacuate the tanks

between runs is of the order of 10 to 15 minutes depending upon the
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test conditions. Hence a series of tests at different frequencies
using this rig is a lengthy procedure.

7.4.3 Experimental Procedure

To test the performance of the attenuator with flow, the
device was mounted in the flow rig as shown in Figure 7.4. For sound
propagating downstream with the flow the standing wave apparatus was
positioned directly upstream of the attenuator. The acoustic signal
was achieved by using a Tao 35 watt horn driver positioned 2.25
meters upstream from the entrance to the attenuator. A muffler was
positioned between the sound source and the flow inlet to attenuate
sound travelling upstream and radiating out of the inlet. The pressure
reflection coefficient of the muffler was measured separately and
found to be less than 0.2. Use of the muffler allowed the sound
source to be driven at high levels without endangering the hearing of
the person operating the apparatus. The apparatus arranged for the
testing of downstream propagation of sound is shown in Plate 6.

For sound propagating upstream, the standing wave apparatus
was positioned downstream of the attenuator. In this case the muffler
acts as an anechoic termination to waves leaving the attenuator. For
M = 0 the attenuator was tested in the upstream position due to the
nature of the sonic choke, as discussed previously.

The standing wave in the upstream duct was measured with a
Brilel and Kjaer one-eighth inch microphone. The signal from the micro-
phone preamplifier was filtered using a Briiel and Kjaer Heterodyne Analyser
(H.A.) set to a 3.16 Hz bandwidth. As used in the experimental
investigation of Chapter 6, the Beat Frequency Oscillator section of
the analyser was employed as the acoustic signal, thus the filter

center frequency and the acoustic signal were always locked. The



PLATE 6.

The experimental apparatus for downstream propagation of sound, (FI) flow inlet,
(HD) horn driver,

microphone,

(HA) heterodyne analyser,

(SWA) standing wave apparatus,

(DLA) delay line attenuator,
(CD) carriage drive.

(M) muffler,

(DM) downstream

L
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output of the analyser was recorded graphically with a Briiel and
Kjaer Level Recorder for later evaluation. The sound levels of
waves leaving the attenuator were measured with a Briiel and Kjaer
one quarter inch microphone mounted flush with the pipe inside wall,
1.5 meters from the exit of the device. Due to the short running
time of the flow rig and the fact that only one signal could be
measured by the H.A. at any one time, the input voltage to the horn
driver was kept constant at each frequency investigated and the
standing wave distribution and sound pressure level of waves leaving
the attenuator were measured separately on two consecutive runs.
However, the results obtained were still consistent due to the very
stable flow conditions in the test section.

Two parameters were investigated. The power transmission
coefficient was obtained by measuring the standing wave in the up-
stream duct and applying the standing wave theory developed by
Alfredson (1970) for flow and described in Chapter 6. However meas-
urement of the standing wave minima were found to be inaccurate above
1200 Hz and only the case of 5 orifice plates and M = 0 is presented
in Figure 7.5, wherepower transmissioncoefficient is plotted against
the dimensionless quantity wave number multiplied by the main duct
internal diameter. This result will be discussed in more detail
later.

The transmission loss was obtained from the standing wave
maximum and the transmitted sound pressure level using the method of
Chapter 5 and given by equation (5.12), and is plotted in Figures
7.6 to 7.10 for 1 to 5 orifice plates and M = 0. The investigation
was limited to 5 plates due to the "effective length" of orifices
used. This will be discussed in more detail later. For the case

of flow the arrangement of the attenuator with 5 plates alone (due
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to the length of-time between runs) was investigated for both upstream
and downstream propagation of sound. Figure 7.1l shows the transmission
loss of the 5 plate attenuator for a flow rate of M = 0.22 and the up-
stream and downstream cases. Figure 7.12 shows the transmission loss

of the same attenuator for M = 0.37 and sound propagating downstream.
The upstream case was not presented for M = 0.37 due to a poor signal

to noise ratio.

The frequencies investigated were limited to less than the
cut-off frequency of the (1,0) mode. For a circular pipe of internal
diameter of .0724 m with rigid walls, the cut-off frequency of the
(1,0) mode was calculated to be 2771 Hz (Morse and Ingard (1968))

hence frequencies investigated were limited to less than 2500 Hz.

7.5  ANALYSIS

In many cases of sound propagating in tubes the dimensions of
the various parts of the tube are small compared with the wavelength
of sound. 1In this case the behaviour of the sound in the tube is
analogous to the behaviour of an electric circuit with suitable lumped
circuit elements of capacitance, inductance and resistance. For higher
frequencies transmission effects must be taken into account; the duct
system must be described by transmission line theory. In lumped
circuit analysis, acoustic pressure is analogous to the voltage drop
across the corresponding part of the equivalent electrical circuit while
acoustic volume velocity is the analogue of current. Duct systems or
attenuators basically consist of constrictions and volumes. To
correctly analyse the resulting circuit it is necessary to develop
expressions for the electrical analogues of volumes and constrictions
(orifices). The appropriate derivation of these relations is well
explained by Morse and Ingard (1968).

Cavities or volumes are analogous to electrical capacitors as

an additional volume of fluid introduced into the volume causes an
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increase in pressure. Thus cavities or volumes store energy in
potential form. If one considers the acoustically induced cyclic

flow through a constriction or orifice in the duct system it is
apparent that the acoustic energy will pass through the orifice
largely in the form of kinetic energy. The impedance of such an
orifice for low sound pressure levels and zero flow of the propagating
medium is essentially inductive. When there is an energy loss in

the duct system due to radiation of sound from an outlet or losses

due to viscosity,the analogous electrical element used is resistance.

Lumped circuit analysis is only applicable to low frequencies
such that the wavelength of sound is much longer than the filter
element major dimensions. Estimates of the maximum ratio of major
device dimension to wavelength allowable, range from 1/8 to 1/2 a
wavelength. In this analysis the proposed frequency limit of the
analysis will be taken as when the ratio of the major attenuator
dimension to wavelength is 0.5. The major dimension of the attenuator
is 0.4 m thus the upper limiting frequency of the analysis will
approximately be 430 Hz or koDi = 0.58, however as will be shown the
theoretical predictions agree quite well for frequencies above this
upper limiting frequency.

The attenuator of Figure 7.1, modelled in terms of analogous
electrical elements of capacitance and inductance is shown in Figure
7.13 for a 5 plate arrangement. As shown in Figure 7.13 a small
1l ohm resistor is inserted in the main duct line (between nodes 1 and
9) to avoid a loop of inductances, a condition under which analysis
of the circuit is not possible. The value of resistor used, although
it makes analysis possible, does not affect the result
substantially. Viscosity effects at all orifices are ignored and

thus the impedance of the orifices is assumed purely inductive. The
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downstream duct is assumed to look infinite to waves leaving the
attenuator and can be represented as an impedance with a value of
Z = poc/Amd where Amd is the cross sectional area of the main duct.
The impedance of the main duct is represented by either an inductance
or capacitance, depending upon the driving frequency and is in
parallel with the delay line duct. This will be discussed in more
detail later.

The equivalent electrical capacitance values of the cavities

between orifices in the delay line are given by

_ 2
Ceq Adl ng/poco (7.1)

where Ad& is the cross sectional area of the delay line and Xd2 is
the length between plates. Thus for the 5 plate attenuator of the

dimensions of Figure 7.1 spaced evenly apart the value of equivalent

capacitance is

Ceq = 4.473 n Farads

The inductance of the orifices or constriction is given by an
equivalent inductance such that

L = pole
eq A

(7.2)
o

where Ao is the area and 2e is the "effective length" of the orifice

and is given by
L =t + .8YA (7.3)
e o o

and t is the orifice thickness. The "effective length'" allows for
the fact that there will be a small volume of air somewhat larger
than the actual orifice which will participate in the induced motion.

For the orifice plates of Figure 7.1, the effective length is thus
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=
]

.007 + 0.04899

0.056 m

Thus for the main casing of .4 m in length the maximum number of
plates used in the investigation was limited to 5 to emnsure that
adjacent orifices did not acoustically interact with each other,
therefore affecting the delay line. Equation (7.3) is ideally derived
for a circular orifice in a cirecular plate but was thought to
approximately apply at very low frequencies to the annular orifices
used here. The inductance of the orifice openings in the delay line

is thus

Leq = 18.069 Henrys

Morse and Ingard (1968) give an expression, shown in
equation :(7.4) for the equivalent electrical inductance of rectangular
holes or circular orifices. In the lack of other information this
expression is used to describe approximately the impedance of the
siits in the main duct wall leading to the delay line. As 8 slits
were used at the same position, arranged circumferentially, the total
inductance of the arrangement can be considered as all 8 inductances
in parallel. Viscosity effects through the slits were ignored. This

assumption was thought to be justified as the slits are reasonably

wide (.07 m).
Thus,
poXs
Equivalent Inductance of one slit = iA (7.4)
s

where XS is the circumferential length of the orifice and As is the
area of the slit., Thus the total inductance of each arrangement of 8

slits is



269

Leq (1/8) (27.3025)

3.1428 Henrys

Harris (1957) gives the impedance of a section of duct with an open
end as

Amd

7 = i?o% tan [ko(X + 2a%)] (7.5)

where in this case o%* is the end correction factor given by

o* = 0.82R (7.6)
2

X is the length of duct, Amd is the cross secticnal area of the main
duct and R the outside diameter of the duct. Thus the effective
2

length of the main duct of the attenuator is

»
Il

.375 + .059

0.434 m

It can be seen that for varying frequencies equation (7.5)
will be either positive or negative and thus the impedance of the main
duct will be either inductive or capacitive depending upon the driving
frequency. For 0 < kole < 7/2 the impedance is inductive and the
analogous electrical value of the main duct of the attenuator can be

determined from

p

o .
Leq = tan (koﬂe) (7.7)
md o

When the wavelength of sound is much larger than the length of the

main duct,tan(kole) = kole and equation (7.7) reduces to

L o~ ol € (7.8)
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which is identical to equation (7.2). Thus for very low frequencies
the impedance of the main duct is approximately constant and

inductive and its value is
Inductance of main duct = 127.56 Henrys

while for higher frequencies such that kole < m/2 the inductdnce
will be given by equation (7.7).

When /2 < kole < 7 the impedance of the main duct given by
equation (7.5) is negative and is thus capacitive. In this case the
equivalent electrical value is given by

C =—*'—'—2“"i(-" cot(kle) (7.9
oO0 (o]

Values of equivalent inductance and capacitance for frequencies from
200 to 1400 Hz were derived from equations (7.7) and (7.9) to be
used in the later analysis. The performance of the analogous
electrical circuit of Figure 7:13 was analysed using a computer
library program ""SPICE" and a Cyber 6400 computer.

"SPICE" is a general purpose circuit simulation program
for nonlinear D.C., nonlinear transient and linear A.C. analyses.
Circuits may contain resistors, capacitors, inductors, independent
voltage and current sources and other electrical parameters. "SPICE"
uses a dynamic memory management to store elements, models and out-
put values and can thus be used for very complex circuits with up to
500 nodes.

The driving voltage across the input to the equivalent
circuit was assumed to be 1 volt. Thus without any attenuator the
current through the impedance which represents the downstream duct

will be 1/Res where Res = poco/Amd and the power radiated downstream



will be 1/Res Watts. With the attenuator in position the voltage
drop across the impedance representing the downstream duct is cal-
culated from "SPICE" to be V80 (where the subscripts imply nodal
position in the equivalent electrical circuit). Thus the power
radiated downstream with the attenuator in position is V 2Res. The
theoretical transmission loss of the attenuator given by the lumped

circuit analysis is

Transmission Loss = -20 log [Yggl (7.10)
19 {1

For the case of infinite downstream duct the theoretical transmission
loss is identical to insertion loss. Values of theoretical trans-
mission loss derived using the lumped circuit analysis for the 5 plate
attenuator with no flow are plotted in Figure 7.10 for comparison
with experimental results. The broken line at higher frequencies
indicates when the theory tends to be increasingly unreliable due to
a shortening of wavelength relative to the major attenuator
dimensions. The theory was not derived for other arrangements of the
attenuator with fewer orifice plates due to length of computing
time.

For the very low frequency range (0 to 200 Hz) the 5 plate
attenuator was analysed theoretically using equation (7.8) for the

inductance of the main duct of the device and was found to provide

negligible transmission loss in this frequency range.

7.6 DISCUSSION OF RESULTS

7.6.1, No Flow of the Propagating Medium

Figures 7.6 to 7.10 which show the transmission loss of
the attenuator with no flow and with 1 to 5 orifice plates demonstrate

that the attenuator provides excellent rejection of sound over a
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broad frequency range. Increasing the number of plates is seen both
to increase the attenuation obtained at the maximum and increase the
bandwidth over which a minimum of 10 dB transmission loss is obtained.
The best transmission loss characteristics shown in Figure 7.10 were
obtained with a 5 plate arrangement of the attenuator, where a con-
tinuous rejection band of greater than 10 dB was obtained from

koDi = 1.4 to koDi = 2.95 which corresponds to a bandwidth of greater
than an octave. As well as this high levels of rejection of greater
than 20 dB were measured over 322 Hz centered on a frequency of
maximum rejection of 1640 Hz. Figures 7.6 to 7.10 show that increasing
the number of orifice plates increases the design frequency until the
design frequency stabilizes when four orifice plates are used. Further
increases in design frequency are probably limited by the end effect

of the orifice in the delay line.

As stated previously the rejection of sound of the delay
line attenuator is dependent upon an impedance mismatch generated at
the device exit by a series of evanescent cross modes. Thus the
performance of the attenuator is independent of the impedance of the
termination of the downstream duct, as opposed to reactive devices
such as an expansion tube muffler where performance depends upon the
length of the downstream duct. To verify this the transmission loss
of the attenuator with a .83 m length of open duct as a termination
was measured experimentally. In this case the standing waves up-
stream and downstream of the attenuator were measured separately and
the transmission loss calculated from the measured maxima and
reflection coefficient. The experimental transmission loss of the
5 plate attenuator is shown in Figure 7.14 without flow. As can be

seen the measured values are very similar to those shown in Figure
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7.10 which are for the 5 plate attenuator with a downstream anechoic
termination. This result confirms that the performance of the
attenuator is independent of the impedance of the downstream duct
termination.

The electrical analogy of the transmission loss of the
attenuator shown for the 5 plate arrangement in Figure 7.10 is found
to provide a reasonably accurate prediction of the performance of the
attenuator at low frequencies (kODi < 1.75). The analysis in fact is
found to agree for frequencies well in excess of the half-wavelength
limit proposed. This was thought to be due to the use of the frequency
dependent impedance of the main duct of the attenuator. As discussed
previously the expression used approximately describes resonance in
this duct section. Hence this section of the attenuator is actually
modelled as a transmission line element.

The theory shown in Figure 7.10 appears to be displaced to
higher frequencies with respect to experimental results. This could
be due to variation in effective length of the main duct. If a
longer effective length was used in the theoretical analysis the
theoretical curve would agree very closely to experimental values.

It can be seen from Figure 7.10 that at higher frequencies
the theory does not match peaks displayed in the experimentally
measured transmission loss. These peaks are due to resonant conditions
in sections of the attenuator and the values of transmission loss
obtained are limited by viscosity effects through the orifices.
Viscosity has been ignored in the lumped circuit analysis and this
may lead to inaccuracies at resonant conditions.

Figure 7.10 shows that when koDi = 0.5 and koDi = 1.1 a

negative transmission loss was measured. This result was also
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indicated by the theoretical result as well, at values close to
these frequencies. The amplification of sound at particular
frequencies is characteristic of reactive mufflers and is due to
resonances in elements of the attenuator.

The theoretical result is seen to be inaccurate at higher
frequencies (koD; > 1.7) and to fully describe the theoretical
performance of the attenuator, transmission line methods must be used
in this higher frequency range. It was proposed to model the
attenuator in the higher frequency range by calculating the phase
speeds of waves through the delay line section at different fre-
quencies using transmission line theory. By using a 'black box"
approach and only considering the inlet and exit interfaces of the
attenuator and using the effective phase speed of waves in the éelay
line section one could determine the relative phases of travelling
waves at each interface. The theoretical transmission loss could
then be derived using a procedure of matching continuity conditions
as in Chapters 5 and 6. In this case the equations used would be
for sound propagation in straight circular ducts and the pressure
distribution assumed at both interfaces would be that of Figure 7.2
with relative phase determined by the delay line theory. However
due to time limitations and lack of knowledge of the inductances of
the annular orifices (as opposed to circular orifices) and the inlet
slits, this was not attempted.

Referring to Figure 7.13 which is the equivalent electrical
circuit of the attenuator, it can be seen that when the impedance of
the main duct is zero then the delay line section will be completely

shorted out and zero transmission loss will occur. The frequencies at

which this should theoretically occur are given by kole = nm,
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n=0,1, 2 .... One can thus conclude that to optimize the band-
width of the attenuator, i.e. move the minima to lower frequencies,
the main duct of the attenuator should be made as long as possible.
However length considerations are also determined by the desired
compactness of the attenuator and a compromise must be sought.

The power transmission coefficient of the attenuator
measured from the standing wave is seen to give a reasonably accurate
prediction of the performance of the device up to 1200 Hz. However
above this frequency, as discussed in Chapters 5 and 6, the minima of

the standing wave are too sharp to detect accurately.

7.6.2 With Flow of the Propagating Medium

Due to the length of time of experiments involved with flow,
the investigation was limited to the attenuator with 5 orifice plates.
This arrangement provided the best performance in the no-flow case.
Flow of the propagating medium at M = 0.22 is seen to affect the
lower frequencies more than the higher frequencies. Figure 7.11 shows
that at M = 0.22 the 10 dB bandwidth is reduced substantially to 0.7
of an octave. However high levels of attenuation are still obtained
at koDi = 2,2 as for the no flow case. Flow was thus found not to
lower the design frequency as occurred in the investigation of Chapter
6. Figure 6.11 also shows that the attenuator amplifies the incident
sound at some particular frequencies (indicated by a negative trans-
mission loss). While some of this amplification is undoubtedly due
to resonance within the attenuator, the noise generated by the fluid
flow over the slits in the main duct wall was thought to contribute
significantly also. This problem could be reduced by careful design
of the slits with thought to the fluid flow.

Figure 7.11 demonstrates that the attenuator performance is
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basically independent of direction of sound propagation relative to
flow. This can be understood by assuming there is no flow in the
delay line section of the attenuator. As discussed previously the
impedance of the main duct is governed by natural oscillations. Flow
has the effect of lowering the natural frequencies of such a tube by
a factor of (1-M?) independent of direction. Thus in this case flow
is likely to have an identical effect on the impedance of the main
duct for either direction of propagation.

Figures 7.10 and 7.11 show clearly that flow also has the
effect of decreasing the magnitude of the negative transmission losses
obtained at low frequencies., This effect is most likely caused by the
flow "blowing away' the masses of air contained in the slits in the
duct wall which provide the necessary inductance.

The main difference between experimental upstream and down-
stream values occurs at lower frequencies where downstream flow
reduces the attenuation obtained by a greater amount than for the
upstream case. The reduction in attenuation at low frequencies may
also be due to the flow reducing the masses of air contained in the
slits in the duct wall and consequently affecting the slit inductance.

The flow rate of M = 0.37 substantially reduces the
attenuation obtained at the peaks but provides a broader operating
band. The reduction in the attenuation at the peaks may be due to
flow regenerated noise but is most likely due to the changes in
inductance of the slits and orifices as discussed previously. The
broader bandwidth is due to a reduction in resonant frequency of the
main duct due to flow and a corresponding decrease in frequency at
which zero transmission loss occurs. The flow thus effectively
lengthens the main duct. The attenuator was also found to perform

better at lower frequencies for a flow rate of M = 0.37 but an increase
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in amplification of sound was apparent.

7.7 SUMMARY

A reactive acoustic attenuator for use in straight ducts
of circular cross section has been investigated experimentally and
theoretically. The attenuator is found to provide excellent rejection
of low frequency sound over a broad operating band with and without
the presence of high speed flows (M = 0.37). The attenuator is

robust, compact and cheap to manufacture.
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CHAPTER 8

GENERAL CONCLUSIONS

Propagation and reactive attenuation of low frequency sound
in hard-walled ducts have been studied. The investigation has established
that reactive attenuation can be employed to control low frequency sound
without the usual disadvantages of low pressure drop, excessive size or
narrow operating band. The effect of flow on the performance of the
attenuators has been investigated and it has been shown that the devices
perform well in the presence of a convecting propagating medium. The
proposed attenuators are simple in concept and thus should be cheap to
manufacture.

The effects of flow on the cut-off frequencies and propagation
of energy of higher modes have been investigated. The independence of
cut-off frequency from direction of sound propagation relative to flow
has been clarified.

A dipole piston source is studied and the theoretical results
provide insight into some of the physical aspects of the performance of
the attenuator and the effect of flow on modal propagation. This
investigation establishes that reflection of sound at an interface
similar to the exit plane of the attenuator is entirely due to generation
of a series of evanescent modes. Likewise the investigation demonstrates
that the reactive impedance of such a surface, which closely approximates
the phase distribution of a (1,0) mode when the phase discrepancy between

pistons is m radians,becomes infinite at cut-on of the (1,0) mode. This
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result is impossible in practice and explains why the cut-on frequency
of an evanescent mode is always difficult to determine and cannot be
measured with the precision implied by the analysis.

A simple method for analysing propagation of low frequency
sound in curved bends has been developed. This method, although it
relies on an.approximation, accurately and simply predicts the variables
necessary to analyse curved duct systems in the low frequency range with
and without flow. It eliminates the need to consider complicated
Bessell and Neumann functions in its range of application. The analysis
is subsequently used to analyse an attenuator with flow.

The difference between sound propagation in curved bends and
straight ducts is highlighted by an analysis which considers the effect
of a partition in a curved bend. The partition is found to cause high
reflection of sound at a number of frequencies due to the dependence of
the curved duct wavenumber on the bend geometry, whereas the correspond-
ing straight duct wavenumber is independent of duct dimensions.

The thesis leaves unanswered many questions. Of those areas
needing more research, perhaps the theoretical analysis of the attenuator
of Chapter 7 takes priority. To fully understand the performance of
the delay line attenuator some preliminary -investigations into the
phase speed through the annular delay line would have to be undertaken.
Combined with the "black box" model proposed in Chapter 7, this know-
ledge would provide a theoretical description of the attenuator, with-
out which it is hard to predict design frequenciesand optimize band
widths. However due to time limitations this was not attempted.

It would be of interest to experimentally study the effect
of flow on the cut-off frequencies of higher order modes. A particularly

clear demonstration of this effect might be possible in a ripple tank.
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The mode under study could be driven by two 'dabbers" exciting the
surface of the water at the required frequency near cut-on, while
convection could be simulated by means of a steady flow of water
through the tank. It would be extremely interesting to see the angle
of propagation of wavefronts for the downstream case as the mode
approaches cut-on.

These and other problems uncovered in the work of this thesis

remain as research work for the future.
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APPENDIX 1

THE WAVE EQUATION

As all propagation theory stems from solutions of the wave
equation in different coordinate systems it is appropriate here to
describe the different forms of the wave equation used and the
assumptions made in their derivations.

Perhaps the most complete derivation of the wave equation
is given by Morse and Feshbach (1953). In terms of the velocity
potential, whose partial derivatives with respect to the axis of the
chosen coordinate system are the components of velocity in those

directions, it can be written as

V29 = (1/c2)a%¢/ot? (A.1)

where cg = Xm/po' Xm is the bulk modulus and p0 is the undisturbed
density of the propagating medium.

The . wave equation can be interpreted as physically stating
(from Rschevkin (1963)) "an excess concentration causes a decrease in
the rate at which concentration increases, and a defect in concentration
results in an increase in this rate."

The assumptions made in the deriviation of the wave equation
are well documented in Rschevkin (1963). The main points, relevant

to the following analyses, are summarized here.

Main assumptions made in the derivation of the wave equation

1. The medium is assumed inviscid.

2. The mean pressure and density are assumed constant.
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3. Spatial forces are neglected.

4, The steady velocity components and their gradients are

assumed small.

Sk The oscillatory velocity components and their gradients

are assumed small.
6. The motion is assumed to be irrotational.

7. Only small deformations of the medium are assumed to occur,

with deformations being linear.
8. The propagating medium is assumed uniform.
Some of the major implications of these assumptions are:

1, Assumption (1) implies that viscosity is ignored, thus acoustic

energy is not dissipated through conversion to heat.

2, Assumption (5) implies that the wave equation is only
applicable to slowly (relatively) oscillating pressures and

not to sudden disturbances such as shock waves.

3. Assumption (5) implies that the convected velocity terms in
the case of no flow of the propagating medium is small and

that this part of the momentum balance can be ignored.

4. Assumption (7) limits the application of the wave equation
to small deformations of the particles and thus places an
upper bound in terms of sound pressure level (= 160 dB in

air) at which the wave equation can still be considered linear.
If the particle oscillatory motion is harmonic, the time
component can be separated. For example the solution in terms of the

potential function may be written as

t

$(x,y,2,t) = P(x,y,2)e™" (A.2)

where ¢ is a characteristic function solely of the coordinates and
w is the angular frequency of oscillation. In this case equation

(A.1) reduces to the well known Hemholtz equation

VY + K2y = 0 (A.3)
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where kois equal to w/co and is called the wave number.
From the definition of the velocity potential expressions

for the particle velocity of the acoustic motion follow:

u o= T (A.4)

When the convected velocity term is small the acoustic pressure is

given by the following:
P = -p°3¢/3t (A.5)

In this case according to equation (A.5), the wave equation can be

written in the alternative well used form
v2p = (1/c2)8%p/pt? (A.6)

The form of vector operators in the coordinate systems used
in the analysis of the text are as follows:

Rectangular coordinates

v

< = 0¢/0x, V¢y = 3¢/dy, V¢, = 3¢/0z (A.7)

and v2¢ = 32¢/0x2 + 82¢/3y? + 3%¢/3z? (A.8)

Clyindrical coordinates

v

B 9¢/0r, Vog = (1/x)9¢ /28, V¢z = 9¢/3z (A.9)

and v24 32¢/3r2 + (1/x)3¢/5r + (1/r2)082¢/362 (A.10)

If a pressure form of the wave equation as given by equation (A.6) is
used then the particle velocities in terms of the pressure solution

are

u = —(l/ipoco%ZVp. (A.11)
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The Wave Equation with Convection of the Propagating Medium

The derivation of the wave equation with uniform flow is
well explained by Morse and Ingard (1968). In addition to the
assumptions previously made, the medium is assumed to travel with
uniform velocity independent of the direction of sound propagation.
However it must be noted that assumption (5) cannot be applied here.
Whereas in the no flow case the convected velocity of the particles
is the acoustic particle velocity and therefore very small, in the
case of flow of the propagating medium this convected velocity term
will be replaced by the velocity of the medium and therefore cannot
be ignored.

Assumption (1) also has important implications in the case
of flow of the propagating medium. Due to the lack of viscosity such
fluid properties as boundary layers and separation are ignored and
the flow is assumed uniform (potential).

Thus the linearized momentum equation relating particle

velocity and acoustic pressure for flow of the medium is

po(B/Bt + V.V)u = -3p/3x (A.12)

where V = ng + Vyi + Vzg is the vector describing velocity magnitude

and direction of the medium.

The wave equation with flow can thus be written in velocity

potential form as (from Morse and Ingard (1968))
(1/c2) (3/3t + V.V)2¢ = V%9 (A.13)
The acoustic particle velocity is given simply by

u = +V¢ (A.14)

However, since the convective acceleration is not negligible,
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in the one dimensional case equation (A.12) becomes for fluid flow in

the x direction

- dp/3x = poaux/at + ponaux/Bx

Now u = +3¢/3x

then ' 3p/ox =—p _02¢/0tdx - p_(3¢/9%) (3%¢/0%)
Since (1/2)3(39/3x)2/3x = (3¢/3%) (3%2¢/3x?)
then 3/ox [p +p 39/3t + (1/2)p0(a¢/ax)2]' = 0

Letting the constant of integration equal zero this becomes
p=-p,9¢/3t = (1/2)p (3¢/3x)? (A.15)
More generally in three dimensions
p=-p, 39/3t - (1/2)p V?¢ (A.16)
Hence if Vx is large then u = Vx + u, is large and in this case
P=-p0¢/0t — p V 3¢/3x (A.17)

The wave equation can also be written in terms of a pressure
solution as for the no flow case. This well used form (Morse and

Ingard (1968))
(1/c2) (/3¢ + vV.V)?p = V2p (A.18)

When the motion is governed by a harmonic time dependence, the

Hemholtz equation with flow follows.

V2p + (w/co)z(l + 1i(1/w)V.V)%p = 0 (A.19)
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The form of the wave equation in terms of the pressure
solution is identical to the form of the wave equation in terms of
the potential function as may be seen by comparing equations (A.13)
and (A.18), thus p and ¢ must differ by a multiplicative constant.
Hence we conclude that the particle velocity may again be determined
from the pressure solution using equation (A.11).

The convection terms introduced by flow will be found to

significantly modify the solutions of the wave equation.
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APPENDIX 2

CONTINUITY EQUATIONS OF THE ANALYSES
OF CHAPTERS 4, 5, AND 6

2.A CONTINUITY EQUATIONS AT INTERFACE B OF THE ANALYSIS OF

CHAPTER 4
Continuity of pressure at B where x' =0, 6. =
provides
m= 0,
i i R2 Cc < r R2 c
Eooh = Coo IR Ipoo exp[—lvo'n]dr +S§0 Cso JR wso exp[lvsﬂ]dr
1 1
i R3 c @ T R3 c
+ D IR Yoo exp[—lvoﬁ]dr +.Z25 Dgg JR Voo exp[lvsn]dr (A.20)
2 2
m# 0,
R
Ei h/2 = c- 2 wc exp[-iv 7] cos[(mn/h) (r-R_)]dr
00 00 Jp o0 ) 1
1
r R2
+ EO Cso JR wso exp[lvsﬂ] cos[ (mm/h) (r-Rl)]dr

$ pf [R c (A.21)
s
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Continuity of tangential particle velocity at B provides,

m= 0,
i i = c
Eookooh = Coo JRZ woo(vo/r) exp[—ivon]dr
1
© T b c
—SEO CSO JRZ wso(vs/r) exp[ivsﬂ]dr
1
. R c
+ Dzo JR3 woo(vo/r) exp[—ivoﬂ]dr
2
@ T R c
“s2o0 Pso JRS YooV /r) expliv mldr (A.22)
2
m# 0,
i i i c
Emokmoh/2 = C00 JRZ woo(vo/r) exp[—ivoﬂ]cos[(mw/h)(r—Rl)]dr
1
- £ cr szc (v_/r) exp[iv _mlcos[(mmr/h)(r-R )1d
«£0 Coo  Yeo0s r) exp 1vsﬂ cos[(mm r—- ) r
1
i R3 C
+ Doo JR woo(vo/r) exp[—lvon]cos[(mﬂ/h)(r—Rl)]dr
2
© T R c
-SEO DSo JRB ¢So(vs/r) exp[ivsw]cos[(mn/h)(r—Rl)]dr (A.23)

2

2.B CONTINUITY EQUATIONS AT INTERFACES B, C AND D OF THE ANALYSIS
OF CHAPTER 5

Continuity of pressure at B where x' = X and 6'=0 provides,

i . T N
Aoo(h/Z) expl 1k00X] + Aoo(h/Z) exp[lkoox]

© i Rq c r Rq c
=35 D Yy dr' + D P dr!
s=0 "so so co 00
R3 R3

(A.24)
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2 # 0,
r P i R c :
Azo(h/4)exp[ik£ox] =s§0 Deo JRH ¢SOCOS[(22“/h)(r'—R3)]dr'
3
r R C
+ DOO J b woocos[(z,ﬁﬂ/h) (r'_Ra)]drv (A.ZS)

R
3

Continuity of tangential particle velocity at B provides,

2 =0,
i : b e
Aookoo(h/Z)exp[—lkooX] - Aookoo(h/Z)exp[ikooX]
© i Rq c r Rq c
= ! 1 _ ' 1
5=0 MiEo JR wso(\)s/r )dr Doo JR woo(vo/r )dx (A.26)
3 3
L £ 0,

R
A, ko (h/&)explik, X] = 2, Dio IR“ ¢:o(vslr')cos[(22ﬂ/h)(r'—Ra)]dr'

3

R
_ nt y ,C ' T v (A.27
D . IR woo(volr Yeos[(22w/h) (x RS)]dr (‘ )
3
Continuity of pressure at C where x" = -X and 0'= w/2

provides,

g =0,
i . r X
Boo(h/2) exp[1kooX] + Boo(h/Z) exp[—lkooX]
i Rq c - 4 R'-& c ( 8
= - ' ' A.2
Doo JR woo expl ivon/Z]dr +s§0 DSo IR wso exp[ivsﬂ/Z]dr )

3 3
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2 # 0,

Bio(h/4) exp 1k, X]
R
=D J 4 ¢ exp[-iv m/2]cos[(27%/h) (r'-R )]dr’
(oo} o] 3

R
1 r L ,C . . ' 1
+s£0 DSo J wso exp[lvsﬂ/Z]cos[(Zﬂllh)(r —R3)]dr (A.29)

Continuity of tangential particle velocity at C provides,

i \ T ]
Bookoo(h/2)exp[1kooX] - Bookoo(h/2)exp[—1koox]

=D1

R
=5 IRH wgo(vo/r')exp[-ivon/Z]dr'

3

R
- D JR“ w:o(vslr')exp[ivsw/Z]dr' (A.30)
3
L#0

i )
Blokgo(h/4)exp[1k20X]

R
= i [ c ] s N '_ t
D00 IR woo(vo/r Yexpl[ 1von/2]cos[(2$w/h)(r R3)]dr
3
T, D' T e /r! iv_m/2 2em/h) (r'-R_)]dr’
-.Zo Dg, . ¢so(vs r")expl v T leos[(28n/h) (x'- 3)] r'  (A.31)
3
Continuity of pressure at D where x" = 0 and 6 = w/2
provides,
m= 0,
i i R2 c ©° T R2 c
Eooh = Coo JR ¢ooexp[—1voﬂ/2]dr +s£0 CSo JR .wsoexp[lvsﬂ/Z]dr
1 1

i © r h/2 s
11
+ Booh/2 +2£0 B20 Jo wlo dy (A.32)
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. R
E;Oh/z - ¢t J 2 wsoexp[—i\)ow/Z]cos[(m'n/h) (r—Rl)]dr

R
1

R
+ ¥ cf J 2 wc expliv m/2)cos[(mn/h) (r-R )]ldr
SO ] 1

R
1

- Bl G (1= (D™
. o (B2 :
+ 220 Beo J Voo, coslmn/h) (y" + h/2) Jdy" (A.33)
o]

Continuity of tangential particle velocity at D provides,

m= 0,
i i R2 c
. ooh = Coo JR woo(vo/r)exp[-ivow/Z]dr
1
- I CSo J wso(vslr)exp[lvsw/Z]dr
s=0 R
1
i © r h/2 s
+B k h/2-1 B f Y, dy" (A.34
00 00 =0 loklo Lo )
m# 0,
i i R2 c
Emokmoh/Z = Coo IR woo(vo/r)exp[-lvoﬁ/Z]cos[(mﬂ/h)(r-Rl)]dr

1

R
- SEO JRZ w:o(vslr)exp[ivsn/Z]cos[(mn/h)(r—Rl)]dr
1

BL k() [1- (-1

00 00 ‘2mm

h/2
- ¥ BY k f

LI cos[(mn/h) (¥y" + h/2)]1dy"
2=0 o

s
Yeo (A.35)
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2.C CONTINUITY EQUATIONS AT INTERFACES B, C AND D OF THE ANALYSIS
OF CHAPTER 6

Continuity of pressure at B where x' = X and 6' = 0

provides
i ., d Y ., u
Aoo(h/2) exp[—lkoox] + Aoo(h/Z) exp[lkOOX]
= Dt (h/2) + D _(h/2) (A.36)
00 00 i

Continuity of tangential particle velocity at B provides

i .. d ., T . u
Aookoo(h/Z) exp[—lkOOX] - Aoo(h/2) exp[lkooX]

i T
= D_ k_ (h/2) - Dk o, (h/2) (A.37)
Continuity of pressure at C where x" = -X and 6' = n/2 provides,

i .. d ba . u
Boo(h/Z) exp[lkoOX] + Boo(h/Z) exp[—lkoOX]

i .. .d r ..u
= Doo(h/2) eXp[—lVoﬂ/Z] + Doo(h/Z) exp[lvon/Z] (A.38)
Continuity of tangential particle velocity at C provides

i .. d Y ., u
Bookoo(h/Z) exp[lkooX] - Bookoo(h/Z) exp[—lkooX]

- Piokoo(h/Z) exp[—ivgﬂ/Z] - Dzokoo(h/Z) exp[ivgﬂle (A.39)

Continuity of pressure at D where x" = 0, x = 0 and 6 = m/2 provides
m= 0,
i i ,.d r ..u
Eooh = Coo(h/Z) exp[—lvoﬂ/Z] + Coo(h/2) exp[lvoﬂ/Z]

i r
+ Boo(h/Z) + Boo(h/Z) (A.40)
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m# 0,

EL (0/2) = ¢ expl-ivin/21 G (1- (-D™)

+ ¢5 exp[ivin/2] (EE—“) [1- 0"

i h m T h m
B, (o) [1- (-D"] - By () [1-(-D™] (A.41)

Continuity of tangential particle velocity at D provides,

m= 0,

i _ i .. d T ,.u
Eookooh = Cookoo(h/Z) expl 1voﬁ/2] - Cookoo(h/Z) exp[lvoﬂ/Z]

i r
N Bookoo(hlz) - Bookoo(hlz) (A.42)

m# 0,

£l ed m/2) = ¢tk (h/2) expl-1v3n/2] (R [1- (-]

cX_k_ (h/2) explivin/2](GaD) [1- (-D)"]

i h m
= Boooomr) [1 - (-1

r h m
+3B_  k GoIl-(D"] (A.43)
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APPENDIX 3

MATRICES OF THE ANALYSES OF CHAPTERS 4, 5 AND 6

The equations obtained by continuity at the interfaces of
straight and curved sections for the analyses of Chapters 4, 5 and 6
were set into a complex matrix system such that Am % Xm = Bm' Am is
the matrix of the complex variables of each Fourier coefficient, Xm
is the matrix of Fourier coefficients or the complex amplitude of each
acoustic wave considered and Bm is the matrix of coefficients obtained
by moving the coefficient Pio to one side of the equations.

Thus at each particular frequency the coefficients of each
wave were evaluated and the matrix system solved for the Fourier

constants X , by a computer program based on Crout's rule.

For simplification of the matrices the following symbols will

be used:

R2 c

1, - IR VS dr (a.44)
1
E c

I, = JRZ Voo cosl(mm/h) (r—Rl)]dr (A.45)
1

1 R2

3 JRI v (v /r)dr (A.46)
E C

14 = JRZ woo(vo/r) cos[(mn/h)(r—Rl)]dr (A.47)

1

Where the integral notation refers to the outside or inside
curved section of the bend or attenuator is indicated by marking the

matrix columm.
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APPENDIX 4

REDUCTION OF HARMONIC NOISE GENERATED BY A
CENTRIFUGAL FAN

4.A  INTRODUCTION

Fans are a necessary part of every ventilating and air-
conditioning system. However as the demand for faster flow in such
ducts increases so does the noise generated by the fan.' This noise
generally can be divided into two parts: (1) the harmonic noise
generated by interaction between the airstream and the rotating
impeller, and (2) broad band noise most likely generated by flow
interaction with the fan and housing. Many attempts have been made
to reduce both these causes of noise and the major works have been
well summarized by Neise (1976). Due to the more obvious nature of
the harmonic part of the noise generated most work has been concentrated
on reducing this part. In this case stated simply, the fan blades
chop the air stream causing regions of low and high pressure and
corresponding radiation of sound. The frequency of the radiated
sound is thus determined by the number of blades and the angular speed
of the rotor.

The most effective reduction of the harmonic part has been
gained by varying the distance between the fan rotor blade tip and the
scroll cut-off. The reduction in level at the blade passing frequency
was found to be sensitive to the shape of the cut-off as well as the
clearance (Ploner and Herz (1969)). In general the reduction obtained
by varying the cut-off clearance varied between 6 and 20 dB depending

upon the shape of the cut-off and the operating condition of the fan
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(Embleton (1963), Smith (1974), Leidel (1969)). Increasing the cut-
off clearance was shown to have an insignificant effect on the broad
band noise (Leidel (1969)).

Embleton (1963) investigated inclined blades for multivane
impellers and also rotors with backward curved blades. For multi-
vane rotors Embleton measured a reduction of 12 dB in the noise
generated at the blade passing frequency. For backward curved blades
the reduction was far less, in the order of 2 to 3 dB. Khoroshev and
Petrov (1971) obtained a reduction of 16 dB by angling the cut-off
through 70 degrees. They also obtained a reduction of 8 to 10 dB
in the broad band noise.

Wollherr (1973) investigated the effect of different outlet
duct lengths on the sound radiated into the inlet duct. He found
that varying the fan outlet duct length caused a 17 dB variation in
the sound level at the blade passing frequency in the inlet duct.
Changing the length of the outlet duct effectively changes the internal
impedance of the fan including the outlet duct. Likewise Baade (1977)
has shown that varying the length of the outlet duct strongly affects
the sound radiated into free space at a particular frequency.

Finally Lyons and Platter (1963) investigated a configuration
of double inlet fans. The blades of each rotor were angularly dis-
placed so that the blades of one rotor lay half way between the blades
of the other rotor. With this arrangement Lyons and Platter measured
a reduction of the noise generated at the blade passing frequency of
10 dB due to local cancellation of pressures generated at the cut-off
edges.,

In this appendix the effect of a skewed (or angled) cut-off

on the sound generated in a centrifugal fan is considered. The fan
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has four backward curved blades and the skewed cut-off is arranged to
cover two blades simultaneously. No attempt is made to reduce the
broad band noise. The results obtained are compared to those obtained
by other workers. A method of impedance loading of the fan outlet is
proposed which can be used with fans with two rotors. Theoretically
the proposed arrangement should completely attenuate all sound at the

blade passing frequency.

4.8 THE SKEWED CUT-OFF

Experimental Equipment and Procedure

The fan to be investigated is shown in Plate 7 with inlet
section and part of the fan casing removed. The skewed cut-off is
shown in position. The fan has four backward curved blades with
inside and outside diameters of .22 m and .52 m respectively. The
skewed cut-off was designed to cover at least two blades and thus
had a total angle of 90°. The skewed cut-off was mounted in position
as shown in Plate 7 by bolts through slotted tabs on the edge of the
cut-off. Thus the radial clearance of the cut-off to the tip of the
fan rotor could be varied through approximately 8 centimeters.

The fan inlet duct was of circular cross section of diameter
.206 m and was 2 m in length. The fan outlet duct was a .132 m x
.33 m rectangular cross section. The outlet duct length was chosen
to be .9 m which approximately corresponds to the half wave length
of the blade passing frequency. Thus the noise generated at the
blade passing frequency should be radiated well from the outlet duct
to examine effects of the harmonic noise at this particular frequency.
The fan rotated at 304 radians/sec. The corresponding theoretical

blade passing frequency for this fan is thus 193.5 Hz.
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PLATE 7. The skewed fan cut-off

.ﬂ

PLATE 8. Position of experimental apparatus for investigation

of fan noise.
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Measurements were made at a position one meter from the
exit of the fan using a Brilel and Kjaer Sound Level Meter and 1/3
Octave Band Analyser as shown in Plate 8. It can be seen from Plate
8 that the exit duct does not radiate into free space due to several
reflecting surfaces nearby. However the investigation is of a
comparative nature and not absolute, so that the test condition was
thought satisfactory. The two cases of the fan with a straight cut-
off and with an angled cut-off were analysed in 1/3 octave bands and
in narrow constant frequency bandwidths. For the 1/3 octave analysis
the Sound Level Meter was set to slow and the readings taken as the
fan was running. The two cases of sound levels with a straight cut-
off and with a skewed cut-off are shown in Figure A.1l for 1/3 octave
bands.

For narrow band analysis the output of the Brilel and Kjaer
Sound Level Meter was recorded on a Nagra tape recorder. From this
recording continuous tape loops were made to obtain a consistent
level. The output of the Nagra recorder when played back with
the tape loops fitted was fed into a Briel and Kjaer Heterodyne
Analyser. The narrow band Heterodyne Analyser was set to a 10 Hz
bandwidth and the input was averaged over 3 secs. Thus with this
averaging time and the tape loop arrangement an averaged reading was
achieved. The Analyser was connected to a Briiel and Kjaer Graphic
Level Recorder by means of a mechanical drive cable which enabled
synchronized sweeping of frequency (at a 10 Hz bandwidth) to be
achieved. The output of the Analyser was set to a D.C. current (and
the level recorder set to D.C. accordingly) thus the output of the
analyser was averaged by 3 secs. The narrow band frequency analysis

of the fan noise with a straight cut-off and skewed cut-off using
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the above method are shown in Figures A.2 and A.3 respectively.

The sound pressure level of the fan noise was also recorded
during running at the 1 meter position using a sound level meter set
to "slow". TFor the case of straight cut-off edge the level was 112
dB(1lin) and with a skewed cut-off edge the level at the same position
was 107 dB(lin) giving a reduction in overall sound pressure level
of 5 dB(1lin).

The effect of radial clearance of the cut-off was invest-
igated by relocating the cut-off as required but was found to
insignificantly effect the results. Thus results for a clearance of

5mm between the rotor tips and cut-off are presented in the figures.

4.C DISCUSSION OF SKEWED CUT-OFF EXPERIMENTAL RESULTS

Figure A.2 which is a narrow band analysis of the fan noise
with a straight cut-off fitted shows that the fan noise is character-
ized by a broad band noise with a series of much louder discrete
peaks. The first major peak is seen to occur at a frequency of
approximately 196 Hz which corresponds closely to the theoretical
blade passing frequency of the fan. The other peaks occur at multiples
of the blade passing frequency and are thus thought to be harmonics.
Thus as one would expect, the major contributor to fan noise is that
part caused by the blade-flow interaction at the cut-off edge of the
fan scroll.

The narrow band frequency spectrum of the fan with a skewed
or angled cut-off is shown in Figure A.3. With the skewed cut-off
fitted the sound pressure level generated at the blade passing
frequency is seen to be substantially reduced by 9.5 dB, and the
harmonics are reduced in the order of 4 to 5 dB. The same reduction

is reflected in the 1/3 octave analysis of the same cut-off conditions.
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At the blade passing frequency Figure A.l shows a reduction 6 dB in
the sound pressure level when a skewed cut-off is fitted.

Thus the fitting of a skewed cut-off is seen to substantially
reduce the noise generated by centrifugal fans at the blade passing
frequency. The values of reduction in level obtained here should be
compared to those of 2 to 3 dB obtained by Embleton (1963) for fans
with backward curved blades. However it is not clear what type of
frequency analysis Embleton used.

The values of dB (lin) measured with a straight cut-off and
a skewed cut-off show a 5 dB reduction. Thus even though the sound
pressure level at the blade passing frequency is substantially
reduced, the overall level is only reduced by 5 dB when an angled cut-
off is fitted. This was thought to be due to an increase in broad

band noise when a skewed cut-off is used.

4.D IMPEDANCE LOADING OF THE FAN

Figure A.4 shows the arrangement by which this method could
be used. It is only suitable for application to twin rotor fams.
The . rotors are separated by a solid partition which is placed
parallel to the flow. The rotor blades are arranged such that one set
of blades lie half way between the blades of the other rotor. Thus
the sound generated at the blade passing frequency of ome rotor would
be close to being 180° out of phase with the other rotor. The
dimensions of the separate ducts formed by the subpartitions are
adjusted such that only the (0,0) mode will propagate at the blade
passing frequency. This method is likely to be limited to multi-
bladed fans in order to maintain reasonable duct dimensions. The
partition is long enough such that all evanescent modes generated at

the cut-off have decayed and are negligible. Thus at the exit of the
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partition, at the blade passing frequency, there are two vibrating
pistons, 180° out of phase. By the theory of Chapter 3, for this
arrangement, all sound would theoretically be reflected at this
frequency.

Due to the fact that partition is parallel to the flow it

is not likely to modify the performance characteristics of the fan,
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A reactive acoustic attenuator that combines high reflection of low frequency sound with
low pressure drop coefficient is investigated experimentally and theoretically by using
equations for sound propagation in straight and curved ducts. Good agreementis obtained
and the theory is used to redesign the device to give a minimum transmission loss of ten
decibels over a frequency range of three-quarters of an octave. Small discrepancies between
theoretical and experimental results are discussed.

1. INTRODUCTION

As the demand for faster flow in air conditioning duct systems increases so does the noise
generated by the fan and the fluid flow. The noise generated by the fan and flow is usually of
long waveiength relative to the dimensions of the duct, rendering it unsuitable to attenuation
by lining the walls with acoustic absorbent material, and the level of this low frequency
noise is often unacceptable in such appiications as libraries or sound studios. In the usual
method of control a system of resonators or lined expansion chambers may be employed
but these devices have the disadvantage of excessive size or large pressure drop and usually
operate over a narrow frequency range.

In this paper, an attenuator described by Luxton [1] is investigated. This attenuator,
when fitted into any convenient bend in a duct system, combines high rejection of low
frequency sound over a broad frequency range of three-quarters of an octave with a low
pressure drop coefficient (0-46). The attenuator makes use of the inherent difference in path
lengths of the inner and outer portions of a bend fitted with a splitter to generate an impedance
mismatch at the inlet and exit of the device, causing reflection of sound.

Equations characterizing sound propagation in straight and curved ducts are used to
describe the device without flow. The predicted results agree well with those measured
experimentally. An understanding of the performance of the attenuator has allowed re-
design of its shape to optimize its performance.

2. SOUND PROPAGATION IN RECTANGULAR SECTION DUCTS
2.1. INFINITE RECTANGULAR STRAIGHT DUCTS

Equations for sound propagating in an infinite rectangular straight duct have been weli
discussed [2]. As the more important conclusions will be of importance to the understanding
of this paper and can also serve as a guide to the less familiar propagation in curved ducts they
will be briefly reviewed and summarized here.

The geaneral solution of the wave equation (V2 + (w/c)*)p =0 in separabic rectangular
co-ordinates is

plx,y,2,0) = Zo ZO P Ymnly, 2)exp [t — ko X)), h

where the x axis is parallel to the direction of propagation of sound.



314

C. R. FULLER AND D. A. BIES

The characteristic function describing variation in pressure amplitude in the duct over a
surface in the y—z plane is

Vian(y,2) = cos [mny[h,] cos [anz/hy), (o))

where A, and h, are dimensions of the duct in the y and z directions, respectively.
The wave number k,,, which describes sound propagation in the duct in the x direction is
given by

k2n = [(@[c)? — (mn[hy)? — (nn/hy)). )

If k,,, is real then propagation will occur without attenuation. If m and n are zero then ko is
always real and the corresponding wave will have constant amplitude across the duct. The
(0,0) mode is a plane wave which propagates at all frequencies. However if either or both m
and 7 are not zero there will always be a frequency below which k,, is imaginary and the
corresponding (m,n) mode will not propagate. Thus if &, is imaginary the corresponding
disturbance will decay exponentially along the duct axis. The discrete frequency for cut-off
of such modes, below which they are non-propagating and above which they are propagating,
is given by

Soun = (c/2) [(m[h))? + (n[h2)*]'/2. 4

As the acoustic axial (x) particle velocity of a non-propagating mode is always in phase
quadrature with the acoustic pressure, non-propagating modes carry no nett power away
from the generating surface.

2.2. INFINITE RECTANGULAR RADIAL BENDS

The equations for sound propagation in radial bends with rectangular cross-sections are
obtained from the wave equation in separatle cylindrical co-ordinates. The sound pressure
distribution in the curved duct may be described as follows:

P02, 0)= 3 S Com¥inlr2)explilr — v,6), 5)

A=0m=0

where tke characteristic function is .
Venr,2) = U, (knr) — AY,,(knr)]cos [mrz/h,y), k2 =k?—k3. (6)

We suppose the walls of the duct are rigid; thus the normal acoustic velocity at the walls is
zero.
Using the general relation

v, = —(1/ipck) dp/or )]
one obtains, at r = R, '
) A=), (km R)/Y .. (kn RY), (8)

where the prime (') implies differentiation with respect to r.
The variable v,, called the angular wave number, is obtained by applying the boundary
condition at r = R, and solving the resulting characteristic equation:

ok R Yy (K R = 3o (K R Y (ki Ry) = 0 ®

Values of the angular wave number were obtained from the characteristic equation (9) by an
iterative process on a computer, POWer series expansions for the Bessel and Neumann func-
tions [3] being used. Representative values obtained are shown in Figure 1. They agree well
with the values interpolated from a solution by Rostafinski [4] who used a closed form of the
Bessel function of order (7 + 1/2).
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One assumes that v, follows the form of k,,, in straight ducts; then if the value of v, obtained
by solving equation (9) is real, the wave will propagate with constant amplitude. If v, is
imaginary the wave corresponding to that mode will not propagate; rather the disturbance
will rapidly decay with distance along the curved duct. Differences in propagation in straight
and curved ducts are to be expected, however. The main difference occurs with the (0,0)
mode. In a straight duct the wave number is independent of duct dimensions and the acoustic
amplitude is constant across the duct. However in a curved duct the angular wave number
depends upon the magnitudes of the inside and outside radii as well as on frequency.

Rostafinski [4] has shown that the tangential velocity distribution for the (0,0) mode
follows closely that of a potential vortex for low frequencies (kR, < 1) and is close to that of a
forced vortex at higher frequencies (kR; ~ 3-0). At low frequencies in gradual bends, how-
ever, the pressure amplitude does not vary markedly across the ductin a radial direction and
is close to that of a plane wave. This has been confirmed experimentally by Cummings [5].

3. THE ATTENUATOR

3.1. DESIGN

The arrangement of the attenuator fitted into a right-angled bend in the duct system is
shown in Figure 2. The frequency range over which the attenuator is expected to be useful
lies below the cut-ofl frequency of the (1,0) mode in the straight sections of duct upstream of
interface 4 and downstream of interface D. An impedance mismatch is generated at interface
D by the phase difference between the propagating waves in the two separate duct systems.
The phase ditference is achieved by placing a profiled center-body in the duct bend which
divides the incident acoustic plane wave at interface 4 into two halves that recombine at D.
The relative phase of the two separate propagating waves at D is approximately determined
by the mean path difference of the two separate channels. At the design frequency, for which
the mean path difference between the inner and outer channel is one-half wave length, a
plane wave incident at interface 4 will be converted to a series of non-propagating cross
modes at interface D and at this frequency all sound will be reflected.

As the center-body is shaped with gradual bends it acts as a turning vane and a low pressure
drop results across the device.

Various shapes were constructed to this design requirement at different design frequencies
and tested experimentally. However only two variations of the crescent shaped center-body
with 0-2 meter mean path difference, corresponding to a design frequency of 844 Hz in the
experimental duct, were amenable to the analysis presented here. Thus discussion will be
confined to the latter configuration.
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Figure 2. Arrangement and co-ordinate system of attenuator.

3.2. ANALYSIS

The aitenuator was first investigated by considering only the power transmitted and
reflected at interface D. The analysis accurately described the reflection of sound power at
the design frequency but failed to account for observed major reflections at other frequencies
also in the range considered. The attenuator was then described by dividing it into sections
and considering propagation and reflection in each. With the co-ordinate systems and joining
interfaces shown in Figure 2, sound propagation may then be described by straight duct
equations in sections 1, 2, 4 and 6 and by curved duct equations in sections 3 and 5.

The coefficients of each wave were obtained by applying continuity conditions across
each interface. Continuity implies that acoustic pressure and particle velocity must be
continucus across the plane joining the two duct systems. Since there is no discontinuity in
the z direction it is satisfactory to use a two-dimensional co-ordinate.system: ie, k.=0.
For convenience a reference amplitude of P§, = 1 — 0i will be used for the incident wave in
the upstream duct.

At each discontinuity an infinite set of higher order modes will be generated. As the
frequency is limited to less than the cut-off frequency of the (1,0) mode in all straight duct
sections, the higher modes in the straight ducts will decay and only the (0,0) mode will
propagate without attenuation. Similarly it can be shown by solving characteristic equation
(9) that only the (0,0) mode will propagate in the curved sections 3 and 5 without attenuation
in the frequency range considered.

The requirement for continuity of particle velocity will be simplified to continuity of
tangential particle velocity along the direction of the duct center line. This simplification is
supported by the consideration that no cross-modes propagate and thus cannot contribute
to the nett power flow. However ultimate justification for the simplification rests with the
agreement between the results of experiment and predictions of theory. On this basis the
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simplification is justified and thus continuity of acoustic pressure and tangential particle
velocity at each interface is postulated.
Hence at interface 4, where x =0, 0 =0, x' = 0, continuity of acoustic pressure provides

Phoexp[i(wr — koo x)] + i Pl cos [(mn/h) y]exp [i(et + ko X)]

= 3 Clovoexp lilr — v, 0)) + Cho Yoexplilwt +vo0)]  for 0<y<h/2 (10)
n=0
and

Ploexp[i(wt — koo x)] + i Procos [(mnfh) ylexp [i(wt + kuo X)]
m=0
= i Alocos [(2mn/h) y'lexp [i(wt — ko x')] + Ago exp [i{wr + kooxN] for hl2<y<h.
=0
Oy
The Fourier coefficients are obtained by multiplying both sides of the equation by
cos [(mmn/h)y] and integrating over the interface surface with respect to y, y’ or r. The orthog-
nality property of the latter function allows determination of the P!, coefficients for m =0,
1, 2,..., as follows: : :

B © Rz Ry - R/2
Ploh+Pioh=3 Clo [ Wiodr+Co [ Weodr+ 5 lo [ Yiody' + Agoh2 (12)
' =0 g r, S0
m#=0: £ -
Paohi2 =3, Clo [ Wiocos [(mmh) (r = R1dr + Cho [ Wiocos /i) (r = Rldr
n= R Ry
N A2 )
+ 3 Alo [ Viacos omn/h) (v + WIDIY — Abb2mm) 11 = (=D} (13
i- b4 . .

Similarly, continuity of tangential particle velocity at A provides
m=0: R

Ra
Phokanh— Piakooh = 3 Clo [ Wistwlr)dr = Clo [ Wilvolr)dr +
n= Ry Ry

h/2
+ 3 Aok [ Yiody' = Aiokooh2 (14)
l= o .
o 0: Ra .
~Ploknahl2= 3 Clo [ ¥iolv/r)cos[(nr/h) (r = R)Ir -
LLd Rl

Ra

— Céo [ Who(valr)cos [(mm/k) (r = Ryl dr +

/2 b
+ 3 Alokio [ Wiacos[(mn/h) (' + h/D]dy’ +
+ Ao koothf2mm) [1 — (=)™} (15)

The equations derived by continuity of pressure and particle velocity at interfaces B, Cand D
are given in the Appendix.
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The above system of equations (12) to (15), and equations (Al) to (A12), constitute an
infinite set with an infinite number of unknowns. In order to proceed, it is necessary to
truncate the various infinite series. Truncation of each series is determined by two considera-
tions: firstly the accuracy of the resulting mathemarical expression which is desired when
compared with experimental results, and secondly the number of equations necessary to
determine all of the unknown coefficients in the several truncated series.

Let the number of modes in straight sections 1 and 6 truncate at L, in straight sections 2
and 4 at M and in curved sections 5 and 3 at N. In this case the total number of unknown
coefficients U is

U=2L+4N+4M, (16)
while the total number of equations ¥V is
V=4L +4M. (17

Cummings [5] has shown for an interface between a straight and curved duct that the
number of modes in each duct section must be equal for solution: hence

N=M. (18)
Therefore, equating the number of unknowns U and equations } gives
L=2N=2M. (19)

Hence the series describing sections 1 and 6 must be truncated at twice the number of terms
of the series describing sections 2, 3, 4 and 5.

At each discontinuity in the duct system an infinite number of higher order modes are
generated. Cummings has shown that at frequencies well below the cut-off frequency of the
(1,0) mode, non-propagating modes have only a small effect on sound propagation in a
curved duct. Cn comparing the theoretical and experimentally measured impedance (as-
sumed to be entirely reactive) of a 180° bend, Cummings found good agreement with pre-
diction in the curved section when the analysis was truncated at the (0,0) mode. For this
reason and in the interest of economy of computing time, the present analysis is limited to
consideration only of the (0,0) mode. Hence we set N and M of equation (18) equal to unity
and L of equation (19) equal to two. Therefore the number of modes in straight sections I and
6 will be limited to two, one propagating and one non-propagating mode.

4. EXPERIMENTAL APPARATUS AND METHOD

The attenuator was investigated with the arrangement shown in Figure 3. The duct system
consisted of a 0-0635 x 9-127 meter rectangular section and was constructed from 0-0254
meter thick wood lined with Laminex on the inside to fulfill the rigid wall boundary condition.

The scund source shown schematically in Figure 3 was placed in the duct side wall 1-7
meters upstream from the attenuator. At this distance, all locally generated cross-modes will
be sufficiently attenuated to be negligible at the entrance to the attenuator. Thus the incident
wave at interface 4 was plane with constant pressure and velocity amplitude across the
duct.

The downstream duct was terminated with an anechoic termination of the arrangement
shown in Figure 3. The pressure reflection coefficient of this termination was measured
separately over the frequency range considered and found to be less than 0-1. Hence the
downstream duct appears infinite to the exit of the attenuator and only one Ej, wave need be
assumed to be propagatiag in the section 6 straight duct.

The original attenuator investigated consists of a crescent-shaped center-body and sur-
rounding duct with dimensions R, = 0-229 meters, R, = 0-292 meters, Ry = 0-051 meters and
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Figure 3. Experimental apparatus.

R, = 0-114 meters, where the corresponding radii are shown in Figure 2. This arrangement
results in a path difference of 0-2 meters between the mean center-lines of the two separate
ducts. The corresponding design frequency, for plane waves propagating in all sections, is
844 Hz.

The three parameters sound power transmission coefficient, transmission loss and varia-
tion in pressure amplitude across the curved duct were measured.

The sound power transmission coefficient provides a measure of how much energy the at-
tenuator will reflect and was obtained by measuring the acoustic standing wave in the up-
stream duct with a probe as indicated in Figure 3. Maximum and minimum pressures were
measured and recorded by using a spectrometer and a level recorder. The transmission
coefficient was obtained from the measured standing wave ratio, n, by using

o, =1—[(n—1)}(n+ D] (20)

The transmission loss of the attenuator is defined as the reduction in decibels between the
sound pressure level of the incident wave P}, and the transmitted wave Eg,. Transmission loss
provides an indication of the performance of the attenuator as it shows to what degrec the
sound pressure level in the duct will be reduced by its installation. Experimental values of
transmission loss were obtained by measuring the maximum pressure level of the standing
wave in the upstream duct with a calibrated microphone, traversed until a maximum was
reached. The sound pressure level of the transmitted wave E}s was measured by using a
calibrated microphone positioned midstream in the acoustic flow 0-3 meters from the exit of
the attenuator. The transmission loss of the attenuator is then given by

transmission loss = (P,,.) dB — 201og,o (I + ak?) — (Eéo) dB, 21

where «y is the sound power reflection coefficient measured from the standing wave.

Variation in pressure amplitude across the curved duct sections indicates the degree to
which non-plane propagation occurs in these sections, and was measured in the outside
duct curved section by traversing a probe from the inside to the outside radius. The values ob-
tained were normalized relative to that on the inside wall.



320

C. R. FULLER AND D. A. BIES

5. THEORETICAL AND EXPERIMENTAL RESULTS
5.1. SOUND POWER TRANSMISSION COEFFICIENT

The radial terms in equations (12) to (15) and (Al) to (A12) were expressed as power
series and integrated by using Simpson’s rule on a computer. Each series was summed until
an error of less than 107* was obtained. The resulting constants for each equation were then
set in a 12 x 12 matrix and the coefficients of each wave were obtained by solving the matrix
by using a program based on Crout’s rule. The predicted values of transmission coefficient
were then evaluated from

o=1- IPc')o/PéoIz-

The theoretical values obtained for the original attenuator are shown in Figure 4, where
sound power transmission coeflicient is plotted against a non-dimensional frequency para-
meter, koh. Measured values are also shown in the figure for comparison.

"°Wg""o"'_
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0.4}

Transmission coefficient
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0-0 10 2.0 30 4.0
Wave number parameter, 4o/

Figure 4. Power transmission coefficient of original attenuator. , Theoretical curve; o, experimental

value.

As shown in Figure 4 close agreement is observed between the predicted and measured
frequencies at which minima in the transmission coefficient are observed, especially at lower
frequencies. Slight discrepancies between the theoretical and experimental frequencies of
minimum transmission are thought to be due to dimensional inaccuracies in the geometry of
the attenuator, affecting the mean path difference between the two ducts. At low frequencies
the wavelength of the incident sound is very much larger than the duct’s small scale dimensions
and thus only a small discrepancy results. However, at high frequencies this is no longer
true and the discrepancies are larger.

The magnitude of the measured transmission coefficient, which agrees closely with that
predicted at low frequencies, is progressively greater than predicted at increasing frequencies.
Three possible reasons for this observation are suggested, as follows.

(1) The walls of the experimental duct are not absolutely rigid as supposed by theory. In
fact they were found to vibrate and radiate sound. Thus vibration through the walls actsas a
flanking path to increase the apparent transmission through the attenuator. (2) The minima
of the standing wave measured in the upstream duct become sharper with increasing fre-
quency, particularly at large values of the standing wave ratio n. This leads to error in evalua-
ting the magnitude of the minimum pressure and results in a higher value of transtission
coefficient than predicted. (3) The duct dimensions are not exactly described by the theory.
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Minimum transmission at the design frequency may be fully accounted for in terms of
reflection at the bend exit plane, interface D of Figure 2. In fact a simple theory which des-
cribed the exit plane as composed of two vibrating pistons but with variable phase, dependent
upon the wavelength to path difference ratio, describes quite well the overall transmission of
the attenuator. However the presence of the additional minima in the experimentally deter-
mined transmission coefficient that occur at values of koh = 0-6, 1-3, 2+6,..., as shown in
Figure 4, carnot be explained by considering reflections at the exit plane alone. The addi-
tional minima are due to muiti-reflections at interfaces A and D and are fully accounted for
by the more exact theory presented here. The frequencies at which additional minima occur
depend upon the magnitude of the path difference relative to the mean lengths of either of the
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Figure 5. Power transmission coefficient of optimum attenuator, —, Theoretical curve; 0, experimental

values.

ducts in the compound bend. For convenience we will take the inside duct mean length as the
standard length for comparison. Thus the ratio of the inside duct length to path difference
determines the frequencies of additional minima. '

The following strategy is now possible. Choice of the path difference determines the design
frequency while independent choice of the mean inside path length to path difference ratio
determines the frequencies of additional minima. Thus for a given design frequency the
ratio can be chosen to optimize the rejection characteristics of the attenuator by appropriate
adjustment of the frequencies of the additional minima. For the purpose of this paper optimal
attenuation has been taken to mean at least 10 dB transmission loss over as wide a continuous
frequency range as possible, centered on the design frequency. In practice one proceeds by
keeping the path length difference between the inside and outside ducts in the bend constant
and varying their total lengths, or equivalently the ratio of their lengths. The ratio of lengths
of the attenuator whose transmission coefficient is shown in Figure 4 is 2:00; however the
optimum ratio of lengths for a crescent-shaped center-body has been determined by these
investigations to be 1-67. With this choice the position of the extra minima are moved closer
to the design frequency and a continuous rejection band of greater than ten decibels over
three-quarters of an octave is achieved.

An attenuator designed for optimal attenuation characteristics has the following dimen-
sions: with reference to Figure 2 its radii are R, = 0-184 meters, R, = 0-248 meters, R; = 0-006
meters and R, = 0-070 meters.

The theoretical and experimentally measured transmission coefficient values of this
attenuator are shown in Figure S. It can be seen that the extra minima have indeed moved
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closer to the design frequency than those shown in Figure 4. In the model attenuator a
rejection band of 430 Hz centered at a design frequency of 844 Hz has been achieved.

Closer agreement is obtained in the position of theoretical and experimentally measured
minima produced by the optimum attenuator. This is due to more accurate machining of
components in the attenuator, thus achieving the correct mean path lengths.

5.2. INSERTION LOSS
The theoretical transmission loss is predicted by

transmission loss = —10log(a,). 23)

Theoretical and experimentally measured values of transmission loss for the original attenua-
tor are shown in Figure 6 while those for the optimum attenuator are shown in Figure 7.
At the design frequency the rejection of sound is very nearly complete so that the trans-
mission loss in a narrow frequency band about the design frequency depends upon the band
width. The narrower the band width the greater the transmission loss. In the analysis shown
in Figures 6 and 7 a band width of 25 Hz has been used but as pure tones were used for the
measurement of the transmission loss, occasionally very much, greater rejection levels than
predicted were observed. Subsequent investigation with narrower band width increments
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Figure 6. Transmission loss of original attenvator. ——, Theoretical curve; o, experimental values.
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Figure 7. Transmission loss of optimum at:enuator. —, Theoretical curve; 0, experimental values.



323

A REACTIVE ACOUSTIC ATTENUATOR

50 T T T 71 T T
40} "
@
2]
% 30} o
8
[
o
8
g 20} -
w
[ =
o
RS
10k p=
o.__nﬁITL-r-v-l T 1 l
Qo O Q o Q
Rec88 3 § 8§

Band center frequency (Hz)

Eigurc 8. Experimentally measured transmission loss of original attenuator in 1/3-cctave bands with
white noise source.

50

T T 7 ] T T

a0

30 -

Tronsmission loss (dB)

1
8
@

1250+~ l

1000+

Band center frequency (Hz)
Figure 9. Experimental measured transmission loss of optimum attenuator in 1/3-octave bands with
white noise source.

showed that these high anomalous values could always be accounted for on the basis presented
here.

Small discrepancies between the theoretical predictions and the measurements are thought
to be due to small dimensional inaccuracies in the models as previously discussed. However,
much closer agreement is obtained, between the actual magnitude of the theoretical trans-
mission loss and that measured experimentally, than that shown by the transmission coef-
ficients in Figures 4 and 5. Thus the attenuator performs far better than shown by measuring
the standing wave alone. This supports the argument presented for discrepancies between
the magaitude of experimental and theoretical transmission coefficient.

The experimentally measured transmission losses of the original and optimum aftenuator
in one-third octave bands with a white noise source are shown in Figures 8 and 9, respectively.

5.3. CURVED DUCT RADIAL PRESSURE DISTRIBUTION

The theoretical variation in pressure amplitude across the duct was evaluated by using the
following expression: ‘

relative sound pressure = (¥50),/(V60), » (24)
where ¥, is the characteristic function of the (0, 0) mode.
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In equation (24) the radial pressure amplitude distribution across the duct has been nor-
malized to that at the inner wall. Representative values for the inside tend of radius ratio
a= Ry/R, =128 are shown in Figure 10 while those for the outside bend, a = 2-25, are
shown in Figure 11.
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Figure 10. Variation in pressure amplitude for bend a=1-28. —, Theoretical values.
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Figure 11. Variation in pressure amplitude for bend a =~2-25,. ——, Theoretical; o, experimental.

’

Experimental values for the variation in pressure amplitude across the outer bend, a = 2:25,
are shown in Figure 11 for comparison with the predicted values. The agreement is considered
to be good. The small error apparent at high frequencies is thought to be due to dimensional
inaccuracies in the radii of the curved sections.

It can be seen that at low frequencies, corresponding to values of the dimensionless fre-
quency ko < 15, acoustic waves propagate with only a small variation in pressure amplitude
across the duct, for bends of radius ratio shown in Figures 10 and 11. Hence at low frequencies
the basic design assumption that acoustic waves propagate as plane waves in ali sections of
the attenuator wouild lead to a negligible error. However as the frequency increases, the
variation in sound pressure amplitude across the duct becomes more pronounced, particu-
larly in the sharper bend. Thus for sharp bends at high frequencies the assumption of plane
wave propagation does not hold. This conclusion is in agreement with results obtained by
Cumnmings [S].

6. CONCLUSIONS

An attenuator with an inherently low pressure drop coefficient has been described which
may be installed in a duct bend. The attenuator when optimally designed is capable of pro-
viding a transmission loss greater than ten decibels over a frequency range of three-quarters
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of an octave in the very low frequency range. Optimization of design is facilitated by a
theoretical description that has provided good agreement between theory and experiment.

The attenuator provides large transmission loss at a series of discrete frequencies all
below the cut-off frequency for the first cross-mode in the duct. The presence of these discrete
frequencies is explained by reflection of incident sound at the exit and entrance to the attenua-
tor. Their relative distribution is determined by the geometry of the attenuator.

The variation of sound pressure amplitude of a travelling wave in a curved duct is ade-
quately described by the theory. Large departure from uniform pressure amplitude is pre-
dicted and observed for curved ducts of small radius near but still below cut-off of the lowest
order mode for straight ducts of the same cross-section. Thus in the latter case the assumption
of plane wave propagation in the curved duct is inadequate; curved duct equations must be
used to describe the sound propagation.
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APPENDIX: CONTINUITY EQUATIONS AT INTERFACES B, C AND D

At interface B, x' = X and 8’ = 0, continuity of pressure provides
I=0: B %,

Al exp [—ikoo X1+ Abo(h2) xp likoo X1 = 3, Dio [ Wiodr” + Dio [ wiodr,  (AD)

n=0 Ry R,

1#0: ~

Aio(h4)yexplikio X1= 3 Dl [ Wiocos [(2In/h) (' = Ry)]dr’

a=0
R3

Ry

+ Dl J' Véocos [In/R) (' — RY)dr' (A2)

R3

Continuity of tangential velocity at B provides

1=0:

ALy Koo(h]2) exp [~ikoo X — Ao Koolh/2) exp [ikoo X]

R4 R4 :
= 5 Dl [ Wialnlr)dr' = Dio | Wielvalr)dr, (A3)
n=0 Ry Rs

1#0: %4

Al kao(hi4) exp likio X1= 5 Do [ Wiclvalrycos [QUn/h) (' = Ry)}dr' -

n=0 R3

Ra
— Do J. Yaolvolr’) cos [(2in/h)(r" — R3)] dr’. (Ad)
Ry
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At interface C, x” = —X and 6’ = =/2, continuity of pressure provides
1=0: 2,
Blo(h/2) exp [ikoo X1+ Biolh/2) exp [~ikoo X]= Doo f Yoo exp [—ivom/2]dr’ +

LY}
R4
+ > D,Zof Wi exp[iv,nf2]dr’, (AS)
n=0 Ry
1+#0: =
Blo(h/4)yexplikio X1 = Dio | Wsoexp [ivon/2]cos [(2in/k) (' = Ry)ldr’+
Ry 2
+ 3 Dl [ Wioexplivan/2]cos [QInjh) (¢ — Rl dr. (A6)
n=0 R3 .

Continuity of tangential velocity at C provides
1=0:
Blo kao(h/2) exp [ikoo X'] — Boo koo(h/2) exp [ikoo X ]

Ra

= Do [ Wiatvolr)exp[-ivon2}dr’ = 3 Do [ Wialvilr)exp livyn/2)dr (A7)
R o Ry

1#£0: Re
Bilo kio(h/4) exp [ikio X1= Do J‘ Yolvolr’) exp [—ivo /2] cos [(2In/h) (r' — Ry))dr’ —
R3

Ra
— 5 Dio [ Wiavr)exp livanf2) cos [QIn/h} (' — Ry)ldr.
Ry o

&6 (A8)
At interface D, x" =0, @ = n/2 and x =0, continuity of pressure at D provides
m=0: % i .
Eboh=Clo [ Wioexpl-ivom/21dr+ 3 Cio [ Wioexplivan/2]dr
R, n=0 Ry
& h/2
+ Bhohl2+ 3 Bl [ ¥hdy, (A9)
=0 o
m#0: R3
Etohf2=Cbo [ Y6 exp [-ivon/2]cos [(mafh) (r — Ri)ldr
Ry
@ Ra
+ 3 Cho [ Wioexplivy n/2)cos [(mn/i) (r ~ R)1dr = Biohf2mm) [1 = (=17} +
n=0 R,
- h/2
+ 3 Bly [ Wiocos [(mn/k)(y" + K214y (A10)

=0 3
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Continvity of tangential velocity at D provides

m=0:
Ry . R3 .
Elokooh=Clo [ Wéo(volryexpl-ivon/2ldr~ 5 Clo [ Wiavalr)exp v, n/2]dr
R, n=0 Ry .
7 " h/2
+ Biokooh/2— 3 Bl’okloj‘ Yiody’ (All)
1=0 4
m#0: R
Enokmohf2=Coo f Woo(vo/r) exp [—ivo n/2] cos [(mn/h) (r — R,)1dr
Ry

R2
= 3 Cio [ Wio(valr)expiv, n/2] cos [(mn/h) (r — Ry dr
Ry

hi2

— Bhokooth2mm)[1 ~ (<)) = 3 Blokio | wiscos [onn/h) (3" + Hi2)]dy"
1=0 o
(A12)
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Propagation of sound in a curved bend containiny a

curved axial partition
Christopher R. Fuiler and David A. Bies

Department of Mechanical Engineering, University of Adelaide, South Australia, 5001

Sound transmission in 2 1B0° bend containing a curved partition positioned on the axial center kne is
investigated theoretically and experimentally using equations for sound propagation in straight and curved
ducts. Good agreement is obtained and small discrepancies are discussed. The pariition is found to
significantly alter the scund propagation through the bend and reasons for the different acoustic behavior

are given.

PACS numbers: 43.20.Mv, 43.20.Bi

INTRODUCTION

In recent years attention has been focused on the
problem of sound propagation in curved-duct bends.
Rostafinski'™® has theoretically investigated the acoustic
velocity distribution of propagating and nonpropagating
modes within curved bends. Cummings? has theoreti-
cally and experimentally investigated the acoustic dis-
continuity caused by two 180° bends of different curva-
ture in a straight-duct system of rectangular cross sec-
tion. He found that even for bends of severe curvature,
near the cutoff frequency of the {1,0) mode in the curved
section, the bends provided negligible reflection of
sound. Osborne’ considered the more complex case of
higher-mode propagation in short curved bends, but
still found no appreciable discontinuity in the acoustic
propagation through the duct system.

In this paper the discontinuity caused by a bend di-
vided by a curved partition is considered. As suggested
by Rostafinski the introduction of the partition creates
essentially new boundary conditions and modifies the
original distribution of pressures and velocities. )
Three parameters, power reflection coefficient, char-
acteristic impedance, and insertion loss are investi-
gated. Experimental values of these parameters are
given and compared with theoretical predictions. The
presence of the partition is shown to drastically alter
the acoustic properties of the bend.

The partition effectively divides the curved bend into
two concentric bends. The duct system containing the
concentric bends is investigated theoretically by applying
equations for sound propagation in siraight and curved
ducts to the respective sections. Continuity of acoustic
pressure and axial particle velocity at adjoining inter-
faces between straight and curved sections is postulated
to determine the Fourier coefficients of each wave. The
analysis is limited to frequencies less than the cutoff
frequency of the (1,0) mode in both curved and straight
ducts.

1. SOUND PROPAGATION IN RECTANGULAR
SECTION DUCTS

Sound propagation in an infinite straight duct of rect-
angular cross section may be described as follows®:

plx,y,2,t)= c’P,.,.f#f,.,(y,Z)exp[i(cu!—k,,;,,X)]- (1

m=U n=
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In Eq. 1 the x axis is parallel to the direction of propa-
gation of sound and the characteristic function ¥2,(y,z),
assuming rigid walls is given by Eq. (2).

¥y, 2) =cos [(mn/h)ylcos(nn/h,)z], (2)

where ky and h, are dimensions of the duct in the y and 2z
directions, respectively.

The wave number k,,, is a solution of the characteris-
tic Eq. (3)

B =L (w/C)2 = (ma/hy )2 — (nm/Rp)?1 2. (3)

If k,, is real propagation occurs without attenuation,
However, if k,, is imaginary the corresponding (m, n)
mode does not propagate; the disturbance decays ex-
ponentially away from the generating surface.

Sound propagation in an infinite curved bend of rect-
angular cross section may be described by a solution of
the wave equation in cylindrical coordinates as follows’:

plr,8,2,0) =20 Conl il ) explifat =v ). (@)
g20 po

In Eq. (4) v, is the angular wave number in the curved
duct, The characteristic function $¢,(», z) and the char-
acteristic equation are obtained by applying the bound-
ary conditions of rigid duct walls, that is, at =R, and
r =R, the radial components of particle velocity are
Zero.

The characteristic function is

veylr,2) =4, (k7)) [} (B,RY)/ Y (koR1)]

X Y,a(k,,r)} cosl(nw/hy)z], (5)
where
K=k ~k: and k,=nn/h,.
The characteristic equation is
gy (B Y (BeR ) = T} (kR Y (R, Ry) =0 (6)

Solutions of Eq. (6) using an iterative process and a
computer provide vaiues of the angular wave number v,.
As for straight ducts there will be frequencies below
which solutions of Eq. (6} will be imaginary and the cor-
responding mode will be evanescent. Above these cut-
off frequencies, the mode will propagate without attenua-
tion.

© 1978 Acoustical Scciety of America 1
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FIG, 1.,
tition,

Arrangement and coordinate system of bend with par-

1. ANALYSIS

The arrangement of the duct system is shown in Fig.
1. The bend has dimensions R, =0.127 m, R,=0.1805
m, R;=0.254 m, and was analyzed by dividing it into
sections with coordinate systems and joining interfaces

as shown in the figure. Sound propagation is described
by straight-duct equations in sections 1 and 4 and curved-
duct equations in sections 2 and 3 of the bend.

The frequencies to be considered are well below the
cutoif frequency of the (1,0) mocde in both curved sec-
tions, thus any radial particle velocity will be small and
negligible so that it will be sufficient to postulate con-
tinuity of axial particle velocity. As there is no discon-
tinuity in the z direction it is satisfactory to use a two-
dimensional coordinate system, i.e., k,=0.

The Fourier coefficients of each wave were obtained by
applying continuity conditions of acoustic pressure and par-
ticle velocity across interfaces A and B. Both sides of
each equation are multiplied by cos((mn/k)y] and inte-
grated with respect to y, 3’, or », The orthogonality
property of the latter functions allows determination of
the coefficients Py and E}y, for m =0,1,2, ... .

The general equations obtained are

|
Continuity of pressure at A (x=0,0 =0)
m=0,
= Ry Ry © Ry Ry
Pioh+Plyh =2020f ‘Pﬁod”*‘caof ‘l’ﬁodr’fZD:of ‘P:odT‘FDEoI Yodr, ("
o R, Ry a=0 Ry “Ry

where superscript { refers to incident waves and superscript » to reflected waves;

m#0,

7 Rz . mn S Rs mn
Prozh= 2; j w,ocm[ k (r—R,)]d’r+C50Ll zpuocos[T(r—R!)] 47+§D:OJ‘;E §ocos[~h—(r—Rl)] dr

+Daof Y50 COS[EL; (o —R;)] dr.
Ry

Continuity of tangential particle v'elocity a A

(8)

m=0,
- Rg Rz =
Psokooh-Pﬁokmh=EC:o_f ¢zov—"d7’-caof 4’80%.0‘1"'*'2D:OI Yoo Vadr Doof 4’00"47‘, (9)
a= Ry r Ry a0 Ry
m#0,

-PmokmOZh z;c f ch Vacos[m ('r 1)](11‘—

Ra v mT
'Of P50 FOCOS[T(T-RQ] dr

+§D f Yoo V"C.OS[ (r- Rx)] dr - DooJ’ Yoo TCOS["I"(T R1)] (10)

Continuity of pressure at B (x'=0,0=m)

m=0,

Ry = Ry R3
Efh=C}, J; Yeo exp(—iver) dr + ?‘1 Cc J; a0 expliv,m)dr + Dy, Lz oo exp[—ivom] dr
1 - 1

- Ry
+2 0 | yspexpliv,n)dr; ()
a=0 Ry
m#0, _
. Re . mr e Re . mw,
Elyzh=Cl, Vo exp(-—zuon)cos[T (r—R,)] dr+2C;0f Y&y expliv,m) cos T(?‘"Rz)] dr
Ry Ry
Ry o
+D00f Yo eXpi-- won,cos[— (r ,)] d'r+ED L np‘joexp(z'yarr)cos[mh- (T—R,.)] dr. (12)
az{ 2 :
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Continuily of tangenlial particle velocity at B

m=0,

R3
Efgkooh = CooJ’ %o,_exp(—lvoﬂdr—z;c f zpao—iexp(w ”)dﬂ'D‘f ¥ %
R

exp(- tver) dr
2

- ;D j AN exp(w m)dr; (13)
m#0,
1 Ra 9 ke mn
Eloknzh=Cly _L ¥ a—exp(-won)cos[—-— (r- 1)] dT—ZCZOI Poove/7) exp(iv,vr)cos[-,—l— (?’—Rl)] dr
1 = .

R3 v Ra V, mm
+D}, Ve 2 exp(=— won)cos[— (r- Rx)] dr — ZD f (bﬁoJ-exP(iun.n)cos[—- (‘r—Rl)] dr. (14)

Ry ¥ P Ry (4 h

At both interfaces an infinite series of modes will be
generated, As the frequency over which the bend will
be investigated is limited to less than the cutoff fre-
quency of the (1,0) mode in both straight and curved
sections these infinite sets will consist of one propa-
gating and an infinite number of higher-order evanes-
cent modes. In order to determine the coefficients it
is necessary to truncate each infinite sum at a value de-
termined by two factors: (1) Since the number of un-
known coefficients generated must equal the number of
equations, the number of modes considered in straight
sections 1 and 4 is truncasted at twice the number con-
sidered in curved sections 2 and 3. (2) The accuracy
of the analysis is determined by the number of modes
considered,

Cummings* and Osborne® have hoth shown that non-
propagating modes have only a small effect on the sound
propagation in a curved bend, Thus in Eqs. (7)-(14) the
number of modes considered in the curved sections will
be truncated at one while in the straight sections, one
propagating and one nonpropagating mode will be con-
sidered, This simplification {s justified, as will be
shown, by the comparison between theoretical and ex-
perimental results, The two modes considered in both
straight sections are necessary to provide continuity
across adjoining interfaces,

l1l. EXPERIMENTAL APPARATUS AND METHOD

The bend was investigated with the arrangement
shown in Fig, 2. The duct system has a 0,0635X%0,127-
m® cross section and was constructed from 0.0254-m-
thick wood lined with laminex. The sound source was
positioned 1.7 m upstream from the entrance to the bend
at which distance any nonpropagating modes are suf-
ficiently attenuated to be negligible, The straight-duct
downstream of the bend was terminated by an anechoic
termination with a pressure reflection coefficient of less
than 0.12,

Three parameters were measured. The power reflec-
tion coefficient, an indication of how much sound is re-
flected back towards the source, and the characteristic
impedance, an indication ¢f how severe a discontinuity
the bend presents to acoustic propagation, were obtained
by measuring the standing wave in the upstream straight

J. Acoust. Soc. Am., Vol. 63, No. 3, March 1978

duct and applying standing-wave theory.® Values of the
experimental reflection coefficient plotted against a non-
dimensional frequency parameter %% are shown in Fig.
3. Since the analysis is limited to less than the cut-off
frequency of the (1,0) mode in the straight-duct section,
for which kgh =7, values of kph are terminated at &,
=3.02. Experimental values of the resistive impedance
R/pc are shown in Fig. 4 while those of the reactive
part X/pc are shown in Fig, 5.

The insertion loss, a measure of the attenuation in
decibels of the incidont wave, was measured by tra-
versing a calibrated microphone in the upstream duct
until 2 maximum in sound pressure level PJ* was re-
corded. The sound pressure level of the propagating
wave El, in the downstream duct was measured with a
calibrated microphone inserted through the duct wall,
The insertion loss is defined to be the difference in
decibels of P{, —Efy. Thus using standing-wave theory
it can be shown that,

Pisr=(14al/fpl

o PIM(IB) = 2010gw(1 +@}/®) 4+ Pl (dB),

5 Ply=P3f* =20 log,o(1 + al/8) ,
Hence the insertion loss of the bend is
measured insertion loss {dB)}=PJ#*dB) - 20 logye(1 + @}/?)

- E§y(dB). (15)

In Eq, (15) @, is the measured power reflection coei-
ficient.
{V. THEGRETICAL PREDICTIONS

The radial terms in Eqs. (7)-(14) were expressed as
power-series expansion of Bessel and Neumann func-

MT. S
—— -
—
——— ;
AT M.P.
FIG. 2. Arrangement of experimental apparatus, (M, T.)

microphone traverse, (S) speaker, {C.B.) compound bend,
(A.T.) anecholc termination, and (M. P.) microphone proke,
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FIG. 3. Sound power reflection coefficient of compound bend,
theoretical curve, o experimental values,

tions® and integrated using Simpson’s rule by a2 com-
puter. The resulting equations were then solved using
a program based on Crout’s rule.'® For convenience
a reference amplitude of P{;=1 - 0{ was assumed.

The theoretical power reflection coefficient is given
by Eq. (16)

@, = | Pio/Plo|*. @16)
The characteristic impedance is

Z/pc =R/pc +(X/pcYi = (Pl +P)/ (Pl =Pg).  (17)
The theoretical insertion loss is

I.L. ==20logy(1 - a,)!/%, (18)
All three parameters are shown with respective experi-
mental values for comparison in Figs. 3-8,
V. DISCUSSION
A. Power reflection coefficient

As can be seen in Fig. 3 there is close agreement
between theoretical and experimentally measured values
of the frequencies at which maxima occur, The small
discrepancies are thought to be due to dimensional in-

= o @D
o o o
T T T

RESISTIVE IMPEDANCE IR/PC)

nN
o
T

p
0.0 LL\’]C&JQ

0.0 1.0 20 3.9 4.0
WAVE NUMBER PARAMETER ( kyh

FIG. 4. Resistive part of characteristic impedance of com-
pound bend, theoretical curve, © experimental values.
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FIG, 5. Reactive part of characteristic impedaace of com-
pound bend, theoretical curve, o experimental values,

accuracies and variation in ambient temperature during
the course of experimentation,

The magnitude of the experimental reflection coeffi-
cient is consistently less than predicted at the maxima.
This was thought to be due to the difficulty of deter-
mining accurately the standing wave ratio when it is
quite large. In the case of large standing wave ratio
the minima are quite sharp and very easily cbscured
by, for example, overtones due to small distortion in
the signal. They are thus very difficult to measure and
the measured magnitude of sound pressure level is al-
ways too high. The standing wave ratio and thus the
corresponding power reflection coefficient in this case
will always be too small.

As can be seen in Fig, 3, a curved 180° bend with a
partition positioned on its centreline provides a large
disruption to sound propagation. In fact the theory de-
veloped here predicts that at the dimensionless {re-
quencies of kph given in Table I the power reflection
coefficient is very close t0o unity. This is in direct
contrast to a normal curved bend. Cummings! studied
two bends, one of radius ratio R,/R;=0.097 represent-
ing a very sharp bend, at frequencies below the cut-off
frequency of the (1,0) mode and found that the pressure

S0
40
o
b
@ 30
(=)
.
x
220
=
o
#
z
10
u -
0.0 1.0 2.0 3.0 4.0
WAVE NUMBER PARAMETER (kgh)
FIG. 6. Insertion loss cf compound bend, theoretical

curve, o experimental values,
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transmission coefficient of the (0,0) mode does not fall
below 0.975. Thus it can be seer that positioning a
splitter or turning vane in a curved bend of a duct sys-
tem leads to quite different acoustic behavior for fre-
quency below cutoff for the first cross mode,

The reason for the markedly different effect of a
partiticn in a straight and curved duct is due to the re-
sulting variation in path length and phase of the twoparts
of the acoustic disturbance propagating in the two parts
of the compound curved duct. Witheut the partition the
phase of the (0,0) mode will be maintained radially
across the duct and will be determined approximately
by the center-line propagation distance. The partition
effectively prevents the implied redistribution of the
disturbance across the original bend confining it to the
two separate concentric ducts formed by the partition.

The effect of curvature on sound propagation in a
curved duct in contrast to propagation in a straight duct
is reflected in the respective solutions of characteristic
Eqgs. (3) and (8), For the (0,0) mode In a straight duct
the wave number is independent of duct dimensions,
whereas in a curved duct the correasponding angular
wave number is dependent on the radii of the curved
section as suggested in Ref. 3. Thus the waves travel-
ling in the separate curved sections, shown in Fig, 1,
have the same amplitude but different relative phases at
each angle ¢ of propagation, due to different values of
angular wave number. Therein lies the explanation for
the effect of the partition in a curved duct,

At interface B, shown in Fig. 1, the two incident
waves in sections 2 and 3 have a phase difference in-
duced by the different values of respective anguiar wave
number. When these two waves recombine at B, the
phase difference leads to generation of nonpropagating
cross modes and the resuvlting impedance mismatch
causes reflection of sound. Similarly reflected waves
from B have a phase difference at A and an impedance
mismatch results here a8 well, When these phase
differences are close to n large reflections of sound
oceur,

B. Characteristic impedance

Theoretical and experimental values of the resistive
and reactive parts of the characteristic impedance are
in good agreement as shown in Figs. 4 and 5.

It can be seen that at dimensionless frequencies of
kok given in Table I a large impedance mismatch rela-
tive to the characteristic impedance pc of the incident
wave is generated. Thus one would expect large reflec-
tion of sound at these frequencies. Thisisdemonstrated
in Fig. 3 which shows high reflection of sound at the
characteristic frequencies of Table I,

At intermediate frequencies the characteristic imped~
ance Z/pc of the bend is relatively closer to unity than
at the characteristic frequencies and incident sound is
thus mostly transmitted at these intermediate frequen-
cies.

As the nondimensional frequency kyk approaches r the
reactive part of the characteristic impedance changes its

J. Acoust. Soc. Am., Vol. 83, No. 3, March 1978

TABLE 1,

Characteristic frequencies of a compound 180° bend
for R3/R;=2.
Characteristic freq. (koh)?
0.6 1,18 1,80 2,08 2,30 2,86

“Only frequencies below cutoff (koh =m) for the (1,0) mode in
the straight duct are included,

general shape demonstrated at lower frequencies. This
was thought to be due to the effect of the evanescent
(1,0) mode in the straight duct becoming predominant

near cutoff,

C. Insertion loss

Much closer agreement is demonstrated by compari-
son of experimental and theoretical valuee of insertion
loss shown in Fig, 6 than reflection coefficient shown
previously in Fig. 3. This observation supports the
argument presented previously to explain the discrepan-
cies shown in the latter Zigure.

At koh=2.1 an ingertion loss of 45,5 dB was measured.
Thus an incident pure tone at this frequeacy would be
virtually completely reflected. Such high levels of at-
tenuation suggest the use of the discontiruity provided
by the bend as a reactive attenuator. An attenuator
based on the impedance mismatch generated by a center
body placed 1n a 90° bend is discussed in a paper by Ful-
ier and Bies.!

VI. CONCLUSIONS

Sound transmission in a duct system containing a
curved 180° bend with a central partition has been dig-
cussed. Theoretical and experimental values have
been given and good agreement obtained.

The partition was found to significantly alter the sound
propagation through the bend, resulting inhigh reflection
of sound at a number of discrate frequencies,

The problem discussed illustrates the essential dif-
ference between sound propagation in straight and curvad
ducts. Namely, the angular wave number of the (0, 0)
mode in curved ducts is dependent on boundary condi-
tions whereas in a straight duct the wave number is in-
dependent of duct geometry.
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