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Abstract

The kinetics of non-linear mass transfer and its effect on the hydrodynamic stability
of fluid—solid permeable surface, gas-liquid and liquid-liquid systems is presented. A
comparative theoretical analysis of the influence of non-linear mass transfer and the
Marangoni effect on the heat and mass transfer and the hydrodynamic stability is dis-
cussed.

A linear analysis of the hydrodynamic stability of gas—permeable surface systems is under-
taken. The problem can be reduced to an eigenvalue one, consisting of an Orr-Sommerfeld
type equation coupled to the convection-diffusion equation through the boundary condi-
tions at the permeable surface. Previous studies have ignored the effect of this coupling.
The effect of coupling on the stability is studied at different values of the mass-transfer
rate and Schmidt number. Comparison with approximate solutions is presented.

The natural asymptotic limit of large Reynolds number and “small” amplitude distur-
bances of fixed frequency are also considered. Under these assumptions the linearised
disturbance equations are governed by the standard triple-deck structure of Smith, and
others. The eigenrelation, which determines the stability of the flow, is derived by solv-
ing a series of equations in each layer of the triple-deck. Due to the different scales in
hydrodynamic and concentration boundary layers the resulting eigenvalue problem must
be tackled numerically.

The problem of diffusion induced separation of boundary-layer flows under conditions
of interfacial mass transfer is also investigated. A semi-implicit marching algorithm is
used to solve the boundary-layer equations over a permeable “slot” through which species
diffusion occurs. A simple representation for the mass-transfer parameter is constructed
in order to model the presence of the slot (the region of active diffusion) and to ensure
that no discontinuities are introduced into the calculations.

It is shown that in the case of diffusion driven boundary-layer flows the streamwise
velocity develops an inflection point at some streamwise location downstream, which
may result in an early transition from laminar to turbulent flow over the “slot”. An
inviscid Rayleigh instability analysis over the “slot” is carried out. The magnitude of the
mass-transfer parameter required to render an otherwise stable flow inviscidly unstable
is determined.
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Introduction

The latest developments in the chemical engineering, bio-technological and medical equip-
ment industries and the study of kinetics of all processes based on fluid flows through
porous media pose the task of devising instruments with high power-to-weight ratio along
with the requirement of reducing the equipment size. The most natural way of achieving
these goals is the implementation of high mass and heat-transfer rate processes. This can
only be achieved through an understanding of the nature of transport phenomena and
consequently flow instabilities.

The basic problem of transport phenomena in fluids is usually considered by setting up
a macroscopic framework based upon the principles of hydrodynamics and thermody-
namics. Any system not in equilibrium will naturally tend towards an equilibrium state.
This results in a transport of heat (in the case of thermal equilibrium) or mass (in the
case of concentration equilibrium). Since the equilibrium state is characterised by the
absence of gradients of the system parameters, a spontaneous process of mass transfer!
in the non-equilibrium state is due to a concentration gradient acting within the system.
The concentration gradient then induces a mass flux through the interface.

The optimal design of equipment which operate under conditions of intense interfacial
mass transfer has not been an easy task due to the significant discrepancies between
experimentally measured process rates and the rates predicted by the linear theory of
mass transfer. The linear theory of mass transfer is characterised by three basic features:

1. The mass-transfer rate does not depend on the direction of mass exchange between
phases (for example absorption and desorption rates are equal);

2. The Sherwood number? does not depend on concentration;
3. Mass transfer does not influence the hydrodynamics.

The basic reasons for the deviations from the linear theory are the occurrence of several
non-linear effects as a result of the gradients of pressure (Stefan flow®, that is a vapour
(gas) flux generated from the gradient of pressure on the interface). This gradient can
be considered as a result of phase transition - evaporation, condensation etc. During the
phase transition the phase volume changes. The other cause for the pressure gradient
can be a chemical reaction on the interface if the volumes of the reactive species and
the products of reaction are not equal, i.e. 3H; + N, = 2NH; (where four volumes
give two), density (natural convection), concentration (non-linear mass transfer), and
surface tension (Marangoni effect?), that is a secondary flow as a result of the gradient

1Mass transfer considered as mass in transit as a result of a species concentration difference in a
mixture (see Incropera & DeWitt (1990)).

2The Sherwood number Sk = kL/D is the dimensionless concentration gradient at the surface and a
measure of the convection mass transfer occurring at the surface. Here k is the mass-transfer coefficient,
L the characteristic length and D the diffusivity coeflicient.

3Stefan flow is a special case of diffusiophoresis, with particle motion towards or away from evaporating
or condensing surfaces.

4The Marangoni effect is a phenomenon whereby movement of the surface of liquid occurs due to
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of the surface tension on the gas-liquid or liquid-liquid interface. The cause for this
gradient is local differences in surface tension, temperature and/or concentration of the
transferred substances. The existence of the temperature and concentration dependencies
of the parameters in the equations of momentum, mass and heat transfer, as well as the
chemical reactions (especially those of higher order), leads to other types of non-linear
effects. All these effects represent the influence of the temperature and concentration on
the flow rate of a fluid, in which heat and/or mass transfer takes place. They may occur
in two ways. First, the changes in the velocity field lead to changes in the concentration
and temperature fields, and therefore to changes in the kinetics of the mass and heat
transfer. Second, the change in the velocity field can lead to a loss of stability® of the
flow, and consequently to the appearance of stable dissipative or turbulent structures.
These in turn lead to new mechanisms of heat and mass transfer and to an essential
increase of the heat and mass-transfer rate. In most cases, existing models of non-linear
processes are treated as a superposition of the linear theory and the separate non-linear
effects such as the induction of secondary mass fluxes normal or tangential to the interface
and the non-linear effects due to high concentrations and chemical reactions

Mass transfer through an interface is always connected with momentum transfer. In the
case of intense interfacial mass transfer however, this momentum transfer is comparable
with the basic flow momentum transfer. Thus, the intense interfacial mass transfer in-
duces secondary flow through the surface. According to the non-linear theory of mass
transfer the local mass flux I across the interface has both diffusive and convective com-
ponents

oc* MDp* oc*

an+Mcv,,=— = o’ (1)

I=-MD

where p* = pj + Mc* and c* are the density and the concentration of the transferred
substance through the phase boundary. The derivation of this fundamental equation
of mass transport phenomena theory can be found in Bird, Stewart & Lighfoot (1966)
(see equation 17.0-1). In (1) the normal component of the velocity of the induced flow
on the interface v, can be defined by the mass flux through the surface as follows (see
Incropera & DeWitt (1990))

_MDBc*
py On’

vn—

(2)

where M is the molecular mass, D is the diffusion coefficient, pj is the density of the
fluid, 8/0n denotes the derivative normal to the interface. In (2) vp can be consid-
ered as the rate of the Stefan flux but it does not result from a phase transition (see
Boyadjiev & Vulchanov (1990)). It has an effect of “suction” or “blowing” from/into the
flow depending on the direction of the induced mass flux.

Expression (1) shows that the mass-transfer rate depends on the mass concentration and
the concentration gradient on the interface. The influence of the mass concentration at

local differences in the surface tension of the liquid.
5 Antonyms stability and instability are interchangeable as terms.
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the interface in the case of reversible processes is expressed by

* M*
E=1se 0 3)
Po Po

The effect described above is of particular significance when Mc*/p} > 10~2. Therefore
when the processes are irreversible (i.e. once having taken place they cannot be reversed
and in doing so leave no change in either the system or its surrounding) this effect is
theoretically absent and in a number of cases (all the processes that cannot be studied
as quasi-equilibrium ones) can be considered as negligible.

The new velocity component v, (in the linear theory of mass transfer v, = 0 on the
interface) can then influence both the dynamics and stability of the flow. In this case
the velocity vector v depends on the concentration distribution, and the left-hand-side
of the convection-diffusion equation

vVe=V - (DVc) (4)
will be non-linear®.

The theory of non-linear mass transfer is of practical interest in high intensity heat and
mass-transfer processes. Hence, fluid—solid permeable surface, gas-liquid, and liquid-
liquid systems will be examined. The results that will be obtained will be of use in the
clarification of the physical models and the kinetics of a number of practically interesting
processes. For instance, in the cases of intense interfacial mass transfer in electro-chemical
systems with high current density, an example of which is the process involving metals in
the electrolyte flow, the anode dissolution can increase substantially because of flow tur-
bulation at relatively small values of the Reynolds number?, while the electro-separation
of metals out of concentrated solutions can be implemented under laminar flow conditions
at high values of Reynolds number. Intense interfacial mass transfer is also of interest
for the process of ablation (for example, a spacecraft descending through the denser at-
mospheric layers). Intense evaporation of a substance from a solid surface leads to an
increase of the heat-transfer coefficients, i.e. to a decrease of the “undesired” heat flux
toward the spacecraft (missile) rounded fuselage nose.

The suggestion by Prandtl in 1904 that the fluid motion around objects could be divided
into two regions: a thin transition layer close to the object where frictional effects are
important, and an outer region where viscosity effects can be neglected, was one of the
most important advances in fluid dynamics. This thesis will focus on low-viscosity flows
(v < 1) and hence large Reynolds numbers. Therefore, we shall concern ourselves with
boundary-layer flows. There are several implications as a result. Firstly, environmental
disturbances are present in any flow and these can amplify so as to produce turbulent flow.
For small Reynolds numbers viscous effects are sufficient to prevent the amplification of
disturbances and a laminar flow is maintained. By increasing the Reynolds number even

8Here V = 8/8zi + 8/dyj + 8/8zk is the usual gradient operator in Cartesian coordinates.

"Reynolds number Re = Uy L/v is the ratio of the inertia and viscous forces, i.e. a measure of the
relative importance of inertia and viscous forces. Here U, is the free-stream velocity, L the characteristic
length and v the kinematic viscosity.
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small disturbances can be amplified to a point where the flow undergoes a transition to
turbulence. Secondly, the magnitude of the Reynolds number influences the momentum
boundary-layer thickness é,, = O(Re~'/?). In addition to the momentum boundary layer
which determines wall friction, the presence of mass transfer in our studies requires the
consideration of the concentration boundary layer. The thickness of the concentration
boundary layer is of order O(Sc~'/2Re~1/?) where the Schmidt number S¢ = v/D is
the ratio of the momentum and mass diffusivities. The physical interpretation of the
Schmidt number is as a measure of the relative effectiveness of momentum and mass
transfer by diffusion in the momentum and concentration boundary layers. For gases
the value of the Schmidt number is near unity, in which case momentum transfer and
mass transfer by diffusion are comparable. It is evident that for liquids where Sc > 1
the momentum transfer exceeds the mass transfer by diffusion. In a manner similar to
the role of the Reynolds number, the Schmidt number determines the relative thickness
of the momentum and concentration boundary layers - for gases they are comparable
and for liquids the momentum boundary-layer thickness is larger than the concentration
boundary-layer thickness é, = O(Sc~'/2Re~1/2).

Broadly speaking, we say that instability problems are concerned with the behaviour of
systems when there is some disturbance to their equilibrium state (equilibrium of the
external forces, inertia and viscous stresses of a fluid). The behaviour then depends on
the system’s stability. In the case of mass transfer dominated systems the induction of
the secondary flow changes the velocity profiles in the boundary layer, and hence its
hydrodynamic stability properties.

In this thesis, the problems to be considered are set up by studying the laminar flow
of a viscous incompressible fluid over a flat, semi-infinite, permeable plate across which
a concentration gradient exists or across a movable interface in the case of a two-phase
system. The problem of the onset of instability will be examined by making one simplifi-
cation. First, the physical mechanism regarding mass fluxes and concentration gradients
will be somewhat simplified. Certainly the most important contribution to the mass flux
is that resulting from the concentration gradient (see Bird, Stewart & Lightfood (1966)).
We shall neglect the other two “mechanical driving forces” - the pressure gradient and
external forces, such as gravity, electro-magnetic field etc., acting unequally on the vari-
ous chemical species. According to the theory of the thermodynamics of the irreversible
processes, the whole mechanism is not as simple as stated above and there will be a
contribution to each flux due to each driving force in the system. In this sense we shall
base our work on the assumption that the mass flux is a result only of a concentration
gradient. This allows us to simplify our discussions and to focus upon the most impor-
tant effect, namely the effect of the diffusion induced, normal flux on the hydrodynamic
stability of the boundary-layer flow.

The influence of intense interfacial mass transfer on the hydrodynamic stability of the
boundary-layer flow is even more interesting for systems with movable interface (gas-
liquid, liquid-liquid). A study to examine the effect of such a movable interface will be
done. Interaction between boundary-layer flows in gas and liquid will be considered; we
shall focus on the dominant effect of the diffusion induced mass transfer, i.e. excluding
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the interfacial instabilities. Here the effect of induction of secondary flows as a result of
intense interfacial mass transfer in the gas-liquid system will be studied, together with
the hydrodynamic interaction between the above mentioned two phases (only through the
basic velocity and concentration fields). In the case of liquid-liquid systems the influence
of the mass transfer on the hydrodynamic stability is analogous to the case of a motionless
interface, but now depending on the distribution of the diffusive resistance in both phases.
The mass-transfer kinetics and instabilities of the flow under these conditions is not only
of theoretical interest, but also of practical interest in view of the fact that they define
the rate of a number of industrial absorption and desorption processes, for example the
absorption of pure CO, in H,0.

Experimental studies of systems under conditions of large concentration gradients show
that the density, viscosity and diffusivity coefficients are functions of the concentration.
The effect of these functional dependencies upon the mass-transfer kinetics and flow
stability will be evaluated.

A comparative analysis of the influence of the effects of the mass transfer and the
Marangoni effect on the transfer kinetics and hydrodynamic stability of the flow will
be investigated. As has been mentioned above the Marangoni effect is a phenomenon
where a normal mass flux occurs on the interface due to local differences in the surface
tension of the liquid. Co-current gas and liquid flows in a laminar boundary layer along
a flat semi-infinite interface surface will be considered. The gas component is absorbed
by the liquid and reacts with the liquid component. The chemical reaction rate will be
taken to be of first-order. The heat effect from the chemical reaction creates a tempera-
ture gradient, so that the mass transfer is accompanied by heat transfer. Data for heat
and mass-transfer coefficients will be obtained as well as the critical Reynolds numbers
and the corresponding critical wave-numbers and frequencies (or wave-speeds).

A further study of fluid—permeable surface systems is proposed which is mainly motivated
by a desire to remove a simplification made in the aforementioned studies (see Boyadjiev &
Halatchev (1996a,b,c) and Halatchev & Boyadjiev (1996)). This simplification employed
in earlier works was based upon the fact that the inhomogeneous boundary condition on
the vertical disturbance velocity component contains a term proportional to the mass-
transfer parameter and the reciprocal of the Reynolds number. It was argued that even for
moderate values of the Reynolds number and “small” mass-transfer parameter, this term
would be small and hence that the inhomogeneity could be ignored. In this case, the only
way the mass transfer can affect the boundary-layer flow is through its influence on the
basic flow, changing the shape of the velocity profile and hence its stability properties.
We shall determine the realm of validity of this assumption, and the range of critical
parameters (namely the Schmidt number) where it cannot be applied. Thus, the correct
critical values of Reynolds number will be obtained.

Further we will obtain an analytic solution to the problem which presents itself in the
high Reynolds number limit. We shall restrict our attention to “small” amplitude dis-
turbances of fixed frequency. Under this assumption the linearised disturbance equations
are governed by the standard triple-deck structure (see Smith (1979a)). By solving a se-
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ries of equations in each layer of the triple-deck, the eigenrelation (which determines the
stability of the flow or the position of neutral stability) will be derived. A close examina-
tion of the equations, and the corresponding boundary conditions, within the lower deck
of the triple-deck, will demonstrate that the vertical momentum and concentration are
coupled, the magnitude of this coupling being dependent upon the magnitude of the con-
centration gradient across the permeable boundary. The curves of neutral stability will
be obtained. The first-order correction to the neutral stability frequency and wavenum-
ber, as functions of the mass-transfer parameter, will be determined for different values
of the Schmidt number.

In order to maintain unseparated (or attached) flow severe restrictions must usually be
placed upon the flow parameters; in many cases these restrictions lay outside the normal
operating envelope of the particular device. The early onset of flow separation, resulting
in a closed region of re-circulating fluid, can have a significant detrimental effect in devices
where mixing is the desired outcome. Typically, fluid is entrained within the separation
bubble (that is, the zone of flow recirculation) that can arise when a boundary-layer flow
separates and as such it does not mix with the bulk of the flow. The problem of the
onset of flow separation is of vital importance in the study of boundary-layer flows which
arise in modern industrial applications. For example, in areas such as electro-dialysis
applications, the early onset of flow separation must be controlled in order to adequately
control mixing within the flow. Another interesting practical aspect is the use of diffusion
induced “blowing” as a means of effecting an increase in heat transfer from a hot surface
to a cooler fluid. Our concern is with the effect of diffusion driven secondary fluxes,
induced by the presence of large concentrations gradients, on the boundary-layer flow
which arises when an almost inviscid fluid flows over a permeable surface through which
another fluid (or gas) diffuses.

In general, separation occurs in boundary-layer lows under an imposed adverse pressure
gradient (see Chang (1970)). Under the influence of the adverse pressure gradient the
fluid elements moving inside the boundary layer, having a smaller amount of kinetic
energy than the elements of the outer flow, decelerate more strongly, leading to a gradual
change in the velocity profile in the boundary layer. At some loca] streamwise position
the skin friction becomes zero and further downstream a region of slow reversed flow
appears, which expands rapidly, moving fluid elements from the boundary layer to finite
distances from the body surface.

We shall consider the problem of diffusion driven boundary-layer flow separation, exclud-
ing from our study one of the causes of flow separation, the pressure gradient. Therefore
we focus our attention on a boundary-layer flow under conditions of intense interfacial
mass transfer with zero pressure gradient. This will be done not only for the purpose of
simplifying the problem, but to study the effect of the induced secondary flow, due to
a concentration gradient (diffusion in our case), acting normal to the streamwise direc-
tion of the boundary-layer flow. To overcome the inevitable difficulties connected with
the presence of different scales, within which the relative importance of diffusivity over
viscosity is to be accounted for, we shall consider only the case of flow separation along
a gas-permeable surface for which the Schmidt number Sc = 1. In contrast to previous
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studies of a boundary-layer flow under conditions of intense interfacial mass transfer (see
Hartnett & Eckert (1957), Boyadjiev, Halatchev & Tchavdarov (1996) and Halatchev &
Denier (2000)) we consider a finite mass-transfer region, this being a more realistic model
for many mass-transfer (diffusion) dominated flows. The detachment of the boundary-
layer flow is a result of the shifting of the fluid elements in the boundary layer far from
the surface (membrane) due to the diffusion induced vertical velocity component on the
surface.

Prior to separation the diffusion driven flow develops (what is termed) a point of inflexion
and as such will become susceptible to the high frequency, short wavelength, instabilities
known as Rayleigh waves. These waves are known to provide one route for the rapid
onset of turbulence in the flow. We will study the level of diffusion required to render an
otherwise stable flow inviscidly unstable. The stability aspects of this flow will be con-
sidered by solving the Rayleigh pressure equation numerically, employing a global solver
for complex eigenvalue problems, to determine the growth rate at selected streamwise
locations over the slot region. This will allow us to determine the point at which the
flow becomes unstable in terms of the level of mass transfer through the slot. Ultimately
the outcome of this study will be the development of techniques which will allow for the
prediction and active control of instability in the flow.

Finally, we should draw our attention back to the two-fluid problem. The linear stability
analysis of two-fluid systems in this thesis is limited to an immobile interface and the
criteria for flow instability of a horizontal interface between two liquids is not firmly es-
tablished in Chapter 2. This limitation was motivated firstly by the complexity of the
real problem and secondly by a desire focus on the dominant effect of intense interfacial
mass transfer. There are several attempts, from the hydrodynamic point of view, to
examine some aspects of the boundary-layer flow instabilities in the cases of gas-liquid
(see Boyadjiev & Halatchev (1996b)), liquid-liquid (see Halatchev & Boyadjiev (1996))
and gas-liquid film-solid surface systems (see Boyadjiev & Halatchev (1996¢)). The full,
complete solution of these problems is yet to be presented; the interface has been con-
sidered rigid, thus restricting attention to the effect of mass transfer and not considering
the possibility of interfacial instabilities. However, in the last section of this thesis (see
Future Work) the governing disturbance equations and their boundary conditions are
derived for the general problem of interfacial instabilities. Their solution, is however,
outside the scope of this thesis. Such a study provides a good starting point for future
analysis.
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Historical Survey

Many experimental studies show that the linear models of mass transfer fail to capture
the true physics of mass transfer processes. Several references (see Grassman & An-
ders (1959), Sterling & Scriven (1959), Ruckenstein & Berbente (1964), Linde, Schwartz
& Groeger (1967), Thomas & Nicholl (1969) and Ramm (1976)) indicate an influence
of the direction of interfacial mass transfer on the mass-transfer rate at the interface.
The dependence of the Sherwood number on the concentration has been noted in a
number of cases, particularly when the mass transfer is accompanied by a chemical re-
action (see Astarita (1967)). Most often the deviations of the experimental data from
the linear theory arise in cases when the mass-transfer rate increases, which can be
partially explained by spontaneous (surface, or interfacial) turbulence, the Marangoni
effect, or self-organising dissipative structures (see Sterling & Scriven (1959), Brian, Vi-
vian & Matiatos (1967), Linde, Schwartz & Groeger (1967), Thomas & Nicholl (1969) and
Porter, Cantwell & McDermott (1971)). All deviations of the experimental data from the
predictions of the linear theory of mass transfer, mentioned above, are a result of different
non-linear effects. The problem of non-linear mass transfer appears in connection with
the examination of systems with intense mass transfer. A series of non-linear effects in
the mass-transfer kinetics occur under these conditions as a result of the development
of large concentration gradients in the transferred substance. These effects have various
manifestations, but their influence on the mass-transfer rate can always be regarded as
interconnected. Theoretical analysis of the mass-transfer kinetics permits the identifica-
tion of a number of main effects, which differ from one another in principle. According
to Boyadjiev & Babak (2000) some of them can be regarded as quantitative only, i.e.
having an impact on the mass-transfer rate, and qualitative effects which are of greatest
interest because they influence the mass-transfer mechanism.

The case when the dependence of the mass flux density on the concentration gradient
of the transferred substance is non-linear could be considered as the first example of a
non-linear effect. Under these conditions models are usually used, where the diffusivity
coefficient depends on the concentration of the transferred material (see Bird, Stewart &
Lightfoot (1966)), i.e. the Fick’s law® is non-linear. This non-linear effect is significant
in liquid systems, but not in gases because the diffusivities of gases at low densities
are almost composition independent, increase with temperature, and vary inversely with
pressure, while liquid diffusivities are strongly concentration dependent and generally
increase with temperature (see Bird, Stewart & Lightfood (1966)). For the purposes of
engineering calculations this effect can be accounted for by the relationship between the
chemical reactivity and the concentration of the transferred substance, if the chemical
potential gradient is added into Fick’s equation (see Sherwood, Pigford & Wilke (1975)).

Another non-linear effect, which also shows up when the concentration gradients are not

¥Fick’s first law of diffusion, written in terms of molar diffusion flux (J% = —kDapVecy), where k
is a proportionality coefficient and c is concentration, states that species A diffuses in the direction of
decreasing mole fraction of A, just as heat flows by conduction in the direction of decreasing temperature;
Fick’s second law of diffusion is simply the diffusion equation (see Bird, Stewart & Lightfood (1966)).



very large, is connected with the dependence of the viscosity on the concentration of
the transferred material. This effect influences the convective mass transfer in liquids
(including those with complex rheology), but its impact on the mass-transfer rate is
not strong enough to change the mass-transfer kinetics in a qualitative way. Thus, for
instance, it has been shown in Boyadjiev (1984) that taking into account the dependence
of the viscosity and the diffusivity coefficients on the concentrations does not lead to a
change in the mass-transfer mechanism.

From theoretical and practical points of view the most interesting non-linear effect is
associated with the initiation of a secondary flow under conditions of intense interfacial
mass transfer, that is of a new mass flux which takes part in the overall balance of
the transferred substance, thus changing the mass-transfer mechanism (see Boyadjiev &
Beshkov (1984)). This non-linear effect has various manifestations, the most interesting
being the impact of the direction of the intense interfacial mass transfer on the rates of
mass transfer, heat transfer and multi-component mass transfer. The secondary flows at
the phase boundary can be normal (non-linear mass-transfer effect) or tangential (the
Marangoni effect).

Another effect of interest is connected with the existence of a non-linear source or sink
of the diffusing substance as a result of chemical reactions in the volume of the phases
(liquid, gas). The influence of this non-linearity can be regarded as a qualitative effect,
so far as the non-linearity of the chemical reactions kinetics changes the mass-transfer
mechanism significantly as in an Arrhenius reaction, as occurs in the case of combustion.

The non-linear effects in systems with intense interfacial mass transfer lead to changes in
the hydrodynamics of the systems and their stability. In work by Boyadjiev, Halatchev
& Tchavdarov (1996a) the hydrodynamic stability of systems under conditions of in-
tense interfacial mass transfer, in fluid—solid permeable surface systems, was studied. A
laminar flow of a viscous incompressible fluid over a flat, semi-infinite, permeable plate
across which a concentration gradient exists, was considered. A simplified assumption
that the mass transfer is a result only of a concentration gradient was employed. The
concentration gradient induces mass flux through the interfacial boundary which has an
effect of “blowing”, or “suction”, in/from the boundary layer depending on the direction
of the mass transfer. The flow was assumed to be nearly parallel and the stability proper-
ties governed by the classical Orr-Sommerfeld eigenvalue problem. The Orr-Sommerfeld
equation was solved numerically to determine the critical Reynolds number and wave-
numbers of the flow at different mass-transfer rates and Schmidt numbers.

The extension to gas-liquid and liquid-liquid systems was considered in the studies by
Boyadjiev & Halatchev (1996b,c). In the former, the diffusion acts from the gas to the
liquid whereas in the latter diffusion of different species can occur between both liquid
phases. The onset of instability was examined and the critical system parameters were
determined. Results for the flow in a gas-liquid film—solid surface systems were presented
in the work by Halatchev & Boyadjiev (1996). This work demonstrated that the influence
of a tangential velocity at the interface on the stability of the gas phase (that is, the upper,
less dense fluid) was significant.
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A theoretical analysis of the effect of a large concentration gradient on mass-transfer
kinetics was done in the study by Boyadjiev & Halatchev (1998b). Under conditions of
large active concentration gradients the density, the viscosity and diffusivity coefficients
are functions of the concentration. The results show that the change in the density
with the concentration affects the stability of the flow in gases and liquids but has no
impact on the mass transfer in gases. The change in the viscosity with the concentration
influences the stability and the mass transfer in both gases and liquids. It was shown
that the non-linear theory of mass transfer, at constant values of the density, viscosity
and diffusivity, is of sufficient accuracy to describe the mass-transfer kinetics in gases and
liquids if the densities of the transfered substance and the gas (or liquid) mixture do not
differ significantly. An analysis of the influence of large concentration gradients on the
stability® of systems under conditions of intense interfacial mass transfer was considered
in the work by Halatchev & Boyadjiev (1998). The results show that the inclusion of
the dependence of the density on concentration acts to stabilise the flow. The decrease
in the concentration gradient leads to a decrease of stability. It was shown that in the
cases where an increase of concentration leads to an increase of viscosity one can observe
an increase in the stability of the flow, while changes in diffusivity do not influence the
stability of the flow. This was extended by Boyadjiev & Halatchev (1998a) to consider
the effect of surface tension.

In the aforementioned studies on flow instability the effect of coupling between the mo-
mentum and concentration disturbance equations was largely ignored. This was done
on the supposition that, even for moderate values of the Reynolds number and small
mass-transfer parameter, the inhomogeneity in the wall boundary condition for the ver-
tical disturbance velocity could be safely ignored. Also the mass-transfer parameter in
this term was considered to be “small” while still regarding the mass-transfer processes
as intense. In essence this assumes that mass transfer can affect the boundary-layer
flow through its influence on the basic flow, changing the shape of the velocity pro-
file and hence its stability properties. In the study by Halatchev & Denier (2000) (see
Chapter 4) we remove this approximation by solving the fully coupled system describ-
ing the disturbance amplitude; this consists of a fourth-order Orr-Sommerfeld equation
and second-order concentration equation. This was done by developing a new numerical
scheme that was able to account for the coupling in these equations in the boundary
conditions at the permeable surface. We were able to determine the correct values of
the critical Reynolds number and wavenumber and carry out an exhaustive parameter
study, in terms of Schmidt number and mass-transfer rate. Comparison with the earlier
approximate solutions suggests that they do remain valid for a relatively large Schmidt
number; at Sc = 100 the difference between the exact and approximate being less than a
few percent and therefore provide a useful engineering approximation for these complex
flows.

Although there are numerous studies into the phenomenon of flow separation, either
self-induced or by blowing into the boundary layer, little has been done on the prob-
lem of flow separation induced by diffusion through a permeable surface. Early work

9Stability with respect to Tollmien-Schlichting waves and not interfacial instabilities.
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on the problem of mass transfer, or transpiration, induced cooling was reported by
Hartnett & Eckert (1957). They considered solutions of the Falkner-Skan equations,
which describe the self-similar boundary-layer flow over a wedge whose angle 3 is given
by 78 = 2m/(m + 1)) with corresponding streamwise velocity 2™. They were able to
demonstrate that there is a critical level of mass transfer at which the boundary layer
will “blow-off” from the surface; in this case the similarity solution satisfies w, = 0 at
y = 0 and u = O for any finite y. Of course, such a result indicates that the similarity
form of solution to the boundary-layer equation does not adequately describe the state of
the boundary layer as the level of mass transfer approaches its critical value. This early
work was also summarised by Gadd, Jones & Watson (1963).

The restriction to self-similar flows was removed in Catherall, Stewartson & Williams
(1965) where the boundary-layer equations were solved in their primitive, partial dif-
ferential equation form, for the case of a constant blowing velocity prescribed on the
surface of a flat plate. In this case the flow separates at a particular streamwise loca-
tion, and associated with the point of separation is a singularity in the boundary-layer
equations. Klemp & Acrivos (1972) provided a rational expansion to describe the injec-
tion region. A very systematic account of more recent studies can be found in surveys
by Stewartson (1974), Smith (1982), Brown (1996) and Sychev, Ruban & Sychev (1998).
In the recent work of Roy (2000), a non-uniform slot injection into a compressible flow
was studied, where mass injection occurs in a small porous section of the body sur-
face. Here, we focus our attention on a boundary-layer flow under conditions of intense
interfacial mass transfer with zero pressure gradient. We choose the case of the flat
plate (zero streamwise pressure gradient) boundary layer in order to allow us to focus
on the effect of the secondary fluxes induced by a concentration gradient (i.e. diffusion
in our case), acting normal to the streamwise direction of the boundary-layer flow. We
consider only the case of gas-permeable surface (Sc = 1). In contrast to the previ-
ous studies of a boundary-layer flow under conditions of intense interfacial mass trans-
fer Hartnett & Eckert (1957), Boyadjiev et. al. (1996a), Halatchev & Denier (2000) we
consider a finite mass-transfer region. It is shown that diffusion induced boundary-layer
separation can occur if the level of mass transfer is suitably large (see Chapter 6).



The Structure of This Thesis

This thesis presents studies of the non-linear mass-transfer kinetics and a linear analysis
of the hydrodynamic stability of systems under conditions of intense interfacial mass
transfer. The thesis has been divided into two parts.

Part I presents my previous studies on this problem. It is concerned with the kinetics
of the non-linear mass transfer of systems under conditions of intense interfacial mass
transfer and a linear analysis of the hydrodynamic stability of these systems.

The asymptotic theory of non-linear mass transfer is presented in Chapter 1. It gives
a brief introduction to the mathematical models used in the theory of non-linear mass-
transfer kinetics of fluid—solid permeable surface, gas-liquid, liquid-liquid systems and
multi-component interfacial mass transfer. The presence of a large concentration gra-
dient through the phase boundary induces a normal secondary flow (having an effect
of “suction”, or “blowing”, from or into the boundary-layer flow). Its influence on the
mass-transfer kinetics is discussed. A comparative analysis of the linear and non-linear
mass-transfer theories is done.

The above mentioned secondary flow affects the basic velocity profiles of the boundary
layer, serving to stabilise or destabilise the flow. In Chapter 2 this effect is studied
under the approximation of the linear theory of hydrodynamic stability. Here we make
use of the simplifying assumption that a linearisation in the boundary condition for the
vertical velocity component of the disturbance at the interface is appropriate. This leads
to a decoupling of the disturbance equations, leaving the need to solve the classical Orr-
Sommerfeld eigenvalue problem. The effect of the mass transfer on the hydrodynamic
stability of the flow is therefore present only through its influence on the basic flow. The
fluid—-solid permeable surface is studied as well as gas-liquid, liquid-liquid systems.

The work of Chapter 2 also employs the assumption that the -density, viscosity and
diffusivity do not depend on the concentration. However, it is very well known that when
there is a significant variation in concentration the dependences of fluid properties on the
concentration of introduced species should not be ignored. This additional effect is taken
into account in a first-order approximation in Chapter 3. The first part ends with some
conclusions drawn from the results presented.

Part II of this thesis consists of a further analysis of the linear stability of fluid-permeable
systems, a study of flow separation of diffusion driven boundary layers and the inviscid
Rayleigh instability analysis of this boundary-layer flow. The transport phenomena is
studied in terms of permeability.

The simplification which led to decoupling of the disturbance equations is removed in
Chapter 4. The numerical algorithm to solve the fully coupled disturbance equations,
consisting of the Orr-Sommerfeld equation and the convection-diffusion equation, is pre-
sented. The critical Reynolds numbers are obtained and these are compared with the
results of early chapters, showing the realm of validity of the previous approach.

The linear lower-branch stability of a Blasius boundary-layer flow under conditions of
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intense interfacial mass transfer is discussed in Chapter 5. The natural asymptotic limit of
large Reynolds number is considered. The linearised disturbance equations are governed
by the triple-deck structure of Smith. The modified eigenrelation for this problem is
obtained.

A different aspect of boundary-layer theory, namely the effect of mass transfer on flow
separation, is studied in Chapter 6. We examined a Blasius boundary-layer flow over
a semi-infinite plate with a porous section. The mass transfer acts in a finite region
(throughout this thesis we will employ the term “slot”). A semi-implicit marching algo-
rithm and a simple mass-transfer parameter representation were employed. The level of
mass transfer at which this diffusion driven flow separates is investigated. Also the invis-
cid instability analysis of this flow is presented and the stability properties determined.
The second part concludes with a discussion of the results obtained together with some
suggestions for future work on these interesting problems.



Part 1

MASS TRANSFER AND
STABILITY






Chapter 1

Boundary-Layer Flows and the
Asymptotic Theory of the
Non-linear Mass Transfer

Many experimental studies (see Linde, Schwartz & Grdeger (1967), Thomas & Nicholl
(1969) and Ramm (1976)) of systems under conditions of intense interfacial mass transfer
show significant deviations from the linear theory of mass transfer, which assumes the
independence of the velocity field from the concentration and temperature fields. These
deviations have usually been considered as Marangoni type effects (see Sorensen (1979),
Boyadjiev & Toshev (1989)), i.e. the appearance of tangential secondary flows at the
interface boundary, induced by the gradient of surface tension due to local differences in
surface tension, concentration or temperature.

Theoretical studies of systems under conditions of intense interface mass transfer as a
result of large concentration gradients (see Vulchanov & Boyadjiev (1990), Boyadjiev &
Babak (2000)) show that large concentration gradients induce secondary flows normal to
the interface. On this basis, a non-linear theory of mass transfer has been constructed.
This theory provides a satisfactory explanation of the deviations of the experimental
results from the linear theory of mass transfer.

In the limit of large Reynolds numbers Re > 1, as naturally occurs in the flow of an almost
inviscid fluid over a rigid surface, the flow develops a boundary layer. Historically, the
boundary layer concept evolved from the attempts to solve the Navier-Stokes equations
for general flows, by assuming reasonable simplifications. Neglecting the terms with the
Reynolds number Re in the Navier-Stokes equations, which seems the easiest and safest
approach leads back to the inviscid flow equations, which cannot predict drag or mass and
heat transfer. Prandtl (1904) was the first to realise that for high-Reynolds-number flows,
viscous effects are confined to a thin layer along a solid surface. This boundary layer is
necessary to allow the velocity to adjust from relatively high values out in the free-stream
down to zero on the surface (the no-slip condition). This produces large gradients and
therefore significant shear forces even for low-viscosity flows. Outside the boundary layer
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the flow behaves in an essentially inviscid manner. By analogy a concentration boundary
layer must develop if the free-stream and surface concentrations differ; the same applies
to the thermal boundary layer. Although these layers are very thin relative to the total
flow field they cannot be neglected because all momentum, heat and mass transfer take
place through them.

1.1 Mass transfer in fluid-solid permeable surface
systems

The kinetics of non-linear mass transfer will be demonstrated for the case of a Blasius
boundary-layer flow over a semi-infinite, flat, permeable plate across which a concentra-
tion gradient exists (see Boyadjiev & Vulchanov (1988)). This model can describe, for
example, the flow of species with different surface and free-stream concentrations, as oc-
curs in a binary mixture of chemical species A and B flowing over a porous surface. For
simplicity, we assume that there is no chemical reaction and no external forces acting on
the flow, and we neglect emission and absorption of radiant energy into the boundary
layer (see Bird, Stewart & Lightfood (1966)).

A schematic picture of the flow is given in Figure 1.1. In the absence of disturbances a
steady concentration boundary layer develops along with the steady velocity (or momen-
tum) boundary layer. The governing equations describing the problem consists of the
steady Navier-Stokes equations coupled to the convection-diffusion equation

Uo%+w%° - —p—g%+u(aa—;+aa—;> U, (1.1)
Wt %5y = 2(5mt g %
with the initial and boundary conditions
(Uo, Vo) = (Usey 0), Co = Coo, Py =0 atz = 0; (1.2a)
Uy =0, %=~Aif%i‘i, Co=C; aty=0; (1.2b)
Up = U, Cop=Cy asy — oo. (1.2¢)

We shall focus our attention on the boundary-layer flow, thus the following momentum



and concentration boundary-layer approximations will be substituted into (1.1) and (1.2):
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MD =
y=0: Uy=0,Vy=—-—— Q,,C’O,C(,:C*; (1.5b)
Po oy
Yy—>00: Uo — Uoo, Co = Coo, (150)

where U, is the free-stream velocity, Co the concentration of the free-stream and C*
the concentration on the interface. Let us suppose that there is a rapid establishment
of thermodynamic equilibrium so that the concentration C* is always a constant on the
solid, permeable surface. The thickness of the concentration boundary layer 4, is typically
defined as (C* — Cy)/(C* — Cs) = 0.99. Species transfer by diffusion between the surface
and free-stream fluid is determined by conditions in this boundary layer. The molar flux
associated with species transfer by diffusion is given by Fick’s law, hence, the normal
component of the velocity at the interface is determined from the equation (2 p.xv),
corresponding to an intense interfacial mass transfer

Vo(s,0) = _AiaD (aa_?> | (16)
y=0

The average rate of mass transfer for a plate of length L can be determined from the
average mass flux

L
J = MK(C" = Cy) = %/ Idz, (1.7)
0
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Figure 1.1: Schematic describing a flow of species with different free surface and free-
stream concentrations.

where k is the mass-transfer coefficient and I can be derived from (1 p.xv) as follows:
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In what follows we will consider the Blasius similarity solution. In order to solve system
(1.4) with boundary conditions (1.5), it is useful to introduce similarity variables

1 1 (Uyv\ Y2
Us = JUns®, Vo= ( x”) (7%’ — @), (1.8)
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where ¢ = Sc/?, S¢ = v/D is a non-dimensional parameter - the Schmidt number,
® = @(n) the stream-function, ¥ = () the non-dimensional concentration. The most
important feature of the similarity solution is that despite the growth of the velocity
(hydrodynamic) and concentration boundary layers with distance z from the leading edge,
the velocity Up/Us and concentration Cy/[Cs + (C* — Css)] profiles remain geometrically
similar.

As a result of these substitutions the boundary-layer equations (1.4) and boundary con-
ditions (1.5) reduce to
@III +€_1®¢” - 0, \I/" + 5@\11’ = 0,
®(0) = ©¥'(0), ®'(0) =0, ¥(0) =1; (1.9)
®'(00) = 2671, ¥(o0) =0,
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is a parameter which reflects the effect of the intensity of non-linear mass transfer. Further
in this chapter we shall consider the parameter © as small. In the linear theory of mass
transfer © = 0.

We can substitute (1 p.xv) into (1.7) for the fluid phase to obtain an expression for the
Sherwood number in terms of our new variables
UsL

=5 P pergq), pe= Y2l (111)

Sh )
D Po

where Pe is the Peclet number?.

It is seen from (1.11) that the mass-transfer kinetics is determined by the dimensionless
diffusion flux ¥'(0), which can be obtained by solving the system of equations (1.9). The
solution has been found by Boyadjiev & Toshev (1989) by expanding ® and ¥ in power
series in terms of the small parameter ©
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It was demonstrated that ¥'(0) could be determined as follows:
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where the parameters g, @3, @33 and @33 are functions of the Schmidt number given by
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Here

E(e, p) = exp [—§ / pf(p)dp] ,

1This definition of the Peclet number slightly differs from the standard definition in textbooks Pey, =
UL/, where o is the thermal diffusivity.



and p = (2/¢)n, f, ¢ and @ are solutions of the following boundary value problem
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F(0) =0, f(0) =0; f'(c0) = 1;
?(0) =1, ¢'(0) = 0; p(c0) = 1.

A full derivation of these parameters can be found in Boyadjiev & Toshev (1989).

In order to verify the asymptotic theory the problem (1.9) has been solved numerically.
A quantitative analysis of the influence of the direction of mass transfer on the mass-
transfer rate by numerical integration of the two-point boundary-value problem (1.9) is
presented in Boyadjiev & Vulchanov (1990). The result of this work demonstrated that if
the Schmidt number Sc is increased, the concentration gradient at the interface, i.e. the
Sherwood number, decreases. This is a natural response as it corresponds to a decrease of
the diffusivity or an increase of the viscosity. It was shown that a change in the direction
of mass transfer will affect the magnitude of the concentration gradient on the interface
(Sh respectively). The change of the mass-transfer parameter © does not affect the
concentration boundary layer and the effect of the induced secondary flow is confined in
a sub-layer, termed the “layer of non-linear mass transfer”, and is approximately one-third
of the thickness of the concentration boundary layer. The influence of the direction of
mass transfer on the velocity field was also studied in Boyadjiev & Vulchanov (1990). It
was shown that ®'(0) has higher values at © > 0 (mass transfer directed from the surface
to the free stream), i.e the non-linear effect is due to the normal velocity component.

The results obtained through numerical calculations (¥ (0)) are compared with the data
from the asymptotic theory (¥/(0)) in Table 1.1. Note that the missing data is due to
numerical difficulties arising from the different scales of the hydrodynamic and concen-
tration boundary-layer thicknesses in the case of ¢ = v/Sc = 10. The results demonstrate
that the direction of the intense interfacial mass transfer significantly influences the ki-
netics of mass transfer as is evident by the change of ¥/(0) for the respective cases of ©
positive or negative. This fact is not valid in the linear theory approximation (©=0).
The results obtained show that intense mass transfer from the volume toward the solid
surface (© < 0) leads to an increase in the mass-transfer rate, in comparison to the pre-
diction of linear theory. When the mass transfer is directed from the solid surface toward
the volume (© > 0), its rate decreases.

The hydrodynamic nature of the non-linear effect in the mass-transfer kinetics under
conditions of intense mass transfer suggests that analogous effects may take place under
conditions of multi-component mass transfer for all components.



e=1 e=10

—Un(0) [ —9'(0) | TN (0) | —¥'(0)
0.00| 0664 | 0.664 | 0.314 | 0.305
0.05| 0.641 | 0.641 | 0.248 | 0.250
-0.05 | 0.689 | 0.689 | 0.459 | 0.415
0.10| 0.620 | 0.620 | 0.207 | 0.250

S

-0.10 | 0.716 0.716 - 0.581
0.20 | 0.581 0.581 0.160 0.418
-0.20 | 0.779 0.779 - 1.080
0.30 | 0.548 0.555 - 1.808
-0.30 | 0.855 0.843 = 1.800

Table 1.1: Comparison of the results obtained from the asymptotic theory (¥'(0)) with
the data obtained through direct numerical calculations (¥’ (0)) in the case of mass
transfer in fluid-solid surface systems.

1.2 Multi-component mass transfer

Let us now consider diffusion in multi-component mixtures, for example, binary, ternary
or n-component systems. In the case of gases two problems have been studied (see
Sherwood, Pigford & Wilke (1975)): first only one component is diffusing (diffusion
of species A through a stagnant mixture containing n components, including A) and
second n components diffusing leading to n independent equations (analogous to the first
problem) describing the diffusion phenomena. For liquids the mechanism is somewhat
more complicated. It is customary in the case of liquid flows to use multi-component
diffusion equations that are derived from experimental measurements of the diffusion
process by employing a semi-empirical approach. This is not done in the case of gases.
Throughout this work the non-empirical approach will be used.

Analysis (see Sherwood, Pigford & Wilke (1975)) shows that the transfer of the compo-
nents with large concentration gradients can be considered independently from the trans-
fer of other components with low concentration gradients ¢; (¢ = 1,...,n). The theory
of diffusion in multi-component systems demonstrates that the independent diffusion ap-
proximation is valid in two cases: firstly, when the concentrations of the components are
low and secondly when their mass flux diffusion components do not considerably differ
from each other. This provides a sufficient basis to solve the problem of the influence
of non-linear mass transfer on the multi-component mass transfer in the independent
diffusion approximation. Thus, the following system of convection-diffusion equations for
the lower concentration gradients species and corresponding boundary conditions should



10

ac 66 1 a C 7
0z 01 0

= e o o Yoy =D G2
£=0: Cp = Co; (1.14)
y=0: Cop=C}
y—=00: Co=0Co, i=1,...,n.

The introduction of the similarity variables (1.8) into the above equations, for all of the
components, yields

" + 100" = 0,

U+ ed0 =,

U/ + ;00 = 0, (1.15)
®(0) = ©¥'(0), 2'(0) =0, ¥(0) =1, T;(0) = I;

®'(00) =267, ¥(o0) =0, ¥y(00) =0, i=1,...,n,

where

14

= 1/2 ;] = —
Scz Y SC‘L D',

Coi — Cooi .
‘I’,('ﬂ) W z=1,...,n.

The rate of the multi-component mass transfer for a plate with length L can be deter-
mined from the average mass flux

L
Ji = M,D,(é: - Oooi) = %/ Ii d.’L‘,‘, 1= 1, e, N, (116)
0

where the mass flux has convective and diffusive (resulting from the induced flow) com-
ponents

0Co;
Oy

—M;D; (0&) +Mi°‘i (Co,-acm) , i=1,...,n,

An expression for the Sherwood number in terms of the similarity variables can be ob-
tained directly from (1.16) and (1.17) as follows:

Ii = _MDi ( ) + Mi(COi'Un) = (117)
y=0

where a; = ¢; /.

_*

COz - C°°‘l-

Sh; = kL _ per2 [\I/’(o) + O¢;

> \1:(0)], i=1,.
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where ¥'(0) is determined from (1.13), while ¥}(0) are determined directly from the
system of equations (1.15). The solution has been obtained asymptotically, using series
expansions for ¥;(0) (: = 1,... ,n) in powers of © (see Boyadjiev (1990b)); they are the
same as (1.12). One can express ¥'(0) in the following form:

2 2e;03; 2€;03; EiP3; £233; €;33i
vio) =L+ o [Tt (o ) dom w0y
EPoi EYOPY; EPo¥y; \Po €Y EPo%0:  €°Po%oi

i =B o . gl

?

where the parameters are functions of the Schmidt number

woi = wo(S¢i), w3 = @3(Sci), @33 = p33(Sc;), Gz = P33(Sci),
= Nl . a0

The accuracy of the asymptotic theory of the multi-component mass transfer (under
conditions of interfacial mass transfer for one of the components) has been verified by
comparison with the results obtained from a numerical solution of system (1.15). The
comparison of the results obtained through the numerical calculations, ¥}, (0), with the
asymptotic theory data, ¥/ (0), is shown in Tables 1.2 and 1.3. It can be clearly seen that

| e=1 0=2,6,=2
© | -¥in(0) | —¥1(0)
0.0 0.845 0.847
0.1 0.762 0.765
-0.1| 0.943 0.945
02| 0.689 0.700
-0.2 | 1.060 1.061
0.3| 0.633 0.652
-0.3| 1.212 1.190

Table 1.2: Comparison of the results obtained from the asymptotic theory (¥}(0)) with
the data obtained through direct numerical calculations (¥}, (0)) in the case of mass
transfer in gas-solid surface systems.

the intense interfacial mass transfer of one of the components, directed from the volume
toward the solid surface (© < 0), increases the diffusion-mass-transfer rate for all of the
components. In the cases where the direction of the intense interfacial mass transfer
is from the permeable surface towards the volume (© > 0) the diffusion mass transfer
decreases for all of the components. These effects do not depend on the change in the
direction of the interfacial mass transfer for components with low concentration gradients
and can be used in the control of the kinetics of the multi-component mass transfer. The
analysis of the multi-component mass-transfer kinetics in the case of non-linear mass
transfer of one of the components (as a result of its larger concentration gradient than
the rest of the components) shows that the mass-transfer kinetics is influenced not only
by the component with the largest concentration gradient but by the direction of the
mass transfer of the other components (see Boyadjiev (1990b)).
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| £=20, 0;=0.5, ¢; = 10

© | —¥1n(0) | —T1(0)
0.00 [ 0.198 0.194
0.03| 0.167 0.169
-0.03 | 0.275 0.250
0.05 | 0.154 0.170
0.10| 0.132 0.234

Table 1.3: Comparison of the results obtained from the asymptotic theory (¥1(0)) with
the data obtained through direct numerical calculations ( in(0)) in the case of mass
transfer in liquid-solid surface systems.

If we examine equations (1.4b), (1.4c) and the heat-transfer equation that will be intro-
duced in the next section, we readily note a strong similarity. They are characterised by
convection terms on the left-hand side and a diffusion term on the right side. The trans-
port phenomena nature of heat transfer implies that analogous effects will be observed.
Actually in the decoupled theories, the heat and mass-transfer relations for a particular
geometry are interchangeable.

1.3 Heat transfer in fluid—solid permeable surface
systems

The theoretical analysis of heat-transfer kinetics accompanied by non-linear mass trans-
fer was studied by Boyadjiev (1990a). The influence of the non-linear mass transfer on
the kinetics of heat transfer is considered on the basis of the macroscopic irreversible
thermodynamics, i.e. by excluding thermal diffusion. The following model describes,
for example, situations where a flow of species A with different free-stream and surface
concentrations and free-stream and surface temperatures differ. In this case a thermal
boundary layer will develop (see Figure 1.2) along with velocity (hydrodynamic) and con-
centration boundary layers. Since the dimensionless parameters Prandtl number? Pr and
Schmidt number Sc have analogous roles in the heat-transfer equation and convection-
diffusion equation respectively, the dimensionless relations that govern thermal boundary
layer behaviour must be the same as those governing concentration boundary layer, i.e.
the boundary-layer temperature and concentration profiles must have the same functional
form (see Incropera & DeWitt (1990)).

In the boundary-layer approximation, the system of equations (1.4) has to be supple-
mented with the following heat-transfer equation and appropriate initial and boundary

2The Prandtl number Pr = v/ar, where v is the kinematic viscosity and a7 is the thermal diffusivity,
is the ratio of momentum and thermal diffusivities.
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fluid

Yk solid, permeable surface P
Figure 1.2: Schematic describing only the velocity (hydrodynamic) and thermal boundary
layers.

conditions:
0Ty 0Ty 0*Ty
Yo oz +V°6y -or oy?’
t=0: Tp="T; (1.18)
y=0: Top=T%

y—00: T0=T'°°,

where Ty, and T* are temperatures in the fluid free-stream and on the permeable surface,
respectively, and ag is the thermal diffusivity coefficient.

The average heat-mass-transfer rate for a plate of length L is determined from the average
heat flux

L
JT = kT(T* . Too) = %/ IT d:z:, (119)
0

which as a result of the induced flow has a convective component as well as a diffusive
component

T,
Ir=-AX (6_0) + pycp(Tovn)y=o0; (1.20)
y y=0

here A is the heat conductivity coefficient, kr the heat-transfer coefficient and c, is the
heat capacity of the mixture.

The introduction of the similarity variables (1.8) into equation (1.18) and the boundary
conditions leads to the following two-point boundary-value problem:

@III + 6—1@@1/ - O

" 4+ e@T =0,

T" + &79T =0, (1.21)
®(0) = 0¥'(0), &'(0) =0, ¥(0) = 1, T(0) = 1;

&' (00) = 27}, W(oo) = 0, T(c0) = 0,
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where
Lh-Th _ o D 5
- = ] = e,—— = L .

here the parameter Le is termed the Lewis number, defined as a ratio of the thermal and
mass diffusivities. It is relevant to any situation involving simultaneous heat and mass
transfer and is therefore a measure of the relative thermal and concentration boundary-
layer thicknesses.

In order to study the heat-transfer kinetics, the Nusselt number® has to be determined
from (1.19), (1.20) and (1.21)

— _Pell2 [T’(O) + @e‘T—T—\II’(O)} |

_krL
B ==

Nu 3

where the dimensionless temperature gradient 7"(0) is determined from the solution of
system (1.21). The solution can be obtained through an asymptotic method

2 20
T(0) = -—+0 %L
EQor EPoLor
2673 (w3 arpsr QETP3sr  QTP3sT
_62[__2 P T 2o, " migrgr | T OO,
EPoPor \ Po EPorT ELPor  E°P¥or
where

wor = Yo(€€T), war = w3 (e€T),
3ar = P33(e€r), Pasr = Pas(eér).

The asymptotic solution can be compared with the numerical solution of the governing
equations (see Vulchanov & Boyadjiev (1988)). Comparison of the results (for a dimen-
sionless heat flux 77(0)) obtained from the asymptotic method with the data from the
numerical calculations Ty (0), is presented in Table 1.4. It can be seen that the non-linear
mass transfer can increase or decrease the heat-transfer rate depending on the direction
of the interfacial mass transfer. It is evident that under conditions of intense mass trans-
fer the non-linear mass and heat transfer are not independent, as is the case for linear
mass-transfer theory (© = 0) for small concentration gradients.

In the cases when the non-linear mass transfer is toward the solid, permeable wall (© < 0),
the rate of the heat transfer increases with an increase of the concentration gradient. The
rate of the heat transfer decreases when the intense interfacial mass transfer is from the
surface toward the fluid (© > 0).

The influence of the direction of intense mass transfer on the heat-transfer coefficient and
on the non-linear mass transfer can be used in the control of the heat-transfer processes
rate in gas-solid permeable surface systems. It was shown by Boyadjiev & Babak (2000)
that non-linear effects (as a result of intense interfacial mass transfer), when compared

3The Nusselt number is defined as the total heat transfer normalised by the diffusive heat transfer.
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‘ e=1, ar=2,ér=2 \

© | —T4(0) | -T'(0)
0.0 | 0.864 | 0.847
0.1 0.762 | 0.765
-0.1 | 0.943 | 0.945
0.2 | 0.689 | 0.700
-0.2 | 1.060 1.061
03| 0.633 | 0.652
-0.3 | 1.212 1.190

Table 1.4: Comparison of the results obtained from the asymptotic theory (77(0)) with
the data obtained through direct numerical calculations (T (0)) in the case of mass
transfer in gas-solid surface systems.

to the results from the linear mass-transfer theory, lead to a rise in the heat-transfer rate,
when mass and heat transfer are co-directional and to a decrease in the heat-transfer rate
when these two processes are not co-directional.

In the case of liquids, the non-linear mass transfer does not influence the heat transfer,
because the Lewis number Le has large values (@7 =~ 10~2). In other words, the mass
transfer in the thin diffusion boundary layer cannot disturb the “thick” temperature
boundary layer.

The interfacial mass transfer in the gas-liquid and liquid-liquid systems is associated
primarily with industrial absorption and extraction processes. The process intensifica-
tion through generation of large concentration gradients in the gas and liquid leads to
occurrence of non-linear effects in the mass-transfer kinetics in the gas and liquid phases.
In this way the interfacial mass transfer in the gas-liquid and the liquid-liquid systems
becomes non-linear. The subject of the next section is the interfacial mass transfer in
gas-liquid systems.

1.4 Interfacial mass transfer in gas—liquid systems

Industrial gas absorption is most frequently utilised in packed bed columns. The size
of these packings is usually small, and the interfacial transfer of the absorbed material
is effected through the thin layers attached to the interface between the gas and liquid
phases. The main change in the absorbed material concentration takes place in these
layers, which allows the theoretical analysis of non-linear interfacial mass-transfer kinetics
to be carried out by employing the concentration boundary-layer approximation.

The kinetics of non-linear interfacial mass transfer in gas—liquid systems is considered in
the case of co-current gas and liquid flows over a semi-infinite flat interface. The gas and
liquid are designated as a first (species A) and second (species B) phase, respectively
(see Figure 1.3). Under the boundary-layer approximation the governing equations take
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Figure 1.3: Schematic of the describing gas-liquid two-phase system.

a form similar to (1.4) (see Vulchanov & Boyadjiev (1990))

0y, , OV

Oz ay

AUy oU,
UOj > 0j + VE}J 6;3‘
aco, 3Gy

0, (1.22a)
82Uy;

vj 3y23’ (1.22b)
?Co; .

DjTyz—]-, J= 1, 2, (1220)

with the initial and boundary conditions accounting for the continuity of stress, momen-

tum and mass transfer on the interface
z=0: Uo_-,' = Uoojv C()] = éooj; (123&)
oU, U MD; 0Cy;

y=0: Uy =Up, m—= = Nszoz, 0j = — Pb'j] —3%, (1.23b)

D, pt 0C, D, p5 0C,
Cor = xCpg, AT ipz w (1.23¢)

_3?,/ Po2 Oy
Yy —>00: Uo = Uool, Co = Cool; (123d)
Yy — —00: U02 = Uoo2; Coz = C—’oo2- (1236)

Here Uy, Ux2 are free-stream velocities of the phases, Ci1, Coo2 concentrations in the
free-stream, u; and uy dynamic viscosities and D;, (j = 1, 2) the diffusion coefficient of

the sth phase.
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It is useful to introduce the following similarity variables

1. (Uxiv; b2
U ]UOOJEJ(I)I VOJ' = (—I)J 15.7 (—%) (CJq); - (pj)’ Cj = 6—773', (1'24)

. i 3 U \Y2
Coj = Cooj + (Coor — XCo02)¥;, mj = (—1)"1y (4Djjﬂ3> B e

where €; = Sc;./2 and Sc =v;/D; (j =1,2).

After introduction of similarity variables (1.24), the system (1.22) and its boundary
conditions (1.23b) - (1.23e) become

O + jes1®;8 =0, U+ je; 8V, =0, (1.252)
2

B;(0) = (—1)70,427}(0), &'(00) = —, ¥;(00) =0, (1.25b)
.7

@;(o)_zal—cp'( ), ®%(0) = —0.56, (?) "(0), (1.25¢)

2
T.(0) = -E’ixlf'l(O), T,(0)+T,(0) =1, j=1,2, (1.25d)
0

where

6, = Voo g, = £1 (ﬂ)m (%‘1)3/2 63 = M(Coor ~ xCix2) (1.26)
Usor’ B2 Uco2 ’ €1P10 ’ '

M(Coor = xCo2) _ _ b (DZUm)W

04 = y 0T T o
2e2x P50 PozP7 \ D1Uccr

here x is the Henry’s constant (see Incropera & DeWitt (1990)). The parameters 6; and
6, account for the kinematic and dynamic interactions between the gas and liquid phases
respectively, while 63 and 6, characterise the levels of mass transfer in the gas and liquid
phases respectively.

The new expression for the Sherwood number Sh takes the form:

Shy = — 25 pel?w(0), Pe; =

. j=1,2. (1.27)
pO] Dj

For a quantitative evaluation of the non-linear interfacial mass transfer it is necessary
that ¥}(0) (j = 1,2) in (1.27) be given thus necessitating the solution of system (1.25).
We shall limit our attention to the cases, such as the absorption of ammonia into water,
where 0, < 1 (k = 1,...,4). The solution is obtained through a perturbation method
after expanding the unknown functions in series of the small parameters 6;. The first
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order approximation yields

2 1 26, 1
vi(0) = — - 2 2
e110l+a0  ag 9% (1+ ap)
_ 86ag20;  ag 203015 1 804e, a3 (1.28)
£1¥10 (]. + 00)2 Soilio (1 + ao)2 TE1P10 (1 -+ 08)3’ '
,2(0) _ _'i Qo _ 291 Qg
VTl+as /mapp (1+ a)?
__'892(152@2 ag _ 26361(p13 Qg 80462 ag

VT (14 ag)? 0 (1+4+ag)2 w32 (1+ap)?

In the cases when the interfacial mass-transfer rate is limited by diffusive resistance? in
the gas phase, it follows from (1.25d) that x/eo — 0, i.e. ag — 0, and thus the Sherwood
number in the gas phase can be expressed as

5 2 20 20
Shy = — L1 pel/2 ( +— 32013) . (1.29)
Po1 €1¥10 Q€LY ®10

When the process is limited by diffusive resistance in the liquid phase, x/eq — o0, i.e.
ap — o0 and we have

,0; 1/2 2 802 80352
Shy=—--%P — ; 1.3
? Poz “ (\/7_" i QE2p2 T (130

The comparison of the non-linear effects in gases with those in liquids (see Vulchanov &
Boyadjiev (1990)) shows that the ratio between parameters 63 and 6, is

& — 2e20p9X

— > 1.
04 €1Pp

The maximum value of this ratio occurs in cases of gases with high solubility, where 6;
is greater than 6, by more then two orders of magnitude. In numerical calculations we
can employ the approximation that 6, = 0.

The examination of (1.28) - (1.30) shows that the non-linear effects are most dominant
when the non-linear interfacial mass transfer is limited in the gas phase (x/eg — 0). In
the cases of commensurable diffusive resistance (x/eo ~ 1) the non-linear effects are suf-
ficiently small and their manifestation in the liquid phase is a result of the hydrodynamic
influence of the gas phase. Non-linear effects are not observed when the processes are
limited by mass transfer in the liquid phase.

The influence of the direction of the mass transfer on the diffusion mass-transfer kinetics
in gas-liquid systems is the same as that observed in the gas(liquid)-solid systems, i.e.
the diffusion-mass-transfer rate, under conditions of absorption, is higher than that under
conditions of desorption.

4Species diffusion resistance is defined as R, dif = L/D4pSa, where L is a characteristic length,
D 4p is diffusion coefficient and S4 is surface area, assuming that the molar rate is given as N, Az =
(Coa,s1 — Coa,s2)/Rem, ais-
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The numerical results of Vulchanov & Boyadjiev (1990) demonstrates that when (in the
case of absorption and desorption) the concentration gradients are equal and only their
directions change, there is a non-symmetric deviation from the linear theory (6; = 0).
This apparent “contradiction” to the asymptotic theory (1.29) (where the deviations are
symmetric) can be explained by noting that the quadratic terms are not present (= 62).
This suggests that the asymptotic theory should be corrected so that all quadratic terms
are taken into account.

Under circumstances of non-linear interfacial mass transfer limited in the gas phase (act-
ing only within the gas phase), the problem (1.25) is governed by the following system
of equations:

" + e719,8" = 0,
@Y + 2651 ®; 1D, ®5 = 0,

U +e® ¥ =0, (1.31)
' 2 il
‘1)1(0) = 93‘1’1(0), ®,(0) = 0; <I>'1(oo) e a, @;(oo) = g;
! €2 o " &1 2 "

Ti(0) =1; ¥y(c0)=0.

The solution of system (1.31) as a series expansion in powers of the small parameters 6;
(j =1,...4) up to and including quadratic terms gives

2 2 V13
—U(0) = +6 g, 212
10) = 200 T oot T o,
edon €112 2
[ — 1.32
+1( 0 T +azelso%o) (1:32)

62 (261%3 _ 18 6195113)
3 5 1 7
¥io %10 €1¥10

2 2¢ 2
+6105 (’31‘pj3 ~ SPUs SV “’}f) +O(8,...).
Py QP Pl APy

A succession of functions of the Schmidt number is included in the expressions (1.28) -
(1.30) and (1.32) (see Vulchanov & Boyadjiev (1990))

- 1 /=@ T
Y10 = 900(561), P13 = 903(561), P2 =ci/a - G = X\/_
8 SCQ

B 50519010’
P11 = p1(Ser) = 3.018¢ %, 015 = y(Ser) = 3.055¢™%,
133 = p33(Sc1), Piss = Pas(Sc1), @iz = p33(Sey) = Sct,
P13 = $13(Sar) = 4.185c704.

The expansion (1.32) is a basic result of the asymptotic theory of non-linear interfacial
mass transfer in gas-liquid systems and is in good agreement with the results obtained
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through the numerical calculations ¥} (0) of problem (1.31). The theoretical result (1.32)
shows that the direction of the intense interfacial mass transfer in the gas-liquid systems
influences its kinetics, that is different values of ¥’ (0) arise for positive and negative
values of 03 respectively. It is a hydrodynamic fact and it could well be expected that
the same effect could appear in the cases of multi-component interfacial mass transfer in
gas-liquid systems.

1.5 Multi-component interfacial mass transfer in gas—
liquid systems

The kinetics of multi-component mass transfer in gas-liquid systems is of practical interest
in cases of intense interfacial mass transfer of one of the components (the species with
the largest concentration gradient), when this component induces a secondary flow in
the boundary layer as a result of its large gradient of concentration. The gas and liquid
flow dynamics are taken to depend upon the non-linear mass transfer of this dominant
component in the gas phase.

Let us consider n components for which the interfacial mass transfer does not affect the
hydrodynamics of the flow; this problem has been considered in Boyadjiev (1998). In
this case the theory of multi-component interfacial mass transfer is studied under the
approximation of independent diffusion. To that purpose convection-diffusion equations
governing the mass transfer of each species (components) with small concentration gra-
dients must be added to the system (1.22); as a result the mathematical model takes the
following form:

OUo; | My

% 3y = (, (1.33a)
Uo;'aa[i)j-l—%ja;jj = Vj%, (1.33b)
Uojag’j+%jag;j = Dj%, (1.33¢)
Uo;‘ag;ij +%jag;ij = Dij%, (1.33d)

i=1,...,n j=1,2,
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with the initial and boundary conditions

t=0: Uy = Usxj Coj = Coojs Coij = Cooi;

OUn O0Ugps MD; 9C,y;
=0: = = Vo: = bttt Rt
y=20 Uo1 = U2, 1 By M2 By’ 0j o Oy 5
D, pt0C D, p30C,
Co1 = xCo2, Coi1 = XiCoi2, 1p16 A= 202 02; (1.34)
P010Y P020Y
0Cy; 0C;
—Din —=2L 4 CoirVor = —Dig=—22 + CoizVoe;
dy Oy

Yy—>00: Un =Ux1, Co1 = C_’oola Coi1 = C’mi1;
y— —00: Uy =Ux2, Coz = Cx2; Coiz = Croi2-

In dimensionless form and after introducing similarity variables, defined via (1.24) we
obtain the following equations and boundary conditions that supplement (1.31):

U+ jejs; @05 =0, T} (0) + Tjp(0) = 1,

€io Cooil
‘I”-0=—I-0 0 i 11’,'0—- = ‘I/IO; 1.35
i1(0) ; 12(0) + €103041 | ¥ (0) Coort — x:Couit 1(0) (1.35)
\Il,;j(OO)=0, i=1...,n, j=1,2.
Here
Gy = Coit
U, = U:(n;) = (—x;) 1 =——2—F—,
! 3(m3) = (=) Cooir — XiCooi2
E; —%(UZODI v =D
= Dy \UnD; * Y Dy
and x; (i = 1,...,n) are the Henry’s constants for the n components. The solution of

the system (1.31) together with (1.35) has been obtained by expanding ®; and ¥;; in
series of the small parameters 6 (k = 1,2, 3) (see Boyadjiev (1998)).

The Sherwood numbers in the gas and liquid phases can be obtained from

Shi = —Pe;” {%(0) + 05 %3(0) [C——C“—] } : (1.36)

woil — XiCooi2
Shi = —PG;/Z\I’IQ(O), t=1,...,n,

where ¥/ (0) and ¥;;(0) are zeroth-order approximations

2 1
¥ (0) = — . U,(0) = — . i=1,...,n,
1( ) £1010 1.1( ) 1+ai 7 n
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while ¥, (0) and ¥}, (0) can be obtained by solving the system (1.31) together with (1.35):

2 1 n 291 1 8020611(,521'
Exroi L +ui el (1+ @)% e110i0/@i2

‘\1’21(0) =

i [ 2¢13i 1 4 Cao ( L & )]
or00%0 (1 +a:)?  oro(l+a;) \1+a; Coois — XiCooiz/ | ’
2./a; ; 201+/a; ;
—U(0) = RSB Ve G (1.37)
\/7—r 1+ a; ﬁ&g@lu,‘ (1 + ai)
80r0ei0pir  a? " [2\/@&'1(/’131‘ a
v (14a;)? : VTewely 1+ a;)?
V@i2€i€i1P10i  ay 1 Cooil ) ;
VT (1+a)? \1+a; Cooit ~ XiCooi2/ |’
The expressions (1.37) include functions of the Schmidt number through their dependence
upon €;

=1,...,n.

_ __VT

P10i = ©o(€h), P13 = 03(E%), Poi= 8€9+/aiz

VTXi

O = ———————, &;; = €j€ij, Eij = €545, 1=1,...,n, Jj=12

?
P10i€1€i0+/ Ai2

In the cases where the interfacial mass transfer is limited by the mass transfer in the gas
phase, x; — 0, we can substitute in (1.37) x;/€5 = 0 and a; = 0 (¢ =1,...,n) and the
expression (1.36) for Sh;; becomes

2 20 203a; ;
+ 12 o 3 1192013z>
€1P10i  QE1PY; P10¥70:

Shi; = Pel/? ( i=1,...,n. (1.38)

If the interfacial mass transfer is limited by the mass transfer in the liquid phase, x; — oo,
substituting €i0/x; — 00 and @; — o0 (i = 1,...,n) in (1.37) the expression (1.36) for
Shi reduces to

2./a; Br0c,00; .
Shi2=P€;/2( \/7a_r2+8 20\[/6_71_2902), z=1,...,n. (139)

It was shown in Boyadjiev (1998) that in the cases where the diffusive resistance of the
two phases are commensurable (x;/ei = 1), according to the equations (1.37), one can
expect that an increase in the large concentration gradient (63) can lead to an increase of
the diffusion-mass-transfer rate in the gas phase and to a decrease of the diffusion-mass-
transfer rate in the liquid phase. It is evident from (1.39) that in the cases where the
multi-component interfacial mass transfer is limited by the mass transfer in the liquid
phase, the non-linear effects have no impact on the mass-transfer rate, that is Sh;; does
not depend on 65.

The theoretical investigations of the non-linear mass transfer in gas-liquid systems by
Boyadjiev & Vulchanov (1988) and Vulchanov & Boyadjiev (1988) demonstrate that, in
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practice, non-linear effects are essential in cases when the diffusive resistances in the gas
phase limits the mass-transfer rate.

The mathematical description of interfacial mass-transfer kinetics in liquid-liquid sys-
tems is the basis for improvements in extraction processes and equipment design. The
intensification of this process, by generating large concentration gradients, leads to the
appearance of non-linear effects in the mass-transfer kinetics in both phases. In a num-
ber of cases these effects are connected with the induction of tangential flows along the
interface (Marangoni effect) as a result of a surface (interfacial) tension gradient. It has
already been shown that large mass fluxes can induce secondary flows, the velocities of
which are directed normal to the interface. The theoretical analysis of the influence of
these secondary flows on the kinetics of the interfacial mass transfer in liquid-liquid sys-
tems makes it possible to separate this non-linear effect from that of Marangoni and is
a basis for the calculation of extraction processes with intense interfacial mass transfer.
It is for this reason that the next section is dedicated to the problem of interfacial mass
transfer in liquid-liquid systems.

1.6 Interfacial mass transfer in liquid-liquid systems

The industrial implementation of extraction processes is connected with the need for
mass-transfer intensification between two liquid phases. This is most often gained by the
generation of large concentration gradients. They usually take place in equipment where
one of the liquids is dispersed in the form of drops. The small sizes of the drops im-
plies that the changes in the velocity and concentration fields are localised in thin layers
along the droplet surface (i.e. the interface). This allows the use of the boundary-layer
approximation for the theoretical analysis of the extraction kinetics under conditions
of intense interfacial mass transfer. The thickness of these layers is much smaller than
the diameter of the drops, hence the effect of the curvature of the interface can be
safely ignored. For this reason the kinetics of non-linear mass transfer is studied (see
Sapundjiev & Boyadjiev (1993)) in the case of interfacial mass transfer between two in-
soluble liquid phases with flat mobile phase boundary under the approximation of the
existence of a concentration boundary layer.

In practice both liquids are moving, one of them being a dispersed phase (drops) and the
other a dispersion medium (continuous phase). As the interfacial mass-transfer kinetics
depends primarily on the velocities of the drops, our discussion will focus on the interfacial
mass transfer between two liquids, one of them being stationary.

The movement of a liquid in drops is a result of movement of the flow around them at
velocity Us1. Let us denote this liquid as “phase 1” and the liquid in the drops as “phase
2” (the stationary phase). The hydrodynamic interaction between the two phases can be
considered in an analogous fashion to that of gas-liquid systems, when one of the phases
is motionless (see Figure 1.4).

Thus, the system of equations (1.22) with initial and boundary conditions (1.23) are
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Figure 1.4: Schematic describing liquid-stagnant liquid two-phase system.

applicable to the interfacial mass transfer between movable (“phase 17) and stagnant
(“phase 2”) liquids, if we simply substitute in the boundary conditions on the interface
Us2 = 0 and x = m, where m is the coefficient of distribution of the extracted substance
between phase 1 and phase 2.

In this case the interfacial mass-transfer rate and the Sherwood number are given by
expressions

L
J = My(Cos ~ mCin) = + / I dz, (1.40)
0

k;L p*- mi—1 L (300) .
Shj = 21— =1L = / J dz, j=1,2. 1.40b
7 Dj  p§j Coo — MCoo2 Jo 9y y=0 7 ( )

We shall introduce slightly modified similarity variables than those used earlier as follows:

Uoj = Eij‘I’;-, Voj = (1) (_41;_J> (G —®5), G = = Mi» (1.41)
j

A Cool — méoo2 i—1 Uooj 1/2 i
Coj = Cuj + — o Y 0= (1) Ds) * 77 1,2,

where €; = Sch-/2 and Sc=v;/D; (j =1,2).

In the boundary-layer approximation after non-dimensionalising and introducing the sim-
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ilarity variables (1.41), our problem reduces to
-2 "no_
Y +e;°@;07 =0,
©;(0) = (~1)716;;(0), ®1(0) = 25(0), (1.42)

3/(0) = ~a®(0), V(0) =1~ B(0), T(0) = ~T4(0);

Pl (00) =2, Py(00) =0, ¥j(00)=0, ¢:=1,2,
where

ﬁ ej _ M(méwz s 0001)

D, pymi=t
. x 05 [D
a=62p02 2, ij'yi: b=pg;p3 _E’ j=12.
€1P01 V 2 Poj PozPi V D1

In the new variables the Sherwood number (1.40b) can be written as

— gpl/? —
€j = SCJ- B SCj =

Shy = —£2 pel/w, (0), (1.43)
Poj
Uil
Pej = D_:: ] = 1, 2,

where ¥3(0) (j = 1,2) is given by the solution of the system of equations (1.42).

In the case of liquids, for which 6_7-—2 < 1 (j = 1,2), the equations for ®; can be integrated
to give

®; = ;¢ + 66+ (1.44)

where ¢, §; and ; are constant of integration. Introducing (1.44) into (1.42) gives us

(2 = 4)bpr + (j — )mep, [ o /Ej ]
I by + mepsy ¥ 5 (p;)dps|

where

o B;
E(p;) = exp (—gjpg - 7’17? - 7:'1%‘) )

0
Y; = / E(pj)dpj, 1=1,2.
0

Thus the dimensionless diffusion flux is

. . )
¥,(0) = R-gbp+(G=1me 1,
b1 + meps Pj

Now we can calculate the Sherwood number in (1.43)
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On this basis an iterative numerical procedure to solve (1.42) has been used (see Sapund-
Jiev & Boyadjiev (1993)). This iterative approach has been applied for the solution of
the problem (1.42) at e; = e = 10, 6; = 4, = +0.1,+0.3,20.5, a = b = m = 1, as well
as in cases when the interfacial mass transfer is limited by the mass transfer either in the
first (m/b = 0) or the second (b/m = 0) phase.

The results for the dimensionless diffusion flux for three cases are shown in Table 1.5
and these results are used to determine the Sherwood number Sh; (j =1,2). The cases
considered were (a) the case of commensurable diffusive resistance (b/m = 1) which
represents mass transfer in both phases, (b) the case where the interfacial mass transfer
is limited by mass transfer in the liquid (b/m =0, ®; = 0) and (c) for the case of droplets
for which m/b = 0.

a=1¢e,=¢,=10 I
o — g, | ¥/m=1¥i(0) = ¥;0) [m/b=0,95(0) = 0 | b/m = 0,%,(0) = 0
T =HO =AO) =4O
0.0 0.4319 0.8786 0.8497
0.1 0.4316 0.8261 0.9073
-0.1 0.4316 0.9400 0.8003
0.3 0.4289 0.7398 1.0562
-0.3 0.4289 1.0996 0.7189
0.5 0.4237 0.6689 1.2703
-0.5 0.4237 1.3305 0.6519

Table 1.5: Dimensionless diffusion fluxes under conditions of intense interfacial mass
transfer between two liquids.

From Table 1.5 (see Boyadjiev & Babak (2000)) we observe that, in the case of commen-
surable diffusion resistances (b/m = 1), the increase in the diffusion mass-transfer rate,
as evidenced by the increase in ¥’ (0), in the one phase is coupled with a decrease in the
diffusion mass-transfer rate in the other phase. In the particular case (b/m=1, 6, = 6,)
both effects compensate each other completely and the results from the non-linear theory
(61 = 8, # 0) coincide with those from the linear theory (6, = 6, = 0).

1.7 Comparative analysis of the linear and non-linear
theories of the interfacial heat and mass transfer

It has been demonstrated that the average mass-transfer rate for fluid-solid permeable
surface systems can be determined from (1.7) for a given concentration distribution on
the surface obtained solving the governing equations for a specific problem. Thus the
following expression is readily obtained from (1.7) and (1.11):

J= —M%Pel/w'(())(é* ~Cy), (1.45)
0
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where (C*—Cy) is the value of the concentration difference in the concentration boundary
layer (see Boyadjiev (1984)). It can be directly seen (see equation 1 on p.xv) that the
ratio p*/p} in (1.45) takes into account the convective transfer of the flow through the
interfacial boundary, which is induced by a large concentration gradient.

The dimensionless diffusion flux ¥/(0) in the expression for average mass-transfer rate
(1.45) depends on the Schmidt number (¢ = v/Sc) and on the maximum concentration
difference (© = M(C* — Cu)/ep}):

¥'(0) = F(e, 0).

A dimensionless concentration difference can be introduced in (1.45)

_ M(C" - )

AC - = €0,
bo
and the mass-transfer rate is then
D %
J= _—L’f‘lPelﬂF(e, ©)AC. (1.46)

In the approximation of the linear theory of mass transfer © = 0, and p*/p; = 1, and
the mass-transfer rate is denoted as Jy. The dimensionless diffusion flux depends on the
direction of the interfacial mass transfer, i.e. it depends on the sign of ©. For interfacial
mass transfer from permeable surface toward the volume © > 0, and in this case the
mass-transfer rate is denoted as J;. In the case of interfacial mass transfer toward the
permeable surface (© < 0) and C* = 0 and p*/p} = 1, the mass-transfer rate is denoted
as Jg.

In the case of © > 0, the rise of AC leads to an increase of © and the ratio p*/pj, and this
also leads to a decrease of F(g,0). When © < 0 and C* = 0 (p*/p}, = 1), the increase
in AC results in an increase of F(g,©). This multiple influence of the magnitude and
the direction of the concentration gradient on the mass-transfer rate can be made clear
through a comparative analysis of Jy, J; and J>. In the case of diffusion of water vapour
in air, when Uy, = 1m/s, L = 0.1m, D = 2.19 x 1075m?/s and € = 1 the dependencies
Jo, J1 and J, on AC are shown at Figure 1.5 (see Boyadjiev & Babak (2000)).

The effects due to an increase in the concentration difference are shown in Table 1.6. It
can be clearly seen that when © > 0 the influence of the concentration difference AC
on the convective (p*/p}) and diffusion (F(e, ©)) effects is different, while the change of
p also leads to a change in ©. Regardless of the rise of p*/pg, the Sherwood number at
© > 0 is always smaller than the Sherwood number at © < 0 (for equal concentration
differences). This is analogous to the result for the mass-transfer rate (Figure 1.5), where
non-linear effects due to large concentration differences increase the mass-transfer rate,
in comparison to data from the linear theory.

The results shown in Table 1.6 and Figure 1.5 are valid in the case of mass transfer in a
gas phase. In the case of liquids, the maximal possible concentration gradients observed



28

J.10

%

4 /
J

3}

2k

1k

0 01 0.2 aC

Figure 1.5: The influence of the direction of the mass transfer on the mass-transfer rate.

occur at small © and the above effects are not observed, except in the case of unlimited
solubility of the diffused substance.

The heat-transfer rate (1.19) is determined from the coefficient of heat transfer (kr),
where the dimensionless flow 77(0) depends on the Schmidt number (¢) and on the
concentration difference

TI(O) S FT(€, @T, @) (147)

In this manner the Nusselt number is
e
T+~ T
The level of heat transfer measured by the Nusselt number in (1.48) depends on the
dimensionless temperature difference

Nu = —Pel/2 [FT(8, ar, @) + GET F(&', @)J . (1.48)

T - T,
AT = 7 (1.49)
and upon the concentration difference AC. In particular it depends upon the sign of
these quantities, i.e. whether the mass and heat transfer are co-directional or not.

In the approximation of the linear theory of the mass transfer (© = 0) the following is
obtained directly from (1.48)

Nug = —Pe2Fr(e, ar, 0). (1.50)

Under the conditions of the non-linear mass transfer it follows from (1.48) that:
OmEr

— _pul/2 -
Nup, Pe [FT(E,aT,@m)+—ATn

F(e, em)J , (1.51)

m=1,2, n=1,2,
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ACx102] © |[p/py| F(1,0) ] Sh
0.000 | 0.0000 | 1.00 | 0.644 |44.9
0215 |0.0315| 1.03 | 0.649 |453
0.359 | 0.0544 | 1.05 | 0.639 |45.5
0.718 |0.1190| 1.12 | 0.612 |46.3
1.440 |0.2950 | 1.29 | 0.550 |48.1
2.150 | 0.5800 | 1.58 | 0.486 |51.9
0.215 |-0.030 | 1.00 | 0.679 |45.9
0.359 | -0.050 | 1.00 | 0.689 |46.5
0.718 | -0.010 | 1.00 | 0.716 |48.4
1.440 | -0.200 | 1.00 | 0.779 |52.6
9.150 | -0.300 | 1.00 | 0.855 |57.8

Table 1.6: Comparison of the non-linear effects under conditions of intense interfacial
mass transfer in gas-solid surface systems.

where ©; > 0, ©, < 0, AT} > 0 and AT, < 0, i.e. the mass and the heat transfer
are co-directional at m = n, while at m # n they are not co-directional. Under these
conditions we obtain from (1.46)

On = (-1)" 12 AC, m=1,2. (1.52)
€Po

Introducing (1.51) and (1.52) allows us to obtain the relationship describing the de-
pendency of the Nusselt number on the concentration difference, i.e. a relation for the
heat-transfer kinetics as well as the non-linear mass-transfer kinetics. These results are
displayed in Figure 1.6 (see Boyadjiev & Babak (2000)); they are obtained at Pe = 10%,
e=1, ar =2, AT, = (—1)"! (n =1,2) and are compared to the results obtained from
the linear theory (Nuy).

It is seen from Figure 1.6 that the non-linear effects (as a result of an intense interfacial
mass transfer under the conditions of large concentration differences) compared to the
linear theory (INuo) lead to a rise in the heat-transfer rate (Numy,), when the mass transfer
and the heat transfer are co-directional (m = n), and to a decrease in the heat-transfer
rate, when these two processes are not co-directional (m # n).

The multi-component mass-transfer rate (1.16) is determined from the mass-transfer
coefficient, i.e. from Sh; (¢ = 1,...,n), where the following can be obtained for the
dimensionless concentration gradient

vi(0) = Fi(e,04,0), i=1,...,p. (1.53)

Thus it is seen that the multi-component mass-transfer rate depends on the concentration
difference of the separate components

AC; =22 i=1,...,p, (1.54)
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Figure 1.6: The influence of the direction of the mass transfer on the heat-transfer rate.

as well as upon the large concentration difference AC. In a similar way as in the case of
heat transfer, it is important whether the non-linear mass transfer and the mass transfer
of the other components are co-directional or not.

In the approximations of the linear theory (© = 0) we obtain

Sho; = —Pe?Fy(e,04,0), i=1,...,p. (1.55)

Under conditions of non-linear mass transfer the Sherwood number is

Sho,; ] —Pel/2 [-Fi(ea «;, @) + ig& F(E, @m)} y (156)
i=1,...,p, i=1,2,
where AC;; >0, ACj;, <0 (i =1,...,n), i.e. the non-linear mass transfer and the mass

transfer of the different components are co-directional when m = n, and they are not
co-directional when m # n.

The relation (1.56) is shown on Figure 1.7 under the following conditions; Pe = 4566,
e=1ar=2 AC;=(-1)""! (i=1,...,n) and a comparison to linear theory (1.55) is
done.

The data presented in Figure 1.7 (see Boyadjiev & Babak (2000)) shows that in compar-
ison to linear theory (Ship), the multi-component mass-transfer rate (NtUy,y,) increases
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Figure 1.7: The influence of the direction of the mass transfer on the multi-component
mass-transfer rate.

with the rise in the large concentration gradient (AC), when the non-linear mass trans-
fer and the multi-component mass transfer are co-directional (m = n). In the cases of
m # n, the multi-component mass transfer decreases with the rise of AC.

The theoretical analysis of the intense interfacial mass transfer in gas-liquid systems as a
result of large concentration gradients shows that the non-linear effects are significant in
the cases when the interfacial mass-transfer rate is limited by the mass transfer in the gas
phase. In the dimensionless concentration gradient F'(e, ©) the influence of the motion
of the liquid on the velocity distribution in a gas diffusion boundary layer is considered.
Results show that there is a difference between the absorption rates (© < 0) and the
desorption rates (© > 0). The various effects under conditions of Pe = 10* and Sc =1,
in the cases of absorption and desorption of ammonia in water (or a water solution of
acid) are displayed in Figure 1.8 and Table 1.7. These results are the same as the
ones under the conditions of the interfacial mass transfer in gas—solid permeable systems
(Figure 1.5 and Table 1.6).

The theoretical analysis above shows that the non-linear mass transfer due to large con-
centration gradients leads to an increase in the mass-transfer rate. This rise is higher
when the interfacial mass transfer is from the volume toward the interfacial surface.

The influence of the non-linear mass transfer on the simultaneous processes of heat trans-
fer and multi-component mass transfer depends on the direction of these processes. In
the case when the non-linear mass transfer and the parallel transfer processes are co-
directional, a rise in the concentration gradient leads to a rise in the parallel transfer
process rate. In the case when these two processes are not co-directional, the parallel
transfer process rate decreases.
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Figure 1.8: The influence of the direction of the mass transfer on the mass-transfer rate
in gas-liquid systems.

AC X102 © |p/p | F(1,0)] Sh
0.00 [0.000| 1.00 | 0.730 | 73.2
065 |0.113] 1.11 | 0.676 |75.0
130  |0.274| 1.27 | 0.614 |78.0
195 |0517| 152 | 0.535 |81.3
065 |-0.10| 1.00 | 0.785 |78.5
1.30 | -0.20 | 1.00 | 0.851 |85.1
195 |-0.30 | 1.00 | 0.932 |93.2

Table 1.7: Comparison of the non-linear effects under conditions of intense interfacial
mass transfer in gas-liquid systems.

There are some additional effects. The work by Boyadjiev & Halatchev (1998a) studied
non-linear mass transfer and Marangoni effect in gas-liquid systems; these were subse-
quently extended in Boyadjiev & Halatchev (1998b) to consider mass-transfer kinetics of
systems with large concentration gradients. The large concentration gradients, which
induce secondary flows, can be created not only by large concentration differences, as has
been shown so far, but also from a decrease in the thickness of the boundary layer. This
can arise through a chemical reaction together with the mass transfer. In the case of
absorption in a falling film (see Boyadjiev & Babak (2000)) the chemical reaction in the
liquid leads to a decrease in the boundary-layer thickness and the increase in the mass-
transfer rate is proportional to the change in p*/ pp- The same result has been obtained
in the work by Boyadjiev (1992) when the effect of large concentrations is considered.
The influence of the non-linear mass transfer on the flow in a laminar boundary layer (see
Boyadjiev (1982)) is considerably more complex; when these layers start interacting, for
example the flow of a gas or a liquid into a channel (see Boyadjiev (1992)). As a result



the Sherwood number depends on the length of the channel.
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Chapter 2

Linear Stability Analysis of
Two-phase Systems (uncoupled
problem)

Most industrial scale processes depend, in one way or another, on the fiuid flow stability.
The equations describing such fluid (gas or liquid) flows are evolution equations which
describe the change of both the velocity and the pressure with time and in space. As
noted by Joseph (1976) this allows us to use existing techniques for the stability analysis
of the evolution of hydrodynamics.

As demonstrated in Chapter 1 systems with interfacial mass transfer are characterised
by a number of non-linear effects which can significantly change both the kinetics and
the mass-transfer mechanism as a result of the effect of induced secondary flows on the
velocity and concentration fields. The change may have a significantly greater effect if the
system loses its stability and reaches a new stable state, what is termed a self-organising
dissipative structure. The mathematical description of these systems can be carried out
on the basis of stability theory. In the present chapter the stability of boundary-layer flows
in fluid-solid permeable systems will be studied. An attempt to examine some aspects of
the boundary-layer flow instabilities in the cases of gas-liquid and liquid-liquid systems
will be briefly discussed.

2.1 Fluid-solid permeable surface systems

A linear stability analysis of the flow in the laminar boundary layer is considered un-
der conditions, where high mass fluxes at the interface induce secondary flows. These
secondary flows have the effect of “suction” or “blowing” from/into the boundary layer,
depending upon the direction of the intense interfacial mass transfer. The induced sec-
ondary flow is a result of concentration differences and has a nonuniform velocity v, (see
equation (2) on p.xv) along the length of the surface. This velocity is proportional to the

35
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local mass flux on the interface (see Figure 1.1).

Let us consider the steady laminar flow of a viscous incompressible fluid over a flat, semi-
infinite permeable plate;-across-which a concentration difference exists. The mathematical
model for this flow consists of the Navier-Stokes equations coupled to the convection-
diffusion equation

oUu;  ovy
oz oyt O
oUs  ,0U;  .0U;  10B; 0? 02 .
ot T Vo TW o T e TV e taya) U (21)
ovy vy vy 1 OF; 62 o
¥ V* = —_—— e - *
ot* + U oz* Y oy* ps Oy* Ty Ox*2 + oy*? Yo
9C} LOC 00 0? b2 )
o Vg TV gy = D(ax*z’ T oyz) “o
with the initial and boundary conditions
(Us,V5) = (U, 0), Cg =C%, Pt =0 at z* = 0; (2.2a)
Uz =0, %*=—Azfgjf, O =C3 aty' =0; (2.2b)
Us = U, C§ = C% asy* — . (2.2¢)

Here z* and y* denote Cartesian coordinates aligned along and normal to the plate
surface, respectively, Uy and Vj are the velocity components in the z* and y* directions,
Fy is the pressure, v the kinematic viscosity, Cj the concentration at the permeable
surface, C%, the free-stream concentration (as y* — o0), p; is the gas(liquid) density and
an asterisk denotes a dimensional quantity. The coupling between the Navier-Stokes and
convection-diffusion equations occurs in the boundary condition for the vertical velocity
component (2.2b), where M is the molecular mass and D is the diffusion coefficient. This
condition corresponds to existence of species flux at the surface. For the special case of
impermeable surface it simply reduces to 8C;/8y* = 0. In order to allow comparison
with the classical triple-deck theory for the Blasius boundary layer we now employ a
slightly different notation to that introduced in Chapter 1.

The above system is non-dimensionalised with respect to a typical length scale L (for
example, the distance from the leading edge of the plate), the free-stream speed U,, and
the concentrations C§ and C%, as follows:

* % * Lt * *
(z*,y") = L(z,y), t* = 7 Uss W) = Use(Uo, Va), (2.3)

Cy =i+ (Cy ~ CL)Co B = pUZP.
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The resulting non-dimensional equations are then

ag°+UU%U; +1/5%Uy° = %ic’wt—é—e(;; ;22) Us, (2.4)
o+ Uiy Vg, =~ (gt o) e
2
aacto Uo 33? g Voaac;) = SclRe (aaxz * ;;2) Co,
which must be solved subject to the initial and boundary conditions
(U, Vo) = (1,0), Co =1 at z =0;
Up=0, Vp =— SoReaa_('Z/o Co=1 on y=0; (2.5)

Uy—1, Co=0 as y — o0.

Here Re = U,L/v is the Reynolds number, S¢c = v/D is the Schmidt number and
= M(C; —C%,) /0% is a parameter which characterises the intensity of the mass transfer
across the flat plate.

The influence of the intense mass transfer on the hydrodynamic stability of the flows in
the laminar boundary layer will be investigated by applying linear stability theory (see
Schlichting (1979), Drazin & Reid (1981)). This theory will be applied for an almost
parallel flow in the boundary layer (see Boyadjiev, Halatchev & Tchavdarov (1996a)),
i.e. under the boundary-layer approximation. The basic boundary-layer flow and con-
centration field for fluid—solid permeable surface systems are governed by the systems of
equations (1.4) and boundary conditions (1.5). After introducing similarity variables, as
was demonstrated in Chapter 1 (section 1.1), we obtain the system (1.9).

2.1.1 Disturbance equations

The linear stability analysis considers the total flow field (U, V, P) as a superposition of
a small amplitude, two-dimensional disturbance (u, v, p) upon the basic flow (U, Vo, Po):

U(z,y,t) = Us(z,y) + eu(z,y,t),
V(z,y,t) = Valz,y) + ev(z,y,1), (2.6)
P(z,y,t) = P(z,y)+ep(z,y,1),
C(z,y,t) = Colz,y) +ec(z,y,1),

where € (0 < € < 1) is a small perturbation parameter.

The governing equations for two-dimensional disturbances follow from the Navier-Stokes
equations and the convection-diffusion equation by linearisation about the basic steady
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flow and concentration state. This yields the equations

uz+v, = 0, (2.7a)

e + Ugttz + ul, + vUpy + Vou, ~Dz + Re™! (Uge + uyy), (2.7b)
vt + Upvz + uVor + Vou, + vV, —py + Re™! (vzp + vy, (2.7¢)

¢+ Uncs + uCoz + Vocy +vCoy = Re™1Sc™ (Car + ¢yy) - (2.7d)

2.1.2 Boundary conditions at the interface

In order to simplify the problem and study the dominant mass-transfer effect we shall
make the first engineering approximation, that is linearisation of the vertical disturbance
velocity inhomogeneous boundary condition. The system of equations (2.7) has the fol-
lowing initial and boundary conditions:

(u,v) =(0,0), c=0 at z =0; (2.8a)
u=0 v=——g——% c=0 on y=0; (2.8b)
’ Sc Re Oy’ ’ '
u—0,c=0 as y — oo. (2.8c)

It was argued in Boyadjiev et. al. (1996a) that since in the first-order approximation the
mass-transfer parameter 6 is small (|| < 1), a linearisation in the boundary condition for
the disturbances equations can be made, resulting further in a decoupling of the distur-
bance equations thus leading to a classical eigenvalue problem of Orr-Sommerfeld type.
This assumption was based upon the fact that the inhomogeneous boundary condition
(2.8b) for the vertical velocity component contains a term proportional to the mass-
transfer parameter 6 and reciprocal of the Reynolds number. Thus, even for moderate
values of the Reynolds number, this term would be small, and hence the inhomogeneity
could be ignored. Considering this simplification in the first-order approximation of the
small parameters €2, € and  the boundary condition for v at the surface (2.8b) reduces
simply to v = 0. Hence, the only way the mass transfer can affect the boundary-layer
flow stability is through its influence on the basic flow, changing the shape of its velocity
profile and hence its hydrodynamic stability properties.

2.1.3 Orr-Sommerfeld equation for almost parallel boundary-
layer flows

Under the above assumption, the boundary conditions at the interface decouple. Equa-
tions (2.7a), (2.7b) and (2.7c) are therefore decoupled from the convection-diffusion equa-
tion for the concentration disturbance (2.7d). Differentiating the first two equations with
respect to y and z gives us the opportunity to eliminate the pressure p from the governing
equations.
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We shall employ a parallel flow like approximation. The stability of the basic flow will
be examined by considering periodic disturbances of the form:

u(z,y) = F'(y)expia(z — &), (2.9)
v(z,y) = —iaF(y)expia(r - é),
where F'(y) is the amplitude of the disturbances; o and ¢ are respectively the wavenumber
and wave-velocity:
_ 27
=5
In the expression (2.10) A is the length-wave, aé, is the frequency and oé; the growth

rate. The condition for stability of the flow is ¢; < 0. In the case of é; > 0 the basic flow
is unstable (the amplitude grows with time).

o & =& +ié;. (2.10)

Introducing (2.9) into (2.7), eliminating the pressure, leads to an Orr-Sommerfeld type
of equation for the amplitude of the disturbances

82
(Us = &) (F" = o?F) — WU;OF = (2.11)
_ t W 2 o 4 v " 62U0 a2 /
aR " T e R+ op [V"F & (3x8y o )

which must be solved subject to the boundary conditions

y=0: F=0, F'=0;
y—oo: F=0, FF=0.

The additional terms to the classical Orr-Sommerfeld equation which appear in (2.11)
take into account the boundary-layer growth (see Van Stijn (1982, 1983)). In this sense
the boundary-layer flow is termed “almost” parallel.

2.1.4 The basic flow field and disturbance amplitude governing
equation

The basic velocity profiles were obtained through solving the two-point boundary-value
problem (1.9) asymptotically and numerically and the results tabulated. As was noted
in Chapter 1 (section 1.1.) the comparison of the results obtained using the two ap-
proaches shows good agreement (see Table 1.1). Having the exact boundary values
for certain values of the parameter # and Schmidt number Sc, found in the studies
Vulchanov & Boyadjiev (1988) and Vulchanov & Boyadjiev (1990), and reported in Chap-
ter 1 the basic flow profiles were generated by using the last step in the usual numerical
procedure for solving two-point boundary-value problem, i.e. the problem (1.9) was re-
duced to an initial-value problem. In order to do this it is suitable to introduce the
boundary-layer variables

y = Re™Y?Y, Uy = Ug, Vy = Re™?Vp, (2.12)
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where y is physical coordinate and Y is boundary-layer coordinate. The boundary-layer
equations are such that a similarity solution exists and we therefore define a new similarity
variable
Y
(===
Vz

From (1.8) it follows that the new similarity variable ¢ can be related to the old similarity
variable 7 via the Schmidt number (¢ = v/Sc, Sc = v/D) as

¢ = gn- (2.13)

Hence all functions in the equation (2.11) can be expressed in terms of the new variable

¢

Us = 1(¢), Vi = ﬁ((f’ -5,
vr

Flu)=e(Q), FO =670, 6=,/ (2.14)

i=1,....4

Now from (1.9), (2.13) and (2.14) f can be determined from
2f" + ff" =0, (2.15)
2
fO)=a, f0)=0, f'(0)="5,

where a and b are tabulated in Table 2.1 and determined through solving the system of
equations (1.9) (®(0) = a, (0) = 0, ®"(0) = b). The initial conditions a and b include
the effect of the mass transfer on the velocity profiles in the boundary layer. They de-
pend considerably on the direction and magnitude of the induced flow rate, i.e. on the
direction and magnitude of the mass-transfer rate. The case of 8 > 0 corresponds to
“blowing” while § < 0 corresponds to “suction” in/from the boundary layer and accord-
ing to the theory of the hydrodynamic stability (see Schlichting (1979)) stabilisation or
destabilisation of the boundary-layer flow should be expected.

Introducing (2.14) into equation (2.11) and its boundary conditions leads to the following
Orr-Sommerfeld type of equation:

(f/ — C) (QO” _ A2Q0) — f’”(P - _ALRe{ ((Piu _ 2A2go" + S0) _ (2.16)

2 CF = D"+ 3"+ £+ 4 (Cf - )] w’},

with appropriate boundary conditions

©(0) =0, ¢'(0)=0; (o) =0, ¢'(c0)=0.
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€ 0 a b
1]1-0.30| 0.2546 | 1.710
-0.20 | 0.1557 | 1.587
-0.10 | 0.0716 | 1.432
0.0 0.0 1.329
0.10 | -0.0619 | 1.239
0.20 | -0.1162 | 1.162
0.30 | -0.1643 | 1.095
10 | -0.05 | 0.0229 | 0.0136
0.0 0.0 | 0.0133
0.05 | -0.0124 | 0.0131
0.10 | -0.0207 | 0.0129
0.20 | -0.0319 | 0.0128
20 | -0.05 | 0.0239 | 0.0034
-0.03 | 0.0122 | 0.0033
0.0 0.0 | 0.0032
0.03 | -0.0057 | 0.0032

Table 2.1: Initial values a and b for several values of the parameter 8 and Schmidt number

Sc (e = V/Se).

Here A = ad is the wavenumber, C' = /aUy = C;+iC; the wave-speed and Re = U6 /v
the Reynolds number.

The linear stability analysis of a laminar boundary layer under conditions of intense
interfacial mass transfer is reduced to determining C, and ¢({) at C; = 0, when the
Reynolds number Re and the wavenumber A are given. The critical Reynolds number
Re,, is defined as the point on the neutral curve of stability at which d Re/d A = 0, i.e.
the turning point.

The eigenvalue problem (2.16) can be solved numerically!. Since the problem is a linear
eigenvalue problem, in theory it is possible to solve for C = C(Re, A). Solutions for this
problem are usually presented in two ways: for specific values of the parameters A and
Re, the corresponding value of C is tabulated or the locus in (Re, A)-plane on which
C; = 0 (the curve of neutral stability) is plotted. The critical Reynolds number is the
minimum Reynolds number above which an infinitesimally small disturbance will grow.
We consider only the temporal stability problem in which the Reynolds number Re and
the wavenumber A are given real values, while the complex wave-speed C is determined
as the eigenvalue.

1This work has been reported in Boyadjiev et. al. (1996a). The chasing method for solving two-point
boundary-value problems has been used (see Na (1979), Berzin & Zhidkov (1965)).
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2.1.5 Curves of neutral stability
The curves of neutral stability presented in the (Re, A)-plane as well as in (Re, C,)-plane

are given in Figures 2.1 to 2.6. They are obtained for gas-solid permeable surface systems
(¢ = 1) and for liquid-solid permeable surface systems (¢ = 10, 20).

A‘OE

6=0.1 9=0.0 5--0.1

En1,

0 I 1 1 ] 1 ! 1 |
200 400 600 800 1000 1200 1400 1600 1800 2000

Re

Figure 2.1: The curves of neutral stability in (Re, A)-plane in the case of gas-solid per-
meable surface systems (¢ = v/ Sc = 1).

The critical Reynolds number Re,,, the corresponding wave-speed C;, and wavenumber
A are obtained. C, . and A, are also obtained from these results. We denote by
Amar the maximal value for wavenumber and C, ., the maximal value of the wave-speed
at which the flow is stable at any Reynolds number. They are shown in Table 2.2 for
different values of mass-transfer level (6) in the case of “blowing” and “suction”.

It is seen from Figures 2.1 - 2.6 and from Table 2.2, that interfacial mass transfer directed
toward the phase boundary (6 < 0) (the effect of “suction”) stabilises the flow, i.e. an
increase in the concentration difference |Cj — C% | (that is, 6) leads to an increase in Re,,
and to an increase in C;mq, and A,,... In the case of mass transfer directed from the
phase boundary toward the volume (6 > 0) (the effect of “blowing”) a destabilisation of
the flow is observed, i.e. an increase in the concentration difference |Cy — C| leads to
a decrease in Re., and to an increase in Cy gy and Apg;.

Thus, high concentration gradients have a stabilising effect at § < 0, and this is sig-
nificantly higher then the destabilising effect that occurs in the case of a change in the
direction of mass transfer (6 > 0).
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Figure 2.2: The curves of neutral stability in (Re,C,)-plane in the case of gas-solid
permeable surface systems (¢ = v/Sc = 1).
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Figure 2.3: The curves of neutral stability in (Re, A)-plane in the case of liquid-solid
permeable surface systems (¢ = v/ Sc = 10).
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Figure 2.4: The curves of neutral stability in (Re,C,)-plane in the case of liquid-solid
permeable surface systems (e = v/Sc = 10).
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Figure 2.5: The curves of neutral stability in (Re, 4)-plane in the case of liquid-solid
surface systems (e = v/ Sc = 20).
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Figure 2.6: The curves of neutral stability in (Re, C;)-plane in the
permeable surface systems (¢ = v/ Sc¢ = 20).

1200
Re

case of liquid-solid

€ § | Rec A Cy | Amaz | Crmez
1]-0.30| 1619 0.259 | 0.3281 | 0.301 | 0.3310
-0.20 | 1014 | 0.285 | 0.3587 | 0.322 | 0.3599
-0.10 { 689 | 0.290 | 0.3816 | 0.340 | 0.3848
0.0 | 501 | 0.305 | 0.4035 | 0.359 | 0.4067
0.10 | 386 | 0.309 | 0.4196 | 0.373 | 0.4243
0.20 | 310 | 0.320 | 0.4351 | 0.387 | 0.4396
0.30 | 258 | 0.331 | 0.4488 | 0.398 | 0.4526
10 | -0.05 | 555 | 0.300 | 0.3960 | 0.351 | 0.3990
0.0 | 501 | 0.305 | 0.4035 | 0.359 | 0.4067
0.05 | 476 | 0.305 | 0.4062 | 0.360 | 0.4097
0.10 | 459 | 0.305 | 0.4085 | 0.361 | 0.4124
0.20 | 437 0.310 | 0.4123 | 0.367 | 0.4155
20 | -0.05 | 558 | 0.305 | 0.3959 | 0.351 | 0.3978
-0.03 | 528 | 0.305 | 0.4010 | 0.354 | 0.4037
0.0 [ 501 | 0.305 | 0.4035 | 0.359 | 0.4067
0.03 | 488 | 0.305 | 0.4064 | 0.362 | 0.4099

Table 2.2: Values of the critical Reynolds numbers Re,,, corresponding wave-speed C;
and C; e and Apq. obtained.

The observed influence of the intense interfacial mass transfer on the hydrodynamic
stability in the fluid-solid permeable systems is much more interesting for systems with
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interfacial boundaries, such as gas-liquid and liquid-liquid systems.

22— Gas-liquid systems

In the previous section we considered the case of fluid-solid permeable surface systems.
We now turn our attention to the problem of the stability of a laminar boundary-layer
flow, under conditions of intense interfacial mass transfer, when high mass fluxes through
the gas-liquid interface induce secondary flows. The results of this study have been
reported in Boyadjiev & Halatchev (1996b). The interaction between the flow in the gas
and liquid phase is considered in the case of movable liquid surface (see Figure 2.7).
The flow stability under these conditions is not only of theoretical, but also of practical,
interest in view of the fact that it defines the rate of a number of industrial absorption
and desorption processes.

gas

- .

Figure 2.7: Schematic representation of the velocity profiles of the flows in the gas-liquid
system.

The governing equations of the non-linear mass transfer in gas-liquid systems (1.25)
will be considered under the approximation of mixing-layer theory (see Ting (1959)),
assuming that the diffusive resistance is concentrated in the gas phase (see Vulchanov &
Boyadjiev (1990)) where it was shown that the non-linear effects in the liquid phase can
be neglected. Hence, attention will be focused on the problem when the mass transfer
is limited (located) only in the gas phase. The basic boundary-layer velocity and con-
centration fields will be taken to be self-similar and governed by the system of equations
(1.31). This two-point boundary-value problem has been solved asymptotically as well
as numerically and the solutions tabulated (see Chapter 1, section 1.4). We will generate
the velocity profiles in a similar manner, as in the last section, by reducing (1.31) to an
initial value problem for the functions f; (j = 1,2), which are solutions of

2fi" + fifj =0,
fj(0)=aja f;(0)=b], f;l(0)=cj, j=1,27



47

where a; = a0, b1 = £1b10/2, €1 = €3¢10/4, ag = 0, by = €2boo and ¢; = —e3cq0/2. The
values of aig, bio, Cro, Do and cyo (these are the exact boundary conditions of (1.31))
are tabulated in Table 2.3 for £; = 1 and in Table 2.4 for €5 = 20 and different values

63 aio bio C10
-0.30 | 0.2797 | 0.2185 | 1.662
-0.20 | 0.1703 | 0.2166 | 1.520
-0.10 | 0.0785 | 0.2152 | 1.402

0.0 0.0 | 0.2138 | 1.304
0.10 | -0.0682 | 0.2129 | 1.220
0.20 | -0.1283 | 0.2118 | 1.084
0.30 | -0.1816 | 0.2107 | 1.084

Table 2.3: Initial values f and its derivatives in the gas phase at §; = 0.1, 6, = 0.152,
several values of the parameter §; and Schmidt number Sc (g1 = v/Se¢; = 1).

63 bao €20
-0.30 | 0.0546 | 0.00033
0.0 | 0.0536 | 0.00026
0.30 | 0.0527 | 0.00022

Table 2.4: Initial values f and its derivatives in the liquid phase at 6; = 0.1, 8, = 0.152,
several values of the parameter f; and Schmidt number Sc (g2 = +/Sc; = 20).

of the parameters 6;, f; and 65 (1.26). Note the parameters ¢; and 6; account for the
kinematic and dynamic interactions between the gas and liquid phases respectively, while
05 characterise the mass-transfer level in the gas phase.

The effects of the intense interfacial mass transfer in the gas-liquid systems appear as
a difference in the rates of absorption and desorption. In the cases where the process is
limited by the diffusion resistance in the gas phase this difference can be explained by
the Marangoni effect in the liquid phase. The higher rate of absorption (compared with
the rate of desorption) can be explained by the effect of non-linear mass transfer, i.e. the
influence of the induced secondary flow on the kinetics of the mass transfer. Those cases,
where the desorption rate is higher then the absorption rate can be explained with the
flow destabilisation and transition to turbulence, since it is possible for the flow in the
gas phase to be turbulent for desorption and laminar for absorption at equal Reynolds
numbers.

As has already been mentioned, the flow instability analysis will be carried out under the
assumption that the interaction between the gas and liquid phases in the disturbances
equations can be ignored in the first-order approximation; that is the effect of interfacial
mass transfer is dominant. Furthermore, it was argued in Boyadjiev & Halatchev (1996b)
that the disturbances are in the flow volume but not on the interface. In this sense the
stability of the profiles f; (j = 1,2) will be studied by solving the Orr-Sommerfeld
(2.16) equation separately in the two phases with the boundary conditions for a rigid



48

surface, excluding the effect of interfacial instabilities and considering the effect of mass
transfer only through its influence on the basic boundary-layer flow. The Orr-Sommerfeld
equation for the gas and liquid phases have the same form and can be written as:

5-0) =)= =g (-2 o) - e

]' ! 1 1 m " ! / -
2 (GI = 5) A+ 5 (G + 1) + 42 (G~ 5] soj}, =12

and the boundary conditions
i (0) =0, 9;(0)=0; p;(00) =0, (o) =0, j=1,2. (2.18)
The curves of neutral stability (Re, A) and (Re,C,) for the gas phase are shown in

Figures 2.8 and 2.9. The critical Reynolds number, the corresponding wavenumber and
phase velocities are presented in Table 2.5.

A 0.5

gas - liquid in gas

04 §=05 R i

o 1 1 1 I |
0 600 1000 1500 2000 2600 3000

Re

Figure 2.8: The curves of neutral stability in (Re, A)-plane in the case of gas-liquid
systems (in gas phase § = 6;).

It is seen from the results that the direction of the intense interfacial mass transfer
influences the hydrodynamic stability of the boundary-layer flow in the gas phase in a
manner analogous to the case of the solid interface. Hence, in the case of absorption
63 > 0 an increase in stability is observed. In the opposite case, of desorption 6; < 0, the
stability decreases.
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Figure 2.9: The curves of neutral stability in (Re, C,)-plane in the case of gas-liquid
systems (in gas phase 6 = 63).
93 Recr A Cr Amaa: Cr max
-0.30 | 2511 | 0.270 | 0.3863 | 0.304 | 0.3878
-0.20 | 1605 | 0.285 | 0.4095 | 0.325 | 0.4108
-0.10 | 1078 | 0.295 | 0.4264 | 0.341 | 0.4281
0.0 795 | 0.305 | 0.4469 | 0.356 | 0.4493
0.10 | 605 | 0.315 | 0.4620 | 0.373 | 0.4645
0.20 | 483 | 0.320 | 0.4749 | 0.386 | 0.4786
0.30 | 397 | 0.330 | 0.4866 | 0.398 | 0.4902

Table 2.5: Values of the critical Reynolds numbers Re,,,
and C; mez and An,, obtained (in gas phase).

corresponding wave-speed C,

The solution of (2.17) for the liquid phase (f,) shows that the flow is stable at large
Reynolds numbers (Re = 25, 000), which is readily explained by the fact that the velocity
gradient in the liquid boundary layer is low and the profile has a shape similar to that of
the plane flow (see Boyadjiev & Halatchev (1996b)).

2.3 Liquid-liquid systems

We now turn our attention to the case of a liquid-liquid system. In the previous sec-
tion it was demonstrated that the motion of the interface significantly influences the
hydrodynamic stability of a flow in the gas boundary layer, when the phase boundary
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was considered to be a flat liquid surface. In addition, this motion and the effect of
the intense interfacial mass transfer were superposed. We should emphasise again that
these two effects are studied here only through their influence on the basic velocity and
concentration fields, thus excluding from the problem the possibility of Kelvin-Helmholtz
instabilities. The effect of a movable interface is expected to be considerably more pro-
nounced under conditions of intense interfacial mass transfer between two liquids, where
the hydrodynamic interaction between them is stronger and the surface velocity is higher.

Non-linear effects in the case of intense interfacial mass transfer between two liquids can
manifest themselves with the same intensity in both phases. In a number of extrac-
tion processes, where the motion of one of the phases (the dispersion medium) induces
motion in the other (the dispersed phase), these effects are of great interest. Further
we consider the hydrodynamic stability of the flow under conditions of intense interfa-
cial mass transfer between two liquid phases, where the velocity in the volume of one
of them is zero. A linear analysis of the stability of a laminar boundary-layer flow un-
der conditions of interfacial mass transfer between two liquids, when high mass fluxes
through the liquid-liquid phase boundary induce secondary flows has been reported in
Halatchev & Boyadjiev (1996). The first liquid (phase I) is in motion over the second
one (phase II in rest) (see Figure 2.10)

liquid I

liquid II

Figure 2.10: Schematic representation of the velocity profiles of the flows in the liquid-
liquid system

The basic velocity and concentration fields for this problem are given by (1.42). This
system has been solved asymptotically as well as numerically and the solutions tabulated.
The velocity and concentration profiles are generated again by reducing this two-point
boundary-value problem to an initial value problem for the functions fi (7 =1,2), which
are solutions of

2f{"+ fiff =0,
f](o) = Aj7 f]l(o) e Bj, f;’(O) = Cj7 .7 = 172)
(fi(o0) =1, f3(e0) =0),
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where A;, B;, and C; are a result of numerical solution of (1.42) and these values are
tabulated for the velocity profile in the liquid I in Tables 2.6 at € = 10 in the case when
the diffusion resistance is limited by the mass transfer in the phase I (m/b =0, 6, = 0)
and in the case of commensurable diffusion resistances in two liquids (b/m =1, 6, = 6,).
Note the parameters §; (j = 1,2) characterise the mass-transfer level in the two phases
respectively.

e=10 01 Al Bl 01
m/b=0|-0.5| 0.66525 | 0.439 | 0.38722
-0.3 | 0.03299 | 0.420 | 0.29754
-0.1 0.0094 | 0.405 | 0.27142

0.0 0.0 0.4 | 0.26565
0.1 | -0.00826 | 0.394 | 0.25142
0.3 | -0.02219 | 0.384 | 0.23011
0.5 | -0.03345 | 0.376 | 0.21074
b/m=1|-0.5| 0.02117 | 0.413 | 0.36788
-0.3 | 0.01287 | 0.408 | 0.29076
-0.1 | 0.00432 | 0.402 | 0.27031
0.0 0.0 0.4 | 0.26565
0.1 | -0.00432 | 0.397 | 0.24321
0.3 ]-0.01287 | 0.39 | 0.22114
0.5 | -0.02117 | 0.385 | 0.20987

Table 2.6: Initial values f and its derivatives in the phase I (m/b = 0, 6, = 0) and in the
case of commensurable diffusion resistances in two liquids (b/m = 1, 6; = 6,).

The linear stability analysis in the liquid-liquid systems is carried out in a similar fashion
to that in the case of gas-liquid systems. The results obtained show that the stability of
the flow depends considerably on the non-linear effects of the mass transfer 6; (j = 1, 2),
as well as on the interface velocity (B;).

The effect of the non-linear mass transfer in the liquid I (m/b = 0) and the effects of the
increase of the interface velocity are superposed and their total influence on the stability
of the flow in phase I is shown in Figure 2.11 and the critical Reynolds number, and
corresponding wavenumber and wave-speed are tabulated in Table 2.7. Under conditions
of commensurable diffusive resistances in the two liquids (b/m = 1) the non-linear effects
are lower (Table 2.7). The influence of the non-linear effects (6;) on the flow stability
decreases.

A linear stability analysis of the liquid II (phase II) show analogous results as those in
gas-liquid systems. The flow is stable to large Reynolds numbers (Re &~ 25,000), which
can be explained by the profile shape (again, similar to that for plane flow).

The studies on the hydrodynamic stability in systems with intense interfacial mass trans-
fer show that the stability increases with a rise in the interface velocity and the rise of
concentration gradients in the cases when the mass transfer is directed from the vol-
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Figure 2.11: The curves of neutral stability in (Re, A)-plane in the case of liquid-liquid
systems in the liquid I (phase I) (¢ = 10,m/b =0, 6, = 0) at several values of § = 4,.

e=10 2! Re,, A C, Amaz Cr maz
-0.5 | 3145 | 0.315 | 0.6235 | 0.358 | 0.6246
m/b=0 |-0.3 | 2663 | 0.320 | 0.6155 | 0.364 | 0.6163
-0.1 [ 2343 | 0.325 | 0.6092 | 0.372 | 0.6101
0.0 | 2243 | 0.330 | 0.6081 | 0.372 | 0.6085
0.1 | 2145 | 0.320 | 0.6042 | 0.374 | 0.6053
0.3 | 1983 | 0.320 | 0.5997 | 0.375 | 0.6009
0.5 | 1859 | 0.330 | 0.5969 | 0.377 | 0.5974
-0.5 | 2503 | 0.325 | 0.6130 | 0.367 | 0.6135
b/m=11-0.3|2398 | 0.325 | 0.6099 | 0.370 | 0.6111
-0.1 | 2288 | 0.325 | 0.6079 | 0.371 | 0.6086
0.0 | 2243 | 0.330 | 0.6081 | 0.372 | 0.6085
0.1 | 2170 | 0.330 | 0.6064 | 0.374 | 0.6066
0.3 | 2079 | 0.320 | 0.6020 | 0.375 | 0.6036
0.5 [ 1999 | 0.325 | 0.6008 | 0.375 | 0.6015

Table 2.7: Values of the critical Reynolds numbers Re,,, corresponding wave-speed C,
and Cr ez and Apmg, obtained in cases m/b =0, 6, = 0 and b/m =1, 6, =6, for different
values of 6;.

ume toward the interface. The decrease in the interface velocity, and the change of the
direction of interface mass transfer, serves to destabilise the flow in the boundary layer.

In a number of cases experimental studies of mass transfer in systems with intense in-
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terfacial mass transfer between two liquids show a higher mass-transfer rate compared
with that predicted by the linear theory of mass transfer (see Hennenberg, Bisch, Vignes-
Adler & Sanfeld (1979) and Linde, Schwartz & Wilke (1979)). To date this has been
explained as being a result of the Marangoni effect, i.e. the creation of interfacial tension
gradients as a result of temperature or concentration heterogeneity on the phase bound-
ary. The interfacial tension gradient induces secondary flows directed tangentially to the
phase boundary. They change the velocity profiles in the boundary layer. Thus, the
mass-transfer rate is directly affected. The results show that under conditions of intense
interfacial mass transfer high mass fluxes induce secondary flows directed normally to the
phase boundary. These secondary flows change the velocity profiles, consequentially they
change the kinetics of mass transfer (non-linear mass transfer) and the hydrodynamic
stability of the flow. In the case of hydrodynamic instability, there is a possible transi-
tion to turbulence and the mass-transfer rate drastically increases. This is a radically
different mechanism of the intense interfacial mass transfer influence on the kinetics of
the mass transfer and the hydrodynamic stability in liquid-liquid systems.

Only with a full solution of the problem, allowing for the possibility of interfacial insta-
bilities, will a comparative analysis of the influence of the Marangoni effect and the effect
of the non-linear mass transfer on the mass-transfer rate and the hydrodynamic stability
of systems with intense interfacial mass transfer be possible.
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Chapter 3

Effects of Concentration and
Temperature on the Mass-Transfer
Kinetics and Hydrodynamic
Stability

In Chapter 1 we demonstrated that the large concentration gradients in systems with
intense interfacial mass transfer induce secondary flows on the phase boundary. The
induced velocities depend upon both the concentration and its gradient. In this chapter
the influence of the concentration and its gradient on the velocity distribution in the
laminar boundary layer and flow stability will be studied (this work has been reported
in Boyadjiev & Halatchev (1998b) and Halatchev & Boyadjiev (1998)).

3.1 Concentration effects

The theoretical analysis of the non-linear mass transfer and flow instability in systems
with intense interfacial mass transfer which has been presented so far considers only the
effect of large concentration gradients. Under these conditions, however, the concentra-
tions themselves are high and their influence manifests itself in a dependency of density,
viscosity and diffusivity upon the concentration. In order to consider these effects we use
the basic model of non-linear mass transfer.

We shall first consider the question of the dependency of the induced secondary flow
velocity upon the density, viscosity and diffusivity for the case of a laminar gas flow over
a solid permeable surface. Let us consider a binary gas mixture, in which gas phase II
has partial density’ p, and flows over a permeable surface with mass-transfer rate ws,

'In a multicomponent mixture the density p = Y, pi, [kg/m?] is a sum of the partial densities of
its components, defined as p; = M;c;. Here, M;, [kg/mol] is the molecular mass of the i-th component
and c;, [mol/m?] is its concentration.

99
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while gas phase I, whose partial density is p1, is blown through the porous surface with
mass-transfer rate w;. Thus, we have the following expressions for the density of the
binary mixture and the average mass-transfer rate:

2 2
P=Zpi, w= %prwi- (3.1)
i=1 i=1

The diffusion velocity W; is the deviation of the velocity w; from the gas mixture velocity
w:

W,; =w; —w, 1= 1,2 (32)

From (3.2) it follows directly that
2 2 2 2
Zpiwz‘ = wzpi + Zpiwi =wp+ Zpiwz’-
i=1 i=1 i=1 i=1
Thus, from (3.1) and (3.2) we obtain

2
Zp,;W,; =0. (33)
i=1

The law of conservation of mass holds for each component
Ve(ow) =V -[pi(w+W)]=0, i=12, (3.4)
where summation over the repeated index is assumed. For the mixture, we therefore have

V. (pw) =0.

We shall focus our attention on the case of isothermal diffusion of gas phase I into gas
phase II. The mass flux of gas phase I, as a result of diffusion, is defined via the mass-
fraction gradient as follows:

Ji = CpWy =—D,VCy, Ch = %, (3.5)

where D is the diffusion coefficient and Cf, is the mass fraction of gas phase I. From
(3.2), (3.4), and (3.5) we obtain

V- (pw) = V- (pD12VCyy),
and making use of the identity

V- (Coiow) = pw - VCiy + CV - (pw), (3.6)
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gives
pw - VCy =V - (pD12VC ;). (3.7)

Denoting the components of the velocity w by Uj and V; and applying the concentration
boundary-layer approximation:

0C§, = 0Cs

oy* Bz’
we obtain from (3.7) the convection-diffusion equation
905 905 _ 0 9C5,
p (Uo ax* +‘/0 6y* -_ ay* pD12 ay* ) (38)

where U and V{* satisfy the boundary-layer equations of the gas mixture.

For definiteness, we shall consider the basic gas flow over a semi-infinite flat plate, with
uniform free-stream velocity U,. Thus, the equations of motion of the gas mixture take
the following form:

V.(pw) =0,
LoUg U\ 0 oU;
(Ui %5e) = o (5
Uy =Usx, p=-constant at z* =0; (3.9)

Uy =Us, Vy=V, at y*=0;
Uy =Usx as y* — oo,

where V}, is the velocity of the flow induced from the intense interfacial mass transfer. If
we assume that the second component of the gas does not penetrate down through the
permeable surface, for example in the case when the mass transfer through the permeable
surface is restricted by its porosity, we have from (3.2)

w=~W, at y* =0. (3.10)

From (3.3) and (3.5) we find
—C’JIWI = 062W2 = (1 - Cgl)Wz = Dlzvcgl,

in which case (3.10) can be written as

w=— ( Diz_ V03‘1> = (D—uﬁvcgl) . (3.11)
il = CO]. y=0 P2 y=0

Let us express the concentration of the gas phase I in (3.11) as moles per unit volume,
and denote the values of diffusivity and density D2, p and p, on the solid surface (y* = 0)
by D, p* and pg, respectively

* 1

0 =35 D=Duw p"=p, pi=p2 2t y" =0. (3.12)
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Then, from (3.11), we obtain the normal component of the velocity on the interfacial

boundary as
=it [£ (Cﬂl)} | (3.13)
P Loy \ p /],

Note that Cg;/0z = 0 on the plate, thus implying Uy = 0.

Equations (3.8) - (3.13) allow us to formulate, in general, the mass transfer of a gas or
a liquid flow over a semi-infinite flat permeable plate under the boundary-layer approxi-
mations. The governing equations are

p(UgaUO +VO"‘6U°) o} ( 3U0),

oz oy ) ~ oy "oy
. 0 .0 ou;  oUx
anx’i+%a—;+p(a—;j+ayf)=o, (3.14)

BC; .9\ _ B aC:
: (U° oz TV 6?/*) ~ oy* ('OD dy* )

with the following set of initial and boundary conditions:

Us =Usx, Co=C5 at z*=0; (3.15)
MD (306‘) D(p* - p3) (3/)) .
Ur=0, Vy=— - , Ci=C: at y*=0;
° ° s \ oy Py \oy* =

U = U, C;=0C% as y* — oo,
where
p* = p; + MCs;

in the above system (3.14) and its initial and boundary conditions (3.15) we have omitted
the subscript 1 in the concentration. In what follows C; = C¢,, the concentration of the
fluid phase.

In order to close this system an equation prescribing the density p should be added
into (3.14) - (3.15). Under conditions of constant pressure and temperature p cannot
be obtained from the equation of state (p = p(T, P) at T = constant, P = constant
and p = constant, i.e. it depends only on the substance of the mixture). The density p
depends only on the concentration of the components

p=ps+ MCj.

Comparing (3.14) - (3.15) with the mathematical model (1.4) shows that the asymptotic
theory of the non-linear mass transfer in systems with intense interfacial mass transfer
has been derived by employing the following approximations:

p = constant, u = constant, D = constant. (3.16)
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Previous analysis has shown that, in a number of cases (see Table 3.1 and Figures 3.1
- 3.3), the effect of the diffused substance concentration on the density, viscosity and

diffusion coefficient can be modelled in a first-order approximation as linear functions
(see Boyadjiev (1984))

p=po(1+5C), p=pu(1+ al), (3.17)

o _ C*—C—’*
D=Dy(1+DC), C==28 <=
0( =+ )7 CS_C;O

Here p, i and D are small parameters which can be obtained from experimental data for
the dependence of p, 4 and D on the concentration.

Substituting (3.17) into the system (3.18) and its initial and boundary conditions (3.15)
leads to a complete mathematical description of the hydrodynamics and the mass trans-
fer in systems with intense interfacial mass transfer. These are a reduced form of the
Oberbeck-Boussinesq equations (see Kundu (1990)). In our case the effect of gravity
is neglected (it is insignificant) in the boundary-layer approximations in the case of a
horizontal flat plate if the following condition holds

In this case the vertical momentum equation reduces to the usual form under the boundary
layer approximations

The concentration effects were studied experimentally and reported in Boyadjiev (1996)
(the experimental data was taken from Sherwood, Pigford & Wilke (1975)) within the
concentration region [0, Cpa.] Where a significant effect of non-linear mass transfer (§ =
0.3) is present. The concentration difference AC = M(C; — C%)/p% is used to normalise
the concentrations (Crpaz = Crnas/AC). These results are summarised in Table 3.1 for a
variety of different chemical species.

From Table 3.1 it is clear that for the diffusion of ammonia into air, the influence of
the ammonia concentration on the density (5Cmqs) is 13% and viscosity (ZComez) is of
approximately 16%. These changes are significant and suggest that an analysis of these
effects is required. For gas mixtures (such as ammonia/air) the concentration effect on
the diffusion constant is negligible.

For liquid mixtures the influence of the concentration on the density (see Table 3.1) is
of the order of a few percent (under 5%), which is valid for a large number of miscible
two-liquid systems. The effect on the viscosity cannot be so easily classified, the results
here showing variations from 2% (acetic acid/water) to 72% (acetone/water).

The influence of the concentration on the diffusion coefficient for one liquid diffusing to an-
other is often significant (see Sherwood, Pigford & Wilke (1975)). For an acetone/water
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ammonia | acetic acid | acetic acid | acetone | water
system
air water toluene water | acetone
Chu[kmol/m3] | 0.0134 3.80 3.40 3.68 10,60
0 0.3 0.3 0.3 0.3 0.3
AC[kmol /m?] 0.0160 3.92 3.52 3.81 10.9
Crnaz 0.837 0.969 0.967 0.967 0.968
p -0.149 0.0134 0.0420 -0.518 | 0.0461
PCrmaz -0.125 0.0130 0.0420 -0.050 | 0.0450
7 -0.190 0.0208 0.263 -0.0854 | 0.746
AC maz -0.159 0.0200 0.254 -0.0830 | 0.722
D 0 0 0 -0.336 | -0.843
DCroz 0 0 0 -0.325 | -0.816

Table 3.1: Maximum concentration effect on the density, viscosity and diffusivity.

system (see Table 3.1) the dependency deviates from the linear as proposed in (3.17).
In cases where the parameters 5, & and D exceed 0.3 the linear approximation (3.17)
becomes inaccurate; neglecting the second-order approximations leads to an error above
10%. The accuracy of the approximation (3.17) is shown in F igures 3.1 - 3.3. The
accuracy is satisfactory for a relatively high concentration.

Figure 3.1: Linear approximation of the dependence of the density on the concentration
for different systems. Shown are plots of p versus C for the cases: (1) ammonia/air
(0); (2) acetic acid/water (A); (3) acetic acid/thulium (O); (4) acetone/water (O); (5)
water/acetone (V7).

Boyadjiev (1996) provided an analysis of the approximations of non-linear mass-transfer
theory, which was developed for cases 5 = B =D = 0. It was shown that the results
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Figure 3.2: Linear approximation of the dependence of the viscosity on the concentration
for different systems. Shown are plots of u versus C for the cases: (1) ammonia/air
(0); (2) acetic acid/water (A); (3) acetic acid/thulium (O); (4) acetone/water (<); (5)
water /acetone (7).

are valid in the cases where these parameters are small enough (for instance under 0.05).
The linear approximations are also valid for different systems such as gas(liquid)-solid
permeable surface, gas-liquid, liquid-liquid systems. In these cases, the hydrodynamics
and the mass transfer depend on the concentration gradient (#). When the parameters g,
i and D are within the interval [0.1,0.3] the concentration influences the mass transfer
and this effect can be considered by introducing the linear approximation (3.17). In
systems for which these parameters have higher values (above 0.3), quadratic terms should
be included in (3.17).

3.2 Influence of the concentration on the mass-transfer
rate

The mass-transfer rate can be expressed by the mass-transfer coefficient. We shall define
this rate from the average diffusion flux, through a surface with the specific length L,

L *
J=k(c';°—c‘*g)=%/o 13(3323) dz.
y=0
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Figure 3.3: Linear approximation of the dependence of the diffusivity on the concentration
for different systems. Shown are plots of D versus C for the cases: (1) acetone into water
(0); (2) water into acetone (A).

3.2.1 Gas—solid permeable surface systems

The thickness of the momentum and the concentration boundary layers in gases are of
the same order of magnitude, so one characteristic scale can be applied

[DoL
ég = E

The problem (3.14) can be non-dimensionalised with respect to a typical length scale
L, the concentration boundary-layer thickness g, the free stream velocity U, and the
concentrations Cj and C3,, at y* = 0 and as y* — oo, respectively as follows:

Tt = L.’E, y* . Jﬂyv U(T - U00U07 (318)
5 _ _
Vo = oofOVE), Co = Co + (G5 — C%)Co.

Introducing (3.18) into the system (3.14) - (3.15) and transforming the variables using the
standard boundary-layer variables (2.12) leads to the following system of boundary-layer
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and concentration equations and their associated boundary conditions:

0 0
a(SDUB) K% = (¢VB) =0,

OUg U 8 8U3

oz
0Cp 0Cp\ _ 3 0Cp
© (UB P + Vg 8Y) =5y (cpw 5y ) ; (3.19)

z=0: Ug=1, Cg=1;

Y=0: Ug=0, Vg= —906 C+Cs ) CB=1;
oY %

Y 50 UB=1, CB=O,

where

MAC, . . .
b = 2p(Ww(1), p* = pop(1), P = pop(l) — MC;
0

o= Ca

A A Ho
, ACy=C% —C¢, Sc= , 3.20
ACy ° 0 poDy ( )
D

¢ = (Cp) = pﬁ ¥ =9(Cp) = Mi w=w(Cs) = -
0(0) =1, $(0)=1, w(0)=1.

We shall introduce the following similarity variables into (3.19):

|
oUp = @', ‘PVB—2\/—( n—®), Cp=F

3 =o(n), F=F(n), n=%-

System (3.19) reduces to

250(‘02,‘1)@”[ + (p2¢¢ll _ QD@I@@,FI

+2Sco(py’ — P P)®"F' — 2Scy' (oo — 2¢'h)®' F? = 0, (3.21)
20wF" +2(p'w + Q' Y)F? + ®F' =0,
with boundary conditions
(3.22)

®(0) = —6F'(0), ®'(0)=0, F(0)=1; )
®'(00) =1, F(o0)=0, 6 =26, ACO(pA(lc),O;gg(pl(l).

The functions ¢, 9 and w in (3.21) can be determined by spline approximations of the
experimentally measured dependencies of p, u and D on the concentration. For a wide
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range of gas mixtures these functions can be obtained, with suitable accuracy, through a
linear approximation

@ =14+ pCo, %=1+ fCy, w =1+ DC,. (3.23)

Introducing (3.23) into (3.21) leads to following system of equations:

25¢(1 + pF)*(1+ GF)®" + (1 + pF)233"
—p(1+ pF)@P'F' + 2S¢(1 + pF) [A(1 + pF) — (1 + iF)] " F" (3.24)
—28¢p [p(1 + pF) — 2p(1 + aF)| ®'F? = 0,

21+ pF)(1+ DF)F" +2 [p(1+ DF) + D(1 + pF)] F + ®F' = 0,

where
AC, - Cip

0 = 20—,
"ACo(1+ p)

The parameters p and  in (3.24) are to be considered as small, while D = 0. Omitting
the quadratic terms in the small parameters 5 and 7 leads to

25¢(1 + 2pF + pF)®" + (1 + 25F) "
—pP®O'F' + 2Sc(fi — p)®"F' = 0, (3.25)
2(1+4 pF)F" 4+ 2pF? + ®F' =,

with boundary conditions

®(0) = —6F'(0), ¥'(0)=0, F(0)=1; (3.26)
®'(00) =1, F(o0)=0.

The system (3.25) subject to the boundary conditions (3.26) was solved using the follow-
ing algorithm (see Boyadjiev & Halatchev (1998b)):

1. Determine the zeroth-order approximations to ® and F by solving the boundary-
value problem:

2Sc¢m(0) + <I>(0) (I)II(O) =0,

®@(0) =0, 8@0)=0, ¥V (c0)=1; (3.27)
2FII(0) + @(O)FI(O) — 0’

F®0) =1, FO(co) = 0.

2. Determine ® at the k-th iteration by solving the boundary-value problem

2Sc(1+ 2pF®~1) 4 pF*-1)gm®) | (1 4 95Fk-1))gk) nk)
—ﬁé(k_1)®l(k—1)Fl(k—l) + 2SC(/_L _ ﬁ)q)ll(k—l)Fl(k—-l) — 0, (328)
o®(0) = —oF"*=D(0), &P (0) =0; &'®(c0) = 1.
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3. Determine F' at the k-th iteration by solving the boundary-value problem

2(1 4 pF*=DYF"®) 4 op(Fk—1)2 4 gtk pr(k) = ¢ (3.29)
F®0)=1; F®(c0) = 0.

The integration of (3.27) - (3.29) is done using finite difference schema with a
step-size h = 1072 in the interval 0 < 7 < 6.

4. The calculation procedure (from step 2 of the algorithm) is repeated until

@00 - N0 <6 [FRO) - FEVO) < @)

After some experimentation a tolerance of ¢ = 1075 was found suitable to produce results
converged to five significant figures.

The results for ”(0) and F(0) in the case of Sc = 1 are shown in Table 3.2 for different
values of §, p and f. They were obtained in 3 — 4 iterations.

Se=1
No

6 p| & |2"(0) [ —F'(0)

| 0 0 00332 | 0.332
21 0.3 0 0 0.301 | 0.299
31-0.3 0 0]0373 | 0.372
4] 03| 0.15 0] 0.356 | 0.187
5 0] 0.15 00379 | 0.198
6 |-0.3|-0.15 00329 | 0.531
71 0.3 0] 0.2]0.264 | 0.292
8 0 0| 0.2]0.200 | 0.322
91-0.3 01]-0.2|0.447 | 0.386
10| 0.3| 0.15| 0.2 | 0.320 | 0.187
11 0| 015| 0.2 ] 0.340 | 0.198
12 1-03| 0.15| 0.2 0.362 | 0.211
13 01]-0.15 0| 0.280 | 0.446
14 0 0]-0.2(0.394 | 0.343
15 01]-0.15(-0.2 | 0.347 | 0.469
16 | -0.3 [ -0.15 | -0.2 | 0.417 | 0.558

Table 3.2: The results for ”(0) and F'(0) in the case of gases (Sc = 1) for different
values of 4, p and [.

The Sherwood number and Reynolds number, respectively, are given as

Sh = ';)—L = 2Pe'2F'(0), Re= Ul

0 4

The mass-transfer rate in gases can be determined from data in Table 3.2. The results
show that the dependence of ®"”(0) and F'(0) on 6, p and f is monotone. The change
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in viscosity 7 has little influence on the mass-transfer rate (F(0)) as can be seen from
results in rows 4 and 10 of Table 3.2, while the influence of the density g is six to seven
times greater than the effect of the non-linear mass transfer (§) (see Figure 3.4) .

Gas

L

0!2 B

1
o
N
|
O

F'(0)

Figure 3.4: The dependence of (0) on 6, 5 and j.

3.2.2 Liquid-solid permeable surface systems

The thickness of the hydrodynamic and concentration boundary layers in liquids are of
different orders of magnitude. As such, two specific scales should be taken into account

_ oL _ DyL 51__ _ Q.1/2
61‘VpoUm’ 2= T =5

the hydrodynamic boundary-layer and concentration boundary-layer thickness respec-
tively.
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Considering these two scales the following dimensionless variables are introduced

z* = Lz, y* = 61y1 = bayo,

Ug = U Ul(xayl) = UooU2(may2)7 (331)
d 4
Vs = Uno 7 Val2, 1) = Uo7 Vales 1),

Cs = C%, + ACyCi(z,11) = C%, + ACCa(z, 11),

where U;, V;, and C; are the velocity and concentration fields in the liquid boundary
layer, so that vy, = ey;, Ua(z,42) = Uiz, e ye), Ur(z,y1) = Uslz,eyr), Valz, 1) =
5V1($,5_13/2), Vl(xayl) = 5-1V2($,5yl), 02(55, yz) - C’l(x,s“lyz), Cl(xayl) & 02(15,61/1)-

In these new variables the boundary-layer equations are

oUy 6U1> ( 3U1)
U, +Vi—
( 13 layl 7’[)13’511
D ot) + 2 (V1) = 0 (3.32)
o w1U1 P p1vy) = U, .

0C, 802> 0 ( 663)
Uy—+ 1, e
( ? Oz 3.1!2 3?!2 s Oy

subject to the following initial and boundary conditions:

z=0: U1=U2-———0, 01=Cz=0;
y=0: U,=0, C;,=0,

Yo = 0: U2 = 0, C2 = 0, (333)
o (Cx+ ACOC’2)
Vo=-6 = .
2 anz ( AChp2

y1—oo: Uy =1, C; =0,
Yo — OO U2->1, Cg—)o,

where ¢}, ¥; and w; (j = 1, 2) are defined in a similar fashion to the previous subsection.

Introducing the new variables '

Y2

Y
olUr = @'1(771), pUs = ‘I’lz(ﬂz), m= ;1 2 = P

1
Vi = m(q"ﬂh - ®1), Vo= \/—( 2T — @),
Ci = Fi(m), Ca= Fa(ng), 1m0 = em,

the boundary-layer and concentration equations (3.32) and their boundary conditions
(3.33) become

2Sc(1 + 2pFy + pF)® + (1 + 2pF1)®, 9
—p21 @1 FY +25¢(fi — p)®IF] = 0,
2(1+ pF; + DE)Fy +2(p+ D)Fy? + ®,F; = 0, (3.34)
$,(0) = —6F5(0), @31(0)=0, F3(0)=1
@) (00) =1, Fy(o0) =0.
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where

Fi(m) = Fa(m2) = Fa(em), Fi(m) = eFy(em),
Dy(12) = €Py(m) = e@i(e ), B2(0) =e®,(0) = —HF(0),

and we have employed the linear approximations
i =1+pF;, Yi=1+pF, w;=1+DF, (i=1,2).

In deriving (3.34) we have ignored all quadratic terms in the small parameters p, i and
D.

The system (3.34) is solved by using modification of the algorithm employed in the
solution of (3.25) - (3.26):

1. Determine the zeroth-order approximation of ®; (m) by solving the two-point boundary-
value problem

2¢11n(0) + (I>£0)¢'1’(0) =0, (3.35)
2(0) =0, 317(0)=0; ' (c0) = 1.

A step-size of 0.001 was found to be suitable and the interval of integration was
0<m<6.

2. Determine the zeroth-order approximation of @, (m2) by solving

8 () = €@ (my), m=em, 0<m <6. (3.36)

3. Determine the zeroth-order approximation of F, (72) by solving
FO 4+ o0 FO g (3.37)
F(0) =1 F(c0) =0,

with a step-size h, = 0.01 in the interval 0 < 7, < 6¢. In order to do this Fz'(o)(O)
is varied until the condition F{*(co) < 10~5 is satisfied.

4. Determine the zeroth-order approximations of F;(n;) and Fl{(m)

F(m) = F”(m) = " (em), F{Omy) =eFO(my) = eFO(emy).  (3.38)

5. Determine ®,(7;) at the k-th iteration:
25c(1+25F ) + gFF D)8 ® 4 (1 4 257 D) ok 5 ®)
—p@F VR EV R L oge(n - p)@iED kD o (3.3)
0
2M(0)y = —=F¢(0),, (0) = 0; ¥F (o) = 1,

while the value of &} (0) is varied till the condition lq)'l(o)(oo) — 1] < 1075 is
satisfied.
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6. Determine ®,(72) at the k-th iteration:

& (1) = £ () = £ (em), 0 < 72 < Ge. (3.40)

7. Determine F5(7),) at the k-th iteration with a step-size h, in the interval 0 < 7, < 6¢

2(1 + pFF ™D + DEEDF® 4 9(5 + D)(Fy*V)2
+oF F®) = o, (3.41)
FP(0) =1; FP(c0) =0,

while the value of Fz'(k) (0) is varied till the condition Fz(k) (00) < 1079 is satisfied.
8. Determine Fi(n;) and F{(m) at the k-th iteration
FP(m) = B (m) = FPem), FP(m) =eFY(m) =eFYem),  (342)

0<m L6

9. The calculation procedure (from step 5 of the algorithm) is repeated until

2 ®(0) - 2/* ()| < |0 - B* D) <. (3.43)

Here € = v/Sc and Sc = 100 (liquid-solid permeable surface systems) and € = 107°.

The Sherwood number is given as

Sh = 2(1+ D)Pe'/2F;(0).

The results obtained for ®{(0) and F3(0) by solving (3.34) using the algorithm described
above at € = 10 and for different values of 6, 5, i and D are shown in Table 3.3. The
mass-transfer rate in liquids can be determined from the data in Table 3.3. These results
show that the influence of the density and viscosity (5 and i) on the velocity profiles
(hydrodynamics) ($”(0)) is similar to the case of gases, in that the dependency of ®"(0)
on p and 7 is monotone, while its effect on the mass-transfer rate (F;(0)) is practically

negligible. The change in diffusivity (D) does not affect ®”(0) and F;(0) (see Figure 3.5)

The analysis (see Boyadjiev & Halatchev (1998b)) of the influence of high concentration
gradients of transferred substance on the hydrodynamics (measured by ”(0)) and mass
transfer (measured by F'(0)) through the concentration dependencies of density (p),
viscosity (&) and diffusivity (D) allow us to make some conclusions. First, a change in
the density with concentration influences the hydrodynamics in gases and liquids but
does not influence the mass transfer in gases. Second, a change in the viscosity with
concentration influences the hydrodynamics in gases and liquids and the mass transfer,
and finally, the change in the diffusivity with concentration has no influence on either
the hydrodynamics or the mass transfer.
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Sc =100
No

4 | B|2"(0) | —F'(0)

1 0 0 00332 0.332
2 0.3 0 010330 | 0.176
3] -0.3| 0.15 0] 0.334 | 0.206
4 01]-0.15 0] 0.397 | 0.194
5 0] 0.15 0] 0.201 | 0.181
6 0 0| 0.2]0.272 | 0.186
7 0 0[-0.20.418 | 0.194
8 0 0 0] 0.332 | 0.192
9 0 0 0] 0.332 | 0.186
10| 0.03| 0.15| 0.2 0.272 | 0.177
11 [-0.03| 0.15| 0.2 0.275 | 0.200
12| 0.03 |-0.15[-0.2 | 0.243 | 0.164
13 1-0.03 | -0.15 | -0.2 | 0.247 | 0.206
14 0.3 0 00318 | 0.135
15| -0.1 0 0] 0.342 | 0.268

Table 3.3: The results for ®”(0) and F'(0) in the case of liquids (Sc = 100) for different
values of 6, g and .

These results show that the non-linear theory on mass transfer at constant values of
density, viscosity and diffusivity (see Sherwood, Pigford & Wilke (1975), Zierp & Oertel
(1981), Boyadjiev et. al. (1996a)) is sufficiently accurate for gases and liquids if the den-
sity of the transferred substance is not significantly different from the density of the gas
mixture. This result then allows us to considerably simplified models describing mass
transfer in systems with intense interfacial mass transfer whilst still capturing the dom-
inant (or significant) features of the flow. We now turn our attention to the question of
how these concentration dependencies affect the hydrodynamic stability of the flow.

3.3 Influence of the concentration on the hydrody-
namic stability

The data for the basic velocity and concentration fields in the laminar boundary layer
gives us the opportunity to analyse the hydrodynamic stability of the flow. This work
was reported in Halatchev & Boyadjiev (1998).

3.3.1 Linear instability analysis of gas—solid permeable systems

The linear stability analysis considers a non-stationary flow, in the form of a superposition
of a basic stationary flow and a small amplitude two-dimensional periodic disturbances in
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£(0)

Figure 3.5: The dependence of ®{(0) on 6, 5.

a similar fashion as has been done in Chapter 2. The non-stationary flow satisfies the full
system of Navier-Stokes equations (2.7). Linear approximations (3.17) are introduced to
account for the dependencies of the density, viscosity and diffusivity on the concentration,
while the p, i and D are considered to be small parameters. Again, the governing
equations do not explicitly include the convection-diffusion equation for the concentration
because at the linear approximation for the small perturbation parameter and mass-
transfer parameter 6 it was argued in Halatchev & Boyadjiev (1998) that the momentum
and continuity disturbance equations may be decoupled in the boundary conditions. The
periodic disturbances was considered as a travelling wave of the form

U(iL’, y) = G’(y) €xp 7,CY(.’L' - ét)a
v(z,y) = —iaG(y)expia(z — &),

In the case of mass transfer in gases, for which the basic flow is governed by (3.21) with
non-dimensionalisation (3.18), we introduce into (2.11) the similarity variables

Uso -, _Usol oy B
Us(z,y) = 3 ®'(n), Vo= o (n®'(n) —@(n)), Gy) =~(n)
_Y s_ [Dx _G-Cy
77—6,5— Uooa‘P-l'FPF("?)a F(ﬂ)—c—,g_c-,;o-
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Linearising the full system of Navier-Stokes equations for the disturbances then yields,
(after some minor manipulations) the modified Orr-Sommerfeld equation

o' 1 i

i g A2 e, (q)m 2 S = R )

(‘P )( ) L2 p o ¥ !
1

ARe

= (" — 242 + A%y) + (n®' — @)™ (3.44)

22AR
v p

_ @”’ n__r F 7 " & ' 2 '—CD I

%7 ARes [n +Q (p(2nF‘I> +nF"®" + F'®") + A*(n® )J’y,

which must be solved subject to the boundary conditions

y=0: F=0, F'=0
y—oo: F=0, FF=0

where, in (3.44), we have defined

A=aéb, C= B = C, +1iC;, Re= U—‘S, e = Scl/?,
ano 1 20)
The functions ®(n), F(n) and their derivatives are obtained by solving the two-point
boundary-value problem (3.25). The solution of (3.44) was found using the same numer-

ical approach as done in Chapter 2.

The neutral curves of stability are plotted in Figures 3.6, 3.7 and 3.8. The critical
Reynolds number Re,,, corresponding wave-speed C,, and wave number A are obtained.
Crmaez and Ay, are also obtained from these results. We denote by Crmaz and Anes
the minimal values for wave number and wave-speed at which the flow is stable at any
Reynolds number (Re) respectively. These are presented in Table 3.4 together with their
dependence on the concentration of transferred substance (5 and i) and its gradient @).

3.3.2 Linear instability analysis of liquid—solid permeable sys-
tems

In the case of liquids the basic flow velocity, as has been defined by Sherwood, Pigford
& Wilke (1975), is introduced into (2.11)

Usd1
2z

Ua(z, y)~U—<I>'(n1, Vo = 22 (1 &4 (my) — @ (m1)) (3.45)

YT
m=y e , 0= =1+pF1(m), G(y) =n(m),
where ®1(m), Fi(m) and their derivatives are obtained by solving (3.34). The intro-
duction of (3.45) into (2.11) leads to an equation for the disturbance amplitude of Orr-
Sommerfeld type. The basic flow profiles are obtained directly from (3.34) using the
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Figure 3.6: The curves of neutral stability in the (Re.,, A)-plane in the case of gas flows
in a laminar boundary layer under conditions of high concentrations. Shown are plots
for the cases: 1) =0,p=0,0=0;2)0=0,p=0,2=02;3)0=0,5=0, p=—0.2;
4)6=0,p=0155=0;50=0,p=0.155=02;6)0=0,5=-015 5 =0;7)
0=0,p=-0.15 o= -0.2.

following substitutions:

®(n) = @1(m), F(n) = Fi(m), v(n) =n(m),

n=m, A=A = ad, Re=R61=UZ°61, e = 10.
0

The eigenvalue problem has been solved in a similar fashion to (3.44). The critical
Reynolds number Re,,, corresponding wave-speed C,, and wave number A are obtained.
Crmaz and Az are also obtained from these results. The curves of neutral stability
in the case of liquid—solid permeable surface systems are shown in Figure 3.9, and the
corresponding values of the critical parameters are presented in Table 3.5. These results
show a dependence on the concentration of transferred substance (p, i and D) and its
gradient (6). The plots in Figure 3.8 presented with triangles and squares, having the
same locus as the doted line (1), are obtained in the case where the diffusivity depends
on the concentration.

The results give us opportunity to determine (see Figures 3.10 and 3.11) the dependence
of Re., on the parameters characterising the concentration dependencies of density (p),
viscosity (i), diffusivity (D) and large concentration gradients (6).

The data presented in Tables 3.4, 3.5 and Figures 3.10 and 3.11 show that in gases and lig-
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Figure 3.7: The curves of neutral stability in the (Recr, A)-plane in the case of gas flow in
a laminar boundary layer under conditions of high concentrations and large concentration
gradients. Shown are plots for the cases: 1) § = 0, 5 = 0, BE=0;2)6=03,p=0,
£E=023)0=03,5=0, =02 4) 6=03,p=015p=0; 5 6 =0.3, 5 = 0.15,
p=0.2.

uids the stability of the flow as governed by the critical Reynolds number, Re,,, increases
when the density depends on concentration (5 0); a decrease of the concentration gra-
dient (6) leads to a decrease in stability (Re,, decreases) and that in the cases when the
increase of concentration leads to an increase of viscosity, we can observe stabilisation
of the boundary-layer flow, i.e. high concentrations lead to high mass-transfer rates in
gases. The change in the diffusivity (D) does not influence the boundary-layer flow sta-
bility (see the data presented with triangles and squares in Figure 3.8). The results (see
Figures 3.10 and 3.11) show that the effect of the viscosity (&) on the concentration is
analogous to that one of the large concentration gradient, that is a decrease in the critical
Reynolds number (destabilising the boundary-layer flow) when density increases, while
the change in the density (p) has little effect and this dependence is not monotone.

3.4 Non-linear mass transfer and the Marangoni ef-
fect

Intensification of the mass transfer in industrial gas-liquid systems is quite often obtained
through the creation of large concentration gradients. This can be realised in a number
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Figure 3.8: The curves of neutral stability in the (Re,, 4)-plane in the case of gas flow
in a laminar boundary layer under conditions of high concentrations. Shown are plots
for the cases: 1) 0=0,5=0,2=0;2)0=-03,p=0,2=0.2;3)§ =-0.3, 5 =0,
p=-02;4)0=-03,5=-0.15z=0;5) 6§ =—0.3, 5 =0.15, i = 0.2.

No. 0 P Iz Recr Amaz Cr max
| 0 0 0 501 |0.356 | 0.407
2 0| 0.2 285|0.394 | 0.445
3 0(-0.2 1135 | 0.315 | 0.352
4 0.15 0| 608 |0.429 | 0.356
5 015 | 0.2 | 443 |0.428 | 0.373
6 -0.15 0| 559 (0.296 | 0.403
7 -0.15 | -0.2 | 2972 | 0.217 | 0.289
8(-0.3 0 01619 | 0.301 | 0.331
9 01]-0.2 (2238 | 0.286 | 0.312

10 -0.15 0| 1508 [ 0.255 | 0.332
11 0.15| 0.2 | 547 | 0.418 | 0.361
12| 0.3 0 0| 345 (0.380 | 0.431
13 0| 0.2 215 0.411 | 0.467
14 0.15 0| 491 0.439 | 0.369
15 0.15| 0.2 | 367 |0.437 | 0.384

Table 3.4: Values of the critical parameters Re.,, C;maz and Amg, obtained under condi-
tions of high concentrations (demonstrating the effects due to density, viscosity concen-
tration dependences) and large concentration gradients in gases.



76

0.5+

0.4+

0.3+

0.2+

0.1-

0.0 T T T T T |
1300 1500

1 1
300 500 700 900 1100
Re

Figure 3.9: The curves of neutral stability in the (Recr, A)-plane in the case of liquid

flow in a laminar boundary layer under conditions of high concentrations and large con-

centration gradients. Shown are plots for the cases: 1) 0 =0, 5 =0, i = 0, D =0;2)

0=03p=0,2=0D=0;3)0=-01,5=0,a=0,D=0;4) =0, 5= —0.15,
6=0

ﬂ=O,D=0;5)9=0,ﬁ_=0,ﬁ=0.2,D=0;6) =0,p=-015a=0,D=0;7)
0=0,p=0,p=-02,D=0;(0)0=0,5=0,2=0,D=03; (A)6=0, 5 =0,
E=0,D=-0.3.

of cases as a result of a chemical reaction of the transferred substance in the liquid phase.
The thermal effect of such chemical reactions can create significant large temperature
gradients. The temperature and concentration gradients so generated can then affect
the mass-transfer kinetics in gas-liquid systems. Hence, experimentally obtained mass-
transfer coefficients are found to differ significantly from those predicted by the linear
theory of mass transfer.

It was shown in a number of papers (see Sterling & Scriven (1959), Linde, Schwartz
& Groeger (1967), Porter, Cantwell & McDermott (1971), Hennenberg, Bisch, Vignes-
Adler & Sanfeld (1979), Linde, Schwartz & Wilke (1979), Sanfeld, Steinchen, Hennen-
berg, Bisch, Van Lamswerde & Dall-Vedove (1979), Savistowski (1981) and Sorensen &
Henennberg (1979)) that temperature and concentration gradients on the gas-liquid or
liquid-liquid interface can create an interfacial tension gradient. As a result of this a
secondary flow is induced. The velocity of the induced flow is directed tangentially to
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No. 4 P M D Recr Amam Cr mazc
1 0 0 0 0| 50110.356 | 0.407
2 0.3 0 0 0| 422 0.367 | 0.418
3 -0.1 0 0 0| 564 |0.351| 0.398
4 0 0.15 0 0| 556 | 0.518 | 0.358
3 0|-0.15 0 01073 | 0.102 | 0.392
6 0 0| 0.2 0| 373|0416 | 0.414
[ 0 01-0.2 0| 742 0.300 | 0.395
8 (O) 0 0 0| 03] 502 |0.357 | 0.406
9 (A) 0 0 0]1-0.3| 501 |0.357 | 0.406

Table 3.5: Values of the parameters Re.,, Cymer and Amqz oObtained under conditions
of high concentrations (demonstrating the effects due to density, viscosity concentration
dependences) and large concentration gradients in liquids.

the interface and it leads to a change in the velocity distribution in the boundary layer
and therefore to a change in the mass-transfer kinetics. These effects are thought to be
of the Marangoni type and to provide an explanation to all experimental deviations from
the prediction of the linear theory of the mass transfer, where the hydrodynamics of the
flow does not depend on the mass transfer.

Studies of gas-liquid and liquid-liquid systems with intense interfacial mass transfer as a
result of large concentration gradients show (see Chapter 1) that under these conditions
the induced secondary flow is directed normal to the interface. It leads to “injection” or
“suction” of a substance into the boundary layer, therefore to a change in the velocity
distribution of the boundary-layer flow and a change in the mass-transfer kinetics. This
effect of non-linear mass transfer can also explain a number of the experimental deviations
from the linear theory of mass transfer which have, to date, been attributed to the
Marangoni effect.

The Marangoni effect and that of non-linear mass transfer can manifest themselves sep-
arately as well as both being active. Thus their influence on the mass-transfer kinetics
and the hydrodynamic stability of the flow should be considered. We turn our attention
to this problem.

3.4.1 Mass-transfer kinetics

Co-current gas and liquid flows in the laminar boundary layer along a flat interface are
considered. One of the components of the gas phase is absorbed by the liquid phase
and reacts with a liquid component (see Boyadjiev & Halatchev (1998a)). The chemical
reaction rate is taken to be of first-order. Under these conditions, the thermal effect from
the chemical reaction creates a temperature gradient, so that mass transfer along with an
accompanying heat transfer is observed. Under these conditions the mathematical model
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for the boundary-layer flow takes the following form:
oUs; 7 oVe; L
or*  Oy* :

. U L 0Ug; U,

Usigge + Vo 3yf =V ay*;’
, 0C¢: . 0C;; 0*Cy,
Uss Wj + Vo5 ay*] = D; ay*zj
oTs; oT5; oT:; g
* " Y7 V*~ 7 — . ] . 1 P * .
07 ¥ + Vo oy 25 By2 +(—1) 0,Co; kCo;;

J =1 - gas phase, j =2 - liquid phase,

~ (j — kG, (3.46)

where a; is the thermal diffusivity, ¢ is a constant which parametrises the heat production
of the chemical reaction, c,; is the specific heat and k is the chemical reaction rate. The
influence of the temperature on the chemical reaction rate is not considered in (3.46) as
it has only a minor impact on the comparative analysis of the Marangoni effect and the
non-linear interfacial mass transfer, which are the subject of the present section.

The boundary conditions applicable to (3.46) are derived to take account of thermo-
dynamic equilibrium and the continuity of velocity, flux of momentum, mass and heat
fluxes on the interface. It has been shown in Vulchanov & Boyadjiev (1990) that in the
gas-liquid systems the effect of non-linear mass transfer is located within the gas phase.
Taking into account these considerations the initial and boundary conditions have the
following form:
g8 =0: Uy =Us;, C5=Cp, Co=0 Tg; =Ty, j=1,%
oU; ouU;. 0o
*=03 =05 = iy ,
Y 01 02: M1 5y* H2 dy*  9z°
MD, 6C;
— =% V=0, (3.47)
P Oy -
* * p; 3031 3062 * * Y%
C = C 3 D = D ) = MC bl
01 = XCo2 lp(,;1 5y~ 2 By (p] = p}o + 0)
%* * aT* * * aT‘
To = T, )\1# + piemn Ty = Azw,of;
y* — —00 U0*2 = U0027 C;z = O, T(;Z = TJ,

*—
Vo ==

where the subscript j denotes different phases (1 for the gas phase and 2 for the liquid
phase), asterisk is used for dimensional variables, Ug; and Vo; are velocities of the two
phases in z* and y* directions respectively, Cp; denotes concentration, ¢ is the surface
tension coefficient, 1g; are temperatures, D; the diffusivity coefficients and A; the heat-
conductivity coefficients. At the free-stream the temperatures of the two phases equal the
temperature of the ambient Tj;, the free-stream velocities and concentration are denoted
by U, and Cj;.

At large values of the concentration on the wall one observes large concentration gradients
directed normal to interface (8Cy, /0y*)y+=0, which induce a secondary flow with rate
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Voi(z*,0). The tangential concentration and temperature gradients on the interfacial
boundary create a surface tension gradient

Oc 0o 0C%, N 0o 0713,
oz* 8002 Oz* 0T, Ox*’

which in turn induces a secondary tangential flow, whose rate is proportional to do /oz*.
We shall restrict our attention to substances which are not surface active, i.e. 00 /0Cy, ~
0.

The mass-transfer rate (Jc) and the heat-transfer rate (Jr) can be determined from the
local mass (Ic) and heat (I7) fluxes after taking the mean value of these fluxes along a
length (L) of interface. Thus,

_ i L * *
kcc‘; = f/ IC d.’E*, IC = Mlzlpl (6001> 3 (348)
0 ]

Jc
Plo oy*

Tk 1 L * aT‘(;.‘l *
Jr = krlg = f/ Irdz®, Ir=-) 5y + prcp1 (1T )y =0,
0 y*=0

where k¢ is the mass-transfer coefficient, kr is the heat-transfer coefficient, C, and T
are determined after solving the problems (3.46) - (3.47). In order to do this the following
dimensionless variables are introduced:

* * ] VL
g* =Lz, y* = (=14, 6j=n‘f“§?,_:
00j

* rr* *® 1 j 7%
UOj = UoojUj(w’ y.‘i)’ V;)j = Z(_l)J-*—onoja.‘i‘/.’i(x, yj)’ (349)
ng = (-'X)l_jégcj(x, yj)7 T(;g = T(; + (_1)j+1T51}($’yJi)’ .7 . 1727
where x is a Henry’s constant as defined in Chapter 1.

Introducing (3.49) into (3.46) and (3.47) leads to the following non-dimensionalised sys-
tem of boundary layer and concentration equations:

aU 4% aV; -0
or dy; g
0.9 80 _ U,

o T oy T oy}’
aC; ac; _ 1 8°C;

Ui—+V; — = i — 1)DaC; 3.50
J a ayJ SCJ 6y3 ( ) a’CJ’ ( )
oT; oT; 1 8°T;
V; D
Ui Ox o 7 By; P?"J 3y2 (- 1)Q 2%,
Jj=1-gas, j=2-liquid,
where
kL qC; vj V;
Dg = —/—, = ——— Sc;=-2, Pri=-2L ;=12
UooZ XP2 cp2TcT 7 Dj J a] /
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Here Da is the Damkhéler number? and Q is a scaled dimensional number, a ratio between
the concentration of the species 1 at the free-stream, the constant taking into account the
heat effect of the chemical reaction and the temperature at the free-stream, the specific
heat.

The initial and boundary conditions of system (3.50) then become

r=0: Uj=1, C=1, C,=0, T;=0, j=1,2;

3U1 3U2 8T2
=3 =0: U =00, = =-— 8
Y1 =Y 1 2, 26y1 B2 + 04 57’
0
1/1 - —936—511, Vz e O, Cl + Cz . 0, T1 + T2 = 0, (351)
1

P 0C; _ 0C, oTy _ 8T2_

531/1 33/2’ Gayl 31/2’
y—oo: U=1, Ci=1, T} =0;
Y — 00 U2=1, CZ=1, T, = 0.

The effect of convective transfer in (3.51) is omitted as in practice, it is negligible, while
parameters §; (i = 1,... ,6) have the following form:

* * 3/2
o= U2 o _ ﬁ(ooz)/,

=7 0 275 *
Uool H2 ¥ 1 Uool

60’ T* 1) MC_’*
6, = 0. , 03 = 2. 3.52
! 0T, Ugeatin V UssL ’ PloSC1 (3:52)

0. = Dlp’{ U;oll/g )\1 U;olb’g
5= X p = , 06 = — e
Dapio \| Usearr A2 || Usear

From (3.48) and (3.49) we obtain expressions for the Sherwood and Nusselt numbers

k.L i « [ OC1
Sh = = M\/ Rel (1 + 0350101) e d.’L‘, (353)

Dl 0 ayl y1=0

1 1
Nu = kel = —Re, / (%> dr + 03Pr1/ 1+17) <6_C’l> dz|,
A1 o \ou y1=0 0 Oy $1=0
CI = C1($, 0), Tl* = Tl(:c, 0), R61 = UOOIL, P’I‘1 = UOOIL.
14! D,

The problem (3.50), with initial and boundary conditions (3.51), was solved using the
following iterative algorithm:

1. Step I: Solve the two-point boundary-value problem, assuming that at the first

2Here L / Uoo2 may be called the residence time, i.e. the time available for the chemical reaction, while
1/k is the time scale of the chemical reaction.



iteration 8; = 6; = 0, then setting 6, = 0.1

3U1(k) 3‘/1(‘?)
+

oz 8y1 - O,

k
y®dU” | wou _ o°UiP
Yoot oy oy’
z=0: U¥=1
ao(k—l)
yn=0: UP =00, V¥ =-g al ;
231

Y1 =00 (Y1 2 Y1), U(k)“l
OSﬂUSl 0S?J1Sﬂ1oo; yloo=6-
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(3.54)

2. Step II: Solve the two-point boundary-value problem, where 6 = 0.145, assuming

that at the first iteration 6, =0

oug? | oV

oz Ay =0,
p®0s” | wdUs” _ 8°Uy”
2 9z 2 By, dy3 ’

z=0: U(k)—l;

ous® _ UM arY ®)

Y2 =+ 00: (Y2 = Y2oo)s U(k)
0<z<1 0L ¥ £ ¥Y2os yzoo—6-94=0

(3.55)

0;

3. Step III: Solve the two-point boundary-value problem at S¢; = 0.735, at the first

iteration C2 (:v 0)=0

LywdCH): _ 1 2C
1 - )

(k
Ui Oy Sc; 3?/

yo0
oz

z=0: C(k)

y1=0: c%”- f‘”(m 0);
y—oo: (y>m), CF =1,
05z<1 0Ly, ="

(3.56)

4. Step IV: Solve the two-point boundary-value problem at Sc, = 564, 65 = 18.3 and
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Da =10
U 8cs”  Lwmdc _ 1 8 Dact®
e ﬁ;r - % 3y2,,r,'3§2 33/1 e
z=0: C(k)
ao“" ac®
n=0: Zi-=6 ( v ) ) (3.57)

Y2001 (92> ), C¥ =0,
0<z<1 0S5y <, y<7=026;

5. Step V: Solve the two-point boundary-value problem at Pr; = 0.666, at the first
iteration T2k) (z,0) =0

pw O oT® Ly ory” _ 1 o1
oz Voo Pr; oy? "’
Z-=10F Tl(k) = 0;
y1=0: TH =T (g, 0); (3.58)
1= oo (Y1 2> %), Tl(k) =0;
0<z<1 0y, HLr="74

6. Step VI: Solve the two-point boundary-value problem at Pr, = 6.54, 6 = 0.034

and QDa = 8.6
3T(k) aT(k) 1 aZT(k)
U(k) 2 V(k) 2 _ 2 DaC (’C)
oz + ) ayz PTZ 3y§ + Q .
r=0: T® =0, (3.59)
k k
y2=02 6T2()=06 aTl() s
0ya Oy1 ’
1n=0

Yo =00 (Y2 >1), U2 =24, Tz(k) =0.

The values of the parameters in (3.54) - (3.59) are calculated for the process of absorption
of NHj in water or water solutions of strong acids.

The solution of (3.54) - (3.59) allows us to determine

L
J1 :f (801> dz, J, —f Ci(z,0) (801) dz,
0 ayl y1=0 ayl y1=0
L som oT,
J: =/ (—) dz, J, = / T, 0 ( > dzx.
3 A Em izt z 2= 1(1‘ ) 3y, izt x

Introduction of (3.60) into (3.53) allows us to determine the Sherwood and Nusselt num-
bers

Sh = M\/ Rel(Jl + 93561.]2), Nu = -V R61 [Js + 03P7‘1(J1 + J4)] :
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The results obtained by solution of these problems in the case of gas-liquid systems are
shown in Table 3.6.

No. 03 04 Jl J2 J3 J4
1 0 0 |0.5671 | 0.09721 | 0.01855 | -0.01337
2 02| 0 |0.6129 | 0.11155 | 0.02143 | -0.01554
3 -0.2| 0 |[0.5274 | 0.08542 | 0.01623 | -0.01162
4 0 | 10™* | 0.5671 | 0.09721 | 0.01855 | -0.01338
S 0| 1073 | 0.5671 | 0.09721 | 0.01855 | -0.01337
6 0 | 1072 | 0.5670 | 0.09718 | 0.01857 | -0.01339
7 0| 107! | 0.5658 | 0.09696 | 0.01879 | -0.01364
8 0 1 |0.5658 | 0.09696 | 0.01879 | -0.01364
9 0 5 |0.5660 | 0.09696 | 0.01854 | -0.01345

Table 3.6: Values of the average mass and heat fluxes at Da = 10, 6; = 0.1, 8, = 0.145,
05 = 18.3 and 6s = 0.034.

The comparison of values of J, (k = 1,...,4) shows that the rate of mass and heat
transfer depends upon the concentration gradient (f;) and in the cases of absorption
(85 = 0.2) and desorption (3 = —0.2) the mass and heat-transfer coefficients differ by
approximately 10% from predictions of linear theory (6; = 0). The comparative analysis
of the non-linear mass-transfer effect and the Marangoni effect in gas-liquid and liquid—
liquid systems show (see Boyadjiev & Babak (2000)) that the Marangoni effect has little
impact upon the heat and mass-transfer kinetics, since in real systems the parameter 6,
is very small. This is clearly seen in rows 7, 8 and 9 of Table 3.6.

However, in cases where the velocity of the second phase is very low the occurrence of
the Marangoni effect is to be expected because of the velocity dependence of 6, from
Usoz (U;Z/ %). In order to evaluate the above case, systems with a small velocity in the
volume of the second phase (U, < 1) have also been investigated. Numerical results
of Boyadjiev & Babak (2000) show that under these conditions the Marangoni effect
remains negligible.

The results obtained show that the Marangoni effect is negligible in two-fluid systems
with movable interfaces and absence of surface active agents. The deviations from the
predictions of the linear theory of mass transfer are best explained by considering the
non-linear mass-transfer effect under conditions of the large concentration gradients.

3.4.2 Boundary-layer flow instabilities

In the previous subsection the effect of non-linear mass transfer induced by high concen-
tration gradients has been discussed. This effect can explain many deviations between
experimental data and the predictions of the linear mass-transfer theory. To date, most
of these effects were considered as Marangoni effects. However, in many cases the devia-
tions from the linear theory are significantly greater than those predicted by the non-linear
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mass-transfer theory. This may be attributed to the loss of hydrodynamic stability as a
result of secondary flows induced by the large concentration gradients. These effects will
be discussed to end of this chapter.

The analysis of the flow stability can be done directly by introducing the velocity profiles
obtained by solving (3.54) - (3.59) into the Orr-Sommerfeld equation

. 0*U;
U; = C)(vj — Alvs) — —On,‘y—gJ’Yj =

J

11 2. 1 4
—m(’n — 2477 + Aj;) (3.60)

. Vi — ———82‘7"7’- - AWV ), i=1,2
AjRe; 73 3%2' J V) ’ St

- UL, [ULL
C;= __‘BJ:*: Aj=ajdj, Rej=-"1 =, [0

) _ 32[_]. 32U‘
U; =U;(1,y5), Vi=Vi(l,y;), 6ny B ( 3%2'])3—1’

where

v, _ (5, e
ang - (6_31_?):1:_1, 7j(yj) - G(y): Jj=12

Note that the problem was solved (see Boyadjiev & Halatchev (1998a)) only taking into
account the diffusion through the interface between the two fluids and surface tension
through their influence on the boundary-layer profiles, i.e. the interfacial instabilities are
not accounted for. Hence the boundary conditions have the form (2.18).

The solution of (3.60) has been found using the same numerical approach as was em-
ploying in Chapter 2. As a result the curves of neutral stability have been obtained
(Figure 3.12). The critical Reynolds number Re,,, corresponding wave-speed C;,, and
wave number A are obtained. C; i, and A, are also obtained from these results.
They are shown in Table 3.7 for different values of the parameters 6; and 64, taking
into account the intensity of the secondary flows, due to the concentration gradients and
tangential temperature gradients.

No. 03 04 Recr Amaz Cr maez
1 0 0| 800 |0.357 | 0.4503
2 0.2 0| 1411 | 0.329 | 0.4187
3 -0.2 0| 512 (0.382|0.4763
4 0|10-*| 800 |0.357 | 0.4503
) 0]107%| 800 (0.357 | 0.4503
6 0] 1072 | 800 | 0.357 | 0.4503
4 0|10°t| 799 |0.356 | 0.4505
8 0 1| 799 ]0.356 | 0.4505

Table 3.7: Values of the critical Reynolds numbers Re.,, C,mq; and Az obtained at
Da = 10, 01 = 0.1, 92 = 0145, 95 = 18.3 and 96 = (0.034.
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The analysis of the influence of the effect on non-linear mass transfer and the Marangoni
effect on the mass-transfer kinetics and the hydrodynamic stability in gas-liquid systems
presented in this chapter leads us to some basic conclusions. First, in the case of absorp-
tion of the components of the gas phase into the liquid phase the increase in intensity of
the mass transfer directed from the volume of the gas phase toward the phase boundary
(65 > 0) leads to an increase in the mass-transfer rate (J;) and an increase in the critical
Reynolds number (Re,,), i.e. it serves to stabilise the flow. Second, in the case of desorp-
tion of the components of the gas phase into the liquid phase the increase in intensity of
the mass transfer directed from the phase boundary toward the volume of the gas phase
(65 < 0) leads to a decrease in the mass-transfer rate (J;) and a decrease in the critical
Reynolds numbers (Re,,), i.e. serves to destabilise the flow. The rise in the temperature
gradient along the phase boundary length (64) leads to a decrease in the mass-transfer
rate (J1) and a decrease in the critical Reynolds numbers (Re,,), thus serving to desta-
bilise the flow. The Marangoni effect, however, is negligible in gas-liquid systems with a
movable interface and finally, the flow in the liquid phase is globally stable.
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Figure 3.10: The dependence of the critical Reynolds number Re,, from the concentration

dependences of the viscosity (%), the density 5 and the influence of the large concentration
gradients () in gases.
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Figure 3.11: The dependence of the critical Reynolds number Re,. from the concentration

dependences of the viscosity (i), the density p, the diffusivity (D) and the influence of
the large concentration gradients (6) in liquids.
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Figure 3.12: The curves of neutral stability in the (Re., A)-plane for a gas flow in a
laminar boundary layer at Da = 10, 6, = 0.1, §, = 0.145, 65 = 18.3 and 0s = 0.034.
Shown are plots for the cases: 1) 6, =0,0; =0;2) 0, =0,0; =0.2; 3) 6, = 0, 6; = —0.2;
(V) 65=107% 6 = 0; (O) 05 = 1073, 63 = 0.2; (#) 0, = 1072, 63 = 0.2; (o) 6, = 107,
03 = 0; (.) 94 = —1, 03 = 0.



Conclusions

The results presented in this part give us the opportunity to make some basic conclusions.
The flows in boundary layers of “Blasius type” are characterised by the hydrodynamic
stability which increases with a rise in the tangential velocity component on the interface
and a decrease of its normal component in going from “suction” (8 < 0, f(0) > 0) to
“injection” (# > 0, f(0) < 0) in the laminar boundary layer. The instability properties
of this type of flows depend both upon the normal component of velocity on interface
and interface velocity.

The flows in boundary layers with velocity which decreases with the depth of the fluid
(“Couette flow” plane flow) are essentially globally stable, and they are not effected by
changes in the normal and tangential component of the velocity on the interface.

Systems with intense interfacial mass transfer are characterised by the fact that the
kinetics of mass transfer does not follow from the linear theory of the mass transfer
and obvious changes in the hydrodynamic stability are observed. These effects have
been previously explained by appealing to the Marangoni effect, i.e. the induction of
tangential secondary flow on the phase boundary. The investigations of the kinetics
and hydrodynamic instability of systems under conditions of interfacial mass transfer
(see Boyadjiev at. al (1996a), Boyadjiev & Halatchev (1996b), Boyadjiev & Halatchev
(1996¢), Boyadjiev & Halatchev (1998a) and Boyadjiev & Halatchev (1998b)) show that
the same effects can be explained as resulting from non-linear mass transfer, i.e. the
induction of normal secondary flows on the phase boundary. Consequently, it is possible
to compare the Marangoni effect with the effect of the non-linear mass transfer.
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Part 11

Stability and Separation
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Chapter 4

The Stability of Boundary-Layer
Flows under Conditions of Intense
Interfacial Mass Transfer: the effect
of interfacial coupling

Porous media surround us everywhere, in reactors of all kinds, almost every possible
chemical engineering process, in aeronautics, in waste disposal, in aquifers, in fossil fuel
deposits, and in the high intensity heat and interfacial mass-transfer processes. Develop-
ments in new technologies require both improvement and increased understanding of the
fundamental processes involved. The former, with which our present chapter is concerned,
includes an ability to create correct mathematical models and to improve their predic-
tion capabilities. The later is connected with attempts to clarify the physical processes
that underly the properties of transport phenomena. We shall study the mechanism of
diffusion driven flows in terms of a permeable, two-phase system in which fluid flows over
a solid porous surface. Our attention will focus on the question of effect of diffusion on
the stability of the flow (see Halatchev & Denier (2000)).

The objectives of this research, as has been suggested in Gebhart et. al (1996), is a bet-
ter understanding of the dynamics of controlled diffusion driven flows by concentration
gradients; to devise a procedure which enables one to construct a two-dimensional math-
ematical model capable of providing, at least, a qualitatively correct description of the
critical parameters of the phenomena so as to facilitate and study one possible control
strategy and to correct the critical parameters obtained in previous investigations by
Boyadjiev et. al. (1996a) (presented in Part I).

As mentioned in the Introduction the stability analysis of systems in the presence of mass
transfer has been based on a fully decoupled theory. However, the interaction between the
concentration and velocity disturbance fields is of great theoretical interest and requires
a modification in the solution of the governing equations and boundary conditions. This
modification involves the treatment of the problem as a fully coupled one numerically.
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We shall discuss the numerical algorithm in detail in this chapter and point to the realm
of validity of the earlier results for the decoupled problem, and to the range of critical
parameters (namely the Schmidt number Sc) where the decoupled theory cannot be
applied.

4.1 Fluid-permeable surface systems with active dif-
fusion through the interface

Consider the laminar flow of a viscous incompressible fluid over a flat, semi-infinite,
permeable plate across which a concentration gradient exists (see Figure 4.1). The mass

gas(liquid)

S e e e e e e me o e e e s e —

Figure 4.1: A schematic description of the flow.

transfer is simply a result of the concentration driving force. The rate v,, of the induced
flow can be defined from the mass flux through the surface (see section 3.1).

The equations governing such a flow are the Navier-Stokes equations and the convection-
diffusion equation for steady, incompressible two-dimensional flow with constant diffusiv-
ity (2.1) with the initial with initial and boundary conditions (2.2).

After being non-dimensionalised with respect to a typical length scale L (for example,
the distance from the leading edge of the plate), the free-stream speed U, and the
concentrations Cy and C3, at the interface (y* = 0) and at the free-stream (y* = o0)
the system of equations reduces to (2.4), which must be solved subject to the initial and
boundary conditions (2.5).

We shall slightly reformulate the basic boundary-layer and concentration equations, by
using the more usual similarity variables for Blasius boundary-layer flow. In the limit of
large Reynolds number the flow develops a steady boundary layer of thickness O(Re™1/?)
attached to the leading edge of the plate. Thus we shall introduce boundary-layer vari-
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ables (2.12). Substituting into (2.4) - (2.5) we obtain the steady boundary-layer equations

Up  OVe _
5z Ty - Y
oUg Us  0°Us
UB—8_33—+VBa—Y == %R (4.1)
0Py _
ay 7
dCp 8Cs 1 6°Cp
Us g +Vegy = Seave:

where we assume that the free-stream is uniform so that 0Pg/0z = 0. The boundary
conditions are as follows:

9 6C
Y=0: Ug=0, VB=—§C-3}}B-,

Y 500 Ug—1, Cg—0.

Cp=1; (4.2)

Depending on the direction of the mass transfer, noting that Cpy(0) < 0, there will be
“suction” (§ < 0) from, or “blowing” (# > 0) into, the boundary layer (see Boyadjiev
et. al. (1996a) and Chapter 1). Our concern is with the effect of this blowing or suction
on the hydrodynamic stability of the flow.

In what follows we will employ a similarity solution to the boundary-layer equations as
our “basic flow”. Thus we set

1= 27 Us = 1), Vo = 3 =(0f" = 1), Ca = g(n), «3)

where f and g are solutions of

1 S
[ H=0, ¢+ =0 (44)

subject to the boundary conditions

£0)= 2240), 0)=0, 9(0) = 1; (45)
(o) =1, g(oe) = 0.

The two-point boundary-value problem (4.4) and (4.5) can be solved numerically by
employing a simple shooting technique, using a fourth-order Runge-Kutta quadrature
routine coupled with Newton iteration to determine the values f”(0) and ¢’(0) for which
the boundary conditions (4.5) are satisfied (see Halatchev & Denier (2000)). Some of
the solutions of this system are presented in Figures 4.2, 4.3 and 4.4 at different values
of the mass-transfer parameter ¢, and the Schmidt number Sc (for instance the cases
Sc =1, 50).

It is seen in Figures 4.3 and 4.4 that “blowing” (6 > 0) serves to increase the boundary-
layer thickness, while in the case of “suction” (# > 0) boundary-layer thickness decreases.



96

Similarity solutions fi(n) and g(n) at Sc=0.1

Figure 4.2: Graphs of the Blasius function f'(5) and the basic concentration g(n) versus
n at different values of the mass-transfer parameter 6 for Schmidt number Sc = 0.1.

This change in the boundary-layer thickness is significant at small Schmidt numbers Sc
as in the case of gas flow. At large Schmidt numbers, i.e. in the case of liquid flow,
the concentration boundary layer is thinner than the momentum boundary layer and the
mass transfer has little impact on the velocity and concentration profiles. At § =0, i.e.
in the absence of mass transfer, we simply have the classical Blasius boundary-layer flow.
A more complete description of the effect of the mass transfer on the boundary-layer flow
can be found in Boyadjiev & Vulchanov (1990) where it was shown that the secondary
flow, with flow rate f(0), simply serves to modify the shape of the velocity profile f/(n).
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Similarity solutions f(n) and g(n) at Sc=1

Figure 4.3: Graphs of the Blasius function f'(n) and the basic concentration g(n) versus
1 at different values of the mass-transfer parameter 6 for Schmidt number Sc = 1.

4.2 Hydrodynamic stability analysis at finite Reynolds
numbers

To investigate the stability of the flow we superimpose a two-dimensional, small ampli-
tude, disturbance on the basic flow. The total flow field is then written as

(U’ V')P> C) - (U07VE)7P0,CO) + G(U,’U,p, C) + - ] (46)

where € is a small perturbation parameter.

The governing equations for two-dimensional disturbances follow from the Navier-Stokes
equations and the convection-diffusion equation by linearisation about the basic steady
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Similarity solutions f(n) and g(n) at Sc=50

Figure 4.4: Graphs of the Blasius function f'(7) and the basic concentration g(n) versus
7 at different values of the mass-transfer parameter 6 for Schmidt number Sc¢ = 50.

flow and concentration state. This yields the equations

Uz + Uy

ug + Upuz + ulps + vUy,, + Vouy
v+ Ugvg + uVp, + Vouy + vV,

¢t + Upcy + uCyp + Vocy + vCoy

0,

—py + Re™! (ugg + Uyy) 5 (4.7
—py + Re™ (vgg + vy),

Re™'Sc™ (czp +¢yy)

where (u,v) is the small unsteady perturbation to the steady basic flow (Up, ), p is
the pressure perturbation, c¢ is the concentration perturbation, ¢ denotes time, Re =
UsxL/v (Re > 1) is the Reynolds number based on the characteristic velocity, the typical
length scale and the kinematic viscosity v and S¢ = v/D is the Schmidt number. The
position of flat plate is given by y = 0, z > 0 and the free-stream by Uy = 1. This system

has been non-dimensionalised using (2.3).
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The mean flow in the z-direction is assumed to be influenced by a disturbance which is
composed of a number of discrete partial fluctuations, each of which consists of a wave
which is propagated in the z-direction (see Schlichting (1979)). It is therefore appropriate
to represent a single oscillation in the following form

u(z,y) = F'(y)expli(az — Bt)],
v(z,y) = —iaF(y)exp[i(az — Bt)], (4.8)
c(z,y) = 1aG(y)exp[i(az — Bt)],

where F(y) and G(y) are the amplitudes of the disturbances, « is a real quantity and
B = B,+1i0; is complex; they are the wavenumber, the frequency (3,) and the amplification
factor (B;). If B; < O the disturbance is damped and the flow deemed to be stable,
whereas if §; > 0 the flow is unstable and the disturbance grows exponentially with
time. In (4.8), we have employed the classical parallel flow approximation, i.e. the
disturbance amplitude is assumed to depend only on the normal coordinate y and the
dependence on the longitudinal coordinate = enters the problem parametrically through
the z-dependency of the mean flow quantities.

In order to reduce the disturbance equations to their standard form we will make use of
the boundary-layer approximation and introduce the factor

Re

8, = 1.720—

R;
where R; = 1.72(zRe)/? is the Reynolds number based on the local boundary-layer
thickness (see Halatchev & Denier (2000) for full details). After eliminating the pressure
term from equations (4.7) by cross-differentiation, introducing the similarity variables
(4.3) and taking into account the transformations

F®(y) = 52e™(m), G™(y) = 87a™ (n)

we obtain the following system, consisting of an Orr-Sommerfeld type equation for the
disturbance amplitude ¢ and a second-order equation for the concentration disturbance
amplitude o:

_ L.720d
AR;

(f’ = C’) (<p” - fizw) — "o = { (<p"” —24%" + A%) (4.92)

—% (nf' = " + % [(nf’” + ")+ A (nf' - f)] w’},

r A .y __1'720i i n__ A2 _l r_ '
(f C)a+zgg0— iR, [S’c(a Aa) 2(77f f)o]. (4.9b)
These must be solved subject to boundary conditions

17200 , e .

p(00) =0, ¢'(00) =0, g(c0) =0.
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Here we have defined

i=2 0= g =C, +4C,, R;=1.720 (zRe)"/?.

The system (4.9) with boundary conditions (4.10) constitutes an eigenvalue problem for
C. as a function of A and R;. The relationship between R; and z can be interpreted
in the following way; in determining a critical Reynolds number Rj; (beyond which the
flow is unstable) we will, in effect, be determining a critical position z. at which the
boundary layer becomes linearly unstable to wave-like disturbances.

The results presented in Part I on this problem were obtained by assuming that the pa-
rameter 6 is small and subsequently the right-hand-side of the boundary condition for ©(0)
is negligible. This assumption allows the momentum and concentration fields to decouple
and results in a classical Orr-Sommerfeld eigenvalue problem for the complex wave-speed.
In this case the effect of the interfacial mass transfer on the flow occurs only through
the coupling in the basic boundary-layer equations. This approximation, although cap-
turing the effect of mass transfer on the boundary-layer flow, cannot correctly account
for the forcing of the disturbance momentum transport due to the diffusion through the
permeable surface. We therefore retain this coupling in both the basic boundary-layer
equations and the disturbance equations. In order to determine the stability of the flow
we must therefore solve system (4.9) subject to the full boundary conditions (4.10).

As the solution procedure has some important differences over that which could be em-
ployed if the boundary conditions were decoupled we will now present the details of the
numerical method that have been used.

4.3 Numerical algorithm

Our solution strategy is based upon a finite difference discretisation of the system (4.9).
It is convenient to write the system in the following generic form

(D4 + a1D3 + a2D2 + a3D + a4)<p = O, (411)
(D? + 5D + by)o + bsp = 0,



where a; = a;(n) and b; = b;(n) (i =1,...,4,j =1,...,3) in the interval \\ &
and D denotes d/dn. For our specific problem the coefficients have the following

1.
a = —'2‘(77f - f),
o A2 ’LAR5 _
e = —24°- 1 (f )
1 " n A !
as = 5[(nf +f)+A2(nf—f)},
- "4 7’AR5 2 "
0 = {A == [A (f = &)+ f ]} (4.12)
1 '
by = —§Sc(ﬂf - f) =aiSc,
_ 49 iARsSc(, -
bp = -4 1.720 (f C)’
be = ARJSC,
5T T Y

Special care must be taken dealing with the boundary conditions at infinity as has been
done in Boyadjiev et. al. (1996a). For unbounded flows of this type we must necessarily
truncate the semi-infinite domain at some ny > 1, chosen to ensure that the variation
in the basic flow is negligible at that point i.e.

fllow) =1, f'(aw) = f"(aw) =0, onf'(nn) — f(nw) =&, (4.13)
v f"(nv) =0, g(nn) =g (nv) =0.

We will employ Keller’s method for eigenvalue problems on infinite domains to first
derive the correct asymptotic form for the far-field (7 — oo) boundary conditions (see
Keller (1976)). First we rewrite the system of equations (4.9) in the following form:

y'(n) =D(n; 4, Rs, C)y, (4.14)
where
y'(n) = (¢" — B¢, ¢" — A2, 0,4, 0,0"),
and the matrix D(n; 4, Rs, €) is defined using (4.12); it is given in the Appendix A.2.

As noted by Keller (1976), to obtain the correct exponential decay of the eigensolutions
as 7 — oo we must ensure that the far field boundary conditions (applied at n = 7y >> 1)
have the correct asymptotic form. These are derived by considering the asymptotic form
of (4.14) as n — oo. Thus,

lim D(7; A, R;,C) (4.15)
n—00
/[0 1 0 00 0 )\
Bk 000 0
. w_| 00 010 o0
- DOO(A, RJ’ C) = 1 0 A2 0 O 0 ]
00 000 1
\ 0 0 0 0 g ikSc )
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where
N AR .
g = A+21-0), (4.16)
~n  iARs;Sc .
B2 = A4 1;2 (1-0C).

The eigenvalues (A;, i =1,...,6) of Do (A, Rs, C) are

.11 1 1
— _ 2 2, pi ) 2Q .2 2
£4, hE7/K+ 168, FSeE 71/K2S¢ + 1687, (4.17)

and in order to ensure exponential decay as 7 — 0o we choose those with negative real
component:

- 1 1 1 1
P R N 2 2 - S 2402 2
A=A, X 4k \/ k%2 + 1608, A3 = =kSc 1 k?Sc? + 1642. (4.18)

The requirement that our numerical solution captures only these exponentially decaying
components can, in the notation of Keller (1976), be written as

Gly =0, as n— oo, (4.19)

where the matrix GZ, consists of the left eigenvectors of Dy, corresponding to eigenvalues
(4.18); G, is given in Appendix A.2.

These far-field radiation boundary conditions can now be written as

(D2 —AZ) (D+%1/k2+16ﬁ§ — %k) 0 =0,

(D + A) (D2 -5 = %kD) ©=0, (4.20)

<D + 411/k28c2 + 1642 — %kS’c) o=0,

in the limit » — oco. Note that in the far-field, the boundary conditions on @ and
o decouple. In the case k = 0 (i.e. ignoring the non-parallel effects arising from the
boundary-layer growth) the first two equations in (4.20) reduce to those obtained by
Keller (1976) thus providing a useful consistency check.

We now turn our attention to the question of the coupling between the disturbance
equations at 7 = 0. As noted above, our general approach to the solution of the eigenvalue
problem governed by (4.9) - (4.10) will be to employ a second-order accurate, finite
difference discretisation of the disturbance equations. In the absence of the coupling at
n = 0 such a discretisation would lead to a simple penta-diagonal matrix equation for
the velocity disturbance amplitude ¢; an iteration procedure based upon the smallness of
©(0), say, can then be used to solve for the eigenvalues. In the presence of the boundary
coupling such a scheme is not suitable and an alternate scheme is necessary.
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'To proceed, let us introduce an unknown function H = H(z) defined such that ¢"(0) = H.
We will normalise all dependent variables in (4.10) with respect to H; for instance ¢ = H@
so that ¢"(0) = 1. Due to the linearity of system (4.9), it remains unchanged under this
rescaling except for the fact that ¢ and o are replaced by @ and 6. Further, let us suppose
that the value of &' is known at the boundary and denote it by B; of course B must be
found as part of the solution procedure (see below). The boundary conditions (4.10) can
be written as

1.7200
~ — B ~1 =1 ~/ —_ . .
P0) = 5o B, #O)=1, #0)= B (4.21)

@(o0) =0, @(00) =0, G(c0) =0.

For fixed values of Sc, Rs, 8 and A the “eigenvalues” (or unknowns) will be deemed found
if the remaining two boundary conditions (0) = 0 and ¢'(0) = 0 are satisfied. This
will form the basis of our iterative procedure for the eigenvalues of the generalised Orr-
Sommerfeld system. For the sake of convenience, from herein we shall omit the tilde from
our notation.

Based upon (4.21) we implemented the following algorithm to solve the problem:
e Step I: Set up initial guesses for C and B at given R;, A, Sc and 6,

e Step II: Solve the Orr-Sommerfeld equation and the concentration equation, subject
to the boundary conditions (4.21);

e Step IIL: Iterate on C and B until ¢'(0) = 0 and o(0) = 0 are satisfied to within
some desired tolerance (the result is the eigenvalues for C, B and the corresponding
eigenfunctions ¢ and o).

Letting ¢; and o; denote values of ¢ and o at grid point #; = jh, discretising the
disturbance equations using second-order accurate centred differencing (see Abramowitz
& Stegun (1972)) yields

p1@j—2 t pe@j-1 + H3pj + paPjt1 + Us@jre = 0,

1.726 3.440 \
Yo = S_CﬁB, Y-1= mB -1+ h 5 (422)

1 1
—5¥N-2 + CGipn-1 — C2oN — C3PN+1 + ZPN+2 = 0,
1 1
—z¥N-2+ Capn-1 — Cson — Cepn1 + Z¥N+2 = 0,

and

He0j—1 + U705 + UsOjr1 = Moy,
0.1 =0, — 2hB, (4.23)
ON+1 = 0On-1— (70N,

where the asymptotic boundary conditions 7y have been satisfied explicitly and we have
introduced the false grid point 7_; in order to retain second-order accuracy in 7. The



104

resulting matrix systems are given in Appendix A.1, together with their compact storage
forms, and the full list of the cocfficients is given in the Appendix A.3. We used a step-
size of h = An = 0.001. There are no numerical instabilities in the method described
above.

4.4 Curves of neutral stability and discussion

The system was solved using the algorithm described above to generate curves of neutral

~

stability in (Rs, A) and (Rjs, C,)-plane. These are presented in Figures 4.5 - 4.10.

Let us consider firstly the results for a Schmidt number of 0.7 presented in Figure 4.5.
Following the usual convention the curves of neutra] stability delineate the boundary

Curves of neutral stability at Sc=0.7 fully coupled in the BC

0.20

0. 05 st .................. ................... T T : T .....

Figure 4.5: Curves of neutral stability in the (R, fi)-plane at Sc = 0.7 for different values
of 4.

in the parameter space between stable and unstable disturbances; the flow is unsta-
ble for values of the parameter that lay inside the neutral curve. From Figure 4.5
we see that the effect of positive mass transfer (i.e. blowing) is to reduce the crit-
ical Reynolds number and consequently destabilise the boundary layer; the point of
neutral stability therefore moves towards the leading edge of the plate which suggests
an earlier onset to turbulence within the flow. This conclusion is in agreement with
that made in the previous works (see Boyadjiev et. al. (1996a), Boyadjiev & Halatchev
(1996b,c) and Halatchev & Boyadjiev (1996) presented in Chapter 2) which was based
upon the approximation of decoupling the disturbance fields. We note that, for the
present case (Sc = 0.7), the critical Reynolds number, for a value of § = -0.3, is
2.19264 x 10° as compared to the value of 2.23226 x 10° predicted by the analysis of
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Figure 4.6: Curves of neutral stability in the (R5,é’r)-plane at Sc = 0.7 for different

values of 6.

Boyadjiev et. al. (1996a) whereas for § = 0.3 the respective values are 2.210018 x 102
(current results) and 2.18419 x 10% (results of Boyadjiev et. al. (1996a)). These differ-
ences are summarised in Figure 4.11. Further from Figures 4.5 and 4.6 we observe that
blowing serves to increase the critical wavenumber and wave-speed. These general con-
clusions also hold for higher values of the Schmidt number as presented in Figure 4.9 and
4.10. The changes in the critical Reynolds number, wavenumber and wave-speed as a
function of # are summarised in Tables 4.1 - 4.4.

Se=0.7

6

RJ X 103

=

A

o

"

. Ama:z:

CT‘ mazr

-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3

2.192640
1.219656
0.746276
0.500000
0.361021
0.276331
0.221001

0.1510000
0.1600000
0.1700000
0.1773200
0.1840000
0.1880000
0.1920000

0.3116931
0.3462902
0.3772822
0.4028357
0.4242387
0.4414703
0.4563870

0.1672360
0.1825266
0.1956240
0.2083170
0.2198905
0.2300431
0.2390913

0.3130090
0.3481817
0.3795264
0.4061027
0.4283788
0.4470361
0.4626900

Table 4.1: Values of critical Reynolds number Rj, corresponding wave-speed C’r, wave
number A and A,z and C, e, at Sc = 0.7.

Finally, the eigenfunctions ¢ and o at Sc = 0.7 and § = —0.3 for certain values from
the neutral curve of stability on the (Rj, A) locus are presented in Figures 4.12 and 4.13.
It is seen that in the range of these Reynolds numbers and mass-transfer rates, at
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Figure 4.7: Curves of neutral stability in the (R;, A)-plane at Sc = 1 for different values
of 6.

high Schmidt numbers Sc, the coupling effect has a relatively minor role in the whole
mechanism (Figures 4.9 and 4.10). This is a simple consequence of the factor Sc¢™1
appearing in the boundary condition which forces the vertical momentum transport.
However, at low to “moderate” values of the Schmidt number, the effect of coupling is
considerable and must be taken into account if a reasonable and accurate estimate of the
critical parameter values is to be obtained.

In conclusion we have considered the problem of the instability of a boundary-layer flow
over a permeable surface under conditions of interfacial mass transfer. The equations
governing a small amplitude disturbance have been derived and numerical solutions to
the fully coupled problem have been obtained. These improve upon the earlier results (see

Se=1

0 R5 x 103 A Cr Amaz C’1-ma.:l: |
-0.3 | 1.604998 | 0.15500 0.1763175

-0.2
-0.1
0.0
0.1
0.2
0.3

1.007698
0.685857
0.500000
0.385065
0.309554
0.257094

0.16500
0.17000
0.17732
0.18300
0.19000
0.19000

0.3295478
0.3585616
0.3820112
0.4028357
0.4201429
0.4356791
0.4466740

0.1872046
0.1981166

0.208317
0.2175227
0.2256855
0.2330865

0.3312340
0.3601031
0.3850448
0.4061027
0.4240635
0.4391204
0.4521988

Table 4.2: Values of the critical Reynolds number R, corresponding wave-speed C,, wave

number A and Amaz and Orma:r at Sc=1.
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Figure 4.8: Curves of neutral stability in the (R, C,)-plane at Sc = 1 for different values
of 6.

Chapter 2) of Boyadjiev et. al. (1996a) to consistently account for the effect of coupling
between the momentum and concentration fields.

In this chapter the parallel-flow approximation has been used in order to reduce the
partial differential equations describing an infinitesimally small disturbance of a basic
non-parallel motion to a more analysable ordinary differential equation. The fully cou-
pled problem was studied leading to a system consisting of an Orr-Sommerfeld type of
equation and a concentration equation for the disturbance amplitudes. The results were
restricted to relatively small Reynolds numbers; the focus being on the determination of
the critical Reynolds number for different values of the mass-transfer parameter 6 and
Schmidt number Sc. A number of studies (see Jordinson (1970), Gaster (1974)) show

[ Sc=50 |

0 R5 x 103 A Cr Ama:); Cr maz

-0.3 | 0.5419671
-0.2 | 0.5256418
-0.1 | 0.5117888
0.0 | 0.5000000
0.1 | 0.4899471
0.2 | 0.4809837
0.3 | 0.4731381

0.17620
0.17520
0.17632
0.17732
0.17932
0.17972
0.18072

0.3977870
0.3991445
0.4011101
0.4028357
0.4047787
0.4059957
0.4073290

0.2056077
0.2066190
0.2075208

0.208317
0.2089932
0.2095971
0.2102122

0.4007827
0.4028352
0.4045790
0.4061027
0.4075515
0.4088320
0.4099835

Table 4.3: Value§ of the critical Reynolds number Rj, corresponding wave-speed C,, wave
number A and A,..; and C; ez at Sc = 50.
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Figure 4.9: Curves of neutral stability at Sc = 50 for different values of 6.

the relevance of the parallel-flow approach in comparison with experiments. However,
some discrepancies still remain between the Orr-Sommerfeld theoretical predictions and
experimental results. The agreement between theory and experiment can be improved
by considering the non-parallel flow effects. In the next chapter we shall consider the
natural asymptotic limit of large Reynolds number Re > 1. It is the largeness of the
Reynolds number that under-pins the boundary-layer assumption (see Smith (1979a)).
Under this assumption the linearised disturbance equations are governed by the standard
triple-deck structure of Smith (1979a). By solving a series of equations in each layer of the
triple-deck, the eigenrelations, which determine the stability of the flow (or the position
of neutral stability), will be derived.
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Sc =100

6

RJ X ].03

x

A

C:

x

Ama:c

CT mazx

-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3

0.5264242
0.5161596
0.5078787
0.5000000
0.4935537
0.4878432
0.4827328

0.17400
0.17500
0.18000
0.17732
0.17800
0.17800
0.17900

0.3985858
0.4001046
0.4029710
0.4028357
0.4038453
0.4045131
0.4055078

0.2065904
0.2072468
0.2078189

0.208317
0.2087288
0.2091419
0.2094927

0.4027809
0.4040509
0.4051436
0.4061027
0.4070192
0.4078304
0.4085544

Table 4.4: Values of the critical Reynolds number Rj, corresponding wave-speed C,, wave
number A and A,,,; and Cy e at Sc = 100.
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Figure 4.11: Comparison between the present results and those of Boyadjiev et. al.
(1996a) (dashed curve).
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Chapter 5

Linear Lower-branch Stability of
Blasius Boundary-Layer Flow under
Conditions of Interfacial Mass
Transfer - Asymptotic Approach

In this chapter we study the lower-branch of the curve of neutral stability (see Smith
(1979a)) for a boundary-layer flow over a semi-infinite, permeable, flat plate under con-
ditions of interfacial mass transfer.

The asymptotic structure of non-linear disturbances in a momentum boundary layer
has been described by Smith (1979a); this structure has a three-tiered form, commonly
referred as the triple-deck, in which the fluid adjusts from a thin layer (the “lower-deck”)
at the boundary, where viscous forces dominate, to a thick outer layer (the “upper-deck”)
where inertia dominates. In the presence of interfacial mass transfer, the momentum and
concentration fields will be coupled in the lower deck, which suggests a fully numerical
approach will be required to determine the non-linear response of the boundary layer. In
this chapter these equations will be linearised and the asymptotic form of the lower-branch
of the curve of neutral stability will be derived, at different values of the mass-transfer
parameter § and Schmidt number Sc (the parameter which provides a measure of the
relative importance of diffusion as compared to viscosity).

5.1 Basic Blasius boundary-layer flow and concen-
tration

Let us consider the flow conditions sketched in Figure 5.1. A fluid moving with velocity
© = (Ux,0) in the free-stream flows over a semi-infinite permeable flat plate. The
fluid contains a species whose concentration is Cj(z) on the surface and C* (z) in the
free-stream. The governing equations describing the two-dimensional, steady flow of an

113
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incompressible fluid and the development of the concentration field are the Navier-Stokes
equations and the convection diffusion equation (2.1) with initial and boundary conditions
(2.2).

gas(liquid)

¥, 841 Uso -

—_— 3

L}
_: velocity boundary laye
: concentration boundary layer

permeable surface O(Re~%/%)
Figure 5.1: A schematic of the boundary-layer flow over a permeable surface when the
velocity and the concentration boundary layers are commensurable.

The non-dimensionalisation of the above system of equations and boundary conditions
has been done using (2.3). After applying the standard approach used in Chapter 4, the
basic Blasius boundary-layer flow and concentration field are governed by the system of
equations and boundary conditions (4.4) - (4.5).

The problem (4.4) - (4.5) has been solved numerically as in Chapter 4, using a fourth-order
Runge-Kutta quadrature routine coupled with a Newton-Raphson iteration procedure.
The skin friction f“(0) and concentration gradient at the wall ¢’(0) at different values of
the mass-transfer parameter 6 and Schmidt number Sc are shown in Figures 5.2 and 5.3
and 5.3, and tabulated in Tables 5.1 - 5.5. The calculations have been carried out for
different values of the mass-transfer parameter § within the interval [—1, 1] and different
values of the Schmidt number, S¢ = 0.01, 0.2, 0.5, 0.7, and 1 in the case of gas flows,
and Sc = 2, 25, 50, and 100 - liquid flows. It is clearly seen from Figures 5.2 and 5.3
that the skin friction f”(0) depends on 6 and Sc. At lower values of the Schmidt number
(note Sc = v/D), corresponding to a thicker concentration boundary layer, one can
expect rapid momentum boundary-layer thickening even at moderately low values of the
mass-transfer parameter @ (the case of gas flows). As the concentration boundary-layer
thickness decreases, for increasingly higher values of Schmidt number, the effect of the
secondary flux through the interface (the “suction” or “blowing”) becomes less significant
and the diffusion will not have an impact on the boundary-layer growth as evidenced by
the plots of skin friction f”(0) in Figure 5.3. It is evident that the Blasius boundary-layer
flow will separate in the case of lower Sc, while in the case of liquids the boundary-layer
growth is similar to the classical Blasius one (~ z'/?) even at high values of the mass-
transfer rate §. The concentration gradient through the interface ¢’(0) depends on
and Sc as well. The figures show that the absolute value of the concentration gradient
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Basic flow and Concentration
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Figure 5.2: Graphs of f”(0) and ¢'(0) versus 6 for different values of Se.

increases when Schmidt number increases and this increase in the regime of “suction” is
much more pronounced than in the regime of “blowing”. At fixed values of the mass-
transfer parameter 6 the concentration gradient decreases with a decrease in Schmidt
number Sc, nevertheless its impact on the boundary-layer growth is significant due to

the greater thickness of the concentration boundary layer and its interaction with the
hydrodynamic boundary layer.

5.2 Asymptotic expansions within the triple-deck struc-

ture and linear stability analysis

The influence of the intense interfacial mass transfer on the hydrodynamic stability of
the boundary-layer flow will be investigated by applying linear stability theory. In the
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Figure 5.3: Graphs of f”(0) and ¢'(0) versus Sc for different values of 6.

work presented in Part I the flow was assumed to be parallel (but with the effect of
the underlying boundary-layer growth accounted for via a parametric dependency on the
streamwise variable) and the stability properties governed by the solution of an Orr-
Sommerfeld type eigenvalue problem. In this linear approximation the influence of the
concentration disturbances on the velocity disturbances, and vise versa, was neglected.
These results were also limited to, large, but finite values of the Reynolds number. In
practice however the Reynolds numbers encountered in such flows are significantly larger
than can readily be dealt with by employing a numerical solution of the Orr-Sommerfeld
equation. In the limit of large Reynolds numbers a self-consistent asymptotic solution
of the governing equations is possible without recourse to any of the ad hoc assumptions
employed in the Orr-Sommerfeld approach. Here, in considering the natural asymptotic
limit of large Reynolds number Re >> 1, the disturbances equation will be coupled in the
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boundary conditions on the interface.

The governing equations for two-dimensional disturbances follow from the Navier-Stokes
equations and the convection-diffusion equation by linearisation about the basic steady
flow w = (Up(z,y), Vo(z,v)) and concentration Co(z,y), where u is the velocity vec-
tor in Cartesian coordinates z, y. This yields the system of equations (4.7), which for
completeness we reproduce here

Uz +vy = 0,
us + Upuz + ulps + 0Uyy + Vouy = —pz + Re™ (ugs + 1), (5.1)
vy + Ugvg + uVoz + Vou, + vV, —py + Re™! (Vgz + vy,
¢t + Unce + uCoz + Vocy + vCoy = Re™'Sc™ (cor + cyy) -

Equations (5.1) define a problem similar to that studied by Smith (1979a) but with
the addition of a convection-diffusion equation coupled to the momentum field in the
boundary condition for the vertical component of the disturbance velocity at the surface
(y = 0). We shall focus on the lower-branch modes of instability since, in practice they
are the first to become unstable.

5.3 The triple-deck

When Re > 1 the velocity (u,v) and the concentration disturbances fields ¢ and the
pressure p are governed by a triple-deck structure (see Figure 5.1) on the streamwise
length scale O(e®), where € = Re™'/® <« 1. This follows from the fact that the typical
wavelength of neutrally stable lower-branch modes are proportional to Re=3/8 as Re — oo.

The stability of the basic flow will be examined by setting z = ¢3X and considering fixed
frequency disturbances proportional to

E =exp [z (é(X) - ,37')] , (5.2)
where
B=P0+ebo+ s+ Inefu + s+ O (&) (5.3)

is the frequency (a constant), 6 the wavenumber, which is a slowly varying function of =
in the form

df/dX = K,(z) + eKo(z) + €K3(z) + € IneKyp(z) + €Ky + O (), (5.4)

and 7 = ¢ 2t is a scaled time variable. In this multiple-scales approach (see Smith
(1979a)) 0/0z is replaced by €~29/8X + 8/0z. Our concern is with how the presence of
the concentration equation in the full set of equations modifies the triple-deck structure
and the corresponding eigenrelations.
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Generally, we shall use the standard triple-deck scaling set down by Stewartson (1974).
The triple-deck structure has length O (€3) in the z-direction. Normal to the plate the up-
per deck is of thickness O (¢*) and is governed by the inviscid irrotational flow equations.
‘The upper deck, which relates the induced pressure to the local displacement, provides a
pressure gradient which helps drive the lower deck, the lower deck provides a change in
the displacement thickness of the boundary layer. The main deck, with thickness O (&%)
plays a relatively passive role in the mechanism, the equations are inviscid, but there
are small pressure variations across the deck. The lower deck has thickness O (€®) and
is located on the wall; it is controlled by the conventional boundary-layer equations but
with new boundary conditions. The effect of the concentration gradient, and hence the
intense interfacial mass transfer, is shown to be limited to the lower and the main decks.

The scalings above and expansions for disturbances in all three decks can be obtained
by inspection through a priori estimates. They can also be obtained deductively in the
style of Mauss (1994). A comprehensive review of the triple-deck theory and its broad
range of applications can be found in Smith (1982).

5.3.1 The main deck.

The main deck is an inviscid middle layer where the oncoming flow undergoes a downward
displacement. It is characterised by the predominant small effect of displacement. Here
the scales are y = €'Y, £ = X, 7 = €72, where Y = O(1), X = O(1), 7 = O(1). The
disturbances expand in the following form:

u [u1 + €ug + €2uz + €2 lneuyr, + ug + 0 (63)] E,
v o= [evl + €%vy + 3v;3 + et Inevys, + €*vg + 0 (64)] B, (5.5)
p = [ep1+€p+eps+etlnepy + e'py + o ()] B,
c = [c1+ecs+€¥ca+eElnecy + s+ o0 ()] E,
where uq,...,v1,...,P1,...,€1,... are functions of the normal coordinate Y and the

slow streamwise coordinate z. The basic Blasius flow and the basic concentration take
the following form:

Uy = Upg(z,Y)+0 (68 In e)
Vo = €'Vp(z,Y)+0 (e¥1ne) (5.6)
Co = Cp(z,Y)+0(élne),

where Up, Vp and Cp have been defined in (4.3) - (4.5).

In what follows we will require the limiting forms of Ug, V3 and C as Y — 0 and
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Y — oo. Expanding these in a Taylor series about Y = 0 we obtain from (4.4) - (4.5)

Ug(z,Y) ~ AY — lé’Sc'l/\pY2 + —1-92Sc_2)\,u2Y3 - %035‘c_3)\/.1,‘°’}"1
a1y 5
48)\:1: Y*+0(Y),
Ve(z,Y) =~ 6Sc™'u-— —/\_,,,Y2 + 6956_1()\#) Y3 - i02.S'c‘2()\u2),,}’4 (5.7)
1 p3c -30y,3y 15
+1209 Sc>(Ap®)Y° + 50

1 1
1 _20,2v2 L 1p2 3v3 3, 4vr4
+ pY 20u}’ +6¢9uY 240,uY

—%Sc/\px_l}"1 +O0(Y?),

(331,75 1 0(ve),

CB(II, Y)

Q

as Y — 0. In the limit Y — oo we have

UB(.’E, Y) — 1,

Ve(z,Y) — (5.8)

2z’
CB(-T, Y) — 07

where £ is defined in (4.13). In (5.7) A(z) = f"(0)z~Y/2 is the skin friction and u(z) =
g'(0)z~/2 is the first derivative of the concentration in the Blasius variables. As noted
earlier the values of f”(0) and ¢'(0) are tabulated for different values of Sc and ¢ in
Tables 5.1 - 5.5.

Substitution of (5.5) and (5.6) into (5.1), introducing the operators M;, M, and M
(see Smith (1979a)) defined as

Mi(u,v) = iKju+ vy,
Mz(’u, ’U) = UpiK u + vUgy,
Ms(c,v) = UpiKic+ vCpy,

and equating coefficients of powers of € to zero gives the following system of equations
for the main deck:

continuity:
Mi(u,v1) = 0
Mi(uz,v2) = —iKouy,
Mi(usz,v3) = —i(Koup + Kauy), (5.9)
Mi(ugr,var) = —iKypuy,
Mi(ug,vs) = —i(Kous + Kaug + Kyu1) + uig;
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r-momentum:

Ma(ur,v1) = 0,

Ma(ug,v2) = ifyuy — UpiKouy — 1 Kypy,

Ma(us,v3) = i(Brug + Baur) — Upi(Koug + Ksuy) — i(Ky1ps + Kop1), (5.10)
Ma(ugr,var) = —UpiKapua,

Mo(ug,vs) = i(Brus + Pous + Baur) — Upi(Kaus + Kaus + Kyuy)

—(Upu1)z — Vaury — i(K1ps + Kaops + Kap) + uryy;

y-momentum:

0 = —pw,
UpiKiv1 = —py,
Upi(Kyv1 + Kiv2) = if1v1 — pay, (5.11)
0 = —pary,

Upi(K3v, + Kove + Kjv3) i(B1va + Bov1) — Day;

and
concentration:
Ma(cl, '111) = 0,
Ms(cz,v2) = iy — UpiKse,
M3(63, '03) = i(ﬁlcz + ﬂzcl) - UBi(chz + K3Cl), (5.12)
Ms(esr,var) = —UpiKyra,

Ms(cs,vs) = i(Brcs + Paca + Psc1) — Upi(Kacs + Kico + Kycy)
—Ugciz — v1iCp; — Veary + Scleryy.

The boundary conditions to be imposed on the system of equations (5.9) - (5.12) are
matching with the lower deck solutions as Y — 0 and with the upper deck solutions as
Y = .

5.3.2 The lower deck.

The lower deck, which together with the main deck comprises the boundary layer, is an
inner viscous region driven by the induced pressure force. Hence, the scaling within the
lower deck is as follows: y = €°Z, z = X, 7 = ¢72¢, where Z = O(1), X = 0(1),
7 = O(1). The expansions of the disturbances, which come from the asymptotic form of
the main deck solutions as Y — 0, have the following form:

[U1 + €U, + €Uz + € lnely + Uy + 0 (63)] E,
(Vi + E€Va+ V3 + € IneVy + €V + 0 (€°)] E, (5.13)
= [eP1 + P+ P +€¢tln ePy, + €'Py+o0 (64)] b,

[C1+€Cy + €Cs + € 1neCy + Cy + 0 ()] E,

o "B @ 8
|



121

where Uy,...,W,...,Cy,... are dependent on Z and z, but P;,... are functions only
of z. The basic flow and the basic concentration here can be determined in the same
fashion as for the main deck, they have the following forms:

Us(z,Z) =~ e\Z — %62056—1/\/122 + %639250_2/\/.1223 — %640386—3/\;1,324

L o4y 14 5

T Az 2% + 0(27),

1 )|

Vo(z,Z) =~ €*0Sc™'u— %e6x\mZ2 + 667956_1(/\/1,)zZ3 - 2—46802Sc_2()\u2)1Z4

L 9p3q—30y,3y 75 . 1 9/y2 1y o5 6

2z , :
+150¢ 6°Sc™> (M) 2° + 540° (X°z7™%)Z2° + O(Z°) (5.14)
1

Co(z,2) =~ 1+4+euZ — %(f_zﬁ,uzZ2 + %6392/13Z3 - ﬁe403u4Z4

—%e“Sw\pz‘lZ‘l +0(2%),

as Z — 0. In an analogous way to the previous section we introduce the operators £,
Ly and L3, defined by

Ly(u,v) = iKju+vg,
Lo(u,v,p) = i(AZK; - B)u+ I+ iKip—uzgz,
Li(c,v) = i(AZK, - Bi)c+ pv— Sclezz.

Then substituting (5.13) and (5.14) into (5.1) we obtain the equations for the structure
of the disturbance in the lower deck:
continuity:

LU, V1) = 0,

Li(Ua, Vo) = —iK,Uy,

L.1(Us,V3) = —i(K.Us + K3Uy), (5.15)
L1(Usr,Var) = —iKy Uy,

LU, Vi) = —i(KUs + K3Us + KyUyp) + Usg;
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r-momentum:

£2(U17 ‘/17 Pl)

£2(U2; .VQ: P?)

£2(U31 %7 P3)

Lo(Usr, Var)
£2(U4a V:h P4)

and
concentration;

L3(C, V1) =
L3(Cy, Va) =

£3(C3a ‘/3) .

L3(Csr, Var)

£3(C41 ‘/4) =

= 0,
= iBU — AZiKyU, — iKo Py + 0S¢ Az (%ZiKlUl + vl)

—g‘sc_l,u‘U127

= (Bl + B3U1) — AZi(KoUs + K3Uy) — i(KoPy + K3 Py)

+%esc—1)\ﬂz2i(xluz + KUy — %0250"2)\M2Z2(%ZiK1U1
+V1) — 0S¢ sz + 6Sc™AuZVs,

= i,B4LU1 = )\Z’iK4LU1 . iK4LP1, (516)
e i(B2U3 + BsU, + ,34U1) - /\Z’I;(KQU;g + K3U; + K4U1)

—i(K2P3 + K3P2 + K4P1) + %HSC_IAMZ2 (K1U3 + K2U2
1
48
+i0356_3AM3Z4iK1U1 - Z(/\Ul)z - Plz + %0350_3/\/,L3Z3‘/1

1
+K3U1) . 60250_2/\u223i(K1U2 + KgU]) + /\l’_lZ4iK1U1
1
+E)\.’I)_1Z3V1 - %02Sc'2)\u2Z2V2 +0Sc I \uZVy

1
+§/\$Z2Ulz _— OSC_I,LLU32;

0,
’iﬂzcl - /\ZZKQCl + %HSC_IAI.LZ%K101 = OSC_ll.LClz + H,LLZZ‘/l,

. 1 )
2(,3202 + 6301) - AZi(Kng + K301) + EGSC-IAuzz’I,(chz
+ECy) — é92sc-2wz%mq — 0ScLuCyy ~ %ez;ﬁzzvl
+0u*Z Vs,

= iB.C, — \ZiKy Cy, (5.17)

i(ﬂzc;; + B3Cy + ,6401) — )\Zi(K203 + K3C5 + K4C1)
1
+—2'QSC—1/\,U,Z2’I:(K103 + KgCg -+ K3Cl) + ']%ESCA[J.’I}_IZ‘IZ'K]_Cl

—%9250_2/\u2Z3i(K102 + K2CI) + %0386_3)\/1,2Z4Z'K101
—ZACyz — p, ZU + %/\ZZ2013 ~ 0S¢ uCsz + é63u4Z3V1

1 1
+ESc/\,ux‘lZaV1 - 502/13Z2V2 + 0u*ZV;.

The appropriate set of boundary conditions for the above equations (5.15) - (5.17) are
matching with the main deck solutions as Z — co. In order to define the wall boundary



123

conditions special attention needs to be given to the effect of the concentration gradient,
due to the mass transfer, on the lower deck. The development of the velocity boundary
layer is generally characterised by the no-slip condition (the no-slip condition pertains
tou = 0 on Z = 0, the mass transfer modifies v = 0, i.e. no normal flow) for the
disturbance velocities as well as for the basic velocity along the surface. However, if there
is simultaneous mass transfer to/or from the surface it is clear that the no normal flow
condition does not pertain to the transversal components of the disturbance V; (z = 1,...)
and basic flow velocity V4 (4.5). They are no longer forced to be zero along the surface
(as Z — 0). Using the lower deck scaling and the boundary conditions (2.5) we obtain
the following form of the boundary conditions for the disturbance equations in the lower
deck:

u=0,v=—€b [%} ,c=0 (5.18)
Z=0

where we denote b = #Sc™! and in addition the boundary conditions (4.2) for the basic
flow and concentration held.

A close examination of the equations, and the corresponding boundary conditions (5.18),
within the lower deck of the triple-deck structure, demonstrates that the vertical momen-
tum and concentration field are coupled, the magnitude of this coupling being dependent
upon the magnitude of the concentration gradient across the permeable boundary. The
triple-deck structure itself is not modified, however the first-order correction to the neu-
tral position will be modified.

We shall see that at low levels of mass transfer (corresponding to a relatively small con-
centration gradient) and under the conditions of mass transfer with the rate of order
unity the eigenrelation for lower-branch Tollmien-Schlichting waves is unaltered (at lead-
ing order). As the level of mass transfer is increased so the standard triple-deck structure
must be modified. The disturbance velocity and concentration fields now becomes fully
coupled and the resulting eigenvalue problem must be tackled numerically.

Our analysis of the expansions give us an estimate of the order of magnitude of the
compound parameter b for which the problem can be treated as decoupled in the leading
order lower deck equations, in this case, characterised by & = 6Sc™! = O(1). The
boundary conditions have the following form:

Ui=0, (i=1,...)

1=0,
oC;
V;-H =-b I:a_Z:| Z=07 (519)
V:iL B 07
C;=0,

as Z — 0. Note that the study presented here has been carried out for the case of
gas—permeable surface systems with Sc = 0.01, 0.2, 0.5, 0.7 and 1, and liquid—permeable
surface systems with Sc = 2, 25 and 100 and the mass-transfer parameter  within the
interval [—0.9, 0.9].



124

5.3.3 The upper deck.

Finally, the third layer is necessary in the potential flow outside the boundary layer in
order to relate the pressure induced by streamwise changes in the boundary layer to the
local displacement (streamlines in the boundary layer have been displaced by an effective
change in the position of the wall). In this layer the wave motion is described by classical
inviscid irrotational theory. Given that the disturbance to the concentration field are
small and the assumption that the effect of concentration is limited to the region in the
vicinity of the wall, the scaling within the upper deck is: y = €37, z = X, 7 = -2,
where § = O(1), X = O(1), 7 = O(1). The main deck scaling suggests the following
expansions of the disturbances:

u = [eﬂl + €%ty + 303 + ¢*In €llgr + €Ty + 0 (64)] E,
= [5171 + €20y + €305 + €* In ety + €*04 + 0 (64)] E, (5.20)
p = [eb1+ €+ €Ps + et lnepyy, + €2py + 0 (e*)] E,
where y,...,71,...,P1,... are functions of § and z. In the upper deck the basic flow
approximates the uniform stream and has the following form:
Uy=1+0(e"), =0 (¢). (5.21)

We introduce the operator D defined by
D = pg; — K?p.

Substituting (5.20) and (5.21) into (5.1), equating like powers of € and eliminating the
velocity components we obtain

D(ﬁl) = 0:
D(p2) = 2K1K,pi,
D(p3) = 2K1(Ksp1 + Kopa) + K2pu, (5.22)

D(psr) = 2K1Kyurp,
D(ps) = 2K1(Kup1 + Ksps + Kops)
+K3p2 — iKy (2P15 + (Ki1o/ K1)P1) .

The boundary conditions for equations (5.22) are those of matching with the main deck
solutions as § — 0 (as Y — oo there) and decay as § — oo.

5.4 The disturbance equations solutions

We shall first derive the main deck solutions, which will enable us to match them with
the lower deck and the upper deck solutions.
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Having the controlling equations and the boundary conditions we can solve the main
deck equations to give

U3

U3

&3
C3

u; = A1Upy,

v, = —iK,A4,Up,
p = By,

c1 = AiCay;

up = (A2 — K2K{'A)Ugy — Pi(UpyH, + Ug?),
Vo 1K \PLUgHy + 161 A1 — iK1 AUp,

P2 P, - A1K12H1,

2 = (Ay— K;K{'A; — PiH,)Cpy;

(A3 — KoK Ay + K2K52 A1) Upy — Po(Upy Hy + Ugt)
+K2A,Ug' (UpyHs + Hy) — K3K7'A1Upy
—B1A1(Upy He + Ug'Ugy Ha + Ug?),

i(KoP, + K 1Po)UgH, — iAleHE, + 16, P UgHjg
+iB1(Az — KoK Ay) +ife A1 — iK1 A3Us,

= P3 = K12P1H3 b Kl(KzAl + KlAg)H]_ + 2,31K1A1H4,

(As — KK Ay — PHy — KoK Ay + K2KT2A,
+K; AUz ' Hs — AU H,)Cy;

K.
Ugp = (A4L - ?4:“141) Usy,
va, = —1K1A4Usg,

par = Py,
Ky

L = (A4L - —E(TAI) Cay;

(5.25a)

(5.25b)
(5.25¢)

(5.25d)
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ug = (Ag— KoK Ay — K3K{ Ay + Ko KT Ay — KyKTP Ay

—K3K?Ay + KZK2 Ay + K3 KK T2 A1) Uy — Ps(Usy Hy + Ug)

—~K[ (61Py + B2 P)(Upy He + Ut Hy + Ug?)

+61 KoK Ay (Upy He + Ut Ho + Ug?) + K2 Ay (Upy Hs + Hy)U3"

+K7 A (UsUpy Hy + H3)Ug' + Ko Ky Ay (Upy Hs + Hy) U

+6.K1A1(Ug?Upy Hs + Ug?H, — Upy Hg — 2U5*H,)

+Bi K A1(Ug ' Upy He + UgUpy Hy + Upy Hy + U3®)

+iK['A1.Upy (5.27a)
vy = i(K3Py+ KPy + K1 Ps)UgH, — i(2A: K, K? + K3 A;) Hs

+i(Bo Py + BiPa)UpHe + ify (As — KoK Ay + K2ZKT2 A,

~ KK A) +365(Ag — KoK1Ay) + iBs A1 — iK1 AdUp

+iK;PUgHy + i1 K2 A\UgHg + 2K\ PiUg Hy — A Ug,, (5.27b)
ps = Pi+ (KiPy+2K\KoP)Hy ~ Ky (K1 As + Ky Ay + K3 Ay Hy

+2(Bo K1 A1 + BiKy As)Hy — B2AY — K2A Hyy

+61 K P (Hyg — Hyp), (5.27c)
Cy = —?:KI_IUEI [i(clﬂ;; =+ Czﬂz + C3,51) = i(K4C1 —+ K302 + K203)UB
—u1Cgs — 1y Ve — v4Cgy + Sc_lclyy] . (5.27d)

Here P, = Pi(z) and A; = Ai(z) (: = 1,...) are unknown, slowly-varying amplitude,
functions (the wall pressure and negative displacement perturbations respectively). The
integrals H; = H;(z,Y) (j = 1,...,12) are defined in Appendix A.4. The solutions for
the pressure disturbances have been obtained by matching with the pressure in the lower
deck.

5.4.2 The lower deck solutions

In order to obtain the solutions for U; (: = 1,...) we will apply the transformation
£ =AY (Z - B/)Ky), A =i)\Ky, (5.28)

to eliminate Z from the z-momentum equations. We are interested only in the first
modified eigenrelation.

The solution of the equations (5.15) - (5.17) for the disturbance velocity U; (i = 1,... , 4, 4L)



127

in the lower deck yields

U = BiAi(g), (5.29a)
Use = ByAi(€) + %(Kszl— 0Sc A uB K

—i0ScT AT LK T IAY®) B AL (€)

+i(61 KoK~ B2 — —;-BSC_IA_luﬂle‘l)BlA‘2/3Ai'(§)

68y (Ai”({) _ %Ai%)) BiA-Y3, (5.29b)
UsLe = BarAi(€) + [0:1A1(€) + 6,A1" (€)]A2/3, (5.29¢)
where
61 = —Bi[Ky K7 AY3¢, +ifyy),

1
b = BiKubAK,

Ai(¢) is the Airy function and B;(z) (¢ = 1,...) are unknown functions. A similar process
can be performed for the higher order equations, but as we are predominantly interested
in the higher order concentration effect we will terminate our expansions here.

Due to the different scale factors multiplying the arguments of the Airy functions which
arise in the solution of the concentration equations, the algebra becomes particularly
cumbersome at this stage. It is then prudent to obtain the solutions C; (i = 1,... ,4, 4L)
numerically. These will be described further in the next section.

5.4.3 The upper deck solutions

The solutions of the upper deck equations are

1 = Prexp(-Kip), (5.30a)

P2 = [P - K>Puy) exp(=Ki), (5.30b)
= - 1

p3 = [P3 — (K3PL+ Ko By)g + §K§P1172] exp(—K17), (5.30c)

Par = [P — KuPrif) exp(—K17), (5.30d)

p—4 = I:.P4 . (K4P1 + K3.P2 + K2P3 e ’LP]_z)g

) P 1 1
+ (§K22P2 + K2K3P1 - §K1:P1> ’_172 - 6K3P1g3:| exp(—Kly), (5306)

where P, = P(z) (i = 1,...) are unknown functions of .
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Matching the solutions in the upper deck with those in the main deck yields

P = P, (5.31a)
View = [—iK1A1Ugly_, = —iK1A1, KiP = K2A;;
P, = P - AKH,, (5.31b)
Vo = @K1P Hyp + 2i014; — iK1 1Ay = iKyA) — iPy — iK,Py /K
P, = P+ K12P1H3°° — Ki(K1Ay + Ko A )Hyoo + 26, K1 A1 Hy, (5.31c)
V3w = (KoPi + K1 Py)Hyy — iAlKlaH5°o + 161 P Hgoo
+i01(As — KoKT A1) + 16y A; — iK A =
[(B1 — K2)vace + (B2 — K3)v1o0) K{* — iP3 — iK3 P/ Ky
—iKy P/ Ky;
Py = Py, (5.31d)
Varoo = —iK1Ag = iKy Ay — Py —iKy P/ Ky;
P, = B+ (K12P2 + 2K K,P))H3o — K, (K1A3 + Ky A,
+K34:1) Hioo + 2(Bo K1 AL + B K1 As)Huo — KA1 Hipoo
+ 51 K1 P (Hi200 — Hipoo)s (5.31e)
Vso = 4(K3P,+ KoPs+ K P3)Hoo, — i(2A1 Ko K? + K2 Ap) Hsoo

+i(Bo Py + B1Po) Hooo + 11 (A3 — Ko K1 Ay + K2K 2 A))
+iﬂz(A2 - KgKl_lAlAl) -+ ’iﬁ3A1 — iK1A4 + inP1H7oo
+i01 K A1 Hyoo + 182 K7 Py Hyoo = [(,31 — K3)U300 + (B2 — K3)v90o

+(8s — K4)v1°°] Kt + KTV (K1 Ay, — iPy — iK, P /Ky — iKs Py [ K,
—iK,P;/ K, — Ppo /K.

5.5 Semi-numerical treatment

We have already mentioned that the solutions for the concentration disturbance in the
lower deck will be solved numerically. In order to determine the second-order distur-
bance V; along the surface we need to determine the first derivative of the leading order
concentration disturbance at Z = 0. We found it appropriate to solve the full system
of equations for the leading order disturbances Uy, V; and C; in the systems of equa-
tions (5.15) - (5.17) with the boundary conditions (5.19). To do this, we first solved the
standard triple-deck equations

iK2A) + MV +i(AZK, - AU,
—iK, Uy,

Urzz (5.32)

Viz =
subject to the boundary conditions

Uh=Vi=0at Z2=0; U, > )X as Z — . (5.33)
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To solve this system numerically we first replace the non-homogeneous boundary condi-
tion U; — A as Z — oo with the homogeneous boundary condition Uz =0 at Z = Z,.
We then iterate on f; and K; using the Newton-Raphson method until the remaining
boundary condition Uy — A| < € at Z = Z is satisfied. After some experimentation
a tolerance of e = 10™° was found to yield results converged to five significant figures.
The subroutine we developed for solving the system (5.32) - (5.33) is based on the NAG
subroutine DO2RAF which solves the two-point boundary-value problems with general
boundary conditions, using a deferred correction technique and Newton iteration (see
Pereyra (1979)).

Finally we will solve the concentration equation
Cizz = Sc(iAK1ZC, —i6iCh + uWh), (5.34)
with the following boundary conditions:
Ci=0at Z2=0; Cr—>uas Z— oo. (5.35)

All equations have been normalised as follows:

Uy _" _G
A_l’ ‘/3.=A11 CI—AI-

U=
The equations for the leading order terms in the systems of equations (5.32) - (5.35)
bhave been solved with Z,, = 50 and 2000 grid points. The first-order concentration
disturbance equation (5.34) with the boundary conditions (5.35) has been solved by using
simple second-order central difference discrete scheme, employing the Thomas algorithm
to invert the resulting tri-diagonal system and using the solutions from the equations
(5.32) - (5.33). The solution is obtained and tabulated, for different values of Sc and 6
(see Tables 5.1 - 5.5 and Figures 5.4 and 5.5, where 6, = 8C}/8Z|z-0).

Since we are interested only in the dominant effect of the induced secondary flow on the
disturbance structure (mass-transfer effect) the higher order corrections have not been
determined. However in Appendix A.5 we present the full system of governing equations.

5.6 Solutions - eigenrelations

As mentioned in the last section we are only interested in the first correction to the
leading order eigenrelation, i.e. we shall limit our attention to the second-order neutral
term in the expansions, in so doing we shall obtain the first modified eigenrelation.

The form of the leading order eigenrelation is unchanged. For completeness we give a
brief derivation of its analytic form here as we will make use of it as a check of our
numerical scheme for solving the leading order lower deck equations. Applying the wall
boundary condition on Z = 0 in (5.16) gives

B AijAY? = iK P, (5.36)
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First—order disturbances concentration gradient
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Figure 5.4: The first order disturbance concentration gradient along the surface versus
the parameter 6 for different values of the Schmidt number Sec.

where the subscript 0 refers to the function being evaluated at &€ = ¢ = —iB A28,

Next the matching condition on U as £ — oo is U; — A4, from (5.16) and (5.6) we
obtain

Bik = M, (5.37)

where

k= /Ai(q) dg.
o

Eliminating B between (5.36) and (5.37) we obtain a relation between the wall pressure
(P1) and the displacement (—A;). From (5.30) and continuity of pressure and normal
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Firsi—order disturbances concentration gradient
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Figure 5.5: The first order disturbances concentration gradient along the surface versus
the Schmidt number Sc¢ for different values of the parameter 6.

velocity as § — 0 (5.31) and combining (5.36) with (5.37) we have the leading order
eigenrelation
iK2k

which fixes the wavenumber K (z) as a function of the frequency 3; and the skin friction
Alz).

For neutral stability (K, and g, real), it is found that (see Lin (1945), Reid (1965),
Schlichting (1979), Stuart (1963), Tollmien (1929))

S (5.39)

(AK,)%/3
which implies the relation & ~ —2.297i'/3, viz., &, Aig, Aif and k are independent of

AK;. Their values have been obtained in the way similar to that in Bassom (1989) and
are given in Appendix A.4. From (5.39) we can obtain that {6k = —2.294Ai.
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This is the first-order eigenrelation, which fixes the wavenumber K; (z) as a function of
the frequency £;(x) and skin friction A(z). It is, of course, identical in form to that found
in Smith (1979a). We have (see Smith (1979a) equation (4.1))

Ky = 1.00105/45~5%/8, (5.40a)
By = 2.209)\3/25~3/4 (5.40b)

where, for the case of the Blasius boundary-layer flow A = 0.332. The corresponding
values of the wavenumber and frequency are found to be

K A™5/42%/8 = 1.000489, B A~%22=3/4 = 2.297967.

A similar process can be carried out to produce the successive eigenrelations for K (),
K3(z), Kar(z), Ky4(z) as functions of M(z) and p (and hence of  and the Schmidt
number Sc), and the constants 5;(z) (i = 1,...,4, 4L). Proceeding in this fashion the
wall boundary conditions for the lower deck disturbance solutions at Z = 0 yield

ByAij + (%&1 —a; — a4) Al + ap Al + % (%(—12 + 3a4> Aiy’ + %ag,Aig’
—%%Ai},” — 0Sc™ 2z 2B Mg A3 9812512 A5 ATY/3 (5.41)
=i(K1P + 2+ K,P)A™%/3,
where
G = 2(K;K{'—0Sc 2 A" uK ' py)By,
d, = 0Sc™V2u(z~? - 2)B A3
and

a1 = 0ScVug~2B A3

a = i (ﬂleKfl — B2 — %esalﬂxluffﬁﬂf) By,
a3 = 2a,

ay = %z’eSc‘l/z/\uKlBlA"“/s.

The conditions of matching the second-order velocity disturbance solution of the main
deck up as Y2 — 0 with that of the lower deck U, as € — oo imply

oo &
1
Byk + (561 ~-a; - a4) Alg / / Ai(g)dg1dg, — azAlg (5-42)
o &o1

1/1 1 1 -
—5 <§&2 -+ 304) A16 - §a3A1{]’ + ga4AiQ’ = /\(A2 - Pl-[ - K2K1—1A1)7

where

0
I = ][U,;2(Y1)dyl.
A
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Now combining (5.41), (5.42) and (5.31a,b) we obtain the second-order eigenrelation,
which is

- , A il 0u 1
— 2 — _ = U=
DK, = iK; (H2°° Hioo I) 2 2S¢ (ﬂl A2/3>
2 Ou 1 Aig 6’ k
NN (50 Ao - kA_ig) sl AT

where we have normalised §; using A; and set

dC,
51 = -

a )

§ £=%o
D = §z+ (B14io/kA*®) D,

D = 1+k&/AL.

Upon setting & = 0 we have the first-order correction to the Tollmien-Schlichting eigen-
relation, which again provides a useful check of our result.

The integral denoted by I is defined in the Hadamard sense. It has been obtained
by matching the main deck solution u, with the lower deck U,. With reference to
Hadamard (1952)

0Us

5 (5.44)

]lU?(Yl) av; = Jim [GUB / U*(45) % + o .

Y—0 by

We term the limit on the right-hand-side of (5.44) by the “finite-part” of the integral
on the left-hand-side. The value of the lower limit \ is an arbitrary non-zero constant
(modifying the constant of integration) which has no effect on the numerical value of the
limit obtained.

The “finite-part” integral at the left-hand-side of (5.44) can be written as

~

A
— —_V§ -1 .
ra [HOZIO VIO gy, L 0S5
A2 A2
where f(Y) = Y2/U%. We note also that the occurrence of the logarithmic terms in the
asymptotic expansions, for instance (5.3), are due to the last two terms and is forced in

the same manner as noted by Smith (1979a).

5.7 Curves of neutral stability

The calculation of 4, for different values of Sc and @ has been described in section 5.5.
Some of the results for the first order-disturbance concentration gradient along the sur-
face, for different values of the Schmidt number Sc and the parameter 8, are presented
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in Figures 5.4 and 5.5, and Tables 5.1 - 5.5. In the special case Sc = 1 the first-order
disturbances concentration equation (5.34) can be solved analytically as well.

The eigenrelations for K, and K, in (5.38) and (5.43) are results from parallel-ow
stability. For neutral stability wavenumbers K; and K, must be real. In order for the
wavenumber K; to be real the eigenrelation (5.38) requires that the frequency S is given
by (5.40b). Given that the frequency B, is a constant, the position of neutral stability,
for a disturbance of constant frequency, is given by z = z,, where

z, = 0.33467*° + O(Re™1/8). (5.45)

Beyond z = z, the disturbance will amplify spatially. Alternatively, we can express
(5.40) in terms of Reynolds number R; based on the local boundary-layer thickness
(Rs = 1.720(zRe)'/?), for which the neutral stability frequency is given by

Bn = 5.1859R; *233/2 + O(Re™™14), (5.46)
using (5.2), (5.3) and (5.40) and defining A = f”(0).
For K, to be real the complex equation (5.43) yields
B; = 2.5830R; /8, (5.47)

for neutral stability. There is no explicit dependence on # and Sc in equation (5.47)
because the variation of the parameters K, and 3, is bound to the wall share A, how-
ever, an explicit dependence upon these parameters occur at higher order in the solution
expansion. We can continue this process indefinitely having all the eigenrelation but for
the purposes of our present study we shall terminate this process here. Combining (5.40)
and (5.47), the expression for the neutrally stable frequency £, is

Bn = 0.995R;*/* [5.21205%/2 + 2.59665 R; /% + O(Rgl/z)] . (5.48)

At 6 = 0 and Sc = 1, the case without mass transfer, the expression (5.48) reduces to
that obtained by Smith (1979a), i.e. this is the result for the conventional, parallel-flow
analysis (there is no presence of z-derivatives or small normal velocity components in the
basic flow, because the boundary-layer growth terms are neglected).

The second-order neutral frequency 3, and wavenumber K> as a function of the mass-
transfer parameter 6, for different values of the Schmidt number Sc, are plotted in Fig-
ure 5.6 and tabulated in Tables 5.1 - 5.5, It is seen from Figure 5.6 that in the case
of “blowing” into gas boundary-layer flows, i.e. when the mass transfer is directed to-
wards the boundary layer, the contribution of the second-order frequency S, into (5.48)
decreases the neutral stability frequency 3,. We also observe the same effect with the
wavenumber K. As it is seen from the Figure 5.6 in the case of liquids, i.e. at moderately
large Schmidt numbers Sc, the thinner the concentration boundary layer the less signif-
icant is this contribution. In the case of “suction”, when the mass transfer is directed
from the boundary layer towards the permeable surface, the contribution of the second-
order frequency (3, into (5.48) increases the neutral stability frequency 3, and again this
contribution is much more significant at low Schmidt numbers (gas boundary-layer flow).
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| Sc=0.7 ]
2 )‘(x)xlfz p(z)z? O1r 01 Boz/®
-0.99 0.6387 | -4.4891 - = -
-0.5 0.5989 | -0.4819 | 0.0695 | -0.6309 | 6.9271
-0.3 0.4544 | -0.3804 | 0.0434 | -0.4058 | 5.2234
-0.1 0.3651 | -0.3167 | 0.0301 | -0.2872 2.5434
-0.05 0.3479 | -0.3042 | 0.0278 | -0.2661 1.6390
-0.03 0.3414 | -0.2995 | 0.0269 | -0.2583 1.2455
-0.01 0.3351 | -0.2949 | 0.0262 | -0.2509 | 0.8329
0 0.3321 | -0.2927 | 0.0258 | -0.2473 | 0.6219
0.01 0.3291 | -0.2905 | 0.0254 | -0.2438 | 0.4046
0.03 0.3232 | -0.2862 | 0.0246 | -0.2371 | -0.0463
0.05 0.3176 | -0.2821 | 0.0239 | -0.2306 | -0.5128
0.1 0.3042 | -0.2723 | 0.0223 | -0.2156 | -1.7745
0.3 0.2598 | -0.2394 | 0.0173 | -0.1686 | -8.1937
0.5 0.2261 | -0.2140 | 0.0138 | -0.1358 | -17.0970
0.99 0.2261 | -0.1704 - = -

Table 5.1: The values of the skin friction f”(0) = A(z)z'/?, the basic concentration
gradient on the surface ¢'(0) = p(z)z'/?, first order disturbance concentration gradient
C] along the surface and the second order neutral frequency B,z7/8 at Sc¢ = 0.7 for
different values of 6.

The curves of neutral stability for different values of the Schmidt number Sc¢ and mass-
transfer level 6 are shown in Figures 5.7 - 5.11. It is seen that the results are in agreement
with those made in the previous chapter. Increasing the absolute value of the mass-
transfer parameter leads to an increase of the frequency of neutral stability. Depending
on the direction of the mass transfer, i.e. the sign of the mass-transfer parameter 6,
corresponding to “blowing” or “suction” we have a destabilising or stabilising effect on the
stability of the boundary-layer flow. The high concentration gradients have a stabilising
effect at 6 < 0; this is significantly higher then the destabilising one in the case of a
change in the direction of mass transfer (6 > 0).

The result obtained by Smith (1979a) is plotted in Figure 5.8 and differs slightly from
ours at the mass-transfer level of § = 0 due to the non-parallel contributions taken into
account in Smith’s calculation. The boundary-layer growth has a stabilising effect on the
boundary-layer flow if the wall pressure is taken to be the measure of the instability (see
Smith (1979a)) but it is of less importance compared with the effect of mass transfer.
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Sc=1
0 | Mz)z'/? | p(z)z!/ O1r 01 Bax/®
-0.99 4.9445 | -4.9445 = = =
-0.5 0.5380 | -0.5380 | 0.2922 | -0.6329 6.7380
-0.3 0.4277 | -0.4277 | 0.1947 | -0.4251 4.8091
-0.1 0.3582 | -0.3582 | 0.1424 | -0.3124 2.2389
-0.05 0.3446 | -0.3446 | 0.1329 | -0.2921 1.4605
-0.03 0.3394 | -0.3394 | 0.1295 | -0.2846 1.1299
-0.01 0.3345 | -0.3345 | 0.1262 | -0.2774 0.7939
0 0.3321 | -0.3321 | 0.1246 | -0.2739 0.6219
0.01 0.3297 | -0.3297 | 0.1229 | -0.2705 0.4462
0.03 0.3250 | -0.3250 | 0.1199 | -0.2639 0.0868
0.05 0.3205 | -0.3205 | 0.1170 | -0.2575 | -0.2807
0.1 0.3098 | -0.3098 | 0.1102 | -0.2428 | -1.2451
0.3 0.2739 | -0.2739 | 0.0887 | -0.1959 | -5.7540
0.5 0.2460 | -0.2460 | 0.0734 | -0.1626 | -11.3519
0.99 0.1981 | -0.1981 - = -

Table 5.2: The values of the skin friction f”(0) = A(z)z'/?, the basic concentration
gradient on the surface ¢’(0) = p(z)z'/?, first order disturbance concentration gradient
C1 along the surface and the second order neutral frequency S,z7/8 at S¢ = 1 for different
values of 6.

| Sc=125 ]

0 [ M=)z [ p(z)z'/? 01 b1 | Baz™ |
-0.99 | 0.6029 | -8.8122 | 0.5971 | 0.0704 | 6.3388
-0.5 0.3534 | -1.4666 | 0.0688 | 0.0060 | 1.9158
-0.3 0.3427 | -1.2165 | 0.0559 | 0.0049 | 1.3096
-0.1 0.3351 | -1.0527 | 0.0476 | 0.0041 | 0.8282
-0.05 0.3335 | -1.0199 | 0.0459 | 0.0039 | 0.7211
-0.03 0.3329 | -1.0075 | 0.0454 | 0.0038 | 0.6799
-0.01 0.3323 | -0.9954 | 0.0448 | 0.0038 | 0.6391
0 0.3321 | -0.9895 | 0.0045 | 0.0038 | 0.6219
0.01 0.3318 | -0.9837 | 0.0042 | 0.0038 | 0.6016
0.03 0.3312 | -0.9723 | 0.0436 | 0.0037 | 0.5611
0.05 0.3307 | -0.9613 | 0.0431 | 0.0037 | 0.5241
0.1 0.3294 | -0.9350 | 0.0418 | 0.0036 | 0.4307
0.3 0.3247 | -0.8453 | 0.0374 | 0.0032 | 0.0845
0.5 0.3209 | -0.7741 | 0.0339 | 0.0029 | -0.2162
0.99 0.3136 | -0.6479 | 0.0279 | 0.0023 | -0.8358

Table 5.3: The values of the skin friction f”(0) = A(z)z'/?, the basic concentration
gradient on the surface ¢'(0) = u(z)z'/2, first order disturbance concentration gradient
C] along the surface and the second order neutral frequency B,z7/® at Sc¢ = 25 for different
values of 6.
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| Sc =50 ]

6 /\(-T)-Tl/z pu(z)z'/? d1r O1i ﬂzxmu
-0.99 0.4880 | -10.4084 | 0.3275 | 0.1459 | 5.4360
-0.5 0.3454 | -1.8367 | 0.0462 | 0.0193 | 1.4700
-0.3 0.3387 | -1.5284 | 0.0379 | 0.0152 | 1.0622
-0.1 0.3339 | -1.3257 | 0.0326 | 0.0135 | 0.7497
-0.05 0.3329 | -1.2849 | 0.0315 | 0.0131 | 0.6819
-0.03 0.3326 | -1.2696 | 0.0311 | 0.0129 | 0.6584
-0.01 0.3322 | -1.2546 | 0.0308 | 0.0127 | 0.6319
0 0.3321 | -1.2473 | 0.0306 | 0.0127 | 0.6219
0.01 0.3319 | -1.2401 | 0.0304 | 0.0126 | 0.6088
0.03 0.3315 | -1.2259 | 0.0300 | 0.0124 | 0.5826
0.05 0.3312 | -1.2122 | 0.0279 | 0.0123 | 0.5599
0.1 0.3304 | -1.1796 | 0.0288 | 0.0119 [ 0.5024
0.3 0.3274 | -1.0679 | 0.0259 | 0.0107 | 0.2881
0.5 0.3249 | -0.9792 | 0.0237 | 0.0098 | 0.1027
0.99 0.3203 | -0.8215 | 0.0197 | 0.0081 | -0.2621

Table 5.4: The values of the skin friction f”(0) = A(z)z/?, the basic concentration
gradient on the surface ¢'(0) = p(z)z'/?, first order disturbance concentration gradient
C] along the surface and the second order neutral frequency B,27/% at Sc = 50 for different
values of .

1 Sc =100 N

0 | M(z)z'7 | p(z)z'/ O1r O1; | Bz |
-0.99 0.4246 | -12.5563 | 0.2559 | 0.1011 | 4.4029
-0.5 0.3404 | -2.3048 | 0.0409 | 0.0152 | 1.1693
-0.3 0.3362 | -1.9220 | 0.0339 | 0.0126 | 0.9015
-0.1 0.3333 | -1.6696 | 0.0293 | 0.0108 | 0.7049
-0.05 0.3326 | -1.6189 | 0.0284 | 0.0105 | 0.6596
-0.03 0.3324 | -1.5996 | 0.0280 | 0.0104 | 0.6444
-0.01 0.3322 | -1.5809 | 0.0277 | 0.0102 | 0.6294
0 0.3321 | -1.5718 | 0.0275 | 0.0102 | 0.6219
0.01 0.3319 | -1.5628 | 0.0273 | 0.0101 | 0.6112
0.03 0.3317 | -1.5452 | 0.0270 | 0.0099 | 0.5965
0.05 0.3315 | -1.5281 | 0.0267 | 0.0099 | 0.5819
0.1 0.3309 | -1.4873 | 0.0259 | 0.0096 | 0.5426
0.3 0.3291 | -1.3478 | 0.0235 | 0.0087 | 0.4125
0.5 0.3276 | -1.2368 | 0.0215 | 0.0079 | 0.3014
0.99 0.3246 | -1.0392 | 0.0179 | 0.0066 | 0.0776

Table 5.5: The values of the skin friction f”(0) = A(z)z!/?, the basic concentration
gradient on the surface ¢’(0) = u(z)z'/2, first order disturbance concentration gradient
C1 along the surface and the second order neutral frequency B,z’/® at Sc = 100 for
different values of 6.
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Neutral stability properties K, and §,
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Figure 5.6: The second-order neutral frequency ; and wavenumber K, versus the mass-
transfer parameter ¢ for different values of the Schmidt number Sc (fixed z = 1).
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Curves of meutral stability at Sc=0.7
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Figure 5.7: Lower-branch of the curve of neutral stability in the (Rs, 5,)-plane at Sc = 0.7
for different values of 6.
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Figure 5.8: Lower-branch of the curves of neutral stability in the (Rj, 3,)-plane at Sc =1
for different values of 6.
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Curves of meutral stability at Sc=25
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Figure 5.9: Lower-branch of the curves of neutral stability in the (Rjs, 8,)-plane at Sc = 25
for different values of 4.

Curves of meutral stability at Sc=50

€600 800 17000 1200 1400 1600 180 2000
Rd

Figure 5.10: Lower-branch of the curves of neutral stability in the (Rs, Bn)-plane at
Sc = 50 for different values of 6.
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Curves of meutral stability at Sc=700
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Figure 5.11: Lower-branch of the curves of neutral stability in the (Rjs, 8,)-plane at
Sc = 100 for different values of 6.
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Chapter 6

Diffusion Induced Separation and
the Inviscid Instability of
Boundary-Layer Flows Under
Conditions of Interfacial Mass
Transfer through a Finite “Slot”

There are numerous and varied investigations into the phenomenon of flow separation,
either self-induced, by slot-injection or slot-blowing into boundary layers. Early work on
this problem, summarised in Gadd, Jones & Watson (1963), was mainly concerned with
similarity solutions in which the free-stream velocity is proportional to ™, m > 0, while
the blowing velocity is proportional to z/2™-1) and is O(Re '/2U,,). In this case the
governing equation is the classical Falkner-Skan equation

"+ "+ (= %) =0, (6.1)
subject to boundary conditions
fl(0) =0, f(0)==C; f'(o0)=1. (6.2)

Here § = 2m/(m + 1), C = O(1) is a blowing parameter, f a stream-function and
B = O(1) (so-called “hard blowing”). Numerical solutions of the Falkner-Skan equation
with 8 = 0 were obtained by Emmons & Leigh (1954) who found that as C — Cy = 0.876
the boundary-layer flow approaches a state of zero wall shear and is blown off the wall;
no solution can be found if C > Cj. A uniform distribution of injection was considered
in Catherall, Stewartson & Williams (1965). In this study the boundary-layer equations
for an incompressible fluid over a flat plate, in the special case when the pressure gradient
vanishes and there is a uniform injection of fluid from the plate, are examined numerically
and analytically. In the numerical study the point of separation was computed with a
high degree of accuracy and found to be z; = 0.7456, while in the accompanying ana-
lytical study the structure of the singularity at separation was determined. An entirely
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satisfactory agreement between the numerical and analytical studies was not possible,
because the analytical study was only valid when In(1/2z*) > 1, here z* is the non-
dimensional distance from the point of separation (z* = z, — z). In work by Napolitano
& Messick (1980) the problem of strong fluid 1nject10n into a steady, subsonic, laminar
boundary-layer flow over a flat plate was studied. The problem was formulated within the
triple-deck structure for asymptotic analysis of strong slot injection for large Reynolds
numbers. It was found that in contrast to the supersonic case, separation occurs down-
stream of the slot, where a recirculating flow bubble is formed. Then in a related study
by Klemp & Acrivos (1972) a rational expansion to describe the “blow-off” (“slot”) re-
gion was developed. The structure of a supersonic laminar boundary layer near a flat
plate under conditions of fluid injection velocity O(e=%/8U,,) over a distance of O(L) was
examined by Smith & Stewartson (1973) (here U is the undisturbed fluid velocity and
L the length of the plate) and they found explicit expressions for the pressure variations
and boundary-layer thickness using a modified form of the Cole-Aroesty model (see Cole
& Aroesty (1968)). The relation between the strong injection, studied in this work, and
massive injection, when the blowing velocity is of O(U,,) was also discussed. A system-
atic account of more recent studies of flow separation phenomena can be found in surveys
by Smith (1982) and Brown (1996).

The problem of the boundary-layer flow under conditions of interfacial mass transfer,
governed by the classical Prandtl equations, the laminar boundary-layer convection-
diffusion equation (1.4) and the steady heat transfer equation (1.18) was first treated by
Hartnett & Eckert (1957). The system of governing equations was subject to boundary
conditions taking account of foreign fluid injection (with blowing velocity V'(z,0) # 0).
It was shown that in the case when V/(z,0) ~ z71/2 the system (1.4) and (1.18) admits a
self-similar solution; they demonstrated that the velocity, concentration and temperature
profiles are greatly influenced by either “suction” or “blowing”.

We shall consider the problem of diffusion driven boundary-layer flow separation. As we
wish to focus our attention upon the diffusion process we will exclude from our study
one of the dominant causes for flow separation, namely the effect of an adverse pressure
gradient. We therefore focus on a boundary-layer flow under conditions of interfacial mass
transfer with zero pressure gradient. To overcome the inevitable difficulties connected
with the presence of different scales, within which the relative importance of diffusivity
to viscosity or vice versa is to be accounted for, we consider only the case of a gas-
permeable surface for which Sc = 1; the concentration and momentum boundary layers
are then of similar thickness. In contrast to the previous studies of a boundary-layer
flow under conditions of intense interfacial mass transfer (see Boyadjiev et. al. (1996a),
Halatchev & Denier (2000), Hartnett & Eckert (1957) and earlier chapters) we consider
a finite mass-transfer region, this being a more realistic model of many mass-transfer
(diffusion) dominated flows. The detachment of the boundary-layer flow is then a result
of the shifting of fluid elements in the boundary layer far from the surface (membrane)
due to the diffusion induced vertical velocity component on the surface.

We used arbitrary values for the vertical velocity component on the wall V(z, 0) (the rate
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of “blowing”) but within the weak or moderate injection description, where
V(z,0) = O(Re™/?/Us),

in which case the classical boundary-layer equations hold. The blowing rates correspond-
ing to so called strong injection, which can be loosely defined as

Re 1?2 < V(2,0) /Uy < 1,

are not considered in the present work, since the increase in the blowing rate moves
the separation point upstream from the slot’s leading edge, i.e. into a region where the
boundary-layer equations certainly do not hold.

In this chapter we show that a concentration gradient acting within a finite region (“slot”)
can cause the boundary layer to separate. An appropriate discretisation scheme to deal
with the discontinuities at the slot’s edges and an unconditionally stable semi-implicit
marching algorithm are constructed. The results from our numerical solutions will suggest
that there is no Goldstein singularity at the point of separation. It is argued that for
our boundary conditions the boundary layer can adjust so as to remove, or inhibit, the
singularity.

We next turn our attention to the question of boundary-layer stability. An inflexion point
appears in the streamwise velocity prior to the point of diffusion induced separation.
Therefore the boundary-layer flow will become susceptible to the high frequency, short
wavelength, instabilities known as Rayleigh waves. These waves are known to provide one
route for the rapid onset of turbulence in boundary-layer flows. We will study the level
of diffusion required to render the flow inviscidly unstable. The stability aspects of this
flow will be considered by solving the Rayleigh pressure equation numerically, employing
a global solver for complex eigenvalue problems, in order to determine the growth rate
at selected streamwise locations over the slot region. This will allow us to determine the
point at which the flow becomes unstable, in terms of the level of mass transfer through
the slot. The ultimate aim of this study is the development of techniques which will allow
for the prediction and active control of instability in the flow.

6.1 Governing equations

Let us consider the boundary-layer flow over a rigid, permeable, flat plate through which
mass can diffuse due to a high concentration gradient. We pose the problem in terms
of Prandtl’s non-interacting boundary layer which develops when a uniform stream flows
over the plate. We consider the case when the boundary-layer flow is affected by mass
transfer due to a concentration gradient acting over a finite region of the plate. This
concentration gradient induces a secondary flow normal to the plate and the resulting
mass transfer has the effect of “blowing”, or “suction”, of the fluid into the flow depending
upon the sign of the concentration gradient (positive for blowing, negative for suction).
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Phenomenologically, we should formulate some terms relating to the geometry of our
problem. By the word “slot” we shall understand the region of the plate where diffusion
is active (the concentration driving force is active), z;. will denote the z-coordinate of
the leading edge of the slot and z; the z-coordinate of the trailing edge of the slot. A
schematic of the geometry under consideration is shown in Figure 6.1.

SSSSSSSSESSSSSSSEESSSSN IS
T  “slot” Tte z

Figure 6.1: Schematic of the flow in a boundary layer over a finite region of permeable
surface.

The basic flow and concentration fields are governed by the Navier-Stokes equations
for a two-dimensional, incompressible, steady flow and the steady convection-diffusion
equation which, in non-dimensional form, are

V-u = 0, (6.3a)

(u-V)u = -VPB+ %Vzu, (6.3b)
1

('ll . V)Co = ScRe Vzco, (630)

where u = (Up, Vo), Re = UsL/v is the Reynolds number, S¢ = v/D is the Schmidt
number, v the kinematic viscosity, Cj the concentration at the solid surface, C%, the
concentration of the species in the free-stream, pf the density of the transfered substance
and § = M(Cj —Cy,)/p; is the mass-transfer parameter as defined in Chapter 2. Here we
have non-dimensionalised all lengths with respect to a typical length scale L (a suitable
choice being the distance from the leading edge of the plate to the slot), all velocities
with respect to the free-stream speed Uy, and the concentration with respect to the con-
centration difference Cf — Cg,. The system (6.3) must be solved subject to the following
initial and boundary conditions:

u=(1,0), Co=1 at z=0;

0 for z < x4
Up=0,Co=1, Vo=14 6(ScRe)"*Cy, forzo <z <24 00 y=0; (6.4)
0 for z > x4,

Up—=1, Co—0 as y — oco.
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Note that outside the slot the usual no-slip boundary condition is imposed.

6.1.1 The basic boundary-layer flow

In the limit Re — oo the flow develops a boundary layer of thickness O(Re™/?) attached
to the leading edge of the plate. We therefore introduce the boundary-layer variables

y = Re™'?Y, Uy = Up, Vo = Re™Y?V, Cy = Cp, Py = Ps.

The full Navier-Stokes equations reduce to the classical boundary-layer equations coupled
to a concentration equation which describes the change in the species concentration within
the boundary layer:

oUgp  OVp
e + ¥ = 0, (6.5a)
oUg oUp 8%Usp
Up— 5z +VB-6—Y— = W, (65b)
OPg
5 = 0, (6.5¢)
0Cp Cp  18°Cp
Up—— py + Vp—+ Ey 2 g—c--—ayz 3 (6.5d)
together with boundary conditions
0 for z < x4
Up=0,Cpg=1,Vg=q —0Sc'Cpy forz<z<z4 On Y =0; (6.6)
0 for z > z4

UB—)I, CB—>0 as Y — oo.

In order to focus upon the fundamental problem of diffusion induced separation, and not
upon effects such as the relative importance of diffusivity compared to viscosity (as is
measured by the Schmidt number Sc) we will take S¢ = 1 in what follows.

6.1.2 The linear stability of the flow

When the effects of viscosity are negligible, that is the term consisting of the Reynolds
number in the Orr-Sommerfeld equation is sufficiently large or the fluid is practically
inviscid (this is the case in our study) the Orr-Sommerfeld type equation (4.9a) reduces
to the Rayleigh equation (see Drazin & Reid (1981)).

To study the inviscid instability of the boundary-layer flow we let
(Ua ‘/7 Pa C) = (UOa %a P07 CO) + E(’LL, v,p, C) + 0(62)’

where (U,V,P) is the total flow field, (U, Vb, Py, Co) the basic boundary-layer flow,
(u,v,p,c) the disturbance velocity, pressure and concentration fields. On substituting
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this into the full system of Navier-Stokes equations coupled to the convection-diffusion
equation (2.1) and neglecting terms of O(e?), we then obtain the linearised equations
(5.1).

We focus our attention on inviscid waves within the boundary layer, in which case the
disturbances have the following form:

u(z,t) = 4(Y) exp[iaRe?(z — wt)),

v(z,t) = 9(Y) expliaRe'/?(z — wt)], (6.7)
p(z,t) = p(Y) expiaRe'?(z — wi)],
c(z,t) = &(Y) expliaRe'*(z — wt)],

where 4 and 9 are the amplitudes of the velocity of the disturbances, p the disturbance
pressure amplitude and ¢ the disturbance concentration amplitude; a and w are respec-
tively the wavenumber and wave-speed.

Substituting the expressions (6.7) into system (5.1), and transforming the boundary-layer
coordinate Y = Re~'/2y, we obtain the following system of differential equations:

ot + gg = 0, (6.8a)
io(Ug — w)i + vaa% = —iap, (6.8b)
io(Us - w)p = -g—g, (6.5¢)
—ia(Ug — w)é + vaaC;f = 0, (6.8d)
subject to the boundary conditions
90)=0; 9 =0 as Y — co. (6.9)

We should note that the momentum and continuity equations are decoupled from the
concentration equation and hence, we will omit it in our analysis. From (6.8d)

s___ i 8Cp
~ o(Us —w) Y

(6.10)

which therefore satisfies

A

¢0)=0;¢—0 as Y = oo.
Thus once 4 and ¥ are determined the concentration disturbance field can simply be
calculated from (6.10).

It is convenient to introduce a stream function o(z, Y, t) such that

0
= %, U= —204Q0
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Upon eliminating the disturbance pressure amplitude p in system (6.8) we obtain the
classical Rayleigh equation

(Us —w)(¢" — a*p) = Ugp =0, (6.11)
subject to the boundary conditions
0(0) = 0; (co) = 0. (6.12)

Here Ug is the basic velocity component, i.e. the solution of the system (6.5) with the
boundary condition (6.6), « is a non-dimensionalised wavenumber, w is the corresponding
wave-speed and ¢ is the amplitude of the disturbance stream function.

Rayleigh equation (6.11) is the vorticity equation of the disturbance. Together with its
boundary conditions (6.12) it defines the basic eigenvalue problem for our boundary-layer
flow leading to an eigenvalue relation of the form

F(a,w) = 0.

6.2 Numerical analysis

In this section we shall discuss the numerical algorithms and finite difference scheme used
to solve the problems described in the previous section.

6.2.1 Semi-implicit Crank-Nicholson scheme

The system of equations (6.5) with inhomogeneous boundary conditions (6.6) cannot
be solved in self-similar form. We must therefore solve this system of parabolic partial
differential equations using a numerical scheme that, given some suitable initial condi-
tions, allows us to obtain the solution in the streamwise (z) direction. To facilitate this,
and also to adequately account for boundary-layer growth, we employ the Levy-Lees
transformation (see Blottner (1975))

£&(z) =z, n(z,Y) = ﬁ (6.13)

In this case system (6.5) is transformed to

2 =0,

B¢ o "o n

2——— a 2 2€UB 6§ nUB—a-”—?— — 2§ VB an 0, (614)
2 3203 acB 5Cs _ 12y, 0Cn
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This system can be further simplified by introducing new dependent variables

F=Us, V==3nF+£/Vs, 0=, (6.15)
to give
§—§+23V +F =0, (6.162)
8°F , OF _OF
o~ F g~V =0 (6.16b)
1 6°G 0G _,8G _

Under this transformation the boundary conditions (6.6) reduce to

0 for { S fle
F=0,G=1,V=4 —0Sc'G, for§,<&<&, on n=0; (6.17)
0 fOI‘ f Z Ete

F—-1,G—>0 as n— .

As system (6.16) is parabolic in ¢ we must supply appropriate initial conditions in order
to start the numerical solution. Setting & = 0 in (6.16), and the boundary conditions
(6.17), and defining

F(n)=f(n), V(n) = —%f(n), G(n) = g(n), (6.18)

we find that f and g are solutions of

Seir=0 (6.19)

1
"t n __ I

subject to the boundary conditions:

f(0)=0, f(0) =0, g(0) =1; (6.20)
f'(00) =1, g(c0) = 0.

Thus the initial condition is taken to be a solution of the Blasius equation for f, together
with the solution of the concentration equation for g. This system was solved using a
standard fourth-order Runge-Kutta quadrature routine coupled with Newton iteration
to determine the values f”(0) and ¢'(0) for which the boundary conditions (6.20) are
satisfied. We note at this point that there is no coupling between the concentration and
momentum fields at the start of our numerical integration. This is due to the fact that,
in applying the boundary condition f(0) = 0, we are implicitly assuming that the region
of active diffusion (that is, the slot position) is within the region £ > 0 (i.e. & > 0in
(6.17)). For completeness solutions of system (6.19) with boundary conditions (6.20) are
presented in Figure 6.2.



151

Similarity solutions f{(7n) and g(mn)

f(n)

©
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.
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T
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Figure 6.2: Graphs of f'(n) and g(7) versus 7, for the case of no diffusion (i.e. 8 =0
upstream of the “slot” region).

In order to solve (6.16) - (6.17) numerically we apply a semi-implicit Crank-Nicholson
scheme which is unconditionally stable and second-order accurate in A¢ (see Fletcher
(1988) for details). In order to achieve second-order accuracy in £, the Crank-Nicholson
scheme requires a second-order treatment of the non-linear convection terms. This will
be achieved by iteration at each downstream location.

We employ the following uniform-grid, finite-difference discretisation

OF 1,
5 " ZE(FJ' - F}),

oF 1 o n "

% - 4An [ Fii, — FL 1)~ (F11++11 FJ—+11)] J (6.21)
62F 1 n n 1£ T n k3

7 = A [(Ff_y — 2F} + F2) + (P4 — 2FP + FRAN]

where j denotes the jth grid point in the n-direction and n the nth grid point in the
§-direction. Similar expressions hold for the derivatives of G.

To linearise the system for F™t! V™! and G™*!, to reduce storage requirements, and
to require only one level of initial data, the undifferentiated velocity components F and
V are extrapolated using FJ*' = F + O(Af) and V! = VP + O(A€). In order
to achieve second-order accuracy we must iterate at each downstream location; that is,
the system of equations is solved repeatedly and the iteration is terminated when the
solutions Fy*', G5+, VF*1 do not differ from FF, G%, V¥ in the sense of some initially
prescribed tolerance wh1ch in our case was set to be 10‘ In order to start the iteration
we set F¥ = F7. Convergence of the kth iteration yields the solution at the (n + 1)th
&-step whereupon we set Fntl = e+l
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Applying this scheme to the system (6.16) and its boundary conditions (6.17) reduces
the momentum and concentration equations and their boundary conditions to

momentum equation:

Ich+1 + bka+1 + ckﬂk-:-ll - dk

subject to the boundary conditions

Fy*t =0, Fyknﬁzﬂ =1,
where
1 1
ko _ k
a; = §(1+§Anv;),
o= —1— §"_HAn2pk
I Af VI
1 1
ko k
1, & 1
df = 5 (Ff, —2Ff + Ff) + ZAan (Ff,, -

and concentration equation:

k

PiGE + gf G + rhGEE = W,

with its boundary conditions

Get =1, Gf‘r:tluﬁl—o
where
= 5 (g aem).
g = ‘é_i?A"zF}“l»
t = 3 (5 ).
W = =3 (Gha =205+ 1) + SAnT7 (G -

(6.22)
§n+1 0
F;—l) Ag An (Fn)
(6.23)
§n +1
GE_)) - FATEGE

The resulting tri-diagonal systems of equations can be solved by using a Thomas algo-

rithm, repeatedly solving the equations by applying the

iteration procedure described

above. Once F}'*! and G7*! are available, V"1 is obtained by integrating the equation

of continuity (6.16a) using

Vk:+l Vk+1 F[c+1

s (F;

+ FH + 1y,

(6.24)
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where
] gl /2

5 = a3+ 550,

1 g2 ko ok k_ 1k
—An (Z - A—g) (FF + Fioa) = (V= Vi),

with MY2 = ¢ + 1/2A¢ and V! = —6,Sc™1(—3 + 4G7*! — G2'). Here 6; de-
notes the value of the discretised mass-transfer parameter 6 (see below) at the first grid
point. The combination of (6.22), (6.23) and (6.24) is unconditionally stable (in the
von Neumann sense), robust and efficient; it must be supplemented by a one-level initial
condition to start the marching in the streamwise direction (full details can be found in
Fletcher (1988)). When n = 1 we take F,G and V' to be given by the solution of (4.4)
and (4.5). Because of the anticipated boundary-layer separation we chose a relatively
small step-size in the &-direction (A& = 107%), the step-size in the wall normal direc-
tion being An = 0.01, with typically 3000 points in vertical direction. The criteria for
convergence at each downstream iteration was set to be ||[Ff*! — FF|| < 1077, where

|Ff* = Ffll = S (FF = FP)2.

We now turn our attention to the treatment of the mass-transfer parameter 6. In order
to model a finite region of diffusion (that is, a “slot”) and to avoid any discontinuities at
the slots’ edges we choose a form for § that is piecewise continuous in £. Thus,

i

0 foré <1
eI — &) for1<é<1+ce¢
(&)=< 9 forl+e<é<l+e+1 , (6.25)
—€ (€ - ~2e—1) forl+e+1<EL<1+2+1
0 for§ >1+2e+1

where . is the {-coordinate of the slots leading edge, € is a smoothing parameter, [ is
the length of the slot, and ¥ is the actual magnitude of the mass-transfer parameter 6. A
schematic of this slot configuration is given in Figure 6.3. Other forms for this finite region
of diffusion were also used. However, the results obtained were qualitatively similar to
those for the piecewise continuous profile (6.25); we therefore concentrate our discussion
on “slot diffusion” as modelled by (6.25). This model avoids the ellipticity in the flow
equations which is usually encountered at the leading edge as has been demonstrated
in studies by Stewartson (1974), Smith (1982), Roy (2000) and presents a reasonable
description for a real, finite extent permeable membrane.

In order to monitor the behaviour of the boundary-layer flow we calculate, at each stream-
wise location, the skin-friction coefficient given by

_ 1 (oF
Cf = 51/2 377 8% :

In discretised form this becomes, using a one-sided, second-order accurate difference
formula
0.5

— n n+1
cr= M@Fl - .
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¢ fle “slot” §te f
Figure 6.3: Schematic representation of a “slot” and the mass-transfer parameter 6(¢).

The point of boundary-layer separation &,(z;) is defined by the condition ¢ r=0até =¢,.

6.2.2 Diffusion induced flow instability

We will solve the Rayleigh equation (6.11) numerically by employing a finite-difference
approach. In order to do this we must introduce the new dependent variables (6.15)
into the Rayleigh equation (6.11) with the result that, at each streamwise location, the
stability of the flow is governed by

(F = w)(¢" — a’p) — F'¢ = 0. (6.26)

Focusing our attention on the temporal stability problem, where the wavenumber « is
real and wave-speed w is complex we can rewrite equation (6.26) in the form

Fo" — (Fa? + F") o = w(¢" — ap). (6.27)

The appropriate set of boundary conditions is simply (0) = 0 and ¢(c0) = 0. On infinite
domains, we note that " — 0 (indeed, is asymptotically small as 7 — co) so that (6.26)
reduces to

P — &P = 0. (6.28)
The boundary condition ¢ — 0 as 7 — oo can then be replaced by the more computa-
tionally convenient Robin type boundary condition ¢’ = —ap.

Approximating ¢' and ¢" at the ith node using second-order centred finite differences
allows us to replace the equation (6.27) and its boundary conditions with the finite-
difference equation
Fipio1 — [2U; + An*(Fio® + F') i + Fipipa (6.29)
= wlpi1 — (2+ AP p; + Piv1l,
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where ¢; is the value of the complex function ¢ at 7;. We used a uniform grid with nodes at
mi,t=0,...,N. In order to satisfy ©(0) = 0 we set ¢y = 0 and the boundary condition at
infinity is satisfied by writing (¢nx —@n-2)/2A1 = —apn_1 oFr ox = —2aAnPN_1+PN_s.
Collecting the values of ¢; (i = 1,... , N—1) into the vector ¢ = (1, ¥2,... , PN-2, ON_1)
we can rewrite equation (6.29) in the following matrix form

Ap = wBey, (6.30)

where A and B are square tri-diagonal matrices of size (N — 1) x (N — 1) whose structure
is readily seen from finite-difference equation (6.29). The structure of the matrices A
and B is given in Appendix A.6.

Equation (6.30) presents a complex generalised eigenvalue problem for determining the
eigenvalues w and eigenvectors ¢ at a given wavenumber «. The solution provides a
spectrum of N —1 eigenvalues. We are interested in the eigenvalues w with the maximum
growth rate Im(c), where o = aw, i.e. the first, most unstable, modes.

The complex generalised eigenvalue problem (6.30), where A and B are real, square ma-
trices and w is complex was solved using the QZ algorithm (see Golub & van Loan (1982),
Kerner (1989) for details).

6.3 Skin friction

In order to determine the significance of diffusion (that is mass transfer) in inducing
separation we first consider the case of slot-injection. In this case we ignore the coupling
between the momentum and concentration equations and simply impose a prescribed
level of blowing through the finite slot. In the similar study by Roy (2000), a steady non-
similar compressible laminar boundary-layer flow over a yawed infinite circular cylinder
with nonuniform injection (suction) was studied, where mass injection (suction) occurs in
a small porous section of the body surface. The discontinuities at the leading and trailing
edges of the slot for the uniform injection (suction) were removed by choosing appropriate
nonuniform mass-transfer distribution in the slot as has been done in our study. In
Figures 6.4 - 6.5 the scaled skin-friction coefficient £/ 2¢; is plotted as a function of the
streamwise coordinate &, for different blowing rates 9, for two case studies: slot located
upstream and downstream respectively (£, = 2 and &, = 200). It was found in our study
that an increase in the blowing velocity of the nonuniform slot injection moves the point of
separation upstream, which is in agreement with the results obtained by Roy (2000). It is
seen from Figures 6.4 and 6.5 that in the case of passive slot-injection (“blowing”) through
a slot into the boundary layer, the flow separation is easily achieved, both upstream and
far-downstream, at relatively “moderate” rates of “blowing”, V(¢,0) = 5and V'(£,0) = 10
upstream and downstream respectively.

The results from the problem above (passive blowing) now provide a benchmark against
which the effect of diffusion on the separation process can be quantified (Figures 6.6 and
6.7). We studied two cases, the “slot” located upstream (£, = 2) and far-downstream
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Figure 6.4: The scaled skin-friction coefficient as a function of &, for the case of slot-
injection at £ = 2, | = 3 and € = 1.5 for different values of the “blowing” velocity.
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Figure 6.5: The scaled skin-friction coefficient as a function of &, for the case of slot-
injection at & = 200, I = 3 and € = 1.5 for different values of the “blowing” velocity.

(& = 200) for a slot with length { = 3 and a smoothing parameter ¢ = 1.5. Using
the point of vanishing skin friction as a criteria for separation the skin-friction coeffi-
cient graphs have been obtained for fixed Schmidt number Sc = 1 (corresponding to
a gas-permeable surface system). The scaled skin-friction coefficient as a function of
the streamwise coordinate ¢ is plotted in Figures 6.6 and 6.7 for different values of the
magnitude ¥ of the mass-transfer parameter 6.
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Figure 6.6: The scaled skin-friction coefficient as a function of £, for the case of diffusion
driven flow at &, = 2, ] = 3 and € = 1.5 for different values of ¥, the magnitude of the
mass-transfer parameter 6.
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Figure 6.7: The scaled skin-friction coefficient as a function of &, for the case of diffusion
driven flow at &, = 200, ! = 3 and € = 1.5 for different values of 1, the magnitude of the
mass-transfer parameter 6.

When the diffusion region is located upstream, the results presented in Figure 6.6 show
that boundary-layer flow separation is unachievable within the mass-transfer parameter
interval we used in our calculations. The scaled skin friction coefficient decreases with
an increase of the mass-transfer level over the region of active diffusion but once past
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the trailing edge of the slot it starts recovering towards the Blasius value. In the case
where the diffusion region is located far-downstream, it is seen from Figure 6.7 that flow
separation can occur at high levels of mass transfer; in terms of its magnitude this occurs
at ¥ = 3500. However this value is a very large and unrealistic value for industrial
diffusion processes.

Comparing the results from the passive blowing study with those from diffusion induced
separation we notice that in the case of slot-injection an increase in the level of mass
transfer (i.e. the mass-transfer parameter ¥) moves the point of separation upstream.
Although very large levels of mass transfer are necessary to achieve separation, in the case
of diffusion driven boundary-layer flows an analogous effect is observed. It is clearly seen
that in the case of simple slot-injection separation occurs at lower values of the vertical
velocity V'(¢£,0) (V(&,0) = 6(&)) than in the case of the diffusion induced separation. For
instance, in the case where the slot’s leading edge is at streamwise location £ = 2 for
slot injection boundary-layer flow, separation occurs at ¥ = 5, while for diffusion driven
separation at this value of the magnitude of the mass-transfer parameter the scaled skin
friction is only mildly effected. This phenomena can be explained by noting the different
mechanism of “blowing” in the case of non-linear mass transfer over a finite slot. Here
the “blowing” velocity is not prescribed as in the case of slot-injection. In the diffusion
problem the boundary-layer equations (6.16a,b) are coupled with the convection-diffusion
equation (6.16c) through the boundary condition for the vertical velocity on 1 = 0 over
the slot. In order to calculate the “blowing” velocity the convection-diffusion equation
(6.16c) must be solved at each streamwise location, the concentration and the velocity
fields affect each other and this interaction serves to allow the boundary-layer flow to
adjust, so as to inhibit separation.

The “blowing” velocity V(,0) as a function of the streamwise £-coordinate at different
mass-transfer rates ¥ are shown in Figures 6.8 and 6.9, for the diffusion driven flow. Here
we find large velocity gradients at the leading edge of the “slot”, thereafter the vertical
velocity at the wall rapidly relaxes to a moderate value at the trailing edge.

We can make some comments on trends which appear in our results. Generally speaking,
increasing the mass-transfer parameter 6 for a fixed slot length shifts the separation point
from the vicinity of the trailing edge to that of the leading edge of the mass-transfer region.
Different lengths of this region have also been explored. One such result is presented in
Figure 6.10. Here it is evident that increasing the slot length (in this case ! = 30) causes
flow separation to occur at lower values of the mass-transfer parameter.

It is interesting to see from Figure 6.11 that the boundary layer far-downstream recovers
the form of the classical Blasius flat plate flow (i.e. the skin friction recovers to that of
the classical Blasius one ¢ oc 1/€1/2).

The absence of a pressure gradient and the fact that the concentration is unknown sug-
gests that the boundary-layer flow does not encounter the classical Goldstein singularity
at the point of separation. This can be attributed to the boundary conditions which
allow the flow to adjust so to remove, or inhibit, the singularity. This conclusion is in
general agreement with Catherall & Mangler (1966) who demonstrated that if the pres-
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1.0

Figure 6.8: The vertical velocity V'(¢,7) at the permeable surface (n = 0), for the case of
diffusion driven flow at £, =2, =3 and ¢ = 1.5.

V(¢0)

200 201 202 203 204 205 206

Figure 6.9: The vertical velocity V(§,n) at the permeable surface (n = 0), for the case of
diffusion driven flow at &, = 200, =3 and ¢ = 1.5.

sure gradient is prescribed, then the boundary-layer separation will result in a Goldstein
separation. In our numerical calculations the “blowing” velocity is prescribed as a regular
function of the distance and the the concentration gradient along the surface, which is
calculated from the solution of the concentration equation. This we conjecture leads to
flow separation without the occurrence of a singularity. In order to verify this further
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Figure 6.10: The skin friction as a function of £ for “large-slot”, located far-downstream
(& = 200, I = 30 and € = 1.5).
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Figure 6.11: The recovery of skin friction downstream of the slot (£, = 2, I = 3 and
e = 1.5).

analytical studies must be undertaken.

The velocity profiles F, V, the concentration profile G' and the second derivative of F
with respect to 7 at the surface F"(0,7) are given in Figures 6.12 and 6.13 at different
streamwise locations £ = 2, 3.5,4.5,6.5and 9 = 1,1 =3, ¢ = 1.5 and &, = 2. It is
clearly seen from these figures that at streamwise locations £ = 3.5, 4.5, 6.5 the velocity
profile F' has an inflection point. This in turn suggests that the action of diffusion may
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Figure 6.12: The velocity profiles F' and V at different downstream locations § =
2, 3.5, 4.5 and 6.5, for the case of diffusion driven flow at §, = 2, 1 = 3, ¢ = 1.5
and 9 = 1.
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Figure 6.13: The concentration profile G and the second derivative of F' with respect to
n at the surface F"(0,7n) at different downstream locations £ = 2, 3.5, 4.5 and 6.5, for
the case of diffusion driven flow at &, =2,l=3,¢=1and ¥ = 1.

lead to a potential early transition-to-turbulence due to the flows susceptibility to short
scale, high frequency, Rayleigh waves. This is the subject of the next section.

6.4 Growth rates curves

We now turn our attention to the question of the inviscid instability of the diffusion slot-
boundary-layer flow. The growth rate o; = aw; was calculated by solving the eigenvalue
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problem (6.11) with boundary conditions (6.12). This was done at different values of the
mass-transfer parameter 6, at several streamwise locations over the slot. The results are
shown in Figures 6.14 - 6.16.
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Figure 6.14: Graphs of the imaginary part of the wave-speed w; and growth rate o; with
respect to the wave number « in the unstable regime for a diffusion driven boundary-layer
flow for several values of the magnitude of the mass-transfer parameter 6 over the “slot”
at £ = 3.5.
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Figure 6.15: Graphs of the imaginary part of the wave-speed w; and growth rate o; with
respect to the wave number « in the unstable regime for a diffusion driven boundary-layer
flow for several values of the magnitude of the mass-transfer parameter 6 over the “slot”
at £ = 4.5.

In Figures 6.14 - 6.16 we present plots of the dimensionless imaginary part of the wave-
speed w; and dimensionless growth rate o; for the unstable normal modes. These results
demonstrate that at a fixed streamwise location &, increasing the level of mass transfer
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Figure 6.16: Graphs of the imaginary part of the wave-speed w; and growth rate o; with
respect to the wave number « in the unstable regime for a diffusion driven boundary-layer
flow for several values of the magnitude of the mass-transfer parameter 6 over the “slot”
at £ =6.5.

leads to an increase in the maximum of the dimensionless imaginary part of the wave-
speed, dimensionless growth rate and wave number « respectively. For instance, at £ =
3.5 in the case of “blowing” with mass-transfer parameter 9 = 1 the maximum growth rate
is 0.00425 at wave number 0.1408, while for ¥ = 10 the maximum growth rate is 0.03016
at wave number 0.2780. The growth rate curves were calculated at different streamwise
locations at a fixed value of the mass-transfer parameter and going downstream the
maximum value of the dimensionless imaginary part of the wave-speed and dimensionless
growth rate increases. For example at £ = 6.5 and ¥ = 10 we have 0; ez = 0.03226. The
unstable bandwidth increases at fixed location as we increase the level of mass transfer,
ie. at £ = 3.5 and 9 = 1 it is 0.2292, while at ¥ = 5 the unstable bandwidth is 0.44.
At small, fixed values of the mass-transfer parameter the unstable bandwidth increases
downstream: at 9 =1 and £ = 3.5 the unstable bandwidth is 0.229, while at ¥ = 1 and
£ = 6.5 it is 0.2555. At large, fixed values of mass-transfer parameter we observe the
reverse effect: at ¥ = 10 and £ = 3.5 the unstable bandwidth is 0.540, while at ¥ = 10
and £ = 6.5 it is 0.516.

It is clearly seen that even at small levels of mass transfer (9 = 1) the boundary-layer
flow becomes unstable. Results for the second and third modes yield growth rates that
are sufficiently small to allow us to conclude that the instability of the boundary-layer
flow will be dominated by the first mode.

Graphs of the wave-speed w, versus the wave number « in the unstable regime for a
diffusion driven boundary-layer flow for several values of the mass-transfer parameter
over the “slot” at different streamwise locations £ are presented at Figures 6.17 - 6.19.

Note that our results do demonstrate some grid dependency, as the comparison of the
graphs of the growth rate o; = ow; with respect to the wave number o for different
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Figure 6.17: Graphs of the wave-speed w, with respect to the wave number « in the unsta-
ble regime for a diffusion driven boundary- layer flow for several values of the magnitude
of the mass-transfer parameter § over the “slot” at £ = 3.5.

Figure 6.18: Graphs of the wave-speed w, and with respect to the wave number « in
the unstable regime for a diffusion driven boundary-layer flow for several values of the
magnitude of the mass-transfer parameter 6 over the “slot” at £ = 4.5.

values of the vertical step size An at £ = 3.5 and ¥ = 1 plotted in Figure 6.20 show. This
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Figure 6.19: Graphs of the wave-speed w, with respect to the wave number ¢ in the unsta-
ble regime for a diffusion driven boundary-layer flow for several values of the magnitude
of the mass-transfer parameter @ over the “slot” at & = 6.5.

is, however, confined to the vicinity of the point of neutral stability; the results for the
maximum growth rate showing little variation with step-size An. The results presented
in Figures 6.14 - 6.19 were obtained using An = 0.05 with 200 grid points.

For completeness the growth rate curves were calculated for the case when the diffusion
region is located far-downstream at £ = 203. The results are analogous to the slot
located upstream for the growth rate curves (see Figures 6.21 and 6.22). The results
for the wave-speed w, presented in Figure 6.22 show that it has maximum, whose value
increases as we increase the level of the mass transfer (at £ = 203 and 9 = 150 the
maximum is Wy mez = 0.24911 at a = 0.663, while at £ = 203 and ¥ = 1057 it is 0.26696
at o = 0.697).
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Figure 6.20: Comparison of the graphs of the growth rate o; with respect to the wave
number « for different values of the vertical step size An at £ = 3.5 and ¢ = 1.
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Figure 6.21: Graphs of the imaginary part of the wave-speed w; and growth rate o; with
respect to the wave number o in the unstable regime for a diffusion driven boundary-layer
flow for several values of the magnitude of the mass-transfer parameter 6 over the “slot”
at & = 203.
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Figure 6.22: Graphs of the wave-speed w, with respect to the wave number « in the unsta-
ble regime for a diffusion driven boundary-layer flow for several values of the magnitude
of the mass-transfer parameter 6 over the “slot” at £ = 203.
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Conclusions

The crucial assumption made in the present research is that separation occurs down-
stream of the slot leading edge. With increasing rates of injection it is probable that the
separation first occurs upstream of the slots’ leading edge and the proposed boundary-
layer equations, and consequently the numerical scheme, break down. It was for this
reason that our study of the slot-injection problem was carried out within the weak or
moderate injection regime.

Diffusion induced boundary-layer separation can occur far-downstream at high mass-
transfer parameters 8. However the levels of the interfacial mass transfer at which
boundary-layer separation is observed are very large and hardly achievable in practice.
In the case when the slot is located upstream, separation does not occur. It is impor-
tant to draw attention to the different physical mechanism of “blowing” for the diffusion
driven boundary-layer flows, where the velocity and concentration fields are coupled in the
boundary conditions over the slot length, which in turn serves to inhibit flow separation.

The higher the mass-transfer rate, the nearer the separation point is to the leading edge
of the slot. Increasing the length of the slot leads to flow separation at a lower level
of mass transfer. There is a distinct similarity between the simple “injection” induced
separation and the d