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ABSTRACT

This thesis is concerned with the factorg affecting the performance of pulse echo

systems for target localization. Such systems locate a target by estimation of its range

and bearing. The thesig is chiefly concerned with situations where Doppler effects are

negligible because the relative veÌocities of receiver, target and scattererg with respect

to the transmitter are all small.

In this context, th¡ee performance indicators are derived which together can be

used to analyze the performance of such a system. By this means, the performance is

related to the transmission path characteristics and the energy spectrum of the signal

transmitted. Optimal spectra are derived with respect to several performance criteria

and their theoretical performances are compared. The theoretical aualyses are backed

up by computer simulation results.

lffhen the transmission path characteristics are variable or uncertain due to es-

timation error, a robust system may be required. It is shown that the jointly optimal

signal and receiver with respect to a minimær robustness criterion are optimal for a

least-favourable transmìssion path within the class for which the optimization is being

performed.

The performatrce of gated marcimum likelihood ranging systems are analyzed to

determine the effect of gate width on performance under various conditions. In partic-

ular, adaptive systems in which the gate width is coupled to estimated tracking error

are analyzed to determine the optimal ratio of gate width to tracking error. A new

conditional M.A.P. estimator is then derived which uses the same information but in

an optimal way. Iu particular, the prior information, in the form of a ntnge prediction

and a prediction error estimate, is used in a way that minimizes the additional spurious

information used. This is done by constructing the conditional prior probability density

ii
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function according to a mæcimum entropy criterion. It ig shown that Euch a system

is highly practical, particularly for digital implementation. The performances of vari-

ous systems are compared by simulation under various conditions and the conditional

M.A.P. estimator is shown to consistently yield best performance.

Finally, a case study is undertaken in which robust system optimization and

conditionat M.A.P. estimation are used. Details of the design of a real time digital

system using a linear array of modern signal processing microcomputers are presented.

This system was designed for use iu robotics experiments for research into automated

sheep shearing.
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Bilbert transform of correlation function.

Target path transfer function in transmission path model.

Clutter path transfer function in transurission path model.

Noise power spectrum.

Tlansmitted aignal.

Fourier transform of transmitted sigual.

Power spectral deusity of constant envelope signal.

Duration of signal.

Signal bandwidth.

Autocorrelation function of the signal.

Fourier transform of compressed target echo.

Power spectrum of compressed interference.

Inherent detection threshold.

Echo delay estimate variance.

Expectation of ?.

Echo delay estimate variance with informative carrier.

Second moment of echo energy spectrum after whitening.

Antenna gain.

Distance from antenna.

Energy densiþ at digtance, r, from the antenna.

Aperture field polarized in the ø direction.

Effective aperture area.

Second moment of transmitted signal spectrum.

Power of a constant envelope signal.

Effective antenna gain.

Angle of signal arrival relative to the broadside direction.

Delay between signal arrival at adjacent sensors.

Echo delay at sensor, i.

Sensor separation.
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Ililbert transform of target echo.

Analytic representation of target echo.
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Clutter autocovariance function.

Single-sided Noise power spectral density.

flequency band of interest.
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Signal uncertainty class.

Interference uncertainty class.

Receiver filter transfer function.
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,ectíon 1.0 Gene¡dl Remo¡ht

1. INTRODUCTION

$f.O General Remarts

This thesis is concemed with the optimality of signals, receivers and estimation

algorithms for echo-locatiou. For the pu{poses of this thesis, an echo-location system is

any system that aids in the location of a target by transmitting a signal and extracting

information from the echo received. The target may be an isolated object within the

medium or it may be an arbitrarily defiued region within a target eurface. The echo-

location system may estimate the range and bearing of the target or just the range of

any target at a given bearing or the bearing of any target at a specified range. (In the

case of focussed systems, the system would typically estimate the range of a target in

the focal region).

It is over thirty years¡ since Woodward published his famous analysis [z'11 of these

problems. Today, however, there are many relatively new, or emerging, applications of

echo-location systems. These include surface imaging systems for robotics Il'1]' medical

[l'21, industrial [l'31, and geophysical ll'11 applications; and ground-probing t"¿tt= fl'51.

These are often characterisiically different from those that were the subjects of much

earlier research. In contrast to more conventional radar and sonar applications, the

transmission paths may be complicated by highly coloured absorption properties of the

media and by high scattering densities giving rise to low signal-to-clutter ratios. At

the same time, Doppler effects are often negtigible while the clutter is (at least locally)

statistically stationary with range. However, the transmission path characteristics may

be subject to a significant degree of variation within the one application.
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It was in relation to such an application that the author was motivated to ta,ke a

fresh look at relevant coucepts in estimation theory and to develop a new, comprehensive

approach to signal design for a restricted class of conditione relev¿nt to some of these

new applications.

Because this thesis covers a rather broad scope of sub-topics, a comprehensive

literature review will not be undertaken in detail, here. Instead, each topic will be

introduced, with a literature review, in the relevant chapter within the body of the thesis.

This chapter, therefore, will be short and restricted to a more general introduction of

the sub-topics and the reler¡ant contexte.

Several theorems appear in the text, the proofs of which are rather involved.

Those proofs have therefore been provided in appendices which follow all the text.

Other appendices contain computer program listings. The appendix numbers are the

same as the reler¡ant chapter numbers.

L-2
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$f .f Maximum LiLelihood Estimatio¡

Chapter 2 is basically a review of signal parameter estimatiou theory as it applies

to echo-location. In particular, the factors affecting the performance of gøted møzimum

tikelihoott (GMt) systeme are discuseed. In some ¿neas, however, established theory has

been extended in order to derive fundamental indicators of performance that may be

used in later chapters for performance analyses and comparisons and for optimization.

For basic theory and fundamental concepts, the author has drawn heavily on

the early radar theory of \iloodward [2'r,2'21 and Daviet [2'21 to¿ from some of the many

excellent texts now availaS¡. [2'3'2'4'2'51.

The form of transmission path model used exclusively in this thesis is introduced

in chapter 2 and is taken from the publications of Kooij I2'?l and Moose [z'ol' The concept

of local stationarity of the interference waveform, as interpreted by Moose [2'61, is also

adopted here. However, a less restrictive criterion for local etationarity is justified in

section 2.3.

The detection index, first introduced by Woodwut¿ lz'tì under a different name'

is adopted asr an indicator of detection performance in sub-section 2.4.1. Threshold

effects related to signal detection and ambiguity are also discussed in sub-section 2.4.1'

but the signal ambiguity problem is discussed in much more detail in chapter 3.

The e>cpression for range eetimate variance first derived by Woodward [2'11 and

later showu to conespond to the Cramer-Rao lower bound on estimate variance [2'3'2'{l i.

adopted a,s an indicator of range estimate accuracy in sub-section 2.4.2. Other bounds

on range estimate va¡iance are also discussed in some detail. In particular, the role

of carrier phase in range estimation is discussed, with reference to the early work of

Woodward and Davies [2'21 aud to the much more recent work of Ziv and 2u¡"¡ lz't6l

and of Weiss and Weins¡.io lz'tzl.

A good deal of original work is presented in sub-section 2.4.3 with the result that
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a fundamental indicator of transverse resolution is derived. This performance indicator

is applicable whether the system is designed to estimate bearing or not. It is ehown to

be closely related to antenna gain and to bearing estimate variance.

The approach taken by Dvans and Kong [2'ttl, io deriving an expression for

the gain of a wideband autenna is combined with the philosophy adopted by Bryant

and Bogner fl'll in order to derive an indicator of transverse resolution performance

that takes into account the signal spectrum and the transmission path characteristics.

This same indicator is then derived, via a totally independent route, as an indicator of

estimate variance for an active bearing estimator.

As a by-product of this analysis,, the forrr of an active ML estimator of bearing

is derived. This estimator is identical to that obtained by Arques [z'tsl 5t a different

analysis and, of course, it is very different to the passiae bearing estimators of more

recent autbors |12.12,2.13,2.111 .
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!f.2 Sienal Optiniration

The topic of signal optimization is the subject of chapter 3. The technique

developed is comprehensive in the seuse that it provides a unified approach to signal

optimization in the conterct of those types of application that are the chief concern of

this thesis.

It incorporates several relevant criteria in a way that allows the designer to

provide emphases that reflect the demands of his particular application. The approach

is partty inspired by the work of Kooij [2'71 and Moose lz'ol in the late 1960's and early

1970's. Eowever, as well as their criterion of mozimum d.etection inder, the author

employs two others related to range accuracy and transverse resolution. The foundations

for this work were laid in chapter 2 where fundamental indicators of performance were

derived.

Chapter 3 begins with a review of established signal optimization criteria and

approaches in section 3.0. The aim is to show that the more usual approaches taken in

the frelds of radar and sonar are not efrcacious when Doppler effects are negligible and

trausmission path characteristics are more extreme.

The use of ambiguity functions in signal design is discussed with particular refer-

ence to the work of \iloodw"t¿ [2'11, who introduced the ambiguity function. Referencee

are also made to the particularþ lucid developments of the concept in a text by Eel-

strom [3'll. The extension of the concept to cover wideband systems, where Doppler

effects are more complicated, is discussed with reference to a paperby Bates [a'zl. The

ways in which ambiguity functions can be used in signal design are discussed in sub-

sections 3.0.2 and 3.0.3. The mathematical basis for this approach is treated explicitly

in sub-section 3.0.3, following the treatment in [3.a]. Reference is made to a number of

papers [3'2-3'61 in which a variety of optimization criteria are employed.

In sub-section 3.0.4, the works of Kooij lz'?l and Moose [2'61 con.erning signal

l-5



,ection 1.2 Signal Optimizotíon

optimization ¡tccording to a detectability criterion are discussed. The attractiveness of

their approach is pointed out iu gub-section 3.0.5 and the need for its generalization to

alteruative criteria is argued. A multiple-criteria approach is advocated.

Section 3.1 deals with signal optimization with respect to the simple criteria of

mutimum detection ind,e4 minimum estimøte aø¡iønce and neasimum t¡ansoerse ìes-

olution ind,es. The solutions are given in the form of three theorems. In section 3.2,

the performances of systems employing signals optimized according to these differeut

criteria a¡e compared theoretically.

Chapter 3 concludes in the development of a technique for combining all three

criteria in a mixed criteria optimization approach. This method involves an overall

strategy for signal optimization in which priorities can be assigned to three perfor-

mance constraints such that the higher priority constraints muet be met before the

remaining performance criteria become effective. The use of this approach ig illustrated

by examples taken from the authors orperience with ultrasonic sensing through wool

and these are backed up by simulation results in chapter 5.

Because sections 3.1 to 3.4 deal with optimization of signal power spectra only,

an additional section at the end of chapter 3 is devoted to the topic of sigual waveform

desigu. That is, the problem of designing a coustant envelope waveform with a specified

power spectrum is addressed. The pioneering work of Price 
"tr 

¿ lo'ttl is eldended to

allow arbitrary apectra to be accomodated by means of non-linear chirps.

1-6



eectíoî 1.3 Robu,ot Syelem Optímizatíon

$f.3 Robuet System Optimi¡ation

Chapter 4 is devoted to the problem of jointly optimizing the signal and receiver

filter according to a robustness criterion when the transmission path characteristics

are variable. The criterion ueed relates to detection performance only. The author'e

approach is related to the game-theoretic approaches uaed by other authors [l'{-a'81 1ot

the robust optimization of ûlters. However, the problem in this case is complicated

by having higher dimensionality and more complicated uncertainty class specifications.

Nevertheless, a mathematical solution is presented in chapter 4 and solution techniques

are described with the aid of a practical ercample in chapter 6.
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$1.4 Conditional MÂP Estimation

The main thrust of chapter 5 is towards the development of a conditioual malci-

mum a-posteriori probability (MAP) estimation algorithm as an augmented form of the

well-known gated maximum likelihood (GML) eetimator l2't-2'11. Firstly, an optimum

form of the GML estimator is presented in which the gate width is related adaptively

to the estimated error of the target tracking process. Then, a conditional MAP egtima'

tor is derived that uses the same target tracking scheme with the target tracking error

egtimated in the same way. This conditional MAP estimator is designed according to a

minimum information (or marcimum entropy) criterion. Several systems are compared

in performance over a variety of conditions by means of simulations.

As a by-product of these simulations, many of the tbeoretical results of chapters

2 and 3 are veriûed empirically.
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$1.6 Âcoustic Seneing Through Fleece

Chapter 6 is a case study in which aD application of conditional MAP eetima-

tion and robust system optimization is described. The system optimizatiou problem

is worked through, starting with techniques for constructing transmiesion path models.

The system design ig outlined and details are given of the multi-processor based design

of the digital signal processing hardware.

The application descúbed in chapter 6 has beeu the focus of the author'e research

over tbe past several years. Details of some of that research are described in [t.t] by the

author in collaboration with Prof. R.E. Bogner. Thig application ig very different from

historical applications of echo-location. The application is focussed surface imaging at

short range through wool. The target surface, the skin of a live sheep, is to be sensed

at high speed for control of a shearing robot.

This application involvea several elemente that are common to many of the emerg-

ing applications. The system is for surface imøging as a form of. ¡obotic sensing. It oper-

ates throu gh a highly absorptiu¿ medium and the target is to be detected in the Presence

of. intensc interfering baclæcotter from scatterers in the medium. This unwanted clutter

is characterized by locøt støtisticsl atøtionority with respect to ronge in the region of

the target. Eowever the úraræml'ssdon path chørocteristics are highly aariøble so that a

robust system design is necessary. Fiually, the relative velocities between trausmitter,

target, scatterere and receiver along the beam a>ris are very small go that Doppler efrects

ørc negligible.

The characteristics of this problem itaticized iu the previous paragraph differen-

tiate it from the more conventional applications of echo-location. Eowever, some are

shared by many of the emerging applications. It is to be expected, therefore, that the

theoretical and practical solutions presented in this thesis will be reÌevant to the design

of many other contemporary applications of echo-location.
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2. M.â,XIMUM LIKELIEOOD ESÎIMAÎION

$2.O Introductory Remarks

The most fundamental approach to problems in detection and estimation is that

which Woodward l2'r,2'21 named lhe method ol inuerse probøbilrty. Generally, we have

an effect and we are attempting to disce¡¡ sonre aspects of the causal mechanism. We

have a parameterised model for that mechanism and we attempt to ascertain the most

probable values of the parameters that have resulted in the observed effects.

This technique is known ¿s Mo,rimum A-posteriori Probaórlrfy (MAP) estimation

and represents the ideal parameter estimation technique. It turns out that to use this

technique we need to know the o-pnorr probability distribution of the parameter to be

estimated and this is often a stumbling block.

When such information is not available it seems natural to make an estimate

by assuming a uniform prior probability. The corresponding technique is known as

Maximum Likelihood (ML) estimation [2'1,2'?'?'3,2'{1. A modification of this approach is

often used in which the parameter to be e-stimated is assumed to lie within a certain

regiou or gatel2'r,2'2,2'3,2'al. This method goe-s by the name, Gated, Mø¡imum Likelihood

(GML) estimation.

This chapter will review what is knorvn about these estimation techniques in

order to obtain the structures of GML estiruetors and to gain insight into the factors

affecting their performance. In some areas tbis knowledge will be extended by original

work. This new work will be found in sectic'ns 2'3 and 2.4.
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Firstly, $'e shall consider the structures of the estimatorg and then we ghall move

on to obtain three performance iqdicators which indicate the goodness or badness of

certain aspects of expected system performance.

Since these indicators depeud ou the signal design we will be able to use them

as signal optimisation criteria in chapter 3.
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$2.f The Maximum Likelihood Egtimator of Range

For completeness we briefly review the established principles of ML estimation.

Putting the ideas of the previous section into mathematical form, we denote the received

waveform by ø(t). We assume that this received signal consists of a delayed signal, the

target echo, which has been corrupted by additive interference:

x(t)-r(t-rs) +r(ú) (2.r )

The interference, d(t), consists of two statistically independent and jointly normal

random components, c(ú) and n(ú) known as clutter and noise, respectively. These

components are generated by different mechanisms and these important differences will

be examined later.

Now, r(ú) is a known deterministic sigual and it is only the presence of interference

which prevents us from determining r precisely from x(t). Because of the interference

the value of r is uncertain but we can describe it by its posterior probability density,

p (rlr(t)).

Now from Baye's rule we have:

p(r, r(t)) : p(r(ú))p (rl z(t) )

: p(r)p(ø(t)lr).
(2.2)

IIence:

p(rlø(t)) : ffio(r(t)lr). (2.3)

The left hand side o1 2.3 is the posterior probability of r and we would like to choose

our estimate, î, to be that value of r which maximises 2.3.

The denominator of the first factor on the right tells us nothing about r. It is an

uninformative constant and may be ignored. The numerator of that factor is the prior

probability density which is often unavailable.
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The second factor in 2.3 is knorvn as the likelihood lunction of r given ø(ú). lVhen

consiclered as a function of r it is not a probability density. It is given the special name,

"likelihood", because, in the absence of prior information it indicates the likelihood that

received lvaveform includes a target echo delayed by r'

lVe see from 2.3 that when a uniform prior probability is assumed, the approxi-

mate posterior density so obtained is simply a scaled version of the likelihood function.

The approximate MAP estimate given by the peak of this function is, therefore, the ML ,

estimate of delay.

The usual assumption made in respect of the prior probability is given by

p(r\ :
const, Vr : I -W12 < r <r +W12

0, otherwise,
(2"4)

(2.5)

(2.6)

where i is the prior expectation of r and 17 is the width of the range gate within which

r is assumed to lie.

The way to obtain a GML estimate is to generate an analogue of the log of the

likelihood function, LL (rln(t)), within the range gate and locate the peak. We generate

the log likelihood function (LLF) because it is relatively easy to do so and this function

is monotonic with the likelihood function itself and therefore the peak of the LLF occurs

at the same value of r.

It is well known 12.3'2'41that the LLF of delay in the presence of normal interfer-

ence is given (apart from uninformative constants) by:

LL(rln(t\) - n(t)q(t, r)dt,

where q(ú) is a correlation reference function defined by the Fredholrn integral:

Ë

r(\-r)= þ;;(tutz) q(tz,r) dt2,
,|_

where ö¡;(tuú2) is the known interference autocovariance, E {t(úl)t(¿z)} . A correlation

processor is also obtained in [2.1,2.2] for the more restrictive case of white interference.
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Fig. 2.1 illustrates the nature of the signal component in 2.5 given by:

where rs is the true delay and r is hypothesized delay. \ile see that this function consists

of an oscillation, or cørrier component under a more slowly-varying envelope. In most

applications, the signal, r(ú), is a relatively narrowband sigual and the carrier varies

much more rapidly than the envelope. When we pick the peak of this signal we use two

sources of information, the envelope shape and the carrier phase.

Now, iu order for the carrier phase information to be reliable it can be shown

that the ratio of the peal< signal component in 2.5 to the RMS interference component

must exceed a certain rralue. Otherwise interference may cause peaks of 2.5 near to the

envelope peak to exceed the true peak at the envelope pea,k. Clearly the peak-signal to

rms-interference ratio below which this can occur depends on the relationship between

the rate of change of the envelope near the peak and the carrier frequency. We denote

the square of the peak-signal to rms-interference ratio by S. The requirement for D is

obtained in reference [2.5] as:

(æ)'/' ,, #, (2.8)

where /s is the carrier frequency and B is the signal bandwidth. Precise mathematical

definitions of these quantities will be presented later.

In practice, in the majority of cases, 2.8 is not met. Furthermore, the carrier

phase information is often not preserved at the receiver becauge of phase errors result-

ing from reflection from an uneven or inclined target surface. Iu these circumstances

the carrier phase should be treated a¡¡ an uninformative parameter and averaged out

l2'1,2'2,2'3,2'al. The resulting expression replacing 2.5 is [z'sl¡

rs(r) - I_: r(ú - rs)q(t,r)dt (2.7\

LL(rll¿(¿)1, : lI- -r(t)q'(t,r)dt (2.e)

where ã(ú) and q-(ú) are the complex analytic representations of ø(t) and q(t) respectively
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Now, if the interference ie stationary, then 2.6 becomes:

r(ú1 - r): O;; (úr - tz) q(t2 - r\ dt2, (2.10)

where the autocovariance, ö;;(hrt2) , has been replaced by the equivalent autocorre-

lation function,,iÞ;;(úr -ú2) and q(tz,r) now depends only on the difference, (tz-r\.

Equation 2.10 is a convolution aud it follows that:

(2.11)

where QU), ^R(/) and G;;(1) are the Fourier transforms of q(t), r(ú) and A;;(t) respec-

tively and, hence, G;¡(/) is the interfereuce power spectrum.

It follows that, in this case, 2.5 is equivalent to the two- stage filtering operation

depicted in Fig. 2.2 in which the received waveform is firstly passed through an inter-

ference whitening ûlter a¡d then through a compression filter. The transfer function of

the compression filter is the conjugate match of the transform of the signal output from

the whitening filter.

F,quation 2.9 is equivalent to the same filtering operation followed by an enuelop-

rng operation:

Ë

LL(r ll¿(¿)l): lv(¿) + iú$)1,
f +oo

y(t): I ,$)q(t,r)dt
J_æ

QU):m,

(2.12)
where

and ¡l(ú) is the Hilbert transform of y(t).
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52.2 A Tlo''emiesion Path Model

Fig. 2.3 represents a tra¡smission path model which is appropriate for our anal-

ysis. This model has appeared previously in the literature 12'6'2'Tl in connection with

underwater acoustic ranging and ig sufrciently general for our purPoees.

Now, the restrictions of this model need to be recognised. Firstl¡ we are assum-

ing that the existence of a random field ofscatterers does not cause the target path to be

uncertain. This assumption ig known in the literature as z weøk scøttering assumption

[2'6'2'81. The approach in chapter 4 allows this assumption to be relæred by providing

for uncertainty in the model.

Secondly, we are assuming that the transmission path impulse responses are time-

invariant. This assumption is implicit in the fact that we are using transfer functions

of a single frequency variable. It means that no relative motions between transmitter,

target, scatterers or receiver are allowed. In practice it means that most of the results

derived from this model apply only if Doppler shifts are negligible.

According to this model any transmission path can be fully specified by means

of three functions. ørU) is the transfer function of a filter representing the path of

the target echo. lil"(fl]'is the squared magnitude of the stochastic trausfer function

of a filter representing the combined parallel paths of unwanted echoes from scatterers

other then the target. The output from this filter is known as clutter (or, in relation

to underwater Sonar, reverberation) and differs from the noise in ite dependence ou the

transmitted signal. The noise power spectral density is given by G""(/).

As pointed out in chapter l, this restriction rules out many conventional appli-

cations of active ranging systems in the radar and sonar areast. Ilowever, this approach

is relevant in many emerging applications such as ground-probing radar and surface

imaging systems for robotics, medicine industrial applications and oceanography.
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Now, in terms of the model in Fig. 2.3, we have:

nu) : sU)HrU), (2.13)

c¿;(î) - G,,(l) + G,,(fl lil"(fl|'', ( 2.r4)

and hence

QU):ffi, (2'15)

where S(J) is the Fourier transform of the transmitted signal and will be referred to as

the srgzøl, and Grr(/) is the power spectral deusity of the signal.
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$2.3 Stationarity Conditions

Now, in 2.15, Q(/) depends on lil"(flf and under certain conditions it is pos-

sible to relax the stationarity condition which was applied in deriving 2.10 so that 2.6

becomes:
f+æ

r(tr-ù:l O;;(tr-tz,r)q(tz-r,r)dt2. (2.16)
J_æ

Equation 2.16 represents an approximation which is valid when C.r(t1,ú2) is a

slowly varying function of ú1 with much greater dependence on the differeuce, (h - tz).

Equation 2.16 is not valid when ensemble non-stationarity is encountered. Under these

conditions, the techniques of chapter 4 may be employed.

Recognising that, apart from a range dependence, 2.16 is again a convolution,

we see that:

eu.r\-nq)l!'",". (2.r7)¡' ) - G;;(l,r)

The optimal reference, e(trr), is now a slowly varying function of range, t.e.

q(t,r):q(t-r,î). (2.18)

Now, it can be shown [z'0J that the local stationarity condition , allowing the

approximations 2.16 to 2.18, is met provided that the covariance function, /"" (t1,t2), of

the clutter path impulse response, h"(t), is stationary over at least twice the duration

of the transnitted signal, to a close approximation.

However, this condition is somewhat restrictive in situations where highly dis-

persed wideband signals such as chirps or pseudo-random binary seguences are em-

ployed. We will see that this condition can be considerably rela>red as a result of recog-

nising that it is not the signal duration that is important but the signal bandwidth.

It is well known [z'gl that a signal of bandwidth B and duration T may be

temporally compressed by the factor BT by means of a linear filtering operation. Hence,
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if the transmitted signal, s(ú), is passd through an appropriate filter then its effective

duration can be reduced fo LlB. We have:

O,,(ú - 1) : s(ú) x s(î - ú), (2.1e)

where O"r(ú - ?) is the compregsed signal and the autocorrelation function (of (, - f))

of the original signal. The operator, *, is the convolution operator.

Now,if Orr(ú - î) is transmitted, then, clearly, for local stationarity, the clutter

path impulse response must be approximately stationary over a time period of length

2lB. However, because the clutter path is linear and time-invariant, we can perform

the pulse compression at the receiver and so obtain precisely the same clutter function,

c(t), as if we had transmitted Orr(ú - ?) instead of s(ú). The conditions at the output

of the compression frlter will now be:

ß"(/) -- TG,"(Í)nru\ (2.20)

and

G";¿(Í) : Tcnn(l)G,"(Í) +T (G,,(Í))'l¿(fl1'. @.21)

where the superscript, c, denotes post-compression conditions.

The correlation reference is q"(ú) whoge transform is

Q" u ): 
c",. I ¡¡ *'å "',['r, r H 

"( 
Í)r''

The combined effect of signal compression and correlation with q'(ú) is equivalent to

correlation with the reference, g(ú), whose transform is given by:

QU):
s(Í)Hr

G""U) + G",(Í) lË"(t)l

which is just the ML reference given by 2.15. It follows, therefore, that the appropriate

local stationarity condition is given by:

Ó," (t1,tz) æ iÞ". (tr - t2) Vt1 ,t2 : t¡ - t2 < 2l B.
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$2.4 Performance Indicators

It is possible to predict the performance of a ranging system employing ML

estimation. To do so we need to analyse its performance iu three separate areas. The

ranging system performance will depend on its ability to detect the target echo in

the presence of the interference, to discriminate against interfering reflecting objects

separated from the target in the tranwerse directions (i.e. at right angles to the beam

a>ris) and to estimate the round-trip delay of the target echo. In analysing system

performance in these three areas, we shall identify a number of system parameters which

are indicators of system performance. (That is, performance in each of the three areaÉ¡

is directly, solely and monotonicaþ dependent upon the value of the correspouding

performance indicator if physical aspects of the system and its environment are fixed.)

These indicators will be used as optimization criteria in the next chapter.

2.1.1 Detection Perforrnønce

If a ranging system is to perform any ueeful function at all it muet be capable of

identifying the target echo in the received waveform. Failure to do eo will lead to gross

errors as a result of ranging løJse targets. The probability of this happening ie related

to the value of a system parameter, D, known as the detection index [2'l].

In most ranging systems, target detection is an explicit function of the system

achieved by comparing the gated LLF with a threshold. If the LLF within the gate

exceeds the threshold then target detection is indicated. Otherwise it is not. The prob-

ability of the target not being detected depends monotonically on the signed difference

between D and the threshotd. The threshold is set by the designer in such a way as to

provide the best compromise between the probability of false target detection and the

probability of not detecting the target. The value of the threshold therefore depends

on the costs associated with those two events.

Now we have met D before in equation 2.8 as the square of the peak-signal to rms-
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interference ratio and we will find that it has significance in all aspects of performance.

D may be defined, equivalently, by:

E {LL(rlø(t)) ; r(t - r present\
(2.23)

ø1 LL r Ì t t-r notpresent

However, S has many other physical interpretatris¡¡g [2'tl. It is the v¿lue of the peak of

the LLF. It is the mea¡ squared value of the post-correlation interference and is also

the value of the signal to interference power ratio at the output of the whitening frlter

(see Fig. 2.2) during the period when the signal is present.

It is shown in [2.1] that the probability of ranging a false target (when ocplicit

target detection is not used) undergoee a rapid transition from very low to very high

probability as æ falls below a value known as the detectìon threshold, S2'. Hence,

the probability of false target detection and the probability of not detecting the target

explicitly are both determined by the relationship between E and some threshold value.

The parameter, E, also has significance in communication theory. To see this

we shall take a minor detour. Correlatiou of the received wavefortn with q(t), whose

transform is specified in 2.11, is equivalent to filtering by couvolution with an impulse

response given bV q(-t). That is, the equivaleut filter transfer function is:

æ

(2.24)

Filte¡s with transfer fuuctions related to the signal and interference as in 2.24 (apzrt

from an arbitrary scaling) are kuown as matclæd ûlters and are widely used in corlmu-

nications. It is not surprising, therefore, that threshold phenomena in relation to D are

also observed in communications systems.

trÏom any of the interpretations of I given above it is possible to obtain:

Hu)--m.

w: zr fo* dI
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Woodward [z'll obtains 81 implicitly as:

Dr : 2ln (IYnl p) - 2, (2.26)

where W is range gate width as before znd p2 is the centroidal second moment of the

post-whitening target echo energy spectrum. i.e.

þ':

dl

¡ * t*2 U - Iol2 c, 
" 
UllE r UIlz ¿¡J0 Ga¡(lltGe e(/)lã"(/)1" '

¡- G""(.f)lEr(.f)''
Jo Gnogl+G,,UWîÑdÍ (2.27)

fo- Gno

G""

"' 
(í) c

and,fs - aoo
Jo

G,,(lllírUll'ffi
Here, /e is the centroid of the post-whitening target echo energy spectrum or, in other

words, the tcarrier frequencyn of the target echo.

The parameter, p is an important measure of bandwidth which as¡sumes funda-

mental significance in communicationsl2 'r,2'2,2't01. We will see shortly that both p and

D are of great importance in the analysis of range precision.

There remains another phenomenon to investigate in the area of detection per-

formance. We saw in section 2.1 that the fine structure of the post-correlation signal can

only contribute range information if the detection index satisfres the inequality given

by 2.8. Repeating that here for convenience, we have:

(æ)'/, . #.

We shall refer to the ratio, !Ã * the carrier threshold.

In extreme cases, the envelope itself can exhibit a sidelobe structure about the

main lobe so that it too may be considered to have a fine structure and an envelope.

Ilowever, when we looked at the detection threshold, we tacitly assunred that the en-

velope consisted of a single main lobe and was zero away from the nrain lobe. This

assumption was made by Woodward in deriving equation 2.26.
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The existence of envelope sidelobes contributes ambiguity in that a sidelobe may

be mistaken for the main lobe if the difference between their peak magnitudes is not

sufficiently greater than the rms value of the interference. In situations, also, where the

clutter is range-dependant, the existence of sidelobes may increase the rms interference

near the peak of the main lobe. However, for reasons which will be discussed in chapter

3 we can avoid explicitly considering that difficulty.

However, no simple inequality such as 2.8 can be derived for application to this

problem. Its analysis is considered in detail in chapter 3 and it will be seen that it does

have repercussions on the desigu of signals.

2.4.2 Range Accuracy

The variance of the range estimate under the assumption of perfect target detec-

tion was first obtained, approximately, by Woodward [2'l'1. His er<pression was obtained

under the assumption, n >> l, which is consistent with the assunrption of perfect

target detectiou. However, the expression is iuaccurate if æ < I even if we ignore the

possibility of gross range errors due to false target detection. Woodward's expression

ls

(2.28)

The expression, 2.28, has been ehown to correspond to the Cramer-Rao lower

bound on estimation perfornance 12'3'2'11. An unüiøsed estimator that achieves this

bound asymptotically (i.e. as G;;(/) + 0 and hence I - oo) is said to be eficient. lt

is also shown ln 12.3,2.41 that the ML estimator of delay is unbiased which means that:

E {i) - 'r. (2.2s)

Hence the ML range estimator is optimal in the sense that it can only be improved upon

by the use of prior information. Since it is an unbiased estimator we need only concern

ol
", _ 

npz
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ourselves with the estimate variauce. There are no sources of systematic error to take

into account when analysing the precision of the estimator.

Woodward [2.1] obtained the expression r2.28, as the approximate variance of the

signal component of the posterior distribution under the assumption of uniform prior

probability. Iu [2.2] it is obtained in similar fashion and also as the mearr squared error

in the peak of the complete posterior density as a result of fluctuations caused by the

interference.

V[e see, then, that the parameter, o2rrin 2.28 has fundamental significance aÉ¡

an indicator of precision in range estimation. However, one may ask what the range

variance would be if the carrier phase is reliable and 2.8 holds so that the LLF is given

by 2.b. In this case, the range estimation problem is different because the carrier phase

is no longer uninformative. In [2.2] the range v¿riance for this case is derived as:

E? :q, (2.30)

where ps is the second moment of the post-whitening target echo energy spectrum with

respect to zero frequencY:

tæ
Jo G""(Il

1x2

E"(TI

I

E dl
(2.31)

.[o- Gn"lI)+G,,(t)1fr"(/)
dr

For p << Ío we have Í2'{l:

D?
I

^' æF'
(2.32)

However we will not use this expressiou in this thesis as the condition for its validity is

often not satisfied, particularly in acoustic applications.

We see from 2.30 and 2.28 that two different expressions can be obtained for

the Cramer-Rao lower bound. Each bound can be approached assymptotically by the

relevant estimators for which they are applicable, one of which uses the carrier phase

p3
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inform¿tion and one of which does not. For the estimator that uses carrier phase infor-

mation, 2.30 gives the performauce bound but the estimator only approaches this bound

when condition 2.8 holds. For the alternative estimatorr 2.2S provides a performance

bound that can be approached when D ) Dr and D 2 8. This is a relaxed requirement

as compared with condition 2.8.

We see then that these bounds based on the theory of Cramer and Rao are only

useful over certain mutually exclusive regions of ft. Between these regions and below

them, exist regions where this theory provides no useful performance bounds.

In [Z.tO], Ziv and Zakzi go some way toward overcoming this difficulty by pre-

senting a new approach to the problem. They are able to obtain a general expression

for a lower bound on performance. Ilowever a closed analytical form for such a bound

on time delay estimation error has not been foun¿lz't?I. As a result, this approach is not

useful in the context of the present analysis. Accordingly, we consider independently

the problems of detection, estimation without the use of carrier phase and estimation

with the use of carrier phase.

Now, substitutin g 2.27 and 2.25 into 2.28, and 2.31 ¿nd 2.25 into 2.30 we obtain:

o?: I (2.33)Bnrliffiot
and

sr2 -L¿î 
-

I (2.34)
2G""

dÍ8n21 ff cnîUl+G88(/)lE"(/)l

I¡ most practical situations 2.&3 ie an appropriate indicator of range precision.

2.1.5 TYønsaer s e Re solution

It is very rare indeed for a ranging system to operate in an omnidirectional

manner. Generally, the target subtends a relatively small angle at the transponder

and it is necessary to direct the signal enerry at the target from the transmitter and
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to discriminate against interference from other directions at the receiver. I¡ other

situations it is necessary to estimate the bea¡ing of a target as well as its range.

Sometimes, as in [1.1] the target is at relatively short range (i.e. not in the far

field) and the transmitting and receiving apertures are focussed on the target.

In all these c¿rses, the resolution of the system in directions at right angles to

the direction of propagation is an important consideration. \ile expect this resolution

to be fundamentaþ diffraction limited but there is uo well established enpression for

the tranwerse resolution of a system of wide relative bandwidth that we can use as a

performance indicator.

Now, one way of expressing the tranwerse resolution of an unfocussed system

is by means of its resolution øngle. The resolution angle, L0, of such a system is the

smallest angle (subtended at the aperture) which can be resolved. Another commonly

used parameter for electromagnetic radiating systems is known as øntenno gøin. We

shall now dérive suitable expressions for these parameters in the context of wideband

active ranging systems.

Antenna gain is defined by the 1ot*u1"12'lll'

G
4ri S, (2.35)

E,

where ^9, is received signal energy per unit area at a point in the favoured transmitting

direction in the far field at distance, r, from the antenna, and E, is the signal energy

supplied to the aperture. We may interpret antenna gain as the ratio of the energy

transmitted by a hypothetical isotropic radiator to that actually transmitted if both

radiating systems are to achieve the same energy density, .9r, defined above.

In [2.11], the gain of a wideband antenna is calculated in terms of the transmitted

signal energT spectmm under the assumption that the aperture field ig a separable
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function of space and time and the apertur'e is planar. i-e.

Eox(x,y, t) : Eox(x,Y)s(t)' (2.36)

where Esx is the field in the aperture (Z-O) and is linearþ polarized (in the r direction

in thie example). By using far-ûeld planewave angular-spectrum theory the gain of

such an antenna is obtained in [2.f 1] as:

G (2.37)

(2.38)

where ø, is the effective area of the aperture which is a function of Eox(r,y) and is

independent of s(t), c is the velocity of propagation and:

þ?:

We recognize p¡ as the centroidal or ocarriert frequency of the tranemitted sigaal.

Now, in [f .f], it is pointed out that the calculation of effective wideband field

patterns in the analysis of the performance of active ranging systems should take account

of filtering in the transmission path and the receiver. Wideband acoustic field patterns

are obtained numerically in [l.l] by treating individual frequency components separately.

The effective contribution of each component is assumed to be in proportion to the

post-correlation target echo energy density at that frequency. The total effective field

intensity is calculated by summing over the contributions of the individual frequencies.

Iu the continuous case this su'nmation is an integration with respect to frequency.

In order to combine the philosophy in [l.l] with the approach in [2.t11 to obtain

an expression for effective autenua gain, we will exemine the derivation of' 2.37 in the

hope of generalising it so that it takes into account the effects of the transmission path

and the receiver filtering. The interpretation of effective antenua gain, analogous to that

given above for antenna gain is as the ratio of the energy transmitted by a hypothetical

isotropic radiator to that actually transmitted if both radiating systems are to achieve

the same detection index at the receiver.

2-21



eection 2.1 P e rlo t mance Indí c of o ¡ t

As a result of these considerations, we see that, to obtain an e(pression for

effective antenna gain we should substitute the post-whitening target echo energy for

the transmitted signal enerry whenever the field pattern is obtained in the derivation

in [z.tt].

Now, in the derivation o12.37 given in [2.1f], the denominator of 2.38 is obtained

directly as the denominator of 2.35. Hence,

G --Y*- [" r'e ..trra¡, (z.Be)
c2prJo t vac\Jr.

where Grr(!\ is the sigual power spectrum and hence, under our usual assumption of a

fixed duration consta¡t envelope signal we can simply replace the denominators of 2.35

and 2.38 with

Er:TPr, (2.40)

where P, is the constant (during signal transmission) power of the transmitted signal

and î is its duration.

To obtain the e>rpression for effective antenna gain defined and interpreted above,

it is only necessary to replace the ratio o1.G,"(f) to P, in 2.39 (which has the unite of

time) with the spectral density of the post-correlation signal-to-interference ratio (which

also has the units of time). Thus we obtain:

12G,,(l)lwru
2

G,"(f) + G,,(/) lä"(t)
(2.41)

We will now derive an expression for the resolution angle of an active bearing

estimator in which a similar dependence of transverse resolution on the signal spectmm

will be found.

Consider the diagram of Fig. 2.4Ln which a plane wave signal arrives at a linear

array of sensors or antennas from a direction at angle, á, from the broadside direction

of the array. The signal arrives at each sensor with a delay, Ar, between sensors which
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Fipre 2.1 Bearing EstimatÍon
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is related to the angle, 0, by the expression:

ri - ri-t: Lr

: dlcsin 0,
(2.42)

where r; is the absolute round trip delay to sensor ¡ a¡d d is the sensor separation while

c is the velocity of propagation.

If there are /V sensors, then

d - Lf N, (2.43)

which defines the array length, L.

. Now, there ocists a large body of literature dealing with the problem of pas-

sive bearing estimation in which the angle, d is estimated by estimating the delay, Ar,

between adjacent sensors in the array when the interference is assumed to be uncorre-

Iated from sensor to sensor l2't2,2't3,2'r11. In the case of passive estimation, no noiseless

reference signal is available and the incremental delay between two sensors ie obtained

by picking the peak of a spectrally weighted cross-correlation of the waveforms from

the two sensoñ¡. For the ¡r¡¡ [z'tzl bearing estimator the weighting takes account of

the coherence between the two waveforms. In those parts of the spectrum wbere the

coherence is large, there is less uncertainty about the signal. (If the coherence function

is I then the noise power spectral density at both sensors is zero. If the coherence is

zero then the signal power spectral density is zero.) Hence more emphasis is given to

spectral regions where the coherence is large and less to those where it is small.

In the case of actiae bearing estimation, however, the concept of coherence be-

tween the sensor waveforms is not of direct relevance. This is because the form of the

received signal is known in advance. We will also a-ssume that we have a transmission

path rnodel for transmission from the transmitter to each seusor. If this model varies

from sensor to sensor then it must be characterized for each sensor separately.
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The reason for undertaking this analysis here is to underline the fundamental

significance of the integral in 2.41 by deriving an expression for resolution angle involving

the same integral.

The hypothesised system is one in which a signal is transmitted with a broad

beam and an echo is received from a target at each of several sensors' each of which

exhibits a broad angular response. The bearing of the target can then be estimated

provided the target echo can be reliably detected at each sensor. As when considering

range resolution, $re asslume operation well above the detection threshold.

The approach we will ta.ke is to obtain the approximate posterior densities for

the absolute round trip delay probabilities at the iV sensors by again assuming that

the prior probabitity densities are uniform. This is the usual ML assumption and it

incorporates the assumption that the prior probability of the delay difference, Ar, is

also uniform. We have:

p(4 lr;(t)) = Èp(ø;(t) l4) '
(2.44)

where the eubscript, d, associates the r¡ariable with the itä sensor.

Atthough the carrier phase may be unreliable, the log of the likelihood fuuctiou

in 2.44 is given by 2.5 because any ambiguity in the phase witl be removed in the

next step. The variance of the probability it 2.44 ie therefore given by 2.30. The

posterior probability density, p(r;-tl";-r(ú)), is obtained in a similar fashion with the

same variance if the two transmission patha are identical (statistically) apart from a

delay.

Now we undertake the step in which any ambiguity in the carrier phase will be

removed. In order to render the problem mathematically tractable, we have to impose

a further restriction. We make the usual assumptior,l2't2,2't3'2't¿l that the interference

is independent from setrsor to sensor. We also recognise that the delay difference, Ar,
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is conetrained to lie in the range from -d/c to df c. i.e.

-dlc(Ar<dlct-

and all valueg within the range are equiProbable.

Hence, provided we restrict our atteDtion to the allowable range of Ar, then ø;(Ú)

contributes no information as to the rr¿lue of r;-1 and r;-1(ú) contributes no informa-

tion as to the value of r; and we may proceed as though f; and f;-¡ are statistically

independent. rile have, therefore:

p (r; -4-¡lø;(t), tr-r(t)) : P (r;1"¡(ü) ) * p (-r;-rl";-r(t))

- kzp(r;(ú) lr;) * p(r;-r(t)l - t;-r)
(2.45)

where ¡t is defined in 2.44.

An interpretation of 2.45 is given later in this section where it is shown that the

ML estimator of bearing employs established beamforming and beamsteering techniques

to locate the target. This is consistent with the analysis given in [2.tS].

Now consider Fig. 2.5 which illustrates the relationships between the determin-

istic components of the probability density functions in 2.45. The important feature to

notice is that, because any ca.rrier phase error is observed at both eenaor€r it is can-

celled in 2.45. The deterministic comporrent of the function on the left of 2.45 is a true

autocorrelation function (but shifted along the delay æcis) The ceutral peak of its fine

structure therefore occurs coincidentally with the peak of its euvelope.

The carrier phase information is therefore useful provided that ambiguities arising

from the preseuce of interference do not occur. Bearing estimation, however, is unlike

range estimation iu that these ambiguities can be totally eliminated by ensuring that

the sidelobes of the fine structure lie outside the region of interest. The criterion is that

the adjacent peaks of the frne structure should be separated by a delay greater than

that possible between two sensors. In other words, the sensors must be less than one
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wavelength apart at the carrier frequency which is shown in [2.1] to be fo in 2.27 . Thus

we have

LIN < clfs. (2.46)

Equation 2.46\s simply the usual criterion for eliminating grating lobes by en-'

suring that they lie outside the visible region. However, here we see that, for wideband 1

systems, the centroidal frequency, .fo, is the relevant frequency at which the criterioni

should be met and not, as might be expected, the highest frequency in the band.

Now we wish to know the variance of the approximate posterior density on the ì

left of 2.4b. By a well known application of the moment properties of the convolution '

operator, we have:

oZL", = o2, + o2r,-, - 2Ð?' (2'47) '

flowever,wecanobtain{qJindepenclentestimatesofAr'Hence:

2
rv(rv-1)/2

Aî= lv /V 1) t (aî)¿, (2.48)

i=1

and
4

o2ar:
IYlv

ç,2ul (2.4e)
1)(

ow, from 2.42 and, 2.43 we can obtain:

d\r L
å = ftcosl, (2'50)

and if 2.50 is assumed to be approximately constant over small regions of á, then we '

can make an approximation as illustrated in Fig. 2.6. we see that:

(ar)2 - -t---. 
(2.b1)' (d\,r ld|)'

By substitution from 2.50, 2.49,2.30,2.31 and 2.2'5 we obtain:

(#) I
zr2T L2 cosz 0 ff G""

(ad)2 -

r-tR

Gnn(f)+Gs"(/)ls"(t)l
df

(2.52) |
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For the continuous caae (iV - æ) in the broadside direction (0 : 0) the recip-

rocal of 2.51 becomes:

(2.53)

Apart from constant factors, $re eee that 2.41 arrd 2.53 are identical. The trans-

verse resolution in both cases depends ou G"r(/) through the game integral. Now,

substituting from 2.53 into 2.4lrwe obtain:

^4o"1v"fI: 
"n'g

(2.54\

We recognise { ae the area of a circular aperture of diameter .t and thus, if

we are considering plane wave arrir¡al from the broadside direction, this is the effective

area of the aperturet oe. Hence:

G"n:êä-' (2.55)

for a circular aperture.

We shall see in the next section that GML estimation of bearing is simply a

process of scanning a beam through all angles in the bearing gate or osectof and

choosing that angle corresponding to the greatest observed resPonse. Therefore, the

resolutiou angle is a measure of the effective angular beamwidth of the system. Hence,

we can complete our study of trangveree resolution by ehowing that the relationship

given in 2.55 can be approximately derived by simple geometrical analysis.

Consider Fig. 2.7 in which a conical beam is illustrated. The centre of the circular

transmitting aperture is located at the point of the cone and all the transmitted signal

enerry, Ey, is transmitted through the cone. (This is a convenient approxination

to justify which we need to make the cone subtend a solid angle of say  Le. This

corresponds to *2 standard deviations of the bearing estimate.) At distauce, r, from
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the transmitting aperture, the radius of the cone base is given by 2rL'0. Hence, the

area of the cone base is {2rA,0)2. Thus we have:

and

We see then, that equations 2.41 and 2.53 provide coneisteut measures of trans-

verge resolution although they were derived by totally independent analyses of quite

different physical problems. We are entitled to conclude, therefore, that the integral in

2.41 and 2.53 is a fundamental factor in transverse resolution performance.

We define the tronsu erse resolution índer (TRI) as the gain density of a signal

or the effective gain per effective unit area of the aperture. Thus, from 2.41, we have:

G"1î:&

Í2G,,(Í\l&r
G *,(Í)+ Gn (/) lH "a(Í\12

TRI _ 8rT
7 I,* dÍ (2.56)

Henceforth, we shall use TRI as a transverÉie resolution performance indicator in the

comparison of signals.
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$2.6 îbe ML Estimator of Bearing

It is interesting to interpret the form of the estimator that chooses Ar by picking

the peak of the probabitity density on the left of 2.45. Substituting from 2.5, we get:

p(Ar lq(¿), td-r(ú)) : ¡t'
/_ "a;k) "*-r(r+Lr) 

¿r, (2.57)

where ,t' is some uninformative constant and

y;(r) : r;(ú)ft(ú, r)dú.
Ë

t.e

(2.5s)

In 2.58 the target echo delay, r, is treated a¡t an uninformative parameter which

is averaged out. This averaging gives rise to the integral in 2.58. The function of range

(or echo delay) over which we average is obtained by a three step process. The first

step is an optimal frltering of the signal from each Beneor as described in section 2.1.

The second step is a conventional beamforming process in which signals are delayed and

added so as to forrr a beam in the hypothesized target direction. (The delay between

adjacent sensors is Ar. ) The third step is a reversible, non-linea¡ distortion of the

signal by exponentiation which is necessary for the averaging process to be valid.

The estimate of relative delay, Aî, is obtained by choosing the hypothesis, Ar,

yielding the largest value in 2.58.

If we wish to estimate bearing and range eimultaneously, we do not average out

the range information as iu 2.58. I¡stead we pick the peak of the two-dimensional LLF

given by:

Inp(r;(t)¡î;-t (t) l",Ar) : yd(t) + y;-úr + Ar). (2.59)

We see from 2.59 that conventional beamforming again yieìds an ML estimate
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of bea.ring when the beam is swept over all angles and the peak in range and bearing is

picked. A GML estimate is obtained if a regtricted range of angles is swept.
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!2.O Su"'"'ary and Discueeion

In sections 2.1 and 2.2 the problem of ML estimation of round trip delay for range

estimation was reviewed. It was discovered that for most cases of practical interegt the

LLF of delay is given by equations 2.ll and 2.12. However in special cases where the

fine structure of the signal is known to carry reliable information and the inequality' 2.8

is satisfied, the appropriate form of the likelihood function is given by 2.5 and 2.11.

A transmission path model, illustrated in Fig. 2.3 is presented in section 2.2.

The main restrictions of the model relate to two assumptions. The first of these ie a

weak scattering assumption in which the target path is assumed to be independent of

statistical va¡iations in the clutter path. The secoud is that there is no relative motion

between target, scatterers, transmitter or receiver.

In section 2.3 the stationarity condition necessary for equation 2.11 to be valid

is examined. A new criterion for local stationarity is derived in terms of the bandwidth

of the trausmitted signal rather than its duration. That criterion is given in equation

2.22.

Three system parameters are ehown to be of fundamental significance as indica-

tore of performance in secti on 2.4. The first of these indicates the detectability of the

received target echo and is given by equatiot 2.25. The second indicates the precision

with which the target may be localised in range and is given by equation 2-33- The third

indicates the transverse r€solution of the system and is given by 2.56. Other quantities

of interest are given by 2.26 (the detection threshold) and 2.34 (delay estimate variance

when carrier phase is used).

The derivation of the third of these parameters in eection 2.4 represents a funda-

mentally new approach to the analysis of transverse resolution. It allows the dependence

of the trausverse resolution performance of wideband systems on the signal spectrum to

be evaluated. The evaluation takes account of interference colouration as well as signal
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spectral shaping

Both the TRI and the detection index are of interest in the analysis and desigu

of communicatione systems as well as ranging systems. F\¡rthermore, the transmissiou

path model employed in this thesis is well suited to communications applications where

the clutter would represent multi-path interference.

Because of the applicability of many of the ideas presented in this chapter to a

broader freld of application than juat active ranging, the results of chapters 3, 4 and 5

should also be regarded as having a broader context.
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S. SIGNAL OPTIMIZATION

!S.O Optimization Crite¡ia

3.0.7 Ambiguity Functions

In chapter 2., a transmission path model was adopted that ignores relative motion

between target, transmitter, receiver and scatterers. In practice, this restriction means

that all Doppler effects are a¡]sumed to be negligible. By Doppler effectr l mea¡ the

temporal compressione and ocpansions of echoes that arise as a direct result of such

relative motion. If such effects are observed in the frequency domain then they manifest

themselves as corresponding frequency expansions and compressions with respect to

zero frequency. For narrow band echoes this frequency domain effect can be closely

approximated by a frequency shift.

Since most of the existing literature relating to signal optimization for target

localizatiou is concerned with Radar or Sonar applications it generally relateg to situ-

ations where Doppler shifts are not negligible. Initially we shall look at approaches to

signal optimization in this broader conte>ct before conûning our attention to the more

restricted class of problems where Doppler effects are negligible.

A large proportion of the literature in this a¡ea deals with optimizatiou of the

range ¡esolution of a system. The range resolution of a system is its abiliüy to distinguish

between multiple targets that are closely spaced in range.

When we considered range accuracy in chapter 2, we did not take into account

the possible existence of multiple targets and therefore our range variance indicator is
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not also an indicator of range resolution. In the general case, no such indicator has ever

been devised and most authors since Woodward [2'll have studied range resolution in

terms of Vy'oodward's ambiguity function.

Thus we have:

x?r12,-f lz;r12,f l2) -I r (t - r 12) r (t + r l2) ¿-i2rÍt ¿¿

In general, the ambiguity function for trvo signals differing onìy in the parameters,

d-, is [a't¡'

* (¡,;ir) :/- r (t;4,) 
". 

(,, ,,r)at (3.1)

for a narrowband signal, F, with the customary normalization:

*(d,ù: l_ lr (r; í)l'at - t. (8.2)

For Radar and Sonar , í -- þ,/)î, where r is arrival time and / is Doppler shift

(3.3)

r)ÍX (

where r is the target echo

The central peak of this ambiguity function occurs at the origin and its spread

in the delay-Doppler plane is a measure of the "resolvability" of target echoes. It is a

fundamental mea.sure of their "resolvability" or "distinguishability" that is independent

of the form of the range estimator.

The ambiguity function, 3.3, has a similarly fundamental role to play in relation

to clutter performance because clutter must be distinguished from the target signal' In

particular, the existence of sidelobes in the ambiguity function may lead to false target

detection because target sidelobes may occur coincidentally with clutter main lobes or

because the target main lobe may be obscured by clutter sidelobes.

When the interference is coloured we will want to provide spectral emphasis

of the ambiguity function, rvhose role is still fundamental and makes no assumption
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about the form of the estimator. However, the problem of what spectral enìphasis to

use is similar to that encountered in deriving the optimal estimator. Therefore it is not

surprising that the ambiguity function generally employed in evaluating the performance

of narrorvband systems is the cross-ambiguity function of the target echo, r(ú), with the

ML correlation reference, q(ú):

X,qþ, f) - /_
r (t - r 12) q (t + r /2) ,-i2rIt ¿¿.

X(f,d,,):(#),,,[:w(t)w*({'_|'=]}'*t'_,4+CI)')

(3.4)

Ambiguity functions for wiclebancl signals are difficult to defrne because echoes

from moving scatterers occur with spectral compression or expansion with respect tr>

zero frequency and not just a frequency shift. As a result, the ambiguity function

depends on the mean velocity as well as on the differences in anival times and velocities

of the two echoes being compared in the correlation. It is useful, also, to use analytic

signals in such definitions.

One such definition is [3'21

dt

(3.5)

where a is incremental fractional velocity, .A is mean fractional velocity, tu(t) - r(ú) +

ju(t) and u(t) is the Hilbert transform of r(t).

For the cross-amÌ.¡iguity function we could take y(t) - q(ú) + ip$), where p(ú) is

the Hilbert transform of q(t) and:

X,y(r,d,A)_(#),,,[:w(t)y'({'_t'=]}'*t'_A+*l,)at
(3.6)

Other deûnitions have been used for wideband systems but do not illustrate

explicitly the depenclence on the mean fractional velocity, Á.

Generally, it is the magnitude of the ambiguity function that is of interest and

often l¡l is referred to as the ambiguity functìon.
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3.0.2 Clutter Rejection

Au important system perforrrance patãmeter is the sigual-to-interference ratio

(SIR) at the correlator output and a commor criterion for signal optimization is to mæri-

mize that parameterls'3'3'1]. Another common criterion is mÐdmum signal-to-clutter ra-

tio (SCR) at the correlator outputl3'ol. Others include manimum detection ¡o¿"*[2'7'2'61,

manimum correlation processing gainla'sl and minimum effective ambiguiüy volume[3'2l.

The detection index was defrned in subsection 2.{.1. Correlation processing gain is the

gain in signal-to-interference ratio resulting from correlation of the received waveform

with the optimal reference, q(t). When the true ML ûlter is being used, the SIR and the

detection index are the same. However, if tbe filter is constrained in some way, this may

not be the case [s'3,3'11 and this is why those two criteria have been included separately

above.

In this sub-section I will review the sta¡dard approach to maximizing SIR or

SCR. Usually, in the literature, the received signal is assumed to be of the form,

r(t) : :{s(ú), where A is a complor constant while the clutter is characterized by its

autocovariance function:

E {c(ú)c'(t')} : k"(t,t')

: f f f (r, /)s(t - r)s'(ú' - ldz*î(t-t'\ ¿rdÍ 
(3'7)

_J J'

The functiou, f(r, /) represents the scattering density in the range-Doppler plane.

The interpretatiou of this function is most easily understood for a field of discrete

scatterers[3'al:

€,(r, Í): D €;¡ó(r - r;j6(Í - Íù (3.8)

d,Ë

where ó(.) is the unit impulse functiou and f;¡ is the Rada¡ cross-section of the (i, k)¿¡

scatterer located at (4, /r) io the range-Doppler plane.

The noise is usually assumed to be white and normal with single-sided power

spectral density, 2/Vs.
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(3.e)

(3.10)

(3.11)

At the correlator output we thus have:

where P, Po and ¿ are peak signal power, mean noise power and mean clutter powert

respectively.

ü q(¿) is normalized such that Jlq!)l2dt: 1, it can be readily eeen from 3.10

that the output noise power is independent of the choice of signal while, from 3.11, the

output clutter power depends on s(ú) in a complicated way. This dependence can be

simplified conceptually by substituting for ,t" in 3.ll using 3.7 and 3.4 to obtain:

P.:l 
lo,qr¡o'(ú)dú|'z

Po:ZNo I VOIPa'

P,:tll | | {ow"(t,{)q({)dtd{

p":rlz I I n,l)lx,oþ,fllzara¡ (3.r2)

This is simply the volume integral of the product of the scattering density and

the squared magnitude of the crose-ambiguity function. This integral product is often

illustrated pictorially as the intersection of the regions contained within the contours of

the two-dimensional functions, €,(r, Ð and l¡,0(r , Í\f , as in Fig. 3.1-

Since P, is simply the peak of the ambiguity function squared magnitude, the

aim of signal optimizatiou for maximum SCR is to choose s(ú) such that the ambiguity

given by[z'tl

I I lx's(t' fl:2¿r¿l - ,
n

is distributed away from areas of high scattering density in the range-Doppler plane.

When SIR is to be marcimized, the value of the peak of the ambiguity function

becomes important. Ambiguity is redistributed in such a way that a comPromise is

reached between maximizing clutter rejection and maximizing the peak signal power at

the correlator output.
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Figure 3.I The Clutter Integral
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Optimization with respect to either of these criteria is usually undertaken by

means of a numerical algorithm or with tbe aid of diagramn such as Fig. 3.f .

8.0.3 Minimizing Efrectivc Ambiguity Volumc

As etated in the previous section, the total ambiguity volume is equal to uuity.

However,the volume over a finite area of the range-Doppler plane can be minimized by

choice of s(ú). Bates coneiders this for wideband signals in [3.2]. Because wideband

ambiguity functions are functions of delay and incremental fractional velocity, rather

than of delay and Doppler shift, he points out that the integral of the squared modulus

of the ambiguity function has the units of time. In order to obtain a unitless value

for ambiguity volume, Bates, following Rihaczek, multiplies that integral by the ûrst

moment of the energy spectrum of the signal.

This procedure is reasonable since, for wideband signals, the tcarrier frequencyn

may be defined as the centroid of the energy spectrum and, for narrowbaud signals,

Doppler shift is equal to the product of the ratio of the relative velocity to the velocity

of propagation and carrier frequency. Hence, the above wideba¡d definition is made

conceptually, and indeed numerically consistent with the narrowband definition.

With this definition for ambiguity volume, Bates shows, using 3.5, that the am-

biguity volume over a finite ratrge of fractional velocities is monotonically decreasing

with signal bandwidth. Thie volume is therefore minimized by using a signal with a flat

spectrum.

5.0.1 Maxímizing Detection Ind,er

In chapter 2 we found that the detection index, D, is an important indicator

of detection performance and when the optimat ML frlter is employed, E corresponds

to the SIR. Hence the optimal trade-off between clutter rejection and maximization of

received signal energ7 is found by maximizing D.
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where Ic¿ is a conetant chosen to meet the enerry constraint:

In [2.7], Kooij ûnds an expressiou lor G,,(f) that ma:rimizes I in equation 2.25.

The sigual power spectrum is given by:

c,,,) - *¿lnrÏ)l.xìl^z - ¡to 
(8.13)' 

lfl.(flr

E,
G,,U)dr P".

Optimizolion C¡ite¡ío

(3.14)
Ë T,

Of course, the same restrictions apply to this result as were imposed in deriving

2.25. In particular, Doppler eftects must be negligible and the interference must be

locally stationary with range. In addition, the noise ïvas assumed white.

Numerical solutions for particular classes of signals have been found for the case

where Doppler effects are allowe¿lz'ol. Eowever closed form solutions have not been

reported.

The author has identifled two difrculties in the application of 3.13. The first

is that the white noise assumptiou can be quite unrealistic while the second and mo¡e

important problem is that 3.13 can yield negative power spectral densities. These two

proble-s are addressed in sub-section 3.1.1.

3.0.5 The Adtantøges of Multiple Criteriø

As discussed in chapter 2, there are many current and emergiug applications of

target localization techniques for which the restriction to negligible Doppler effects is

quite realistic. It is to those applications that this thesis is chiefly addressed. Hence,

the approach of Kooij described in the previous sub-section is highly relevant.

Ilowever, apart from the difrculties with the application of equation 3.13 which

were outlined in the previous sub-section, ma:<inúzation of detection index as a criterion

suffe¡s from other shortcomings. The sigual that matrimizes the detection index may
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only be optimal in a very narrow sense. It is tmly optimal only at low signal energies

where the detection margin is small and it is essential to maintain as large a margin as

possible. Even then, it is not obvioue that mærimizing the detection index regults in

maximum detection margin.

The rest of this chapter will be devoted to the development of a theory of opti-

mality in which the performance indicatore derived in chapter 2 (detection inde:<, range

estimate variance and transverse resolution indicator) are all employed as optimization

criteúa. Initially we shall look at sigual optimization with respect to these simple cri-

teria and later, in sections 3.3 and 3.4, a strategy will be developed for employing all

three of the simple criteria simultaneously in computing an optimal signal spectrum.
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!S.f Optimiration With Respect to Sinple Criteria

3.1.7 Marimizing Detection Index

The expression for the detection inde>c was derived in chapter 2. Repeating 2.25,

we have:

D.: zT [* G,"(Í)lHrU)P
-- Jo c"*(/) + c,,(/) Wffiof' (3'14)

In this section, we shall derive the sigpal spectrum that mæcimizes E subject to the

enersJ constraint 

I* """(l)ol 
: u#: p,lz' (s'ts)

The solution derived by Kooij for the case where the noise is white can be ex-

tended to the case of non-white noise by the simple device of inserting a noise-whitening

filter in the transmission path model. This was done by the author in [1.1].

However, difficulties were encountered by the author in relation to the form of

the solution.These were discussed in the previous section. In additionr we may wish to

restrict attention to a limited band of frequencies.Therefore, a generalized solution will

be stated here in the form of a theorem which is proven in appendix 34.

Theorem !. Let Grr(fl: OV.f É Vt, f2l. fnen úhe signal powrr specúral densit¡ Grr(f\, tnat

maximizes 3.I4 subject to 3.15 is given by:

0

Ll2 -

wäe¡e

G,"(Í): lE"(t)
V/eBr

V/e.Bo
(3.16)

(3.17)

n, : U : k¿lfi7g)l > (G""( il)tl') . "r,
&: Rt,

Rr : lh,1zl,
and k¿ is z non-negatirr real consta¡t càosen úo satisfy t^he equation:

k¿lHru)l(G""( t/2 _ G,*(Í)

lH"U)
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5.1.3 Marimizing Tlansaerse R.e,solution Inilen (TnI)

The problem of ma><imizing the TRI is rather similar, mathematically, to that of

mæcimizing 8. We shall see that the solution, also, has a very similar form.

Repeating equation 2.56, our problem is to maldmize:

rRr--TI,*ffin¡, (B.re)

subject to the energy constraint given by 3.f5. Again the solution will be given in

the form of a theorem. The proof of this theorem is identical to that of theorem I in

appendix 3A except that llla(/)l ir replaced by f ll/r(/)l wherever this appears and

fi is replaced by W wherever this appears.

Theorem 2. Let G rr(l) : OV.f I Vt, lzl. r¡"" tùe sigzal powel spectral densítv, G ,r(f), tn"t

maximìzes 3.I9 subject to 3.I5 is given by:

G,,(l):
0

krIlEr$ll,6.^.U))'12-G""(fl v/ € Ær
lã"(t)|'z

where

V/€eo
(3.20)

(3.21)

Br : {t, xrtlar(/)l > (c""(/)¡tlz\ c Rr,

&: Rt,

Rr: lh,lzl
anil Ic7 is a non-negative real constant càosen üo saúisfy üùe eguation.'

f krllflrT)l (c""(/))tlz - G""(Ð )î - D t,
lrr "i -ratù'

1 : Bt¡zT [* U - h)z c,,(ÐlprT)f^dr
ol /o G""(l) + G,,(Í)lH,U)f -

(3.22)

3.1.3 Minimizing Range Estimate Variøncc

From 2.33 we see that the local va¡iance of the range estimate is minimized by

m:rxlmtztng:

3-l I

(3.23)



seclíon 3.7 Oplímízotion Wíth Reepect to Simple C¡íte¡ío

subject to the energJ constraint given by 3.15 with /o defined by (from 2.27)z

ræ
Jo

Gt" 2

Gnn *Goe
dÍ

(3.24)clo: G

"[o- Gnn(t)+Ges(t)lE"(t)
df

The solution to this problem is given in the following theorem. The proof of this

theorem ig identical to that of theorem I in appendix 3A except that lfla(/)l is replaced

bV (/ - /o) lør(/)l wherever this appears and fr is reptaced by fu wherever this

appear8.

Theorem 8. LetGrr(f):OVt Élhrf2l. TU""thesisnalpowerspectraldeasity thatmaximizes

3.23 subject to 3.15 ìs given by:

G,'(l):
Gnn rl2-Gnn

lr"(t)
Vf e .Rr

V/€Ro
(3.25)

(3.26)

df : P'12. (3.27)

0

where

and fg satisfes 3.21 while lc, is a non-negative real constant cåose¡r to satisfy:

Rt :{¡' 
" 

lr - rolu,,U)l > (G*,(Ð'¡ttz\ c nr

Eo:8r

Rv - lÍt,lzl

k'll - /ol lär c,,(l\\tl, - Gnn

lã.(/)l
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$8.2 Perform¡nce Comparisone

3.2.7 Computation ol Optimol Spectro

The solutions given in theoremsLrZ and 3 are e><act but are not in closed form.

It has not been found possible to obtain orpressious for the constants, k¿, lq and lco.

This is because these constants must satisfy the iutegral equations, 3.18, 3.22 and 3.27

with limits of integration that depend, in turn, on the constants, themselves, through

equations, 3.17, 3.21 and 3.26. A further complication arises from the dependance of

the solution in Theorem 3 on the centroidal frequeuc¡ /¡, given by equation, 3.24. For

similar reasons to those cited above in relation to the other constants, /e cannot be

simply defrned in terms of the transmission path model and the signal energy.

Because of the implicit forn'ts of the solutions given in theorems 1, 2 and 3, the

computation of optimal spectra necessarily involves iteration to find the constants, rb¿,

kr, ko and fo. Computer programs have been developed by the author for perform-

ing these computations. In each case they involve a fairly straightforward iteration

procedure based on Newton's method for obtaining ft¿, Iu¡ or ko.

Ifowever, /s is obtained by a more complicated algorithm that is designed to cope

with the somewhat ill-behaved nature of the centroid with respect to the convergence

of iteration procedures under certain conditions. Such procedures operate by hypoth-

esizing a centroid frequency and then computing the optimal spectnrm aud hence the

actual centroid frequency. The hypothesized and actual céntroids are then compared

and, if they are not sufficiently similar, then a new hypothesis is formed via a formula

involving the old hypothesis and the actual centroid resulting from it.

In many casres convergence is obtained by forming the new hypothesis as a

weighted mean of the old hypothesis and the resulting actual centroid. A reasonably

reliable formula is:

l,;*,:(ztl!Ð (s.28);+l 3
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where the primed quautities are hypothetical and the subscript is the iteration number.

flowever, as we shall see, at low signal powers, the mìnimum variance epectrum

tends to contract to the band edges. The result is that it becomee highty seneitive to

the hypothesized value of the centroid. The observed effect on the iteration process

ie that an error in the original centroid hypothesis causes the initial approximation to

the spectmm to be concentrated at one of the band edges. The true post-whitening

centroid obtained with that signal spectrum , therefore, lies near that band edge. In

subsequent iterations, using 3.28 for example, the hypotheses move towards the band

edge where the signal energy is concentrated. However, once the hypothetic¿l centroid

passes through the centroid of the true optimal spectrum, the signal energy shifts from

one band edge to the other.

Under these circumstances, an iteration baeed on a formula such as 3.28 will be

extremely slow to converge if the weighting is too large or will not converge at all if the

weighting is too small. A robust and reasonably fast procedure can be obtained by de:

tecting the transition of the actual centroid from one side of the hypothesis to the other.

In subsequent iterations the hypothesis is updated using the values of the hypotheses

used in previous iterations in such a ïyay that the new hypothesis always moves towards

the actual centroid but the step-size relates to the closeness of convergence rather than

the difference between the hypothetical and actual centroid values.

Each time the actual centroid swaps from one side of the test rr¿lue to the other,

the updated test value is given by:

Í+r : Uz(fl + #_r) . (3.2e)

On subsequent iterations, when the actual value remains on the same side of the test

value, the update formula is:

Í';+t: zÍ! - Í!-r (3'30)

The complete algorithm involves the use of 3.28 initially until the hypotheti-
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cal value of /e is close to the true value. Subsequently, 3.29 and 3.30 are applied in

the manner described. During this latter phase, the algorithm has several important

properties. The step-size never increases and always decrea,ses within two iterations.

tr\rthermore, the test value is always updated in the direction of the true centroid (of

the optimal spectrum). This combination of properties guarantees the convergence of

the algorithm provided numerical probleun are not encountered. In practice the author

has never encountered such problems with this algorithm.

A listing of the Fortran computer prcgram used in obtaining the minimum vari-

ance spectra presented in the following sections is given in appendix 38. The programs

for computing optimal spectra according to the other two simple criteria are not iucluded

as they are more straightforward.

3.2.2 A PracticøI Example

In this section the optimization algorithms already described will be applied to a

practical example. The application for which this example is relevant is acoustic sensing

through fleece and the interested reader is referred to reference [f .f] for more details.

The transmissiou path was characterized for a particular point on a particular fleece

and is indicative only of the type of conditiou encountered in this application. In this

section we are not conceraed with uncertainty in the characterization and will treat the

problem as if the transmission path characteristics were not subject to r¡ariation.

Nevertheless it is importaut for the designer to be aware of deficiencies and

limitations in his transmission path modelling techniques. The techniques used will be

highly dependant on the details of the application but eome techniques used by the

author for the acoustic sensing problem will be presented in chapter 6. However' some

aspects of the process are rnore generally relevant and will be discussed here.

The optimal spectra in theoremg 1, 2 and 3 are quite sensitive to spurious detail

in the model and for this rea^son it is necessary to apply spectral smoothing techniques
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to eliminate unreliable detail while retaining a reliable estimate of the major sPectral

features. The approach of the author to this problem is to use selective all-pole spectral

modelling which is a form of Maximum Entropy spectral analysis. Readers unfamiliar

with these techniques are referred to papers by Makhoollo'zl and Ulrych and Bishopfe'al

for details.

In some cases the author has found it advantageous to modify the all-pole mod-

elling technique by a method which will be referred to as zero placement. If a signal or

impulse response is known to have (or is suspected of having) zeroes in its Z-transform

then all-pole modelling is obviously inappropriate. Eowever, we can overcome this difr-

culty if we can estimate the locations of the zeroes. To eliminate the problem, we caucel

each known zero by pole placement prior to the application of the selective all-pole

modelling algorithm. Then, once the all-pole model has been obtained, the zeroes are

re'inserted.

A listing of a utility program developed by the author to perform this modified

form of all-pole spectral eetimation is included in appendix 38. The interested rèader

will ûnd this relatively easy to follow.

One important poiut that is worthy of mention here, is that it is usually essential

to use the general implementation of the discrete Fourier transform (DFT) rather than

the more usual fast Fourier transform (FFT) implementation when applying gelective

all-pole modelling techuiques to spectra. The reason for this ig that the length of an

FFT must be a power of 2. Now, if the number of frequency bins we have to transform

to the autocorrelation domain is not a power of 2 then we might be tempted to use

a longer FFT and pad out with extra samples. However, the problem arises with the

choice of the padding sample values. Padding with zero-valued samples often yields

extremely undesirable effects.'

The reason for this is that all-pole modelling techniques can be interpreted as

methods in which a parametric spectral model is adjusted to minimize a' logarithmic
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spectral error functionls'7'3'81. '¡'¡i. function is, of course, highly seusitive to the presence

of zero-valued samples in spectra with the result that very biased spectral estimates are

obtained. The usual result ig that all the modes in the spectrum are assigned very

narrow bandwidths. The spectral estimate ie then quite small even at small frequency

separations from the resonant frequencies. Hence the logarithmic error with respect to

the zero-valued frequency samples is kept small.

The following details are not important to the discussion in this section but are

included for interest and completeness. A more detailed explanation of the techniques

used is included in chapter 6.

The transmission path model used in this section was derived from data obtained

at 500kHz sampling and raw power spectra were obtained using a 5l2-sample FFT

algorithm and averaging of the power spectra over a small ensemble of about l0 records.

Final smoothing was achieved by the modified all-pole techniques already discugsed.

The noise samples were extracted from the time series data by averaging the

data over an ensemble of 50 records and then subtracting the average from each record

to obtain a noise record. The target signal was obtained by excision of a segment of the

averaged data record in the regiou of the known target delay. The clutter record was

obtaiued by excision either side of the target segment.

The transmission path that we will use as an example is characterized by the

three functions given in Fig. 3.2 over the frequency range from OkHz to 124kHz.

Direct application of our three optimization procedures to this model over that

band yields the spectra in Fig. 3.3 at four particular values of signal power, Pr.

It is clear from Fig. 3.3 that the forms of the three optimal spectra can be

quite different and that they vary markedly with sigual power. Eowever, some very

undesirable phenomena are evident in Fig. 3.3C and Fig. 3.3D. We see in these cases

that a sizeable proportion of the signal enerry is being channelled into part of the
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spectrum where, from Fig. 3.2, we see that very little signal power is transmitted

either via the target path or the clutter path. The values of the two trangfer function

magnitudes are so small in this region that the computed optimal spectrum is sensitive

to very small perturbations in the spectral estimates. Our spectral estimates are not

sufficiently reliable, in this region, for us to have confidence in the resulting sigual design-

It is important not to use unreliable data in this way. The way to avoid the

problem ig to restrict attention to a frequeucy band in which the transmission path

model is believed to be reliable. On inspection of Fig. 3.2, Y/e see that a reasonable

frequency band over which to perform our optimization is from 0kEz to 40kHz. However,

for other re:ìsons associated with the particular application, such as the existence of

acoustic room noise which is difrcutt to characterize in advance and the undesirability

of emitting loud audible sounds, we will perform our optimization above about lOkHz.

(The transmission path that we have modeled actually included a l0kHz high pass

pre-filter.) Because our three transmi,ssion path functions are discrete, having been

produced by digital computation, we will actually perform our optimization over the

range from 9.8kHz to 39.0kH2.

In this new frequency band the trausmission path model may be displayed as in

Fig. 3.4. The resulting optimal spectra at various signal powers are illustrated in Fig.

3.5.

Comparing Fig. 3.5 with Fig. 3.4, we see that, at low sigual powers, the man-

imum detection index (MDI) spectnrm and the maximum tra¡werse resolution index

(MTRI) spectrum have contracted into the centre of the target channel while the min-

imum variance (MV) spectrum has contracted to the band edges. On the other hand,

at high signal powers, all three types of optimal spectra occuPy the entire band.

We see that the MV spectrum is always zero ¿t at least one point in the band.

This point is the post-whitening target echo spectral centroid frequency, /s. Energ} at

this frequency contributes a coustant or d.c. value to the post-correlation envelope and
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is therefore not useful in aiding in the location of the peak of the envelope'

It is also apparent that the MTRI spectrum is quite similar to the MDI spec-

trum at all signal powers. In situations where the frequency band of interest is narrow

compared to the value of the centre frequency, we can expect this similarity to be even

more pronounced than it is here because the simple spectral weighting in equation 3'20

will have negligible effect so that 3.20 anrì 3.16 will procluce almost identical functions.

ontheotherhand,theMVspectraareveryd'ifferentfromtheothertlvoatall

signal powers and we can usually expect this to be the case, because the NIV spectrum

wi¡ arways rrave a deep null at the spectrar centroid of the post-wrritening target echo.

This null is often located close to the centre of the target channel because it is often

located near the peak of the MDI spectrum'

Nolv it is instruc.tive to compare the performance inclicators for these three types

of optimal signals over a range of signal powers. In Fig. 3.6, the detection index, the

local variance of the range estimate and the TRI are plotted against signal power for

each of the three types of optimal spectra. The transmission path model used was that

of Fig. 3.4. The spectra were varied with signal power so that they were always optimal'

There are several interesting features of the curves in Fig' 3'6' one is that the

curves appear to converge at high signal powers. This is a consequence ol the fact that

as the signal power is increased the post-correlation signal and interference both become

less dependent on the power spectrum of the transmitted signal. To see this we can

obtain, using 2.12 to 2.15:

Bo(/) : TG,,(/) lør(
,

(3.31)
G,,ff) l¡r"(/)l

2 + G,,(l)

G;oU) =
TG,,$) lHrff)12 (3.32)

G,,U) l¡¡.(/)l
2 + G**(Í)

where Bo(/) is the post-correlation signal transform and G¿s(/) is the post-correlation

interference power spectrum. Note that there is an implicit unity-valued constant in
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these g)(pressiona. This constant arisee because we are treating the correlation as a

signal waveform even though it is the cross-correlatiou of two signals. The implied

constant restores the unite to those of a signal waveform (e.g. volts).

Equations 3.31 and 3.32 are interesting in that the right hand sides are identical.

However, this should not be surprising because, if they we¡e not it would be possible to

perform another stage of ML fi,ltering which is inconsistent with the optimality of the

ML ûlter. This can be seen by inspection of equation 2.11.

Now, at very high signat powers the noise term in the denominators of 3.31 and

3.32 can be ueglected with the result that the sigual power spectrum cancels out. This

condition can be referred to as lhe d,ominant clutter condition because the interference

power spectrum is dominated by the clutter power spectrum. We see that in the domi-

uant clutter condition the system performance is determined entirely by the target and

clutter transfer function magnitudes and the duration of the transmitted signal. \ly'e

can see this also from 2.25, 2.33 and 2.56.

It is worth noting that the dominant clutter condition can only be achieved if

the transmitted sigual occupies the full bandwidth. The performance achievable in the

dominant clutter condition in different bands may be quite different and will always be

poorer in a sub-band than in the full band. However we see from equatione 3.171 3.21

and 3.26 that the three types of optimal spectra will always occuPy the full band at

suficiently high signal powers.

Fbom these considerations, we would expect that the curyes in Fig. 3.6 would

tend asymptotically to a bounding condition as the signal power was increased. Sucb a

phenomenon can be observed in Fig. 3.6.

Another feature of the curyes in Fig. 3.6 is that the MTRI and MDI spectra pro-

duce similar performance in relation to all three iudicators. This is a simple consequence

of the fact that, as previously discussed, these spectra tend to be quite eimilar.
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On the other hand, at lower signal powers, the MV spectra produce very different

performance figures from those of the other two. This also is not surprising given the

very different forms of the spectra. The MV spectra provide a much smaller local

variance but also a much lower detection index and a lower TRI than do the other two

types of spectra.

Of course, once the detection margin (or $ - nr) drops below about 2 or 3dB

(refer to section 2.4.1), the local variance becomes an unreliable indicator of range

accuracy and the TRI becomes an unreliable indicator of transverse resolution. We

need to obtain curves of detection threshold and thereby construct curves of detection

margin before we can complete our performance comparisons. In addition to these, we

should consider the effect of the ambiguity phenomenon resulting from the existence of

time sidelobes as discussed in sections 2.4 and 3.0.

Using an iterative algorithm based on equation 2.26, it is possible to compute

the detection threshold from the range gate width, W, and the moment bandwidth of

the post-whitening target echo, p. The results of such computations are displayed, for

each of four gate widths, in Fig. 3.7.

The most startling feature of these curves is the way the detection threshold

drops abruptly to -oo at various points. This phenomenon results from the fact that

equation 2.26 has no solution if the product, WB, is too small. Under this condition,

the post-correlation target echo main lobe is broader than the range gate. Clearly, in

that case, there can be no possibility of false target detection (assuming that the gate

is, in fact, located over the target range).

The sharpness of this cutoff in the curves of Fig. 3.7, however, is not an accurate

reflection of the way in which prior information can help overcome the detection prob-

lem. In fact, the transition is much smoother than indicated by the curves of Fig. 3.7

but equati on 2.26 is only valicl for W P >> 1[z'tl. T¡s curves of Fig. 3.7 are conservative.

A detailed study of the use of prior information will be undertaken in chapter 5.
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Au important feature of these curîes ig that the MDI spectra consistently provide

lower detection thresholds than the other two types of spectra. This is because there

is no spectral weighting tending to spread the energy of the MDI sigual across the

frequency band. In fact, the converge is true in that maximization of the detection

index is achieved by concentrating most of the signal energJ in the region where the

target trangfer function is maximum. The regult is that p tends to be smaller for MDI

spectra and this results in lower detection thresholds.

This is particularly obvious at low sigual powers. As the signal power is reduced,

the optimal compromise between ma>rimizing SCR and mæcimizing SNR moves towards

maximization of SNR. The result is that the MDI spectrum contracts into the centre

of the target channel to maintain the energy in the target echo. As a result' B falls

still further so that the detection threshold also drops and, as we shall see shortly, the

detection margin is maintained remarkably well.

The MV spectra, on the other hand, respond to this shift in emphasis from clutter

to noise by contracting to the band edges. This increases B and hence counteracts to

some extent the effect of the reduction in I ou the local variance, lln1z. Hence, as the

signal power is reduced, the detection threshold increaees.

Fig. 3.8 is a set of curves of detectiou margin versus signal power derived by

subtracting the results depicted in Fig. 3.7 from those of Fig. 3.64. We see that, if we

require a detection margin of 3dB, then the TRI and øl curves of Fig- 3.6 do reliably

indicate the performance for the MDI and MTRI spectra. However, for the MV spectra,

those curyes are only indicative of true performance for sigual poweÌS above a certain

value that depends on the gate width.

We can find the minimum signal po$/er satisfying the requirement of at least 3dB

margin of detection from the curves of Fig. 3.8. For gate widths from 50uS to 200uS it

varies from about f6dB to about fgdB. Looking at Fig. 3.68, we see that this means

that the MV spectra give significantly improved range performance only for moderate
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signal power. At lower power, poor detection performance would regult in very poor

range accuracy. At higher po$rer, the other optimal spectra would yield similar range

accuracy to that obtainable with the MV spectra.

Now we turn to the ambiguity problem resulting from the existence of time

sidelobes. Our first step in coneidering this aspect of performance is to inspect the crose-

ambiguity functions resulting from the use of some of the spectra we have discussed.

Since we have restricted our attention to situations where Doppler effects are negligible,

we need only consider the delay dependence of the ambiguity function. Eence we need

only inspect the cross-correlation envelope given by:

r(ú)ø-(t - r)dt (3.33)

where f(ú) and q-(ú) are the complex analytic representations of the received target echo,

r(t), and the ML reference, q(ú), as described in chapter 2'

á(r) is the wideband, zero Doppler equivalent or.ly,o(t,/)l whicå is defined in

equation B.a. .,{(r) is also the signal component of the LLF defined in equation 2.9. It

is also the autocorrelation envelope of the post-whitening target echo'

Figs. 8.9 to B.ll display the ambiguity functions, á(r), resulting from the trans-

mission of signals with the spectra disptayed in Fig. 3.5. Because of the detail in those

figures they have not been superimposed. It is important to realize that these are not

the autocorrelation envelopes of the transmitted signals themselves but those of the

post-whitening target echoeg.

In Fig. 8.9, the ambiguity functiong for the MDI signals ar€ displayed. The rapid

reduction of local variance with signal poïver that we saw in Fig. 3.68 is reflected here

in the sharpening of the main lobe. there is virtually no sidelobe structure at all'

As expected, a very similar picture can be seen in Fig. 3.11 which corresponds

to the MTRI spectra. However, Fig. 3.f0 presents a very different picture for the MV

spectra. At relatively high signal poïvenr (e.g. 227d8) a definite sidelobe structure can
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be seeu but giveu the high detection indices achieved, this would present no ambiguity

problem. (A more rigorous analysis will be presented soon.) Àt low sigual power€'

however, we Bee that the very sharp main lobe has been maintained but is surrounded

by a very complex fine sidelobe structure.

This would represent an ambiguity problem. However, our discuseion of detection

performance revealed that transmission of MV signals at such low powers (¡16d8) would

result in the system operating below threshold. Eence we are not interested in ambiguity

at these very low siglal powers.

Of more interest are the ambiguity functions associated with MV signals in the

fZdB to 25dB region of sigual powerÉ¡ where we would expect MV spectra to be most

valuable. Fig. 3.12 displays four of these ambiguity functions. We see that the sidelobe

structure in these functions is much less pronounced than at the very low signal po$¡er8.

Ia fact, the detection indices of over 9dB associated with these conditions (see Fig.

B.OA) is much greater tban that Decessa¡y to ensure unambiguous detection.

In order to see this it ie necessary to perform a mathematical analysis of the

ambiguity problem. The two largest sidelobes preseut the highest probability of pro'

ducing ambiguous peaks due to additive interference. Now the width of these sidelobes

,depends ot P. Because of the matched ûltering, the widths of any interference peaks

are similarly dependent on p. As a result, at most one interference peak can occur

coincidentally with a sidelobe.

Now the probability that the interference above one sidelobe will e>cceed the main

lobe depends, to a close approximation, only on the ratio of tbe difference between the

peaks of the sid.elobe and main lobe aud the RMS interference. \{e will call this ratio

the ambiguity ratio, À. The value of the peak of the main lobe is I and the RMS

interference ie Sl/2. Thug if the ratio of eidelobe peak value to main lobe peak value is

c, then:
(1 -o n

- (1 - QntlzÀ-
nr12

3-34
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Figure 3.12 Ambigttity fbnctions Qor MV Sisnsls
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Eence we wish to determire the probability, Pr, that I * nr ( aD * n2 where

n¡ and nz ¿¡re the noise values at the main lobe and gidelobe peaks resPectively and are

independent zero mean ra¡dom variables with variance, 8. Thus, Pr is the probability

that (l -@)n 1 nz-n1. Now n2-r,4 is a zero mean normal random variable of variance,

28. Hence, P, is the probability that a random variable of unity variance will exceed

the value, Llr,Æ. i.e.

P,: rl2 - erl(Ll{z).

Eowever. there a¡e two sidelobes of equal amplitude and the others are too small

in relation to the first two to contribute significantly to the ambiguity problem. Ilence,

the total probability of an ambiguous peak appearing is obtained from the binomial

distributiou as:
P¡- t-(l -P,)2

- I - (rlz+ erf(¡,1{z))2.

This function has a marked threshold characteristic and we c¿n locate the thresh-

old by solving the equation:

P¡: Lf 2.

erf(Ll{l) -r/\fv-rl2
Às.7.

Thus, for negligible ambiguity, from 3.34 we have the requirement:

(3.35)

(3.36)

It must be remembered however, that this inequality only guarantees unambiguous

detection when the nearest sidelobes to the main lobe are muc"h larger than all others.

Now, from Fig' 3'l2A' we find that ø n¡ '55' Hence E'4 : 3'8dB' Flom S'64'

with a signal power of 18d8, we ûnd that I x lldB. This is weII above the ambiguity

threshold, Da, justifying the earlier assertion.
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In thig subsection rüe have looked at the application of our simple optimization

theory as given in theoremn I to 3 to a practical erca,mple. That example is quite extreme

in a number of respects. The frequency band of interest is very wide relative to the

centre frequency, the tra¡smission path transfer functious are highly coloured and the

noise is coloured.

We saw that, for this example, MV spectra can provide a signiûcant improvemeut

in range accuracy over MDI spectra at moderate signal power. At lower power, MV

spectra give rise to poor and ambiguous detection. At high power, the performance

asymptotically approaches a limiting condition and is not significantly dependent on

the signal desigu, provided the full band is occupied. MTRI spectra tend to be similar

to MDI spectra and lead to almost identical performauce.

3.2.3 White Enai¡onments

In this sub-section we shall apply signal optimization techniques to a somewhat

more usual environment. The frequency band of interest is approximately 30kHz wide

again, but centred at about l00kHz. The transmission path transfer functions are flat

and the noise is white.

Fig. 3.13 displays the optimal spectra obtained at four different signal poweñt.

This time we see that the MTRI spectra are very dissimilar to the MDI spectra at very

low signal power but become more similar as the power ig increased. the MV spectra

are dissimilar to the othere at all signal levels.

We see that the MDI spectrum is always flat while the MTRI spectrum has a

preference for the high frequency end of the band. The MV spectrum is always zero at

the cent¡e frequency and mæcimum at the band edges. At low signal powers it contracts

toward the band edges as it did in the previous example.

In Fig. 3.14 we see the curves produced as the performance indicators¡ vary

with signal power. The detection perforrn¿rnces of the three types of signals appear
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Figu¡e 3.I5 DetecJion Tàresùolds - Whìte Ðnvironment
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very similar from the detection index curyes. Eowever, it is neceesary to compute

the detection margins to verify this. Fig. 3.15 shows the detection thresholds for

varioue gate widthe and Fig. 3.16 shows the detection margins. Again the MDI spectra

consigtently outperform the others in this respect but never by more than a fraction of

1dB.

The reason for thie similarity in spite of the very different spectral distúbutions is

simply that there is no favourable portion of the band for the MDI spectrum to retreat

to at low signal power.

Ftom Fig. 3.16 we see that, with a 200uS gate width, the MV spectrum will give

improved range accuracy for signal powers in erccess of about fSdB because above that

power, detection margins of greater than 3dB are achieved. However, from Fig. 3.148'

we find that this improvement is negligible for signal power above 25d8.

At this point we should consider the question of ambiguity. Fig. 3.17 shows

the ambiguity functions resulting from the use of MV signals at four signal powers. As

before, an extremely highly developed sidelobe structure is evident at low signal power.

Eowever, we see a much more obvious sidelobe structure at the higher signal powers

than we did previously. This is because the sharp spectral transitions at the band edges

are uo longer smoothed by the colouration of the transmission path as they were in the

previous 6¡çample.

Of particular interest ie the sidelobe performance with signal power in the region

of 13dB to 25dB where we expect improved range accuracy from the use of lv[V siguals.

Fig. 3.178 is the ambiguity function at a signal power of 13d8. Ftom this ûgure we find

a s .9 and from equation 3.36 we find S¿ : lTdB' Flom 3'144 we find that S : lzdB

which is insufficient to eliminate ambiguity.

At a signal power of 27d8, however, we ûnd from Fig. 3.17c that a n¡ .4 and

from equation, 3.36 we obtain S¡ nr OdB. Clearþ there is no ambiguity problem here.

In fact the ambiguity problem is overcome at a signal power of about 16d8. Hence the
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MV spectra give significantly improved range accuracy for signal powers between lSdB

and 25d8.

It is also lvorth noting, in relation to range accuracy, that the MTRI spectra give

very poor performance below about l5dB.

The transverse resolution performances of the MTRI spectra and the N{DI spec-

tra are virtually identical for this example as we see from Fig. 3.14C. However the MV

spectra give somewhat poorer transverse resolution.

We have now compared the performances obtainable using the three types oI I

optimal spectra over a lvide range of signal polver for tlvo very different transmission

paths. We have seen that the usefulness of MV sìgnals is limited by poor detection per-

formance and signal ambiguity. At moderate porver, however, they provide improved

range accuracy while at high signal power system performance tends to a limiting con-

dition which is independent of the signal provided the full band is occupied. We have

also seen that the MV signals produce somewhat poorer transverse resolution than the

other types except at very high signal powers. The MTRI signals, on the other hand,

do not produce significantly improved transverse resolution over MDI signals and often,

in fact, have very similar spectra to the MDI signals.

For any particular application the true optimal spectrum will provide a compro-

mise between the performances of these simple optima. The question of how to effect

such a compromise is the subject of the next section.
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!S.3 Optimi¡ation With Respect to Mixed Criteria

We saw in the previous section that very poor detection performance ca.n result

from the use of MV signals at low signal powers. Minimum local variance is not an

adequate criterion under these couditions as local va¡iance is not a reliable indicator of

range accuracy. In some situations, also, MV signals may not provide the transverse

resolution required. Clearly, it would be useful to know how to compromise between

the simple criteria in order to obtain a signal design that was best suited to a particular

application.

Usually, we want to optimize with respect to one criterion, subject to constraints

on the other two performance indicators. Tlpically, we want to minimize the local

variance subject to the requirements of reliable and unambiguous detection and adequate

transverse resolution. The detection requirements can be achieved by reguiring that

the detection index be greater than some minimal value and the tranwerse resolution

requirement can be achieved by ensuring that the TRI exceeds a certain value. Eowever,

initially we shall look at the problem of minimizing the local v¿riance subject to etrict

equality constraints on E and TRI.

We have seen in the previous section that I is a good indicator of detection

margin in that MDI signals generally yield the largest detection margins. Therefore a

detectiou margin constraint is equivalent to a constraint on 8. Similarly, MDI signals

have the best sidelobe performance, while, for any given signal spectnrm, unambiguous

detection will be effected provided the detection index provides some margin (say 3dB)

above the ambiguity threshold. Hence, the una,mbiguous detection requirement also

corresponds to a constraint on S. Of courge, the constraint value to choose depends

intimately on the details of the particular transmission path and the choice of frequency

band. Designer interveution in the optimization process is necessary, in that eeveral

attempts with different constraint rr¿lues may be necessary before atr appropriate choice

is made. The advantage of simplifying the detection constraints to a simple constraint
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on D in this way, however, is that the mathematical analysis is simplified considerably.

We now have two simple, strict equality constraints which may be expressed

mathematically as:

,, 
T,

æ'a (Jrr lflrU)12 : S-ir, (3.37)
G""(f\ + c,,(t) lE,(t)l

aDd

8rT /r- Í2G,,(f)lHrU)12?J,ffidt:rRl*;o
where 8-;o and TRI*;* are constraint values determined by the designer.

(3.38)

As well as meeting these constraints we wish to minimize the range estimate

variance, given by 3.23 subject to the additional power constraint given by 3.15. The

eolution to this problem is given in the following theorem which is proveu in appendix

3c.

Theo¡em 4. Let Grr(Í) - 0V/ É Íh, fzl. fn"o the signz! powü specttzl density, Gr'(f), *zt

ma>cimizes 3.23 subject to 3.75,3.3T and 3.38, if iú exists, is given by:

G,,U): x3(f -Io\'+
t/'lrr(t)l(c""(t) L12_GnnT)

vf e .Br (3.3e)
2

lE"

rv.bere

Er: {t'(o: U - Ío)'+kTÍ'+k'r)''' lur(Ðl > (c,"(/))'p} c R,

Bo:Er

nr - llu lzl

(3.40)

and lco, ky and k¿ arc non-negative co¿súants cüoset to satisf simultaneously 3.I5, 3-37 and 3'38.

The solution given in theorem 4 is not simply a combination (linear or otherwise)

of the solutione given in theorerns I to 3 for at least two re:$ons. Firstly, the definitions

of the frequency regions, ß1 and &, ile not the same in any two of the theorems.

Secondly, the value obtained for the centroidal frequeuc¡ .fo, is uot, in general, the
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same in the solution of theorems 3 aud 4. Nevertheless, there ie a corresPondence

between the nalues of S-;o aud rt¿ and between those of. TRI^;¡ a'nd kr in that an

increase in one of the constraint values in 3.37 or 3.38 always reeults in an increase in

the value of the corresponding coefrcient in 3.39. This can be seen from an inspection

of the proof of theorem 4 in appendix 3C.

Now, the solution of Theorem 4 is not guaranteed to exist. It may not exist for

one or more of several re:rn¡ons. Firstly, the left hand side of 3.37 may always be greater

than the right when the other constraints are met. Secondly, the left hand side of 3.38

may always be greater than the right when the other constraiuts are met. Thirdly' the

left haud side of 3.37 may always be less than the right wheu the other constraints

are met or, fourthly, the left hand side of 3.38 may always be less than the right when

the other constraintg are met. We require a strategy for dealing with these various

conditioue.

The ûrst and second of the above conditions are adrr¿ntageous in that our con-

straint(s), 8.37 or(/and) 3.38 ia(/are) more tha¡ met. In thig case the optimal solutiou

is obtained by simply eliminating the offending constraiut. Inspection of the proof in

appendix 3C reveals that the solutio¡ to the new problem is obtained by setting the

corresponding coeficient in 3.39 to zero.

The third and fourth conditions are rather more difficult to deal with. The

author has adopted the following strategy. Detection performance takes top priority,

followed by transverse resolution. Therefore, if 3.38 cannot be met subject to the other

coustraints then the solutiou adopted is to use the signal epectrum that maximizes TRI

subject to 3.15 a¡d 3.37. It is easily deduced from the proof of theorem 4 that the

solution to this problem is obtained by dropping the constraint, 3.38 and setting ftn to

gero. If neither 3.38 nor 3.37 can be met then we simply revert to the simple criterion

of maximum detection index subject to 3.15.

Iu practice, the designer looks at va¡ious solutions obtained by using different
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constraint values. The detection and ambiguity thresholds are also talen into account

before the choice ie made of the spectrum best suited to the application. In order

to facilitate such investigations, the author has developed a computer program that

implements the solutiou strategy outlined in the preceding paragraph. A listing is

included in appendix 38. The program involvee four nested iteration loops to obtain

the constants, lcr, kr, k¿ and /g.

The form of the solution in ßr has been modified slightly from that given in 3.39

to an equivalent form given by:

u2

G',(f):
k" ((/ - Ío)' + k\l' + t'l) lsr(f)l (G""(ÍÐ'12 - G*,(ll

(3.41)
lE"(fl',

in which b : k"4 and rt¿ - kok'd.

This modification ensures that the power constraint given in 3.15 can always be

met by adjustment of only the one coefrcient, kr. This eimplifies the procedures for

updating k2' and rt¿ from one iteration to the next.

The overall solution is achieved by a relatively simple process in which several

simple decieions are made at eacÀ iteration step. The procedure starts with k¿ and k1'

set to zero. The inner two iteration loops correspond to the simple MV optimizatiou

process under this conditlou. This MV solution is then tested for adherence to the

detection index constraint (equation 3.37). If the constraint is met or more than met,

then k¿ is left at zero and the TRI constraint (equation 3.38) is tegted. If not then

iteration around the inner three loops obtains a golution satisfying the detection index

constraint.

This third level of iteration continuee until either the congtraiut is met or the

first term in the numerator of 3.41 (involving the factor V - f oD is making negligible

contribution to the signal po\trer. This condition indicates that the constraint is not

achievable, in which case the hypothesized solution being tested is chosen as the overall
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solution. This solution is a very close approximation to the MDI solution because fr2' is

zero and lr, is close to zero.

The outer iteration loop attempts to achieve the TRI constraint (equation 3.38)

by meaus of an algorithm analogous to that discussed in relation to the third loop.

Again, this procedure is terminated if the constraint is met or if the ll - lol term in

the numerator of 3.41 is making negligible contribution to the signal power.
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!3.4 Ek""ples of Mixed C¡iteria Optimiration

As a means of illustratiug the use of the mixed criteria optimization technique

described in the previous sectiou, two examples of its application to the transmission

path of Fig. 3.4 will be discussed.

In the ûrst of these examples, the TRI was unconstrained. This was aùieved

by running the computer program for mixed criteria optimization with TRI^;n set to

sero. The detection index constraint, S-', was set to 14d8.

The resulting signal spectra at various signal powers are displayed in Fig. 3.18.

Comparing these results with those of Fig. 3.5, we see that, at signal power€ of ldB

and lBdB, the spectra are MDI spectra, while at 27dB and 40dB they are MV apectra.

(Note that signat power is adjusted to within .fdB of the required value - this accounts

for gome small differences in absolute Power density.)

Fig. B.19 displays the curveg of the three performauce indicators for comparison

with Fig. 3.6. Compariug the detection inde>c curyes, we see that, below about 12dB in

signal power, the mixed criteria optimal spectra give identical performance to the MDI

spectra. From f2dB to about zfdB in signal porver, the detection indor is constant at

l4dB. Above 21dB in signal power, the detection index achieved is that achieved with

the MV spectra.

Looking at the cun¡es of range error, we see that the range error cun¡e for the

mixed criteria optimal spectra drops sharply away from the MDI curve above about

fAdB a¡d ie close to the MV curve above about UdB. These comparisons clearly illus-

trate the way in which detection performauce can be traded for range accuracy.

The TRI cun¡e has beeu presented for completenese. Again we see a transition

region below which the performance ie as for the MDI spectra and above which it is a8

for the MV spectra.

I¡ the next example, S-;* was set to lOdB anà T RI^r¿ wN set to 2.6 X 106. The
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spectra obtained are illustrated in Fig. 3.20. Comparison rvith Fig. 3.5 reveals that the

spectrum ig that of an MDI spectrum at a signal power of ldB. By l3dB, the transition

to MTRI spectra has been completed and by 27dB the spectnrm is an MV spectrum.

The performance cun/es are presented in Fig. 3.2f . Only one of the two transition

regions ie evident in these curyee because of the close similarity in performance of the

MTRI and MDI spectra. The obvious traneition is that from MTRI spectra to MV

spectra which occurs for signal powers between about f6dB aud 24d8. In this region

the TRI ig hetd at 2.6 x 106, the detection indoc actually drops slightly and the range

error drops aharply below the MTRI curve to meet the MV curye.
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!3.5 Signal'Waveforn Design

When the transmitted signal is subject to a peak power limitation and is to

be transmitted with a limited duration, then the signal energ'y will be maximized by

the transmission of a constant envelope signal. In fact, in a number of places in the

preceding chapters, the explicit assumption was made that the signal to be transmitted

was a constant envelope signal. In this section we shall see how arbitrary signal spectra

can be obtained approximately by the design of a constant envelope waveform'

We shall consider two types of constant envelope waveform. These are phase-

modulated sinusoids and binary signah[3'e,s'to]. 1¡" selection and design of such signals

is usually discussed with reference to their ambiguity functions in the range-Doppler

plane. However, from the discussions and results in this chapter, we see that such

considerations are unnecessary here. This is partly because considerations of clutter

rejection and signal ambiguity have already been taken into account in the spectrum

design. It is also due, in part, to the fact that we are addressing a somewhat atypical

problem. The transmission path characteristics may be very complicated, Doppler

effects are negligible and the clutter is evenly distributed in range in the vicinity of

target range.

Now, binary signals are often used (usually to modulate sinusoidal carriers) be-

c¿use of the close approximations to impulsive autocorrelations that can be achieved

with certain classes of them. The extremely low level range sidelobes that can be

achieved are advantageous in many situations. However, such autocorrelations trans-

fornt to nearly white power spectra over the fréquency band of interest. Hence such

signals are of limited use in our application and methods of tailoring the spectrum of

long binary sequences to within the accuracy required have not been found.

An important class of phase-morìulaterì sinusoidal signals is the class pioneered

by price 
"¡ "¡[s.rrl 

. Chirps or swept frequency signals are used extensively in pulse

compression Radar and Sonar. They are usually linear chirps in which the instantaneous
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frequency is swept at a constant rate across the band, producing a linear frequency-time

trajectory. The spectrum of a linear chirp approximates the rectangular shape that

might be ocpected from simple-minded iustantaneous frequency coneiderations and the

closeness of this approximation depends on how quickly tbe instantaneous frequency

traverses tr¡" b"o¿[a'ttl.

Simitarly, the spectrum of a chirp with a non-liuear frequency-time trajectory

cau be made to approximate any required power spectrum closely, provided it does uot

traverse any part of the frequency band too quickly. The way in which the design can

be achieved is indicated in Fig. 3.22. The technique involves constructing a chirp so

that the derivative of its time-frequency trajectory is proportional to the required power

spectral deneity at each point in the frequency band of interegt.

The method amounts to:

l) Numerical computation .1 \lrc,"(Í)dl for all frequencies in the band, lh,lzl,
to give a function proportional to the timefrequency trajectory. (i.e dtldl: G"(f).)

2) Scaling of this function so that the manimum time equals the required signal

duration. This produces the time-frequency trajectory, ú(fi) where ú is time and /¡ is

instantaneous frequency. This function is gtored in an array in the waveform design

computer program. The indices of that Íuray represent frequency bin numberg.

B) Synthesie of a chirp by computing sin(2n lt tr$¿t) at incremental values of ú

corresponding to sampling iustants. Because of the way the time-frequency traiectory

must be represented in the computer (see para. 2) ), tbe iutegral in the above function

is computed by treating the trajectory as a function quantized in frequency a's well as

time.

The listing of a computer program to perform theee computations is included in

appendix 38. An ercample of the accuracy with which required spectra may be aPProx-

imated is given in Fig. 3.23.
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This section completes the study of signal optimization in this thesis except

for the important class of problems in whiù the transmission path cha¡acteristicg are

uncertaiu. The problem of jointly optimizing the signal aud receiver fi.lter under such

unceÉainties is studied in the next chapter.
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¿. OPTIMIZAÎION FOR UNCERTAIN MODELS

!4.O Introductory RemarLs

Often the designer ig confronted with a situation where a precise specification

for the transmission path ie difrcutt or impossibte to obtain. There are two classes of

suc,h situations. In one class, exact measurements of the target and clutter transrnission

path transfer functions are not available and the designer does not have complete con-

fidence in the estim¿tee th¿t are. In the other class of problem, the tranemission patb

characteristics are known to vary and hence there must be an uncertainty included in

the speciûcation of those characteristics.

Clea.rly, in such situations, the techniques of the previous chapters are inadequate

as they may only be applied when the transmission path characteristics are precisely

specified. A more sophisticated approach is needed which takes account of the uncer-

tainties present in the problem.

There are two established approaches to this sort of problem. One may design

an adaptive system which tunes itself to the characteristics of the path within certain

bounds. Alternatively, one may design a non-adaptive system which is optimized ac-

cording to a robustness criterion. This criterion is chosen to ensure that the resulting

system performs well, but not necessarily optimally, for any transmission path within a

particular uncertainty class.

The first of theee approaches can often result in very complex system designs

with attendant problemg of high cost and unreliability. For some classes of problem
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such an approach is justiûable. Eowever, the deeign of a real-time system for trangmig-

sion path identification, as would be required here, would be complex in the extreme.

F\rrthermore, in some caaes of practical interest, such as ultrasonic sensing of sheepskin

through the fleece ll'U variations in transmission path characteristics occur much more

rapidly than an adaptive system could be expected to track accurateþ

In this chapter we shall explore the second approach in which the signal to

be transmitted and the receiver filter are jointly optimized according to a man-min

robustnese criterion. In section 4.1 we will examine the formulation and solution of

the robust filter design problem as reported elsewhere in the literature. Sectiou 4.2 ie

devoted to the forrrulation and solution of the somewhat more complicated problem

described above.
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$4.1 Robust Matched Filters

The term matched fi,lter is the generic name applied to the class of filters that

are designed to maximize the signal-to-interference røtio at the signal peak (SIR) at the

filter output. A matched fìlter must be designed for a particular signal input in the

presence of stationary noise having a certain known power spectrum. The output SIR

of a general filter is given by:

lfs nØHØdrl'
,S.T.B _ (4.1)

(4.2)

(4.3)

where

lli c,,1¡)lH(l)l2d'l

the Fourier transform of the signal

the filter transfer function

the interference power spectrum

RU) is

H(Í) is

G;¿(f) is

It is, perhaps, remarkable that maximization of SIR by the choice of H(f\ yields

an expression proportional to I/(/) as given in 2.24. The filter specified in the latter

equation was chosen to yield the log-likelihood function of delay at its output. The

matched filter is given by the expression:

This expression differs from 2.24 only in that an arbitrary scale factor, ,t, may be applied.

The maximum SIR given by 4.1 with If (/) - HuU\ reduces to

srR¡a¡y=/_ ffia
This is exactly equal in value to the expressions for detection index given by 2.23 and

2.25

This correspondence between matched filtering and correlation techniques for

delay estimation will justify the approach taken in section 4.2. However, we will now
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explore the problem of robust optimizatiotr of E(î) in 4.1 when B(/) and G;¡(/) are

uncertain.

The approach reported several times in receut years [4'l'4'2'{'3'{'l'{'5] it one in

which the minimum SIR etrcountered for any pair of signal and interference within

specified classes for .B(/) and G;;(/) is manimized by choice of .E(/). In other words,

the designer chooses fl(Í) to optimize the worst case performance. A similar approach

has been reported for riliener frltere [4't'4'2'4'6'{'7'4'gl.

The problem lends itseH to a gøme theoreticformulation in which the players are

the deeigner and nature. The designer has a set of strategies, {ã(/)}' and nature has

a set of strategies, C, xC;, which is the cartesian product of the uncertainty classes,

C, aud C; corresponding to 8(/) and G;;(/) respectively. The Payofr for the designer

is the SIR which we will denote by p(fl; R,G;¡). We can arbitrarily assign a payoff of

(-p(ä; ¡, G;;)) for nature. The problem can then be described formally as a two-person

zero-sum game [4'9'4'lol.

If the strategies, HU\ and (S(/), G;;(/)) can be considered miredstrategies then

the game is guaranteed a solution by the lunilomentøI theorem of game theory [1't01. A

mixed strategy is one which can be expressed as a linear combination over a finite set of

pure strategies. The vector of coefrcients is a probability vector known as the strøtegy

lunction and the payoff for a pair of strategy functious is given by the expected payoff

over the matrix of paira of pure strategies. \lVe bave

H(Í): D Pl n¡u),
J

(n(t), c;(/)) : D Pfl (B(t), G,r(/))r,
È

p(H ; R,G;;) : D D p(fl ¡;(R,G;;),)P{ Pl,
ik

in which the probability, Pf iø the f¡ element of the designer's stratery function (or

vector) and Pfl is the rt¡¡ element of nature's strategy function (or vector).
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In general, however, the strategiea caunot be considered mixed and it will be

necessary to prove that a solution exists. Nevertheless, we can gaiu insight into the

problem by considering the form of the solution given þ the fuud"nental theorem.

Formulating the problem, we wish to ûnd the function , fl(l\, such that:

SIR:Pn:

in which pn is defined.

By the fundamental theorem [{'l0l we have:

MAX MIN
{ã(/)} c, x c;

p(H; R,G;;), (4-4)

(4.5)

(4.6)

PN:
MIN

CrxC;
MAX
{ä(r)}

p(E; B,G;¡)

MIN
CrxC;

p(Hu;E, G,;),

where HuU) is the matched filter for .B(/) aud G;;(/)- That is

Pn : P(Hn;ßn, G;n),

where HnU) is the matched fi.lter for the leøsü faaowu,ble pair of signal and noise

characteristics, ¿n(/) and G;¡(/).

This solution, denoted by (Hn;RnrG;nipn) represents z soild,Iepo¡nf of the game.

That is to say, for natures strategy, (Pæ,G;n), the designer can only reduce his payoff,

p(fl; Rn,G;n), by varying -l from Iln. Similarly, for the desiguers strategy, frn, nature

can only reduce her payoff, (-p(Hn;8, G;;)) (and thereby increase the desigaers payoff)

by varying (8, G,';) from (B¡, G;n). Eence, the ualuc of the game, p¡, represente the

worst payoff the designer can expect for his strategy, .E¡, and the begt payoff he can

expect for nature's etrategy,(en, G¡n).

The various referenses [l'r-l'sl dealing with robuet matched frltering deal with

particular problems in which the signal and interference uncertainties are specified in
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various ways. The solutions are rarely, if ever, in closed form and generally iuvolve

u¡knowD constants which must be solved for recursiveþ. Since the formulations are

not in the forms of mixed strategy g:unes, it is necessary to ehow that the golutions

do exist. The formulation and solution given in [A.t] are præented in slightly modiûed

form below. This formulation closely resembles that presented in the next section for our

joint (signal and filter) optimization problem. The original form was two-dimensional.

The criterion for optimization is again given by 4.4 with p(Il;.8, G;) given by

4.1 aud the uncertainty classes specified as:

cp: {",r,,lwtn-Ra(ÐtzdÍ=r}, (4.2)

c; : 
{c,,tr) 

: LU)< c,.,(/) su(fl; I c,,(n¿t:"?\, (4.8)

where n4(/) is the nominal signal and 6 is the mæcimum modeling error energ:f. G;;(/) is

specified as lying between upper asd lower bounds given AV 4Í\ and t/(/) respectively

and the total interference power is specified to be o! .

The solution presented in [a.1] is given in implicit form as:

Æn(/) _

G;nU) _

Ro(Î\G;nU)
G;n +c t

UU) YÍ e Rv
L(Í) YÍ e Rn

l4+¿1 yÍ e Ru

(4.e)

(4.10)

where Ru _ {/ : ku(l) < lBn(/)l} '
E1 : {l , lna(/)l SkL(Í)}, (4.11)

Ru : {/ ' kL(l\ < lnn(Ðl S ku(Í)l ,

and the non-negative constants, k and c are chosen to satisfy:

"zI 
lPq,(f)|z -dt-6 (4.12)

J [c;n(/) + tln '

ond I^"l(Ðdl * l^,u(ildÍ *I |^,lnnu)l¿Í 
: o?' (4'13)
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4.12 and 4.13 are derived from 4.7 and 4.8 by substitution from 4.9 and 4.10.

Necessary and sufrcient conditions for the existence of non-negative constants,

k and c satisfyin g 4.12 aud 4.13 are derived in [n.t]. A sufrcient condition is that L(Í)'

U(/) and U?o(t)l are all ûnite and non-negative (consistent with their definitions) and

that I(/) and U(/) ane Don-zero when lP{(/)l is non-zero. Also, if either 6 or ø; are

zero, then the solution exists.

The solution may be interpreted in interesting ìryays. For example, the forms of

.[[n and pR a¡e consistent with an interpretation in which the constant, c, represents a

white noise component added to the interference to account for the uncertainty in ^B(/).

Another obsereation is that .B¡ and G;¿ are the most similar in shape of all the pairs

of signals and interference spectra in the class C¡ x C; when the signal modeling error

is assumed to be mæcimal. (This is equivalent to saying that .B¡ and G¡n are chosen to

make ãn as flat as possible.)

The method of formulation, the form of the solution and the technique of proof

given for this problem in [a.l] all contribute to the approacl taken in the next section.

Ilowever, there is no direct correspondence between the two problems.
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$4.2 Robust Combinations of Signals nnd Filters

In the previous section we saw that the ML ûlter presented in chapter 2 is closely

related to that class of filters kuown as matched frlters, which are designed to mærimize

the SIR at the filter output. In fact the SIR for a matched ûlter is equal to the detection

index introduced in chapter 3. Furthermore, we saw in chapter 3 that signals optimized

with respect to a minimum local variance criterion could perform very poorþ in relation

to detection performance compared to those chosen to maximize the detection index.

We are led by these considerations to the approach taken in this chapter for

dealiug with uncertainties in the transmission path model. Firstt¡ our robust system

nrust have good detection perforurance and it follows that we must optimize with respect

to a detectability criterion. Secondly, we expect detection performance to depend on

SIR.

Our approach, therefore, will be to mærimize the minimum SIR over the uncer-

tainty class of transmission paths by choice of the signal, S(t)' and the receiver filter,

H(Í). We will see that, if we assume a fixed duration consta,trt envelope signal as in

chapter 3 then we need only optimize Grr(f), the signal porver spectrum and.H¡(/)'

the optimum ûlter, must be specified in terms of the particular signal implementation,

S(t). The problem solution is fully deûned, in analogy to the result discussed in the

previous section, by specifrcation of the leaet favourable tranemission path-

Our first step, in developing this approach must be to determine how we shall

specify the transmission path uncertainties. The startiug point will be the precise

transmissiou path model described in chapter 2 and gummarized diagramatically in

FiS. 2.3. That model was completely specified by means of three functions. ErU)

modeled the target path transfer function. lHcU)|2 modeled the squared magnitude

of the stochastic transfer function of the clutter path. G""(l) represented the noise

power spectrum. Our uncertain model will involve specified uncertainties in some of

these fuuctions.

4-8



seclíon 1.2 Roburlt Combinolíona ol SignøIe ontl Fílte¡t

Now, according to the discussion in section 4.0, these uncertaintieg arise as a

result of imprecise estimation or because of variations in the transmission path char-

acterigtics. The noise power epectrum, G""(f), however, is readily obtained, in most

cases, by means of a passive measurement. F\rrthermor€, because the noige ia often gen-

erated in the front-end of the receiver or in the close proximity of the receiver, Grro(/)

is usually quite stable. For these reasons we will assume that Go'(/) can be precisely

specified.

The transmission path transfer functiong, on the other hand, do require uncertain

speciûcations and we will start by coneidering a direct analogT to the uucertain signal

aud uoise models of the previous section. HrU) will be taken as analogous to R(f) and

W"U)12 wiü be treated as an analogue of G;;(/). Thus we have:

HrU) lär(/) - ão(/)12 dl S 6r

ln"u)r I L"(fl 3ln"u)12 s u"(il; I w"ttl| dr = ,?\
I (4.14)

(4.15)

The fon¡s of these speciûcations are appealing because the values of 6¡, L"(Í)

and tt(/) could be readily estimated by processing a representative set of meaaurements.

Eowever, they do sufter from some drawbacks which were much less relevant in the

analogous example discussed in [a.1]. These diffi.culties only arise when the uncertaintieg

being speciûed arise from variability in the actual transmission path.

Consider,ûrstly, how one would go about constructing a specification for C2'. One

would presumably have available a set of functions, HrU) belonging to the class to be

mod.eled. (Methods for obtainiug these functions will be discussed in chapter 6) Let us

assume,for the purpose of this discussion, that this Bet is known to include bounding

functions of the class for which the inequality iu 4.14 is an equality. \ile could choose

I/0(/) to be the mean of the functions of the set and find 4r for 4.14 by evaluating the

integral in 4.14 for each function in our representative set. However, this approach might

yield an unnecessarily large value for 6¡. In other words the class C1 might be broader
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than necegsary to accommodate all the functions in our set of measurements. A better

way to choose Eo(Í) would be to select the function which minimized the mærimum

value of the integral in 4.14 over the set of measurements. This approach would yield a

class, CT, æ defi.ned in 4.14, wbich was juat suficiently broad to accommodate all the

functions in our representative eet.

The question arises, however, as to whether the form of the specification, 4.14,

prevents us fiþm reducing the size ol Cy even further. To what extent this is true

depends on the nature of the uncertainty being modeled.

I¡ some cases of practical interest such as ultrasonic sensing through fleece [t'll an

important contribution to the variability of nrf) arises from u¡iations in the medium

attenuation and this has important implications in the conte>rt of the present discussion.

The medium attenuation is usually coloured. However we can illugtrate rather simply

the inadequacy of the specification in 4.14 by considering a flat atteuuation.

Imagine that the only source of variation in HrUl waß a flat attenuation which

varied by an order iu magnitude. Then we ehould be able to specify HrU) exactly

apart from a scale factor. Eowever, if we construct a specification as iu 4.14, the clase

prescribed will include a wide variety of different colourations and phase responses, few

of which can e>rist in the true clase being modeled. In fact the speciûcation would be so

broad as to be virtually useless as a description of the transmission path.

A considerable improvement can be obtained by specifying Cy in the following

way

Cy eT:

ErU)z Er(/): AErrU)
rfs
l'" Vrr(¡¡ - no(l)l'¿l 16r,

J 1¡ 
A)- A^;o

(4.16)

where lt arrd /s represent the frequency bounds within which we wish to perform our

optimization.

When constructing a specification of the form given in 4.16 from a s€t of mea-
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Eurementg, one yrould minimize the size of the class, Cr by chooaing ¡{ for any function,

ErU),, in the set of measurements, such that the corresponding error energìtrr e4 zs de'

ûned in 4.16, is minimized . Ho(l) is chosen to minimize the manimum value of e2' over

the set of measurement functions when á is chosen in this fashion for each functiou-

The conetruction of euch a speciûcation from a set of measurements is a somewhat

complex procedure. However the form of this specification more closely represents the

types of uncertainties which would have to be represented in practice. Later in this

chapter and in chapter 6 we will consider obtaining an approximate robust optimum

solution by applying techniques which avoid these difficulties and those associated with

computing an exact mathematical solution.

The specification, 4.15, also needs modifying. This is because, in practice, the

integral in 4.15 can be expected to vary significantly over the true class of conditions to

be represented in many situations. A better specification is:

c"
lil"(Ðf I L.(Ð S lä"(t)12 3u"(Ð;

rÍn
," : I 

'- 
lH"U)r dÍ 3 "?

(4.17)

The remaining shortcoming of the form of the model represented by 4-16 and

4.17 is that it d.oes not take account of dependencies whic-h may ocist between the

variations h HrU) a¡d those i" lf.(/)12, aud between .l{ aú 877(f).The penalty paid

for not taking these dependencies into account may be a reduction in detection index

over the true class of conditions encountered because the system will be optimized for

robust performance over a broader class than necessary. Eowever,4.16 and 4.17 remain

relatively simple and further complication is probably unjustified.

We have now developed suitable forms for the speciûcations of the target and

clutter path tranefer function classes. We now need to derive aD exPression for SIR in

terms of the signal power spectrum, the noise power spectrum and the target and clutter

path transfer functions. Once we have such au expression (for the payoff in our game)
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we cau attempt to maximizeill minimum value over the classes of transfer functions

(nature's strategies) by choice of the sigual power spectrum and the receiver filter (the

designer'e strategT).

Restating our problem explicitl¡ we wish to tnd ^t¡(/) and Sn(/) (where o.Bo

denoteg a robust-optimal function) such that the minimum v¿lue of p (Ar, lL"l' ;t,t)
over the classes, C1 and C" given in 4.16 and 4.17 ie maximized, where:

2

T
, (ur,lfl"lz ;8,G,") : ¡fn

Jlo c,,(Ðlí"(Ðf + G^*(f) lnu\Pdr
(4.1e)

The saddlepoint solution to thig problem is fully speciûed by the least favourable

pair of target and clutter transfer functions, ErnU) and l^U"¿(/)12 from within the

classes, C1 and C". fln and G¡ are optimal for this least favourable choice, with G¡

4-12

$: st¡luryt(Í)dÍ
(4.18)o (ur,ln.l' ;^4, s) : ¡Ia

Jro c",(fl!fl"U\f + G""(t) lnç)l'dt

where G",(flis the power spectrum of the signal, s(t). Note that , ("r,lL"l' ;",t)
is simply the SIR obtained by substitution into equation 4.1. It may also be regarded as

the designer's payoff with the pair of arguments to the left of the gemi-colon representing

nature'g strategy and those to the right of the semi-colon representing the desig:rerts

strategy.

Now, equation 4.18 sti[ involves the Fourier transform, S(t)' of the transmitted

slgnal. We shall therefore manipulate it so that it only involves the Power spectrum of

the transmitted signal. This eimpliûes the solution process. lilithout loss of generality,

we can write:

HU\: .Ks'(t) H'(l)

which defines Hr(il and where K is an arbitrary consta,nt.tr\¡rther, if S(f ) is a constant

envelope signal of duration T then 4.18 can be written:

í: ",,u)Eru)n,
2
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being the robust-optimal signal power spectrum. The saddlepoint is deûned by:

o (*r, I 
E 

"l' ; n n, c *) 2, (*, 
^, 

I 
H 

" nl2 ; H n, c n) 2 o (r, *, I 
fl 

"nl2 ; 
fl , G,,) (4.20)

This golution is given in the theorem below which is proved in Appendix 4.

Theorem 5. For the classes, C7 anil C¿, anil tùe noise power specúrun, G""(l), ú[e robust flter

and sigral pab (flprG¡) satisf ing 1.20 is tüat pair wåicü is optimal for täe pür oI ie¿st-lzvourùIe

úr¿nsfer fuuctions defrned by:

Ern,) - 
á-r"ão(t) (G""(t) l GR(/) l!"n({)l') 

(4.21)"¡\" c""1/); cnu) (tr""tflt'+,)

VleRv
YÎ e tu u.22)
YleRu

I ¡rlz'*(/)l(c*"(fl)j/'-c"*(/) vÍ e Rr n Eo 
(4.2a)where: Gp(f): { lr"n(lll'

[o vt€80
Ra : {l , }alcn(l)U"(l) + G""(/)l < cnf) lärn(f)l} c Rr

R1 - {Í , }¡.lcn(/)u"(/) + G""(/)l > cn(fl løra(/)l} c Rr

R¡¡ - Etu Rv C Rr
(

so - {l , t^;*t zlËrn(/)l < (G""(/)¡rl2\ c nr

Pqr-{Írît<lSfal

(4.24)

The nou-negative constanta, kt, kz and c must be chosen to satisfy the three

equations below and a sufficient condition for their existence is that G""(l); läo(.f)l'

L"(f) and U"(/) are all ûnite, non-negative real functions on .82. and that y zrrd o!

are finite non-negative real numbers while P, ia a finite positive real number. ÏVe have:

rI ln"r7)l'¿Í - o! (4.25)
¿Rr

", [ - läo(/)12 -- dl - .tr G.26)
l n, 

llu"n(¡)l, + .l
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(4.27)cnu)dl - P"

F,quatious 4.25 and 4.26 arise from the constraints within the class descúptions

for the clutter path transfer function and the target path transfer function, respectively.

F,quation 4.27 ariæe from the signal energy constraint. In general it will be necessary

to solve 4.25-4.27 iteratively for rb1, h2 and c.

An explicit form of the above solution is derived in Appendix 4 in which the

right hand sides of the equations, 4.21-4.24, aud both sides of the equations,4.25'4.27

are cleared oî, fl7p, ä"n and G¡. An interpretation of this result is presented in section

4.3. The solution is:

E YÍ e Rv

Yl e Rr

Yf e R¡¡

lärn(f)l _ Ll2 (4.28)

A^;"lHo(f)l - ert

are(ãrn(/)) - ars(ro(f))vf eRr (4.2e

U"(Í) Yl e Rs

L-"(l) YfeR¡
Á-i"ß2fEo(/)ln:(c,,"(t)lr/2 - c v f e R¡¡

Í z ktkz(U"(Í)* c) < A*;okzlãg(fl| - (G""(f))t/') c Rr

| : k¡h2(L"(n* c) < a,o;ok¡rg(t)l - (c"*(t))t/') c Rr

A^;nkzlãg(t)l - (G""(t))Uz . k¡h2 ((I - c(/) + c)

: {f i A^;'tszJE0(t)l - (c""(t))tl' s k¡k2(L"(l) + t)} . 
"t

= {f z A*;ok2lfl0(t)l - (c""(t))'t' so} c nr

kt, kz and c are then chosen to satisfy:

Gnn Llz

*c

*c

lE"nU)|2 : (4.30)

Rs

R¡'¡

R1

Ro

:{

:{

(4.31)

I*,u"(ñdÍ * I*"'"(ndr
, [ ( t*"x'lnoÏ)l- (c^'(fl)tl' 

- "+T' /nn, \ kúz

4-t4
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lão(t)I'?
(4.33)

lL^r,*rlro(/)l - (G""(t) )'t')'
A^;nkzläo(t)l - Gon )uz

u" l)+c

flo
(L"(t) + c)

dl:6r

rr*, Ir,(c*,(Ð)u'ü + I*,G*,:fl)'t'
+ [ (G""(t))'/z 

.,{,";"fr2 läg({)1,-,(9""(/))t/2 dÍ : P,' J nnc¡ov ""1' ¡t L"$) + c "J 

(4.84)

The resulting form of G¿ is:

GnU) :

E Gno u2 (G^,(fl)tl'

(G*,(Í))'l'

Yl e Ru

YfeR¡cÃ
YÍ e Rtt
V/€Ro

(4.35)

0

The existence of non-negative constants, ft1, lcz and c satisfyin g 4.32-4.35 is also

proved in Appendix 4 under certain minor regtrictions. As a by-product of that analysia

we see that 4.32 can be solved for k1 given any allowable values for lcz and c. Similarly'

4.33 can always be solved for c provided fu < & a¡d 4.34 can always be solved for ¡tz.

An appropriate procedure for solving these gimultaneous equations recursively,

is presented in ùapter 6 along with the listing of a computer program that implementa

the procedure. The convergence properties of this procedure are also investigated in

chapter 6.

4-15



tection l.g Dbcueion

!{.8 Discusslol

The solution given by 4.21 to 4.35 can be interpreted in several intereeting ways.

It appears that c represents a white componeut added to the squared magnitude of the

clutter path transfer function. To gee thig fiom equationg 4.23 and 4.2 by substitution

from equation 4.21, we c:rn obtain:

(G^,(n)'l' A^;okzlão (.f) I - (G 
^,(Í))t 

12

(4.36)cnÍ) _
ln"(t)l *c

and Hl(f) -
A^;"Eo(Í) (4.37)

G*,(fl+ Gn(t) (l¿"(flI'+ t)

It is immediately apparent, from compa¡ison of 4.36 and 4.37 with equations

B.t6 and 2.15, respectively (taking into account that .Hn(f)Sn(/) is proportional to the

optimal correlation reference), that this robust optimum solution is also optimum for a

pair of transmission path characteristics given by:

HrU) - A^;,Es(f\

l,g"(/)12 : l^g"a(/)12 +'

Another obserr¡¿tion is that ErnU) and l.E"¡(/)12 are chosen such that the

fuuction línu\|z e nu) is as flat as possible. Iu .B¡4, for o<ample, ure have:

lEnU)12 cnU) : lilrnU\12 cnUD2

[",,g) + cn(/) lr.n(/)l']

An interpretation of this is that the least-favourable transmission path is that which

allows the deaiguer to use the least oaemJlcolouration to obtain optimum performance.

A similar interpretation applies to the robust optimum matched filter result discussed

in the previous section.

A result which was fully expected is that the value of A^;n does not affect the

robust optimum solution. This can be eeen by inspecting 4.36 aud 4.37. In 4.36 lc2 is

:k?
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adjusted to provide the required signal power. Eence any cbange in the value oî, A^;n

will always be offset by a change in the value o1, k2. In 4.37 Á-; simply scales the

optimum filter transfer function and therefore has no effect on the SIR. The nett reault

ie the same as if we simply dropped the third inequality from the specification, 4.16,

provided we adhe¡e to the same procedure in constructing that specification.

\ile can summarize the characteristics of the least favourable transmission path

(with á retained for completeness) as follows:

l) A: Am;¡. The mean magnitude of the target

path trander function is minimal.

2) eT : 6T. The modeling error of the target

path transfer function is mædmal.

That is to say, the transfer

function is as different from the

nominal transfer function as possible.

3) P": o?' The clutter Path transfer

function has ma:<imum "PowerÐ.

4) 
"rg 

(ãrn(/)) - arg (.E0(/)) . The phase response of the target

path ie that of the

nomiual target Path.

5) län(f)12 G¿(/) is The optimum overall colouration

as flat as possible. provided by the signal and

filter pair is minimal.

These characterietics can aid in identifying, approximateln the least favourable path as

discussed later.

The importance of Tbeorem 5 lies in the fact that ita proof demonstrates that,

for a realistic formulation of the problem, a solution exists. In order to desigu the robuet

optimum system one must firstly identiþ the least favourable path. It is possible to do
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this approcimately without solving the equations, 4.32 to 4-35.

For oceynple, we may have a eet of pairs of functiont, (fr(t), lã"(/)l'). Then,

we can simply compare their optimal detection indices and choose the pair yielding the

emallest value.

One adva¡tage of this approach is that it does take account of the dependencies

betweeu A, Er(fl and lã"(/)12 discussed in the previous section. It can therefore be

expected to produce a less conservative result.

In Chapter 6 this approach is compared to the alteruative of specifyiug the

uncertainty classes as in 4.16 and 4.17 and then solving for the solution given in Theorem

5. A practical example is used to illustrate the comparison.
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6. CONDITIONAL M.A.P. ESTIMATION

!5.O Using Prior Info¡mation

Woodwardl2'11 once wrote, in relation to signal parameter estimation, 'guesswork

destroys informationn. What he meant was that using guesswork in performing an

irreversible process on a signal prevents any later process from extracting information

from the signal by using more reliable prior information. The way to extract from a

signal the maximum quantity of information about a parameter ig to use all available

relevaut prior information in the process.

In chapter 2, we saw that ML estimation is a process in which no prior informa-

tion is used while MAP estimation uses aJl the prior information that o<ists. This is

because MAP estimation explicitly uses the prior probability density function (PDF) of

the parameter being estimated. tr\rthermore, it uses that function in an optimal way.

Now the prtc;r PDF contains o/l the prior information about the pa^rameter. It is not

surprising, therefore, that, as we shall shortly see, in several sensesr MAP estimation is

optimal.

However, the statement that the MAP estimator uses the prior PDF in an optimal

way requires justification and an explanation. The MAP estimator uses the prior PDF

together with the LLF to construct the posterior PDF as we saw in chapter 2. The

MAP estimate is then chosen to maximize that posterior PDF. Thus it is the most

probable value of the parameter, taking in to account all the relevant information that

exists.

F\rthermore, if the posterior PDF is symmetrical, the MAP estimate is the min-

5-1



sect¡on 5.0 Ucing PÅor Informolion

imum mean squared error (MMSE) estimate of the paramstrs¡ [2'3'z'll. Thit symmetry

requirement is often satisfied approximately in practice. The reason is, simpl¡ that

there are usually a large number of independent contributions to our uncertainty about

the value of the parameter to be estimated. Hence, we can invoke the central limit

theoreml5'll to show that the posterior PDF is approximately uorural and therefore

closely symmetrical. Usually, we want to minimize the mean squared error and we can

do this by choosing the MAP estimate if we can obtain such an estimate.

However there is a difrculty with the implementation of MÀP estimation tech-

niques in practical signal parameter estimation applications (particularly in real time).

The problem is that, nearly always, much of the prior information about the parame-

ter to be estimated is unavailable to the estimator. It exists, and could be assembled

into a prior PDF if time permitted and the necessary mechanisn for doing so existed.

However, such a scheme is usually quite impractical.

In section 5.2, a simpler problem will be tackled in which only the most readily

available prior information is used in an optimal, yet practical way. Ifowever, the con-

ventional approach is to use GML estimation as defined in chapter 2. Now a parameter

gate represents an explicit and usuaþ inaccurate assumption about the nature of the

prior PDF. Hence, GML estimation involves guesswork in an irreversible operation and,

therefore, the destruction of useful information.

Nevertheless, GML estimation is, and will continue to be, a highly practical

and efficacious estimation technique. In many applications, the penalty paid for using

guesswork in this way is small while the cost of incorporating a more optimal use of

prior information might well be prohibitive.

In this chapter we will investigate the performance aud design of both GML and

conditional MAP range estimators. The investigation will be carried out with the aid

of simulation software developed by the author for the purpose and will, incidentally,

provide empirical verification of many of the theoretical results of chapters 2 and 3.
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!õ.1 Range Gating

5.1.1 Locked Rønge Gates

The relationship between range gate width and performance has been investi-

gated in chapters 2 and 3. We have seen theoretical evidence that the detection thresh-

old falls as the rarrge gate width is reduced. Indeed, as we have seen, sufrciently narrow

gates can eliminate the detection problem entirely.

Based on this evidence alone, we might be led to the conclusion that the smaller

the gate the better the performan,ce. However, there are, of coußer other factors to

consider and these witl be examined in the next subsection. These factors only become

evident when we look at a practical implementation of range gating in which the gate

must track the target.

In this subsection, however, we shall examine the performance of a system em-

ploying a hypothetical range gate that is always locked on to the target in order to verify

the theoretical results of chapters 2 and 3 prior to extending them in the remainder of

this chapter. Our investigation will involve gathering simulation results for comparison

with the corresponding theoretical results that were obtained in chapter 3.

The operation of a system employing the optimal spectra of chapter 3 through

the transmissiou path of Fig. 3.4 has been simulated. In the simulations' one huudred

post-correlation waveform envelopes were generated for each signal tested. These were

all produced by independent random processes that will be explained shortly- Each of

four difierent post-correlatiou processing techniques was applied to each of the hundred

post-correlation wavefo¡m envelopes and the root-mean-square (RMS) estimation error

was computed for each technique for each signal.

The form of the post-correlation waveform envelope was computed by the con-

struction of the transform of the complex analytic waveform, transforming it to the
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time domain and computing its magnitude. The frequency domain computation simply

involved computing 8o(/) as given by equation 3.31 from the signal power spectrum,

G""(Í), and the transmission path characteristics and an additive complex interference

transform whose squared. åagnitude was given by 2G;o(/) as given in equation 3.32. The

factor of two accounts for the contribution of the Hilbert trausform of the interference

to the complex analytic interference powerlz'll.

The interference sequence was constructed by first generating a sequence of inde-

pendent random complex variables whose magnitude had a v¿riance of 2. This sequence

actually represents the transform of the complex analytic post-whitening interfereuce.

This sequence is then multiplied by the square root of a discrete form of G¡o(f).

The way in which the white interference transform w:ul generated is of some in-

terest. Tbe individual real and imaginary samples are all independent of each other

and of unity variance. Fbrthermore, the samples were generated in such a way that

their distribution was closely normal. It is an assumption of the derivation of the ML

estimator that the time domain white interference be normally distributed and, from

the central limit theorem, we find tbat that assumption corresponds to an assumption

of normally distributed iuterference samples in the frequency domain also. Each fre-

quency domain sample represents a summation over many time domain samples. It

was appropriate, therefore, in the eimulations, to use samples that were approximately

normally distributed.

Such normally distributed random samples were obtained by adding together

twelve samples whose distribution was uniform in the range from 0. to l. and sub-

tracting the value, 6., from the result to remove the mean. It is well knownls'll that a

random variable, uniformly distributed over a unity range has a variance of $ and that

the rr¿riances of independent random variables add when the corresponding variables

are summed. It follows that the samples generated by the above method had unity vari-

ance. It is also well knowols'tl ¡¡¿¡ summing just three uniformly distributed random
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numbers produces a number with a nearly normal distribution (at least within two etan-

dard deviations of the mean). It follows, then, that the required close approximation

to a normal distribution was easily achieved by the above procedure.

Finally,the transform of the post-correlation waveform was set to zero for negative

frequencies,while, for positive frequencies, the transform was obtained by adding R{(t)

to zG;s(f). Hence, the inverse transformation (via a 512 point fF'T) produced a complex

analytic sequence in the time domain, as required.

An additional feature was added in that the target delay was made to vary ran-

domly by simply shifting the complete post-correlatiou waveform envelope by a discrete

amount obtained by quantization of a white, normally distributed, zero mean' random

number. The RMS value of this number was specified by the user of the simulation

program. The reason for this feature will not become clear until the next subsection

because the results in this subsection were obtained by centring the range gate on the

shifted time origin which always corresponded to the peak of the target echo.

Plotted in Fig. 5.1 is the RMS delay estimate error obtained by simulation using

MDI signals with a 200uS range gate for the transmission path of Fig. 3.4 over a raDge

of signal poïver. The theoretical local va¡iance of chapter 3 is also plotted. We eee

that there is very close agreement and as predicted in chapter 3, we see no threshold

phenomenon associated with poor detection perforurance. The discrepancy at low signal

power is consistent with the local variance estimate being a lower bound to which the

true variance tends assymptotically.

Fig. 5.2 displays a similar comparison for MV signals. For any signal power above

about 18dB we again see that the agreement is very good. At lower Polver€ we see the

effects of signal ambiguity and poor detection. tr'or example, between 14dB and 16dB

in signal power the curve is at its steepest because this is the location of the detection

threshold. Above 16dB in signal power, the curve fl.attens out but steepens again above

17dB as the ambiguity threshold is reached. AU this is in excellent agreement with the
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analyses and theoretical results of chapter 3'

FiS. b.3 compares the simulation results with the theoretical results for mixed

criteria signals. The latter signals were obtained using a detection index constraint of

14d8. Again we observe an excellent agreement except in the region of 16dB in signal

polver where some deterioration in performance is evident due to signal ambiguity' Even

with this problem, holvever, the mixed optimum signals still yield performance better

than or equal to that obtainecl with either of the other two types of signal at all signal

powers. The greatest gains over the performance with MDI spectra are macle in the

region of signal power from about 14dB to 25dB as expected. Direct comparison reveals

that an improvement of more than a factor of trvo in range accuracy are achievable in

this region by the use of mixed criteria optimum spectra rather than lvfDl spectra'

Furthermore a vast improvement over MV signals is evident for any signal power below

about ZZ¡B because of the ambiguity and detection problems encountered with the

latter types of signal at lorv signal power. Here again we have excellent agreement with

the analyses of chaPter 3.

5.1.2 Traclcing Range Gates

Practical systems, of course, cannot use range gates that are locked onto the

target. The gate must always be centred on a prediction of the target delay and that

prediction is often based on previous estimates of the target delay. We shall call this

type of gate a tracking range gate.

The question that arises is how narrow to make the gate. As we reduce the gate

rvidth, the detection problem is reduced because, as we have seen in chapters 2 and

B, the detection threshold falls as the gate width is reduced and may even disappear

completely. However, at the same time, the probabitity of missing the peak of the target

echo completely (because it lies outside the gate) increases. We shall call the occurrence

of this phenomenon (of missing the target) a gating error'
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There are two obvious ways of approaching the problem theoretically, based on

different assumptions about the way in which tbe prediction error is distributed. The

use of a range gate is most consistent with the assumption that the prediction error is

rectangularly distributed. If thig is so and the gate width is made equal to the width

of that rectangle, then the GML estimator will be using all the useful information in

the received waveform but ignoring the spurious information outside the region of range

within which the target is known to lìe. However, the estimator only has available to it

the estimated variance of the prediction, rather thau the width of the error distribution.

Since this is in direct proportion to that width, however, it is possible to set the gate

width equal to the width of the assumed rectangular error dist¡ibution. The gate width

is chosen such that a rectangular error distribution having the same width as the gate

would have a variance equal to the estimated rr¿riance of the prediction. The variance

of a rectangular distribution is simply related to the width of the rectangle and thus we

have:

2 14rz (5.r)oe t2

where ol is the prediction error va¡iance and lV' is the range gate width in units of

delay.

In other words, we ghould choose:

W :3.5oe. (5.2)

If the predictiou PDF rs rectangular, then this choice will ensure that the probability of

a gating error is very small while keeping the detection threshold low thereby minimizing

the estimate variance.

In practice, however, a more reasonable assumption is that the prediction is

d,istributed normally. Such an asstumption can in fact be justified without reference to

the prediction process. This avenue will be explored in the next section.

Under a Gaussian assumption, we can adjust our gate width to provide any
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required probability of gating error. That probability is given by:

Range Gating

Pc=l-2erf w
2o"

(5.3)

From 5.3, for example, we see that, for a range gate width oI 1o", the probability of a

gating error is about .05 rvhile for a gate width ol 2o" it is about .32.

In practice, the estimate variance is a complicated function of the gate width

depending on the local variance, the probability of false detection within the gate and

the distribution of prediction errors outside the gate. Gating errors can be disastrous

in that the system may completely lose track of the target as a result of srtch errors.

The probability of this happening is dependent on the predictability of the target range

and on the details of the prediction process.

The simulation methods employed in this sub-section are designed to illustrate

the concepts described above, rather than to simulate realistically any particular ìmple-

mentation. Two adaptive tracking gates have been simulated whose widths were related

to an estimate of the RMS prediction error. This estimate adapts during the "run" of

one hundred pulse-echo cycles.

The initial prediction was the unshifted time origin, which was the mean target

delay. The initial error estimate was ;þ times the width of the data window which was

102-{uS. Thereafter, the prediction was the mean of ten previous range estimates, with

all estimates prior to the commencement of the run being set to mean target range.

The error estimate was the root-mean-square of all the actual estimate errors to that

point in the run.

The independent random variations in the target delay mentioned in subsection

5.1.1 represent unpredictable variations in the range of an actual target. The pre-

dictability of the target range can thus be adjusted by specifying the RMS value of

this random variation. The fact that the mean target delay is constant simplifies the

prediction process but does not detract from the generality of the results.
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The results disptayed in Figs. 5.4 aud 5.5 were obtained for two different ratios

of gate width to estimated RMS prediction error; namely 2 and a. Fig. 5.44 represents

the error that would be observed for a highly predictable target with RMS unpredictable

variation of delay being only 5uS. Fig. 5.54 displays the results obtained for a very

unpredictable target whose unpredictable delay variations had an RMS value of 5OuS.

In both cases MV signals were employed for a range of signal power. Figs. 5.44 and

5.54 should be analyzed in conjunction with Figs. 5.48 and 5.58 which display the

corresponding gating error probabilities.

Now, in Fig. 5.44, we see that the detection threshold has a much more pro-

nounced effect in that the curves are extremely steep over a trarrow range of signal

power. The reason for this is the positive feedback effect provided by the coupling be-

tween the prediction error and the gate width. The gate is always wide at the start

of a run. If the signal power is such that the system is operating well below threshold

for this wide gate, then the gate will remain wide. This is because the estimate will be

distributed uuiformly in the gate with a large variance so that the prediction error will

also be large. If, however, the system is in the threshold region for the initial wide gate,

then the estimate will not be distributed uniformly in the gate and the estimate vari-

ance will be small enough so that the prediction error will be reduced from its original

assumed r¡alue. As a result, the gate width will be reduced, the detection threshold will

drop, the detection margin will rise and the estimate error will fall etill further.

As a result of this effect, an adaptive gate width can extend the usefulness of

a system to much lower signal power because the initially wide gate allows the target

to be acquired by the process just described until the gate width is narrow enough to

eliminate detection problems within the gate. This can be seen by comparing Fig. 5.44

with Fig. 5.1.

Below this initial threshold, we see that there exists a region of signal power

in which the curves are somewhat erratic but the steepness of the threshold region is
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abruptly discontinued. The gating error probability has been reduced virtually to zero

in this region because the prediction error is dominated by estimation error due to

false target detection within the gate. This error is conflned within the gate so that a

very small proportion of the prediction error is distributed outside the gate. Because

the target is so predictable, the system needs only to detect the target occasionally in

order to keep track of it. However, at low enough signal power, the system cannot keep

track of the target without opening the gate still further and this explains the second

threshold that is just evident in the curves of Fig. 5.44 at the lowest signal porvers for

which they are visible.

Above the main threshold the curves exhibit a plateau that is brought about by

ambiguity in the signal but we see that this is overcome at a slightly lower signal power

than was the case with the fixed 200uS range gate and has a much less serious effect on

the estimation error. This is simply because, if the main lobe is detected often enough,

the gate width can be reduced to exclude the sidelobes most of the time and thus reduce

the ambiguity.

At high signal power we see from Fig.5.4B that the gating error probabilities are

fairly inclepenclent of siglal power but are very dependent on the ratio of gate width to

RMS prediction error as expected. This dependence is reflected in the estimation error

curves of Fig. 5.44 where we see that the wider gate performs better.

The gating error probability is not simply predictable from equation 5.3 for

narrow gates because, for a number of reasons, the prediction error is not normally

clistributecl when using narrow gates. The main reason for this is as follows. Using

a narrow gate causes the system to lose track of the target frequently with the result

that the prediction error increases and the gate opens to reacquire the target. As

has already been discussed, under these conditions, the prediction error is distributed

almost entirely within the gate. Thus a system with a small ratio of gate width to RMS

prediction error is continually hunting for the target, with its gate opening and closing
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as it doee eo. The result ie that the gating error probability is lower than otherwise

might be expected. The gating error probability for the wider gate repreeented in Fig.

5.4 is almoet precisely the r¡alue predicted, indicating that a system using such a gate

is much less prone to hunt.

Comparing the performances of the two systems, we see that the wider gate gives

smaller error above threshold and the two gates elùibit eimilar threshold phenomena.

In the case of a highly unpredictable target, the dependance of performance on

gate width above threshold is much more marked because gating errors result in much

larger estimation error maguitudes so that the tnarrower" gate hunts over a bigger

region of delay. This can be s€en in Fig. 5.54 where the RMS estimation error at high

signal power rr¿ries by a factor of 4 or more between the two gate width ratios.

Looking at the curve for a gate width o!. 4o" we see that it is similar to that for

a 200uS fixed gate as in Fig. 5.1. This is not surprising because over most of the range

for which the curve is visible in Fig. 5.54, the estimation error is much smaller than

the unpredictable target delay variations so that the prediction ertor is dominated by

the unpredictable delay variations. Hence the RMS prediction error is approximately

50uS, resulting in a gate width of 200uS. lve see then, that when the target delay varies

in a very unpredictable fashion, there is littte to be gained from using an adaptive gate

width except during target acquisition.

Figs. 5.64 and 5.68 were obtained in the same way as Figs. 5.44 and 5.54

respectively except that MDI signals were used. In Fig. 5.64, *! ,.u that there is uo

evidence of detection problems for either of the systems except at very low signal Power

where both systems exhibit the sharp thresholds that we saw in the previous example.

An important feature of these curves, however, is that, at low signal power' the range

accuracy is much better than predicted from the theory of chapter 3. The re¿rson is that

prior information is being used to locate the target approximately while more precise

information is extracted from the signal. Since the target delay is highly predictable,
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little iuformatioD Deed be extracted from the signal to keep the prediction error small.

As a result the narrower gate performs better at low aignal Power but woree at high

signal power where most of the information is extracted from the signal.

As indicated in Fig. 5.68, however, when the target delay is highly unpredictable,

narrow gates perform better only at extremely low signal power and they perform very

poorly indeed at high sigual po$'er. Again, the performance of the owidert gate is

similar to that predicted from theory for a fixed gate, indicating that adaptive gate

widths provide little advantage when ranging unpredictable targets.

Summarizing the conclusions of this subsection, we have found that adaptive

range gates give much enhanced detectiou performance if the target is highly predictable

at some small expense in range accuracy. In addition, the effects of signal ambiguity

can be greatly reduced by the use of adaptive gates when the target is predictable.

Ilowever, the detection threshold appears to be largely independent of the ratio of gate

width to RMS prediction error. For unpredictable targets, on the other hand, little is to

be gained from using an adaptive gate over a gate of fixed width. Narrower gates give

very poor performance in this case because gating errors result in exceesive hunting.
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$6.2 The Conditional MAP Estimator

5.2.7 De¡iving Thc Estimato¡

We saw in the ptevious sectioD that improved performãnce can result from the

use of tracking range gaües. In particular, the effects of signal ambiguity can be greatly

reduced and the effective detection threshold can be lowered by several dB. Eowever, to

ensure good performance, the gate width must be adjusted according to the situation.

In order for the system to acquire the target, gates need to be either broad or adaptive in

the sense that the gate width is related to the estimated prediction error. F\rthermore,

if the target delay ìs highly predictable a¡d the detection index is low, then a narrow

range gate will perform best but in any other situation the gate width should be at least

3.5 to 4 times as large as the RMS prediction error.

An important insight into these various relationships can be gained by cousidering

the underlying probabilistic principles. The system that performs best in any particular

situation will be the one that best approximates the MAP estimator.

The prior information incorporated in an adaptive tracking range gate is derived

only from previous estimates. Eence the approximate prior probability distribution

represented by such a gate ig in fact an approximate prior probability density conditional

on the values of previoue estimates. Hence, an estimator employing such a gate could

be called an approximate conditional MAP estimator because it locates the peak of an

approximate conditional posterior probability densiby.

However, we have seen that the performa¡ce of such an estimator can be very

suboptimal and this is because of the nature of the approximations made. In the

simulations, two parameters of the conditional prior probability were derived from the

previous estimates using a simple model of the target dynamics (i.e. the target does

not move). They were the predicted target delay and the estimated prediction erlor.

Usually, this is all one can expect to extract from a small number of previous estimates.
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Eaving only the mear and variance of the conditional prior distributiou, we then

constructed, in effect, a PDF with a precise rectangular shape. In other words, we used

guesswork in constructing the conditional prior PDF and iniected highly unreliable

information into it. Sometimee the guesswork "paid oft' because the true PDF was

not very disgimilar from that we conetructed. In general, however, we need much more

information, particularly about the source of the predicion etror, before rve caD construct

a rectangular PDF that approximates closely the true prior PDF.

An alternative approach ie to form the log of a non-rectangular PDF a¡d add

it to the LLF before picking the peak. This freee the designer from the constraint to

a rectangular PDF. Ia particular, it allows the designer to construct the PDF that

incorporates the least information additional to the mean and variance.

This coucept of incorporating the minimum information, or equivalently the max-

imum entropy, into a distribution has long been recognized as a criterion for prior prob-

ability distributious in MAP estimation[s'zl. In this subsection that principle is applied

to signal parameter estimation in what is believed to be an origiual mauner.

It is well ¡oo*o[5'21 that the mæcimum entropy PDF having a known mean and

varia¡ce is Gaussian. Hence the most appropriate conditional prior PDF to construct

is given by:

o("rÐ:#^,"rlffil t'.nl

where ã ir th. vector of previous estimates, 7 is the predicted target delay derived from

those previous estimates and o, is the estimated RMS prediction euþr.

Now the firgt factor in 5.4 ig uninformative in that it does not depend on hypoth'

esized target delay, r. Hence it may be ignored. The log of the eecond factor is simply

an inverted parabola centred at the predicted delay and with the coeficient, fr. The

conditional MAP estimate is obtained by adding this inverted parabola to the LLF and

locating the peak.
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This conditional MAP eetimation process ehould not be confused with sequential

estimation or recursive estimation schemes (even though it does involve recursion). A

sequential estimator of range would use a number of echoes sequentially to make one

range estimate. Each echo waveform would be used to improve the range estimate until

the required accuracy was achieved. Such a scheme could only be applied if the target

range was not time varying. More typically, sequential estimation is used for signal

estimatiou. In this context it has limited applicability to target localization problems

in that such sequential filtering schemes are potentially faster than the ML correlation

technique discussed in previous chapters. However, such techniques involve coneiderable

complexity iu their implementation and are certaiuly not optimal with respect to system

performance.

A recursive estimator can be used to give a MMSE estimate by filtering raw esti-

mates using a model of the target dynamics incorporatd into a predictor-corrector form

of state-variable filter. This is a form of generalized Wiener filtering known as Kalman

filteringÍ5.a|. If *'" applied this technique directly to the output of a ML estimator we

would not do as well as with a conditional MAP estimator because we would be using

guesswork in an irreversible fashion to obtain the raw estimates. We could not expect,

for example, to lower the detection threshold by this method.

Eowever, we could incorporate a recursive estimation scheme after a conditional

MAP estimator. In fact, we can use such a scheme to perform the predictione required

for conditional MAP estimation and to provide the prediction error estimates. This

concept is not new. Kalmau filters have been used for target tracking in Radars for

many yearsþ'{l.

5.2.2 P erl ormance Compon'sons

The conditional MAP estimator uses all the readily available information in an

optimal way. However, it does not construct an accurate posterior PDF because it does
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not use all the prior information that exists. Therefore we would Dot exPect it to give

the best possible performance. Nevertheless, we would expect it to perform better than

any of the GML estimators that we have considered in most situatione.

In Fig. 5.7 the performances of the adaptive GML estimators are compared to

that of the conditionat MAP estimator for predictable and unpredictable targets using

MV and MDI signals. The situations are exactly as described in the previoue section

and exactly the same post-correlation waveforms were used for all three estimators. We

see that the conditional MAP estimator consistently outperforms both of the adaptive

GML estimators.

tile can conclude from these comparisons and the theoretical discussion of the

previous subsection, that the conditional MAP estimator will consistently outperform

any other estimator using similar sources of information wheu used in a variety of

conditions. Under certain conditions that are especially favourable to another estimator,

that estimator may perform better than the conditional MAP estimator described.

However it is impossible to predict this better perfonna¡ce without using odditionol

inlormøtio¿ to that used by the estimator itself. Hence we could not design a system

to take advantage of the fact that a particular estimator was especially favoured by the

conditione without using more prior information than we have assumed to be available

in this study.

5.2.3 Proctical Implcmentotion

In order to perform conditional MAP estimation it is necessary to make predic-

tions, to estimate prediction error and to construct a parabola to subtract from the

LLF. AII these things are most easily done digitally if the required processing speed

can be realized. Methods of digital implementation of real time MAP egtimators are

discussed in the next chapter.

A question that arises is how best to make the predictions. The optimal predictor
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for such an application will u8e aa much information about the target dynamics as can

be incorporated. Eowever this might demand greater complexity than can be justified.

Practical prediction schemes will be as va¡ied as are the applications of target

localization. For example, iu one application with which the author is famiü#l'll, the

skin of a sheep was to be ranged through the wool using a focussed acoustic ranging

system. In thig car¡e, movement of the target surface in the direction of propagation

was negligible. Nevertheless, the target had odynamicso because the focussed eensor

ecanned the surface and the surface range r¡¿ried from point to point. Range estimates

for nearby points on the skin constituted the vector of previous estimates and one

prediction process that was used involved the use of a complex gtatistical model of the

sheepskin shape. The model was derived from an extensive statistical evaluation of

sheepskin shapes [5'51. It was originally intended for use in controlling a shearing system

witb the help of less sophisticated sensors than the acoustic system.

I¡ more typical examples, simple models of the target dynamics may be incorpo-

rated in adaptive Kalman ûlters as mentioned iu subsection 5.2.1. In still simpler c:rsest

linear predictive techniquea may sufrce.

In situations where a conditional MAP estimator is not feasible becauee of im-

plementation problerrÌs, an adaptive tracking range gate may yield much better perfor-

mance than a tracking range gate of fixed width. Unless it is known that the target is

highly predictable and the detection inde:< is small, the gate width should be adjusted

to 3.5 to 4 timeg the estimated prediction error for best performance.
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6. A CASE STUDY - Acouetic Sensing lLrongh Fleece

$6.O Acoustic Sensing Through Fleece

Most of the work reported in this thesis was motivated by the author'g involve-

ment in a research project aimed at assessing the feasibitity of sensing sheepskin through

full fleece and, if possible, developing the techniques trecessary. Such a sensing system,

able to deliver range informatiou to a robot controller in real time, would be extrenrely

useful in the development of an automatic shearing mechanism utilizing sensory feed-

back. For more detailed background inforuration on this project, the interested reader

is referred to [1.1] and [6.11.

Two different approaches are uuder consideration. In one approach, the focussed

sensing system ranges points just ahead of the cutter during the actual shearing op-

eration. All the experimental work to date has been related to this approach. An

alternative approach that may be viable is less restricted in its trausverse resolutiou

becaus€ the available aperture area is not nearly go limited by mechanical constraints.

I¡ this latter approach, ezch pøtch to be shorn would be imaged very rapidly prior

to shearing. The robot would then keep track of v¿riations in the skin shape (due to

breathing etc.) by usiug other, less sophisticated sensors operating behind the point of

cut.

It is perhaps worth mentioning here that experience so far with automated shear-

ing apparatus strongly supports the hypothesis that such techniques will be a good deal

more humane thau traditional methods 16'11. The hundreds of sheep shorn by robot

mechanisms have sustained far fewer injuries than they would have as a result of human

6-t



sect;on 6.0 Acottstic Senríng Throtgh fleece

shearing. All of these injuries were trivial in nature, requiring virtually no treatment

at all. F\rrthermore, the animals appear to be less stressed when handled by machine

than when handled bY humans.

Currently, there are some important developments underway in the acoustic sens-

ing project. The most important relates to the design and manufacture of the focussed

array of transducers. Current developments are expected to yield an improvement in

received signal energy of better than l5dB. Once this work is complete, the transmission

path wilt be characterized again, taking into account the Dew array and also the noise

generated by the cutter. This noise has not been considered explicitly before although

an assessment of its likely effects was made during an earlier Phase of the project.

The case study in this chapter, therefore, does not follow the case through to

a final system design. However, the approach, the techniques and the details of the

implementation are all indicative of the ways in which the theory developed in this

thesis can be applied in practice.

Basicall¡ this acoustic sensing system ig a focussed ranging system. The fo-

cussing is achieved by placing small transducers on part of a spherical surface centred

at the point of focug. The aperture ig constrained to be relatively small by mechanical

considerations. As a result, a frxed focus may be used because the depth of focus is

consistent with the rauge variations expected. More complicated focussing patterns can

be achieved by varying the shape of the surface on which the transducers ¡" [t'tl.

In principle, focussing can be achieved electronically also. The approach is similar

to the "phased arrayo approach used in electronic 6s¿rnsteering and beamforming for

antennas. In receiving antenna arraye of this type, phase shifts are introduced into each

channel (one channel correeponds to one array element) such that the phase of a signal

from the direction of the main beam would be the same at the output of each channel.

The channels are then summed to obtain a single receiving channel with some required

antenna beam pattern. Tlansmitting arrays can be treated in a similar fashion. In the
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case of a wideband transducer array, focussing can be achieved by introducing delays

into each channel such that the total delay of a signal emitted from the focus is the

same at the output of each channel. Similarly the overall delay from a signal eource to

a focus via each element of a transmitting array can be adjusted to be identical. The

ways in which electronic focussing may be utilized iu a sheepskin sensing or imaging

system are yet to be investigated in detail. However, some important limitations are

immediately apparent.

Firstly, the use of signals of long duration (as are described later) precludes the

use of ndynamic focussing" for the receiving array unless a correlator is provided for

each array element. "Dynamic focussing" is a technique in which the receiving array

focus is always maintained at a range consistent with the elapsed time (since pulse

transmission). By this means, the target is always kept in focus. When signals of long

duration are employed, however, elapsed time from commencement of pulse transmission

has a different relationship to range for each point in the sigual waveform. Hence, at

any poi¡t in time there is ambiguity as to what range to focus on. If, however, there is

a correlator provided in each channel, then the electrouic focussing can be undertaken

at the correlator outputs since the system is linear. At that point, each point on the

waveform corresponds to a particular range rather tha¡ an elapsed time. The cost of

such an approach, however, would be prohibitive.

Secondly, electronic beamforming would be expensive iu such an application

because signals of wide time-bandwidth product are employed and low noise amplifiers

and delay elemeuts of similarly wide time-bandwidth product would be required for

each channel.

Colouration of the target path transfer function arises from several mechanisns.

By far the most important, however, is the highly frequency-dependant absorption

characteristic displayed by wool. Dispersion of the target echo also occuls because the

echo results from specular reflection of a non-plane wave from an extended surface.
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Clutter arises from scattering from particles that contaminate the wool and from

the wool itself. The clutter path impulse response is, of course, stochastic. Its statis-

tics are non-stationary with range because of the range-dependant absorption losses.

Eowever, it can be shown to be locally stationary at target rallge accordiug to the

stationarity condition of equation' 2.22.

Because the wool thickness, density and curliness r¡aries and the degree of con-

tamination varies, the transmission path transfer functions are also highly variable. As

a result, the transmissiou path model must include uncertainty as diecuseed in chapter

4. As we shall see, the main problem with which we are faced is that of ensuring that

the target echo can be detected. The delay associated with detected echoes can nearly

always be estimated with sufficient accuracy for our purpæes. The robust optimization

techniques of chapter 4 are therefore highty relevant to this problem.

The other main difflculty with which we must contend is that of implementing a

system that will provide rapid response. The shearing head could be moving at up to

lm/sec. (Nevertheless, because the transducer array is always moving closely parallel to

the skin with its beam Ðris orientated approximately at right angles to the skin, Doppler

effects are negligible.) Because such high speeds are involved and because the cutter

is always in close proximity to the skin, an update interval of only 4msec is required.

We shall see that this requirement translates into very demanding specifrcations for the

signal processor design.

In this chapter we shall consider the application of the techniques of chapter 4 to

the problem of d.esigning such a sheepskin sensing system starting from the construction

of a transmission path model. We shall look at the system design of the complete sensor

and. in more detail at the desigu of the sigual processing section that implements the

conditional MAP estimation algorithm of chapter 5. We will also look briefly at a po-

tentially important new approach to the architectural design of digital signal processors

that was given initial impetus by the requirenents of this sheepskin sensor.
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We shall not consider many important related matters that lie outside the scope

of this thesis. These include, the nature of the transducer desigu, details of how the

range predictions for MAP eetimation are obtained aud details of the robot design and

the robot control phitosophy. The iuterested reader is referred to [1.1,6.1,6.21 for such

published material as exists on related topics not discussed here.
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$6.1 Conetructing llansmission Path Models

The first step in developing a system design for such a sensing system is to design

the transduction and focussing system. Once this has been done, the transmission path

can be characterized. In our case, the transmission path characteristics are variable.

Hence, we require a set of transmission path models representing a class of characteris-

tics.

Each member of the set will consist of the three functions: the target path

transfer function, the aquared magnitude of the clutter path transfer functiou and the

noise power spectrum. In our case, because the noise is generated in the receiver front

end, all the noise power spectra are identical. I¡ other words, the noise Power spectrum

is not uncertain because it does not depend on the r¡ariable fleece conditions.

The ways in which these functions are obtained depend on the details of the

application. In our case, there is no way in which separate target and clutter path

characteristics can be directly measured. It is therefore necessary for us to deduce them

from the total response.

The approach taken is to obtain an ensemble of total impulse responses at one

point on a fleece; average over the ensemble to eliminate noise and then excise the target

path and clutter path impulse responses from the total response. Au ensemble of noise

records is obtained by subtracting the nnoiselesso response from each of the original total

responses. The noise power spectrum is then obtained as the mean squared magnitude

of the Fourier transforms of these noise records.

This technique is repeated for as many different fleece conditions as are consid-

ered necessary to define the uncertainty in the transmission path characteristics. For

illustrative purposes, we shall only use three points in the following analysis although

one would normally use more than this. Fleece conditions vary markedly from point to

point on any one fleece and we would probably need four or five points to characterize
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one fleece. They also vary from fleece to fleece and thus we might require twenty or more

members for our set of transmission path models to fully characterize the uncertainty

in the transmission path characteristics.

In our case there exists a further complication. Our transducer array euffers

from a transmitter-to-receiver coupling problem that gives rise to self'clutter or self-

resqnse. This is an acoustical response of the receiver to the transmissiou of a signal

from the tra¡smitter. It is a problem because the transmitting and receiving elements

are interspersed and the aperture dimensions axe of the same order as the distance from

the sensing array to the skin. Since a signal of long duration is transmitted, this means

that this acoustically coupled signalhas not died out before the target echo is received.

Because the transducers are excited by a very large signal voltage, this seH-clutter is

nonlinearly related to the signal transmitted. It turns out that the transmission of an

impulsive signal excites a large seH-response. At the same time, most of the acoustic

energT of the transmitted impulse is absorbed by the wool so that the wanted impulse

response is very weak.

Under normal conditions, at target delay, the self-clutter has decayed to the

extent that it does uot swamp the retuming echoes. However, when an impulse is

transmitted, the self-clutter is in fact the dominant component of the total response-

As a result, it is necessary to estimate the self-response of the alTay in the absence of

other echoes and to subtract this from the total response.(In the experimeutal sensing

system it is also stored and cancelled by simple subtraction.)

The self-response estimate is obtained by averaging over a number of responses

to eliminate noise. Each member of the ensemble is obtained as the impulse response

of the array when pointed at an absorbing panel. This panel is simply a peice of soft

polyurethane foam with a textured surface such as is commonly used in packaging. It

is placed obtiquely to the beam alcis at relatively long range where the array is very

unfocussed and any residual echoes from it do not lie within the range gate used.
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Fig. 6.f displays the noise power spectrum courmoD to all the transmission paths

in the set we shall consider. Fig. 6.2 illustrates how the self-clutter is eliminated from

a total response after the noise has been averaged out. Fig. 6.24 is the total resPonse

after ave¡agtng. Fig. 6.28 ie the self-response of the array. Fig. 6.2C is the result

of subtracting the self-response from the total resporse. The target echo is clearly

distinguishable from the clutter. Prior knowledge of the target range allows the target

echo to be occised giving the target path impulse response of Fig. 6.2D.

Admittedly, the target path impulse responses obtained in this manner are cor-

rupted by clutter. Nevertheless, they represent the best estimates obtainable. Since the

clutter varies from point to point, the variations in our target path impulse response

estimates for those points will reflect the uncertaiuty arising from this contamination.

Eventually we will construct a class description for our target path transfer function and

the uncertainty in it will be due, in part, to these estimation errors. Mostlyr however,

it will be due to actual variations in the target path transfer function under different

fleece conditions.

Finally, with Fig. 6.1, Fig. 6.3 represents one member of our set of transmission

path characteristics which was obtained in the manner described in this subsection.

Fig; 6.34 is the target path impulse response which, being real rather than complex, is

more convenient to display than the transfer function. Fig. 6.38 is, in fact, the squared

magnitude of the target path transfer function corresponding to the impulse response

of Fig 6.34. Fig. 6.3C ie the squared magnitude of the clutter path transfer function.
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!0.2 Robuet Signal Optimiratiou

6.2.0 Preømble

The robust optimization technique of chapter 4 consisted of four main steps. The

frrgt of these was considered in the previous Bectiou. That is, the task of constmcting

a set of trausmission path models defining the class of conditions to be optimized for.

The eet we shall consider in our case study is displayed in Figs. 6.1, 6.3, 6.4 and 6.5.

The format was explained in the previous section.

the second step is considered in the next sub-section. This is the problem of

constructing a class description appropriate for the solution technique of chapter 4.

Subsection 6.2.2 reports on implemeutation of the third and fourth steps. In

the third step, the least favourable transmission path within the class is identified and

in the final step the MDI signal spectrum for this least favourable path is designed.

This signal spectrum is robust-optimal for the class of transmission paths when used

in conjunction with the joiutly robust-optimal receiver filter. Tbe filter is the optimal

filter for the transmitted signal and the least favourable transmission path.

To complete the stud5 the detection indices obtainable with varioue combina-

tions of signals and transmission paths are computed and comparisons are made to

show, amongst other things, that the computed robust-optimal solution does, in fact

represent a saddle-point solution to our minima>c optimization problem as is proven

theoretically in appendix 4.

6.2.7 Constructing o Class Description

The aim of this sub-section is to show how a class description can be constructed

in the form described by equations 4.16 and 4.17. The class to be described should be

no broader than necessary to accomodate the transmission paths represented in the set

of transmission path models obtained by measurement.
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Figure 6.5 Tàird ÎÞansnission Path It[oi]el

Target path impulse respouse.

Squared magnitude of target path transfer function.

Squared magnitude of clutter path transfer function.
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Equatiou 4.16 describes a class of target path transfer functions, Cy : {HrU)\.
As discussed in chapter 4, we need to find a nominal transfer function, Ho(l)' an error

power, ó¡ and a minimum scale f¿ctor¡ Amin. The scale factor for each member of

the eet of measured target path transfer functions should be chosen to give the best

(i.". MMSE) fit to the nominal target path transfer function. Under that condition,

the maximum value, 67, oî. the modelling error power (i.e. the power in tbe difference

between a target path transfer function and the nominal target path transfer function)

over the set of measured functions should be minimized by the choice of the nominal

function.

Now let the itl¿ measured function be represented by H;(l) a¡d the corresponding

scale factor be á; while the corresponding modelling error power is e;. Theu we have:

where * represents the conjugation operation. Thus:

ry-H,Øldr
(#-n(/)) (ry-lr,(/))

1," ,'^r\l'¿t. I: wou)12 dÍ

(6.1)

ù

dl (6.2)

I
o. 

- 
-

"t- A?t
q rIz

- i 1,, @o(t\uiuDdr

e; is minimized by setting tr -- 0 in 6.4,

de;

dAt f' w,tr)Par + h I,': @ou)EiuDdr,-2
4

(6.3)

(6.4)

(6.5)

(6.6)

grvrDg:

I H?ØdrIz

A;:
(H'UIH:Ø)dr

',: I,'r läo(.r) l'¿Í - tl: @,r¡)H:(fl)drl'
This yields:
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Now, the maximum value over the index, i, ol, e; in equation 6.6 is to be minimized

by the choice of ã0(t). However, we clearly need to apply a constraint to the acaling

of ¡I0(/). Otherwise 6.6 could be minimized by setting Ho(f): OV.f. Therefore, we

constraiu the nominal transfer Power to equal a constaut:

ï:
lso(t) l'df : Do.

ão(t) : øEo(l)ad + bfl;(f),

(6.7)

The choice of .Eo is not important. In the fiual description, .Eo and fu are both inversely

related to the square o1. A*;o in the sense that if we quadruple the value of .& used

in our algorithm for constructiug the class description, then 6a will be quadrupled and

Á,,r;,, will be halved.

In fact, the computer program whoee listing appears in appendix 6, implementg

the algorithm in sucb a way that A*;o is always set to unity. This means that ã0(t)

is scaled so that it is directly comparable with the transfer functions in the original

measurement set and has the least favourable (i.e. the smallest) magnitude allowable

in the class.

Now, it is clear tbat the value of e,. can always be reduced by making Ho(l) more

like ^ft(/) subject to the constraint, 6.7. The simplest way to do this is to compute:

(6.8)

where the constants, c and ö are chosen such that 6.7 is met and some required reduction

in e; is achieved.

There are two obvious coDsequences of this simple observation. Firstly, the func-

tion, .Ho(/), that minimizes the maximum value of e; over the index i, must be a linear

conrbination of the transfer functions, H;(Ð. If it is not, then we can equate it to a

linear combinatiou of those transfer functions and some foreign function. Hence, we

must be able to reduce the maximum value of q by reducing the contribution of that

foreign transfer function via equation 6.8 and such reduction is not compatible with

6- t6
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ä0(/) minimizing the mædmum of. e;. Secondly, the minimum value of the mædmum

ed over the index, r, is achieved when:

ei: ei Vi'i < lY (6.e)

where /V ie the number of transfer functions in the meaaurement set. If (6.9) was not

met then the ma>cimum value of e; could be reduced by increasing the contribution of

the rtl¿ transfer function to the linear combination yielding ä0(/) via (0.4).

Equations (6.5) to (6.9) are used within the computer program whose lieting is

given in appendix 6. This program constructs the most appropriate class description

of equation (a.16) for the target path transfer function from the set of measured target

path transfer functions by computing Ho(l) and ô1 iteratively and setting A*io : l-

It also outputs the value of 4 defined in equation (6.7) for a reason that will become

clear shortly.

This same prograrn also constructs the class description of equation 4.17 for the

clutter path transfer function. It does so by atraightforwardly finding the upper and

lower bounds on the square of the clutter path transfer function and the uPPer bound

on the clutter path transfer power, of;, over the set of measured clutter path transfer

functions.

There are virtually no limitations on the use of this program. The only compli'

cated section is the iteration uged in finding .lo(/). In that iteration, one coefrcient

in the linear combination of measured transfer functions used to compute Ho(l) is up-

dated at each iteration. The one associated with the transfer fuuctiou giviug the biggest

error power, e;, with respect to the uominal transfer function is updated. The update

equation is:
le'

oin"- : o;"tdl l, with Iro(.f) - " I o;H;(l),

where c is chosen to satisfy equation (6.7). The coeffi.i'"ot, ø1, is never updated and

the procedure is terminated when all e; are close in value to e1.

6-17



section 6.2 Robuat Signal Oplímizotion

In the authorts experience, this procedure always converges iu¡ one would expect

from the discussion leading to the statements of equations (6.8) and (6.9).

Now, we have three transmission path models in our measurement set. They are

represented in Figs. 6.2 to 6.5 and Fig. 6.f . We can see that the models of Figs. 6.3 and

6.4 are much more similar than either is to that of Fig. 6.5. In fact, Figs. 6.3 and 6.4

correspond to very unfavourable fleece conditions. trlom the discussion of section 4.3,

it is clear that Fig. 6.5 represents a much more favourable transmission path. This is

because the transfer function magnitudes are much greater, the target and clutter paths

are spectrally very digsimilar and the target path exhibits a relatively wide bandwidth.

We would expect the least favourable transmission path on the fleece to have

characteristics somewhat similar to those of Figs. 6.3 and 6.4. For this l€ason, two

class descriptions were generated in order that the results could be compared. One was

generated using all three of the measuremeut-based models and the other was based on

the models of Fige. 6.3 and 6.4 only.

The first class description, based on all three models, is represented in Fig. 6.6

and the second, based on the least favourable two models is represented in Fig. 6.7. The

various parameter descriptions are also given on those ûgures. The important difference

between these two is that Fig. 6.6 represente a much broader class description than does

Fig. 6.7. This is evident from the fact that the ma>rimum modelliug enor power' &, is

some twenty times larger in Fig. 6.6 than in Fig. 6.7 while the nominal transfer power

is only about three times as large.

I¡ the next sub-section the least favourable transmission paths within these two

classes are identified. V{e shall see that the least favourable transmission path cor-

responding to the class description of Fig. 6.6 is far more uufavourable than that

corresponding to the clase description of Fig. 6.7.
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6.2.2 ldentilyíng The læast Faaourable Transmission Pøth

In order to identify the least favourable transmission path within a class described

by equations of the forms of equatious 4.16 and 4.17, it is uecessary to simultaneously

solve the three integral equations 4.32 to 4.34.

Thie problem ig simpliûed by recoguizing that eac.h of the three equations are

always soluble for one of the three unknown constants given any values for the other two

provided certain minor restrictions are met. This was shown in appendix 4. F,quation

4.33, however, may not be eoluble for c if the condition, 67 <

In theory, a eolution can alwaye be found provided the target path modeling

error power, ft', in the transmission path class description, does not exceed the nominal

target path transfer poweÍ, Eo, as discussed in appendix 4. Eowever, this solution

is approached iteratively in practice and care must be taken in devising the iterative

procedure to ensure that the procedure is as robust as possible.

In practice, difrculties can arise if 6a approaches ^lh as equation 4.32 may produce

arithmetic overfl.ows in solution due to the choice of an unfavourable trial rr¿lue for c

during the iteration process. In order to minimize the probability of this happening,

the procedure should be organized as three nested iteration loops with the outermost

loop solving equation 4.32 for Ic1. The other two loops solve equations 4.33 and 4.34 for

c a¡d rt2 respectively in either order.

A computer program for performing this procedure is listed in appendix 6 after

the listing of the class description program. The author has found this program to be

very robust. For example, from Fig. 6.6, we frnd that, for the frrst of our two class

descriptions,6¡ N.7Eo and yet the program is still able to compute a eolution.

The least favourable transmission paths within the classes represented in Figs.

6.6 and 6.7 are presented in Figs. 6.8 and 6.9 respectively.

The most important feature of Fig. 6.8 is that the class description of Fig. 6.6 is
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is so broad that a quite unrealistic combination of target and clutter path colourations

has been selected. The author's experience, as reflected in the set of measured char-

acteristics in Figs. 6.8 to Fig. 6.5, indicates that the least favourable characteristics

obtained on actual fleece exhibit peak clutter path responses at frequencies rvell above

the corresponding peak target path responses. In Fig. 6'8, holvever' lve see that the

robust optimization procedure has selected a clutter path transfer function lvith the

frequency of its peak just slightly below that of the target path transfer function. Fur-

thermore, the magnitude of that peak is unrealistically large. such large clutter path

responses are exhibited in practice only in conjunction with large target path responses

under highly favourable fleece conditions.

The solution to this problem is to simply exclude highly favourable transmis-

sion path characteristics from consideration rvhen constructing the class description' A

representative set of transmission path mod.els should be assembled from among the

less favourable models found in practice. In identifying the less favourable models, the

designer can refer to the unfavourable characteristics listed in section 4.3, most of which

are clearly unfavourable from elementary considerations.

In our case, we shall simply proceed to use the second of our transmission path

class descriptions based on the less favourable two models in our set of three mea-

surement based models. That description is presented in Fig. 6'7 and the resulting

least-favourable transmission path is characterized in Fig. 6.9.

We are now in a position to examine the robustness of the two solutions gen-

erated. This will be done by courputing and. cornparing the maximal detection indices

obtainable with optimum signals for each transmission path. In table 6.1 each of the

three measurement-based models and the two least-favourable models is represented.

Optimal signal spectra have been computed for each of the five models and each opti-

mal spectrum has been coupled with each path to obtain a complete table of detection

indices.
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BOBI'S1 SPEC 2

11 .3

6.¿

2.8

20.9

-6.9

TABLE 6.1 DEîECTION INDEX COMPÁ,RISONS

PATI 1

PIÎB 2

BÍ¡BUSI PIÎE 1

PITE 3

BOBUSÎ PATE 2

SPEC 1

12 .0

0.7

3.1

18. ¿

-?.9

SPEC 2

11.9

0.E

3.0

18.7

-E.1

SPEC 3

E.2

4.2

.f

2t.2

-7.4

The name, DROBUST PATH l" in table 6.1, refers to the least-favourable path

associated with the restricted class of transmission paths described in Fig. 6.7. "RO-

BUST PATH 2' retert to the least-favourable path associated with the broad clasg of

transmission paths described in Fig. 6.6. " PATH lo , 'PATE 2o and 'PATH 3o refer to

the transmission paths modeled in Figs. 6.3 to 6.5 respectively. Similarl¡ 'ROBUST

SPEC lo refers to the robust optimum sigaal spectrum for the restricted class of trans-

miesion paths while'ROBUST SPEC 2o refers to that for the broad clase. "SPEC lo,

'SPEC 2, and 'SPEC 3o refer to the MDI signal spectra for the three transmission

paths numbered I to 3 above.

The table has beeu set up in such a way that the restricted class of transmission

paths can be readily considered independently. Only the three columns and the three

rows at top left of table 6.1 are reler¡ant when considering the restricted class in isolation.

We see from this portion of the table that no signal spectrum considered yields

a higher detection index for any particular transmission path than the MDI spectrum

for that path. We also see that, for any signal spectrum, the lowest detection index is

obtained as a result of transmission through that path that was selected as the least-

favourable path.
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This latter result is not surprising but would not be iuvariably true. The least-

favourable path is not defined as being least-favourable in that sense. It is least-

favourable in the sense that opúrmcl performance through that path is worse than that

achievable through any other path in the class.

T\rrning again to the top left portion of table 6.1, we see that the combination of

least-favourable path and MDI signal for that path (the robust optimum signal for the

class) does indeed constitute a saddlepoint among those paths and signals represented

in the table. Tbe corresponding table entry is at least as large as any other in the

corresponding row (row 3) and is smaller than any other in the corresponding column.

Similar comments to all those above in relation to the restricted class of trans-

mission paths also apply when consideriug the broad class represented in the complete

table. However, additional commentg can be made about the complete set of results.

Firstly, we see that the third of the measured transmission paths (row 4 of table 6.1) is

much more fa.vourable than any other represented in the table. This supports the ea¡lier

assertion. Secondly, the least-favourable transmission path within the broad class is far

less favourable than any other represented in the table. Finally, we eee that the robust

optimum spectrum for the broad class of transmission paths (column 5 of table 6.1)

yields poorer performance than the robust optimum spectrum for the restricted class

(column 3 of table 6.1) for the transmission paths from that restricted class (rowe I to

3 of table 6.1).

The results discussed in the preceding paragraph indicate that, in broadening

the class description, we have traded perforrrance in the restricted class for perfor-

mance outside that restricted class. This, of course, is the principle of robust optimiza-

tion. However, the class description was broadened to accomodate an additional highly

favourable path. We would prefer to trade performance through this highly favourable

path for performance elsewhere, if possible. Instead, the effect of broadening the class

d.escription has been to cater for extremely unfavourable paths which, according to
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empirical evidence, simply do not occur in practice.

This aspect of the problem was discussed earlier in this subsection. The approach

takeu as a result of that discussion was to restrict the class description by excluding

highly favourable measured characteristics when formulating the class description. This

meant that the resulting clase description did not embrace unrealistic transmission path

characteristics such as those of Fig. 6.8.

An alternative and less mathematical approach to robust optimization results

from the realization that tables such as 6.1 can be interpreted a,s game matrices. The

game theoretic forurulation of the problem in chapter 4 uses a class description that

effectively allows interpolation between the transmission paths represented in the mea-

surement set. Another approach, however, is to construct a large measurement set

which effectively does not require interpolation. The class of transmission paths for

which we would optimize would then be defined directly by the meaaurement set iteelf.

Guided by the theoretical results of chapter 4, we could then hope to find a

saddlepoint solution to our game problem by constructing a game matrix like table

6.1. To do this we would use all the transmission path characteristics represented

in our measurement set. Each element, D;¡, in the matrix would represent the SIR

obtainable through transmission path d using a signal aud receiver filter jointly optimized

for transmission path j. A saddlepoint would correspond to an entry that was the

ma>cimum in the corresponding row and the minimum in the corresponding column.

Eowever, such a saddlepoint may not exist and in that case the more mathematical

approach used earlier in this subsection should be employed.

In Fig. 6.10, the robust optimum signal spectra obtained using the two transmis-

sion path class descriptions of Figs. 6.6 and 6.7 are compared. We see that they are quite

different. Consistent with the analysis of chapter 4, we find that the least-favourable

path of the broader class is associated with a flatter optimum signal spectrum. How-

ever, that transmission path is not a realistic one for the reasons given earlier. For this
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reason, the designer should choose to use the robust optimum sigual spectrum for the

restricted class of transmission paths.
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!O.8 Sensing System Design

6.3.7 Current System Design

In this subsection we shall look at the way in which a digital sensing system for

use in the automated shearing experiments was implemented. FiS. 6.ll provides an

overall timing diagra.m.

We see from the figure that the host computer must provide, every 4mS (ap-

prox.), an 8-bit range prediction and an 8-bit confidence indication. The latter is in-

versely related to the estimated RMS prediction error. The host is also responsible

for generating a timing pulse at, nominall¡ 4mS intervals and a reset pulse whenever

convenient and desirable. The main function of the reset pulse is to initiate an internal

test sequence within the seusor as indicated iu Fig. 6.11. Such checking facilities were

considered necessary because of the potentially disastroug consequences of uudetected

sensor failure.

This ultrasonic ranging system is designed to estimate the distance from the

sensing head to the sheepskin through the wool at approdmately 4mS intervals under

the controt of the host computer. The sensing head is a focussed array of small ultra-

sonic transducers. !}atrsmitting and receiving tra¡sducers are intenspersed throughout

the array and all the transmittiug transducers are connected in parallel as are all the

receiving transducers. The sensing head is focussed at a nominal range of l20mm þy

spherical curyature of the array. It has a depth of focus in the order of 40mm.

The electronics of the ranging system consists of four main eections. There is a

main proceasor, a tra¡smitting section, a receiviug section and a correlator. In addition,

there are units that interface these sections, perform logic and timing functions and

provide self-test and diagnostic facilities. The overall arrangement is as indicated in the

block diagram of Fig. 6.12.
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Flgn re 6.Il Automateil Såeariag Sensor Timing
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Fig'ur€ 6.II .Acoustic Sensor Block Dìagrzm
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A conditional MAP estimation scheme, as described in chapter 5, i8 implemented

in the blocks marked "CORRELATOR' and oMain Processor'. The correlator is re-

quired to correlate the received waveform with 160 reference samples over 128 lags in

under 3mS. This demanding specification is achieved by employing four TMS320I0 sig-

nal processors in a linear array. Each of the processors runs an identical program and

a single 20MHz clock supplies all four processors. Synchronizatiou between the stages

is achieved by resetting all four processors simultaneously at the cornmeucement of the

data acquisitiou sequence within each 4mS interval and then allowing the interstage

communication flaç to eynchronize the stages. Figs. 6.13 and 6.14 detail the correlator

hardware design.

The TMS320I0 code for the correlator ig quite simple. In-line code is used

for computing the sum-of-products, resulting in an improvement of almost a factor of

two in computation speed over a looped structure. Atl outputs are output to latches

immediately they become available with no handshaking. Availabitity of input data is

indicated to a processor by the setting of its nBIO" flag. This simplified I/O process is

made possible by ensuring that all processors flln identical programs. Such an approach

results in a highly efficient implementation with very low overheads for I/O and inter-

stage synchronization without the need for expensive multi-port random access memory

(RAM) blocks between stages. (The only overhead associated with output results from

the execution of "OUT" instructions. Extra overheads accumulate during input owing to

the testing of the "BIO" flag. Eowever, synchronization is achieved with the transfer of

the ûrst datum and thereafter input overheads are absolutely minimal and no overheadg

are associated with synchronization.)

It is worth noting that this same approach can be applied to the implementatiou

of any non-recursive algorithm becauge such algorithms can always be distributed be-

tween stages in such a way that all stages nrn identical programs and atl I/O is in one

direction only. (For recursive algorithms, the approach would have to be modiûed. For

an informative discueeion on the deaigu of multi-processor DSP systems, the interegted
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Fi¿ruæ 6.13 Cor¡elator Block Diagram
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reader is referred to [6.6]) The concept is amenable to extension to allow the desigu of

two-dimensional modular structures for high speed implementation of FFT processor8.

Such processore could be used to implement correlators to much more demauding sPec-

iûcations lo'sl thau those associated with the application being described here. A listing

of the correlator code ie given in appendix 6.

The correlator ie decoupled from the A/D convertor at its input and from the

post-correlation processor at its output by the uge of high deneity First-In-First-Out

(FIFO) memories. These devices can be asynchronously accessed at input and output

and provide FULL and EMPTY flags. The use of guch FIFO buffers frees the corre-

lator and post-correlator to input data at their own rate and allows pipelining of the

correlation and post-correlation processing tasks.

A single TMS320f0 processor performs the post-correlation processing as well

as all the communication and control tasks of the sensing system. The post-correlation

processing is performed sample by sample and consists of the tasks of envelopiug, biasing

and peak-picking. The term, obiasing" as used here, refers to the Process of adding a

parabolìc weighting to the envelope as described in chapter 5.

The enveloping operation is performed approximateþ allowing it to be performed

at high speed. The tnre envelope of a widebaud signal is obtained as the RMS sum of

the signal and its Hilbert transform. (i.". as the magnitude of the complex analytic

signal.) In our case the Eilbert transform is approximated by means of a l5-element

FIR filter. Such techniques are well ¡ootrolo'sl. The need to err¿luate square roots in

computing tbe envelope is avoided by the use of another approximation which obtains

the envelope as a simple non-linear function of the signal and Hilbert transform. Errore

resulting from these approximations have beeu estimated at less than six percent.

6.3.2 frends For The htture

This multi-processor approach to the implementation of high speed DSP systems
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is capable of realizing throughput rates suitable for a very wide range of sensing

and imaging tasksl6'4,6'5,6'61. In principle it is possible to combine this apProach with

efficient computation methods based on the pp1 l6'l'o'sl.

However, in order to obtain maximum benefit from the multi-processor concept,

the architecture of the constituent processor should reflect the I/O intensive nature

of such applications and the complexity of the data flow in typical DSP algorithms.

The TMS320I0 represents a highly successful compromise between the architectural

requirements of a microprocessor controller and those of a DSP processor. Nevertheless,

its architecture is not optimal for multi-processor applications.

In order to investigate practical alternatives in the architectural design of pro-

cessors for multi-processor applications, a group of researchers at the University of

Adelaide, including the author, set about designing a new architecture optimized for

complex sum-of-product computations in a multi-processor environme¡¡[0'4. The au-

thor's involvement was directly motivated by the need for a high speed DSP system in

the sheepskin sensing project. The result is illustrated in Fig. 6.15.

The main features of the architecture a,re the separate on-chip I/O proces-

sors, the four-quadrant structure and the ring bus. Less obvious features include self-

incrementing data pointers, data pointer control registers, loop counters and various

flags for conditional jumps, and a load-immediate facility for initializing pointers and

registers as well as data locations.

The single most important insight behind this design is the realization that max-

imum multiplier speed does not necessarily ensure maximum throughput. Our aim was

to find ways to trade multiplier speed for speed of data handling so that a balance could

be struck between the two capabilities. The use of several shift-and-add type multipli-

ers helps to achieve this balance. The total chip area devoted to multiplication is much

less than with one fast combinatorial multiplier, leaving more area for data handling'

Equally importantly, the multiply input and output data is now dispersed
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f igure 6.15 TFB Architecture
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among several physicat locations on the chip reduciug the potential for bottlene&s.

The segmented ring bus gtructure provides flexible wideband channelg of com-

munication within the chip and a similar motive was behind the decision to use multiple

memories. The choice of a four-quadrant structure resulted from an earþ decision to

directly cater for complex arithmetic. Dach complex multiply involves four real multi-

plications and the input data naturally falls into four different categories.

Finally, a l6-pin input port and a l6-pin output port were provided. It was

envisaged that these ports would be configurable as 8-bit half-ports and that both

synchronous and asynchronous modes of co*tt'unication would be eelectable. In order

to reduce I/O overheads to a minimum, on-chip I/O processors were provided to handle

the tasks of data foruratting and timing in accordance with the selected communication

mode. (The modes catered for include double-byte transmission through each balf-port.)

The resulting structure allows all data handling, subtractions, additions, shifts

and I/O to be pipelined with multiplication in typical algorithms. The design is partic-

ularly well suited for complex FFT computation in a parallel-pipelined system involving

a two-dimensional zuray of processors. Such systems are described in [6.5]. By a con-

servative esimate, an array of 320 such processors could achieve a throughput rate of

SoMsamptes/sec for the continuous stream computation of 1024-sample FFT.

This architecture forms the basis of a major design exercise being undertaken

by a team of VLSI design researchers at the University of Adelaide. Their aims are to

develop eoftwar€ tools and desigu methodologiee for CAD design of large VLSI systems

as well as to investigate high performance silicon structures suitable for integration at

this level. They a¡e working in close collaboration with The Microelectronics Centre of

No¡th Carolina and have collaborative links with BeIl Laboratories in New Jersey. At

the time of writing, all the processing elements of the architecture described above have

been designed and simulated. The memories, I/O processors and bus structures have

also been designed and simulated in part. Some of these elemente have been or are in

6-39



tcctiorÉ 6.5 Sewíng Sgúem Deign

the procees of being fabricated preparatory to hardware testing. The remaining element

is, of cour€e, the control structure which is still being designed. At this stage, there

appears to be no signiûcant impediment to the implementation of our a¡,chitecture. In

fact, despite initial coDcern about the problems imposed by the interaal communications,

the desigaers have found that the stmcture is quite practical for VLSI implementation.
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!0.4 Some Reeults

The system described in sub-section 6.3.1has not yet been used in robotics exper-

iments. However, an earlier design, described in [l.l], was used in robotics experiments

with live sheep. This earlier system wa-s developed before the arrival of the TMS320I0

in the market-place. It utilized a NEC ¡ÈD772O signal processor for post-correlation

processing and a multi-module structure employing fi.ve TRW multiply-accumulators

for correlation. (The comelator was developed by the author during 1982183 to a much

more demanding specification than that detailed in section 6.3.1. At that time, the

precise requirements were not yet known and the system was developed as a laboratory

tool for exploratory experiments both on the bench and with the robot.)

Fig. 6.16 is a frame taken from a videotape of robotics experiments conducted in

the automated shearing laboratory at the University of Western Australia. This frame

shows the use of acoustic sen-sing to sense the skin of a live sheep for control of the robot

arm while traversing the heavily matted belly wool. The sensing system used was that

described in [l.t] and mentioned above. The transducer array can be seen mounted at

the end of the robot arm in place of the usual cutter assembly. (Actual shearing was

not being attempted in this experiment.)

FiS. 6.17 is another frame from the same videotape showing a plot generated

during another experiment. The top trace shows the range estimates from the sensor

plotted as a function of time. Random peak-to-peak variations in the skin-to-sensor

range estimates of about 2mm are indicated in the top trace. The second trace is a

testing signal. The third trace shows the vertical position of the array which was being

controlled by the robot to achieve the required range of l20mm. The bottom trace

shows the range estimate confidence parameter produced by the sensing system. This

is, in fact, proportional to the log of the conditional posterior probability of the range

estimate. A small initial confidence is seen to rise rapidly as the target is acquired and

to remain high subsequently as the robot tracks the skin.
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Fi¡rlre6.16 ßobotics Experíments'Setup
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Fis:u¡e 6.17 Roboúics Experíments - Some.Results
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As a result of experiments such as those described briefly above, particularly

unfavourable wool conditions have been identified and characterized. Studies such as

that of section 6.2 have indicated a need to redesign the transducers to lower the resonant

frequency, to increase the peak sensitivity and to reduce performance variations between

array elements. This work is now at an advanced stage and, meanwhile, new signal

processing electronics have been developed as described in section 6.3.1.

The prognosis for the outcome of the project is that acoustic sensing through the

fleece will be proven feasible as a robotic sensing technique in experiments during early

1986. Fronomically, the sensor design outlined in subsection 6.3.1 is definitely viable for

such an application and is expected to be varied little for future use. However, additional

facilities, such as a one-dimensional beamsteering capability, are under investigation.

The possibility of using a higher resolution patch-sensing approach, as discussed

in section 6.0, still remains to be assessed in detail. It may be that the surface could

be scanned sequentially in raster fashion. In this case, the basic signal processing

hardware would require little modification but the system would require augmenting

if electronic beam-steering techniques are to be employed. (Mechanical beam-steering

may well prove uneconomic.) On the other hand, a faster multi-dimensional processing

technique based either on tomography or on parametric model fitting may be necessary

or desirable. In this ca-se, a new signal processing system will have to be developed and

the VLSI architecture described in subsection 6.3.2 may well be very important in this

context. In either case, however, the author expects that the sig:ral design principles and

methodology introduced in this thesis will remain important to the continued success

of the project.
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Z. CONCLUSIONS

$7.O General Rema¡ks

The focus of this thesis is a special class of echo-location applications. Grouped

within this class are a wide variety of sensing and surface-imaging applications, most

of which have emerged only recently. For this class, Doppler effects are negligible,

unwanted backscatter may be intense and the medium may be characterized by highly-

coloured absorption properties. In addition, the transmission path characteristics may

be highly variable.

For such systems, conventional approaches to system design may be inadequate.

We have seen, in chapters 3 and 5, for example, that system performance may be very

sensitive to the shape of the signal power spectrum. F\rthermore, there are several dif-

ferent aspects of system performance which react independently, in general, to changes

in the signal poïver spectrum. We therefore need to take these dependences into ac-

count by using a design procedure that operates on a more complicated transmission

path model than is conventionally employed. Ou the other hand, conventional tech-

niques for signal optimization have little to offer if Doppler effects are not present and

the clutter is stationary with range.

This theeig ai'ns to provide a complete system design methodology for such ap-

plications. The designer who applies this methodologT can feel sure that his design

is optimal in a sense that is meaniugful in terms of his particular set of competing

performance demands.

I have looked for ways in which the siglal, the receiver filter, the post-correlation
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processor and even the digital processing architecture can be optimized according to

relevant criteria. To this end, a number of separate but interrelated investigations have

been undertaken in the body of this thesis. Conclusions ïvere presented in the reler¡ant

chapters, but the complete set has been compiled in the next section. the regtrictiong

under which the various theoretical results were obtained a¡e also given.

These theoretical restrictioDs are examined in more detail in section 7.2. Difr-

culties associated with generalization of the theory are discussed there.
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!7.1 Detailed Conclusions

7.7.7 Estimation Theory

The form of the Maximum Likelihood estimator of range by echo-location has

long been known. The process involves correlation of the echo with a range-dependent

reference sigaal over all ranges. The estimate is obtained as the range associated with

the highest corelation. This form of estimator only becomes practical when prior

knowledge is used to restrict attention to a finite region of the range axis. The resulting

estimator is known as a Gated Mærimum Likelihood estimator.

An important simplification can be made if the interfereuce is statistically sta-

tionary or locally stationary with range. In that case the reference signal is independent

of range apart from a simple time shift, or is only slowly varying with range. The corre-

lation process can then be viewed as a straightforward linear filtering proce$ involving

interference-whitening and matched filtering of the interference-whitened target echo.

My only original coqtribution in this area is the derivation of the new criterion

for local stationarity given by equation 2.22. This condition is less reetrictive than that

applied by Moose fz'ol but is more consistent. It is particularly relevant where signals

of high time-bandwidth product are used. If the noise is stationary, then the interfer-

ence is locally stationary provided the covariance of the clutter path impulse responset

ó""(tt, ú2), d.epends only on the difference between ú1 and t2r lo a close approximation,

over a time perio d, of 2lB where B is the signal bandwidth. The requiremeut imposed

by Moose 12'61 was applied over a time perio d o1. 2T rather than 2l B where I was the

signal duration.

The Gated Ma>cimum Likelihood estimator of bearing (and, similarly, that of

azimuth) by echo-location using an array of sensors, has been derived by Arques [2'tsl.

It involves scanning a beam across the bearing gate (or sector) and choosing the bearing

associated with the peak post-correlation response. The correlation reference is the
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same as that used in GML range estimation. In chapter 2, I obtained the same result

independently of Arques by a different derivation.

The bearing estimate can be obtained for a target at a pa.rticular range, in which

case the log-Iikelihood function generated by the scanning process is a function of bearing

only. Alternatively, the estimate can be obtained within a range gate and a sector. In

this case, both bearing and range are being estimated and the log-likelihood function

is produced by the combined effects of scanning and correlation over a lag region. The

LLF is then a two-dimensional function of range and bearing. The concept is easily

extended to three dimensious if azimuth is to be estimated also.

The accuracy o! these ML estimation procedures depends on the signal power

spectrum, the signal duration, the transmission path characteristics and, in the cases of

bearing and asimuth, the shape and eise of the transmitting aperture. The way in which

range estimate variance d.epends on these factors has been known since Woo¿*"t¿ [2'tl

analyzed the problem. However, the equivalent expression for bearing estimate variance

is derived by me in chapter 2. I also derive an expression for the effective gain of a

wideband antenna used for echo-location. It turns out that there is a direct reciprocal

correspondence between these two expressions of transverse resolution. I have tberefore

defined a quantity which I have called the transverse resolution index and which is

common to both expressions.

The range estimate variance, the TRI and a third quantity, often appearing in the

literature, the detection index, have been used extensively within this thesis as indicators

of performance. They all depend, in different ways, on the signal power spectrum, the

signal duration and the transmission path characteristics. They are sufrcient to indicate

all aspects of system performance for compa,rison betweeu systems and for optimization

purposes.

In chapter 5, an original derivation yields a new estimator of range known as

a conditional MAP estimator. The concept may readily be extended to estimation
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of bearing and azimuth. This estimator is obtained aÉ¡ an augmented form of GML

estimator but has superior performance. Its performance is, in fact, superior to that

of an optimal form of GML estimator that uses an adaptive tracking range gate. The

width of this gate is controlled such that it is always related to the estimated RMS

tracking error.

The conditional MAP estimator uses the same iuformation as this optimal form

of GML estimator but it minimizes the amount of additional spurious information used.

It does this by constnrcting the log of the conditional prior probability density function

according to a minimum informatiou (or manimum entropy) criterion. This function

turns out to be an inverted parabola that must be added to the LLF prior to peak-

picking.

In the case of digital implementation, such a scheme is highly practical, adding

only slightly to the computational load in typical applications. An example is given iu

chapter 6.

In cases where an adaptive tracking range gate is more practical, mathematical

analysis and empirical evidence (obtained by simulation in chapter 5) indicates that

the gate width should be adjusted to about 3.5 to 4 times the estimated RMS tracking

error in most cases. If the target is highly predictabte and the detection index is very

small then a system employing a narrower adaptive tracking gate may perform better.

However, such a system will be continually hunting for the target with its gate opening

and closing as it repeatedly loses and reacquires the target.

7.1.2 Signal Optimization

Four theorems have been presented in chapter 3 that provide analytic solutions to

signal optimization problems. In each case, ouly the signal power spectrum is specified.

Later in the same cbapter a method for designing a non-linear chirp with the required

power spectrum is given and the listing of a computer program for this task is provided
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in appendix 38. In the case of each theorem, also, the solution is not in closed form.

The solution of one or more integral equations is required in order to obtain the values

of constants in the solution. Again, program listings are provided in appendix 38.

Three of the four theorems deal with optimization with respect to the three

performance indicators that were introduced in chapter 2 and discussed in the previous

subsection of this chapter, section 7.1.f . The fourth allows two of these criteria to

be introduced as constraints in the problem of optimizing with respect to the third

criterion.

Finaþ a complete sigual optimization strategy has been presented in which the

three criteria are effective only according to their priority. Detection performance is

always assigued highest priority. This means that the detection indor must be greater

than or equal to a speciûed constraint value before either of the other criteria become

effective. Either of the other criteria may have next highest priority. If transverse

resolution has next highest priority, then both the detection index and the TRI must

be greater than or equal to specified constraint values before range accuracy becomes

effective aÍr an optimization criterion.

This strategy is implemented in a computer program, the listing of which has

been provided in appendix 38. It gives the desiguer the flexibility to assign priorities

and objectives that reflect the requirements of his application. Nevertheless, it may be

that the simpler approach of optimization with respect to one simple criterion also has

a place. For one e>rample, a multi-mode echo-location system might well be optimized

according to different criteria in differeut modes. For another, a robust system to operate

in a very adverse environment would probably be optimized according to a detection

criterion as in chapters 4 aud 6.

Ma¡y theoretical results have been presented in chapter 3 to illustrate the meth-

ods. Most of these results have been supported by simulation reeults in chapter 5 which

are in excellent agreement with the theoretical results.
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Methods for constructing transmission path models have been discussed in chap-

tere 3 and 6. They involve ensemble averaging of impulse responses to extract noise

and estimate its power spectrum, simple excision of the target echo from the composite

echo and power spectral estimation using all-pole modelling to remove spurious de-

tail. I have developed a va¡iant of all-pole modelling that I call all-pole modelling with

zero-placement and which has been presented in chapter 3. This can help overcome

the shortcomings of all-pole modelling when the system being modelled is known to

have zeros in its transfer function. None of these methods will be ideal for all applica-

tions, however, and they should be taken as indicative only of the way in which such

transmission path models can be obtained.

7.1.3 Rnbust System Optímization

Despite the flexibility of the signal optimization techniques presented in chapter

3, there exist applications that fatl well within the ambit of this thesis and yet are not

catered for by the theory of chapters 2 and 3. The application described in chapter 6 is

one of these.

The difficulty here is that the transmission path characteristics are uncertain. In

the case of the ocample in chapter 6, the uncertaiuty arises from two sources. Firstly,

there is measurement error which results from the process via which the target impulse

response must be extracted from the clutter in order to char¿cterize the transmission

path. Secondly, and more importantly, the transmission path characteristics can vary

significantly in a quite unpredictable fashion.

The first step in dealing with this problem is to construct a transmission path

class description. A transmission path is then described as belonging to this class if

its characteristics fall between the limits prescribed in the class description. The class

ehould be as narrow as possible and yet broad enough to accommodate all transmission

path characte¡istics associated with the problem. The form of the class description also
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needs to be amenable to the mathematical treatment that is to follow.

A mathematical form for such a transmission path class descúption has been

presentd and justified in chapter 4. Techniques for constructing a class description of

that form have been giveu in chapter 6 and the listing of a computer program for pro-

ducing one from a set of measured transmission path characteristice has been provided

in appendix 6.

Chapter 4 also iucluded a theorem that gave the robust jointly optimal pair of

signal power spectrum and correlation reference for a specified transmission path class

description. Again, the solution is not in closed for¡n but requires the simultaneous 8o-

lution of a set of integral equations for the values of three constants in the mathematical

solution.

The optimization criterion applied is that the pair of aignal and receiver filte¡

should mæ<imize the minimum detection index over the class of transmission paths-

The problem was presented in chapter 4 like a problem in game theory. Cousistent

with this approach, the solution, when it exists, is in the form of a saddlepoint. That

is, the robust optimal system is designed to ma>cimize the detection index for a least-

favourable transmission path within the class. The optimal system performs worst for

this least-favourable path. The solution is guaranteed to exist unless the transmission

path class description is exceptionally broad. A more precise requirement is stated in

appendix 4.

An interesting interpretation of the mathematical form of the solution to this

problem ig that the least-favourable path is coloured in such a rilay that the optimal

system design for that path (and the robust-oplimat system design for the transmission

path class) displays the least overall colouration. That is, the product of the optimum

signal spectrum with the optimum receiver filter power transfer function is as flat as

possible. In addition, the other parameters of the signal path are as unfavourable as

possible. Eence, the attenuation of the target path is as large as possible and the clutter
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is as intense a"s possible.

An example of this mathematical approach to robust optimization has been pre-

sented in chapter 6 aud the listing of a computer program for computing the least-

favourable transmission path model has been provided in appendix 6. In addition, a

more straightforward approach has been described that will often produce a solutiou

more sinrply. In this approach, the designer computes the optimum (for ma>cimum de-

tection index) pair of signal and receiver ûlter for each member of his set of measured

trausmission path characteristics. Ee theu constructs a game matrix in which each

combination of system design and transmission path model has a corresponding entry.

The entries are the values of detection index obtained with those combinations.

Eopefuþ, the designer will be able to identify a saddlepoint in the matrix. Eow-

ever, a saddlepoint is not guaranteed to exist. Furthermore, unless a large number

of transmission path measurements are used, a saddlepoint solution obtained by this

method may not be the true global saddlepoint of the problem. Nevertheless, this ap-

proach also has a theoretical advantage in that the coupling that usually exists between

the clutter path characteristics and the target path characteristics (they do not vary

completely independently) is reflected in the way iu which the problem is formulated.

In the problem formulation of chapter 4 the mathematical form of the trans-

mission path class descriptiou does not reflect such interdependeuce. This can lead to

difficulties as we saw in the example of chapter 6 where transmission path characteris-

tics associated with highly favourable paths were combined with othere agsociated with

highty unfavourable paths to produce a very unrealietic least-favourable transmission

path model. The overall result of such a process is a highty conservative design that

performs poorly over the true class of transmission paths for which it has supposedly

beeu optimized. This type of diñculty cau largely be overcome, however, by simply

excluding highly favourable transmission paths from the analysis when constructing the

transmission path class description.
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'1.1.1 Digital Implementotion

The problem of implementiug an optimal echo-location system for a high speed

application has been considered with the aid of an example in chapter 6. Multi-processor

digital system design was advocated and ways of minimizingllO and synchronizatiou

overheads were discussed.

Non-recursive algorith-s such as fast Fourier trausforms, blo& correlations and

continuous tranwersal filters are typical of echo-location systems. They can be imple-

mented in multiprocesÉ¡or structures in which all constituent processors run identical

programs and are synchronized via their I/O links. All data flow is in one direction

only. All output data is output as it becomes available with no handshaking. The

availability of input data is indicated to the receiving processor by means of a hardware

flag. Each stage is synchronized to the preceding stage by simply waiting for data to

become ar¡ailable.

This approach simplifies the desigu problem and minimizes overheads. In some

cases, however, two or more unalike sections of an algorithm must run on separate

processors. In this case, the need for precise synchronization can be eliminated by

inserting a First-In-First-Out memory between the stages, effectively decoupling the

two processes.

An oramination of processor architectures best suited for use as constituent pro-

cesson¡ in such multi-processor applications was also undertaken in chapter 6. The

desirability of fl.exible, wideband I/O facilities was highlighted. In addition, a way of

facilitating compromise between multiplier speed and data-handling capacity was ad-

vanced in the form of a multiplicity of shift-and-add type multipliers and a segmented

bus structure.An example of such an architectural design in which I was heavily in-

volved was given in chapter 6. the detailed desigu of a CMOS VLSI irnFlementatiou

of it is not yet frniehed. However, conservative perlbrmance estimates indicate that it

will be about 7 times faster than the Texas Instruments TMS32010 signal processor in
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multiprocessor FFT applications. In such applications, also, it will require no additional

circuitry, except perhaps, depending on the application, for data reordering at input or

output.
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$7.2 ExteD,Bions of the Theory

The conditional MAP estimator presented in chapter 5 uses previous estimates

of target range in an optimal way to aid in estimation of the current target range. I have

previously described tbis algorithm as a "look-behind" algorithm lt'tl. This terminology

arises naturally in the context of surface imaging when echoes from points over a la^rge

area of a surface are being processed in a sequential manner to produce a surface map. In

that context, I have also investigated the possibility of developing a conditional MAP

estimator that uses unprocessed (or partly processed) echoes from nearþ points on

the surface to aid in the estimation of surface range at the current point. This type

of estimator is called a olook-aheado estimator [l'll. Encouraging results have been

obtained with an approximate look-ahead algori¡¡p lt'tl. Such an extension to the

theory of chapter 5, if it could be demonstrated to be of signiûcant utility, might well

be valuable. In other respects, however, there are few theoretical restrictions relevant

to the derivatiou in chapter 5. Prior information caû be used in this way to augment

any GML estimator.

The theory of chapters 2, 3 and 4, on the other hand, is restricted to situations

where Doppler effects are negligible and the clutter is at least locally stationary in a

statistical sense. The first of these restrictions might well be importaut. There may

be applications, which do not meet this restriction, to which the theory of chapters 3

and 4 could otherwise be usefully applied. If the clutter is uniformly distributed in

range and velocity in a region around the target, then the conveutional approaches to

signal optimization (as described in section 3.0) have tittle to offer. If, at the salne time,

the trausmission path is complicated by highly-coloured absorption, coloured noise and

differences between the target and clutter paths, then my approach may be useful if it

can be exteuded to take account of signifrcaut Doppler effects.

However, attempts to remove the restriction on relative motion by extending the

transmission path model to include convolution of the clutter Power spectrum with an
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assumd Doppler distribution have not been successful. The two main reasons for this

are that the resulting optimization problems are very complicated and yet the model

still does not cater for wideband Doppler effects.

It eeem¡ theu, that a completely new approach to the problem will be neceasary

if a satisfaÆtory solution is to be found. That is to say, it appears that we cannot simply

extend the theory of chapters 3 and 4 to cater for non-zero Doppler distribution of the

clutter and target echoes.
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!7.3 Concluding Rema¡Lg

In this thesis, I have reviewed and extended the theory pertaining to the design of

echo-locatiou syste.ns. Chapter 2 pertains to the design and performance analysis of ML

estimators of range, bearing and azimuth. Chapter 3 deals with the design of siguals to

optimize performance with respect to range estimation accuracy, target detect¿bility and

transverse resolution. Chapter 4 concerns the robust optimization of target detection

performance by joint design of the sigual and correlation reference. Chapter 5 introduces

conditional MAP estimation as¡ an optimal approach to echo location when the target is

being tracked and range predictions and estimates of the prediction error are available.

The theory is backed up by simulation results presented in Chapter 5. Iu addi-

tion, Chapters 3, 4, 5 and 6 a¡e replete with details of practical techniques for trans-

mission path modelling and for implementing the desigu theory. Computer Program

listings are supplied in the relevaut appendices.

To round out the thesis, Chapter 6 presents a caae study in which many of

the principles and techniques are put to the test of practical application. This case

study goes asr far as a practical system design involving the implementatiou of the

real-time DSP algorithms in an array of modern signal processing microprocessors.

As well as demonstrating the practicality of the design theory, these latter sections on

system implementation explore the factors affecting the efrciency of DSP multiprocessor

systems. Finall¡ a Detr processor architecture is presented that takes advantage of the

lessons learnt in that exploration. While I cannot claim sole responsibility for that

architecture, it was my implementation problem that prompted its design and I believe

I made a significant contribution to that design.

My aim in writing this thesis was to present a comprehensive desig:r methodology

for a certain class of echo location system. I believe I have achieved that aim. The

methodology presented was certainly influenced at many points in ite evolution by the

contributions of my supervisor, Prof. R. D. Bogner. In fact, we have had a number
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of joint publications on related topics. Nevertheless, I regard the work presented in

this thesis as essentially and substantially my own except as indicated in the previous

paragraph and in the Acknowledgements.
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APPENDD( 3A: PROOF OF TEEOREM I

The proof of theorem I will be undertaken in two ateps. In the first step the

form of the solution in .R1 will be derived. In tbe second step it will be shown that the

transmission of any signal power in .Bo will result in a reduction of the detection index.

Extremizatiou in ftr

For the first step in our proof we need to derive the sigual power spectrum,

G,,(l), that mæcimizee the integral:

subject to the power constraint (from 3.f5):

G,,(Ð lfur(Ð|?æ

2T G,,U) + G,,(Í)lH"U)f

|r,",,{fldl: P,lz-

(3á.1)

(3Á.2)

dl (3Á.3)

i.e. (provided Grr(/) > 0 everywhere in .81) maximize:

lnrU) 2 G,*(Í)l&rT)l'n
n l¡r"(t)l lã"(/)l' c""(/) + lä"(/)l

n Gr,(Í)

subject to 34.2.

The constrained extremization thus reduces to minimizing:

lprT)|z G^,(Í)

v"u)r G,,(Í) + lä.(/)l

where À is a Lagrange multiplier.

APsA-I
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Appendix 3A

equation:

Now, if we let T : _fn, F(l)dL then tbe solution is given by the Euler-Lagrange

Prool of Theo¡em 7

(3á.5)

(3á.6)

le

0

Equation 34.5 reduces to:

(G,,(/))2 + c",U) +
Go,. )'
lH"(Í)

Of the two mathematical solutions to 34.6, only the following can be positive:

G",U) : k¿|flrff)l(G""( t/2 _ G**(Í)
(3.Á.7)

lã"(/)l

where kzd: tl^.

Flom the definition of -81, we see that the numerator of 34.7 is strictly positive

over .B¡. Hence 34.7 is a valid solution in .Rr. This completes the ûrst step in the proof.
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Band of Zero Power

Now, consider the possibility of transmittilrg some po$ter, Pr, in r?1 and somet

P2, in a region, .82, within & so that P, - Pt * Pz. lI .82 is chosen aPpropriately, the

spectrum, Gz(Í), that mæ<imizes # i" .82 will be given by:

czf) _ kz lpr(Ðl(G""(t))t/2 - G,,(Í)
lH"(flr

(3Á.8)

df (3á.11)

where rt2 is chosen such that

(3.4.e)

ß2 wilt be chosen such that 34.8 is positive everywhere in ß2.

Now, f.or P2negligibly small, the spectrum, Gr(f), that mædmizes # i" R1 will

be given by:

G{Í\ _ rlørÍ)l(G"" rlz _ GrrU) (3Á.lo)
lH"(Í)

From 34.8 and 34.10, we can write:

f*,rrtt\dÍ 
: Pzlz.

æ I l-lø'(l)l'
zr : J *,u*, Llã"(fl¡t 

-
2Hr

lH"U)l c""$) + l¡r"(/)l Grr(l)
Gnn

and, substituting fior G'r(f), we obtain:

n
n lHrU)12

L Pn" lil"(f\

From 34.12, we get:

lËr(f)l (G,^(Í))'tz

lH"(flr
HrU)l(G*,(fl)r12

lH"U\

dl

dl.

(3/r.12)

APsA-3

(3.{.r3)



and

Appendíz JA

But

Hence

Similarly,

a(21)
ðkz

dPt
dkt

lHr l(G,,(il)t12
lH"U)

Proof ol Theo¡em I

(3/{.14)

(3/.15)

(3Á.16)

(3/r.17)

tf I

R 1,,

2

dkt
¿Pz 2 [*, lE"U)

I

dkz

rl2Gnn

I
dPz zlr,

Flom 34.13, 34.14, 34.16 and 34.17, we obtain:

Q. E. D.

(3Á.18)

Now, since Pr 1 Pr, we have \ 1 k¿ and from 3.17 we see that kz ) k¿ for

GzU) to be positive in .Bz. Hence, from 34.1 8, 
o# 

is strictly negative and it follows

that fi is mædmized by setting Pz -- O. Hence the complete solution is given by 3.f6.
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APPDNDDC 3B: PROGRAIVÍ LISTINGS FOR CEAPTER 3

!^A,PgB.l MV Opti¡niration Progrn",

PROGRA¡I VARIAN
C PROGRAII TO COMPUTE THE OPTIMAL SIGNAL SPECTRUM FOR RANGE ESTIMAÎION
C GIVEN A TRANSIIISSION PATH IiIODE[. THE MODEL CONSISTS OF A SET OF DATA
C FILES WHICH ARE ASSUMED TO REPRESENT COMPONENTS OF THE IiÍODEL AS

C FOLLOWS:
C ,'SIGSPEC" CONTAINS THE SQUARBD MAGNITUDE OF THE TARGET
C PATH TRANSFER FUNCTION,
C ''CLSPEC'' CONTAINS THE SQUARED }IAGNITUDE OF THE CLUTTER
C PATH TRANSFER FUNCTION.
C ..NSPEC" CONTAINS THE POI{ER SPECTRUM OF LOCALLY GENERATED
C NOISE.
C THE OPTIMUM SPECTRUM IS OUTPUT To FILE: "OPTSPEC.BIN".
C ALL SIGNALS ARE ASSUIIED SAMPLED AT SOOKHZ AND ALL SPECTRA ARE ASSUMED

C 10 BE BASED ON 512-POINT FFT.

REAL TPSPEC ( 128), TPCLUT ( 128 ),S ( 128),NSPEC ( 128 ) . K' NEWK

LOGICAL FLAG

oPEN ( 1, ERR=100, F ILE= I S IGSPEC . BIN 
" 

STAlUS=' OLD 
" 

ACCESS=' SEQUENlIAL I

1,FORM=rUNF0RüATTEDT )
oPEN( 2, ERR=100, FILE= ' CLSPEC. BIN ' , STATUS='OLD | ,ACCESS= ' SEQUENlIAL I

1,F0RM=rUNF0R¡IATTEDT )
OPEN(6, ERR=100,FILE= ' NSPEC. BIN' ,STATUS= | OLD | ,ACCESS= ' SEQUENTIAL I

1,F0RM='UNFORMATTED' )

OPEN ( ?, ERR=1 00, FILE=' DETIND . VAR', STATUS=' NEW r, ACCESS=' SEQUENTIAL I

1 , FORM='UNF0RMATTED' )
9PEN ( 8, ERR=100, F ILE=' ESTVAR. VÁR 

" 
STATUS=' NEW 

" 
ACCESS=' SEQUBNTIAL I

l,FORM='UNFORMATTEDT )
OPEN ( 4, ERR=100, F ILE=' lRI' VAR', STATUS=' NEW', ACCESS=' SEQUENTIAL I

1,FORM='UNF0RMATTEDT )
C READ IN TRANSFER FUNCTION SQUARED IiIAGNITUDES
C f{HICH MUST BE DIVIDED BY THE SQUARE OF THE TRANSIiIITTED IHPULSE
c MAGNTTUDE (1OV) EXPRESSED IN UNrTS OF THE QUANÎIZATION STEP (.1*9/256 V)

DO 10 I--1,128
READ(T) SAMP
tPsPEc(I) = SAMP/(2840.*2840. )

READ(2) SAIíP
LPCTUT(r) = SAMP/(2840.r2840. )

10

C READ

200

C GET

CONT I NUE

IN NOISE PSD
DO 200 I=1,128
READ(6) NSPEC(I)
CONl I NUE

FIRST AND LAST FREQUENCIES
TYPE *,'SPECTFY FIRST AND
ACCEPT *, I1, I2
TYPE *, I SPECIFY FIRST AND
ACCEPT t. IDBl, IDB2

AND SIGNAL POI{ERS
LAST FREQUENCIES ( BIN NOS. ) I

LAST SIGNAL POWERS (dB),

C COI{PUTE THE INIlIAL ESTITIATE OF THE SPECTRAL CENTROID
C OF THE POST-f{HITENING ÎARGET SIGNAL

5 CN = 0.0
CD = o.0
Do 11 I=I1.I2
CN = CN+I*LPSPEC(I)/LPCLUT(I)
CD = CD+LPSPEC(I )/tPCtUT( I)

11 CONTINUE
C = CN/CD
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DO 145 IDB=IDB1, IDB2
OPEN ( 3' ERR=10o, FILE= I OPTSPEC

1,F0RM='UNF0RI{ATTEDT )

PREQ = 1O*¡(FLOAÎ(IDB)/10. )
OLDK = o.
K = 1.84
OLDP = 0.
FLAG = , FALSE.

VAR',STATUS=' NEW',ACCESS='SEQUENTIAL'

C COMPUTE THE MINIIIUM VARIANCE SIGNAL SPECTRUM USING K

C ITERATE ON CENTROID
90 CN = 0.0

CD = 0'0
PS = 0.o
Do ?0 I=I1.I2
s(I) = (K*s??*ABS(FLOAT(I)-C)*

& SQRT(LPSPEC( I)+NSPEC(I) )-NSPEC( I) )/tPCIUT(I)
IF (s(I).LÎ.0.0) s(I) = 0.0
PS = PS+S(I)*LPsPEc(I)*97?
ss = s(r).LpspEc(I)/(NSPEc(I)+s(I)*LPCLUT(I))
CN = CN+I*SS
CD = CD+SS

7O CONTINUE

C COMPUÎE SIGNAL POWER

C POWER = SUH(P.S.D.*UNITS*BIN-WIDTH)
P = 0.
DO 250 Í=Il 'Í.2z5o p = p+s(I)
P = Pt28E-t2*977

SIGNAL POIIER NOT AS REQUIRED THEN RECOMPUTE

PC - ABS(P/PREQ-1)*100
rF (PC.LE.1.) GO T0 ?5
rF ((P-otDP).EQ.o. ) ÎHEN

NEtIK = 2 *K
E LSE

NEWK = K+(K-oLDK)*(PREQ-P)/ (P-0tDP)
IF (NEI{K.tE.o) NEt{K - (K-0tDK),/2+0LDK

ENDIF
OLDK = K
K = NEIIK
OLDP = P

co 10 90

OPT I}TAL SPBCTRUUC IF
255

C IF CENTROID NOT CORRBCT THEN UPDATE ANI)

75 CCC = CC

CC=C
c = CN/CD
rF (ABS(CC-C).tT..s) GoTo 260
IE ( ( (cc.GT.ccc) .AND. (c.Lr.cc) ) .oR'

& ( (cc.Lr.ccc).AND. (c.Gr.cc)) ) THEN
FLAG = . TRUE.
c = (cc+ccc)/2

ELSE
IF (FLAG) THEN

C - 2*CC-CCC
ELSE

C = (Z*CC+c)/g
ENDIF

ENDIF
GO TO 90

TRY AGAIN
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O PT I T'UI{

C WRITE OUT OPTIMUT{ SPECTRUM
260 D0 263 I=1, I1-1
263 S(I) = s.

DO 266 I=I2+1,128
266 s(I) = s.

DO 110 I=1,128
110 t{RrTE(3) s(I)

C COMPUTE THE VARIANCE OF THE DELAY ESIIIiIATE USING THE

C SIGNAL SPECTRUi{ CORRESPONDING TO K

SIGlitA = 0'0
D0 20 I=I1,I2
rF ((s(r).tE.o).AND.(NsPEc(I).tE.0)) THEN

DEL = 0.
ELSE

DEL = ( (FLoAT(I)-c)**2)*s(I)*LPSPEc(I)
DEt = DEL/ (NsPEc( I)+s(I)ttPcLuT( I) )

ENDIF
2O SIGMA = SIGIIIA+DEL

sIctilA = 2OOO/ (8*3. 1416*3. 1416*(97?+*3)TSIGMA)
fÌRrrE ( 5,31 )

31 FoRMAT(1H ,//l
f{RrrE( 5,30) sIGMA

3O FORMAT(1H , 'DELAY ESTIMATE VARIANCE IS I ,89'3, I

SIGt'lA = SQRT(SIGIttA)*1.O86
rfRrTE(8) SrGlilA
r{RITE(5,50) SrGMA

sEcs.*2 | 
)

50 FORMAT(1H , 'CORRESPONDING TO AN RMS ERROR 0F t,F9.3' us' )

C COMPUTE THE VALUE OF THE TRANSVERSE RESOLUTION
C USING THE OPTIIiIUM SIGNAL SPECTRU¡if CORRESPONDING

TRI = 0.0
DO 22o I=I1,12
rF ( (s(r).[E.o).AND. (NsPEc(r).LE.0)) THEN

DEL = 0'
ELSE

DEL = (FLOAT(t ¡**r)ts( I )*LPSPEC(I )

DEL = DEL/ (NsPEc( I)+s(I)itPcLUT( I) )
ENDIF

22O TRI = TRI+DEL
TRI = (977**3)*TRI
TRI = 8*3.1416*.0005rTRI
TRr _ TRr/(340*34o)
WRTTE(4) TRI
l{RITE(5,230) TRI

23O FORMAT( 1H , I TRANSVERSE RES. INDEX IS | 
' 89.3

& 'PER SQ . IiIETRE ' )

C OUTPUT THE VALUE OF THE DETECTION INDEX
D = 10*AL0G10 ( CD*9??,/2o00 )

WRITE(?) D

r{RrrE(5,120) D

120 FORMAT(1H , 'THE DElECTION INDEX IS

(srR)

| , F6.2, ' DBt )

ctosE ( 3 )
145 CONTINUE

STOP

I{RrTE(5,40)
FORMAT(1H ,'ERROR DURING FILE OPENING')
STOP
END

I NDEX
10K

100
40
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!APSB.2 ,l,lt-pole Spectral Estimatior Prognyn w¡th Zero Placement

PROGRA¡I DURBIN

C PROGRAM TO SMOOTIT A POWER SPECTRUM BY IiIODIFIED SELECTIVE

C MEÀI SPECTRAL ESTII(ATION USING DURBIN'S ALGORITH[I AND

C ZERO PLACE}IENÎ.

CHARACTER TNFILETSI, OTFILE*31 ' CH

DruENsroN A(20),R(20)'s(256)
coMPLEX X(512),Y(2561 'z(rol 'zJ
REAL JJ

10

15

TYPE T, ' SPECIFY INPUT FILE: I

ACCEPT 15, INFILE
FORMAT(431)
OPEN(1,ERR=4o,FILE=INFILE,STATUS='OLDr'AcCESS='SEQUENTIAL'

1 , FORM='UNF0RItf ATTED' )

REWTND(1)
GO T0 50
r{RrTE ( 10 ,60 ) IER
FORMAT( 18H FILE OPEN ERROR- ' I5)
G0 10 10

40
60

5O TYPE *, ' SPECIFY OUTPUT FILE:
ACCEPT 15, OTFILE
oPEN(2,ERR=8o,FILE=OTFILE,STATUS='NEI{"ACCESS='SEQUENTIALI

1 , FORM='UNF0RIIIATTED' )

G0 TO 90
80 f{RrTE ( 1o,60 ) IER

GO TO 50

9O TYPE *,'SPECIFY PREDICTION ORDER

ACCEPT *, NP

TYPE *, 'SPECIFY NUMBER OF ZEROES
ACCEPT *, NZ

D0 95 I=1,NZ
TYPE T, ' SPECIFY POSITION OF NEXT
ACCEPT I,ZREAL,ZIMAG
z(fl = clilPLx(zREAL'zIUAG)

95 CONTINUE

TO BE PLACED I

zERO (zREAL,ZIllAG)'

C READ

120

130

TYPE *, 'SPECIFY FIRSl
ACCEPT I,ISAMP,LSAMP
IF (rSAllP.tr.1) rSAMP
NSAMP = LSAMP-ISAMP+1

IN DATA
x(NSAMP+1) - (0.,0')
DO 120 I=1, ISAMP-1
READ(1)
READ(1) SAlilP
x(1) = cllPLX(SAMP'0')
DO 130 I=2, NsAMP
READ(1) SAlilP
x(I ) = ClilPLX(sAllP,0. )
x(2tNsAllP+2-I) = x(I)

AND LAST SAMPLE: '

=1

C INSERÎ POLES TO CANCEL KNOWN ZEROES
zr = (1.,0.)
DO 145 I=1 'NZ145 x(1) = x(1)/cABslzt-zlrll
DO 135 J=2, NSAlilP
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135

Spectrol Ddimotion

JJ
ZJ
DO

x(
x(

= 3.1416r(J-Ll/NSAMP
= CMPLX(cos(JJ),sIN(JJ) )

135 I.1,NZ
J) = x(J)/cABs(zJ-z(I))
2tNSAMP+2-J) = X(J)

C TRANSFORM TO AUTOCORRELAlION DOMAIN
CALL DFT(X, 2TNSAMP'Y,NP+1 )

DO 140 I=1 'NP+1140 R(I) = REAL(Y(I))/(ztNsAMP)

C APPLY MEM TO AUTOCORRELATION FUNCTION
CALL DURB(R,A'NP'G)

coBTAINMEMsPECTRALEsTI}IATEFRoMPREDIcToRCoEFFIcIENTS
D0 150 I =1 , NP+1

lso x(I) = cMPLX(A(I)'0.)
DO 160 I=NP+2 ' 2*NSAMP

160 X(r) = (0.,0.)
cAtL DFT ( X, 2*NSA¡lP ' Y 

' 
NSAMP )

D0 170 I=1,NSAMP
s(I) = REAL(Y(I)tCoNJG(Y(I)))
s(I) = G*G/s(I)

1?O CONTINUE

C OUTPUT LEADING ZERO SAMPLES
SAMP = 0.
DO 255 I=1 ' ISAMP-1

255 WRrTE(2) SAMP

C REINSERÎ ZEROES AND OUTPUT
zr = (1.,0.)
SAMP = s(1)
DO 245 I=1 , NZ

245 SAIiIP = sAllP*cABs(21-Z(I))
t{RIrE(2) SAMP
DO 24O J=2'NSAMP
JJ = 8.1416*(J-1)/NsAHp
ZJ = cMPLx(cos(JJ)'sIN(JJ) )
sAMP = s(J)
DO 235 I=1'NZ

235 SAMP = sAllP'cABs(ZJ-Z(f)l
24o l{RrrE(2) SAMP

C OUTPUT TRAITING ZERO SAIIPLES
SAMP = 0.

260 READ(1,END=260)
ltRITE(2) SAMP
GOTO 250

260 s10P
END
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SUBROUTINE DURB(CS,A'NP'G)
DIMENSIoN A( 2o),AP(0:20,0: 20)' E(0
REAL K( 20)

C DURBIN'S ALGORITHIiT

20),cs(*)

E(0) = cs(
D0 15 I=0,
AP(r,o)
AP(o,I)

15 CONTINUE

1)
NP
0.0
0.0

Do 20 I=1,NP
K(I) = cs(I+1)
Do 30 J=1,(I-1)
K(I) = K(I) + AP(I-1,J)*cs(I-J+1)

3O CONT I NUE
K(I) = -K(I)/E(I-1)
AP(I,I) = K(I)
Do 4o J=1,(I-1)
AP(I,J) - AP(I-1,J) * K(I)tAP(I-1'I-J)

4O CONTINUE
E(I) = (1-K(I)*K(I))'E(I-1)

20 CONTINUE
A(1) É 1.
DO 50 J=1'NP
A(J+r) = AP(NP'J)

5O CONTINUE

C COMPUTE GAIN PARAIIETER
c = SQRT(E(NP))

RETURN
ENI)
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SUBROUTINE DFT(DAT'N' S'NV)

C COIiIPUTE NV CO}IPIEX POINTS FROfií AN N-POINT
C COMPLEX SEQUENCE BY DFT. }IODIFIED FROIiI AN

C ORIGINAT ROUTINE BY D. FENSOM

coMPLEx w(512),Z,DAT(')'s(')

Speclrol Eldimalio¡

C0N=-8. *
DO 100 r

100 Il(I)=68¡P
D0 300 I-

200
300

ATAN2( 1. ,1 ' )/FtoAT(N)
I,N
(clìlPtX(o', cON*FLoAT( I-1 ) ) )

1,NV
Z=CMPLX(0.'0.)
DO 200 J=1'N
rA=rrtoD( ( I-1 ) * ( J-1 ), N) +1

z=z+DÃT(J)tlr(IA)
s ( I ) =z
RETURN
END
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tAPgB.S Mixed Criterla Optimisatlon Progrr'n

PROGRAM MIXUP
C PROGRAM TO COMPUTE THE OPTIUAL SIGNAL SPECTRUM FOR RANGE ESlIUATION
C GIVEN A TRANSMISSION PATH MODEL. THE }IODEt CONSISTS OF A SET OF DATA

C FILES WHICH ARE ASSUI'IED TO REPRESENT CO}IPONENTS OF THE }TODEL AS

C FOLLOWS:
c''sIGsPEc"coNTAINsTHESQUAREDMAGNITUDEoFTHETARGET
C PATH TRANSFER PUNCTION.
c..cLsPEc..coNTAINsTHESQUAREDUAGNITUDE0FTHECLUTTER
C PATH TRANSFER FUNCTION.
C ..NSPEC'' CONTAINS THE POT{ER SPECTRUIiI OF LOCALLY GENERATED

C NOISE.
C lHE OPTIIIUM sPECTRUM IS OUTPUT TO FILE: "0PTSPEC'BIN"'
C THREE PERFORMANCE TNDICATOR FILES ARE ALSO PRODUCED. THEY ARE CATLED

C,.DETIND.MIX.', "ESTVAR.IiÍIX.' AND''TRI.IqIX.,.
C ALI SIGNALS ARE ASSUMED SAMPLED A1 SOOKHZ AND ALL SPECTRA ARE ASSUMED

C TO BE BASED ON 512-POINT FFT.

REAL LPSPEC( 128 ), LPCTUT( 128),S( 128 ), NSPEC( 128)'
& KV , NEWKV , KD , NEIIKD , KT , NEWKT

LOGICAL FLAG,DFIRST,TFIRST' DONLY

oPEN ( 1, ERR=10O, F ILE=' SIGSPEC. BIN 
" 

STATUS=' OLD r, ACCESS=' SEQUENTIAL I

1,F0Rl¡l='UNFORMATTEDT )
oPEN ( 2, ERR=100, FILE=' CLSPEC . BIN 

" 
STATUS=' OLD r, ACCESS=' SEQUENTIAL I

1,F0RM='UNFORMATTEDT )

6PEN ( 6, ERR= 100, FILE=' NSPEC . BIN 
" 

STATUS= | OLD 

" 
ACCESS=' SEQUENTIAL I

1,F0RM='UNFORMATTEDT )

oPEN ( ?, ERR=1 00, FILE=' DETIND . HIX 
" 

STAlUS=' NEIÍ t, ÂccESS=' SEQUENTIAL I

l,FORM='UNFORI{ATTEDT )
oPEN ( 8, ERR= 1 00, F ILE=' ESTVAR. !lIX 

" 
STATUS= I NEI{ r, ACCESS=' SEQUENT IAL I

1,FORI¡l='UNFORMATTEDT )
opEN ( 4, ERR=1 00, FILE=' TRI . MIX 

" 
STATUS= t NEI| 

" 
ACCESS=' SEQUENTIAL'

1,F0Rlil='UNFORI{ATTEDT )

C READ IN TRANSFER FUNCTION SQUARED MAGNITUDES
c wHIcH llusT BE DMDED BY THE SQUARE OF THE TRANSIiTITTED IMPULSE

c ¡TAGNITUDE (1oV) EXPRESSED IN UNrTS OF THE QUANTIZATION STEP (.1*9/256 V)
D0 10 I=1'128
READ(1) SAMP
LPSPEC( I) = sAIilP/(2840.*2840. )
READ(2) SAMP
LPctUT(I) = sAMP/ (2840.'2840. )

1O CONTINUE

C READ

200

C GET
C AND

IN NOISE PSD
DO 200 I=1,128
READ(ô) NsPEC(I)
CONT I NUE

FIRST AND LAST FREQUENCIES AND SIGNAL POWERS,

CONSTRAINTS.
lYPE *, 'SPECIFY FIRST AND LAST FREQUENCIES (BIN NOS. ) I

ACCEPT *,I1,I2
TYPE *, 'SPECIFY FIRST AND LAST SIGNAL PO!{ERS (dB)'
ACCEPT *, IDBl, IDB2
TYPE *, ' SPECIFY DETECTION INDEX REQUIRED (dB) I

ACCEPT * , DREQ
TYPE *, .SPECIFY lRI REQUIRED I

ACCEPT * , TREQ
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C COMPUTE THE INITIAL ESTI!'IATE OF THE SPECTRAL CENTROID

C OF THE POST-WHITENING TARGET SIGNAL
5 CN = 0.0

CD = 0.0
D0 11 I=I1'I2
CN = CN+IÙLPsPEc( l)/tPcLUT( I)
ç9 = Q!+LPsPEc(I)/tPctUr(I)

11 CONTINUE
c = CN/CD

C REPEAT FOR ALL REQUIRED SIGNAL POWERS AT

C 1dB INTERVALS
DO 145 IDB=IDB1 ' IDBz

oPEN(3,ERR=100,FILE='oPTsPEc.MIx',STATUS=.NEll',ACCESS='SEQUENlIAL'
1 , FORM= ' UNFORMATTED' )

C INITIALIZE
PREQ =
OLDKV =

KV = 1.
0LDP =
KD = 0'
KT = 0.
CC=C
FLAG =

1O**(FLOAT(IDB)/10. )

0.
E4
0.

FALSE.
. TRUE .

. TRUE .

. FALSE .

TERATE ON CENTROID.

DFIRST =

TFIRST =

DoNLY =

c
c

COMPUTE THE MINIMUM VARIANCE SIGNAL SPECTRUM USING KV'

KD AND
90 cN

CD

PV
PT
PD
D0 70 I=I1'I2
SV = e??*ABs(FLoAr(I)-c)*sQRr(LPSPEc(rl1l9tE9( r ) )/LPctur(r)
ST = KTIg??*FLOAT( I )*SQRT(tPSÈEC( I )INSPEC( I ) )/tPCIUT( I )

sD = KD*sQnrir,pspÈctr ) 
jr'¡sp¡c ( r ) ) /tPctur ( r )

sSV = (s??*ABs(FtoAT(I)-c) )**z
sST = (KT*9??*FLOAT(I))**z
SSD = KDrr2
s(r) = (Kv*sQRT( (ssv+ssÎ+ssD)r(LPSPEc(r )*NSPEC(r) ) )

& -NsPEC( I) )/tPctur(I)
IF (s(r).tr.o.o) THEN

s(I) = 0'0
SV = o.
ST = 0.
SD = 0.

ENDIF
C COMPUTE "PARTIAL POWERS"

PV = PV+SV
p1 = pl+ST
p¡ = pþ+SD
ss = s(I)*LPSPEC(I)/(NSPEC(I)+s(I)*LPCLUT(I) )

C COfiiPUTE NUMERATOR AND DENOT{INATOR OF CENTRO!D PREQ '

ç¡ = Çfil+I*SS
CD = CD+SS

7O CONTINUE

KT. I
= 0.0
= 0.0
= 0.
= 0.
= 0.
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C COMPUTE SIGNAI POWER

C Pol{ER = SU}l(P. S. D. TUNITS'BIN-vrIDTH )

P = 0.
DO 250 I=I1, I2

250 P = P+S(I)
P = P*26E-72t977

c IF SIGNAL POÍ{ER NOT AS REQUIRED THEN RECoMPUTE OPTIMAL SPECTRUM

255 PC = ABS(P/PREQ-1)r1oo
IF (PC.LE.1.) GO TO 75
rP ((P-oLDP).8Q.0.) THEN

NEI{KV = 2 +KV

ELSE
NEWKV = KV+(KV-OLDKV)*(pREQ-p)/(P-orDP)
IF (NEWKV.tE.0.) NEI{KV = Kv/2

ENDIF
OLDKV = KV
KV - NEWKV
OLDP = P

GO TO 90

C IF CENTROID NOT CORRECT THEN UPDATE AND TRY AGAIN
75 CCC = CC

CC=C
C = cN/cD
rF (ABs(cc-c).tT..5) GoTo 26o
rF ( ( (cc.GT.ccc) .AND. (c.tT.CC) ) .oR.

& ( (cc.LT.ccc).AND. (c.GT.cc) ) ) THEN
FLAG = .TRUE.
C = (CC+CCC)/2

ELSE
IF (FLAG) THEN

C = 2*CC-CCC
ELS E

C = (2*CC+C),/3
ENDIF

ENDIF
GO TO 90

C IF DETECTION INDEX NOT AS REQUIRED THEN UPDATE KD

C AND TRY AGAIN.
260 D = 10*ALOG10(CDt977/2OOOl

C IF DETECTION CONSTRAINT iIET WITHOUT ADDING AN MDI
C CO}IPONENT TO THE POÍIER SPECTRUM THEN DONT BOTHER.

IF ((D.GT.DREQ).AND.(KD.EQ.0.)) Goro 660

C IF DEÎECTION CONSTRAINT NOT MET AND IiTV COMPONENT
C OF THE POWER SPECTRUM IS NEGLIGIBLE THEN GIVE UP

C DO NOT T{ORRY ABOUÎ TRI CONSTRAINT.
rF ( (D.tr.DREQ).AND. (PV.LT. .01*PD) ) rHEN

DONLY = . TRUE.
GOTo 760

ENDIF

rF (ABs(DREQ-D).rT.
IF (DFIRST) THEN

C FOR FIRST ATÎEUPT GUESS

1 ) GOTO 660

A REASONABLE VALUE FOR }IDI COEFFICIENT

DFIRST = .FALSE.
ELSE

rF ((D-oLDD).EQ.0) rHEN
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C HEURISlIC TO PREVENT LOCK_UP
NEWKD = 2.*KD

ELSE
NEI{KD =

ENDIF
C DONT ALLOW NEGATIVE CONTRIBUTIONS TO

IF (NEtlKD.tE.o') NEi{KD = o'
ENDIF

265 OTDKD = KD

KD = NEWKD

OLDD=D \

OLDKV = o.
OLDP = 0.
CC=C
FLAG = .FALSE'
G0 To 90

C IF
660

220

C IF
cTo

Mízd C¡it c¡ío O ptímízolion

TRI NOT AS REQUIRED THEN UPDATE KT AND TRY AGAIN

TRI = 0.0
DO 22O I=I1'12
ir ((s(r).LE.o).AND. (NsPEc(r)'tE'0)) IHEN

. DEL = 0.
ELSE--nir. = (FLoAr( r )**2)*s( r )*LPsPEc( r)

DEL = ónr./(NsPEC( I )+s( I )*tPctuT( I) )

ENDIF
TRI = TRI+DEL
TRI = (9??**3)*rRt
TRI = 8*3.1416r'.O005*TRI
TRI = TRI/(340*340)

TRI CONSTRAINT IS MET WITHOUT ANY MTRI CONTRIBUTION

THE POWER SPECTRUIiI THEN DONT BOTHER.

rF ((rRI.Gr.TREQ).AND. (KÎ'EQ'o' )) GoTo 760

KD+ ( KD-oLDKD ) * ( DREQ-D ) / ( D-otDD )

POWER SPECTRUìI

) NEI{KT o

C IF TRI CONSTRAINT IS NOT UET AND THE MV CONTRIBUTION

C TO THE POTIER SPECÎRUM IS NEGLIGIBTE THEN GIVE UP'

C SINCE THE DETECÎION CONSTRAINT IS DOIif INANT ' NO

C FURTHER BAT REI{AINS TO BE TRADED OFF'
rr ( (TRr.tr'TiEQ).AND. (PV'Lr' '01*PÎ) ) G0T0 ?60

TC = ABS( 1-TRI/TREQ)*100 '
rF (TC.LE.1.) GOTO 760
IF (TFIRST) THEN

C FOR FIRST ATTEMPT GUESS A REASONABLE VALUE FOR MTRI COEFFICIENT

NEWKT = ((I2-I1) +Z*KD/9771/(4t (I2+I1) )

lFIRST = .FALSE'
ELS E

IF ( (TRI-OLDT).EQ'O) THEN

C HEURISTIC TO PREVENT LOCK-UP
NEWKT = 2'*KT

KT+ ( KT-OLDKT ) * ( TREQ-TRI ) / ( TRI'OLDT )ELSE
NEHKT

ENDIF
IF (NEWKT'LE.O

ENDIF
DFIRST = .TRUE'
KD = 0'
OLDKT = KT
KT = NEWKT
OLDT = TRI

665
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OLDKV
KV=1
OLDP =
CC=C
FLAG =
GO TO

=0
.84
0.

. FALSE
90

C I{RITE OUT OPTIIIUM SPECTRU}I
760 DO 263 I=1, I1-1
263 s(I) = 0.

DO 266 t=ÍZ+ I,129
266 s(r) = o.

DO 110 I=1,128
110 WRrrE(3) s(r)

C IF NECESSARY COMPUTE TRI
IF (DONLY) THEN

TRI = o.0
DO 1220 I=IL,12
rF ((s(r).tE.o).AND. (NSPEC(I).t8.0)) THEN

DEL = 0.
EL SE

DEL = (FLoAT( I )**2)*s( I )*tPsPEC( I )
DEL = DEL/ (NsPEc( I)+s( I )*LPctur(I) )

ENDIF
L22O TRI = TRI+DEL

lRI = (977**3)*TRI
TRI = 8*3.1416*.0O05*TRI
TRr = TRr/ ( s40*340 )

ENDIF

C COMPUTE THE VARIANCE OF THE DELAY ESTIMATE USING TIE OPTIMUü
C SIGNAL SPECÎRUM CORRESPONDING TO K

SIGIi{A = 0.0
DO 20 L=IL,12
rF ((s(r).rE.o).AND. (NSPEC(r).t8.0)) THEN

DEL = 0.
ELSE

DEL = ( (FtoAT(I)-c)**2)*s(I)*LPsPEc(I)
DEL = DEL/ (NSPEc( I)+s( I)*tPcLUr( I ) )

ENDIF
20 SIGMA = SIGMA+DEL

SIcMA = 2OOO/ (8*3. 1416*3. 1416*(9??**3)*SIGIiIA)

C I{RITE OUT RESULTS
t{RITE ( 5,31)

31 FoRMAT(lH ,//l
r{RrTE(5,3o) SIGMA

3O FORMAT(1H , 'DELAY ESTIMATE VARTANCE IS r,89.3,' SECS**2')
sIGMA = SQRT(SIGMA)*1.086
r{RrTE(8) SIGUA
I{RrlE(5,50) sIGlrA

50 FORIìIAT( lH , ' CORRESPONDING TO AN RMS ERROR OF ' ,T9.3, . US, )
WRITE(4) TRI
ÌrRrTE (5,230 ) TRI

230 FORMAT(rH , 'TRANSVERSE RES. INDEX IS 
"E9.3)WRITE(?) D

wRrlE(s,120) D

l2o FORMAT(1H , 'iTHE DETECTION INDEX rS r,F6.2,' dB')

cr0sE (3 )
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100
40

M;ted C rìl c¡io O plímízotìot

STO P

r{RrrE (s,4o )

FOR}IAT( 1H , I ERROR DURING
STOP
END

FILE OPENING I )
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¡APSB.I Non.linear Ch¡rP Deslgn Program

PROGRAM GENSIG

C PROGRAM TO GENERATE A NONLINEAR CHIRP T{ITH

C POWER SPECTRUI{ SPECIFIED IN OPTSPEC'
C INPUT FILE IS ASSIGNED TO LUN I AND OUTPUT

Chírp Dcdgt

APPROXIMATELY THE

FILE 10 LUN 2.

DIITENSIoN TRÀJ( 148)

DO 30 l-l,2O
30 TRAJ(I) = 0.

ETOT = 0.0
C GENERATE TRAJECTORY

DO 10 I=21,148
READ(1) sPEc
ETOT=EToT+SPEC
TRAJ(I) = EToT

1O CONTINUE
sCALE = FLoAT(Lo24)/EToT

FT = 0.0
LSAMP = 0
DO 20 I=21,L48

C COMPUTE REQUIRED NUIiIBER OF SAMPLES AT FREQUENCY I
NSAMP = INT(TRAJ(I )*scALE+0.5)
ISAMP = NSAlttP-LSAIIIP
LSAMP = NSAMP

C GENERATE AND OUTPUT SAIIPLES AT FREQUENCY I
r = FL0AT(I)
DO 20 J=1, ISAMP
FT-FT+ß/7024
S = SIN(6.283185rFT)
I{RrrE(2) S

20 CONTINUE
STOP
END
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.â.PPENDIK 8C: PROOF OF TEEOREM ¿

The proof of theorem 4 can be moat simply undertaken by reduciug the. con-

strained extremization to the mæcimization of a single integral. In this way we catr

obtain an equation to replace 34.4 in the proof of theorem I in appendix 3,{. Flom

there on the proof parallels that of theorem l.

Reduction to a Single Integral

Now for this optimization problem there are three constraint equations to satisfy,

giveu in .Br by (from 3.15, 3.37 and 3.38):

l*,",,rr)dr 
: P,lz,

I.,ffidÍ:W,
(3c.1)

(3c.2)

(3c.3)

(3c.4)

and

f G,,(Í)lErU)Iz c2TRI^;o

c""U) + G,"(l)|fl"U) 8rT

Subject to these constraints, we wigh to malcimize (from 3.23):

Now, 3C.2 may be written as:

I lHrU)12 G,,(l)J*, u--l,,ffiu-Y

- lo)2 G,,(fllFr
, G""(Í) + G,,(l)lE.(|)

AP3C.I
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Similarly, 3C.3 may be rewritten as:

Prool ol Theorem I

(3c.7)

I*, ü : I*,
12 E7 t' oî - ""-:.?". (3c.6)

lE"U)

lbom 3C.4, subject to 3C.1, 3C.5 and 3C.6, we wieh to minimize:

-fo 2 ErU)12

lE"(t)l

which, after substitution for ol from 2.33, becomes:

l-lo 2 Er(Í)12 c""(t)
lã"(t)l c""U) + lã"(t)l Grr(')

dl.

This constrained extremization reducee to minimizing:

T
(tt- rù2+\Í2+\z lErU\|2 c,,(l)

* ì3G,,(/) dl. (3c.8)
lr"(Ðl'c,,(Ð + lø"(t)l Grr(l)

where ìr, )z a¡d )s are Lagrange multipliers.

Substitution Step

Flom the similarity of equations 3C.8 and 34.4, we can deduce immediately from

equation 34.7 that the solution in .Rr is given by:

G",(Í)
r/rr ((/ - lo)2 * ìr/2 * )z "' lur(Ðl (c""(/)) rl2 -c""(t)

(3c.e)
lE"(Í)

where Àa, Àr and Àz must be chosen to meet the three conetraints, 3C.1, 3C.2 and 3C.3.

3C.9 can be rewritten as:

k',(Í - Ío)'+4t'+4) '/' 1nr{ill(c-,,,(t)) tlz - G,,(l)

lE.(Í)l
APsC-2
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The rest of the proof is rlmost identical to the second Btage of the Proof of

theorem I in appendix 3^A,. Eowever, l.Hr(f)l is replaced by

(,r - totz +(f)' Í'*(*)')''' ,u,,,,,

wherever it appears t"d # is replaced by O where :

(3c.11)o

O is the fuuction to be mæcimized overall subject to the poìrver constraint' 3C.1.
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APPENDD( 4: PROOF OF THEORDM 5.

In order to prove Theorem 5 it is necessary to show that a saddlepoint solution

of the form given in 4.21 - 4.27 e>riste and satisfies the double inequaliüy 4.20 with the

definition 4.19.

Now the right hand inequality of. 4.2O is satisfied because Il¿ and G¡ are opti-

mized for E7p and l^8"¡12. It remains to be shown that the left hand inequality of 4.20

is valid. Repeating that inequality here, we have to show that

, ("r*,lL"nlz ; En,G n) S n (nr,ln"l' ;ar, G")

The proof will be undertaken by showing firstly that the denominator of the

left hand eide of this inequality is ma>rimum while the uumerator is minimum. In

doing so we will see that equations 4.25 and 4.26 will arise as conditions under which

the extremization is achieved. Equation 4.27 arises as a constraint in the problem

defrnition. The remainder of the proof involves proving that equations 4.25 to 4.26 can

be simultaneously satisfied. In order to do this it is necessary to ûrst manipulate the

solution of equations 4.21 to 4.27 from an implicit form into an explicit fonn.
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Maximi¡ation of Denomi¡ator

Ad - a(lu"l';En,Gn)

I*,

1,,

c nU)H nU) (

- a (ln"nl' ;H*,Gr)

ln"(Ðf - ln"n,¡)f) o,

Proof of Theo¡cm 5

Then

(A4.r)

k?. (A4.2)

(á4.3)

Consider first the denominator iu 4.19 and denote it by d (t.l.t' ;H,G,,)

Now, for / e R¡4, we have, by substitution for ^H¡(/) from (2.24):

ca(/) lãn(/)12 : lflrnT)|z cnT)z

(",^u) + G nu) ln "ru)l')'

GnU)lHnU\I2 (tr"t¡¡z - u"U\) dÍ

cn(/) lrnu)|z (t¡r"tflt', - L"Ø) dÍ

* Ir*cnu)lrnu)12 (ta.tnl'- ls"n(/) f) o¡

Ad < o? Ir,@rr¡)- EoUD¿l

= I^,v"u)f af - *!o!

<0.

Also, the integral over .By in (44.1) is non-positive becaur" lã"(/)12 S U"(fl. Similarly,

because lll"(Ðf > L"(Í), the integral over R¡, is non-negative . Meanwhile, in .By,

cn(fllEn]f|)l'> kf and in R¡, cn(/) lfln(l\l' < k?.

It follows that:

That is, a(ln"l' ;n^,Gr) has its mæcimum at lL,(l)12 : l¡f.n(/)12, and we see that

this part of the proof requires the constraint, 4.25.
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Mini¡niration of Numerator

Now consider the numerator in 4.19 aud denote it by N (Hr;GrrrHr). Then,

2

Gp HrU)
(A4.4)

c""(l) + cn(/) lï"p(f)1z + c

To minimize N (H7;Gn,E,n) by choice or H7$) it is necessary to choose á :

A-;, and to minimize:

N (Hr;Gn, H,n): 
l, 1.,

AN (EyyiGn, H,n): 
V ̂,

cnU)Hô(l\@rr - ão(t))

c""(t) + GnU) lã"n(/)12 + t
(A4.5)

but

AiV (II11iGn, E,n) _
cn(/) lEo Hm( - ro(/)l

(G""(l) + Gn(/) lil.x(f)1z + c
cos (arg (Irð (/) (HrrU) - ã0(/)))) d/.

(,,{4.6)

(A4.7\

To minimize 44.6, we need the cosine factor to equal -l from which we conclude

ars (.Aa¡(/)) - ars (ão(/)) ,

ondlfls(f)l >
.LJntr¡

(Á4.E)

dl. (/4.e)

In addition we muet manimize the integral:

AAN (Err;Gn, fl,n) -- I^,
Gp Ho llFrrÍ) - Ho

c""(/) + cn(f) lø"n(/) l' + ,

Now,by the Schwartz inequality, we have:

AAN (Hrr;Gp,H;p) 1

Gn(Í)2lno(/)l'

[(r""tn + cn(/) (ta"t¡t'*'))l'
Vrr(f) - uo(Í)12 dl.

AP4-3
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If we add the constraint,

êT:6T, (á4.11)

where e2' is deûned in 4.16, then the right hand side of 44.f0 is independent of ErU).

Note that this added conetraint conûnes our attention to the least favourable bound of

the clasg definition, 4.16, and gives rise to equation 4.26.

we now see that aalv(HrT;Gn,H,n) is mædmized by equality in 44.10.

Eence, taking account of 44.7 and 44.8, we have:

BGRU)lHo

c""(l) + GnU\ lE"p(l)12 + c

(Á4.12)

where 8 is a constant to be selected to satisfy the coustraint, A4.ll. Choosing B.: -c,

which can be made to aatisfy 44.11, we obtain:

Hrn(Í\:
.¿';ríoÏ) (G,,(Í) + Gn(Ðln"nu)|z

G""(l) + GnU) lú"p(f)12 + c

which must be made to meet the constraint, 44.11. This requirement gives rise to 4.26.

The proof, so far, has shown that the numerator in 4.19 is at a minimum for

flr(fl : HrnU) provided 4.26ismet and the denominator is mocimized for lfl.(il|z :

lil"n(î)lt provided 4.25 is satisfied. \ile also know that 4.27 must be satisfied as it arises

in the problem definition but has not yet been taken into account. It remains to be

proven, therefore, that 4.25,4.26 and 4.27 can be simultaneously satisûed by choice of

kt, kz and c.

Manipulation into Ebcplicit Forns

The first step in proving this is to manipulate 4.21 to 4.27 into explicit forms

such that the right hand sides of 4.21 to 4.23 are independent of the eolution functions,

HrnU), lH"nU)|2 and G¡(/) and these have been substituted into 4.24 to 4.27.

AP4-4
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Deriaation ol an Dzprcssion lor lil.p(!)12 ;n R¡¿

Firstly, consider lil"n(ñ]z in .8,y,. Substituting from 4.21 into 4.22 we have:

lE.nU)|2 :
k¡

2Gnn r)
cnU)

A*;"lHo(Í)l cn(/) - fucG¡(t) - ktG""

A*;^lroff)l (c""1¡¡ + cn(/) lø"n(/)l')
c""(Í) + cn(/) lil"nf)l' + 

"

G""(Í)
GnU)

or
kßn(fllr"n(Í)12 (t""(r) + cn(/) (tø""trll'.l)

: A^;,fl*u)e nu\ ("""(¡) + cn(/) lr"n(/)l')

- ktGoo(/) (c""1¡) + cn(/) (ta"tflt' . t) .

l¿"(/)ln + ( *c-ryfÐI) r"",rnt,*?#
te

Thus:

le

l,"nu\lz : ry-c-ffi
r)

(Á4.13)

ktGn

Deriaøtion ol an Erprcssion lor líyp(f)l in R¡¡

Now consider l/la¡(/)l i" R¡¿. Substituting from 44.13 into 4.21, we obtain:

A*;olHo l(Á-;" ¡ro(t)lcn(/) - klccp
A*;"lilo(Í)lGn(

l¡¡rn(/)l : A^;"lHo(l)l -kt'.
AP4-5
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Deriuotion ol on ExVrc,ssion for Gp$) in R¡¡

Now, consider Cn(/) in R¡a. Substituting from 44.f3 and 44.14 into 4.23, we

obtain:

GnU):
(or(n^,,1ã0(/)l - krc) (G""(t))l12 - cno(l)) rrc"1¡¡

A^;^l&o(Í)l cn(/) - k¡co p(f) - krG""(/)
k1k2Ar,r;nlfl¡( Gn(/) (c""(/))112 - k?kzrGn G**(î))tl' - ktGn Gn,.

A^;"lHo(Í)lcn - k¡cG p(l) - krG""

It ie readily apparent that this equation is satisfied by:

GnU) _ kft2(G,,(ñ)'/' . (Á4.15)

Hence, substituting 44.15 into 44.13, we obtain:

lH"nU)I2 = A*;,k'lflo(l-)1.- (G'{fl)'/' 
- ".kúz

(Á4.16)

Deriaation ol on Etpression lor G p$) in Rs

kz lÛr n(l) I (c""(/) )'/z - G,,(l)
u"U)

k2A^;nlHs Í)lG""U) + cn(/) Í)) (G*,(Í))tt2 _ G""U)
u"(l)(c""(Í) + Gn( (u"(l) + c)) u"(Í)

ln Rv,

cnÍ) _

t.e.

U"(Í) (u"(Ð+ c) G¡(/)2 + u"(flG,,(l)Gn(/) - kzA^;nln0(/)l G,,(l)'l' + G,,(Í)2

- kz/.*;nlão(/)l u"U)(c,,,(/))t/' c*(Ð + G,,(n P"U) + c) G¿(/) - 0

or

G n(f), * 
(zl'^(fl + ffi - -r'a* ." 

lnoÏ\l G "UD' 
l') 

G nU)u,(f) + c

G^^U)2 - kzA^;,lHoU lG,,(Ð3/2
/) +')
4P4.6
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Hence:

P¡ool o! Theo¡em 5

cnÍ) _
kzA^;o lnoj)l (G,,(Í\)'l' - 2* ffi)c,,(Í)

u" l)+cå(
+

4A?^,*lão(t)l G^,U)z + zffikz¡{ø" lllo(t)1G""(t)sl2 + c""(t)
2(U"(l\ + c)

t.e.

(a4.t7)

Deriaøtion ol an Exprc,ssion for G p(l) in R1

Simìlarly, in R¡,

(Á4.18)

Deriaation of øn Erprcssion for Hyp(f) in Rs

Now 4.22 and A4.l? may be substituted into 4.21 to obtain Hrn(Í) in .Bu as

follows:

u\u"U))Htn(l) : 
A^;nkzr¡ro(/)r(c""(;;¡ ñ" " '

by substitution for G¡(/) in the denominator. Eence:

arg (Ira¡(/)) - ars (ão(t))

lørn?)l :

u"U
lr/rn(/)l _ (c,."(/))1/' l kr * (n*,*uo(Í) - (G*,U))'/t l kr)

and

te

AP4-7
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lHrn(/)l : A^;n lHo(l\l U"(Í\ t c I k2 (G"" (t)) tl2
(.'{4.19)

U.(f) + c

Deriaation ol an Etpnssíon lor lÛyp(f)l ;n R1

Simila.rly, in R¡, we obtain:

l-ärn(/)l : A^;,lHo(l)l L"(l) * cf k2(G"" rl2
(A4.20)

L" *c

Rndefinition ol Rs

Finally, we come to the inequalities defining Ru, Rrr.B¡¿and Bo. In.By, we

have

and

Gn(/) lflrn(/)l _ A^"t"lno(flJ!9!:'(Í))'t' - G;"(l\ 
lffrn(/)lU.(l) + c

VrnÏ)l*aIGRU)u"(f) + G""(l)l :
_ fuk2 (G,^(fl)t/' lãrn(/)l .

Hence, if we assume G,,o(/) > 0 and thus lnrnf)l ) 0, we obtain:

cn(/) lflrn(/)l > Ër [cn(/)U"(l) + G""(/)l =+

A*;okzløo(/)l - (c""(t))t/' > k1kz (u"(l) + r) .
(A4.2r)

Redefinition ol R¡,

Similarly, in .B¿ we have:

A^;,kzl¡lo(r l - (G,,(Í))t/' < kú2 (L"(l) + .) .

AP4.8
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Rndefinition oÍ R4

From AA.LT and 44.18 u¡e see that, provided G""(/) > 0, tro ie defined by:

kzA^;nf øo(/)l - (c""(/))'l' < o. (A4.23)

Substitution into C onstroint Equøti otts

We are now in a positiou to derive explicit forms of equations 4.25 to 4.27.

F.quation 4.25 becomes:

u"u)dl +

Equation 4.26 becomes:

Equation 4.27 becomes:

ul*,ffiar+"'l^ df

A^;okz l.lo(/)l-
u" *c

dl

df

o?

l¡ro(t)
2

" ïL,(l) +

(A4.24)

h

(A4.25)

+ c2k¡k2

rr*, I *.(G*,(îD'l' ü + | ̂"G,,t!\\tt'

G,,(Í)\'/'

* I*,(c""(/))'/ 
2 A*¡^kzlHLV))- 

-(9*^(1Du2 dî : P,.

(A4.26)

Existence of the Conetn"ta in the Solution

tile need to show that,t1, È2 and c, satisfying 114.24 to 44.26, do ocist. We will

assume that Go"(/), 1fl0(/)1, L,(Í) and t/.(/) are all finite and non-negative on .R2'

and ô1', o! and P, are finite and non-negative.

4P4.9



Appendiz I Prcol ol Theo¡¿m 5

C onstroi¡tl Eqwtion 1.25

Consider first 44.24. Now, if È1 : 0 then 87 : 'Ea and the left hand side

becomes:

u"(fldÍ

But

Also, as rt¡ --+ oo then R¡, - -Br and the left hand side becomes:

t u"u)dÍ >
JRT JRT

t L"u)dI
JRr

But

f L"U)dr s I W"U)lzdÍ so?Jnr JRr

Now, we can establish by inspection of L4.21, L4.22 and l¡4.24 that the left hand side of

^4.24 
is continuous in ,t1 between these octremes. It therefore follows that, regardless

of the values of ¡tz and c, there always exists a finite non-negative number, Ë1, satisfying

A{.24.

Constraint Equation 1.26

Now consider 44.25. For c = 0, we have on the left hand side:

Simita.rly, for c - æ, we have on the left hand side:

"' [ -!ä0,Í/)12.u dl - t 1fl0(/) l'dl - Eo.
Jn,lU"(l)+,)n' Jn"'

Eence, provided 6r S Eo (a condition normally s¿tisfred in practice as it simply means

that the unknown component of the target path transfer power is less than the known

component), then the left hand side of equation A4.25 will exceed the right ¿g 6 -r oo.

AP4-10
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Again, inspection reveals that the left hand side of A4.25 is continuoug in 44. It followe

that A{.25 can always be satisûed by choice of c for auy rralues of ftr and rt2 provided

C o¡rstmìnt Dquøtion J.27

Finally we consider 44.26. For rt2 : 0 we ûud Ro : '81 and the left

hand side is 0 S P.. For fr2 -4 oor & is empby and the positions of the other region

boundaries become independent of È2. The left hand side of L4.26 tends to oo (> P.).

By inspectiou, the left hand gide of L4.26 is continuous in rt2 and it followa, therefore,

that 44.26 can be solved fot kz given any finite real non-negative numbers for ¡tt and c.

Statement of Conditions for Solution Existence

Hence, since 44.24 can be golved for ls1, 44.25 for c and 
^4.261or 

k2, it followe

that finite non-negative real values orist, satisfyiug 4.21 t'o 4.27. Thus a saddlepoint

solution existg and is given by 4.21 to 4.27 provided:

l\6y, ol and P, are finite and non-negative,

2) lã0(t)1, L"(l) ¿nd t/"(/) are all finite

and non-negative on .81.

3) G""U) ie ûnite and positive on .81.

Q. D. D.

6r<4)

AP4-r I
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APPENDD( O: PROGR,AM LISTINGS FOR CEAPTDR O

$4P6.1 Claes Deecription Progro"'

PROGRAM CLASS
C PROGRA}I TO CONSTRUCT A CLASS DESCRIPTION FROM A REPRESENTATIVE SET

C OF ÎRANSMISSION PATH MODELS, INPUT FILES ARE ASSUMED TO REPRESENT

C COMPONENTS OF THE MOTIEL AS FOLLOWS:
C ''SIGSPC*. BIN" CONTAINS THE SQUARED MAGNITUDE OF THE TARGET

C PATH TRANSFER FUNCTION.
C "CLSPC*. BIN" CONTAINS THE SQUARED MAGNITUDE OF THE CLUTTER

C PATH TRANSFER FUNCTION.
C OUTFUT FILES ARE AS FIJLLOWS:
C ''NOMSIG. BIN'' CONTAINS THE NOFIINAL TARGET IMPULSE RESPONSE.
C ''USPEC,BIN'' CONTAINS THE UPPER BOUND ON THE CLUTTER T/F SQUARED.

C ,'LSPEC.BIN'' CONTAINS THE LOWER BOUND ON THE CLUTTER T/F SQUARED.

C IN ADDITION, VARIOUS PARAMETERS OF THE CI,ASS DESCRIPTION ARE OUTPUT TO

C TIIE USER AND TO FILE ''CLASPRM.BIN''. ALL SIùNALS ARE ASSUMED SAIIPLED AT

C 5OOKHZ AND ALL SPECTRA ARE ASSUMED 10 BE BASED ON 512-POINT FFT.

CHARACTER+11 FNAME
L0GICAL*1 FNAM(11)
EQUIVALENCE (FNAME,FNAM)
coMPLEx HI (5, 1 : 100),H0( 1 : 100),X(512)
DIlilENsIoN A(5),E(s),EI (5),U( 1 : 100)
REAL L(1:100)
INTEGER FT,T2

TYPE +, ISPECIFY FIRST AND LAST
ACCEPT ¡" ITF, NTF
TYPE T.''SPECIFY FIRST AND LAST
ACCEPT *, F1 , F2

TRANSFER FUNCTIONS:'

FREQ. BIN NOS. I

105
101

&

C READ

10

C TRANSFüRIiI lARGET PATH T,/F
20 DO 30 I=ISAMP+1,512
s0 x(r) = (0.,0.)

cArL FFT(X,9)
D0 40 I=F1, F2

40 HI(J,I) = x(I)

ct0sE ( 1)
1 OO CONT I NUE

D0 100 J=ITF, NTF
ENC0DE(8,101,FNAME) J
DO 105 I=9,11
FNAIí(I) = 0
FORMAT('SIG 

"O1,' 
.BrNr )

oPEN ( 1 , ERR=100 , F I tE=FNAM,
STATUS= ' OLD ' ,ACCESS= ' SEQUENTIAL' .FORM= ' UNF0RMATTED | 

)

IN THE TARGET PATH T/F
ISAMP = 0
READ(1,END=20) sAMP
ISAUP = ISAMP+1
x(ISAMP) = cMPtx(SAMP,0. )

GO T0 10
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C INITIALIZE COEFFICIENTS OF NOMINAL T/F
Do 50 J= ITF , NTF

5rJ A(J) = L./ (NTF-ITF+l)

C COMPUTE T/F ENERGIES
D0 60 J= ITF , NTF
E(J) = o'
DO lò0 I=F1.F2

60 E(J) = E(J)+REAL(HI(J,I)+coNJG(HI(J,I)))

C ITERATE TO GET NOMINAL T,/F
10 E0 = 0.

C COMPUTE NEW

DO 90 I
so Ho ( I )

D0 85 J=ITF,NTF
D0 85 I=F1, F2

85 Ho(I) = Ho(I)+A(J){'HI(J'I)
D0 80 I=F1'F2

8o E0 = E0+REAL(Ho(I)*coNJG(Ho(I)))
A0 = sQRr(E0)
D0 95 I=F1 ' 

F2
s5 H0(I) = H0(I)/À0

C COMPUTE ALL ERROR ENERGIES
D0 110 J=ITF,NTF
EI(J) = 0'
D0 120 I=F1'F2

72o EI(J) = EI(J)+REAL(Ho(I){'coNJG(HI(J'I)))
EI(J) = 1.-EI(J)*EI(J)/E(J)

1 1O CONTINUE

cIFALLERRoRENERGIEsAPPRoxIMATELYTHESAUETHENTERMINATE
JlifAX = ITF
El¡lAX = 0 .

EMIN = 10.+80
Do 130 J= ( ITF+1 ) , NTF
IF (ABS(EI(J)-EI(ITF) ).GT.EMAX) THEN

EIÍAX = ABs(EI (J)-EI ( IrF) )
JIIAX = J

ENDIF
130 CONTINUE

DIFF = EMAX/EI(ITF)
rF (DIFF. LT. o. o1 ) GoTO 140

C ADJUST NOMINAL T/F COEFFICIENTS
A(JMAx) = A(JMAx)tsQRr(EI(JMAXI/Yr1 IrF) )

GO TO ?O

C COMPUTE AND OUTPUT SMALT.EST SCALE FACTOR

140 AMIN = 1.E10
DO 180 J=ITF ' NTF
AA = 0'
D0 190 I=Fl,F2

190 4¡ = Itr+REAL(Ho(I)*cONJG(HI(J'I)))
AA = EIJ)/AA
IF (AA.tT.AMIN) AMIN = AA

180 CONTINUE
OPEN ( 3, ERR=100, FILE='CLASPRM ' BIN' '

&STATUS='NEI{''ACCESS='sEQUENTIAL',FoRlrl=.UNF0RMATTED')
TYPE *,'AMIN IS UNITY'
WRITE(3) I,

TRI
=F1'

(0.

AL T/F
F2
,0. )
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U COMPUTE AND OUTPUT NO}IINAL TARGET PATH IMPULSE RESPONSE

0PEN( 1, ERR=100, FILE=' NOMSIG' BIN''
&STATUS=,NEl{'.ACCESS='sEQUENTIAL',FoRM='UNFoRIIIATTED.)
D0 150 I=1'512

150 X(r) = (0.,0.)
D0 160 I =Fl , F2
x(514-I) = H0(I)*AllIN

160 X(I) = H0(I)*AMIN
CALL FFT ( X, 9 )
D0 1?0 I=1,100

t7o I{RrrE(1) REAL(x(I)) /256.
cLosE ( 1 )

C OUTPUT MAXIMUM ERROR ENERGY
EE = EI(ITF)*AMIN*AMIN
TYPE*,'MAXI}IUMTARGEÎPATHMODELINGERRORENERGYISI

& , EE
WRITE(3) EE

TYPE *, 'NOMINAL TARGET PATH T/F ENERGY IS 
"AI{IN*AMIN

C COMPUTE BÙUNDS ON CLUTTER T/F SQUARED

PCMAX = 0.
D0 210 I=F1,F2
u(r) = o.
L(I) = 1'820

2TO CONTINUE
DO 22O J=ITF'NTF
ENCODE ( 10, 102 , FNAME ) J
FNAM(11) = 0

102 FORMAT('CLSPC"O1,' .BIN' )

OPEN ( 1, ERR=100, F ILE=FNAM'
&STATUS=|oLD',ACCESS='sEQUENTIAL',FoRlrt='UNFoRMATTED')
D0 230 I=1, (F1-1)

23o READ(1)
PC = 0'
DO 240 I=F1'F2
READ(1) sAùlP
IF (SAMP.Gl.u(I)) U(I) = sAMP
IF (SAMP.LT.L(I)) L(I) = SAMP

PC = PC+SAMP
24O CONT I NUE

IF ( PC. GT. PcMAx) PCMAx = Pc
ct0sE ( 1 )

22O CONTINUE

C OUTPUT BOUNDS ON CLUTTER PATH T/F SQUARED

OPEN( 1, ERR=100, FILE=' USPEC' BIN r,
&STATUS=.NEl{'.ACCESS='sEQUENTIAL',FoRlrt='UNFoRMATTED|)

OPEN(2, ERR=100,FILE= | LSPEC' BIN',
&STATUS=,NEI{,,ACcESS='sEQUENTIAL',FORIrl='UNFoRMATTED')
Do zs0 ¡=1,(F1_t)
liRITE(1) o.

250 t{RIrE(2) ú.
DO 260 I =F1 ' F2
IiRIrE(1) u(I)
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260

270

Cloce Deecríption

TiRITE(2)
D0 2?0 I=
r{RrTE(1)
I{RITE(2)
ctosE ( I )
cL0sE (2 )

r(r)
1l .128
0
0

C OUTPUT MAXIMUII CLUTTER TRANSFER POT{ER
TYPE ','Pc IS tESS THAN ',PCMAX
t{RrTE(3) PCMAX
cLosE ( 3 )

STOP
END
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$APO.Z Robuet Optimization Progl¡vn

PROGRAM ROBUST
PROGRAM TO FIND THE LEAST FAVOURABLE TRANSMISSION PATH I{ITHIN A

cLAssDEscRIPTIoNFoRTHEPURPosEoFRoBUsTJoINIoPTIMIzATI0N0F
SIGNAL AND RECEIVER FILTER. INPUT FILES ARE ASSUMED TO REPRESENT

COMPONENTS OF THE CLASS DESCRIPTION AS FIJLLOWS:
,'NoMSIG.BIN''coNTAINsTHENoMINALTARGETIMPULSERESPoNSE'
,,UsPEc.BIN.,coNTAINSTHEUPPERBoUNDoNTHEcLUTTERT/FSQUARED.
,,LSPEc.BIN'.coNTAINSTHELo9lERBoUND0NTHEcLUTTERT/FSQUARED.
,,cLASPRM.BIN',coNTAINSTÍIETHREEPARAMETERsoFTHEcLASSDEScRIPTI0N.

OUTPUT FILES REPRESENT THE LEAST FAVOURAELE TRANSMISSION PATH AS FOLLOWS:

''RoBsIG.BIN.'coNTAINsTHELEASTFAVoURABLETARGETPATH
IMPULSE RESPONSE '

"ROBSPEC.BIN'' CONTAINS THE SQUARE OF THE LEAST FAVOURABLE

CLUTTER PATH T/F.
SIGNALS ARE ASSUMED SAMPLED AT SOOKHZ AND ALL SPECÎRA ARE ASSUMED TO

BE BASED ON 512-POINT FFT.

coMPLEX Ho(1oo),x(512)
DIMENSION U(1OO)
REAL L(1OO),NSPEC(1oo),K1,K2'HTR(100)
REAL HCR( 1Oo ), NN,NEtiK' LvAL' NEWC

INTEGER F1 , F2

TYPE 'C,'SPECIFY FIRST AND LASÎ FREQ. BIN NOS':'
ACCEPT *, F1, F2

SIGNAL POWER IN UNITS COMPAÎIBLE
CONVERT TO INTERNAL UNITS
TYPE *, 'SPECIFY SIGNAL POIIER AS

ACCEPT +, PS
pS = 1gr,*(pS,2 10. )

I{ITH THOSE USED IN ''DETENTE"

FOR'i DETENTE" (dB)

C READ IN NOMINAL TARGET PATH IMPULSE RESPONSE AND COMPUTE

C NOMINAL TARGET PATH T/F WHICH MUST BE DIVIDED BY THE

C ÎRANSMITTED IMPULSE RESPONSE MAGNITUDE (1OV) EXPRESSED IN

c UNITS OF THE QUANTIZAIrON STEP (.1*9/256 V) '
OPEN( 1 , ERR=100, FILE='NOMSIG ' BIN' '

&STATUS='oLD,,ACCESS='sEQUENIIAL.,FoR}I='UNFoRMATTED')
D0 150 I=1,512

150 x(I) = (0',0.)
D0 160 I=1,10t)
READ(1) SAMP

160 x(I) = cMPLX(SAMP/2840"0')
cALL FFT ( x, 9 )
DO 1?0 I=F1,F2

1?o H0(I) = x(I)
ctosE ( 1 )

C READ IN PARAMETERS OF CLASS DESCRIPlION AND CONVERÎ TO

C STANDARD UNITS,
OPEN( 1, ERR=1Oo, FILE=' CLASPRM' BIN 

"&STATUS=.oLD',ACCESS='sEQUENTIAL',FoRM='UNFoRùiATTED')
READ(1) AMIN
READ(1) EMAX
EIitAX = EMAX/ (2840. *2840. )

READ(1) PcMAX
PCMAX = PCMAX/ (284O. *2840. )

cLosE ( 1 )

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c

GET
AND
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cINPUTBÙuNDsoNCLUTTERPATIIT/FSQUAREDt{HIcH}lUsTBE
C DIVIDED BY THE SQUARE OF THE TRANSMITTED IMPULSE RESPONSE

cMAGNITUDE(1Ùv)EXPREssEDINUNITSoFTHEQUANTIzATIoN
c srEP (.1+9/2sô v).

OPEN( 1,ERR=100,FILE=' USPEC.BIN I'
& STATUS='OLD I 

, ACCESS='SEQUENTIAL' , F0RM='UNF0RMATTED' )

OPEN ( 2, ERR=100, FILE='LSPEC. BIN | '
& STATUS='OLD ' , ACCESS='SEQUENTIAL' , FORM='UNFORMATTED' )

Do 2s0 I=1,(F1-1)
READ(1)

25ú READ(2)
D0 260 I=F1, F2
READ(1) SAMP
u(I) = SAMP,/(2840.+2840. )

READ(2) SAMP
26ù L(I) = SAMP/(2840'*2840.)

crosE ( I )

crosE ( 2 )

C INPUT NÙISE SPECTRUM
OPEN( 1, ERR=100, FILE=' NSPEC. BIN 

"& STATUS='OLD',ACCESS='SEQUENTIAL',FORM='UNFORMATTED' )

Do 270 I=1,(F1-1)
27o READ(1)

D0 280 I=F1,F2
28o READ(1) NsPEC(r)

cLosE ( 1 )

C SOLVE FOR THE CONSTANTS

C INITIAL TZE K2 AND C

NN = 0.
fiH = 0.
UU = 0.
DO 290 I =F1 , F2
NN = NN+NSPEC(I)
HH = HH+CABS(HO(I))
uU = UU+U(I)

290 CONTINUE
NN = NN/(F2-F1+1)
HH = HH/ (F2-F1+1 )

UU = UU/ ( Fz-F1+1 )

K2 =. 10*sQRT(NN)/ (AMrN{.HH)
c = UU/10.
FIRSTC = C

oLDC = EIIAX/62
E = EttAX/2
OLDK2 = 0.
P = 0.
OLDK1 = 0.
PC = 2'ß PCMAX

C COMPUTE INITIAL VALUE FOR K1
PM = 0.
PCll = 0'
D0 300 I=F1, F2
TVAL = AMrN{,K2*CABS(HO(I ) )-SQRT(NSPEC(I ) )

PM = PM+TVAL
PCM = PCM+C

3OO CONTINUE
Kl = 1OO*pü/ ( ( PcMAX+PCil) +K2 )
FIRSTK = K1

Robu'al Optimizøtion
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ENDIF
ELSE

PL=
ENDIF

ENDIF
3ôO CONTINUE

p = K1+K2*pH+PU+PL
P = P*268-12'1977

C TT P SIGNIFICANTLY DIFFERENT FROM PS THEN

C UPDATE K2 AND TRY AGAIN
VAL = z*ABs(P-Ps)/(P+Ps)
IF (VAt . LE .0 ' o1 ) GOTo rlso
NEIiK = K2+(K2-0LDK2)* (Ps-P)/ (P-oLDP)
0LDK2 = K2
K2 = NEWK

G0T0 310

C COMPUTE V

350 PU =
PM=
PL --

OF PC

C COMPUTE
310 PU =

PM=
PL=
OLDP

POWER

DtJ 360 I=F1,F2
TVAL = AMrN4Kz*cABS(Ho( I ) )-sQRT(NsPEc( I ) )

IF (TVAL,GT.O.) THEN
LVAL = (t(I)+C)*Kl{'K2
IF (TVAt.GT'LVAL) THEN

UVAL = (U(I)+C)*K1*Kz
IF (TVAt.GT'UVAL) lHEN

PU = PU+TVAL*SQRT(NSPEC( I ) )/(U( I )+C)
ELSE

PM = PM+sQRr(NSPEc(I))

pL+lvAL*sQRr( NsPEc (rl \ / (t ( I ) +c )

OLDPC = PC

Do 320 I=F1 ' 
F2

iv¡l = AMIN{'K2*cABs(Ho(I) )-sQRT(NSPEc(r) )

LVAL = (L(r)+c)*K1*K2
IF (TVAT,GT.LVAL) THEN

UVAL = (U(I)+C)*K1*K2
IF (TVAL.GT.UVAL) THEN

PU = PU+U(I)
ELSE

p¡ = pM+lVAL/ (K1*KZ ) -C
ENDIF

ELSE
Pt = PL+L(I)

ENDIF
CONT I NUE
Pc = PU+PM+PL

S I GNAL
0.
0.
0.
=P

ALUE
0.
0.
0.

320
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c
r)

IF NET{ PC SIGNIFICANÎLY DIFIERENT FROM PCMAX THEN

UPDATE AND TRY AGAIN.
VAL = 2*ABs(pc-pcilAX)/(Pc+PCMAX)
IF (VAL.LE.o.o1) GoTo 330
IF (PC,EQ.OLDPC) THEN

NEWK = 3*K1-2*OLDK1
ELSE

NEWK = K1+(K1-oLDKl)'(PcMAx-Fc)/ (Pc-0tDPc)
ENDIF
IF (NEWK.LT.0. ) NEWK = o'
0LDKl = K1
K1 = NEWK
P=0 '
OLDK2 = 0.
GOT0 310

C COMPUTE ERROR ENERGY
330 PU = 0.

PM = 0.
PL = 0.
OLDE = E

DO 340 I=Fl ' F2
TVAL = AIt{IN{'K2*cABs(Ho(I) )-SQRT(NsPEc( I) )

LVAL = (L(I)+c)+K1*K2
IF (TVAL.GT.LVAL) THEN

UVAL = (U(I)+C)*K1ÚK2
IF (TVAL.GT.UVAL) Tf,EN

pP = sQRr(NSPEc(r))/(AMIN*K2)-cABs(H0(I) )

pu = pÙ+PP*PPl( (u(I)+c)*(U(I)+c) )

ELSE
PM = PM+K1*K1,/ ( AIIIN*A!{IN )

ENDIF
ELSE

pp = sQRr(NsPEc(I))/(AMIN*K2)-cABS(H0(l) )

p¡ = pt +PP*PP/( (t(r)+c)*(t(I¡+C) )

ENDIF
340 CONTINUE

E = PIrl+PU+PL
E = C'ßC*E
TypE {,,'E= t,E, tEMAX=,,EIrlAX

C IF E SIGNIFICANTLY DIFFERENT FROM EMAX THEN

C UPDATE C AND TRY AGAIN
VAL = 2*ABS (E-E¡{Ax)/(E+EMAX)
rF (vAL.LE.0.01) GoTO 3?0
NEr{C = C+(C-OLDC) *(EldAx-E)/(E-0tDE)
IF (NEIlc.LT.o.) NEllc = C/10'
oLDC = C

C = NEIIC
P = o.
OLDK2 = 0 '
PC = 2$PCMAX
OLDK1 = 0.
G0T0 310
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c

RobYel Optimizotion

COMPUTE LEAST FAVÜURABLE TRANSFER FUNCTIONS

3?O D0 380 I=F1 ' F2
TVAL = AMIN*K2+CABS(HO(I ) )-SQRT(NSPEC(I))
LVAL = (L(I)tC)*K1*Kz
IF (TVAL.GT'LVAL) THEN

UVAL = (U( I)+C)*K1*Kz
IF (TVAL.GT.UVAL) THEN

SAMP = AI{IN*CABS(HO( I) )*U(I)
sAMp = sAltp+c*sQRT(NSPEC(I ) )/K2
SAMp = SAMP,/(U(I)+c)
HrR(I) = SAMP
HcR(I¡ = u(I)

ELSE
HTR( I) = AMIN*CABS(HIJ(I ) )-X1*C
HcR(I) = rvAL/(K1tK2)-c

ENDIF
ELSE

SAMP = AMIN*CABS(H0(I) )*t( I)
SAMP = sAMP+c*SQRT(NsPEc( I) )/K2
sAMP = SAMP/(L(i)+c)
HTR(I) = SAMP
HcR(I) = t(I)

ENDIF
38O CONTINUE

C COMPUTE AND OUTPUT THE LEAST FAVOURABLE TARGET PATH I/R'
OPEN( 1, ERR=1OO, FILE=' R0BSIG' BIN 

"& STATUS='NEW T , ACCESS= ' SEQUENTIAL 
" 

FoRM='UNFORMATTED' )

DO 390 I=1 ' 512
3eo x(r) = (0.'0.)

D0 400 I=F1'F2
x(I) = HrR( r){'Ho(I)/cABs(H0( I) )

400 x(514-I) = x(I)
cALt FFT(X'9)
D0 410 I=1 ' 100
sAllP = REAL(x(r) )*2840 . /256'
t{RIrE(1) sAMP

410 CONTINUE
ct0sE ( 1 )

C SCALE AND OUTPUT THE SQUARED MAGNITUDE OF THE LEAST FAVOURABLE

C CLUTTER PATH TRANSFER FUNCTION
OPEN( 1 , ERR=100, FILE='ROBSPEc ' BIN 

"& STATUS='NEW T , ACCESS= T SEQUENTIAL 
" 

FORM= ' UNFORMATTED' )

Do 420 r=1,(Ft_1)
42t t{RITE(1) 0'

DO 430 7=87 'r2
430 l{RITE(1) HCR(I)*2840'*2840'

DO 440 I=(F2+1),128
44O wRITE(1) o.

cLosE ( 1 )

STOP
END

100
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