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Abstract Optimal Systems For Echo-Localion

ABSTRACT

This thesis is concerned with the factors affecting the performance of pulse echo
systems for target localization. Such systems locate a target by estimation of its range
and bearing. The thesis is chiefly concerned with situations where Doppler effects are

negligible because the relative velocities of receiver, target and scatterers with respect

to the transmitter are all small.

In this context, three performance indicators are derived which together can be
used to analyze the performance of such a system. By this means, the performance is
related to the transmission path characteristics and the energy spectrum of the signal
transmitted. Optimal spectra are derived with respect to several performance criteria
and their theoretical performances are compared. The theoretical analyses are backed

up by computer simulation results.

When the transmission path characteristics are variable or uncertain due to es-
timation error, a robust system may be required. It is shown that the jointly optimal
signal and receiver with respect to a minimax robustness criterion are optimal for a

least-favourable transmission path within the class for which the optimization is being

performed.

The performance of gated maximum likelihood ranging systems are analyzed to
determine the effect of gate width on performance under various conditions. In partic-
ular, adaptive systems in which the gate width is coupled to estimated tracking error
are analyzed to determine the optimal ratio of gate width to tracking error. A new
conditional M.A.P. estimator is then derived which uses the same information but in
an optimal way. In particular, the prior information, in the form of a range prediction
and a prediction error estimate, is used in a way that minimizes the additional spurious
information used. This is done by constructing the conditional prior probability density
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function according to a maximum entropy criterion. It is shown that such a system
is highly practical, particularly for digital implementation. The performances of vari-
ous systems are compared by simulation under various conditions and the conditional

M.A.P. estimator is shown to consistently yield best performance.

Finally, a case study is undertaken in which robust system optimization and
conditional M.A.P. estimation are used. Details of the design of a real time digital
system using a linear array of modern signal processing microcomputers are presented.
This system was designed for use in robotics experiments for research into automated

sheep shearing.

iii



Statement Optimal Systems For Echo-Location

STATEMENT

I hereby certify that this thesis contains no material which has been accepted for

the award for any other degree or diploma in any university.

I also declare that, to the best of my knowledge and belief, this thesis contains no

material previously published or written by any other person except where due reference

is made herein.

I hereby consent to this thesis being made available for photocopying and loan

if accepted for the award of the degree of Doctor of Philosophy.

Roderick C. Bryant

v



Acknowledgements Optimal Systems For Echo-Location

ACKNOWLEDGEMENTS

It is a pleasure to acknowledge the debt I owe Prof. R. E. Bogner for the en-
couragement, the conscientious supervision, the highly rewarding technical discussions
and the friendship he has extended to me throughout my candidature. Beyond these

things, I owe him the very opportunity to undertake research for a Ph.D. and for this I
am profoundly grateful.

To the Australian Wool Corporation also, I express sincere thanks for their im-
maginative support of the automated mechanical shearing research programme under
which I was employed during most of my candidature. In particular I am grateful to
Dr. Paul Hudson of the Wool Corporation for the cooperation he has always shown in

my dealings with him.

To all the staff and postgraduate students of the Department of Electrical and
Electronic Engineering during my candidature I offer thanks for their shared insights
and for their active cooperation. Particular thanks are due to the technical staff and to

all those involved in the TFB project.



Symbols and Abbreviations Oplimal Systems For Echo-Location

LIST OF SYMBOLS AND ABBREVIATIONS (IN ORDER OF APPEARANCE)

MAP Maximum A-posteriori Probability.

ML Maximum Likelihood.

GML Gated Maximum Likelihood.

z(t) Received Waveform.

r(t) Target echo.

i(t) Interference.

c(t) Clutter.

n(t) Noise.

p(7) Probability density function of ?.

p(?177) Probability density function of ? conditional on ?7.
p(7,77) Joint probability density function of ? and ??.

T Delay of the target echo.

T Estimate of target echo delay.

T Prior expectation of target echo delay.

W Range gate width.

LL(77|7) Log-likelihood function of 77 given 7.

q(t) Optimal correlation reference.

®,;;(ty,t2) Interference Autocovariance Function.

ro(7) Signal component of correlation function.

R Detection index.

fo Carrier frequency of target echo after interference whitening.
B Moment bandwidth of target echo after interference whitening.
Q(f) Fourier transform of optimal correlation reference.
R(f) Fourier transform of target echo.

Gi(f) Interference power spectrum.

y(t) Correlation function.
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4(t)
Hr(f)
H(f)
Gun(f)
s(t)
5(f)
Goo(f)
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Hilbert transform of correlation function.

Target path transfer function in transmission path model.
Clutter path transfer function in transmission path model.
Noise power spectrum.

Transmitted signal.

Fourier transform of transmitted signal.

Power spectral density of constant envelope signal.
Duration of signal.

Signal bandwidth.

Autocorrelation function of the signal.

Fourier transform of compressed target echo.

Power spectrum of compressed interference.

Inherent detection threshold.

Echo delay estimate variance.

Expectation of 7.

Echo delay estimate variance with informative carrier.
Second moment of echo energy spectrum after whitening.
Antenna gain.

Distance from antenna.

Energy density at distance, r, from the antenna.
Aperture field polarized in the z direction.

Effective aperture area.

Second moment of transmitted signal spectrum.

Power of a constant envelope signal.

Effective antenna gain.

Angle of signal arrival relative to the broadside direction.
Delay between signal arrival at adjacent sensors.

Echo delay at sensor, i.

Sensor separation.
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(A6)?
A8
TRI
TRI

D

X(é‘l)é;)

Xrq

v(t)
w(t)
¢(r, f)
K.(t,1)
2Ny

Ry
DFT
FFT
MDI
MTRI

Velocity of propagation.

Length of a sensor array.

Convolution operator.

Number of sensors in an array.

Estimated delay between signal arrival

at adjacent sensors.

Variance of Af7.

Variance of bearing (or azimuth) estimate.
Resolution angle.

Transverse Resolution Index.

Effective gain per effective unit area of the aperture.
Signal parameter vector.

Ambiguity function for two signals differing in g.
Normalized narrowband signal.
Cross-ambiguity function.

Incremental fractional velocity.

Mean fractional velocity.

Hilbert transform of target echo.

Analytic representation of target echo.
Scattering density in delay-Doppler plane.
Clutter autocovariance function.
Single-sided Noise power spectral density.
Frequency band of interest.

Frequency band of zero signal power.
Frequency band of non-zero signal power.
Discrete Fourier Transform.

Fast implementation of DFT.

Maximum Detection Index.

Maximum Transverse Resolution Index.
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MV
SCR
SNR

PR
Hg(f)
(Rgr,G;:R)
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Minimum echo delay estimate Variance.
Signal-to-Clutter Ratio.

Signal-to Noise Ratio.

Echo-to-reference correlation.

Ratio of sidelobe to mainlobe peak values.
Error function.

Ambiguity threshold.

Transfer function of matched filter.
Signal-to-Interference Ratio.

Signal uncertainty class.

Interference uncertainty class.

Receiver filter transfer function.

Element j of designer’s strategy vector.
Element k of nature’s strategy vector.

Payoff for designer’s strategy, 7, and

nature’s strategy, 77.

Robust-optimal signal-to-interference ratio.
Robust-optimal matched filter.

Least favourable pair of signal and interference
characteristics.

Maximum energy of signal modelling error.
Interference power.

Lower bound on interference power spectrum.
Upper bound on interference power spectrum.
Target path uncertainty class.

Clutter path uncertainty class.

Maximum power of target path transfer function
modelling error.

Maximum clutter transfer power.
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L.f) Lower bound on squared magnitude of clutter
path transfer function.
U f) Upper bound on squared magnitude of clutter

path tranefer function.

er Target path transfer function modelling error power.
Hrr(f) Normalized target path transfer function.

Hy(f) Nominal normalized target path transfer function.

A Normalization coefficient for target path transfer function.
Anin Minimum value of normalization coefficient.

P, Clutter transfer power.

Sg ~ Robust-optimal signal Fourier transform.

Hs(f) Receiver filter transfer function with the

signal deconvolved.

Hrr(f) Least favourable target path transfer function.

{H.p( f)l2 Least favourable clutter path transfer function magnitude squared.
Gr(f) Robust-optimal signal power spectrum.

Ry Frequency band in which the squared magnitude of

the least favourable clutter path transfer function is
the upper bound.

Ry Frequency band in which the squared magnitude of
the least favourable clutter path transfer function is
the lower bound.

Ryt Frequency band in which the squared magnitude of
the least favourable clutter path transfer function

lies between the bounds.

PDF Probability Density Function.
RMS Root-Mean-Square.
o2 Prediction error variance.

~»)

Vector of previous estimates.
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MMSE Minimum-Mean-Squared-Error.
H(f) The tth measured target path transfer function.
A; The tth normalization coefficient.

& The ith modelling error power.

Ey Nominal target path transfer power.
I/0 Input-Output.

DSP Digital Signal Processing.

FIFO First-In-First-Out.

FIR Finite Impulse Response.

A/D Analog-to-Digital.

CAD Computer-Aided Design.
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section 1.0 General Remarks

1. INTRODUCTION

§1.0 General Remarks

This thesis is concerned with the optimality of signals, receivers and estimation
algorithms for echo-location. For the purposes of this thesis, an echo-location system is
any system that aids in the location of a target by transmitting a signal and extracting
information from the echo received. The target may be an isolated object within the
medium or it may be an arbitrarily defined region within a target surface. The echo-
location system may estimate the range and bearing of the target or just the range of
any target at a given bearing or th_e bearing of any target at a specified range. (In the
case of focussed systems, the system would typically estimate the range of a target in

the focal region).

It is over thirty years since Woodward published his famous analysis (21 of these
problems. Today, however, there are many relatively new, or emerging, applications of
echo-location systems. These include surface imaging systems for robotics 11} medical
12} industrial (13, and geophysical [l applications; and ground-probing radars [,
These are often characteristically different from those that were the subjects of much
earlier research. In contrast to more conventional radar and sonar applications, the
transmission paths may be complicated by highly coloured absorption properties of the
media and by high scattering densities giving rise to low signal-to-clutter ratios. At
the same time, Doppler effects are often negligible while the clutter is (at least locally)
statistically stationary with range. However, the transmission path characteristics may
be subject to a significant degree of variation within the one application.
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section 1.0 General Remarks

It was in relation to such an application that the author was motivated to take a
fresh look at relevant concepts in estimation theory and to develop a new, comprehensive

approach to signal design for a restricted class of conditions relevant to some of these

new applications.

Because this thesis covers a rather broad scope of sub-topics, a comprehensive
literature review will not be undertaken in detail, here. Instead, each topic will be
introduced, with a literature review, in the relevant chapter within the body of the thesis.
This chapter, therefore, will be short and restricted to a more general introduction of

the sub-topics and the relevant contexts.

Several theorems appear in the text, the proofs of which are rather involved.
Those proofs have therefore been provided in appendices which follow all the text.
Other appendices contain computer program listings. The appendix numbers are the

same as the relevant chapter numbers.
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section 1.1 Mazimum Likelihood Estimation .

§1.1 Maximum Likelihood Estimation

Chapter 2 is basically a review of signal parameter estimation theory as it applies
to echo-location. In particular, the factors affecting the performance of gated mazimum
Iskelshood (GML) systems are discussed. In some areas, however, established theory has
been extended in order to derive fundamental indicators of performance that may be

used in later chapters for performance analyses and comparisons and for optimization.

For basic theory and fundamental concepts, the author has drawn heavily on
the early radar theory of Woodward [2.1,2.2) 3pq Davies [22] and from some of the many

excellent texts now available [2-3,2-42-5],

The form of transmission path model used exclusively in this thesis is introduced
in chapter 2 and is taken from the publications of Kooij 27} and Moose [2¢], The concept
of local stationarity of the interference waveform, as interpreted by Moose [2'6], is also
adopted here. However, a less restrictive criterion for local stationarity is justified in

gection 2.3.

The detection index, first introduced by Woodward 21} ynder a different name,
is adopted as an indicator of detection performance in sub-section 2.4.1. Threshold
effects related to signal detection and ambiguity are also discussed in sub-section 2.4.1,

but the signal ambiguity problem is discussed in much more detail in chapter 3.

The expression for range estimate variance first derived by Woodward 2] and
later shown to correspond to the Cramer-Rao lower bound on estimate variance [2:3,2.4] §g
adopted as an indicator of range estimate accuracy in sub-section 2.4.2. Other bounds
on range estimate variance are also discussed in some detail. In particular, the role
of carrier phase in range estimation is discussed, with reference to the early work of
Woodward and Davies 122 and to the much more recent work of Ziv and Zakai [*16]

and of Weiss and Weinstein 2.17],

A good deal of original work is presented in sub-section 2.4.3 with the result that
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section 1.1 Mazimum Likelshood Estimation

a fundamental indicator of transverse resolution is derived. This performance indicator
is applicable whether the system is designed to estimate bearing or not. It is shown to

be closely related to antenna gain and to bearing estimate variance.

The approach taken by Evans and Kong [2‘”], in deriving an expression for
the gain of a wideband antenna is combined with the philosophy adopted by Bryant
and Bogner {1l in order to derive an indicator of transverse resolution performance
that takes into account the signal spectrum and the transmission path characteristics.
This same indicator is then derived, via a totally independent route, as an indicator of

estimate variance for an active bearing estimator.

As a by-product of this analysis,, the form of an active ML estimator of bearing
is derived. This estimator is identical to that obtained by Arques [2.15] by a different

analysis and, of course, it is very different to the passive bearing estimators of more

recent authors [2.12,2.13,2.14].

1-4



section 1.2 Signal Optimszation
§1.2 Signal Optimization

The topic of signal optimization is the subject of chapter 3. The technique
developed is comprehensive in the sense that it provides a unified approach to signal
optimization in the context of those types of application that are the chief concern of

this thesis.

It incorporates several relevant criteria in a way that allows the designer to
provide emphases that reflect the demands of his particular application. The approach
is partly inspired by the work of Kooij 2-7] and Moose [2-6] in the late 1960’ and early -
1970’s. However, as well as their criterion of mazimum detection sndez, the author
employs two others related to range accuracy and transverse resolution. The foundations

for this work were laid in chapter 2 where fundamental indicators of performance were

derived.

Chapter 3 begins with a review of established signal optimization criteria and
approaches in section 3.0. The aim is to show that the more usual approaches taken in
the fields of radar and sonar are not efficacious when Doppler effects are negligible and

transmission path characteristics are more extreme.

The use of ambiguity functions in signal design is discussed with particular refer-
ence to the work of Woodward (2], who introduced the ambiguity function. References
are also made to the particularly lucid developments of the concept in a text by Hel-
strom 311, The extension of the concept to cover wideband systems, where Doppler
effects are more complicated, is discussed with reference to a paper by Bates 321, The
ways in which ambiguity functions can be used in signal design are discussed in sub-
sections 3.0.2 and 3.0.3. The mathematical basis for this approach is treated explicitly
in sub-section 3.0.3, following the treatment in [3.4]. Reference is made to a number of

papers [3-2-36] in which a variety of optimization criteria are employed.

In sub-section 3.0.4, the works of Kooij 271 and Moose [2l concerning signal
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optimigation according to a detectability criterion are discussed. The attractiveness of
their approach is pointed out in sub-section 3.0.5 and the need for its generalization to

alternative criteria is argued. A multiple-criteria approach is advocated.

Section 3.1 deals with signal optimization with respect to the simple criteria of
mazimum detection indez, minimum estimate vartance and mazimum transverse res-
olution tndez. The solutions are given in the form of three theorems. In section 3.2,

the performances of systems employing signals optimized according to these different

criteria are compared theoretically.

Chapter 3 concludes in the development of a technique for combining all three
criteria in a mixed criteria optimization approach. This method involves an overall
strategy for signal optimization in which priorities can be assigned to three perfor-
mance constraints such that the higher priority constraints must be met before the
remaining performance criteria become effective. The use of this approach is illustrated
by examples taken from the authors experience with ultrasonic sensing through wool

and these are backed up by simulation results in chapter 5.

Because sections 3.1 to 3.4 deal with optimization of signal power spectra only,
an additional section at the end of chapter 3 is devoted to the topic of signal waveform
design. That is, the problem of designing a constant envelope waveform with a specified
power spectrum is addressed. The pioneering work of Price et al B-11] i3 extended to

allow arbitrary spectra to be accomodated by means of non-linear chirps.
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§1.3 Robust System Optimization

Chapter 4 is devoted to the problem of jointly optimizing the signal and receiver
filter according to a robustness criterion when the transmission path characteristics
are variable. The criterion used relates to detection performance only. The author’s
approach is related to the game-theoretic approaches used by other authors [44-4.8] for
the robust optimization of fillers. However, the problem in this case is complicated
by having higher dimensionality and more complicated uncertainty class specifications.
Nevertheless, a mathematical solution is presented in chapter 4 and solution techniques

are described with the aid of a practical example in chapter 6.
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§1.4 Conditional MAP Estimation

The main thrust of chapter 5 is towards the development of a conditional maxi-
mum a-posteriori probability (MAP) estimation algorithm as an augmented form of the
well-known gated maximum likelihood (GML) estimator {2124l Firstly, an optimum
form of the GML estimator is presented in which the gate width is related adaptively
to the estimated error of the target tracking process. Then, a conditional MAP estima-
tor is derived that uses the same target tracking scheme with the target tracking error
estimated in the same way. This conditional MAP estimator is designed according to a
minimum information (or maximum entropy) criterion. Several systems are compared

in performance over a variety of conditions by means of simulations.

As a by-product of these simulations, many of the theoretical results of chapters

2 and 3 are verified empirically.
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§1.6 Acoustic Sensing Through Fleece

Chapter 6 is a case study in which an application of conditional MAP estima-
tion and robust system optimization is described. The system optimization problem
is worked through, starting with techniques for constructing transmission path models.
The system design is outlined and details are given of the multi-processor based design

of the digital signal processing hardware.

The application described in chapter 6 has been the focus of the author’s research
over the past several years. Details of some of that research are described in [1.1] by the
author in collaboration with Prof. R.E. Bogner. This application is very different from
historical applications of echo-location. The application is focussed surface imaging at
short range through wool. The target surface, the skin of a live sheep, is to be sensed

at high speed for control of a shearing robot.

This application involves several elements that are common to many of the emerg-
ing applications. The system is for surface smaging as a form of robotic sensing. It oper-
ates through a highly absorptive medium and the target is to be detected in the presence
of intense interfering backscatter from scatterers in the medium. This unwanted clutter
is characterized by local statistical stationanity with respect to range in the region of
the target. However the transmission path characteristics are highly variable so that a
robust system design is necessary. Finally, the relative velocities between transmitter,

target, scatterers and receiver along the beam axis are very small so that Doppler effects

are negligsble.

The characteristics of this problem italicized in the previous paragraph differen-
tiate it from the more conventional applications of echo-location. However, some are
shared by many of the emerging applications. It is to be expected, therefore, that the
theoretical and practical solutions presented in this thesis will be relevant to the design

of many other contemporary applications of echo-location.
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2. MAXIMUM LIKELIHOOD ESTIMATION

§2.0 Introductory Remarks

The most fundamental approach to problems in detection and estimation is that
which Woodward [212-2] named the method of snverse probability. Generally, we have
an effect and we are attempting to discern some aspects of the causal mechanism. We
have a parameterised model for that mechanism and we attempt to ascertain the most

probable values of the parameters that have resulted in the observed effects.

This technique is known as Mazimum A-posteriors Probabslity (MAP) estimation
and represents the ideal parameter estimation technique. It turns out that to use this
technique we need to know the a-priors probability distribution of the parameter to be

estimated and this is often a stumbling block.

When such information is not available it seems natural to make an estimate
by assuming a uniform prior probability. The corresponding technique is known as
Mazimum Likelihood (ML) estimation [2-1,2.2.2.3,.24] A modification of this approach is
often used in which the parameter to be estimated is assumed to lie within a certain

region or gate 2.1,2.2,23,2.4]  This method goes by the name, Gated Mazimum Likelthood

(GML) estimation.

This chapter will review what is known about these estimation techniques in
order to obtain the structures of GML estimators and to gain insight into the factors
affecting their performance. In some areas this knowledge will be extended by original
work. This new work will be found in sections 2.3 and 2.4.
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Firstly, we shall consider the structures of the estimators and then we shall move
on to obtain three performance indicators which indicate the goodness or badness of

certain aspects of expected system performance.

Since these indicators depend on the signal design we will be able to use them

as signal optimisation criteria in chapter 3.
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§2.1 The Maximum Likelihood Estimator of Range

For completeness we briefly review the established principles of ML estimation.
Putting the ideas of the previous section into mathematical form, we denote the received
waveform by z(t). We assume that this received signal consists of a delayed signal, the

target echo, which has been corrupted by additive interference:

z(t) = r(t — ) +1(t) (2.1)

The interference, 1(t), consists of two statistically independent and jointly normal
random components, ¢(t) and n(t) known as clutter and noise, respectively. These

components are generated by different mechanisms and these important differences will

be examined later.

Now, r(t) is a known deterministic signal and it is only the presence of interference
which prevents us from determining 7 precisely from x(t). Because of the interference

the value of 7 is uncertain but we can describe it by its posterior probability density,

p(r]z(t)).
Now from Baye’s rule we have:

p(r,z(t)) = p(=(t))p (r}=(t))
= p(n)p (z(t)l7).

(2.2)

Hence:

p(rla(t) = Hsp(a(t)l). (23)

The left hand side of 2.3 is the posterior probability of 7 and we would like to choose

our estimate, 7, to be that value of 7 which maximises 2.3.

The denominator of the first factor on the right tells us nothing about 7. It is an
uninformative constant and may be ignored. The numerator of that factor is the prior
probability density which is often unavailable.
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The second factor in 2.3 is known as the likelihood function of T given z(t). When
considered as a function of 7 it is not a probability density. It is given the special name,
”likelihood”, because, in the absence of prior information it indicates the likelihood that

received waveform includes a target echo delayed by 7.

We see from 2.3 that when a uniform prior probability is assumed, the approxi-

mate posterior density so obtained is simply a scaled version of the likelihood function.
The approximate MAP estimate given by the peak of this function is, therefore, the ML

estimate of delay.

The usual assumption made in respect of the prior probability is given by:

(2.4)

const, Vr:7-W/2<1<7+W/2
p(r) =

0, otherwise,
where 7 is the prior expectation of 7 and W is the width of the range gate within which

7 1s assumed to lie.

The way to obtain a GML estimate is to generate an analogue of the log of the
likelihood function, LL {7|z(¢)), within the range gate and locate the peak. We generate
the log likelihood function (LLF) because it is relatively easy to do so and this function
is monotonic with the likelihood function itself and therefore the peak of the LLF occurs

at the same value of 7.

It is well known (2324 that the LLF of delay in the presence of normal interfer-
ence is given (apart from uninformative constants) by:
+co
LL(rla(e) = [ s(talt, et (2.5)
—o0
where ¢(t) is a correlation reference function defined by the Fredholm integral:
+oo
r(ti—1) = / i (t1,2) q (82, 7) diz, (2.6)
—o0
where ¢;; (t1,12) is the known interference autocovariance, E {i(¢1)i(t2)} . A correlation
processor is also obtained in [2.1,2.2] for the more restrictive case of white interference.
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Figure 2.1 Post-Correlation Signal
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Fig. 2.1 illustrates the nature of the signal component in 2.5 given by:

muy=/+wru—ﬂgﬂuﬂa (2.7)

—00

where 7y is the true delay and 7 is hypothesized delay. We see that this function consists
of an oscillation, or carrier component under a more slowly-varying envelope. In most
applications, the signal, r(t), is a relatively narrowband signal and the carrier varies
much more rapidly than the envelope. When we pick the peak of this signal we use two

sources of information, the envelope shape and the carrier phase.

Now, in order for the carrier phase information to be reliable it can be shown
that the ratio of the peak signal component in 2.5 to the RMS interference component
must exceed a certain value. Otherwise interference may cause peaks of 2.5 near to the
envelope peak to exceed the true peak at the envelope peak. Clearly the peak-signal to
rms-interference ratio below which this can occur depends on the relationship between
the rate of change of the envelope near the peak and the carrier frequency. We denote
the square of the peak-signal to rms-interference ratio by ®. The requirement for ® is
obtained in reference [2.5] as:

fo

(R)Y2 >> a (2.8)

where fy is the carrier frequency and f is the signal bandwidth. Precise mathematical

definitions of these quantities will be presented later.

In practice, in the majority of cases, 2.8 is not met. Furthermore, the carrier
phase information is often not preserved at the receiver because of phase errors result-
ing from reflection from an uneven or inclined target surface. In these circumstances
the carrier phase should be treated as an uninformative parameter and averaged out

[2.1,22,2.3.2.4] The resulting expression replacing 2.5 is [2.3],

LL(r|lz(t)]) =

/+mﬂn¢uﬂw4, (2.9)

—0o0

where z(t) and g(t) are the complex analytic representations of z(t) and g(t) respectively.
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Now, if the interference is stationary, then 2.6 becomes:

+o0
r(ti—1) = / By (s — t2) q (t2 — 1) dts, (2.10)

—00

where the autocovariance, ¢,; (1,%2) , has been replaced by the equivalent autocorre-
lation function, ®;; (f; — t2) and g (t2,7) now depends only on the difference, (t2 — 7).

Equation 2.10 is a convolution and it follows that:

R(f)

(2.11)

where Q(f), R(f) and G;;(f) are the Fourier transforms of q(t), r(t) and ®;;(¢) respec-

tively and, hence, G;;(f) is the interference power spectrum.

It follows that, in this case, 2.5 is equivalent to the two- stage filtering operation
depicted in Fig. 2.2 in which the received waveform is firstly passed through an inter-
ference whitening filter and then through a compression filter. The transfer function of

the compression filter is the conjugate match of the transform of the signal output from

the whitening filter.

Equation 2.9 is equivalent to the same filtering operation followed by an envelop-

tng operation: '
LL (7 ||Z()]) = ly(8) + 79(2)I,
where y(t) = ‘/;+°° z(t)q(t, 7)dt (212)

and (t) is the Hilbert transform of y(t).
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A Transmission Path Model

Figure 2.2 ML Correlation as a Filtering Operation
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§2.2 A Transmission Path Model

Fig. 2.3 represents a transmission path model which is appropriate for our anal-
ysis. This model has appeared previously in the literature 2:6,27] in connection with

underwater acoustic ranging and is sufficiently general for our purposes.

Now, the restrictions of this model need to be recognised. Firstly, we are assum-
ing that the existence of a random field of scatterers does not cause the target path to be
uncertain. This assumption is known in the literature as a weak scattering assumption
2.6,28] The approach in chapter 4 allows this assumption to be relaxed by providing

for uncertainty in the model.

Secondly, we are assuming that the transmission path impulse responses are time-
invariant. This assumption is implicit in the fact that we are using transfer functions
of a single frequency variable. It means that no relative motions between transmitter,
target, scatterers or receiver are allowed. In practice it means that most of the results

derived from this model apply only if Doppler shifts are negligible.

According to this model any transmission path can be fully specified by means
of three functions. Hrp(f) is the transfer function of a filter representing the path of
the target echo. |H.(f)|? is the squared magnitude of the stochastic transfer function
of a filter representing the combined parallel paths of unwanted echoes from scatterers
other then the target. The output from this filter is known as clutter (or, in relation
to underwater Sonar, reverberation) and differs from the noise in its dependence on the

transmitted signal. The noise power spectral density is given by Gun(f)-

As pointed out in chapter 1, this restriction rules out many conventional appli-
cations of active ranging systems in the radar and sonar areas. However, this approach
is relevant in many emerging applications such as ground-probing radar and surface
imaging systems for robotics, medicine industrial applications and oceanography.
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section 2.2
Figure 2.3 Transmission Path Model
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Now, in terms of the model in Fig. 2.3, we have:

R(f) = S(f)Hr(f), (2.13)
Git'(f) . Gnn(f) +Gu(f) IHC(f)Izi (2.14)

and hence
o(f) = — S E2) (2.15)

Gun(f) + Goo(£) |HLHP’

where S(f) is the Fourier transform of the transmitted signal and will be referred to as

the signal, and G,,(f) is the power spectral density of the signal.
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§2.3 Stationarity Conditions

Now, in 2.15, Q(f) depends on IHc(f)l2 and under certain conditions it is pos-
sible to relax the stationarity condition which was applied in deriving 2.10 so that 2.6

becomes:

+o0
r(ty —71)= / O (81 —t2,7)q(t2 — 7, 7) dis. (2.16)

— 00

Equation 2.16 represents an approximation which is valid when ¢;; (t1,22) is a
slowly varying function of ¢; with much greater dependence on the difference, (¢, — ¢2).
Equation 2.16 is not valid when ensemble non-stationarity is encountered. Under these

conditions, the techniques of chapter 4 may be employed.

Recognising that, apart from a range dependence, 2.16 is again a convolution,

we see that:
R(f)e~7r"!

,T) = 2.17
Q(f ) Gii'(fl T) ( )
The optimal reference, q(t,7), is now a slowly varying function of range, i.e.

Q(ts T) = Q(t -7 T)' | (2‘18)

Now, it can be shown [2-6] that the local stationarity condition , allowing the
approximations 2.16 to 2.18, is met provided that the covariance function, ¢.. (t1,t2), of
the clutter path impulse response, h.(t), is stationary over at least twice the duration

of the transmitted signal, to a close approximation.

However, this condition is somewhat restrictive in situations where highly dis-
persed wideband signals such as chirps or pseudo-random binary sequences are em-
ployed. We will see that this condition can be considerably relaxed as a result of recog-

nising that it is not the signal duration that is important but the signal bandwidth.

It is well known (29 that a signal of bandwidth B and duration T may be
temporally compressed by the factor BT by means of a linear filtering operation. Hence,
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if the transmitted signal, s(t), is passed through an appropriate filter then its effective

duration can be reduced to 1/B. We have:
®,,(t — T) = s(t) x s(T - t), (2.19)

where ®,,(t — T) is the compressed signal and the autocorrelation function (of (¢ — T'))

of the original signal. The operator, x, is the convolution operator.

Now,if ®,,(t — T') is transmitted, then, clearly, for local stationarity, the clutter
path impulse response must be approximately stationary over a time period of length
2/B. However, because the clutter path is linear and time-invariant, we can perform
the pulse compression at the receiver and so obtain precisely the same clutter function,
c(t), as if we had transmitted ®,,(t — T') instead of s(t). The conditions at the output

of the compression filter will now be:

Re(f) = TG..(f)Hr(f) (2.20)

and
G%(f) = TGun(f)Goo(f) + T (Goe( 1)) [H( ). (2.21)

where the superscript, ¢, denotes post-compression conditions.

The correlation reference is g°(t) whose transform is

Hr(f) .
Gun(f) + G ) |H 1))

The combined effect of signal compression and correlation with ¢°(t) is equivalent to

Q(f) =

correlation with the reference, g(t), whose transform is given by:

_ S(f)Hr(f)
Q)= G D+ GutNIEDT

which is just the ML reference given by 2.15. It follows, therefore, that the appropriate

local stationarity condition is given by:
¢cc (tl,tz) & Qcc (tl — t2) th,tz b — tp < 2/B (2.22)
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§2.4 Performance Indicators

It is possible to predict the performance of a ranging system employing ML
estimation. To do so we need to analyse its performance in three separate areas. The
ranging system performance will depend on its ability to detect the target echo in
the presence of the interference, to discriminate against interfering reflecting objects
separated from the target in the transverse directions (i.e. at right angles to the beam
axis) and to estimate the round-trip delay of the target echo. In analysing system
performance in these three areas, we shall identify a number of system parameters which
are indicators of system performance. (That is, performance in each of the three areas
is directly, solely and monotonically dependent upon the value of the corresponding
performance indicator if physical aspects of the system and its environment are fixed.)

These indicators will be used as optimization criteria in the next chapter.

2.4.1 Detection Performance

If a ranging system is to perform any useful function at all it must be capable of
identifying the target echo in the received waveform. Failure to do so will lead to gross
erTors as a result of ranging false targets. The probability of this happening is related

to the value of a system parameter, ®, known as the detection index [2.1],

In most ranging systems, target detection is an explicit function of the system
achieved by comparing the gated LLF with a threshold. If the LLF within the gate
exceeds the threshold then target detection is indicated. Otherwise it is not. The prob-
ability of the target not being detected depends monotonically on the signed difference
between R and the threshold. The threshold is set by the designer in such a way as to
provide the best compromise between the probability of false target detection and the
probability of not detecting the target. The value of the threshold therefore depends

on the costs associated with those two events.

Now we have met R before in equation 2.8 as the square of the peak-signal to rms-
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interference ratio and we will find that it has significance in all aspects of performance.

R may be defined, equivalently, by:

_ E {LL(7|z(t)) : r(t — 7)present} '
V/Var{LL(7|z(t)) : r(t — T)notpresent}

(2.23)

However, R has many other physical interpretations {>!l. It is the value of the peak of
the LLF. It is the mean squared value of the post-correlation interference and is also
the value of the signal to interference power ratio at the output of the whitening filter

(see Fig. 2.2) during the period when the signal is present.

It is shown in [2.1] that the probability of ranging a false target (when explicit
target detection is not used) undergoes a rapid transition from very low to very high
probability as R falls below a value known as the detection threshold, Ry. Hence,
the probability of false target detection and the probability of not detecting the target

explicitly are both determined by the relationship between R and some threshold value.

The parameter, R, also has significance in communication theory. To see this
we shall take a minor detour. Correlation of the received waveform with g(t), whose
transform is specified in 2.11, is equivalent to filtering by convolution with an impulse

response given by g(—t). That is, the equivalent filter transfer function is:

R*(f)
Gii(f)

H(f) = : (2.24)

Filters with transfer functions related to the signal and interference as in 2.24 (apart
from an arbitrary scaling) are known as matched filters and are widely used in commu-
nications. It is not surprising, therefore, that threshold phenomena in relation to ® are

also observed in communications systems.

From any of the interpretations of ® given above it is possible to obtain:

. /°° Gun(/) |2 (f)["
0 Gnn(f)+Gsﬂ(f)‘Hc(f)l
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Woodward [21] obtains Ry implicitly as:
Ry = 2In (WRrf) — 2, (2.26)

where W is range gate width as before and §? is the centroidal second moment of the

post-whitening target echo energy spectrum. i.e.

s 42 (/= 10)" Geo (NIET (" 4¢

g = Grn (/)+Goo( N Hc(f)*
[ Ges(NHT(N__ 4

0 Gua(f)+Gas(NIEANI

2 (2.27)
co sta{f]]HT{f}l zdf

andfo — 0 Gra(f)+Ges(f)|Hc(S)] .
[o.o] Gsa(f)IHT(f)P df
O Gun(f)+Gss()Hc (/)P

Here, fo is the centroid of the post-whitening target echo energy spectrum or, in other

words, the ”carrier frequency” of the target echo.

The parameter, 8 is an important measure of bandwidth which assumes funda-
mental significance in communications21:22210 We will see shortly that both 8 and

R are of great importance in the analysis of range precision.

There remains another phenomenon to investigate in the area of detection per-
formance. We saw in section 2.1 that the fine structure of the post-correlation signal can
only contribute range information if the detection index satisfies the inequality given
by 2.8. Repeating that here for convenience, we have:

b

1/2
(R > i

We shall refer to the ratio, %‘i— as the carrier threshold.

In extreme cases, the envelope itself can exhibit a sidelobe structure about the
main lobe so that it too may be considered to have a fine structure and an envelope.
However, when we looked at the detection threshold, we tacitly assumed that the en-
velope consisted of a single main lobe and was zero away from the main lobe. This
assumption was made by Woodward in deriving equation 2.26.
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The existence of envelope sidelobes contributes ambiguity in that a sidelobe may
be mistaken for the main lobe if the difference between their peak magnitudes is not
sufficiently greater than the rms value of the interference. In situations, also, where the
clutter is range-dependant, the existence of sidelobes may increase the rms interference
near the peak of the main lobe. However, for reasons which will be discussed in chapter

3 we can avoid explicitly considering that difficulty.

However, no simple inequality such as 2.8 can be derived for application to this
problem. Its analysis is considered in detail in chapter 3 and it will be seen that it does

have repercussions on the design of signals.

2.4.2 Range Accuracy

The variance of the range estimate under the assumption of perfect target detec-
tion was first obtained, approximately, by Woodward 2], His expression was obtained
under the assumption, ® >> 1, which is consistent with the assumption of perfect
target detection. However, the expression is inaccurate if ® < 8 even if we ignore the

possibility of gross range errors due to false target detection. Woodward’s expression

is:
1
2 _
o, = —W. (2.28)
The expression, 2.28, has been shown to correspond to the Cramer-Rao lower
bound on estimation performance (23,24], An unbiased estimator that achieves this

bound asymptotically (i.e. as G;;(f) — 0 and hence R — o0) is said to be efficient. It
is also shown in [2.3,2.4] that the ML estimator of delay is unbiased which means that:

E{#}=r. (2.29)

Hence the ML range estimator is optimal in the sense that it can only be improved upon
by the use of prior information. Since it is an unbiased estimator we need only concern
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ourselves with the estimate variance. There are no sources of systematic error to take

into account when analysing the precision of the estimator.

Woodward {21} obtained the expression, 2.28, as the approximate variance of the
signal component of the posterior distribution under the assumption of uniform prior
probability. In [2.2] it is obtained in similar fashion and also as the mean squared error

in the peak of the complete posterior density as a result of fluctuations caused by the

interference.

We see, then, that the parameter, 0%, in 2.28 has fundamental significance as
an indicator of precision in range estimation. However, one may ask what the range
variance would be if the carrier phase is reliable and 2.8 holds so that the LLF is given
by 2.5. In this case, the range estimation problem is different because the carrier phase
is no longer uninformative. In [2.2] the range variance for this case is derived as:

g2 1

r = 'ék—ﬁgs (2.30)

where f is the second moment of the post-whitening target echo energy spectrum with

respect to zero frequency:

0o 272 - 2
47% 2 Gos ()| Hr (f)] df

3 _ 70 Gan(N+Gus(Ec(])] 2.31
Po [ Ges (T () df. (231
0 Gun(f)+Ges(NHANI
For § << fo we have [24!;
1
22 n R (2.32)
0

However we will not use this expression in this thesis as the condition for its validity is

often not satisfied, particularly in acoustic applications.

We see from 2.30 and 2.28 that two different expressions can be obtained for
the Cramer-Rao lower bound. Each bound can be approached assymptotically by the
relevant estimators for which they are applicable, one of which uses the carrier phase
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information and one of which does not. For the estimator that uses carrier phase infor-
mation, 2.30 gives the performance bound but the estimator only approaches this bound
when condition 2.8 holds. For the alternative estimator, 2.28 provides a performance
bound that can be approached when R 3> Ry and R > 8. This is a relaxed requirement

as compared with condition 2.8.

We see then that these bounds based on the theory of Cramer and Rao are only
useful over certain mutually exclusive regions of R. Between these regions and below

them, exist regions where this theory provides no useful performance bounds.

In [2.16], Ziv and Zakai go some way toward overcoming this difficulty by pre-
senting a new approach to the problem. They are able to obtain a general expression
for a lower bound on performance. However a closed analytical form for such a bound
on time delay estimation error has not been found!217). As a result, this approach is not
useful in the context of the present analysis. Accordingly, we consider independently
the problems of detection, estimation without the use of carrier phase and estimation

with the use of carrier phase.
Now, substituting 2.27 and 2.25 into 2.28, and 2.31 and 2.25 into 2.30 we obtain:

o? = : (2.33)
" grer [ UL GuETUIL

Gra (f)+Ges (N He (NI

and
1

2 0o f’Gu(f}THT(I)]R .
87 Tfo GM(]')+G,.(I)IHc(f)|2df

In most practical situations 2.33 is an appropriate indicator of range precision.

x?

(2.34)

2.4.8 Transverse Resolution

It is very rare indeed for a ranging system to operate in an omnidirectional
manner. Generally, the target subtends a relatively small angle at the transponder
and it is necessary to direct the signal energy at the target from the transmitter and
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to discriminate against interference from other directions at the receiver. In other

situations it is necessary to estimate the bearing of a target as well as its range.

Sometimes, as in [1.1] the target is at relatively short range (i.e. not in the far

field) and the transmitting and receiving apertures are focussed on the target.

In all these cases, the resolution of the system in directions at right angles to
the direction of propagation is an important consideration. We expect this resolution
to be fundamentally diffraction limited but there is no well established expression for
the transverse resolution of a system of wide relative bandwidth that we can use as a

performance indicator.

Now, one way of expressing the transverse resolution of an unfocussed system
is by means of its resolution angle. The resolution angle, A6, of such a system is the
smallest angle (subtended at the aperture) which can be resolved. Another commonly
used parameter for electromagnetic radiating systems is known as antenna gain. We
shall now dérive suitable expressions for these parameters in the context of wideband

active ranging systems.

Antenna gain is defined by the formulal?-11l;

472 S,

G= E

(2.35)

where S, is received signal energy per unit area at a point in the favoured transmitting
direction in the far field at distance, r, from the antenna, and E, is the signal energy
supplied to the aperture. We may interpret antenna gain as the ratio of the energy
transmitted by a hypothetical isotropic radiator to that actually transmitted if both

radiating systems are to achieve the same energy density, S, defined above.

In [2.11], the gain of a wideband antenna is calculated in terms of the transmitted
signal energy spectrum under the assumption that the aperture field is a separable
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function of space and time and the aperture is planar. i.e.

on(:c,y,t) = on(z,y)s(t), (2'36)

where Epy is the field in the aperture (Z=0) and is linearly polarized (in the z direction
in this example). By using far-field plane-wave angular-spectrum theory the gain of

such an antenna is obtained in {2.11} as:

B 4mo,f2
¢="51, (2.37)

where o, is the effective area of the aperture which is a function of Epx(z,y) and is

independent of s(t), ¢ is the velocity of propagation and:
e F2IS(f)df
“S 1SN df

We recognize B as the centroidal or "carrier” frequency of the transmitted signal.

g2 = (2.38)

Now, in [1.1], it is pointed out that the calculation of effective wideband field
patterns in the analysis of the performance of active ranging systems should take account
of filtering in the transmission path and the receiver. Wideband acoustic field patterns
are obtained numerically in [1.1] by treating individual frequency components separately.
The effective contribution of each component is assumed to be in proportion to the
post-correlation target echo energy density at that frequency. The total effective field
intensity is calculated by summing over the contributions of the individual frequencies.

In the continuous case this summation is an integration with respect to frequency.

In order to combine the philosophy in [1.1] with the approach in {2.11] to obtain
an expression for effective antenna gain, we will examine the derivation of 2.37 in the
hope of generalising it so that it takes into account the effects of the transmission path
and the receiver filtering. The interpretation of effective antenna gain, analogous to that
given above for antenna gain is as the ratio of the energy transmitted by a hypothetical
isotropic radiator to that actually transmitted if both radiating systems are to achieve

the same detection index at the receiver.
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As a result of these considerations, we see that, to obtain an expression for
effective antenna gain we should substitute the post-whitening target echo energy for

the transmitted signal energy whenever the field pattern is obtained in the derivation

in [2.11].

Now, in the derivation of 2.37 given in [2.11], the denominator of 2.38 is obtained

directly as the denominator of 2.35. Hence,

8o,

(e ¢] 9
6=55 [ reund, (239)

where G,,(f) is the signal power spectrum and hence, under our usual assumption of a
fixed duration constant envelope signal we can simply replace the denominators of 2.35

and 2.38 with

E,=TP,, (2.40)

where P, is the constant (during signal transmission) power of the transmitted signal

and T is its duration.

To obtain the expression for effective antenna gain defined and interpreted above,
it is only necessary to replace the ratio of G4.(f) to P, in 2.39 (which has the units of
time) with the spectral density of the post-correlation signal-to-interference ratio (which

also has the units of time). Thus we obtain:

- ) 2 2
8 Tae/; PCuNHTN 4 (2.41)

Geps =
ff="a Gra(f) + Gos(f) 1H.(£)|

We will now derive an expression for the resolution angle of an active bearing

estimator in which a similar dependence of transverse resolution on the signal spectrum

will be found.

Consider the diagram of Fig. 2.4 in which a plane wave signal arrives at a linear
array of sensors or antennas from a direction at angle, 8, from the broadside direction
of the array. The signal arrives at each sensor with a delay, A7, between sensors which
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Figure 2.4 Bearing Estimation
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is related to the angle, 8, by the expression:

Tt — Ti—-1 — AT
(2.42)

=d/csin¥,
where 7; is the absolute round trip delay to sensor ¢ and d is the sensor separation while

c is the velocity of propagation.

If there are N sensors, then

d = L/N, (2.43)

which defines the array length, L.

Now, there exists a large body of literature dealing with the problem of pas-
sive bearing estimation in which the angle, 6 is estimated by estimating the delay, A7,
between adjacent sensors in the array when the interference is assumed to be uncorre-
lated from sensor to sensor {2:12:2-13.2.14] In the case of passive estimation, no noiseless
reference signal is available and the incremental delay between two sensors is obtained
by picking the peak of a spectrally weighted cross-correlation of the waveforms from
the two sensors. For the ML (212l bearing estimator the weighting takes account of
the coherence between the two waveforms. In those parts of the spectrum where the
coherence is large, there is less uncertainty about the signal. (If the coherence function
is 1 then the noise power spectral density at both sensors is zero. If the coherence is
zero then the signal power spectral density is zero.) Hence more emphasis is given to

spectral regions where the coherence is large and less to those where it is small.

In the case of active bearing estimation, however, the concept of coherence be-
tween the sensor waveforms is not of direct relevance. This is because the form of the
received signal is known in advance. We will also assume that we have a transmission
path model for transmission from the transmitter to each sensor. If this model varies
from sensor to sensor then it must be characterized for each sensor separately.
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The reason for undertaking this analysis here is to underline the fundamental

significance of the integral in 2.41 by deriving an expression for resolution angle involving

the same integral.

The hypothesised system is one in which a signal is transmitted with a broad
beam and an echo is received from a target at each of several sensors, each of which
exhibits a broad angular response. The bearing of the target can then be estimated
provided the target echo can be reliably detected at each sensor. As when considering

range resolution, we assume operation well above the detection threshold.

The approach we will take is to obtain the approximate posterior densities for
the absolute round trip delay probabilities at the N sensors by again assuming that
the prior probability densities are uniform. This is the usual ML assumption and it
incorporates the assumption that the prior probability of the delay difference, A, is

also uniform. We have:
p (7 |z:(t)) =~ kp (zi(t) |%:) (2.44)
where the subscript, 1, associates the variable with the ith sensor.

Although the carrier phase may be unreliable, the log of the likelihood function
in 2.44 is given by 2.5 because any ambiguity in the phase will be removed in the
next step. The variance of the probability in 2.44 is therefore given by 2.30. The
posterior probability density, p (i1 |Zi—1(t)), is obtained in a similar fashion with the
same variance if the two transmission paths are identical (statistically) apart from a

delay.

Now we undertake the step in which any ambiguity in the carrier phase will be
removed. In order to render the problem mathematically tractable, we have to impose
a further restriction. We make the usual assumptionlz'lz*z'm’z'14] that the interference
is independent from sensor to sensor. We also recognise that the delay difference, AT,
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is constrained to lie in the range from —d/c to d/c. i.e.
—djc < Ar <dfc

and all values within the range are equiprobable.

Hence, provided we restrict our attention to the allowable range of A7, then z;(t)
contributes no information as to the value of 7;_; and z;_;(t) contributes no informa-
tion as to the value of 7; and we may proceed as though 7 and 7;_; are statistically

independent. We have, therefore:

p(r — ric1|zi(t), zio1(2)) = p (7 17i(2)) * p (—mi=1]zi1(2))

) (2.45)
= k?p (z;(t) |%) * p(2i-1(t)] — 7i-1)

where k is defined in 2.44.

An interpretation of 2.45 is given later in this section where it is shown that the
ML estimator of bearing employs established beamforming and beamsteering techniques

to locate the target. This is consistent with the analysis given in [2.15}.

Now consider Fig. 2.5 which illustrates the relationships between the determin-
istic components of the probability density functions in 2.45. The important feature to
notice is that, because any carrier phase error is observed at both sensors, it is can-
celled in 2.45. The deterministic component of the function on the left of 2.45 is a true
autocorrelation function (but shifted along the delay axis) The central peak of its fine

structure therefore occurs coincidentally with the peak of its envelope.

The carrier phase information is therefore useful provided that ambiguities arising
from the presence of interference do not occur. Bearing estimation, however, is unlike
range estimation in that these ambiguities can be totally eliminated by ensuring that
the sidelobes of the fine structure lie outside the region of interest. The criterion is that
the adjacent peaks of the fine structure should be separated by a delay greater than
that possible between two sensors. In other words, the sensors must be less than one
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Figure 2.5 Probability Densities for Active Bearing Estimation
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wavelength apart at the carrier frequency which is shown in [2.1] to be fp in 2.27. Thus

we have:

L/N < ¢c/fo. (2.46)

Equation 2.46 is simply the usual criterion for eliminating grating lobes by en-"
suring that they lie outside the visible region. However, here we see that, for wideband !
systems, the centroidal frequency, fo, is the relevant frequency at which the criterion *

should be met and not, as might be expected, the highest frequency in the band.

Now we wish to know the variance of the approximate posterior density on the *
left of 2.45. By a well known application of the moment properties of the convolution

operator, we have:

azAfl_ e 0’,2.'_ + 012';'-1 =ope. (2.47) "
However, we can obtain MNT_—Q independent estimates of Ar. Hence:
) N(N-1)/2
AT = ——— AT); 2.48)
T N(N =) 1) ; ( T)z’ ( )
and
=52 (2.49)
Ar N(N _ 1) T .
ow, from 2.42 and 2.43 we can obtain:
dAT L
ﬁ— = mCOS 9, (2.50)

and if 2.50 is assumed to be approximately constant over small regions of 6, then we ’
can make an approximation as illustrated in Fig. 2.6. We see that:
2
o
(00)? s —2T—. (2.51)
(dAr/db)
By substitution from 2.50, 2.49, 2.30, 2.31 and 2.25 we obtain:
N
(N—l) c?

o122 (% [PGa(NHTL gf
2m2T L2 cos 9fo Gnn(f)+Gss(f)IHc(f)|2df

(A0)? =

(2.52) !
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Figure 2.6 Approximate Derivation of Resolution Angle
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For the continuous case (N — co) in the broadside direction (6 = 0) the recip-

rocal of 2.51 becomes:

1 2n’TI? f‘” F2Gae(f) |Hr ()]
0

GIE= "2 )y Gul) + GuDIEGIE (2.53)

Apart from constant factors, we see that 2.41 and 2.53 are identical. The trans-
verse resolution in both cases depends on G,,(f) through the same integral. Now,
substituting from 2.53 into 2.41, we obtain:

G.or = 40, 1
1~ 7 L2 (A6)

(2.54)
We recognise ’—’%3 as the area of a circular aperture of diameter L and thus, if
we are considering plane wave arrival from the broadside direction, this is the effective

area of the aperture, o.. Hence:

1

Gl = @y

(2.55)

for a circular aperture.

We shall see in the next section that GML estimation of bearing is simply a
process of scanning a beam through all angles in the bearing gate or "gector” and
choosing that angle corresponding to the greatest observed response. Therefore, the
resolution angle is a measure of the effective angular beamwidth of the system. Hence,
we can complete our study of transverse resolution by showing that the relationship

given in 2.55 can be approximately derived by simple geometrical analysis.

Consider Fig. 2.7 in which a conical beam is illustrated. The centre of the circular
transmitting aperture is located at the point of the cone and all the transmitted signal
energy, Er, is transmitted through the cone. (This is a convenient approximation
to justify which we need to make the cone subtend a solid angle of say 4A8. This
corresponds to 32 standard deviations of the bearing estimate.) At distance, r, from
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Figure 2.7 Effective Gain and Resolution Angle
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the transmitting aperture, the radius of the cone base is given by 2rAfd. Hence, the
area of the cone base is 7(2rA6)%. Thus we have:

E,
Sr = 4mr2(A0)?

and
1

Geff = ——3-
eff (A6)?
We see then, that equations 2.41 and 2.53 provide consistent measures of trans-
verse resolution although they were derived by totally independent analyses of quite
different physical problems. We are entitled to conclude, therefore, that the integral in

2.41 and 2.53 is a fundamental factor in transverse resolution performance.

We define the transverse resolution indez (TRI) as the gain density of a signal

or the effective gain per effective unit area of the aperture. Thus, from 2.41, we have:

rri 8T [ SCulf) |\ Hr ()’
2 2
F S0 (Gunlh) + GrlN) 1 Her(N)F)

df. (2.56)

Henceforth, we shall use TRI as a transverse resolution performance indicator in the

comparison of signals.
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§2.6 The ML Estimator of Bearing

It is interesting to interpret the form of the estimator that chooses A7 by picking

the peak of the probability density on the left of 2.45. Substituting from 2.5, we get:

+o0
p (AT |z (t), i1 (t)) = k' / e¥il7) ¥im1 (1+87) g (2.57)

— 00

where k' is some uninformative constant and

+o0
w() = [ mtate

ie.

+oo
p (A |zi(t), zica(t)) = K' / elvi() v (1+80)] g (2.58)

-—00

In 2.58 the target echo delay, 7, is treated as an uninformative parameter which
is averaged out. This averaging gives rise to the integral in 2.58. The function of range
(or echo delay) over which we average is obtained by a three step process. The first
step is an optimal filtering of the signal from each sensor as described in section 2.1.
The second step is a conventional beamforming process in which signals are delayed and
added so as to form a beam in the hypothesized target direction. (The delay between
adjacent sensors is Ar. ) The third step is a reversible, non-linear distortion of the

signal by exponentiation which is necessary for the averaging process to be valid.

The estimate of relative delay, A, is obtained by choosing the hypothesis, Ar,
yielding the largest value in 2.58.

If we wish to estimate bearing and range simultaneously, we do not average out
the range information as in 2.58. Instead we pick the peak of the two-dimensional LLF
given by:

Inp (z:(t), ;-1 (t) |7, A7) = %;(1) + yi—1(7 + AT). (2.59)

We see from 2.59 that conventional beamforming again yields an ML estimate

2-33



section 2.5 The ML Estimator of Bearing

of bearing when the beam is swept over all angles and the peak in range and bearing is

picked. A GML estimate is obtained if a restricted range of angles is swept.
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§2.6 Summary and Discussion

In sections 2.1 and 2.2 the problem of ML estimation of round trip delay for range
estimation was reviewed. It was discovered that for most cases of practical interest the
LLF of delay is given by equations 2.11 and 2.12. However in special cases where the
fine structure of the signal is known to carry reliable information and the inequality, 2.8

is satisfied, the appropriate form of the likelihood function is given by 2.5 and 2.11.

A transmission path model, illustrated in Fig. 2.3 is presented in section 2.2.
The main restrictions of the model relate to two assumptions. The first of these is a
weak scattering assumption in which the target path is assumed to be independent of
statistical variations in the clutter path. The second is that there is no relative motion

between target, scatterers, transmitter or receiver.

In section 2.3 the stationarity condition necessary for equation 2.11 to be valid
is examined. A new criterion for local stationarity is derived in terms of the bandwidth

of the transmitted signal rather than its duration. That criterion is given in equation

2.22.

Three system parameters are shown to be of fundamental significance as indica-
tors of performance in section 2.4. The first of these indicates the detectability of the
received target echo and is given by equation 2.25. The second indicates the precision
with which the target may be localised in range and is given by equation 2.33. The third
indicates the transverse resolution of the system and is given by 2.56. Other quantities
of interest are given by 2.26 (the detection threshold) and 2.34 (delay estimate variance

when carrier phase is used).

The derivation of the third of these parameters in section 2.4 represents a funda-
mentally new approach to the analysis of transverse resolution. It allows the dependence
of the transverse resolution performance of wideband systems on the signal spectrum to
be evaluated. The evaluation takes account of interference colouration as well as signal
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spectral shaping.

Both the TRI and the detection index are of interest in the analysis and design
of communications systems as well as ranging systems. Furthermore, the transmission
path model employed in this thesis is well suited to communications applications where

the clutter would represent multi-path interference.

Because of the applicability of many of the ideas presented in this chapter to a
broader field of application than just active ranging, the results of chapters 3, 4 and §

should also be regarded as having a broader context.
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3. SIGNAL OPTIMIZATION

§3.0 Optimiration Criteria

8.0.1 Ambsgusty Functions

In chapter 2., a transmission path model was adopted that ignores relative motion
between target, transmitter, receiver and scatterers. In practice, this restriction means
that all Doppler effects are assumed to be negligible. By Doppler effect, I mean the
temporal compressions and expansions of echoes that arise as a direct result of such
relative motion. If such effects are observed in the frequency domain then they manifest
themselves as corresponding frequency expansions and comprésions with respect to
zero frequency. For narrow band echoes this frequency domain effect can be closely

approximated by a frequency shift.

Since most of the existing literature relating to signal optimization for target
localization is concerned with Radar or Sonar applications it generally relates to situ-
ations where Doppler shifts are not negligible. Initially we shall look at approaches to
signal optimization in this broader context before confining our attention to the more

restricted class of problems where Doppler effects are negligible.

A large proportion of the literature in this area deals with optimization of the
range resolution of a system. The range resolution of a system is its ability to distinguish

between multiple targets that are closely spaced in range.

When we considered range accuracy in chapter 2, we did not take into account
the possible existence of multiple targets and therefore our range variance indicator is

3-1



section 3.0 Optimization Criteria

not also an indicator of range resolution. In the general case, no such indicator has ever
been devised and most authors since Woodward (2.1] have studied range resolution in

terms of Woodward’s ambiguity function.

In general, the ambiguity function for two signals differing only in the parameters,

07’ is 1311
+oo

X (91;92> = /
for a narrowband signal, F', with the customary normalization:

()=

—o0

F (t; (71) F (4 é;) dt (3.1)

[e°]

e \F (t; o")lzdt =1. ‘ (3.2)

For Radar and Sonar, §= (r, f)T, where 7 is arrival time and f is Doppler shift.

Thus we have:

x(=7/2,=f/27/2,f[2) = e r(t—r/2)r(t+1/2) et dt

= x(r, f)

(3.3)

where r is the target echo.

The central peak of this ambiguity function occurs at the origin and its spread
in the delay-Doppler plane is a measure of the "resolvability” of target echoes. It is a
fundamental measure of their "resolvability” or ”distinguishability” that is independent

of the form of the range estimator.

The ambiguity function, 3.3, has a similarly fundamental role to play in relation
to clutter performance because clutter must be distinguished from the target signal. In
particular, the existence of sidelobes in the ambiguity function may lead to false target
detection because target sidelobes may occur coincidentally with clutter main lobes or

because the target main lobe may be obscured by clutter sidelobes.

When the interference is coloured we will want to provide spectral emphasis
of the ambiguity function, whose role is still fundamental and makes no assumption
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about the form of the estimator. However, the problem of what spectral emphasis to
use is similar to that encountered in deriving the optimal estimator. Therefore it is not
surprising that the ambiguity function generally employed in evaluating the performance
of narrowband systems is the cross-ambiguity function of the target echo, r(t), with the
ML correlation reference, g(t):

+oo ,
Xrg(T, ) = / rt—r/2)q(t+1/2) eIt gt (3.4)

—o0

Ambiguity functions for wideband signals are difficult to define because echoes '
from moving scatterers occur with spectral compression or expansion with respect to
zero frequency and not just a frequency shift. As a result, the ambiguity function
depends on the mean velocity as well as on the differences in arrival times and velocities
of the two echoes being compared in the correlation. It is useful, also, to use analytic

signals in such definitions.

One such definition is [3-2l:

x(r,a, A) = (1—_1'_{;:3) v /_:o w(t)w* ({1 - [1%_5] } t+(1-A+ a)f) dt
(3.5)

where a is incremental fractional velocity, A is mean fractional velocity, w(t) = r(t) +

jv(t) and v(t) is the Hilbert transform of r(t).

For the cross-ambiguity function we could take y(t) = g(t) + jp(t), where p(¢) is
the Hilbert transform of ¢(t) and:

Xuwy(T, 0, A) = (%)1/2 f_:o w(t)y* ({1— [1 fA]}H (1—A+a)r) dt
(3.6)

Other definitions have been used for wideband systems but do not illustrate

explicitly the dependence on the mean fractional velocity, A.

Generally, it is the magnitude of the ambiguity function that is of interest and
often |x| is referred to as the ambiguity function.
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3.0.2 Clutter Rejection

An important system performance parameter is the signal-to-interference ratio
(SIR) at the correlator output and a common criterion for signal optimization is to maxi-
mize that parameterl3'3’3'4]. Another common criterion is maximum signal-to-clutter ra-
tio (SCR) at the correlator output!®®l. Others include maximum detection index(27:26]
maximum correlation processing gainl®3] and minimum effective ambiguity volumel®-2],
The detection index was defined in subsection 2.4.1. Correlation processing gain is the
gain in signal-to-interference ratio resulting from correlation of the received waveform
with the optimal reference, g(t). When the true ML filter is being used, the SIR and the
detection index are the same. However, if the filter is constrained in some way, this may

not be the case [3334] and this is why those two criteria have been included separately

above.

In this sub-section I will review the standard approach to maximizing SIR or
SCR. Usually, in the literature, the received signal is assumed to be of the form,
r(t) = As(t), where A is a complex constant while the clutter is characterized by its

autocovariance function:
E {c(t)c*(t')} = kc(t, 1)

: ' 3.7

= f / &(r, f)s(t — f)s'(t'—f)e-’z”f('_‘)d‘rdf 8.7
The function, £(7, f) represents the scattering density in the range-Doppler plane.

The interpretation of this function is most easily understood for a field of discrete

sca.tterers[s"q:

&(r, ) =) _ bt —%)5(f — fi) (3.8)
ok

where 5(.) is the unit impulse function and &; is the Radar cross-section of the (3, k)i

scatterer located at (7, fi) in the range-Doppler plane.

The noise is usually assumed to be white and normal with single-sided power

spectral density, 2Np.
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At the correlator output we thus have:

2
(3.9)

P, = \ / As(t)g" (t)dt
P, = 2N f la(t)Pdt (3.10)

P.=1/2 f / ' (t)kc(t,t")g(t")dtdt’ (3.11)

where P,, P, and P, are peak signal power, mean noise power and mean clutter power,

respectively.

If g(t) is normalized such that [ |g(t)|?dt = 1, it can be readily seen from 3.10
that the output noise power is independent of the choice of signal while, from 3.11, the
output clutter power depends on s(t) in a complicated way. This dependence can be

simplified conceptually by substituting for k. in 3.11 using 3.7 and 3.4 to obtain:

Po=1/2 [ [ €0,1) bl NP drds (3.12)

This is simply the volume integral of the product of the scattering density and
the squared magnitude of the cross-ambiguity function. This integral product is often
illustrated pictorially as the intersection of the regions contained within the contours of

the two-dimensional functions, £(7, f) and |x.4(7, f)|2, as in Fig. 3.1.

Since P, is simply the peak of the ambiguity function squared magnitude, the
aim of signal optimization for maximum SCR is to choose s(t) such that the ambiguity

given byl2-1]

I/ Ich(T:f)lszdf -1
P,

is distributed away from areas of high scattering density in the range-Doppler plane.

When SIR is to be maximized, the value of the peak of the ambiguity function
becomes important. Ambiguity is redistributed in such a way that a compromise is
reached between maximizing clutter rejection and maximizing the peak signal power at
the correlator output.

3-5



section 3.0 Optimization Criteria

Figure 3.1 The Clutter Integral
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Optimization with respect to either of these criteria is usually undertaken by

means of a numerical algorithm or with the aid of diagrams such as Fig. 3.1.

3.0.8 Minimizing Effective Ambigusty Volume

As stated in the previous section, the total ambiguity volume is equal to unity.
However,the volume over a finite area of the range-Doppler plane can be minimized by
choice of s(t). Bates considers this for wideband signals in [3.2]. Because wideband
ambiguity functions are functions of delay and incremental fractional velocity, rather
than of delay and Doppler shift, he points out that the integral of the squared modulus
of the ambiguity function has the units of time. In order to obtain a unitless value
for ambiguity volume, Bates, following Rihaczek, multiplies that integral by the first

moment of the energy spectrum of the signal.

This procedure is reasonable since, for wideband signals, the ”carrier frequency”
may be defined as the centroid of the energy spectrum and, for narrowband signals,
Doppler shift is equal to the product of the ratio of the relative velocity to the velocity
of propagation and carrier frequency. Hence, the above wideband definition is made

conceptually, and indeed numerically consistent with the narrowband definition.

With this definition for ambiguity volume, Bates shows, using 3.5, that the am-
biguity volume over a finite range of fractional velocities is monotonically decreasing

with signal bandwidth. This volume is therefore minimized by using a signal with a flat

spectrum.

3.0.4 Mazimszing Detection Indez

In chapter 2 we found that the detection index, R, is an important indicator
of detection performance and when the optimal ML filter is employed, ® corresponds
to the SIR. Hence the optimal trade-off between clutter rejection and maximization of
received signal energy is found by maximizing R.
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In [2.7], Kooij finds an expression for G,,(f) that maximizes R in equation 2.25.

The signal power spectrum is given by:

k| Hr(f)] No'* = No

Gu(f) = (3'13)
|Ho(f)/*
where k; is a constant chosen to meet the energy constraint:
+00 E,
G‘.(f)df = -ZT = P‘. (3-14)

Of course, the same restrictions apply to this result as were imposed in deriving
2.25. In particular, Doppler effects must be negligible and the interference must be

locally stationary with range. In addition, the noise was assumed white.

Numerical solutions for particular classes of signals have been found for the case

where Doppler effects are allowed[2%], However closed form solutions have not been

reported.

The author has identified two difficulties in the application of 3.13. The first
is that the white noise assumption can be quite unrealistic while the second and more

important problem is that 3.13 can yield negative power spectral densities. These two

problems are addressed in sub-section 3.1.1.

8.0.5 The Advantages of Multiple Criteria

As discussed in chapter 2, there are many current and emerging applications of
target localization techniques for which the restriction to negligible Doppler effects is
quite realistic. It is to those applications that this thesis is chiefly addressed. Hence,

the approach of Kooij described in the previous sub-section is highly relevant.

However, apart from the difficulties with the application of equation 3.13 which
were outlined in the previous sub-section, maximization of detection index as a criterion
suffers from other shortcomings. The signal that maximizes the detection index may
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only be optimal in a very narrow sense. It is truly optimal only at low signal energies
where the detection margin is small and it is essential to maintain as large a margin as

possible. Even then, it is not obvious that maximizing the detection index results in

maximum detection margin.

The rest of this chapter will be devoted to the development of a theory of opti-
mality in which the performance indicators derived in chapter 2 (detection index, range
estimate variance and transverse resolution indicator) are all employed as optimization
criteria. Initially we shall look at signal optimization with respect to these simple cri-
teria and later, in sections 3.3 and 3.4, a strategy will be developed for employing all

three of the simple criteria simultaneously in computing an optimal signal spectrum.

3-9



section 3.1 Optimszation With Respect to Simple Criteria

§3.1 Optimization With Respect to Simple Criteria

3.1.1 Mazimszing Detection Indez

The expression for the detection index was derived in chapter 2. Repeating 2.25,

we have:

00 2
R = ZTA Gu(f) |HT(f)I zdf (3-14)

Gun(f) + Goo(f) | He( )]

In this section, we shall derive the signal spectrum that maximizes R subject to the

energy constraint:

o0 E,
/; Gulf)df = 57 = Pu/2. (3.15)

The solution derived by Kooij for the case where the noise is white can be ex-
tended to the case of non-white noise by the simple device of inserting a noise-whitening

filter in the transmission path model. This was done by the author in [1.1].

However, difficulties were encountered by the author in relation to the form of
the solution.These were discussed in the previous section. In addition, we may wish to
restrict attention to a limited band of frequencies.Therefore, a generalized solution will

be stated here in the form of a theorem which is proven in appendix 3A.

Theorem 1. Let G,,(f) =0vf & [fi1, f2] Then the signal power spectral density, G 44( f), that

maximizes 3.14 subject to 3.15 is given by:

kel B (DI(Gun 1) /*=Conlf) 5 c R
Go(f) = TG feh (3.16)
0 Vf€E Ry

where

Ri={f : kil Hr(H)| > (Gan(1)/2} € B1,
Ry = Ry, (3.17)
RT . [fls fZ])

and kg is a non-negative real constant chosen to satisfy the equation:

f ka |Hr(f)| (Gun(£))% = Gua(f) df = P,/2 (3.18)
R,y

|Ho(f)I?
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3.1.8 Mazimizing Transverse Resolution Indez (TRI)

The problem of maximizing the TRI is rather similar, mathematically, to that of

maximizing R. We shall see that the solution, also, has a very similar form.

Repeating equation 2.56, our problem is to maximize:

rrr= 5L [T __LGulf) \H(f)?
¢ 0 Gualf) + Guelf) |He()]

S df, (3.19)

subject to the energy constraint given by 3.15. Again the solution will be given in
the form of a theorem. The proof of this theorem is identical to that of theorem 1 in
appendix 3A except that |Hp(f)| is replaced by f|Hz(f)| wherever this appears and

2TRI
ST

_T is replaced by wherever this appears.

Theorem 2. Let G,,(f) = OVf & [f1, f2]. Then the signal power spectral density, G,s(f), that

maximizes 3.19 subject to 3.15 is given by:

H(f)° (3.20)

kS BT ((Con () =Canlf) v ¢ By
ool f) =
0 Vf € Ry

where

= {1 kS 1B (D) > (Gunl$)2) € B,
Bo =By , (3.21)

Rr = [fh f2]

and kr is a non-negative real constant chosen to satisfy the equation:

/ kr f |Hr(£)] (Gan(FNY? — Gunlf) 4
R

H()P =S (3:22)

3.1.8 Minimizing Range Estimate Variance

From 2.33 we see that the local variance of the range estimate is minimized by

maximizing:

- 81!'2T/ (f fO) Gu(f) |HT(f)l2 df (3.23)

Goa(f) + Goo( ) |Hc(f)]
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subject to the energy constraint given by 3.15 with fo defined by (from 2.27):

) fGas(f”HT(f”z
. I s Gainiznr Y
o Gel)Hr () )
f(] Gnn(f)'*'G“(f)ch(f)F df

(3.24)

The solution to this problem is given in the following theorem. The proof of this
theorem is identical to that of theorem 1 in appendix 3A except that | Hp(f)| is replaced

by (f — fo) |Hr(f)| wherever this appears and -2%7 is replaced by ﬁf wherever this

appears.

Theorem 8. LetG,,(f) =0Vf & [f1, fz] Then the signal power spectral density that maximizes

3.23 subject to 3.15 is given by:

kolf=follH7 (1) (Crn (£))/2=GCun (f)
Gos(f) = { AT vfeh (3.25)
0 . Vfe Ry
where o . o
Bi={f:kef = fol | Ez(N] > (Gan(£)/?} C Br
Ry =R, (3.26)
Br = (f1, f2]
and fy satisfies 3.24 while k, is a non-negative real constant chosen to satisfy:
- N1/2 _
Ry |Hc(f)|
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§3.2 Performance Comparisons

3.2.1 Computation of Optimal Spectra

The solutions given in theorems 1, 2 and 3 are exact but are not in closed form.
It has not been found possible to obtain expressions for the constants, k4, kr and k.
This is because these constants must satisfy the integral equations, 3.18, 3.22 and 3.27
with limits of integration that depend, in turn, on the constants, themselves, through
equations, 3.17, 3.21 and 3.26. A further complication arises from the dependance of
the solution in Theorem 3 on the centroidal frequency, fo, given by equation, 3.24. For
similar reasons to those cited above in relation to the other constants, fp cannot be

simply defined in terms of the transmission path model and the signal energy.

Because of the implicit forms of the solutions given in theorems 1, 2 and 3, the
computation of optimal spectra necessarily involves iteration to find the constants, kg,
kr, k, and fo. Computer programs have been developed by the author for perform-
ing these computations. In each case they involve a fairly straightforward iteration

procedure based on Newton’s method for obtaining k4, kr or k,.

However, f; is obtained by a more complicated algorithm that is designed to cope
with the somewhat ill-behaved nature of the centroid with respect to the convergence
of iteration procedures under certain conditions. Such procedures operate by hypoth-
esizing a centroid frequency and then computing the optimal spectrum and hence the
actual centroid frequency. The hypothesized and actual centroids are then compared
and, if they are not sufficiently similar, then a new hypothesis is formed via a formula

involving the old hypothesis and the actual centroid resulting from it.

In many cases convergence is obtained by forming the new hypothesis as a

weighted mean of the old hypothesis and the resulting actual centroid. A reasonably

reliable formula is:

finn= ————(z'f‘: 1. (3.28)
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where the primed quantities are hypothetical and the subscript is the iteration number.

However, as we shall see, at low signal powers, the minimum variance spectrum
tends to contract to the band edges. The result is that it becomes highly sensitive to
the hypothesized value of the centroid. The observed effect on the iteration process
is that an error in the original centroid hypothesis causes the initial approximation to
the spectrum to be concentrated at one of the band edges. The true post-whitening
centroid obtained with that signal spectrum , therefore, lies near that band edge. In
subsequent iterations, using 3.28 for example, the hypotheses move towards the band
edge where the signal energy is concentrated. However, once the hypothetical centroid
passes through the centroid of the true optimal spectrum, the signal energy shifts from

one band edge to the other.

Under these circumstances, an iteration based on a formula such as 3.28 will be
extremely slow to converge if the weighting is too large or will not converge at all if the
weighting is too small. A robust and reasonably fast procedure can be obtained by de-
tecting the transition of the actual centroid from one side of the hypothesis to the other.
In subsequent iterations the hypothesis is updated using the values of the hypotheses
used in previous iterations in such a way that the new hypothesis always moves towards
the actual centroid but the step-size relates to the closeness of convergence rather than

the difference between the hypothetical and actual centroid values.

Each time the actual centroid swaps from one side of the test value to the other,

the updated test value is given by:

fiva=1/2(fi + fiz1) - (3.29)

On subsequent iterations, when the actual value remains on the same side of the test

value, the update formula is:

floy=2fl—fi_\ (3.30)

The complete algorithm involves the use of 3.28 initially until the hypotheti-
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cal value of fo is close to the true value. Subsequently, 3.29 and 3.30 are applied in
the manner described. During this latter phase, the algorithm has several important
properties. The step-size never increases and always decreases within two iterations.
Furthermore, the test value is always updated in the direction of the true centroid (of
the optimal spectrum). This combination of properties guarantees the convergence of
the algorithm provided numerical problems are not encountered. In practice the author

has never encountered such problems with this algorithm.

A listing of the Fortran computer program used in obtaining the minimum vari-
ance spectra presented in the following sections is given in appendix 3B. The programs
for computing optimal spectra according to the other two simple criteria are not included

as they are more straightforward.

3.2.2 A Practical Ezample

In this section the optimization algorithms already described will be applied to a
practical example. The application for which this example is relevant is acoustic sensing
through fleece and the interested reader is referred to reference [1.1] for more details.
The transmission path was characterized for a particular point on a particular fleece
and is indicative only of the type of condition encountered in this application. In this
section we are not concerned with uncertainty in the characterization and will treat the

problem as if the transmission path characteristics were not subject to variation.

Nevertheless it is important for the designer to be aware of deficiencies and
limitations in his transmission path modelling techniques. The techniques used will be
highly dependant on the details of the application but some techniques used by the
author for the acoustic sensing problem will be presented in chapter 6. However, some

aspects of the process are more generally relevant and will be discussed here.

The optimal spectra in theorems 1, 2 and 3 are quite sensitive to spurious detail
in the model and for this reason it is necessary to apply spectral smoothing techniques
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to eliminate unreliable detail while retaining a reliable estimate of the major spectral
features. The approach of the author to this problem is to use selective all-pole spectral
modelling which is a form of Maximum Entropy spectral analysis. Readers unfamiliar
with these techniques are referred to papers by Makhoul®7l and Ulrych and Bishopl®®l

for details.

In some cases the author has found it advantageous to modify the all-pole mod-
elling technique by a method which will be referred to as zero placement. If a signal or
impulse response is known to have (or is suspected of having) zeroes in its Z-transform
then all-pole modelling is obviously inappropriate. However, we can overcome this diffi-
culty if we can estimate the locations of the zeroes. To eliminate the problem, we cancel
each known zero by pole placement prior to the application of the selective all-pole

modelling algorithm. Then, once the all-pole model has been obtained, the zeroes are

re-inserted.

A listing of a utility program developed by the author to perform this modified
form of all-pole spectral estimation is included in appendix 3B. The interested reader

will find this relatively easy to follow.

One important point that is worthy of mention here, is that it is usually essential
to use the general implementation of the discrete Fourier transform (DFT) rather than
the more usual fast Fourier transform (FFT) implementation when applying selective
all-pole modelling techniques to spectra. The reason for this is that the length of an
FFT must be a power of 2. Now, if the number of frequency bins we have to transform
to the autocorrelation domain is not a power of 2 then we might be tempted to use
a longer FFT and pad out with extra samples. However, the problem arises with the
choice of the padding sample values. Padding with zero-valued samples often yields

extremely undesirable effects.

The reason for this is that all-pole modelling techniques can be interpreted as
methods in which a parametric spectral model is adjusted to minimize a logarithmic
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spectral error function!3738l. This function is, of course, highly sensitive to the presence
of zero-valued samples in spectra with the result that very biased spectral estimates are
obtained. The usual result is that all the modes in the spectrum are assigned very
parrow bandwidths. The spectral estimate is then quite small even at small frequency
separations from the resonant frequencies. Hence the logarithmic error with respect to

the zero-valued frequency samples is kept small.

The following details are not important to the discussion in this section but are

included for interest and completeness. A more detailed explanation of the techniques

used is included in chapter 6.

The transmission path model used in this section was derived from data obtained
at 500kHz sampling and raw power spectra were obtained using a 512-sample FFT
algorithm and averaging of the power spectra over a small ensemble of about 10 records.

Final smoothing was achieved by the modified all-pole techniques already discussed.

The noise samples were extracted from the time series data by averaging the
data over an ensemble of 50 records and then subtracting the average from each record
to obtain a noise record. The target signal was obtained by excision of a segment of the
averaged data record in the region of the known target delay. The clutter record was

obtained by excision either side of the target segment.

The transmission path that we will use as an example is characterized by the

three functions given in Fig. 3.2 over the frequency range from OkHz to 124kHz.

Direct application of our three optimization procedures to this model over that

band yields the spectra in Fig. 3.3 at four particular values of signal power, P,.

It is clear from Fig. 3.3 that the forms of the three optimal spectra can be
quite different and that they vary markedly with signal power. However, some very
undesirable phenomena are evident in Fig. 3.3C and Fig. 3.3D. We see in these cases
that a sizeable proportion of the signal energy is being channelled into part of the
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Figure 3.2 Transmission Path Characteristics

(0 to 124kHz)
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NOTE: For all figures in this thesis, multiply the axis tick labels by

the multipliers enclosed in parentheses by the corresponding axis labels.
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Figure 3.3

Optimal Spectra

(0 to 124kHz)

A) Signal power is 1dB

B) Signal power is 13dB
C) Signal power is 27dB
D) Signal power is 40dB
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spectrum where, from Fig. 3.2, we see that very little signal power is transmitted
either via the target path or the clutter path. The values of the two transfer function
magnitudes are so small in this region that the computed optimal spectrum is sensitive
to very small perturbations in the spectral estimates. Our spectral estimates are not

sufficiently reliable, in this region, for us to have confidence in the resulting signal design.

It is important not to use unreliable data in this way. The way to avoid the
problem is to restrict attention to a frequency band in which the transmission path
model is believed to be reliable. On inspection of Fig. 3.2, we see that a reasonable
frequency band over which to perform our optimization is from 0kHz to 40kHz. However,
for other reasons associated with the particular application, such as the existence of
acoustic room noise which is difficult to characterize in advance and the undesirability
of emitting loud audible sounds, we will perform our optimization above about 10kHz.
(The transmission path that we have modeled actually included a 10kHz high pass
pre-filter.) Because our three transmission path functions are discrete, having been
produced by digital computation, we will actually perform our optimization over the

range from 9.8kHz to 39.0kHz.

In this new frequency band the transmission path model may be displayed as in

Fig. 3.4. The resulting optimal spectra at various signal powers are illustrated in Fig.

3.5.

Comparing Fig. 3.5 with Fig. 3.4, we see that, at low signal powers, the max-
imum detection index (MDI) spectrum and the maximum transverse resolution index
(MTRI) spectrum have contracted into the centre of the target channel while the min-
imum variance (MV) spectrum has contracted to the band edges. On the other hand,

at high signal powers, all three types of optimal spectra occupy the entire band.

We see that the MV spectrum is always zero at at least one point in the band.
This point is the post-whitening target echo spectral centroid frequency, fo. Energy at
this frequency contributes a constant or d.c. value to the post-correlation envelope and
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Figure 3.4 Transmission Path Characteristics

(9.8kHz to 39.0kHz)
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Figure 3.5 Optimal Spectra
(9.8kHz to 39.0kHz)
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is therefore not useful in aiding in the location of the peak of the envelope.

It is also apparent that the MTRI spectrum is quite similar to the MDI spec-
trum at all signal powers. In situations where the frequency band of interest is narrow
compared to the value of the centre frequency, we can expect this similarity to be even
more pronounced than it is here because the simple spectral weighting in equation 3.20

will have negligible effect so that 3.20 and 3.16 will produce almost identical functions.

On the other hand, the MV spectra are very different from the other two at all
signal powers and we can usually expect this to be the case, because the MV spectrum
will always have a deep null at the spectral centroid of the post-whitening target echo.
This null is often located close to the centre of the target channel because it is often

located near the peak of the MDI spectrum.

Now it is instructive to compare the performance indicators for these three types
of optimal signals over a range of signal powers. In Fig. 3.6, the detection index, the
local variance of the range estimate and the TRI are plotted against signal power for
each of the three types of optimal spectra. The transmission path model used was that

of Fig. 3.4. The spectra were varied with signal power so that they were always optimal.

There are several interesting features of the curves in Fig. 3.6. One is that the
curves appear to converge at high signal powers. This is a consequence of the fact that
as the signal power is increased the post-correlation signal and interference both become
less dependent on the power spectrum of the transmitted signal. To see this we can

obtain, using 2.12 to 2.15:

TG,,(f) |Hr(f)I’

= 3.31
BolD) = G PV HADE + Gunlf) (831)
and
TG,(f) |Hr(f)]
Giolf) = 3.32
o) = G P HLE + Gunlf) (82)

where Ro(f) is the post-correlation signal transform and Gio(f) is the post-correlation
interference power spectrum. Note that there is an implicit unity-valued constant in
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these expressions. This constant arises because we are treating the correlation as a
signal waveform even though it is the cross-correlation of two signals. The implied

constant restores the units to those of a signal waveform (e.g. volts).

Equations 3.31 and 3.32 are interesting in that the right hand sides are identical.
However, this should not be surprising because, if they were not it would be possible to
perform another stage of ML filtering which is inconsistent with the optimality of the

ML filter. This can be seen by inspection of equation 2.11.

Now, at very ﬁigh signal powers the noise term in the denominators of 3.31 and
3.32 can be neglected with the result that the signal power spectrum cancels out. This
condition can be referred to as the dominant clutter condition because the interference
power spectrum is dominated by the clutter power spectrum. We see that in the domi-
nant clutter condition the system performance is determined entirely by the target and
clutter transfer function magnitudes and the duration of the transmitted signal. We

can see this also from 2.25, 2.33 and 2.56.

It is worth noting that the dominant clutter condition can only be achieved if
the transmitted signal occupies the full bandwidth. The performance achievable in the
dominant clutter condition in different bands may be quite different and will always be
poorer in a sub-band than in the full band. However we see from equations 3.17, 3.21
and 3.26 that the three types of optimal spectra will always occupy the full band at
sufficiently high signal powers.

From these considerations, we would expect that the curves in Fig. 3.6 would
tend asymptotically to a bounding condition as the signal power was increased. Such a

phenomenon can be observed in Fig. 3.6.

Another feature of the curves in Fig. 3.6 is that the MTRI and MDI spectra pro-
duce similar ﬁedormance in relation to all three indicators. This is a simple consequence
of the fact that, as previously discussed, these spectra tend to be quite similar.
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On the other hand, at lower signal powers, the MV spectra produce very different
performance figures from those of the other two. This also is not surprising given the
very different forms of the spectra. The MV spectra provide a much smaller local
variance but also a much lower detection index and a lower TRI than do the other two

types of spectra.

Of course, once the detection margin (or ® — Rr) drops below about 2 or 3dB
(refer to section 2.4.1), the local variance becomes an unreliable indicator of range
accuracy and the TRI becomes an unreliable indicator of transverse resolution. We
need to obtain curves of detection threshold and thereby construct curves of detection
margin before we can complete our performance comparisons. In addition to these, we
should consider the effect of the ambiguity phenomenon resulting from the existence of

time sidelobes as discussed in sections 2.4 and 3.0.

Using an iterative algorithm based on equation 2.26, it is possible to compute
the detection threshold from the range gate width, W, and the moment bandwidth of
the post-whitening target echo, 8. The results of such computations are displayed, for

each of four gate widths, in Fig. 3.7.

The most startling feature of these curves is the way the detection threshold
drops abruptly to —oo at various points. This phenomenon results from the fact that
equation 2.26 has no solution if the product, Wf, is too small. Under this condition,
the post-correlation target echo main lobe is broader than the range gate. Clearly, in
that case, there can be no possibility of false target detection (assuming that the gate

is, in fact, located over the target range).

The sharpness of this cutoff in the curves of Fig. 3.7, however, is not an accurate
reflection of the way in which prior information can help overcome the detection prob-
lem. In fact, the transition is much smoother than indicated by the curves of Fig. 3.7
but equation 2.26 is only valid for WG >> 1121, The curves of Fig. 3.7 are conservative.
A detailed study of the use of prior information will be undertaken in chapter 5.
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Figure 3.7
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An important feature of these curves is that the MDI spectra consistently provide
lower detection thresholds than the other two types of spectra. This is because there
is no spectral weighting tending to spread the energy of the MDI signal across the
frequency band. In fact, the converse is true in that maximization of the detection
index is achieved by concentrating most of the signal energy in the region where the
térget transfer function is maximum. The result is that § tends to be smaller for MDI

spectra and this results in lower detection thresholds.

This is particularly obvious at low signal powers. As the signal power is reduced,
the optimal compromise between maximizing SCR and maximizing SNR moves towards
maximization of SNR. The result is that the MDI spectrum contracts into the centre
of the target channel to maintain the energy in the target echo. As a result, g falls
still further so that the detection threshold also drops and, as we shall see shortly, the

detection margin is maintained remarkably well.

The MV spectra, on the other hand, respond to this shift in emphasis from clutter
to noise by contracting to the band edges. This increases § and hence counteracts to
gome extent the effect of the reduction in R on the local variance, 1/ RA2. Hence, as the

signal power is reduced, the detection threshold increases.

Fig. 3.8 is a set of curves of detection margin versus signal power derived by
subtracting the results depicted in Fig. 3.7 from those of Fig. 3.6A. We see that, if we
require a detection margin of 3dB, then the TRI and 02 curves of Fig. 3.6 do reliably
indicate the performance for the MDI and MTRI spectra. However, for the MV spectra,

those curves are only indicative of true performance for signal powers above a certain

value that depends on the gate width.

We can find the minimum signal power satisfying the requirement of at least 3dB
margin of detection from the curves of Fig. 3.8. For gate widths from 50uS to 200usS it
varies from about 16dB to about 19dB. Looking at Fig. 3.6B, we see that this means
that the MV spectra give significantly improved range performance only for moderate
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signal power. At lower power, poor detection performance would result in very poor
range accuracy. At higher power, the other optimal spectra would yield similar range

accuracy to that obtainable with the MV spectra.

Now we turn to the ambiguity problem resulting from the existence of time
sidelobes. Our first step in considering this aspect of performance is to inspect the cross-
ambiguity functions resulting from the use of some of the spectra we have discussed.
Since we have restricted our attention to situations where Doppler effects are negligible,
we need only consider the delay dependence of the ambiguity function. Hence we need

only inspect the cross-correlation envelope given by:

A(r) =

+oo
/_ F(2)q"(t — 7)dt (3.33)

where #(t) and q(t) are the complex analytic representations of the received target echo,

r(t), and the ML reference, g(t), as described in chapter 2.

A(7) is the wideband, zero Doppler equivalent of |xre(7, f)| which is defined in
equation 3.4. A(7) is also the signal component of the LLF defined in equation 2.9. It

is also the autocorrelation envelope of the post-whitening target echo.

Figs. 3.9 to 3.11 display the ambiguity functions, A(r), resulting from the trans-
mission of signals with the spectra displayed in Fig. 3.5. Because of the detail in those
figures they have not been superimposed. It is important to realize that these are not
the autocorrelation envelopes of the transmitted signals themselves but those of the

post-whitening target echoes.

In Fig. 3.9, the ambiguity functions for the MDI signals are displayed. The rapid
reduction of local variance with signal power that we saw in Fig. 3.6B is reflected here

in the sharpening of the main lobe. There is virtually no sidelobe structure at all.

As expected, a very similar picture can be seen in Fig. 3.11 which corresponds
to the MTRI spectra. However, Fig. 3.10 presents a very different picture for the MV
spectra. At relatively high signal powers (e.g. >27dB) a definite sidelobe structure can
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Figure 3.9 Ambiguity Functions for MDI Signals

A) Signal power is 1dB
B) Signal power is 13dB
C) Signal power is 27dB
D) Signal power is 40dB
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Figure 3.10 Ambiguity Functions for MV Signals
A) Signal power is 1dB
B) Signal power is 13dB
C) Signal power is 27dB
D) Signal power is 40dB
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Figure 3.11 Ambiguity Functions for MTRI Signals

A) Signal power is 1dB
B) Signal power is 13dB
C) Signal power is 27dB
D) Signal power is 40dB
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be seen but given the high detection indices achieved, this would present no ambiguity
problem. (A more rigorous analysis will be presented soon.) At low signal powers,
however, we see that the very sharp main lobe has been maintained but is surrounded

by a very complex fine sidelobe structure.

This would represent an ambiguity problem. However, our discussion of detection
performance revealed that transmission of MV signals at such low powers (j16dB) would
result in the system operating below threshold. Hence we are not interested in ambiguity

at these very low signal powers.

Of more interest are the ambiguity functions associated with MV signals in the
17dB to 25dB region of signal powers where we would expect MV spectra to be most
valuable. Fig. 3.12 displays four of these ambiguity functions. We see that the sidelobe
structure in these functions is much less pronounced than at the very low signal powers.
In fact, the detection indices of over 9dB associated with these conditions (see Fig.

3.6A) is much greater than that necessary to ensure unambiguous detection.

In order to see this it is necessary to perform a mathematical analysis of the
ambiguity problem. The two largest sidelobes present the highest probability of pro-
ducing ambiguous peaks due to additive interference. Now the width of these sidelobes
depends on A. Because of the matched filtering, the widths of any interference peaks

are similarly dependent on 8. As a result, at most one interference peak can occur

coincidentally with a sidelobe.

Now the probability that the interference above one sidelobe will exceed the main
lobe depends, to a close approximation, only on the ratio of the difference between the
peaks of the sidelobe and main lobe and the RMS interference. We will call this ratio
the ambiguity ratio, A. The value of the peak of the main lobe is ® and the RMS
interference is ®!/2. Thus if the ratio of sidelobe peak value to main lobe peak value is

a, then:

1—-a)R
A= (—5121/_2)_ = (1 - a)R!/? (3.34)
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Figure 3.12 Ambiguity Functions for MV Signals

A) Signal power is 18dB
B) Signal power is 20dB |
C) Signal power is 22dB
D) Signal power is 24dB
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Hence we wish to determine the probability, P,, that ® + n; < aR + nz where
n; and n, are the noise values at the main lobe and sidelobe peaks respectively and are
independent zero mean random variables with variance, ®. Thus, P, is the probability
that (1—a)R < n2—n;. Now nz—n; is a zero mean normal random variable of variance,
2R. Hence, P, is the probability that a random variable of unity variance will exceed

the value, A/V/2. i.e.
P, =1/2 — erf(A/V2).

However, there are two sidelobes of equal amplitude and the others are too small
in relation to the first two to contribute significantly to the ambiguity problem. Hence,
the total probability of an ambiguous peak appearing is obtained from the binomial
distribution as:

Py=1-(1-P,)?
(3.35)
=1—(1/2+ erf(A/V2))2

This function has a marked threshold characteristic and we can locate the thresh-

old by solving the equation:

Py =1/2.
erf(A/V2) =1/V2-1/2
A= 7.

Thus, for negligible ambiguity, from 3.34 we have the requirement:

1—a

R>> §RA=( 7 )2. (3.36)

It must be remembered however, that this inequality only guarantees unambiguous

detection when the nearest sidelobes to the main lobe are much larger than all others.

Now, from Fig. 3.12A, we find that a =~ .55. Hence R4 = 3.8dB. From 3.6A,
with a signal power of 18dB, we find that R ~ 11dB. This is well above the ambiguity
threshold, R4, justifying the earlier assertion.
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In this subsection we have looked at the application of our simple optimization
theory as given in theorems 1 to 3 to a practical example. That example is quite extreme
in a number of respects. The frequency band of interest is very wide relative to the

centre frequency, the transmission path transfer functions are highly coloured and the

noise is coloured.

We saw that, for this example, MV spectra can provide a significant improvement
in range accuracy over MDI spectra at moderate signal power. At lower power, MV
spectra give rise to poor and ambiguous detection. At high power, the performance
asymptotically approaches a limiting condition and is not significantly dependent on
the signal design, provided the full band is occupied. MTRI spectra tend to be similar

to MDI spectra and lead to almost identical performance.

3.2.8 White Environments

In this sub-section we shall apply signal optimization techniques fo a somewhat
more usual environment. The frequency band of interest is approximately 30kHz wide
again, but centred at about 100kHz. The transmission path transfer functions are flat

and the noise is white.

Fig. 3.13 displays the optimal spectra obtained at four different signal powers.
This time we see that the MTRI spectra are very dissimilar to the MDI spectra at very
low signal power but become more similar as the power is increased. The MV spectra

are dissimilar to the others at all signal levels.

We see that the MDI spectrum is always flat while the MTRI spectrum has a
preference for the high frequency end of the band. The MV spectrum is always zero at
the centre frequency and maximum at the band edges. At low signal powers it contracts

toward the band edges as it did in the previous example.

In Fig. 3.14 we see the curves produced as the performance indicators vary
with signal power. The detection performances of the three types of signals appear
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Figure 3.13
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B) Signal power is 13dB
C) Signal power is 27dB
D) Signal power is 40dB
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Figure 3.14 Performance Comparisons - White Environment
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Figure 3.15 Detection Thresholds - White Environment
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Figure 3.17 MYV Ambiguity Functions - White Environment

A) Signal power is 1dB
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very similar from the detection index curves. However, it is necessary to compute
the detection margins to verify this. Fig. 3.15 shows the detection thresholds for
various gate widths and Fig. 3.16 shows the detection margins. Again the MDI spectra

consistently outperform the others in this respect but never by more than a fraction of

1dB.

The reason for this similarity in spite of the very different spectral distributions is
simply that there is no favourable portion of the band for the MDI spectrum to retreat

to at low signal power.

From Fig. 3.16 we see that, with a 200uS gate width, the MV spectrum will give
improved range accuracy for signal powers in excess of about 13dB because above that
power, detection margins of greater than 3dB are achieved. However, from Fig. 3.14B,

we find that this improvement is negligible for signal power above 25dB.

At this point we should consider the question of ambiguity. Fig. 3.17 shows
the ambiguity functions resulting from the use of MV signals at four signal powers. As
before, an extremely highly developed sidelobe structure is evident at low signal power.
However, we see a much more obvious sidelobe structure at the higher signal powers
than we did previously. This is because the sharp spectral transitions at the band edges

are no longer smoothed by the colouration of the transmission path as they were in the

previous example.

Of particular interest is the sidelobe performance with signal power in the region
of 13dB to 25dB where we expect improved range accuracy from the use of MV signals.
Fig. 3.17B is the ambiguity function at a signal power of 13dB. From this figure we find
a & .9 and from equation 3.36 we find R4 = 17dB. From 3.14A we find that ® = 12dB

which is insufficient to eliminate ambiguity.

At a signal power of 27dB, however, we find from Fig. 3.17c that a ~ .4 and
from equation, 3.36 we obtain R4 =~ 0dB. Clearly there is no ambiguity problem here.
In fact the ambiguity problem is overcome at a signal power of about 16dB. Hence the
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MYV spectra give significantly improved range accuracy for signal powers between 15dB

and 25dB.

It is also worth noting, in relation to range accuracy, that the MTRI spectra give

very poor performance below about 15dB.

The transverse resolution performances of the MTRI spectra and the MDI spec-
tra are virtually identical for this example as we see from Fig. 3.14C. However the MV

spectra give somewhat poorer transverse resolution.

We have now compared the performances obtainable using the three types of
optimal spectra over a wide range of signal power for two very different transmission .
paths. We have seen that the usefulness of MV signals is limited by poor detection per-
formance and signal ambiguity. At moderate power, however, they provide improved .
range accuracy while at high signal power system performance tends to a limiting con-
dition which is independent of the signal provided the full band is occupied. We have -
also seen that the MV signals produce somewhat poorer transverse resolution than the
other types except at very high signal powers. The MTRI signals, on the other hand,
do not produce significantly improved transverse resolution over MDI signals and often,

in fact, have very similar spectra to the MDI signals.

For any particular application the true optimal spectrum will provide a compro-
mise between the performances of these simple optima. The question of how to effect

such a compromise is the subject of the next section.
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§3.3 Optimization With Respect to Mixed Criteria

We saw in the previous section that very poor detection performance can result
from the use of MV signals at low signal powers. Minimum local variance is not an
adequate criterion under these conditions as local variance is not a reliable indicator of
range accuracy. In some situations, also, MV gignals may not provide the transverse
resolution required. Clearly, it would be useful to know how to compromise between

the simple criteria in order to obtain a signal design that was best suited to a particular

application.

Usually, we want to optimize with respect to one criterion, subject to constraints
on the other two performance indicators. Typically, we want to minimize the local
variance subject to the requirements of reliable and unambiguous detection and adequate
transverse resolution. The detection requirements can be achieved by requiring that
the detection index be greater than some minimal value and the transverse resolution
requirement can be achieved by ensuring that the TRI exceeds a certain value. However,
initially we shall look at the problem of minimizing the local variance subject to strict

equality constraints on ® and TRL

We have seen in the previous section that R is a good indicator of detection
margin in that MDI signals generally yield the largest detection margins. Therefore a
detection margin constraint is equivalent to a constraint on R. Similarly, MDI signals
have the best sidelobe performance, while, for any given signal spectrum, unambiguous
detection will be effected provided the detection index provides some margin (say 3dB)
above the ambiguity threshold. Hence, the unambiguous detection requirement also
corresponds to a constraint on R. Of course, the constraint value to choose depends
intimately on the details of the particular transmission path and the choice of frequency
band. Designer intervention in the optimization process is necessary, in that several
attempts with different constraint values may be necessary before an appropriate choice
is made. The advantage of simplifying the detection constraints to a simple constraint
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on R in this way, however, is that the mathematical analysis is simplified considerably.

We now have two simple, strict equality constraints which may be expressed

mathematically as:

ZT/OO Gu(f] IHT(f)|2
o G

df = §Rmiﬂ i
1)+ G [ HADP (337)

and

= 2
8rT /(; fZGu(f) lHT(f)I de =TRI ;s (3.38)

c2 Gun(f) + Goo( ) |HAS)|

where R,,,;, and T'RI,,;, are constraint values determined by the designer.

As well as meeting these constraints we wish to minimize the range estimate
variance, given by 3.23 subject to the additional power constraint given by 3.15. The

solution to this problem is given in the following theorem which is proven in appendix

3C.

Theorem 4. Let G4 f) = OVf & [f1, f2]. Then the signal power spectral density, Ges(f), that

maximizes 3.23 subject to 3.15,3.37 and 3.38, if it exists, is given by:

: /
Gul(f) = { (kﬁ(f—fo>’+k%f=+k3):ﬂ“ lg)rlgm(au(f)l"’-Gm(f’ VieR  (3:39)

where

R = {f : (k?,(f— fo)2 Y kﬁ)l/z |Hp(f)] > (Gm.(f))llz} C Rr
b (3.40)

Rr = [f1, f2]

and ky, kT and kg are non-negative constants chosen to satisfy simultaneously 3.15, 3.37 and 3.38.

The solution given in theorem 4 is not simply a combination (linear or otherwise)
of the solutions given in theorems 1 to 3 for at least two reasons. Firstly, the definitions
of the frequency regions, R, and Ry, are not the same in any two of the theorems.
Secondly, the value obtained for the centroidal frequency, fo, is not, in general, the
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same in the solution of theorems 3 and 4. Nevertheless, there is a correspondence
between the values of R, and kg and between those of TRI,,;, and kr in that an
increase in one of the constraint values in 3.37 or 3.38 always results in an increase in
the value of the corresponding coefficient in 3.39. This can be seen from an inspection

of the proof of theorem 4 in appendix 3C.

Now, the solution of Theorem 4 is not guaranteed to exist. It may not exist for
one or more of several reasons. Firstly, the left hand side of 3.37 may always be greater
than the right when the other constraints are met. Secondly, the left hand side of 3.38
may always be greater than the right when the other constraints are met. Thirdly, the
left hand side of 3.37 may always be less than the right when the other constraints
are met or, fourthly, the left hand side of 3.38 may always be less than the right when

the other constraints are met. We require a strategy for dealing with these various

conditions.

The first and second of the above conditions are advantageous in that our con-
straint(s), 3.37 or(/and) 3.38 is(/are) more than met. In this case the optimal solution
is obtained by simply eliminating the offending constraint. Inspection of the proof in
appendix 3C reveals that the solution to the new problem is obtained by setting the

corresponding coefficient in 3.39 to zero.

The third and fourth conditions are rather more difficult to deal with. The
author has adopted the following strategy. Detection performance takes top priority,
followed by transverse resolution. Therefore, if 3.38 cannot be met subject to the other
constraints then the solution adopted is to use the signal spectrum that maximizes TRI
subject to 3.15 and 3.37. It is easily deduced from the proof of theorem 4 that the
solution to this problem is obtained by dropping the constraint, 3.38 and setting k. to
gero. If neither 3.38 nor 3.37 can be met then we simply revert to the simple criterion

of maximum detection index subject to 3.15.

In practice, the designer looks at various solutions obtained by using different
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constraint values. The detection and ambiguity thresholds are also taken into account
before the choice is made of the spectrum best suited to the application. In order
to facilitate such investigations, the author has developed a computer program that
implements the solution strategy outlined in the preceding paragraph. A listing is
included in appendix 3B. The program involves four nested iteration loops to obtain

the constants, ky, kr, k4 and fo.

The form of the solution in R, has been modified slightly from that given in 3.39

to an equivalent form given by:

ko ((F = fo)? + B272 4+ K2) B (1)] (Gan(1)Y2 = Gan(f)
Goo(f) = ( L d|)H (L)IZ .)l ) (3.41)

in which kr = k.kp and kg = k. kj.

This modification ensures that the power constraint given in 3.15 can always be
met by adjustment of only the one coefficient, k,. This simplifies the procedures for

updating k7 and kg from one iteration to the next.

The overall solution is achieved by a relatively simple process in which several
simple decisions are made at each iteration step. The procedure starts with k; and kp
set to zero. The inner two iteration loops correspond to the simple MV optimization
process under this condition. This MV solution is then tested for adherence to the
detection index constraint (equation 3.37). If the constraint is met or more than met,
then kg is left at zero and the TRI constraint (equation 3.38) is tested. If mot then

iteration around the inner three loops obtains a solution satisfying the detection index

constraint.

This third level of iteration continues until either the constraint is met or the
first term in the numerator of 3.41 (involving the factor |f — fo|) is making negligible
contribution to the signal power. This condition indicates that the constraint is not
achievable, in which case the hypothesized solution being tested is chosen as the overall
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solution. This solution is a very close approximation to the MDI solution because kr is

zero and k, is close to zero.

The outer iteration loop attempts to achieve the TRI constraint (equation 3.38)
by means of an algorithm analogous to that discussed in relation to the third loop.
Again, this procedure is terminated if the constraint is met or if the |f — fo| term in

the numerator of 3.41 is making negligible contribution to the signal power.
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§3.4 Examples of Mixed Criteria Optimisation

As a means of illustrating the use of the mixed criteria optimization technique

described in the previous section, two examples of its application to the transmission

path of Fig. 3.4 will be discussed.

In the first of these examples, the TRI was unconstrained. This was achieved
by running the computer program for mixed criteria optimization with TRI,,;, set to

gero. The detection index constraint, R,,;,, was set to 14dB.

The resulting signal spectra at various signal powers are displayed in Fig. 3.18.
Comparing these results with those of Fig. 3.5, we see that, at signal powers of 1dB
and 13dB, the spectra are MDI spectra, while at 27dB and 40dB they are MYV spectra.
(Note that signal power is adjusted to within .1dB of the required value - this accounts

for some small differences in absolute power density.)

Fig. 3.19 displays the curves of the three performance indicators for comparison
with Fig. 3.6. Comparing the detection index curves, we see that, below about 12dB in
signal power, the mixed criteria optimal spectra give identical performance to the MDI
spectra. From 12dB to about 21dB in signal power, the detection index is constant at
14dB. Above 21dB in signal power, the detection index achieved is that achieved with
the MV spectra.

Looking at the curves of range error, we see that the range error curve for the
mixed criteria optimal spectra drops sharply away from the MDI curve above about
13dB and is close to the MV curve above about 17dB. These comparisons clearly illus-

trate the way in which detection performance can be traded for range accuracy.

The TRI curve has been presented for completeness. Again we see a transition
region below which the performance is as for the MDI spectra and above which it is as

for the MV spectra.

In the next example, Rnin Was set to 10dB and T RI,,,;, was set to 2.6 X 108. The
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Figure 3.18

Ezamples of Mized Criteria Optimization
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Figure 3.19 Performance Indicators for Mixed Criteria Optimal Spectra
(Unconstrained TRI)
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Figure 3.20 Optimal Spectra - Mixed Criteria
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spectra obtained are illustrated in Fig. 3.20. Comparison with Fig. 3.5 reveals that the
spectrum is that of an MDI spectrum at a signal power of 1dB. By 13dB, the transition
to MTRI spectra has been completed and by 27dB the spectrum is an MYV spectrum.

The performance curves are presented in Fig. 3.21. Only one of the two transition
regions is evident in these curves because of the close similarity in performance of the
MTRI and MDI spectra. The obvious transition is that from MTRI spectra to MV
spectra which occurs for signal powers between about 16dB and 24dB. In this region
the TRI is held at 2.6 x 10%, the detection index actually drops slightly and the range
error drops sharply below the MTRI curve to meet the MV curve.
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Figure 3.21 Performance Indicators for Mixed Criteria Optimal Spectra
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§3.5 Signal Waveform Design

When the transmitted signal is subject to a peak power limitation and is to
be transmitted with a limited duration, then the signal energy will be maximized by
the transmission of a constant envelope signal. In fact, in a number of places in the
preceding chapters, the explicit assumption was made that the signal to be transmitted
was a constant envelope signal. In this section we shall see how arbitrary signal spectra

can be obtained approximately by the design of a constant envelope waveform.

We shall consider two types of constant envelope waveform. These are phase-
modulated sinusoids and binary signals[3'9’3'10]. The selection and design of such signals
is usually discussed with reference to their ambiguity functions in the range-Doppler
plane. However, from the discussions and results in this chapter, we see that such
considerations are unnecessary here. This is partly because considerations of clutter
rejection and signal ambiguity have already been taken into account in the spectrum
design. It is also due, in part, to the fact that we are addressing a somewhat atypical
problem. The transmission path characteristics may be very complicated, Doppler
effects are negligible and the clutter is evenly distributed in range in the vicinity of

target range.

Now, binary signals are often used (usually to modulate sinusoidal carriers) be-
cause of the close approximations to impulsive autocorrelations that can be achieved
with certain classes of them. The extremely low level range sidelobes that can be
achieved are advantageous in many situations. However, such autocorrelations trans-
form to nearly white power spectra over the frequency band of interest. Hence such
signals are of limited use in our application and methods of tailoring the spectrum of

long binary sequences to within the accuracy required have not been found.

An important class of phase-modulated sinusoidal signals is the class pioneered
by Price et all®1l, Chirps or swept frequency signals are used extensively in pulse
compression Radar and Sonar. They are usually linear chirps in which the instantaneous
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frequency is swept at a constant rate across the band, producing a linear frequency-time
trajectory. The spectrum of a linear chirp approximates the rectangular shape that
might be expected from simple-minded instantaneous frequency considerations and the
closeness of this approximation depends on how quickly the instantaneous frequency

traverses the band[311l,

Similarly, the spectrum of a chirp with a non-linear frequency-time trajectory
can be made to approximate any required power spectrum closely, provided it does not
traverse any part of the frequency band too quickly. The way in which the design can
be achieved is indicated in Fig. 3.22. The technique involves constructing a chirp so
that the derivative of its time-frequency trajectory is proportional to the required power

spectral density at each point in the frequency band of interest.

The method amounts to:

1) Numerical computation of | flx G, (f)df for all frequencies in the band, [fi, f2],
to give a function proportional to the time-frequency trajectory. (i.e dt/df = G,s(f).)

2) Scaling of this function so that the maximum time equals the required signal
duration. This produces the time-frequency trajectory, ¢(f;) where ¢ is time and f; is
instantaneous frequency. This function is stored in an array in the waveform design

computer program. The indices of that array represent frequency bin numbers.

3) Synthesis of a chirp by computing sin(2x f(: fi(t)dt) at incremental values of ¢
corresponding to sampling instants. Because of the way the time-frequency trajectory
must be represented in the computer (see para. 2) ), the integral in the above function
is computed by treating the trajectory as a function quantized in frequency as well as

time.

The listing of a computer program to perform these computations is included in
appendix 3B. An example of the accuracy with which required spectra may be approx-

imated is given in Fig. 3.23.
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Figure 3.22

Chirp Design Concept
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This section completes the study of signal optimization in this thesis except
for the important class of problems in which the transmission path characteristics are
uncertain. The problem of jointly optimizing the signal and receiver filter under such

uncertainties is studied in the next chapter.

3-60



section 4.0 Introductory Remarks

4. OPTIMIZATION FOR UNCERTAIN MODELS

§4.0 Introductory Remarks

Often the designer is confronted with a situation where a precise specification
for the transmission path is difficult or impossible to obtain. There are two classes of
such situations. In one class, exact measurements of the target and clutter transmission
path transfer functions are not available and the designer does not have complete con-
fidence in the estimates that are. In the other class of problem, the transmission path
characteristics are known to vary and hence there must be an uncertainty included in

the specification of those characteristics.

Clearly, in such situations, the techniques of the previous chapters are inadequate
as they may only be applied when the transmission path characteristics are precisely

specified. A more sophisticated approach is needed which takes account of the uncer-

tainties present in the problem.

There are two established approaches to this sort of problem. One may design
an adaptive system which tunes itself to the characteristics of the path within certain
bounds. Alternatively, one may design a non-adaptive system which is optimized ac-
cording to a robustness criterion. This criterion is chosen to ensure that the resulting
system performs well, but not necessarily optimally, for any transmission path within a

particular uncertainty class.

The first of these approaches can often result in very complex system designs
with attendant problems of high cost and unreliability. For some classes of problem
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such an approach is justifiable. However, the design of a real-time system for transmis-
sion path identification, as would be required here, would be complex in the extreme.
Furthermore, in some cases of practical interest, such as ultrasonic sensing of sheepskin
through the fleece [11] variations in transmission path characteristics occur much more

rapidly than an adaptive system could be expected to track accurately.

In this chapter we shall explore the second approach in which the signal to
be transmitted and the receiver filter are jointly optimized according to a max-min
robustness criterion. In section 4.1 we will examine the formulation and solution of
the robust filter design problem as reported elsewhere in the literature. Section 4.2 is

devoted to the formulation and solution of the somewhat more complicated problem

described above.
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§4.1 Robust Matched Filters

The term matched filter is the generic name applied to the class of filters that
are designed to maximize the signal-to-interference ratio at the signal peak (SIE) at the
filter output. A matched filter must be designed for a particular signal input in the
presence of stationary noise having a certain known power spectrum. The output SIR

of a general filter is given by:

2
|12 RUNE(f)df
SIR = - (4.1)
o Gu( ) H(f)2df
where
R(f) is the Fourier transform of the signal
H(f) is the filter transfer function

Gi;(f) is  the interference power spectrum

It is, perhaps, remarkable that maximization of SIR by the choice of H(f) yields
an expression proportional to H(f) as given in 2.24. The filter specified in the latter
equation was chosen to yield the log-likelihood function of delay at its output. The

matched filter is given by the expression:

(4.2)

This expression differs from 2.24 only in that an arbitrary scale factor, k, may be applied.

The maximum SIR given by 4.1 with H(f) = Haz(f) reduces to:

+c0 2
SIRyux = / LRI 4 (4.3)

o Giilf)

This is exactly equal in value to the expressions for detection index given by 2.23 and

2.25.

This correspondence between matched filtering and correlation techniques for
delay estimation will justify the approach taken in section 4.2. However, we will now
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explore the problem of robust optimization of H(f) in 4.1 when R(f) and G;(f) are

uncertain.

The approach reported several times in recent years [41:4243:4445] g one in
which the minimum SIR encountered for any pair of signal and interference within
specified classes for R(f) and G;(f) is maximized by choice of H(f). In other words,
the designer chooses H(f) to optimize the worst case performance. A similar approach

has been reported for Wiener filters [4.1,42,4.6,4.7,48]

The problem lends itself to a game theoretic formulation in which the players are
the designer and nature. The designer has a set of strategies, { H(f)}, and nature has
a set of strategies, C, x C;, which is the cartesian product of the uncertainty classes,
C, and C; corresponding to R(f) and Gi;(f) respectively. The payoff for the designer
is the SIR which we will denote by p(H; R, G;;). We can arbitrarily assign a payoff of
(—p(H; R, Gy;)) for nature. The problem can then be described formally as a two-person

ZETo-sum game [4'9’4’ 10] .

If the strategies, H(f) and (R(f), G:i(f)) can be considered mized strategies then
the game is guaranteed a solution by the fundamental theorem of game theory [4.10], A
mixed strategy is one which can be expressed as a linear combination over a finite set of
pure strategies. The vector of coefficients is a probability vector known as the strategy
function and the payoff for a pair of strategy functions is given by the expected payoff

over the matrix of pairs of pure strategies. We have

H(f)=)_F7H;(f),
(R(£),Ga(£)) =D PY (R(1), Gii( )
k

p(H;R,Gi) =D p(Hj;(R,Gi)e) P P,
i k

in which the probability, PJp is the j;, element of the designer’s strategy function (or
vector) and P is the k5 element of nature’s strategy function (or vector).
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In general, however, the strategies cannot be considered mixed and it will be
necessary to prove that a solution exists. Nevertheless, we can gain insight into the

problem by considering the form of the solution given by the fundamental theorem.
Formulating the problem, we wish to find the function, H(f), such that:

MAX MIN

SIR =pr = 5y cxc ¥

(H; R, G’,‘,‘), (4.4)

in which pp is defined.

By the fundamental theorem 1% we have:

MIN MAX
PR = C, x C“ {H(f)} p(H;R,G,,)
MIN
= C, x C; P(HM; R, Gii)s (4'5)

where Hps(f) is the matched filter for R(f) and G;;(f). That is
pr = p(Hg; Rr,Gir), (4.6)

where Hp(f) is the matched filter for the least favourable pair of signal and noise
characteristics, Rg(f) and G;g(f).

This solution, denoted by (Hp; Rg, Gigr; Pr) represents a saddlepoint of the game.
That is to say, for natures strategy, (Rg, G:r), the designer can only reduce his payoft,
p(H; Rr,G;Rr), by varying H from Hg. Similarly, for the designers strategy, Hg, nature
can only reduce her payoff, (—p(Hg; R, G;)) (and thereby increase the designers payoff )
by varying (R, Gi;) from (Rp, Gig). Hence, the value of the game, pg, represents the
worst payoff the designer can expect for his strategy, Hg, and the best payoff he can

expect for nature’s strategy,(Rg, Gigr)-

The various references (4145 dealing with robust matched filtering deal with
particular problems in which the signal and interference uncertainties are specified in
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various ways. The solutions are rarely, if ever, in closed form and generally involve
unknown constants which must be solved for recursively. Since the formulations are
not in the forms of mixed strategy games, it is necessary to show that the solutions
do exist. The formulation and solution given in [4.1] are presented in slightly modified
form below. This formulation closely resembles that presented in the next section for our

joint (signal and filter) optimization problem. The original form was two-dimensional.

The criterion for optimization is again given by 4.4 with p(H; R, G;;) given by

4.1 and the uncertainty classes specified as:
cx = {R): [ IR~ RlPa <51, (47

6 = {eun: Hn <G vy [Gung =), 49)
where Ro(f) is the nominal signal and § is the maximum modeling error energy. Gi(f) is

specified as lying between upper and lower bounds given by L(f) and U(f) respectively

and the total interference power is specified to be a? .

The solution presented in [4.1] is given in implicit form as:

Ro(f)G;:r(f)

Re(f) = OETE (4.9)
U(f) Vf€Ry
Gir(f) = { L(f) VfeRs (4.10)

B2UN vf € Ry

where Ry = {f: kU(f) <|Rr(N)},
Ry = {f: |Rr(f)| < kKL(f)}, (4.11)
Ry = {f: kL(f) < |Rr(f) S KU(N)},

and the non-negative constants, k and ¢ are chosen to satisfy:

[G,R(f)-I-C]
1 _ 42
and [ Lpar+ [ v [ im0 = o (@13
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4.12 and 4.13 are derived from 4.7 and 4.8 by substitution from 4.9 and 4.10.

Necessary and sufficient conditions for the existence of non-negative constants,
k and c satisfying 4.12 and 4.13 are derived in [4.1]. A sufficient condition is that L(f),
U(f) and |Ro(f)] are all finite and non-negative (consistent with their definitions) and
that L(f) and U(f) are non-zero when |Ry(f)| is non-zero. Also, if either § or o; are

zero, then the solution exists.

The solution may be interpreted in interesting ways. For example, the forms of
Hp and pg are consistent with an interpretation in which the constant, ¢, represents a
white noise component added to the interference to account for the uncertainty in R(f).
Another observation is that Rp and G;g are the most similar in shape of all the pairs
of signals and interference spectra in the class Cr x C; when the signal modeling error
is assumed to be maximal. (This is equivalent to saying that R and G;g are chosen to

make Hp as flat as possible.)

The method of formulation, the form of the solution and the techrique of proof
given for this problem in [4.1] all contribute to the approach taken in the next section.

However, there is no direct correspondence between the two problems.
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§4.2 Robust Combinations of Signalas and Filters

In the previous section we saw that the ML filter presented in chapter 2 is closely
related to that class of filters known as matched filters, which are designed to maximize
the SIR at the filter output. In fact the SIR for a matched filter is equal to the detection
index introduced in chapter 3. Furthermore, we saw in chapter 3 that signals optimized
with respect to a minimum local variance criterion could perform very poorly in relation

to detection performance compared to those chosen to maximize the detection index.

We are led by these considerations to the approach taken in this chapter for
dealing with uncertainties in the transmission path model. Firstly, our robust system
must have good detection performance and it follows that we must optimize with respect

to a detectability criterion. Secondly, we expect detection performance to depend on

SIR.

Our approach, therefore, will be to maximize the minimum SIR over the uncer-
tainty class of transmission paths by choice of the signal, S (f), and the receiver filter,
H(f). We will see that, if we assume a fixed duration constant envelope signal as in
chapter 3 then we need only optimize G,,(f), the signal power spectrum and H r(f),
the optimum filter, must be specified in terms of the particular signal implementation,
S(f). The problem solution is fully defined, in analogy to the result discussed in the

previous section, by specification of the least favourable transmission path.

Our first step, in developing this approach must be to determine how we ghall
specify the transmission path uncertainties. The starting point will be the precise
transmission path model described in chapter 2 and summarized diagramatically in
Fig. 2.3. That model was completely specified by means of three functions. Hrp(f)
modeled the target path transfer function. |Hg( f)|2 modeled the squared magnitude
of the stochastic transfer function of the clutter path. Gyua(f) represented the noise
power spectrum. Our uncertain model will involve specified uncertainties in some of

these functions.
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Now, according to the discussion in section 4.0, these uncertainties arise as a
result of imprecise estimation or because of variations in the transmission path char-
acteristics. The noise power spectrum, Gpn(f), however, is readily obtained, in most
cases, by means of a passive measurement. Furthermore, because the noise is often gen-
erated in the front-end of the receiver or in the close proximity of the receiver, Guu(f)

is usually quite stable. For these reasons we will assume that Gun(f) can be precisely

specified.

The transmission path transfer functions, on the other hand, do require uncertain
specifications and we will start by considering a direct analogy to the uncertain signal
and noise models of the previous section. Hp(f) will be taken as analogous to R(f) and

|H.(f)|® will be treated as an analogue of Gy;(f). Thus we have:

or = {mn): [1Hnn - mlDP o <o (4.19
. = {IB(P+ 2D <P <V BN =e} (419

The forms of these specifications are appealing because the values of ér, L f)
and U,(f) could be readily estimated by processing a representative set of measurements.
However, they do suffer from some drawbacks which were much less relevant in the
analogous example discussed in [4.1]. These difficulties only arise when the uncert ainties

being specified arise from variability in the actual transmission path.

Consider,firstly, how one would go about constructing a specification for Cr. One
would presumably have available a set of functions, Hr(f) belonging to the class to be
modeled. (Methods for obtaining these functions will be discussed in chapter 6) Let us
assume,for the purpose of this discussion, that this set is known to include bounding
functions of the class for which the inequality in 4.14 is an equality. We could choose
Ho(f) to be the mean of the functions of the set and find 47 for 4.14 by evaluating the
integral in 4.14 for each function in our representative set. However, this approach might
yield an unnecessarily large value for 6. In other words the class Cr might be broader
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than necessary to accommodate all the functions in our set of measurements. A better
way to choose Ho(f) would be to select the function which minimized the maximum
value of the integral in 4.14 over the set of measurements. This approach would yield a
class, Cr, as defined in 4.14, which was just sufficiently broad to accommodate all the

functions in our representative set.

The question arises, however, as to whether the form of the specification, 4.14,
prevents us from reducing the size of Cr even further. To what extent this is true

depends on the nature of the uncertainty being modeled.

In some cases of practical interest such as ultrasonic sensing through fleece (-1 ap
important contribution to the variability of Hr(f) arises from variations in the medium
attenuation and this has important implications in the context of the present discussion.
The medium attenuation is usually coloured. However we can illustrate rather simply

the inadequacy of the specification in 4.14 by considering a flat attenuation.

Imagine that the only source of variation in Hr(f) was a flat attenuation which
varied by an order in magnitude. Then we should be able to specify Hr(f) exactly
apart from a scale factor. However, if we construct a specification as in 4.14, the class
prescribed will include a wide variety of different colourations and phase responses, few
of which can exist in the true class being modeled. In fact the specification would be so

broad as to be virtually useless as a description of the transmission path.

A considerable improvement can be obtained by specifying Cr in the following

way:
Hr(f): Hr(f) = AHrr(f),
/B
or = {er= /f \Hzr(f) - Ho( DI df < bz, (4.16)
A 2 Amin

where f4 and fp represent the frequency bounds within which we wish to perform our

optimization.

When constructing a specification of the form given in 4.16 from a set of mea-

4-10



sectson 4.2 Robust Combinations of Signals and Filters

surements, one would minimize the size of the class, Cr by choosing A for any function,
Hr(f), in the set of measurements, such that the corresponding error energy, er as de-
fined in 4.16, is minimized. Ho(f) is chosen to minimize the maximum value of er over

the set of measurement functions when A is chosen in this fashion for each function.

The construction of such a specification from a set of measurements is a somewhat
complex procedure. However the form of this specification more closely represents the
types of uncertainties which would have to be represented in practice. Later in this
chapter and in chapter 6 we will consider obtaining an approximate robust optimum
solution by applying techniques which avoid these difficulties and those associated with

computing an exact mathematical solution.

The specification, 4.15, also needs modifying. This is because, in practice, the
integral in 4.15 can be expected to vary significantly over the true class of conditions to

be represented in many situations. A better specification is:

|H)? ¢ Le(f) < |HLI < UL

Cc = ] ) 2 9
E=fIEUH#S%
fa

(4.17)

The remaining shortcoming of the form of the model represented by 4.16 and
4.17 is that it does not take account of dependencies which may exist between the
variations in Hr(f) and those in [H.(f )|2, and between A and Hrz(f)-The penalty paid
for not taking these dependencies into account may be a reduction in detection index
over the true class of conditions encountered because the system will be optimized for
robust performance over a broader class than necessary. However, 4.16 and 4.17 remain

relatively simple and further complication is probably unjustified.

We have now developed suitable forms for the specifications of the target and
clutter path transfer function classes. We now need to derive an expression for SIR in
terms of the signal power spectrum, the noise power spectrum and the target and clutter
path transfer functions. Once we have such an expression (for the payoff in our game)
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we can attempt to maximize its minimum value over the classes of transfer functions

(nature’s strategies) by choice of the signal power spectrum and the receiver filter (the

designer’s strategy).

Restating our problem explicitly, we wish to find Hg(f) and Sg(f) (where *R”
denotes a robust-optimal function) such that the minimum value of p (HT, chlz 1 H,S )

over the classes, Cr and C. given in 4.16 and 4.17 is maximized, where:

 |EswmnEny|
177 (G 1) LHANI + Gunl )| IE (S

p(Hr,|HJ*; H,S) (4.18)
where G,,(f) is the power spectrum of the signal, S(f). Note that p (HT, IHC|2 s H, S)
is simply the SIR obtained by substitution into equation 4.1. It may also be regarded as
the designer’s payoff with the pair of arguments to the left of the semi-colon representing

nature’s strategy and those to the right of the semi-colon representing the designer’s

strategy.

Now, equation 4.18 still involves the Fourier transform, S(f), of the transmitted
signal. We shall therefore manipulate it so that it only involves the power spectrum of
the transmitted signal. This simplifies the solution process. Without loss of generality,
we can write:

H(f) = KS*(f)H(f)

which defines H,(f) and where K is an arbitrary constant.Further, if S(f) is a constant

envelope signal of duration T then 4.18 can be written:

T|f2 G N H (1) H(NY|
177 [Gua N | BN + Gun( )] 1H ()P4

p (Hr, |H.|”; H, Gu) = (4.19)

The saddlepoint solution to this problem is fully specified by the least favourable
pair of target and clutter transfer functions, Hygr(f) and |H.r(f )|? from within the
classes, Cr and C.. Hg and Gpg are optimal for this least favourable choice, with Gg
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section 4.2 Robust Combinations of Signals and Filters

being the robust-optimal signal power spectrum. The saddlepoint is defined by:

p (Hr,|Ho*; Hp,Gr) 2 p(Hrn, | Henl®; Hr, Gr) > p (Hr, | Herl*; H,Gur) (4.20)

This solution is given in the theorem below which is proved in Appendix 4.

Theorem 5. For the classes, Cr and C,, and the noise power spectrum, Gpp(f), the robust filter

and signal pair (H R, G R) satisfying 4.20 is that pair which is optimal for the pair of least-favourable

transfer functions defined by:

AminHo(f) (Gan(£) + Gr() |1 Her( 1))

Hrr(f) = > (4.21)
Gun(f) + Gr(f) (IHR (NI +¢)
Uc(f) Vf€E Ry
| Hr () = { Llf) VieR (4.22)
GniﬂrifgL?}ciGnn (f) Vi€ Ry
ksl B 1 ()(Gan (1) /2 =G (1) 5
where : Gr(f) = { B VieRrnk (4.23)
0 Vfe Ry
Ry = {f : k1 [GR(F)Uc(f) + Gun(f)] < Gr(F) |Hrr(f)|} C Rr)
Ry = {f : k1 [GRr(£)U(F) + Gun(f)] = Gr(S) |Hrr(f)|} C BRr
Ry =RpuU Ry C Ry ’ (4.24)

Ro= {1 : Aminks |Hr(f)] < (Gea(£)'/?} € Br
Rr={f:fa<f<fp) J

The non-negative constants, kj, k2 and ¢ must be chosen to satisfy the three
equations below and a sufficient condition for their existence is that Gun(f), |Ho(f)},
L.(f) and U(f) are all finite, non-negative real functions on Rr and that 47 and o2

are finite non-negative real numbers while P, is a finite positive real number. We have:

[ 1R = o (4.25)
2 Ho(D o _
: f = qr (4.26)
/RT [1Ba(NF +c]
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section 4.2 Robust Combinations of Signals and Filters

f Gz(f)df = P, (4.27)
RocRy

Equations 4.25 and 4.26 arise from the constraints within the class descriptions
for the clutter path transfer function and the target path transfer function, respectively.
Equation 4.27 arises from the signal energy constraint. In general it will be necessary

to solve 4.25-4.27 iteratively for k;, k2 and c.

An explicit form of the above solution is derived in Appendix 4 in which the
right hand sides of the equations, 4.21-4.24, and both sides of the equations,4.25-4.27

are cleared of Hpg, H.p and Gg. An interpretation of this result is presented in section

4.3. The solution is:

Amin Bo )T )e/ka(GanU) 5 & By

Ue(f)+e
|[Hrr(f)| = Amin]HBU)]L}‘(C%-;i{:kg(Gnn(f]}ln Vfe Ry (4.28)
Apin |Ho(f)| = kxe Vf € Ry
arg (Hrr(f)) = arg(Ho(f))Vf € Br (4.29
Uc(f) Vf€ Ry
B = { Lelf) Vi€ Ry (4.30)
Am.-,.kzwo(ﬁqk-’(c..n(f))‘/’ —¢ VfERy

Ry = { £ ik (Ue() + ©) < Aminka | Ho(f)] = (Gun(1)"/*} € Br |
Rag = {1 ko (Ee(£) +©) < Auinka | Hal D] = (Gun(F)"*} € B

Amink2 |Ho()] = (Gun(D) 2 <kika (U —c(f)+¢) ¢ (431)
Ry = {1+ Amink2 |Ho(f)] — (Gan(N)/? < kuka (L) + )} € Br
Ro= {1 : Aminka | Ho(f)| = (Gan(1))'/* < 0} € Br |
k1, k2 and ¢ are then chosen to satisfy:
v+ [ Ll
= ac (4.32)
Apinkz |Ho(£)] = (Gun( £ _ '
+/RM( s —c)df—af
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2 [ A o o[ _HWDE
s a? < fain e

4 czklkgf
i [

] _ 1/2
ks [ @un(1) 2+ [ (Gual i Aminbr B )y

4.33)
Ho(f)P PR
Apinka | Ho(£)| — (Gun(1)/?]

U(f)+e¢
1/2 Aminkz [Ho(f)| = (Gunl N - _
(4.34)

The resulting form of Gp is:

‘. L] 1/3
Aninkal G D) (@5, (£))* VS € Ry

; - 1/2 _
Ga(s) = | A Ca O G, (1) VfeRLC Ry (ass)

k1ks (Ga(£))" Vf € Ry
L0 Vf € Ry

The existence of non-negative constants, ki, k2 and c satisfying 4.32-4.35 is also
proved in Appendix 4 under certain minor restrictions. As a by-product of that analysis
we see that 4.32 can be solved for k; given any allowable values for k2 and c. Similarly,

4.33 can always be solved for ¢ provided 67 < Ey and 4.34 can always be solved for ko.

An appropriate procedure for solving these simultaneous equations recursively,
is presented in chapter 6 along with the listing of a computer program that implements

the procedure. The convergence properties of this procedure are also investigated in

chapter 6.
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§4.3 Discussion

The solution given by 4.21 to 4.35 can be interpreted in several interesting ways.
It appears that ¢ represents a white component added to the squared magnitude of the
clutter path transfer function. To see this from equations 4.23 and 4.2 by substitution

from equation 4.21, we can obtain:

(va(f))llz [Amt'nkZ lHO(f)I - (G""(j))llz]
|H(f) +¢

Gr(f) = (4.36)

and He(f) = Amin Ho(f) (4.37)
Gunlf) + Gr(f) (1Her (N +¢)

It is immediately apparent, from comparison of 4.36 and 4.37 with equations
3.16 and 2.15, respectively (taking into account that Hr(f)Sr(f) is proportional to the
optimal correlation reference), that this robust optimum solution is also optimum for a

pair of transmission path characteristics given by:
Hr(f) = AminHo(f)
2 2
|He(NI* = |Her(NI" +¢

Another observation is that Hrg(f) and |Hcr( f)I? are chosen such that the

function |.HR(_f)|2 Gr(f) is as flat as possible. In Ry, for example, we have:

2 2
|HR(.f)|2 GR(f) - lHTR(f)| (GR(f)) - 5 = kg
[Gan() + Gr(N) |Her(NI]

An interpretation of this is that the least-favourable transmission path is that which
allows the designer to use the least overall colouration to obtain optimum performance.
A similar interpretation applies to the robust optimum matched filter result discussed

in the previous section.

A result which was fully expected is that the value of Apmin does not affect the
robust optimum solution. This can be seen by inspecting 4.36 and 4.37. In 4.36 k3 is
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section 4.8 Discussion

adjusted to provide the required signal power. Hence any change in the value of Apin
will always be offset by a change in the value of ky. In 4.37 Ann simply scales the
optimum filter transfer function and therefore has no effect on the SIR. The nett result
is the same as if we simply dropped the third inequality from the specification, 4.16,

provided we adhere to the same procedure in constructing that specification.

We can summarize the characteristics of the least favourable transmission path

(with A retained for completeness) as follows:

1) A= Apnin- The mean magnitude of the target
path transfer function is minimal.
2) er = bp. The modeling error of the target
path transfer function is maximal.
That is to say, the transfer
function is as different from the
nominal transfer function as possible.
3) P, =o2. The clutter path transfer
function has maximum ”power”.
4) arg (Hrr(f)) = arg (Ho(f)). The phase response of the target
path is that of the
nominal target path.
5) \Hr ()2 Gr(f) is The optimum overall colouration
as flat as possible. provided by the signal and

filter pair is minimal.

These characteristics can aid in identifying, approximately, the least favourable path as

discussed later.

The importance of Theorem 5 lies in the fact that its proof demonstrates that,
for a realistic formulation of the problem, a solution exists. In order to design the robust
optimum system one must firstly identify the least favourable path. It is possible to do
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section 4.3 Discussion

this approximately without solving the equations, 4.32 to 4.35.

For example, we may have a set of pairs of functions, (HT( N\ He(f )|2) Then,
we can simply compare their optimal detection indices and choose the pair yielding the

smallest value.

One advantage of this approach is that it does take account of the dependencies
between A, Hr(f) and |H( f)I? discussed in the previous section. It can therefore be

expected to produce a less conservative result.

In Chapter 6 this approach is compared to the alternative of specifying the
uncertainty classes as in 4.16 and 4.17 and then solving for the solution given in Theorem

5. A practical example is used to illustrate the comparison.
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section 5.0 Using Prior Information

5. CONDITIONAL M.A.P. ESTIMATION

§5.0 Using Prior Information

Woodward[2!] once wrote, in relation to signal parameter estimation,  guesswork
destroys information”. What he meant was that using guesswork in performing an
irreversible process on a signal prevents any later process from extracting information
from the signal by using more reliable prior information. The way to extract from a
signal the maximum quantity of information about a parameter is to use all available

relevant prior information in the process.

In chapter 2, we saw that ML estimation is a process in which no prior informa-
tion is used while MAP estimation uses all the prior information that exists. This is
because MAP estimation explicitly uses the prior probability density function (PDF) of
the parameter being estimated. Furthermore, it uses that function in an optimal way.
Now the pricr PDF contains all the prior information about the parameter. It is not
surprising, therefore, that, as we shall shortly see, in several senses, MAP estimation is

optimal.

However, the statement that the MAP estimator uses the prior PDF in an optimal
way requires justification and an explanation. The MAP estimator uses the prior PDF
together with the LLF to construct the posterior PDF as we saw in chapter 2. The
MAP estimate is then chosen to maximize that posterior PDF. Thus it is the most

probable value of the parameter, taking in to account all the relevant information that

exists.

Furthermore, if the posterior PDF is symmetrical, the MAP estimate is the min-
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section 5.0 Using Prior Information

imum mean squared error (MMSE) estimate of the parameter [23:2.4]  This symmetry
requirement is often satisfied approximately in practice. The reason is, simply, that
there are usually a large number of independent contributions to our uncertainty about
the value of the parameter to be estimated. Hence, we can invoke the central limit
theorem!® to show that the posterior PDF is approximately normal and therefore
closely symmetrical. Usually, we want to minimize the mean squared error and we can

do this by choosing the MAP estimate if we can obtain such an estimate.

However there is a difficulty with the implementation of MAP estimation tech-
niques in practical signal parameter estimation applications (particularly in real time).
The problem is that, nearly always, much of the prior information about the parame-
ter to be estimated is unavailable to the estimator. It exists, and could be assembled
into a prior PDF if time permitted and the necessary mechanism for doing so existed.

However, such a scheme is usually quite impractical.

In section 5.2, a simpler problem will be tackled in which only the most readily
available prior information is used in an optimal, yet practical way. However, the con-
ventional approach is to use GML estimation as defined in chapter 2. Now a parameter
gate represents an explicit and usually inaccurate assumption about the nature of the
prior PDF. Hence, GML estimation involves guesswork in an irreversible operation and,

therefore, the destruction of useful information.

Nevertheless, GML estimation is, and will continue to be, a highly practical
and efficacious estimation technique. In many applications, the penalty paid for using
guesswork in this way is small while the cost of incorporating a more optimal use of

prior information might well be prohibitive.

In this chapter we will investigate the performance and design of both GML and
conditional MAP range estimators. The investigation will be carried out with the aid
of simulation software developed by the author for the purpose and will, incidentally,

provide empirical verification of many of the theoretical results of chapters 2 and 3.
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§5.1 Range Gating

5.1.1 Locked Range Gates

The relationship between range gate width and performance has been investi-
gated in chapters 2 and 3. We have seen theoretical evidence that the detection thresh-
old falls as the range gate width is reduced. Indeed, as we have seen, sufficiently narrow

gates can eliminate the detection problem entirely.

Based on this evidence alone, we might be led to the conclusion that the smaller
the gate the better the performance. However, there are, of course, other factors to
consider and these will be examined in the next subsection. These factors only become
evident when we look at a practical implementation of range gating in which the gate

must track the target.

In this subsection, however, we shall examine the performance of a system em-
ploying a hypothetical range gate that is always locked on to the target in order to verify
the theoretical results of chapters 2 and 3 prior to extending them in the remainder of
this chapter. Our investigation will involve gathering simulation results for comparison

with the corresponding theoretical results that were obtained in chapter 3.

The operation of a system employing the optimal spectra of chapter 3 through
the transmission path of Fig. 3.4 has been simulated. In the simulations, one hundred
post-correlation waveform envelopes were generated for each signal tested. These were
all produced by independent random processes that will be explained shortly. Each of
four different post-correlation processing techniques was applied to each of the hundred
post-correlation waveform envelopes and the root-mean-square (RMS) estimation error

was computed for each technique for each signal.

The form of the post-correlation waveform envelope was computed by the con-
struction of the transform of the complex analytic waveform, transforming it to the
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time domain and computing its magnitude. The frequency domain computation simply
involved computing Ro(f) as given by equation 3.31 from the signal power spectrum,
G,4(f), and the transmission path characteristics and an additive complex interference
transform whose squared rr‘lagnitude was given by 2G;o(f) as given in equation 3.32. The
factor of two accounts for the contribution of the Hilbert transform of the interference

to the complex analytic interference powerlz'll.

The interference sequence was constructed by first generating a sequence of inde-
pendent random complex variables whose magnitude had a variance of 2. This sequence
actually represents the transform of the complex analytic post-whitening interference.

This sequence is then multiplied by the square root of a discrete form of Gyo(f).

The way in which the white interference transform was generated is of some in-
terest. The individual real and imaginary samples are all independent of each other
and of unity variance. Furthermore, the samples were generated in such a way that
their distribution was closely normal. It is an assumption of the derivation of the ML
estimator that the time domain white interference be normally distributed and, from
the central limit theorem, we find that that assumption corresponds to an assumption
of normally distributed interference samples in the frequency domain also. Each fre-
quency domain sample represents a summation over many time domain samples. It
was appropriate, therefore, in the simulations, to use samples that were approximately

normally distributed.

Such normally distributed random samples were obtained by adding together
twelve samples whose distribution was uniform in the range from 0. to 1. and sub-
tracting the value, 6., from the result to remove the mean. It is well known!>!l that a
random variable, uniformly distributed over a unity range has a variance of % and that
the variances of independent random variables add when the corresponding variables
are summed. It follows that the samples generated by the above method had unity vari-
ance. It is also well known[®!l that summing just three uniformly distributed random
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numbers produces a number with a nearly normal distribution (at least within two stan-
dard deviations of the mean). It follows, then, that the required close approximation

to a normal distribution was easily achieved by the above procedure.

Finally,the transform of the post-correlation waveform was set to zero for negative
frequencies,while, for positive frequencies, the transform was obtained by adding Ro(f)
to 2G;o(f). Hence, the inverse transformation (via a 512 point FFT) produced a complex

analytic sequence in the time domain, as required.

An additional feature was added in that the target delay was made to vary ran-
domly by simply shifting the complete post-correlation waveform envelope by a discrete
amount obtained by quantization of a white, normally distributed, zero mean, random
number. The RMS value of this number was specified by the user of the simulation
program. The reason for this feature will not become clear until the next subsection
because the results in this subsection were obtained by centring the range gate on the

shifted time origin which always corresponded to the peak of the target echo.

Plotted in Fig. 5.1 is the RMS delay estimate error obtained by simulation using
MDI signals with a 200uS range gate for the transmission path of Fig. 3.4 over a range
of signal power. The theoretical local variance of chapter 3 is also plotted. We see
that there is very close agreement and as predicted in chapter 3, we see no threshold
phenomenon associated with poor detection performance. The discrepancy at low signal
power is consistent with the local variance estimate being a lower bound to which the

true variance tends assymptotically.

Fig. 5.2 displays a similar comparison for MV signals. For any signal power above
about 18dB we again see that the agreement is very good. At lower powers we see the
effects of signal ambiguity and poor detection. For example, between 14dB and 16dB
in signal power the curve is at its steepest because this is the location of the detection
threshold. Above 16dB in signal power, the curve flattens out but steepens again above
17dB as the ambiguity threshold is reached. All this is in excellent agreement with the
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Range Gating
Figure 5.1 Range Accuracy with MDI Signals
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Figure 5.2 Range Accuracy with MV Signals

(Range gate is 200uS locked)
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analyses and theoretical results of chapter 3.

Fig. 5.3 compares the simulation results with the theoretical results for mixed
criteria signals. The latter signals were obtained using a detection index constraint of
14dB. Again we observe an excellent agreement except in the region of 16dB in signal
power where some deterioration in performance is evident due to signal ambiguity. Even
with this problem, however, the mixed optimum signals still yield performance better
than or equal to that obtained with either of the other two types of signal at all signal
powers. The greatest gains over the performance with MDI spectra are made in the
region of signal power from about 14dB to 25dB as expected. Direct comparison reveals
that an improvement of more than a factor of two in range accuracy are achievable in
this region by the use of mixed criteria optimum spectra rather than MDI spectra.
Furthermore a vast improvement over MV signals is evident for any signal power below
about 22dB because of the ambiguity and detection problems encountered with the
latter types of signal at low signal power. Here again we have excellent agreement with

the analyses of chapter 3.

5.1.2 Tracking Range Gates

Practical systems, of course, cannot use range gates that are locked onto the
target. The gate must always be centred on a prediction of the target delay and that
prediction is often based on previous estimates of the target delay. We shall call this

type of gate a tracking range gate.

" The question that arises is how narrow to make the gate. As we reduce the gate
width, the detection problem is reduced because, as we have seen in chapters 2 and
3, the detection threshold falls as the gate width is reduced and may even disappear
completely. However, at the same time, the probability of missing the peak of the target
echo completely (because it lies outside the gate) increases. We shall call the occurrence
of this phenomenon (of missing the target) a gating error.
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Figure 5.3 Range Accuracy with Mixed Criteria Optimum Signals

(Range gate is 200uS locked, detection index constraint is 14dB)

_ Simulation  results

- — Theoretical Estimate

RMS RANGE ERROR (uS) (X 10%%1)

S.00 =
4.oo0 o
3.00 -
2.00 o
1.00 4
T i T T 1
0.88 1.66 2.44 3.22 4.900

SIGNAL POWER (dB) (X 102=x1)

5-9



section 5.1 Range Gating

There are two obvious ways of approaching the problem theoretically, based on
different assumptions about the way in which the prediction error is distributed. The
use of a range gate is most consistent with the assumption that the prediction error is
rectangularly distributed. If this is so and the gate width is made equal to the width
of that rectangle, then the GML estimator will be using all the useful information in
the received waveform but ignoring the spurious information outside the region of range
within which the target is known to lie. However, the estimator only has available to it
the estimated variance of the prediction, rather than the width of the error distribution.
Since this is in direct proportion to that width, however, it is possible to set the gate
width equal to the width of the assumed rectangular error distribution. The gate width
is chosen such that a rectangular error distribution having the same width as the gate
would have a variance equal to the estimated variance of the prediction. The variance

of a rectangular distribution is simply related to the width of the rectangle and thus we

have:
w2
2 - 5.1

where 03 is the prediction error variance and W is the range gate width in units of

delay.

In other words, we should choose:
W = 3.50,. (5.2)

If the prediction PDF is rectangular, then this choice will ensure that the probability of

a gating error is very small while keeping the detection threshold low thereby minimizing

the estimate variance.

In practice, however, a more reasonable assumption is that the prediction is
distributed normally. Such an assumption can in fact be justified without reference to

the prediction process. This avenue will be explored in the next section.

Under a Gaussian assumption, we can adjust our gate width to provide any
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required probability of gating error. That probability is given by:

Py =1-2erf (:: ) (5.3)

From 5.3, for example, we see that, for a range gate width of 4o, the probability of a

gating error is about .05 while for a gate width of 20, it is about .32.

In practice, the estimate variance is a complicated function of the gate width
depending on the local variance, the probability of false detection within the gate and
the distribution of prediction errors outside the gate. Gating errors can be disastrous
in that the system may completely lose track of the target as a result of such errors.
The probability of this happening is dependent on the predictability of the target range

and on the details of the prediction process.

The simulation methods employed in this sub-section are designed to illustrate
the concepts described above, rather than to simulate realistically any particular imple-
mentation. Two adaptive tracking gates have been simulated whose widths were related
to an estimate of the RMS prediction error. This estimate adapts during the “run” of

one hundred pulse-echo cycles.

The initial prediction was the unshifted time origin, which was the mean target
delay. The initial error estimate was 715 times the width of the data window which was
1024uS. Thereafter, the prediction was the mean of ten previous range estimates, with
all estimates prioi' to the commencement of the run being set to mean target range.
The error estimate was the root-mean-square of all the actual estimate errors to that

point in the run.

The independent random variations in the target delay mentioned in subsection
5.1.1 represent unpredictable variations in the range of an actual target. The pre-
dictability of the target range can thus be adjusted by specifying the RMS value of
this random variation. The fact that the mean target delay is constant simplifies the
prediction process but does not detract from the generality of the results.
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Figure 5.4

Range Gating
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Figure 5.5 Adaptive GML Estimation with MV Signals

(RMS unpredictable target range variation is 50uS)
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The results displayed in Figs. 5.4 and 5.5 were obtained for two different ratios
of gate width to estimated RMS prediction error; namely 2 and 4. Fig. 5.4A represents
the error that would be observed for a highly predictable target with RMS unpredictable
variation of delay being only 5uS. Fig. 5.5A displays the results obtained for a very
unpredictable target whose unpredictable delay variations had an RMS value of 50uS.
In both cases MV signals were employed for a range of signal power. Figs. 5.4A and
5.5A should be analyzed in conjunction with Figs. 5.4B and 5.5B which display the

corresponding gating error probabilities.

Now, in Fig. 5.4A, we see that the detection threshold has a much more pro-
nounced effect in that the curves are extremely steep over a narrow range of signal
power. The reason for this is the positive feedback effect provided by the coupling be-
tween the prediction error and the gate width. The gate is always wide at the start
of a run. If the signal power is such that the system is operating well below threshold
for this wide gate, then the gate will remain wide. This is because the estimate will be
distributed uniformly in the gate with a large variance so that the prediction error will
also be large. If, however, the system is in the threshold region for the initial wide gate,
then the estimate will not be distributed uniformly in the gate and the estimate vari-
ance will be small enough so that the prediction error will be reduced from its original
assumed value. As a result, the gate width will be reduced, the detection threshold will

drop, the detection margin will rise and the estimate error will fall still further.

As a result of this effect, an adaptive gate width can extend the usefulness of
a system to much lower signal power because the initially wide gate allows the target
to be acquired by the process just described until the gate width is narrow enough to
eliminate detection problems within the gate. This can be seen by comparing Fig. 5.4A

with Fig. 5.1.

Below this initial threshold, we see that there exists a region of signal power
in which the curves are somewhat erratic but the steepness of the threshold region is
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abruptly discontinued. The gating error probability has been reduced virtually to zero
in this region because the prediction error is dominated by estimation error due to
false target detection within the gate. This error is confined within the gate so that a
very small proportion of the prediction error is distributed outside the gate. Because
the target is so predictable, the system needs only to detect the target occasionally in
order to keep track of it. However, at low enough signal power, the system cannot keep
track of the target without opening the gate still further and this explains the second
threshold that is just evident in the curves of Fig. 5.4A at the lowest signal powers for

which they are visible.

Above the main threshold the curves exhibit a plateau that is brought about by
ambiguity in the signal but we see that this is overcome at a slightly lower signal power
than was the case with the fixed 200uS range gate and has a much less serious effect on
the estimation error. This is simply because, if the main lobe is detected often ehough,
the gate width can be reduced to exclude the sidelobes most of the time and thus reduce

the ambiguity.

At high signal power we see from Fig.5.4B that the gating error probabilities are
fairly independent of signal power but are very dependent on the ratio of gate width to
RMS prediction error as expected. This dependence is reflected in the estimation error

curves of Fig. 5.4A where we see that the wider gate performs better.

The gating error probability is not simply predictable from equation 5.3 for
narrow gates because, for a number of reasons, the prediction error is not normally
distributed when using narrow gates. The main reason for this is as follows. Using
a narrow gate causes the system to lose track of the target frequently with the result
that the prediction error increases and the gate opens to reacquire the target. As
has already been discussed, under these conditions, the prediction error is distributed
almost entirely within the gate. Thus a system with a small ratio of gate width to RMS
prediction error is continually hunting for the target, with its gate opening and closing
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as it does s0. The result is that the gating error probability is lower than otherwise
might be expected. The gating error probability for the wider gate represented in Fig.
5.4 is almost precisely the value predicted, indicating that a system using such a gate

is much less prone to huni.

Comparing the performances of the two systems, we see that the wider gate gives

smaller error above threshold and the two gates exhibit similar threshold phenomena.

In the case of a highly unpredictable target, the dependance of performance on
gate width above threshold is much more marked because gating errors result in much
larger estimation error magnitudes so that the ”"narrower” gate hunts over a bigger
region of delay. This can be seen in Fig. 5.5A where the RMS estimation error at high

signal power varies by a factor of 4 or more between the two gate width ratios.

Looking at the curve for a gate width of 40, we see that it is similar to that for
a 200uS$ fixed gate as in Fig. 5.1. This is not surprising because over most of the range
for which the curve is visible in Fig. 5.5A, the estimation error is much smaller than
the unpredictable target delay variations so that the prediction error is dominated by
the unpredictable delay variations. Hence the RMS prediction error is approximately
50uS, resulting in a gate width of 200uS. We see then, that when the target delay varies
in a very unpredictable fashion, there is little to be gained from using an adaptive gate

width except during target acquisition.

Figs. 5.6A and 5.6B were obtained in the same way as Figs. 5.4A and 5.5A
respectively except that MDI signals were used. In Fig. 5.64, we see that there is no
evidence of detection problems for either of the systems except at very low signal power
where both systems exhibit the sharp thresholds that we saw in the previous example.
An important feature of these curves, however, is that, at low signal power, the range
accuracy is much better than predicted from the theory of chapter 3. The reason is that
prior information is being used to locate the target approximately while more precise
information is extracted from the signal. Since the target delay is highly predictable,
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Figure 5.6 Adaptive GML Estimation with MDI Signals
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little information need be extracted from the signal to keep the prediction error small.
As a result the narrower gate performs better at low signal power but worse at high

signal power where most of the information is extracted from the signal.

As indicated in Fig. 5.6B, however, when the target delay is highly unpredictable,
narrow gates perform better only at extremely low signal power and they perform very
poorly indeed at high signal power. Again, the performance of the "wider” gate is
similar to that predicted from theory for a fixed gate, indicating that adaptive gate

widths provide little advantage when ranging unpredictable targets.

Summarizing the conclusions of this subsection, we have found that adaptive
range gates give much enhanced detection performance if the target is highly predictable
at some small expense in range accuracy. In addition, the effects of signal ambiguity
can be greatly reduced by the use of adaptive gates when the target is predictable.
However, the detection threshold appears to be largely independent of the ratio of gate
width to RMS prediction error. For unpredictable targets, on the other hand, little is to
be gained from using an adaptive gate over a gate of fixed width. Narrower gates give

very poor performance in this case because gating errors result in excessive hunting.
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§5.2 The Conditional MAP Estimator

5.2.1 Deriving The Estimator

We saw in the previous section that improved performance can result from the
use of tracking range gates. In particular, the effects of signal ambiguity can be greatly
reduced and the effective detection threshold can be lowered by several dB. However, to
ensure good performance, the gate width must be adjusted according to the situation.
In order for the system to acquire the target, gates need to be either broad or adaptive in
the sense that the gate width is related to the estimated prediction error. Furthermore,
if the target delay is highly predictable and the detection index is low, then a narrow
range gate will perform best but in any other situation the gate width should be at least

3.5 to 4 times as large as the RMS prediction error.

An important insight into these various relationships can be gained by considering
the underlying probabilistic principles. The system that performs best in any particular

gituation will be the one that best approximates the MAP estimator.

The prior information incorporated in an adaptive tracking range gate is derived
only from previous estimates. Hence the approximate prior probability distribution
represented by such a gate is in fact an approximate prior probability density conditional
on the values of previous estimates. Hence, an estimator employing such a gate could
be called an approximate conditional MAP estimator because it locates the peak of an

approximate conditional posterior probability density.

However, we have seen that the performance of such an estimator can be very
suboptimal and this is because of the nature of the approximations made. In the
simulations, two parameters of the conditional prior probability were derived from the
previous estimates using a simple model of the target dynamics (i.e. the target does
not move). They were the predicted target delay and the estimated prediction error.
Usually, this is all one can expect to extract from a small number of previous estimates.
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Having only the mean and variance of the conditional prior distribution, we then
constructed, in effect, a PDF with a precise rectangular shape. In other words, we used
guesswork in constructing the conditional prior PDF and injected highly unreliable
information into it. Sometimes the guesswork ”paid off” because the true PDF was
not very dissimilar from that we constructed. In general, however, we need much more
information, particularly about the source of the predicion error, before we can construct

a rectangular PDF that approximates closely the true prior PDF.

An alternative approach is to form the log of a non-rectangular PDF and add
it to the LLF before picking the peak. This frees the designer from the constraint to
a rectangular PDF. In particular, it allows the designer to construct the PDF that

incorporates the least information additional to the mean and variance.

This concept of incorporating the minimum information, or equivalently the max-
imum entropy, into a distribution has long been recognized as a criterion for prior prob-
ability distributions in MAP estimation!®2l. In this subsection that principle is applied

to signal parameter estimation in what is believed o be an original manner.

It is well known!5?! that the maximum entropy PDF having a known mean and

variance is Gaussian. Hence the most appropriate conditional prior PDF to construct

is given by:

5 1 (r— f)2]
T f) = ——ezp |———— 5.4
P ( ) = 7eeP [ 257 (5-4)
where 7 is the vector of previous estimates, 7 is the predicted target delay derived from

those previous estimates and o, is the estimated RMS prediction error.

Now the first factor in 5.4 is uninformative in that it does not depend on hypoth-
esized target delay, 7. Hence it may be ignored. The log of the second factor is simply
an inverted parabola centred at the predicted delay and with the coefficient, 2—}’? The
conditional MAP estimate is obtained by adding this inverted parabola to the LLF and
locating the peak.
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This conditional MAP estimation process should not be confused with sequential
estimation or recursive estimation schemes (even though it does involve recursion). A
sequential estimator of range would use a number of echoes sequentially to make one
range estimate. Each echo waveform would be used to improve the range estimate until
the required accuracy was achieved. Such a scheme could only be applied if the target
range was not time varying. More typically, sequential estimation is used for signal
estimation. In this context it has limited applicability to target localization problems
in that such sequential filtering schemes are potentially faster than the ML correlation
technique discussed in previous chapters. However, such techniques involve considerable

complexity in their implementation and are certainly not optimal with respect fo system

performance.

A recursive estimator can be used to give a MMSE estimate by filtering raw esti-
mates using a model of the target dynamics incorporated into a predictor-corrector form
of state-variable filter. This is a form of generalized Wiener filtering known as Kalman
filtering!®3). If we applied this technique directly to the output of a ML estimator we
would not do as well as with a conditional MAP estimator because we would be using
guesswork in an irreversible fashion to obtain the raw estimates. We could not expect,

for example, to lower the detection threshold by this method.

However, we could incorporate a recursive estimation scheme after a conditional
MAP estimator. In fact, we can use such a scheme to perform the predictions required
for conditional MAP estimation and to provide the prediction error estimates. This
concept is not new. Kalman filters have been used for target tracking in Radars for

many yearsi®4l,

5.2.2 Performance Comparisons

The conditional MAP estimator uses all the readily available information in an
optimal way. However, it does not construct an accurate posterior PDF because it does

5-21



section 5.2 The Condstional MAP Estimalor

not use all the prior information that exists. Therefore we would not expect it to give
the best possible performance. Nevertheless, we would expect it to perform better than

any of the GML estimators that we have considered in most situations.

In Fig. 5.7 the performances of the adaptive GML estimators are compared to
that of the conditional MAP estimator for predictable and unpredictable targets using
MV and MDI signals. The situations are exactly as described in the previous section
and exactly the same post-correlation waveforms were used for all three estimators. We

see that the conditional MAP estimator consistently outperforms both of the adaptive
GML estimators.

We can conclude from these comparisons and the theoretical discussion of the
previous subsection, that the conditional MAP estimator will consistently outperform
any other estimator using similar sources of information when used in a variety of
conditions. Under certain conditions that are especially favourable to another estimator,
that estimator may perform better than the conditional MAP estimator described.
However it is impossible to predict this better performance without using addstional
tnformation to that used by the estimator itself. Hence we could not design a system
to take advantage of the fact that a particular estimator was especially favoured by the

conditions without using more prior information than we have assumed to be available

in this study.

5.2.8 Practical Implementation

In order to perform conditional MAP estimation it is necessary to make predic-
tions, to estimate prediction error and to construct a parabola to subtract from the
LLF. All these things are most easily done digitally if the required processing speed
can be realized. Methods of digital implementation of real time MAP estimators are

discussed in the next chapter.

A question that arises is how best to make the predictions. The optimal predictor
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Figure 5.7 Performance Comparisons
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for such an application will use as much information about the target dynamics as can

be incorporated. However this might demand greater complexity than can be justified.

Practical prediction schemes will be as varied as are the applications of target
localization. For example, in one application with which the author is familiarl!-l, the
skin of a sheep was to be ranged through the wool using a focussed acoustic ranging
system. In this case, movement of the target surface in the direction of propagation
was negligible. Nevertheless, the target had "dynamics” because the focussed sensor
scanned the surface and the surface range varied from point to point. Range estimates
for nearby points on the skin constituted the vector of previous estimates and one
prediction process that was used involved the use of a complex statistical model of the
sheepskin shape. The model was derived from an extensive statistical evaluation of
sheepskin shapes 193], It was originally intended for use in controlling a shearing system

with the help of less sophisticated sensors than the acoustic system.

In more typical examples, simple models of the target dynamics may be incorpo-
rated in adaptive Kalman filters as mentioned in subsection 5.2.1. In still simpler cases,

linear predictive techniques may suffice.

In situations where a conditional MAP estimator is not feasible because of im-
plementation problems, an adaptive tracking range gate may yield much better perfor-
mance than a tracking range gate of fixed width. Unless it is known that the target is
highly predictable and the detection index is small, the gate width should be adjusted

to 3.5 to 4 times the estimated prediction error for best performance.
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6. A CASE STUDY - Acoustic Sensing Through Fleece

§6.0 Acoustic Sensing Through Fleece

Most of the work reported in this thesis was motivated by the author’s involve-
ment in a research project aimed at assessing the feasibility of sensing sheepskin through
full fleece and, if possible, developing the techniques necessary. Such a sensing system,
able to deliver range information to a robot controller in real time, would be extremely
useful in the development of an automatic shearing mechanism utilizing sensory feed-
back. For more detailed background information on this project, the interested reader

is referred to [1.1] and [6.1].

Two different approaches are under consideration. In one approach, the focussed
sensing system ranges points just ahead of the cutter during the actual shearing op-
eration. All the experimental work to date has been related to this approach. An
alternative approach that may be viable is less restricted in its transverse resolution
because the available aperture area is not nearly so limited by mechanical constraints.
In this latter approach, each patch to be shorn would be imaged very rapidly prior
to shearing. The robot would then keep track of variations in the skin shape (due to

breathing etc.) by using other, less sophisticated sensors operating behind the point of

cut.

It is perhaps worth mentioning here that experience so far with automated shear-
ing apparatus strongly supports the hypothesis that such techniques will be a good deal
more humane than traditional methods 161, The hundreds of sheep shorn by robot
mechanisms have sustained far fewer injuries than they would have as a result of human
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shearing. All of these injuries were trivial in nature, requiring virtually no treatment
at all. Furthermore, the animals appear to be less stressed when handled by machine

than when handled by humans.

Currently, there are some important developments underway in the acoust ic sens-
ing project. The most important relates to the design and manufacture of the focussed
array of transducers. Current developments are expected to yield an improvement in
received signal energy of better than 15dB. Once this work is complete, the transmission
path will be characterized again, taking into account the new array and also the noise
generated by the cutter. This noise has not been considered explicitly before although

an assessment of its likely effects was made during an earlier phase of the project.

The case study in this chapter, therefore, does not follow the case through to
a final system design. However, the approach, the techniques and the details of the
implementation are all indicative of the ways in which the theory developed in this

thesis can be applied in practice.

Basically, this acoustic sensing system is a focussed ranging system. The fo-
cussing is achieved by placing small transducers on part of a spherical surface centred
at the point of focus. The aperture is constrained to be relatively small by mechanical
considerations. As a result, a fixed focus may be used because the depth of focus is
consistent with the range variations expected. More complicated focussing patterns can

be achieved by varying the shape of the surface on which the transducers lie {11,

In principle, focussing can be achieved electronically also. The approach is similar
to the ”phased array” approach used in electronic beamsteering and beamforming for
antennas. In receiving antenna arrays of this type, phase shifts are introduced into each
channel (one channel corresponds to one array element) such that the phase of a signal
from the direction of the main beam would be the same at the output of each channel.
The channels are then summed to obtain a single receiving channel with some required
antenna beam pattern. Transmitting arrays can be treated in a similar fashion. In the
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case of a wideband transducer array, focussing can be achieved by introducing delays
into each channel such that the total delay of a signal emitted from the focus is the
same at the output of each channel. Similarly the overall delay from a signal source to
a focus via each element of a transmitting array can be adjusted to be identical. The
ways in which electronic focussing may be utilized in a sheepskin sensing or imaging

system are yet to be investigated in detail. However, some important limitations are

immediately apparent.

Firstly, the use of signals of long duration (as are described later) precludes the
use of dynamic focussing” for the receiving array unless a correlator is provided for
each array element. ”Dynamic focussing” is a technique in which the receiving array
focus is always maintained at a range consistent with the elapsed time (since pulse
transmission). By this means, the target is always kept in focus. When signals of long
duration are employed, however, elapsed time from commencement of pulse transmission
has a different relationship to range for each point in the signal waveform. Hence, at
any point in time there is ambiguity as to what range to focus on. If, however, there is
a correlator provided in each channel, then the electronic focussing can be undertaken
at the correlator outputs since the system is linear. At that point, each point on the
waveform corresponds to a particular range rather than an elapsed time. The cost of

such an approach, however, would be prohibitive.

Secondly, electronic beamforming would be expensive in such an application
because signals of wide time-bandwidth product are employed and low noise amplifiers
and delay elements of similarly wide time-bandwidth product would be required for

each channel.

Colouration of the target path transfer function arises from several mechanisms.
By far the most important, however, is the highly frequency-dependant absorption
characteristic displayed by wool. Dispersion of the target echo also occurs because the
echo results from specular reflection of a non-plane wave from an extended surface.

6-3



section 6.0 Acoustic Sensing Through Fleece

Clutter arises from scattering from particles that contaminate the wool and from
the wool itself. The clutter path impulse response is, of course, stochastic. Its statis-
tics are non-stationary with range because of the range-dependant absorption losses.
However, it can be shown to be locally stationary at target range according to the

stationarity condition of equation 2.22.

Because the wool thickness, density and curliness varies and the degree of con-
tamination varies, the transmission path transfer functions are also highly variable. As
a result, the transmission path model must include uncertainty as discussed in chapter
4. As we shall see, the main problem with which we are faced is that of ensuring that
the target echo can be detected. The delay associated with detected echoes can nearly
always be estimated with sufficient accuracy for our purposes. The robust optimization

techniques of chapter 4 are therefore highly relevant to this problem.

The other main difficulty with which we must contend is that of implementing a
system that will provide rapid response. The shearing head could be moving at up to
1m/sec. (Nevertheless, because the transducer array is always moving closely parallel to
the skin with its beam axis orientated approximately at right angles to the skin, Doppler
effects are negligible.) Because such high speeds are involved and because the cutter
is always in close proximity to the skin, an update interval of only 4msec is required.
We shall see that this requirement translates into very demanding specifications for the

signal processor design.

In this chapter we shall consider the application of the techniques of chapter 4 to
the problem of designing such a sheepskin sensing system starting from the construction
of a transmission path model. We shall look at the system design of the complete sensor
and in more detail at the design of the signal processing section that implements the
conditional MAP estimation algorithm of chapter 5. We will also look briefly at a po-
tentially important new approach to the architectural design of digital signal processors
that was given initial impetus by the requirements of this sheepskin sensor.
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We shall not consider many important related matters that lie outside the scope
of this thesis. These include, the nature of the transducer design, details of how the
range predictions for MAP estimation are obtained and details of the robot design and
the robot control philosophy. The interested reader is referred to [1.1,6.1,6.2] for such

published material as exists on related topics not discussed here.
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§6.1 Constructing Transmission Path Models

The first step in developing a system design for such a sensing system is to design
the transduction and focussing system. Once this has been done, the transmission path
can be characterized. In our case, the transmission path characteristics are variable.

Hence, we require a set of transmission path models representing a class of characteris-

tics.

Each member of the set will consist of the three functions: the target path
transfer function, the squared magnitude of the clutter path transfer function and the
noise power spectrum. In our case, because the noise is generated in the receiver front
end, all the noise power spectra are identical. In other words, the noise power spectrum

is not uncertain because it does not depend on the variable fleece conditions.

The ways in which these functions are obtained depend on the details of the
application. In our case, there is no way in which separate target and clutter path

characteristics can be directly measured. It is therefore necessary for us to deduce them

from the total response.

The approach taken is to obtain an ensemble of total impulse responses at one
point on a fleece; average over the ensemble to eliminate noise and then excise the target
path and clutter path impulse responses from the total response. An ensemble of noise
records is obtained by subtracting the "noiseless” response from each of the original total
responses. The noise power spectrum is then obtained as the mean squared magnitude

of the Fourier transforms of these noise records.

This technique is repeated for as many different fleece conditions as are consid-
ered necessary to define the uncertainty in the transmission path characteristics. For
illustrative purposes, we shall only use three points in the following analysis although
one would normally use more than this. Fleece conditions vary markedly from point to
point on any one fleece and we would probably need four or five points to characterize
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one fleece. They also vary from fleece to fleece and thus we might require twenty or more
members for our set of transmission path models to fully characterize the uncertainty

in the transmission path characteristics.

In our case there exists a further complication. Our transducer array suffers
from a transmitter-to-receiver coupling problem that gives rise to self-clutter or self-
response. This is an acoustical response of the receiver to the transmission of a signal
from the transmitter. It is a problem because the transmitting and receiving elements
are interspersed and the aperture dimensions are of the same order as the distance from
the sensing array to the skin. Since a signal of long duration is transmitted, this means
that this acoustically coupled signalhas not died out before the target echo is received.
Because the transducers are excited by a very large signal voltage, this self-clutter is
nonlinearly related to the signal transmitted. It turns out that the transmission of an
impulsive signal excites a large self-response. At the same time, most of the acoustic

energy of the transmitted impulse is absorbed by the wool so that the wanted impulse

response is very weak.

Under normal conditions, at target delay, the self-clutter has decayed to the
extent that it does not swamp the returning echoes. However, when an impulse is
transmitted, the self-clutter is in fact the dominant component of the total response.
As a result, it is necessary to estimate the self-response of the array in the absence of
other echoes and to subtract this from the total response.(In the experimental sensing

system it is also stored and cancelled by simple subtraction.)

The self-response estimate is obtained by averaging over a number of responses
to eliminate noise. Each member of the ensemble is obtained as the impulse response
of the array when pointed at an absorbing panel. This panel is simply a peice of soft
polyurethane foam with a textured surface such as is commonly used in packaging. It
is placed obliquely to the beam axis at relatively long range where the array is very
unfocussed and any residual echoes from it do not lie within the range gate used.
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Figure 6.1 Noise Power Spectrum
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Fig. 6.1 displays the noise power spectrum common to all the transmission paths
in the set we shall consider. Fig. 6.2 illustrates how the self-clutter is eliminated from
a total response after the noise has been averaged out. Fig. 6.2A is the total response
after averaging. Fig. 6.2B is the self-response of the array. Fig. 6.2C is the result
of subtracting the self-response from the total response. The target echo is clearly
distinguishable from the clutter. Prior knowledge of the target range allows the target

echo to be excised giving the target path impulse response of Fig. 6.2D.

Admittedly, the target path impulse responses obtained in this manner are cor-
rupted by clutter. Nevertheless, they represent the best estimates obtainable. Since the
clutter varies from point to point, the variations in our target path impulse response
estimates for those points will reflect the uncertainty arising from this contamination.
Eventually we will construct a class description for our target path transfer function and
the uncertainty in it will be due, in part, to these estimation errors. Mostly, however,
it will be due to actual variations in the target path transfer function under different

fleece conditions.

Finally, with Fig. 6.1, Fig. 6.3 represents one member of our set of transmission
path characteristics which was obtained in the manner described in this subsection.
Fig. 6.3A is the target path impulse response which, being real rather than complex, is
more convenient to display than the transfer function. Fig. 6.3B is, in fact, the squared
magnitude of the target path transfer function corresponding to the impulse response

of Fig 6.3A. Fig. 6.3C is the squared magnitude of the clutter path transfer function.
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§6.2 Robust Signal Optimization

6.2.0 Preamble

The robust optimization technique of chapter 4 consisted of four main steps. The
first of these was considered in the previous section. That is, the task of constructing
a set of transmission path models defining the class of conditions to be optimized for.
The set we shall consider in our case study is displayed in Figs. 6.1, 6.3, 6.4 and 6.5.

The format was explained in the previous section.

The second step is considered in the mext sub-section. This is the problem of

constructing a class description appropriate for the solution technique of chapter 4.

Subsection 6.2.2 reports on implementation of the third and fourth steps. In
the third step, the least favourable transmission path within the class is identified and
in the final step the MDI signal spectrum for this least favourable path is designed.
This signal spectrum is robust-optimal for the class of transmission paths when used
in conjunction with the jointly robust-optimal receiver filter. The filter is the optimal

filter for the transmitted signal and the least favourable transmission path.

To complete the study, the detection indices obtainable with various combina-
tions of signals and transmission paths are computed and comparisons are made to
show, amongst other things, that the computed robust-optimal solution does, in fact
represent a saddle-point solution to our minimax optimization problem as is proven

theoretically in appendix 4.

6.2.1 Constructing a Class Description

The aim of this sub-section is to show how a class description can be constructed
in the form described by equations 4.16 and 4.17. The class to be described should be
no broader than necessary to accomodate the transmission paths represented in the set
of transmission path models obtained by measurement.
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A)
B)
C)

Robust Signal Optimization

Figure 6.4 Second Transmission Path Model

Target path impulse response.
Squared magnitude of target path transfer function.

Squared magnitude of clutter path transfer function.
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section 6.2 Robust Signal Optimization

Figure 6.5 Third Transmission Path Model
A) Target path impulse response.
B) Squared magnitude of target path transfer function.
C) Squared magnitude of clutter path transfer function.
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Equation 4.16 describes a class of target path transfer functions, Cr = {Hr(f)}
As discussed in chapter 4, we need to find a nominal transfer function, Ho(f), an error
power, ér and a minimum scale factor, A,;is. The scale factor for each member of
the set of measured target path transfer functions should be chosen to give the best
(i.e. MMSE) fit to the nominal target path transfer function. Under that condition,
the maximum value, é7, of the modelling error power (i.e. the power in the difference
between a target path transfer function and the nominal target path transfer function)

over the set of measured functions should be minimized by the choice of the nominal

function.

Now let the ith measured function be represented by H;(f) and the corresponding

scale factor be A; while the corresponding modelling error power is ;. Then we have:

2 . 2
f ‘M - dof (6.1)

N f, (HA(.f) i (f)) ( X) Hy (f)) (6.2)

where x represents the conjugation operation. Thus:

1 fa .
6= /f mHP s+ [ Py o
2 Ja . :
-1 /f (BN
e; is minimized by setting g;% =0 in 6.4,
o= [t + g [ im0y, (6.4
giving:
- fh H2 )df (6 5)
R (Ho(f)H:(f))df' ’
This yields: \
f (172 (BN B (1)
e = Ho(f)2df — = . 6.6
/hlo(f)lf AT (6.6)
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section 6.2 Robust Signal Optimszation

Now, the maximum value over the index, ¢, of ¢; in equation 6.6 is to be minimized
by the choice of Ho(f). However, we clearly need to apply a constraint to the scaling
of Ho(f). Otherwise 6.6 could be minimized by setting Ho(f) = OVf. Therefore, we

constrain the nominal transfer power to equal a constant:

f2
/ |Ho(f)*df = Eo. (6.7)

ft

The choice of Ej is not important. In the final description, Ep and ér are both inversely
related to the square of A, in the sense that if we quadruple the value of Ey used

in our algorithm for constructing the class description, then &7 will be quadrupled and

A, nin Will be halved.

In fact, the computer program whose listing appears in appendix 6, implements
the algorithm in such a way that A, is always set to unity. This means that Ho(f)
is scaled so that it is directly comparable with the transfer functions in the original

measurement set and has the least favourable (i.e. the smallest) magnitude allowable

in the class.

Now, it is clear that the value of ¢; can always be reduced by making Hy(f) more

like H;(f) subject to the constraint, 6.7. The simplest way to do this is to compute:

Hy(f) = aHo(f)oa + bH;(f), (6.8)

where the constants, a and b are chosen such that 6.7 is met and some required reduction

in e; is achieved.

There are two obvious consequences of this simple observation. Firstly, the func-
tion, Ho(f), that minimizes the maximum value of e; over the index i, must be a linear
combination of the transfer functions, H;(f). If it is not, then we can equate it to a
linear combination of those transfer functions and some foreign function. Hence, we
must be able to reduce the maximum value of e; by reducing the contribution of that
foreign transfer function via equation 6.8 and such reduction is not compatible with
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Ho(f) minimizing the maximum of e;. Secondly, the minimum value of the maximum

¢; over the index, 1, is achieved when:
e =¢e; Vi, <N (6.9)

where N is the number of transfer functions in the measurement set. If (6.9) was not
met then the maximum value of e; could be reduced by increasing the contribution of

the ith transfer function to the linear combination yielding Ho(f) via (6.8).

Equations (6.5) to (6.9) are used within the computer program whose listing is
given in appendix 6. This program constructs the most appropriate class description
of equation (4.16) for the target path transfer function from the set of measured target
path transfer functions by computing Ho(f) and ér iteratively and setting Apin = 1.
It also outputs the value of Ey defined in equation (6.7) for a reason that will become

clear shortly.

This same program also constructs the class description of equation 4.17 for the
clutter path transfer function. It does so by straightforwardly finding the upper and
lower bounds on the square of the clutter path transfer function and the upper bound
on the clutter path transfer power, 02, over the set of measured clutter path transfer

functions.

There are virtually no limitations on the use of this program. The only compli-
cated section is the iteration used in finding Ho(f). In that iteration, one coefficient
in the linear combination of measured transfer functions used to compute Hp(f) is up-
dated at each iteration. The one associated with the transfer function giving the biggest
erTor power, ¢;, with respect to the nominal transfer function is updated. The update
equation is:

Ginew = Giold\/ :—i, with Ho(f) = ¢)_ a; Hi(f),

where ¢ is chosen to satisfy equation (6.7). The coefficient, a;, is never updated and
the procedure is terminated when all ¢; are close in value to e;.
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section 6.2 Robust Signal Optimization

In the author’s experience, this procedure always converges as one would expect

from the discussion leading to the statements of equations (6.8) and (6.9).

Now, we have three transmission path models in our measurement set. They are
represented in Figs. 6.2 to 6.5 and Fig. 6.1. We can see that the models of Figs. 6.3 and
6.4 are much more similar than either is to that of Fig. 6.5. In fact, Figs. 6.3 and 6.4
correspond to very unfavourable fleece conditions. From the discussion of section 4.3,
it is clear that Fig. 6.5 represents a much more favourable transmission path. This is
because the transfer function magnitudes are much greater, the target and clutter paths

are spectrally very dissimilar and the target path exhibits a relatively wide bandwidth.

We would expect the least favourable transmission path on the fleece to have
characteristics somewhat similar to those of Figs. 6.3 and 6.4. For this reason, two
class descriptions were generated in order that the results could be compared. One was
generated using all three of the measurement-based models and the other was based on

the models of Figs. 6.3 and 6.4 only.

The first class description, based on all three models, is represented in Fig. 6.6
and the second, based on the least favourable two models is represented in Fig. 6.7. The
various parameter descriptions are also given on those figures. The important difference
between these two is that Fig. 6.6 represents a much broader class description than does
Fig. 6.7. This is evident from the fact that the maximum modelling error power, ér, is
gome twenty times larger in Fig. 6.6 than in Fig. 6.7 while the nominal transfer power

is only about three times as large.

In the next sub-section the least favourable transmission paths within these two
classes are identified. We shall see that the least favourable transmission path cor-
responding to the class description of Fig. 6.6 is far more unfavourable than that
corresponding to the class description of Fig. 6.7.
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Figure 6.6 Transmission Path Class Description (Full Set)

N = 863 x10%; Ey = 1.25x10°%; o2 = 31.2 x10°

A) Nominal target path impulse response.
B) Nominal squared magnitude of target path transfer function.
C) Bounds on squared magnitude of clutter path transfer function.
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section 6.2
Figure 6.7 Transmission Path Class Description (Restricted Set)
N = 42.5 x 10%; E, = 439x10%; o = 12.6 x10°
A) Nominal target path impulse response.
B) Nominal squared magnitude of target path transfer function.
C) Bounds on squared magnitude of clutter path transfer function.
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6.2.2 Identifying The Least Favourable Transmission Path

In order to identify the least favourable transmission path within a class described
by equations of the forms of equations 4.16 and 4.17, it is necessary to simultaneously

solve the three integral equations 4.32 to 4.34.

This problem is simplified by recognizing that each of the three equations are
always soluble for one of the three unknown constants given any values for the other two
provided certain minor restrictions are met. This was shown in appendix 4. Equation

4.33, however, may not be soluble for ¢ if the condition, 67 < Ey, is not satisfied.

In theory, a solution can always be found provided the target path modeling
error power, 0r, in the transmission path class description, does not exceed the nominal
target path transfer power, Eo, as discussed in appendix 4. However, this solution
is approached iteratively in practice and care must be taken in devising the iterative

procedure to ensure that the procedure is as robust as possible.

In practice, difficulties can arise if 57 approaches Ey as equation 4.32 may produce
arithmetic overflows in solution due to the choice of an unfavourable trial value for ¢
during the iteration process. In order to minimize the probability of this happening,
the procedure should be organized as three nested iteration loops with the outermost
loop solving equation 4.32 for k;. The other two loops solve equations 4.33 and 4.34 for

c and k; respectively in either order.

A computer program for performing this procedure is listed in appendix 6 after
the listing of the class description program. The author has found this program to be
very robust. For example, from Fig. 6.6, we find that, for the first of our two class

descriptions, 87 ~ .TEq and yet the program is still able to compute a solution.

The least favourable transmission paths within the classes represented in Figs.

6.6 and 6.7 are presented in Figs. 6.8 and 6.9 respectively.

The most important feature of Fig. 6.8 is that the class description of Fig. 6.6 is
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Figure 6.8 Least Favourable Transmission Path Model

(Broad Class Description)

A) Target path impulse response.
B) Squared magnitude of target path transfer function.
C) Squared magnitude of clutter path transfer function.
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Figure 6.9 Least Favourable Transmission Path Model

(Restricted Class Description)

A) Target path impulse response.
B) Squared magnitude of target path transfer function.
C) Squared magnitude of clutter path transfer function.
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is so broad that a quite unrealistic combination of target and clutter path colourations
has been selected. The author’s experience, as reflected in the set of measured char-
acteristics in Figs. 6.3 to Fig. 6.5, indicates that the least favourable characteristics
obtained on actual fleece exhibit peak clutter path responses at frequencies well above
the corresponding peak target path responses. In Fig. 6.8, however, we see that the
robust optimization procedure has selected a clutter path transfer function with the
requency of its peak just slightly below that of the target path transfer function. Fur-
thermore, the magnitude of that peak is unrealistically large. Such large clutter path
responses are exhibited in practice only in conjunction with large target path responses

under highly favourable fleece conditions.

The solution to this problem is to simply exclude highly favourable transmis-
sion path characteristics from consideration when constructing the class description. A
representative set of transmission path models should be assembled from among the
less favourable models found in practice. In identifying the less favourable models, the
designer can refer to the unfavourable characteristics listed in section 4.3, most of which

are clearly unfavourable from elementary considerations.

In our case, we shall simply proceed to use the second of our transmission path
class descriptions based on the less favourable two models in our set of three mea-
surement based models. That description is presented in Fig. 6.7 and the resulting

least-favourable transmission path is characterized in Fig. 6.9.

We are now in a position to examine the robustness of the two solutions gen-
erated. This will be done by computing and comparing the maximal detection indices
obtainable with optimum signals for each transmission path. In table 6.1 each of the
three measurement-based models and the two least-favourable models is represented.
Optimal signal spectra have been computed for each of the five models and each opti-
mal spectrum has been coupled with each path to obtain a complete table of detection

indices.
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TABLE 6.1 DETECTION INDEX COMPARISONS

SPEC 1 SPEC 2 ROBUST SPEC 1 SPEC 3 ROBUST SPEC 2

PATH 1 12.0 11.9 12.0 8.2 11.3
PATH 2 6.7 6.8 8.7 4.2 6.4
ROBUST PATH 1 3.1 3.0 3.1 T 2.8
PATH 3 18.4 18.7 19.3 21.2 20.9

ROBUST PATH 2 7.9 -8.1 -T.4 -7.4 -6.9

The name, "ROBUST PATH 1” in table 6.1, refers to the least-favourable path
associated with the restricted class of transmission paths described in Fig. 6.7. "RO-
BUST PATH 2” refers to the least-favourable path associated with the broad class of
transmission paths described in Fig. 6.6. "PATH 17, ”PATH 2” and "PATH 3” refer to
the transmission paths modeled in Figs. 6.3 to 6.5 respectively. Similarly, "ROBUST
SPEC 1” refers to the robust optimum signal spectrum for the restricted class of trans-
mission paths while ’ROBUST SPEC 2” refers to that for the broad class. "SPEC 17,
»SPEC 2” and "SPEC 3” refer to the MDI signal spectra for the three transmission

paths numbered 1 to 3 above.

The table has been set up in such a way that the restricted class of transmission
paths can be readily considered independently. Only the three columns and the three

rows at top left of table 6.1 are relevant when considering the restricted class in isolation.

We see from this portion of the table that no signal spectrum considered yields
a higher detection index for any particular transmission path than the MDI spectrum
for that path. We also see that, for any signal spectrum, the lowest detection index is
obtained as a result of transmission through that path that was selected as the least-
favourable path.
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This latter result is not surprising but would not be invariably true. The least-
favourable path is not defined as being least-favourable in that sense. It is least-

favourable in the sense that optimal performance through that path is worse than that

achievable through any other path in the class.

Turning again to the top left portion of table 6.1, we see that the combination of
least-favourable path and MDI signal for that path (the robust optimum signal for the
class) does indeed constitute a saddlepoint among those paths and signals represented
in the table. The corresponding table entry is at least as large as any other in the

corresponding row (row 3) and is smaller than any other in the corresponding column.

Similar comments to all those above in relation to the restricted class of trans-
mission paths also apply when considering the broad class represented in the complete
table. However, additional comments can be made about the complete set of results.
Firstly, we see that the third of the measured transmission paths (row 4 of table 6.1) is
much more favourable than any other represented in the table. This supports the earlier
assertion. Secondly, the least-favourable transmission path within the broad class is far
less favourable than any other represented in the table. Finally, we see that the robust
optimum spectrum for the broad class of transmission paths (column 5 of table 6.1)
yields poorer performance than the robust optimum spectrum for the restricted class
(column 3 of table 6.1) for the transmission paths from that restricted class (rows 1 to

3 of table 6.1).

The results discussed in the preceding paragraph indicate that, in broadening
the class description, we have traded performance in the restricted class for perfor-
mance outside that restricted class. This, of course, is the principle of robust optimiza-
tion. However, the class description was broadened to accomodate an additional highly
favourable path. We would prefer to trade performance through this highly favourable
path for performance elsewhere, if possible. Instead, the effect of broadening the class
description has been to cater for extremely unfavourable paths which, according to
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empirical evidence, simply do not occur in practice.

This aspect of the problem was discussed earlier in this subsection. The approach
taken as a result of that discussion was to restrict the class description by excluding
highly favourable measured characteristics when formulating the class description. This
meant that the resulting class description did not embrace unrealistic tranemission path

characteristics such as those of Fig. 6.8.

An alternative and less mathematical approach to robust optimization results
from the realization that tables such as 6.1 can be interpreted as game matrices. The
game theoretic formulation of the problem in chapter 4 uses a class description that
effectively allows interpolation between the transmission paths represented in the mea-
surement set. Another approach, however, is to construct a large measurement sef
which effectively does not require interpolation. The class of transmission paths for

which we would optimize would then be defined directly by the measurement set itself.

Guided by the theoretical results of chapter 4, we could then hope to find a
saddlepoint solution to our game problem by constructing a game matrix like table
6.1. To do this we would use all the transmission path characteristics represented
in our measurement set. Each element, D;;, in the matrix would represent the SIR
obtainable through transmission path 1 using a signal and receiver filter jointly optimized
for transmission path j. A saddlepoint would correspond to an entry that was the
maximum in the corresponding row and the minimum in the corresponding column.
However, such a saddlepoint may not exist and in that case the more mathematical

approach used earlier in this subsection should be employed.

In Fig. 6.10, the robust optimum signal spectra obtained using the two transmis-
sion path class descriptions of Figs. 6.6 and 6.7 are compared. We see that they are quite
different. Consistent with the analysis of chapter 4, we find that the least-favourable
path of the broader class is associated with a flatter optimum signal spectrum. How-
ever, that transmission path is not a realistic one for the reasons given earlier. For this
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reason, the designer should choose to use the robust optimum signal spectrum for the

restricted class of transmission paths.
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§6.3 Sensing System Design

6.8.1 Current System Design

In this subsection we shall look at the way in which a digital sensing system for
use in the automated shearing experiments was implemented. Fig. 6.11 provides an

overall timing diagram.

We see from the figure that the host computer must provide, every 4mS (ap-
prox.), an 8-bit range prediction and an 8-bit confidence indication. The latter is in-
versely related to the estimated RMS prediction error. The host is also responsible
for generating a timing pulse at, nominally, 4m$ intervals and a reset pulse whenever
convenient and desirable. The main function of the reset pulse is to initiate an internal
test sequence within the sensor as indicated in Fig. 6.11. Such checking facilities were

considered necessary because of the potentially disastrous consequences of undetected

sensor failure.

This ultrasonic ranging system is designed to estimate the distance from the
sensing head to the sheepskin through the wool at approximately 4mS intervals under
the control of the host computer. The sensing head is a focussed array of small ultra-
sonic transducers. Transmitting and receiving transducers are interspersed throughout
the array and all the transmitting transducers are connected in parallel as are all the
receiving transducers. The sensing head is focussed at a nominal range of 120mm by

spherical curvature of the array. It has a depth of focus in the order of 40mm.

The electronics of the ranging system consists of four main sections. There is a
main processor, a transmitting section, a receiving section and a correlator. In addition,
there are units that interface these sections, perform logic and timing functions and
provide self-test and diagnostic facilities. The overall arrangement is as indicated in the
block diagram of Fig. 6.12.
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Figure 6.11 Automated Shearing Sensor Timing
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Figure 6.11 Acoustic Sensor Block Diagram
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A conditional MAP estimation scheme, as described in chapter 5, is implemented
in the blocks marked ”CORRELATOR?” and ”Main Processor”. The correlator is re-
quired to correlate the received waveform with 160 reference samples over 128 lags in
under 3mS. This demanding specification is achieved by employing four TMS32010 sig-
nal processors in a linear array. Each of the processors runs an identical program and
a single 20MHz clock supplies all four processors. Synchronization between the stages
is achieved by resetting all four processors simultaneously at the commencement of the
data acquisition sequence within each 4mS interval and then allowing the interstage

communication flags to synchronize the stages. Figs. 6.13 and 6.14 detail the correlator

hardware design.

The TMS32010 code for the correlator is quite simple. In-line code is used
for computing the sum-of-products, resulting in an improvement of almost a factor of
two in computation speed over a looped structure. All outputs are output to latches
immediately they become available with no handshaking. Availability of input data is
indicated to a processor by the setting of its ”BIO” flag. This simplified I/O process is
made possible by ensuring that all processors run identical programs. Such an approach
results in a highly efficient implementation with very low overheads for I/O and inter-
stage synchronization without the need for expensive multi-port random access memory
(RAM) blocks between stages. (The only overhead associated with output results from
the execution of ?OUT™ instructions. Extra overheads accumulate during input owing to
the testing of the  BIO” flag. However, synchronization is achieved with the transfer of
the first datum and thereafter input overheads are absolutely minimal and no overheads

are associated with synchronization.)

It is worth noting that this same approach can be applied to the implementation
of any non-recursive algorithm because such algorithms can always be distributed be-
tween stages in such a way that all stages run identical programs and all I/O is in one
direction only. (For recursive algorithms, the approach would have to be modified. For
an informative discussion on the design of multi-processor DSP systems, the interested
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Figure 6.13 Correlator Block Diagram
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Figure 6.14 Correlator Stage Design
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reader is referred to [6.6]) The concept is amenable to extension to allow the design of
two-dimensional modular structures for high speed implementation of FFT processors.
Such processors could be used to implement correlators to much more demanding spec-
ifications -] than those associated with the application being described here. A listing

of the correlator code is given in appendix 6.

The correlator is decoupled from the A/D convertor at its input and from the
post-correlation processor at its output by the use of high density First-In-First-Out
(FIFO) memories. These devices can be asynchronously accessed at input and output
and provide FULL and EMPTY flags. The use of such FIFO buffers frees the corre-
lator and post-correlator to input data at their own rate and allows pipelining of the

correlation and post-correlation processing tasks.

A single TMS32010 processor performs the post-correlation processing as well
as all the communication and control tasks of the sensing system. The post-correlation
processing is performed sample by sample and consists of the tasks of enveloping, biasing
and peak-picking. The term, ”biasing” as used here, refers to the process of adding a

parabolic weighting to the envelope as described in chapter 5.

The enveloping operation is performed approximately allowing it to be performed
at high speed. The true envelope of a wideband signal is obtained as the RMS sum of
the signal and its Hilbert transform. (i.e. as the magnitude of the complex analytic
signal.) In our case the Hilbert transform is approximated by means of a 15-element
FIR filter. Such techniques are well knownl®3l. The need to evaluate square roots in
computing the envelope is avoided by the use of another approximation which obtains
the envelope as a simple non-linear function of the signal and Hilbert transform. Errors

resulting from these approximations have been estimated at less than six percent.

6.3.2 Trends For The Future

This multi-processor approach to the implementation of high speed DSP systems
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is capable of realizing throughput rates suitable for a very wide range of sensing
and imaging tasksl6-48-56-6] In principle it is possible to combine this approach with

efficient computation methods based on the FFT [6-4,6.5],

However, in order to obtain maximum benefit from the multi-processor concept,
the architecture of the constituent processor should reflect the I/O intensive nature
of such applications and the complexity of the data flow in typical DSP algorithms.
The TMS32010 represents a highly successful compromise between the architectural
requirements of a microprocessor controller and those of a DSP processor. Nevertheless,

its architecture is not optimal for multi-processor applications.

In order to investigate practical alternatives in the architectural design of pro-
cessors for multi-processor applications, a group of researchers at the University of
Adelaide, including the author, set about designing a new architecture optimized for
complex sum-of-product computations in a multi-processor environmentl®4l, The au-
thor’s involvement was directly motivated by the need for a high speed DSP system in

the sheepskin sensing project. The result is illustrated in Fig. 6.15.

The main features of the architecture are the separate on-chip I/O proces-
sors, the four-quadrant structure and the ring bus. Less obvious features include self-
incrementing data pointers, data pointer control registers, loop counters and various
flags for conditional jumps, and a load-immediate facility for initializing pointers and

registers as well as data locations.

The single most important insight behind this design is the realization that max-
imum multiplier speed does not necessarily ensure maximum throughput. Our aim was
to find ways to trade multiplier speed for speed of data handling so that a balance could
be struck between the two capabilities. The use of several shift-and-add type multipli-
ers helps to achieve this balance. The total chip area devoted to multiplication is much
less than with one fast combinatorial multiplier, leaving more area for data handling.

Equally importantly, the multiply input and output data is now dispersed
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Figure 6.15 TFB Architecture
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among several physical locations on the chip reducing the potential for bottlenecks.

The segmented ring bus structure provides flexible wideband channels of com-
munication within the chip and a similar motive was behind the decision to use multiple
memories. The choice of a four-quadrant structure resulted from an early decision to
directly cater for complex arithmetic. Each complex multiply involves four real multi-

plications and the input data naturally falls into four different categories.

Finally, a 16-pin input port and a 16-pin output port were provided. It was
envisaged that these ports would be configurable as 8-bit half-ports and that both
synchronous and asynchronous modes of communication would be selectable. In order
to reduce I/O overheads to a minimum, on-chip I/O processors were provided to handle
the tasks of data formatting and timing in accordance with the selected communication

mode. (The modes catered for include double-byte transmission through each half-port.)

The resulting structure allows all data handling, subtractions, additions, shifts
and I/0 to be pipelined with multiplication in typical algorithms. The design is partic-
ularly well suited for complex FFT computation in a parallel-pipelined system involving
a two-dimensional array of processors. Such systems are described in [6.5]. By a con-
servative esimate, an array of 320 such processors could achieve a throughput rate of

50Msamples/sec for the continuous stream computation of 1024-sample FFT.

This architecture forms the basis of a major design exercise being undertaken
by a team of VLSI design researchers at the University of Adelaide. Their aims are to
develop software tools and design methodologies for CAD design of large VLSI systems
as well as to investigate high performance silicon structures suitable for integration at
this level. They are working in close collaboration with The Microelectronics Centre of
North Carolina and have collaborative links with Bell Laboratories in New Jersey. At
the time of writing, all the processing elements of the architecture described above have
been designed and simulated. The memories, I/O processors and bus structures have
also been designed and simulated in part. Some of these elements have been or are in
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the process of being fabricated preparatory to hardware testing. The remaining element
is, of course, the control structure which is still being designed. At this stage, there
appears to be no significant impediment to the implementation of our architecture. In
fact, despite initial concern about the problems imposed by the internal communications,

the designers have found that the structure is quite practical for VLSI implementation.
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§6.4 Some Results

The system described in sub-section 6.3.1 has not yet been used in robotics exper-
iments. However, an earlier design, described in [1.1], was used in robotics experiments
with live sheep. This earlier system was developed before the arrival of the TMS32010
in the market-place. It utilized a NEC uPD7720 signal processor for post-correlation
processing and a multi-module structure employing five TRW multiply-accumulators
for correlation. (The correlator was developed by the author during 1982/83 to a much
more demanding specification than that detailed in section 6.3.1. At that time, the
precise requirements were not yet known and the system was developed as a laboratory

tool for exploratory experiments both on the bench and with the robot.)

Fig. 6.16 is a frame taken from a videotape of robotics experiments conducted in
the automated shearing laboratory at the University of Western Australia. This frame
shows the use of acoustic sensing to sense the skin of a live sheep for control of the robot
arm while traversing the heavily matted belly wool. The sensing system used was that
described in [1.1] and mentioned above. The transducer array can be seen mounted at
the end of the robot arm in place of the usual cutter assembly. (Actual shearing was

not being attempted in this experiment.)

Fig. 6.17 is another frame from the same videotape showing a plot generated
during another experiment. The top trace shows the range estimates from the sensor
plotted as a function of time. Random peak-to-peak variations in the skin-to-sensor
range estimates of about 2mm are indicated in the top trace. The second trace is a
testing signal. The third trace shows the vertical position of the array which was being
controlled by the robot to achieve the required range of 120mm. The bottom trace
shows the range estimate confidence parameter produced by the sensing system. This
is, in fact, proportional to the log of the conditional posterior probability of the range
estimate. A small initial confidence is seen to rise rapidly as the target is acquired and
to remain high subsequently as the robot tracks the skin.
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Figure 6.16 Robotics Experiments - Setup
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Figure 6.17 Robotics Experiments - Some Results
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As a result of experiments such as those described briefly above, particularly
unfavourable wool conditions have been identified and characterized. Studies such as
that of section 6.2 have indicated a need to redesign the transducers to lower the resonant
frequency, to increase the peak sensitivity and to reduce performance variations between
array elements. This work is now at an advanced stage and, meanwhile, new signal

processing electronics have been developed as described in section 6.3.1.

The prognosis for the outcome of the project is that acoustic sensing through the
fleece will be proven feasible as a robotic sensing technique in experiments during early
1986. Economically, the sensor design outlined in sub-section 6.3.1 is definitely viable for
such an application and is expected to be varied little for future use. However, additional

facilities, such as a one-dimensional beamsteering capability, are under investigation.

The possibility of using a higher resolution patch-sensing approach, as discussed
in section 6.0, still remains to be assessed in detail. It may be that the surface could
be scanned sequentially in raster fashion. In this case, the basic signal processing
hardware would require little modification but the system would require augmenting
if electronic beam-steering techniques are to be employed. (Mechanical beam-steering
may well prove uneconomic.) On the other hand, a faster multi-dimensional processing
technique based either on tomography or on parametric model fitting may be necessary
or desirable. In this case, a new signal processing system will have to be developed and
the VLSI architecture described in subsection 6.3.2 may well be very important in this
context. In either case, however, the author expects that the signal design principles and
methodology introduced in this thesis will remain important to the continued success

of the project.
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7. CONCLUSIONS

§7.0 General Remarks

The focus of this thesis is a special class of echo-location applications. Grouped
within this class are a wide variety of sensing and surface-imaging applications, most
of which have emerged only recently. For this class, Doppler effects are negligible,
unwanted backscatter may be intense and the medium may be characterized by highly-
coloured absorption properties. In addition, the transmission path characteristics may

be highly variable.

For such systems, conventional approaches to system design may be inadequate.
We have seen, in chapters 3 and 5, for example, that system performance may be very
sensitive to the shape of the signal power spectrum. Furthermore, there are several dif-
ferent aspects of system performance which react independently, in general, to changes
in the signal power spectrum. We therefore need to take these dependences into ac-
count by using a design procedure that operates on a more complicated transmission
path model than is conventionally employed. On the other hand, conventional tech-
niques for signal optimization have little to offer if Doppler effects are not present and

the clutter is stationary with range.

This thesis aims to provide a complete system design methodology for such ap-
plications. The designer who applies this methodology can feel sure that his design

is optimal in a sense that is meaningful in terms of his particular set of competing

performance demands.

I have looked for ways in which the signal, the receiver filter, the post-correlation
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processor and even the digital processing architecture can be optimized according to
relevant criteria. To this end, a number of separate but interrelated investigations have
been undertaken in the body of this thesis. Conclusions were presented in the relevant
chapters, but the complete set has been compiled in the next section. The restrictions

under which the various theoretical results were obtained are also given.

These theoretical restrictions are examined in more detail in section 7.2. Diffi-

culties associated with generalization of the theory are discussed there.
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§7.1 Detailed Conclusions

7.1.1 Estimation Theory

The form of the Maximum Likelihood estimator of range by echo-location has
long been known. The process involves correlation of the echo with a range-dependent
reference signal over all ranges. The estimate is obtained as the range associated with
the highest correlation. This form of estimator only becomes practical when prior
knowledge is used to restrict attention to a finite region of the range axis. The resulting

estimator is known as a Gated Maximum Likelihood estimator.

An important simplification can be made if the interference is statistically sta-
tionary or locally stationary with range. In that case the reference signal is independent
of range apart from a simple time shift, or is only slowly varying with range. The corre-
lation process can then be viewed as a straightforward linear filtering process involving

interference-whitening and matched filtering of the interference-whitened target echo.

My only original contribution in this area is the derivation of the new criterion
for local stationarity given by equation 2.22. This condition is less restrictive than that
applied by Moose [2-6] but is more consistent. It is particularly relevant where signals
of high time-bandwidth product are used. If the noise is stationary, then the interfer-
ence is locally stationary provided the covariance of the clutter path impulse response,
¢cc(t1,t2), depends only on the difference between ¢y and 3, to a close approximation,
over a time period of 2/B where B is the signal bandwidth. The requirement imposed
by Moose [2¢] was applied over a time period of 2T rather than 2/B where T was the

signal duration.

The Gated Maximum Likelihood estimator of bearing (and, similarly, that of
azimuth) by echo-location using an array of sensors, has been derived by Arques [2.18]
It involves scanning a beam across the bearing gate (or sector) and choosing the bearing
associated with the peak post-correlation response. The correlation reference is the
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same as that used in GML range estimation. In chapter 2, I obtained the same result

independently of Arques by a different derivation.

The bearing estimate can be obtained for a target at a particular range, in which
case the log-likelihood function generated by the scanning process is a function of bearing
only. Alternatively, the estimate can be obtained within a range gate and a sector. In
this case, both bearing and range are being estimated and the log-likelihood function
is produced by the combined effects of scanning and correlation over a lag region. The
LLF is then a two-dimensional function of range and bearing. The concept is easily

extended to three dimensions if azimuth is to be estimated also.

The accuracy of these ML estimation procedures depends on the signal power
spectrum, the signal duration, the transmission path characteristics and, in the cases of
bearing and azgimuth, the shape and size of the transmitting aperture. The way in which
range estimate variance depends on these factors has been known since Woodward f21]
analyzed the problem. However, the equivalent expression for bearing estimate variance
is derived by me in chapter 2. I also derive an expression for the effective gain of a
wideband antenna used for echo-location. It turns out that there is a direct reciprocal
correspondence between these two expressions of transverse resolution. I have therefore
defined a quantity which I have called the transverse resolution index and which is

common to both expressions.

The range estimate variance, the TRI and a third quantity, often appearing in the
literature, the detection index, have been used extensively within this thesis as indicators
of performance. They all depend, in different ways, on the signal power spectrum, the
signal duration and the transmission path characteristics. They are sufficient to indicate

all aspects of system performance for comparison between systems and for optimization

purposes.

In chapter 5, an original derivation yields a new estimator of range known as
a conditional MAP estimator. The concept may readily be extended to estimation
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of bearing and azimuth. This estimator is obtained as an augmented form of GML
estimator but has superior performance. Its performance is, in fact, superior to that
of an optimal form of GML estimator that uses an adaptive tracking range gate. The
width of this gate is controlled such that it is always related to the estimated RMS

tracking error.

The conditional MAP estimator uses the same information as this optimal form
of GML estimator but it minimizes the amount of additional spurious information used.
It does this by constructing the log of the conditional prior probability density function
according to a minimum information (or maximum entropy) criterion. This function
turns out to be an inverted parabola that must be added to the LLF prior to peak-
picking.

In the case of digital implementation, such a scheme is highly practical, adding

only slightly to the computational load in typical applications. An example is given in

chapter 6.

In cases where an adaptive tracking range gate is more practical, mathematical
analysis and empirical evidence (obtained by simulation in chapter 5) indicates that
the gate width should be adjusted to about 3.5 to 4 times the estimated RMS tracking
error in most cases. If the target is highly predictable and the detection index is very
small then a system employing a narrower adaptive tracking gate may perform better.
However, such a system will be continually hunting for the target with its gate opening

and closing as it repeatedly loses and reacquires the target.

7.1.2 Signal Optimization

Four theorems have been presented in chapter 3 that provide analytic solutions to
signal optimization problems. In each case, only the signal power spectrum is specified.
Later in the same chapter a method for designing a non-linear chirp with the required
power spectrum is given and the listing of a computer program for this task is provided
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in appendix 3B. In the case of each theorem, also, the solution is not in closed form.
The solution of one or more integral equations is required in order to obtain the values

of constants in the solution. Again, program listings are provided in appendix 3B.

Three of the four theorems deal with optimization with respect to the three
performance indicators that were introduced in chapter 2 and discussed in the previous
subsection of this chapter, section 7.1.1. The fourth allows two of these criteria to

be introduced as constraints in the problem of optimizing with respect to the third

criterion.

Finally, a complete signal optimization strategy has been presented in which the
three criteria are effective only according to their priority. Detection performance is
always assigned highest priority. This means that the detection index must be greater
than or equal to a specified constraint value before either of the other criteria become
effective. Either of the other criteria may have next highest priority. If transverse
resolution has next highest priority, then both the detection index and the TRI must
be greater than or equal to specified constraint values before range accuracy becomes

effective as an optimization criterion.

This strategy is implemented in a computer program, the listing of which has
been provided in appendix 3B. It gives the designer the flexibility to assign priorities
and objectives that reflect the requirements of his application. Nevertheless, it may be
that the simpler approach of optimization with respect to one simple criterion also has
a place. For one example, a multi-mode echo-location system might well be optimized
according to different criteria in different modes. For another, a robust system to operate
in a very adverse environment would probably be optimized according to a detection

criterion as in chapters 4 and 6.

Many theoretical results have been presented in chapter 3 to illustrate the meth-
ods. Most of these results have been supported by simulation results in chapter 5 which
are in excellent agreement with the theoretical results.
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Methods for constructing transmission path models have been discussed in chap-
ters 3 and 6. They involve ensemble averaging of impulse responses to extract noise
and estimate its power spectrum, simple excision of the target echo from the composite
echo and power spectral estimation using all-pole modelling to remove spurious de-
tail. I have developed a variant of all-pole modelling that I call all-pole modelling with
zero-placement and which has been presented in chapter 3. This can help overcome
the shortcomings of all-pole modelling when the system being modelled is known to
have zeros in its transfer function. None of these methods will be ideal for all applica-
tions, however, and they should be taken as indicative only of the way in which such

transmission path models can be obtained.

7.1.8 Robust System Optimszation

Despite the flexibility of the signal optimization techniques presented in chapter
3, there exist applications that fall well within the ambit of this thesis and yet are not

catered for by the theory of chapters 2 and 3. The application described in chapter 6 is

one of these.

The difficulty here is that the transmission path characteristics are uncertain. In
the case of the example in chapter 6, the uncertainty arises from two sources. Firstly,
there is measurement error which results from the process via which the target impulse
response must be extracted from the clutter in order to characterize the transmission
path. Secondly, and more importantly, the transmission path characteristics can vary

significantly in a quite unpredictable fashion.

The first step in dealing with this problem is to construct a transmission path
class description. A transmission path is then described as belonging to this class if
its characteristics fall between the limits prescribed in the class desc.ription. The class
should be as narrow as possible and yet broad enough to accommodate all transmission
path characteristics associated with the problem. The form of the class description also
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needs to be amenable to the mathematical treatment that is to follow.

A mathematical form for such a transmission path class description has been
presented and justified in chapter 4. Techniques for constructing a class description of
that form have been given in chapter 6 and the listing of a computer program for pro-
ducing one from a set of measured transmission path characteristics has been provided

in appendix 6.

Chapter 4 also included a theorem that gave the robust jointly optimal pair of
signal power spectrum and correlation reference for a specified transmission path class
description. Again, the solution is not in closed form but requires the simultaneous so-

lution of a set of integral equations for the values of three constants in the mathematical

solution.

The optimization criterion applied is that the pair of signal and receiver filter
should maximize the minimum detection index over the class of transmission paths.
The problem was presented in chapter 4 like a problem in game theory. Consistent
with this approach, the solution, when it exists, is in the form of a saddlepoint. That
is, the robust optimal system is designed to maximize the detection index for a least-
favourable transmission path within the class. The optimal system performs worst for
this least-favourable path. The solution is guaranteed to exist unless the transmission

path class description is exceptionally broad. A more precise requirement is stated in

appendix 4.

An interesting interpretation of the mathematical form of the solution to this
problem is that the least-favourable path is coloured in such a way that the optimal
system design for that path (and the robust-optimal system design for the fransmission
path class) displays the least overall colouration. That is, the product of the optimum
signal spectrum with the optimum receiver filter power transfer function is as flat as
possible. In addition, the other parameters of the signal path are as unfavourable as
possible. Hence, the attenuation of the target path is as large as possible and the clutter
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is as intense as possible.

An example of this mathematical approach to robust optimization has been pre-
sented in chapter 6 and the listing of a computer program for computing the least-
favourable transmission path model has been provided in appendix 6. In addition, a
more straightforward approach has been described that will often produce a solution
more simply. In this approach, the designer computes the optimum (for maximum de-
tection index) pair of signal and receiver filter for each member of his set of measured
transmission path characteristics. He then constructs a game matrix in which each
combination of system design and transmission path model has a corresponding entry.

The entries are the values of detection index obtained with those combinations.

Hopefully, the designer will be able to identify a saddlepoint in the matrix. How-
ever, a saddlepoint is not guaranteed to exist. Furthermore, unless a large number
of transmission path measurements are used, a saddlepoint solution obtained by this
method may not be the true global saddlepoint of the problem. Nevertheless, this ap-
proach also has a theoretical advantage in that the coupling that usually exists between
the clutter path characteristics and the target path characteristics (they do not vary

completely independently) is reflected in the way in which the problem is formulated.

In the problem formulation of chapter 4 the mathematical form of the trans-
mission path class description does not reflect such interdependence. This can lead to
difficulties as we saw in the example of chapter 6 where transmission path characteris-
tics associated with highly favourable paths were combined with others associated with
highly unfavourable paths to produce a very unrealistic least-favourable transmission
path model. The overall result of such a process is a highly conservative design that
performs poorly over the true class of transmission paths for which it has supposedly
been optimized. This type of difficulty can largely be overcome, however, by simply
excluding highly favourable transmission paths from the analysis when constructing the

transmission path class description.
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7.1.4 Digstel Implementation

The problem of implementing an optimal echo-location system for a high speed
application has been considered with the aid of an example in chapter 6. Multi-processor
digital system design was advocated and ways of minimizing I/O and synchronization

overheads were discussed.

Non-recursive algorithms such as fast Fourier transforms, block correlations and
continuous transversal filters are typical of echo-location systems. They can be imple-
mented in multiprocessor structures in which all constituent processors run identical
programs and are synchronized via their I/O links. All data flow is in one direction
only. All output data is output as it becomes available with no handshaking. The
availability of input data is indicated to the receiving processor by means of a hardware

flag. Each stage is synchronized to the preceding stage by simply waiting for data to

become available.

This approach simplifies the design problem and minimizes overheads. In some
cases, however, two or more unalike sections of an algorithm must run on separate
processors. In this case, the need for precise synchronization can be eliminated by
inserting a First-In-First-Out memory between the stages, effectively decoupling the

two processes.

An examination of processor architectures best suited for use as constituent pro-
cessors in such multi-processor applications was also undertaken in chapter 6. The
desirability of flexible, wideband I/O facilities was highlighted. In addition, a way of
facilitating compromise between multiplier speed and data-handling capacity was ad-
vanced in the form of a multiplicity of shift-and-add type multipliers and a segmented
bus structure.An example of such an architectural design in which I was heavily in-
volved was given in chapter 6. The detailed design of a CMOS VLSI implementation
of it is not yet finished. However, conservative performance estimates indicate that it
will be about 7 times faster than the Texas Instruments TMS32010 signal processor in
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multiprocessor FFT applications. In such applications, also, it will require no additional
circuitry, except perhaps, depending on the application, for data reordering at input or

output.
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§7.2 Extensions of the Theory

The conditional MAP estimator presented in chapter 5 uses previous estimates
of target range in an optimal way to aid in estimation of the current target range. I have
previously described this algorithm as a ”look-behind” algorithm (1], This terminology
arises naturally in the context of surface imaging when echoes from points over a large
area of a surface are being processed in a sequential manner to produce a surface map. In
that context, I have also investigated the possibility of developing a conditional MAP
estimator that uses unprocessed {or partly processed) echoes from nearby points on
the surface to aid in the estimation of surface range at the current point. This type
of estimator is called a ”look-ahead” estimator (1], Encouraging results have been
obtained with an approximate look-ahead algorithm [ Such an extension to the
theory of chapter 5, if it could be demonstrated to be of significant utility, might well
be valuable. In other respects, however, there are few theoretical restrictions relevant

to the derivation in chapter 5. Prior information can be used in this way to augment

any GML estimator.

The theory of chapters 2, 3 and 4, on the other hand, is restricted to situations
where Doppler effects are negligible and the clutter is at least locally stationary in a
statistical sense. The first of these restrictions might well be important. There may
be applications, which do not meet this restriction, to which the theory of chapters 3
and 4 could otherwise be usefully applied. If the clutter is uniformly distributed in
range and velocity in a region around the target, then the conventional approaches to
signal optimization (as described in section 3.0) have little to offer. If, at the same time,
the transmission path is complicated by highly-coloured absorption, coloured noise and
differences between the target and clutter paths, then my approach may be useful if it

can be extended to take account of significant Doppler effects.

However, attempts to remove the restriction on relative motion by extending the
transmission path model to include convolution of the clutter power spectrum with an
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assumed Doppler distribution have not been successful. The two main reasons for this
are that the resulting optimization problems are very complicated and yet the model

still does not cater for wideband Doppler effects.

It seems then, that a completely new approach to the problem will be necessary
if a satisfactory solution is to be found. That is to say, it appears that we cannot simply
extend the theory of chapters 3 and 4 to cater for non-zero Doppler distribution of the

clutter and target echoes.
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§7.3 Concluding Remarks

In this thesis, I have reviewed and extended the theory pertaining to the design of
echo-location systems. Chapter 2 pertains to the design and performance analysis of ML
estimators of range, bearing and azimuth. Chapter 3 deals with the design of signals to
optimize performance with respect to range estimation accuracy, target detectability and
transverse resolution. Chapter 4 concerns the robust optimization of target detection
performance by joint design of the signal and correlation reference. Chapter 5 introduces
conditional MAP estimation as an optimal approach to echo location when the target is

being tracked and range predictions and estimates of the prediction error are available.

The theory is backed up by simulation results presented in Chapter 5. In addi-
tion, Chapters 3, 4, 5 and 6 are replete with details of practical techniques for trans-
mission path modelling and for implementing the design theory. Computer program

listings are supplied in the relevant appendices.

To round out the thesis, Chapter 6 presents a case study in which many of
the principles and techniques are put to the test of practical application. This case
study goes as far as a practical system design involving the implementation of the
real-time DSP algorithms in an array of modern signal processing microprocessors.
As well as demonstrating the practicality of the design theory, these latter sections on
system implementation explore the factors affecting the efficiency of DSP multiprocessor
systems. Finally, a new processor architecture is presented that takes advantage of the
lessons learnt in that exploration. While I cannot claim sole responsibility for that
architecture, it was my implementation problem that prompted its design and I believe

I made a significant contribution to that design.

My aim in writing this thesis was to present a comprehensive design methodology
for a certain class of echo location system. I believe I have achieved that aim. The
methodology presented was certainly influenced at many points in its evolution by the
contributions of my supervisor, Prof. R. E. Bogner. In fact, we have had a number
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of joint publications on related topics. Nevertheless, I regard the work presented in
this thesis as essentially and substantially my own except as indicated in the previous

paragraph and in the Acknowledgements.
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APPENDIX 3A: PROOF OF THEOREM 1

The proof of theorem 1 will be undertaken in two steps. In the first step the
form of the solution in R; will be derived. In the second step it will be shown that the

transmission of any signal power in Ry will result in a reduction of the detection index.

Extremization in R;

For the first step in our proof we need to derive the signal power spectrum,

G,s(f), that maximizes the integral:

R Gyl f) | Hr ()
=,

2T = Jry Gonlf) + G D) AN S

subject to the power constraint (from 3.15):

/ Gu(f)df = P,/Z. (3A'2)

R,

i.e. (provided G46(f) > 0 everywhere in R;) maximize:

® _ [ [iHWDP Gunlf) [H(f)] ] J sA3
2T fm[lﬂc(f)l’ |H(£)|? Gun(f) + [Ho(£)|* Gl ) d S

subject to 3A.2.

The constrained extremization thus reduces to minimizing:

- (/)1 oo (1) G ]d 34.4
f’“ LHC(f)|2Gnn(f)+|Hc(f)I4Ge.(f)+ w) o (344)

where A is a Lagrange multiplier.
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Now, if we let T = | Ry F(f)df, then the solution is given by the Euler-Lagrange

equation:
dr(f) _ 4
dG ()
s_ BN Gun(N |HLA)* _o. (34.5)

(1HLNP Gun 1) + HLA Gual))

Equation 3A.5 reduces to:

(G“(f))z + 2G’"‘(f) G“(f) + (Gn'n(f))2 _ IHT(f)|2 Gnn(f) = B

bl s 0TI 3A.6
|H(f)|” |H(f)* AT S

Of the two mathematical solutions to 3A.6, only the following can be positive:

kg |Hr (N (Gan(£)Y? = Gun(f)
L)

Goo(f) = (34.7)
where k2 = 1/).

From the definition of R;, we see that the numerator of 3A.7 is strictly positive

over R;. Hence 3A.7 is a valid solution in R;. This completes the first step in the proof.

AP3A-2



Appendiz SA Proof of Theorem 1

Band of Zero Power

Now, consider the possibility of transmitting some power, Py, in R; and some,
P,, in a region, Ry, within Ry so that P, = P, + P;. If R; is chosen appropriately, the

spectrum, G2(f), that maximizes %v in Ry will be given by:

k2 |HT(f)| (Gnn(f))l/z - Gnn(f)

G -
e \Hf)P

(34.8)
where k; is chosen such that

fR G = Po/2. (34.9)

R, will be chosen such that 3A.8 is positive everywhere in Rs.

Now, for P; negligibly small, the spectrum, Gi(f), that maximizes % in By will

be given by:
/2 _
Gl(f) — ki |HT(f)| (T;’:E;;l)z Gnn(.f) (3A.10)
From 3A.8 and 3A.10, we can write:
R _ B2 () _ Gun(f) | H (1) ] ¥ (3411
2T /qunz [lﬂc(f)l2 LD Gan) + LD G )| A

and, substituting for G,.(f), we obtain:

R |Hr ()
2T /RR [H(NP 4
I.IEIT(f)l(G.m(f))‘/2
ot R / & L
|Hr(f)] (G..,.(f))l 2
kz/ |H.(f)I* 4
From 3A.12, we get:
() [ Hr () (Gan (£
a_if_ - sz - |H(f)? il S
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and
o 1/2
(27) _ _15'/‘ |HT(f)|(Gnngf)) daf. (34.14)
ok — KJr  [H(
But
1/2
(_1_{’1 — 2[ |HT(f)I(Gnugf)) df. (3A,15)
ks ro |HAS)
Hence
dky -1
- . 3A.16
dP, ~ 3 HEr(IGm()P 4 (34.16)
LT AT)T
Similarly,
dkz 1
= . 17
dP; ~ o[ Er(GumN)7 (34.17)
Re (NI
From 3A.13, 3A.14, 3A.16 and 3A.17, we obtain:
dZy 1(1 1
=s\z = 34.1
i, ~ 2\K K (34.18)

Now, since P; < P,, we have k; < k4 and from 3.17 we see that k; > kg for
R
G2(f) to be positive in Ry. Hence, from 3A.18, %%) is strictly negative and it follows

that % is maximized by setting P> = 0. Hence the complete solution is given by 3.16.

Q. E. D.
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APPENDIX 3B: PROGRAM LISTINGS FOR CHAPTER 3

§AP3B.1 MYV Optimization Program

oo ocoOoO0O000O0000

o0

c

C
C

PROGRAM VARIAN

PROGRAM TO COMPUTE THE OPTIMAL SIGNAL SPECTRUM FOR RANGE ESTIMATION
GIVEN A TRANSMISSION PATH MODEL. THE MODEL CONSISTS OF A SET OF DATA
FILES WHICH ARE ASSUMED TO REPRESENT COMPONENTS OF THE MODEL AS
FOLLOWS:
"SIGSPEC" CONTAINS THE SQUARED MAGNITUDE OF THE TARGET
PATH TRANSFER FUNCTION.
"CLSPEC" CONTAINS THE SQUARED MAGNITUDE OF THE CLUTTER
PATH TRANSFER FUNCTION.
"NSPEC" CONTAINS THE POWER SPECTRUM OF LOCALLY GENERATED
NOISE.

THE OPTIMUM SPECTRUM IS OUTPUT TO FILE: "OPTSPEC.BIN".
ALL SIGNALS ARE ASSUMED SAMPLED AT 500KHZ AND ALL SPECTRA ARE ASSUMED
TO BE BASED ON 512-POINT FFT.

REAL LPSPEC(128),LPCLUT(128),S(128),NSPEC(128).K,NEWK
LOGICAL FLAG

OPEN(1,ERR=100,FILE='SIGSPEC.BIN',STATUS="'OLD',ACCESS="SEQUENTIAL'
1 ,FORM='UNFORMATTED')
OPEN(2,ERR=100,FILE='CLSPEC.BIN',STATUS='0OLD',ACCESS="'SEQUENTIAL'
1 ,FORM='UNFORMATTED')
OPEN(6,ERR=100,FILE='NSPEC.BIN',STATUS='0LD',ACCESS="'SEQUENTIAL'
1 ,FORM='UNFORMATTED') '
OPEN(7,ERR=100,FILE='DETIND.VAR',STATUS="'NEW',ACCESS="'SEQUENTIAL'
1 ,FORM='UNFORMATTED'")
OPEN(8,ERR=100,FILE='ESTVAR.VAR',STATUS='NEW',ACCESS="SEQUENTIAL'
1 ,FORM='UNFORMATTED')
OPEN(4,ERR=100,FILE='TRI.VAR',STATUS='NEW',ACCESS='SEQUENTIAL'
1 ,FORM='UNFORMATTED')

READ IN TRANSFER FUNCTION SQUARED MAGNITUDES

WHICH MUST BE DIVIDED BY THE SQUARE OF THE TRANSMITTED IMPULSE

MAGNITUDE (10V) EXPRESSED IN UNITS OF THE QUANTIZATION STEP (.1%*9%/256 V)
DO 10 I=1,128
READ(1) SAMP
LPSPEC(I) = SAMP/(2840.%*2840.)
READ(2) SAMP
LPCLUT(I) = SAMP/(2840.%2840.)

10 CONTINUE

READ IN NOISE PSD
DO 200 I=1,128
READ(6) NSPEC(I)

200 CONTINUE

GET FIRST AND LAST FREQUENCIES AND SIGNAL POWERS
TYPE *,'SPECIFY FIRST AND LAST FREQUENCIES (BIN NOS.)'
ACCEPT *,I1,I2
TYPE *,'SPECIFY FIRST AND LAST SIGNAL POWERS (dB)'
ACCEPT *,IDB1,IDB2

COMPUTE THE INITIAL ESTIMATE OF THE SPECTRAL CENTROID
OF THE POST-WHITENING TARGET SIGNAL
5 CN = 0.0
Ch = 0.0
DO 11 I=I1,1I2
CN = CN+I*LPSPEC(I)/LPCLUT(I)
CD = CD+LPSPEC(I)/LPCLUT(I)
11 CONTINUE
C = CN/CD
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DO 145 IDB=IDB1,IDB2
0PEN(3.ERR=100.FILE='0PTSPEC.VAR'.STATUS='NEW'.ACCESS='SEQUENTIAL'
1 ,FORM="UNFORMATTED")

PREQ = 10**(FLOAT(IDB)/10.)

OLDK = 0.
K = 1.E4
OLDP = 0.
FLAG = ,FALSE.

C COMPUTE THE MINIMUM VARIANCE SIGNAL SPECTRUM USING K
C ITERATE ON CENTROID
90 CN = 0.0
cCD = 0.0
PS = 0.0
DO 70 I=I1,I2
S(I) = (K*977*ABS(FLOAT(I)-C)*
& SQRT(LPSPEC(I)*NSPEC(I))-NSPEC(I))/LPCLUT(I)
1F (S(I).LT.0.0) S(I) = 0.0
PS = PS+S(I)*LPSPEC(I)*977
SS S(I)‘LPSPEC(I)/(NSPEC(I)+S(I)*LPCLUT(I))
CN CN+I*SS
CD = CD+SS
70 CONTINUE

C COMPUTE SIGNAL POWER
C POWER = SUM(P.S.D.*UNITS*BIN-WIDTH)
P = 0.
D0 250 I=I1,I2
250 P = P+S(I)
P = P*26E-12%977

C IF SIGNAL POWER NOT AS REQUIRED THEN RECOMPUTE OPTIMAL SPECTRUM
2556 PC = ABS(P/PREQ-1)%*100
IF (PC.LE.1.) GO TO 75
IF ((P-OLDP).EQ.0.) THEN
NEWK = 2%*K
ELSE
NEWK = K+(K-OLDK)*(PREQ-P)/(P-OLDP)
IF (NEWK.LE.O0) NEWK = (K-OLDK)/2+OLDK
ENDIF
OLDK = K
K = NEWK
OLDP = P
GO TO 90

C IF CENTROID NOT CORRECT THEN UPDATE AND TRY AGAIN
75 CCC = CC
CC = C
C = CN/CD
IF (ABS(CC-C).LT..5) GOTO 260
IF (((CC.GT.CCC).AND.(C.LT.CC)).OR.
& ((CC.LT.CCC).AND.(C.GT.CC))) THEN
FLAG = .TRUE.
C = (cc+cce)/2
ELSE
IF (FLAG) THEN
C = 2*CC-CcCC
ELSE
C = (2*cc+C)/3
ENDIF
ENDIF
GO TO 90
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C WRITE OUT OPTIMUM SPECTRUM
260 DO 263 I=1,I1-1
263 S(I) = 0.
DO 266 I=I2+1,128
266 S(I) = 0.
DO 110 I=1,128
110 WRITE(3) S(I)

C COMPUTE THE VARIANCE OF THE DELAY ESTIMATE USING THE OPTIMUM
C SIGNAL SPECTRUM CORRESPONDING TO K
SIGMA = 0.0
Do 20 I=I1,I2
IF ((S(I).LE.O).AND.(NSPEC(I).LE.O)) THEN
DEL = 0.
ELSE
DEL = ((FLOAT(I)-C)**2)*S(I)*LPSPEC(I)
DEL = DEL/(NSPEC(I)+S(I)*LPCLUT(I))
ENDIF
20 SIGMA = SIGMA+DEL
SIGMA = 2000/(8%3.1416%3.1416%(977**3)*SIGMA)
WRITE(5,31)
31 FORMAT(1H ,//)
WRITE(5,30) SIGMA
30 FORMAT(1H ,'DELAY ESTIMATE VARIANCE IS ',E9.3,' SECS**2')
SIGMA = SQRT(SIGMA)*1.0E6
WRITE(8) SIGMA
WRITE(5,50) SIGMA
50 FORMAT(1H ,'CORRESPONDING TO AN RMS ERROR OF ',F9.3,' us')

C COMPUTE THE VALUE OF THE TRANSVERSE RESOLUTION INDEX
C USING THE OPTIMUM SIGNAL SPECTRUM CORRESPONDING TO K
TRI = 0.0
DO 220 I=I1,12
IF ((S(I).LE.O).AND.(NSPEC(J).LE.O)) THEN
DEL = 0.
ELSE
DEL = (FLOAT(I)**2)*S(I)*LPSPEC(I)
DEL = DEL/(NSPEC(I)+S(I)*LPCLUT(I))
ENDIF
220 TRI = TRI+DEL
TRI (977**3)*TRI
TRI 8*3.1416*.0005*TRI
TRI = TRI/(340%*340)
WRITE(4) TRI
WRITE(5,230) TRI
230 FORMAT(1H ,'TRANSVERSE RES. INDEX IS ',E9.3,
& 'PER SQ. METRE')

C OUTPUT THE VALUE OF THE DETECTION INDEX (SIR)
D = 10*%¥AL0OG10(CD*977/2000)
WRITE(7) D
WRITE(5,120) D
120 FORMAT(1H ,'THE DETECTION INDEX IS ',F6.2,' DB')

CLOSE(3) .
145 CONTINUE
STOP

100 WRITE(5,40)

40 FORMAT(1H ,'ERROR DURING FILE OPENING')
STOP
END
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Spectral Estimation

§AP3B.2 All-pole Spectral Estimation Program with Zero Placement

PROGRAM DURBIN

C PROGRAM TO SMOOTH A POWER SPECTRUM BY MODIFIED SELECTIVE
C MEM SPECTRAL ESTIMATION USING DURBIN'S ALGORITHM AND
C ZERO PLACEMENT.

10

15

40
60

50

80

90

95

1

1

CHARACTER INFILE*31,0TFILE*31,CH
DIMENSION A(20),R(20),58(256)
COMPLEX X(512),Y(256),2(10),ZJ
REAL JJ

TYPE *,'SPECIFY INPUT FILE: '

ACCEPT 15,INFILE

FORMAT(A31)

OPEN(1,ERR=40,FILE=INFILE,STATUS='OLD'.ACCESS='SEQUENTIAL'
,FORM="'UNFORMATTED")

REWIND(1)

GO TO 50

WRITE(10,60) IER

FORMAT(18H FILE OPEN ERROR- ,I5)

GO TO 10

TYPE *,'SPECIFY OUTPUT FILE: '

ACCEPT 15,0TFILE

0PEN(2,ERR=80.FILE=OTFILE.STATUS='NEW'.ACCESS='SEQUENTIAL'
,FORM="'UNFORMATTED ')

GO TO 90

WRITE(10,60) IER

GO TO 50

TYPE *,'SPECIFY PREDICTION ORDER: '
ACCEPT *,NP

TYPE *,'SPECIFY NUMBER OF ZEROES TO BE PLACED'
ACCEPT *,NZ

DO 95 I=1,NZ

TYPE *,'SPECIFY POSITION OF NEXT ZERO (ZREAL, ZIMAG)'
ACCEPT *,ZREAL, ZIMAG

Z(I) = CMPLX(ZREAL,ZIMAG)

CONTINUE

TYPE *,'SPECIFY FIRST AND LAST SAMPLE: !
ACCEPT *,ISAMP,LSAMP

IF (ISAMP.LT.1) ISAMP = 1

NSAMP = LSAMP-ISAMP+1

C READ IN DATA

120

130

X(NSAMP+1) = (0.,0.)
DO 120 I=1,ISAMP-1
READ(1)

READ(1) SAMP

X(1) = CMPLX(SAMP,0.)
DO 130 I=2,NSAMP
READ(1) SAMP

X(I) = CMPLX(SAMP,0.)
X(2*NSAMP+2-1I) = X(I)

C INSERT POLES TO CANCEL KNOWN ZEROES

145

Z1 = (1.,0.)

DO 145 I=1,NZ

X(1) = X(1)/CABS(Z1-Z(I))
DO 135 J=2,NSAMP
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JJ 3.1416%(J-1)/NSAMP

ZJ = CMPLX(COS(JJ),SIN(JJ))

DO 135 I=1,NZ

X(J) = X(J)/CABS(ZJ-Z(1))
135 X(2*NSAMP+2-J) = X(J)

C TRANSFORM TO AUTOCORRELATION DOMAIN
CALL DFT(X,2*NSAMP,Y,NP+1)
DO 140 I=1,NP+1

140 R(I) = REAL(Y(I))/(2*NSAMP)

C APPLY MEM TO AUTOCORRELATION FUNCTION
CALL DURB(R,A,NP,G)

C OBTAIN MEM SPECTRAL ESTIMATE FROM PREDICTOR COEFFICIENTS

DO 150 I=1,NP+1

150 X(I) = CMPLX(A(I),0.)
DO 160 I=NP+2,2*NSAMP

160 X(I) = (0.,0.)
CALL DFT(X,2*NSAMP,Y,NSAMP)
DO 170 I=1,NSAMP
S(I) = REAL(Y(I)*CONJG(Y(I)))
S{I) = G*G/S(I)

170 CONTINUE

C OUTPUT LEADING ZERO SAMPLES
SAMP = 0.
DO 255 I=1,ISAMP-1

255 WRITE(2) SAMP

C REINSERT ZEROES AND OUTPUT

Z1 = (1.,0.)
SAMP = S(1)
DO 245 I=1,NZ

245 SAMP = SAMP*CABS(Z1-Z(I))
WRITE(2) SAMP
DO 240 J=2,NSAMP
JJ = 3.1416%*(J-1)/NSAMP
ZJ = CMPLX(COS(JJ),SIN(JJ))
SAMP = S(J)
DO 235 I=1,NZ

235 SAMP = SAMP*CABS(ZJ-Z(I))

240 WRITE(2) SAMP

C OUTPUT TRAILING ZERO SAMPLES
SAMP = 0.
250 READ(1,END=260)
WRITE(2) SAMP
GOTO 250

260 STOP
END
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SUBROUTINE DURB(CS,A,NP,G)
DIMENSION A(20).AP(0:20,0:20),E(0:20),CS(*)
REAL K(20)

C DURBIN'S ALGORITHM

15

30

40

20

50

E(0) = CS(1)
DO 15 I=0,NP
AP(I,0)
AP(0,1)
CONTINUE
po 20 I=1,NP

K(I) = CS(I+1)

DO 30 J=1,(I-1)

K(I) = K(I) + AP(I-1,J)*CS(I-J+1)
CONTINUE

K(I) = -K(I)/E(I-1)

AP(I,I) = K(I)

DO 40 J=1,(I-1)

AP(I,J) = AP(I-1,J) + K(I)*AP(I-1,1I-J)
CONTINUE

E(I) = (1-K(I)*K(I)})*E(I-1)

CONTINUE

A(1) = 1.

po 50 J=1,NP

A(J+1) = AP(NP,J)

CONTINUE

0.0
0.0

C COMPUTE GAIN PARAMETER

G = SQRT(E(NP))

RETURN
END
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SUBROUTINE DFT(DAT,N,S,NV)

C COMPUTE NV COMPLEX POINTS FROM AN N-POINT
¢ COMPLEX SEQUENCE BY DFT. MODIFIED FROM AN
C ORIGINAL ROUTINE BY D. FENSOM

100

200
300

COMPLEX W(512),Z.DAT(*),S(*)
CON=-8.%ATAN2(1.,1.)/FLOAT(N)
Do 100 I=1,N
W(I)=CEXP(CMPLX(0.,CON*FLOAT(I-I)))
DO 300 I=1,NV

Z=CMPLX(0.,0.)

DO 200 J=1,N
IA=MOD((I-1)*(J-1),N)+1
Z=Z+DAT(J)*W(IA)

S(I)=2

RETURN

END
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§AP3B.3 Mixed Criteria Optimisation Program

PROGRAM MIXUP

THE OPTIMUM SPECTRUM IS OUTPUT TO FILE: "OPTSPEC.BIN".

THREE PERFORMANCE INDICATOR FILES ARE ALSO PRODUCED. THEY ARE CALLED
“DETIND.MIX", "ESTVAR.MIX" AND "TRI.MIX".

ALL SIGNALS ARE ASSUMED SAMPLED AT 500KHZ AND ALL SPECTRA ARE ASSUMED
TO BE BASED ON 512-POINT FFT.

C PROGRAM TO COMPUTE THE OPTIMAL SIGNAL SPECTRUM FOR RANGE ESTIMATION
C GIVEN A TRANSMISSION PATH MODEL. THE MODEL CONSISTS OF A SET OF DATA
C FPILES WHICH ARE ASSUMED TO REPRESENT COMPONENTS OF THE MODEL AS

C FOLLOWS:

C "SIGSPEC" CONTAINS THE SQUARED MAGNITUDE OF THE TARGET

C PATH TRANSFER FUNCTION.

C "CLSPEC" CONTAINS THE SQUARED MAGNITUDE OF THE CLUTTER

C PATH TRANSFER FUNCTION.

C "NSPEC" CONTAINS THE POWER SPECTRUM OF LOCALLY GENERATED

C NOISE.

c

¥

C

C

c

REAL LPSPEC(128),LPCLUT(128),S(128),NSPEC(128),
& KV,NEWKV,KD,NEWKD,KT, NEWKT
LOGICAL FLAG,DFIRST,TFIRST,DONLY

OPEN(l.ERR=100,FILE='SIGSPEC.BIN',STATUS='OLD'.ACCESS='SEQUENTIAL'
1 ,FPORM='UNFORMATTED')
0PEN(2.ERR=100,FILE='CLSPEC.BIN',STATUS='0LD'.ACCESS='SEQUENTIAL'
1 ,FORM='UNFORMATTED')
0PEN(6,ERR=100,FILE='NSPEC.BIN'.STATUS='0LD',ACCESS='SEQUENTIAL'
1 ,FORM='UNFORMATTED')
0PEN(7.ERR=100,FILE='DETIND.MIX',STATUS='NEW'.ACCESS='SEQUENTIAL'
1 ,FORM='UNFORMATTED')
0PEN(8.ERR=100,FILE='ESTVAR.MIX'.STATUS='NEH'.ACCESS='SEQUENTIAL'
1 ,FORM='UNFORMATTED')
0PEN(4,ERR=100,FILE='TRI.HIX'.STATUS='NEW'.ACGESS='SEQUENTIAL'
1 ,FORM='UNFORMATTED')
C READ IN TRANSFER FUNCTION SQUARED MAGNITUDES
WHICH MUST BE DIVIDED BY THE SQUARE OF THE TRANSMITTED IMPULSE
MAGNITUDE (10V) EXPRESSED IN UNITS OF THE QUANTIZATION STEP (.1*9/256 V)
DO 10 I=1,128
READ(1) SAMP
LPSPEC(I) = SAMP/(2840.*2840.)
READ(2) SAMP
LPCLUT(I) = SAMP/(2840.%2840.)
10 CONTINUE

Qo

C READ IN NOISE PSD
DO 200 I=1,128
READ(6) NSPEC(I)

200 CONTINUE

C GET FIRST AND LAST FREQUENCIES AND SIGNAL POWERS,
C AND CONSTRAINTS.
TYPE *,'SPECIFY FIRST AND LAST FREQUENCIES (BIN NOS.)'
ACCEPT *,I1,1I2
TYPE *,'SPECIFY FIRST AND LAST SIGNAL POWERS (dB)'
ACCEPT *,IDB1,IDB2
TYPE *,'SPECIFY DETECTION INDEX REQUIRED (dB)'
ACCEPT *,DREQ
TYPE *,'SPECIFY TRI REQUIRED'
ACCEPT *,TREQ
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C COMPUTE THE INITIAL ESTIMATE OF THE SPECTRAL CENTROID

C OF
5

11

THE POST-WHITENING TARGET SIGNAL

CN = 0.0

cD = 0.0

Do 11 I=I1,12

CN = CN+I*LPSPEC(I)/LPCLUT(I)
CD = CD+LPSPEC(I)/LPCLUT(I)
CONTINUE

C = CN/CD

C REPEAT FOR ALL REQUIRED SIGNAL POWERS AT
C 1dB INTERVALS

DO 145 IDB=IDB1,IDB2

0PEN(3,ERR=100.FILE='OPTSPEC.MIX',STATUS='NEW',ACCESS='SEQUENTIAL'
1 ,FORM='UNFORMATTED')

C INITIALIZE

PREQ = 10**(FLOAT(IDB)/10.)
OLDKV = 0.

KV = 1.E4
OLDP 0.
KD =
KT =
CC =
FLAG

HOoOoo k=

.FALSE.
DFIRST .TRUE.
TFIRST .TRUE.
DONLY = .FALSE.

C COMPUTE THE MINIMUM VARIANCE SIGNAL SPECTRUM USING KV,

Cc KD
90

AND KT. ITERATE ON CENTROID.

CN = 0.0
ch = 0.0
PV = 0.
PT = 0.
PD = 0.

po 70 I=I1,1I2

SV = 977*ABS(FLOAT(I)—c)*SQRT(LPSPEC(I)*NSPEC(I))/LPCLUT(I)
ST KT*977'FLOAT(I)‘SQRT(LPSPEC(I)*NSPEC(I))/LPCLUT(I)

SD = KD*SQRT(LPSPEC(I)*NSPEC(I))/LPCLUT(I)

ssv (977*ABS(FLOAT(I)-C))**2

SST (KT*977*FLOAT(I))**2

SSD = KD**2

S(1) = (KV*SQRT((SSV+SST+SSD)'(LPSPEC(I)*NSPEC(I)))
& -NSPEC(I))/LPCLUT(I)

IF (S(I).LT.0.0) THEN

S(I) = 0.0

SV = 0.

ST = 0.

SD = 0.
ENDIF

C COMPUTE "PARTIAL POWERS"

PV = PV+SV
PT = PT+ST
PD = PD+SD
SS S(I)*LPSPEC(I)/(NSPEC(I)+S(I)‘LPCLUT(I))

C COMPUTE NUMERATOR AND DENOMINATOR OF CENTROID FREQ.

70

CN = CN+I*SS
cCD = CD+SS
CONTINUE
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C COMPUTE SIGNAL POWER
C POWER = SUM(P.S.D.*UNITS*BIN-WIDTH)
P =0.
DO 250 I=11,I2
250 P = P+S(I)
P = P*26E-12%977

C IF SIGNAL POWER NOT AS REQUIRED THEN RECOMPUTE OPTIMAL SPECTRUM
255 PC = ABS(P/PREQ-1)*100

IF (PC.LE.1.) GO TO 75

IF ((P-OLDP).EQ.0.) THEN
NEWKV = 2*KV

ELSE
NEWKV = KV+(KV-OLDKV)*(PREQ-P)/(P-OLDP)
IF (NEWKV.LE.O.) NEWKV = KV/2

ENDIF

OLDKV = KV

KV = NEWKYV

OLDP = P

GO TO 90

C IF CENTROID NOT CORRECT THEN UPDATE AND TRY AGAIN
75 CCC = CC
cC = C
C = CN/CD
IF (ABS(CC-C).LT..5) GOTO 260
IF (((CC.GT.CCC).AND.(C.LT.CC)).OR.
& ((CC.LT.CCC).AND.(C.GT.CC))) THEN

FLAG = .TRUE.
C = (cc+CCC)/2
ELSE

IF (FLAG) THEN
C = 2*Ccc-cccC
ELSE
C = (2*cc+C)/3
ENDIF
ENDIF
GO TO 90

C IF DETECTION INDEX NOT AS REQUIRED THEN UPDATE KD
C AND TRY AGAIN.
260 D = 10*ALOG10(CD*977/2000)

IF DETECTION CONSTRAINT MET WITHOUT ADDING AN MDI
COMPONENT TO THE POWER SPECTRUM THEN DONT BOTHER.
IF ((D.GT.DREQ).AND.(KD.EQ.0.)) GOTO 660

a0

IF DETECTION CONSTRAINT NOT MET AND MV COMPONENT
OF THE POWER SPECTRUM IS NEGLIGIBLE THEN GIVE UP.
DO NOT WORRY ABOUT TRI CONSTRAINT.
IF ((D.LT.DREQ).AND.(PV.LT..01*PD)) THEN
DONLY = .TRUE.
GOTO 760
ENDIF

OO0

IF (ABS(DREQ-D).LT..1) GOTO 660
IF (DFIRST) THEN
C FOR FIRST ATTEMPT GUESS A REASONABLE VALUE FOR MDI COEFFICIENT

DFIRST = .FALSE.

ELSE
IF ((D-OLDD).EQ.0) THEN
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C HEURISTIC TO PREVENT LOCK-UP
NEWKD = 2.*KD
ELSE
NEWKD = KD+(KD—OLDKD)*(DREQ—D)/(D—OLDD)
ENDIF
C DONT ALLOW NEGATIVE CONTRIBUTIONS TO POWER SPECTRUM
IF (NEWKD.LE.O.) NEWKD = 0.
ENDIF
265 OLDKD = KD
KD = NEWKD

oLDD =D \
OLDKV = O.

OLDP = O.

cc = C

FLAG = .FALSE.

GO TO 90

C IF TRI NOT AS REQUIRED THEN UPDATE KT AND TRY AGAIN
660 TRI = 0.0
DO 220 I=I1,I2
IF ((S(I).LE.O).AND.(NSPEC(I).LE.O)) THEN

. DEL = 0.
ELSE
DEL = (FLOAT(I)**Z)*S(I)*LPSPEC(I)
DEL = DEL/(NSPEC(I)+S(I)*LPCLUT(I))
ENDIF

220 TRI = TRI+DEL
TRI = (977**3)*TRI
TRI = 8%3.1416%.0005*TRI
TRI = TRI/(340%340)

¢ IF TRI CONSTRAINT IS MET WITHOUT ANY MTRI CONTRIBUTION
TO THE POWER SPECTRUM THEN DONT BOTHER.
IF ((TRI.GT.TREQ).AND.(KT.EQ.O.)) GOTO 760

o

IF TRI CONSTRAINT IS NOT MET AND THE MV CONTRIBUTION
TO THE POWER SPECTRUM IS NEGLIGIBLE THEN GIVE UP.
SINCE THE DETECTION CONSTRAINT IS DOMINANT, NO
FURTHER FAT REMAINS TO BE TRADED OFF.

IF ((TRI.LT.TREQ).AND.(PV.LT..01*PT)) GOTO 760

o000

TC = ABS(1~-TRI/TREQ)*100.
IF (TC.LE.1.) GOTO 760
IF (TFIRST) THEN
C FOR FPIRST ATTEMPT GUESS A REASONABLE VALUE FOR MTRI COEFFICIENT
NEWKT = ((I2—11)+2*KD/977)/(4*(12+Il))
TFIRST = .FALSE.
ELSE
IF ((TRI-OLDT).EQ.0) THEN
C HEURISTIC TO PREVENT LOCK-UP
NEWKT = 2.*KT

ELSE
NEWKT = KT+(KT-0LDKT)*(TREQ—TRI)/(TRI—OLDT)
ENDIF
IF (NEWKT.LE.O.) NEWKT = 0.
ENDIF
665 DFIRST = .TRUE.
KD = 0.

OLDKT = KT
KT = NEWKT
OLDT = TRI
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OLDKV = 0.
KV = 1.E4
OLDP 0
cC =
FLAG .FALSE.
GO TO 90

on =

WRITE OUT OPTIMUM SPECTRUM
760 DO 263 I=1,11-1
263 S(I) = 0.
DO 266 I=I2+1,128
266 S(I) = 0.
DO 110 I=1,128
110 WRITE(3) S(I)

IF NECESSARY COMPUTE TRI
IF (DONLY) THEN
TRI = 0.0
DO 1220 I=I1,I2
IF ((S(I).LE.O).AND.(NSPEC(I).LE.O)) THEN

DEL = 0.
ELSE
DEL = (FLOAT(I)**2)*S(I)*LPSPEC(I)

DEL = DEL/(NSPEC(I)+S(I)*LPCLUT(I))
ENDIF
1220 TRI = TRI+DEL
TRI = (977**3)*TRI
TRI = 8%3.1416%*.0005*TRI
TRI = TRI/(340%340)
ENDIF

COMPUTE THE VARIANCE OF THE DELAY ESTIMATE USING THE OPTIMUM

SIGNAL SPECTRUM CORRESPONDING TO K
SIGMA = 0.0
DO 20 I=I1,I2
IF ((S(I).LE.O).AND.(NSPEC(I).LE.O)) THEN
DEL = 0.
ELSE
DEL = ((FLOAT(I)-C)**2)*S(I)*LPSPEC(I)
DEL = DEL/(NSPEC(I)+S(I)*LPCLUT(I))
ENDIF
20 SIGMA = SIGMA+DEL
SIGMA = 2000/(8%3.1416*3.1416%(977**3)*5IGMA)

WRITE OUT RESULTS
WRITE(5,31)

31 FORMAT(1H ,//)
WRITE(5,30) SIGMA

30 FORMAT(1H ,'DELAY ESTIMATE VARIANCE IS ',E9.3,' SECS**2')

SIGMA = SQRT(SIGMA)*1.0E6

WRITE(8) SIGMA
WRITE(5,50) SIGMA

50 FORMAT(1H ,'CORRESPONDING TO AN RMS ERROR OF ',F9.3,'
WRITE(4) TRI
WRITE(5,230) TRI

230 FORMAT(1H ,'TRANSVERSE RES. INDEX IS ',ES9.3)
WRITE(7) D
WRITE(5,120) D

120 FORMAT(1H ,'THE DETECTION INDEX IS ',F6.2,' dB')

CLOSE(3)
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STOP

100 WRITE(5,40)

40 FORMAT(1H ,'ERROR DURING FILE OPENING')
STOP
END
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OO0

Non-linear Chirp Design Program

PROGRAM GENSIG

Chirp Design

PROGRAM TO GENERATE A NONLINEAR CHIRP WITH APPROXIMATELY THE

POWER SPECTRUM SPECIFIED IN OPTSPEC.
INPUT FILE IS ASSIGNED TO LUN 1 AND OUTPUT FILE TO LUN 2.

30

DIMENSION TRAJ(148)

DO 30 I=1,20
TRAJ(I) = 0.
ETOT = 0.0

GENERATE TRAJECTORY

10

COMPUTE REQUIRED NUMBER OF SAMPLES AT FREQUENCY I
NSAMP = INT(TRAJ(I)*SCALE+0.5)

GENERATE AND OUTPUT SAMPLES AT FREQUENCY I

20

DO 10 I=21,148

READ(1) SPEC

ETOT = ETOT + SPEC
TRAJ(I) = ETOT

CONTINUE

SCALE = FLOAT(1024)/ETOT

FT = 0.0
LSAMP = 0
DO 20 I1=21,148

ISAMP = NSAMP-LSAMP
LSAMP = NSAMP

F = FLOAT(I)

DO 20 J=1,ISAMP

FT = FT + F/1024

S = SIN(6.283185*FT)
WRITE(2) S

CONTINUE

STOP

END
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APPENDIX 3C: PROOF OF THEOREM 4

The proof of theorem 4 can be most simply undertaken by reducing the con-

strained extremization to the maximization of a single integral. In this way we can

obtain an equation to replace 3A.4 in the proof of theorem 1 in appendix 3A. From

there on the proof parallels that of theorem 1.

Reduction to a Single Integral

Now for this optimization problem there are three constraint equations to satisfy,

given in R; by (from 3.15, 3.37 and 3.38):

/ Gu(f)df = 0/2;
Ry

/ G, (f) | Hr(f)? g = Bmin
Gua(f) + Gos(N) | HLN) aT
and
/’ £2G..(f) |Hr ()] & = AT R
; S MR
Gnn(f) + Guo(f) |He(f) 8rT

Subject to these constraints, we wish to maximize (from 3.23):

1 (f f0)* Gus(N B ()
872102 R, Gun(f) + GuolF) |Ho(S)]

5 df.

Now, 3C.2 may be written as:

/ |Hr (f)[2 Grn(/) ;- /
Ry |Ho(F)P Gun(f) + |He(£)* Goolf) R, |H. (f)l2

AP3C-1
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Similarly, 3C.3 may be rewritten as:

8NP

2TRImin
T aks

8xT

df =

/ 2| Hr (£) Gun(f) . (3C.6)
R

1 IHc[f)|2 Gun(f) + ch(f)I‘ Gu(f)

From 3C.4, subject to 3C.1, 3C.5 and 3C.6, we wish to minimige:

(f = o)’ |Hr () ) 1
R HLD) Bx?To}

which, after substitution for af from 2.33, becomes:

f (f — fo)? |Hr ()| Gualf)
R

df. 3C.7
L 1B Grnlf) + | HLNN CuelF) d it

This constrained extremization reduces to minimizing:

~ fo)? 242 e
- fR [((f S + 1 + da) U (N Gunl) weunl o @es)

|He(£))? Gua(f) + [H(S)I* Goa ()

where A;, A2 and A3 are Lagrange multipliers.

Substitution Step

From the similarity of equations 3C.8 and 3A.4, we can deduce immediately from

equation 3A.7 that the solution in R; is given by:

R AR it X2) Y B2 () (Gan( )2 = Gan)
. |2

where A3, A; and Ay must be chosen to meet the three constraints, 3C.1, 3C.2 and 3C.3.

Gao(S)

(3C.9)

3C.9 can be rewritten as:

(17 - 502+ 822+ K) " 1Er (N (CunN? = Gan)
|He(f)I?
AP3C-2
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The rest of the proof is almost identical to the second stage of the proof of

theorem 1 in appendix 3A. However, |Hy(f)| is replaced by

((I R+ (—’,:f)2 i+ (%)2) "

wherever it appears and % is replaced by 1 where :

o (=g () 74 (8)) Guth i
N f(, Gra(f) + [HAN) Geol )

df. (3C.11)

Q1 is the function to be maximized overall subject to the power constraint, 3C.1.
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APPENDIX 4: PROOF OF THEOREM 5.

In order to prove Theorem 5 it is necessary to show that a saddlepoint solution
of the form given in 4.21 - 4.27 exists and satisfies the double inequality 4.20 with the
definition 4.19.

Now the right hand inequality of 4.20 is satisfied because Hgr and G are opti-
mized for Hrp and IHCRIZ. It remains to be shown that the left hand inequality of 4.20

is valid. Repeating that inequality here, we have to show that

p (HTRsIHchz;HRaGR) < p(HTichlz;HR) GR)-

The proof will be undertaken by showing firstly that the denominator of the
left hand side of this inequality is maximum while the numerator is minimum. In
doing so we will see that equations 4.25 and 4.26 will arise as conditions under which
the extremization is achieved. Equation 4.27 arises as a constraint in the problem
definition. The remainder of the proof involves proving that equations 4.25 to 4.26 can
be simultaneously satisfied. In order to do this it is necessary to first manipulate the
solution of equations 4.21 to 4.27 from an implicit form into an explicit form.
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Maximization of Denominator

Consider first the denominator in 4.19 and denote it by d (|HC|2 s H, G,,). Then:

Ad = d (|Hc|2 ; HR,GR) —~d (IHchz ; Hp, GR)

[ G E(n) (1BUDF - 1Herl ) &
Rr

= /R GrN R (EDE-v) e (A4.1)
5 [R Cr(f) [Hr(N)P (| HLNE - LAS)) &
+ [ Galn 1HR(NP (BN~ 1ER(NF) of

Now, for f € Ry, we have, by substitution for Hg(f) from (2.24):

-
Go( | Hr(Nf = —EEIGRWT e (aa)
(Gan(f) + Gr(1) IHR(NP)

Also, the integral over Ry in (A4.1) is non-positive because |H.(f )12 < U(f). Similarly,
because |H( f)l2 > L.(f), the integral over Ry is non-negative . Meanwhile, in Ry,

Gr(f) |Hr(f)|” > k} and in Ry, Gr(f) |Hr(/)* < K.

It follows that:

Ad < R /R (Hrr(f) - Bo(f)) df

< / ()2 df — K2o? (44.3)
Rt

<0.

That is, d (|H¢|2 ; HR,GR) has its maximum at IHC(j’)|2 . IHCR(f)lz, and we see that
this part of the proof requires the constraint, 4.25.
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Minimization of Numerator

Now consider the numerator in 4.19 and denote it by N (Hr; G,,, H,). Then,

2
N(Hr;Ggr,H,g) =

(A4.4)

Gr(f)Hs(f) Hr (/)
i /R (Gunlf) +Gr(F) (1HR (NI +¢)) 9

To minimize N (Hr; Gg, H,r) by choice of Hr(f) it is necessary to choose A =

Apen and to minimize:

GrUNH;(f) (Hrr(f) — Ho(1))
AN (Hrp; G, Hog) = df|, (A45
(firzi G Har) [/R (Gunl) + Go(A) (1HR(N +¢)) f] e

but

AN (Hrr; Gr, Hog) =
/ Gr(f) |Ho(f)||Hrr(f) — Ho(S)!
Br (Gun(f) + Gr(f) (|Her(N) +¢))

cos (arg (H; (f) (Hrr(f) — Ho(f)))) df-

(A4.6)

To minimize A4.6, we need the cosine factor to equal —1 from which we conclude:

arg (Hrr(f)) = arg(Ho(f)), (A4.7)
and |Ho(f)| > m_:ﬁﬂ. (A4.8)

In addition we must maximize the integral:

AAN(HTT;GR,H,R)=/ Gr(f) |Ho(f)||Hrr(f) — Ho(f)]

df. (A4.9)
Br (Gun(f) + Gr(f) (|Hr (NI +¢))
Now,by the Schwartz inequality, we have:

AAN (Hrr;Gr, Hyr) <

Gr(f)? | Ho(f))? ] .
J[’?:- [(Gnn(f)+GR(f) (lHCR(f)IZ-*-c))]de»/:?T|HTT(f) Ho(f)|* df

(A4.10)
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If we add the constraint,
er = or, (A4.11)
where ep is defined in 4.16, then the right hand side of A4.10 is independent of Hy(f).

Note that this added constraint confines our attention to the least favourable bound of

the class definition, 4.16, and gives rise to equation 4.26.

We now see that AAN (HrT;Gpg, H,r) is maximized by equality in A4.10.
Hence, taking account of A4.7 and A4.8, we have:

H BG H
min (Gonl1) + Ga(1) (1HR(NP +¢))
where B is a constant to be selected to satisfy the constraint, A4.11. Choosing B = —c,

which can be made to satisfy A4.11, we obtain:

Anin Ho(£) (Gan(f) + Gr(£) | HR ()
(Ganl£) + Gr(A) (|HR(NIP +¢))

which must be made to meet the constraint, A4.11. This requirement gives rise to 4.26.

Hrgr(f) =

The proof, so far, has shown that the numerator in 4.19 is at a minimum for
Hr(f) = Hrr(f) provided 4.26 is met and the denominator is maximized for |H(F)? =
|H.r(f)|? provided 4.25 is satisfied. We also know that 4.27 must be satisfied as it arises
in the problem definition but has not yet been taken into account. It remains to be
proven, therefore, that 4.25,4.26 and 4.27 can be simultaneously satisfied by choice of
ky, k2 and c.

Manipulation into Explicit Forms

The first step in proving this is to manipulate 4.21 to 4.27 into explicit forms
such that the right hand sides of 4.21 to 4.23 are independent of the solution functions,
Hrr(f), |H.r(f)1? and Gg(f) and these have been substituted into 4.24 to 4.27.
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Derivation of an Ezpression for |H.r(f)|* in Ry

Firstly, consider chR(f)|2 in Rps. Substituting from 4.21 into 4.22 we have:

Anmin | Ho()] (Ganl1) + GRINERNE)  Gon(f)

2 _ _
e = (G + 6o D) (HaF +9))  €RL)

or

kGr(N) 1 H(N (Gun(£) + Gr() (1Her(N +¢))
= AminHo(£)CR(S) (Gan(f) + Gr(f) | Her(N)F)
~ k1Gun(f) (Gan(f) + Gr(N) (IHR(N) +¢)).-

i.e.
4 ZGnn(f) ¢ — Am:'n |H0(f)| 2 G’rm(.f)2
|HCR(f)! + (___—GR(f) + __kl )IHcR(f)l & GR(f)2
CGnn(.f) _ Amin IHO(f)I Gnn(f) -0
Gr(f) k1Gr(f) ’
Thus: 1 ( Apmin |Ho(f)] 2Gun(f)’
: min | 410 nn
|Her(f)]” = 3 (—kx— —c- G—R(fT)
¢ A2 Ho (N Aminc|Ho(f)]
* (Z T Y ) '
2 _ Amin IHO(f)I o Gnn(f)
IHcR(f)l . kl GR(f) (A4_13)
_ Amin |Ho(f)| Gr(f) — k1¢Gr(f) — k1Gna(S)
k1Gr(/) '

Derivation of an Ezpression for |HTr(f)| in Ry

Now consider |[Hrp(f)| in Rps. Substituting from A4.13 into 4.21, we obtain:

Amiu ‘Ho(f)‘ (Amin |H0(f)| GR(f) - kICGR(f)) :

|Hrr(f)| = Amin | Ho(N)IGr(f)

i.e.

|Hrr(f)| = Amin |Ho(f)| — kic. (A4.14)
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Dersvation of an Ezpression for Gr(f) in Ry

Now, consider Gg(f) in Rps. Substituting from A4.13 and A4.14 into 4.23, we

obtain:

Gr(f) =
(k2 (Amin | Ho(1)] = k1) (Gan(£)/? = Gaa(£)) E1GR(S)
Amin |Ho(f)| Gr(f) — k1cGRr(f) — k1Gna(/)

_ ktka Auin |Ho(1)| Gr(f) (Gun(£))/? = K2k2¢GR(S) (Gun(/))*/” ~ k1GR(£)Gun(f)
Apmin lHO(f)I GR(f) - kICGR(f) - lenn(f) .

It is readily apparent that this equation is satisfied by:

Gr(f) = kik2(Gan()Y?. (A4.15)

Hence, substituting A4.15 into A4.13, we obfain:

. _ 1/2
Hr ()P = A""""”H"(Ql‘kz (CanINT _ (44.16)

Derivation of an Ezpression for Ggr(f) in Ry

In RU’
1/2 _
GR(f) — k; |HTR(f)| (G(;:((}f))) Gnn(f)
_ k2Amin |Ho(1)] (Gun(£) + GRUNULN) (Gan(1D” _ Cunlf)
Uc(f)(Gnn(f) + Gr(f) (Ue(f) + ) Uc(f)

i.e.
UC(f) (UC(f) wa C) GR(f)2 + UC(f)Gnn(f)GR(f) — k2Apin lHO(f)l Gﬂﬂ(f)3/2 + Gfm(f)2
— k2 Amin |Ho(F)| Ue(£) (Gun(£))/* GR(f) + Gun(f) (Uef) + ) GR(F) = ©

or

(2Gan() + G2 — iy Aia | Ho( )] (Gun(1)'1?)

Gr(f)* + Uf)+e Gr(f)
+ Gnn(f)2 - k2Amin lHO(.f)I Gﬂ"(f)3/2 =0
Uc(f) (U(f) + <) '
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Hence:
Gr(f) =
1 [ F2Amin 1Ho(1)] (GanlMY? = (2+ g575) Gonl)
2 U +e *
= 2
B2 (B (D) Ganl)? + 25y K2 Aumin [ B (1) Gan 172 + 55737Gn(f)
2(Uc(f) +¢) '
i.e. P
min Gnn 2 _ Gnn
G = 2t DI G (1) (1) (4a17)
Derivation of an Ezpression for Gr(f) in R
Similarly, in Rp,
. 1/2 _
GR(f) — kZAmm lHO(f)l (Gnﬂ(f)) G"ﬂ(f) . (A4.18)

L(f)+c

Derivation of an Ezpression for Hrgr(f) in Ry

Now 4.22 and A4.17 may be substituted into 4.21 to obtain Hrg(f) in Ry as
follows:
Apin HO(.” (Gnn(f) + GR(f)UC(f))

Aminkz | Ho(£)] (Gun(1)"/?
by substitution for Gg(f) in the denominator. Hence:

Hrr(f) =

arg (Hrr(f)) = arg(Ho(f))

and
Gnn(f) i GR(f)Uc(f) )

|Hrr(f)] = k2 (Gl )P

l.e.

Hrr()] = (Gual1)7? k2 + (AminHo(f) = (Gan(N)"? ko) —Uc’(}()fi C
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or
. 1/2
Derivation of an Ezpression for |Hrr(f)| in Rr
Similarly, in Ry, we obtain:
. 1/2
|HTR(f)| — Amm |H0(f)| Lc(f) + C/k2 (Gun(f)) . (A4.20)

L(f)+c

Redefinstion of Ry

Finally, we come to the inequalities defining Ry, Rr, Ry and Ry. In Ry, we

have:

- A m2_g.
Galr) Hzat) = Srmiebel B BenlI) = Gonll) g

and:

A )]
= kiky (Gun(f))"? |Hrr(f)]-

Hence, if we assume Gun(f) > 0 and thus |Hrg(f)| > 0, we obtain:

Gr(f) |Hrr(f)| > k1 [Gr(f)Uc(f) + Gua(f)] =

(A4.21)
Aminkz |Ho(£)] = (Gun(F)? > kikz (Uo(f) +¢) -
Redefinition of Ry,
Similarly, in R; we have:
Aminkz |Ho(£)] = (Gua( £ < kika (Le(f) + ). (44.22)
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Redefinition of Ry

From A4.17 and A4.18 we see that, provided G,.(f) > 0, Ry is defined by:

kz Apmin |Ho(f)] = (Gun ()2 < 0. (A4.23)

Subststution into Constraint Equations

We are now in a position to derive explicit forms of equations 4.25 to 4.27.

Equation 4.25 becomes:

: - 1/2
[ ving+ [ panar+ [ (Am.,.kleo(f)l (Gun(1) _c) g = ot
RU RL RM

kiks
(A4.24)
Equation 4.26 becomes:
-0 PP A - 101
i /R o +E " /R Zan+ 2
+62k1k2[ |H0(f)l ™ 2df = 6.
B [ Aminks | Ho()] = (Gan(1))?]
(A4.25)
Equation 4.27 becomes:
. — 1/2
ky ks LM (G'm(f))l/zdf + /;{U (G'm(f))l/2 Aminks |H0U(c{}|) +(cGnn(f)) df
12 Aminkz |Ho()| = (Gun(UN? . _
+ /;20 (Gnn(f))l 2 Lc(f) +c 6f 1=K
(A4.26)

Existence of the Constants in the Solution

We need to show that ky, ky and c, satisfying A4.24 to A4.26, do exist. We will
assume that G, (f), |Ho(f)|, Lc(f) and Uc(f) are all finite and non-negative on Rp
and 61, 02 and P, are finite and non-negative.
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Constraint Equation 4.25

Consider first A4.24. Now, if k; = 0 then Ry = Rr and the left hand side

becomes:
[ ving
Ry
But
[ vana > [ \BDFY 2 of
Rt Rr

Also, as k; — oo then Ry — Rr and the left hand side becomes:

A}Mw

But
[ zandg < [ 18nPar <ot
Rr Rr
Now, we can establish by inspection of A4.21, A4.22 and A4.24 that the left hand side of

A4.24 is continuous in k; between these extremes. It therefore follows that, regardless

of the values of k2 and c, there always exists a finite non-negative number, k;, satisfying

A4.24.

Constraint Equation 4.26

Now consider A4.25. For ¢ = 0, we have on the left hand side:

2 _HWNP o
Lumm+$”‘°5”

Similarly, for ¢ — 0o, we have on the left hand side:

o MOy [ imoirier = B

Ry [Uc(f) +¢] Ry

Hence, provided 67 < Ey (a condition normally satisfied in practice as it simply means

that the unknown component of the target path transfer power is less than the known

component), then the left hand side of equation A4.25 will exceed the right as ¢ — oo.
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Again, inspection reveals that the left hand side of A4.25 is continuous in A4. It follows
that A4.25 can always be satisfied by choice of ¢ for any values of k; and k; provided
ér < Ey.

Constraint Equation 4.27

Finally we consider A4.26. For k3 = O we find Ry = Ry and the left
hand side is 0 < P,. For k; — oo, Ry is empty and the positions of the other region
boundaries become independent of k;. The left hand side of A4.26 tends to oo (> FB,).
By inspection, the left hand side of A4.26 is continuous in k2 and it follows, therefore,

that A4.26 can be solved for k; given any finite real non-negative numbers for k; and c.

Statement of Conditions for Solntion Existence

Hence, since A4.24 can be solved for k;, A4.25 for ¢ and A4.26 for k, it follows
that finite non-negative real values exist, satisfying 4.21 to 4.27. Thus a saddlepoint

solution exists and is given by 4.21 to 4.27 provided:

1)6, 0% and P, are finite and non-negative.

2) |Ho(f)|, Le(f) and U.(f) are all finite
and non-negative on Rr.

3) Gqn(f) is finite and positive on Rr.

4) br < Eo.
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APPENDIX 6: PROGRAM LISTINGS FOR CHAPTER 6

§AP6.1

cOoOoOO0O0CoO0OOO0OO0O000

c

C

Class Description Program

PROGRAM CLASS

PROGRAM TO CONSTRUCT A CLASS DESCRIPTION FROM A REPRESENTATIVE SET
OF TRANSMISSION PATH MODELS. INPUT FILES ARE ASSUMED TO REPRESENT
COMPONENTS OF THE MODEL AS FOLLOWS:
"SIGSPC*.BIN" CONTAINS THE SQUARED MAGNITUDE OF THE TARGET
PATH TRANSFER FUNCTION.
"CLSPC*.BIN" CONTAINS THE SQUARED MAGNITUDE OF THE CLUTTER
PATH TRANSFER FUNCTION.
OUTPUT FILES ARE AS FOLLOWS:
"NOMSIG.BIN" CONTAINS THE NOMINAL TARGET IMPULSE RESPONSE.
"USPEC.BIN" CONTAINS THE UPPER BOUND ON THE CLUTTER T/F SQUARED.
"LSPEC.BIN" CONTAINS THE LOWER BOUND ON THE CLUTTER T/F SQUARED.

IN ADDITION, VARIOUS PARAMETERS OF THE CLASS DESCRIPTION ARE OUTPUT TO
THE USER AND TO FILE "CLASPRM.BIN". ALL SIGNALS ARE ASSUMED SAMPLED AT
500KHZ AND ALL SPECTRA ARE ASSUMED TO BE BASED ON 512-POINT FFT.

CHARACTER#11 FNAME

LOGICAL*1 FNAM(11)

EQUIVALENCE (FNAME,FNAM)

COMPLEX HI(5,1:100),H0(1:100),X(512)
DIMENSION A(5),E(5),EI(5),U(1:100)
REAL L(1:100)

INTEGER F1,F2

TYPE #,'SPECIFY FIRST AND LAST TRANSFER FUNCTIONS:'
ACCEPT #,ITF,NTF

TYPE ¥,'SPECIFY FIRST AND LAST FREQ. BIN NOS.'
ACCEPT *,F1,F2

DO 100 J=ITF,NTF
ENCODE(8,101,FNAME) J
DO 105 I=9,11
105 FNAM(I) = 0
101 FORMAT('SIG',01,'.BIN')
OPEN(1,ERR=100,FILE=FNAM,
& STATUS='0OLD',ACCESS='SEQUENTIAL',FORM='UNFORMATTED')

READ IN THE TARGET PATH T/F
ISAMP = 0

10 READ(1,END=20) SAMP
ISAMP = ISAMP+1
X(ISAMP) = CMPLX(SAMP,0.)
GO TO 10

TRANSFORM TARGET PATH T/F
20 DO 30 I=ISAMP+1,512
30 X(I) = (0.,0.)

CALL FFT(X,9)

DO 40 I=F1,F2
40 HI(J,1) = X(I)

CLOSE(1)
100 CONTINUE
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(@]

INITIALIZE COEFFICIENTS OF NOMINAL T/F
DO 50 J=ITF,NTF
50 A(J) = 1./(NTF-ITF+1)

C COMPUTE T/F ENERGIES
DO 60 J=ITF,NTF
E(J) = 0.
DO 60 I=F1,F2
60 E(J) = E(J)+REAL(HI(J.I)*CONJG(HI(J,I)))

C ITERATE TO GET NOMINAL T/F
70 EO = 0.
C COMPUTE NEW TRIAL T/F
DO 90 I=F1,F2

90 HO(I) = (0.,0.)
DO 85 J=ITF,NTF
DO 85 I=F1,F2
85 HO(I) = HO(I)+A(J)*HI(J,I)

DO 80 I=F1,F2

80 EO = EO+REAL(HO(I)*CONJG(HO(I)))
A0 = SQRT(EOQ)
DO 95 I=F1,F2

95 HO(I) = HO(I)/AO

C COMPUTE ALL ERROR ENERGIES

DO 110 J=ITF,NTF
EI(J) = 0.
DO 120 I=F1,F2

120 EI(J) = EI(J)+REAL(H0(I)*CONJG(HI(J,I)))
EI(J) = 1.-EI(J)*EI(J)/E(J)

110 CONTINUE

¢ IF ALL ERROR ENEKRGIES APPROXIMATELY THE SAME THEN TERMINATE
JMAX = ITF
EMAX 0.
EMIN = 10.*¥E0
DO 130 J=(ITF+1),NTF
IF (ABS(EI(J)-EI(ITF)).GT.EMAX) THEN

EMAX = ABS(EI(J)-EI(ITF))
JMAX = J
ENDIF

130 CONTINUE
DIFF = EMAX/EI(ITF)
IF (DIFF.LT.0.01) GOTO 140

C ADJUST NOMINAL T/F COEFFICIENTS
A(JMAX) = A(JMAX)*SQRT(EI(JMAX)/EI(ITF))

GO TO 70

C COMPUTE AND OUTPUT SMALLEST SCALE FACTOR
140 AMIN = 1.E10
DO 180 J=ITF,NTF
AA = 0.
DO 190 I=F1,F2
190 AA = AA+REAL(HO(I)*CONJG(HI(J,I)))
AA = E(J)/AA
IF (AA.LT.AMIN) AMIN = AA
180 CONTINUE
OPEN(3,ERR=100,FILE="'CLASPRM.BIN'.
& STATUS=‘NEW‘,ACCESS='SEQUENTIAL‘.FORM='UNFORMATTED')
TYPE #%,'AMIN IS UNITY'
WRITE(3) 1.
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C COMPUTE AND OUTPUT NOMINAL TARGET PATH IMPULSE RESPONSE

OPEN(1,ERR=100,FILE='NOMSIG.BIN". -
& STATUS='NEW',ACCESS='SEQUENTIAL', FORM='UNFORMATTED') l
DO 150 I=1,512 5

150 X(I) = (0.,0.)
DO 160 I=F1,F2
X(514-1) = HO(I)*AMIN

160 X(I) = HO(I)*AMIN
CALL FFT(X,9)
DO 170 I=1,100

170 WRITE(1) REAL(X(I))/256.
CLOSE(1)

C OUTPUT MAXIMUM ERROR ENERGY
EE = EI(ITF)*AMIN¥AMIN
TYPE *, 'MAXIMUM TARGET PATH MODELING ERROR ENERGY IS '
& ,EE
WRITE(3) EE
TYPE #, 'NOMINAL TARGET PATH T/F ENERGY IS ' ,LAMIN*AMIN

¢ COMPUTE BOUNDS ON CLUTTER T/F SQUARED

PCMAX = 0.
DO 210 I=F1,F2
U(1) = 0.

L(I) = 1.E20
210 CONTINUE
DO 220 J=ITF,NTF
ENCODE(10,102,FNAME) J
FNAM(11) = 0
102 FORMAT('CLSPC',01,'.BIN')
OPEN(1,ERR=100,FILE=FNAM, :
& STATUS='OLD',ACCESS='SEQUENTIAL',FORM='UNFORMATTED')
DO 230 I=1,(F1-1)
230 READ(1)
PC = 0.
DO 240 I=F1,F2
READ(1) SAMP

IF (SAMP.GT.U(I)) U(I) = SAMP
IF (SAMP.LT.L(I)) L(I) = SAMP
PC = PC+SAMP

240 CONTINUE
IF (PC.GT.PCMAX) PCMAX = PC

CLOSE(1)
220 CONTINUE

¢ OUTPUT BOUNDS ON CLUTTER PATH T/F SQUARED
OPEN(1,ERR=100,FILE="'USPEC.BIN",
& STATUS='NEW',ACCESS='SEQUENTIAL‘.FORM='UNFORMATTED')
OPEN(2,ERR=100,FILE='LSPEC.BIN',
& STATUS='NEW',ACCESS=‘SEQUENTIAL',FORM='UNFORMATTED')
DO 250 I=1,(F1-1)
WRITE(1) O.
250 WRITE(2) O.
DO 260 1=F1,F2
WRITE(1) U(I)
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260 WRITE(2) L(I)
DO 270 I=11,128
WRITE(1) 0.

270 WRITE(2) O.
CLOSE(1)
CLOSE(2)

C QUTPUT MAXIMUM CLUTTER TRANSFER POWER
TYPE *,'Pc IS LESS THAN ',6PCMAX
WRITE(3) PCMAX
CLOSE(3)

STOP
END
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§AP6.2 Robust Optimization Program

PROGRAM ROBUST

PROGRAM TO FIND THE LEAST FAVOURABLE TRANSMISSION PATH WITHIN A

CLASS DESCRIPTION FOR THE PURPOSE OF ROBUST JOINT OPTIMIZATION OF

SIGNAL AND RECEIVER FILTER. INPUT FILES ARE ASSUMED TO REPRESENT

COMPONENTS OF THE CLASS DESCRIPTION AS FOLLOWS:
"“NOMSIG.BIN" CONTAINS THE NOMINAL TARGET IMPULSE RESPONSE.
"USPEC.BIN" CONTAINS THE UPPER BOUND ON THE CLUTTER T/F SQUARED.
"LSPEC.BIN" CONTAINS THE LOWER BOUND ON THE CLUTTER T/F SQUARED.

"CLASPRM.BIN" CONTAINS THE THREE PARAMETERS OF THE CLASS DESCRIPTION.
OUTPUT FILES REPRESENT THE LEAST FAVOURABLE TRANSMISSION PATH AS FOLLOWS:
"ROBSIG.BIN" CONTAINS THE LEAST FAVOURABLE TARGET PATH
IMPULSE RESPONSE.
"ROBSPEC.BIN" CONTAINS THE SQUARE OF THE LEAST FAVOURABLE
CLUTTER PATH T/F.
SIGNALS ARE ASSUMED SAMPLED AT 500KHZ AND ALL SPECTRA ARE ASSUMED TO
BE BASED ON 512-POINT FFT.

co0CO00O0cOOO0O0000

COMPLEX HO(100),X(512)

DIMENSION U(100)

REAL L(100),NSPEC(lOO).Kl.KZ.HTR(IOO)
REAL HCR(100),NN,NEWK,LVAL,NEWC
INTEGER F1,F2

TYPE *,'SPECIFY FIRST AND LAST FREQ. BIN NOS.:'
ACCEPT *,F1,F2

C GET SIGNAL POWER IN UNITS COMPATIBLE WITH THOSE USED IN "DETENTE"
C AND CONVERT TO INTERNAL UNITS

TYPE *,'SPECIFY SIGNAL POWER AS FOR “DETENTE" (dB) '

ACCEPT *,PS

PS = 10%¥(PS/10.)

READ IN NOMINAL TARGET PATH IMPULSE RESPONSE AND COMPUTE
NOMINAL TARGET PATH T/F WHICH MUST BE DIVIDED BY THE
TRANSMITTED IMPULSE RESPONSE MAGNITUDE (10V) EXPRESSED IN
UNITS OF THE QUANTIZATION STEP (.1%9/256 V).
OPEN(1,ERR=100,FILE="NOMSIG.BIN',
& STATUS='0LD',ACCESS='SEQUENTIAL',FORM='UNFORMATTED')
DO 150 I=1,512
150 X(I) = (0.,0.)
DO 160 I=1,100
READ(1) SAMP
160 X(I) = CMPLX(SAMP/2840.,0.)
CALL FFT(X,9)
DO 170 I=F1,F2
170 HO(I) = X(I)
CLOSE(1)

o000

C READ IN PARAMETERS OF CLASS DESCRIPTION AND CONVERT TO
C STANDARD UNITS.
OPEN(1,ERR=100,FILE='CLASPRM.BIN',
& STATUS='OLD'.ACCESS=‘SEQUENTIAL',FORM='UNFORMATTED')
READ(1) AMIN
READ(1) EMAX .
EMAX = EMAX/(2840.%2840.)
READ(1) PCMAX
PCMAX = PCMAX/(2840.%2840.)
CLOSE(1)
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INPUT BOUNDS ON CLUTTER PATH T/F SQUARED WHICH MUST BE
DIVIDED BY THE SQUARE OF THE TRANSMITTED IMPULSE RESPONSE
MAGNITUDE (10V) EXPRESSED IN UNITS OF THE QUANTIZATION
STEP (.1*9/256 V).
OPEN(1,ERR=100,FILE='USPEC.BIN',
& STATUS='OLD',ACCESS='SEQUENTIAL',FORM='UNFORMATTED')
OPEN(2,ERR=100,FILE='LSPEC.BIN",
& STATUS='0LD'.ACCESS='SEQUENTIAL'.FORM='UNFORMATTED')
DO 250 I=1,(F1-1)
READ(1)
250 READ(2)
DO 260 I=F1,F2
READ(1) SAMP
U(I) = SAMP/(2840.%2840.)
READ(2) SAMP
260 L(I) = SAMP/(2840.%2840.)
CLOSE(1)
CLOSE(2)

OoOo0Ooo

C INPUT NOISE SPECTRUM
OPEN(1,ERR=100,FILE="NSPEC.BIN',
& STATUS='0LD'.ACCESS='SEQUENTIAL',FORM='UNFORMATTED')

po 270 I=1,(F1-1)

270 READ(1)
DO 280 I=F1,F2

280 READ(1) NSPEC(I)

CLOSE(1)

C SOLVE FOR THE CONSTANTS

C INITIALIZE K2 AND C

NN = 0.

HH = 0.

Uuu = 0.

DO 290 I=F1,F2

NN = NN+NSPEC(I)

HH = HH+CABS(HO(I))
UU = UU+U(1)

290 CONTINUE

NN = NN/(F2-F1+1)
HH = HH/(F2-F1+1)
UU = UU/(F2~F1+1)
K2 = 10¥SQRT(NN)/(AMIN*HH)
c = Uu/10.

FIRSTC = C

OLDC = EMAX/62

E = EMAX/2

OLDK2 = 0.

P = 0.

OLDK1 = 0.

PC = 2*PCMAX

C COMPUTE INITIAL VALUE FOR K1

PM = 0.
PCM = 0.
DO 300 I=F1,F2
TVAL = AMIN*K2*CABS(HO(I))-SQRT(NSPEC(I))
PM = PM+TVAL
PCM = PCM+C

300 CONTINUE
K1 = 100*%PM/( (PCMAX+PCM)*K2)
FIRSTK = K1
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C COMPUTE SIGNAL POWER

310

360

PU = 0.
PM
PL =
OLDP P
DO 360 I=F1,F2
TVAL = AMIN*KZ*CABS(HO(I))-SQRT(NSPEC(I))
IF (TVAL.GT.0.) THEN
LVAL = (L(I)+C)*K1#*K2
IF (TVAL.GT.LVAL) THEN
UVAL = (U(I)+C)*K1¥K2
IF (TVAL.GT.UVAL) THEN
PU = PU+TVAL*SQRT(NSPEC(I))/(U(I)+C)
ELSE
PM = PM+SQRT(NSPEC(I))
ENDIF
ELSE
PL = PL+TVAL*SQRT(NSPEC(I))/(L(I)+C)
ENDIF
ENDIF
CONTINUE
P = K1¥K2*PM+PU+PL
P = P*¥26E-12%9177

oo

¢ IF P SIGNIFICANTLY DIFFERENT FROM PS THEN
C UPDATE K2 AND TRY AGAIN

350

VAL = 2%ABS(P-PS)/(P+PS)

IF (VAL.LE.0.01) GOTO 350

NEWK = K2+(K2-0LDK2)*(PS—P)/(P-OLDP)
OLDK2 = K2

K2 = NEWK
GOTO 310
C COMPUTE VALUE OF PC
PU = 0.
PM = 0.
PL = 0.
oLDPC = PC

320

DO 320 I=F1,F2
TVAL = AMIN*K2*CABS(H0(I))-SQRT(NSPEC(I))
LVAL = (L(I)+C)*K1¥K2
IFP (TVAL.GT.LVAL) THEN
UVAL = (U(I)+C)*K1¥K2
IF (TVAL.GT.UVAL) THEN
PU = PU+U(I)
ELSE
PM = PM+TVAL/(K1*K2)-C
ENDIF
ELSE
PL = PL+L(TI)
ENDIF
CONTINUE
PC = PU+PM+PL
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¢ IF NEW PC SIGNIFICANTLY DIFFERENT FROM PCMAX THEN
C UPDATE AND TRY AGAIN.

VAL = 2%ABS(PC-PCMAX)/(PC+PCMAX)
IF (VAL.LE.0.01) GOTO 330
IF (PC.EQ.OLDPC) THEN
NEWK = 3%K1-2*0LDK1
ELSE
NEWK
ENDIF
IF (NEWK.LT.0.) NEWK = 0.
OLDK1 = K1
K1 = NEWK
P=0.
OLDK2 = 0.
GOTO 310

K1+(K1—OLDK1)*(PCMAX—PC)/(PC—OLDPC)

C COMPUTE ERROR ENERGY

330

340

PU = C.

PM = 0.

PL = 0.

OLDE = E

DO 340 I=F1,F2

TVAL = AMIN*K2*CABS (HO(I))-SQRT(NSPEC(I))
LVAL = (L(I)+C)*K1%*K2

IF (TVAL.GT.LVAL) THEN
UVAL = (U(I)+C)*K1¥K2
IF (TVAL.GT.UVAL) THEN
PP = SQRT(NSPEC(I))/(AMIN*KZ)—CABS(HO(I))

PU = PU+PP*PP/((U(I)+C)*(U(I)+C))
ELSE
PM = PM+K1%*K1/(AMIN*AMIN)
ENDIF
ELSE
PP = SQRT(NSPEC(I))/(AMIN*K2)—CABS(HO(I))

PL = PL+PP¥PP/((L(I)+C)*(L(I)+C))
ENDIF

CONTINUE
E = PM+PU+PL
E = C¥C¥E

TYPE #,'E=',E,'EMAX=',EMAX

C IF E SIGNIFICANTLY DIFFERENT FROM EMAX THEN
C UPDATE C AND TRY AGAIN

VAL = 2%*ABS(E-EMAX)/(E+EMAX)
IF (VAL.LE.0.01) GOTO 370

NEWC = C+(C—0LDC)*(EMAX—E)/(E—OLDE)
IF (NEWC.LT.0.) NEWC = C/10.

oLDC = C

C = NEWC

P = 0.

OLDK2 = 0.

PC = 2¥PCMAX

OLDK1 = 0.

GOTO 310
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C COMPUTE LEAST FAVOURABLE TRANSFER FUNCTIONS
370 DO 380 I=F1,F2
TVAL = AMIN*KZ*CABS(HO(I))—SQRT(NSPEC(I))
LVAL = (L(I)#C)¥*K1¥*K2
IF (TVAL.GT.LVAL) THEN
UVAL = (U(I)+C)*K1¥K2
IF (TVAL.GT.UVAL) THEN
SAMP = AMIN*CABS(HO({I))}*U(I)
SAMP = SAMP+C*SQRT(NSPEC(I))/K2
SAMP = SAMP/(U(I)+C)
HTR(I) = SAMP

HCR(I) = U(I)
ELSE
HTR(I) = AMIN*CABS (HO(1I))-K1*C
HCR(I) = TVAL/(K1¥K2)-C
ENDIF
ELSE

SAMP = AMIN*CABS(HO(I))*L(I)
SAMP SAMP+C*SQRT(NSPEC(I))/K2
SAMP = SAMP/(L(I)+C}
HTR(I) = SAMP
HCR(1) L(I)
ENDIF
380 CONTINUE

C COMPUTE AND OUTPUT THE LEAST FAVOURABLE TARGET PATH I/R.
0PEN(1,ERR=100,FILE='ROBSIG.BIN'. )
& STATUS=‘NEW'.ACCESS=‘SEQUENTIAL',FORM='UNFORMATTED')
DO 390 I=1,512

390 X(I) = (0.,0.)
DO 400 I=F1,F2
X(I) = HTR(I)*HO(I)/CABS(HO(I))

400 X(514-1) = X(I)
CALL FFT(X,9)
DO 410 I=1,100
SAMP = REAL(X(1))*2840./256.
WRITE(1) SAMP

410 CONTINUE
CLOSE(1)

C SCALE AND OUTPUT THE SQUARED MAGNITUDE OF THE LEAST FAVOURABLE
C CLUTTER PATH TRANSFER FUNCTION

OPEN(l,ERR=100.FILE=‘RDBSPEC.BIN'.

& STATUS='NEW'.ACCESS='SEQUENTIAL'.FORM='UNFORMATTED')

DO 420 I=1,(F1-1)
420 WRITE(1) 0.

DO 430 I=F1,F2
430 WRITE(1) HCR(I)*2840.%2840.

DO 440 I=(F2+1),128
440 WRITE(1) O.

CLOSE(1)

100 STOP
END
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