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ABSTRACT

A scheme is proposed for calculating the coefficlent of self-
diffusion in a dense gas of rigid spheres. The method proceeds by
deriving and solving a closed equation for the velocity distribution
function f associated with a single sphere which has specified initial
position and velocity in a system in which the other particles have
initial distributions of equilibrium.

At low densities f satisfies a linearized form of Boltzmann's
transport equation. It is shown how generalizations of Boltzmann's
equation can be obtained which are suitable for describing a gas at
any given density. 1In the derivation of these equations one approximates
the many-body dynamical problem by treating the dynamics of a few
particles exactly and by also including certain many-body dynamical
events. By this approach one can obtain expressions suitable for
calculating the coefficient of self-diffusion and at the same time
avoid the divergence problem which arises when the gas 1is analyzed in
texms of contributions from finite numbers of isolated particles.

A generalization of Boltzmann's equation is considered which applies
to gases dense enough for configurations of three particles in close
proximity to be significant. This equation differs from the equation
derived by Choh and Uhlenbeck for describing such systems in that it
accounts for certain many-body dynamical events as well as three-body
collision sequences.

The coefficient of self-diffusion D, as usually defined, is equal
to the integral over time of the velocity autocorrelation function
vhich can be calculated from the velocity distribution function £. It
is shown how D is obtained from the closed equations for f£. Evaiu@tion
of D from generalizations of Boltzmann's equation requires detailed .

numerical analysis.



Thus in order to make a quantitative test of the proposed scheme
we consider a one dimensional gas of impenetrable point particles. It
is shown that the velocity distribution function and the coefficient of
self-diffusion can be determined exactly for this model. A closed
equation for f is derived which takes into account three-body dynamics
as well as certain many-body events. The latter collision sequences
must be included to avoid divergences which also arise in the one
dimensional model. The coefficient of self-diffusion as calculated
from this equation is found to be very close to the exact value.

A discussilon is also presented of an appropriate definition of the
coefficient of self-diffusion for dense systems. A modified definition
is proposed which takes into account the observed correlations between

the velocity of the diffusing particle and other particles of the gas.
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CHAPTER 1  INTRODUCTION

1,1 THE DEVELOPMENT OF THE THEORY OF DENSE GASES

The principles which were to lead to a rigorous molecular description
of a fluid were established through the work of lMaxwell, Boltzmann,
Liouville and Gibbs). The macroscoplc equations of hydrodynamics were
shown to be related to averages of microscopic quantities, and when
Hilbert, Chapman and Enskog succeeded in solving the well-known transport
equation of Boltzmann it became possible to relate the coefficients of
viscosity, thermal conduction, diffusion, etc. of dilute gases to the
forces between the molecules of the gas?,

Yet since that early work, no comparable description of gases of
moderate or high densities has been developed. Thus one of the out-
standing problems in the study of fluids is to derive a scheme for
generalizing Boltzmann's equation to describe dense gases and to
experimentally verify such a scheme.

Boltzmann's equation describes the time development of the single
particle velocity distribution function £(x,v,t) which is defined so
that f(x,v,t)dxdv 1s the average number of molecules of the gas in the
volume element dx moving with velocities in the range v,vHdv at the
time t. Its derivation depends on the assumption of molecular chaos
which states that the average number of collisions between two particles
moving with pre-collision velocities vy and v 1is £(x,v;,t)
£(x,v2,t)dx. Grad® has given a detailed discussion of this and other
assumptions used to derive the equation, its range of validity and
methods for its solution. The central problem in describing dense gases
is to find an appropriate modification to the assumption of molecular
chaos,

The possibility of obtaining zeneralizations to Boltzmann'e

equation was opened up by the fundamental work of Kirkwood",
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Bogoliubovs, and Born and Green®, who obtained an exact equation for the
one particle distribution function in terms of a two particle distribu-
tion function. This equation is the first of a hierarchy of equations
satisfied by distribution functions which depend on the properties of
1,2,3, etc. particles of the system. The assumption of molecular chaos
provides a means for truncating the set of equations and leads, as showm
by Green’, to a modification of Boltzmann's equation.

The methods of Bogoliubov have been the most influential in the
development of a theory of dense gases. His approach is to assume, for
the purposes of calculating the transport coefficients, that the two-,
three-, etc. particle velocity distribution functions can be expressed
as time-independent functionals of the one-particle distribution
functions when sufficiently close to their equilibrium
values. By this hypothesis it is possible to obtain from the hierarchy
a closed equation for the one-particle distribution function.
Furthermore Bogoliubov proposed a scheme for finding a sequence of
successive approximations to the actual functional dependence of the
higher order distribution functioms on the single-particle distribution
function. A first approximation to the functional form of the two-
particle function yilelds a modified form of Boltzmann's equation,
similar to that derived by Green. The next approximation was inves-—
tigated by Choh and Uhlenbeck® who derived a generalization of Boltzmann's
equation which accounts for effects arising from the dynamics of three
particles. It therefore applies to gases of sufficient density that
configurations of three particles in close proximity to one another
commonly occur. Later Hollinger and Curtiss® were able to derive the
equation by applying the principle of molecular chaos to the precollision
velocities of groups of three particles. Sengers10 has calculated
from this equation, transport coefficients for a gas of hard spheres

by numerical techniques. It is found that the coefficients differ
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only slightly from those calculated from an intuitive generalization of
Boltzmann's equation due to Enskogll.

Bogoliubov's work was based on an unproven assumption. M.,S. Greenl?
and Cohen!3 developed an approach, similar to the cluster expansion
methods of equilibrium statistical mechanics, to investigate Bogoliubov's
assumption. It was shown how the two-particle distribution function can
be expressed as a time-dependent functional of the one particle distribu-
tion function. The functional was given as an expansion, each term of
which depends on the dynamics of groups of particles isolated from the
rest of the system for some length of time. It was conjectured that a
time-independent approximation to each term in the expansion could be
obtained by taking the length of the time interval to be infinitely long,
thus verifying Bogoliubov's hypothesis. Indeed by this approach the first
term in the expansion leads to Boltzmann's collision operator and the
next term leads to Choh's correction to that operator. However, it soon
became evident that the limit, as the length of the time interval
approaches infinity, of any other term in the expansion does not exist,
since contributions to the functional from groups of four or more isolated
particles increase with the length of the time that the group remains
separated from the remainder of the fluidl!%. This is not to say that
the two-particle function cannot be approximated by a time-independent
functional of the one-particle distribution function, but only that the
method proposed for finding the functional, if it exlsts, 1is inappropriate.
It 1s extremely unlikely that a group of particles will remain isolated
for long periods, and this property must be taken into account at each
stage in the calculation of the functional.

Cohen!5 has outlined a procedure whereby divergent contribrtions
from the dynamics of four or more particles can be wodified by accounting

for the possibility that the group interacts with other particles of the



gas. The cluster expansion method, as developed to investigate
Bogoliubov's assumptions, appears to be unsuitable for obtaining a

time independent functional relating the one and two particle distribu-
tion functions, since a complicated rearrangement of a seriles 1is
required. It would appear preferable to avoid divergences from the
beginning.

Mazenkol!® and van Beijeren17have derived formal closed equations
for the velocity distribution function. Doltzmann's equation can be
derived as an approximation to these equations. To obtain explicit
expressions for the operators in their equations, a solution to the
many-body problem is required. In seeking approximations which will
lead to tractable expressions for tramsport coefficients, one must take
care to avoid divergences of the type discussed earlier.

The work of Opie and Blattl®, and Prigogine19 has also been
concerned with developing methods for gemeralizing Boltzmann's equation.
The problem of modifying Boltzmann's equation for a system in which
bound states can occur has been considered by Green and Yof fman20,

A somewhat different approach for calculating transport coefficlents

is to proceed from the correlation formulas first derived by M.S. Green?!.
Green's results were rederived, and sometimes modified, by a number of
authors, including Kubo22, Mori23 and H.S. Green?Y. A review of this
aspect of statistical mechanics is presented by Zwanzig?®. Direct
evaluation of the correlation formulas is achieved by integrating the
equations of motion of the particles of an equilibrium system. This

has been made feasible for gases at high densities and for liquids by

the use of electyonic computers. Rahman?® has studied transport
properties of liquids, while Alder, Gass and Wainwright27 have considered
gases composed of rigid spheres.

Approximate evaluation of the correlation formulas leads, to the



lowest orders in the density of the system, to the same calculations that
arise in solving Boltzmann's equation and the Choh-Uhlenbeck equationzs.
Haines, Dorfman and Frnst2? have given a method, based on the cluster-
expansion techniques of Greem and Cohen, for evaluating the formulas at
higher densities. Once again dlivergent terms must be modified to obtain
finite values for the transport coefficients. ¥Kawasakl and 0ppenheim3°,
Cohen?!, Haines32 and Dorfman3? have shown how infinite sequences of
certain divergent terms can be combined to give a finite contribution to
the coefficient of self-diffusion. The analysis of these authors has
not been extended beyond removing the divergence arising from the dynamics
of four particles. It is found that, because of the geometry of
collision sequences involving four particles, the contribution to the
transport coefficients from four particle dynamics is a non-analytic
function of the demsity, n. For instance, the coefficient of self-
diffusion, D, can be expressed as 34
oD = D, + nDj + n?log n Dy + 0D + ...

where D, is the contribution from Boltzmann's equation, D; comes
from the Choh-Uhlenbeck equation, and Dy and D" result from 4-body
dynamics. Calculations by which Dz, D,” and corresponding terms for
other transport coefficlents may be obtained have been made by Gervois,
Normand-Alle and Pomeau3S in the case of rigid spheres. The complexity
of many-body dynamics means that only qualitative statements can be made
about higher order terms in the expansions for transport coefficients.
Haines32 discusses the possible form of the density dependence of the
coefficients.

Experiments36 have so far failed to confirm or disprove that the
transport coefficients are non-analytic functilons of the density.

An important problem has arisen from the study of correlation

formulas with the result that the microscopic basis for the equations of
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hydrodynamice is not yet considered as being fully achieved. It seems
that for dense gases the correlation functions appearing in the
correlation formulas do not, as is assumed in their derivation, decay
to zero rapidly in a time interval short enough that macroscopic
quantities, such as local density and local temperature, remain almost
constant. For a dilute gas the correlation functions exhibit the
expected rapid decay. McLaughlin37 has shown this explicitly for a
Maxwellian model of a gas.

Alder and Wainwright3® have shown, from computer simulations of a
dense gas of hard spheres, that the velocity autocorrelation function,
which 18 associated with the coefficient of self-diffusion, decays
only slowly with time. Ernst, Hauge and van Leeuwen3? predict that
other correlation functions also decay slowly with time. Their analysis
involves a number of unproven assumptions, but nonetheless predicts a
long time form of the velocity autocorrelation function in agreement
with that found from computer studies. Dorfman and Cohen*? have
studied the decay of correlation functions of moderately dense gases
through the use of cluster expansion methods. Thelr results can be
considered as arising from a generalised form of the Choh-Uhlenbeck
equation which accounts for the effects of 3-body dynamics exactly and
for the effects of many-body dynamics approximately“l. Another
approach, considered by Hauge“z, is to use the full non-linear form of
Boltzmann's equation, rather than a linearized form as is usually done
when studying steady-state transport phenomena.

As a consequence of the slow decay with time of the correlation
functions, it has been suggested that the equations of hydrodymamics,
with constant transport coefficients, describe only states of a fluid
which vary infinitely slowly in space and time, and not the range of

non-equilibrium states to which the hydrodynamic equations are normally

applied“a.



The methods of kinetic theory which have been described can be
applied to a number of simple models of a gas. The simplest 1s 2 one
dimefisional system of rigid rods since, as Jepsen““ has shown, all
properties of the system can be calculated exactly. The coefficient of
self-diffusion is the only important transport coefficient for this
system, Lebowitz and Percusus, Lebowitz, Péfcﬁs and Sykes“e, and
Blum andeebowitzue,,?have studied this one dimensional system in an
attempt to obtain results which are applicalile to three dimensional
systems. The divergence problem also arises in this model, but because
the rods are confined to move in one dimension, the coefficient of self-
diffusion does not exhibit the non-analytic dependence on the density
found in three dimensional systems.

There is a class of models in which a §ih§1e moving particle
interacts with an infinite .array of fixed scatterers. Gates48 has pro-
posed an: exactly solvable modeliin which a particle moving in two
dimensions is scattered by horizonmtal flat plates. The diffusion co-
efficient D for the system is such:that nD 1s an analytic function of
the density, n., Two and three dimensional Lorentz models in which a
particle collides with fixed circular or ‘spherical- scatterers have been
studied by van Leeuwen and Weyland“® and Ernst and Weyland5?. It is
predicted that the coefficient of self-diffusion is a non-analytic
function of the density and thils appears to be confirmed by the numerical
work of BruinS!,

Dorfman, Kuperman, Sengers and McClure®2 have shoym: that the theory
for the drag on a macroscopic object placed in a gas stream 1s similar
to the cluster expansion methods of computing transport properties.
Divergent terms arising from collision sequences: involving a few
particles have to be modified and the drag coefficient displays a log-

arithmic dependence on the density of the gas.

Another model which is more closely related to real gases is that



of a two dimensional gas of rigid discs. Transport coefficient for
such a system have been computed from Boltzmann's equation and a first
correction to Boltzmann's equation53 . Computer studiessusuggest that
the time integral of the velocity autocorrelation function diverges

which has led to the conjecture that the usual equations of diffusion

do not apply to two dimensional systems.

1.2 AN OUTLINE OF THE THESIS

The aim of this thesis is to make some progress towards a general
theory of the steady state transport properties of dense gases. The
emphasis of the work is on developing a practical method for‘the
calculation of the transport coefficients of a gas, the particles of
which interact with known intermolecular forces. The successful com-
pletion of a program which gives results beyond those obtained from
Boltzmann's equation has implications for the accurate determination
of intermolecular forces and for the study of chemical reactions when
many-body collisions play an important role.

The scheme which is presented here is applicable to gases with
intermolecular potentials which are short-ranged and repulsive. These
two requirements avoid the need to consider the complete many-body prob-
lem in which a particle may be interacting with several particles
simultaneously. Nevertheless it may be possible to adapt the scheme to
include the effects of attractive potentials when bound states can occur.

A detailed application of the scheme will be made to deéermine the
coefficients of self~diffusion of gases of rigid spheres, rigid discs
and rigid rods.

Chapter 2 presents a discussion of the coefficient of self-
diffusion, its-relation to the velocity autocorrelation formula and the
range of validity of the usual macroscopic equations of diffusion. We

show, by considering the theory of Brownmian motion based on the Fokker-



Planck equation, that the coefficient of self-diffusion does not
necessarily depend on the time integral of the velocity autocorrelation
formula alone.

In Chapter 3 a study is made of the velocity distribution function
associated with a single particle of a gas in equilibrium. This func-
tion which is the first of a hierarchy of n-particle distribution
functions, is shown to satisfy a closed equation involving operators
which require knowledge of many particle dynamics before they can be
explicitly written down. However, the exact equation is derived in
such a way that explicit approximations to it are readily derived.
Boltzmann's equation is a first approximation; a further approximation
takes into account 3-body dynamics exactly and partially accounts for
collision sequences involving four or more particles. There are a
number of ways in which these many-body interactions can be
approximated. Certain equations which have been previously derived may
not be the most convenient for calculating transport coefficients.

The solution of the equations is discussed in Chapter 4. The
coefficient of self-diffusion is expressed in terms of the solution of
an integral equation. To obtain a correction to the values from
Boltzmann's equation requires knowledge of 3-body dynamics and hence
numerical techniques are needed.

The complexity of many~body dynamics leads us, in Chapter 5, to
consider the simple one~dimensional system of a gas of rigid rods. The
principle of molecular chaos is formulated exactly for this system and
it 18 shown how the hierarchy of equations for the n-particle velocity
distribution functions can be solved directly.

If the coefficient of self-diffusion is evaluated by the approxi-
mate methods proposed for a more general model of a gas, we find that a

first correction to Boltzmann's equation yields almost the exact value

of the coefficient.
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CHAPTER 2. THE COEFFICIENT OF SELF-DIFFUSION

2.1 INTRODUCTION

The thesis presents a study of the transport properties of dense
gases, the main part of it being concerned with gases of rigid spheres,
rigid discs or rigid rods and the transport phenomenon of self-diffusion.
It is therefore important to decide on what is meant by self-diffusion
and to show how the coefficient of diffusion can be calculated.

From a qualitative point of view, self-diffusion refers to a
molecule’s slow movement through a fluid. Despite the high average
speed of individual molecules, they tend to move only macroscopically
small distances in a long time interval because of frequent interactions
with other molecules. Theoretical studies of self-diffusion are usually
based on theories of Brownian motion. By analogy with Einste:ln's55
analysis of Brownian motion, one assumes that, in a sufficiently long

time interval t, the mean square displacement of a molecule of a gas

in equilibrium is given by
2. =
(@i, = oo (1.1)

Here r(t) 1s the displacement of some molecule in time t and the
brackets <: >;q denote an average over a statistical ensemble
apﬁrbpriate for describing the state of equilibrium. A time interval
long enough for the particle to suffer several collisions 1s considered
suitable for (1.1) to hold. Equation (1.1) then is taken as defining the
coefficient of self~diffusion D for a gas in equilibrium.

Yang56 has shown that in a dilute gas (l.1) is satisfied for
macroscopically small time intervals, and therefore that D 1s just the

coefficient of mutual diffusion which appears in the equation

m

n)(x,t)wy(x,t) = =D 3=

(1.2)

which describes the diffusion of particles of type 1 in a gas
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sufficiently close to equilibrium, consisting of particles of two types,
labelled 1 and 2, say. nj;(x,t) 1s the number density of particles of
type 1 at the position x at time t, while w;(x,t) 1s the diffusion
velocity of particles of type 1. Equation (1.2) is valid when the
temperature and pressure of the system are constant.

The situation is different in dense fluids. Computer simulations
of gases of hard spheres and hard discs suggest that (1.1) is valid
only after an infinitely long time interval for a gas of spheres, while
in a two dimensional system there 1s no relation like (l.1) between the
mean square displacement of a particle and the time interval in which
the displacement occurs. Following on from these observations it has
been suggested“s that, in three dimensions, the generalization for
dense gases of equation (1.2), with constant coefficient of diffusion,
is valid only when the system is so close to equilibrium that n;(x,t)
and w)(x,t) vary infinitely slowly in space and time. For a two
dimensional gas equations ke (1.2) should not be valid for any non-
equilibrium situation. It appears that dense two and three dimensional
gases have the characteristics of a fluid with a memory., The modifica-
tions to the hydrodynamic equations which are required to describe such
fluids are discussed by Storer and Green®’.

This chapter has two purposes. The first is to give the
correlation formula for the coefficients of diffusion for a gas consist-
ing of two types of particles. This formula was first given by
H.S. Green?". 1If the two types of particles are mechanically identical,
the formula reduces to a modification of the velocity autocorrelation
formula for the coefficient of self-diffusion which can be applied to
systems of finite volume.

The second point we make 1s that it is possible to modify the
definition of the coefficient of self-diffusion so that it is well-

defined for both two and three dimensional systems. The relationship
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between this coefficient and macroscopic equations of diffusion has
not been worked out.

We first discuss self-diffusion as a special case of mutual
diffusion and give the velocity correlation formulas for the diffusion
coefficients given by Green. This 1is done in Section 2.2.

In Section 2.3 we describe diffusion of a particle by using the
Fokker-Planck equation. The coefficient of diffusion 1s related to
the mean square displacement, relative to the mean displacement, of
the diffusing particle. We take this relation as defining the co-
efficient of self-diffusion even if the Fokker-Planck equation is not
applicable. For a dilute gas, the definition leads to the same value
for the coefficient as does (1.1); however, in a demse gas, correla-
tions between the velocities of colliding particles are important and

the definitions do not coincide.
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2.2 SELF-DIFFUSION CONSIDERED AS MUTUAL DIFFUSION

From an experimental point of view self-diffusion is not usually
studied directly. Rather it is considered as a specisl case of mutual
diffusion in a gas consisting of two types of particles which are
mechanically identical but distinguishable in some way. For a dilute
gas, one obtains by this approach the same value for the coefficient of
self-diffusion as is obtained by considering the diffusion of a single
particle.

We give here a brief discussion of diffusion in a gas of two
components, We give the correlation formula, due to Green, from which
the coefficients of diffusion can be calculated. As will be shown,
this formula differs in an important way from other formulas that

have been derived.

Consider a gas consisting of two types of mechanically identical

particles, The types are called a and b. We define, for i = a,b,

ni(g,t) as the number density of particles of type {i.

ui(g,t) as the chemical potential of particles of type i.
ulx,t) as the average velocity of particles of both types.
Ei(g,t) as the average velocity, relative to an observer moving

with velocity u(x,t), of particles of type {i.

If these quantities are close to their equilibrium values, and the
temperature of the gas is uniform, the following diffusion equations

are valid:

Bul(g,t)

7% i=a,b (2.1)

mn,(x,t) w (x,t) =- I D
i -1 i=a,b ij

Dij is the transport coefficient appearing in the macroscopic theory

of irreversible processes developed by Onsager, de Groot and othersS8,
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Green?" has shown that the coefficients appearing in these
equations are given by

n2 (b)

” (a) n, n, (a)
Doy ™ STV Ldt(zi v, 0. [ Zj !j(t)-"n" Ej zj(t)]>eq

Db ™ Ppa ™ "Daa T "D (2.2)

In this equation, n, and n, are the equilibrium values of the number
(k)

b? the summation I 18 restricted to particles
b

of type k (k = a,b) and the average is over an equilibrium ensemble.

densities, n = na+n

Equation (2.2) should be compared with the formula given by

M.S. Green21 and Moriza-
2 " [, @ (b)

This latter formula is not correct since the integral with respect
to time does not converge. To see this we consider, for the purpose of
evaluating the correlation function in (2.3), the subensemble of the
grand canonical ensemble of equilibrium in which some particle of the
ath type has definite velocity v, say. After an infinite time the
momentum of the distinguished particle is shared between particles of
type a and type b in the ratio na/nb. Hence for long times the

., i

a non-zero quantity, and consequently the integral in (2.3) diverges.

s o(a) 2>
correlation function (2.3) equals < I [!i(o)] - nb/n,

On the other hand the correlation function in (2.2) is zero for very
long times.

ﬁquation (2.2) can be put into a more familiar form. Consider the
following expression which appears in that equation:

// n (b) n, (a)
\ _V_i(o)- == Zj ¥, (v) - o Ej 3, (v)] , (2.4)
7 eq

Now <!i(o). Ej !j(t) >eq = <L!i(o)]2>

eq 2.5)
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since if the momentum of the system is !1(0) at t = o0, its total

momentum I,V —j(t) at a later time will still be gi(o). Furthermore

3
the particles of type b and of type a, other than particle 1, are

moving on the average with the same velocities. Hence

/ (b) \\ (a) PR
V) = ) z -
<_1(0) 5y (v) P q | (") <v (o) R (t)/ ea, | Sy )
(2.6)

Substituting (2.5) and (2.6) into (2.4) we obtain

2 . v (o) \
Doy, = .;% .I:E.t.l_b; Idt <-!i(°)‘ [—SV -xi(t)]>eq 2.7)
0

The factor gi(o)/v which appears in this equation is necessary to

ensure that the integral converges.
For a dilute gas,
Ta | gffe) Ma
kT ox
If the pressure of the gas is uniform, we obtain from (2.1),
an
- = ;o kT a
Paty [n anb] [EZ'] Daa ox
The coefficient of ana/a§ was denoted by D in equation (1.2).

From (2.7) we have

B (0)
D= 3 dt <il_1(°) (_i(t) - ) o (2.8)
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2.3 THE EQUATION OF FOKKER AND PLANCK.

In this section we consider a model of diffusion based on a
generalization of an equation derived by Fokker and Planck®®, The
generalization due to Chandrasekhar®? was developed to describe the
diffusion of a Brownian particle in a liquid, while the further
generalization by Kirkwood" 1s aimed at providing a molecular descrip-
tion of the macroscopic properties of gases and liquids.

We show that the Fokker-Planck equation relates the coefficient
of diffusion to the mean square displacement, relative to the mean
displacement, of the diffusing particle. This relation is taken as
defining the coefficlent of self-diffusion in a fluid, even if the
generalized form of the Fokker-Planck is not applicable. Equation
(1.1) can be obtained from this definition when the gas is dilute but
not when the system is dense since then correlations between the
velocities of particles are important.

The equation of Fokker and Planck describes the time evolution
of the probability distribution function £(x,v,t;x",v") which is
defined so that
f(x,v,t;x*,v')dxdv = the probability of finding, at time t, the
diffusing particle in the element of volume dx, about the point x,
and moving with velocity in the range v,v+dv, given that at t=o
it was at position x” and had velocity v~.

The equation which describes the time evolution of f is

of of 9

where a 1s the mean acceleration of the particle. Kirkwood approxi-
mated a by

ma = 2 (ukr - p) - ;[-k—'ﬁ-%—‘f, 8 m(_\l-_q)] (3.2)

where k 1is Boltzmann’s constant, m the mass of the particle, n
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the density of the fluid, T its temperature, p the pressure and u
the velocity of the fluid. ¢ is called the friction constant, and

as Kirkwood has shown its exact evaluation depends on solving the many-
body dynamical problem. In Chandrasekhar's description of Brownian
motion, a 1is taken to be

ma = - g (X 4 ne - w) (3.3)

The friction constant CB’ appropriate for Brownian motion, is related
to physical properties of the Brownian particle and its fluid
environment. In (3.2) and (3.3), the component of force, -mi(v - u),
is the frictional force on a particle moving with velocity v through
a fluid with velocity u. The component -z(kT/m)3£f/3v results from
the random molecular collisions which the particle experiences.

In the following we first consider a to be given by (3.3) or
(3.2) with the term 9(nkT - p)/3x neglected. On solving equation
(3.1) with this restriction on the form of a, we find that the density
distribution function, defined as

n(x,t;x",v") = Idy_ f(x,v,t3x",v") (3.4)

is given byS5!

/

n= (4mye) % exp[-(x - x° - £(t))2/(4Dyt)) (3.5)

where Dy (t) = kT/(mtz2) (gt - 3/2 + 2¢"°F - 150~ 2%1) (3.6)

while r(t), the displacement of the particle when the effect of
molecular collisions is neglected, satisfies

dr(t)/dt = c(t)

de(t)/dt = ~g(g(t) - u(x(t),t)) c(o) = v". (3.7)
From (3.5), the mean displacement of the particle in the time interval
t is

Jdes(!_c - x°) n(x,t; x°,v7) = r(t) (3.8)
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and its mean square displacement, relative to its mean displacement is

fdng_ - x° - x(t)]? n(x,t;x°,¥") = 6 D, (£)t 3.9
The above calculations assume that the diffusing particle has
initial velocity v°. If an average is taken over all possible initial

velocities we obtain

I“!‘h(z‘) sz [x-x"-r(t)]? n(x,t;x°v") = 6Dy (1) (3.10)

where h(v) 1is the velocity distribution function associated with
particles at x” at the initial time.

It should be noted that (3.10) leads to the same value of D)
when the veloecity of the fluid is changed by an amount u“(t). This
expresses the fact that the value of the coefficient of diffusion 1is
independent of the velocity u(t) of an observer measuring the co-
efficient. 1i.e. i1s invariant under Galilean transformations.

For times t >> 1/¢ we may replace D,(t) by D; in (3.10) with
negligible error.

To define the coefficient of self-diffusion for a gas, the temp-

erature and density of which are constant, we write

Id_g‘h(x’) Jdi[?_‘.'ﬁ’ - x(t)12 n(x,t;x",v") = 6D(t)t (3.11)

x,¥0)

where x(t) = Idg(y_ - x7) n(x,¢t;

and assume that D = 1im D(t) exists. D is then taken to be the
too

coefficient of self-diffusion. Note that we are not now assuming that
n satisfies the Fokker-Planck equation. If D 1s related to the
coefficient of diffusion in some macroscopic diffusion equation, it is
to be expected that, for times t greater than some macroscopically

short time
D = D(t) (3.12)

For a dilute gas, which is adequately described by Boltzmann's

equation, D can be shown to exist and (3.12) to hold for macroscopically
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short times. For a dense gas, certain information about many-body
dynamics, or equivalently a generalization of Boltzmann's equation, 1is
required to show that the procedure outlined above leads to a well-
defined coefficient of diffusion.

Before proceeding to a discussion of diffusion in a dilute gas,
and then in a dense gas, we express D 1in terms of a velocity
correlation function. We assume that the gas is in equilibrium and

write (3.11), evaluated at a long time ¢t, as
Idl’ho(x’) < [x(t) - <x(£)>"]?>" = 6Dt (3.13)

The brackets < > indicate an average over the subensemble of the
grand ensemble of equilibrium in which some particle has initial
velocity v°. x(t) 1s the displacement of that particle in time ¢t
and ho(g) is the equilibrium velocity distribution i.e. the
Maxwellian distribution function. Differentiating (3.13) with respect

to time, and writing v(t) = dx(t)/dt we obtain

t :
D = lim % Jdg‘ho(v‘) <I e (v(t") - <w(t?)>?). (v(t) - <v(t)>’)>
te o

and consequently

t
D = lim-% J dt’Jd!’h (v*) (<v(t”).v(t)>" - <v(t7)>" <w(t)>?)  (3.14)
t+ ° Jo .

Now
[dfhog_') <v(t).w(e)> = <w(e).w(e)> o

= <v(o).v(t - t7)> (3.15)

since in a gas in equilibrium, the correlation between a particle's
velocity at one time with that at another time depends only on the
length of the interval between those times. On using the relation

(3.15) we obtain the correlation formula

t
dt” [<v(o) .y_(t:‘)>eq - Jd}_r_’ho(x’)<y_(t’)>’.<_\1(t)>‘] (3.16)

D S lim I
o

3 -
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which differs from the formula usually given for D by the appearance
of the second term on the right side.

In the low density limit, a linearized form of Boltzmann's equation
can be used to evaluate (3.16). McLaughlin37 has evaluated the
distribution function £ for a Maxwellian model of a gas. From his

-]
calculations it can be shown that lim <v(t)>" = o while J dt<v(t)>~
oo 0

is finite. Hence the coefficient of self-diffusion is given by

D= % Iodt<g(o).z(t)>eq (3.17)

an expression which can be derived directly from definition (1.1).
* From Yang'sS® work too, equation (3.17) can be shown to apply to dilute
gases.

In a dense gas correlations between the velocities of particles
become important. This has been clearly demonstrated in computer
simulations of gases of rigid disks carried out by Alder and
Wainwright and can be expressed quantitatively by the face that for
long times the velocity autocorrelation function is given by“a

d/2

<w(o).u(t)>, = a(n)t” (3.1)

where d 1s the dimension of the system and o 1s a parameter
depending orn n, the density of the system. Approximate methods for
describing the many-body effects which lead to the slow time decay of
the autocorrelation function have been given by Dorfman and Cohen“o,
Ernst, Hauge and Van Leeuwen3? and Hauge“z.

Now the correlation formula (2.2), or equivalently (2.8), for
the coefficient of self-diffusion is derived on the assumption that
the velocity correlation functions which appear in these formulas
decay rapidly compared with the time in which the densities nj(x,t)

and np(x,t) and the fluid velocity u(x,t) chaﬁge appreciably.

Since the velocity autocorrelation function decays only slowly one
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expects that the diffusion equations (1.2) and (2.1) apply only when
the densities nj; and n, (or py and uy) and the fluid velocity u
vary infinitely slowly. For a two dimensional system the integral of
the velocity autocorrelation function does not exist so that the
diffusion equations should not apply to such a gas.

It appears necessary to modify the equations of diffusion (and
other equations of hydrodynamics). Storer and Green®’ discuss the
form of eqﬁationa which describe a fluid with memory. Keyes and
Opl:oenhei.msl2 have proposed a definition of the coefficient of self-
diffusion which 1s finite for two dimensional systems, but they do not
attempt to relate it to a coefficient in a diffusion equation.

The definition (3.16) of a coefficient of self-diffusion arose
from a consideration of the theory of Brownian motion. An analysis
of the data from computer simulations of gases will indicate whether
this definition is suitable for describing self-diffusion in dense two
and three dimensional systems. The definition attempts to account for
correlations between the velocities of nejighbouring particles. Computer
studies show that the average displacement of a diffusing particle,
with given initial velocity, is greater in a dense system than it is
in a dilute system. In both cases the diffusing particle rapidly attains
the average velocity of surrounding particles, but for dense systems
this average depends on the initial velocity of the preferred particle.

The coefficient which is defined in terms of microscépic quantities
by equation (3.16) may be related to a constant in a maéroscopic
equation, just as the velocity autocorrelation function is related to
the diffusion coefficient in equation (1.2). Such an equation would
differ slightly from (1.2) possibly through the appearance of
correlated stream velocity functions, similar to those which were

introduced by Green and Hoffman20.
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CHAPTER 3 GENERALIZATIONS OF BOLTZMANN'S EQUATION

3.1 INTRODUCTION

It was shown in Chapter 2, that in order to calculate the coefficient
of self-diffusion for a dense gas it 1s necessary, but not sufficient,
to evaluate the time integral of the velocity autocorrelation function.
This requires that we consider a gas in equilibrium and determine the
velocity of some particle over an infinite length of time. One approach
for obtaining such information is to derive and solve an équation for
the velocity distribution function f(x,v,t) defined in Section 2.3.
The derivation of equations for £ 1s the purpose of this chapter.
Their solution is considered in Chapter 4.

There is no great difficulty in deriving a formally exact equation
for the velocity distribution function, and this has been done in
various ways by Cohenl3, Lebowitz, Percus and Sykes®3, van Beijerenl?,
and Mazenkols, as well as by other authors. These equations involve
operators which transform the positions and velocities of particles into
their values at some later time. Hence to give explicit expressions
for these operators and to solve the exact equation requires knowledge
of the many-body problem. Therefore it is important to derive the exact
equation for £ in such a way that approximations to it can be found
in a straightforward fashion.

The cluster expansion methods of Green and Cohen have been used
to derive a closed equation for the velocity distribution function. By
this approach, the effect of collisions on the time development of £
is given by an infinite sum of time-dependent collision operators, each
depending on the dynamics of some finite number of particles. For the
purpose of calculating steady state transport properties, a time-
independent approximation to the long-time values of these operators

is sought. Apart from Boltzmann's operator, which is time-independent,
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and the three-body operator, each individual operator is an increasing
function of time. In order to obtain a time-independent operator, ome
must sum certain parts of each operator to obtain a many-body operator
which approaches a finite value for long times.

Instead of undertaking a complicated rearrangement of the equation
derived by cluster expansion techniques, a more direct approach to find-
ing an equation for the velocity distribution function 1s to make a re-
arrangement of the hierarchy equations satisfied by the 1-,2- .. particle
distributions functions which describe the gas. Frieman and Goldman®",
Dorfman33, Pomeau®5 and Mazenko?! have all shown how to derive a first
correction to Boltzmann's equation which incorporates two- and three-
body effects exactly, and approximates higher order dynamics.

In this chapter we derive an exact equation for the single particle
velocity distribution function. Our derivation is such that approxi-
mations, which correctly account for the dynamics of a certain number
of particles, can easily be found and furthermore, these approximations
are suiltable for calculating the coefficient of self-diffusion. The
important step in our analysis is to express the hierarchy of equations
in a way which clearly brings out the fact that a particle does not
remain isolated from other particles for long periods of time.

The contents of this chapter are as follows:

In section 3.2 we define the n- particle velocity distribution
function which describes the motion of a diffusing particle and n-1
other particles. We derive cluster expansions for the velocity distri-
bution functions by an approach which is more direct than usually given,
since we use the grand canonical ensemble of statistical mechanics,
rather than the canonical ensemble. We show that when applied to a
gas of rigid spheres the hierarchy of equations, which the velocity

distribution functions satisfy, can be reformulated to make evident that
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the gas evolves through a sequence of binary collisions.
In section 3.3 we show that the velocity distribution function

f(x,v,t) satisfies an equation of the form

G+ y_.{gg)f(ﬁ,y_,t) = U(t;£(t)) (1.1)
where U(t) is a time dependent operator which represents the effect

of collisions on the rate of change of £(t). U(t) 1s expressed

as a sum of contributions from 2-,3-,4-, .. body dynamics, the first
contribution being just the linearized form of Boltzmann's collision
operator.

For the purpose of calculating transport properties, U(t) can

be replaced by U = lim U(t). Approximations to U cannot be cal-
to

culated easily from the expansion for U(t) since individual terms in
the expansion diverge. However, it is possible to obtain transport
coefficients directly from (2.1) without the need to first find a
time-independent operator.

In section 3.4 we derive an equation of the form

t
’:-;—t' + !-g—i)f(b!st) = BE(f(z,x,t)) + J dt” v(t-t";£(t")) (1.2)

o
where BE is Enskog's modification to Boltzmann's collision operator.
The time dependent collision operator V(t) can be expressed as a
sum of operators each depending on the dynamics of a small group of
particles moving in a larger system. It is possible to derive a
number of different expansions depending on how the interaction between
groups of particles and the rest of the system is treated.

In sectlon 3.5 we consider an approximation to (1.2) which takes
into account two- and three-body dynamics exactly and which approximates

higher order dynamics. In order to obtain an explicit expression for

the three-body collision operator, we present a detailed discussion of

the dynamics of three particles.
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3.2 THE VELOCITY DISTRIBUTION FUNCTIONS

The object of this chapter is to develop a method by which the
velocity autocorrelation function can be evaluated. This function is
an average over an equilibrium ensemble, and &0 in this section we
first give a brief description of some standard results of statistical
mechanics. The equilibrium ensemble average can be computed by first
considering the subensemble of the grand ensemble of equilibrium in
which some particle is initially at the origin and is moving with some
definite velocity. Velocity distribution functions are defined to
describe the time evolution of the subensemble. These satisfy a
hierarchy of equations which, for a gas of hard spheres, discs or
rods, are put into a form convenient for later use.

In order to describe the properties of a gas we consider, not
just one system of particles, but an ensemble of systems. Associated
with an ensemble are distribution functions defined on the phase space
of a system. A detailed discussion of these ideas is given by Green
and Leipnikes.

Each system in the ensemble is specified by the number of its
particles and the position and velocity of each particle at some time.
If a system has N particles, they are labelled from 1 through to N.
The position of the ith particle is denoted by E‘i), its velocity by
_g(i). The space containing the points _g(i) = (g(i),!‘i)) is the
phase space of the particle. The space of points (g(l),g}z),...,gﬁn))
is the phase space of the N particle system.

We now define the N-particle phase space distribution function.

(2) 429)

Consider the volume element 45(1)45

(E(l),£(2)

eeedz about the point

),

peves2 The proportion of systems of the ensemble which

are represented by a phase space point within this volume element is
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denoted by

I C I e 2P ag®. .4z ®

FN(t) is the N-particle phase space distribution function. Sumning
over all possible numbers of particles and over all possible configura-
tions of the system must give unity i.e.

of 2, Jd_z_(l)...J M N, My =1

N=o :
Note that here and later we do not indicate the range of integration
when for position variables the range is the volume of the system or
when for velocity variables the range 1s unrestricted.

The ensemble average of a function G of phase space points is

given by
‘G(E(I)LE(Z)-°°°)>t -
Z -%, J qg(l)'°°J QE(N) FN(E(I),...E}N),t) G(g(l),gﬁz),...) (2.1)
N=g “°

An important example of a phase space distribution function is

that which describes an equilibrium ensemble:
Be®, .,z = 1 en(son - 1) (2.2)

Z, a normalization constant, is the grand partition function. u is
the chemical potential. B = 1/(kT) 1is related to Boltzmann's constant
k and the temperature T of the system. HN is the hamiltonian of
the systen,

Next we consider the time dependence of the phase space
distribution functions. Consider N particles which at time t, are
at phase space points géi) (1 =1,..,N). They will move in such a

1)

way that at time t particle 1 1s at the point 2z ", We define

the N particle streaming operator SN(t-to) by



27.

N, .2 ™, e ) £2™,..,z2W - f(gsl),..,z(n))) (2.4)

where f 1s some function of 2N variables.

Liouville's equation states that
Pe®,.,:™,0 = e, 2 (2.5)

Equation (2.5) can be put into the differential form

-g—t + LN) P(t) = o _ (2.6)

where

_-N
(1) 1937 3 ]
- (1) - = . 2.7)
izl[ n Bx( ) ag(i)

and VN is the potential energy of a N particle system. VN is

the sum of all interparticle potentials V(r) which depend only on

the separation r of the pair of particles.

N _ ) V(l_’.‘.(i) _ E(j)l)
1<3

We are interested in the velocity autocorrelation function
{g(l)(o).gﬂl)(t)>eq, which on using the definition (2.1) of the

ensemble average and the equilibrium distribution Fg, may be expressed

as
v 1 1 ) N, (1) ), (1) (1)
Heo ﬁ'! I d_z'o * 0 I dEO FQ('E'O yee "EO )Xo y_ (t) (2-8)
where v(l)(t) is a function of the variables z(l),..,i(N).
- ~o ~o

It is convenient to introduce into this expression the three
(1 _ (1) _
dimensional delta functions 6(50 50) and 6(!o !o) to
obtain
- -
1, ) ™ 1) _ N
I 450 I dv !o'% N!Idzo ...J dz | 6(5o 50) 6(\_7o go) F v (t)
(2.9)

One can define a new phase space distribution F?(t) which at
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time t =0 1is
o

P, ...z W,e) -3 N (v) s Pox )s Py B,z @10

V 1s the volume of the system, and
b, @ = 60/ (2n)>/? exp(Juv?) 2.11)

is the equilibrium velocity distribution function for a single particle
of mass m.

At later times F? is given by the solution (2.5) of Liouville's
equation, with (2.10) as initial condition. Fq(g(l)ig(z)..,gﬁN),t)

(2) Q)

is symmetric in the arguments 2z ~‘,..,z ', It describes the sub-
ensemble of the equilibrium ensemble in which particle 1 is at position
x_  and moving with velocity v_ at the time t_ . The average over
o —o o

this ensemble of a function G 1s defined by

<G>1 Nzl(nin I (1?.,j 2™ MDD @6,

Then by using Liouville's Theorem:

dz(l) cos dz(N> = dz(l) see dz(N)
= = ] =0
where géi) and gﬁi) were defined immediately prior to equation

(2.4), we may combine (2.9), (2.10) and (2.12) to obtain
1
s @x® g = if o, [ o, nara®, (2.13)
(!
t

To facilitate the evaluation of <v we introduce a set of velocity

functions fn(t); n=1,2,... defined so that

£(215224+ 432 5t) dg/J dzy £(213225++52 »t)
is the probability that particle 1 will be in the phase space
element 2z;, when some other particles are at the phase space points

_Z_Zs-s_z_n
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The n-particle velocity distribution function is calculated

from an ensemble average of delta functions

g.) 1
£ (2132255052 st) = <6(§115(1)) ) 6(5215(j2))...6(z -z D)>  (2.14)
n “n o “n t
i#..#]
2 n
The notation ) indicates a summation over the (N-1)!/(N-n)!
jzf...fjn

different (n-1) - tuples that can be chosen, having régard to order,
from N-1 particles.
From (2.14) and the definition (2.12) of the ensemble average,

we have

v 1 _ 3y 1) Ky
fn(51’°"5nt) =NZI(N_1)! I dz I dz §(z;- )
G w1 .
! 8(zpmz "2 )...8(zmz T ) Fi(z 7,20 ,0) (2.15)
i

Using the symmetry of Ff, and integrating over the delta functionms,

leads to

N
fn(gl,..,gn,t) z (N—n) J _n+1...I dEN Fl(gl,..,gN,t) (2.16)
Those terms for which N<n do not contribute to (2.16). On putting
j = N-n, we have

£ (215052 5t) = Z J +1...I dz 44 Ft;+j(g_1,..,_z_n+j,t) (2.17)

J“O

We may solve this set of equations for F? -
F2(2,,0002 ,t) = Zi—lj J dz J dz (z z . .,t)(2.18)
1$2y0 525 oo LY —n+j LG TR S .
Verification of this expression is achieved by direct substitution
of (2.18) into (2.17).
The velocity distribution functions satisfy the following

hierarchy of equations.
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)
(-5-'-:-+ Ln) fn(gl,..,zn,t) =

n 3V
1 k,notl 3
k=z=1 I Zorrndx, 3-‘ikfn+1(-z-l""5n+1"‘) (2.19)

where Ln is the Liouville operator defined by (2.7) Vi,J is the
potential energy arising from the interaction of particles i and J,
which are at positions x and Ej' The derivation of equations (2.19)
proceeds by differentiating (2.17) with respect to time and using
Liouville's equation (2.6).

For a gas‘of rigid spheres, rigid discs or rigid rods of diameter

a the hierarchy equations can be written as

n

(— +1L ) fn('z‘l’“’!n’t) "121 Ji,n+1 (fn+1(_z_19--:£',n+1:t)) (2.20)
Ji,n+1(fn+l) is the contribution to the rate of change of fn due
to collisions between the particle with coordinates 2y = (§i,v )
and some other particle of the system. Ji atl acts on functions of

]

zy and Ek as follows:

Ji,k (g(ii!!is?_‘_ksv )) =

J dgk J da.v Yy e(a. vki) (g(_i,___1 x +a*—k) (x VooXy ’—k)) (2.21)

The integration with respect to a 1in this expression is over
the surface of a sphere (for a three dimensional system) of radius a.
da 1s a vector with direction a and magnitude an element of surface
area. For a two dimensional system the integration is over a circle
and da 1s an element of arc. In one dimension, the integration
region is simply two points. v; and v, are the precollision

- %
velocities leading to postcollision velocities v, and ¥y when
the vector from the centre of particle k to the centre of particle
i 1is a at the time of collision between these particles. The

integration in (2.21) is limited to regions in which a. (v ) > 0.
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Hence we have introduced the step function e(x) defined by

e(x@) = o ® <0
= ] x>0 (2.22)

»

and v are given in terms of a and v, . =
= - 2
vi=y - (y,-a)a/a

.o 2
v = vty -0)a/a (2.23)

rd

Furthermore, if v v’ we have

LA A A
8 = 8y v/ vy | (2.24)
Equation (2.20) 1s a consequence of assuming that in a gas of

rigid particles, configurations in which a particle interacts

simultaneously with two or more particles can be neglected. The

derivation of equation (2.20) is given in Appendix A.
fn(t) may be obtained in terms of the velocity distributions

at some earlier time, to, by direct integration of the hierarchy

equations. However a more convenient form of the solution is obtained

by first applying Liouville's equation to (2.17) so that

fn(_l,..,gn,t) =

o

}_o -}.— J dgnﬂ...Jdgn_._j- S(2g0e+ 02 4y0EE) r‘l‘*'j(gl,..,gnﬂ,:o) (2.25)

and then expressing F? (to) in terms of fn(to) through (2.18).

We obtain

@ 9 Lk
-7 1 7L
£a(8) jZO j!kzo k! [ 9Zpppe J 424y

% 5020 r e Znyyo 88 g By o Zagae o)
which on defining 2 = ] + k, becomes

£ (t) =°f L % -1)%3 {"] d d

ha f=0 231,0 3 J =50 A I En+“

x S(gl,..,_gn_'_j’t-to) fn+1(5-1""-zn+2’:d) (2.26)
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These equations are precisely the cluster expansions of the
veloeity distribution functions first given by Cohenl3, By describing
the gas in terms of a grand canonical ensemble, rather than a canonical
ensemble, we arrive at these expansions in a far more direct manner.
The velocity distribution functions fn differ from those defined by
Cohen, but the analysis given above still applies.

Equation (2.26) expresses the time development of fn(t) as
contributions from those configurations of the system at time to
which are such that in the interval (to,t) particle 1 suffers no
collision, no more than one collision, no more than two collisions,
etc. The dynamics of a many-particle system has been expressed in
terms of the dynamics of finite numbers’of particles.

To complete this section of preliminary results, we discuss the
initial values of thebvelocity distribution functions. From the
definition (2.14) of fn' the definition (2.12) of the average < >i
and the initial conditions (2.10), we find

£ (20002 ,0) = (V/h (v)) 8(z;-z )

(3y) ()

x <6z ] 8z 2z 8 " -z )>,

LTI ) q (2.27)
2

n
These averages can be partially evaluated by using the equilibrium

phase space distribution function given by (2.2).

fl(il’O) = G(E_I-EO>
fq(gl,-.._Z_q.O) = nq(zz,u.zq;zl) ho(y_z)---ho(y_q) £,(2;,0) (2.28)
hb was defined by (2.11). We define nq as

nq(gc_z, ves 51) =

X 3
-q
4.

6(5‘32)-52)...6(5 T _x )> (2.29)

(1)
V< (x 151) X eq

J}-.#Jq
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which is the equilibrium density of particles at 52""§q given
thﬁt particle 1 is at x,.

The initial conditions (2.28) play an important part in the next
sections when we derive closed equations for fl(t).

The distribution functioms n, can be written as a power series

in the density by using the expansion methods of Mayer67. We note

here that
N Vi3 ~V23 -Vi2
nxx)=ne 12 4 p2 I dx (e =1) (e -e +...
2 7271 3
-1 -Vl q
n(x ’Ol,x ;X)‘nq e aree +o.0 (2.30)
q™ —q ™
where
n = <2j 8(x - _:_c_(j))> (2.31)

is the equilibrium density of the system and where

exp [vl,z’--sq;l - exp [123.1 vij]

3.3 THE GENERAL TRANSPORT EQUATION

In order to evaluate the velocity autocorrelation function, we
are required to find a solution to the hierarchy of equations (2.19)
subject to the initial conditions (2.28). 1In this section we derive
a closed equation for £(x,v,t) of the form

of of
'S-t-'l-!. -a—i U(t;£) 3.1)

where U(t) 1is a time-dependent operator, and we discuss some
qualitative features of this equation.

Derivation of (3.1) proceeds by substituting the initial con-
ditions (2.28) into the expansions (2.26); thus f,,f3, etc. can be

expressed in terms of f£f(o) and equilibrium distribution functions.
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If we write to for t=0, £ and £, are given by
£(z5,t) = 8(zy.t-t ) £(z,t )

i= j I k=0 : {j]
| dzs...| dz (-1) S(2,50452 »t)
§1 1% =2 =4+1 E k 1 21l

x nj+1(5§""§j+li§1) ho(zz)“"ho(!j+l) f(glto) (3.2)

£2(z1,22t) = S(21,22,t-t ) ny(Xy5%)) h (¥) £(z;,¢t)
+7 l—% (-nik [3) S(Z1 s 22y 1qst=t )
IREL k) "2 Eme o

x nj+2(§2""£j+2;§1) ho(gz)...ho(gj+2) £(z1,t,) (3.3)
These are equations of the form
f(_z_lst) = T(_z_]_st—to) f(—z-l’to) (3-4)
and

fz(_z_lz_zot) = T(E-l’-Z—Z’t'to) f(il’to) (3-5)
where T(gl,t-to) and T(El’ﬁa't'to) are operators.

To obtain a closed equation for £ we first eliminate f(to)
from (3.4) and (3.5) to obtain f2 as a functional of £ which 1s
then substituted into the first hierarchy equation (2.19). To
eliminate f(to) we must find the inverse T-l(gl,t-to) of the
operator T(gl,t-to). This requires that we have a solution to the
many-body problem. However, it 1s possible to calculate the inverse,
correct to some power of the density, by solving (3.4) by iteration.

Expanding (3.2) and (3.3) in powers of the density, we obtain

£(z),t) = S(z;,t-t)) £(z,,¢))
...vl

+n J d_z_3[,S(£1,_z_3,-t—t°)- S(_z_l,t-to)] e 3ho(13) f(_z_l,to) + ... (3.6)



35.
£2(21,22,t) = 5(z1,22,t~t )[n + n? J dz (e V13 - 1)

x (723 - 1) b (va)] b (¥2) £(ziot))

+ n? I dzs [S(gl,ga,gs,t—to) - S(E1xigst‘to)]

x e 123 h_(v,) b (vy) £(z;,t) + ... (3.7)

We have used the expansions (2.30) of n, and n, to derive

these expressions. (3.6) is solved for f(to) by iteration:

f(El’to) = S(gl,to-t) f(z)5t) - n S(gl,to-t) I dz, [S(glaga,t—to)

-V
- 8(z;,t-t )] e 13 h (¥y) S(zp,t -t) £(z),t) + ... (3.8)
and when this is substituted into (3.7) there results

f2(£1’£2’t) il T(EI’EQ,t—tO) T—l(ilst-to) f(_z_lst)

- -V
S(z1,22,t~t ) [n + n? J dz,(1 - e 131 - 23)hc,(_\13)]

M

ho(ga) S(gl,to-t) f(z,,t) + n2 J 453[S(§J,52t£3,t-t0)

S(il’izst"to)] e-v123 ho(_‘_’_z) ho(_‘_7_3) S(zl’to-t) f(zl,t)

nZ J d_3;3 S(E_la_z_zpt"to) S(El’to.-t) [S(El9ﬁgst'to)

-V
- 5(51’t'to)] e '13 hocgz) ho(gs) S(gl,to—t) £(z;,t) + ..
(3.9)
If we consider a gas of hard spheres or hard discs, when the
hierarchy equations can be written as in (2.20), f2 need only be

evaluated for precollision configurations of two particles 1.e. for

(x,-%,). (¥;-v,) < o. In this case (3.9) becomes, after some rearrange-

ment of terms
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fz(_z.1,£29t) = [n + n2 I d.x_3 (e—V13 - 1) (e'VZS - 1)] ho(xz) f(_z_lst)

+ n? J dz, e_V123 [S(EI’Ez'Ea’t'to) - S(El’ga’t-to)]

2 -Vi3
X ho(gz) ho(!3) S(gl,to-t) f(gd,t) +n J d53 e

x (1 - e'v23) [1 - S(ﬁl,ig,t'to) s(-z-l’to-t)]

x h_(¥,) b (vg) £(zp,E) + ... (3.10)

Here and in (3.9) we have explicitly indicated the first two terms in
the density expansion of the functional relationship between f and

£ This expansion is similar to one derived by Cohen3l. 1t

2.
differs from Cohen's in the choice of initial conditions. Cohen, in
effect, takes

k-1
fk.- (n) ho(gz)... ho(gk) £

i.e. n is replaced by (n)k—1 in (2.28).

k-1
The first term in (3.10) involves the first two terms in the
density expansion of n2(§2;§4). It is the contribution to f2 from

pairs of particles, the velocities of which are uncorrelated. The
next term is a "three-body" term. It vanishes unless at least two
collisions take place in the time interval (to,t); a third collision
is about to occur at time ¢t. For instance if particle 2 does not
interact with 1 or 3 then

5(2)02,:250t7t,) = 5(2;,2,,t-t)) 5(z,,t-t )
or 1f only particles 2 and 3 interact, then

8(21:2ps235t=t ) h (¥)) h (vg) = S(z;,t-t)) h (¥,) b (v3)

since the 3-particle operator transforms the velocities of particles
2 and 3 to precollision values and by conservation of energy, the

product of the equilibrium velocity distribution functions remains

unchanged.
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The coilision sequences which do contribute to the 3-body term
have been characterized by Sengers 10, The sequence in which 1 and 2
collide, followed by an interaction between 1 and 3 and then between
1 and 2 is such a sequence. There are, in addition to sequences of 3
collisions, sequences involving 4 collisions but no higher number,

Contributions to the third term of (3.9) come from configurations
in which particles 2 and 3 are overlapping at time t i.e.
|%,-x3| < a, and in which particles 1 and 3 interact in the interval
(to, t).

Our derivation of a closed equation for f essentially results
from integrating the equations of motion from a time to at which
the n-particle velocity distribution functions can be expressed in
terms of the one-particle distribution function. Because of the
special ensemble which was constructed to evaluate the velocity auto-
correlation function, we have taken to= o. However, there may be
other choices for to. For instance, 1f the gas is of sufficiently
low density, it will be a good approximation to neglect the possibility
that two particles which are on collision trajectories have interacted
either directly or indirectly in the past. We may then neglect all
terms in (3.10) apart from those corresponding to uncorrelated pre-
collision velocities, or what is equivalent take to = t, We then
obtain

£,(2y,2,t) = n ho(gz) £(z;t)

(x,-%,). (¥;~v,) <o (3.11)

and hence a linearized form of Boltzmann's equation.

of of
tt Yo

n J dEJ da. (u-v) e[(@-v).a] [b (") £(x,vit) - h (W) £(x,v,t)] (3.12)
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We may suppose that as the density of the gas increases configur-
ations of three particles in close proximity to each other will occur
more frequently. We might then coneider the correction to Boltzmann's
equation which arises from the second and third terms of -the expansion
(3.10). The time to is then chosen to be before the three particles
interact, since 1f they have not interacted previously, the factoriza-
tion (2.28) will apply. If the time t is suféicientiy long it will
bé‘a good approximation to take the limit as It-tol + o of those
terms of (3.10) under consideration. The resultant time independent
functional relating f2 to £ leads to a linearized form of the Choh-
Uhlenbeck equation.

One cannot continue this process by taking into account the four-
body term of (3.10)., It is found that there are certain collision
sequences involving four particles which cause the four-body operator
to diverge as |t-t°| + =, The same effect occurs for higher order
terms in the expansion (3.10). These divergences are a result of the
method of analysing the dynamics of the complete system by considering
the dynam;cs of small groups of particles isolated from the rest of
the system for long periods of time.

Thus it is not possible to verify Bogoliubov's assumption about
the functional form of f2 by considering in succession two-, three-..
body effects. A rearrangement of (3.10) is required, to take into
account that particles frequently collide. A partial resummation,
which removes the divergence due to four particle dynamics, has been
carried out by Kawasaki and Oppenheim3?, Cohen®!, Haines32 and Dorfman33.

However, the use of cluster expansions does not seem a very
practical way of obtaining a time-independent functional relationship

between £ and f2. In the next section we shall re—-examine the

hierarchy equations to obtain more useful expansions for the one- and
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two-particle distribution functions.
It should be mentioned that corrections to Boltzmannk equation
may be obtained which involve time dependent functionals.

An equation such as

of of . )
3E'+ V'SE:' nz(a) B(f) + Uy(t;£) + ...+ Un(t, £) (3.13)

where B is a linearized form of Boltzmann's collision operator, and
Uk(t) are time-dependent operators depending on the dynamics of k
particles, 1s obtained by retaining the first few terms of the
expansion (3.10) and substituting into the hierarchy equation for f£.
While the functionals U,(t),Us(t) etec. are divergent functions of
time, Uk(t;f(t)) may approach zero for long times, provided the
solution of (3.13) approaches the equilibrium value of £ rapidly
enough. This is because Uk(t;f) =0 when f « ho'

To prove that solutions of (3.13) have this property would seem
a difficult task. However the properties of Boltzmann's operator B
are such that if the effects of the other operators are small, the
rapid approach to equilibrium exhibited by the solutions of Boltzmann's
equation may be seen in the solutions of (3.10). 1In Chapter 5 we
calculate the coefficient of self-diffusion for a one dimensional system
with an equation of the form (3.13), with n = 3, A small correction
only to the value predicted by Boltzmann's equation is obtained,
suggesting that it is necessary to solve (3.13) for large values of
n to obtain accurate values of the coefficient of self-diffusion for

dense gases.
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3.4 ALTERNATIVE FORM OF THE TRANSPORT EQUATION

The equation for £ derived in the previous section involved a
sum of terms associated with groups of particles separated from the
remainder of the system for some period of time, Such configurations
of the fluid should provide only small contributions to the time
development of £ since they have only a small probability of occurr-
ing. While equation (3.13) may take into account this property of the
fluid, it is preferable to derive equations for £ where the high
probability of collisions occurring is made explicit from the
beginning.

We now derive an equation of the form

t
%% + !.-g-i- = ny(a) B(£f) + j dt“v(t-t;£(”)) (4.1)

0

in such a way that approximations to the functional V(t) can be
calculated readily.

Equation (4.1) is not difficult to derive in a formal fashion.
It can be obtained readily by Laplace transformation.of equations
(3.4) and (3.5) which express £(t) and fz(t) as functionals of
f(to). The derivation of Lebowitz, Percus and Sykes®3 is closest to
ours. However we have proceeded further than their formal derivation
of (4.1) in that we obtain a systematic sequence of approximations
to V(t).

Divergences appear in this approach if approximations to V(t)
do not approach zero rapidly enough with time. For not only does the
second term of the right side have to remain finite for all times, it
must also approach zero sufficiently rapidly so that for large times
f attains a stationary form.

These conditions lead us to seek expansions of the functionals
in the equations

f(_ilst) = T(Ept) f(!_po) (4.2)
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£(z),2,,t) = T(z;,2,,t) £(2,,0) (4.3)

in which each term of the expansions approaches zero with increasing
time. In physical terms, this corresponds to ensuring that contribu-
tions from the dynamics of particles isolated for long periods are
small. There are a number of ways by which this can be achieved and
these lead to equations of varying suitability for calculating trans-
port properties.

A large class of expansions of the operators T(gl,t) and
T(gl,ga,t) can be generated by the following simple procedure. We
first write the hierarchy equations (2.20) for a gas of rigid spheres,
discs or rods as

d - |5 .
Grr +r) (o - izl Ty lE (1 + A £ (0) .4

We have added the term Anfn to both sides of the hierarchy equatioms.
An may be chosen to be a number, function or operator. However,
Holtzmann's equation should be obtained as the first of a series of
approximate equations for the single particle distribution function.
Furthermore, a first correction to Boltzmann's equation should give a
value of the coefficient of self-diffusion in sufficiently good agree-
ment with experiment.

Equation (4.4) is integrated next to obtain
fn(t) - 1(51’ LI "‘z‘!l"t)fn(o)

t n
+ Jodtl I(gl,..,gﬂ,t—tl) El‘li,nﬂ[fnﬂ(tl)] + Anfn(tl)] (4.5)

where

Iz, 0z,0t) = exp[-(L +A )] (4.6)

By a series of successive substitutions we obtain from (4.5) the

following expansions for f and fzs
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t
f£(t) = I(_Z_l,t) £(o) +J dt1 I(_Z_l,t‘tl) {312[1(51’.3_2:‘:1) fz(o)]
. [}

t1
+ A I(El’tl) fl(o) + J]_z[J dtz I(_z_l,_z_z,tl—tz)(.lm + J23)
0

[I(z1,22,23:t2) £3(0)]) + Ay I(21,Z2,t3) £2(0) + ... } 4.7
t
fz(t) = I(Elg_z_zst) fz(o) + J dt1 I(il’iz’t-tl) {(J13 + Jza)
[o]

[1(2),20523,t;) £500)] + A, 1(2;,25,t;) £,(0) + ... } (4.8)

We mention at this point that we need consider only those
configurations of particles 1 and 2 for which (x%;,-X%,).(v,-v,) < o.
On substitution of initial conditions (2.30) into (4.7) and (4.8)

we obtain expansions for £ and £ in terms of £(o). Before

2
showing how £(o) can be eliminated from these expansions, we

express the first term in the expansion (4.8) in the form

f,(t) = nz(gz;gc_l) ho(y_z) I(_z_l,t) £@) + ... (4.9)

It 1s then possible to obtain Enskog's modification to Boltzmann's

equation. For the purpose of deriving (4.9), define
y(21522,t) = exp[-(LotA1+A7)t] na(x25x1) h (v2) £(z),0) (4.10)

where

A=Ay =
If the operators L,, A, and A” do not commute, the evaluation of
y(t) 1is not straightforward. Here we describe an iterative scheme
for its evaluation.

We note that n,(x,;X;) 1s a function of the single variable
I=x -x (which we write as n(r)) and that y satisfies the

equation

(-—+v ] xl+A1+ (31-!2).-—--—-———-.[—-—-——} + 2’

X y(X)5¥)sX,V,,t) = 0 (4.11)
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where V(r) 1is the interparticle potential for rigid particles.

Equation (4.11) can be solved by iteration as follows.

y() = LD T b (v5) £(21,0)

t
- e OO g 2o 2 BT ) )
= 11 r ‘v
x e L1HAEL Ty h,(v2) £(z1,0) + ...
= n(r) h (v2) I(z1,t) £(21,0)
. 5 1avife _a .
= 1 Iz, e-t) [(1=v2) 57 ~- & 3% W, " W, + 2]
5 r T (v
x n(r) h (¥p) I(z1,t;) £(z;,0) + ... (4.12)

This expansion contains the term

n, (x,3x)) h (v;) I(z;,t) £(z;,0)

which we were seeking. On substitution of (4.12) into (4.8) we

obtain an equation of the form

£2(t) = ny(xp3x)) h (¥p) I(zy,t) £(z),0) + Kp(21,25,t5£(0)) (4.13)

where Kj(t) is an operator.

We also write (4.7) as

£(t) = I(z3,t) £(0) + Ky(z),t;£(0)) (4.14)
and we now show how to eliminate f(o) from equations (4.13) and
(4.14).

Since Kj(o) = K2(0) = o we may write, using K(t) to denote

either K;’t) or Kp(t),

rt

K(t) = dt, %I[K(tl)e-(Ll.‘-Al)(t_tl)]
‘0

rt
= | dt, [K(t-t)) e L)t 4 Ree-t)) @) e~ LAty

e (4.15)
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K”(t) denotes the time derivative of the operator K(t).
Using (4.15), equations (4.14) and (4.13), can be written as

e"(L1+)(1)t

t .
£(t) = £(0) + f dt” My(z),t-t7) e TR () (4.16)
(o]

(L1#hp)t” (4.17)

t
fz(t) = n2(§2;§_1) f(t) + I dat” MZ(E_].’EZ!t_t‘) e- £ (o)
)

where M;(t) and M;(t) are operators.

To eliminate f£f(o) from these equations, we solve (4.16)
iteratively.

t
@D £y 2 £(e) - I aty M)(t-t,) £(t;)
o

+ It dty M;(t-t,) Itldtz My (ty~ty) £(to) + ... (4.18)
o o
On substitution of (4.18) into (4.17) we obtain the desired
relationship between £ and fz.
t

£2(t) = na(x2;x1) h (v2) £(t) + f dt; Mp(t-ty) [£(t))
[o}

t1
- I dt, Mj(ty-ty) £(ty) + ...} (4.19)
(o)

Terms such as

t t) t
n~1
I dty J dtz...I dtn My (t-ty) Mp(ti~t2)...M; (tn-l-tn) f(tn)
o o o
which occur in (4.19) may be rewritten as
t t1 tn—l
I dty [ I dtz...I dtn My (ty-t3) M]_(tz-tg)...Ml(tn_l-tn)]f(t-tl)
[0} (o] 0

Hence (4.19) is an expression of the form

t i
f,(t) = na(xz3x3) ho(xz) £(t) + I dt” M(z1,2z2,t-t") £(t%) (4.20)
0

With this relationship and the hierarchy equation for £

we obtain a closed equation for £, of the form (4.1). Our
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derivation is longer than other derivations but this 1s because we
L4

intend to derive explicit approximations to the operator M. The

approach of this section enables us to do this., We next consider

various first corrections to Boltzmann's equation which result from

different choices of An.

3.5 CORRECTIONS TO BOLTZMANN'S EQUATION

We continue our discussion of the scheme proposed in the previous
section. We derive closed equations for f which fully take into
account two and three body collision sequences and which approximate
the dynamics of four or more particles. We consider two choices of
the factors An. These correspond to two different ways of approx-
imating many-body dynamics.

The first choice 1s
Ak = no(v) k=1,2,... (5.1)
where

na(v) = n J dw I da. (w-v) efa.(w~v)] ho(g) (5.2)

is the frequency of collisions experienced by a particle moving with
a velocity v through an equilibrium environment.

A second choice is the operator Ak’ defined on functions of
Zl...,Zk, by
Ak = -nB(v]) - ... - nB(gk) (5.3)

where B(v) 1is the Lorentz-Boltzmann collision operator, defined

on functions of v by

B(v) g(v) = J dy_j da. (w-v) efa.(w-v)] [h () (") - h (W) g(v1]
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The motivation for choosing A, as in (5.3) is that the

k
approximation

fk+1 (__2_1 e :_’5131'_19 e !_z_k’x -ﬂ’_Y_K_l.ll t) =n ho (!k"'l) fk(z_l s .—zk, t)

when a. (v ) >o (5.4)

el 44
is good for dilute gases and small values of k. It 1s a consequence
of assuming that the velocities of particles 1 and k+l, which are
in a precollision configuration, are uncorrelated. When (5.4) is
substituted into the hierarchy equation for fk’ we obtain

3
(ﬁ + Lk) £, = "N L+ oo (5.5)

For a dilute gas we have 1solated the most important part of the

collision term in the equation for £ Therefore, in the study of

Kk’
moderately dense gases, the operator Ak’ defined by (5.3), should
fairly accurately represent the effect of the rest of the system on
the dynamics of a small group of particles. The choice of Ak = na(v)
is a cruder approximation of many-body effects. However the simplicity
of this choice leads to equations which are easier to analyse than
those derived from (5.3).

The case when Ak is given by equation (5.3) 1s treated in
Appendix B.

In this section we consider the latter choice for Ak' We first
note that, when (x-x1).(v2-v)) <o

exp[-(Lat+ na(¥1))t] na(x2;5x) h (v2) £(z;,0)

exp(~na(y1)t) n(x;~x1-(¥2-v1)tj h (v5) £(x)-V1t,¥1,0)

t

[n2(x2;%;) + I dt” %;— n(xo-x;~(vo-v1)t")] h (vs)
o]

L]

I(z1,t) £(2),0) (5.6)
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Now to second order in the density
g—-H(r) = n2 I da (e-V(_;-g._) - 1) (5.7)

which is a consequence of the density expansion (2.30) for Ny
Hence (5.6) becomes

I(z)»2p,t) £5(0) = ny(xy5x)) h (vy) I (z;,t) £(o0)
t
+ n? I dt” j da. (v1-v5) I(2;,23,t-t")
]

x (e V& "Xma) _ gy h (v,) 1(z),t7) £(z;,0) (5.8)

Furthermore, with A, = na(v),

t

f(z 3t) = I(2;,t) £(o) + nJ dty I(_gi,;t‘.;tf) I dvs I da.vi)

0
x e(a.v31) h (v3) I(x),vi,t;) £(x1,¥i,0) + ... (5.9)
and

A= )
£2(z1,22 t) = I(z),25,t) £(0) + nzI dt; I(z;,zot-t)
o

x {I dvs I da.vi3; e(a.v3y) I(x1,vi,x2,Vv2,x1+a,v3,t1)
x h (¥2) h (¥3) £(x;,vi,0)

+ 3,30102)525,255t1) h (¥,) b (v3) £(z;,0)]} + ... (5.10)

These equations follow from (4.7) and (4.8).

From equations (5.8 - 5.10) we obtain

t
£2(t) = ny(x2;:x1) ho(vz) £(t) + n? J dty I(z),27,t-ty)
[o]

x Idg-'llz a - V&%), h (v,) £(z;,t))

+ T3 [(TCz1,22,23,t1) - I(z1,23,t1)) h (v2) b (v3) £(z1,0)]

+ J23 [1(z),2,,2,,£1)0 (v,) b (v) £(z,,0)] + ... ] (5.11)
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To obtain from this equation a suitable relationship between £ and
f2 requires that we analyse the dynamics of three particles.

If we examine equations (5.11) and the definition of the operators

J13 and J23, we see that we must evaluate the expressions
1(z)r2,0%,"8:¥3,t) D (¥,) h (v,) £(z,,0) (5.12a)
L(x,»¥]02,0X,+8,¥3,t) h (¥;) h (v3) £(x;,¥],0) (5.12b)

with a. (\_7_3—11) >0

and
1(z)425,%,"8,¥ s t) h (¥,)) h (v,) £(z,,0) (5.13a)
1(z,x,,¥5x 8, v, t) h () b (v3) £(z,,0) (5.13b)

vith a.(v,-v,) > 0

Collision sequences involving three isolated discs or spheres
have been considered by Sandri, Sullivan and Norem®8 and *y Cohen,
Murphy and Foch®9. It has been shown that no more than four collisdons
are possible and that the fraction of collision sequences with three
collisions for which a fourth collision can occur is of the order of
one or two partes in a thousand. Hence we shall consider only the
possibility that three collisions occur among three particles.

There are two different sets of configurations which we must
consider. The first set, which occurs in the evaluation of (5.12a)
and (5.13a), 1s that at time ¢, particle 3 1s about to collide
with either of particles 1 or 2 which would otherwise have collided
at time t. The second set, applying to (5.12b) and (5.13b), consists
of those configurations in which particle 3 is about to collide with
1 or 2 at time t, thus causing 1 and 2 to collide at time t.

Denoting a collision between particles 1 and J by (1j) and
a collision which wouid have occurred, if an earlier collision had not

taken place by (1), we need consider the following sequences.
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(A collision written to the left of another indicates it occurred
earlier.)

For 1(z;,z,,x,-a,V3,t ) consider (23)(13) (12).

1

For I(x,,¥/,2,,X

1"8sYost)) consider (23)(13)(1Z) and (12)(13)(12)

For 1(51,32,52-3,13,1:2) consider (13)(23)(12)

For I(Eq,ga,gé,zzfg,xé,tl) consider (13)(23)(i2) and (12)(23)(12)
To characterize the configurations which lead to a particular

sequence of collisions, we introduce the expression

t
J dt” J da.v,, e(a: _ﬂk) a(___‘ v, (t-t?) < a-x +y (t-t") (5.14)

o
which equals one 1f particles j and k have collided in the time

interval (o,t) and zero if they have not.

To see that this. is appropriate we transform the integration
in (5.14), which 1is over the surface of a hemisphere, into an inte-
gration over a disc of radius a 1in a plane perpendicular to the

relative velocity v, -

vy Yo (See Figure 5.1)

Then

a 2m
I da.v,, e(a. vjk) - Jo db b Jo do |!5k|

"5 - vy () ~a) = 8y - x f v /] -y e-en)]
xga[(gj -x); - b] &G -4

We have written the three dimensional delta function of (5.14)
as a product of one dimensional delta functions. We have denoted the

projection of the vector zj - x,  on to a plane perpendicular to the

vector xjk by the polar coordinates ((gj - Ek{;' 6).

The delta function 8[(x

4 - Ek).l - b] 1limits the configurations
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of J and k which contribute to (5.14) to those for which j and

k would have collided sometime in the past. The delta function

8 [(:_::j -x - 9)'!jk/|!jk| - Igjkl(t—t‘)] specifies the collision
time as t”.
Using (5.14) we may write, to take (5.12a) as an example,

I(gl,_z_g.ﬁg-_a_.y_a,tl) ho(y_z) h°(2_3) f(E_)_’O) - I(El’tl) ho(y_z) ho(.!s)
x £(z;,0)

t
+ I de, I db.vs) €(b.v31) 6{x» - & ~ va(t1-t2) ~b - x
[}

+ vi(t1~t2)) [1(z),25,%,-8,¥5,t;) = I(z;,t,)] b (¥,) h (v5) £(z;,0)
(5.15)
The first term of the right side is the value of the expression
for those configurations in which no interaction among the three
particles occurs in the time interval (o,t). The second term results
from all configurations in which particles 1 and 3 collided at time

t the collision being specified by the vector b.

2’
If the configuration of particles 1,2 and 3 at time 1:1 is such

that at the earlier time ¢t particles 1 and 3 collided, then

2’
I(gt_l,21,5_2,17_2,3_2-_3_,1’_3,_51) ho(_y_z) ho(_Y_3) f(&zvo)
= exp[-na(vy) (t1-t2) = na(¥Dtz] b (v2) h (¥3)
x £(x;,-v, (t)-t;) - ¥jt,,¥1,0)

where vi and vj are the velocities of particles 1 and 3 prior to
their collision at time tj.
Hence (5.15) can be written

I(z)52,:X,~2:¥,st,) B (v)) h (v) £(z,,0) = I(z;,t)) h (v)) h (v,)
t1
x £(z),0) + I dta J db.vj) €(b.v3)) I(2),X2-8,V3,t1-t2) §(xz-3~%;~b)
[+]
(cont.)
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x ho () [h (v§) IGx1,vitz) £(x1,¥i,0) = h (v3) I(x1,¥1,t2) £(x1,¥3,0)]
(5.16)
The expressions (5.12b) and (5.13a,b) can be analysed in a similar
fashion. On substitution of the approximation

I(x),v1st2) £(x1,v),0) = £(x;,V):t2)

inte (5.16) we obtain

I(&l»ﬁzn?ﬁz'ﬁsl’_g:tl) ho(_‘_'.z) ho(_‘_’_s) f(ilso) . I(El’tl) ho(zz) ho(!3) f(ilgo)

6
+ J dt, J db.v31 e(b.¥3,) I(z;,%,-8,v5,t-ty) 8(x,a-x,*b)
o

X ho(xz) [ho(_‘_f_g) f(_’gly_!i’tz) = ho(y_a) f(ﬂl:zlstz)] (5'1'7)

When (5.17) and similar expressions are substituted into (5.11)
there results
t

fa(t) = np(x23x1) ho(ZZ) £(t) + n? I dt; exp[-na(v;) (t-ty)]
0o

x 8(z1,2a,t-t1) {C{£(t))) + jtl dt, (Cp(t;=t,) +...+ Cu(t-t,)
0

= Cs(ty-t,)) £(t,)} (5.18)
where the collision operators Cj;,.., C5 are given as follows:

Cy(f) = Id;a_-mz a - e V&127a), h (v2) £(z1,t1)

-V (x)2+a)

+ [ dvgi I da.vs; €(a.v31) h (v2) [(e - 1) h_(v3)

X £(x,050t) - (e E127) 1y b () £(x,v,0tp)] (5.19)

The first term of the right side of this expression for C1
already appears in (5.11). The other terms are a consequence of the
fact that operators such as I(z),z3,t) are non-zero when |x,-x3| < a

whereas 1(z3,22,23,t) 1s zero for such values.
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Ca(t1-ty) f(tp) = I dvs I da.v3) €(§.-!31>I db. (v2-vi) e[b. (vo-vi)]

x I(x),¥],X),¥5,t)-t,) S(xo-x)+b) ho(ig)
x [hy(u3) £@1,015e2) - b () £Gx1¥ia2)] (5.20)

This 1g the contribution from collision sequences, in which
particles 1 and 2, with initial velocities !i‘ and gé, collide at
time I:2 (b specifies the collision). They then move with velocities
vy and v, until 1 and 3 collide at time t; (a specifies this
collision) so that particles 1,2 and 3 have final velocities v;, v,

and v, respectively. Symbolically we write this sequence as

b a
@ 2o 3 > O 3 ¥ T (s w2, ¥9)
1

Ca(ty~-ty) £(tp) = I dvs I da.v3 8(3‘!32)I db. (v3-v)) €[b.(v3-vy)]
x I(x)1,¥1,X2%a,v3,t1~ty) 6(xs+a-x)~b)
X ho(_‘lé) [ho(!;) f(}_‘_ls!i:tz) - hO(!s> f(}_ls!lytz)] (5-21)

This is the contribution from collision sequences

P ”, — - P a
(!1 s !E > 13‘) --t—b (yl ’ __‘12 9 23) "_“'P': (21 ’ !2 ’ !.3)
2 1

Cy(t1-tsy) £(ty) = J dva Jf da.v3; e(a.v3z) ’[ db. (va-vy) e[b. (v3-vi1)]
X 1(51.3!_1-3_2’15,111-1:2) 6@2-51"'13)
X ho(lg) [ho(!;) f(i‘_ll_‘_’_istz) = ho(y_é) f(_’_‘_ls.!la tl)] (5.22)

is the contribution from sequences

b a
(11’1’2’1’-3’) __t.; (¥,,¥5,¥3) T (v,>¥,,v,)
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Cg(ty-t,) £(t,) = I dv, I da.v,, e(g_.gsz) J db.v3; €(b.vaj)
X L(X;,V):X)"8,V35 81" t,) 8(x,-a-X;D)

X ho(XQ) [ho(xé) f(ﬁ;a!intz) . ho(!3) f(EJ,ZJQtz)] (5.23)

is the contribution from sequences

b a
(¥1s¥25¥5) ——y (¥yo¥p5¥3) ——, (¥ 5 )
ts t)

The collision at time t1 between 2 and 3 interupts the path of
particle 2 so that no collision between 1 and 2 occurs at time t.
Hence Cg 1s subtracted in equation (5.18).

Equation (5.18) expresses f£f,(t) as a functional of £f. When
substituted into the first hierarchy equation it yields a generaliza-
tion of Boltzmann's equation which accounts for 3-body interactious.
In the next chapter we show how the velocity autocorrelation formula
may be obtained from this equation,

In Appendix B we derive an equation similar to (5.18) in which
the Boltzmann collision operator is used to take into account the

interaction between three particles and other particles in the gas.
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CHAPTER 4 CALCULATION OF THE COEFFICIENT OF SELF-DIFFUSION

4.1 INTRODUCTION

In Chapter 3 we derived an exact equation for the distribution
function f£(x,v,t) assoclated with a specified particle of a gas.

That equation was written in two ways:

%,f; +x-g—§ = n,(a) B(f) + 02U (t;£) + ndU, (t;6) + ... (1.1)
and

of of t ,

5¢ T Yoox T n,(a) B(f) + Jodt [Vs(t-t’;f(t ))HV, (t=t"3£(e))+. .. ]

(1.2)
In (1.1) the interaction between the preferred particle and other
particles is represented by a sum of operators, each depending on the
dynamice of a small number of isolated particles. In equation (1.2)

the operators V3, v etc. depend on the dynamics of 3,4, etc.

u’
particles interacting with other particles in the system. As explained
in Section 3.5 there are a number of ways in which these many-body

effects can be accounted for. In this chapter the operators Va, Vu,

etc. will be taken as the operators arising from equation (5.18) of
Chapter 3. In this equation, the effect of interactions between a few
specified particles and the other particles is approximated by the
factor exp(-nat).

In this Chapter we show how the coefficient of self-diffusion can
be calculated from approximations to equations (l.1) and (1.2). One
must be careful to avoid divergent terms when seeking approximations
to the exact closed equation for f£.- Suitable approximations to (1.1)
and (1.2) can be obtained by simply neglecting terms Uk+1’ Uk+2"°' or
Vk+1’ Vk+2"" for some finite value of k. It should be noted that

this is a suitable method for approximating (1.2) only because certain

many-body dynamical effects are included in each of the operators
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A Vu, ete.

3,
The simplest approximation to these equations is

-g—i + !.% = nz(a) B(f) (1.3)

an equation which has been studied in great detail. We present a

brief discussion on how the coefficient of self-diffusion is calculated
from this equation. Approximations which involve three-body dynamics
are much more difficult to study because of the complexity of the
dynamics of three particles. However the required techniques have

been developed by Sengersl!0253:70 4n4 we will show how our work is

related to the Choh-Uhlenbeck equation as analysed by Sengers.

4.2 CALCULATIONS

In Chapter 2 we proposed a definition of the coefficient of
self-diffusion with the aim of avoiding difficulties which arise if
one simply applies Einstein's definition of the coefficieént of
diffusion for Brownian motion to the process of self-diffusion. This
definition takes into account the small, but observable, correlations
between the velocity of the diffusing particle and those of other
particles. In a dilute gas these correlations decay nearly exponentially

with time so that the formula

D =

wll—-

r dt < v(o).v(t) >‘__“1 (2.1)
o

is adequate. It is to be expected that the generalizations of
Boltzmann's equation considered in this section also predict that the
correlations decay rapidly with time. This is because many-body
dynamical events which are the cause of the actual slow decay of the
velocity autocorrelatiéﬁ function are accounted for in only an

approximate fashion through the factor exp(-nat). Hence equation (2.1)
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will be suitable for calculating the coefficient of self-diffusion from
the generalizations of Boltzmann's equation considered here.

On the other hand if one requires a more accurate description of
the diffusing particle, the generalization of Boltzmann's equation
discussed in Appendix B should be suitable. In this equation many-body

contributions are contained in the term

exp [-(_r%; - nB(v))t] Dorfman and Cohen“? have shown that.by
including this ;;ctor the long time behaviour of the velocity auto-
correlation function can be predicted. The coefficient of self-diffusion
will be somewhat more difficult to evaluate from this generalization of
Boltzmann's equation than from the simpler generalizations considered
here, but since the correlations between velocities of particles are
small it 1is probably not necessary to use the equation of Appendix B
to obtain a value of the coefficlent of self-diffusion suitably close
to experimental values.

To calculate D as defined by equation (2.1), we first note that
the velocity autocorrelation function is related to the velocity dis-
tribution function £ by

< v(o).v(t) >eq * J dv ho(l'ﬂ)xo' J dg_[ dv £(x,v,t)v (2.2)
where

£(x,9,0) = 8(x - x)) 8(v - v)

It is convenient to introduce the functions h and ¢ defined

by
h(!: t) = I d}_ f(_’_‘_’_!, t)
¢ (v) = J“ dt I dv ho(!o)xb h(v,t) (2.4)
. N v

so that

D =%—J dv $(v).v (2.5)
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We now consider the evaluation of D when f satisfies equation

(1.3). Then h obeys

%E =n, I dw j da. (wv) ela. (@) ][h (v") h(zit) - h (@) h(z,t)] (2.6)

Now the solution of (2.6) is such that the time integral defining _ﬁ

is certainly finite. This is best seen by an examination of the eigen-
values and eigenfunctions of the collision operator B(v) which appears
in (2.6). The spectrum of the operator B 1s discussed by Foch and
Ford’!. The function ho 1s an elgenfunction corresponding to the
elgenvalue 0. All other eigenvalues A, are negative. The solution to

1
(2.6) is of the form

. n,A;t
= 21
h(v, t) Zi a e wi(!) 2.7)
where wi is the eigenfunction corresponding to Ai. The constants ay
are determined from the initial value of h. We shall write equation
(2.7) in the compact form
n,B(v)t
h(v,t) = e 2 © h(v,0) ) (2.8)

These considerations show that the time integral in (2.4) is finite and
thus ¢ 1s well-defined when h satisfies (2.6).
To obtain the equation which ¢ satisfies, multiply both sides of

(2.6) by ho(!b)!b and integrate with respect to v, and t.

Now

oh
E te [ ax, by, 3 = - 9,

since h(v,0) = G(X:!o) and h(t) -+ ho as t + o, Hence ¢ satisfies

the integral equation

=y h (v) =n,(a) Bls ()] (2.9)

We note that this equation can also be obtained from equation

(1.3) for f by using the methods of Chapman and Enskog?. One
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substitutes into (1.3)

9

£(x,v,t) = n(x,t) [h (V) - ¢(¥). 5=+ ...] (2.10)
where

n(_ﬁs t) = f dl f(l‘_’_‘b t)
to obtain

of of an
Writing

of of an an

3€'+-!} 32 3t + v. QEJ ho(!) + ...

and writing the continuity equation as

an 9
ot =~ I I dv v £(x,v,t)

ox.

=- L [awy e n@ +

we have to a first approximation that

of of
ot il < x

=¥ h (v —§§
vhich when substituted into (2.11) yields (2.10).

The usual method of solving this equation is to expand the
functions 2_ and v in terms of the Sonine polynomials?. One then
obtains an infinite set of simultaneous equations for the coefficierts
of the expansions. If the infinite set of equations is replaced by a
finite set one can obtain approximations to the coefficient of self-
diffusion.

An alternative method of solving (2.6) is to transform the
equation into a diffefential equation. This approach has been con-
sidered by Pekeris’? Brooker and Green’3 Kumar’% has reformulated the
method of Chapman and Enskog in terms of irreducible tensors and

matrices. By this approach one does not require any of the theory of

integral equations.
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The solution to (2.9) will be written as

2@ == B v ] (2.12)
o}
-1

where we have introduced the inverse operator B .

The value of the coefficient of self-diffusion that 1s obtained

from this equation 1s72

1/2 1

3
D = 1.019 - (£I) )

8a2
Using the density expansion of nz(a) given by equation (2.30) of

Section 3.2 we find!0

1/2

nd=1.019 % (“T] (1 -2 ma%n+...) (2.13)

The first term of the right hand side of (2.13) is consistent with the
value of nD at low densities which Alder and Wainwright3® obtained
from a computer simulation of a gas of rigid spheres. The next term,

according to the computer studies is

= d_ .3
0.8 x 12 Ila®n

Hence the most important part of the first correction to the results
from Boltzmann's equation comes from the equilibrium distribution
function n,. Further corrections arise from considering three-body
dynamics, and we now consider how these can be calculated.

Consider first the approximation to equation (1.1) which results

when the operators Uk+2"" are neglected. On integrating the

Utr?
resultant equation with respect to the variable %X, we find that h

satisfies an equation of the type

a—‘t‘ = ny(a) B(R) + n2C,(t3h) + ... + nk-1 ¢, (t5h) (2.14)

where Cs, C -+. are operators. We propose that this equation

y?
provides a suitable description of the gas even though the operators

Ck may diverge. To see this, we put (2.14) into the integral form
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n,Bt t n,B(t-t~*)
h(v,t) = e 2 h(v,0) + J dt’e 2
(o]

k-~

x [02C4(t%) + ... + 07 ¢ (9] h(v,t) (2.15)

This equation can be solved by iteration:

t . -
n,Bt n, B(t-t*)
h(v,t) = e 2 h(x,o) + f dt” e 2

o

Bt”

Bloenle? h@wo)+ ... (2.16)

x [nzca(t‘) + ... +n

It should be noted that

C(t) [h (V] =0
so that

C (t) & "“h(y,0) +0 as £
provided Ck(t) does not increase too rapidly with time. Hence each
term in (2.16) approaches zero for long times, apart from the first
term which approaches the equilibrium value ho' To show that the
solution to (2.14) is well-behaved requires that the sum of all terms
in (2-16) approaches zero. A detailed analysis of the operators Ck

is required to decide whether that property is true. However solutions

to (2.14) obey

fdx h(v,t) = 1,
for all times t, which suggests that h 1s well-behaved. This

identity follows from the fact that (2.14) is of the form

%% = Jy, [C(¥;,¥,,t5h)]

where C 1is a functional and that le has the property

f dv, J,, [8(v;,v,)] =0
Thus it seems likely that finite values of the coefficient of

self-diffusion can be obtajned from equation (2.14) even though the

operators Ck(t) may diverge for large times. It is the operator B
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which provides the necessary modification to divergent terms and there
1s no need to consider many-body dynamics.
¢(v) 1s given immediately by equation (2.16). From the definition

(2.4) of ¢ we obtain

; t B(t-t~
$(v) = r dt enth& h (V] + rdt I at” e 2 (e
o (o]

o]

k

: 2 . -1 . nth‘
x [n Ca(t )+ ... +n Ck(t )] e [g_ho(!)] + ...

= - %2 3”1 [v h (W] - —rl;z gl Io dt [nzca(t) + ..

4l e (o) 2™ b @1t .. (2.17)

n Bt
The factor e 2 represents a sum of exponentially decaying terms.

Hence each term in (2.17) is finite and so corrections to D beyond
the value predicted by Boltzmann's equation can be obtained.
We will briefly consider the next two terms which take into

account three and four particle interactions. If the operaotr Cs(t)

is replaced by '63 = 1lim Cs(t), one obtains from (2.17), on neglecting
to>o

Cy» Ceoeee

s = - %2 By h (W] + (%2)2 T, By b ] + . (2.18)

This is the iterated solution to the integral equation derived from
the Choh~Uhlenbeck equation . E; is given by equation (3.10) of
Section 3.3.

One can make some qualitative statements about the contribution
to ¢ from the operator C, by drawing upon the results from an

analysis of four-body dynamics made by Pomeau and others3s,
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If one defines E; by
t —
C,(t) = f dt” cu (t”)
o
we see that

o n Bt *® — n Bt” [® n Bt
dt Cu(t) e = dt” C“(t‘) e f dt e
(6] o t°

& — n Bt 1 -1
-f dt C,(t) e (-5 37)
o
go that (2.17) can be written

1 %

2
— n Bt -1
+ n3 Iw dt C,(t) e 18" [vh (V] (2.19)
[¢]

For small values of n, we expect from the work on the dynamics of

four particles that the operator

fn dt G, () " Bf
o N

is proportional to Iln n. This implies that the self-diffusion co-
efficient D~ depends on the density n in the following way

nD = D° + D1 + nlnn D2 + ... (2.20)

The form of higher order terms in the expansion is discussed by Haines32,
To conclude our discussion of equation (2.14) we remark that such an
equation 1s used in Chapter 5 to provide a finite correction to the
value of D from Boltzmann's equation for a one dimensional gas.

We now consider the calculation of D from approximations to
(1.2) which are obtained by neglecting Vk+1, Vk+2, etc. With such

an approximation n obeys an equation of the type

t
= nzn(h) + I dc” {Aa(t-t‘) + ...+ Ak(t-t‘)} h(t”) (2.20)
[o]

3h
3t

with Ak(t) time~dependent operators.
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The equation satisfied by ¢ 1s obtained from (2.20) by
multiplying both sides of the equation by v ho(lr0 ) and integrating
with respect to v, and ¢t.

Thus

o t
-v ho(y_) = “zB[i(X)] + L dt Jodt' {Ag(t-t7) + ... + A.k(t-t')}

x j dv_ b (v)) v h(y,t")

vhich on changing the order of integration with respect to t and

t® becomes

-v hc;(_\_y) = nzB[i(l)] + Io dt {Aa(t) + ...+ Ak(t)} 3(2) (2.21)

¢ then, 1s the solution to this integral equation. It has already
been mentioned that the operators Ak contain contributions from
certain many-body collision sequences and that these must be included

if the time integrals in (2.21) are to converge.

The operator J dt Aa(t) can be obtained from equation (5.18) of
o

Section 3.5:
« ® -no(v;)t “V(x,,-v;,t-a)
J[o dt A (t) ¢(x) =023, [ L e Idg.glz(l-e )
x h (v,) ¢(v,) dt]
-na(y,)t
+ nZle [ E dt e S(_z__l,_z_z,t) ho(y_z)

-V
x Jyale 2% -1) b (vy) s(yp1

-na(v )t
+ anu { J:dt e 177 8(z;.2,,t)

X Jdvaj dﬂ-y_Sl E(g_-!sl) .

-na(v;)t
x dt e S(lg_1 v, ,_{2,1_2,1:)
o =
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x I db. (v,~v}) elb: (v,~v))]
x 8(x,, - h () [h (v) (v, - b (v,)e(v,)]}

+ ... (2.22)
Further terms can be obtained directly from equation (5.18).

The collision sequences which contribute to the various terms in
this expression were described in Section 3.5. Because of the factor
exp(-nat) each of the terms is certainly finite, although the
inclusion of these factors is not essential to obtain finite values
of D. This is because of the particular geometry of collision
sequences involving three particles. If the exponential terms are
replaced by 1 i.e. if many-body collision sequences are neglected
we obtain from (2.22) an integral equation which has also been
derived by Sengers, Ernst and Gillespie’® by using Laplace trans-
formation techniques developed by Zwanzig. This is demonstrated in
Appendix E. The equation is of the form

-vh (¥) = (n,B + n2 ) $(v)
and can be solved by iteration

=1

s =-L a-ap T+ 0B b @] (2.23)

2

Sengers7° has developed numerical methods for evaluating the result

of the operator A acting on a function of v. It is found that

the first two terms of (2.23) lead to

o 1/2
b =22 ED7° 1019 -3, mad a4 .. (2.24)

wherel?

r = 0.9150 + 0.0018
This expression should be compared with equation (2.13), with r=l,
which is a consequence of considering only two-body dynamics and with

the value r=0.8 obtained from computer studies. This difference
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between the calculated and observed values of r may be a consequence
of considering only the first two terms of (2.23). Alternatively it
may be necessary to include many-body effects as well as three-body

collision sequences to explain the difference. A detailed analysis of

the operator J dt As(t) as given by (2.23) would seem worthwhile.
o

From a physical point of view it 13 to be expected that accounting
for the possibility of 1interactions between three particles and other

particles would give a more accurate description of the gas.
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CHAPTER 5 A STUDY OF A ONE-DIMENSIONAL GAS’6

5.1 INTRODUCTICN

In the earlier chapters of this thesis we have developed a
theory of self-diffusion in a dense gas of rigid spheres or discs.
Some discussion of numerical predictions from this theory has already
been presented. However the complications of even three-body
dynamics requires that elaborate numerical analysis be performed if
accurate corrections to results from Boltzmann's equation are to be
obtained., The scheme which we have developed can be adapted to
describe a one-dimensional gas of rigid rods, a system for which the
dynamice are comparatively simple. Indeed, in this case the coefficient
of self-diffusion can be calculated exactly.

In this chapter we present the theory of a gas of point particles.
The techniques used in previous chapters can also be applied to this
model of a gas. Divergences arise from the usual methods and are
even more severe than in two or three dimensions. A form of
Boltzmann's equation can be derived. However, unlike the situation
in higher dimensions, this is an approximate equation even when the
density of the gas is low. The coefficient of self-diffusion as
derived from Boltzmann's equation is always 16% off the exact value
irrespective of the density of the system. We derive a generalization
of Boltzmann's equation by considering three-body and certain many-
body dynamical events. The latter are required to modify divergences
due to the dynamics of three isolated particles, The value of the
coefficient of self-diffusion as calculated from this equation is
close to its exact value.

In Section 5.2 we define velocity distribution functions
appropriate for describing a single particle in the one-dimensional

gas when the other particles have an initial distribution of
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equilibrium, These distribution functions are shown to satisfy a

set of equations, analogous to the hierarchy developed for two and
three dimensional gases. It is possible to find the exact relationship
between two-particle and one-particle distribution functions which
enables the hierarchy to be solved exactly.

In Section 5.3 we apply the methods developed in previous
chapters, to derive approximate closed equations for the one-particle
velocity distribution function. The coefficient of self-diffusion is
calculated from these equations by numerical techniques, in order to

demonstrate the efficacy and accuracy of these methods.

5.2 THE DISTRIBUTION FUNCTIONS

In this section we examine the behaviour in time of a specified
particle in a system of impenetrable point particles, constrained to
move along an infinite line. The statistical ensemble which describes
the state of the gas in which we are interested is the subensemble of
the grand canonical ensemble of equilibrium in which some particle has
specified position and velocity. The specified particle is labelled
as particle o and other particles are labelled according to their
order along the line, with particles labelled by negative numbers to

the left of the distinguished particle.

The distribution function FM’N(z_M,..,zN,t) describes the sub-
ensemble with M particles to the left and N particles to the right

of particle o, and obeys the MN+l1 Louiville equation

[—g?+LM’N] PN oo (2.1)

where LM’N is the Liouville operator for the system. The ensemble

averase <G> of any property G 1s then given by the

@ =3 7 I dz_y... I azg PN (0) ¢V (z (), uz () 2.2

M=0 N=0
X < Sy
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where zi(t) = (xi(t),vi(t)) denotes the position and velocity of

particle i at time t, and 2z = zi(o). The initial distribution

i
function FM’N(o) is given by

FM’N(z_M,..,zN,o) = 6(20-2‘) exp {B[u(M + N) ~ HM’N]}/(ZLZR) (2.3)

z” = (x;v”) specifies the initial position and velocity of the test

particle. HM’N is given by

N
M, N
H* = ) (%Jnvjz- ) Viey)

j=-M k#j

j#o
where ij = V(xk - xj) is the interaction potential between a
particle at X and one at xj. ZL is the equilibrium grand

ensemble partition function for particles to the left of particle o,
and ZR is defined similarly for those to the right. B 1s the

statistical temperature and u the chemical potential.

Velocity distribution functions f(n) are defined as follows:

3
f;n)(zl;zz,..,zn,t) =
<6(zj(t) - zi)jﬂg.ﬁ:(zjz(t) - zz)...G(zjn(t) -z )> (2.4)
so that f;l)(zl,t) dz; is the probability of finding particle }
in the phase space volume dz; about the point z; at time t, and
f;z)(zl;zz,t) is a distribution function associated with finding

particle j at z; and any other particle at z;. The higher order
distribution functions have a similar interpretation.
The distribution functions obey a hierarchy of equations similar

to the hierarchy applicable to two and three dimensional fluids.

9, oy .(n) _ 5 I 19V 3 (n+l)
Go+ %) 3 (2154452 st) 121 dz_,, m-a—itillfl oy £ (t) (2.5)

where m is the mass of a particle, and
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n_ ¢ ) 1 (2
A (A ax, Z Vij) (2.6
j#i
is the n-particle Liouville operator.
The hierarchy (2.5) can be put into a form similar to the
hierarchy of equations for the distributjon functions describing a

gas of rigid spheres or discs. We will consider in detail the first

hierarchy equation, which contains the term

V12
1 d (2)
o I dz, 3%1 53& fj (z1,29,t) (2.7)

Now for the interaction under consideration, the integration range in
this expression can be limited to an arbitrarily small line segment
containing x; and in the limit where this range becomes vanishingly
small, only terms in the integrand involving 6-functions contribute

to the integral. The terms involving 6-functions in the equation for

£

j are explicitly displayed in

3(x1-%x7) m 9x) 3v1

[(v1-v2) 3 652 @1z (2.8)

= other terms
which 1s a consequence of the second hierarchy equation. Substitution

of (2.8) into (2.7) leads to

9 9 (1)
[at ! ax1] 5 (z1.¢)
x1+e
3 (2
= 11 dx dvy(vo=vy) —F0—— (z1,22,t)
€+3 2 J 2(v2~v1) 505 & 15223
X;~€
= lim I dvy |vp-vy | [f )(xl,vl,x:,vz,t) ; )(x1.V1,xI,V2,t)]'
>0 (2.9)
where
xf = x; e sgn (v2~vp) (2.10)
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The variables xj}, vi, X] » V2 are postcollision variables whereas

X15Vys X] , V, are precollision Qariabléé. iBut'fmesz.B)

+ . C = -
113 féz) (xl,vl,xl,vz,t) = 11: f}z)(xl,vz,xl,vl,t) (2.11)
e> e>

since in the limit ¢+0, the "other terms" of (2.8) can be ﬁééiééfé&.
We have also used the fact, that for this system, two particles simply

exchange velocities upon collision. From (2.9) and (2.11) we obtain

d 3 (1)
[5;'+ Vi 3;1] fj (z3,t) = éig I dvy |vy-va|
x [f;z)(xz,vz,xl,vl,t) - f§2)(x1,v1,x1,v2,t)] (2.12)

We can make use of the fact that the particles are impenetrable.

The jth particle is always next to the (j+1)th and (j—l)th

particles and so

2 ,. - : (2) -
lim £ (X1,Vo,%X,,Vyst) = 1im £ 08 (X,,V,%,,V,,t) (2.13)
e»g 3 X15VosX , Vg e+g () X)15V15X),V,
where
(3) =3 + sgn (VZ"VI) (2.14)

Equation (2.12) can then be written in the form

i 3_| () _
o) 52 o0 = 2o
X [fg’; (%),V5,%],V,,t) = f;z)(xl,vl,x-l.,vz,t)] (2.15)

By a similar procedure we can express the hierarchy equations

@ .03
TR

these equations it is not necessary to take into account any interactions

for £ , etc. in forms similar to (2.12) and (2.15). 1In

other than those of the jth particle with the unlabelled particles
(n)
h|

since £ is symmetric with respect to unlabelled particle inter-

change. This is because particles exchange velocities upon collision
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and so the unlabelled particles behave, as far as the motion of
particle j 1is concerned, like an ideal gas.
n)

The equations governing f;

then are

9 n| (n), .
[E'l'Lj] fj (Zl,..,zn,t)

nt+l) , -
= iig I dvn.+1 |vn+1 - v1| [f§ )(xl,vn+1;..,x1,v1,t)

- f§n+1)(x1,v1;..,xI,vn+l,t)] (2.16)

vhere Lg is the n-particle Liouville operator which includes only
interactions between particle j and the unlabelled particles.
Equations similar to (2.15) .can also be obtained.

The initial values of the distribution functions can be found
from equations (2.2), (2.3) and (2.4). Assume that the particles are
initially constrained to an interval (-L,L) with particle O at the

origin so that
M,N . - _M,N
PN (o) = 6(x)) 6(v -v*) exp {BuOEN) - B} (220
if for 1 = -M,..,N |x1| <L

= 0 otherwise
Then,

for 3= 0:  £1(2,0

§(x) §(v-v7)

1
for 3 > O: fgl)(z,o) = ?§f¥;! e X ho(v) 0<x<L
= 0 otherwise
for § < 0: fgl)(z,O) = ff;)(—x,v,O) (2.17)

where n 1s the initial density of particles other than particle O

and

h (1) = (Bu/(2m)* exp (-35Buv2) (2.18)
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(n)
£

)
2 (2y50002,0) B g0v, L)

The higher order distribution functions gatisfy

(n+l1)

fj (zl;“’zn_'_l’

0) = f (2.19)

where

3 =3-1 0 <x

<
ntl © ¥l

=j+1 Xy <x ., <0

n+l

= j otherwise
and

h{x,v) = nho(v) + 6(x) 8(v~-v’) |x| <L
= 0 otherwise

It is shown in Appendix C, that for later times a similar

(n+l)
b

for which particle Jj has not previously interacted with any of these

factorization of £ occurs for configurations of nt+l particles

particles., For instance, if (x; - x9)(v] - v3) < O

fgz)(zl;zz,t) = f(l) (z),t) h(z,,t) 0 < x,-v,t < xi-vit

3-1
= f(l) (z ,t) h(z,,t) xX,=-vyt <x =-v,t <0
hp g B 2° 17 2 2
= f§1) (21,t) h(z,,t) othervise (2.20)

where

h(x,v,t) = n h (V) + 8(x2-vyt) §(v-v") |xp-vot| < L

a ( otherwise.

When (2.20) is substituted into (2.15) we obtain an infinite set of

equations for fﬁi) (k = 0,1,2,...) which can be solved as described

in Appendix C.

(n)
f

The velocity distribution functions can be written in

terms of functions F§n) defined by
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F§n)(21;~-,zn,t) = f;n)(zl;..,zﬂ;) - I dz ., f§n+1)(zl;"’zn+1’t) +..

o Ik
_ (=1) (n+k)
- Z : I dzn+1"'j dz f (zl”"zn+k’t)

k ntk 7 J
30 (2.21)
It can be shown that
] n (n) _
Ge+rp By =0 (2.22)
and
(M, .7 1 (n4k) |
fj (t) kzo o I dz .- J dz . Fj (2430052 0 t) (2.23)

(2.22) can be obtained by using the hierarchy equations (2.5) and
(2.23) can be verified by direct substitution into (2.21). Similar
sets of equations have already been derived for systems of higher
dimension.

In the next section we shall use the scheme proposed in
Chapters 3 and 4 to calculate approximate values of the coefficient

of self-diffusion defined by
D= J dt I dv” ho(v‘)v‘ I dv h(v,t) {2.24)
0

where

h(v,t) = Idx fél) (x,v,t) (2.25)

To simplify matters, we assume that the initial distribution
of particles is over an infinite interval. On taking the limit L+
(1

of the expression (Cl17) (Appendix C) for fo , we calculate D as

D = (2npm) % o~} (2.26)

From equation (2.11) and the property

1im f(z)(x,vl,xte,vz,t) = lim f(z)(x,vz,xtE,v,t)

we see that h(t) satisfies

%Ejh(vl,t) = I dv, |v1-v2|[h2(v2,v1,t) - hy(vy,vs,t)] (2.27)



74.

where

2
hz(vl,vz,t) = lim I dx fg )(x,v1,x-e sgn (vz-vl),vz,t) (2.28)

E>0

5.3 GENERALIZATIONS OF BOLTZMANN'S EQUATION
FOR THE ONE DIMENSIONAL MODEL

The work of Chapters 3 and 4 can be applied directly to a one
dimensional system. Besides the simplification due to the dynamics of
point particles, there is the additional benefit of simple initial

conditions. We find that

fl(z,o) e §(x) §(v-v*)

fk(zlg..,zkgo) = nk_lho(vz)...ho(vn) £,(z,0) (3.1)

where we will use the notation fk = fék) from now on.

We will calculate the coefficient of self-diffusion from three
different closed equations for the distribution function h(t). The
first is Boltzmann's equation

2h
rs nB[h]

=n J dw |v—w| [ho(v) h(w,t) ~ ho(w) h(v,t)] 3.2)

which results from substituting the approximation

hz(v,w,t) =n ho(w) h(v,t) (3.3)

into equation (2.27). Equation (3.2) can be solved exactly; its
solution 1s given in Appendix D. The coefficient of self-diffusion
is found to be 16% off its exact value (2.26) irrespective of the
density of the systenm.

We then consider two corrections to Boltzmann's equation which
account for correlations between the velocities of colliding particles

caused by three body collision sequences.
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One equation is of the form

% = nB[h] + n?t C[h] (3.4)

where C 1is a time-independent integral operator which 1s derived by
the methods described in Section 3.3 by considering the dynamics of
three isolated particles. We obtain from this equation a small
correction to the value of the coefficient of diffusion.

The other equation is of the form

t -
g% = nB(h] + n2 J at-v(e ™) hen) (3.5)
e}

The operator V as well as including three-body effects, introduces

nat

many-body dynamics through the term e where

na(v) =n I dw |v—w| ho(w)

is the rate of collisions experienced by a particle moving with
velocity v through an equilibrium enviromment. Equation (3.4) is
derived by the approach of Sections 3.4 and 3.5. The coefficient of
self-diffusion as calculated from this equation is within 1% of its
exact value.

The factorization condition (3.3) which leads to Boltzmann's equation
is exact at the initial time as well as when the velocity distribution
function h(t) has reached its equilibrium valne. Hence we expect
equation (3.2) to give a reasonably good approximation to D.

If we define ¢(v) by

p(v) = I dt I dv” ho(v‘) v’ h(v,t) (3.6)
0
so that
D = I dv ¢ (V) v 3.7)

we obtain, by the methods of Chapter 4, the integral equation

-vho(v) = q I dw |v—w|[h°(v) o(w) - ho(w) (V)] (3.8)
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the solution of which is given by equations (D9) and (D10) with
e=0. Numerical evaluation of the integral in (3.7) then gives

DB = 0.328/n (3.9)

We have taken gm = 2 in these calculations, in which case the
exact value of the coefficient of self-diffusion is

Dexact = 0.282/n (3.10)

We now consider generalizations of Boltzmann's equation. From
the expansion (2.23) for the distribution function f§n) and the

initial conditions (3.1) we can obtain the expression

k-1 ¢+ 1 4 -2 (3
£ (2y;.-52,,t) = n Z <y n g -1n-, [ ]
k 1 k jao j ° L=0 .

x j a2 ees I a2y SUM @) B b () £ Grguvy0) (31D

in exactly the same manner that equation (2,26) of Chapter 3 was

derived. In equation (3.11)

n
s (zy,..,z,0 =" (3.12)

is the n-particle streaming operator. £)(o) can be eliminated from
the expansions for £,(t) and £,(t) obtained from (3.11). For
precollision configurations, i.e. (xl—xz)(vl—vz) <o

£2(z1,22,t) = n b _(vz) f3(z;,t)
+ n? I dz, [5(3)(21,22,23,t) - 8(2)(21,23,t)] S(l)(zl,»t)

x b (v,) b_(vy) £(z;,t) (3.13)

+I..
The term proportional to n?2 in equation (3.13) is zero unless

narticle o (which is at the point =z, at time t) has interacted

1
with both particles 2 and 3 (i.e. those particles at 2z, and 2z, at
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at time t) in the interval (o,t). In general the term associated
with k~body collisions in this expansion will be non-zero only when
the distinguished particle suffers k-1 collislons in the interval
(o,t).

To evaluate the three-body term in (3.13), we note first that if
particle o has not interacted or has collided only with particle 3
then

s (z),25,25,0 = 5P (2,250 sV (2,0

so that there is no contribution to the three-body term. If particle
o suffers two collisions, it must first collide with particle 2 and
then with particle 3. This is illustrated in Figure (3.1). Ve see
that the integration over x3 in the three-body term is restricted to

values for which
(x,- x3)(x3- vyt - (x4~ vzt)] >0 (3.14)
Taking this into account we obtain

hz(vl,vz,t) = n ho(vz)h(vl,t)
+ nt I dv, e[(vl-vz)(vz-vs)]|v2-v3|

x h_(v)) [h (v3h(vy,t) = h (v)h(vg, D] +... (3.15)



4 (G)
v,
w
2
-
t=0 >
x
POSITION OFf PARTICLES
LI (b)
V3
t=o0 >
x
— trajectory of particle 0
_———— trajectory of particle 2
——— trajectory of particle 3
v indicates slope of line is v
FIGURE 3.1

(a) A collision sequence which does not contribute to the operator
3 2
(S( )(zl,z?_,z3,t) - S( )(zl,zs,t))

(b) A collision sequence which does contribute.
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The k-body term in this expansion contains the factor n(nt)k—z.

Hence the density expansion of the many-body collision operator
exhibits the same type of divergent behaviour that is found in two and
three dimensional systems. One cannot obtain in a straightforward
manner a time-independent functional, relating h and hz, by this
approach. Nevertheless the diffusion coefficient can be calculated
from the closed equation for h which results from substituting the
first few terms of the expansion for hz into the hierarchy equation
(2.27). If we retain just the two- and three-body terms of the
expansion, the equation for h 1s of the form of (3.4). This can be

wvritten as

t -
h(v,t) = enBth(v,o) + I dt” enB(t-t )t‘C[h(t‘)] (3.16)
0
and solved by iteration:
nBt t nB(t-t7) aBt”
h(t) = e “h(o) + I dt” e t‘Ce h{o) + ... (3.17)
°

It is showm in Appendix D that the eigenvalues of B are negative,
except for the eigenvalue zero. Hence, on the understanding that h
in (3.17) refers to the velocity distribution function minus its
equilibrium value ho’ each term of the expansion (3.17) will approach
zero for large times. This is not to say that the sum of all terms
approaches zero. A more detailed analysis of equation (3.4), and in
particular of the eigenvalues of the operator C, is needed to decide
upon that point. However the numerical work which we have carried out
indicates a rapid convergence of the sequence of partial sums obtained
from (3.17).

To calculate the coefficient of self-diffusion from (3.17) we
first derive an equation for ¢ defined by (3.6). From (3.17) we

find that ¢ 1is given by
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¢(v) = -n’l[l I +... ]B'llvho(v)] (3.18) °
where B-1 is the inverse of Boltzmann's operator and is given by
equations (D8) and (D9) of Appendix D. The functions B-lfg(v)] and
Clg(v)]. VWhere g is some function, can be evaluated numerically.
The contributions to the coefficient of self-diffusion from the first

few terms of the expansion (3.18) are:

g1 0.328
@ s lys™! - 0.015
(8 lep~ty2t 0.002
(261025257 0.003
" tcplyIp? 0.000

Summing these contributions we obtain a value for D of 0.318 n-l.

Finally we consider an alternative generalization to Boltzmann's

equation which is based on the methods of Sections 3,4 and 3.5. We

begin by writing the hierarchy equations for fl and f2 as
(+v—+mM)fmmﬂ+mmf (3.19)
G——-+ 12 + na(v)) £, =J[f] + na(Vf, (3.20)

J 1is the collision operator which occurs in equation (2.16)
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o 1s defined as
alv) = J dwlv-wlho(w) (3.21)

na(v) 1is approximately the frequency of collisions experienced by a
particle moving with velocity v. The factor exp(-nat) which appears
in equations given below is, a contribution from dynamical events
involving 1,2,3,... particles. It leads to modifications of terms
arising from the dynamics of small numbers of particles so that
divergences are avoided.

The following expressions are obtained from (3.19) and (3.20)

)
£,(z,t) = e-(v5;'+ nu(v)thl(z.o)

t I : e
+ J at” e Vi na(v)) (t-t
°

Y, . .
(J[£,()] + natv) £ (")

(3.22)

-(L2 + na(v))t

£,(2,2,,t) = e £, (o)

dt

N r . e—(L2 + na(v)) (t-t*)
[+]

(e, ] + na(v) £,(t")

(3.23)
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Now
Jf,(t)] + na(v) £,(t) = J dV3|V*V3| {nho(v) £y (x-v3t,v3,0) + 0(n2)}
(3.24)
and for precollision values of 2z and 2,

J[fa(t)] + no(v) fz(t)

= 1im I dvy |v—v3| {nzs(x:va,zz,zgt) ho(v) ho(va) f(x:v3,o) + o(na)}
e*0
(3.25)

and when (3.24) and (3.25) are substituted into (3.22) and (3.23) there
results

t ~1.2 e
£,(t) = nh (v,) £,(t) + o? I de- o (12 + na() (t-t)
(o]

x lim [ dV3|v-V3|(S(x:v3,zz,z,t’) - S(x:vs,t’))
e+0 4

x ho(v) ho(VB) f(x:vs,o) (3.26)
*+..
The second term in this expression vanishes unless particle O,
which collides with particle 3 at time t , has previously suffered
a collision with particle 2. When the effect of the streaming operators

in (3.26) is evaluated, we obtain

hy(v,v,,t) = nho(vz) h(v,t)

t
2 - - - -
+ n I dt I dv, e[v1 vz)(v2 v3)]|v2 v3| ho(vl)

0

x [h (vy) B(v,,0) = h (v,)h(vy,0)] exp [-na(v)) (t=t")|v,~v,|/|v,-v,|]

+I.I (3027)
If we retain the first two terms of this expansion, and replace
h(v,0) by h(v,t”) in the second term, we obtain after substituting

(3.27) into (2.27) an equation of the form
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oh  hB[h 2 [* ger “)h(t”
3¢ = nB[h] +n dt” A(t-t")h(t") (3.28)
0

with A an operator.
If equation (3.28) 1s to correctly describe the development in
time of h, then the three-body term in this equation must approach
zero for long times. Since many-body dynamical effects are included
in the operator A, (3.28) has the desired behaviour for long times.
When the exponential damping terms in (3.27) and (3.28) are replaced
by 1, this being the first term in their density expansion, we obtain
from (3.28) an equation also derived by Lebowitz and Percus“S,
However, 1t does not have the property that 3h/3t -+ 0 for long times.
The coefficient of self-diffusion is obtained from (3.28) as

follows: The function ¢ satisfies the integral equation

- I dv” ho(v‘) v~ h(v,o0)

t
= nB[¢(v)] + n? IQ dt I de” I dv’v‘ho(v') A(t-t”) h(v,t”)
[o]

(o]

which can be simplified to

-vho(v) = nB¢(v)] + n? I dt A(t) ¢(v) (3.29)
o

Because of the exponential terms in A( ), the operator I dt A(t)
0

is finite and 1is proportional to 1/n. Hence on writing
K-nrch(t)
o

equation (3.29) can be written
=vh_(v) = n(8 + A) ¢(v) (3.30)
This integral equation can be solved iteratively:

o) =-n 1+l D7t B-l[vho(v)]

eanla-sla+tanlz+ .8 vh (0] (3.31)
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$(v) can be evaluated from this expression by numerical methods.
The contribution of the first four terms of (3.31) to D is 0.280.
Contributions from further terms appear to be negiigible. Thus it
seems that a very good approximation to the coefficient of self-
diffusion can be obtained from a correction to Boltzmann's equation

which takes into account three-body dynamics.



APPENDIX A, THE HIERARCHY EQUATIONS FOR A GAS OF RIGID SPHERES.

For a system of rigid spheres or discs, the hierarchy of equatioms

satisfied by the velocity distribution functions can be written as

3 n
{'a—t + Ln] fn(_z_ls-..in.t) = gal Ji'n+1[fn+1(_z_1,..,_z_n+l,t)] (Al)

The operator J is defined by equation (2.21) of Chapter 3.

i,k

We now show how (Al) can be derived from the usual form of the
hierarchy equation i.e. equation (2.19) of Chapter 3. Our analysis 1is
based on Green's approach to deriving Boltzmann's equation’.

We begin the derivation of (Al) by considering the expression

3 3 .
J 42,41 (B_Eivi,rﬁl) “ax, Fot B 50 ©) (42)

which appears in the hierarchy equation for fn. We consider the hard-
sphere potential to be the limit of a sequence of continuous, short-
ranged and repulsive potentials. The sequence Vn(r)-(a/r)n, n=1,2...,
is a suitable choice.

Only those configurations of particles 1 and n+l in which the
particles are within the range of ;heir\forces contribute to (A2). Let
(51*!1) and (§n+1’!n+1) be suchkg‘gonfiguration at time t. We choose
a time to prior to tbg time thg particles begin interacting and such
that t-t, is sufficiently short that we can neglect the possibility
of a third particle interacting with i or n+l. 'Ei(t‘)"!i(t‘)'
§n+1(t’) and gn+2(t‘) denote the positions and velocities of these

particles at a time t”° in the interval (to,t). Then
fn+1 Lz_l; e 9_?_1(t‘)! L )En+1(t‘)’t‘) = fn+1 (_E_l; o !_z_i! LS ’—zn+l’t)

where z=z (t) and

We now write

Zntl = Zp4q (D)

fn+1(£1;"’5n+1’t) - fn+1 zl;"’zilxi(to)""§n+1’!n+1(to)’t) + A
(A3)



The term A depends on the differences t -t ‘gi(to)ﬁgi and
§n+l(to)7§n+1' For a hard sphere potential A vanishes since these

differences can be taken arbitrarily small.

xi(to) and !n+1(to) are functions of !i(t)’ 3n+1(t) and
r(t) = x +l( t) - gi(t). Alternatively they may be regarded as functions

of r(to) and the eight constants of the motion for two body encounters.
These may be taken as the components of the total momentum vector,
angular momentum, energy, and the angle between the direction of

gn+1(t°) - !i(to) and some direction in the plane of the relative
motion. The constants, which we denote by 12(!1’!n+1’£)’2 = 1,..,8,

satisfy the differential equation
[&n )AL 3 )]
+1 —1 8_15 m or" Ny, w4’ T (xi.y_n_,_l.g) = 0 (a4)

As !i(to) and gﬂ+1(t°) are also functions of I, they also satisfy

(A4). Furthermore fn+1(£1;"’Ei’!i(to)’"’§n+1’!n+i(to)’t3

also satisfies that equation.

Using (A3) and neglecting A we write

9

5
o, 1,n+1) Efnﬂ(t) == ar av S C TP 0. ML OO FERYS SRPL AN +2(t)t)

On using (A4), equation (A2) becomes

I AR AR S CRENE JE HCR I Wep Yoty (€) ) (45)

In equation (A2) we may restrict the integration over X 41 to a

region in which |x -X | < a+¢e, where € << 1, provided the

T+l =
iotential is sufficiently short-ranged. This corresponds to restricting
the integration in (A5) to values of r for which |r| < a +e. Using
Gauss's theorem and taking the limit as €»o0o, which corresponds to

taking a hard-sphere potential, (A5) becomes



J d£n+1 J da. (v v o+l _\_r_i) fn+1(-z-1;"’5:l'v (to),..,lc_i+a v +1(t ), t) (A6)
where da 1s an element of surface of a sphere of radius a. Now if

a. (v Yo+ ) < 0 the particles are approaching each other, and so
!i(to) =v, and !n+1(to) =V o1 while if -3°(!n+1 - !i) > 0 they

are receeding and !i(to) = v, and v +1( Y =v

are functions of
-+l

YoV o1 and a which are given by equations (2.23) of Chapter 3.

Equation (A6) can then be written
I LA J da. (¥4 - ¥y) ela. (@ yy7yy)]

x [fn+1(zlg"’§i’!£""§1+a v’ 1,t)

n+1(z SevsX sV 50 esX78,Y +lst)] (A7)
(A7) is one of the terms in equation (Al). The other terms can be

obtained from the form (2.19) of the hierarchy 1in a similar fashion.



APPENDIX B. AN ALTERNATIVE CORRECTION TO BOLTZMANN's EQUATION

The equation for f which was derived in Section 3.5 resulte&
from a modification to the principle of molecular chaos in which the
effects of three-body interactions were included. Since three particles
can interact through a sequence of binary collisions for a long period
of time, the effects of collisions with further particles were accounted
for approximately. We now derive another closed equation for f which
involves a three-body term. The possibility of interaction between
three particles and other particles is allowed for by a damping term
exp(—lkt) where

Ak = —nB(_\Ll) - e = nB(!k) (Bl)

The physical significance of this choice for Ak is explained in Section

3.5.
The notation of this appendix is the same as for Chapter 3.

Because the operators Lk and Ak as given by (Bl) do not commute
-the effects gf the operators I(gl,ga,t) and I(gl,ga,ge,t) are some-
what more difficult to evaluate than when Ak = -na(y,;).

The distribution functions £ and f2 were given as expansions in

terms of the initial conditions by equations (4.7) and (4.8) of Chapter 3.
t

f(t) = I(_gl,t)f f(o) + n J at, 1(51""t1) Jla[(I(_z_l,_ga,tl)
)

- I(zy,t))) b () £(z),0)] (82)
£,(t) = 1(z;52,,t) n,(x,5%,) h () £(z,,0)
t
+ n? L de, 1(51,_21,1:—:1) (J13+J23)

x [(I(z22,025¢)) - I(z}:2,,t,)) b () h (v) £(z,0)]  (B3)

Now to obtain Enskog's form of Boltzmann's equation, we must express



fo as
fz(t) = nz(xz;xl) ho(vz) f£(t) + ...

To achieve this we write
t

I(z,,z,,t) = S5(z;,2,,t) +n J dt; S(z;,2,,t-t;) (3(11) + B(y_z))
(o]

X I(Els_z_z, tl) (34)

which follows from an examination of the differential equation

satisfied by 1I(z,,2,,t). The streaming operator S(t) was defined

in Section 3.2.

Now, from the density expansion (2.30) of n,, we find

t
S(z),2y,t) n,y(%y5x)) = n,(x,5x,) + n® Jo dt; S(z;,2,,t-t))

I da.vjz (e'V(EIZ' 2 - 1) (B5)

where x;, = X; - X,.

Hence from (B3), (B4) and (BS), for precollision configurations

of particles 1 and 2,
t

£,() =n,(x,5x)) h (v,) S(z,,¢) (o) + n? J dt, S(z ,z,,t-t,)

0

x J da.y,, (e E2 1) h (v) 5Cz,,0) £(z),0)

t
+ n? J dt, S(_Z_I’EZ’t_tl)
0

x (J13 + J23)[T(z1,22,t1) b (¥) B @3) £(z;,0)] + ... (B6)
From equation (B2)

f (t) = I(z ,t) f(gl,o) + ...

t
= $(z,,t) £(z;,0) + J dt, S(z,,t-t;) J,3[I(z),t) h (vy) £(z;,0)]
0

= (B7)

Combining (B6) and (B7) leads to



t
£,(t) = ny(x,5%,) ho(gz) £(t) + n? J dt, s(z;,z,,t-t,)
0

- 1) ho(-Y-Z) f(}_]"_y_l(t"tl)sX].’tl)

t
+ l'l2 J dtl S(El,Ez,t"tl)

(e}
x (3y30(1(z;,2,5t)) - I(z),t))) b (v,) h (vy) £(z;,0)]
+J,, IgiltEZ’tl) ho(zz) ho(!3) .f(gl,o)]} + .. (B8)

To express I(E1a529t1) ho(zz) f(gl,o) in terms of £(t), we

observe that I(EllEQ’t) satisfiles

o 9 9
—a—t-+ !1'-3__5_{1 + 22.-&2 - nB(_y_l) - nB(VZ)] I(.El’.EZ’t) = 912 I(_Z.I’EZ’t) (B9)
where
i moax, Wy A, (B10)

Integrating (B9) and using (B4)

t
I(z;,2,,t) = I°(z;,2,,t) +J dat, 1°(z;,2,,t-t;) 0y, {5(z;,2,,t,)
o]
t)
+n J dt, S(Elaﬁzst'tl) (B(gl) + B(Xz)) I(E1z§2’t2)} (B11)
(o]

where

o 0 d
I (E‘l’..’—z—k’t) = exp [_(!10'5._"_{'1 + e e + 'v—k..a—% - nB(Xl) oo e™T nB('Y‘k))t]

(B12)
Retaining the first two terms of the right hand side of (Bll)

and substituting into (B8), gives an expression for £, involving

S(zy,tp) £(z1,0), which to a first approximation, equals f£(z;,t3).

Hence

t
£2(8) = ny(xy3%)) b (w,) £(£) + n? L dty 5(z),2zp,t-t;)

x j da.v;, (e~V(§121§) - 1) ho(gz) f(ﬁlﬁgl(t—tl)lgl,tl)

(cont.)



t t1
(o}
+ n2 jo dt, S@l,_z_z,t-tl) (I, 5 + J23) L dt, I7(z;,25,t;~t5)

812 S(21,255t5) S(21,-t;) h_(v)) h_(v3) £(z;,t,) + ... (B13)

There are additional terms in (B2) and (B3) which we have not
yet considered. An analysis similar to that already carried out

shows that the following term occurs in (B13).
: o t1 o
n? Jo dt) I'(z;,2,,t-t;) J [ Jo dt, I°(z;,25,23,t)-tp) 013

x 8(z7,25,t,) S(z),-t)) h (v,) h (v3) £(z;,t))

If we approximate Io(tmtl) in this expression by 8S(z;,z,,t-t,),
we obtain a relationship between f, and f which is similar to an

expression derived by Dorfman33 and others.

t
£2(£) = ny(xp3x)) h (vp) £(t) + n? J dt; S(z;,2z,,t~t;)
(o]
~V(x;,~ 2)
X J da.v;, (e Gazm® ) hy(¥p) £(xy-v; (t=t1),v,,t,)
, (€
+n Io dty S(z;,2,.t-t)) (3 +3,, (L+P 1))

t
o]
x [ j dt, I"(2;,2,,t-t,) 9,
[o]

X S(E]_’EZ’t?_) S(_z_lg_tz) ho(y_z) ho(ls) f(ﬂlstz)] +... (B14)
P23 is an operator acting on functions of 2, and Zgs defined by
P23 3(52’53) - g(ﬂasﬂz) (B15)

Dorfman's expression differs from (Bl4) in that the operator
Io(gl,gz,tl—tz), which appears in the third term of (Bl4) is replaced
by

exp [-(v1.55, * Yo 3x, - MBQ) - mBlx) - WB(,)) (6-t)]

where B“(v,) 1s defined on functions of v, by



B”(v,) [a(v,)] = I dv, I da.vy, €(@.v32) [h (v3) 2(¥3) - h (v5) 8(3)] 516y

When (B14) is substituted into the first hierarchy equation we
obtain a closed equation for f which applies to gases in which

three particle interactions are important.



APPENDIX C. SOLUTION OF THE HIERARCHY EQUATIONS FOR A GAS OF POINT
PARTICLES.

In this appendix we solve the equationms governing the distribution

functions fj(n) defined in Section 5.2 for a gas of point particles,

From equation (2.16) and equations like (2.13) of Chapter 5, we have

EgE-+ L?) f}n)(zlg..,zn,t)
(n+1) _
= ii: fdvn+l Ivh+1 - vll [f(j) (zl;..,xl,vn+1,t)
- f§n+1)(z1;..,x;,vn+1,t)] (c1)

where
x; = %, - € sgn (vn+1 - vy)
and

(j) . j + sgn (vn+1 - vl)

We solve these equations when the initial conditions are

£ (2,0) = 8(0) 8(v-v")
for § > o

f(l)( ) = Biﬂﬁlq-l ey ( €x <L

h z,0 (a-1)! e 5 v) 0 <€x

= 0 otherwise

for § <o

f§1)(z,o) = ff;)(-x,v,o) (C2)
We show that f§n+1) can be expressed in terms of fén) (k = j-1,3,3+1)

and thus it is possible to break the chain of equations (Cl) and effect
their solution.

We introduce the function, defined for n 3 2,



(n)(zl,..,znt) = f(n)(zlg..,zn,t)

& h
~1
- f§: Magsenz_148) B(z_,0) (c3)
where
jk = 4 -1 0 < xn - vnt < x1 - vlt
= j+1 X - Vlt < x - vnt <0
= j otherwise
and

h(x,v,t) = n ho(v) + 8(x-v7t) 6(v-v’)
if - L < x~vt < L
= 0 otherwise
We now confine our attention to configurations of an n-particle
system for which particle j has suffered no collision in its past
history under the n~particle motion, although there may have been
collisions involving other particles. For such cases, the Liouville

n
operator L, becomes

3

Using the fact that

(gt +v H—J h(x,v,t) = 0

we have from (C.1) that for the configurations under consideration

3 3 (n)
(-a—i:-'l'vl 3;1 + ... n 3}[) g (21,..,Zn,t)
= i:: [ bl [Vorr ~ Yy [gﬁgtl)‘” SeeaZp®) n+l’t)_
S Rl CHINERE SRS (c4)
The functions g§n), g§n+1) and gg?;l) appearing in this equatién

are evaluated only for configurations in which particle j, or particle

(j), has suffered no collision.



(n)

Now g:l =0 at t = 0, as can be seen from a conslderation of

the initial conditions (C2). Hence equation (C4) implies ggn) = 0

for all subsequent times and so

fgn)(zl,..,z ,t) = f(n 1)(zlg..,zn_l,t:) h(zn,t) (C5)

for reglons of phase space being considered.

It is this relationship which enables the hierarchy equations to

be solved for f§1).

Since (Cl) for n =1 involves f§2) only for precollision

configurations of two particles, equation (C5) can be applied to this

equation and we obtain

gt +v ax) £,(2,8) = ¥ [f,_) (2,6) - £,(2,0]

+ 8 [f, ,(zt) - f (z,t)]

j+1

+ lim 8(x -v’t) e(x-vt) (v ~v) [fj+1(z,t) - fj(z,t)]
ere (c6)

+ e(vt-x) (v-v7) [fj—l(z’t) - fj(z,t)]

wvhere x~ = x - [ sgn(v”-v) and e(x) is the unit step function,

(x+L)/t
B = nJ dw(w = v) h_(w)
o %/t o

x/t
Y, = nJ dw(v - w) ho(w)
(z-L)/t
Because of the é~function term on the right hand side of this
equation, fj is discontinuous at x = v't and consequently

1im §(x -v't) cannot be replaced simply by &(x-vt). 1In the
g+o

immediate neighbourhood of the discontinuity, (C6) can be simplified

to

(v-v) d(x-v_t) fj

e(x-vt) (v'-v) [fJ+1 - fj]
+

e(vt-x) (v-v7) [fj-l - fj]

= 1im §(x ~v't)
t+o



Integrating this equation across the discontinuity yields the

following relation between the values of £, on eilther side of the

k|
discontinuity:
] 3+1
7o 40

Using these relations and those of equation (C2) as boundary

conditions, we can solve the equation

9 )
(—a?+ V‘é;) fj(z,t) - Yo[fj_'l(z,t) - fj(z,t)]

(c8)
+ Bo[fj+1(2.t) N fj(z,t)]
which 1s valid everywhere except at the previously mentioned point
of discontinuity. To solve this equation, we define the transform
function n(8) by
v i
n(e) = J et £, (c9)
3=== which has the inverse transform
2w
- L -16}
fj o [ de e n(o8) (Cl10)
From (C8) and (C9) we find that n(8) satisfies the equation
3 9 i@ ~16
Gr+vsgd lmn@e) =y (e7-1) + & (e -1) (c11)
which can be integrated immediately to obtain
n(6,x,v,t)
t
- n{6,x-v(t-t 1), vt +) exp( J at” [y (™ - 1) + 8 (7= D])
o o t + ‘
o
t>t >0
o
L 18 -18
= n(6,x-vt,v,0) exp ( dt [Yo(e -1) + Bo(e - 1]
o
otherwise (C12)

where
t, = (x-vt)/ (v'=v)

and t°+ is infinitesimally larger than to. These results follow



from integrating (Cll) down to the point of discontinuity at

t’ = to or to t° = o if to does not lie between o and ¢t.

It can be showm that

-1 [t (x+L)/t
n j dt” Bo = j dw(wt - x) h (w)
T x/t e
(X+L)/T (x+L)/t
“ I dw(wT - X) h (w) - L j dw h_(w)
X/T ° (X+L) /T
and (cl13)
-1 t x/t
n J dt” vy = j dw(x - wt) ho(w)
T © (x-L)/t
X/T (X-L)/T
- J dw(X - wI) h (w) - L J dw ho(w)
(X-L)/T © (x-L)/t
(C14)

where T 1s arbitrary and X = x-vt + vT. It can also be shown from
(C2) and (C9) that
n(o,x-vt,v,0) = §(x~vt) S(v-v*)

+el® g ho(v) e(x-vt) e(L-xtvt) exp [n(x-vt) (eie - 1)]

+ e 1% h_(v) e(vt-x) e(Lix-vt) exp [n(ve-x) (e716- 1)] (c15)
and from (G7) that
n(e,x—v(t-to+),V,fo+)
= exp [16 sgn(v-v~)] n(e,x-v(t-to-),v,to_) (c16)
whete to_ is infinitesimally less than to.

Finally from (C10), (C12) - (Cl6) we have that

2m
£, (z,t) - fo a0 e 1% { s(x-vt) s(v-v")

+n ho(v) e(to) e(t-to) e(L - x+vt) el + x - vt)
+ah () [1- e(t-t) e(fo)][eiee(L - % + vt) elx -vt)
-+e710e(L + % - vt) e(vt - x)1}

X exp [(e19 —.i) J(t) + (e-ie - 1) u(t)] (c17)



wherxe

(x+L)/t o
u(e) = nJ dw (wt - x) ho(w) + nlL J dw ho(w)
x/t (x+L)/t
and
x/t (x-L)/t
v(t) = nJ dw (x - wt) ho(w) + nL J dw h_(w) (C18)
(x-L)/t - °

In the limit L+» and for j=o, equation (Cl7) reduces to the
results obtained by Jepsen"“ and Lebowitz and Percus®S.

The important feature of the model we have been considering which
makes it possible to solve the hierarchy equations, is that the order
along the line of the particles is maintained for all times. However,
it is possible to extend the results obtained above to more complicated
one-dimensional systems by using perturbation techniques. As an
example consider the case of point particles which have a velocity in-
dependent probability R of being reflected upon collision. The

hierarchy equations in this case are

2 1 )
G+ 1) fj(“)_ . RI aw Jw-v| (Pf(“"' ) f§“"‘1))

- RJ aw |w-v| (£68FD) _ f(“+1)) + gRJ dw |v-w]| (Pf(“"'l) g (o))
) | (j)
(C19)
Here P 1is an operator which permutes the coordinates of the
jth particle (i.e. x,v) with those of the unlabelled particles with
which it is about to collide (i{.e. x ,w). The quantity £ =1 1is a
marking parameter which indicates that the term it multiplies 1is

presumed to be small. This term vanishes in both the R=0 and R=1

limits. We assume a solution to (Cl9) of the form
(n) k (-(n)
f. = £ C20
p 1{5(53“ (c20)

The Eo equation is

Grerd) ), == [ av hovl 1D, - (50, (e



which can be solved for n > 2 1in precollision regilons as before to

obtain
-1
(M), = (), b (c22)

where it is assumed that at t=o (f;n))o = f§n). A closed equation

for (f;l))o can be obtained by substituting (C22) for n=2 into
(c21) for n=1. This equation can be solved in exactly the manner

previously discussed to obtain

21
(f§1))o - %ﬁ.f dé erijen(e.x,vst) (€23)
(o]

where

n(eyxsvst)

= {8 (x-vt)6(v-v") + eienho(v) e(x-vt) exp[n|x-vt] (eie ~- 1) (1-R)]

p )

+&%h () e(ve-x) expln|ve-x| ° - 1) (1 - B}

x {1+ e(t-t ) e(t)) (R ~ 1) exp[i8sgn(v-v")]}

x exp[(e™ 1 1) Revx/t) + (1% - 1) ReB(x/E)] (c24)

Here
{s -]

B(v) = n J dw (w-v) ho(w)
v

v
Yy(v) = n I dw (v-w) ho(w)

00

(C24) is derived by assuming that the initial distribution of

particles 1s over an infinite interval.

(1)
3

cases R=0 (a perfect gas) and R=1 (impenetrable particles). For

Equation (C24) provides a correct expression for f in the

R#1, the factors

exp[n |x-vt| (e"t:le

- 1A -R)]
which appear in (C24) assure that (f;l))o is exponentially damped
and so higher order perturbation terms of (C20), which from (C19) obey

equations of the form:



n+l 1
gt + Ln) (f(n))k = RJ dv |w-v| [(f§;§ ))k - (f§n+ ))k]

* RJ o feev] [R(E]™), ) - (8 & !

will not exhibit secular behaviour.



APPENDIX D. THE SOLUTION OF BOLTZMANN'S EQUATION IN ONE DIMENSION

The purpose of the appendix is to solve the one dimensional form

of Boltzmann's equation

%E h(v,t) = p J dw|v ~ wl[hé(v)h(W,t) = h (Wh(v,t)] (D1)

Define
glv,t) = J dv’ v~ ho(v‘)h(v.t). (D2)
It should be recalled that h(v,t) 1s also a function of v°. 1In fact
h(v,0) = §(v - v*) so that. g(v,0) = vho(v) i1s an odd function of wv.

Let

glv,8) = Judt e 5t g(v, t) (D3)
[+

be the Laplace transform of gi(v,t). E(v,a) then satisfies
n, 4] N
sg(v,8) - g(v,0) = p I dlv - u|[h (VE(w,8) - h (WEV,8)]  (D4)
Since g(v,0) 1is an odd function of v, the linear equation (D4)
implies that E(v,s) is also odd.
Introducing the auxiliary function
G(v,8) = J du|v - w] g(u,s) (D5)
we can write equation D4 as
22 -o 2 du 26
8 3926(v,8) - 2g(v,0) = p Y™ [G(v,s) v ~ o) 3v] (D6)
where a(v) 1s defined as
a(v) = J dojv - w] h, (w) (b7)

Integrating equation (D6) and using the boundary conditioms

G(0,s) = 0 , %%

= =~ 2 J dw E(w,s)
0 0

we obtain
v -2
G(v,8) = [B + pa(v)] I dw f(w)[s 4 pa(w)] (D8)

o



where
v

f(v) =2 J dw g(w,0) - 2[3 + pu(O)] I dw E(m,s)
o

o]

and hence
n 32 v -2
g(v,s) =X S;QG(V,S) = pho(v) I dw f(m)[s + pa(w)
o]

-1
+ g(v,0) [s + pa(V)] (D9)
Iw dw g(w,s) an unknown quantity in equation (D9), can be obtained by
°

integrating equation (D9) to obtain

L4 v B T
[1 + 2(8 + pa(O)J J dv J dw ho(v)(s + pu(w))-z] ! dv g(v,s)

o o o]

) 34 @
- 2p I dv h_(v) I dw (s + paw))™? J du g(u,0)
(o] [s] o

+ r dv g(v,0) (s + pa(v)) ™} (D10)
[+

The quantity ¢(v) defined in equation (3.6) of Section 5.3 is
given by equations (D9) and (D10) with s = 0.

Let us consider the eigenvalue equation

Ab(v) = B[b(v)] (D11)

One solution is b(v) = ho(v) with A = 0, To find other solutions we
note that the eigenvalue equation is of the form of equation (D4) with
g(v,0) = 0 and 8/p = A\. Hence the solution is given by equation (D9) and
(D10). In particular the right hand side of (D10) is zero. By considering

the left hand side we see that A < - a(0).



APPENDIX E COMPARISON WITH THE WORK OF SENGERS.

It is the purpose of this appendix to show that the integral

equation
-v h_(v) - (n,B + I:dt A () ¢(w) (E1)

which results from equation (2.21) of Chapter 4 reduces to an integral
equation derived by Sengers et al.’S when the exponential terms in
the operator A3 are replaced by 1 1i.e. when only three-body
contributions to Aa are considered. Sengers' equations result from
an analysis of the Choh-Uhlenbeck equation. A, 1s given by equation
(2.22) of Chapter 4. 1If ;.3 i8 the result of neglecting many-body
contributions to A3 we write

E dt ;3(t) - nzzs

and show that 23 is related to the operator 13 considered by
Sengers’S. |

From (2.22) of Chapter 4, we find

R s = [ g, 6,0, Gy s
-V (x,,-8)
+3,, {6,(z,,2) I dv, J da.v,, (1-e 1279
x ho(12) h (v,) vy}

+3,,(6,(2;52,) 35 [£,5 B, (v,) b (¥) ¢(¥))]}

+ 3),(6,(z,,2,) J,, [f13 h (v.) h (v) i(!l)]}

+ Jy, 6,(2y,2) Jd.!s [d_a.-!al e(a.v3,) Jd_‘!(!é’!;)elh- t!z-!_{)]
® G, (X) 1Y) 5%p0¥p) 8%y~ D) by () [h (v)e () )

- b (v) $EDI)



+3,, (6, [ar, [ dawy, ey [0 gpets: )]
X G, (x,,¥,,X,,¥;) 8(x, -b) h (v)[h (v;") $(v])h (v7)é(y,)]}

+ 312(6_(2),2,) j dv, I da.v,, €(a.v3,) J db. (v3-v,)e[b. (v5-v,)]

x G (X,,¥,,%,%8,v7) §(x; %+a-b) h (v7) [k (v37)¢(¥]) }

h (v )]

- 3y, 16,(2;,2,) jdxg Jd-g-‘laz e(g.laz) Idk'xal e(b.v,,)

X 6 (x),¥,,X,-3,v)) 8(x,,=a~b) h (v,)[h (vI(¥})

-—2
We have introduced the symbols

£ = e Jk -1 (E3)

and

- 9 )
Go(_z_l,_gz) = Edt exp Ky, '3_.35-.1+ 323—’_‘-2 )t] (E4)

vwhich 1s equal to the term 1lim G defined by Sengers’S.
[ o]

The fourth term of the expression (E2) can be seen to arise from
the fact that the term

T3 [1(2)02,525,t)) B (v,) b (v,) £(z,,0)]
of equation (5.11) is zero for configurations in which

|3£1 - Eal < a.

Consider the second term of the right hand side of (E2). We

write

-V(x, -a
jdl’-a Jgﬁ‘l’-lz (1-e 2 —)ho(lz) B, (v3) 2(vy)

dﬁa J d.a..'!13 (-f23) 6(513"2_) ho(!-Z) ho(!3) f_(y_l)

+ Jd—a J da.v,5 £)3 S(x,5%2) b (¥,) B, (y) $(v))



= J dz, J da.vq, e(_g_.xal) £, [6(xy,-2) - 6(_1_{_13+g)]h°(__1{_2)h (¥g)¢(vy)

+ J d..z..3 I é.! 5(_ .Y.32) f13 [6(_.23 .._) = 6(_23+_)]h (—2)110("3”(—1

(E5)
We now introduce the operators T e gk and TO ik defined by
k s(_j,z ) = Jda. e(a.v ) 6(—jk 8) g(_j ’ask—-k (£6)
vhere
3_5 -y - (gkj._a) a/a?
LA AR AN afa? (E7)
T;lk = - I d_g_.y_jk e(g.y_jk) 6(3‘-jk'§) (z8)
"r;‘k - - I da.yy, e(ay ) 6,2 (E9)
These are just the operators used by Sengersl®. The operator
ij is given by
Ty J ax, J dv, ('1:;k +T5) (E10)

Using (ES5), we can write (E2) as follows:
Ay () #(vy) = J dz, J dzy £13 £23 Ty, B, @) hy(yy) ¢(y)
=n n =n
+ J dz, J dzy T), G,[(Ty = T )y + Ty - Ty5)fys
+T

13 £23 * Tp3 £15]1 b () b (vg) o(vy)

+ '[ dz, J dzy T, G_[T}, G T,, + Tp3 6 Ty, +T,5 6 Ty,]

x h (vz) h (_3) () (E11)
where we have written

= 3 3
Go = I dt exp[--(\_v_1 “m + !_2.-5;2 Ve 3 )t] (E12)
o =1 -

Equation (Ell) is equivalent to an expression derived by Sengers

et al.”’5 {f sequences of four collisions between three particles are



neglected. Indeed from equation (4.9) of reference 75 we have

L0y 8y = Jdﬁz jdﬁa B3 fa3 Ty * 53T, 6 By

— — i i
& f23 le Go fla & T12 Go (Tls & T23J Go T12

* Ty G Tp3 6 Tyy + Ty, 6 T)5 G T, Jh (v))h (v,)6(y,)

The final term of this expression vanishes since

Tps hy(¥) b (w) =0

If we use the properties (see properties 1.3 and I.4 of ref. 75)
f T =7 f
and

n
£,6, =6 £, +6 (1) - 1)) 6

where a,B stand for the pairs 12, 13 or 23, we see that 13. and

A3, are equal.,
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