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SUMMARY

Radial distribution functions gab(r) for a
dense hydrogenous plasma in equilibrium near the
ionization temperature are obtained by two methods.
The first is the Monte Carlo (MC) method originally
applied to fluids by Metropolis et al, and recently
extended to plasmas by Brush, Sahlin and Teller, and
Barker., Although the technique seems readily applicable
to high and low temperatures, the MC results near the
ionization temperature show that in this region the
gab(r) obtained are unusually sensitive to two parameters.
The first is the cut off imposed at small radii on the
Coulomb potential between unlike particles, and it is
found that it is necessary to consider quantum effects
at these radii. The second is the maximum step length
A through which the particles are allowed to move in
the MC procedure. Near the ionization temperature the
plasma behaves as a variable mixture of two phases, one
ionized, the other unionized, and the magnitude chosen
for A influences which phase dominates, in the
relatively small sample of configurations selected
by the Monte Carlo procedure.

The second technique applied is the solution of
integral equations, and in particular the solution of a

modified Percus-Yevick (MPY) eguation. Barly



investigation of the Percus-Yevick (PY) equation
showed that in an asymptotic form for large radiil
it was inconsistent for systems interacting with
attractive forces, and to overcome this difficulty
terms suggested by Green were included to obtain
the MPY equa tion.

The numerical solution of the MPY equation
immediately showed the importance of the gquantum
mechanical effects at small radii, and that it would
be necessary to calculate these accurately. An
expression is obtained for the quantum mechanical
distribution function in a dilute plasma, and from
this an effective quantum mechanical potential is
defined, which merges into the Coulomb potential at
large radii. Results are given for the temperature
range 9x10%°K - 8x104°K for a neutral plasma.

Using shielded guantum mechanical gab(r) as
input to the PY eguation,solutions are obtained for
temperatures of 4x104°K and 3x104°K with an electron
Yensity of 10'8/c®. For temperaturesbelow this the
second-order inconsistency mentloned above causes
divergence. Solutions of the MPY equation are also
presented. These are found to improve on the PI
results and to also increase slightly the temperature

range over which the equation can be applied. The



percentage ionization present, and the difficulties
encountered as the plasma ternds towards a neutral gas

are discussed in detaile.
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I INTRODUCTION

The aim of this thesis is to determine accurate
radial distribution functions for a neutral hydrogenous
plasma of electron number density 10'8¢/cc in the temper-
ature region near ionization (i.e. 109°K to 5x104°K).
So far there has been relatively little work on determin-
ation of distribution functions for plasmas, especially
for the density-temperature region to be considered. We
apply the Monte Carlo and the integral eguation technigues;
which have previously proved successful for non-ionized

gases, to obtain distribution functions in plasmass.

1.1 The radial distribution function

Before 1900 the theoretical work on fluids was mainly
pased on the perfect gas law of Boyle and Charles, and 1its
extension by Clausius and Van der Waals. In the early
1900's statistical mechanics was put on a much firmer basis
by the systematic approach of Gibbs, whose theory of
ensembles forms the basis of certain powerful techniques
in use today. Then, in 1920, the application of X-ray
diffraction techniques to fluids gave rise to the concept
of the radial distribution function. The radial
distribution function gab(r) between two particles of

types a and b is defined as

g, (r) @ (1.1)
o,



where Iy is the average number density of particles of
type b in the fluid (a macroscopic quantity), and nb(a)

is the mean number density of particles of type b at a
distance r from the ath particle (a microscopic quantity).
The distance r is usually of microscopic order, and in
this work will be expressed in units of Bohr radii.

Thus gab(r) is a measure of the correlation in the positions
of particles of type a and b, and though not a strict
probability, it is proportional to the probability of
finding a particle of type b at a distance r from a
particle of type a. About this time Ornstein and
Zernike [1] also introduced their concept of the 'Indirect
correlation function' hab(r) (equal to gab(r)—1), which
is composed of a 'direct correlation function' cab(r)
between the two particles a and b, plus a contribution
from interactions with other particles. The importance
of the concept of the radial distribution function (and
hence the correlation functions) was realized when it

was shown that most thermodynamic variables can be
expressed in terms of gab(r). Comprehensive treatments
of the properties of gab(r) and its relation to
thermodynamic properties are given by Green [2], Hill (315

and Fisher [U4].
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1,2 Barly work on Liquids

Several theories arose to predict g(r) for fluids.
Initially these were associated particularly with crystal
lattices anl were known as 'cell or lattice' theories.
These have become quite refined and have been extended to
'hole' theories, where the liquid is imagined to resemble
a crystal lattice from which some of the particles are
missinge. Such significant structure theories have been
particularly successful in predicting the properties of
dense fluids, and are discussed fully by Guggenheim [5],
Prigogine [6] and Barker [7] and references therein.

In the 1940's interest revived in fluid theory when
Mayer and Mayer [8] proposed a 'cluster model' to
calculate the virial coefficients accurately. The radial
distribution function can be also expressed as a power
series in the density, and for developments of this
approach see references (9] and [10].

In the late 1940's, an integral equation for g(r)
was proposed by Born and Green [11], who closed the sets
of equations obtained previously by Yvon [14] by using
the superposition approximation of Kirkwood [12]. Yvon's
equations result from more general dynamical equations,

by making substitutions appropriate to equilibrium, and



1.4

very similar dynamical equations were also proposed by
Kirkwood [1ha] and Bogoliubov [13] about this time. The
integral equation for eguilibrium is usually referred to
as the BBGKY or BGY equation. It was solved numerically
by a number of authors [14b] who obtained good agreement
with experiment for tenuous fluids. An excellent review
of this field is given by Green [1L4c].

In the 1950's the theorist received a setback when
the results of reliable machine calculations became

available for dense fluids, as the results disagreed with

those of the cell theories, the BGY equation, and the
virial expansion, which does not comverge at liguid densi t-
ies. The computing technique, developed by Metropolis

et al. [15], is called the Monte Carlo method. The approach
involves very few assumptions and applies for a wide
temperature density range, and hence can be used to compare
other theories. It has been applied to hard sphere
fluids by Rosenbluth and Rosenbluth [16] and Alder,

Frankel and Lewinson [17], and extended to particles
interacting with a Lennard-dJones potential by Wood and
Parker [18]. A similar approach called ‘molecular
dynamics' has been developed by Alder and Wainwright [19].
Recent papers by Hoover and Alder [20], Verlet [21] and

Wood [22] zive results which are in excellent agreement
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with the experimental data available. The main dis-
advantage of the method is that it takes excessive
computing time to obtain accurate radial distribution
functions for a given temperature and density.

To improve upon this situation, in the last decade
attention has reverted to the integral eguation approach.
In 1958 Percus and Yevick [23] proposed a new integral
equation (PY) based on a collective coordinate procedure,
which has since been elegantly derived by Percus [24]
using a functional derivative technique. The PY equation
was applied to hard spheres by Thiele, Helfand, Reiss,
Frisch and Lebowitz [25] and an exact solution found
for hard spheres by Wertheim [26] and Lebowitz [27].
Wertheim [28] has also obtained an analytic solution for
a pair potential consisting of a hard core plus a short-
range tail. A number of authors (see [29] to [33]) have
extended the application of the PY equation to fluids
interacting with the Lennard-Jones potential, several using
the numerical solution procedure suggested by Broyles [BM].
Comprehensive calculations have been completed recently for
binary mixtures by Throop and Bearman [35] and Ashcroft
and Langreth [36].

About the same time as the PY equation was proposed,

another integral equation called the 'convoluted hyper-
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netted chain' (CHNC) was introduced almost simultaneously
by several authors, see [37] to [LO]. This equation
attempts to avoid the convergence difficulties arising
from the series expansions in powers of density at high
densities (see references [41] to [43]). It has been
applied to Lennard-Jones fluids by Verlet and Levesque
[uu]; and Klein and Green [u5] have also presented
extensive results for this case. There have been recent
papers by Helfand and Kornegay [46] and Hurst (L7]
extending the equation to take into account higher-order
effects. Baxter [LU8] has numerically solved the CHNC
equation involving the three particle term, and Khan

[L9] gives extensive results for liguid Ar, Kr, Ne and Xe.

Several approximate and perturbation theorles have
been suggested,; most of which treat a region of the
interaction by one of the equations mentioned above, see
references [50] to [53]. Modern computer technigues
have also enabled the BGY equation to be solved more
accurately ([54] and [55]).

Recent experimental data has been published by
Michels, et al [56] and Mikolaj and Pings [57], these
results being principally for Argon and Neon, though Khan
and Broyles [58] have considered liquid Xenon.

Even though several of the theories for fluids

outlined above are quite comprehensive, there is still some
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disagreement with experiment. This has led to papers
on the relationship between pair potentials ard
distribution functions (e.g. Strong and Kaplow [59]) ana
also to some work on inequalities that g(r) must satisfy.
(see [60] to [62]). Discussions of the determination

of intermolecular forces from macroscopic properties are
given by Rowlinson [63] and Hanley and Klein [64].

The main hope for further improvement in liquid
theory seems to lie in the inclusion of three-body forcese.
There is considerable work being done in this field at
present, and recent papers by Rushbrooke and Silbert
[65], Rowlinson [66], Henderson [67], Lee, Jackson and
Feenberg [68], Sinanoglu [69], and Graben [70] are of

intereste.

1.3 Extension to FPlasmss

Prior to 1950, the work on electrolytes and
plasmas in gquilibrium was dominated by the famous work
of Debye and Hickel in 1923 [71].  In 1950 Mayer [72]
showed that the divergence due to the Coulomb interaction
could be eliminated from the cluster expansion for the
equation of state, and shortly after this several authors
developed this approach to higher orders of accuracy
(see [73] to [77]). There was also at this time

considerable research, principally in Russia, directed at
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extension of the BGY equation to plasmasy and this is
discussed in detail in an excellent review article by
Brush, De Witt and Trulio [78], which includes an
extensive bibliography.

The difficulty in extending fluid theoriles to
plasmas lies in the nature of the Coulomb farce, because
firstly, it contains a singularity at the origin, and
secondly it has long-range effects. The stability of
a system of particles interacting with such Corccs has
been the sw ject of recent reviews and papers by Yang
[79], Ter Haar [80], McWeeney [81], Fisher and Ruclle [82],
and Dyson and Lenard [83]. The latter authors have shown
that a necessary condition for stability of the system
is the inclusion of quantum statistics. It is also well
known that the more obvious difficulties associated with
the short range of the Coulomb potential can be removed by
taking into account quantum effects. The author at
first attempted to treat these very approximately ia
extending fluid theories to plasmas. However, they
proved to be so important that it became necessary to
make more exact calculations.

Chapter II presents the results of extending the
Monte Carlo approach to plasmas. The theory of extending
the Monte Carlo approach to long-range farces has been

developed independently by Brush, Sahlin and Teller (8]
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for a one component plasma, and by Barker [85] for a two-
component plasma, so only a brief description of the
method is given. The results are presented in a series
of tables and graphs, and show that for temperatures

near icnization it is very difficult and expensive to
obtain accurate distribution functions.

Chapter III describes the extension of the PY
equation to a hydrogenous system. It is shown that the
PY equation is in fact inconsistent for such a system,
and to ensure consistency, higher-order terms such as
those suggested by Green must be included. This egquation
is referred to as a modified Percus-Yevick equation (MPY),
and is expressed in a form suitable for solution on a
computer. An initial attempt to solve the MPY equation
showed the importance of guantal effects, a feature which
had already been indicated by the MC results.

To take account of the quantal effects, an expression
for the two-particle distribution function is presented in
Chapter IV. This expression is then evaluated numerically,
results are presented, and then discussed in detail.
References to research on the inclusion of quantal effects
in fluids ard plasmas are given in the introductory
section L.,

In Chapter V, using the results of Chapter IV,
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solutions of the PY and MPY equations are obtained.
Some emphasls is placed on the numerical techniques used,
for if a straightforward iteration procedure is adopted,
the method diverges. Accurate distribution functions for
Lx104°K are obtained, and somewhat less accurate results
for 3x104°K. At 2x104°K it is found that, even when
appropriate stabilizing technigues are employed in the
computer program, both the PY and MFY equations diverge.
Before proceeding to the application of the MC
method and MPY equation to plasmas, the author should
mention in particular two other current lines of research
in this field. The first is the systematic development
of the diagrammatic method*® to include guantal effects.
Recent papers on this teckmigue have been published by
Bowers and Salpeter [86], De Witt [87], Hirt (881,
Gaskell [89] and Diesendorf and Ninham [90]. The second
line of approach extends the theory of integral equations
to take into account long-range forces. The short-range
divergence far the BGY eguation was treated some time
ago by Glauberman and Yukhnovski [91]. The higher-order
terms, however (e.g. Green [92]), prove quite important
as indicated by 0'Neil and Rostoker [93]. Hirt [94]
and Guernsey [95] have recently applied the BGY equation

to plasmas. The guantal effects are incorporated

* Mentioned previously in a fluid context, this cluster
expansion approach yields the DH result as a first
approximation.
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into the BGY equation in papers by Matsudaira fo5] and

in an elegant paper by Matsuda [96]. Extensions of the

PY and, CHNC methods to a one component plasma have been

made by Broyles, Sahlin and Cerley [97], and Carley [981].
At the present time there are few plasma experimental

values for g(r), and even the thermodynamic functions

prove very difficult to obtain. Most of the experimental

work completed so far has given g(r) for liquid metals

(see Johnson and March [99]: here theoretical results

are given by Villars [100]).  The experimental thermodymnam-

ic properties of Hydrogen are discussed by Oppenheim and

Hafemarnn [101] and Theimer and Kepple [102]. Numerical

results are also given by Rasaiah and Friedman [103]

for the application of integral equations to ionic

solutions.
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II THE MONTE CARLO METHOD

The extension of the Monte Carlo (MC) method
to plasmas is described in detail by Brush, Sahlin
and Teller [1], and Barker [2]. Emphasis in this
chapter is placed on the results of this author's
recent extensive computer calculations for a hydrogenous

plasma of density 101810ns/cc at a temperature of 1OM°K.

2.1 An outline of the method

A system composed of N individual particles 1ie
confined in a volume V at a temperature T. The particles
are assumed to obey classical statistics and to interact
in accordance with the Coulomb potentiale. The problem
is reduced to a feasible size by considering only a
finite number of particles N, and in this case N=32,

a value which proves convenient and gives reasonable
accuracy (see Alder and Wainright [3])e In the initial
configuration the particles can be either placed randomly
or in an ordered fashion in the unit cell of volume

V=L3, ard in the case of an electrically neutral plasma
they can also be initially paired as neutral particles

or dissociated as ions. The unit cell is surrounded

by a network of identical cells, thus enabling the energy

of a configuration to be calculated conveniently as



described in detail in [1] and [2]). Another configurat-
jon is obtained by displacing a particle by a random
amount, which can have a maximum value A. The energy

of the new configuration is calculated, and the MC

procedure decides if the move ig acceptable or not, (see

[2]). In the present calculation each particle is
displaced systematically (although they can be moved
randomly) in this manner, until the energy of the system
approaches its equilibrium value. The criterion for the
choice of A is such that the rate of approach of the
system to equilibrium is minimised. In previous MC
calculations [1], [2]s, [4], it has been found convenient
to use A~L/¥3N), where L is the unit cell length, and

N is the number of particles in the cell for then A has
the right order of magnitude to secure near-optimum con-
vergence. In this work this implies a value of A of
order 9 Bohr radii.

Another parameter which proves important in the
caleulation is the cut-off A0 imposed on the attractive
Coulomb potential at short radii. This limits the
closeness of approach of two particles, and hence the
potential energy between them. The value given to AO is
twice the Bohr radius, for at this radius (by Bohr's
orbit theory) a particle has its lowest potential energy

possible without any kinetic energy, and the value of the
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potential energy is the same as the lonization energy
for the particle. Here pairing is considered to occur
between two particles when they are closer than AO, i€
in their ground state, and particles are not considered
paired when they are in excited states.

The computer program used for the calculation is
given in [2], although several modifications were
necessary to adapt it to the C.D.C. 6400 computer on
which the present calculations were completed. The
computing time involved was found to be excessive, 3000
iterations taking one hour on the 6400 computer (each
iteration gives every particle in the unit cell a chance
to move up to the maximum distance A) . For this
reason the study has been confined to a single temperature

of 10u°K, and density, 101810ns/cc.

2.2 Results

Three main computer runs were made. The first
started the particles from a random configuration of
protons and electrons and initially put A = 12.5 843
and proceeded for 50,000 iterations. Then the energy of
the system appeared to have settled down to the
equilibrium value, and to check this, a second run was

carried through, starting the particles as pairs of
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protons and electrons approximately equidistant from
each other in the cell. Again the maximum
displacement was chosen as A = 12.5ao, but here the
run covered 12,000 iterations. This run seemed

to approach a slightly different energy equilibrium
value, and so a third run was completed, again
starting the particles as pairs, distributed evenly
throughout the cell, but now allowing them to move
with A = 50a, for 10,000 iterations.

Fig 2.1 shows the variation of the normalised
cell energy per particle E/NkT with the number of
iterations completed for the three runs mentioned above.,
The energy is averaged over 1000 iterations for each
point plotted, and this smooths out many of the
extreme energy fluctuations which occur from iteration
to iteration. It can be seen that with such fluctuations
it becomes difficult to obtain comprehensive sampling
of all states using the MC procedure unless a Very long
run is taken. On the right-hand side of the figure
levels are presented which show approximately the number
of pairs in the unit cell corresponding to a selected
value of E/NkT. In Fig 2.2 the like and unlike
distribution functions are drawn (on a log scale) by
considering iterations 30,000 to 50,000 of run 1, in

which region the system seemed to be near equilibrium.
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The corresponding classical distribution functions are
also drawn; to incorporate the required cut-off at
small radii, they have been given a constant value
below 2.0 Bohr Radili. The data for these characteristics
are given to the nearest three figures in Table 2.1, where
the subscript U refers to the unlike case, L the like case
and C refers to the classical distribution function.

Fig 2.3 shows unlike distribution functions taken
from selected sections of Fig 2.7, The results to 2
places of decimals are given numerically in Table 2.2
with the corresponding Debye Huckel distribution functiou-
For a plasma of this temperature and dens ity the Debye
shielding distance is 92.4 Bohr radii, and is denoted on
the graphs by %Dn Fig 2.4 and Table 2.3 present the
distribution functions between the like particles for the
corresponding sections of Fig 2e70 The non-integral
values of r appearing in the Table arise because the
program (see [2], Appendix B) was run in mesh units.,
and 1 Bohr radius = 2.100 mesh units. The energy has
also been expressede:adimensionless number; where
the energy in cell units E is converted into the dimeosion-

less E/NkT by multiplying it by 2.072 x 1072

for the
Temp of 1OM°K and electron density of 10186/00.
Fig 2.5 isolates the unlike distribution functiocns

at small radii, and the values are obtained by taking
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logs to the base ten of the figures given in Table 2.2.

By (r)

Again the classical curve gyc = © is given with
the ¢U(r) used in the Monte Carlo calculation (i.e.
Coulomb for r>2a,, and const for r<2aoo)

Distribution functions taken from iterations 15000 to

23000 of run (1) are denoted in the Tables as 13000-23CCC

(1)«



TABLE 2.1

RADIAL DISTRIBUTION FUNCTIONS for Like and Unlike

cases from iterations 30,000 to 50:200 of Run 1.

r Logio Lozio Logio LoOZi1o0
(Bohr Radii) (g (r)) (g (r)) (g5(r)) (g (3))

119 ~ 576 -6.857 L.740 6.857
2.00 -6.,857 6.857
3,57 «339 -3,841 3,2940 3. 8131
5.95 139 -2.305 2.321 2.705
8.33 210 -1 ,6L6 1.918 1.6L.6
10,71 «150 -1.280 1.659 1.280
13+10 . 072 -1 .0L7 1.50L 1.0L7
15,48 .083 -0,886 1.365 0.886%
17.85 + 007 -0,786 1.244 0,758
20.24 . 059 -0.678 1.166 0.678
22.6 .028 ~0.607 1.041 0.607
25.0 .055 ~0.549 -959 0,545
271 . 005 -0.500 . 8U46 0.500
29.8 - 065 -0.460 - 778 0.460
3242 - 097 -0.426 - 730 0,426
3.5 «103 -0.397 » 640 0.297
3649 - 051 -0.372 «579 Os2

3993 nOLI-7 _OOBLL9 0517 003;—‘-9

i —— it
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Logio Log:o Logio Loge
5 (g (r)) (gra(r))  (gy(®))  (gyelri)
4.7 . 051 -0.329 1159 0.32S
Wi.0 .088 -0.312 1430 0.3412
L6.4 - 140 -0.295 407 0,295
L8 .8 g ~0.281 372 0.28
51,2 2113 0,268 .33l 0.268
53.5 <140 -0.256 .297 0.256
559 .087 -0.245 <268 0.245
58.3 .06l - 0.235 220 0.235
60.7 .038 -0.226 179 0,226
631 »020 -0.217 ~139 0.217
65.5 .018 —-0.209 2127 0.209
67,8 . 061 -0,202 o117 0.202
Oii2 .036 -0.195 » 097 0.195
72.6 L017 -0,188 ,072 0,188
75.0 .020 -0.183 045 0.18%
77.L ,010 -0.177 L0L5 0.177
79.8 ,016 -0.172 .0L6 0.172
82.1 - .00¢S -0.167 <015 0.%67
8L.5 .012 ~0.162 .01 0,162
86,9 .036 -0.158 .033 0.158
89.3 . 020 -0.%54 012 0.754
91.6 2012 - 0,150 <01l 0,450
oly.0 .03 - 0,146 <017 0,145

96.14 oLl -0,1L2 - 031 0.142
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Log;o Log, o Logqo Logqo

r (g,(2))  (g5(r)) (gy(r))  (gyu(r))
98.8 . 027 -0.139 - .006 0.139
101, 03} —~0.136 ,017 0,136
103.6 .039 ~-0.132 .012 0,132
105.9 . 022 -0,129 .002 0.129
108,3 .015 -0,127 - .04 0.127
110.7 - ,020 0.2 - .026 0.12Y4
1131 - .009 -0.121 - .043 00121
115.5 - ,032 -0.119 - ,056 0.119
117.9 -, 022 0,116 - .04k 0.116
119.1 ~ .056 -0,115 - .077 0.115
122.6 - .052 -0.112  -.,077 0.112
125 ~ 051 -0.110 -.078 0,110
127 o4 - . 031 -0,108 - .061 0,108
129.8 - 047 -0.,106  -,082 0.106
132,14 - .0L7 ~0.104 -.067 0.10L
13L.5 - .0U6 ~-0.102  -.075 0.102
136,9 - .050 -0,100 -,075 0.100
139.3 - .0L7 -0.099 -,06 0.099
1W1.7 -.048 -0.097 -.,067 0.097
14,0 - .03 -0,045 -.060 0.095
10L6.4 - .0L3 ~0.094  -.068 0,094
148,8 -.038 -0.092  -.068 0.092
151.2 - .053 -0.091 —.068 0.09

153.6 -.032 -0.,089 —. 064 0.089
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" (gio(i')") (Té(;i'(?)) (5, &) (oe))
15640 - 035 -0.088 - ,053 0,088
158.4 - .0uh -0.086 - .076 0.086
160.7 - 049 - 0.085 - ,072 0.085
16344 - 2024 -0.084 - .04 0.084
16545 - .038 - 0,083 ~-.065 0.083
16749 - 016 -0.082 -.04k 0.082
170.2 - .016 - 0.081 -,047 0.081
172.6 - .005 - 0.079 -.03L4 0.079
175.0 - L012 -0.078 -.037 0.078



TABLE 2.2

2.1

Unlike radial distribution functions taken from various

runs as shown and compared with the corresponding Debye

Huckel distribution Function.

= lmece

13000~ 30000~ 10000~ 1L0000-
r(a,) D.H. 2300(1) 40000(1)  50000(4) 50000(3)
1.19 2.35x10''  2.95x10¢  5,51x107 5.;;x104' 6.75x16:w.
3,57 L.9hx10®  1.24x10° 1.98x10°  1.96x10° 2,00x102
5.95 1.45x10%  1.30x10%2  2,15x102  2.0L4x10% 2.58x10
8.33 3.19x10 5.44x10 8.31x10 8.25x10  9.98
10.74  1.38x10 367x10 11+59%x10 11.52x10  6.51
13,10 8.10 2.63x10 3.27x10 3.11x10  5.36
15.48 5.61 2.01x10 2.33x10 2,30x10 5,01
17.85 U4.29 1.58x10 1. 79%10 1.72x10  3.85
20.24 3.50 1.27x10 1.,48x10 1.45%10  3.ll
22.6 2.98 1.07x10 1.08x10 1.19x10  2.89
25.0 2,62 8.64 9.10 9.08 2.64L
27.4  2.36 6. 73 6.85 7.3 2.62
29.8  2.16 5.54 5.88 6.12 2,39
32,2 2,00 L. 8L 5032 5.41 2.23
3h.5 1.88 L.03 Lol5 L.26 2.09
36.9  1.77 3437 3%.82 3.76 1,98
39.3 1.69 2.8 3.4 3.4 1,99
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13000~ 30000~ LOO0O~-  LOOOO-
r(ao) D.H. 23000(1) 4o000(1) 50000(1) 50000(3)

hi.7 1.62 2.43 3.10 2.66 1.95
L1 .0 1.56 2:15 2.91 2.47 1.80
n 151 1.86 2.81 2431 175
L8.8 1.46 1.76 2.56 2.16 1.70
51.2 1.42 1.58 2¢33 1.99 1.67
53+5 1.39 1.53 2.10 1.86 1.64
559 1.36 1.4k 2,11 1.59 154
58.3 133 1.4 1.83 1.51 1.54
607 1.31 1.38 1.64L 1.38 1.51
63.1 1.29 1.47 1.53 1.23 1.49
65.5 1.27 1.45 1.42 1.26 1. 41
67 .6 1.25 1.5b 1.4k 1.18 1.38
70.2 1.23 1.34h 1.37 1.13 1.4
72.6 1.22 1.32 1.32 1.04L 135
75.0 1.21 1.27 1.22 +98 10 31
773 119 1.29 1.32 - 90 1431
79.8 1.18 1.30 123 .99 1.29
82.10 1.17 1.29 1.12 .96 1.26
84.5 1.16 1.30 1.08 .98 1031
86.9 1.15 1.22 1.14 1.02 1.25
89.3 1.104 1.18 113 .93 1.26

91.6  1.1L 1.17 1.08 .98 1.24
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13000~ 30000~ L0000- L0000~

ra,) D.H. 23000(1) L40000(1) 50000(1) 50000(3)

9.0 1.13 114 1.09 99 1423

96 .44 1.12 1.13 1.1k 1,00 1027

98.8 1.12 1411 1.06 <97 1.20
101.2 1.11 1.09 1.09 299 1,21
103.6 1410 1.05 1411 .95 1,18
105.9 1.10 1.05 1.13 90 1.18
108.3 1,09 1.06 1,09 .83 1.20
110.7 1,09 +98 1.05 .83 1020
113.1 1.09 1,02 1,02 .78 1.16
115.5 1.08 1.03 1.0 .72 1,14
11749 1,08 1.00 1,08 .72 1.16
120.2 1,07 <99 1,03 6l 1,12
122,6 1.07 1.03 1.00 .68 1,10
125.0 1.07 1.03 1,00 .67 1.09
127.4 1.06 1.03 1.02 o 71 1,11
129.8 1. 06 99 .96 .70 1.14
132,1 1,06 1.04 1,02 .70 1,11
134.5 1.06 1.05 .98 71 1,12
136.9 1.05 1.06 <95 .73 1.07
139.3 1.05 1.05 1,00 Ry 1412
1417 1.05 1.03 .98 Ry 1,09
144.0 1,05 1.07 1,02 .72 1.08
146.4 1.05 1.06 99 o 71 1,08
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13000~ 30000~ 40000~  4OOOO-
r(ao) D.He.  23000(1) LO000O(1) 50000(1) 50000(3)
148.8 1,04 1,05 .97 .73 1.05
151.2 1.04 107 .99 .70 1.05
153,6 1. 04 1,04 1,01 .71 1,04
156.0 1.0L 1.03 .99 .77 1.06
158.4 1.04 1.05 .95 .73 1.05
160.7 1.04 1,08 .98 .72 1,04
163.1 1.03 1. 01 1.01 79 1,03
16545 1.03 1,02 «99 .73 1.04
16749 1,03 1.00 1.05 .75 1. 04
170.2 1,03 .98 1.01 «79 1.04
172.6 1.03 .95 1.04 .81 1.04
175.0 1.03 .97 1.01 .83 1,03
177.4 1.03 .92 .98 .8l 1.02
179.8 1.03 .93 «98 .83 1,722
182.1 1.02 .90 «97 .81 1.00
184.5 1.02 .88 .97 .79 1.02
186.9 1 32 .89 .92 .82 1.0
189.3 1,02 .87 .90 .83 1,01
191.7 1,02 .87 .87 .84 1.00
19441 1.02 .87 <93 .85 1,01
196.4 1.02 .90 .98 .83 1.00
198.8 1,02 .89 «93 .85 .99
201.2 1.02 .88 .90 .87 1.00
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13000- 30000~ 40000~  LOOOO-
r(a,) D.H. 23000(1) 40000(1) 50000(1) 50000(3)
203.6 1,02 .89 .89 .89 .99
206.0 1,02 .92 .89 .86 .99
208.3 1,02 .92 .91 .88 .98
210.7 1,02 .91 .85 .88 <99
213.1 1,01 .90 .86 .97 .99
21545 1,01 .92 el Ol .97
21749 1,01 .93 .88 .95 .97
22042 1,01 .93 +90 .96 .97
222,.6 1,01 e .87 1,01 «99
225,0 1.01 «93 .89 1.03 .98
227 .4 1,01 «92 90 «99 97
229.8 1,01 +93 .91 1,00 .96
23241 1.01 .92 <95 1,00 .96

23445 1.01 +95 »95 1.04L .98



2.6

TABLE 2.3

Like radial distribution functions taken from iterations
as shown, and compared with the corresponding Debye-

Huckel distribution function.

13000~ 30000~ 40000~ L0000~
r(z,) D.H. 2300(1) 110000 (1) 50000(1) 50000(3)
1419 L.25x10 12 0,00 0.53 0.00 0.00
3,57 2,02x10"% .00 3.06 1.30 .18
5.95 6.92x10°% .00 ynn 1,32 .08
8.33 3.14x10 2 .01 1.60 1.66 .19
10,71 7.25x10 2 .05 1,03 1.79 35
13.10 .12 13 1411 1.25 39
15.48 .18 .18 1.21 1,21 .38
17.85 .23 .13 1,09 .95 6L
20,2  +29 . 1410 1.18 .58
22.6 34 i 1.10 1,02 55
2540 .38 «15 1.07 1.20 .61
27 ot 42 .16 1,03 1.45 .62
29.8 46 .20 1.13 1.19 .69
32,2 .50 «25 1431 1.19 .63
345 53 .29 1.28 1.2 = T
36.9 .56 .37 1,22 1.n2 .67
39.3 .59 .32 1.17 1.05 .68
U7 .62 «39 1432 .92 .75
L4 .0 6L .38 1,44 1.05 .77

L6l .66 A3 1.74 1.35 .83
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13000~ 30000~ [ Melelolo™= 40000
r(ao) D.H. 23000(1) L40000(1) 50000(1) 50000(3)

L8,.8 «68 440 1.56 1.16 .84
51.2 « 70 o149 151 1.09 +85
5345 o 72 «53 1.49 1.2% .81
559 74 «65 1.46 .98 .86
5843 /5 «69 130 100 8L
60,7 « 76 o 74 1.28 «90 «85
631 .78 91 1.22 .88 ¢35
6545 « 79 1.02 1.20 .88 «89
67 .8 .80 1.14 131 .99 «90
7062 .81 1.09 1.28 «80 «90
7246 .82 1.03 1623 »85 « 91
7540 .83 1.00 1.18 o 72 .88
7734 « 8L 1.11 1.23 .82 «90
79.8 «85 1.18 1.19 .89 «93
82410 «85 1.16 1.06 +90 «93
8L4e5 .86 1¢15 1.14 «90 «93
86.9 «87 113 1.15 1.02 .92
89.3 .87 1.11 1.15 9oL «90
91.6 .88 1613 1612 «92 «95
9.0 «89 1.09 1.10 1.01 «97
964 .89 109 1.20 1.01 +95

98.8 .90 1-13 1.1’-’- .98 '97
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13000~ 30000~ LO000- L0000~
r(ao) D.H. 23000(1) L40000(1) 50000(1) 50000(3)

101.2 .90 1309 1.1k 1,082 .97
103.6 .91 1,07 1.22 <99 .96
10549 <91 1.06 1.16 <9l .99
108,3 <91 1.07 1416 <90 .99
110.7 .92 <99 1,05 .85 1.03
11341 .92 1,00 1410 .86 1.00
11545 .92 1.01 1409 o 77 .97
1179 93 .96 1415 .75 .99
12042 .93 <99 1.08 .68 «99
122.6 .93 .98 1,05 .72 .97
125 <9l 1.03 1.03 .75 1,00
127 .4 9L 1,04 1,08 .78 «99
129.8 9L 1,01 1,02 .78 1.02
132.1 9L 1.05 1,06 .73 1.00
13445 .95 1.08 1401 .79 1.03
13649 <95 1407 «99 .79 1.00
13943 .95 1.06 1,01 =79 1.00
141.7 .95 1,04 1,03 .75 1.03
144.0 .96 1,08 1.10 <7l 1,01
146.4 .96 1,11 1.06 (i 1,01
148.8 .96 1,08 1.04 - .80 1.00
151.2 .96 1.08 1,03 .73 1,01

153.6 .96 1.06 1.08 .78 1,01
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13000~ 30000~ L0000~ L0000~
r(ag) D.H. 23000(1) L40000(1) 50000(1) 50000(3)
156.,0 .96 1.05 1.04 .80 1.02
158.4 .96 1.08 1.04 .76 1,02
16047 <97 1,06 1.03 Y25 1.02
16341 .97 1403 1.07 .83 1.02
16545 .97 1,04 1.05 .77 1.04
16749 .97 1,02 1414 .81 1,03
170.2 <97 .98 1,09 .83 1.03
172.6 .97 .97 1.09 .89 1.02
175.0 .97 .98 1.06 .88 1,01
1774 .97 .96 1,06 .90 1.02
179.8 .98 <95 1.06 .88 1,01
182,1 .98 .95 1.0L .88 1.02
18445 .98 .92 1,05 .85 1,02
18649 .98 «91 1400 .86 1.02
18943 .98 .87 .97 .87 1. 00
191.7 .98 .89 .95 .89 1,02
19441 .98 .92 <99 .89 1.02
196.4 .98 .91 1,05 .89 1. 01
198.8 .98 »92 1.00 .90 1,03
201.2 .98 <93 <97 .91 1.03
203.6 .98 .95 .97 .93 1.07
2060 .98 .95 .95 .93 1,07



13000- 30000~ 40000~ L OO0O-
r(ag) D.H. 23000(1) 4L0000(1) 50000(1) 50000(3)

208.3 i98 «96 495 +93 1.01
21047 498 +98 .90 .95 1,01
213.1 <99 .96 .93 <99 1,00
21545 <99 1.00 .98 <99 .98
21749 +99 1,00 .9l 1.00 1,01
220.2 <99 <99 .96 1.00 1.00
222.6 «99 «99 <93 1.06 1,01
225.0 «99 1.00 .ol 1.07 .99
22744 .99 .98 .94 1,06 1.00
229.8 .99 1,00 .97 1,07 «99
232,1 «99 1.01 «99 1.06 1,00

2345 «99 1.01 1.01 1.10 «99
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2,3 Discussion apd Conclusion

From Fig 2.1 it can be seen that the approach
of the system to its eguilibrium energy value is
influenced drastically by both the parametesr A, and the
initial configuration chosen. At the present
temperature and density, run 2 shows that equilibrium
is obtained much faster from a configuration with all
particles paired. It can also be seen that with Run 3
A not only influences the rate of approach to equilibriumy
but the equilibrium energy value attained. This
contrasts with the results of Wood and Parker [4] whos
working with a fluid interacting with a Lennard-dJones
potential, noted that their results were independent of A.
On closer examination of the results presented it was
found that this difficulty occurs in the temperature
range 1OM°K to 3x10u°K, where the plasma appears to
hehave as a variable mixture of two phases, ionized and
unionizeds which phase dominate is influenced rather
sensitively by the parameter A for the relatively small
sample of configurations considered in this work.
The levels (4) on the right of Fig 2.1 give approximately
the number of pairs (i.e. unlike particles closer than
2a,)s in the unit cell for corresponding E/NkT. A
detailed study of particle movements shows that it

is the number of particles paired that is so dependant



on the size of A.

The distribution functions taken from run 1 as
it approaches a constant energy value, i.e, from
iterations 30,000 onwards as in Fig 2.2, show a marked
difference from the classical and the Debye-Huckel cases.
The rapid rise of gL(r) to a value above unity is due to
a proton or an electron colliding with a pair. This
occurs particularly when there is a relatively large
number of pairs present, and is evident in B when A is
less than fifteen Bohr radii. Fig 2.4 illustrates this
situation very clearly. In run 3 (4 = 5an) when, from
the energy graph, there are usually no pairss and
occasionally one pair is found, gL(r) is similar to the
Debye-Huckel case, but approaches unity much faster.
In run 1, where the particles were started as randomly
distributed ions, and were in the process of approaching
equilibrium, but initially there were few collisions
between pairs and ions, gL(r) was small for r<60.
However, already the tendency of ions to collide with
pairs is indicated by the appearance of a sharp peak at
r = 80 a,e In run 2 taken from near equilibrium
there are peaks at r = 5ao amd r = ano, and from a
study of the particle movements, these peaks appear

following a collision between a pair and an ione.
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The nunber of pairs present also has a marked
effect on gU(r). Run 3 in Fig 2.3 shows that for A
large, gy(r) is quite similar to the Debye-Huckel curve,
but falls appreciably below it at small radii, while in
the range r = JOay to r = 80ao it lies above. For
A = 12,5 a, as in 2 there is a tendency for unlike
particles to stay about 10a, to 6Oa0 apart. Examination
of particle movements confirm that two unlike ions do
tend to wander arournd the cell together, sometimes coming
close as a pair, and sometimes straying LOa, or 50a
apart, but rarely escaping fully the other's influence.
However, if A is increased they do escape fully, and if A
is decreased to bSags they tend to fall into pairing
completely.

Fig 2.5 illustrates the importance of the choice of
another parameter used in the calculation, the cut-off
AQ imposed on the Coulomb potential at small radii. If
the cut-off were applied at one instead of at two Bohr
radii say, then an unlike ion on moving to 2 Bohr radii
apart would be sub ject to a considerable change in potent-
ial energy, and this move would be most improbable by
the MC procedure. On the other hand, if the inter-
particle potential was cut off to make the well shallow,
then unlike particles could escape each other's

influence quite easily. To rigorously determine the
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form of the interparticle potential at small radii 1t
would be necessary to treat the close interactions
guantum mechanicallye. The present choice A0 = 2a0
is based on classical considerations only. It was

also noticed from Fig 2.5 that as A became smaller

the distribution function at small radii tends to
approach the classical curve. Further, examination of
particle movements showed that if A were larges then
almost every trial movement took one ion well away

from another, and although this meant a large potential
energy change, eventually a move was allowed; whereas
for small A, the particles tend to move apart and
together frequently, but rarely to escape VveEry far

from each other.

Tables 2.2 and 2.3 present the distribution
functions obtained from iterations 30,000 to 40,000 and
40,000 to 50,00Q of run 1, to show the variance that
occurs within a run of 10,000 iterations. It can be
seen that this variance is guite large, being regularly
greater than 0.2 and although a long run would tend
to smooth out these fluctuations, it seems unlikely that
such a run would improve the distribution functions much
beyond the first place of decimals.

In conclusion then, it appears that the Monte

Carlo approach is not particularly successful in



obtaining accurate distribution functions for a two
component plasma in the temperature region near
ionization. In this region the maximum step length
parameter A is analagous to a 1limit of the energy of
guanta absorbed or emitted from the radiation field,

and if A is small one particle may move slightly away
from the interacting particle, but rarely escapes fully;
whereas if A is relatively large the particles comple tely
separate. This behaviour is peculiar to the temperature
range near ionization as at low and high temperatures

the results are independent of A for a long enough

run. It is in this respect that the plasma appears
to behave as a variable mixture of two phases in the
region of ionization, with the choice of A determining
which phase dominates. It also appears highly desirable
to include quantum mechanical interactions between
protons and electrons at small radii in the M.C.
calculation. Because of the excessive computing time
involved (3000 iterations taking one hour on a C.D.C.6400
computer), distribution functions should be obtained
more economically in this region by solving a modified
Percus-Yevick eguation. Using this latter approach

it is hoped by comparing results to resolve the

dilemma of the choice of A and hence improve the HC

results.
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III THE INTEGRAL EQUATION METHOD

3.1 Introduction — The Percus-Yevick Eguation

In Chapter I the extension of integral equations
to deal with plasmas was discussed generallye. The
three main integral egquations which have been applied
to fluids are the Born-Green-Yvon (BGY) equation, the
Percus-Yevick (PY) equation, and the Convoluted Hyper-—
netted Chain (CHNGC) equation. In deciding that the
Percus-Yevick equation could be applied best to a plasma
of 1078¢e/cc at temperatures near 104°K, the author was
influenced by a number of factors. Firstly Green [1], and
Stell [2] had developed higher order eguations which
contained the PY equation as a first approximation.
Subsequently Verlet [3], Verlet and Levesque [4],
Allnat [5], Wertheim [6] and Henderson [7] have all
proposed higher order terms to improve the PY equation.
Secondly several comparisons of the three approaches with
the Monte Carlo method for fluids [8], and for the electron
gas [9], indicated the superiority of the FY equation
in most cases. A recent paper by Watts [10] confirms
that the PY equation is superior near the critical region
for a Lennard-Jones fluid. However, little is known about
the merits of PY equation where attractive forces are

involved,



3,2 An Asymptotic form of the Percus-Yevick eguation

for large r

The FPercus-Yevick equation, generalised for a

fluid mixture, has the form
Bab %ab = 1 3 Be 12630—1) €ac (gbc_1) d%xq

(3.1)

where e_y = exp(3¢ab). This can further be written
in the form
g (m) ep(®) =1 -sn [ [ e (a)-1]
¢ ‘o “lg-p]

(3.2)
g0 (8) [gbc(t)-1]tdt sds,

where n, is the number density of particles of type c

per unit volume, Ec sums over all types of particles in
the mixture, and d3xc ranges over the volume of particles
of the cth type. Let the integral term be imagined to
physically correspond to a particle of type a at X o 8
particle of type b at X» and a particle of type c at

X,; and further, let r = [x, - zl 8=z, - x,| and

1= lx, - XC|. Because of the spherical symmetry, the

integration over the range O to 27 due to the rotation of

the ré t plane about r can be done immediately. Further,
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since r = 8 + 1 we can use the sine rule to change the
variable and write the integrations over lengths only
as in (3.2). Broyles [11], by differentiating over r,

rewrote this equation in the form

%E [r gab(r) eab(r)] -1 =27 ? I, _/‘oo(s+r)gac(|s|)°
[gbc(l srr|-1) ] [1—eac(s)] sds , (3.3)

which is much easier to handle computationally.
To obtain an asymptotic form of equation (3.2) for
large r, we make the following assumptions: (i) That for
large r and the integer n>0, B,y o(r™™); and for attract-
ive forces at small ry B¢ab is finite. These assumptions
exclude gravitational forces, and require a cut off at
small r for Coulomb forces. They imply that we can
express gab(r) =1 + €5, (r), where eab(r) will be finite
for small r, and Will be small for large r; and without
these conditions statistical mechanics is probably
inapplicable here. (ii) That eab(r) r~>0 for large r
and for sufficiently small m. (iii) That |/~m

- Lo attractive
(r) arl> I/‘ € ropulsive (r) dr| for mixtures, which in

o

a plasma is a consequence of screening between particles,
Now by (i) above it is possible to expand in powers

of ¢ for large r, and with retention of terms involving



3l

only small powers of ¢, equation (3.2) becomes

(1 + Gab(P)] [1+ﬁ¢ab(r) + %3¢ ¢ab2(r) + oeeel = 1 +
a2 00 . S4r
2% 2 n, jo [1—eac(s)]. [1+eac(s)] ['S—ribc(t)tdt sds.
(3.4)

Changing the variable to y = s-r, and neglecting eab(r)

by assumptions (i) and (ii), equation (3.4) reduces to

B (r) + 2829, (P)2 + ees = -2-;:2 2 ng [ [1-e_ (v+r) ]
fer
c y+2r
1 + eac(y+r)] . / ebc(t) tdt (y+r) 4y o
"Iyl

(3.5)

Using assumption (ii) it can be seen that the most
important contributions to the right-hand side integral in
equation (3.5) arise when y is small, and hence, a cut-
off parameter "a" is introduced, where a<r for large ry
beyond which contributions to the integral are assumed
negligible. Further by assumption (i) the right-hand
gside is finite, and since r is large and y small, eac(Y+r)
can be neglected; so the right-hand side can be expended

in powers of ¢(y+r), to give
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r a
ﬁ¢ab(r) + %ﬁ2¢ab2(r) + o0 = 2T 2 nc f [—B ¢ac(y+r) -,
-a
) i y+r y+er
62¢, 2 (y+r)eee ]o (—1:—) epe(t) tat dy  (3.6)
|yl

As there are no general existence theorems for
solutions of non-linear integral equations, even if we
obtain agrecment from a comparison of the left-hand and
right-hand sides of equation (3.6), we cannot be sure
an exact solution fo equation (3.2) exists., However, if
we are able to satisfy the asymptotic equation (3.6), there
may exist an accurate solution to equation (3,2), whereas
if (3.6) has no solution, no exact solution of (3.2) can
exist.,

For a system of particles involving attractive
forces only, it is evident from equation (3.6) that a

solution is impossible; for then ¢ac is always negative,
[»y+2r

J Iyl €. ttpactive (t)dt is positive for small y by

physical considerations, and ¢ab is negative. Thus, to
first order the left-hand side is negative, while the
right-hand side is positive; and to second order the
left hand side is positive, while the right-hand side 1s
negative, both orders being mathematically inconsistent.

However, by modifying the above reasoning for a system
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of repulsive forces only, we see that ¢ac becomes

y+2r

positive, while ]y ebc(t)dt becomes negative; so
|yl

that now both first- and second-order agreement in ¢

can be obtained. For a system of mixed forces, several
cases arise, for ¢ab can now be positive or negative, and
if ¢y 1s positive, so that a particle "a" repels a
particle "b", then particle "a" can attract a particle
"e" while particle "b" may repel particle "e", Because
many of these cases are unphysical, we shall, for
definiteness, consider mixtures of charged particles.
Then, if particle "a" repels particle "p" and attracts

"e" also,

particle "c", particle "b" will attract particle
For these charged particle mixtures, first-order agreement
follows by the same reasoning as above and using
assumption (iii), but second order considerations lead

to disagreement. The above discussion is summarised in

Table 3.1.
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TABIE 361

Summary of the consistency of the asymptotic equation

(3.6) for various cases

e

Order in Whe ther (3.6) is
Type of force present Pac gggZ;Stth s
Attractive only First No
Second No
Repulsive only First Yes
Second Yes
Mixtures of Charges First Yes
Second No

For a Lennard-Jones type of interparticle potential, which
is repulsive at short distances, and which falls off
rapidly, the PY equation applies well, and not only is
a solution to the asymptotic equation (3.6) possible,
but solutions to the PY eguation (3.2) have been found.
However, for mixed Coulomb interparticle potentials an
exact solution of (3.2) is clearly not possible due to
the inconsistency in the second order terms of equation
(3+6) .

Beeause of this difficulty, the additional terms

proposed by Green [1] were considered. The integral
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equation resulting from the inclusion of the first
additional term is referred to as a modified Percus-
Yevick equation (MFY) and is discussed in detail in

Chapter V° For the present we shall observe that by
including this additional term the inconsistency in the
second-order asymptotic equation for charged mixtures

is removed. The main disadvantage of this additional

term is that the equation can no longer be expressed 1in

the convenient form of (3.3)s ard so computational solution

of the equation will be correspondingly more difficulte.

3,3 Deficiencies in the Approach

Before attempting to solve the MPY equation,
the author decided to write a For tran program to evaluate
the first-order, or Percus-Yevick term, as in equation
(3e2) This form of the eguation was preferred to the
form (3.3), as using equation (3.2) the program could
be easily expanded to incorporate the additional term
at a later stage.

The program used to solve the PY equation is
incorporated in the final progran used to solve the MPY,
which latter program is presented in Appendix B, and
thus most of the present discussion also applies to
the final programe. It was decided to initially store the

gab(r) and ¢y, (r) in intervals of 1 Bohr radius for
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values of r from zero to three times the Debye shielding
distance, It was further decided to use the Debye-Huckel
gab(r), (i.e. gDH(r)), and the Coulomb ¢ab(r)’ (ieee ¢o(r))s

in the following form

gab(r) B gDH(r) and ¢ab(r) = ¢¢(r) for r>2a

gab(r) B gDH(ZaO) and ¢ab(r) = ¢, (2ao) for r<2a

as input data to evaluate the integral on the r ight-hand
side of eguation (3.2). This choice of the cut-off value
at 2a, is identical with that used for the MC calculation
(see 2.1, where the cholce of the cut-of f was discussed
fully, and was referred to as AO), and toallow a complete
comparison with the MC results, the initial data is chosen
for the same temperature (104°K) and density (1018¢/ce) .

At first an attempt was made to evaluate the integral
by using a procedure suggested by Lyness [12], which could
easily be extended to integrations of higher dimension
without an excessive increase in the number of evaluation
pointse. However, it was found that this technique could
not be applied to the PY integral because of (1) the
awkward range of integration in the inner integral, and
(11) the non-smoothness of the gDH(r) and ¢,(r) that are
used as input data. Hence finally it was decided to
use a simple trapezoidal rule to evaluate the integral,

and to increase the mesh ratio until the desired accuracy
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was attained,

The initial interpolation procedure adopted for
obtaining gab(r) and ¢ab(r) at the mesh points,
from the gab(t) and ¢ab(r) stored at set values of r, was
the usual linear interpolation. However; it was found
that this caused large errors; especially for small r,
unless a very fine mesh was used, and this proved time
consuming. To avoid this difficulty the gab(r) and
¢ab(r) stored were converted into logarithms and a linear
interpolation made between the logarithmic values. This
procedure gave reasonable accuracy without taking an
exgessive number of mesh pointse.

A further device employed in the evaluation of
the integral was to divide it into several regions. This
allows the use of different mesh ratios in the different
regions, and it is then possible to see which regions are
most important, The integral of equation (3.2) is also
terminated by an upper limit (IBCUT) on the variable 8, so
that the integral becomes

LBCUT s+
(r) = | [e,o(8) - 1] gac<s>sf (g, (t)-1)tatde

e | s—r|

It is divided into regions as shown in Fig.3.1.
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In 'Appendix B' region a is referred to as the

"inner region", region b the "large r" region, and region
¢, the 'main region'. The mesh ratios used in each
region have brackets after them, with (2D) to indicate
that they refer to the two dimensional integral above, and
(5D) to indicate they refer to mesh ratios for the five
dimensional term considered in Chapter V.

The evaluation of the integral for a particular
value of r showed that the results are extremely sensitive
to the form of the distribution and potential used as
input (let us dend e these by &y and ¢IN)’ especially
at small radii, and hence are extremely sensitive to the
cut-of f value AO. s the choice of A0 is based on semi-
classical criteria, the validity of which has been thrown
into some doubt by the MC results, 1t appears necessary
to determine the input accurately by taking into account
quantum effects in detail. Purther evaluations of I(r)
show that this is so for all values of r from zero to LBCUT,
though the dependence is most marked for r small., The
next Chapter will take into account the guantal effects at

small radii.



3.12

References to Chapter 3

(1] Green, H.S. (1965) Phys. Fluids 8,1.
[2] Stell, G. (1963) Physica 29, 517.
[3] Verlet, L. (1964) Physica 30, 95.
(1965) " 31, 959
(1966) " 32, 304.
(L] Verlet, L. and Levesque, D. (1967) Physica 36,
254, See also
Levesque, D. (1966) Paysica 32, 1985.
(1967) " 36, 25L.
[5] Al1lnat, 4.Re (1966) Physica 32, 133.
[6] Wertheim, M.S. (1967) J. Math. Phys. 85 927,
(7] Henderson, D. (1967) Disc. Farad. Soc. (GB) 43,26.
[8] Broyless i.l.s Chung, S.U. and Sahlin, H.L. (1962)
J. Chem. Phys. 37, 2462,
[9] Carley, DeD. (1963) Phys. Rev. 131, 1406,
[10] Watts, R.O. (1968) J. Chem. Phys. L8, 50.
[14] Broyles, A.h. (1960) J. Chem. Phys. 33, 456, 1068,
[12] Lyness, J.N. Preprint
Mustard, D., Lyness, J.N. and Blatt, J.M. (1963)
Comput. dJour. 6, 75
Lyness, J.N . (1965) Maths. Comput. 19, 260.



Ls1

IV A QUANTUM MECHANICAL CALCULATION OF THE TWO PARTICLE

DISTRI BUTION FUNCTION

L1 Introduction

It is necessary to distinguish between two kinds
of effects which are commonly referred to as gquantum
effects:

A - The effect due to guantum statistics which gives rise

to the 'exchange' terms, or terms arising from the
Pauli 'exclusion' principle; and which can lead to
correlations even in the absence of interactions.

B - The effect due to the gquantum dynamics which is

directly associated with Heisenberg's uncertainty

principle.
As early as 1930 guantum mechanical expressions for g(r)
were proposed by Born and Oppenheimer (1], Slater [2],
London [3]s Kirkwood [L], Uhlenbeck and Gropper (5],
Wigner [6] and others [7]. These were applied to real
fluids ie.e. see [8], to obtain the guantum corrections
to their equation of state. Experimental evidence
confirmed that guantum corrections for fluids were
important (especially for Hydrogen and Helium) at low
temperatures. Extensive reviews of later work have

been made by De Boer [9]s, Coleman [10], and Mayer and
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Band [11], to name but a few, and recently many papers
discussing quantal effects in fluids have been published
[12].

Recently however, with the increasing interest
in plasma physics, it has been found that guantum
effects are particularly important at low temperatures,
where for an hydrogenous plasma "low" temperature
is 0(104°K). As the quantal effects are also density
dependent, for the case of atomic number z=1, many

authors use the Debye shielding distance

1
kT \2 . L
%D = ——=\ , where the neutrality condition n;=ng
8wnee2J

applies; or some plasma length parameter which depends
on both density and temperature, to obtain a criterion
for the range of importance of the guantal effects.

The differences in the quantal effects for interactions
between various types of particles are very large, and

frequently reference }s made to the thermal De Broglie

_ 2
wavelength N = h <§E> o It is because of the presence

of particles with relatively small mass m (electrons)y
and also the change of the dominant interparticle
potential from the Lennard-Jones to the Coulombic type.
that the quantal effects become so important for plasmas

at low temperatures. In this thesis we are concerned
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with a rather dense hydrogenous plasma, having an
electron number density n, = 1018e/cc (=np, the proton
number density), and temperatures ranging from 104°K
(pre-ionization) to 5x104°K where the gas is fully ionized
and is a true plasma.

The fact that the classical Coulomb potential

¢C(P) = e? has a divergence at the origin, and that

this divergence can be removed by taking guantal

considerations into account, has also increased the
interest in this field. The three main approaches taken
were: -

(a) Using 'bound-unbound'state considerations for
interactions between unlike particles. This has
been developed recently by a large number of
authors (see [13] to [23]), and various criteria
have been proposed for the transition from the
bound region to the unbound region. Most of these
references also refer to the degree of ionization
present, and several ([17(c)]s [191], [23]) offer
improvements to the Saha eqguation.

(b) Extending the Montroll-Ward [24] perturbation
expansion for plasmas by including quantal terms

in the formulae (see [25] to [29]).
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(¢) By applying recent mathematical technigues to
the expressions obtained for including quantal
effects in fluids (i.e.[1] to [8]). At that
time direct evaluation of the sums involved was
impossible, but sophisticated mathematics and
the advent of the computer has now made a direct
evaluation feasible (see references [30] to [351]).
In this chapter a quantal expression is formulated
for a two particle distribution function which specifically
does not include the effect of other particles. The
method takes into account the Heisenberg effect only,
and is an extension of the Slater sum for gab(r) [2].
The expression does not include gquantum statistical effects;
as even at 10%°K the number of electrons approaching
each other closely is expected to be small. However,
there is some evidence from references [26], [28] and
[30] that these are not negligible for the electron-
electron (e-e) interactions at short distances. Quantum
statistical effects fall away as M and M2 for the electron-
proton (e-p) and proton-proton (p-p) interactions, where
M is the proton to electron mass ratio, and so the
effect of statistics should be negligible in the
calculation of gep and g

pp*
The two-particle distribution function is
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evaluated on a CDC 6400 computer to obtain g and gee

pe
over the range of temperatures 10%4 to 5x104, Because
of the difficulties encountered in evaluating the

Coulomb wave functions, could not be evaluated,

€pp
but due to the large reduced mass for this system, the
guantal effect should be quite negligible in this case.
Results are presented in Tables 4.1 to L4.11, and

corresponding graphs are drawn in Figs. 4.1 to L4.8.

These are discussed in section L.b4y, and concdlusions made.

L.2 A formulation of the expression for géb(r)

The radial distribution function gab(r) is
usually defined by gab(r) = Dab(r)/Db where Dab(r)
is the number density of particles of type b at a distance
r from a particle of type a, and Dy, the average number
density of type b throughout the fluid. However,
gab(r) can also be defined as the ratio of 'the
conditional probability of finding particle b in the
volume element dx(2) given particle a in volume element
dx(1)' to 'the independent probability of finding
particle b in volume dx(2) and also particle a in
volume element dx(1)', i.c.

nab(r) dx(1) dax(2)

Ban (7) = n, ax(1) ny ax(2) (1)
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Using the usual probability interpretation of the
wave function and assuming that Boltzmann statistics
apply to the system, the equation (L4.1) can be

written for a proton-electron system as:

By OXD(FBn) Yyt tS exp(-AE7N%/20) il * 3

gpe(r) = i exp(_'@-k;QhQ/zm)(llolpo*

(4e2)

where the summation over n sums over the bound states

of energy E, of the hydrogen atom, and ¢ are the

nlm
wave functions normalised so that jt¢n1m ﬁlm av = 1.
The summation over k sums over scattered states of the
hydrogen atom and the t[lk are the wave functions

normalised so that /1¢k¢§ dv=1. Y, is the wave function

of an electron without a proton present, that is, a
plane wave, but normalised so that f ¢®¢O*dV=1, Put ting
in the wave functions as given by Pauling and Wilson [36]
for the bound states, and by Schiff [37] for the
scattered states; and replacing the summation over Xk

by an integral and removing the angular dependence

we have:
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o n-1 2141 5 \° (n-1-1)1
8o (r) = L;exp(-fmn) 3 o= ( o)

1=0 na

onf{(n+l)!}s

exp(-p) o2 121 (p) 12 4 = [m exp(-pk2n2/2m)

n+1 (277_)3 Jo
oo 21+ Iy . ©O
by [Fl(oc,kr)]2 k2d.k} / = / exp(-Fk2n2/2m )k2dk
1=0 k®r2 (2m)3J,

(4e3)

where o = 2r%/na (ao being the first Bohr radius, %

the atomic number, and n the principal quantum number),

21 +1

Ln+l

are associated Laguerre polynomials, and Fl(a,kr)
are the Coulomb wave functions with a = Zme2/n2k for

k = mv/h and m being the reduced mass of the particles.

Evaluating the denominator directly gives (ZWﬁhz/m)_B/zcm

which can be conveniently expressed in units of (Bohr

radii)—B, and we have

m a
0 n=1 mn*

n-1 (21+1) (n+1+1)! 51 2141 c
Z L
l=0o {(n + 1)I}° [»n+l (P)] *

b
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[.m exp(- Bk229> %;0(21+1) [Fl(a,kr)]zdk}

(L.bL)

We can interpret equation (4.4) as being
composed of a normalisation constant (2nﬁﬁ2/m)3/2,
which multiplies a bound state contribution (the first
term) added to a scattered state contribution (second
term) to give the radial distribution function between
two particles. The equation can be applied to e-e and
p-p interactions equally well but in these cases there
are no bound states. Also, the Coulomb wave functions
now refer to the e-e or p-p interactions, arnd the
normalisation constant alters due to the change in the
reduced mass m of the system. It should be emphasizer
that equation (L.4) refers to the distribution function

between two particles only, and does not allow for the

presence of other particles.

4L.2B Evaluation of Equation (L.L)

The bound state contribution to gpe is evaluated
by generating the associated Laguerre polynomials by
two methods, one using recurrence relations ohtained
from the differential equation, and the other using the

power series provided by Pauling and Wilson [36], these
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provide a consistency check. The summation over n is
terminated when the contribution from the last nth state
is less than one ten thousandth of the sum to ensure
accuracy to three figures. The program was written

to evaluate gpe(r) for r in intervals of half Bohr radii,
The parameter p is dimensionless, as is the term -BEn

which is expressed as li;Z%Q&Q (% On multiplying

2

) .
the bound state contribution by the normalising constant
(both expressed in units of Bohr radii) the dimensionless
bound state contribution to gpe(r) is obtained.

The scattering contribution proves a little more
difficult to evaluate, and differs for the three cases of
proton-proton (p-p)proton-electron(p-e) and electron-
electron (e-e)interactions. For the p-e and e-e cases
the first few Coulomb wave functions can be generated by
two methods, one using a power seriesy, and the other using
an asymptotic expansion, depending on the range of & and
kr; the well known recurrence relation technigue of
Abramowitz [38] was then used to generate the functions of
higher order. The summation over 1 is agaln terminated
when the last term becomes small, and this occurs when
1 becomes much larger than kr+|al, for then the Coulomb

wave functions fall off very sharply. The integral

is evaluated using a trapezoidal rule with upper and lower
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limits, which, when doubled and halved respectively,
failed to alter the value of the integral by more than
one ten thousandth of the value of the integral. Initially
an attempt was made to express the Coulomb wave functions
in their integral representations, and to then take the
summation inside the integral, evaluate it analytically,
and complete the integration. Unfortunately it was
impossible to evaluate the sum analytically, and although
a computer program was written using this approach, the
final double integration over a summation proved time
consuming, and this program was only used to check the
scattered contribution.

Several points need to be noted concerning the

scattered term in equation (Le4)es As a->0; i.e. for

[o0]
small charge or large k, then & (21+1) Fl(a,kr)/k2r2—>1,
l=0

and the integral can be evaluated analytically. It can

be easily shown that if the sum is of order 1 then the
maximum value for the integrand occurs for k =~ (ﬁh2/2m)_%,
and the integrand falls reasonably sharply for smaller or
larger values of k. Even so, it is necessary to integrate
over a fair range of k to obtain an accurate result,

This in turn means the parameter kr in the Coulomb functions

varies considerably. For the p-e and e-e case the



o1

reduced mass m (used in « and the weighting term
exp[-pk2n2/(2m) 1) is of the order of the electron mass,

o remains small, and the range of k is not excessive,
However, in the p-p case, a becomes large, the maximum
value for the integrand is large and accurate evaluation
of the integral reguires a large range of k to be considered.
This in turn requires the evaluation of Coulomb functions
over an extensive range of o and kr, and so would require
many different generating techriques, as shown by
Froberg [39], Abramowitz [38], Slater [4O] and others [U1].
For this reason the same method for calculating the p-p
quantum mechanical distribution function is not appropriate
here, It is possible to evaluate the p-p distribution
using simplified wave functions of the W.K.B. approximation;
but this simply shows that the quantal effects are not
importante. On physical grounds, and also from the high
temperature results of references [26], [28] and [30], it
is clear that the guantum mechanical corrections for the
p-p distribution function are relatively small, and gpp
lies close to the corresponding classical g,(r).

As stated in Section 1.3; it is planned to use the
two-particle gpe(r) and its associated effective potential,
as inputs to a modified Percus-Yevick equation, to take

into account the effects of other particles. However it



was decided to obtain an approximate estimate of the
shielding of other particles on g(r) immediately Dby
including a Debye-Huckel shielding factor in the charge
so that Z in equation (uou) is replaced by Ze"r‘/%‘D where
%D is the Debye shielding length. This involves the
approximation that the wave functions obtained by
solving the Schroedinger equation for a Debye-Huckel
shielded potential are equal to the wave funcitions
obtained by solving the usual hydrogen atom wave equatici,
with the charge in these wave functions modified by a
Debye-Huckel shielding factore. This guasi-classical
approximation seems reasonable and is supported by recens:
results of Rouse [23]s Harris [16] and Storer [42],

The computer program is given in Appendix B, and
is reasonably economical, one run to obtain g(r) (r going

from zero to 200 a, in steps of ao) taking approximatelyw

90 seconds on a CDC 6L00 computer.

Le3 Results

The results are presented for five temperatures
104°K to 5x104°K in intervals of 10%°K. Tables L.1,
he3, 45, L7y L4.9 give 1og,o(gpe) for the five temperc
tures, and for 104°K and 5x10%4°K the first bound state

contribution is also given., Tables 4.2, L., L.6; L8,
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4.10, are the corresponding log;o (gee) values. In
the tables only, log;o (g(r)) 1s presented, and
conseguently the following abbreviations are made in

the tables:

r - The radius in Bohr radii
gc(r) - TLog;o, of the corresponding classical distribution

function.

g1B(r) -~ Log;o of the first bound state contribution.
gB(r) - TLog;o Of the total bound state contribution.
N - the number of bound states contributing to the total

bound state contribution before contribution of a
further state adds less than one ten thousandth of

the total bound state contribution.

0o (r) - Log;o of the proton-electron distribution
func tione.

gee(r) - Log;o of the electron-electron distribution
function.

gDH(r) - Log;o of the corresponding Debye-Huckel
distribution function.

gs(r) - Logjo of the appropriate distribution function

including shielding effects.

Sometimes the description 'quantum mechanical' is
added to the distribution functions, but largely this 1s

assumed understood. The figures were calculated with an
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estimated error of *5 in the fourth figure.

The Tables 4.1 to L.10 are represented graphically in
Figs. 4.1 to 4.5, although most emphasis is placed on

the temperature of 104°K where the quantum effects are
most apparent. Table L.11 presents (for the proton-
electron case) for various temperatures, three parameters

defined as follows: -

r_ - the radius in Bohr radii such that (gpe(r) - gc(r))/

di
gc(r) is less than .05 for T . This in the text is

referred to as the 'joining radius', as for L the
quantum mechanical curve is within 50 of the
corresponding classical curve. Values are not
given far the e-e case as they are very similar to

the p—-e values.

I - The percentage ionization =
Ry
/ Egcapp (F4mr#ar

-2 x 100

[RI
2
Ly gpe(r)uwr dr

where gSCATT(r) is the scattering contribution to

gpe(r) and r; is the radius chosen such that

ﬁ_ s = electron number density, (i.e. 4mr 8/3 is
o I

the volume which on the average contains one electron. )
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For the present calculations using a number density

of 1018e/cc r; has the value of 117.2 Bohr radii.

%D -~ The Debye shielding distance in Bohr1radii defined

: kT z
in the usual manner as %D = [ =————— B

2
8mnge

Figs. L«6 and 4.7 present these results graphically.

In Fig 4.7 a comparison is made with the percentage
jonization predicted by the Saha eguation (4317,

Fig. L.8 shows effective potentials V, (multiplied by

B to make them dimensionless), for e-e and e-p
interactions for 104°K defined from the QM distribution

function as follows:

g (r) = exp(-8 v _(r))

g (r)

(™) = exp(=B Vo ()

Hence the effective potential values can be obtained from
the logs of the corresponding distribution functions by
multiplying them by -2.30259. The classical curves
g.(r) using the Coulomb potential ¢c(r) are also drawn
exp(-B po(r)) »

62
=y for e-e case

using g, (r)

where ¢, ()

-2
. for p-e case .



TABLE L.1A
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Proton-electron distribution functions at 104°K

showing first bound state and total bound state

contributions.

r g.(r) gyp(r) ¥ gy(r) € (r)
0.0 oo 9.8023 - - 9.8023
045 27.4382 9.3681 2 9.3681 9.3681
1.0 13,7141 8.9338 2 8.9338 8.9338
145 9.1427 8.4995 2 8.4995 8.4995
2.0 6.8571 8.,0652 2 8.0652 8.0652
2.5 5.4856 7.6309 2 7.6309 7.6309
3.0 Ue 5714 7.1966 2 7.1966 7.1966
3.5 3.9183 6.7623 3 6.7623 6.7623
440 3.4285 6.3280 3 63281 6.3281
4.5 3.0475 58937 3 5.8939 5.8939
5.0 2.7428 5.4594 3 5.4599 5.4599
5.5 2.4935 5.0251 L4 5.0262 5.0262
6.0 2.2857 L5911 L4 L4+5931 15931
6.5 2.1099 4.1565 5 4.1611 41612
7.0 1.9592 3.7222 6 3.7315 3.7317
745 1.8285 3.2879 8 3.3068 3.307L4
8.0 147143 2.8536 11 2.8919 2.8933
845 1.613L 2.4194 14 2.4960 2.4994
9.0 1.5238 1.9851 18 2.1346 2.1421
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r go(r)  gplr) N gy(r) 8,0 (7)

9.5 1.4436  1.5508 22 1.8271 1.8u17
10.0 1.3714  1.1165 26 1.5877  1.6120
10.5 1.3061  0.6822 29  1.4137 1.4489
11.0 1.2467  0.2478 32 1.2888 1.33U6
1145 1.1925 -.186L 34 1.1947 1.2505
12,0 1.1428  -.6207 35  1.1188  1.1842
12,5 1,097 37 1.0539  1.1286
13.0 1.0549 39 9961 1.0800
1345 1,0159 e .9437  1.0363
14.0 «9796 L2 «8955 - 9967
1445 . 9458 43 .8509 . 9602
15.0 <9143 L «809L .9265
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TABLE L4.1B

Proton-electron distribution functions including
shielding at 104°K and showing first bound state

and total bound state contributions.

r goa(r))  (gygp(r)) N (gg(r))  (gq(r))
0.0 o0 9.8023 - ~ 9.8023
0.5 27.2799 9.2871 2 9.289Y 9.2894
1.0 13,5662 8.7726 2 8.7820 8.7820
1.5 8.9952 8.2589 2 8.2799 8.2799
2.0 6.7099 = 7.7460 2 7.7833 7.7833
2.5 5.3389 7.2339 2 7.2920 7.2920
3.0 41,4250 6.7225 2 6.8059 6.8059
3.5 3.7724 6.2119 3 643252 643252
4.0 3.2830 5.7020 3 5.8497 5.8L97
Lhe5 2.9024 51929 3 5.3796 5.3796
5.0 2.5981 Lh.68L5 L 4.9149 49149
S5 23491 4.1768 L 4« 4560 L4561
6.0 2.1417 3.6698 5 4.0038 14,0039
6.5 1.9663 3.1636 7 3.5597 3.5600
7.0 1.8159 2.6580 9 3.1270 3.1279
745 1.6857 2.1531 12 2.7118 2.7140
8.0 1.5718 1.6490 15 2.3246 2.3297
845 14714 1.1455 19 1.9805 1.9914

9.0 1.3821 __ .6L26 23 1.69L9 __ 1.7150_
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r (gpp(r)) (gyglr)) W (gg(r))  gg(r))

9.5 1.3023 .1L05 27 1.4743 1.5060
10.0 1.2305 ~.3610 30 1.3108 1.3548
10.5 1.1655 -.8619 32 1.1885 1.2443
11.0 1.1065 33 1.0926 1.1596
11.5 1.,0527 35 1,0128 1.0907
12.0 1.003L 36 .9U32 1.0321
12.5 9580 38 .880L . 9806
13.0 «9162 39 .8226 . 93Ul
1345 8775 LO . 7687 .8924
14.0 8416 4 .7181 8540
1he5 .8082 43 6705 .8186
1540 <7770 L .6255 « 7859



The electron-electron

TABLE 4.2

distribution functions at 104°K

r g (r) gee(P) gDH(P) gs(r)
0.0 —o0 —co

0eb -27.44282 -34176 -27.2799 -3.4017
1.0 -13.7141 -3.,2116 -13.3566 -3.1820
1.5 - 9.1427 -3.0192 - 8.9952 -2,9776
2.0 - 6.8571 -2.8411 - 6.7099 -2,7890
245 - 5.4856 -2.6769 - 5.3389 -2.6155
3.0 - L5714 -2.5255 - L.4250 -2.4559
3¢5 - 39183 -2,.3858 - 3.7724 -2.3090
4.0 - 3.4285 -2.2569 - 3.,2830 -2.1731
Le5 - 3.0476 -2.1377 - 2.9024 -2.0479
5.0 - 2.7428 -2.0274 - 2.5981 -1+9322
565 - 2.4935 -1.9252 - 2.3491 -1.8251
6.0 - 2.2857 -1.8304L - 2.1417 -1.7263
6.5 - 2.1098 -1.7423 - 1.9663 -1.634%
70 - 1.9591 -1.6605 - 1.8160 -1.5493
75 - 1.8285 -1.58L5 - 1.6857 -1.4703
8.0 - 1.7143 -1.5137 - 1.5718 -1.3967
8.5 - 1.6134L -1.4477 - 14714 -1.328L
9.0 - 1.5238 -1.,3862 - 1.3821 -1,2648
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r gs (v) Eoo(T) &y (T) gg(r)
10.5 - 1.3061  -1.2254 - 1.1655  -1.0992
11,0 - 1.2467  -1.1787 - 1.1065  -1,0513
11.5 = 1.1925  -1.1346 - 1.0527  -1.0066
12,0 - 1.1428  -1.0935 - 1.003L  -0.9647
12,5 - 1.0971  -1.0550 - 0.9580  -0.9252
13.0 - 1.0549  -1.0188 - 0.9162  -0.8885
13.5 - 1.0159  -0.9849 - 0.8775  -0.8540
14.0 - 0.9796  -0.9530 - 0.8416  -0.8215
4.5 - 0.9458  -0.9224 - 0.8082  -0.7910
15.0 - 0.9143  -0.8940 - 0.7770  -0.7622



TABLE L.3

h.22

Proton-electron distribution functions at 2x104°K

5 go(r) 8o (T)  Epu(®) g5(r)

0.0 o0 509204k oo 5.9244
0.5 13,7144 5.4901 13.6616 5.4606
1.0 6.8571 5.0559 6.8047 5.0004
1.5 Le5714L 4.6218 L4.5191 L.5439
2.0 3.4285 4. 1884 3.376L 14,0915
2.5 2.7428 3.7563 2.6907 3.6U43
3.0 2.2857 343275 2.2337 3.2043
3.5 1.9592 2.9057 1.9073 2.7760
4.0 1.7143 2.4978 1.6625 2.3677
Ue5 1.5238 2.1164 1.4721 1.9931
5.0 1.3714 1.7791 1.3198 1.6698
545 1.2467 1.5033 1.1953 1.4115
6.0 1.1428 1.2947 1.0915 1.2187
6.5 1.0549 1.1436 1.0036 1.0784
7.0 . 9796 1.0331 .9284L <971
7.5 <9143 . 9U86 8632 8928
8.0 .8571 .8806 . 8061 826l
8.5 8067 8236 7558 . 7704
9.0 . 7619 « 7745 7111 .7219
9.5 .7218 = 7315 6711 6794
10.0 .6857 693U .6351 <6416
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r go(r) gpe(r) & (T) gg (1)
10.5 6531 .6592 .6025 .6077
11,0 .623L 628 5729 5771
1.5 .5963 .6003 .5U59 5493
12.0 5714 5748 .5212 +5239
12.5 5486 <5514 .498L 5004
13.0 5275 5298 L77h 4792



Electron-electron distribution

TABLE L.k

h.2h

functions at 2x104°K

r g, () g.0(r) gp(T) gq(r)
0.0 —co oo

0.5 —13.7101  —2.46Ll  -13.6616  -2.4560
1.0 - 6.8571 -2.2613 - 6.8047 = -2.2461
1.5 - L4571 -2.075 - L4.5191 ~2. 05
2.0 - 3.4285 -1.9065 - 3.3764  -1.8809
2.5 ~ 2.7428  —1.7546 - 2.6907  -1.7251
3.0 - 2.2857 -1.618% - 2.2337  -1.585L
3.5 - 1.9592 -1.4959 - 1-8073 -1 .4601
4.0 - 1.7143  =1.3861 - 1.6625  -1.3479
45 - 1.5238  -1.2875 - 1.4721 -1.21480
5.0 - 1.3714  -1.1989 -~ 1.3198  -1.1570
5.5 - 1.2467  -1.1192 - 1.1952  -1.0759
6.0 - 1.1428  -1.0475 - 1.0915  -1.0030
6.5 - 1.0549 -0.9829 - 1.0036  -0.937L
7.0 - 0.9796 -0.9247 - 0.9284  -0.8783
7.5 - 0.9143 -0.8719 - 0.8632  -0.8260
8.0 ~ 0.8571  -0.8242 - 0.8061 ~0.7689
8.5 - 0.8067 -0.7809 - 0.7558  -0.7329
9.0 - 0.7619  -0.7415 - 0.7111 ~0.6932
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r go(r) 8.e(r)  gpy(r) g5(r)

9.5 ~0.7218  -0,7055 -0.6711  -0.6569
10.0 -0.6857  -0.6727 -0.6351  -0.6238
10.5 ~0.6530  -0.6426 -0.6025  -0.5935
11.0 -0.6234  -0.6149  -0.5729  -0.5657
11.5 ~0.5962  -0.5892  -0.5459  -0.5398
12.0 ~0.5714  -0.5656 -0.5212  ~-0.516L
12.5 ~0.5485  -0.5438  -0.4984  -0.L9L6
13.0 -0.5275 -0.5236  -0.L774L —0.474L3
13.5 -0.5079 -0,5049  -0.4580 -0.4554
14.0 -0.4898 -0.4875  -0.4399 -0.4379
145 ~0.4729  -0.4729  -0.4231  -0.4215
15.0 ~0.4571  =0.471L  -0.4075  -0.L063



TABLE L.5

L.26

Proton-electron distribution functions at 3x104°K

r g.(r) gg(T) (g (r))  (gg(r))
0.0 0 4.5189 oo 1.5189
0.5 9.1427 L. 0851 9.1142 1. 0682
1.0 L.571h 3.651L  L.5428 3.6203
1.5 3.0476 3.2194 3,091 3.1771
2.0 2.2857 2.7925  2.2572 2.7421
2.5 1.8286 2.3771 1.8000 2.3221
3.0 1.5238 1,9858  1.L954 1.9303
3.5 1.3061 1.637L  1.2778 1.5855
1.0 1.1428 1.351L  1.1146 1.3061
h.5 1.0159 1.1358  0.9876 1.0971
5.0 9143 9811 0.8861 - 9L70
5.5 8312 .8694  0.8030 .8380
6.0 <7619 7852  0.7338 7551
6.5 .7033 .7185  0.6752 .6892
7.0 6531 6635  0.6251 6346
7.5 .6095 L6170 0.5816 5880
8.0 S71hL «5770 0.5L35 5485
8.5 .5378 « 5420 0.5099 « 51357
9.0 .5079 5112 0.4801 .14830
9.5 14812 14838 0.4534 L4557
10.0 4571 11593 0.429L 14312
10.5 L4354 L4371 0.4077 14092
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r go(r) g4(r) (gpp(r))  (gg(r))

11.0 4156 4170 0,3879 .3892
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TABLE L.6

Electron-electron distribution functions at 3Ix104°K

r g,(r) g.6(r)  epg(r) gg(r)
0.0 0

0.5 ~9.1427  -2,0190 -9.1142  -2.013L
1.0 ~4.5713  -1.8185 -L.5428  -1.8084
145 ~3.0476  -1.6376 -3.0191  -1.6239
2.0 ~2.2857  —1.4770 -2.2572  -1.4603
2.5 -1.8285 -1.3354  -1.800 -1.3166
3.0 ~1.5238  -1.2112  -1.4954  —1.1906
3.5 -1.3061  -1.1024 -1.2778  -1.0802
1.0 -1.1428  -1,0071  -1.1146  -0.9839
L.5 ~1.0159 -0.9238  -0.9876 -0.8995
5.0 ~0.9143  -0.8506 -0.8861  -0.8257
5.5 ~0.8312  -0.786L4 -0.8030  -0.7609
6.0 ~0.7619  -0.7299 -0.7338  -0.7039
6.5 ~0.7033  -0.6801 -0.6752  -0.6538
7.0 ~0.6531  -0.6361 -0.6251  -0.6094
7.5 ~0.6095  -0,5968 -0.5816  ~0.5701
8.0 ~0.571L4  ~0.5621  -0.5435  -0.5322
8.5 ~0.5378  -0,5305 -0.5099  -0.503k
9.0 ~0.5079  -0.5024 -0.4801  -0.L752
945 -0.4812 -0.4769  -0.4534L ~0.4496
10.0 —0.4571  -0.4538  -0.4294  -0.L4265



r g.(r) Boelr)  gpy(r) gg(r)

10.5 ~0.4354 ~0.14328 -0.4077 -0.4054
11,0 -0.4156 ~0.14138 -0.3879 ~0,3862
11.5 -0.3975 -0.3959 -0,3699 -0.3686
12.0 -0.3809 -0.3797 ~0.3533 -0.3520
12.5 -0.3657 -0.3648 ~-0.3382 -0.3376
13.0 -0.3516 ~0.3509 -0.32L2 -0,3238
13.5 -0.3386 -0.3382 -0.3112 ~0.3111
4.0 -0.3265 -0.3263 ~0.2991 ~0.299%
4.5 ~0,3153 -0.3152 -0.2879 -0.288%
15.0 -0,3048 -0.,3048 -0,2774 -0.2777
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TABLE 4.7

Proton-electron distribution functions at Lx104°K

r go(r) (g(r)) (gpu(r))  (gg(r))
0.0 % 3.7622 oo 3.7622
0.5 6.8571 3,3300  6.838L 3,318l
1.0 3.1285 2.8975  3.4100 2.8768
1.5 2.2857 2.4709  2.2671 2.L1L36
2.0 1.7143 2.0594  1.6958 2.028l
2.5 1,371 1.6800  1.3529 1.6458
3.0 1.1428 1.3559  1.124k 1.3268
3.5 .9796 1.1044  0.9612 1.0791
4O .8571 9241 0.8387 .9020
o5 . 7619 « 7975 0.7435 «7T7Th
5.0 .6857 27055  0.667L .6865
5.5 623l 6351  0,6051 .6168
6.0 5714 5787  0.5531 .5608
6.5 .5275 .5320  0.5092 51145
740 .4898 1925 O0.L715 L753
7e5 U571 4587 0.4389 b7
8.0 .14286 L4293 0.L10k RIEEIR
8.5 L4034 4036 0.3852 .3867
9.0 .3809 .3808  0.3628 . 36140

9.5 3609 3605 0.3428 <3437



Electron-electron distribution functions at L4x10%°K

TABIE L.8

L.31

r g.(r) g () By () gg(r)
0.0 -0 —o0

0.5 -6.8571 ~1.7L457 -6.8384  -1.741L4L
1.0 -3.4285 ~145475 -3.4100  -1.5400
1.5 -2.2857 ~-1.3714 -2.2671  -1.361L
2.0 -1.7143 -1.2179 -1.6958  -1.2059
2.5 -1.3714 -1.0852 -1.3529 -1,0718
3.0 -1.1428 -0.9713 -1.124  -0.9568
35 ~0.9796 -0.8737 -0.9612  -0.8583
4.0 -0.8571 -0.7901 -0.8387  -0.7740
4e5 -0.7619 -0.7185 -0.7435  -0.7019
5.0 ~0.6857 -0.6569 -0.6674  -0.6400
5.5 -0.623L -0.6038 -0.6051  -0.5866
6.0 -0.5714 -0.5579 -0.5531  -0.5406
6+5 -0.5275 -0.5179 -0.5092  -0.5007
7.0 -0.4898 -0.4830 -0.4715  -0.4662
7e5 -0.4571 -0.4522 -0.4389  -0.4345
8.0 -0.4286 -0.42U49 -0.4104  -0.4071
8.5 -0.403Y -0.4005 -0.3852  ~0.3828
9.0 -0.3809 -0.3788 -0.3628 -0.3610
9.5 -0.3609 -0,3592 -0.3428  -0.3415



r

10.0
1045
11.0
1145
12.0
12.5
13.0
13¢5
4.0
145
15.0

ey e

h.32

go(r) g.o(r)  epylr) g5(r)

~0.3428 ~0.3417 -0.3428  -0.3238
~0.3265 ~0.3257 -0.3085  -0.3078
~0.3117 —0.3111  -0.2936  -0.2931
~0.2981 ~0.2978  -0.2801  -0.2797
~0.2857 ~0.2855 -0.2677  -0.2675
~0.27U3 —0.2741  -0.2563  —0.2562
~0.2637 ~0.2636 -0.2458  -0.2457
-0.2540 ~0.2539 -0.2360  -0.2361
-0.2449 ~0.24l49  -0.2270  -0.2271
~0.2365 ~0.2366 -0.2186  -0.2187
~0.2286 ~0.2289 -0.2107  -0.2108
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TABLE L4.9A
Proton-electron distribution functions at 5x104°K

showing first bound state and totel bound state
contributions.

r (5(r) Gt W (g(r) (g ()

0.5 5.4856  2.8374 8 2,840 2.8470
1.0 2.7428  2.4028 9 2.4120 2.4166
145 1.8286 1,9685 12 1.9878 1.,998L
2.0 1.,3714  1.5342 16 1.5838 1.6099
2.5 1.097 1.,1000 20 1.,2217 1.,2766
3.0 0.9143  0.6656 24 0.9252 1,0197
3.5 0.7837 0.2313 28 0.7020 0.8385
4. O 0.6857 -.2030 30 0.5363 0.7137
he5 0.6095 -.6373 32 0.4056 0.6248

54 0 0.5486 3l 0.2948 0.5576
55 0.4987 36 0.1973 0.5045
6.0 04571 39 01114 O.4611
6.5 0.4220 4 0.0369 0.4248
7.0 0.3918 43 -.0271 0.3938
745 0.3657 L -.0824 0.3672
8.0 0.3L29 L5 -.1312 0.3440
8.5 0.3227 L6 -.1756 0.3235

9.0 0.30438 L7 -2177 0.3054L
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TABLE 4.9B

Proton-electron distribution functions including

shielding at 5x10%4°K and showing the total bound state

contribution.

r gpg(T) N gg(r) gq(r)

0.0 oo 1 3.276L 3.2760
Oeb 5.4724 8 248354 2.8384
1.0 2.7296 9 2.3969 2.L016
15 1.8153 12 1.9683 1.9793
2.0 1.3582 16 1.5621 1.5892
2.5 1.0830 20 1.1995 1.2569
3.0 0.9011 24 0.9035 1.0021
3¢5 0.7705 28 0.6807 .8228
L.O 0.6725 30 0.5152 .6992
Le5 0.5964 32 0.3845 .6109
5.0 0.535L 34 0.2734 o SLL4O
Heb 0.4856 36 0.1750 4912
6.0 Q.4440 38 0.0875 L4479
6.5 0.1;089 40 0.0106 L4115
740 0.3788 L2 -.0563 « 3806
7e5 0.3526 Lh -.1143 «354L0
8.0 0.3298 L5 -.1654 «3308
Be5 0.3097 L6 -.2116 «31C5

9.0 0.2917 L7 -.2545 .292)



Electron-electron distribution

TABLE L.10

L4.35

functions at 5x109°K

r g.(r) goe(r) gpp(T) gq(r)
0.0 - =

0.5  -5.L864 ~1.5555  -5.L724 21,5521
1.0 -2.7428 ~1.3596 -2.7296 ~1.3536
1.5  -1.8285 -1.1879  -1.8153 ~1.1800
2,0  -1.371L ~1.0408  -1.3582 ~1.031Y
2.5  -1.0971 -0.9161  -1.0839 ~0.9058
3,0 —0.9143 ~0.8111  -0.9011 ~0.8001
3.5  -0.7837 ~0.7229  -0.7705 —0.7113
L.O  -0.6857 -0.5489 -0.6725 ~0.6369
L5  -0.6095 ~0.5865  -0.596L ~0.5742
540 -0.5486 -0.5338 -0.535L -0.5213
5.5  -0.4987 -0.14889  -0.4856 ~0.4763
6.0  -0.L571 ~0.4505  —0.L4LL4O ~0.4379
6.5  -0.4220 —0.417L  -0.4089 ~0.140L6
7.0 -0.3918 -0.3887 -0.3788 ~0.3758
7.5  -0.3657 ~0.3635 -0.3526 ~0.3507
8.0  -0.3429 ~0.3413  -0.3298 ~0.3283
8.5  -0.3227 —0.3214  -0.3097 ~0.3087
9.0  -0.30L8 ~0.3038 -0.2917 ~0.2911
9.5  ~0.2887 ~0.2880 -0.2757 ~0 2753
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r go(r) g.0(r)  Bpy(r) gg(r)
10.0 ~0.2743 -0,2739 -0.2613 ~0.2611
10.5 ~-0,2612 ~042610  -€.2483 -0.2481
11.0 -0.2493 -0.2493  -0.2364 -0.2363
11.5 -0.2385 -0.2385 -0.2256 ~0.2255
1240 -0.2285 -0.2285 -0.2156 -0.2155
12.5 -0.2194 -0.2195 -0.2065 -0.2066
13,0 -0.2110 ~0.2111  -0.1981 -0.1982
13,5 -0.2032 -0.2033 -0.1903 ~0.1904
14,0 -0.1959 -0.1960 -0.1831 -0,1832
145 ~-0.1892 -0.1893  -0,1763 -0.1765
1540 -0.1829 -0.1830 -0,1700 -0.1702
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TABLE L4.711
The variation in the Debye shielding length, the

joining radius and the percentage ionization with

temperature for shielded and non-shielded calculations.

e W

TEMP°K SHIELDING Ny Po I
NO 13.0 Ol
104 YES 92,21 13.5 .06
NO 10.5 12.43
1.5x104 YES 112,94 10.0 1455
NO 9.5 L2,76
1,75%x104 YES 121.99 2.0 46.80
NO 8.5 71.04L
2.0x104 YES 130.41 8.0 7h.6L
NO 7.0 90.88
2e5%x10% YES 145,80 7«0 93,06
NO 605 95.16
3%104 YES 159.72 6.5 96.68
NO 5.0 97.4l
L x104 YES 18L .43 5.0 98.3L
NO L5 98,25
5x104 YES 206,20 Le5 98.85
NO - - T

8x104 YES 260.82 3.0 99.16



log,; (9(r)

class‘i'cal
‘,(10 )
classical
bound state
contn
(10%)
I1st bound state
(]04)/'
i classic:zl
(4 x10™) \
: \ \ =
T T
. 10
r (Bohr Radii)
FIG. 41 PROTON ELECTRON RADIAL DISTRIBUTION FUNCTIONS

SHOWING CONTRIBUTIONS FROM THE FIRST BOUND
STATE AND TOTAL BOUND STATES FOR VARIOUS
TEMPERATURES. THE CORRESPONDING CLASSICAL RADIAL
DISTRIBUTION  FUNCTIONS ARE DRAWN FOR COMPARISON.



log 10 (g(r )

r (Sohr Radii)

FIG. 4-2

QM. ee DISTRIBUTION  FUNCTIONS

TEMPERATURES
CLASSICAL

COMPARED WITH
DISTRIBUTION

FOR  VARIOUS
THEIR CORRESPONDING

FUNCTIONS.



log g (gstr)

B 1st bound state e~

cont? \ S A,
bound state/' =~
\ conth

g A

10

r (Bohr Radii)
FIG. 43 THE PROTON ELECTRON RADIAL DISTRIBUTION  FUNCTION
WITH A SHIELDING FACTOR INCLUDED, Js(r), S COMPARED
WITH Qpe(r) AND THE DEBYE HUCKEL  DISTRIBUTION
FUNCTIONS  FOR 10%°K.



r (Bohr Radii)

FIG. 44 QM DISTRIBUTION FUNCTION FOR ee CASE WITH THE
SHIELDING FACTOR INCLUDED gg(r) COMPARED WITH Qee(r)
AND THE CORRESPONDING DH FOR 104°K,



and g.(r)

Gpe(r)

. N
shielded bount—a =
state contD N

r(Bohr Radii)

THE SHIELDED - AND NON- SHIELDED DISTRIBUTION

FUNCTIONS, WITH THEIR CORRESPONDING BOUNEo
STATE ~ CONTRIBUTIONS, 10 LARGE RADII AT 10* K.

FIG. 4-5



Temp|

°K
SX‘IOI' -
3x10L—
shielded — Q
~
0° -
i i
5 10

FIG. 4-6 JOINING

r

, (Bohr Radii)

RADIUS vs TEMPERATURE FOR SHIELDED AND

NON - SHIELDED

CALCULATIONS.



“100

ionization

percentage

60

20

FIG. 4-7

T T 4
3-10
temp. (degree Kelvin)

PERCENTAGE IONIZATION GRAPHS FOR SHIELDED AND
NON - SHIELDED CASES WITH THE CORRESPONDING

SAHA CURVE FOR A PLASMA OF DENSITY 10'® e/cc.



+id8-421§

+13:-816

+11-513
+9-:310
BVee (M)

+4-605

classical

- 4-605

BVep(r)

-9-310[

-1-513

-13-816

116421

-23-026

FIG. 4-8

(&,

r

classical
=

EFFECTIVE

(Bohr  Radii)

POTENTIALS AT

104 ° k.



4438

L.4 Discussion

The Tables L.1 - 4,10 with Figs. 4.1 - 4.5 show
that for both p-e and e-e pairings, the gQM(r) runs
smoothly onto gc(r) at a certain joining radius r .
Below r; there is a marked difference between gQM(r)
and g, (r). At r=0 the QM curve tends to a cons tant
(approximately equal to the first bound state contributia
of (2ﬂﬁh2/m)3/2 eXp(15.780/WX10—u)/ﬂ'fOP temperatures
below Lx104°K in the p-e case) while the classical curve
approaches infinity. For small r and low temperatures
the quantum mechanical p-e curve lies close to the first
bound state contribution, i.e. (2ﬂﬁﬁ2/m)3/26XP{(15'780/
(Tx10_u))—2r}/w, (where r is in Bohr radii), whilst the

correcponding classical curve

L

g,(r) = exp{63.156/(Tx10 "x2r)}

falls away much more sharply. As the radii increase,
other bound states and scattered states start making an
appreciable contribution to €6 (r), until at r; it
effectively joins the classical curve., As can be seen
from the graphs the e-e case is essentially similar, but
in this case no bound states exist, and the log gc(r)
goes to minus infinity.

Figs. L.1 and 4.5 show that for the p-e case the

bound state contribution is quite large, especially at
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low temperatures, and for 10“°K even at 50 Bohr radii

the bound states contribute 18% of gpe(r) and still
contribute 11% at 100 Bohr radii. The value of n at
which the bound-states sum terminates is also of interest,
and for 104°K at 10 Bohr radii,26 terms were needed,

at 50 Bohr radii, 84 terms, and at 100 Bohr radii, 110
terms contributed. In a similar fashion the number of
terms contributing to the scattering states rose as the
radii increased.

The temperature dependence of the both the gee(r)
and gpe(r) is also evident from Figs. L.1 and L.2., As
the temperature is increased the quantal curve becomes much
closer to the classical curve, and for the p-e case the
bound state contribution falls off much faster, and
the contribution of the first bound state is less important.
Comparison of &, (r) and gee(r) with recent results
obtained by Storer [3L] and Storer and Davies [L2] give
agreement to *#5 in the fourth figure, which is less than
the estimated error for these calculations. It should
be noted that at higher tempe ratures than those calculated
here, i.e. >x10%°K;, A (0) contains important contribut-
jons from n>1 states, a feature shown clearly by the
results of Storer.

Fig 4.6 shows that the joining radius rj falls off

sharply as the temperature increases from 9x10%°K to
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3x104°K but at higher temperatures varies only slightly.
There is no obvious analytical dependence of ry on
temperature.

The inclusion of the approximate shielding factor
in the results of Figs. L.3 and L.4 show there is 1little
effect on the general shape of the curve, but that it
causes an appreciable change in values, sO that now the
shielded gs(r) joins its respective 'D.H.' curve above
a certain radius. Prom Fig 4.6 it can be seen that
this joining radius (defined as before, except now the
criterion is that gs(r) approaches within 5% of gDH(r),
not gc(r) as before) only differs from the non-shielded
case at temperatures below 3x109°K. The effect of the
shielding is more pronounced on the total and first
bourd state contributions, and Fig. 4.5 shows that these
fall of f appreciably faster than the non-shielded case,
especially at large radii. In Fige. L.5, because the
classical curve is nearly identical with gpe(r), and
similarly since gDH(r) remains so close to gs(r), the
g.(r) and gDH(r) are not drawn.

As the gquantum mechanical expression for gpe
divides it into bound and scattered state contributions,
it is possible to obtain the percentage ionization present
in the hydrogen gas, and Fig. 4.7 shows that this differs

only slightly for the non-shielded and shielded cases,
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The effect of shielding is to increase the ionization
two or three per cent, which is to be expected, as the
shielding precludes some of the bound states. The
results agree gquite closely with those of Saha (43], the
main disagreement being just above 1.5x104°K where the
non-shielded ionization value is only half Saha's
value and even the shielded value is 15% below. Also
by Saha's theory between 1.5x104°K and 2x104°K, U48% of
the the ionization occurs, while the quantum mechanical
calculation gives 59% without shielding, and 60% with
shielding. At 2.5x104°K the non-shielded theory implies
there are twice as many neutral particles as predicted
by Saha's results. Saha's original theory, see g
allowed only for lower bound states in an approximate
manner, and has since been improved by a number of
authors [17(c)] and [35], to include higher bound states,
and some attempt has been made to also allow for shielding
effects [23(c)]. The degree of ionization obtained from
these refinements is still surprizingly close to the
values obtained by Sahae.

Fig 4.8 shows that the effective potentials obtained
by allowing for gquantal effects differ from the
classical Coulomb potential at small radii, and are
finite at the origin. As the temperatufe increases

the effective potentials become closer to their
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corresponding Coulomb potentials, while remaining
finite at the origin, the VEFF merge with their
corresponding Coulomb potentials at small radii. The
difference between the Vee(r) and the Ve:)(r) is most
marked. In the e-e case the inclusion of the c¢rantal
effect considerably reduces the repulsive Coulomb
potential; whereas for the p-e case there is an
increase in the attractive potential from r=rg to
r=1.5a,s then a reduction of the attractive potential
for r=1.5a, to r=0.

In conclusion the results are of importance
because they show the rather large deviations of the
two particle guantal distribution functions from the
classical Coulomb theory at short interparticle distances;
and because they indicate that below ry guantum mechanical
effects become important for the p-e amd e-¢ cases,
especially at low temperatures. Unfortunately the
complexity of evaluating Coulomb wave functions over
large ranges precludes the calculation of gpp(r), but
the quantum effects should be small for this case. An
approximate allowance for shielding indicates that
results are gualitatively the same, both for e-e and
p-e cases, as for no shielding, but the gs(r) tend to
the corresponding gDH(r) instead of joining gc(r) as

for the two particle (i.e. non-shielded) case. The
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inclusion of shielding causes changes in the degree of
jonization present, but the degree of ionization remains
remarkably close to values obtained from the Saha and
improved Saha equations. Also from the p-e results
one can see some justification for considering the
first bound state as the major contribution to the
bound states, especially at temperatures below 3x104°K
(for the density 10'%e/cc). The decrease in the
repulsive Coulomb potential for the e-e interactions is
most marked, and in contrast to the p-e case; Ve—e
never enhances the Coulomb potential. The inclusion
of quantum statistics would have most effect on the e-¢
interactions (see [33]), but should be small relative

to the guantum effect calculated.
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V SOLUTION OF THE MODIFIED PERCUS-YEVICK EQUATION

5.1 A form suitable for solution on a_computer

In Chapter III we expressed the PY equation in a
form suitable for solution on a computer, and gave an
outline of the computer procedure to determine gab(r)
from this eguation. We also derived an asymptotic
form of the PY equation for large r, which was found to
be inconsistent in the secomd—order terms. It was
further shown that the integral term was extremely
sensitive to the input potentialsand distribution functions
at small r. In this section we shall apply the same
reasoning to the MPY eguation which, in its asymptotic
form for large r, has the advantage of self-consistency
to all orders. The input potentialsand distribution
functions will be taken from the accurate guantum
mechanical calculations of Chapter IV.

The modified Percus-Yevick eguation as proposed by

Green [1] has the form

— = —_ . 3
€sp Cap = 1 * g De ]‘(gbc ) €ac (1 eac) d°x,

1 - -
t oz 2 nc 2 nd ff (gbc 1) (gbd 1) gcd gac gad(1_eac)

(1-e,4) °%; a°xg (541)
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where e = exp(ﬁ¢ab), the summations are over the

types of particles in the mixture, and the higher

order terms have been neglected. In this Chapter,
using computer notation, shall refer to the PY term
(i.e. the first integration term), as TDTM, and the

last integration term as FDTM. Since TDTM was considered
in detail in Chapter 3, here emphasis will be placed on
FDTM which effectively describes the four-particle
interactions. Using an approach similar to that in the
3-particle case, FDTM takes the Torm

Ly ? nc nd j. j.(r+s) (r+u)['ﬁ [gbc(t)—1]

r® |lr=s| " |r-u| °

(g, (V)-11 g, () g 5(0)s [1-e, (s)] [1-e 4(u)]

g840(W) 46 vdv tdt udu sds, (5.2)

where w is defined by the equation

or?w2 = 2r2(s?+u?) - (r2+s2-t2) (r2+u?-v2) -

[4r2s® - (r2+s2-t2)2]% . (5.2a)

1
[4r2u?-(r2+u2-v2)2]2 cosb .

The quantities r,s,t,u,v and w refer to the interparticle

distances between four particles which are placed at the
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vertices of a tetrahedron, viz.

ro= 2, - Xls 5= 15, - 205 t =15 - %l us=

IEC - §d|’ u = |Xb - Xdl and w = |§d - écl’ where X »
Ko XKoo and Xg define the positions of the L4 particles
of types a,b,c and d respectively. g is the angle
between the plane r, s, t and r, u, ¥, and is related
to the length w by (5.2a). It can be seen that w
achieves its maximum value (WMAX) when particle c¢ and d
are directly opposite each other on either side of &,
and this occurs when 0=, Correspondingly, the minimum
value (WMIN) is obtained when 6 = O.

An asymptotic form of FDTM akin to (3.2) can be
obtained from the same assumptions, using similar

reasoning. Equation (5.2) then becomes

. D
2 2 n, 2 Ny [ (B ¢ac (p+y) + Lo (1 = > f;a

[8¢,5(a+r)+.00] (14a/r)

p+2r g+2r T
[ ebc(t) ’[ ebd(v) /~ [1+edc(w)] a6 vdav tdt

| pl lal -
dq dp (5.3)
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where

w2 = t2 + v2 - 2pg + 2(%® - p2)% (v2 - qz)% cos Be
This expression can also be obtained by letting r
become large in the geometrical interpretation of the
integral. When it is added to the asymptotic form of
the Percus-Yevick equation, it makes the resulting
asymptotic equation consistent to second order for
charged mixtures, as can be seen from arguments analagous
to those of section 3.2.

The numerical evaluation of FDTM as given in (5.2)
is based to a large extent on the techniques mentioned
in section 3.3. This is to be expected, as FDTM 1is
essentially composed of two parts which are identical

to TDTM, but which are modified by the inner integral
m

/ 8ac
<‘O

inner integral is evaluated in terms of w. This is done

(w) dg. In the program (see appendix B) this

by using (5.2a) to obtain a6 in terms of dw. The inner
integral then becomes

[‘WMAX ( 84 (")

ZPQW\ dw
/

WMIN DEN

a2
where we have used the substitution dé = E%E% dw.
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However, for the FDTM, although the integrations can

be divided into regions and evaluated using a
trapezoidal rule as for TDTM, the mesh ratio's that

can be used are much smaller due to the higher dimension.
Further details of the program for calculation of

FDTM are given in the notes with Appendix B.

The application of the MPY eguation to a two
component (p-e) plasma encounters difficulty in the
choice of input, for it can be seen from egquation (5.1)
that there exist four distribution functions to be

calculated; g

g g and gpp“ As 1t is intended

ep’ “pe
to use an iterative technique to solve the MPY eguation,

ee’

this would mean solving four linked integral eguations.

Classically, the following identities hold: - ¢ee = ¢pp 2

8o = gpp’ ¢pe = ¢ep and gpe = gep' These reduce

(5.1) to two linked equations. However, from the quantal
considerations of Chapter IV it was shown for small r,
that although the effective potentials and distribution
functions for interactions between unlike particles

i = d = i
were equal (meaning Vep Vpe an gep gpe respectlvely),

this was not the case for like particles. Por 1like

particles Ve and ee di:ffer very appreciably for small

e

r from the corresponding Vpp and gpp. Fur thermore

from Chapter IV we could not obtain accurate values for
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&pp ( and hence Vpp) by the same method used for g__,
though it was deduced that for the p-p case the quantal
effects should be small, and so gpp is expected to
remain close to its corresponding classical curve and
VPp close to the corresponding Coulomb potential.

To resolve the difficulty of obtaining accurate
input data for like particles at small ry it is found
convenient to assume that the combined effect of the
e-e and p-p potentials can be represented by reflection
of the e-p potential from below to above the r-axis, 1.€.
Vi, = - VU’ where VL refers to the combined effect of the
e-e and p-p potentials, and Vg refers to the interaction
potential between unlike particles. This assumption,
besides alleviating the need for accurate p-p input data,
reduces the number of linked integral equations obtalned
via (5.1) from three to two, and so greatly reduces
computational difficulties. From Fig. 4.8 it can be
seen that reflection of Vep about the r axis to obtain
the combined effect of the é-e and p-p potentials results
in a VL characteristic which differs markedly from the
Vee curve, ard from the classical curve to which Vpp
closely approximates. However, since the forces are
repulsive, the number of particles of the same charge

approaching one another very closely is expected to be

small, and the error involved unimportant, at least at
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temperatures above 2x109°K. Below this temperature
the number of pairs present may encourage the formation
of complex ions for which a more rigorous treatment of
gquantal effects between like particles (including

guantum statistics) would be desirable .

5.2 Outline of the numerical procedure

The evaluation of the PY term and the MPY term
has been discussed in some detail in sections 3.3, 5.1,
and Appendix B. In this section we shall discuss the
iterative procedure adopted in solving the MPY equation,
In 1960 Broyles [2] proposed an iterative procedure
where an initial trial gég) (r) is inserted in the
right-hand side of equation (5.1), the integrations
are then performed to give a first-improved trial g;;)(r),
This can be used to obtain a third trial, and so on.
Simple iteration in this fashion did not lead to a
convergent sequence and it was faund necessary to include
a mixing parameter o to secure convergence. Consequently

the (n+1)th input was built up using the rule

™ =g (- gl e (5

It has been found by Throop and Bearman [3] that the mixing
constant o is inversely proportional to the density for

LJ fluids, and as the density increases, o decreases,
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and hence the rate of convergence becomes appreciably

slover. Broyles [2] also pointed out that convergence

(o)

could be improved if it was assumed that the g

result is approached exponentially, for then
1 .
g(J )_g(a)

g(w) = g(j) + 3 (5.5)
1-R

where . .
1
NEEPINE)

S g(j)_ g(j_1) , and thus as the solutions

approached the final result, the g(w) could be predicted.

Tt is unfortunate that a technique recently
proposed by Baxter [L] for the solution of the PY
equation does not apply for long-range forces. His
method relies on the interparticle potential vanishing
beyond some range M, for then the PY equation can be
written in a form which depends on the direct correlation
function and t he radial distribution function over the
range (O,M) only. Watts [5] has applied this technigue
successfully to a Lennard-dJones fluid near the critical
reglon.

In the calculation presented here, the iterative
method due to Broyles was used, but several modifications
were necessary to obtain convergence, and these will
be discussed in the relevant sections. It was decided to

initially attempt to solve the MPY equation for a
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temperature of 10“°K and density 1018¢/ce, and to
gradually increase the temperature to obtain results in
the region where the DH approximation is valid. The
first difficulty is choice of the initial gIN and VIN'
It was pointed out in section (5.1) that, by assuming
the combined effective potential for like particles

was equal to minus the effective potential for unlike
particles, the problem is reduced to solving two linked

integral equations, and so we chose

VL(T‘) = VU(I') = - [logso (gpe(l’))]/ﬁ, (5.6)

where the log,o(gpe(r)) are presented in Table 4.1A.
Since in Chapter 4 we also determined a distribution
function to approximately take into account shielding,

it was decided to use those results for g1’ i.e»

Logio (g (7)) = -Logio(gy(r)) = -Logio (gg(r)), which
can be obtained from Table L.1B. Thus input will be
frequently referred to as the guantum mechanical
Debye-Huckel (QMDH) distribution function.

The program in Appendix B does not calculate the
distribution function at r=0. To calculate gab(O) it
is necessary to take the limits of the integrals in the

MPY equation as r->0, and evaluate the resulting equation
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LBCUT
8an(0) ©g,(0) = 147 Z 0 f’ [1-e, () Jg,,(8) (B (8)-1]
o}

s?ds+
- LBCUT
o nng 2ny [ (1o (8))gg(e) L)1 1o
e
[ LBCUT

[ ey ()] gy () apq ()11 [ ", (w) asauds .

(5.7)

where w = (8® + u2 - 2su cos@)1§ 3 From this equation
it can be seen that the presence of other particles
effects the distribution between two particles, even
at zero interparticle distance. Howevers, because the
effect of the other particles is expected to be small
(i.e. the integrals in equation (5.7) are small), it
was decided to Tix g(0) to the gquantal value determined
in Chapter IV until the last few iterations. This step
should help stabilise the jterative technique. Theoretically:
of course, g(0) should have no influence on the value of
the integrals; however, as g(%) was obtained as the
geometric mean of g(0) and g(1), its value does affect the
calcula tion.

Before commencing a long computer run, extensive
hand checks and trial runs to optimize the integration

variables were completed. The optimum value chosen



5.11

for TACUT, which decides the size of the regions in

the integration procedure, was found to be approximately
equal to the joining radius mentioned in section 4.l4.
This means that the regions where the quantal effects
become important are treated in greater detail. The
mesh ratios chosen for the various regions were
determined by accuracy considerations. Graphs of the
integral value versus mesh ratio show that the integrals
attain a nearly constant value when the mesh ratio
becomes sufficiently large. Although it is possible
to adopt large mesh ratios for the PY term (TDTM), this
is not feasible for the additional MPY term (FDTM)
because in this case the five- dimensional integration
becomes too time consuming. Thus the choice of the
mesh ratios for the regions in FDTM are determined by
time limitations. The optimum size of LBCUT for
termination of the range of integration has to increase
with temperature. This is because it necessarily
introduces an error in the calculation of g(r) as r
approaches LBCUT, and is consequently chosen to yield
accurate values for the integral for r<3%D. Hence
LBCUT is of o(u.%D)° Analytical checks for realistic
input data proved impossible, though an analytical check

for g(r) = const was comple ted. Several hand
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calculations were made for realistic data to confirm
that there were no errors in the integration procedure.
The iterative procedure of Broyles was applied to
the MPY equation in the form
1 + TDTM + FDTM

gd(r) = , (5.8)
e, (r)

where subscript u refers to unlike particles and the
superscript j refers to the jth Zteration, with a similar
equation for like particles. At 10%°K the iterative
process diverged on the second iteration, undergolng
extreme fluctuations, especially at small radii. It

was further noticed that the seguence of terms in the
numerator on the right-hand side of equation (5.8) formed
a diverging sequence for small r. This implies that

the improved Percus-Yevick equation cannot be applied at
this temperature since it forms a diverging sequence.

To determine if this was the case at higher temperatures,
the temperature was raised in small steps. At 2%x104°K
the iterations also diverge, even 1f we use a large
mixing constant a, and after four iterations gL(r)>>1,

so that FDTM becomes negative, and this results in
inadmissible negative distribution functions. At
2.5x104°K divergence does not occur until the eighth

iteration.,
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At 3x104°K several new modifications were
introduced to help secure convergence of the iterative
procedure. The mixing constant was removed, and a
sequence g(IN>, g(1), g(z) ob tained., From these three
values a g(w> can be calculated using equation (5.5).
This g(w) is then used as input to generate another

() (3) W) ()

sequence g g , and another g can be

determined. In this way it is hoped to obtain a

(w)sg

convergent seguence of g However it proved
necessary to overcome two difficulties. The first
occurs when the R calculated for equation (5.5) is

~1, foar then g(m) may become excessively large. This
is overcome by testing the values of R obtained, and

if |R-1| is less than 0,5 the value of R is replaced by
0.5 (if R is <«1), or 1.5 (if R is >1). The second

difficulty is that the first g(m) calculated seems to

(00)’ (Oo)f

overshoot the final g and causes the sequence of g s
to oscillate. This is overcome by using the mixing
constant technigue to include some of the previous g(m);

(IN)

thus a new input g is obtained from gy = « géw)+

(1-a) g(;21 , where géw) is the nth g(w) that has been
calculated. It is found that the choice o = £ secures
reasonable convergence. A trial run was also made where

the input was composed as follows:
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1og(gIN) = o log(géw)) + (1-a) log(géf?). This
mixing orf the logarithmic values improves convergence
of the like distribution functions, but has an adverse
effect in the unlike case. It does, however, prevent
the g(m>'s obtained from becoming negative, which
occasionally occurred for gL(r) when r is small.

The iterative process proves quite time
consuming, one iteration taking approximately 1 hour
on the CDC 6400 computer, and for this reason it was
decided to move to the temperature of Lx104 °K,
rather than continue the run at 3x107°K, where the
results, although convergent for large r values,
fluctuated for r<10 Bohr radii, even after 20 iterationc.
At the higher temperature the iterative technique
converges rapidly to give distribution functions
identical to four places of decimalsafter only four
iterations, 1f g(0) is allowed to vary, and not
fixed at its quantum mechanical value, this merely
alters the results below 5 Bohr radiil, and convergence
to four decimal places again occurs within four iterat-
ions,

By removing the MPY term the program was
rearranged to solve the PY equation, and this was

applied to a range of temperatures. At L4x104°K



convergence to four decimal places was obtained after
six iterations. At 3x104°K however, the PY equation
ran into similar, and probably more fundamental
difficulties, than the MPY equation. The TDTM
became relatively large at small radii, but remained
less than unity, and after 36 iterations the g(m)'s
obtained were reasonably consistent. If however this
g(w) is used as input for the nth iteration, then

(n+2) differs considerably,

(n+1) (n+2)

g(n+1) differs slightlys, and g

although by using equation (5.5) with g and g

(o)

a g(w) very similar to the g used as input is

(e0)

obtained. This means that the final g generates a
non-convergent sequence on simple iteration. Such
behaviour differs from the MPY equation, where the
iterations tend to remain fairly stable for large r
values, but become erratic at small radii. On further
simple iteration of the MPY equation the erratic
behaviour at small r gradually effects the whole gab(f),
At temperatures below 3x104°K, the PY equation produces
negative distribution functions. This is a direct
result of the inconsistency of the second-order terms
when attractive forces are present; for with such

forces TDTM is negative, and at these low temperatures

the second order TDTM has modulus greater than unity,
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and this leads to a negative distribution function.

This inconsistency does not occur with the MPY equation,
for if TDTM becomes large and negative, FDTM is
invariably larger and positive, and so equation (5.8)
yields a positive distribution function. However,

the divergence of the series 1, TDTM, FDTM soon causes
divergence of the iterative technique, and the MPY
equation applies over only a slightly greater temperature

range than the PY equation.

5¢3 Results and discussion

The results obtained by solving the PY and MPY
equations for an hydrogenous plasma at 3x104°K are
presented in Table 5.1, They are compared with the
initial input data which is labelled QMDH, as it is
composed of the Debye-Huckel distribution function at
large radii but includes guantal effects at small radii.
The QMDH results may contain errors for r<15 Bohr radii
of less than *5 in the fourth decimal place, and for r>15ao
they are correct to the fourth decimal place. The PY

(c0)

results are obtained from the final g derived from

iterations 35 and 36, and only differ from the previous
g(°°) by *5 in the last figure given in the table.
The results of the MPY are similarly obtained, but in

(o) .

this case g is derived after only 16 iterations.
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It can be seen the errors increase rapidly at small
radii, where g(r) can only be given to two decimal
placese. The results are shown graphically in

Fig. 5.1 for like distribution functions, and in Fig. 5.2
for unlike distribution functions.

For Lx109°K the results are given in Table 5.2
and shown graphically in Figs. 5.3 and 5.4. At this
temperature each g(m) tabulated is accurate to four
decimal places, and further reproduces itself on
simple iteration. It will be recalled that the
calculation of g(0) was not used in solving the PY
equation, and g(0) remained fixed at its quantal value;
this particularly proved a stabilizing factor at the
lower temperature of 3x104°K.

It should be noted however, that although the
results at Lx10%°K converge to four decimal places,
there is an estimated error of approximately *5 in
the fourth decimal place. At small r this is mainly
caused by inaccuracies in the evaluation of the integral,
especially for the FDTM, where a reasonably small mesh
ratio must be used. At larger values of r an error
in the fourth decimal figure is caused by the cut-off
IBCUT imposed on the integral. At 3x104°K these
errors become quite large at small radii, for in

particular FDTM becomes large, and this term is subject
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to errors of up to 30:., To improve the accuracy a
large mesh ratio is needed in FDTM, and this would
involve a considerable increase in computing time.

From Fig. 5.1 it can be seen that the MPY results
are very erratic below ten Bohr radii; they become
relatively large near the origin, but then fall sharply
away at 2-3 Bohr radii, before returning to quite large
values at 5 Bohr radii. For r>10 the MPY calculation
of gL(r) remains significantly larger than its PY
equivalent, a feature which might be predicted from
equation (5.8), where as FDTM is always positive the MPY
results will invariably be greater than the corresponding
PY results. The PY results in turn lie above the QMDH
results for r<i50a,;s but then they gradually fall slightly
below the @QIDH results. The MPY results, however, remain
above the QMDH results for all radii. This means the
DH distribution function is between the PY and MPY results
for r>150a0, and even allowing for an error of 5 too low
in the fourth decimal place in the PY results, this
implies gQMDH is surprisingly good. The inclusion of
the additional term in the MPY calculation makes an

appreciable difference to the distribution functions.
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TABLE 5.1

Distribution functions at 3x10%°K.

QMDH oy MPY

n Like Unlike Like Unlike Like Unlike

0O 3,028x10°° 3,303 10¢ 3,028x10 ° 3.303 104 3,52x10 ° 8,49 104
1. 2,397x10° % L. AT716x10°  6.435x1072 3,508x10° 1.51 10 2 3,98 10°
2 1.811x10°%  5.,5208x102 1.587x10 2 5.095x102 1,07 10 $ 5,29 102
3 1.174x1072  8.5173x10  3.638x10 2 8.uL46x10  L4.84 1074 8.41.40
4 4.9419.1072 2,0235x10  8.000x10 2 2,014x10  1.40 10™! 2,00.,10

5  +1130 8.8512 «1397 8.705 17 8.76
6 1758 5.6899 1977 5.600 .19 5.68
7  .2320 l1.3112 .2509 14,223 .26 4.290
8 .2828 3.5359 «2997 3.468 .31 3.518
9  .3289 3.0409 « 3LLY 2.986 .36 3,020
10 .3705 2.6990 3850 2.651 385 2,679
11 4081 2.14502 4207 2.4078 1440 2,432
12 J4h32 2.2563 L4570 2.2158 475 2,23
13 4740 2,1096 4,885 2.0630 499 2,092
14 .5022 1.9911 <5143 1.958L .527 1.975
15 .5280 1.89L1 54400 1.8628  .551 1.879
16 .5515 1.8133 5628 1.78L3 «573 1.800
17 «5731 1.7448 5834 1.7190 <59 1.734L
18 5931 1.6862 6047 1.6581 615 1.672
19 6115 1.6354 .6216 1.6113 .632 1.627

20 .6285 1.5910 .6372 1.573L 650 1,591



5e 20

QMDH PY MPY
r Like Unlike Like Unlike Like Unlike
25 L6977  1.4334 L7060 1.4160  .7126  1.4315
30 o7h77 13375 . 7535 1.32L5 ~-7588  1,336L
35 .785L  1.2732  .7896 1.2641  .7983  1.2727
Lo 8148  1.2273 .8191 1.2217  .8240  1.2270
U5 .8382  1.1930  .8410 1.1856  .8475 1.1924
50 .8573  1.1664  .8591 1.1621  .8665 1.168L
60 .8865 1.1281  .8870 1.1220  .8970 1.1308
70 .9076 1.1019  ,9087 1.0938  .9162 1.1056
80 .9234  1.0830  .9241 1.0784  .9323 11,0883
90 .9%356  1.0688  .9350 1.0654  .9442  1.0755
100 29453  1,0579  .9457 1.0540  .95L0  1.0650
120 .9595 1.0L22  .9595 1.0420 .9688  1.0506
140 ,9692 1.0318  .9692 1.0750  ,9805 11,0400
160 L9761  1.,02L45  .9759 1.0229  .9870  1.0341
180 ,9812  1.0191  .9809 41,0180  .9891  1,0276
200 .9851  1.0152  .9846 11,0147  .9899  1.0201
220 .9880 1.0121  .987L 1.0114  .9926  1.,0143
240 .9903 1.0098  .9913 1.0093 .9925 1.07110
260 .9921  1.0080  .9914 1.0078  ,9933  1.0092
280 29935 1.,0065  .9933 1,0059  .9944  1.0070
300 29947  1.0054  .994L4 1.0047  .9953  1.0059
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QNDH PY MPY
B Like Unlike Like Unlike Like Unlike
340 9963  1.,0037  .9960 1.,0033  .9966  1.,0040
380  .9974 1.0026  .9972  1.0022  ,9976  1.0029
420 .,9982 1.0018  .9984  1,0011  .9981  1.0021
460  ,9987 1.0013  ,9986 1,0012  ,9996 1,001
500  .9991 1.,0009  .9988 41,0009 1,0002 1.0012
540  ,9993 1.0007  .9992 41,0004  .9924  1.0006
580  .,9995 1.0005 .,9996 1.0001  .9996  1.0005
620  .9997 1.0004  .9996 1,0002  .9998  1,0006
660  ,9997 1.0003 1,000 29997 11,0001 11,0041
700 .9998  1.0002  .9998  1.000 .9993  1.0013
740 ,9999 1.0001  .9995 1.0004 1.,0007 11,0015

(Notes

Errors came in MPY about 500)
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QMDH
Like

TABLE 5.2

Distribution functions at Lx104°K

Unlike

PY
Like

Unlike

Like

5.22

MPY

Unlike

o

O o N o B FWoNp =

[\').—\—\_L—A-—\—L-—\...&-—L_L
QO W ™ ~N O WM & W o -~ O

1,730 10”4
1,3274x10 2
9.3755%x10 2
4.7097x10" 2
142531101
0.2058
0.2749
0.3347
0.3878
0.4325
0.473L
0.5086
0.5399
0.5678
0.5929
0.6156
0.6361
0.65u8
0.6718
0.6874L
047018

5.7811x10°
7+5337x10?
1,0666x10%
2.1233x10
79800
14,8585
3.6375
2.9875
2.5787
2.3121
2,1125
1.9661
1.8523
147612
1.6866
14624l
145721
1.5273
1.4885
1.4547
1.4250

1,730x10 4

2,7907x10 3 7.5199%102

1.2521x10 2 1,0911x102

5.3919x10" 2
0.1298
0.2103
0.2793
0.3392
0.3914
0.4369
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8,0012
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1.,6207
1.5685
145240
1.4850
14517
1.4223
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DH PY MPY
r Like Unlike Like Unlike Like Unlike
25  0.7590 1.3175 0.7607 1.3130  .7620  1.3149
30  0.7996 1.2506  0.8008 1.2471  .8020  1.2489
35  0.8298 1.2051  0.8307 1.2023 .8319 11,2039
5O  0.8531 1.1772 0.8538 1.1697  .8550 1.1713
L5  0.8716  1.1473 0.8722 1.1449  .8735 1.1465
50 0.8866 1.1279 0.8869 1.1261  .8881 1.1276
60 0.9093 1.,0997 0.9092 1.0985 .9105 1.71000
70 0.9257 1.0802  0,9256 1.0791  .9268  1.0805
80 0.9380 1.0660 0,9381 1,0647 .9394  1.0662
90  0.9476 1.0553  0.9475 1.0542  .9L88  1.0557
100  0,9551 1.0470 0.9550 1.0459  .9564  1.047L
110  0.9612 1.0403 0.,9609 1.0396  .,9623  1.0411
120  0.9663 1.0349 0.9658 1.034h4  .9672 1.0359
130  0.970L44 1.0305 0.9700 1.0299 .9715 1.0315
140 0.,9739 1.0267 0.,9737 1.0260 «9752 1.,0276
150  0.9769 1.0236 0.9767 1.0230  .9782  1.0246
170  0.9817 1.0186 0.9814 1.,0182 .9830 1.0199
190  0.9853 1.0149 00,9848  1.0147  .9867  1.0166
210 0.,9880 41,0121 0.9878 1.0117  .9896 1.0135
230  0.9902 1.0099 0.,9899 1.0095 .9914  1.0111
250 0,9919 1.0082 0.9915 1.0080 .,9926  1.0091
350 0.9966 1.0034  0.,9963 1,0034  .9966  1.0037
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DH PY MPY
r Like Unlike Like Unlike Like Unlike
450 0.9985 1.0015 0.9981 41,0016 .9983 1.0017
550 0.9993 1.0007 0.9989 41,0019 .9990 1.0010
650 0.9996 1.000L  0.9994 1.0015 .9994  1.0006
750  0.,9998  1.0002  0.9997 1.0002 ,9997 1.0003
850 0.9999 1.0001 0,9996 1.0003 .9997 1.000L
950 1.,0000 1.,0000 0.9998 1.0002 .9999 1.0003
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In Fig. 5.2 (and Table 5.1) for the unlike
distribution functions it can be secen that the PY
results lie well below the QMDH results. The MPY
equation, which should improve on the PY results, lies
guite close to the QMDH results, lying below them for
r<50ag, except for g(0), and then remaining slightly
above them for large r.

An almost identical analysis occurs for the three
sets of results given in Table 5.2 at 4x104°K. For
the like case the PY results remain above the QMDH results
for r<80ao, and the MPY results lie above them. Beyond
r = 80a0 the QUDH values lie between the MPY and PY
values. In the unlike case the PY results remain below
the QVDH results, while the WPY results remain smaller
for r<50a,, but beyond that become greater than the
QMDH results.

Perhaps the most significant feature of the results
is the fairly large increase in the value of gL(r) indicated
at small radii. In the Monte Carlo results obtained at
104°K it was noted that the peak in gp(r) at small r was
probably due to collisions between 1ons and pairs.

At the higher temperature of 3x104°K the quantum
mechanical results indicated that the plasma was

approximately 905: ionized, and hence there is still a
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reasonable chance of a collision betwcen an lon and

a pair. As the temperature is lowered the number of
pairs increases, at the same time the PY and MPY results
start to diverge, which indicates that it is again the
formation of pairs which causes the difficultiles.

However, in the integral equation approach this divergence
appears in the following manner. Firstly gL(r) increases
sharply for small r in the evaluation of g£1)(r), then

on using g(1)(r) as input this causes g(z)(r) to

L

increase sharply at small r, this in turn increases g£3)(r),

(o)

and the series diverges unless extrapolated back to g .
This difficulty is also associated with the concept of

the combined effective potential Vi = —VU, which was
introduced in order to reduce the number of linked

integral equations in the MPY equation. For the divergence,
which initially starts in gy (r), is very closely

connected with the Vy chosen. From such considerations

it appears that to rigorously improve upon the results
presented at 3x10%°K or to proceed to lower temperatures

it is necessary to treat the e-e and p-p interactions
separately. In such a procedure the guantal Vpp
needs to be accurately determined, and for completeness

gquantum statistical effects should be included in the
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calculation of Vee'
In conclusion then the Percus-Yevick integral

equation approach can be successfully applied to

plasmas when the second order terms remaln small,

and this occurs when the plasma is fully ionized.

The inclusion of higher order terms, as in the MPY

equation, alters the results appreciably. However

the solution to this equation also becomes unstable

as the pairing present in the plasma becomes significant.,

To extend the region of applicability of the MPY equation

it is necessary to obtain accurate gquantal effective

potentials between the particles, and to solve three

linked integral equations. At temperatures above

the ionization temperature the method yields accurate

distribution functions within a few iterations. The

distribution functions obtained for an hydrogenous

plasma of 1078e/cc at 3x10%°K are remarkably similar

to those obtained by the DH theory, except at small

radii,
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VI CONCLUSION

6.1 Comparison of the two methods

It is unfortunate that the main MC results were
obtained for the temperature of 104°K, for it was
subsequently found that the PY and MPY equations could
not be applied at this temperature, and a direct
comparison of results became impossible. Another difference
in the calculations is that the MC computations were made
by taking guantal effects into account only in a rather
crude manner, whereas such effects were treated more
exactly in the PY and MPY calculations. For these reasons
only a broad comparison of the two methods is made, and
conclusions pertinent to the presented results are
contained in section 6.2. The MC approach has the
advantage that the derivation of the method is relatively
free of assumptions compared to the PY approach. However,
the MC method also exhibits its usual disadvantage, namely,
that calculations of accurate distribution functions are
very time consuming; and in this temperature range the
presence of long-range forces in conjunction with pairing
of unlike charges aggravates this situation. On the
other hand, while the PY equation can be solved numerically
reasonably quickly, to obtain accurate distribution

functions; when higher order terms are included to cbtain
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an improved equation (i.e. MPY), this approach also
becomes very time consuming. The improved accuracy

of the results is perhaps thec main advantage.

6.2 Conclusion

In this work we have applied two of the well-
established 1iquid theories, the Monte Carlo (MC) method
and the Percus-Yevick (PY) equation, to a dense hydrogeneous
plasma (n, = 1018e/cc) near the ionization temperature.

The MC method was applied at 104°K, and extensive results
of these calculations are presented in the Tables and
Figures in Chapter II. From these results it was
concluded that gquantum mechanical considerations are
important at small radii for this temperature, and the
cut—of f AO used with the Coulomb potential should be
replaced by an accurate guantal effective potential at
small radii. The results also indicated that the maximum
step length A used in the MC procedure must be carefully
chosen when considering the temperature range correspon@ing
to the transition from the neutral gas to the ionized
plasma. For in this region the plasma appears to

behave as a mixture of two phases, with the choice of

A determining which phase dominates in the relatively
small sample of configurations selected by the MC

procedure.
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The initial application of the PY equation, in an
asymptotic form for large r, indicated that the PY
eguation can be successfully applied to systems composed
of particles with repulsive interactions at short
distances. However, if attractive forces are present,
an inconsistency arises in the asymptotic equation,

This inconsistency is removed by considering additional
terms to the eguation such as those suggested by Green.
The resulting eguation has been termed a modified Percgs—
Yevick equation (MPY). Further initial investigations
into solving the NMPY eguation for a two-component plasma
showed that the integrations involved were highly sensitive
to the form of the interparticle potentials and inter-
particle distribution functions at small radii. To
obtain such accurate two-particle potentials and
distribution functions for an hydrogenous plasma it is
necessary to include gquantal effects. Then, by using
accurate two particle potentials in the MPY equation,

it should be possible to obtain accurate distribution
functions for the many particle system.,

The calculation of accurate gquantum mechanical
two-particle distribution functions has been presented
in detall in Chapter IV. The expression obtained for

the two-particle distribution function, equation (L4.L).
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takes the important Heisenberg effect into account,
but neglects the smaller quantal effect due to
statistics. The computer program written to
evaluate (L.h) is listed in Appendix B, and proves
extremely efficient for calculations of gpe and oc
over a range of temperatures., However in the p-p
case the large increase in the reduced mass of the
two-particle system causes computational difficulties,
and this particular program is 1lnapplicable. For tunately
the semi-classical WKB approximation may be used there,
The quantal calculations of Boe and gep are presented
for the range of temperatures 109°K to 5x104°K.  Because
of the convenient form of eguation (L4.L), the computer
program gives the first bound-state contribution, the
number of bound states contributing to gep(r) to dbtai@
a fixed accuracy, and the total bound-state contributign
for that accuracy. It also calculates the percentage
ionization present; and the radius, T 15 below which
quantal effects become important. The program is
further easily modified to include shielding effects in
an approximate manner, and hence indicates the form of
the distribution function for a many-particle system.

The gquantal results show that there are rather

large deviations from the classical theory at short
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interparticle distances, and that below ry gquantum
mechanical effects become important, especially at
low temperatures. The approximate allowance for
shielding in the calculation of gs(r) indicates the
results are gqualitatively the same for this case, but
at large radii gs(r) merges with the Debye-Huckel gDH(r),
in contrast to the two-particle gpe(r) case, which merges
with the classical gc(r). The inclusion of shielding
also slightly increases the degree of ionization present,
which is to be expected, as the shielding precludes
some of the bound states. Nevertheless the results showed
that either by fully taking account of the bound stateg,
or by attempting to allow for shielding, the degree of
ionization was surprisingly close to the values obtained
by Saha, Also, the results indicate that there is some
justification for considering the first bound state to
provide the major portion of the total bound state
contribution, especially at temperatures below 3x{10%°K,
The accurate two-particle gpe(r), and an
associated effective potential Vpe(r), were then used
as input to the MPY equation. In order to reduce the
computer program to a feasible size the input data used for
the combined effective potential between like particleé
was taken to be the reflection of the interparticle

potential between unlike particles. This procedure
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also avoided the need for a separate calculation of
Vpp(r).

It was found that the PY and MPY equations could
both not be solved at low temperatures, where the
integrations on the right-hand side of each of the
equations formed a divergent series for small r. In
the PY case this also led to negative distribution
functions due to the inconsistency of the second-order
terms. At temperatures above 3x10¢ it became possible
to obtain solutions to both the PY and MPY equations by
employing the iteration technique described in Chapter‘VZ
Accurate results are presented for 4x10%°K and somewha?
less accurate figures for 3x104°K, These results show
that the gs(r) characteristic, obtained by including
a Debye-Huckel shielding factor in the two-particle
quantal calculation, lies between the PY and MPY curves
in the like case for large re. The MPY results are
always larger than the PY results.

A close analysis of the divergence in the integrgtions
on the right-hand side of the MPY, showed that it was
physically related to the formation of pairs in the
plasma. To proceed to lower temperatures it would be
necessary to solve three linked integral equations for

and g Further, it would sppecar desirable

Bee? Epp pe”
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to ineclude guantum statistical effects for the e-e
interactions. Because of the sensitive dependence of
the integral-equation procedure to the initial input at
the low temperatures, in the future it may be preferable
to obtain input data by extrapolation of solution at
higher temperatures.

In conclusion, boththe integral equation approach
and the MC method encounter difficultics as the plasma
becomes only partially ionized. At temperatures in
the region of the ionization temperature, quantal effects
play an important role, and should be incorporated into
both approaches in a rigorous fashion. For temperatupes
Just below the ionization temperature, indications are;
that it will be necessary to include three-body interact-
ions,. For temperatures above the ionization temperature,
and allowing for quantum effects, the PY equation yielés
approximate distribution functions very economically.
They can be improved by solving the MPY eguation, as

demons trated in Chapter V.



APPENDIX A

The articles in this appendix were published

by the author during the course of this work.
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The range of application of the Percus—Yevick equation is analysed using an asymptotic form of
the equation. The inconsistencies arising for mixtures of repulsive and attractive forces are removed
by considering additional terms to the equation, but the equation still assumes an inconsistent form

for many systems of attractive forces.

1. INTRODUCTION

INCE Percus and Yevick' put forward their
integral equation to determine radial distribu-
tion functions g.,(r) between particles of type a and
b, it has been applied very successfully to fluids, i.e.,
Broyles,” and has been extended by Carley’ to a
classical electron gas. However, in trying to apply
the equation to a proton—electron plasma, we have
found that the equation, to second order in ¢ (r)
(the interparticle potential between particles of type
«g” and “b” at a distance “r” apart), can have no
asymptotic solution unless additional terms are con-
sidered. It is the purpose of this paper to first show
how the inconsistency arises, and secondly, subject
to various assumptions, to show that the associated
difficulties may be overcome if terms suggested by
Green® are included.

II. AN ASYMPTOTIC FORM OF THE
PERCUS-YEVICK EQUATION

The Percus-Yevick equation, generalized for a
fluid mixture, has the form

Gatlar = 1-— Z n. f (eac W l)gac(gbc = 1) de“ (1)

where
e, = €Xp (6¢ab))

which can be written

gaen) =1 — 27“-‘ Zc:nc j:o f‘::l les(s) — 1]

0o [goe() — e dtsds, (2

where n, is the number density of particles of type ¢
per unit volume, > sums over all types of particles
in the mixture, and d’z, ranges over the volume of

1 J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958).
1+'’A. A Broyles, J. Chem. Phys. 37, 2462 (1962).

s+ D. D. Carley, Phys. Rev. 131, 1406 (1963).

«H. S. Green, Phys. Fluids 8, 1 (1965).

particles of the cth type. Broyles® rewrote this equa-
tion in a form

4 frgutes) — 1 = 25 Lo |6 +1gels)

Tgoels + 7] — DI — e®ls ds,  (3)

which is much easier to handle computationally.

To obtain an asymptotic form of the equation for
large r, we make the following assumptions: (i) That
Béas(r) is O(r™™) for large r, and for attractive forces
it is finite for small . This assumption excludes
gravitational forces, and requires a cutoff at small r
for Coulomb forces. It implies that we can express
gur(r) = 1 + €,(r), where e.5(r) will be finite for
small r, and will be small for large 7; and without it
statistical mechanics is probably impossible. (i) That
s (r)r™ — 0 for large r for all m, at any rate for
sufficiently small m. (iii) That [[5 Envastivel) AT >
|J% €eputnive(r) dr| for mixtures, which in a plasma
is a consequence of screening between particles.

Now by assumption (i) we can expand in powers
of ¢ for large r, and with retention of terms involving
only small powers of ¢, Eq. (2) becomes

1+ eI + Bdas(r) + %624’?117(7") AF 294l
~ 14 Z Son [ - el + )

f aDtdisds . @
le—r|

Changing the variable toy = s — 1, and neglecting
€,5(r) by assumptions (i) and (ii), Eq. (4) reduces to

Béw(r) + 367000) + -
S8 S [T ey + OML ey + )

g l (DLt @A) dy e )

5 A. A. Broyles, J. Chem. Phys. 33, 1068 (1961).
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ON THE PERCUS-YEVICK EQUATION

Using assumption (ii) it can be seen that the most
important contributions to the right-hand side inte-
gral in Eq. (5) arise when y is small, and hence, a
cutoff parameter “a’’ is introduced, where a < r for
large r, beyond which contributions to the integral
are assumed negligible. Further by assumption (i)
the right-hand side is finite, and since  is large and
y small, ¢.(y + r) can neglected; so the right-hand
side can be expanded in powers of ¢(y + r), to give

Boba(r) + 3B8%%(r) + - --

= 2r Tone [ [—Bouly+1) — LW +1) -]

(y_ﬂ) f| Y aOtdtdy.  (©

r vi

As there are no general existence theorems for solu-
tions of nonlinear integral equations, even if we
obtain agreement in Eq. (6), we cannot be sure an
exact solution to Eq. (2) exists. However, if we are
able to satisfy the asymptotic equation (6) there
may exist a solution to Eq. (2), whereas if (6) has
no solution, no exact solution of (2) can exist.

For a system of particles involving attractive
forces only, it is evident from Eq. (6) that a solution
1s impossible, since ¢,, will always be negative. Also,
JU7 €astractive () dt is positive for small y by physical
considerations, and ¢,, is negative. Thus, to first
order the left-hand side is negative, while the right-
hand side is positive; and to second order the left-
hand side is positive, while the right-hand side is
negative, both orders being mathematically incon-
sistent. However, by applying the above reasoning
to a system of repulsive forces only, we see that ¢,,
becomes positive, while [1*" ¢, (f) dt becomes nega-
tive; so now both first- and second-order agreement
in ¢ can be obtained. For a system of mixed forces,
several cases arise, for ¢,, can now be positive or
negative, and if ¢,, is positive, so a particle “qg”’
repels a particle “b,” then particle “a’’ can attract a
particle “‘c” while particle “b” may repel particle
“c.” (See Table 1.) Because many of these cases
are unphysical, this paper will be concerned with
mixtures of charged particles. Then, if particle “a”
repels particle “b”’ and attracts particle “c,”” particle
“b” will attract particle “c” also. For these charged
particle mixtures, first-order agreement follows by
the same reasoning as above, but second-order con-
siderations lead to disagreement—on using assump-
tion (iii).

For a Lennard-Jones type of interparticle poten-
tial, which is repulsive at short distances, and falls
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TasLE I. Summary of the consistency of Eq. (6) for
various cases.

Whether asymptotic Eq.

Type of force Order in (6) is consistent to
present, bac this order

Attractive only First No
Second No

Repulsive only First Yes
Second Yes

Mixtures First Yes
(of charges) Second No

off rapidly, the Percus-Yevick equation applies well,
and, in addition to a solution to Eq. (6) being pos-
sible, a solution to Eq. (2) has been found. However,
for mixed Coulomb interparticle potentials an exact
solution is clearly not possible as there is an incon-
sistency ir the second-order terms of Eq. (6).

II1. ADDITIONAL TERMS FOR MIXED FORCES

Green® has proposed an integral equation which,
compared with the Percus-Yevick equation, con-
tains additional terms. As each term can be ex-
pressed in powers of ¢,,(r), which have been assumed
to fall off with r, only the first additional term will
be considered. The equation for the radial distribu-
tion function now becomes

Jurbr = 1 + X, m, f (go: — D@l — e,.) d*x,

1F % Zc e Zd Na ff (9o — D(goa — 1)g.49a:9aa
‘(1 — )1 — e,0) d°z. d°z,. )
Rewriting the “last term’” above in terms of inter-

particle distances, with the same notation as in
Eq. (2), we obtain

g
FZn T [ [
[ 100 = 11006) ~ 1090011 — 6.6]
1 — e ]gac(w) d8v dv t dt u du s ds,
where
2w = 276" + ) — W 4+ — D)+ — )

+ [41“282 i (’I‘Z _|__ Sz i tz)z]}

4 — (¢ 4w — 0B cos 6.
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If this term is treated in a manner analogous to
that adopted in the previous case, an expansion in
terms of ¢(r) reduces, for large r, to the following
form:

or Done L [ Bl +1) -+ 10+ p/)

D+2r1

[ Bouta 010+ ) [ ad) f 0

vl
f [1 4+ e(w)] dév dv t dt dq dp,
0

where
w = £ +0® — 2pq + 28 — p)* — ¢°)* cos 6.

When this term is added to the second-order term
of the Percus—Yevick equation, it makes the asymp-
totic equation consistent to second order for charged
particle mixtures, by adopting arguments analogous
to those used previously.

A. A. BARKER

IV. CONCLUDING REMARKS

The Percus-Yevick equation can be successfully
applied to systems composed of particles with repul-
sive interactions at short distances. However, if
attractive forces are present, for the existence of an
asymptotic solution it is necessary that corrections
of the type suggested by Green should be included.
The main disadvantage of this additional term is
that the equation can no longer be expressed in the
convenient form of (3), and so computational solu-
tion of the equation will be correspondingly-more
difficuit. In the future the author hopes to publish
computed radial distribution functions for a proton—
electron plasma for various densities and tempera-
tures.
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Results of & recent Monte Carlo study of a hydrogenous plasma near the ionization terx{péfature-;sbd\s" 5 ;”_'fr“ i
- that distribution functions obtained are unusually sensitive to two parameters. The first is the cutoff jm-'""7 i -«[7:.
posed at small radii on the Coulomb potential between unlike particles, and it becomes necessary to con= /i 1ol

. sider quantum-mechanical effects at these radii. The second is the maximum step length A through which |
the particles are allowed to move in the Monte Carlo procedure, It appears that neat the ionization temperas
ture the plasma behaves as a mixture of two phases, one ionized, the other un-ionized, and the magaitude

L chiosen for A infiuences which phase dominates.

/TTHE problem of obtaining distribution functions
.~ for long-range forces has been considered by
Zroyles, Sahlin, and Carley,! and Carley? has extended
the theory to a classical electron gas. Subsequently, &’
Monte Carlo (MC) study of a one-component plasma
has been completed by Brush, Sahlin, and Teller.? In
this paper the author presents the results of extending
the MC procedure, described in detail by Barker, to a
two-component plasma, and particularly considers
temperatures in the region where ionization occurs.
This region is of considerable interest, but is also the
most cifficult to deal with from the mathematical
standpoint. It is found that for a plasma of density
10%¢/cc at a temperature of 105°K, acceptable radial
distribution functions are obtained using the MC
teclinique, and below 9X10°°K the particles become
paired, forming the neutral gas. However, in the range
165X 10*°K, the plasma appears to behave as a
mixture of two phases, ionized and un-ionized. Which
phase dominates is influenced rather sensitively by a
parameter A. ' :

As the parameter A assumes some importance in the
following discussion, the manner in which it arises will
be briefly discussed. In MC calculations of this type, a
number of particles—16 protons and 16 electrons in this
case—are placed in a unit cell. This unit cell is sur-

-

*A. A. Broyles, H, L, Sahlin, and D. D. Carley, Phys, Rev.
Letters 10, 319 (1963). =

3D, D. Carley, Phys, Rev. 131, 1406 (1963).

? 8. G. Brush, H, L. Sahiin, and E, Teller, J. Chem. Phys, 45,
2102 (19466).

4 A, A. Barker, Aust. J, Physics 18, 119 (1963).
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rounded by a network of identical cells, thus enabling
the energy of a configuration to be calculated con-
veniently as described in Refs. 3 and 4. One particle is
displaced a random amount, whick can have a max-
imum value A. The energy of the new configuration is
calculated, and the MC procedure decides if the move
is acceptable or not. Each particle is considered in this .
manner until the system approaches an equilibrium
energy level. The criterion for the choice of A is usually
based on minimizing the rate of approach of the system
to equilibrium ; however, as is shown below, the results
of this calculation indicate that other considerations
should also be taken into account.

Another important choice is the cutoff imposed on
the attractive Coulomb potential at short radii. The
need for this choice is also crcountered when trying to
solve integral equations with attractive Coulomb forcis
present. It can be overcome by treating the close inter-
actions quantum mechanically (QM), and Barker® and
Storer® have independently calculated, with close
agreement, effective potentials ¢, which should be used
when unlike particles approach closer than a certai
distance ry, which depends on temperature. However,
the MC calculations were completed previous to the
calculation of ¢,, and the results are presented in Fig. 1,
which shows the unlike radial distribution function
guo obtained from iterations 30 000 to 50 GO0 with
A=12.5a¢ (8o is the Bohr radius), and using the usual
Coulomb potential ¢¢, but with a constant value below

il

§ A, A, Barker, Aust.t{l. Physics 21 121 (1968).
*R. G, Storer, J. Math, Phys. 9, 964 (1968).

]

r=2a0. A classical distribution function ge=¢f- is
drawn for comparison, and the equivalent quantum
mechanical case gou=e* is also shown. The guo fails
to repreduce g, at small radii, and this is almost cer- |
tainly due to too large a choice of the step size A, with
the result that not enough sample points are considered |
at short interparticle distances. At higher radii, guc is
well above g., which implies that two unlike particles
prefer to remain some 25 go apart. This implication is |
confirmed by a close study of particle movements, from |
which it is found that two unlike particles tend to move |
around the cell together. e

If A is further increased to'S0as, then gae hecomes
appreciably smaller than g, especially for #< 504, and
the particles are found to move in an almost random
fashion. The study of the particle movements also
expiains why the graph of the distribution function
between like particies has an unusual peak at low radii,
which is found to be due to discrete collisions between
a pair (effectively neutral) and an ion or electron. The
choice of A also influences markedly both the rate of
approach of the system to equilibrium, and even the
equilibrium energy Ievel attained.

Figure 2 shows the variation of the cell energy per
particle (16.protons and 16 electrons in the unit cell),
with the number of iterations completed (cach iteration
gives every particle in the unit celi o chance to move &

s et b sk L
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" maximum distance 4). In (b) and (c)/it can be seen that

is reached faster by approaching from an ordered

configuration. Pairing is said to occur when the potential

energy between a proton and electron is greater than
the ionization energy (this occurs when they are less
than 2a, apart), and (d) shows approximately the
number of pairs in the unit cell at that energy. The
study of particle movements mentioned confirms that
the degree of pairing depends on A. Previous MC calcu-
iations®*7 have emphasized that results should be

independent of A, and the magnitude of A has been

chosen empirically by considering the rate of converg-
. ence of the system to equilibrium. It has been found
that A=~L/(3N) =~5.0a, in this case, where L is the
© unit-cell length, and IV is the number of particles in the
- cell, has the right order of magnitude to secure near

i optimum convergence. However, in the region near the —

- ionization point it appears as if A is analogous to a limit
of the energy of quanta absorbed or emitted from the
radiation field, and if A is small, one particie may move
slightly away from the interacting particle, but rarely
escapes fully; whereas if A is relatively large the parti-
cles completely separate. This behavior is peculiar to

T W. W. Wood and T. R. Parker, J. Chem. Phys. 27, 720 (i957). -

# A, A. Barker, Phys. Fluids 9, 1590 (1966).
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I1e. 2. Approach to cqun.onum {a) from & random initial
configuration of protons and electrons with A=12.5a0; (b) irom

a configuration oi pairs approximately equidistant from each other,
with A=12.56; (c) as for (b) but A=50as; (d) levels 5h0\smg

apprommately the number of pairs. exlstmg at this ene.gy

the temperature range near ionization, as at low and
+ the equilibrium energy is extremely sensitive to A, and | high temperatures the resuits are independent of A for .
{(a) and (b) show that approximate equilibrium energy |

which phase dominates.

In conclusion, then, the potential ¢, should be used

a long enough run. It is in this respect that the piasma
appears to behave as a mixture of two phases in the ;
region of ionization, with the choice of 4 determining

in MC calculations for attractive Coulomb interactions
where r<rs; and the maximum step length A must be
carefully chosen when in the range near the ionization
temperature., It might be preferabie (though more
expensive computationally) to use a step size with a

Gaussian distribution, corresponding to the Boltzmann

distribution of energy in the radiation field, in this
range. However, because of the excessive computing

time invojved (3000 iterations taking.ih on a CDC.
- 6400 computer), distribution functions should be

obtained more economically in this region by solving a

modified Percus-Yevick . equation® and calculations

using this approach are at present being carried out. It
is hoped by comparing these results with the MC re-
sults to resolve the dilemma of the choice of 4, and

hence improve the MC results.

The author wishes to acknowlédge the belpful
suggestions of Professor H. S. Green and Dr. 2. W,
Seymour on this work. The MC results were completed

" under a generous grant from the Austraiian Instuute ‘,'

. of Nuclear Science and Engineering.
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APPENDIX B

FORTRAN PROGRAMMES

1. To evaluate the QM distribution functions

The program listing is for the calculation of
gpe(r), for r varying from .5a, to 117a, in steps
of one half Bohr radii. The prefix or suffix HBR
signifies the wvariable expressed in half Bohr
radii, and BR signifies Bohr radii. The program
only needs slight modifications to calculate gee(r).
The charge term SHZ becomes -1, the reduced mass
REDM becomes 0.5, and the bound state calculation
(statements 20 to 16) is removed, with several minor
pro gram changes.

A separate fortran program was written to
calculate the first bound state contribution and
evaluate the distribution functions at zero radii,
but as it is mainly a simplification of the program
listed, it is not included. Two additional programmes
were run to check the values of the bound and
scattered contributions by using alternative technigues
as discussed in section L.2. These were run only

for select r values, and are also not listed.
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2. To solve a Modified Percus-Yevick equation

The program reads the results of the last run
from tape, transfers them to another tape using the
'FPather-daughter' procedure, and begins this caleul-
ation using the gab(r) derived in the previous iteration.
Suppose for definiteness the jth iteration (ITER) has
been read in, i.e. g(j)(r), where g(j)(r) refers to both
like and unlike cases. The wvarisble LA is given the
value 1 to denote interactions between like particles,
and 2 to denote interactions between unlike particles.
LC and LD are used in a similar role during the 2, and
Zd. The equation is programmed for the computer in

the form:-

GO(TA,IR+1) = (1+TDTVM+FDTM)/EXP(PZ(LA,LR+1)
where LR is the radius in Bohr radii (1 is added in
indices to avoid storage difficulties when r=0).

TDTM is the PY term:
/-LRF

Hl\)
1

S+LR
c ]ﬂ [1-e_,(s)].g  (s) g (t)-1]tat .sds

Zn
c G Is-IR1

for eac(r) exp [PZ(IAC,IR+1)]

explGZ(IAC,IR+1) ] o

go0(T)
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FDTM is the additional term suggested by Green:

LRF , IRF LR+S ; LR+U T
= EE'Z ne Z nd /‘ ]V [ / /
= e g 0 o “|1r-s|’|1R-U|" ©

[8pc(t)-11 [gq(v)-1] g, (s) g q(0) [1-e,4(u)]g,, (W)
d6vdv tdt udu sds for
2r2w? = 2r2(s?+u?) - (u2+r2-v2) (r2+s2-t2)

+ u[r2s2-(r2+sg—t2)2]% [hr2u2—(r2+1f—v2)2]% cosf .

The TDTM and FDTM are decomposed into terms obtained by

completing the respective summations to give

TDTM

Il

TDCON#*[TD(LA,1) + TD(LA,2) ]

FDTM = FDCON#*[FD(LA,1,1) + FD(L4&,1,2) +

FD(LA,2,1) + FD(LA,2,2)] .

The two dimensional integration contained in TD(LA,LC)
is carried out in the DO loop from statement 109 to 102,
and the five dimensional integration contained in
FD(LA,LC,LD) is completed in the DO loop from statement:
102 to 92.

As described in section 3.3, the integration
procedure finally adopted was a simple trapezoidal rule,
The mesh ratio used (MHS, MHU and MHZ for the 5D case, |

and MHT and MHF for the 2D case) were altered according to

the region of integration, i.e. to MHI (5D) and MTI (2D)
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for the "inner" region, to MH(5D) and MHT(2D) for
the "main" region and to MHLR(5D) and MTLR(2D) for
the "large r" region. Ths procedure used to obtain
g(r) for non-integer values of LR was to do a linear
interpolation between GZ(LA,LR+1) and GZ(IA,LR+2),
iees on the logs of g(r).
The final GO(TLA,LR+1) obtained is stored (statement
188), and the GO(ILA,LR+1) is returned to the start of

the program as P A similar iteration is made but

g+1°
the GO(IA,LR+1) derived are now stored as g4,0° (statement
195) and then used to obtain a g as described in
section 5.2 (see statements 195 to 173). The value of

g may be mixed (as in 199) with the g4 read in initially
to obtain the next g1y’ or may be used directly as input
for the next series of iterations, g1y’ gj+3, gj+h’ to
obtain the next estimate of g ° On each iteration the
main results are printed out (204) and written on tape
(171)

The program used for the PY calculation is

essentially the same as the one listed ( but does not
contain the time consuming 5D calculation) and so is
not presented. Small programmes to calculate g(o)

from equation (5 ) and the thermodynamic integrals

I and J referred to in Chapter 5 are also omitted.
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