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SUMMARY

Binary diffusion coefficients, D12 , for the
systems He-N,, He-0;,He-Ar, He-CO: and N,-Ar have been
measured at 300K as a function of concentration with a two
bulb cell (A,) using connecting tubes of different diameters.
For comparison, the same binary systems were studied with
a Loschmidt cell (A3). The data obtained from these two
cells mentioned above shows that the Wirz relation to
calculate the end correction, which is usually applied to
the connecting tubes of two bulb cells, is not precise
enough for the present accuracy (i.e. 0.1%) and suggests
that it would be better to calibrate two bulb cells with
the most accurate data available in literature rather than
to use the Wirz relation.

An entirely different, small two bulb cell (RAs)
was constructed and calibrated with the data obtained from
a Loschmidt cell (A;3). This cell (A;) was then used to
study the concentration and temperature dependences of D12
for several binary gas mixtures.

A study of the concentration dependence of diff-
usion coefficients for the system He-Ar has also been done
in the Loschmidt cell (2;) at 277.00K and 323.15K to measure
the change in concentration dependence of D12 with temp-
erature.

For the sake of comparison, the binary aiffusion

coefficients for all the systems under study were predicted
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using Kihara's second approximation to the Chapman-Enskog
theory. The results show a reasonably good agreement
with the experimental values.

Measurements of 012 were made as a function of -
temperature between 275 - 325K for all the noble gas systems
except Kr-Xe and for the systems He-N;, He-0;, He-CO ,
Ar-N,, Ar-0;, Ar-CO, Kr-CH, and CF4-CHyu with a small two
bulb cell (A,) and a Loschmidt cell (A;). These results
together with some excellent second virial coefficient data
were used to calculate potential parameters which predicted,
within the experimental errors, almost all the transport
data available in the literature. The potential parameters
for like interactions were also calculated by coﬁbining the
viscosity and the second virial coefficient data from the
literature. These parameters (e;; and 011) were then
used to calculate the self diffusion coefficients which
show a fairly good agreement with the results in the
literature.

The temperature dependence of binary diffusion
coefficients for the almost Lorentzian gas mixtures He-Ar,
He-Kr, H,-Ar and D,;=-Ar were also studied using a Loschmidt
cell (A;) at one atmosphere pressure and over the temperature
range 275 - 325K. Thermal diffusion coefficients for the
Lorentzian gas mixtures (mentioned above) were calculated
with the help of a method suggested by Mason and discussed
with reference to the data available in the literature.

Finally, the Loschmidt cell (A;) was modified to

study the pressure dependence of mutual diffusion coefficients
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for the systems He-Ar, He-0;, He-N; and He-CO; up to
approximately 25 - 30 atmospheres. But due to lack of

precision (i.e. 0.1%) at high pressures, success was only
achieved up to 20 atmospheres. The experimental results
thus obtained were compared and discussed in terms of the

Thorne-Enskog theory of moderately dense gases.
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CHAPTER 1

GENERAL INTRODUCTION

Recently, considerable attention has been paid to
the study of the transport properties of gases, since these
can furnish valuable information regarding the nature of
the forces existing between atoms and molecules. Among
these properties diffusion is of great interest because,
to the first approximation, it depends only upon the inter-
actions between the unlike molecules while all other
properties (e.g. viscosity, thermal conductivity, thermal
diffusion) depend upon both like and unlike forces between
the atoms or molecules.

Two types of cells are in common use to study
diffusion in gases:

1. The two bulb cell designed by Ney and Armistead',
2. The shearing cell of Loschmidt designz.

Several workersaﬁ19 ,after some modifications, made
practical use of these cells to determine the tracer, mutual
and thermal diffusion coefficients using a mass spectro-

meter’’ , a differential thermal conductivity analyser4—6,

s 9

an interferometerlG, electrodesln, thermistors8 etc. to
measure concentrations. The results obtained before the
early 1970's have been reviewed by Marrero and Mason’’. This

compilation also indicates that a lot of work has been done

on diffusion as a function of temperature whereas the inform-



ation about the concentration and pressure dependence of
diffusion is meadre.

To aid this scarcity, Van Heijningen et a1.®’ (in
the late 1960's) constructed a two bulb apparatus and studied
the concentration and temperature dependence of diffusion
coefficients for binary mixtures of noble gases using therm-
istors to measure the rate of change in concentration. The
reproducibility of the results given by them is 1 - 2%.

y 9

Some attempts were made”’ to examine the Chapman-
Cowling and Kihara expressionszl, but due to the lack of
accurate and precise experimental data, the workers failed
to notice the finer details of these theories.

The necessity of the reliable and accurate data for
diffusion to study the finer Getails of the expressions
belonging to various transport properties forms the funda-
mental basis of this thesis.

Dunlop and co—workerszz_zsimproved the experimental
techniques and obtained very precise data (=~ + 0.1%) which
was not accurate enough because of the improper use of the
thermistor bridge. Later Yabsley and Dunlop26 modified
the Wheatstone bridge circuit and collected a considerable
amount of data (accurate and precise) for-some binary gas
systems. In 1976, these authors constructed a two bulb
cell and reported27the concentration dependence of binary
diffusion coefficients for He~Ar and He-0, systems at
300K using two connecting tubes of different diameters and
gave an equation, similar to the one given by Wirzzs, to

calculate the end correction.



The first project of this thesis was to continue
the above study with the aims:
i. to give accurate and precise binary diffusion
coefficients for several gas mixtures;
ii. to investigate the details of Wirz relation %,
iii. to test the agreement between Kihara's second
approximation to the Chapman-Enskog theory and
the experimental data;
iv. to measure the variation in concentration depend-
ence of D12 with temperature (over = 46K).
All these aspects have been discussed in Chapter 4.
As stated earlier, the information about the forces
between the atoms or molecules can be obtained from the study
of the transport properties as a function of temperature.

56,8-10,29-45 , ied to obtain potential parameters

Many workers
(e,0) with the help of these physical properties.

Mason et a1.'® predicted the potential parameters
from the temperature dependence study of thermal diffusion
coefficients and calculated 912 for the same systems to
test their parameters.

Kestin and co-workers > measured the viscosity
coefficients for several gases and their mixtures, calculated the
force parameters with the application of their theory of
corresponding states’ ”® and predicted the diffusion coefficients
and thermal conductivities over a wide range of temperatures.

Smith et a1.3%40proposed a method to calculate the

interaction energy parameter (ni;z) ., which in turn depends

upon the potential parameters, from the temperature dependence



of viscosities and obtained this parameter (n,») for the
mixtures of He-Ar, Ar-Kr and CH4-CFyu.

5,6,8,9,29—-32,44,45
Many authors™ 777 T

measured binary
diffusion coefficients as a function of temperature and
calculated the potential parameters using Lennard Jones
[12,6] and exp-6 potential models. The values reported by
van Heijningenﬁ’9 and Hogervorstzw&zfor these parameters are
noteworthy since these authors measured the diffusion coeff-
icients for almost all the noble gas mixtures over a wide
range of temperature with a reproducibility of 1 - 2%.

It was noticed that the potential parameters
obtained from one of the transport or equilibrium properties
can reproduce the same data or the data for the same property
at low and high temperatures, but unable to generate the
data for another transport or equilibrium property within
the experimental errors (e.g. the potential parameters

obtained from viscosities have not predicted virial coeff-

icients, (see Chapter 5A) because of the:

i. less availability of the precise experimental
data;

ii. less flexibility of the intermolecular potential
models.

1-43 nodified a three variable [m,6]

Klein et al N
potential model to a four variable [m,6,8] potential model.
They calculated the force constants for many gases with
the application of their [m,6,8] potential function and
suggested42that the gases Ar, Kr, Xe follow the corres-

ponding states law since the potential that applies to them

differ only in the two parameters ¢ and eofﬁ;



The aims of the second project (discussed in
Chapter 53A) were:

i. to see if potential parameters obtained from very
precise experimental diffusion coefficients measured
over a small temperature range (= 46K) can reproduce
all the literature data or not;

il 5 to see if noble gas mixtures are conformal with any
of the assumed [m,6,8] group of potentials.

It was considered desirable to calculate the potential
parameters for the mixtures with diatomic or polyatomic mole-
cules to see the changes produced by the internal energies
of the molecules in predicting the literature data. The
potential parameters for like interactions obtained by
combining the viscosity and second virial coefficient data
are also discussed in Chapter 5A.

The purpose of the next project was to verify the
relation, given by Mason4ibetween the thermal diffusion and
the temperature derivatives of the diffusion coefficients.

Los and co—workers44_47measured the binary diffusion
coefficients for some Lorentzian gas mixtures as a function
of temperature and calculated the Lorentzian thermal diffusion
coefficients, &, , at various temperatures for the same
mixtures.

For further investigation of the Mason's equationsn,
the temperature dependence of binary diffusion coefficients
for almost Lorentzian gas mixtures He-Ar, He-Kr, H;-Ar and
D;-Ar were measured and listed in Chapter 5B. The Lorent-
zian thermal diffusion coefficients were also calculated
and discussed in the same chapter in terms of the limited

data available in the literature.



The final project for this thesis was to study the
effect of pressure on diffusion coefficients.

Because of the difficulties in handling the gases
at high pressures, there is little data available in the

15,4958

literature Some attemptsn—48 were also made to study

the tracer diffusion coefficients as a function of pressure,
but the results obtained by these workers'>"7*® are not very
good (reproducibility is not better than 5%).

Recently Staker et al.”’ constructed a Loschmidt
cell and measured the binary diffusion coefficients for
the mixtures He-Ne, He-Ar, He-Kr, He-Xe, He-N, and He-CO3
at 300K and up to only 9 atmospheres. Bell et al.“)used the
same cell under similar conditions and added the data for
ten more binary systems containing helium as the major compon-
ent.

The purpose of this project was to perform the exper-
iments at moderately high pressures up to 25 - 30 atmospheres
and at different temperatures. It was done by modifying

%160 Jnd the results

the cell used by the previous workers’
obtained have been discussed (Chapter 6) with reference to
the Thorne-Enskog theory o1,

In addition to the above, Chapter 2 contains some
theoretical aspects of the Chapman-Enskog theory and its
extension by Enskog and Thorne for binary diffusion coeff-
icients at moderately high pressure. This chapter also
gives some information about the diffusion at low pressures

and the use of the four variable [m,6,8] intermolecular

potential function.



In Chapter 3 very brief descriptions of the three
cells used to measure 012 together with experimental
procedures are given. A method to determine the diffusion
coefficients from the raw experimental data is also discussed

at the end of this chapter.
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CHAPTER 2

THEORETICAL ASPECTS OF TRANSPORT AND
EQUILIBRIUM PROPERTIES IN GASES

2.1 Introduction

The transport properties of gases depend upon the
forces between atoms or molecules and their general changes
in composition, temperature and pressure. Chapman and Enskog1
(1910-1917), independently, developed a theory for monoatomic
gases and their mixtures which includes these intermolecular
interactions. In the beginning of this chapter, the kinetic
approach of Chapman and Enskog1 to transport properties for
dilute gases is described. Extension of this theory by
Enskogz, applicable to moderately dense gases for single
components, and Thorne's2 generalisation for their binary
mixtures are also discussed here. The equations for diffus-
ional flow at very low pressures (Knudsen diffusion) and the
ones to calculate the collision integrals and reduced second
virial coefficients for the [m,6,8] intermolecular potentials

are given at the end of the chapter.

2.2 Chapman-Enskog Theory for Dilute Gases

Since the theory is quite long and cumbersome, a
detailed study has been avoided and only a summary of its
basic fundamentals, assumptions and the results of the deri-

vations for transport coefficients are given here.



Assumptions of Chapman-Enskog Theory

i. The Chapman-Enskog theoryl takes into account only
binary collisions and therefore restricts its application to

the gases or gas mixtures at low densities which means the
results obtained from this theory are not applicable at
sufficiently high pressures where ternary and high order
collisions occur.

ii. The first approximation of the Chapman-Enskog theory
obtained from the distribution function is applicable when
gradients in physical quantities (e.g. concentration, temp-
erature, density, molecular velocities, etc.) are slightly
different from equilibrium. For larger gradients, the

higher terms of the series approximation of the distribution
function must be considered.

iii. The pressure of the gas should be high enough for the
mean free path to be negligible as compared with the dimensions
of the container, thus the gas behaves as a continuum (collisions
of the gas molecules with the container can be neglected). The
theory does not apply to systems at very low pressures because
the gas molecules collide frequently with the walls of the

container which makes the equilibrium hard to establish within

the gas itself. The Knudsen gas behaviour is an extreme case
where gas-wall collisions predominate .
iv. The Chapman-Enskog theory is applicable only to mono-

atomic gases or gas mixtures with no internal degrees of freedom.
Strictly the theory is limited to spherical molecules, however
this can be relaxed to apply to the molecules which are not too
non—spherical""s or polar6 because some of the transport properties
of gases (e.g. diffusion and viscosity) are little affected by

the internal degrees of freedom.



v. The molecular size should be negligible as compared
to the mean free path so that the distribution function of
the colliding species can be evaluated at the same point, r,
in space at the moment of contact.

vi. The distance between the two colliding molecules
should be large enough to ignore the molecular interactions
so that the second order distribution function can be expressed
as the product of the two first order functions.

vii. At very low temperature (< 200K) quantum mechanical
diffraction effects, similar to those diffraction effects in
optics, are significant for lighter gases such as helium,
hydrogen and their isotopes. These effects have been shown”®
in evaluating the quantum-corrected collision integrals for
the Lennard-Jones [12,6] potential where phase shifts are
more important than the angle of deflection. Chapman and
Enskog used Classical-mechanics which exclude these quantum
effects thereby imposing further restrictions on its use.

The Chapman-Enskog theory is based upon the knowledge
of the first order distribution function ﬂ (r,vi,t) which is
defined as ﬁ (r,vi,t)dr, dvi and is the probable number of
molecules of the ith species to be found at a particular time
t in the spatial range (dr about r) and in the velocity
range (dvi about vi). At equilibrium, when there is no
gradient in the concentration, velocity and temperature, this

function reduces to Maxwell distribution

£ = n (m /2mkT)° exp(-m Vi /2KT) ST |
where n and m, are the number density and molecular weight
of the species i at temperature T , and k is a Boltzmann's

constant.



When the system is not at equilibrium, the distribution
function may be given by Boltzmann integro-differential equationg,
which describes the variation of ﬂ due to molecular inter-
actions and can be solved by a perturbation method developed
by Chapman and Enskog. Since the equation is derived for the
properties of gases which are under conditions only slightly
different from equilibrium, the distribution function term
decays to zero as the system approaches to equilibrium, thus
giving a linearised integro-differential equation. In this

way, ﬂ can be written as

where ﬁ) is a Maxwell distribution function given by equation
2.1 and % is the perturbation function which is proportional
to the relevant transport gradient and can be calculated from
the molecular velocities using a variation technique10 or by .
the solution of an infinite set of linear equationsl.

Generally, the transport coefficients can be determined
in principle from the ratio of two infinite determinants' which
can not be solved exactly. However, these coefficients may
be approximated by systematically truncating the determinants.
Two separate truncation schemes were used by Chapman and
Cowling1 and by Kiharall.

The final equations derived by Chapman and Enskog to
predict the transport coefficients of gases and their mixtures
(used in Chapters 4, 5 and 6) are given here.

a. pDiffusiaon Coefficient for Binary Mixtures
The diffusion coefficient of a binary mixture, to the

first approximation, for both the schemes can be written as
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[D,] =

3 [}CBTS (M]'f‘MQ)]% 1
Po2 Q

p— 2M M, (L1)* N Tt
8vYm s s (T*)

where D, is the diffusion coefficient, T 1is the temperature,
P is the pressure, M, and M, are the molecular weights of

the species 1 and 2, 0, 1is the distance between the molecules

(1,1)*

when interaction energy is zero, Q“

is the reduced coll-
ision integral which depends upon the reduced temperature,

T* = kT/€12, €12 is the depth of the potential energy well
and k is Boltzmann's constant.

As can be seen in the first approximation equation 2.3,
the diffusion coefficients of binary mixtures depend only upon
the interactions between the unlike molecules which means
that the temperature dependence of the diffusion coefficients
gives an excellent method* to calculate the force constants
for dissimilar pairs of molecules. The same equation 2.3
also shows that [D12]1 is independent of composition but
inversely proportional to the pressure, thus predicting that
the quantity P[D12]1 should be constant at constant temper-
ature.

The higher approximations of D12 for both the methods

are given by:

_ (k)
o,,1, = [D,], £ ce. 2.4
12
where fE is the higher approximation factor which depends

12
upon the molefractions,molecular weights, molecular sizes

and collision integrals.

* The exact method to calculate the potential parameters from
the temperature dependence of the diffusion coefficient
has been described in Chapter 5.



Kihara's second approximation for D12 may be

written as

D1, =D, 1, [1+38,], ce. 2.5

12 72 12

whereas the Chapman-Cowling equation is expressed in the

form of

_ 1
[D12 ]2 = [D12 ]1 [I—"—(‘:—] . eee 2.6

The factor 6n can be calculated by the following

expression

* 2

s _ (6Ci3 -5) 2 {X1P1+X§P2+X1X2P12}

= 7 2 .
12 10 x1Q1+x2Q2+x1x2Q12

where X and x, are the molefractions of the components 1

1
*

and 2 respectively, C;; is a ratio of the collision integrals

given by equation 2.15 and P's and Q's are the complicated

expressions* presented in Appendix 1. The tangled equations

for much higher approximations can be found elsewhere 12,13

b. Self Diffusion Coefficient.
The coefficient of self diffusion [D]1 to a first

approximation can be given by the following relation

(D] = —— [mkT]”

! 8v'm Po%Q

1

(l,l)* (T*) r ..

where all symbols have their usual meanings.

The higher approximations for [D]1 can be written as

D], = [p], £ cee 2.9

k

where k is the degree of higher approximation.

* Both Kihara and Chapman-Cowling gave the same expressions to
calculate the values of P's whereas they differ in those
of Q's .

19.
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The second approximation for self diffusion coefficient,
for both the schemes, is similar to that given for binary
mixture except that & is only a function of reduced temp-

erature T* and the equations can be written as

[D]2 = [D]1 [1+68] ... Kihara's second approximation
ee. 2.10
[Dk = [D]l [T%g] ... Chapman-Cowling second
approximation
- " @ 2-11
where & can be calculated as
___ (6CY,-5)?
§ = {55-12B%+16a%) ' - Wk 2.12
and
Ax = l2 2" ot )" c.. 2.13
px = {5a¢1* 2" - 4013 "yl T co. 2.14
cx = l1» )yttt v, 2.15

The values of these ratios of collision integrals (A*, B* and

C*) are very close to unity.

c. The Coefficient of Viscosity for a Pure Gas.
The coefficient of viscosity for a pure gas to its

first approximation is given by the Chapman-Enskog theory

(n]. = —>— [mMkT)” L :

v 1e/7 o2 QD" (%) e

For higher approximations [nh can be expressed as

(nl, = [n], £° ce. 2,17
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where n represents the coefficient of viscosity of a gas.

The quantity f;k)

(higher approximation term) is a function
of T* and differs only slightly from unity. The coefficient
of viscosity (equation 2.16) depends only upon the interactions
of like molecules, the temperature dependence study of which

makes an important tool (see Chapter 5) to calculate the

potential parameters for pure gases.

d. - The Coefficient of Viscosity for Binary Mixtures.
The coefficient of viscosity for binary gas mixtures

can be calculated by the use of the following relations.

1 ~ Xn+Yn - [l+(Yn/Xn)] 218
= = _— . .o i
[nmix 1 l+Zn oL l+Zn
2
X = i 5 X, % + : 2.19
n n, 1 . Oy n,1, ° o )
X M 2X X (M +M )2
v, =3 (@) * ot (e )
K > [nl]l Mz [n12]1 4M1D%
2 2
i) - w3
n, 1, [n, ], M, 1, \M
M M +M_ 2 ,I[n ]
_ 3 aaxlo2f L 12 12 "1
Zn =g A [XI(M ) + 2x1x2{(4M M ) ( T ]
12 171
[n. .1 M
+-[—'2]—1)— l}+x2 <M—2>] sew 2.21
N4y 2 1
2M M kTq%
5 1 2 1
.1 = _[ ] : .. 2.22
12 16,7 LMy *M, ) i2§4zﬂ) (T*)

where [n_ . ] is the coefficient of viscosity for a binary
mix "1
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gas mixture to the first approximation and [nlh and [nzh

are the viscosities of pure components 1 and 2 respectively.

[”12]1 is a hypothetical viscosity coefficient for a substance

whose molecular weight is 2M1M2/(M1+M2) with potential
parameters ¢€,, and 0,, -
The quantity |[1+(Y /xT'] Y4 (1+zﬂ)| (equation 2.18) is

quite large and may contribute as much as 50% to the final
values, but becomes very small if M1 s M2 and the interaction

petween the like and the unlike pairs are nearly the same.

e. The Coefficient of Viscosity for Ternary Mixtures.
The coefficient of viscosity for ternary mixtures 1is
given by equation 2.23 in the form of a ratio of determinants

which can be computed by solving the defined quantities H”'s.

Hyy Hy2 His X:

H;, Hzs Hz3z X3

The factors Hii and Hij can be calculated in terms

of [nij L as follows

X 2X X M M M
q _ L [ 172 12 ([ 5 + _i)\
—_— . %
- [n1]1 [n12]1 (M1+M2)2 \3A12 Wb
7 [2X’X3 N ( 5, Dfa_\} 2.24
. ) * r - - e v &
Lin ], (M +M,) 3Rk M/



2

X 2x X M M
H - 2__ . { 1772 172 ; { 5
*
22 [nz]x [n12]1 (M1*¢%) \3A12
+ [ 2x, X, MM, ( S = Ma\}
- vl 14
[n23]1 (M2+M3)2 3A;3 le
x> 2 M M
N _ s, [ X%, 13 ( 5
33 [nsll [n13]1 (M1+M3)2 3Af3
N [ ZXQ X3 M2M3 ( 5 " ]_.\1—2->]
[nzs 1 (M2+M3)2 3A;3 Ma
Hu _ 2X1X2 M1M2 ( 5 l\
— — - 7 * -—
. [naz]l (M1+M2) 3A12 }
u B 2}{’ X3 ].V.[1 M3 ( 5 l\
= - . 2 *
13 n,, 1, (M, +M_)? \3A%, )
2X X M M
= _ 273 273 5 1)
23 (n,, 3, (M, +M, ) 2\3AK,

where all symbols have their usual significance.

f. Calculations for Thermal Diffusion Coefficient.

Both Chapman and Kihara gave a similar expression to

calculate the thermal

diffusion factor kxT]l

imation, which is written as

] =

oy

xzsz—xls1

£3.

to a first approx-

(6Cf2—5)

where subscript 1 is used for light component

S B
1

9(2,2)*

2
+ +
Xl Ql x2 Q2 XIX?. Q12

10 Y

M, ( 2M, *5[ 11
M |
M \M +M, /) { $

4M M _A¥* 15M (M_-M )
172 12 2" 2 1

L,

Y 2
(M 4+ ) 2 (M +M, )

/
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The relation for S, can be obtained from that of
S, by the interchange of subscripts and the expressions for
Q0's to calculate [ocT]1 are given in Appendix 1. In order
to differentiate between Kihara's expression from that of
Chapman and Cowling, the lettefs in the former are marked
with a bar. while those in the latter are left unbarred.
The thermal diffusion coefficient to a second approximation

[o ]2 for Kihara's approach can be given as

T

lo 1, = [0 1, (1+K) + K, wasw 21452
K =hh +hh +h _h_ +h h, c.. 2.33
1 35 -6 -3 =5 -4 6
M +M
= 5 (1 T2\ _
K, = 2x, \ 2M ) th B * 05 h,h, + hh_ )
M +M &
5 ( 2 \ -
T o2x \"2M (hyho +h_h o= h h o+ h b))y
cwin  2.34

where hk's are the quantities consisting of the combinations
of Cij values which are the remains of the corresponding
elements a, after discarding the derivatives of their
collision integrals.

A brief method tc obtain hk‘s according to Kihara's

. . 12
extended scheme is given elsewhere

2.3 Extension of Chapman-Enskog Theory for Moderately

Dense Gases

The experimental results differ from the Chapman-Enskog
approach (Section 2.2) , according to which the product of the

number density and the diffusion coefficient is independent of
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number density or pressure. This theory of dilute gases was
first modified by Enskog1 to study the real nature of fluids
for pure components. The modified kinetic theory, of rigid
spherical molecules, for dense gases is based on the fact that
the molecules have finite size and only binary collisions occur.
The three body, or higher order collisionsl’14 , are neglected.
At high pressures, as the gases are compressed, there is (i)
transport of energy and momentum from the centre of one
molecule to the centre of the other; (ii) probability

of increasing the collisions due to the increased excluded
volume, and (iii) probability of decreasing the collisions
due to the shielding effect of the molecules. Thus a factor

Y (dependent on the number density) 1is introduced to compensate
the frequency of the collisions for a gas made up of point

particles and is related to the equation of state

P = nkT(1l + % nmo’y) . ee. 2.35

Enskog solved a modified integro-differential equation
for the distribution function in a dense gas which yields

the following equation for the self diffusion
nD = (nD)O/Y p ees 2.36

where (nD% is a product of the number density and the
diffusion coefficient for a dilute gas. The factor Y is

calculated by

= 2 3
Y =1+ 35 nm0® + ... . cew 2,37

Thorne' generalised the Enskog theory for binary gas
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mixtures whereas Tham and Gubbins'® extended the same for

multi-component mixtures.

Thorne's equation for the mutual diffusion coefficient

of dense gases is written as

.(nDn_)0
nD12 = ——g ce. 2.38
12

where

2 3 011+4022 3 401 1+022
Yo 7 L 3 TTn[x1011<40 +40 ) E X20n<4o +40 )] oo
11 2 11 22

cee  2.39

Thorne's diffusion coefficient, D12 , can be related

to the experimental diffusion coefficient, D12 , by a relation'’

(nDiz) _ (Bﬁnal\

(nD, ) aﬁnxle'P_

where a, is activity of component 1 and (BSLnal/BSLnxl)TP is
a non-ideality thermodynamic factor.

. . 16 . q
For binary mixtures , this factor can be written as

dfna .
(BRDX ) = l - 4XIX2B P r - s 2.41
ytog, B
which is also givenlaliby
d4na, )
(Mm‘;)—rp = {1 + nwx %, (0, -0, ) (0, +0, V). w.c 2.42

This relation has been derived in Appendix 2.
By combining equations 2.38 and 2.40

(nDl2)‘ ) /BSLna1
(nD_, ) \d2nx,

0

AR 2.43
}TP 12 ™ - . = -
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By substituting the value of the non-ideality factor

(from equation 2.42) into equation 2.43

(nD12 ) ) _

'Gﬁzzj_‘= [1 + nﬂx1x2(022—o ) (o +0 V1Y

: " L, to V1Y, o el 2,44

The above expression can be rearranged to give a linear equation

(npl2) RS
(nD ) -— (l + BD n) r - s . 2 45
1270
where
RS ( _ 2 + v 1
B, = xx,7m(0, 0“) (022 011) ( Wi Y/n . ... 2.46
Thorne's generalisation as visualised recent].y“;_22 is

consistent with the phenomenological theory to a first order

number density terms and is inconsistent with the irreversible
thermodynamics. Van Beijeren and Ernst’’ modified this theory
in terms of the local-equilibrium radial distribution function
which includes the second and higher order terms in the number

)22

density. This modified theory21 seems to be consistent with

the irreversible thermodynamics.

2.4 Diffusion Coefficient Equations at Low Pressures

The Chapman-Enskog solution' to Boltzmann's equation
assumed that the molecules have small mean free path which
. 1‘47,,,’,':7‘/9 7/7/7&02 ‘7)2‘

means that the collisions with the walls are‘k&gn;ﬁ&eaﬁt,

but at very low pressures (~ 3 torr) where the mean free paths
become large enough so that collisions with the walls are
significant, the experimental binary diffusion coefficient,

D, - will differ from the Chapman-Enskog binary diffusion
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coefficient,Dlz, where the above effects (Knudsen effects)
are absent.

The relation used to convert D12 into Dn (in
Chapter 4 for two bulb apparatus) was obtained from the work
of Mason et a1.23who studied the gas transport phenomena
through porous media with a "dusty-gas" model. The work of
these authors’’ was based on the flow equations of Zhdanov,
Kagan and Sazykin24 which were derived in terms of composition,
pressure and temperature gradients using Grad's 13-moment

approximation. The final expression (to convert D, into

Dn ) can be written in the form

PD, = (PD, ) [1+A(Pr)" ] [1+(A+B) (Pry 4c(Pr) 717", ... 2.47
where
A = (16/3)§2nb ' e 2.47a
B = (PDlz)b/(2/3Gl) ' ces 2.47Db
c = 8nb(P012)(l - Bl), ase 2.47c¢
b = (1-x8)" . ... 2.474
v, = (8kT/mm )" , i = 1,2, co. 2.47e
_ _ %
B, = 1 - (m/m)"1T ces  2.47fF
and all the symbols have their usual significance. Equation

2.47 can be solved by using the average value for x;,X2.,n and

P and adjusting the value for (PD12 ) to get a minimum

difference between the experimental and the predicted values.
1

For the small values of (Pr)_ , the above equation

can be approximated to

-1
(PD12) = (PD12)[1 - B(Pr) 1 ., eww 2.48
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which shows that a typical plot between (Pr) ' and (PD )

should be a straight line with (PDIZ) as an intercept and

—B(PD12 ) as a limiting slope which deviates from equation

2.47 by = .2% when (Pr) ' = 3500 atm.' cm = and by = 1%

when (Pr)”' = 6800 atm.' cm ' .

The above equation 2.48 can be rearranged to a form

(PD_ ) = (PD, ) (1 + B'(PD , )y (Pr) "+ 2(B' (PD, y (Pr) ) o+ ...
ee.  2.49
where
B’ = b/(2/3V) . ... 2.49a

The reproducibility of the results by this expression
was much better when the value of the slip factor:, introduced
by Mason’> , was used as one (limiting value) rather than any

other value (< 1) from the literature.

2.5 [m,6,8] Intermolecular Potential Function

In the present study [m,6,8] intermolecular potentialzh26

is of common use because it has more flexibility over the exp-6,

[m,6] potential functions”'_29 and the law of corresponding

statesso, The limitations of the latter potential functions
are;
(i) a set of potential parameters obtained from them over

a certain temperature range is unable to correlate the
experimental data at different (low and high) temper-

atures;



(ii)

(iii)

a set of potential parameters calculated from three
variable potential functions’® can only predict one
type of property (e.g. €, and 0., calculated from
viscosity data (non-eqguilibrium property) can not
predict the second virial coefficients (equilibrium
property));

a set of potential parameters calculated from them

is unable to predict the data from scattering
experiments.

5,26

. . . . 2 .
To overcome these limitations Kleln et al. intro-

duced an additional variable, c/xr® , in [m,6] potential

to make it a four parameter potential function. This semi-

theoretical [m,6,8] potential can be written as

where

A

is the coefficient of repulsion and B and C are

the coefficients of attraction, m represents the extent of

repulsion and exponents six and eight are the indices of

attraction based on fundamental guantum mechanical ideas®.

where

In reduced form, equation 2.50 can be written as

* * = il
o* (r*) 76 [6+2Y]<r*}
1 - - 1)\ _ Y
== [m=-v (m 8)](r*) EEYE ¢ e 2.
¢* = ¢/e, r* =1x/r , Y = C/ri measures the strength

of the inverse eighth power attraction, ¢ 1is the depth of

the potential well and r is the intermolecular separation

at which ¢* = - .

30.

51
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Generally r is denoted by o when ¢ =0 and
r
if d 1is the ratio of these lengths (i.e. d = 7?), equation

2.51 can be represented as

dm l 1

*(r*) = N

o* (r*) = —— [6+2Y]<r*)

as (1Y = va&°

where r* = r/rm if d =1 and r* = r/o if the actual value
of d is used. Therefore an appropriate value of r¥* should be
used to compute the quantities dependent on it.
2.6 Collision Integrals and Reduced Second Virial Coefficients

The collision integrals o' %

(T*) wused to predict
the transport properties (see Chapters 4 and 5) can be related
to this reduced potential function through the following

relations

oo 2

/Qq S)* , 2 * *

e (s-1) 17+ 572 I exp[' gT*'] g 257 gt (g ag*,
s-1)!T

s 2.93

where Q(QV (g*¥) 1is a cross section and a function of the

reduced energy of the collision. This factor can be written as
Q(g)*(g*) = 2 7 J (l-coslx)b*db*. g 2.54
1_;[lij‘l) 0
2L 1+2

¥ (g*,b*) 1is a scattering angle and is given by

(4]

x(g*,b*) = m-2b* J .......

a = = 2-55
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where r; in this case is the reduced distance between a
pair of molecules at the time of closest approach and b*
_is the reduced impact parameter.
The reduced second virial coefficients, B*(T¥*) ,
used in equation 5A.5 can be related to [m,6,8] intermolecular

potential function by:

oo

B*(T*) = 3 I [l—exp(~¢*(r*)/T*)]r*zdr* a was 2.956

0
On partial integration, the above expression can be written

as

1 [T ag*(x¥)

B¥(T*) = - 7% dr*

exp(—¢* (r*) /T*) r*3dr*

where all the symbols have their usual meanings.

The numerical values of the collision integrals and
the reduced second virial coefficients for the [m,6,8]
potential are tabulated elsewhere’’ . These tables”® present
more accurate numerical values than the tables published by

27,31-3 4
other workers '’ .
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CHAPTER 3

METHUDS AND MATERIALS

3.1 Introduction

Three different cells have been described in this
chapter. The first two, Ay and A, , are of the two bulb
apparatus type developed by Ney and Armistead’and the third
one, Aj; , is a shearing cell of Loschmidt’ design. The
theory, construction and experimental procedures for these
three cells have been compared and discussed here. Pressure
measurement, temperature control and the determination of
the diffusion coefficients are also described at the end of
this chapter.

Cell A; was used to study the end correction equation
given by Dunlop and Yabsleys. The cell B2A; was designed
and calibrated against the Loschmidt cell, Aj; . Both the
cells were used to study the concentration and temperature
dependence of diffusion. Later, the shearing cell, Aj;, was
modified to measure the effect of pressure on the diffusion

coefficients.

3.2 Theory of the Two Bulb Apparatus

The following assumptions were made in the development
of the theory:
(i) The concentration gradient in the connecting tube is

linear. Thus for a given point at time t ,
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= ac _
J = Dlza§ = Constant . ... 3.1
(ii) The volume of the connecting tube is negligible

compared to the volume.of the bulbs.
(iii) The concentration gradient lies not only along the
length of the tube but also a distance beyond each
end. More precisely, the effective length of the
tube is equal to its actual length plus an end
correction factor analogous to that in the theory
appertaining to sound .
(iv) The diffusion coefficient is independent of concentration.
Isothermal diffusion is an irreversible process, which

may be described by Fick's first law:

where J is the flux,
D12 is the diffusion coefficient
8C
9X

and is the concentration gradient.

This is a first order partial differential eguation and
was solved by Barness, Gordon® and Stokes' for a diaphragm
cell.

The two bulb apparatus is very similar to the diaphragm
cell except that the diaphragm (a group of many fine capillaries
held together) is replaced by a single tube. Mason et a1.®
proved that both the diaphragm and the tube are functionally
equivalent in their respective cells.

I£f V and Vu are the volumes of the lower and

L

upper bulbs respectively, the change in concentration with

time can be given by



= - S
e J(t) v, , .o 3.3
dac :
u o A
e = J(t) T .. 3.4

where C and c are the initial concentrations in lower
and upper bulbs respectively, A is the effective cross

section of the connecting tube, and J(t) is the diffusional

flow as a function of time. On subtracting 3.4 from 3.3:
a(ae) _ (1, L
It J(t) A\V2 + 3 i es@ 3.5
u
where
AC = Cp - C . se@ 36
u

The average value of the time dependent differential
diffusion coefficient, D12 , over the concentration range C,
to Cu can be represented by the following equation:

C

1 Q
Dl2 (t) = _AE'J D dC 7 .- . 3.7
C
u
L
B 1 eff 3C
——-A—C:'J D(—a—x-dx, PR 3.8
x=0
_ Leff J(t) 3.9
haand AC I R 3

where Leff is the effective length of the connecting tube
and x 1is the co-ordinate whose value is positive in the
upward direction.

Combining equations 3.5 and 3.9

39.
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dﬁim=£;[%+%i. saw  3.10
On integrating
AC(t) = AC(t=0) exp(t/T) . ... 3.11
Equation 3.1l can be rewritten as
C, (£) = C (t) = (Cp - C)) exp(t/T), ce. o 3.12

where T 1is the relaxation time and is given by

D A -1
12 1 1

LR RN
Leff \]Q v

u

This equation was derived by Ney and Armistead' assuming that
quasi-stationary state exists in the connecting tube. However,
in practise, a quasi-stationary state does not exist except
when an extremely narrow tube joins two bulbs of infinite
volumes.

Fick's second law is represented by the second order

partial differential equation:

3C _ 3%C
T D12 S5 e.. 3.14
On applying the initial condition
Cc(x,O) = CQ(t=0); 0 € x < Leff ' ... 3.15
and the boundary conditions
Cc,(0,t) = CQ(t), eee 3.16
t >0
C (L £) = C (t) , weow 3417
c eff u
BC‘2 _ Dn A /BCC\ 2 18
ot v, \ox/) EE—
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and

u 12 c
at - V ax ~ L 3-19
u x=0
Cc is the concentration in the connecting tube.
If both the bulbs have the same volume (i.e. Vo = Vu) then
the solution is given by:
CQ(t) - C“(t) = [CQ(t=O) - Cu(t=0)] exp(-t/1t) ... 3.20
\Y D A -1
1 1
r=[<1——°) ——‘2—(—+——>] ce. 3.21
6VQ Leff VQ Vu

where V_ is the volume of the connecting tube.

This equation differs from that of Ney and Armistead’'
\Y

c

6V

factor for non-attainment of the quasi-stationary state.

by a factor of (l = ) which, in fact, is the correction

The difference arose because these authors ignored the volume
of the connecting tube.

Paul’ derived an expression similar to equation 3.21,
\Y

v
. c . c
but with a factor of (l ZV;) instead of (l - 6VQ> .

For a situation when the two bulbs have different volumes
(Vp # Vu), Equation 3.21 can be written by replacing VC/VQ

by 2Vc/(VQ + Vu). Thus

D -1
0 L v, Alz(i L]
T = L 1 3(VQ+Vu) I 7 + 7 iae 3.22

Annis et a].10 found the solution of Fick's second law

independently and gave the following expression for the quasi-

stationary state correction factor:

<

_ 1 ¢ (1-8-8%)
K =1 + 3 \ 148 } .o 3.23

5

u
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where B is the ratio of the bulb volume

\Y

u

B =__ — - L 3.24
Vo

If Vu =V, and on putting the value of B in Equation (3.23)

Vv
O AR
K""‘ \l + 6vu} - .- .o 3.25

This expression is identical to the one derived by Barnes .

3.3 Construction of Two Bulb Cells

Two cells of this kind have been explained below.
a. Cell A,.

Exact details of this cell together with a diagram
have been described elsewhere’.

The cell consisted of two stainless steel (type 316)
bulbs which were linked together with an interchangeable,
precision bore, brass connecting tube using swagelok fittings.

The cell and tube dimensions, together with their

percentage errors, are listed in Table 3.1.

Table 3.1

Cell and Tube Dimensions

Volume of the upper bulb : 5879.4 cm® * 0.03%
Volume of the lower bulb : 5824.2 cm® + 0.03%
Tube No. L(cm) radius (cm)

1 18.052+0.01% 0.2763+x0.05%

2 68.186+0.003% 0.5353+0.03%

3 35.603+0.01% 0.3842x0.07%

4 17.971+0.01% 0.9208+£0.03%
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The results from Tubes 1 and 2 were discussed by
Yabsley et a1.3.

Some portion of the connecting tube was generally
protruded into the bulbs,thus decreasing their volumes. The
effective volumes of the two bulbs were calculated, for accurate
measurement of D12 , and are listed below.

Length of the tube protruded into each bulb: 5.40 cm

Outer diameter of the tube : 2.22 cm
Effective volume of the upper bulb :5858.6 cm®
Effective volume of the lower bulb :5803.4 cm?.

A silicone oil manometer, which is discussed later in
this chapter, was connected to one side of the upper bulb to
measure the pressure inside the cell. This manometer was
used to measure the pressures for all the experiments performed

with tubes 1,2,3 whereas a Bourdon Gauge was employed for tube 4.

3.4 Calculations for the End Correction

As stated previously, the concentration gradient in
the tube in reality does not actually terminate at the ends
of the tube but continues a little further, so a proper
correction should be made to the length of the tube. As
mentioned carlier'' the ends of the tube were advanced into
each bulb to maintain its outer diameter. Rayleigh4 consid-
ered two extremes of the annulus flange and showed that for
an infinitely thick annulus flangea, this correction is
0.82r, whereas for an infinitely thin annulus flange‘}’12 (no
flange) it is 0.58r, where r 1is the radius of the connecting
tube. Therefore, the end correction should lie between these

limits.
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Wirz13 , while measuring the velocity of sound, studied
the variation of the end correction using pipes of different

dimensions and concluded that
o = 0.60 + 0.22 exp(-kr/w) . seier  3.26

where o is the end correction for a pipe;
k is the dimensionless constant whose value
is given by 0.129 < k < 0.136;

and w is the flange width of the pipe.

Yabsley et al.> supported the Wirz relationship by
obtaining similar parameters after least squares analysis of

their data. The following equation was given by them.
a = 0.596 + 0.219 exp(-0.125r/w) . ees  3.27

The agreement between equations 3.26 and 3.27 is
excellent. The effective length of the connecting tube can

thus be calculated from the following relation,

Le]ff = L + 20r . eee 3.28

The effective lengths and the end corrections calculated
for various tubes are given in Table 3.2.

The results obtained from Tubes 1 and 2 were discussed
earlier by Yabsley et a1.3, whereas the results obtained from
Tubes 3 and 4 were used for further investigation of Wirz's
relation. From these results it was concluded that his
relation might be valid in form but is not good enough for
the present purpose, which requires an accuracy of 0.1% (see

section 4.2).
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Table 3.2

Effective Lengths and End Corrections for Various Tubes

Tube External w End

No. Diameter (cm) Correction Lff
(cm) )

1 2.22 0.5692 0.81 18.500

2 2.22 0.8282 0.79 69.032

3 2.22 0.7258 0.80 36.217

4 2.22 0.1892 0.71 19.285

b. Cell A,y

A schematic diagram of the diffusion cell is shown in
Figure 3.1. This cell was similar to A; but machined
from a stainless steel cylindrical block (1) and was designed
so that precision bore (9) brass connecting tubes (5) of
different dimensions could be inserted.

The ends of the cell (1) were covered with stainless
plates (2), screwed into a flange (3) thus leaving the upper
and the lower compartments (bulbs). To make the cell vacuum
tight, viton O-rings (4) were placed in the annular grooves
(8) cut into each end plate (2). A similar technique was
used to seal the other metal-metal interfaces.

The dimensions of the cell are given below:

Length of the cell : 10.65 cm
Outer diameter of the cell : 7.60 cm
Inner diameter of the cell at the ends : 3.50 cm

Length of the connecting tube H 4,25 cm
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] Inlet

l B Stainless steel
screws

2 Stainless st?e%
plates
] Ends of the stainless

steel cylindrical
block

3 Flange

)

‘_\;ai:?%\\§

7 %@$§§§§§§§§§h 5 , y
://;W{:/’%’ NN N rass connecting
éfk% m\%ﬁ?%\\ tube
é%é%%iéﬁ§%g\§§§§§§$“ Precision bore

—
R | SRR
jy/él///// g ;\&\ N \

7

4 Viton 0-rings

8 Annular groove

Figure 3.1: A Schematic Diagram of the Small Two Bulb Cell (Az).
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Outer diameter of the connecting tube : 2.55 cm
Inner diameter of the connecting tube =: 0.40 cm
Depth of the bulbs : 3.20 cm

A correction was applied to the bulb volumes due to
the space lying within the gas inlets and the end plates. The

value of this correction factor was calculated to be + 0.6 cm?®.

Pressure measurements were made by the Bourdon Gauge

described later in this chapter.

3.5 Calculations for the Cell Constant

The cell constant was calculated by calibrating this
cell against the Loschmidt cell.

The relaxation time for the two bulb apparatus was
given by equation 3.21 as

10 B AT

eff L u

and that of the Loschmidt cell is given by

. 2 2
T = L°/7 012 ... 3.29

where I is a cell constant which can also be written in

the form of

L = m/1D . ... 3.30
12

On rearranging equation 3.21 and multiplying both sides

by w% , it becomes
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L \Y -1
2 - e e ML, L 2
10, = —x [(1 6VQ>\VQ + g )] Ul say  3.31

L v _ —1q%
eff ¢ 1 1
TT[ A ((l - -6"-V;><v; + '\-7——')) :\ B e 3.32
u

From equations 3.30 and 3.32

L \ -1 9%
_ eff e 1 1
el (- ) e )T e s

u

or m/ 1D
12

For present computation purposes, the value of the cell constant

was calculated to be 70.48 cm(Atmf)%.

3.6 Advantages of the Cell A

(1) There is no needa for the accurate measurement of the
cell dimensions as the cell was calibrated against a
shearing cell. |

(ii) Due to its small size, expensive gas mixtures can be
studied.

(iii) The diffusion coefficients of all types of binary gas
pairs (heavy or light) can be measured by selecting
their respective pressures and the radius of the

connecting tube.

3.7 Common Features aof Cells A, and A

In both the cells, a similar pair of matched thermistors
(one in each bulb) were mounted to monitor the concentration
changes with time. These thermistors were connected to a
Wheatstone bridge by two-core shielded cables. Full details
of the thermistors and of the bridge circuit will be given at

1

the end of this chapter.

* 1 Atm. = 101.325 K Pascals.
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3.8 Experimental Procedure for Two Bulb Cells

After complete evacuation, one of the two gases of
the system under study was admitted into the entire diffusion
cell. This cell was then sealed and left for few minutes
to achieve thermal equilibrium.‘ The pressure inside the
cell was recorded. The manifo;d was evacuated to a
sufficient low pressure (= lO—smm Hg) and then filled with
the second gas to a pressure greater than that within the cell.
The gas was allowed to establish temperature equilibrium and
then let into the cell slowly through either the top or bottom
valve, depending upon the density of the gas. The final

pressure in the cell was recorded. Molefractions of the

gas components were calculated from their partial pressures.

3.9 Theory of the Loschmidt Cell

The following assumptions were made by Loschmidt:
(1) There should be uniform cross-—-sectional area over

the entire length of the cell.

(1i) The diffusion coefficient should be independent of
concentration.
(iii) The two halves of the cell are symmetrical about

the central plates.

Relaxation time, T , for the shearing cell may be
obtained by solving the diffusional flow equation under the
experimental conditions. The binary diffusion process 1is
governed by Fick's second law, which for the one-dimensional

case 1s given by
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where i = 1,2,

Ci(x,t) is the concentration of the ith componentl
of the mixture at position X along the axis of diffusion,
at time t , at constant pressure and temperature in the
cell.

The restricted diffusion occurs inside this cell for

which the boundary conditions are given below

aci

‘3§_x—o =0 for all +t , ... 3.35(a)

BCi

'8.—X . = 0 for all t . e 3.35(b)
where x = 0 is the lower end of the cell and x =L 1is

the upper end of the cell.
Under these conditions, the solution'® of equation 3.34

for a binary system is:

o J2n?D _t
X
Ci(x,t) = A + Z AJ exp(~ ——~£711w).Cos<E£—\... 3.36
I=1

where Ao and AJ are the Fourier coefficients and can be
obtained from predetermined initial conditions (i.e. at t = 0)
of the experiment. The initial concentration of the ith

component may be approximated by a step function. Hence

C, (0,0)u_, (x) + [C (L,0) - C (0,0)]u_, (x-a), ... 3.37(a)

where

w

0 z<20
U_1(Z) = { —_ .37 (b)



51.

From equation 3.36 the concentration of the ith

component may be written (at t = 0) as

_ ¥ (%
C (x,0) =A + ng A Cos\ T ) - awws  3.38

The Fourier coefficients may be written as

L

1
A, = ¢ | G (x,0)ax . ... 3.39(a)
0
a =2 [ ¢ (x,0)cos/M™\ax 3.39 (b
T n ) G \T ) eSS {0
0
substituting the value of C(X,0) from equation 3.37
a =20 ¢ (o,0ax + " o (L, 0) dx 3.40(a)
() L | i ! L J i : pree :
0 a
A =20 ¢ (0,0 cos([™T\ax+2 " (L., 0) cos( =T Vax
I L | i f L L i ! L
i i .. 3.40(b)
_a (L-a)
A, = 2¢ (0,00 + {FF) ¢ (1,0 c.. 3.41(a)
= C, (0) .
and A = - 2 5in(™3\ (¢ (0,0) - C (L,0)] 3.41 (b)
y In \L/l ’ ; VU PP .

2 . (nJa\
= = Fr Sln\T/ACi (o) .,

where Ei(O) is the mean concentration of the ith component
at the beginning and ACi(t) is the difference in concentration
of the upper and lower halves of the cell at the beginning of
the experiment.

The symmetry properties of the Fourier series in equation
3.36 may be utilized as first suggested by Onsag;ir14 if the
cell is designed so that differences in concentration are

measured at two planes at right angles to the direction of
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diffusion and at a distance of (L/2 - x) from the cell

centre, for then all the even terms vanish to give

m?D
Lf+—) Cos

il
)
R
o)
VR
T
PN
|

ACi(t)

‘{\;
Onsagar further indicated that if x, was chosen to
be L/6, then the second term in equation 3.42 vanished to

give

2D t 2572D _ t
5L L . B 12 , {_ 12
[Ci (—6—‘) - Ci (.6_)1\‘ = Al exp( ——“—‘Lz ) + AS exp\ -——'-——'—Lz )+

higher order terms
ee. 3.43

For large values of t , the higher order terms may be
neglected and D12 can be obtained from the following relation
by determining the variation with time of the difference

function F(Ci) (i.e. concentration of ith component).

gn[ci<%§> . ci(%>} = A exp(-t/T) ... 3.44
t

where T is the relaxation time and is equal to

F(C,)

il

T = L2/012ﬂ2 . ee. 3.45
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3.10 Construction of the Loschmidt Cell

The basic Loschmidt cell consisted of a vertical tube
of uniform cross section, separated into two equal parts by
a stopcock with a bore equal to the diameter of the tube.

In more recent designs of the apparatus, the stopcock is
not used. Instead a shear technique is employed in which

the cell is closed by sliding one half of the cell over the

other.
Cell A,
Details of this cell, together with a figure, have
been described elsewhere15 : In short, the cell was constructed

by machining two identical brass blocks (diameter 18.5 cm).

Two diffusional channels in each block were honed out,

parallel to the axis of the block which was lying 180° apart.
The mating surfaces of the adjacent halves were made optically
flat by grinding against each other. Thus there were four
separate compartments in this cell which, when lined up,

formed two independent diffusion columns. The lengths and

the internal diameters of these columns are given in Table 3.3.

Table 3.3

Measurements of the Columns

Diffusional Columns

1 2
Length 40.049 40.049
(cm)
Int. diam. 3.81 2.54

(cm)
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The two halves of the cell were held together with a
stainless steel rod, 1.9 cm in diameter and six pairs of
cupped washers which, when compressed with stainless steel
nuts, were capable of generating a maximum force of 200kN.

Apiezon T-grease was used as a lubricant for the
sliding surfaces of the cell at high temperatures ( 25 - 52°C),
however, because of its stiffness, it was replaced with
Apiezon H-grease at low temperatures (2 - 25°C).

The lower half of the cell was fixed while the top
half was free to rotate,for aligning purposes, through
a restricted arc with a differential spur gear and pinion.

Viton O-rings were inserted between the mating surfaces
and the surfaces concentric with the cell axis, to work at
high pressures up to approximately 30 atmospheres. All
other non-moving metal-metal surface contacts were sealed by
lead O-rings, prepared in situ by moulding lead wire into
circular V-shaped grooves.

Two matched thermistors were placed to monitor the
difference in concentration changes with time, at a distance
of L/6 and 5L/6 from one end, where L 1is the length of
the cell.

Gas pressures were measured with a Bourdon Gauge

which was calibrated against a dead weight tester.’?

3.11 Common features of Cells Ai, Az and Aj

(1) Flexible stainless steel tubing was used to connect
the cells with the other parts of the apparatus.
(ii) An Edwards diffusion pump, incorporated with an oil

rotary pump, was used to evacuate the desired cell.
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(iv)

(v)

(vi)

(1)
(2)

55,

At low pressures (less than one atmosphere) the leak
rate was better than 2 x 107 torr min~', while at
high pressures (more than one atmosphere) the leak
rate was less than 1 X 10-l+ torr min_l.

Each cell was suspended,on an adjustable three point
suspension, into a water bath containing approximately
500 litres of deionised water which was stirred
vigorously (with a % H.P. motor) to reduce thermal
gradients inside the bath.

The cell was aligned vertically with the help of a
spirit level.

The temperature of the bath was controlled to within
+0.0015°C at low temperatures (2 - 20°C) and to

within +0.001°C at high temperatures (20 - 52°C).

The flow of the gases into the system at various points,

as required, was controlled by Nupro bellow valves

(Crawford Fitting Co., Cleveland, Ohio) .

The disadvantages of the shearing cell are:
Dufour effect.
Heat of mixing.

These effects occurred because of the non-ideality of

8 —21

the gases and have been explained before by various authors1 .

3.12

Experimental Procedure for the Loschmidt Cell

Usually mixtures were prepared only in one half of

the cell while the other half was filled with a pure gas,but

- N
if needed, the mixtures can be prepared in all four compartments.



The first gas was introduced into all the diffusion
channels up to a certain desired pressure and then one half
of the cell was closed, depending upon the density of the
gas. The same gas continued to fill the other half of
the cell up to the final pressure. The manifold was
evacuated immediately after isolating the cell from it and
refilled with the second gas at a pressure greater than
that inside the cell. This gas was allowed to
enter into the first half by opening proper valves and,
with the aid of a successive dilution technique, the
pressures in both halves were made equal.

Molefractions of the gases were calculated from
their partial pressures, measured with a Bourdon Gauge.

After complete mixing of these gases the experiment
was started by aligning the respective upper and lower
compartments.

The variation in the difference of resistance between
the thermistors with time was recorded and computed to

calculate the diffusion coefficients.

3.13 Pressure Measurements

The pressure inside the cell was measured by the
following two techniques:
1. Silicone oil manometer:

Low pressures (less than 25 Torr) were measured by a
simple silicone o0il manometer (Dow Corning 704). It was
simply a U-shaped glass tube hooked to the upper bulb of the

cell with swagelok fittings. The tube was partially filled
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with a silicone oil, which was carefully 'degassed' with the
aid of a small magnetically operated stirring device. The

density of the degassed oil was determined with the help of

a pycnometerll.

An assembly of a movable telescope clamped on a
cathetometer,which was placed vertically at all times, with
the help of a spirit level in two perpendicular planes, was
used to measure the meniscus of the oil. The telescope
was aligned to give the same reading in each arm of the
manometer when both sides were equally evacuated. The sharp-
ness of the meniscus was confirmed by positioning a globe
behind it.

The reproducibility of the cathetometer readings of
the meniscus were t0.002 cm, thus giving a maximum error in
the pressure measurements of 0.1%.

2. Bourdan Gauge:

The pressures of more than 25 Torr were measured by a
Bourdon Gauge (Texas Instruments, Houston) .

Inside this gauge there was a pressure transducer
which consisted of a hollow quartz spiral, with a small mirror
at the end, housed in a capsule with two outlets. One
outlet connected the spiral to the cell and the other conn-
ected the rest of the capsule to the vacuum system. The
pressure in the cell relative to vacuum could be determined
by knowing the extent of unwinding of the spiral due to
pressure difference across the walls. This degree of unwinding
of the spiral was detected by a photocell placed inside the
Texas Instrument and was registered on a decade counter with

the help of a servo motor linked to it.



58.

All capsules were calibrated using a dead weight tester
to an accuracy of better than 0.1%; the reading on the decade
counter could be converted into its pressure units by the
use of these calibration curves.

The least-sgquares constants for the curves of different

capsules used in this study are given in Table 3.4.

Table 3.4

Least-squares Constants for Bourden Capsules

Tube No. Calibrated a, a, a, Av;dev.
Range °
4176* 34 atm. 3.33740 3.7788 x 10 ° 0.0 +0.02
4107 13 atm. 0.65567 3.2730 x 10°°  -1.7449x10"° +0.02
5588 10 atm. 0.64962 3.2955 x 10 °  -2.7263x10 ° 0.0l
2421 1 atm. 2.71176 -8.5315 *10 ° 0.0 £0.02,

* In this case the Bourdon-tube consisted of an aluminium spiral.

3.14 Temperature Control

Each cell was completely immersed in a vigorously stirred
bath of deionised water whose temperature was kept constant by
following two techniques.

i. Temperatures higher than ambient were maintained with
a mercury toluene thermoregulator which activated a thyraton

circuit so switching the "on-off" current from the regulator

to a 12 ohm stainless steel "pyrotenax" element mounted along
the inner sides of the bath.

The major heat losses were overcome by the use of base

heaters (35 ohm pyrotenax heating coil and hecla type normal
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water heaters). They were attached to the A.C. voltage
variator and the amount of current passed through them depends
upon the temperature to be maintained.

ii. A similar method was employed to control the temperature
below the ambient, except the cold water was circulated through
the experimental bath instead of using the base heaters. The
water was cooled in a separate bath (Bl) using a refrigeration
unit before circulating it through an experimental bath (B2)

in which the cell was immersed. The extent of cooling the
bath, Bl, was controlled by adjusting the flow rate of refrig-
erant from the compressor with a bypass mechanism. The
temperature of this bath was kept at 4 - 5°C bélow the temper-
ature of bath B2. This was maintained by a temperature
sensitive thermistor bridge which activated an "on-off" switch
attached to the refrigerator, thus stopping or initiating the
flow of refrigerant.

The water was constantly stirred and pumped by a water
pump through a framework of copper coils placed inside bath
B2. The temperature of the latter bath was controllecd with
a mercury toluene regulator as described above.

With this type of arrangement, the temperature of the
bath was controlled to within *0.001° over a range of 10 - 52°C.
However, slightly higher fluctuations of the order of +0.0015
were observed below 10°C. These temperatures were measured
with a mercury in glass thermometer which had been calibrated
against a platinum resistance thermometer.

The front glass window was always covered with a poly-
styrene foam board to minimise the thermal fluctuations of the

bath from its environments.
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3.15 Determination of Diffusion Coefficients

In this section, a common method applicable to all
the cells used for accurate determination of diffusion
coefficients in binary gas mixtures will be described. It
consists of a Wheatstone bridge in which two arms of the
network are a pair of matched thermistors to monitor the
composition of diffusing gases as a function of time.

Thermistors are usually composed of oxide semiconductor
materials. Their resistance decreases exponentially with
temperature, thus giving large and negative temperature
coefficients of resistance (o) . This is in contrast to most
metals which have small and positive values for o . The

temperature dependence of the thermistor material is given by

1 1
R. =R [exp B<~ = ——)] ces  3.46
T Ty T TW

where T

temperature of the thermistor;
R : the resistance of the thermistor at temperature
T, of the water bath; and

w

is a constant related to the material of the

Ros]
s

thermistor.

The equilibrium resistance of the thermistor depends
upon the rate a£ which the heat generated in it by passage of
electric current is dissipated. This is largely controlled
by the thermal conductivities of the surrounding gases and
the temperature gradient operating, in situ, assuming negligible
convection effects. Normally ambient temperature is held

constant.
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Thermal conductivities of various gases are different
and any change in the composition of a gas around the therm-
istor will change its resistance. This difference in resist-
ance of the two thermistors is proportional to the composition
of the gases at the monitoring positiOns16 . The method is
more sensitive when thermal conductivities of two gases are
considerably different, e.g. the thermal conductivity of helium
is nearly ten times higher than that of argon.

In the actual circuit (Fig. 3.2) R; and R, are two
thermistors* and Ry and R, are matched b5k micacard
resistors. A constant voltage V is applied across the circuit.
This, however, can be changed in order to achieve the desired
imbalance in the bridge. The difference in resistance AR(t)
at a given time t between the two thermistors produces a

potential drop V,, between the two arms of the bridge. The

relation to calculate AR(t) 1is given by17
Ry V Vy,u
AR(t) = ‘ P .47
() Vi (Vy4=Vay) 3

A digital voltmeter measured both voltages Vi, and
V,, simultaneously when the bridge operated in an 'Out of
balance',through an analogue scanner.

The data was recorded after the difference in resistance
between the two thermistors was directly proportional to the
difference in composition at two monitoring positions. Thus,
in general, at the start of the diffusion experiment, recording
of the data was withheld until V,, had fallen approximately
to 25 mV. This corresponds to the AR(t) value close to 100Q

From this point onwards 100 - 150 readings were taken at regular

* Type Gl12P thermistors used in this work were supplied by
Fenwal Electronics, Inc. (Framingham, Massachusetts). The
g value for the thermistors was 3500K. These had resistance
of 80000 at 25°C and were matched to within 0.7% of the
nominal value in helium.



Figure 3.2:

The Wheatstone Bridge Circuit.
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time intervals to record the significant part of the resistance
versus time curve. These time intervals were achieved with
a crystal timer which produced pulses at preset time intervals,
thus initiating a scan to record both V;, and Vz, either
on paper tape or a printer.

Diffusion coefficients were calculated by least-squares

analysis of the data obtained, by using the following equation

AR(t) - AR(») = A' exp(—ﬂzvlzt/Lz) ... 3.48
where A : 1s a constant;
L : length of the cell for the Loschmidt Cell and

cell constant for a calibrated two bulb cell;
AR(t): the difference in resistance between two
thermistors at certain time t;
and AR(») : the difference in resistance between two

thermistors after equilibrium.

The quantity AR(x) is a residual resistance between
two thermistors and its value should be zero for a perfectly
matched pair of thermistors. This value, however, was not
zero and should be known accurately to calculate D12 i In
order to determine AR(x) a further twenty readings were
taken near the end of the experiment after the system had
reached equilibrium.

With the use of the above experimental procedures the
reproducibility of the diffusion coefficients for all the
cells was found to be better than *.1%. The purity of each

gas was greater than 99.9%.
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CHAPTER 4

THE CONCENTRATION DEPENDENCE OF DIFFUSION

4.1 Introductiaon

In the past few years, Dunlop et al.’”’ have
reported the diffusion coefficients at 300K and near one
atmosphere pressure for many binary systems containing
helium which were precise enough but not accurate because
of the incorrect use of thermistor bridge as indicated in
1975 by Yabsley and Dunloplo. In the present study, precise
and accurate diffusion coefficients for the concentration
dependence of several binary mixtures were measured in two
pulb'' and Loschmidt'? cells with the help of the improved
thermistor bridge described earlier’’ . By comparing the
results obtained from these cells, it appeared that the end

_15, which is usually applied to the connecting

corpection13
tube, was not sufficiently accurate for precise work. The
results for one of the systems (Ar - N,) have been partially
duplicated by using a Loschmidt cell and mass spectrometer16

to analyse the gas mixtures and are in excellent agreement

with the thermistor bridge results.

4.2 Results and Discussion of the Cells A; and As

Yabsley et al.' measured the diffusion coefficients

for the systems He - Ar and He - 0, at low pressures
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(r 2 - 10 Torr) and at 300K using tubes* 1 and 2 where
Knudsen effects17 were important and, in support of Wirz' N
gave a relation to calculate the end correction.

To continue this study, tube* 3 was used to perform
similar experiments for the systems He - O, He - Ar and
He - N,. The results thus obtained using this tube are in
good agreement with those of Yabsley and Dunlop17 and are
plotted in Figures 4.1 - 4.3.

Because of the importance of Knudsen effects at
low pressures, the extrapolation of the graph PD12 versus
(Pr)._1 was necessary to obtain PD12’ where PD12 is the
experimental diffusion coefficient at one atmospheric
pressure, r is the radius of the tube and PD12 is the
corrected value of diffusion coefficient at one atmosphere
when (Pr)_1 = 0. To minimise the errors introduced by
this extrapolation,tube* 4 was constructed so that;

(a) convenient relaxation times could be obtained for

the systems studied using pressures between 40 -

90 torr in the present cell; and

(b) Knudsen effects could be neglected. These effects
are less than O.l%l7provided the value of (Pr)—1
is less than 50 atm ' cm

The concentration dependence of the binary diffusion
coefficients, D12 , for the systems He - Ar, He - N, He - Oz,
He - CO, and N, - Ar were measured at 300K in the present
two bulb cell (A,;) using tube 4 and Loschmidt cell (Aj;) which
have been described earlier in Chapter 3. The (Pr)_lvalue for

all the experiments performed in the two bulb cell (2,) was between

* Tubes 1, 2, 3 and 4 are described in Chapter 3.
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10 - 20 atm ' cm ' . The experimental values obtained with
this cell for the above systems and the system He - Ne are
listed in Tables 4.1 - 4.6.

It was not possible to measure the diffusion
coefficients successfully for He - Ne system over the entire
concentration range with the Loschmidt cell (Aj). The exact
reasons for this failure are not known at this stage and
more work needs to be carried out to establish this fact.

All the experiments for the other five systems were performed
at one-atmosphere in this cell.

The experimental data for each system obtained
from both the cells (two bulb (A;) and Loschmidt (Aj)) were

fitted to the empirical relation'”"?

_ 0[ alxz]
Du - Dn [l N 1+a,x; | 4.1

where sz is the limiting experimental diffusion coefficieﬁt,
a; and a; are constants and X is the molefraction of the
heavy component.

The above equation 4.1 accurately reproduces the
form of the concentration dependence of D12 predicted by
the Chapman-Enskog theory. The parameters obtained from a
"least-squares" analysis, together with the percentage average
deviations (Av. dev. %) of the experimental points from the
smooth curves are given in Table 4.7.

Graphical representation of the data from both the
cells is presented in Figures 4.1 - 4.6.

Using the Wirz'® relation, it was difficult to

correlate the data obtained from tubes 1 and 2 of Ref. [17]



Table 4.1%°

Concentration Dependence aof the Diffusion
Coefficient for He/03s at 300K

(Two Bulb Apparatus Results)

X P PD

(heaéy) (atm) (atm.c;z.s_l)
0.1003 0.0594 0.7551
0.2498 0.0712 0.7603
0.3997 0.0890 0.7638
0.5010 0.1063 0.7647
0.7514 0.0709 0.7696
0.9003 0.0591 0.7712

x; 1is the molefraction of the heavy component,
P is the pressure in atmosphere at which the
experiments were performed and PD12 is the
numerical value of the diffusion coefficient

at one atmosphere when (Pr) @ = 0.

These results are obtained with the cell (A,)

using Tube 4.
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Table 4.2°

Concentration Dependence of the Diffusion
Coefficient for

He /N,

at 300K

(Two Bulb Apparatus Results)

X, P PD12
(heavy) (atm) (atm.cm?.s” )
0.0997 0.0923 0.7162
0.0998 0.0511 0.7166
0.1004 0.0731 0.7166
0.2493 0.0613 0.7217
0.4000 0.0767 0.7235
0.5007 0.0919 0.7250
0.5949 0.0774 0.7270
0.7406 0.0622 0.7288
0.9012 0.0730 0.7306
0.9056 0.0511 0.7303
0.9076 0.0913 0.7303

a

Table 4.1).

All symbols have their usual meanings (see

71.
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Table 4.3"

Concentration Dependence of the Diffusion

Coefficient for

He/Ar

at 300K

(Two Bulb Apparatus Results)

X P PD;,
(heavy) (atm) (atm.cm?.s )
0.1006 0.0595 0.7447
0.2498 0.0714 0.7514
0.3996 0.0892 0.7556
0.5010 0.1063 0.7574
0.6015 0.0886 0.7590
0.7510 0.0709 0.7617
0.9010 0.0591 0.7633

|

(see Table 4.1).

All symbols have their usual meanings
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Concentration Dependence of the Diffusion
Coefficient for

Table 4.4°

at 300K

(Two Bulb Apparatus Results)

Xg P PDy;
(heavy) (atm) (atm.cm?.s” )
0.1001 0.0593 0.6115
0.2500 0.0711 0.6161
0.3996 0.0888 0.6192
0.5019 0.0884 0.6200
0.6028 0.0884 0.6213
0.7525 0.0590 0.6225
0.9008 0.0592 0.6236

a

(see Table 4.1).

All symbols have their usual meanings
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Table 4.5°

Concentration Dependence of the Diffusion
Coefficient for Nz/Ar at 300K

(Two Bulb Apparatus Results)

Xz P PD 12

(heavy) (atm) (atm.cmz.s—l)
0.1470 0.0537 0.2048
0.2999% 0.0534 0.2050
0.3994 0.0534 0.2051
0.5005 0.0533 0.2052
0.6006 0.0536 0.2053
0.6999 0.0534 0.2056
0.8500 0.0534 0.2058

a

All symbols have their usual meanings

(see Table 4.1).
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Table 4.6"

Concentration Dependence of the Diffusion

Coefficient for

He/Ne

at 300K

(Two Bulb Apparatus Results)

X3 ’ P PD
(heavy) (atm) (atm.cm?.s-1!)
0.1491 0.0657 1.1103
0.2475 0.0930 1.1142
0.3965 0.0660 1.1200
0.3975 0.0658 1.1217
0.4511 0.1172 1.1225
0.6024 0.0983 1.1261
0.7525 0.0930 1.1300
0.8021 0.0660 1.1310
0.9012 0.0657 1.1335

a

All symbols have their usual meaning

(see Table 4.1).
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Table 4.7

Least-squares Data for Egq.

4.

1

Dgz a; Av. Dev. %
(cm?.sec” ')
(a) Loschmidt cells
He—Ozb 0.7469 0.0564 1.1270 + 0.03 (15)
He-N; 0.7067 0.0676 1.4883 + 0.04 (26)
He-Ar 0.7344 0.0846 1.4825 + 0.06 (25)
He-CO3 0.6029 0.0905 2.3952 + 0.04 (12)
N,-Ar 0.2034 0.0041 0.0000 + 0.04 (26)
(b) Two-bulb cell
He-02 0.7513 0.0583 1.0929 + 0.04 (6)
He-N: 0.7129 0.0576 1.2505 + 0.04 (11)
He-Ar 0.7385 0.1016 1.9275 + 0.02 (7)
He-COj 0.6064 0.1082 2.7165 + 0.02 (7)
N,—-Ar 0.2046 0.0069 0.0000 + 0.02 (7)
He-Ne 1.1028 0.0503 0.7016 + 0.04 (10)
?  fThe figures in parentheses are the number of

experimental points.

Previously reported in Ref.

[10].
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with the results obtained in this study using tubes 3 and 4.
The data for tube 4 showed the greatest deviations but,
because of the short length and large radius of this tube,
it is extremely sensitive to the constants used in the
experimental relation of Wirz. Thus it is possible that
his relation might be valid in form, but is not accurate
enough for present purposes (i.e. 0.1%).

It was noticed that even after allowing for the
possible errors in the Wirz relation, the results obtained
are approximately 0.5% higher than the results which were

measured with a Loschmidt cell. Thus, it was concluded that

82.

either the method used to apply the end correction is incomplete

or there is another important factor which is still to be
discovered. It was therefore decided that, if possible, it
would be more appropriate to calibrate the two-bulb cell with
the accurate data available in the literature.

After applying the end correction as described in
Ref. [17], the results obtained with tube 4 in the two bulb
apparatus were precise but consistently higher by 0.71 +# 0.10%
than the data in Table 4.7(a) obtained with the cells of the
Loschmidt design.

A summary of these deviations between the data
obtained from two different types of cells is given in Table
4.8.

From the above discussion it appears that, if
Knudsen effects are neglected, any point selected from the
data in Table 4.7(a) may be used to calibrate two-bulb cells

with a precision of *+ 0.1%



Table 4.8

Deviations Between the Data Obtained by the
Two Bulb Cell and the Loschmidt Cell

o a a a
System °Ax2=0 %AX=.5 %Ax2=1
He/Ar .56 .72 .92
He/N» .88 .71 .72
He/0, .59 .67 .72
He/CO, .58 .81 .82
N, /Ar .59 .73 .88

(PDIZ)TBA—(PDU )Losch
b= (BD__ )
12 "Losch
4.3 Results from the Small Two Bulb Cell (A3)

A small two bulb cell, described in Chapter 3, was
calibrated using the data obtained in this laboratory20with a
Loschmidt cell and was then used to measure the concentration
dependence of the binary diffusion coefficients for the
systems He - Kr, He - Xe, Ne - Kr, Ne - Xe, Ar - Kr, Ar - Xe,
Ar - O, Ar - CO , Kr - CH, and CF, - CH, at 300K. The
(}?r)_1 values for all the experiments performed with this
cell were less than 10 atm. 'cm.” '  and hence Knudsen effects
were neglected. The experimental results obtained for all
the abovementioned systems, and the system Ne-Ar* were

fitted to equation 4.1 and are summarised in Table 4.9.

* The diffusion coefficients for this system were measured
with Loschmidt Cell (A;).
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Table 4.9

Least-square Parameters of Fquation 4.1 for the
Following Systems in Small Two Bulb Ccell (Az) at 300K

. i
System Dy, # a as Av. Dev.

He-Kr 0.6356 0.0785 1.0381 + 0.06
He-Xe 0.5429 0.0794 1.0677 + 0.07
Ne—Ar* 0.3234 0.0091 - + 0.07
Ne-Kr 0.2629 0.0175 B + 0.04
Ne-Xe 0.2212 0.0326 0.5313 + 0.02
Ar-Kr 0.1404 0.0026 - + 0.05
Ar-Xe 0.1140 0.0017 - + 0.06
Ar-CO 0.2067 0.0065 - + 0.02
Ar-0: 0.2037 0.0024 - + 0.04
Kr-CHy 0.1786 0.0008 - + 0.02
CHy-CFy4 0.1455 0.0079 | - + 0.04

* The.experiments for this system were performed in

Loschmidt cell (A;).
# Dgz is the limiting diffusion coefficient when

X2=0.
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4.4 Theoretical Predictions for Concentration Dependence of Dy;

The variation of the diffusion coefficients with
composition was also predicted, for all the other systems under
study except for CH, - CE. and.Ar - CO, using Kihara's second
approximation to the Chapman-Enskog theory which is given
by equation 2.5.

The potential parameters (e,, ,0,,) for helium
were obtained21 while for all other gases,these were calcul-
ated from the temperature dependence of viscosities’>™?*® and
the values are given elsewhere’ . The potential parameters
(ey, r0,,) for the mixtures were also calculated using a
similar technique but from the temperature studies of diffusion”ew-
The collision integrals for all the gases and gas mixtures,
except heliuﬁl,were obtained from the tables given by Klein
et al.32

The predicted values for these systems are listed
in Tables 4.10 and 4.11 and are plotted along with the
experimental values in Figures 4.1 - 4.10.

The concentration dependence of the diffusion
coefficients can also be compared by determining the ratio

of Dn at the two composition extremes. A summary of

the ratios of the predicted and experimental values is given

in Table 4.12. Experimental ratios are derived from the
coefficients of Tables 4.7 and 4.9. As can be seen in
Figures 4.1 - 4.11,there is reasonably good agreement between

the experimental diffusion coefficients and their respective
predicted values for all the systems except He - Nz and

He - CO; . This non-reproducibility is probably due to the



Table 4.10°: Predicted Diffusion Coefficients for the Rare Gas Mixtures at 300K using
Kihara's Second Appraoximation

He-Ne He-Ar He-Kr He-Xe Ne—-Ar Ne-Kr Ne-Xe Ar-Xr Ar-Xe

X2 (PDw )Pred.

(atm.cm.?s™ 1)

0.0000 1.0940 0.7342 0.6358 0.5435 0.3232 0.2628 0.2213 0.1406 0.1141
0.1000 1.0988 0.7392 0.6418 0.5490 0.3238 0.2637 0.2223 0.1407 0.1141
0.2000 1.1031 0.7431 0.6462 0.5528 0.3242 0.2645 0.2231 0.1407 0.1142
0.3000 1.1070 0.7463 0.6496 0.5555 0.3246 0.2651 0.2238 0.1408 0.1142
0.4000 1.1104 0.7488 0.6522 0.5576 0.3250 0.2657 0.2243 0.1408 0.1142
0.5000 1.1135 0.7509 0.6543 0.5592 0.3253 0.2661 0.2247 0.1408 0.1143
0.6000 1.1164 0.7527 0.6561 0.5605 0.3256 0.2665 0.2251 0.1409 0.1143
0.7000 1.1189 0.7543 0.6576 0.5616 0.3258 0.2668 0.2254 0.14009 0.1143
0.8000 1.1213 0.7556 0.6588 0.5625 0.3261 0.2671 0.2257 0.1409 0.1144
0.2000 1.1234 0.7567 0.6599 0.5633 0.3263 0.2674 0.2259 0.1410 0.1144
1.0000 1.1253 0.7577 0.6608 0.5639 0.3265 0.2676 0.2261 0.1410 0.1144

a

X, 1is the molefraction of the heavy component and PDj, is the numerical value of the

diffusion coefficient at one atmosphere.
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Table 4.11° : Predicted Diffusion Coefficients for the Following Mixtures at 300K
using Kihara's Second Approximatian

He-0» He-N» He-CO» Ar-N, Ar-0, Kr-CHy

X2 (PDlz)Pred

(atm.cm.2?s )

0.0000 0.7455 0.7080 0.6036 0.2029 0.2031 0.1784
0.1000 0.7501 0.7132 0.6094 0.2030 0.2031 0.1785
0.2000 0.7538 0.7171 0.6136 0.2031 0.2032 0.1786
0.3000 0.7567 0.7202 0.6168 0.2031 0.2032 0.1787
0.4000 0.7591 0.7228 0.6192 0.2032 0.2032 0.1788
0.5000 0.7611 0.7248 0.6212 0.2032 0.2032 0.1789
0.6000 0.7628 0.7266 0.6228 0.2033 0.2033 : 0.1789
0.7000 0.7642 0.7280 0.6241 0.2034 0.2033 0.1790
0.8000 0.7654 0.7293 0.6252 0.2034 0.2033 0.1791
0.9000 0.7665 0.7304 0.6262 0.2035 0.2034 0.1791

1.0000 0.7675 0.7313 0.6270 0.2035 0.2034 0.1792

X; 1is the molefraction of the heavy component and PD;, is the numerical value

of the diffusion coefficient at one atmosphere.
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Table 4.12"

Comparison of Experimental and Predicted Values of

(Pvlz)xzzl/(Pplz)xz

=0

A, A, A, o
System T.B.A. S.T.B.A. Loschmidt Predicted
He-Ne 1.029 = o 1.029
He-Ar 1.038 1.034 1.034 1.032
He-Kr - 1.038 - 1.039
He-Xe - 1.038 .- 1.038
Ne-Ar - - 1.009 1.010
Ne-Kr - 1.017 - 1.018
Ne-Xe B 1.021 - 1.022
Ar-Kr - 1.003 - 1.003
Ar-Xe B 1.002 . 1.003
He/N2 1.026 - 1.027 1.033
He/O3 1.028 - 1.026 1.029
He/CO; 1.029 . 1.027 1.039
Kr/CHy - 1.001 - 1.004
N, /Ar 1.007 = 1.004 1.003
0, /Ar - 1.002 - 1.001

PD,, 1is the numerical value of the diffusion

coefficient at one atmosphere.

x; is the molefraction of the heavy component and
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failure of the [m,6,8] intermolecular potential to fit

these results.

4.5 Concentration Dependence of Diffusion Coefficient for

He - Ar at 277K and 323.15K

Finally the diffusion coefficients for the system
He - Ar were measured as a function of composition at one
atmosphere and at 277.0K and 323.15K with the Loschmidt cell
(AS) .

The experimental data at both the temperatures,
together with the predicted values (using equation 2.5), are
given in Tables 4.13 and 4.14. The former data was fitted
to the equation 4.1 and the constants thus obtained are
summarised in Table 4.15.

The experimental results and the predicted values
are compared graphically in Figure 4.11 and by calculating
the ratios at two composition extremes in Table 4.16, which
show an excellent agreement with one another.

The analysis of the above data indicates that:

(1) the mutual diffusion coefficient varies 25% over
the temperature range of 46K; and
(ii) the variation in concentration dependence of D

12

over this range is less than 0.1%.
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Table 4.13"

Experimental and Predicted Values of the Diffusion
Coefficient for He-Ar System at 277K

X2 (Pplz)exp X2 (PD12)p g
(atm.cm.2s™!) (atm.cm.2s— 1)
0.0703 0.6456 0.0000 0.6417
0.1001 0.6470 0.1000 0.6460
0.3003 0.6544 0.2000 0.6494
0.3999 0.6560 0.3000 0.6521
0.4000 0.6550 0.4000 0.6544
0.4998 0.6575 0.5000 0.6562
0.5000 0.6575 0.6000 0.6577
0.6000 0.6582 0.7000 0.6591
0.6996 0.6610 0.8000 0.6602
0.6998 0.6608 0.9000 0.6612
0.7998 0.6616 1.0000 0.6621
0.8999 0.6628

a

All symbols have their usual meaning (see Table 4.12)



Table 4.14

Experimental and Predicted Values of the Diffusion
System at 323.15K

Coefficient for

He-Ar

X2

(Pvlz)exp

(PDy2)

Pred

(atm.cm.?s” ') (atm.cm.?s™t)
0.0703 0.8363 0.0000 0.8322
0.1001 0.8375 0.1000 0.8380
0.3003 0.8463 0.2000 0.8425
0.4003 0.8492 0.3000 0.8460
0.5000 0.8516 0.4000 0.8490
0.5998 0.8540 0.5000 0.8514
0.6997 0.8555 0.6000 0.8534
0.8000 0.8578 0.7000 0.8551
0.8997 0.8594 0.8000 0.8566
0.9000 0.8580
1.0000 0.8591

a

All symbols have their usual meaning (see Table 4.12).
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Table 4.15

Least-Square Parameters of Equation 4.1 for the System He-Ar

T K pl, a, az Av. Dev. %
(cm.2s™1)
277.00 0.6423 .0859 1.5916 + 0.03
323.15 0.8321 .0765 1.2353 + 0.02
# 022 is the limiting diffusion coefficient when x, = 0.

Table 4.16"

Comparison of Experimental and Predicted Values of

(PDlz)x2=1/(P012)x2=0 for He/Ar

T K Experimental Predicted
277.00 1.033 1.032
323.15 1.034 1.032

a

All symbols have their usual meaning

(see Table 4.12).
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CHAPTER 5A

THE TEMPERATURE DEPENDENCE OF DIFFUSION

5A.1 Introduction

Information regarding intermolecular forces between
gas atoms may be obtained from gaseous transport properties
and compressibility measurements as well as from molecular
scattering and crystal data' . The potential parameters
for like molecules can be obtained directly from the study
of the coefficients of viscosity of pure gases as a function
of temperature2 but corresponding information about forces
between unlike molecules obtained directly from measurements
on gaseous nmixtures is very meagre. The most direct method
of probing the potential function for unlike interactions
is the study of the temperature dependence of mutual diffusion
coefficients since these depend only on the force fields of
the unlike diffusing molecules and, in the first approximation,
are independent of the forces between the like pairs whereas
viscosity, thermal conductivity, thermal diffusion and virial
coefficients of binary mixtures depend directly on both like
and unlike interactions to the same approximation. It is
for this reason that the determination of binary diffusion
coefficients inherently gives a better indication of the
force law between pairs of unlike molecules than can be

obtained from any other physical measurement.
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, 4

Recently Van Heijningen et a1.’* ana Hogervorsts_
calculated the potential parameters from the binary diffusion
coefficients measured over the temperature ranges of 65.4 -
400K and 300 - 1400K, respectively, using both the Lennard-
Jones [12-6] and the [exp—-6] models, but the agreement between
the experimental and the predicted values (using their
parameters) for the transport properties of binary noble

gas mixtures was not good enough for the present accuracy.

;= Al Zf?? 1
Kestin and co—workersw’21 *? calculated peteatégi

parameters by the application of their extended law of

, 10

corresponding states’ and the viscosity data measured over

102.

a wide temperature range approximately 700K (298.15 - 973.15K).

The details of the predicted values of second virial coeff-
icients, viscosities and diffusion éoefficients (using their
parameters) for noble gas mixtures will be discussed later
in this chapter.

In this laboratory, Carson and Dunlop11 tried to
obtain the potential energy parameters by measuring the
diffusion coefficients over a small range of temperature
(¢ 50K) for Lennard-Jones[12-6] potential. They used the
two point interpclation method to calculate the collision
integrals at various temperatures. This method was not
accurate enough and hence resulted in the failure of the
project.

For the present study,the binary diffusion
coefficients of rare and polyatomic gas mixtures were
measured over a small temperature range of fifty degrees.
Using the experimental data together with some excellent

second virial coefficients, the potential parameters (g1
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and 0,;,) of the mixed interactions were obtained which
predict almost all the data available in the literature
within the experimental errors. The potential selected for
this purpose was the group of [m,6,8] potentials proposed

by Klein and Hanleym’w'. These authors applied this group
of potentials to various rare and polyatomic gases and
suggested that [11,6,8, Yy = 3] potential was the best among
the [m,6,8] group because of its better predictions about
the transport data than any other member of this group.
However, in the present study the calculated potentials
varied from [9,6,8, vy = 0] for Ar - CO to [12,6,8, vy = 2.5]
for Ar - Xe. These potentials may not be unique but they
predict the best transport and second virial coefficient data
in the literature,as good as or better than any other potentials
which have been proposed for these systems. The method to
calculate the potential parameters for pure gases and their
binary gas mixtures is discussed, in detail, in this chapter.
The various transport properties (e.g. viscosity, thermal
diffusion coefficient, self diffusion coefficient, second
virial coefficients, diffusion coefficients at low and high
temperatures) have been predicted using the best calculated
potentials among the [m,6,8] group which show slightly
better agreement than those given by the extended law of

corresponding states.



104.

5A4.2 Experimental and Results

The diffusion coefficients for all the binary
noble gas mixtures (except Kr - Xe) and for the systems
He - N, He - COz, He - O2, Ar - CO, Ar - Nz, Ar- Oz,
CH, - Kr and CH, - CFs, each of which contains at least
one polyatomic molecule, were measured at constant mole-
fraction as a function of temperature between 275-323K.
The molefraction, x, , of the heavy component was chosen
to be as small as possible but large enough to give reason-
able out of balance reading on the digital voltmeter. The
experiments for binary gas systems He - Ne, He - Ar, Ne - Ar
and N, - Ar were performed at one atmosphere pressure in
a Loschmidt cell (A3;) while for all other systems they

were performed in two bulb cell (A,) and a large pressure

range (40 - 300 torr) was used in order to
(1) keep the experiments to the similar lengths of time;
(1i) eliminate the Knudsen effects.

The experimental results and the molefraction, at
which a particular binary system was studied, are given in
Appendix 3. The binary diffusion coefficients were obtained
in duplicate either at every two degree interval or at every
four degree interval from 277 to 323K, averaged and converted
to a value corresponding to one atmosphere pressure and then

fitted to a polynomial in temperature, T, given by

Dy = b; + b,T + bgTz < T 5A.1

The coefficients for each system together with the per-

centage average deviations of the experimental points from the
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smooth curves are given in Table 5A.1. The concentration
dependence of D,, for each system at 300K was measured and
has been discussed in Chapter 4. The Chapman-Enskog theory
for binary diffusion indicates that over a range of 50K the
variation in the concentration dependence of D;, is less
than 0.1%. This fact has been supported experimentally

with a He - Ar mixture as shown in Chapter 4.

5A.3 Calculations of the Potential Parameters for

Unlike Interactions

Theoretical Chapman-Enskog equation 2.3 for the

diffusion coefficient may be rearranged to the form

3/2

[D L p =

12 "m

3 [ka(M1+Mg)}% 1 T
g

— 2 . y o -
8/ L 2M M, " Q(lzl, 1.) (T*)

(m) . .
fD is a very small correction

The quantity
factor which was applied to yield the theoretical first
approximation after extrapolating the smoothed experimental
results to x, = 0 wusing equation 4.1.

For the first approximation, the equation 5A.2

can be written as

)
o 1 .p=-2 [k3§M1+M2)] L 7? ’
12 1 8/‘1—]_' Mﬁ"lg 012 9(121' 1.) (T*)
- " & 5A.3
i.e. Y =0 . X
1 1
3 % -
where 0 = —— [k éﬁ‘;MZ)] L ana x = ri/0 "7 (TY)
8}/'ﬂ' 1112 12



Table 5A.1: Least-squares Coefficients for Equation 5A.1.

System Xy b, x 102 b, x 103 by x 10° Av. dev.
He-Ne* 0.15 - 1.5186 1.30600 8.0695 + 0.06
He~-Ar* 0.15 - 6.9068 1.23353 4.8998 + 0.05
He-Kr# 0.10 -12.3666 1.52792 3.3999 + 0.03
He-Xe# 0.10 - 0.6411 0.61811 4.0915 + 0.05
Ne-Ar* 0.15 - 6.1238 0.70962 1.9148 + 0.04
Ne-Kr# 0.15 - 2.2749 0.39265 1.8708 + 0.07
Ne-Xe# 0.08 - 8.2455 0.75183 0.8749 + 0.04
Ar-Kr# 0.15 + 0.0630 0.06087 1.3502 + 0.05
Ar-Xe# 0.15 - 2.0482 0.18420 0.8822 + 0.10
He-N2 # 0.20 -15.2693 1.80450 3.6177 + 0.04
He-0,# 0.15 -35.9205 3.16733 1.7869 + 0.09
He-CO, # 0.15 - 8.1267 1.23002 3.5624 t 0.06
Ar-N,* 0.50 - 7.4946 0.63930 0.9653 + 0.05
Ar-0,# 0.50 - 5.0619 0.46192 1.2870 + 0.04
Ar-CO# 0.35 - 2.8714 0.33599 1.5034 + 0.06
Kr-CHu# 0.15 - 4.3961 0.3689¢6 1.2438 + 0.03
CHy-CF.# 0.15 - 3.2028 0.29646 0.9876 + 0.03

a

*

X; 1s a molefraction of the heavy component.

Experiments were performed with Loschmidt cell

(As3) .

# Experiments were performed with small two bulb cell

(Az) .

90T
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The contribution of 6 to the temperature depend-
ence is very little at low molefractions. Equation 5A.3
suggests a simpler method of determining the potential
parameters than that given by Van Heijningen et a1.>* ana
by Hogervorstﬁ.

Equation 5A.3 implies that for a given set of
values for Yi and X the plot of Y versus Xi is a
straight line passing through the origin. For an experi-

mental set of 0 1 and T vwvalues, a corresponding set
1

12

of (Yi,Xi) values was calculated by assuming an approxXimate
value of €12 . It was repeated for a series of ¢;; Vvalues
and the value which resulted in the best least-sqguares fit

of (Yi,Xi) passing through the origin was selected, this
value thus corresponds to the minimum standard error. The
optimum value of 0;, Wwas then calculated from the slope

of the best fit. The potential parameters (e, and 0)3)
calculated by this method for all the systems mentioned in

the beginning, together with their error limits obtained by

applying an F-test to the standard error of the best fit,

are given in Tables 5A.2 and 5A.3. In Figure 5A.1 a graph
is plotted between a series of (g2 /k) values and their
respective percentage errors in slope, 0 , for a binary

mixture Ar - Kr which clearly shows a single minimum

corresponding to the best value of (e12/Kk) for that system.
The collision integrals for the above calculations

were taken from the tables given by Klein et ar.'? At a

particular temperature these collision integrals were obtained

by fitting the required portion of the curve T* versus
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Table 5A.2: Tests of [m,6,8) Potentials for Noble Gas Mixtures%
He-Ne He—~-Ar He-Kx He-Xe Ne-Ar
Potential (10,6,8,Y=2) (9,6,8,v=2) (11,6,8,v=0) (9,6,8,vy=3) (11,6,8,Y=3)
(e12 /k) (K) 21.0+x2.0 22.5%2.0 24.0%£2.0 21.5+2.0 74.0£2.0
012 (A) 2.661£0.005 3.213%0.005 3.330+0.005 3.678+0.005 3.308+0.005
Av.Error,Bys (cm®)'*?® -1.0 +0.6 £1.1 +0.6 -1.0
(123-323) (123-323) (148-323) (173-323) (123-323)
Av.S Error,nmixlo’zl_“ £0.2 -0.2 ~0.3 +0.3 +0.1
(298-973) (298-993) (298-873) (298-773) (298-973)
Av.% Error,nmixw’31 - +0.4 - = -
(120-1600)
AV.S Error,0124 +1.1 +0.6 +1.2 +1.2 +0.5
(65-295) (90-400) (112-400) (169-400)- (90-400)
AV.3 Error,Dns +0.6 +2.4 +0.5 +1.9 +0.5
(300-1400) (300-1400) (300-1100) (300-1000) (300-1400)
Av.% Error, o - - - - +2.6
(110-270)
Av.% Error, aT“ +1.7 +1.5 - = +1.5
(306) (278-306) (278-306)

Continued. ..

60T



Table 5A.2: Continued

Ne-Kr

Ne-Xe

Ar-Kr

Ar-Xe

Potential

(e12 /k) (K)
g1z (A)

15,16
av.Error,Bis (cm?®) 7’

10,2124
Av.% Erroxr,n .
ni1 x

30,31
Av.% Error,n . ’
miXx

4
Av.3% Error,D22

6
Av.% Error,D12

49

Av.% Error,aT

35
Av.% Error,OLT

(11,6,8,vy=3)

79.0+£2.0

3.186+0.005

-1.4
(148-323)

-0.2
(298-973)

1.2
(111-400)

0.5
(300-1400)

(12,6,8,vy=2.5)

87.0+£2.0
3.359+0.005

o2
(173-323)

+0.2
(298-773)

+0.6
(169-400)

+0.4
(300-1400)

(11,6,8,vy=3)

177.5%2.0
3.417+0.005

-1.0
(148-323)

-0.2
(298-973)

+0.2
(120-1600)

+0.7
(169-400)

+1.7
(300-1400)

-18.0
(200-267)

(12,6,8,y=2.5)

212.5+2.0
3.558+0.005

+1.0
(173-323)

+0.2
(298-773)

+0.6
(169-400)

+0.4
(300-1400)

« After consulting the original data the following
Bz, 1.5 - 2.0 cn®; n . (Kestin et al.), 0.25%;

Heijningen et al.), 1%

et al.), 1.5-2%.

D12 (Hogervorst)1l-1.5%; L

(Grew and Wakeham) , 3%; o

average experimental errors were adopted:

n  (Smith and co-workers), 1%; D (van
mix 12

(Symons

b The temperature range in degrees kelvin used in each study is given in brackets beneath

each entry.
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Table 5A.3: Tests of [m,6,8] potentials for Binary Gas Mixtures.

He-N, He-04 He-CO; Ar-N; Axr-0, Ar-CO CH,-Kr cH L;,_CFL‘,
Potential (11,6 983Y=0) (9 ’6’8’Y=1) (12 ’6,83Y=0'5) (9 96589Y=4) (9 :6,89Y=0) (9 ,6,8’Y=0) (113698aY=1) (10,6,83Y=1)
.(812/1{) (K) 21.0+£2.0 25.5+2.0 25.0£2.0 99.5+2.0 102.0%3.0 86.0x3.0 171.0+£3.0 127.023.0
C12 (A) 3.262%0.005 3.179+0.005 3.394+0.005 3.546x0.005 3.477+0.007 3.606x0.007 3.622+0.007 4.221+0.007
Av. dev. 0.4 +2.52 +0.6 +1.4 -1.0 3.4 +4.7 +1.4
B (Cmg)li—v (123-323) (90-298) (223-298) (123-323) (90) (123-323) (123-273) (223-623)
12
Av. % dev. +0.4 +0.4 +0.2 +0.3 0.1 - +0.6 +0.7
25-29 (298-973 (298-678) (298-973) (298-767) (298-770) (298-478) (296-473)
™i X
Av. % dev. - - - - - - = +0.9
30, 31 (150-1100)
miX

. After consulting the original data the following average experimental errors were adopted:
B, (Brewer and Douslin), 1.5-2.0 cm®; By, (Knobler et al.), 2.0-3.0 cm?; Ny (Kestin et al.).
0.25%; n_.. (Smith and co-workers), 2%.

v The temperature range in degrees Kelvin is given in brackets beneath each entry.

TTT
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(2,ys)

Q“ to the polynomials up to order twenty and selecting

the one with a minimum standard error

( L,9)
ij

20

Q = a + bT* + cT*> + ... uT* ... G5A.4

where a,b,c,... u are the constants and T¥* is the reduced
temperature.

When this method was applied to all the systems,
pairs of parameters were obtained for each system for a
series of [m,6,8] potentials. It was impossible to determine
which pair of parameters was best since all reproduced the
experimental data equally well. To decide the best pair of
parameters, the second virial coefficients for each pair were

calculated using the following expression

where N is the Avogadro's number; BTZ is the reduced
second virial coefficient whose value was taken from the
tabulation of Klein et al.'*. These calculated values of
B,, were then compared with the excellent experimental
data of Brewerls’16 , Douslin et a1.17, Knobler et a1.18 and
the compilation of Dymond and smith'’ . The differences
between the values calculated with the appropriate [m,6,8]
potential and the corresponding experimental values of By,
for rare gas mixtures are listed in Table 5A.4 whereas the
same for all other gas pairs are presented in Table 5A.5.
The second virial coefficients have also been
calculated with the potential parameters obtained by Kestin

et az. 24 using the extended law of corresponding states

theory and viscosity data. The differences between the



Table 5A.4: Differepces (Bi?c —Bi?J) for the Data of Brewerls'16 °
T K He-Ne He-Ar He-Kr He-Xe Ne—-Ar Ne—-Kr Ne-Xe Ar-Kr Ar-Xe
A B A B A B A B A B A B A B A B A B
323.2 -0.8 0.8 0.1 - 5.5 1.1 1.6 -0.3 7.9 -0.8 1.6 -0.1 - 3.0 -2.2 -1.7 -1l.4 -2.6 1.5 1.9
298.2 -0.7 0.9 0.0 -6.0 - - - - =-0.9 1.8 - - - = - = = =
273.2 -0.6 1.0 0.6 =-5.8 2.7 3.2 0.5 9.1 -0.5 2.4 -0.5 - 3.5 -2.0 -1.5 -1.1 -3.6 1.8 2.1
248.2 -0.7 0.9 0.2 -6.8 - = = - - - - - - - - - - -
223.2 -0.8 0.9 0.2 -7.5 0.6 1.0 -0.1 9.5 -0.6 2.9 -0.5 - 4.5 -3.2 -2.6 -1.2 -4.9 1.2 2.2
198.2 -0.8 0.8 -0.2 - 8.7 0.4 0.6 -0.7 8.5 -1.0 2.9 -1.2 - 5.7 =-4.3 =-3.7 -1.0 -5.7 0.0 1.3
173.2 -1.0 0.7 -0.4 -10.1 0.1 0.6 -1.6 9.8 -1.4 3.0 -1.8 - 7.3 -4.1 -3.7 -1.2 -6.8 0.5 3.7
148.2 -1.3 0.6 -1.1 -12.2 -1.9 -1.2 - - =2.0 3.2 -3.7 -10.7 = % 0.2 -7.7 - =
123.2 -1.6 1.1 -2.9 -16.3 = = = -  -=3.2 2.8 - - - - - = = -

Column A gives differences in cm?®.mol”! between values calculated with the appropriate

[m,6,8)] potential and the corresponding experimental values.

Column B gives differences

in cm?.mol-! between values calculated with the extended law of corresponding states and

the corresponding experimental values.

€11



calc exp

Table 5A.5: Differences (B -B
12 12

,b

) for the Gas Mixturesa

T K He~-Nj He-03 He~-CO; Ar-N, Ar-0; Ar-CO CH,-Kr CHq—CFu#
623.15 - = - . - - - -2.21
598.15 - - - - - - - -2.12
573.15 - - - - . - - -1.91
548.15 - . - - - - - -2.06
523.15 - - - = - - - -1.85
498.15 - - - - - - . -1.65
473.15 - - = - - e - -1.41
448.15 - - - - - - . -1.35
423.15 - - - = - . - -0.98
398.15 - - - - . - = = -0.76
373.15 - - = - - - = -0.59
348.15 - - = = - - - +0.04
323.15 -0.29 - - -0.53 = - - +0.36
298.15 -0.23 -1.32 -1.67 -0.90 - = . +1.19
273.15 +0.37 = - -1.31 . -0.95 -1.98 +2.21
248.15 +0.16 - +0.04 -0.94 - - - -
223.15 +0.60 = -0.04 -0.55 - -0.56 -1.24 -
198.15 +0.55 = - -0.21 = = = -
173.15 -0.34 = = +0.07 - +1.72 +1.67 -
148.15 -1.00 - - +1.71 - +4.40 +5.06 -
123.15 +0.33 = - +6.17 - +9.45 +13.63 -

90.00 - +3.71* - = -1.0%* = - -

a The experimental data was taken from Ref. [15,16] except for, #,
Ref. [17)}, and * which was taken from Ref. [18].

» The numerical values given in this table are in cm®.mol”!

which was taken from

PIT
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calculated values with the corresponding states theory and
the corresponding experimental values for rare gas pairs

are also given in Table 5A.4 which clearly indicates that
the former predicted values give a better agreement with the
experimental data than the latter.

The potential parameters were then tested (Tables
5A.2 and 5A.3) by predicting binary viscosities, diffusion
coefficients at much higher and lower temperatures (for
rare gas mixtures), thermal diffusion factors and the concen-
tration dependences of D12 for comparison with the most
accurate data in the literature. The calculations for the
thermal conductivities have not been included here for the
reason given by Kestin et al.zo. The concentration depend-
ences of D12 have been discussed in Chapter 4, whereas
all other transport properties will be discussed in the

following sections.

5A.4 Calculations of Viscosities

The viscosities of all binary mixtures were
calculated using the Chapman-Enskog equation 2.18 and the
percentage differences between the values calculated with
appropriate [m,6,8] potential and the corresponding experi-
mental values are listed in Tables 5A.6 and 5A.7. The

experimental data chosen for comparison from the literature

10,21 -2 9 30,31

were those of Kestin et al. and Smith et al. The

viscosities for the rare gas mixtures were also calculated

10,21 —

with the potential parameters obtained >4 from the viscosity

data using the assumed extended law of corresponding states



calc exp

Table 5A.6: Percentage Deviations[(nmix )/n:& 1 x 100 for the Binary Viscosity Data of

mix

) 10,21.—24 a, b, ¢
Kestin and co-workers P

T K He-Ne He-Ar He-Kr He—Xe Ne—-Ar Ne-Kr Ne-Xe Ar-Kr Ar-Xe
A B A B A B A B A B A B A B A B A B
298.2 0.6 0.5 -0.2 0.0 -0.1 -0.1 -0.3 -0.4 0.2 0.1 -0.1 0.7 0.2 0.8 0.1 0.2 0.2 0.5
373.2 o2 0 = - - -  +0.2 -0.4 0.1 0.1 -0.1 0.8 -0.4 0.2 -0.2 #0.1 -0.6 0.2
473.2 .0 -0.2 -0.4 -0.2 -0.6 =-0.6 *0.2 -0.3 0.1 0.1 -0.3 0.8 0.0 0.8 -0.2 0.1 -0.1 1.0
573.2 -0.1 -0.2 -0.2 #0.2 -0.5 -0.5 #0.3 0.2 0.1 0.2 -0.2 0.7 - - ~-0.1 0.3 - -
673.2 -0.2 -0.3 = = = - 0.3 0.3 0.0 0.1 -0.2 0.8 = - =0.2 0.2 = =
773.2 -0.1 -0.1 0.2 0.2 -0.3 -0.3 0.3 -0.6 0.1 0.1 -0.3 0.8 -0.3 0.8 -0.2 0.2 0.2 0.2
873.2 -0.1 1 -0.2 -0.2 -0.3 -0.2 - = 0.0 0.2 -0.3 0.9 - - -0.1 0.4 - -
973.2 0.0 2 - - - - = = 0.0 0.2 -0.4 0.8 - - =0.4 0.1 = =

a Colum A gives percentage differences between values calculated with the appropriate [m,6,8] potential and
the correspording experimental values. Column B gives percentage differences between values calculated
with the extended law of corresponding states and the corresponding experimental values.

b The values listed for each temperature are averages over the concentrations reported in the literature.

c The He-Xe values were obtained by smoothing the data in Ref. [10].

"9TT
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Table 5A.7: Percentage Deviations [(nmi -n )/n

X mi x

exp s

] x 100 for the Binary Gas Mixtures®

mix

T K He-N; He-0, He-CO, Ar-N, Ar-0; Ar-CO CH 4—Kr CH ,—CF,

296.15 - = = = = - N - 0.98
298.15 - 0.59 + 1.05 - 0.31 - 0.70 + 0.35 . + 0.76 =
323.15 - = - = - - = - 0.77
328.15 - - - - - - + 0.42 -
367.15 - = -~ - 0.32 - - = =
371.15 - - - 0.11 - - - - =
368.15 . - B - .05 - - =
373.15 - 0.46 - . ~ - - + 0.44 - 0.63
378.15 - 0.23 - - - - = =
422.15 - - - - - - = - 0.73
423.15 - . - - - - + 0.69 -
467.15 - - - .04 - - - =
468.15 - - . - - 0.10 - - =
473.15 - 0.35
475.15 -
478.15 - +
571.15 =
573.15 - 0.33 +
575.15 -
576.15 -
667.15 -
673.15 - 0.36 - +
678.15 - + 0.34 -
767.15 - - - -
770.15 - =
773.15 - 0.40 - + 0.22 = - = = -
873.15 - 0.44 - + 0.22 - - - - -
973.15 - 0.49 - + 0.35 a B = = =

a The experimental data was taken from References [25-29].

b The values listed for each temperature are averages over the concentrations reported

in the literature.
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of Kestin et al.”’" and the percentage differences between

the calculated and the experimental values for these mixtures
are listed in Table 5A.6, which show slightly poorer agreement
than the former.

The viscosities for two ternary systems (He - Ne - Kr
and He - Ar - Kr) were computed using equation 2.23 and
compared with the corresponding experimental data given by
Kestin et a1.”’ . The potential parameters used for these
calculations were taken from Tablé 5A.2. A summary of the
predicted and the experimental results’’ is given in Table

5A.8. The agreement between these values is excellent.

Table 5A.8

1
cale exp )/nex? ] X 100

Percentage Deviations [(n_, :
mix mix mix

for the Ternary Gas Mixtures®

T K He-Ne-Kr He-Ar-Kr
298.15 + 0.09 - 0.27
373.15 - 0.09 - 0.43
573.15 - 0.18 - 0.18
673.15 + 0.07 0.0
873.15 - - 0.49

The experimental data was taken from
Ref. [27].

In all cases discussed in this section, the exper-

imental values for pure gases were used to calculate the



instead of those predicted by the first Chapman~Enskog

mix

approximation. In this way, the calculated values of n
nix

depend only on the unlike interactions which is a good
compromise between the first and the second approximation””33

As expected, Table 5A.7 shows slightly larger
deviations than those in Table 5A.6. It is because of the
fact that [m,6,8] potentials might not be good enough to
describe the intermolecular forces involved in the systems
containing polyatomic molecules as accurately as such forces
in mixtures of noble gases.

The interaction viscosity coefficient, n,2, for
the systems containing polyatomic molecules were calculated,
to analyse the experimental data of Kestin and co-workers®’® "%’
using a method proposed by Maitland and smith’® . This para-
meter, n,s; , was essentially independent of concentration for
all these gas mixtures except CH, - Kr. From this study,
it appears that there may be some error for one of the
mixtures’ used to study CH, - Kr. The large deviations
between the predicted and the experimental values’ for
CH, - CF, may be due to the fact that each molecule has
twelve internal degrees of freedom.

Because of the excellent agreement between the

predicted and the experimental viscosities of rare gas

systems and the reasonable agreement for the systems containing

polyatomic molecules, it would seem that a combination of
binary diffusion and second virial coefficient data provides
an excellent method for predicting viscosity data for the
same systems. From the above discussion it appears that

this method predicts viscosity coefficients more accurately

119.
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than viscosity data can be used to predict binary diffusion

coefficients.

5A.5 Calculations for Diffusion Coefficients at Very

High and Low Temperatures

The potential parameters obtained from the present
study were utilized to calculate the binary diffusion
coefficients at much higher and lower temperatures for rare
gas mixtures using Kihara's second approximation (eq. 2.5).
A similar data was produced using the potential parameters

021 ,ith the help of

calculated by Kestin and co-workers'
their corresponding states theory and viscosity results.

The predicted values, by the above two methods, were compared
with the experimental values of Van Heijningen et a1.® at

low temperatures and Hogervorst6 at high temperatures which
show an excellent agreement within the experimental errors

amd He-k»
except for He - Ar .. The percentage deviations between

N

the values calculated with the appropriate [m,6,8]) potential
and the corresponding experimental values together with the
percentage deviations between the values calculated with

the extended law of corresponding states and the corres-
ponding experimental values are listed in Table 5A.9 for

low temperatures and in Table 5A.10 for high temperatures.
As can be seen from these tables, the values predicted by
the present method show slightly better agreement, fcr all
the gas pairs except He - Ar and He - Xe at high’temp—

eratures, with the experimental results than the ones

predicted by the corresponding states theory.



calc

Table 5A.9: Percentage Deviations [(D'l2 Djzp)/Tﬁzp 1 X 100 - van Heijningen et a1.* ®
T K He-Ne He-Ar He—Kr He-Xe Ne-Ar Ne—-Kr Ne-Xe Ar-Kr Ar—Xe
A A B A B A B A B A B A B A B A

65.4 1.0 -2.2 - - - - - - - ~ - - - - - - -
77.4 0.0 -1.3 - = - - ~ - - = - - - - - - =
90.2 0.5 -0.9 1 -9.1 - - - - -1.0 -3.5 - - - = = = = =
111.7 - = - 1.8 -0.4 - - - - -2.9 -3.6 - = = - - -
169.3 1.4 1.8 4 -3.3 1.2 0.0 0.3 1.8 -0.6 1.6 0.6 -3.3 0.5 -1.2 0.8 -1.3 1.3 1.3
231.1 - - - - - 3.2 - - - - 0.9 0.2 0.6 -1.2 1.0 1.1
295.0 2.6 1.9 6 -~0.5 0.3 0. i t.0 0.1 -0.1 1.0 -0.8 0.4 0.2 0.7 -0.8 -0.1 -0.1
400.0 - - .2 -0.2 1.7 1. 0.4 0.4 0.6 -0.2 -0.8 0.7 1.3 0.8 -0.1 0.1 -0.1

Column A gives percentage differences between values

calculated with

the appropriate [m,6,8] potential and the corresponding experimental

values. Column B gives percentage differences between values

calculated with the extended law of corresponding states and the

corresponding experimental values.

"TCT



Table 5A.10:

calc exp exp 6 a

D )/D12 1 x100 - Hogervorst

Percentage Deviations [(D12 hLs

T K He-Ne He-Arxr He-Kr He-Xe Ne-Ar Ne-Kr Ne-Xe Ar-Kr Ar-Xe

A B A B A B A B A B A B A B A B A B
300 -06.6 -1.2 0.5 -1.1 0.6 +0.3 1.1 1.3 =-0.2 -0.2 0.3 -1.2 1.0 0.9 0.0 -1.0 0.0 0.0
400 -0.6 -1.6 0.8 0.0 1.2 +1.1 1.3 0.4 0.4 -0.6 0.2 -0.7 0.9 1.4 1.2 0.1 -0.3 -0.4
500 -0.2 ~-1.4 1.0 0.0 0.4 0.0 0.8 -0.3 0.3 1.3 0.1 0.2 1.0 2.0 1.7 1.4 0.2 0.0
600 -0.6 -2.0 1.3 0.2 0.8 +0.3 1.2 -0.5 -0.2 0.3 0.1 0.8 0.8 2.4 2.0 1.8 0.3 0.5
700 0.2 -1.4 2.1 0.6 0.8 +0.4 1.8 -0.2 -0.5 0.1 0.2 1.4 0.7 2.4 1.9 2.2 0.9 1.0
800 0.4 -1.5 2.3 0.5 0.0 -0.6 2.2 0.0 0.7 1.3 -0.5 0.7 0.0 2.0 2.1 2.7 0.1 0.7
900 0.3 -1.6 2.6 0.4 0.0 -0.8 3.0 0.6 0.5 1.2 -1.2 0.6 0.0 2.1 1.9 2.7 c.8 1.7
1000 0.6 -1.2 3.0 0.8 0.4 -0.4 3.0 0.8 0.5 1.7 -1.0 0.5 -0.2 2.1 2.1 3.1 0.5 1.6
1100 1.0 -0.8 3.6 1.0 0.7 -0.2 - B 0.4 0.9 -0.9 0.8 0.0 2.0 2.4 3.6 0.5 1.7
1200 0.7 -0.8 3.6 0.7 - - = = 0.0 0.6 -0.7 1.1 0.0 2.6 2.7 4.6 0.1 1.7
1300 1.6 -0.2 3.8 0.6 - = - - = N -0.2 0.6 -1.0 0.7 0.0 2.3 2.4 4.7
1400 1.2 -0.3 4.0 0.8 - = = - 0.7 1.4 -0.9 0.8 -~0.3 2.4 2.0 3.7 0.3 2.1

Column A gives percentage differences between values calculated with the
appropriate [m,6,8] potential and the corresponding experimental values.
Column B gives percentage differences between values calculated with the
extended law of corresponding states and the corresponding experimental

values.

“ZCT



5A.6 Calculations of Thermal Diffusion Coefficients

The concentration dependence of the thermal diffusion
factors (&T) for the systems He - Me, He - Ar, Ne = Ar,
He - N, and He - CO; were calculated to the second approx-
imation at 306K by the method of Mason ! described earlier
(eg. 2.32). The calculated values of aT were compared with
the experimental values of Symons et a1.”® for each system
at three molefractions together with their estimated errors,
in each &T, assuming an error of +0.00003 in each of the two
equilibrium molefractions measured at the end of an experiment
are given in Table 5A.11.

The estimated experimental percentage errors and the

percentage deviations between the experimental and the predicted

&T values, A% , are quite similar (Table 5A.11) for the noble

gas mixtures (He - Ne, He - Ar and Ne - Ar) while for others
(He - N, and He - CO2), these values are guite different.
As can be seen from equation 2.32, aT depends on

both the like as well as the unlike interactions of the
molecules. A method to calculate [m,6,8) potential para-
meters for unlike interactions, by combining the accurate
binary diffusion and the cross term virial coefficients, was
described earlier in this chapter. A similar method was
used to obtain [m,6,8] potential parameters for like inter-
actions by combining the most accurate viscosity data and

36,37
’ and

second virial coefficients. For helium both exp-6
Beck's3&39potentials were tested and it was seen that the
former always gave slightly better agreement with the experi-

mental results.

(W8]
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Comparison of Experimental and Predicted Thermal

Table 5A.11

124.

Diffusion Factors at 306 K
He-Ne He-Ar Ne-Ar He-N» He~-CO3,
(X2=0.9)
5T(exp) 0.27, 0.28 0.15, 0.25, 0.30,
&T(calc) 0.254 0.27, 0.14, 0.275 0.29 ,
A% -4.4 -4.9 -2.6 +10.8 +2.0
Est. % Error 4.5 2.3 4.3 2.2 1.5
(X2=O.5)

a, (exp) 0.31g 0.38, 0.17s 0.35, 0.41,
&T(calc) 0.31, 0.37, 0.17, 0.38, 0.42,
A% -1.6 —7.1 0.0 +7.9 40.7
Est. % Error 1.3 0.6 1.3 0.6 0.4

(x2=0.1)

&T(exp) 0.38 0.57 0.21¢ 0.604 0.68,
&T(calc) 0.40, 0.59, 0.22, 0.61s 0.74,
A% +3.6 +2.2 +2.7 +1.0 +9.2

Est. % Error 3.2 1.1 3.0 0.9 0.6
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5A.7 Calculations of the Potential Parameters for

Like Interactions

To obtain the potential parameters for pure gases,
a small correction was applied to the smooth experimental
viscosity data reported by Kestin and co-workers?>*?® 27404 4o

yield the theoretical first approximation. The Chapman-

Enskog equation 2.16 for first approximation can be written

as
5 w1 m”
[n]l = — []-VI k] "O,—z . (2 2)' ’ T 5A.6
16V/7 e & (T*)
Y o= 0.X, .
6 = —— Mkl* % .
16vm

The force constants calculated, with the above
equation 5A.6 and the method descgibed in Section 5A.3, for
like interactions between Ne - Ne, Ar - Ar, Kr - Kr,

Xe - Xe, N, - N, O, - Oz, COz - CO2 and CHy - CHy , are
listed in Table 5A.1l2.

The second virial coefficients calculated using
the potential parameters were compared with their corres-

16.
! and

ponding experimental values reported by Brewer'
Dymond and smith'’’ and are presented in Tables 5A.13 and

5A.14 respectively. At low temperatures, the differences
[B?fc —Bi?’] are quite large for diatomic and polyatomic
gases which indicate that the [m,6,8] intermolecular potential

function becomes less effective with the increase of the



Tests of [m,6,8] Potentials for Pure Gasesa’

Table 5A.12:

Ne Ar Kr Xe N 0y CO, CHy,
Potential (9,6,8,y=1) (11,6,8,vy=3) (11,6,8,y=2.5) (11,6,8,y=3)  (12,6,8,y=1.5) (11,6,8,y=1.5) (11,6,8,y=0) (12,6,8,y=1)
(e11/k) (K) 27.0£2.0 152.5+3.0 206.0%3.0 295.0+3.0 116.0+3.0 131.0£3.0 235.0%3.0 172.0+3.0
011 (8) 2.908+0.005 3.302+0.007 3.533+0.007 3.831+0.007 3.561+0.007 3.354+0.007 3.781+£0.007 3.669x0.007
Av.Error, +0.45 $2.12 +0.24 +3.70 *3.90 +0.35 +9.21 £5.22
Byi(cm?) 15.16- (123-323) (123-323) (123-323) (173-323) (123-323) (173-323) (223-298) (123-298)
Av.Error, +1.15 £0.91 +2.85 +0.52 +6.39 +5.74 +6.24 +10.46
B1i(cm®) 19 (60-600) (81-600) (110-600) (275-650) (75-700) (90-400) (273-423) (110-600)
Av. 7% Error, +1.33 +0.69 - - -6.43 -6.75 -3.45 -7.93
Uﬂ142 (77-353) (77-353) (77-353) (77-353) (77-353) (77-353)
Av. 7% Error, +2.72 N - = N = - =
(D] * (77-1400)
Av. % Error, . . +1.47 - - - - -
(D] ** (195-1036)
Av. 7 Error, - - -4.96 - - - - -
[D]145 (232-470)
Av. % Error, - - +2.78 - = - - -
[D]146 (300)
Av. % Error, - - - +1.99 - - - -

(194-378)

[D] 147

a After consulting the original data the following average experimental errors were adopted:
for noble gases and 2.0-5.0 for

B,,; (Brewer), 1.5-2.0 cm?;
[D]: (Trappeniers)

diatomic and polyatomic gases:
(Amdur et al.),1.0-2.0%.

0.1%;

[D];

B11 (Dymond and Smith),
[D); (Winn),

1.0-3.0 cm?

1.0-3.0%; (Weissman et al.) ,2.0%;

[D]4

v The temperature range in degrees kelvin used in each study is given in brackets beneath each entry.

"9¢1



Table 5A.13: Differences (83 —B?f )a the Data of Brewerls'16

T (K) Ne Arxr Kr Xe N oF} COz CHy
323.15 + 0.04 + 0.34 + 0.03 1.77 - 0.31 0.64 - -
298.15 + 0.38 + 0.34 + 0.52 + 2.59 0.00 0.00 - 1.68 + 0.10
273.15 + 0.42 + 0.43 - 0.06 2.06 + 0.53 0.35 - 3.52 + 0.43
248,15 + 0.51 - 0.34 - - + 1.08 = + 5.00 =
223.15 + 0.61 + 0.31 - 0.28 3.85 + 1.91 0.25 +26.65 + 1.64
198.15 + 0.61 + 0.30 - 0.03 4.49 + 2.45 = - + 2.61
173.15 + 0.41 - 0.20 + 0.15 7.47 + 2.54 0.47 - + 5.47
148.15 + 0.17 - 0.42 - 0.28 - + 3.62 - - + 8.95
123.15 + 0.92 -16.36 + 0.56 - +22.69 . - +17.35

a

The numerical values given

in this table are

in cm?.mol”

1

LT



calc exp

Table 5A.14: Differences(B,, -8B =6)a for the Compilation of Dymond and Smith19

Ne Ar Kr Xe N2 0z COZ CHL,

T(X) 8 T (K) 8 T (X) § T (K) § T (K) § T(X) § T(K) § T (K)
600 + 0.3 600 -~ 0.5 600 + 0.6 650 - 0.2 700 - 0.5 400 - 0.2 423.30 -11.17 600 - 1.4
400 + 0.8 500 - 0.2 500 + 0.1 550 - 1.4 600 - 0.9 350 + 0.5 418.21 -11.07 500 - 0.4
300 + 0.6 00 + 0.2 400 - 1.2 450 + 0.6 500 0.0 300 - 0.1 412,99 -11.20 400 - 0.7
200 + 1.0 300 + 0.6 3060 - 0.7 400 + 0.2 400 - 0.3 250 1.9 398.17 - 9.94 350 0.0
150 + 1.5 250 + 0.5 250 - 0.1 350 0.C 300 - 0.3 200 - 2.8 372.93 - 8.64 300 - 0.1
125 + 1.7 200 - 0.3 200 - 0.3 325 -0.3 250 + 0.2 175 - 1.2 348.42 - 7.23 275 + 0.9
100 + 2.0 150 - 2.0 170 + 0.3 300 + 0.7 200 + 1.0 150 + 2.7 322.87 - 4.88 250 + 2.2
80 + 1.6 125 + 0.6 150 + 0.7 275 - 0.6 150 + 3.5 125 + 4.5 313.26 -~ 3.78 225 + 3.4
70 + 1.3 110 - 0.4 140 + 1.7 125 + 5.6 110 + 8.0 305.24 - 2.50 200 + 5.0
60 + 0.7 100 - 1.4 130 + 2.7 110 +15.3 100 +12.5 304.20 - 2.33 180 + 8.4
95 - 2.3 120 + 4.9 100 +10.6 90 +28.7 303.06 - 1.98 160 +15.0
90 - 0.7 115 + 7.9 90 +14.4 298.21 - 1.72 150 +17.9
85 + 0.3 110 +15.9 80 +16.6 273.16 + 4.70 140 +21.1
81 + 2.7 75 +20.2 130 +24.4
120 +25.7
110 +40.7

a The numerical values given in this table are in cm®.mol™! .

"8¢T1
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internal degrees of freedom of the molecules and a more flexible

potential function is required to explain these deviations.

5A.8 Calculations of Self Diffusion Coefficients

The nelf diffusion coefficients of eight different
gases at various temperatures were calculated using the
Chapman-Enskog equation 2.8 with the most likely values of
the parameters (Table 5A.12). A comparison (Tables 5A.15
and 5A.16) was made between the experimental results obtained
by various workers“_47 and the values calculated from [m,6,8]
potentials which show a reasonably good agreement for the
noble gases (Ne, Ar, Kr, Xe) whereas for other gases (N, O;,
CO,, CH,), as expected, the agreement was not as good.

As can be seen from the Tables 5A.2, 5A.3 and 5A.12,
the potentials varied from [9,6,8, vy = 0] to [12,6,8,y = 2.5]
which indicates that if the [m,6,8] group is assumed to
characterise gases or binary gas systems, then more than one
member of the group is necessary. Thus it appears that
these systems are not conformal in terms of any particular
member of the [m,6,8] group. A similar conclusion was
recently given by Maitland and Wakeham = who obtained potentials
by direct inversion of gaseous transport coefficients. In
order to illustrate this fact the potential parameters for
the systems He - Ne, He - Ar, He - Kr and He - Xe were
calculated using [11,6,8, Yy = 3] potential and then the
second virial coefficients were predicted for comparison with

5,16

the data of Brewerl The results were listed in Table

5A.17 which show that the deviations between the calculated



Percentage Deviations[(Dh

Table 5A.

calc

15

. exp

—(D)1

42

for the Data of Winn

/(D1 x 100

130.

T (K) Ne Ar N oP] CO; CHy
353.15 1.40 - 0.81 - 4.88 - 6.64 0.00 - 4.40
298.15 0.78 - - 4.25 -10.78 - 2.65 - 7.08
295.15 - 0.00 - = & -
273.15 0.88 - 0.64 - 6.49 - 5.88 - 4.93 - 8.25
194.65 1.17 - 1.20 -10.57 - 9.81 - 6.20 - 0.40

90.15 - 0.00 - 5.95 = - -19.54

77.65 2.44 + 1.49 - - 0.65 - =




Table 5A.16:

1
Percentage Deviations [(D)lcac

Published in the Literature

-(D)*" /(D)

for the Data

43

44

Ne Kr Xe
T (K) % Dev. T (K) % Dev. T (K) % Dev. T (K) % Dev.
1400.0 + 4.90 1036.1 2.46 470.0 9.84 378.0 + 1.22
1200.0 + 5.10 717.5 0.00 414.0 6.18 329.9 + 2.63
738.0 + 3.50 479.7 2.14 343.0 5.19 300.5 + 1.56
597.3 + 4.00 366.5 0.69 295.0 3.96 293.0 + 2.58
573.0 + 1.36 305.2 0.96 296.0 2.02 273.2 + 1.25
446.0 + 1.38 195.7 2.58 288. 3.16 194.7 2.72
300.2 + 1.49 273.0 1.19
77.4 0.00 243.0 6.94
232.0 6.15

"TET
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and the experimental values are much higher than the experi-

mental errors.

Table 5A.17

]
Differences (Bi;c

—Bizp) Obtained by Assuming an

(11,6,8, Y = 3) Potential Derived from Our Diffusion

Data Alonea

T (K) He-Ne He-Ar He-Kr He-Xe
323.2 - 3.1 - 4.8 - 0.6 - 7.7
298.2 - 3zl = S B -
273.2 - 3.2 - 5.0 = 0.8 - 8.0
248.2 - 3.5 - 5.8 B -
223.2 - 3.8 -~ 6.3 = 1.5 -10.0
198.2 - 4.2 - 7.4 - 230 -12.9
173.2 - 4.8 - 8.4 - 2.4 -13.8
148.2 - 5.7 -10.1 - 4.6 -
123.2 = 63 -13.2 - -

The values listed
cm?®.mol™t.

in each column have unit of

The abovementioned fact can also be seen graphically

in Figure 5A.2 by plotting a deviation graph similar to the

one reported by Maitland and Wakeham48

which shows a signif-

icant deviation from conformality at low separations.
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Figure 5A4.2:

Deviatiaons, (0¢P/e), of Several Potentials
From the (11,6,8,y = 3) as a function of the
Reduced Separation (r/o): A, for the
(9,6,8,y = 2); B, for the (10,6,8,Y = 2);
t, for the (12,6,8,y = 2.5). The left

hand ordinate applies to (r/c) <1, the
right hand ordinate to (r/c) > 1. The
order A, B, C applies on both sides of

the graph.
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CHAPTER ~ 5B

THE TEMPERATURE DEPENDENCE OF DIFFUSION TN
ALMOST LORENTZIAN GAS MIXTURES

58.1 Introductian

The thermal diffusion factor, o, s of gas mixtures
depends upon the interactions between the like and the unlike
molecules and can be calculated from temperature studies of
transport processes as explained earlier (see section 5A.6).
Holleran and Hulburt1 gave a relation between the reduced
collision integralz, Cc* ,‘and the temperature derivatives of
the diffusion coefficients which in turn relates the thermal
diffusion process with that of diffusion. In 1968, Monchick
and co-workers3 derived expressions relating the temperature
dependence of diffusion to the thermal diffusion factor for
mixtures of molecules having internal degrees of freedom.
These equations were simplified by Vugts et a1.® and can be
written as:

82 X -5, X,

l ~
o = (6C* = 5) + = (6C - 5) ... 5B.1
T 12 2 2 5 21
X1 Ql +X2 Qz +x1 Xz Q12

9 Qn[D]2 2 -
— e e —— Iz * — -— —
2[2 < S In T )P} (6C¥*, 5) + 5 (6C21 SVl ¢ siws DB.2
where the quantity (6C;“2 - 5) is well known as a leading
factor in the above equations and the term (6C - 5) is

12

equal to zero if one of the components of a binary mixture
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under study has no rotational degree of freedom (e.g. a rare
gas) . The expressions to calculate Qi's are given in
Appendix 1 whereas the quantities Si's are defined by an
expression (2.31).

Van de Ree”® also presented a simple method (Van de
Ree theory based on the thermodynamics of irreversible
processes) to calculate 0. from the temperature derivatives
of diffusion coefficients and derived similar equations given
by Monchick et al.>. Both these theoretical aspects (Monchick
et al.’ and Van de Reeas) are based on the Wang Chang, Uhlen-
beck and De Boer' approach in which spin polarisation is
neglected.

Mason and Smith® gave a new approximation scheme to
calculate the thermal diffusion factor, a, , for almost
Lorentzian gas mixture*which converges faster than the method
suggested by Chapman-Cowlingg. The final expression given

by Mason and smith® can be written as:

o]}

o =o + Z U Myz ... DbB.3
2 L ¢ 2 j

where o, is the thermal diffusion factor as x; = 0, o is

the exact Lorentzian thermal diffusion factor, M 1s the mass
ratio (M:/M;) and uj's are the higher-order coefficients of
the expansion in powers of M=, The value of first coefficient
(u,) was found to be zero whereas the expressions to calculate
the next few coefficients (uz - us), both for a Chapman-Enskog

. . . N 8
and a Kihara approximation, are given elsewhere .

* A Lorentzian gas mixture is a mixture where the lighter
component 1 is in trace concentration (%1 << Xy} anda the
molecular weight of the bulk component 2 is very large as
compared to the molecular weight of component 1 (M, >> M;).



can

The exact Lorentzian thermal diffusion factor, a
be given10 (in terms of definite integrals) as
o = 5/2 = (Iz/I1) -
where
© : 2n+ 1. (1) 1
— - n -
In = J e Y [S12 ] dy .o
0
in which Si;) is the cross section for diffusion and
v2 = Luv?/kT is the dimensionless kinetic energy of a pair

of colliding molecules.

10 . .
Mason also derived an expression to calculate the

exact Lorentzian diffusion coefficient, DL , which can be

expressed as

1
y? dy .

1 [e]

A 2ukiTd /) —y? -

L 3n¢pa* € [Sm ]
0

141.

5B.4a

5B.4b

5B.5

In the same publicationlo, Mason gave a relation between

the quantities o and the temperature derivative of

constant pressure which can be written as:

9 &n D
a = |2 - (e
L [ (3 fn T )P] :

On putting the above value of o in equation 5B.3, the

expression for o; becomes

BQDDL\ ) i
o, -:L2—<—————a znT/P]+j§2 T

at

5B.6

If the light component of a gas mixture has some internal degree

of freedom (e.g. molecular gas), the term [%(65 -~ 5)] linked

21

to partial internal heat conductivity has to be added to the

above equation.
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In this chapter, a study of the temperature dependence
of the binary diffusion coefficients for the systems He - Ar,
He - Kr, H, -— Ar and D, - Ar have been made. The thermal
diffusion factors for the same mixtures have been calculated
using the relation 5B.6 and compared with data available in

the literature.

58.2 Experimental and Results

The binary diffusion coefficients, 912’ were measured
in duplicate at one atmosphere pressure every two degrees
interval (He - Ar, H, - Ar and D - Ar) and every four
degrees interval (He - Kr) from 277K to 323K with the Loschmidt
cell (cell Aj3) described earlier in Chapter 3 . The details
of the experimental procedure and the method to calculate the
diffusion coefficients have also been explained in Chapter 3.

The experimental results and the molefractions, xz*, at
which a particular system was studied are given in Table 5B.1.

The data for each system was then least-squared to a simple

empirical relation:

(0,1 =2+ BT + CT? . ... 5B.8

The value of the constants A, B and C obtained together
with their percentage average deviations of the experimental

points from the smooth curves are listed in Table 5B.2. The

oe

present data is accurate to within 0.1

* x, is the molefraction of heavy component.



Table 5B.1: Experimental Results for the Temperature Dependence of the Diffusion Coefficients

in Almost Lorentzian Mixtures

He-Ar He-Kr H,-Ar D;-Ar
at molefration x:
0.9000 0.9750 0.9000 0.9000

T (PD12 ) T (PD12 ) T (PD12 ) B T (PD12 )

() (atm.cm.?s™ 1) (K) (atm.cm.’s ') (K) (atm.cm.?’s ') (K) (atm.cm.?s ')
277.00 0.6620 277.00 0.5758 277.00 0.7298 277.00 0.5280
279.09 0.6705 281.00 0.5896 279.00 0.7392 279.00 0.5348
281.00 0.6780 284.90 0.6048 281.00 0.7486 281.00 0.5412
284.90 0.6944 293.05 0.6353 284.90 0.7674 284.90 0.5554
288.85 0.7105 297.04 0.6488 288.85 0.7867 288.85 0.5690
293.05 0.7278 301.16 0.6648 293.05 0.8060 293.05 0.5828
297.04 0.7450 305.16 0.6794 297.04 0.8253 297.04 0.5973
300.00 0.7585 309.13 0.6945 300.00 0.8412 300.00 0.6086
301.15 0.7634 313.37 0.7107 301.15 0.8469 301.15 0.6126
303.15 0.7721 317.33 0.7254 303.15 0.8560 303.15 0.6200
305.15 0.7808 : 321.34 0.7418 305.15 0.8666 305.15 0.6268
307.13 0.7894 323.45 0.7500 307.13 0.8761 307.13 0.6340
309.13 0.7976 309.13 0.8872 309.13 0.6414
311.13 0.8065 313.26 0.9072 311.13 0.6485
313.26 0.8159 315.16 0.9170 313.26 0.6563
315.16 0.8243 317.16 0.9270 315.16 0.6635
317.16 0.8331 319.12 0.9373 317.16 0.6716
319.12 0.8415 321.12 0.9483 319.12 0.6783
321.12 0.8504 323.14 0.9580 321.12 0.6860
323.14 0.8596 323.14 0.6939

T N is the molefraction of heavy component.

ERT
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Table 5B.2

Least-square Coefficients for Egq. 5B.8

a

System Xo A x 10?2 B x 103 c x 10° Av.dev.%
He - Ar 0.9000 -1.6441 1.86041  4.0500 + 0.03
He - Kr 0.9750 -1.8821 1.91386  3.0477 + 0.04
Hy, - Ar 0.9000 -1.4790 1.63999 5.5183 + 0.04
D, - Ar 0.9000 -6.9321  0.92528 4.4439 + 0.02

a X, is the molefraction of heavy component.

5.3 Calculations for Exact Lorentzian Thermal Diffusion

Factor (aL)

For a Lorentzian gas mixture with no internal degree
of freedom, the thermal diffusion factor can be calculated
using equation 5B.6. The experimental data can also be

represented by a more practical form as:
zn[Dl2] = a; + a,inT i wuzen DB 9

The value of the constants a; and a; together with their
percentage average deviations of the experimental points with
respect to the empirical fit are listed in Table 5B.3.

The partial differentiation of the above equation 5B.9

with respect to &nT gives:

9 4n D
(" 12 _
\3 Th T . = as . ... S5B.10a
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Table 5B8.3

Lleast-square Coefficients for Eq. 5B.9

System Xg ag ajy Av.dev.%
He -~ Ar 0.9000 ~ 9.9546 1.6967 + 0.04
He - Kr 0.9750 -10.1220 1.7018 £ 0.05
H, - Ar 0.9000 -10.2616 1.7686 £ 0.05
D; - Ar 0.9000 -10.6105 1.7731 + 0.04

a X, is the molefraction of heavy component.

The Chapman-Enskog theory2 for binary diffusion
indicates (Table 5B.4) that over a temperature range of 50K
and at high molefractions of the heavy component 2, the
quantity (aan12/a£nT)P is independent of concentration.
Therefore, in the present calculations, the temperature
derivatives of the equation 5B.9 are assumed to be equal to

the temperature derivatives of the exact Lorentzian diffusion

coefficient.
9 4n Dn 9 n D
(mﬁz—) - (W) A heat SB. 10D
P P
from which o, can be calculated (uL = 2 - asz).
The calculated values of o ( using the above method)

L

for the systems He - Ar and He - Kr at 300K were compared
(Table 5B.5) with the experimental values recently obtained by
Dunlop et al.11 in this laboratory. The agreement between
these values is quite good and hence supports the Mason's

. . 8
approximation scheme .
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Table 5B.4

Predicted Values of the Ratios (BRnDlz/BQnT)P for the
Systems He - Ar and He - Kr using Chapman-Enskog Theorya

He - Arx He - Kr
& (agnnm [2_(3“1312) ] 34nD;, [2_ 34nDy,
2 9&nT |/, ainT ), 92nT ), oenT /,
.1000 1.689 0.311 1.675 0.325
.5000 1.691 0.309 1.676 0.324
.9000  1.692 0.308 1.677 0.323
.0000  1.692 0.308 1.677 0.323

The binary diffusion coefficients were generated after
every five degrees from 275 to 325K using Kihara's second
approximation and were least-square by an equation 5B.9.

X, is the molefraction of heavy component.

Table 5B.5

Comparison Between the Calculated and the literature'

values of dL at 300K

Systems ai“c ui”n

He - Ar 0.303 +* 0.020 0.276 = 0.010
He - Kr 0.298 + 0.020 0.290 * 0.010
H; - Arxr 0.231 * 0.015 0.262 + 0.005
D, - Ar 0.227 = 0.015 0.252 + 0.005

a Literature values for the systems He - Ar and
He - Kr have been taken from Ref. (11) whereas those
for H, - Ar and D; - Ar together with estimated
errors were obtained by least-squaring the calculated

values given by Wahby et a1.'’
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For the other two systems H; - Ar and D; - Ar
there is no reliable data available in the literature except
that of Van de Ree et al.12 at 420K. Wahby, Boerboom and
Los'? calculated the exact Lorentzian thermal diffusion
factor from the temperature dependence of diffusion for few
binary gas mixtures including H; - Ar and D, - Ar at
420K and showed an excellent agreement with the experimental

: Wahby et al. then predicted

data of Van de Ree et a1.1
the temperature dependence of o from 237K to 420K. For
the sake of comparison at 300K, these calculated values13 of

o, ~ were interpolated and, as expected, the agreement for

these two systems is not so good (Table 5B.5).
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CHAPTER 6

THE PRESSURE DEPENDENCE OF DIFFUSION

6.1 Introduction

Mutual diffusion coefficients at 300K were measured
by Staker and Dunlopl and Bell et al.’ in a Loschmidt cell
described earlierl, over a small pressure range of 1 - 9
atmospheres for sixteen systems containing helium. For
the present work, the same cell was modified to extend its
range of pressure up to approximately 25 atmospheres by placing
O-rings between the mating surfaces and concentric with the
cell axis. The details of the cell, experimental procedure
and the method used to drive the binary diffusion coefficients
from the raw experimental data have been described in Chapter 3.
All experiments were performed, in duplicate, by allowing
pure helium from the top compartment to diffuse into a mixture
containing 70% helium resulting in a final molefraction, X,
of the heavy component equal to 0.15. The use of small initial
concentration differences in the cell ensured that (a) negligible
pressure changes occurred during all the experiments, so that the
diffusion coefficients measured corresponded to the volume of
the frame of reference3’4 : Moreover, at high pressures (greater
than three atmospheres), the pressure of the bottom compartments
was made equal to that of the top compartments by letting the
gas in or out from the bottom half of the cell depending upon

the sign of the pressure of mixing for the system under study.
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(b) the thermistors used in the bridge circuit only yield
consistent results5 in gas mixtures which have thermal
conductivities reasonably close to helium, the gas in which
they were tested by the manufacturer.

Small corrections (less than 0.1%) were sometimes
necessary to adjust the results to the chosen molefraction.

A1l diffusion coefficients reported in this chapter
are believed to be accurate to 0.1%. Even though the modified
cell operated perfectly up to 25 atmospheres, it was not always
possible to maintain a precision up to this point. Presumably
the heat of mixing, the Dufour effect and convection from the

thermistor surface all play a part in this loss of precision.

6.2 Experimental and Results

The pressure dependences of the binary diffusion
coefficients, Dlz, for the systems He - Ar, He - N,, He - O3
and He - CO. were measured, at constant composition (x2 = 0.15)
and two temperatures (300.00 and 323.15K) in a modified Loschmidt
cell (A3).

The experimental results are tabulated in Table 6.1.
Using a least-squares procedure,this data was fitted to the

expression:
PD12 = (PD”)0 (1 + 6P) ... 6.1

where Dm is the binary diffusion coefficient, P is the
pressure in atmospheres, (PDH)0 is the limit of the quantity

(PDI2) at P =0 and 6 1is the slope describing the pressure

dependence. The values of the intercepts (PDU)0 and the



ab .

TABLE 6.1: Pressure Dependence Results at Two Temperatures for the Systems
He/Ar He/N, He/O, He/CO;
T = 300.00K 323.15K 300.00K 323.15K 300.00K 323.15K 300.00K 323.15K
P (PDy,) x 10*
(atm) (atm. m.2s7?)

1 0.7423 0.8399 0.7126 0.8069 0.7516 0.8511 0.6081 0.6886

2 = - 0.7129 = = - - e

3 0.7416 0.8399 0.7130 0.8060 6.7516 0.8501 0.6066 0.6865

4 - - 0.7128 - - - - -

5 0.7413 0.8401 0.7128 0.8060 0.7511 0.8497 0.6050 0.6853

6 = - 0.7124 = - - - -~

7 0.7409 0.8397 0.7125 0.8059 0.7513 0.8498 0.6023 0.6837

8 - = 0.7123 - = v - .

9 0.7411 0.8400 0.7123 0.8067 0.7505 0.8500 06.6013 C.6827
10 - - 0.7120 = 0.7505 - 0.6003 -
11 0.7410 0.8402 0.7122 0.8068 0.75006 0.8503 0.5982 0.6811
12 = = 0.7122 - 0.7505 = 0.5975 -
13 0.7410 0.8410 0.7121 0.8070 0.7507 0.8502 0.5975 =
14 0.7408 = 0.7117 - 0.7496 = ' 0.5974 -
15 0.7408 . - - - - = -
16 = _ 0.7120 - 0.7501 - - ~
17 = - - - o= - = -
18 = - 0.7121 - 0.7502 N = -
19 = N - N - - - -
20 = - 0.7130 - 0.7502 - - -

a Actual pressures lie within 0.05% of these values.

b Given value is the average of the four experiments.

"ZST
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coefficients 0, together with their standard deviations, are
summarised in Table 6.2.

Using the second virial coefficientss’7 in Table 6.3,
a set of quantities, nD12 , were calculated from the correspond-
ing quantities, PDlZ’ where the number density n was

related to the pressure P by the following relation

n = P/[kT(1 + Bm'P)]- N
The second pressure virial coefficient Bm’ of the mixture
is given by:
’ 2 2
B =B x + B _x + 2x x B «e. 6.3
m 11 1 22 2 1 2 12
where B11 and B,, are the second virial coefficients of
the components 1 and 2 respectively;
X, and x, ~are the molefractions of the components

1 and 2 respectively;

and B12 is the second virial coefficient of the mixture.

The data (n versus nD12 ) was fitted to the relation

n012 = (nDlz)o (1 + BDn) ... 6.4
where B/ is an experimental "virial coefficient" for binary
diffusion.® The parameters obtained by the above equation

are listed in Table 6.2 while the graphical representation of

the same data is presented in Figures 6.1 - 6.4.



TABLE 6.2: Least-square Parameters for Egs. 6.1 and 6.4 and Diffusion "Virial Coefficients"
He-Ar He-N», He-0>» Ee-CO,
300.00K 323.15K 300.00K 323.15K 300.00K 323.15K 300.00K 323.15K
(PD,,)o x 10" 0.741, 0.839, 0.7125 0.806, 0.751, 0.850. 0.609, 0.689,
s.D. x 108 1.9 2.5 1.7 3.6 2.0 3.6 3.3 2.2
p x 10" -1.12 0.81 -0.48 0.58 -1.20 -0.42 -14.91 -10.36
s.p. x 10" 0.26 0.37 0.22 0.56 0.22 0.53 0.62 0.44
(nDy,), x 10 2% 1.815 1.907 1.744 1.831 1.839 1.932 1.490 1.565
s.p. x 10 *° 0.4 0.6 0.4 0.8 0.5 0.8 0.8 0.5
B, X 102° -2.58 -1.79 -2.48 -2.05 -2.53 -2.25 -8.12 -6.65
S.D. x 102%° 0.10 0.16 0.09 0.25 0.09 0.23 0.26 0.19
(B;)exp x 102° -=1.70 -1.53 ~-1.48 ~-1.34 -1.55 -1.43 -6.79 -6.02
(B;)exp x 10%° -0.88 -0.26 -1.00 -0.71 -0.98 -0.82 -1.33 -0.62
(B;)calc x 10%2° -1.72 -1.67 ~1.82 -1.78 -1.59 -1.73 -3.10 -2.83
R 2 -1 -1 -1 -1 . 3
Units: (pD. ) , atmm s ; 6 , atm ; (nD._ ) , m ; all B values, m
12 0 12 0 D

AN



TABLE 6.3: Second Pressure Virial rCoefficients and Effective Distance Parameters :

B . x 10° B, x 10° B* x 10" o "
(atm™ ") (atm ') (atm ') (nm)
300.00K  323.15K 300.00K  323.15K 300.00K 323.15K  300.00K  323.15K

He 4.75 4.39 - - - - 0.210 0.210
Ar -6.34 -4.16 7.34 6.94 8.1, 6.83 0.320 0.312
N -1.71 -0.09 8.62 8.13 7.1, 5.9 0.337 0.331
02 -6.30 -4.37 6.66 6.39 7.4, 6.3s 0.295 0.323
Co, -49.62 -38.92 10.14 9.56 32.5 26.84 0.496 0.470

All virial coefficients are taken from references 6 and 7.

The subscript 1 is used to denote He; all other gases are denoted by the subscript 2.

"GGT
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6.3 Comparison with Enskog-Thorne Theory

A comparison has been made between the experimental
BE values and the corresponding values calculated from the
Enskog theoryg. Enskog indicated that the theory of rigid
spheres can be extended to study the real nature of fluids
and was extensively used by many workerslo"13 to predict the
transport properties (viscosities and thermal conductivities)
of gases at high pressure.

Equation of state (2.35) for rigid. spheres may be

written as:

= by
BV =1+—v cer 6.5
\Y
= 2 3
where by = §1TN o} .

In the derivation of the theory, Enskog replaced the
external pressure with the sum of the external pressure, p ,
and the internal pressure (aﬁ/aV)T . This sum is known as
the thermal pressure which is thermodynamically equal to
T(Bp/aT)V R For gases composed of rigid spherical molecules,
the internal pressure is zero, thus leaving the external

pressure equal to the thermal pressure which can be written

14,15
S
b
T(%—E—) =3-—T<1+—~1y) cee 6.6
Iy \Y \Y
= b
0
viepy 14+ 2y . . 6.7

For real gases the right hand side in equation 6.7

can be calculated using the experimental compressibility data
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0T oT

<
TN
|
=k
S~

1l

‘_J

+

(B+T?—B)+—l—<C+T§—9>+...

<
<=

From equations 6.7 and 6.8

I
l

beY 9B\ , 1 [ 3¢\
<B+T‘a—'l“/+—\c+l }+..- . 6;9

~ ~

v \Y

As the transport coefficients must approach the dilute gas

values in the low density limits, the relation can be written

14

as
IB. .

b, =B, +T —5T «ee 6.10
Thus the values of the effective rigid sphere diameters at
each temperature were calculated from the relation 6.11 by
using the smoothed experimental data®’

oFF = (3bo/2m,N) e 611
and are listed in Table 6.3.

In equation 2.38 Thorne's contribution is only

the factor Y12 , whereas the first term of the same equation

contributes toward the activity factor'® which tends to unity
as the molefraction of one component of the mixture tends to
zero and are represented by BE and B; respectively. Then

equation 6.3 may be written as

I a T
nD = (nD ) [1 + (B + B )n] caw 6.12
T _ _ 17 s [011%4052 | | 3 (401,140,551
where BD = GHLX1011[011_+022 F X205 5 0114020 Ve 6.13
a E
BD == 4X1X2B kT . . s 6.]‘_4
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By comparing equations 6.4 and 6.12

The experimental B”® data was used to calculate the activity

factor B; . The experimental values for B.. and B" for

each temperature are also given in Table 6.3.
B, and B; were obtained experimentally from diffusion

. . T
and thermodynamic measurements respectively anc (B

plexp WaS

obtained by difference for comparison with the corresponding
value calculated by means of equation 6.13. The calculated

T T

values for (Ba) , (B ) and (B

a s
D exp D exp D)cam t each temperature

are given at the bottom of Table 6.2 which shows:

(1) that the BE values predicted by the Thorne's equation
are approximately 100% larger than the experimental
values. A similar conclusion was drawn when the

32

experimental data™® was analysed for B; values
in the same way17 i These calculations indicate
that in the systems containing helium, the non-

ideality factor B; is much greater than the

corresponding BE factor which gives the disagree-

T
ment between (BD)np and BD.
(ii) that there is not any significant temperature
dependence of (BE)exp as found over the temperature

range available (300 - 323K) to the present cell.
This does not mean that (BTD)“p is independent of

temperature, but measurements over a large temperature

range may be necessary to show any significant variation.
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The quantities

APPENDIX 1

P's and Q's defined in equation

2.7 can be obtained both for a Chapman-Cowling and a Kihara

approximation by the following methods.

According to Kihara's scheme:

2 ‘ (2, 2r
- 2M1 2M2 \/] I-Q“ ]/O“ \2
= 1 * r - & =
1o M (M M)\ +M, ) Lg, (1o 0 No,, /
M =M, 2 8M M A
Er = lS(M +M_) ™ M)z ! '
§ g 12
Q’ _ 2 ( 2M2 )‘/z [Qll( 2, 2) *:\(0“ >2
1 M2 (Ml +M2 ) \Ml +M2 Ql2( 1, 1) *J\o
*
X[M2+3M2+—8—MMA ],
1 2 5 71 2712
*
M -M 2 32M M_A 8 (M +M )
Q, — 15/ 1 2) i 1 2 122 1 2
. %
12 \Ml M, (M, +M ) 5(M M)
Q (2,2)* 0 (2,2)* G 5 o s
B el el () -
Lg (te ) Jlg €110 * A0, c, )
12 12
where all symbols have their usual significance. Expressions

for P2 and Q2 (heavy components) can be generated from

those for P1 and Q1

- by an interchange of subscripts.

Chapman-Cowling gave the similar expressions as

Kihara for P's , whereas they differ slightly in the

calculations of Q's.

The equations are given as

165.
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(2,2)°
_ 2 { 2M2 \VI[Q“ ((‘f“ \2
oM (M, M) M, +M, ) Qn( i, 0-\o )

5 6 2 2 8 *
x[(—z——gB >M1+3M2+§M1M2A12}, +++ Al.S

*
o s MM N s X 4M M A
12 , T \2 5 +

8(M +M )rQ, (2,2)*
*
x(11‘£B>+ : 2[“ } ... Al.6

S A e
b(Mle) (1, 1)

It has been noticed that the expressions for Kihara
Q's can be obtained from the Chapman-Cowling Q's by putting

Bﬁ equal to 5/4 (Maxwellian model value).
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APPENDIX 2

Guggenheimlrgave an equation to calculate the
activity, a, , of the component 1 for a non-ideal binary

gas mixture as:

0
gna, = fna. + &nxi + &n(P/p°) + (B], + 2x2E')P,

... A2.1
0 _ .
where a, is the absolute activity of the pure species 1 at

temperature T and standard pressure p’ . On different-

iating equation A2.1 we get
(3tnay/38nx,), , =1 - 4x1%,B"P , e B2
E
where B is the excess second pressure virial coefficient

and is given by:

BE = Bis - (B11+B22)/2 . [N A2.3

The second virial coefficient for the rigid sphere can be

expressed as:
3
By = 27 012/3kT ’ - A2.4

where all the symbols have their usual significance.
Substituting the values of virial coefficients A2.4

in eguation A2.3

E 2 3 3 3 -
B = §£% (012 = %(o1; + 022)) . ... A2.5
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Since for rigid spheres

o1z = %(0n + 022) ... A2.6
equation A2.5 can be written as
E 2 3 3
B H'gk—.f[(lﬁ(ﬁu +022)3 - (011 + 032)1 eee A2.7
E 21 1, 3 3 2 2 3 3
B = 337 [§(011 + 0y + 307105, + 30,1035;) = %011 = %0321,
... A2.8
E_ m 7
B = T IxT (011 = O22)° (011 + 032) . «+s A2Z2.9
As kT = P/n equation A2.9 can be changed to
E m
B = = Z‘%‘ (011 e 022)2(011 + 022) » o lnle A2.10
Substituting the value of B® from equation A2.10 in A2.2
we get
dnai _ 2
S in%, = 1 + mTnx X5 (0y; = 032) (011 + 0zz)... A2.11
T, P.

which is the required equation used in Section 2.3.°

I. Guggenheim,

Co.

Thermodynamics, 2nd ed., Nth. Holland Pub.

(1950) .
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APPENDIX 3

The experimental results obtained using Loschmidt
cell, A; , and small two bulb cell (STBC), A, , for the
study of the temperature dependepce of diffusion to calculate
potential parameters (see Chapter 5A) are given here. The

symbols used in this Appendix are defined as:

Xs: is the molefraction of the heavy component;
PD,s s is the numerical value of the diffusion

coefficient at one atmosphere pressure.



Table A3.1:

The Temperature Dependence of the Diffusion Coefficient for the Systems

He-Ne * He-Ar™* He-Kr#
at 300K and at molefraction (x2)

X2 = 0.15 0.15 0.10

T (PD,2) T (PD1,) T (PD12 )

(K) (atm.cm.2s™ 1) (KR) (atm.cm.2s™ 1) (R) (atm.cm.?s™ 1)
277.00 0.9660 277.00 0.6491 276.89 0.5600
281.00 0.9890 281.00 0.6642 281.01 0.5743
284.90 1.0118 284.90 0.6797 285.07 0.5883
288.85 1.0353 288.85 0.6962 289.23 0.6028
293.05 1.0607 293.05 0.7126 293.20 0.6162
297.06 1.0820 293.30 0.7141 297.12 0.6306
300.00 1.1050 295.15 0.7217 300.01 0.6405
303.21 1.1231 300.00 0.7420 303.51 0.6532
305.17 1.1338 301.32 0.7480 307.11 0.6662
307.13 1.1488 303.21 0.7560 311.11 0.6812
309.13 1.1598 305.17 0.7637 315.22 0.6958
311.13 1.1716 307.13 0.7720 319.15 0.7108
313.11 1.1856 311.13 0.7886 323.19 0.7248
315.29 1.1976 313.11 0.7974
317.02 1.2106 315.29 0.8065
319.07 1.2226 317.02 0.8147
321.05 1.2360 312.07 0.8239
323.14 1.2493 321.05 0.8328

323.14 0.8401

* Experiments were performed in Loschmidt type cell

# Experiments were performed in STBC (Az) .

(A3) .

Continued

"0LT



Table A3.1: continued

The Temperature Dependence of the Diffusion Coefficient for the Systems

He-Xe# Ne-Ar™* Ne-Kr#
at 300K and at molefraction (xs5) '
X, = 0.10 0.15 0.15
T (PD,2) T (PD12) T (PD12)
(R) (atm.cm.?s71!) (K) (atm.cm.2s"1) (K) (atm.cm.2s™1)
277.15 0.4790 277.00 0.2822 276.15 0.2283
281.47 0.4921 281.00 0.1892 280.15 0.2340
285.05 0.5024 284.90 0.2965 283.95 0.2398
289.02 0.5136 285.32 0.2974 287.94 0.2454
293.20 0.5263 287.30 0.3006 291.88 0.2514
299.92 0.5473 289.30 0.3044 295.96 0.2569
307.20 0.5695 291.31 0.3080 299.93 0.2632
307.31 0.5700 293.05 0.3110 303.28 0.2686
311.22 0.5824 293.30 0.3112 307.25 0.2746
315.18 0.5944 295.15 0.3151 311.28 0.2810
319.21 0.6084 297.14 0.3190 - 314.98 0.2865
323.12 0.6202 300.00 0.3237 318.90 0.2922
301.32 0.3267 323.17 0.2998
303.21 0.3300
305.17 0.3338
307.13 0.3373
309.13 0.3411
311.13 0.3449
313.11 0.3486
315.29 0.3526
317.02 0.3561
319.07 0.3602
321.05 0.3639
323.14 0.3682

* Experiments were performed in Loschmidt type cell (A3s).
# Experiments were performed in STBC (A;z) .

Continued
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Table A3.1:

continued

The Temperature Dependence of Diffusion Coefficient

for the Systems

Ne-Xe# Ar-Kr# Ar-Xe#
at 300K and at molefraction (x2)

X, = 0.08 0.15 0.15

T (PD12) T (PD12) T (PDy2)

(K) (atm.cm.?s™ 1) (K) (atm.cm.?s™1) (K) (atm.cm.2s™?)
275.77 0.1914 276.98 0.1210 276.15 0.0976
277.18 0.1932 280.27 0.1239 280.15 0.1003
281.17 0.1980 287.93 0.1300 283.94 0.1031
285.02 0.2030 292.05 0.1336 287.94 0.1058
288.99 0.2078 296.23 0.1372 291.87 0.1085
293.11 0.2130 299.99 0.1404 296.05 0.1112
297.13 0.2186 303.99 0.1438 300.00 0.1140
300.11 0.2217 307.10 0.1467 303.29 0.1164
301.21 0.2234 311.10 0.1502 307.28 0.1195
305.16 0.2284 314.93 0.1539 311.28 0.1223
309.18 0.2337 319.00 0.1574 314.98 0.1253
313.20 0.238¢ 323.50 0.1616 318.90 0.1281
317.16 0.2438 323.20 0.1310
320.96 0.2490
325.02 0.2544

# Experiments were performed in STBC

(A2) -

Continued

LT



Table A3.1: continued

The Temperature Dependence of Diffusion Coefficient for the Systems

He-No # He-0q.# He-COo # CH,-CF y#

at 300K and at molefraction (xg3)

X2 = 0.20 0.15 0.15 0.15
i PDys T PD1s T PD12 T PDi2
(K) (atm.cm.?s™1) (K) (atm.cm.?s—1) (K) (atm.cm.?s™1) (K) (atm.cm.Zs™!)
277.18 0.6256 277.20 0.6567 277 .37 0.5340 276.28 0.1253
281.21 0.6412 281.22 0.6731 281.31 0.5465 278.32 0.1270
285.26 0.6558 285.15 0.6890 285.15 0.5599 280.26 0.1285
288.95 0.6707 289.23 0.7055 289.28 0.5724 284.23 0.1321
293.11 0.6865 293.29 0.7221 293.17 0.5851 287.93 0.1352
297.11 0.7032 300.00 0.7523 297.17 0.598¢6 292.06 _ 0.1388
299.91 0.7144 303.19 0.7667 301.14 0.6116 296.23 0.1425
303.19 0.7269 307.22 0.7823 304.87 0.6255 299.99 0.1457
307.19 0.7430 311.18 0.7991 309.10 0.6395 300.00 0.1458
311.16 0.7588 315.17 0.8177 313.40 0.6548 303.97 | 0.1493
315.33 0.7762 319.20 0.8336 317.10 0.6665 307.10 0.1522
319.43 0.7932 323.22 0.8500 321.08 0.6812 311.14 0.1558
323.25 0.8083 323.05 0.6875 314.93 0.1593
319.00 0.1631
323.20 0.1669

# Experiments were performed in STBC (A;).

Continued
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Table A3.1:

continued

The Temperature Dependence of Diffusion Coefficient for the Systems

Ar-0, # Ar-CO# Kr-CH ,#

at 300K and at molefraction (x2)

X, = 0.50 0. 0.15

T PD]_Z PDlz T PD]_Z T PD]_Z

(K) (atm.cm.zs_ {K) (atm.cm.zs—1 (K) (atm.cm.zs_l) (X) (atm.cm.zs-l)
277.00 0.1762 277.02 0.1536 276.15 0.1787 277.20 0.1764
279.09 0.1787 280.13 0.1571 280.15 0.1833 281.22 0.1810
281.00 0.1809 284.23 0.1614 283.90 0.1880 285.15 0.1857
284.90 0.1857 287.93 0.1654 287.94 0.1928 289.23 0.1907
288.85 0.1903 292.05 0.1699 291.87 0.1975 293.29 0.1954
293.05 0.1950 296.23 0.1745 297.03 0.2036 299.96 0.2039
297.04 0.1998 299.99 0.1787 299.95 0.2070 303.19 0.2078
300.00 0.2037 303.93 0.1830 303.29 0.2115 307.22 0.2127
301.15 0.2054 307.10 0.1866 307.28 0.2167 311.18 0.2177
303.15 0.2076 311.12 0.1913 311.28 0.2215 315.17 0.2228
305.15 0.2103 314.93 0.1956 314.98 0.2265 319.32 0.2282
307.13 0.2126 319.00 0.2002 318.90 0.2312 323.16 0.2330
309.13 0.2149 323.20 0.2053 323.20 0.2369
311.13 0.2174
313.26 0.2200
315.16 0.2224
317.16 0.2248
319.12 0.2272
321.12 0.2300
323.14 0.2325

Experiments were performed in Loschmidt type cell (A3).

Experiments were performed in STBC

(A2) .
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