

"D₂ CHROMOPHORES -

geometric distortion in trigonal-dihedral transition metal chromophores and its relevance to optical circular dichroism."

a thesis submitted for the
Degree of Doctor of Philosophy
at the University of Adelaide
in May, 1973.

by KEITH RAYMOND BUTLER, B.Sc. (Hons.)

Department of Physical and Inorganic Chemistry.

CONTENTS	
SUMMARY	
DECLARATION	
ACKNOWLEDGEMENTS	
INTRODUCTION	
RELEVANT TERMINOLOGY	7
(1) Crystal Structure Refinement	7
(2) Optical Rotatory Dispersion and Circular Dichroism	10
(3) Ligand Abbreviations and Structural Formulae	17
PART I. EXPERIMENTAL.	
CHAPTER 1. THE STRUCTURE OF SODIUM (+) 546-BIS(MALONATO)-	
ETHYLENEDIAMINE COBALTATE(III) DIHYDRATE.	22
1.1 STRUCTURE ABSTRACT	22
1.2 EXPERIMENTAL	22
1.3 STRUCTURE SOLUTION AND REFINEMENT	
1.4 STRUCTURE FIGURES AND TABLES	
1.5 DESCRIPTION OF STRUCTURE AND DISCUSSION	44
CHAPTER 2. THE STRUCTURE OF (-) ₅₈₉ -TRIS((-) ₅₈₉ 1,2-DIAMINO- PROPANE)COBALT(III) (+) ₅₈₉ -TRIS(MALONATO)-	
CHROMATE(III) TRIHYDRATE.	49
2.1 STRUCTURE ABSTRACT	49
2.2 EXPERIMENTAL	49
2.3 STRUCTURE SOLUTION AND REFINEMENT	53

		Page
2.4	STRUCTURE FIGURES AND TABLES	60
2.5	DESCRIPTION OF STRUCTURE AND DISCUSSION	60
CHA)	PTER 3. THE STRUCTURE OF POTASSIUM CALCIUM (+) 589 TRIS-	
0 1	(DITHIO-OXALATO)COBALTATE(III) TETRAHYDRATE.	78
	STRUCTURE ABSTRACT	78
	EXPERIMENTAL	78
3.3	STRUCTURE SOLUTION AND REFINEMENT	81
3.4	STRUCTURE FIGURES AND TABLES	88
3.5	DESCRIPTION OF STRUCTURE AND DISCUSSION	105
CHAI	PTER 4. THE ABSOLUTE CONFIGURATION OF POTASSIUM (+) ₅₈₉ -TRIS(1,10-PHENANTHROLINE)- NICKEL(II) (-) ₅₈₉ -TRIS(OXALATO)COBALTATE(III)	
CHA	POTASSIUM (+) 589-TRIS(1,10-PHENANTHROLINE)-	
CHA		110
	POTASSIUM (+) ₅₈₉ -TRIS(1,10-PHENANTHROLINE)- NICKEL(II) (-) ₅₈₉ -TRIS(OXALATO)COBALTATE(III)	110 110
4.1	POTASSIUM (+) ₅₈₉ -TRIS(1,10-PHENANTHROLINE)- NICKEL(II) (-) ₅₈₉ -TRIS(OXALATO)COBALTATE(III) DIHYDRATE.	
4.1	POTASSIUM (+) ₅₈₉ -TRIS(1,10-PHENANTHROLINE)- NICKEL(II) (-) ₅₈₉ -TRIS(OXALATO)COBALTATE(III) DIHYDRATE. INTRODUCTION	110
4.1	POTASSIUM (+) ₅₈₉ -TRIS(1,10-PHENANTHROLINE)- NICKEL(II) (-) ₅₈₉ -TRIS(OXALATO)COBALTATE(III) DIHYDRATE. INTRODUCTION	110
4.1	POTASSIUM (+) ₅₈₉ -TRIS(1,10-PHENANTHROLINE)- NICKEL(II) (-) ₅₈₉ -TRIS(OXALATO)COBALTATE(III) DIHYDRATE. INTRODUCTION DETERMINATION OF THE CONFIGURATION	110 110
4.1 4.2 CHAI	POTASSIUM (+) 589 TRIS(1,10-PHENANTHROLINE) - NICKEL(II) (-) 589 TRIS(OXALATO) COBALTATE(III) DIHYDRATE. INTRODUCTION DETERMINATION OF THE CONFIGURATION PTER 5. ABSOLUTE CONFIGURATIONS BY CORRELATION.	110 110 115
4.1 4.2 CHAP	POTASSIUM (+) 589 TRIS(1,10-PHENANTHROLINE) - NICKEL(II) (-) 589 TRIS(OXALATO) COBALTATE(III) DIHYDRATE. INTRODUCTION DETERMINATION OF THE CONFIGURATION PTER 5. ABSOLUTE CONFIGURATIONS BY CORRELATION. INTRODUCTION	110 110 115 115
4.1 4.2 CHAP	POTASSIUM (+) 589 TRIS(1,10-PHENANTHROLINE) - NICKEL(II) (-) 589 TRIS(OXALATO) COBALTATE(III) DIHYDRATE. INTRODUCTION DETERMINATION OF THE CONFIGURATION PTER 5. ABSOLUTE CONFIGURATIONS BY CORRELATION. INTRODUCTION EXPERIMENTAL	110 110 115 115 119
4.1 4.2 CHAP	POTASSIUM (+) 589 TRIS (1,10-PHENANTHROLINE) - NICKEL (II) (-) 589 TRIS (OXALATO) COBALTATE (III) DIHYDRATE. INTRODUCTION DETERMINATION OF THE CONFIGURATION PTER 5. ABSOLUTE CONFIGURATIONS BY CORRELATION. INTRODUCTION EXPERIMENTAL (1) MO 6 Chromophores.	110 110 115 115 119 119

5.3 DISCUSSION 12	7
5.3.1 ORD and CD curves.	7
5.3.2 Absolute Configurations: Literature References. 14	3
PART II. ANALYSIS OF STRUCTURAL DATA	
CHAPTER 6. ML TRANSITION METAL CHROMOPHORES: SPECTRAL	
THEORY. 150	0
6.1 INTRODUCTORY REMARKS	0
6.2 ABSORPTION SPECTRA 15	1
6.2.1 Octahedral Symmetry (O _h).	1
6.2.2 Distortion from O _h Symmetry.	5
6.3 OPTICAL ACTIVITY 163	2
6.3.1 Configurational Activity.	2
6.3.2 Vicinal, Conformational and Environmental Effects. 168	3
CUADRED 7 MODELS FOR CORDER ANTING THE STREET	
CHAPTER 7. MODELS FOR CORRELATING THE SIGNED ROTATORY STRENGTHS OF D ₃ TRANSITION METAL CHROMOPHORES. 172	,
7.1 SUMMARY OF RELEVANT MODELS	
7 0 DIVINITADISTINA ON THE PROPERTY OF THE PRO	
7.3 THE TRIGONAL-DISTORTION PROGRAM: AZIMUTH 201	L
CHAPTER 8. ANALYSIS OF ML6-CORE GEOMETRY OF D3 COMPLEXES. 215	5
8.1 THE STRUCTURAL DATA 215	5
8.2 GEOMETRY OF TRIS-BIDENTATE COMPLEXES 238	3

		Page
8.2.1 Critiqu	ue of Stiefel and Brown's Analysis.	239
8.2.2 Repuls:	ive Potential of the ML ₆ -Core.	245
	NT OF THE VALIDITY OF THE PK TRIGONAL-DISTORTION	
MODEL		277
8.3.1 Co(III)), Cr(III) N ₆ Chromophores.	278
8.3.2 Co(III)), Cr(III) O ₆ Chromophores.	306
8.3.3 MS ₆ Chi	romophores.	323
8.3.4 Miscell	laneous Chromophores.	331
8.4 CONCLUDIA	NG REMARKS	336
	APPENDICES	
APPENDIX I.	COMPUTER PROGRAMS USED IN CRYSTAL STRUCTURE	
	ANALYSES.	340
APPENDIX II.	REDUCTION OF THE PHOTOGRAPHIC DATA.	342
APPENDIX III.	DIFFRACTOMETER DATA COLLECTION AND REDUCTION.	347
APPENDIX IV.	MISCELLANEOUS NOTES ON THE CRYSTAL STRUCTURES.	353
APPENDIX V.	PROGRAM OCTANT.	355
APPENDIX VI.	PROGRAM NHANGLE.	360
BIBLIOGRAPHY		363

SUMMARY

The crystal structures of the inorganic salts, sodium $(+)_{546}^{-\mathrm{bis}}(\mathrm{malonato})_{1,2-\mathrm{diaminoethane}} \ \mathrm{cobaltate}(\mathrm{III}) \ \mathrm{dihydrate},$ $\mathrm{Na} \ (+)_{546}^{-\mathrm{bis}}(\mathrm{Co}(\mathrm{C_3H_2O_4})_2 (\mathrm{C_2H_8N_2})_{1.2H_2O}, \ (-)_{589}^{-\mathrm{tris}}((-)_{589}^{-\mathrm{tris}}(-)_{589}^{-\mathrm{tris}})_{1,2-\mathrm{diaminopropane}} \ \mathrm{cobalt}(\mathrm{III}) \ (+)_{589}^{-\mathrm{tris}}(\mathrm{malonato}) \ \mathrm{chromate}(\mathrm{III}) \ \mathrm{trihydrate},$ $(-)_{589}^{-\mathrm{co}(-)_{589}^{$

The absolute configurations of the complex ions in the previously determined structure, potassium (+) $_{589}$ -tris(1,10-phenanthroline)nickel(II) (-) $_{589}$ -tris(oxalato)cobaltate(III) dihydrate, $K(+)_{589}[Ni(C_{12}H_8N_2)_3](-)_{589}[Co(C_2O_4)_3] \cdot 2H_2O, \text{ have both been determined as } \Lambda \text{ using the technique of X-ray anomalous dispersion. The complex ions } (+)_{589}$ -tris(oxalato)chromate(III), (+) $_{589}[Cr(C_2O_4)_3]^{3-}$, (-) $_{600}$ -tris(malonato)cobaltate(III), (-) $_{600}[Co(C_3H_2O_4)_3]^{3-}$, (-) $_{400}$ -tris(1,3-diaminopropane)chromium(III), (-) $_{400}[Cr(C_3H_{10}N_2)_3]^{3+}$ and (+) $_{589}$ -tris(1,10-phenanthroline)ruthenium(II), (+) $_{589}[Ru(C_{12}H_8N_2)_3]^{2+}$, have all been assigned a Λ absolute configuration on the basis of X-ray powder diffraction patterns of the relevant least-soluble diastereoisomers.

Angular distortion parameters of the ML_6 coordination polyhedra in several inorganic structures of pseudo- D_3 symmetry have been computed from the crystal coordinates; the distortion of this core from O_{h} symmetry in tris-bidentate complexes has been correlated with the size of the ligand bite angle, α , on the basis of a repulsive electrostatic potential operative between the six ligand donor atoms. This theoretical model predicts a distortion towards trigonal-prismatic geometry for tris-complexes containing bidentate ligands which subtend angles, α , less than 90^{O} at the coordinated metal atom; for $\alpha > 90^{\mathrm{O}}$ the model predicts a geometry more flattened relative to the three-fold axis than that in which the three bidentate ligands are orthogonal.

The computed ML₆-core distortions of relevant tris-bidentate transition metal complexes have been considered in assessing the validity of a limited crystal-field trigonal distortion model proposed by Piper and Karipides for correlating the absolute configuration of a chiral trigonal-dihedral (D₃) chromophore with the sign of the observed rotatory strength. It is concluded that this model does not adequately explain the observed Cotton effects for all pseudo-D₃ transition metal complexes.