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Thia thesis deals with classes of fixed length binary codes
which can bte used for information transmission in s two-state channel.

These codes are callsd synchronous codes.

The synohronous codes constructed here are in general more
efficient than codes known to be in use at the moment™, for all
voseible code lengths. 1In fact, there is some mimilarity between the
new codes and the less-restricted comma-free codes of Golomb, Gordon

and Welchu.

Gilbert uses the technique of fixing certain positions in
every code word to achieve synchromisation; in this theais an entirely
new technique of achieving synchronisation is developed, which allows
the codes which use it to have high efficiency; the technique consists
of constraining pairs of positions instead of fixing positioms., The
pure techniques, which provides highly efficient codes for small code
lengtha, is developed first, and is used to construct eynchroncus codes
analogous to certain well-known linear and cyclio codes (2.g. the
Fire codes); then a hybrid technique is developed which gives high
efficiencies far all other code lengths,

= EoN. Gilbert, 'Synchronisation of Bimary Measages'!, I.R.5.

Transactions on Infarmation Theory, September, 1963,

*® 1Comma-free Codes', Canadian Journal of Maths, 1958,



Precis {conte).

Synchronous oodes of sven lagth are also developed, and
thens are shown to be only slightly leas efficient than corresponding
odd length codes.

Next, Cilbert?s tsclmique is generalised, and a clasa of
codes is developed whish is as efficient as any class of ocodes which

uasps & fixed position technique can be,

Finally, it is provaed that a synchronous code cannot be aa
efficient as a comm-free code, except for very small code lengths,
In fact, an upper bound on the efficiency of synchronous codas is
developed which is coneiderably lower than that on couma~frae codes,
and codes are conatructed which reach this upper baund far all code
lengths up to 93, and which approach the bound for code lengths

sreater than this.



To tha best of my knowledge and belief, none of the
nmaterial in this theeis has either beon presentad foar the award
of a degres or diplems in eny University or written ar publisiwd

by another person, exaept where reference is made in the text.

D.Ja OM‘t



ACKNOWLEDGEMINTS

I would like to express my thanke to Mr, I. Hinokfuse,
late of the Yeapons Research Establishment, Salisbury, Sauth
Australia, for introducing me to the topie; to Mr. G. Rowe, of the
“ngineering Department, University of Adelaide, for help comceming
the feasihility of implsmentation of the techniquea described
herein; and espeecially to Dr, J.He. Michael of the Mathemation
Departaent, University of Adelaide, for the many hslpful suggestioms
he has made concerning the presantation of this material.

Also, I thank my wife Aldith, both for typing this thesis
snd for the maral support siw has given me during its compllatione



INTRODUCTIOR

In thess days of rocketry, space exploration and esrth
satellites, thers is an increasing demand for reliable, efficient
nmethods of transmitting information over long distances. One of the
more reliable medis for transmitting informmation under these circum-
stances is the two-state channel, where the two states are an 'on!
state and an 'off' state, i.e., a signal of a certain power or the
absence of any signal whatsoever, Use of such a system eliminstes
arrors which can occur in systems where the power of the signal ie

important.

These two states can ba represented by the binary digits O

and 1.

In a thres-state channel, we can send binary data and reserve
the third state for commas (spaces) between words. But use of such
a system can lead to difficulties when the receiver has to distinguish
between the three states, especially when the message is distorted due
to external factors, e.ge. atmospheric static or tape 'noise?,
Therefore, there ie a need of codes which are suitable for transmission
in a two-state channel. But we must use both of the states to trans-
mit informationy and we have no straightforward method of indicating
the point at which one information batch, or code word, ends and the

next code word starts. And unless we can be sure that we can find the



start of & owde word, either at the beginning of the mesas;e or after
& loes of synchronisation between the receiver and the trmnsaitter

due to external interfersnce, the code is uselese.

There are two ways of doing this. 7The first is that
employed by the variadle length encodings With such codes an the
Huffman code /6/ or the alphsbetic code /2/, the coda will symnchronise
itgelf after only a finite amount of imformation has been lost; the

coles are constructed so that this will oocour.

Thase variable length ancodings are excellent for the trane-
pissicn of alphabetic datas where the letters have a varisble probability

of ogourrence .

Humerio data yuquires a different approsches %o assume
avery digit has the sane probability of cocurrence) and it ia
desirable that avery code word has tha same length. This i especially

true if we wish to tremsnit iaformation in parallel channels,

Por this reason, there is a meed for codes in whioh every
code word has the same lemgth and which oan be used in a two-etate
channel., Fut cnce sueh a code geta out of syncloronisstion, it
cannot resynchronise itself, aa the variable length codes do. S0 we
pust sapower the receiver with some method of reaynchronising itaslf.

The only way this can ba achieved is via the ocode format.

For exsapls, in a class or sodes discwversd by Gilvert /3/,

a certain sequence o binayy digits ocoours at the beginning of each



code word, and at no other point in any code word. This providee a
surs method of finding the starting point of a word. But when tha
input message is synchronised, these digits are wasted, since no

infamation can be transmitted in them.

This thesis introduces codes w:ich can be used in the samne
gituations as Gilbert's codes; from among the various classes of codes
wve phall shew that, for a given code length, we can always find at
least one code which will transmit more information per word than
Gilbert's code of the same lenyth. To achieve thia, we have to com-
plicate our synchronising procedure a littlej but we shaw that this
di sadvantage is not serious, for the first code wurd received correctly

after a loss of synchronisation will still be recognised and deccded.

It can be appreciated that there must be a certain minimum
number of pogitions which muet be restricted in order thiat the
receiver can resynchronise iteelf. ‘e will find the value of this
minimum and show that some of the codes we will construct are thsrefore

as efficiemt as codes of this type can be.



1., GEKERAL

l.d. BASIC DEFINITIUNS

l.1.1, A Word

A word is a finite saequence of elements of a set ¥,

lel.lel. The number of terme in the sequence is the length of the
word, and the ith tem will be called the ith digit of the words A&

word of length n car thus be regarded as an n-tupls of elements of F.

lel.le2. Ve shall only consider the case where F cunsists of the
binary digits O and 1, Thus a word of lemgth n will be a sequance
of n terma, each term bein: either a pero or s unit

Be8e 01 0O 1
is a word of length 4, +“e shall

repregsent this as
0101

1.1.2- A cgd'

A ocode is a non-gmpty sat of worda.

l.1.2.1. In this thesia we will only consider codes in wihich all the
words have the same length, This common length will be called the

length of the cods.

l.le3. The (Hemming) Weight of & Code Word
The weight of & wurd in a code of the apove type is defimed

to be the number of units in it.

The example given 1n eection l.l.l.2. is of weight 2.
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l1.,1.4., The sat of all worde of & civen length

7
Por each poaitive integer n, lat Hm) dancte the code
comeisting of all words of lenzth n.

A code of length n is thus e non-empty subset of LY

l,1,4.1, The number of words in W(n) with veight w is (:), aince

there are w units to be placed in n positions. .

lela4.2, In this thesis, we shall ocontinue to use n tv represent the

length of the code under comsideration.

l.1.5¢ A Composits Word

Ifas= 8.8, cce 8y and b = b1b2 ese hn' are two words of

length m and n respsctively, then we will dencte by ab the word
818, ses 801D cee By

1l.1.6. A Comma-~frae Code

A code ¢ of length n is said to be comma-~freae if, ;iven any
two code words

51‘1‘2 sse .-n and b-hlbz see bn.tl'n

no vard of the form

Nl *°* aﬂbl ese bI‘ y 0<r <n, is in C.

lele6ele e shall define al"ﬁl see &nbl “oe bl' ® 0< r <n’ to be &

falee ward with respect to the comma—-ITee code C. ''hus a code C is

camme=Ifree If nome of its false words isidentical with a code word,



161.6.2.

As an exanple of a comma-free ocode C, considar the code of

length 4 which has as code warde a and b, where

a = 0001

and

b = 0011

If we consider the conposite wards given below, we sae that

they yield the corresponding false words.

as
ab
ba
bb

0010,
0010,
110,
0110,

01GO,

1000

0100, 1001

1100,
1100,

1000
1001

Thus we can see that since C is oomme-free 00l0, 010u, 1000,

1001, 0110 ané 1100 oan not be code words.

Suppose ¢ = Q111 is aleo @ code worde This implies that the

words ygiven below are false wurds;

ac
be

oca

cb

cC

words

$

0010,
0110,
1110,
1110,

1110,

Thus the

0010,
101,
1100,
1110

olal,
ua,
1100,
1100,

1101,

1011
1011
1000
1001
1011

code C with ocode words a, b and ¢, has as falge

1600
1001
1141
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The only members of W(Q represented in neither C nor the
sat of false worda are
d=0000 , @a=1010 and f = 1111,
Now d could not possibly be a member of a coomm-free ocode of length 4,
since dd generates false words identical with d3 the same applies to
f, and ee also generates a falee word identical with e. Ve can see
tat ncne «f a, b and ¢ ie in the set of false wordes. So the code

congiating of a, b end ¢ is comna-freea.

Ve have thus comstructed & commm-free code of laength 4 to
which no mors words can be addeds Ve have not shown that there is no
better choice of a, b and o which would sllow another member g to be
added to the code, in the same way a8 we added ¢ to the origimal choice

of a and b,

1.1.7. A Synchronous Code

A comma~free code S of length n is said to be synchronous if
some of the positions in the ccde are sufficiently arbitrary that
binery information may be transmitted in those positions,.

To this end, we postulate that, in a aynchronous code,
positions {or mets of two or mare poasitions) contain digits which are
totally independent of the digits in any other positions (if we dis-
regard any artificial depemndence which may be introduced by parity
checking of the digite)., Lach position in a synchronous code § is
either/?ixed position (1.6 position which contains the sams dgit far

every code word), or completely arbitrary,
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8.5 The word allz eso ..n-lo
18 in S 4f and only if

see & 1
& el is in 8,

or s membexr of a set of
positions which is arbitrexy:

Q.8+ The word 31'2 1Y} ‘n_201
ie in § if and only if

51&2 see ln_zlo
is in S.
As an example of a code which combines these attributas,

eonsider ths une consisting of the six words

01000
aon
01100
c110m
01110
01111

This code is comma-free, since any false words begimning with
Ul must begin in position 4 of a code word, and the third and fourth
positions of the false word would then be O and 1 respectively; no
00de word lus O and 1 in these positions.

The first two poaitions are fixnds they are O and 1 respec-

tively for every code ward,

The last position is completely arbitrary; it may contain O

or 1 irrespective of the digits in the third and fourth positioms.
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The third and fourth sositions form a semi-arbitrary set.
They may contain 00, 10 or 11, no metter what the lsst position

contains, But they may not contasin Ol.

Rote that naither the third nor fourth position is
completely arbitrary.
6eZ¢ (1111 and OLOOO are in the ocde

01011 and Q1010 are not.

ldde7.le A comma-free code can only be synchronous if soms of the
positions in every code word can be filled arbitrarily, without con-
eidering the characters in other positions of the code worde If
there is some depsndence smong the characters in a code word, apart
from that introduced intentionslly in the form of parity checks, an
artificial correspondenca must be establieshaed hetwean coded mesazages

and meanings.,

If there are many code words, need of a 'dicticnary! of this
type would defeat the whole purpose « syndironvus cwudes, wirich is to
énable binary inftrmation to be traunsm:tted ecunomically in & two-siate
channel, without any third state to denote the bremk betweun wordsi and
although ccneideration of efficiency will take precedence cver conside
erations of hardware,we cannot neglect the lattere So we will only
consider cases where the exirs property possessed by synchronous codes

supplies the method of implementing the information transmission.

l.1.8. HffiCimcl 0f a Colle

We shall define the efficiency of a code of length n with N

code words to be (1082 5) /n.
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1.2 THE AT} OF TIIS 77 SIS

l1.2,1s The Prame of Raference

Ap stated above, we shall cunsider only binary codes in which.
sach code word hes the same length, 1In addition, we shall impose the
restriction that synchronous codes must be able to carry informationg
thie can only be achieved if swme of the positions in every code ward
are independent of cther pesitions in the code word as in thae aiove
exarple, and can be filled wit: either O or 1 as the information input
dictates, regardless of the characters in cuther positions in the code

wa@d.

1.2.2. What we Shall éttﬂﬂgt
In section 2, we shell find an upper bound on the number of

code words poseible in a synchroncus code of length n, and shall des-
cribe briefly a class of comma~free codes which reach this upper bound
for at least some vaiues of nj this class of codes, wrich we shall call
the Golomb codes, are a subset of those dszcovered by I.¥. GColamb and
others /4/. TUnfortunately, these oodes do not obey the additicmel

restrioction imposed on synchronous codes,.

¥e shall attempt to show that this upper bound is unrealistic
for synchronous codes; we shall find snother bound on codes comstructed
by methods of the typos used here, and give evidence that it is an

upper bound on all synchronous codes.

leRed3s What we shall Achieve
Ve shall construct classee of synchronous codes which lie

within our frame of refarence and whose effioiency appromches our upper



bound mentioned above; we shall also construct symchroncus codee

anslogous to well=known linear snd cyclic codes.

¥e shell ;ive the Tormets for classes of synchronous codes
which encompses many ocds leniths, including even code lengths., We
thall compare the efficiencies of codes from the different classes
which have the same code length, And, finally, we shall addwe cone
siderable evidence that ccdes within our frame of reference have an
upper limit on their efficlsnciss of 1 = Kn'&, where XK is a constant,

instead of the valus 1 = logzn attained by the Golomb comma-free codes.

in gection 3, we shall develop a new ides om synchronous
codesy the new codes uss vairs of digits, pertially restricted to
achieve synclronisation. We will compere these new codes, the M ocdes,
with the classical class of codes discovered by Gilbert /3/ and
denonstrate by this comparigon that the new codes are highly efficient

far emall, odd, lengths.

¥e also heve to show that the codea can be implemented withodt
too much additional hardware, This is the purpose of section 4, where
we establish a transformation from binary data to the foram required for
transmiesion by the M codes, i.0. into the oairs of digite the new

codes require for synchronisation,

But the # codes ars not particularly efiicient for large
values of ne To cover this case, & clase of codes, the K codes, also
of cdd lenygth have been constructeds these ¢oudes are really a croas

betwesn the i codes and Gilbart®s codes.



Like the i=godes, the K codes are of odd length, and =o,
although we can now construct a highly efficient synchroncus code of
any odd length, there has so far besn no attemtion given to the case
of even length syncironous codess In section 6, the even-langth
counterpart of the K codes, the F codes, are construsted, The even
length case is shown to be more oomplex than the odd length ocase, and
the modifications which have to be made to the format result in loszs
of efficimcy. Ilowever, the fact that such codes ocen be constructed,
with efficlencies approaching our upper bound, shows that there is not
too much difference in the efficiencies attainable with aven and odd

length synohronous codes, at least in the binary case.

In Section 7, a class of codee, the F codes, are constructed;
these codes are very similar to Gilbert's codes, but more efiicient.
They are mot quite as efficient as the K codes, but their greater
simplicity of cperation may meke them preferable in practical a:plice=

tionz,.

The last section, section 8, deals with a class of codea
for which only simple examples can be comstructed; in fact, the wain
vurpose of thie section is to demonstrate the probability that
asynchronous codes can never be as efficient ss the corresponding
Golomb's codesms the upper bound it imposes is considerably lower than
that derived in section 2. 4And, in oonclusion, evidence is provided
that even this latest upper bound mey not be the least upper bowmd for
all values of n.



- 10 =

2o CYCLES
2.1, Introduotion

Tha concept of 8 cycle was used by TJolamb et al in their
discovery of the upper bound. ¥We will expsnd their ides in order to
develop a closer relationship between the langth of a code and the
waight of ths words in it, This is important in synchroncus codes,
since the grsater the 'spraad' of code word weights, the greater the
avarage numbsr of positions in which code words differ, ani the easier
it is to correct errars, This becomes ajparent if we ovnaider the two

tvoqqrd synchwronous oodes ‘31 and 32

a8 s O0l000 and 01111 are code words

) s Q1100 and 01101 are code words

Any single error in Sl is immediately correctables with Sg.

a eingle error in position 5 ia not correctable.

2alsla Throughout section 2, n will be a fixed positive inteier and

w(") will be abbreviated to ¥,

2.2 The Operatour B

#e define T on W as followe:

For each word & = 8,8, «see 3, of %, define

B (l) = ‘2‘3 sese 8nl-1

Then Bz<l) = ﬂ334 eboe ‘nﬁl‘z

and P(a) = a
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The opsrator © corresponds to multiplication by the
polynomial x in the representation of the code ward as the coefficients

of a polynomial modulo xP-1 over GF(2),

The "oxder" of a word a is defined to be the emallest
positive integer r such that B (a) = a. Since B*(a) = a, it is clear
that the order of a divides ne.
243+ Pefinition

If a iz a word with order r, then the set

8y B(a)y B%(a)y oee » B ()
of r distinct words ie called a cycle of order r. Clearly, any
member of a cycle generates the cysle, 1lso, all the words in s
cycle have the same weicht. We will refer to thim as the “weight"
of the cycles, Ths following properties of cyoles are easily verified.

Zede FProperties of Cycles

Zedele The order of avery cycle divides n.

“e4eds Different oyclss are disjouint and ¥ is the union of mutually

disjoint cycles.
Rede3, 1 W' denotes the subset of ¥ conmisting of all words of weight

w, then W' is the union of all cyclea of weight we



Zededs

Zeds5s

The only cycles of oxder 1 concist of

(a) the word 00 e.. Of or (b) the word 11 ... 1.

If the word length n is a prime p, then all the nmetrivial
aycles are of order pe

This follows from Ze4el.

edeSels For the ssko of neatness in same of the expresuiuns in later

2ed b,

LeteT7e

2Q4.B.

sectiona, we miall designate combinatorial (n, w),

ie.se n4/(wt (n-w)1), as Cumb(n,w),

If n ie a prime and 1wy, then W_ is the wnion of
Comb (n,w)/n cyocles.

This is a conasguence oi Z.4.5,

If @ =a; eee 8 15 avword of order r {n, then a can be
written in the fom
a = ‘1 sae atpl sse ﬂr ese 81 eed Br

Then, gince

n r

g n, \ . .
v= ST X g & it follows thet n/r divides w.

isee I1f there is a cycle of order r and weight w then n/r

divides we

If 5 is a synchronous code, two words from the same oyole
ocannot be in S, because if a ie in §, then the wurde which aas

cauges to be cmitted are all the other members of the cycle
containing a.
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Ze4+9. For thec same reason, no word a of order r< n, can be in s
synchronous code, since oms oi the words eliminated by as would

be a itself.

ZeSe Fermat's Theorem
By Ze4ede and 2.4.5+4 we can see that, if n iz a Prime, we

have 2" « 2 wards divided into disjoint cycles each containing n words.
Therefore, n divides £ « 2, n prime.
This is a special case of Fermat's theorem.

Ve have now established the method by whioh all the
mambers of W can be grouped into oycles, and the fact that all the
worda of a certain weight can be colleoted as a set of cycles of that
welght. Ve shall now investigate more closely the relationship between

the cycles and the values of w for a fixed value of n.

The next theorem establishes the number of cyoles of a
given weight w 4f n and v have no common divisor greater than 1, This
case is straizhtforward, and provides for the msjority of casges,
However, the case where e common divisor exists ie wmuoh more interes-

tingg it will be considered in ssctions 2.7 et seq.

2e6¢ Theorsm

If (n,w) = 1, then the number of cycles of weight w is

Camb(n,v)/n = Comb(n-l, w-1)/v.
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Proofs
Congider an arbitrary cyole with weight w and order r.
Since r divides n, we can write n = rk, (k > 1) and since n/r = k
divides wy, k muet be 1, Thus, overy cycle of weight w las arder n.
Since the total number of words with weight w is Coub(n,w) and these
words are divided into mutually disjoint cycles, each containing n
words, it follows that the number of oycles is
Comb(n,w)/n
This is easily shown to be aqual to
Comb(n=l, wv-l)/w
This takes care of the case when (n,w) = 1, The next few

sections will develop the case when (n,w) >1,

Ve will first develop the basic argument by considering
the case where n = p° , p a prime; later this will be generalised to

enocompass more general values of n.

Ze7+ Lomma
Let n = p~ (where p is prime and a >1) and let 1 \<r<u.

(1) 1f pa~r™1l g4jvides w, then there are

Conh(pr, /P T) « Camd (pr.l » w/ P‘-ﬂl)

words of weight w that belong tc cysles of order pr.
(11) 1z p*T divides w, but pa"m':l does not, then thare are

Comb(p™, w/p*™)

worda of waight w belonging to cycles of arder pr.



Proofs

Aword b of length n = p‘ belongs to & qycle with oxdar

less than or equal to p° if and only if b has order p°, where slr
fise. if and only if the order of b divides p', henos if and only if b

oonsists of & word o repeated p2=F times, If b has weight w, then ¢

has weight w/p""" and length p°e Thus the mmber of wards of length

n and welht w which belong to cycles of order lesa than or equal to

pr is
Comb(p", w/p"™T)

1) 1r p"ﬂ’l divides w, the number of words belonging to cycles of

order exactly pr is
Caub(p”, w/p ) < Camb(p™2, w/pt Ty

(14) 1f p® divides w, but pa-ml doas not, there are no qyoles with

order lass than pr, henoe the number of words belonging to cycles

r
of order p~ is ‘
Coub(p”, w/p*™)

2¢8. Theorem

Suppose n = p* and w = c.pk (vhere p is a prine,

8 >1, k>0, 0 >0, w< n, and p doss not divide o).
Then the total number of aycles of weiht w is

Coub(p®, c.p%)/p® + (p-1) i (Comb(*"%, cp™F)p* ).

L



Proofi
€Y
(11)
(141)
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When w « n oxr w = J, the theorem is trivial.

¥hen k = 0, the theorem iz the msame as theorem 2,5.

Suppose O <w< mand k > 1o It follows from lemma 2.7 that
for each r such that a=k+l { r { a, there are

(Comb (p¥, c.phh) - Cub(pn'l, t!.x:k""""""‘1))/})r

ayelea of order pr ard weight w, and when r = a=k ﬂm;! are
Comb(p%y 0P ™)/ = Comb(z, o)/p

cy¢les of order pr and waight we

Since the only aycles that can oecur sre of oxder pr and aince
n/p" divides w, then p™ T must divide w3 hance a-r  k, 80
that sk (r ae “ |

Thus the total number of cycles o

- Comd(p*F, o)/p% "

(Comb(pT, cop™™®) - cad(p™, o,pTe)) T

NG

+1

k
= Comd(p®, cept)/F® + (p-1) rz.l (Comb(p*™", G-Pk-r)/phm)

N -
- n.l ; pr-l Ccm'b(pa.r, G.Dk-r).

where gq=p , rm=s 0,

q=p =] othaxwise.



It is unfortunate that the combinatorial symbol is not a
multiplicative functions if it were, we would be ebls to cbitain a much
neater expression for this result. As it is, we are denied this
satiefaction.

In the oese where n = ,plal p;a s the total mmbar of cyclea of

k

kl k
2
-l 2 ’ E ’ =]l g=l -r - ko-s
n qlqz , . pl P2 cmb(pl‘l paaz_.' c'plkl ol Pz e ))f
=D s=0
where G =P P Tr=0
9; = P; s 8= 0

9 = Py = 1 otherwige,

The pattern now becomes apparent, but again simplification is

impossible, And so we will not nroceed further with this line of

emguiry,

In the next few sections, we shall investigate the cycles of

order n, which glve much neater results,

In section 2,13, we will derive an alternative formula which
ie applicable in more general cases than those just given. It 1s
interesting that the two formulae are identical, since thay are so

di f{fexrent in fomm,



The next theorem derives a neat result for the number of
cyclee of order n and weiuht wy it will be used in section 2,13 to

derive the alternative formula menticned above.

209 Theorem
Suppose (n , w) = T,

Then the total rumber of cycles of length n, weight w and

wrder n is

n-lz w(d) Comb(n/a, w/d)

where tha susmstion is taken over the distinct divisors d of T, 1agT,
1 being regarded as & divisor, and where u is the ioebius function; i,
u(@) w1l ifd=1l

= (-1)s ifdm qlqzl ses q and ql, eee 9 q, are distinet primes,
=0 ifd-q1g2 see Q and two of the primes are the sane,
Proofs
Let n = k. A positive integur r divides n and is such that

B/r divides w 1f and only if r = kt, where t divides T For each

divisar ¢t of T, lat At denote the set of all words of length n, weight

w and order kt.

Pat
B, = U a
LY

A word b belongs to Bt if and only if it comsists of a word a of length

kt repeated n/(kt) = T/t timea. The weight of a is wt/T, hence the
number of words in B, 1s Comb(kt, wt/T) .



For each divisor t of T, let X, Y, denote the charecteristic

functions of the sat "t' Bt‘ Then 3
Xp(x) = L W@y sy =)y Q)
a/®
becauss (1) 1if x 4s in Age thsnr,/d (x) =1 when

d=1 and !?/d(x) =0 when d >1,

(11)ux‘unating,u,hutxuinBr,’ﬂnanngston

oyole of order kt', where t! divides T and t! < T, hsnoe

Z “(“)Tw/d (x) = Z u(d) = 0

&/ &/ (z/%)
Now the mmber of words in A.,
Rk

and by (1)

= Zn(d) Z’!Ild (x)
> 4

afr
= Zn(d) Coub(n/d, w/a)
a/r

2.10 Corollaxy

The total number of aycles of order n among the words of w(“)

n} i Z u(d) Comb(n/d, w/a)
wel d/(n, w)

is
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The next theorem, however, gives a nuch neeter fomula for

this evaluation.

This next thecrem .dives the mumber of eycles of order n in
the form used by Golomb et al. It specifies the upper bound on the
number of words in a synchronous code becmuse
(1) Ho word car be in a syachronous code if it is in & aycle of

order less than n, (by asection 2.4.9) and
(41) not more than one word from eny oyocle oan be in a eynchronous
code (by section B.4.8).

However, it can be readily aupreciated that it nay be
inpossible to ohoose one word from avery cycle and obtain a gynchronous
code, although oommm~free codes, which are less restricted, are knowan
which reach this bound, In saction 8, wo will give evidence that this

bound ie not attainable by any but the simplast synchroncug coden,

2:11 Theorem

The numbar of cycles of order n among the words of ‘e‘l(n) ia

nt Z u(d) En/d
d/n

Froof:
Consider all the words of longth n dvided ints their raspec-
tive cycles. Each cyole ie either of oarder n or of order a< ne vhere

4 divides n.
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If we define £(d) as the mmber of words of length n in

cycles of order d, it is obvious that

2. Z £(a)
a/n

pince each ward has & certain order, hemce belongs to a cycla of that

order, and sc it is counted once and only once in the sumeation.

By the well«kncwn Mochius invereion formula,

£(n) = Z u(a) 24

é/n
But eamch gycie of order n contains n words.

Therefore, the number of cyolas = p~t £(n).

Zel2 Corollexny

It follows from 2,10 and 2,11 that the followin, is trues

n=1

u(d) Comb(n/a, w/a) = > u(d) 2/
wel d/(n,w) a/n

Note: when w = n, Z u(d) = 0
d/n

¥e will now derive a formula which can be used instead of that
¢dven in 2,8, and which can also be used in more zenersl cases. The
fact that its form remains the same for all values of n invites
favoursble comment when it is observed that the formulae given in sec-

tion 2.8 become complex when two or more distinot primes divide n.
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213 The totzl number of cyecles of weicht w r in ,\__‘,(n).
We know fram theorem 2,9 that the mmber of cycles of arder

n and weiiht w is

n-IZu(d) Comb(n/d, -/a); where T = (n,w).

djT
Now tha other words of weight w are nmembars of cycles of order

n/e, a>1 whers o divides (n, w).

Among the words in short cyciss in W, we will find all the
words in w(1/8) » Tepaated e times,

The mmber of short cycles generated by worde of order n/e is

therefore
anL> u(a) coan(a/(as), w/(ds)),
where the summation is now over the civisors of {n/e, v/e).

Thus the total nuvmber of cycles with weight w in & ccde of

length n ia

a~t Z e Z u(d) Coab(n/(de), w/(de))

o/(n , ¥) a/((n , w)/e)

8 can rearrange thiz expression to

i, W > e we/a) comd(nd/(n , w), w/(a , ¥)),
e/(n , w) d/e

by putting €' = (n, w)/e and d' = e'/d. In this form the vole of the

greatest common divisor is saeily obsarveble.
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2.14 The Total Number of Cycles in ()

Section 2,11 has shown us that the total number of cycles of
order n is

N

N
"t u(d) /4
d/n

Applying a similar argument to that used in 2,13, we can show

the total number of cyecles of all ordsrs to be

z - z u(e) 23/

d/n o/d

2,15 The Golomb Codes

Golomb et nl descovered a new clases of comma-fres codes.
They built up their proof that the codes were comma-fres by demon-

strating the following properties of wards of lamigth n, whare n is odd,.

2.15.1 very sequence of digits of length n, can be represerted by a
sequence of n signs, sach £isn being + or = j; the ith character in the
sign sequence ie a plus if the ith digit is less than the (i+l)th

digit (mod n), but & mimus otherwise, i < nj the last sign is a result

of comparing the last and first digits,

I1f we apply this transformation to every one of the 2% words
in W(n) we will get duplication of sign sequences.

eeg. 011 and 010 both give the sign sequence + - - .

Thus, this representation presents a method of grouping words
other than by cycles, and the sets of words so obtained have varying

wel, hta,
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If avery one of the words which have a certain sign sequence
representation is of order n, then every word in the set can be a
rember of a couma-free codej and, since we are not interested in words
of emaller order, wa discard these and consider only the words of

order n with the givan representation.

Thue application of this idea reduces the complexity of the
operation of choosing cme word from each cycle of order n, since, once
we have chosen one word, we can choose words,from other cycless,with

the same sign sequence representation without destroying comua~freedom,

But the main purpeose of applying this transformation is to
enable us to find the word we want in a cycles Wea want from each
cycle of order n a word whoss representation begine with an odd number

of pluses and ends with an even mmber of minuses, ar vice versa.

In the binary case, the second al ternative doss not apoly,
since there can be no sequence of two or mare plus signs in the

representation,

Here we shall prove the following lemna using this hypothesis,

although it has been proved in the more general case,

241562 Leama

In every cycle of odd length > 3 there is at least one ward
whose representation begins with a plus sign and ends with an even

number of minus eigne.



Proofs
The sign representations of the words in a cycle themselves

form a cycles

Since no two plus signs are consecutive, we know that there
is & sequence of one or more mimus signe between each pair of plus
signs. If we can show that one of these ssquences ocontains an even
number of minus signs, we can choose the ward whose reprasentation
begins at the plus sign following this gequenca,

(1) If there are an odd number of plus signs, there are an aeven
number of minue signs, since n is oddy, ani these are divided into an

odd numbar of sequences by the plus signs.

By parity at least one of the sequences must contain an even

number of minus signs,

(1) If there are an even number of plus signs, there are an odd

number of minus signs divided into an even number of 88qUONcen,
Again, by parity, there must be at least one even sequenca.
This completes the proof,

This does not imply that there will be only one even sequencej
if this is so, there is no trouble, We shall resolve later the case

where there are two or more even sequences,
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2+15,3 Hotes on Golamb'e Work

Golomb et al have omitted the last sign of the sequences
thugs their sequences are of length n-l, and begin with an odd mmber

of pluses and end with en odd mumber of minuses,

They bave stown that the choice of one word with this property
from each cycle of arder n will give a comma-free code, provided
n< 15 and n is odd, Jiges /7/ established that the result is also
true for n = 17, However, Selfridge, in the latter paper, casts
doubt upon their conjecture thet comma-free codes construc ted in this

manner attain the upper bound for all odd ne

¥hen n = 9, they have sugested a lexicographic ordering for
choosing a word,from & cycleswith representation
R I
(Eote that we do not choose a word from every cycls with this

representation; som words: with this representation are of order 3).

They have shown that thie method of choice leads to a

comma~free oode.

Uowever, they have not specified a method of choice in the
oase where n is prime. The following method seems to give correct

regults.

2016 Choice hetweon two seguences

If there is only one even string of minuses in & sequence, we

have no option. However, if there are two or more even strings, we
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have ocur choice of two or more representative sequoncess we choosge
the one with its longest string most nearly positicned at the centrs
of the sequence. 1f two sequences are equal in this respact, we
take into account the sequences on either sidej in cases of mirror
imagas we choosa the one with the longer strings towards the start

of the ssguence.

This may or may not work in all cases. It is possible that
Golomb et al chose their representative sequences by some other
method; it is also poesible that theirs is a better method, However,

our method does work in some cases, as shown by the following

sxamplas,

2,17 Eample

¥e shall demonstirate this technique in the case where n = 1l

this is the smallest prime velue for which a choice has to be nade,

We shall oonstruct the code and prove that it is comma-free.
The complexity of the operation, whioh is cumpounded many times over
for larger n, illustratee the resson that uo codes have been construc-

ted for n > 17,

¥e shall represent the sign sequences by the length of the
minus sequences, 8.3. 2, 2, 4 represents the sequence
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The sequencesa wa nust consider ars

10 1,1,6 1,1,1,4
1,8 1,3,4 1,1,3,2
3,6 2,2,4 XA 142,2,2 B
5,4 3,1,4 1,3,1,2
7,2 1,5,2 2,1,2,2 XB

2,442 4 2,2,1,2 B
3932 341,1,2
4,2,2 XA 1,1,1,1,2
5,1,2

The seguencesmarked with A in the second eolumm are oyclie
permutations of each other; these are the ones with more than one
even-runhered string of minue sigme., So we can choose our Tepro=
sentative, and, in aocordance with cur polioy outlined above, we
chooss 2,4,2 and omit the other two, which we have marked with oroveses.

Eimilarly, the sequencea marked with B in the third column
algo represent the same cycle, and we choose 1,2,2,2 ag represen-

tative,

If the code represented by these sign sequences is not
comma-frea, it can only be because ome sigm seguence in the set is
identical with the overlap of two other sign sequences. (This is

analogous to the argument given in eaction 1.1.7).

Jf guurse, if an overlap begins at the atart of a sequsnce,
the pattern of the overlap is identical with & code pattern; tais
does not affect ths proparty of cusng=-rreadom, since in this case

any word with this pattern is a cude word.



(1) Suppose a falss ssquence bogins with the plus sign &nd last

pinus atring of a sequence,
Yhe number of minusss in this string is either &, 6, 4 or 2,
Such a false seguence could only be identieal with 2,4,2.

But then, for the false sequence to be identical with &
saquence in the sat, 4,2, the only possibility, would have %o begin

a sequence in the set; thie is not so, and eo this case is eliminated.

(41) Suppose the false sequence begins at the second last plus siem
of a sequence., Its first two minus strings are

1,6 3,4 4,2 1,4 5,2 1,2 or 3,2
uf these, only 1,2 begins a sequence in the setj the seguence is

1,2,2,2,
But the false eequence oamnot be 1,2,2,2 bhecause 2,2 does not

bagin any sequence in the set,

(1i1) Suppose the false sequsnce begins at the third last plus sign
of a sequence. Its last three minus strings are

None of these begin a sequenoes in the set.

(4v) The only other poesibility is that 1,1,1,2 begins s sequence

in the est, Thie is not true,

This completes the proof,



2.18 Example
We shell now give a z=imilar somstruction and proof fur

the case n = 13,

The rate at which the number of posaibilities to be cone
gidered increases demonstrates the impractibility of mamml proofes
for n very muoh larger.

The sequences we must consider are those which have the

ninus string configurations,

12 1,1,8 1,1,1,6 1,1,1,1,4
1,10 3,1,6 1,1,5,4 1,1,1,3,2
3,8 2,2,6 XA 1,2,2,4 XC 1,1,2,2,2 @
5,6 1,3,6 1,3,1,4 1,1,3,1,2
7,4 5,144 2,1,2,4 XD 1,2,1,2,2 X
9,2 4,2,4 XB 242,154 XE 142,2,1,2 E

3,3,4 3,1,1,4 1,3,1,1,2
2,4,4 B 1,1,5,2 2,1,1,2,2 16
1,5,4 1,2,4,2 D 2,1,2,1,2 X
7,1,2 1,3,3,2 2,2,1,1,2 X6
52,2 XA 1,4,2,2 E 3,151,1,2
543,2 1,5,1,2 1,1,1,1,1,2
4,4,2 XB 2,1,4,2 XE
3542 202,3,2 XF
2,642 A 243,252, F
1,7,2 244,1,2 C

Byly3e2

302,2,2 XP

3,3,1,2

4,1,2,2 X

4,2,1,2 XD

5p151,2



We now have to choose represantatives from sequences rep-

racentaed more than once,

Again we mark with letters the membars of the string set. which
are cyclic permutations of each other, There war a need of only
two such letters in the previcus example; here we need tem. Such

is the rate at which the complexity inoreases.

In our cheoice F, we have the mirror image case with 2,3,2,2
and 2,2,3,2; we choose the former with good reason, as we will show

later.

Suppoee the false sign seguence beygins with the last plus
gign of a sequencs in the set. Its firet minus etring has length
89644 or 2, The only poseibilitier for falee sequences are
2944 2,642 293592,2 and 2y4,1,2. O(ne of these ocould
only be idantial with a ssquence of the set if one of
4,4 6,2 39242 or 4,1,2 began a sequence in the set.

This is not the cass.

Suppose the false sequence begins with the second last
plus sign. It must begin with one of the following configurationsie
1,8 1,6 3,6 1,4 3,4 4,4 5,4
1,2 3,2 5,2 6,2 7,2 4,2 2,2
The only posasibilities for false sequenceas aret-

1,4,2,2
1,2,4,2
1,2,2,1,2

But no sequence in the set Lbegine with cither 2,2 4,2 or 2,1,2 .
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Suppose the false sequence begine with the third last

plus sign of a sequenos of the sst,

The poasible configurations are
1'1,6 1,3’4 3’1,4 1’1'4 1,5’2 2,4,2 3’3’2 4’2'2

5,1,2  3,2,2 4,1,2 1,3,2 3,1,2 1,1,2 2,2,2 or 2,1,2

A possible false sequence identical with sequences in th-e set is
1,1,2,2,2
However, no sequence in the set begins with 2,2,

If we had ohosen 2,2,3,2 instead of 2,3,2,2, the proof would
break down at this point; in more samplicated cases, the choice is not
s0 gimple,

Suppose the false sequence begins with the fourth last plue

sign in a sequence in the set,
The possible configurations are

1,1,1,4 1,1,3,2 1,2,2,2 1,3,1,2 2,2,1,2 3,1,1,2 or 1,1,1,2.
However, nones 0f these start a sequeancs in the set,

1,1,1,1,2, the sequence beginning et the fifth last place of

the last sequance in the set, does not begin any sequance in the set.

Thus the sets of words which have the representations given
above form a comma-free code; and one word from each cycle of order
n hae one of the representations given, Thue the number of words

in the comma-free oode attains the upper bound.



2019 Notes

%e have shown that it is poesible to construct commae
frea codes of lengths 1l anc 13 which have the maximum poesible
mmber of words. But mainly we Mave shown the difficulty attan-
dant upon a proof that the cods is comma-free liss in the extremely
high mmber of cases whieh have to be considered; a comparison of
the two examples shows clearly how the mmbder of cases is inoreasing,
and it becumes evident that further attempte at proof in this
direction would achieve little, especially in viow of Selfridse's

result /7/.

In fect, Selfridge's result is important to our contention
that the mmber of oycles of order n is an unrealistic uppexr bound
on the numbar of words in a synchronous code, gince the restrictions
imposed by Lelfridge are much less strict then those we have imposed

an synchronous codes.

So for & while we shall concern curmelves with the
construction of synchronous codes which may have a definite use, and
not concemn ourselvee too much with the relationship of the efficiency
attained by thea to this now probably unattainable upper bound,
although we shall of course consider the comparative efficiencies of
the different types of oodes constructed. After a while, & pattern
will omergs, and it will become apparent that symehronous codes
constructed by the types of methoda we shall use here seem to have mn
upper bound on their efficiencies which ie much less than that given

above,
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Se M CODES AND CILB_RT'S CULES

Sele Gen!&

In this seotion we shall show that the cyoles of ¥ can
be divided into two disjoint subsete; for any odd valus of n
greater than 1, a synchronous code, the M code of that length, can

be assembled from one word in each cycle in one of the subseta,

Ve need some standard with which to compare the efficiency
of the M codess for this we will use ‘codes of the clage discovered
by Gilbert. This olass of codes is in use at many installations
at the moment (e.g. Wespons Research Ustablishment, Salisbury, South
Australie).

Yo shall see from this comparison that the X code represents
& definite advance for small values of nj however, for large values
of n, Gilbert's code is far the more efficient. Thus the M ocodes
do not pressnt a solution to the problem of deviging a highly
efficient synchroncus code of large lengthy this problen will be
tackled in section 5, In seotiom 4, subcodes of ‘M codes . will be
shown t0 be analogous to well-known types of linsar and oyclic codes,
This versatility gives us another interest in the i codes.

Firat we will define a device which is used by many
synchronous oodea, including sll those described in this thesis; the
device, called the herald, provides a simple method of finding a

possible first position in a word smong the sequence of digits
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arriving at tho recsivers %o shall then describe Gilbart's
codes, whose nroperty of synchronisation is in largas part dus to _
the herald; and while deacribing theas codes we shgll highlight
the arguments which lead us to expeot that, for any givan length,
& more sfficient synchronous code than Gilbert's code of that
length can bg constructed.

3.2 The Herald of » Code

When a sequsnce of digits is arriving at our receiver, and
we have to distinguiah the start of a word, it helps us if we do
not have to consider (n-l) wrong choices for the first position before
finding the digit which actually starts a code word. we could, of
course, find the correct first position by taking each digit in turn
and comparing the sequence of n digits beginning at that didt with
&ll the possible code worde until ar identity is obtaineds this is
the method we might have to use with a camca-free code. Sut the
procedure ie too laboriocus for the uses we have in nind, and the aize
of the 'dictionaries' we would have to employ is prohititive for all

but the smellest n.

The altarnative is to standardise the first digit in each
coda word in some way; for example, if we stipulate that the first
digit in every code word is a zero, we rule out all wnits a8 possible
starting positions. This would reduwce ocur search time by half.
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If we want to reduos cur search time even further, we
ocmld, for example, specify that the second position of every code
word ie also & zmero, By this and further stipulations, we oan

reduce our ssarch to a reasonable magnitude.

This 'fixing' of the leading positione in every code word
iz thus a useful device, W¥e call the string of poritiona 80 fixed
the herald of the code,

Se3 Methods of Achieving Synchronisation

We have shown that a herald is a weful device in a
synchronous code. But uge of & herald in itself does not gusrantee
that a code is synclronous, except in a few exceptional cases whan
the herald is more than half as long as the code word itself,

For alerald shorter than this, it is poesible that the
herald sequence could be duplicated in the remaminder of the code
word, if the right digits are chosen in the cormect order, and
provided nothing is done to prevent this cccurrence. If it is
poseible that the string of n digits begun by this False 'herald! and
overlapping into the next word could be identical with any code word,
again assuning the right (or wrong, depanding on the point of view)

choioe of digits, then the code would not he synchronousg,

JeJele False Words Identical with Code Words

When we are oonsidering codes with heraldy the only

positions where false words identical with ocode words may possibly
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begin are those where a false ‘herald! can begin.

If it is possible for a fulse "herald' to cccur in a code
word, there must be same restriction imposed on the digits cocupying
certain positions in the code words; these reptrictions must prevent

any false word from being identical with a code word.

Seds2 The Kethods

¥We bave just described the two methods of restrioting the
code format which, with the use of a herald, will snsure that the
code is synchronous, Ve must place restrictions other than the
herald on the format of a synchronous codej this rmuch has been shown.
Ve can either
(i) ensure that no false words are identical with code wurds; or
(11) enmsure that no false 'hersld' can cccurj in this case there
are no false words identical with code worda, and so the

condition of (i) is automatically satisfied.

It is obvious that the seoond method is far stronger than
the firet method; this means that it is stronger than neceasary.
Thus any code which uses this second method of achieving synchronisa-
tion (by preventing false heralds) should not be ag efiicient as the

nost efficient code which uses the other method.

Gilbvert's codes are constructed so that no false *heralds'
may ocoure This makes for extremely easy synchronisation; the

receiver just seeks the first herald sequencs, which it knows to be
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the start of & code word, and begine decoding at that point. 3But
if we can afiord & mare sophisticated receiver, and we can guarantee
that, after a loss of synchronisation, the first correctly received
word is decoded, there is no reason why we should not get greater

efficiency by ueing a different code.

By & mare suphisticated receiver, we mean one that can
exanine s complate string of n digits, inatead of just a hersld
saquence, to determine whsther the atring represents a code word or
a false word. But we do not want to get back to the 'dicticmmry!
system. S50 we have to devise simple tests on certain positions of
the digit string which gzive different results for code words and
false words. This, combined with a therald' test, enables ws to

pick up the first corractly received word aftsr a loes of

synchronisation.

To meke these teste work, we have tu restrict certain

poeitions in every code worde This can be done in two ways.

Firstly, we can stinulate that a certain position bas a gere
(or a wnit) in every code word. Positlons so fixed are normally

amid positions left compl:tely arbitrary to carry information,

It can he arpreciated that, if we fix enough voxitioms, the
code 80 obtained will be synchroncus. But while the dizit string is
arriving without abnormalities, and the veoeivar is nutting out words

ong after the other, such fixed positions represent a complsete losa
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of time which, if not used to traremit the fixed digits, could be
used to tramsamit information. But the fixed positions must be
included in case synchronisation is lostj and it is obvious that
there is & minimum number of positions which must be fixed if the
code is to be a synchronous code, i.e. if the false words are to

give different results to the tests to the cods wordse

This minimum covers methods whish employ tests on single
positions; we look at the ith position and sey "This should be a
unit, if the digit string reprssenta a code word - is it?™ The
tdictionary! test, on the other hand, employs a test on all n
positione; and, if it could be implementsd, it would give much

hisher efficiency.

Is there, then, a method which hag the best femtures of both
these syatens = & msthod which gives hisher efficiencies than the
single position test method, but whioh can be used without referring
to & 'dictionary'? There im3 it coneists of testing pairs of digits

together.

Weo almll show in section 35,15 that this mathod does give
high effiociencies, although final development of the method for
maximum effid ency for all n will be lsft until section 5; and we

shall slso chow that the tests are esasy to apply.

Another point comes to mindj if tseting pairs of dizits
increases efficiency, will not testing triplets or quadruplets yield

still more afficiant colese Strangely, this is not the casej for
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some reeeon, the two-digit testing systems gives up optimun results,

and wa shall prove this in section 8,

Vi@ shall now set up Gilbert's codes, and wrove that they
are synchronouss use of the stronger method of achiaving synchroni=-
sation, as stated at the beginning of this mection, mekes this proof

prerticularly straightforward.

¢4 Gilbert's Codeg

Ve shall deaonstrmte the construction for a given value of n.

Choose b as the leaat integer such that

bg S nal

We now stipulate that every code word hma zeroces in
positions 1,2 .es 4 b, and units in positions
b+ly 2b41, eee 5 (ke=1)b+l where (k-1)b< n=l kb, and a wnit in
the last poaition, A1l the othar positions of the code word are
arbitrary, and are used for the tranemission of information, Thus,

if we have n=l5, we choose bm4, and we encode the information string

ABCDEFC a8
DOCOLABCIDEVICY

Even if b=l information symbols, such as ABC, are all zerves, we
cannot obtain b serces together except in the herald of s code ward.
Therefore there are no false 'heralde!, and no false warda; and 8o

the code is synchronous.
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Zedal Attaimment of Synchronisation

Aftar a loss of synchronisation, the receiver picks the

firet string of b zerooes ss the stert of g code worde This is a

very eangy system to implement,

3.4.,2 The Cholce % E

We shall show in this section that ocur choice of b gives the

greatest efficiency with one of Gilbert's oodes.

We Lave fiyxed b poasitions as zerves and k positions as unite.
Therefore, by our choice of b, we mve fixed

(1)  2b positions if b(b-l) < n-l { v°

(11) 2b-l positions if (b-1)°<C n-1< blbel).
Consider another code of length n with ¢ leading zeroes, and
n units positioned in the amsme way as bsefore, We know
(m-l)e < mel  meo
This code fixes otm places. Suppose this code is more

efficient than our original codej 1.e. it must fix at least one less

place.
Suppose B(b-1) < ne=l 5
then mc > b{b-l) (1)

For greater efficiency, c+n 2b-1 (2)
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Squaring (2) and subtracting 4 x (1), we get
(c-m)2< 1
Therefore, ¢ = m

By (2),
[« 3 ] m<b-—l

Therefare, me < (b-l)z, contradicting {1).

Suppose  (b1)? < nel b (bel)
then me > (‘b-l)2
For greater efficiency, osa { 2b=2.
Repeating our srgument above, we arrive at the same
contradition,

Therefore there is no betier choice for b than the cne we

have made,

3e4e3 The ifficiency of Cilbert's Codes

We showed in maotion 3.4.2 that for synohronieation we nesd
%o fix
(1) 2b positions if b(b-1) < m-l < ¥° (1)
(2) Zb-l positions if (b-1)° nal b (bel) (i)
We can now calculate the efficisncy of Gilbert's code of
any length; however, to simplify comparisons which will be made in

the following sections, we will comsider the values of the efficiency
&t local maxime to be representative of the class as a whole,
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There would appear to be dangers inherent in this policy; but we
shall also show that the efficiency varies between sufiiciently

snall lixits to make this comparison mesningful,

As 'a general rule, the larger the value of n, the greater the
efficienay of Gilbert's code of that length. However, if we plot
efficiency sgainst n on a graph, we £ind local maxim where n = bosl
and n = b(b-1), where b is an integer. Ve can demomstrate thia in
the following way.

Suppose b is an integer and n = b2+1. By (1) above, we have
2b fixed positions end (b-1)% arbitrery positions. If n' = m-l,
we otill have Zb fixed positions, but now only (b-1)% = 1 arbitrary
position ; and if n'' = n¢l, we need Zb+4l fixed positioms, which

leaves us with no more than (b-l)z arbitrexy positione again,

in theee last two cases, the retio of fixed places to

arbitrary positions is greater which means that the efficiency is

less than in the case n = b2+1. A similar argument applies when

n = b(bel).
If n = %1, the efficlency of Cilbert's code is

2 2

1-207% 4 n +0@m )

If n = b(b=l), the efficiency of Gilbert's code is

1e2n”? - .%-l- 0 (n.yz)
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Ve will now give the local minima.

Vhen n = b2+2, the efficiency of Gilbart's code ic

1-&::‘é a1, n.% + 0 (nﬁz)

and when n = b(b=l) +1, the efficiency is

1-2nF o pl . @"% 0 (@B,

=1

How the local minima are n~ less than the regpective local

maxima; this is ressonable, since in sach case the fact that n is
greater by 1 at the local minima than at the local maxima means
only that we must have an exira fixed position to ensure that the
code is synchronous. Fixim this extra position ensurss this drop

in efficiency of N

We now know that the efficiency of Gilbert's code is
l1-2240 (n'l) for all n.

It is this sxpression, with partioular ragard to the
coeffiocient of n'%, which will form the basis of our later

comparisons,

3.5 The Bax Principle

If wo have a ward a = e a8 of length n, we can
partition the word into pailrs of digits

i.a. alaz’ a38,4, 3536 9 mnee

We shall oalli each of these peirs of elements a box.
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If n is odd, we find that a is left over. 1In this case

we have ¢ivided the ward into 4(n~l) boxes and a.

These boxss are the devices with which we shall implement
ocur tests on pairs of digite togsther, menticned in section 3.3.
¥e ahall show, in our proof that an M code is synchroncus, that this
syetem of tosting leads to an improvement in afficiency for =mall nj

later we will consider the case for large n.

o need the following definition to simplify our proof.

305.1. A Doublﬂg

A doublet ie & palr of digite in a wordj the firet digit ie
& gero and the second a unit. However, we specify that, for an O}
pair to be a doublet, the zero must ocoupy the second position in a

box whan the word is partitioned in the meanner given above.

It can be seen that every sero followed by & unit represents
elther an Ol box or a doublet in a word.
3.6, The M Codes

¥e shall construct the M code of length n, whers n is odd.

¥e know that a word of length n, n 0ddy can be partitioned

into #(n-1) boxes, with a, left over. Ve stipulate that the first

of these boxes is 01, and that sach of the other boxes is either 00,

10 or 11 arbitrarily; &, can be eithar O or 1 arbitrarily.



=46 -

The coda ooneisting of all such words will bae ealled the
M gode of langth n,.

We will defins m to be the mmber of boxes which are not
0l, in a code ward.
Thus & = #{n-3)

We oan reprasent a word in a M code as

0n1A o.ol‘

where (a) Ay = 00 or 10 or 11.

(b) ln-OOPXv

later, in section 4, vhen we discuss exror correcting codes,
wa will upe the digit in this last position as a parity check on
digits in other positioms. The error correcting codes disocussed

there will be proper subsets of the M code.

Se6el. Fxmuple
Suppose we consider the i aode of length 5.
The words are
01000 01001
01100 aia
01110 01111

We can show that the code is synchronvuse.

The only places where synchronisation cmlé be misplaced in
& correctly received message is that the Ol which ends either g)oo)
or 01101 could be miastaken for the beginning of a worde. Howevar,
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the next two digits in the false ward w-uld be those beginning the
next word in the nessage, and these are always Ol; thus any false
word would have 01 for its second box, and so it could not be

idantical with a code word,

This argument will be used extensively for the rest of this
thesise It states that if no false word is identiocal with a code

word, then the code is synchroncus.

Conglder the result of dividing W(s) into cycles. We
obtain 8 cycles in all,

1. 00000
2e 00001 60010  GOIO0 G100 10000
3, 00011 00110  Ol100 11000 10001
4, 00101  0l0C0 10100  ©lO0L 10010
5e 0011 Q110 11100 11001 10011
6e 01011 10110 Q1101 110100 10101
7o Q111 11110 11100 11al 1oml
Be 11111

We have underlined the words in the K code. It can be seen
that we have chosen cne word from every possible ocyclej of ocourse,
we cannot choosa words frum ¢ycles of order less than 59 in this case
the trivial cycles.

If we recall the result of section 2,11, we see that the

maximum number of cycles of order 5, and hence the maximum number of



worde in a synchronous code o length 5, is

s D u(a)2/d

d/n

- 51 (5.2 - 6

Thue this synchronous code represents cne of the few that
attain the upper bound on comma-free codes. In fact, the & code
for n=7 is the laat K code which attains this boundj the reason

for this ia made c¢lear in section 3.9,

The argument above showe that an X cude van be synchronous.

The next theorem proves that every M code is synchroncuss

3 Q’? Theorea

An K code is synschronous.

Proof:
Consider two words, & and b, in M, the M code of length n.

Lot 3 be a false word, coneisting of n consecutive digits
drawn from the sequence of AN digits &b, but neither beglmning at

the first digit of & nor ending at the last digit of b, ¥e have to

show that g is not identical with any member of M,

Such & word 3 must begin at some position in ae Its first
two digite must be 01, and since no box in a is 01 except the first,
8 mugt start at a doublet in as This duublet must begin either in
the second box of a or further to the right, since the second digdt

of the first box of & i’ & unite.



Therafore, z includes b, and b

1 29 the first two digite in

bj and these are O and 1 respectively.

Since z hagins at the secord pomition in a box, and since

n is odd, b1b2 = (Ol gppears as a box in xz.
Hence 3 has & 01 box other than the first.
Hence g is not in i,
Thus no false word can be identical with a code word.

A8 an example of this, suppose the doublet begins in

position a

n=-3"
In the false word 2, the first box containe a s and a o
the sacord & 3 and a.» and the third bl and bg.
abs see an_4 an_3 an-2 En.l ﬂn ul ese
23 0 1 a1 & Ol .ee

Be7els A nossible adaption of the i code format

To ensure that a code like the K code is synghronous, we
have to prevent Ol cecurring in s box. We can do this by fixing
the first position of a box as 1 and leaving the seconl pomitionm
arbitrary, or by fixing the second position ss a Q and leaving the
first position arbitrary.

However, this cutz the number of possibilities in e box from
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3 to 2, and 8o redicer the efficiency of the codej for this reason
it should not be used exoept where necesszary. However, it is a

useful adéaption, as will be showm: in section 4.

S8 The Subsets of W(n). n odd

In this seotion, we shall divide the oyclas of ‘ﬁ'(n) into
two subsets = those which provide s member of an i code and thosa that
do note In this argument we will cdisrogard the cycles of arder 1,
i.es those genersted by 000 ees C and 111 ees 1. For this reason,

we ahall define X as the pubset of W(n) which contains sll the words

of W(n) which belong to the non=trivial cycles, i.e., all the words

of W(n) excent the two montioned mbove,

We ghall now define U to he the subeet of X which consists

of all words in cyoles genarated by members of the M codee.

We now define V to ba the subset of X which cousiaste of all
worda in cyeles generated bty all the words b which have the following

proparties:
(1) b begine with 0l, and has at least one other Ol box,

(2) There is a doubtlat in b somewhers betwean the first and the

last Ol box of be

This doss 2ot imply that every word of the form of b
generates a difierent cycley indeed, it will be stown that evary woxrd

in V will be developed at least three times by different generators.
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We shall show in the ensuing sections that every word in X
is in either U or V, tut that no word of X is in both,

First, we shall show that b is not the only word in itse
cycle which setisfies the restrictions laid upon ity in fact, there
are at least two other words in the cycle containing b which obey

the restrictions,

3+8.1 Thecrem

If b is a word of length n, n odd, which begins with Ol and
bas at least one other Ol box, and a doublet somewhere between ite
first and last Ol boxes, then any word o, in the cycle generated hy
by which begins with Ol also has at least one other Ol box,and a

doublet between its first and last Ol boxes.

Proofs
By the conditione, b is of the form
0l cee O 4es Ol ose b,
box doublet last Ol box

If b is of this form, we shall say b has rroperty BDB; c oan start
with the Ol represented in b by

(1) the last bvox

(2) a doublet before the last hox

(3) a box before the last box and befare a doublet

(4) 8 box before the last hax and aftsr all doublets

(5) =& doublet after the last box.



- 52 -

It will clarify the proof if we construet the following
table, which showa the relationship of & box cr a doublet in b to
the corresponding box or doublet in o, depending on whether the box
or doublet in b occurs before or after the position in b correspon-
ding to the first poeition in c.

(a) If ¢ starts at a box in bs

Before starting point After starting point
be Box Doublet Box Doublet
o3 Doublat Box Box Doublet

(b) If c starts at s doublet in bs

Befare starting point After starting point
bs Box Doublet Box Doublaet
cs Box Doublaet Doublet Box

@e8e Teading from the first entry of the firat table, if a box
in b is previcus to the starting point of o, it will be

represented a&s a doublet in o,

Now we have this table, let us consider the possible

starting points of ¢ in order,
(1) The firet box of b becomes a doublet in c.

The doublet befcre the last box of b becumes a box in o,
(2) The last box of b becomes a doublet in c,

The firat box of b is still a box in c.
(3) The doublet of b after the starting point of ¢ remains a

doublet in e,

The last box of b is still a box in a.
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(4) The dwublet of b bafore the starting point of ¢ becomas a
box in ¢,
The first box of b becomes a doublet in ¢,
(5) The last box of b ie still a box in c.
The doublet of b before the last box ie still a doublet in c.
If b generates a cycle of cvrder n, then, sinos thers are at least
three geroves fellowad by unite in b, there are at least two other

words, in the cycle genersted by b , which also have property BLB.

This theorem has proved another important point. We can
pee that 1o membar of the i code of length n can be in V, since
every word in V begimning with Ol has at least one other Ol baxe
Since the cycles in W' are disjoint, U and V are disjoint ecubsets
of Xe¢ DPut we still have to prove that their union is thes whole of
Xe

Since no word from a cyole of order less than n cgn be in
an K code, U does not contain any of the words in 'short'! oyclss.
Thus, if U and V together contain every elsment of X, we have to show
that there is at lsast one word in esach *short' cyole which possesses

property B0B, The next theorem accomplishes this end,

If ¢ is a non=trivial word in W(n) of oarder lese than n,

then ¢ is in V.

Proofs
¥We shall prove that ¢ is in a cycle genexwted by b, where
b has property TDRE,
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Suppore ¢ is of order vy 1 { r< n. ¥e know by section

Ze44l that n = kr, where k is an integer and k> 1,
“ince n is odd, k snd r are both odd,

Suppose b is a word in the pame cycla as oy where b begins
with Ol, By ssotion 2.4.7, b consists of & word of length r
ropeated k times,

ie®e b = blbz one brblb?. sse br ese blbi.’ sea bl‘

By our choice of b,

blbz is A

Th'r@fm’ P = 01 YY) br ol ese br ese 0L XX br

KHow since r is odd, the second (1 pair given above is a

doublet in by and the last Ol peir given is a box in be

So b has property RDB, and 80 b is & generator of & cycle
in Vy hence ¢ is in V,

%e have now shown that V contains some cycles of order n and
all the non-trivial cyoles of order less than n. e aleo know that
U consists of gycles of order n, The next theorem will prove that

U contains all the oycles of order n which are not in V.

Since all the wordas in V beginning with Ol have a doublet
before their last Ul box, we can say thst all the words beginning with
01 which are not in ¥V do not have a doublet before their last Ol box,e
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¥e shall show that if & word o belongs to a cycle generated by a
word d, which begins with Ol but has no doublet before its last (1
box, them ¢ is in U; and eince every word beginning with Ol must
either have proporty EDB or be of the form of d, this meens that U

and V between then contain every word of X,

3el0 Theorem

If ¢ is not in a cycle genersted by a ward b, where D has
property ™3, then ¢ iz in U,

Proofs
Let d be a word beginning with Ol in the same cycle as ce.

d has no doublet befure its last Ol box.

Let e be the word in the same oycle as ¢ and d whose first

two positions correepomé to the last Ol box in de

If d has only one Ol box, the first, then 4 ia in the M code

of length ny hence d generates a cycle in U; hence ¢ is in U,

Kow suppose d has mar¢ than one Ol box but doas not have
propaxty BDB.
By our definitione of d and e, the only Ol pairs in d are

represented by boxes up to the position corresponding to the first

pogition of e, and doublete after this poeition.

But by the table given in 3,7.1, all these Ol pairs in d are

represented by doublets in e,
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Hence e has no Ol box other than its firet, and so is in

the X code of langth ne
Henoe ¢ is in U,

%e have thue shown that any word not in U is in a cyecle
generated by a word with property BB, Ko word of odd length less
than 9 can posseas this property, since we nsed at lsast four boxes
in a word in order to fit a doublet betwesn the first and last
boxes. This ties in with the fact that no ¥ ocode of length Ereater
than 7 iz as efficiemt as Golomb's code of the same length, for we
ahall see that the larger the value of n, the greater proportion of

words of W(n) belong to cycles generated by wards with property BDB,

Since we have now shown that U and V together contain all
the non=-trivial words in W(n), the ratio betwean the number of words
in each of them is importante ¥e shall then exhibit an interesting
facte TWe shmll find the ratio of words beginning with 01 in U to
words beginning with 01 in ¥, One would expect that this matio
would be approximately the same as the overall ratio of the gizes of
Uand Vo As a second poseitdlity, the idea thet the difference
between these ratios would be in some way dependent on n would seem

to be a reasonable onse,

However, neither of these gussses is correctes 7o shall now

calculate the ratics and show the relationship betwesn them,
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3«11 The Batio of the Sizes of U and ¥

Selldl Lewma

The mmber ¢f worde in an N code is

2.3"

Thus the mmbor of words in U ia
2n,38

Proof:

In a word b in the ¥ code of length n, there are m boxes
which can each be filled by amy of the 3 pairs 00, 10 or 11, and
hn oan be either O or 1. The other two positions, thes firet two,

are a fixed 01 box,
?mthmmﬂgslmrdsinmucodc.

Each one of these words generates & cycle of order n, i.9.

each of these cycles contains n words.
Thus the mmber of words 11181.21:.3'.
e now know that the nmumber of words in V is

2‘-2-&1-3‘,
and that the ratio of the sise of U tc the size of X ia

2n 35@=3) | 8 o

We shall now find the ratio of the number of words
beginning with O1 in V to the number of words begiming with Gl in X.

Selle2 Lomma
The mumber of words in V which begin with (1 is

2 n-z = 80("2)3‘.2



Proofs

A word in V which begins with Ol and ms its last Ol box
as its kth box, and which hae its last doudblet bafore the kth box
beginning in the sscond position of its jth box (j < kel), can be
written in the farm

Ol xyx XX oov Xo3 1B Fopu¥2503 *** Vo3 Tpez B Tpyy ooo
Tl

where every x, is either U or 1 arbitrarily and each pair

T2302 T2303" *** * Toxed Toxa3® Toaced T2e2® *°° * Tpa2 T

is elther 00, 10 or 11 arbitrarily.
Hance the number of words in V of this fore is

2%-3 . 31:-2-3 . z.slrl-k 2
o B | et

Therefors the totsl number of words in V which begin with

a is
_ g2l
k=4 3=z

=l
= > B (o5 )
kad

- 21 _ g (a42)3"2
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Since thers are altogether 2 words beginning with

0l in X, we now know that there are 8.(m+2).‘3"2 words in U
beginning with 01, The ratio of the numbsr of words begimning
with Ol in U to those begimming with Ol in X ia

If we compare this with the ratio found in 3,11,1, which

is the same asg

2(2me3) 3" 3 223 _ o
we sae that the ratlos are not nearly equal.

In fact, as n becomes large, this latter ratio tends asymptotically
to 9/8 of the others The reason for this is not apparent; it is
certaynly not the result we would expect,

“e stall now examine the weight distribution of words in
an ¥ code and compare it with the weight distributicn in W(n). Ve
have already illustrated, in saction 2.,1,, that the better the
waight distribution of a code, the better the possibilities for
error correction, for, although in many cases, the reduction in the
nunber of parity digits necessary to correct evary ayndrome of
waight e or less is not significant, the number of cases whare an
error of greater syndrome waight than ¢ can be corrected is often
greatly increased. Later we shall compare the waight distridution

of an K code with that of Gilbert's code of the same length.




3¢12 Theorsm

If 0< wgm+l, then the mumber of words, of length
n = Zm+3, vith weight w, beginning with a 0l box and having no
other Ol boxes is ‘

Z Comb(myp) aConb (@+l-p, w=2p=-1)

where the summation is taken ovsr all integers p such thet
o pg & (w-1),
KUTE: Since the number of words of waight w is the same as the

mumber of words of weight n-w, by symmetry, the above formuls can

be used for words of weight greater than m+l,

Proofs
Each word which obeys the above condition has wel units

and n-w-l1 serces arranged among the laet m boxes and the last digite.

Suppose the laest m boxes of the word oomprise p 11 boxen,

q 10 boxes and r 00 boxes.

first, we shall find the number of words which obey the
corditions of our theorem and which end with a sero.
In thig case, p+qQ+r=an
2p 4+ q=wl
For any given p, q and r, the p 11 hoxas can be distributed

amonz the m boxes in Comb(m,p) ways.

Por each of these distributione, the q 10 boxes can be

arrenged among the remaining (m-p) boxes in Comb(m-p, q) ways.
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The remaining boxea can bs filled in just one way with

00 boxes.

Hence the total mumber of words which begin with G}, have

no other Ol box and which snd with a gero ig

S )
Z‘ Comb(m,p) Comb(m=p, q) Ae
Ps

where the cummation is over all (p,q) suwch that p 2 0, g 20 peqea
and 2p+q = w=l,

Similarly, the total number of words whioch begin with (1,
have no other Ol box and which end with a unit is again

—
%

Z, cmb(mv.p) Comb (m-p,q) B.
P

but here the summation is over all (p,q) such that
>0, 93>0, P+ qmand 2piq = w-2,

How A. is squal to

[ 3 (w1,
ljgj Comb(m,p) Comb(mep, w-2p-1) Ce

p=0

Alsoc B. is squal to

[ta-2)]
‘ Comb(m,p) Comb(mep, welp=2) D.
p=l

Hence the total mumber of words which begin with Ol and
have no other 01 hox i8 C + D.
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C+1D
= Comb(m, 2(wel)) Comb(mei(w-1), O)

[im-2)]
+ Z Comb (m,p) Comb(m-p, we2p=l) + Comb(m,p) Gomb(m=p, w=2p=2)
p=0
, B |
e Comb(m, u(w-l)) + Z Comb(m,p) Comb(m=p+l, we2p-1) E,
p=0

by the well-known property of combinatorials,

If p = 5(w=1), the summand ia
Camb(m, 2{w-1)).Comb(m-d(w-1)+1, 0)
= Comb(m, F(w=l))

[e-1)]
Therefore, B, = ‘ (Comb(m,p) Comb(m-p+l, w=2p-1))
Pl

We shall now apply this theorem to determine partioular
values of w for n=l? and n=bl., The values are plotted on zrapha,

which also have Gilbert codss plottod for comparisons.

3.13 Motes

Por o comparison of the M gode and the fixed place code of
the same length (n=5l); and a comparison of the M code (n«l?7) and a
fixed place code (n=21) with approximately the same mumber of words,

see the following graphs.




(1)

(11)

In graph 1 we see a comparison of the M code of length 17,
which has 4374 words and the fixed place code of length 21
which has 4096 posaible worde (redundancy is not considered
here), together with the graphs of the number «f cycles for
sach weight, The log scale used doas not allow the
difference t0 be immediately apparent, tut it can still be
seen that the il code has meny worde of both small and large
weight, while the weights of words in the fixed place cade
fall betwesn much stricter limits (this can also be seen in
graph 2), Thue the average distance betwsen words in the
M cod_c is greater, although the minimm dietance may not be
(see later), and this means that a grester percentage of
errors of asyndrome weight greater than the minimum are
carrectable with the K code than with the corresponding

fixed place codes

Graph 2 compares the M code and the fixed place code for

n = 51 and it can be seen immediately that the X code ms

more words of every weight, As will be shown in the next
lemma, the il code is theoretically preferable far n 79,
However, as shown in section 4, we encounter a dif ficulty

in representing parity checks, An improvement is ziven in
section 5 where the synchronous codes have arbitrary poeitions,

and the parity checks are used as in & normal linear code,



Log, (Wo. of words)

14

10

M codey, n = 17s 4,374 words
Gilbert's code, n = 21t 4,096 worde

4 \ Ko. of cycles, n = 21

/ |

! Hoe of ¢ycles, n = 17

p N
& &
P >




Log, (No. of wo?ds)

¥ code gnd Gilbert®s codes n = 51

o€ ®

7
|
[2 Fo. of cycl/ag/g'
|

?._0

Gilbert's code

.8
4
//
4
/)ﬁ d
4
;ﬁ 7,
.6 ;S
/ /
d F
7/

Yy o Il BT 15 - 177 197 &@- 23 25.°

Weight




3el4 &

The M code is more sfficient than the fixed place code of

length n with no redundancy for n< 79.

Proof:
The number of words in the M code is

2 58 (n~3)

The mmber of words possible in the fixed place code of
length n, mking no allowsnos for redundancy, is z’ s Whare F is the

nuaber of arbitrary positions, and is approximately n-zn‘é.

The Y code is the mare officient if
P is less than 1+§(n-s)1ogzs

This equation solves to n 79,
It is intsresting to note that, if we use the approximation

1032 S= -g-, vhich we will see gives accurate values under the

encoding methods in the next mecticn, the inequality solves to m < 5%

3.14.1 The Effiei 0110! of an ¥ codes
Ve know that sn M code hase ‘2.33{11'3) worda. Its

efficiency is therefore

(#(n-3) log,5+1) /n

or abmat
=l

O « 1l.4m
approximeting logas by 1.6,
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It can be seen from this that for large values of n,
Gilbert's code will be more efficient, since M codes have a
limiting effiolency of 0.8; the limiting efficiency on Gilbert's
codes is 1, If we use the approximation for 10323 of 1.5 which
will becoma appropriete in section 4, the efficiency of the M code

is

0e75 = 1.25n™>

Je15 Average Distance

%e know that the average distance batween worde in a code
is not as important as the minimm distsnce, as far as error
correcting potentialities are concerned, However, e greater
average distanoce between words means that the mumbear of worde for
which an erronecus word can be mistaken is probably less, for given
syndrome weight, Thus, greater average distance botween worde is
another advantage of the i code over the fixed place code of length

Ne

3 el5s1 Theorem

Far n 79, the 4 code bas greatsr average distance batwaen

words than the fixad place sode of langth n.

Proofs
Conasider the array consisting of all the wards in an X code
liated one under another in a columne VWe have ne3 oolumns of our

word column containing membere of either 11, 10 or 00 boxes, and
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one column containing 1l's or O's equally.

There are N worde; N = 2.3%("'5)

We have #{n-3) columns oontaining unite, % serves.

We have -3(n-3) colwms containing

wir 48

units, % LOTOE,
_ )| ) |
We have 1 column containing 3 units, 3 seroes.

Suwaning differences, we get
A = (8i/3)(N/3) (n=3) + (8/2)(/2)

differences as the sum over 4li(N-1) paire of words

Average distance betwsen two words = 24/(H(H-1))

= 21 (8n-15)/(36K°(1-1/N))
= 4nf9 -1

Now, with the fixsd place code with no redundancy, we have
F golumns containing l's or O's equally.

The mmber of words is X' = 2

Average distance betwean two words

= P(E0) (38 )/ (280 (50 1))
- é?/(lvl/k')
= 4
Fow, 4% < 4n/9=1 for all n< 300, Thersfore, in the range
n 79, where the X code has greater efficiency than the fixed place

- oode, it 2ls0 has a greater average distance between words.

2.8 N = 79:
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, 61,1
M code: HNo, of wards 2 Av, distance = 34,1

61,0

Gilbert's codes Ko, of words 2 Av, distance = 3U5

Sel6 Method of kechanisation

%ea Iave now demounstrated everything sbout the M code
except that it could be useful irn practical applications. We elmll
not demonsirate here the ways that informmation can be adapted four
trammission via an & code format; this subjsct will be treated
fully in section 4. Howsver, to complete this section, we shall
shor that, if information is being transmitted uging sn i code, or
a subset of one, synohronisation can be regained at the first

correctly received word after a loss of synchronisaticne

Sel6e1l To Achiecve Synchronisation

Suppose that, after a burst error of length greater than
the error-correcting abilities of the code can handle, the signal
is picked up at an arbitrary point in a worde (It is perhaps
desirmble that we attempt to confirm in some way that we are
considering symbols from the tranemitted messase and not those at
the end of tha burst, e.ge If the burst ie a long string of serces,
wait until a unit s been received before beginning the following

operations)

Once the hurat pattern les ended, the sachine ascans the

incoming symbole until it finds a zero followed by a unite
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By the construction of the I code, this must either represent a

0l herald of a word or a doublet in the middle of a word.

We treat the m digits beginning with this Ol as & possible
word, and soan it far Ol boxsss In the former case, nona will be
founds but in the latter case, wa will find one carresponding to
sach doublet in the originally trensmitted word, =fier the one onm
which we have fixed, aund also one for the U1 herald of the next
word,.

This latter Ol box will obviously be the laset found in the
word under operation, ané so, if we shift cur synchronisstion
mechanisn to begin agrin from this point, synclronisation will have
bsen regained, It muet be noted that random errors not part of the
burat may upset this procedurs, and ao the use of extended soanning
(see 3,16,3) is desirable, 4nd so we can summarise the operation
thuss

Fix on the first Ul combination found, and scan the (nez2)
gymbols after this for Ol baxese If none are found, the Ol
combination is & heraldj if some are found, the last of these boxes

is the harasld of the next code word.

This operation will obviously regain synchronisstion in
time to decole the first complete code word, provided that the word

is correctly received,
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241662 Error Correction

Once synchronisetion has been attained, we can deal with
errors in the herald by methods eimilar to those given later (in
section 3.16.,3)s Howover, it will be appreciated that errore can
affect the process outlined above, So we must enphazise that
synchronisation will be regained at the first comnlets ward only

if it is correotly received,

Sel6s3 Additional Safeguards

These will be discussed later in more detail (sec section

5)y but briafly, they fall under two headings:-

(a) Extension of the herald.
Obviously, the longer the hermuld, the less possibility of a
false herald; soc a long herald can be an aid to synehronisation,
but a herald longer than necessary coste us valumble arbitrary

poeitions,

() Extended scanning,
If, after finding a harald sequence, we scan the n digits after
the sequance, we shall expect to find another herald sequence
at the end of thie soane Failure to do so mskes it probable
that our herald sequemnce is not the herald of a code word.
Tnie is advisable, since it costs nothing but a longer 80an,
and guards against the possibility of errors in the first

receivad word causing a false synchronisation to be cbtained,
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4o METHODS UF FNCOUDING FOR A BINARY CHANNEL

4ele Genearal

In section 3 we showed that any code of length n which
coneiets of a subsst of the M code is symshronous, For a cods to
be such a subset, all the words in the cods must have a Ol first
box and no 01 box amongy the other m boxes. <o in this gection, we
consider various methods of sdapting information aymbols (and

parity checks) so that they obey the above formst.

These methods fall into two bruad classifications.
Firetly, we can take an error correcting code of any tyre and, by
use of the transformation function § defined below, transmute the
code intc one which obeys the ii code formate 4lternatively, we can
take our information input, represented by a binary number, and, by
applying ¢ only to this, arrive at a set of boxes which obays the
format but which has no redundancy. e must then construot our

parity checks so that they also cbey the farmat.

It ghould be noted that remarks about informstion eymbols,
especially ae regards efficiency of a code, alse include parity
checks, whichever classification we are considering, This is
feasible, since the amount of information which can be sent via a
chsnnel and the rigour with which it can be checked arse dependant
ouly on the chanrel and on the error-correcting ability of the code,
and not the code formet, Ané so information symbols and parity

checks play equivalent rolss in determining the efficiency of a code,
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So, in this gection we consider "specialist® codesg, 1.6,
codes which give their best efficiency only for certain velues of
Ne In order to tramsmute the code (or set of informstion aymbola)
into the i code format, we split each word into sets of three
oonsecutive binary symbols {triplets) and apply #§ to each triplet
in turn, “e then add "formatized" parity checks, if necessary,

(see later) and trensmit the resultant symbols,

This addition of parity checks, not necessary in the
formor classification, can be accomplished in this latter case by
regarding the 00y 10 and 11 boxes as respectively equivalent to O,
1 and 2 (mod 3) and omstructing the perity cheoks to give parity
modulo 3¢ The obvious drawback is that we are using two aymbals
to obtain one perity check, but this is not sericus in smelle-

redundancy codea,

Codes constructed in these ways have the advantage that,
once synchronisation has been attained, the one-third of all the
random errors which result in & (1 box can bs immediately located.
Ainother advantage is the minimm mumber of fixed places. This means
that the information symbols are spread over a larger proportion of
the word, and g0 it ie not possible for a burst of a certain langth
to affect as many information symbols as in the case of the fixed

place oode,



¥e will now develop a traneformation which acte upon
binary digits and represents them in a form suitable for trans-
migsgion in a code which ie a subset of an M cods, We must apply
some transformetion since if we wee arbitrary binary information,

it is certain that many boxes other than the first will contain 01.

4,2, é and The Tmz S!l‘tﬂ

We define the tranefarmstion function § in the following
ways

# is a function which, when acting upon a set of three
binary digits (the sets being representable in the normal way by
the integers O, 1 4eee 7) transmutes them into a set of 4 digits,
divided into two boxes, as in the following table.

If we consider the representation of the baxes (00, 10 and
11 by the numbers O, 1, 2 respectively, we can cbtain a number
oquivalent to a set of these boxes (e.g. 1011 is equivalent to 12,
which represents 5 in a ternary system anslogous to that which
gives the tinary equivalent of a number), This number will be
called the ternary equivalent of a set of baxes, usually a pair of

boxes.
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Fo, Binary P(x) Ternary
Representatim Equivalent
x
0] 000 0000 0
1 001 0010 1
2 010 1000 3
. 011 0011 2
4 100 1110 7
5 i0l 1111 8
6 110 1100 é
7 111 1011 5

1010 has no representation
So, given m nessage of lmgth 3L, we split it up into
L triplets, apply # to each of them, and we obtain a message of
2L boxes, none of which is Ol. To emsure that such a word obeys
the A code format, we only have to give it & fixed Ol hersld and &
last symbol, which can be sn overall parity check on the word.

Note that the original messags may or may not contain
btuilt-in error-correcting apparatus.

e now oconsider the following difference tables of
triplets and their mappings wnder ff. The element in the jth
ror end the ith column of the triangular matrix gives, in each
case, the number of places in which the ith and jth words dif fer,

i.e. the Haamming distance between them.
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0 000 0 0000
1 [v'o) B | 1 0010 1

2 oo 12 3 1000 12

3 011 21 2 0011 213

4 100 1223 7 1110 3223

5 101 21321 8 1111 43321

6 110  2:m212 6 1100 231412
7 111 3221211 5 1011 3221213

1010 21121221

It will be observed, then, that the distance between

ﬂ(r.l) and ﬁ(xa) is at least as great as that between x; and x,e

(Thos differences which are greater ere underlimed). Thus, if we
define the iﬂ-ﬁ@smge to be the mepping of & message of length 3L

under §, the P-message should Le at least as susceptible to error
correction as the zescage itself. This will be proved in saection

4.4,

Also we notice in passing that, since the Hamaing weight
of $(x) is the same as that of x (modulo 2), the overall parity check

can he made either on the Message or on the input messa;a.

We will assume hereafter that there is negligible
probability of error in effecting this encoding, and concern
oureelves only with errors that ocour in the transmission of the
f=encoded word, It will be shoen that the redundancy introduced by
the lengthening of the message under Peencoding (from 3L to 4L) to
achieve the required form will alsc increase the burst=error correc-

tion oapabilities of the codes




3.3 HNotes

Since by using this system we are only getting 3 input
information symbols cut of every 4 f-enocded symbols which are
transmitted, the maximum efficiency of a code whish uses this

system is 3/4.

It will be showm in gection & that if we try to define
any function which translates blocks of input infowmation syabols
into packets whioch use "boxes" of 3 or more symbols as building
units, then the resultant code is not am efficient as the one defined
vy g,

3e3¢1 Fhy 1010 was left out of #(x)

%e should perhaps explain our choice of 101C as ths one
left out in the table of #(x). This was dons for two reesons.
Firetly, 1U1C is more likely o produce herald sequances, beth by
itgelf and in combination with the box paire on either side of it,
than any other bhox pair, Thus omission of this particuler box
pair does mare to obviats the possibility of a false synchronisation

due to a transmission error than the omission of any other box pair.

The other and more important reason for the omission of
1010 can be observed from the table. If we test the Hamming
distance between 1010 and any other box peir in the table, we find

the distance is naver more than 2 and is in hslf the cases only 1,




Thie means that if it was allowed in a tramsmitted meesage of
f-encoded data, single arrors in the P-message would ba hard to

correats In fact, since for every possible triplotxl there is
another 1:1-:i~plo‘t:x2 whose Hamming distanse from Y is 3, the use of

1010 as a box pair representing x,would mean thet the Hamming
distanee of ﬂ(xl) from ﬁ(xz) would be less than the Hamming dietance
betwesn n and X,e

This srgument is sufficient to remove 1010 from the set of
box pairs used in f(x). Hovever, wa can alsu see that, auong the
9 posaible box pairs (including 1010), the probebility of a chosen
digdt occurring in any position is twice that of ths occurrence
of the other (e.g. if we observe the first positions of box paire, 6
contein 1 and 3 contain 03 observing the second poasitions 3 are 1

andi 6 are O etc.).

In any code, the evera;e distance ie maximum if in the
table of cods words G and 1 occur as neerly as possible the same
nuwber of times in every position. Since this ie 60y 6 t0 3 in
every columm is not a very efficient ratio. Howaver, romoval of
1610 from the set makes the ratio 5 to 3 in avery columnj removal of
any other bax pair would leave the ratio 6 to 2 in at least one

column,

We have now shown that the eight elements in #(x) are the

ones we should uss to represent the eight triplete; we have not
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Justified owr particular choioe of representations. They have no
Justification, except that no other choice oan be bstter far myr
yurposesj many choices do not satisfy the condition that the
Hamming distance betwsen ﬂ(xl) and ﬁ(xz) be at least ca great as

that between xl and Xye

It should be emphasised at this point that our choice of C1
&¢ the herald of an K code was purely arbitrarys; 10 would have given
us a similsr code, the 'mirror-imege' code of the M ccde. In the
sane way, diftferent choices for the representations will give codes

which are different in appearance but identical in properties,

4.4, Error correction

We will now comsider methods of error correction of

f-messages.

Using the representation of the 3 boxes by mumbers, we can
employ boxes as parity checks, in the sense that we asmme that, far
exauple, given 11, 10 and 11, then 10 gives parity, since
242414+ 1 =0 (pod3), where these nuabers are the termary
squivalente of the single boxes oconcerned, Thus we can add parity
checks, in the form of these boxes, and still have a word which obeys
the M code farmate So, in codes whers the parity checke are added
after the input infomation syibols are P-encoded, the error

correction can be accomplished in the normal way, exsept that the
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parity is modulo 3., However, whers the complete code has besn
p-encoded, and synchronisation has been attained by addition of &
Ul herald ond an overall parity check we have to obtain the
original input information symbols (or ss close as we can get) from

the ﬁ-messago before beginning error correstion.

Sirce we have assumed that synochronisation has been
attained, we know the sets of four symbols in the received ﬂ-aaaaag.
which are purported to have come from each of the triplets. So we
take each pair of boxes and apply the inverss function ﬂ-'. We

will show that there are three possible results of this application.

Firstly, if the pair of boxes has been carrectly receivaed,
then, under the supposition of error-free application of . ', the
corract tripletwill Le obtained with no further complications. But,
if an errar (or errors) have been made then one of two things can
happen. The received signal, #(x) + S, where S is the error
syndrome, can be either one of the combinations that ¢~ * &dnrdeuds

or not.

Ve define the error syndrome of the F-message in the
nomal binary way and not in terms of its ternary representation,
aince the error pattem is better represented by the former
definition, and a knowledge of the probable errar patterns helps in

cetermining the parity check system of the original coce.




If #(x) + S = B(y)y Leee ﬁf"(ﬂ(x) + S) = y, then, since
the Hamaing distance between §(x) and #(¥), is, ae shown by the
triangular distance matrices in section 4.2, not leas than the
Hamming distance botwean x and y,arplication of §~ ' to the

ﬁ-masage will not incresse the number of erroneous positions.

There are 16 poesible sequences of 4 places, each
arbitrerily O or 1, The transformmtion ¥ only uses 8 of these,
the others being 1010 and those with a Ul box in them.

Thus, §~ only recognises these eight of the sixteen
poeaible sequences, and, once an errvr haz been mada, only seven of
the remaining rifteen sequences will be recognised. Those which
will not be recognised are 1010 and those which contain one or more

01 boxes.

1 §~° camnot decode #(x) + 5, tten we have to decide on
a method of decoding. This decision will depend on a mwmber of
factors major among which will be the error patterns with whidh we
are most likely to be dealing. Although every difierent trams-
miseion system will have its own optimm method, we will give now
two methods for partisular systems which oan be adapted in other

4.5 Empmple

Suppose wa Tequire a aynchronous code of length n = 28 + 3
which will correct ome error in a word, This is the kind of code

to uge if the system of transmission gives only random errors, and so
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fow of these thet we can discount the possibility of two srrors in
the one worde Suppose also that we want to send 3L information

digits per word.

4.5.1 Ve oan $-encode the informstion digits to obtain 4L symbols
in 2L boxes. Applying the condi tions of the &l ngl e~arror-correcting
tornary Hamming code to the baxée used, we see that we can construct
& code which will correoct any erronecus box by the addition of, say,
b boxes. After the addition of the Ol herald and the last syabol,
we find thet n = 4L + 2b + 3,

Thus, we have obtained a synchroﬁom code of length 4L+2+3,
with 3l information digits, which will correct at least ons error

per word,

Ve notice that the last symbol has not been ussd y=t, By
a certain application of this symbol (ee.ge makae it equal to the sum
of the symbols in the odd positiona), we can corrsct & burst of

length 2 or less in a word,

4e5e2 Alternatively, we add & minimum of *hree digits to the 3L
€igits and construct a single-arrar-correcting linsar code. We
then ff-encode the 3L! digits,add the herald and aake the last

rarity check digit the sum of all the digits in tha odd positions.

How assume there is no more than one arror in trangnissiong
if #(x) + S ie one of the eight bax pairse in the set, i.e. 2),

'
then §~ (#(x) + S) =y, snd y will contain one errors so it can be




-8 =

correcteds if # ' will not operate on #(x) + 5 dus to the for-
mat ion of a OL box, the correctness of the last parity check
added to the f-message will determine if the mistake is in the
first ar second digit of such & baxj and if #~ will not operate
because of a 1010 combimetion, choose either 1011l or 1110, decode

and check, the wrong choice has been made, if there is still an error.

This is & code of length 4L + 7 with 3L input information
digits. A4As can be seen, the decoding requires moderately
complicatsed spparatusy but the encoding is simple, anc thi is the

portion that hae to be simple.

4,503 Adaption of the X code format

If we wish to use an H code with an 6dd number of boxes,
we cannot f-encode binary informetion into the last, odd, box.
But we can fix a unit in the firet position in the bax, and leave
the second position arbitraryj the fixed unit emsures that the box

is never O,

4.5.4 Z=fficiency of a f-encoded ki code

Since we are putting three information ‘digits into the
four positions of twc boxes, no feencoded It code can ever have an

efficiency greater than 3/4. Ueing the approximation of log,S as

1.5, as mentioned in section 3.14,1, in the expreesion far the

efficiency of the ii code, gives the same results as we get by



congd dering the feencoded ¥ code. So we will use this
approximation in future when we are congidering a code which is

likely to need fl=encoding; this spplies particularly in ssction 5.

44565 Dafinitiom

“e will define (i) as ths smallest integer not less

than 4,

446 lNotes

We see in section 45that we can have different values of
n for two ecodes with the seme number of input information digits.
In the following sections, we will concern ourselves with the
following problem:= “(an we construct synchronous codes which
possess similar properties to well-known linear and cyelic codes,

and which can be treated in the same way."

To this end, we will construct codes in various ways,
patterned on methodes of constructing binary codes, axcept that we
use three types of boxes instead of two types of symbols (1 snd 0)

ae building units,.

We will alhow that these various types of codes only attain
their zreatest efficiency for certain valwes of ny and try %0 fingd

which code is best for given n.




4.7 Reed-iiuller Code {Recurremt code) /8/ and /o/

In this olass of codes we conmtruct the (p + 1) basis
vectors as binsry representations of the mmbers in ascending

order, and then delete the last row, e.g. for p = 2

vl 0001111
AL 00110011 Delatevs
vs 010120101

This leaves us with p basis row vectors, From the
analyeis 7iven for such & code, we know the length is 2P* 1, the
number cof information digits is Eomb(p,i) where the summation is

over 0 {1 R, vhere we require the code to correct all srrors of

symdrons weight 2P T 1 or leca,and detect all errors of
weight 2F°T,

As can be seen from the exauple given above, delation of t he
laet row means thet the (2j+1)th and (2j+2) digits are the same in
2ll the basis vectors, all j, then they are also the saze in any

vector which is the produst or linear sum of these Vectors.

Thus every box of a word encoded as in & Reed kuller ocode
using these basis vectors is compomed entirely of U0 and 11 boxes.
Thus, if we add & Ol herald and a last gymbol which is a parity
check on the sum over j of the (2j+1)th symbols, the code so formed

is & subset of the M code of lemgth 2°*1 4 3,
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Uwing to the additional parity check the code can now
corrsct errors of aymdrome weight 2T, 1In oconatruction, the code
is similar to a recurrence code, and any recurrence code wiich uses
adjacent recurrence can be adapted in the same way into a synchranous

cod e,

Also, mechanisation of such a code is extremely simple,
gince, apart from the herald location and parity check machinery,
each imput symbol is merely sent twice, in twoe consecutiive positions.
Thus, if we are willin; to reduce the efficiemcy of any opde (not
synchronous) by half to achieve synchrorisation, this is an
excellent method of achieving this object without using bulky
machinery, Decoding, also, is extremely simpla, becauss of the

normal properties of racurrencs codes.

4,8 Fire Code

Codes of the clase diacovered by Fire /1/ ars perticularly
adaptable to the § trameformation, and the results are guite
efficients In this section, we will define :'ire codes, and ihen
prove a lemma necessary to¢ our main objective, a clases of codes
analogous to the ternary Fire codes; this latter class will be

constructed in the next section,

A Pire code {in the binsry sense) is define: to be a code
of leangth n = L.C.2e {@y £), generated by a polynomisl g(x) of the
form g(x) = R{x)(x® = 1) vhers R(x) is an irreducible polynomisl over

¢P(2) of degree R whose roots bhave order f,
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Using the representation of a bimry code word as a
polynomial modulo x" - 1, we say that & polynomial g(x) generates
a code if and only if for each code word the cor responding
polynamial G(x) has the form G(x) = g(x)n(x) (mod x" - 1), where

h(x) is another polynomial.

A Fire code as desoribed above has the following
properties:

(1) The mmber of chack symbols is a + R, i.e. The mmber of
information digite ie n -« a = H,

(ii) It oan correct burst errors of length b or less, and
simul taneously cetect burst srrors of length d or less,
provided
(8) b+a {a+l
() B min (b, a)

(i11) The psrity checks associated with the x® - 1 factor are

interlaced parit: checks speced n/a apart,.

We now give, with only s heuristiec proof, the following
rather trivial lemsae. ilthough applicable to all "box" burste
correcting codee, it is of particular use in detarmining the length
of & buret carrectable by a ternary Fire code of the typs given in

ssotion 49,

4.,8,1 Lemma

Agsunin;: thet a word ie encodaed in boxee, in order to

correct & burst of length b, it is necessary and sufficient that we
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can correct a burst over b! boxas, where b! = (3(b + 1))=.
Proof:

The critical case is the one where the burst extends
from the (21 + 2)th digit to the (2j + 1)th <digit inolusive.

The burst involves 2(j ~ 1) digite and j = 1 + 1 boxes.

4,9 4 Termary Fira Code Svetem

Considar a primitive polyncmial R(x) over ¢¥(3) of

degree f, Its rocts are of order L’:f -1,

Choose & with only the restrietion that 3f = ] does not

divide 2,

We can then comstruct a fire code generated by the
polynomial R(x)(x® - 1) with the following properties.
Length = n' = Le.M. (37 =1, a)
dumber of parity checks =a + f
Therefare; Number of information digits = n = a = £,
wa can correot any buret of lemgth not greater than
iin (#(a + 1), £).

Kow we proceed to reprosent the elements modulo 3 by the
hoxes 00, 10 and 11, and use these boxes instead of the elaewente

modulo 3 in the Fire code given above,

We arrive at a seguence of n' boxes (2n' binary digits),
of which n' = a - f boxes ave arbitrarily 00, 10 or 11, and 2 +
are used as parity checks. Thus the code can carryXn' - a - f)/2
binary information digits under @-encoding.




Also, this sequence ¢f n' boxes can correct any burst
error which affects no zare than din (u(a + 1), £) boxes; so, by
lemma 4.8.1., 1t can correct any burst of & length which affects

gtrictly less than twice thiz number of binary digitse

To construct a synchronous code, we place thie ssquence

of boxes after a (1l harald and add a concluding parity check.

The resultant code has a length of 2n' + 3 digits; the
number of information symbols is the greatest integer not greater
than 3(n' = a - £)/2; and the code oan correct any burst of less
than 2.4in(#(a + 1), £)« By the properties of ¥ire codes, we can

also detact another burst whose length obeys the same restriction.

The optimum efiiciency of the system occurs when
%(a +1) = £ 1.0, when a = 2f - 1 (Notice 3% . 1 does not civide

2f - 1).

In thess circumstances we obtain a code with
length = 2(3f = 1)(22 - 1) + 3
Number of information symbols = 3(8T(2f - 1) « 5f + 2)/2
Maximum length of correctable burst = 2 -~ 1

Bfficiency = 3/4 = 3.den/(n Jw3) + ola™ )
Ag sn exsmple of this, choose f = 2, & = 3,

¥e noed for the code gensrator an irreducible polynomial
over CGF(3) of degree 2, wicse roots have order 8; such 2 polynomial

isxz-x-l.



From the formulae, we obtain
n=51
Ho. of information digits = 28,

Length of correctable burst = 3 or lees.

Alternatively, wa could apply the J-transformation to a
couplete Fire codas This has certain advantages in the oorrection
of long bursts, but for small bursts the diffioulties encountered
in f-decoding erroneous mecsages (see section 4.4) do not make this

procedure warth whilae,

4,10 Cyclic code systems (Hamming Codes)

This method ogn be used tc correct random errors in a
received flmezeage. THowever, if the probability of random arrore
ie sufficiently smll, it is best to complately f-encode a burst-
arror correcting code which will correct bursts of lemgth 2 or less
and then allow thie to decipher any double boxes upon which ' will
not operste (see section 4.5). Howevar, in the oase of frequent
random errors, we can use a cyclic typs of code ueing the aduissible

boxes as balow,

If we coreider the representation of (U, 10 and 1l as
elaments modulo 3 as in section 4.9, then we arrive at a code with

statistics as below,
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It was shown by Hamming /5/ that, for a cyclic cods,
using the Hamming bound for the number of parity checks necessary
to correct p errors, we nead at lsast

P
logy ( Z_ 2! comb(n,1) ) = q(n,p) parity checks
i=20

Thus, adding the herald and the cvnoluding parity chack
in the usual way, we arrive at the fullowing statistics.

The number of parity checke

=P =Q(%(n - 3), p) + 1 for the concluding parity check
The mmber of information digits

= 3(n =« 3 = 2P)/4
The efficiency of the above code is

(3 - 68/n + 0(1/n))/a

or, since P = logs(np/p! + O(np.l))
Ufficiency 1s (3 - 6p logyn/n + O(n™))/4.

4.11 Burst-Locating Codes

In this section we will conmider a recurrent code. This
recurrence, however, will be of boxes, not single aymbols. Ve
arrange the boxes in such a way that any burst error will be
autometically located, and then we can use the recurrence relations

to correat it. We define a bturst-locsting code in the following

YaY o




Consider a code made up of 2uv boxes for some u and v;
aeach box ig either 00, 10 or 11, This code, as it stands, is not
synchronous since the herald has mot yet been addad. We pow
enploy a recurrence relation which makes the ith and the
(u(v(2 = j) + 1 = 1) + })th box the same, where
(3 =1w< i Jv and i<,

i.0, if'll-a' v=3.

5 306
1 2 3 4 5 ] 7 8 9 10 11 12

It can be shown that ths inverse relationship is that
the i'th and the (v(u{l - j*) + 4" « 2) + j*)th box are the same,

where (§' - u< i* { j'u and v< j'.

'How, if 1 uv, it can be seen that the minimum number of
boxes between the ith box and ite yertner is u + v - 2 {e.g. in the
case above, two boxes between the fourth and its partner, the
aighths Hovever, the minimum burst length we cennot be sure of
corracting is ths shortest burst whioh will affect two boxes whose
partners are only the same distance apart as the boxes themsslves,
or less, The minisum distance (in boxes) between such a pair of
boxee will b8 shown in the next lemma to be U + 1, vhere U is the
greatest integer < Min(%, v). How the shortest burst which will

affect two boxeas U apart is 20 + 2,

Thus, uzing the recurrence property of the code, we can

correct all bursts of lemgth 2U + 1 or less,




If we specify that none of the 2uv boxes is 01, and we
surround these boxes with a Ul herald and a last parity check, we
have a synchronous code which will correct all bursts of length
2U + 1 or less, Correct use oi the last parity check zivea us the
ability to correct all bursts of lemgth 2U + 2 or less, /nd, since
a burst which affacts only two boxes separated by other boxes, the
critical case considered in the next lemma, is more usually
considered to represent random errors than a burst, we can correct
e large percentage of bursts of all lengths less than half the vord
lengths this is obviously the theoretical maximm length of & burst

which could bs corrected.

It a8 already boen noted that the eritical case for buret
length looks more like rmandom errors than a urst, and so, if
random errors are mors probable than burst arrors; this code ig not

a good one to use,

4,12 Lemug

If, in a burst-locating code of the type describsd in
section 4.11, vhere 1 < u < v, we consider any two boxes, the pth
anéd the qth, such that

[pa| (U< u
then the boxss related to p snd g, the p'th and q'th respectivaly,

are such that
P*P-q'| > U



Proof:

Case 1. Suppose p» >q
1{a<puv

By the construction of the urst-locating code, we know
P' = u(v(2-3,) + p = 1) + j,

(3, "1)'<P<1o v
Q' =wu(v(z-5) +q~-1)+ A
‘(12“1)"<Q<32,

e know 3, > 3
[P =a' | = luv(yy «5,) +u(p =q) = (4p = 3,) |
- (v =2)(y = 3,) +ute - ) |
Case 11  If J, = 4,
lp* «q' | = |u(p~q)| > u>w
Case 1.2 If §, > 3,

bpt~a' | =l (w-1)@3, «3) -ulp=-0q)|

7 Waeloulusi)
Since ¥ > n,
1p* gt ) @+ 1) =l anvsn
Therefore, |p' =q'| > Za -1
Fote: 1f v wers equal to u, we would get [p' ~q'| > uel
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Case 2, w< g pg 2uv

The proof is similar to cass 1, except that ths inverse
relationships are used,
Case 3. quw < p2uv

»* = v(u(l-3,) +p - 2) + J,,

(d. '1)u<p<3| u
QP eulv (2-3)+q9-1) 43,

(32'1) V<Q<J‘2'

Sinoce lp-ql(u(v we know j, m v + 1 andjz-u

|q* = p*| -uq+2uv-uzv-pv+uv2+v+1

Since q}uv-v-«-l and puv +u
IQ'-P'i>u2v-uv+u+2uv-ugv-uvg-uv+m2+v+1

i.o.lq'-p'|>u+v+1
-7 QED.

If we want to use & burst-locating code with u = v, We
can see from Case l. of the proof of the preceding lemma that we
require U v = 2. Thus we can only correct bursta of length
\< 2ﬂ - 5.



4,13 HNote

50 far no method of correcting mings or dcuble errors
in one box have bean given for the burst-lceating code. However,
if the oode is transmitted with herald and condluding rarity oheck,
a8 in the M code, the use of the concluding parity oheck as a
parity check over all the digite in the first (n - 3)/'4 boxes will
be sufficient in mll casee except the one in which a 11 box is
changed to a 00 box or vice versa. fince, in most systems, the
probablility of the former osccurrence is so much greater then that
of the latter, we should include a mechanism that concludes that 11
was sent in this ocase. But, if the probability of error dues to
this is sufficient, then boxes with fixsd units in the first yosition

and parity checks in the lant positions may be added to the code.

4,14 Comparison of Codee

In this seotion we will, for the sake of simplicity,
dievesard any necessity for restriction on n to give optimm

results (e.g. "Integral part” signe omitted),

Ve will campare single-error correcting codes where
precticable, However, we should remember that the bhursteerror
correcting and Fire codes given will correct burste of length zreater

than 1.
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length No. of inf. digits Efficiency

CODE n X I/n
e 2 2 |
Gilperits - a“ + 1 a“°=22a-2 1<2//n4+ 0(1/n)
Read-ituller 2P} 4 3 2P ¥ = 3/(2n)
Fire Code 2a°+ a +3 (3% -a) 2-1/ /3@ + 0(1/n)
Cyolic ocde n i{n « 6) 2«9/(2m) + O(I/na)
Burst fav + 3 2w § = 9/(en)

lcoating

In the next table, we glve actua) values of n, I, which
can be obtained for the various codes when n = 50 or n==35 (t mno,

of errars code can correct),

Code n I £ n I €
Fixed place 50 12 5 57 13 3
Reed-iuller 67 26 5 35 11 3
Fire code 43 le 4 35 12 3 + detection
Cyolic code 61 16 5 35 12 3
Burst locating 51 18 5 35 12 3

It will be noticed that some of these veiwes do not
obey the formulse siven above, The reason is that, for small n,

the integer signs which have been ocmitted play a large part.
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4,15 Notes
4,15.,1 Resd-ifuller
This code i:ns an extremely simple meochanisation.

However, the extreme restriction on length means that it is only

of use in certain very special cases.

4,15,2 Fire codes -« General

Remember the conditions for & Fire ocode, i.e. the
oode is generated by R(x) (x® = 1), where R(x) is a polynomial of

degree R whose roots are of order f,

Length = ILcK(e, )
Funmber of parity checks =a 4+ R

Error-correcting ability:
Any burst of length < Hin{-‘-‘—%}- i n}

Thus, Fire codes can be oonstructed in a eimilar way to
that given above for a wider range of a and £ than that given aboves
however, the length of ﬂn correctable bursts does not then reach
the optimum velue.

40153 Synchronisation

5ince these codes are all subsets of ¥ codes, they all

regain synchronisation on the next correctly received word.
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4.15.4 Efficiency

Hote that the upper bound of the ratio I/a for an X code
is 3/4. This followe directly from the fact that we have only 3/4
of the 4 poseible choicesz with which to fill a given bax. HNote
also that all the codes given approach this bound ae n beocomes large,
but that for n moderately small (  79) the full potential is not
realised,

4.15,5 Fixed place code
The valuse for the number of informstion symbols given
in the table were obtained from tle Hamming bound.

4,15,86 Error-correc ability of Reed-luller code

It will be noticed that the figures given for ths mmber
of errors which the Redd=luller code can correct appears to be high,
This is due to, first of all, the additimal parity checks and
mainly, the recurrence in the code which gives twice as many
deteminations of sasch symbol as in the normal Reed-ifuller code.
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5. REFINEMENTS AND THE K CODES

Bel ZError correction of the herald

Since the harald of an M code is only used to obtain
and hold synchronication, it is a waste of information digita to
extend the heralds For the same reason, parity checks whish apply
only to the herald, and are therefore also fixed, are to be
avoided if poeeible. Therefare, we have two altarnatives - to
use parity checkse which imclude information digits as well as the
herald, or to extend the hemald by fixing extra positions and see
if we can derive sume compensating benefit for the information

digits wasted.

Now, synchronisation need only be regmined on the first
correctly received ward, and so the herald of the firet word to a0
through the decoder will be correct. After this, extended
scanning (section 3.15) can be uged to correct single errors in
the hersld of the next word; more errors than this require a cheok
on synchronisation of the code by the mechamism - this can be
obtained by ecanning the boxes in the word for a hereld, with

autosatioc correction if the herald is not found.

Therefore, gorrection of the herald can be accumpliched
by the nechanism installed to obtain mynchronisation, provided

oxtended scanning is uged,
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5¢2 Use of an extended herald Al

Having just exploded the idea of a need for an
extended herald, we proceed to revive it amain, Since the pair
1010 has not been used in the f transformation (saction 4.1) at

no time oan three 10 boxes follow each other.

This means that the combination OlCl can only occur in
the body of the code in one of the fcllowing contexts

0010,10 ee3 0010,11443

+¢00,10115 or 10,1011; where the commas sre not part of the
ward, but are used to show breaks between box pairs;and, eince the
total probability of this ocourrenoe in an arbitrary sequence is 4
in 64 compared with the probability of 1/3 for a pair which can be
mistaken for the herald of an X code, the chances of a wrong
combimtion being salected as a starting point are gonasiderably
reduwced, And, if we use OLC101l as a herald, then the probability
of a sequence identical with it in the body of tha code is only one
in 81, while use of (1010101 removes the possibility altogether, and
even the probebility of a random error creating a false herald is
only one in 2048, Thus, depending on the probability of error in
the system, the operation of eynshronisation can be simplified
machanically. With only 01 used in synchronisaticn, & burst errcr
of length sufficient to require resynchronisation may end half way

through a 11 box, thus giving an erroneocus Ol box whish will be



plcked up hy the mechenism s a starting point, and which will not
be corrected until the next word has been lost (unless extended
scanning is used)., With 0101, provided Ol is not used as an
information box, aynchronisation will definitely be regained at the
first correctly received word, unless a random error (1 to 0)
follows the buret error with ane correct unit in betwsen. This is

& most unlikely event.

A8 can be geen abovs, the langth of the herald can be
adjusted to give any degree of acouracy of aynohronisstion required,
The optimum length to use in any particular case must therefore
depend upon the peculiaritiss of the system itself, for example, the
expeclied error pattems, the error density, the availability of

extended scanning, ete.,

5.5 Summary

Let us oonmider the points for and sgainst an sxtended
herald in an M code.

5e3.1 Amminst
(a) It incresses the lagth of a word without any

campensating inorease in infomation digits.
(b) The wachinery which picks up synchronisation (and,
after all, this is the only purpose of the

herald) doss not need the extensicm.
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Selel &

(a) It eimplifies the machinery needad to obtain
synchronisation.

(b) It lessens the possiddlity of an error in
synchronisatione

Sed Note

Extended scanming is useful in both cases to check the
synchronisation, The possibdlity of an error in synchronisation
with an extended hereld and extendsd scanning is negligible,
especially if this extended scarming takes in the next twe heralds
(see section 3,15). However, for codes of considerable langth this

is not normally practicable.

‘We have shown that the advantages and disadvantages
of the extended herald for the i code almost balanoe; however, if
the machinery is available, the short herald is profarable = we heve,
80 far, obtained no compensation for the waated spacae 3But the
fact thet the herald is essier to read means that we may be able to
rolax our restrictions on the ¥ codes and this indead happems tc be

the case,

505 K Code

A1l this brings us back to ocur starting point « do we

or do we not use an extended herald, and, if we do, can we obtain




w104 =

any benefit from it? ‘o far, we have only obtained assistance
in the synchronisaticn process. However, in systems with small
probability of error, this may very well bs unnecessary, and

only result in loss of ipformation digit space.

It is in this latter case that the code defined below
is moat helpful. It is in reality a cross between an ¥ code and
a Gillbaert code, and its distinction frum tha Gilbert code is that
the space totally wasted by tha former in the fixed unit positions

is at least partially ueed in the K code,

S5e¢bals Definition of a X code

We shall define here the K code of length n, where

n ie odd,

Every word in a K eode begins with a herald consisting

of a sequence of u Ol baxes, where u > 1,

%e stipulate that avery other string of 2u consecutive
digite in the code word begins with a box, i.e. there is either
00y 10 ar 11 in each of the position peirs Zku + 1, Zku + 2, k an
integer and k > 1, Fach of the other digite in a word is
arbitrarily O or 1, This includes the last (n'}) digit in the
case where n = Zku + 1, some k, Thus the last string of
arbitrary digits may contain 2u - 1 digits, although every other
string of arbitrary digits oontains 2u - 2
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digite, eeggs a word in a K code ia of the fomm
Q101 .o Olblbzm s8e xb3b4 ene baﬂ-thSH sve X
2u digits 2u digits Zuwl-26¢ digits

where the b rapresent the & boxes in a word sxd ¢ is an

211721
integer, 0 e { u-1l. The K code of length n consists of all wards
of length n which have this format, ¥#hen we are talking about

K cotes, we shall restrict the use of the word boxes to mean the

paire bzi.f’zi'

The similarity of a X code to s Gilbert code lies in the
fact that there is in both casea no string of arbitrary digits of as
great a length as the heraldj however, in a K code the poosibility
of & herald seguence vther than at the start of a word is reduwced,

tut not slicinated, by ths device,

Note that there is no box at the end of a word in a X

code, although there is a fixed digit at the end of a Gilbert code.

The similarity of a K code to an M code liss in the fact
that they both use boxes to achieve synchronisation, This will be

demonatreted in the proof in the next section,

In fact, it can be seen that if we choose ual, the K
code of a given length n is identioal with the M code of the same
langth,
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If u is greater than 1, the poessibility of a herald
sequence beginning at a position other than ths stert of a word
is less than with a M code since the infommation digits (the
arbitmmry digits and the boxes) will form such s pattern in fewer
ocases., 'Thus this extension of the hersld gives us & bomuag ut

we do not wish to claim this bonus if it means reduced officdenqy.

#e shall prove in the following sections that, far
from redueing ocur efficiemcy, efficiency is greater far large u and

n sufficiently large.

Pirst, however, we should prove that g K code is

synchronous, This iz done by the following argument.

5¢6 Theorsm
The ¥ code of length n, n odd, ie synchranous.

Proofs
A8 with the X code, we shall prove that no falae word ia

ideniical with a code word.

There is no possibility of a herald sequence bezimning
after the last box (\)28 LN s) or before the first box (hlba) of a

word, because either the code word has a unit where the false ward,
to be identical with a code word, requires a zero (or vice versa) or
the code word has its first box whare the false word requires a 0Ol
pair {or vice versa)es Thus any false word which is identical with
a code word must start batween the first and last boxes of a code

word,
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Since a herald sequence is of length 2u, any *herald!'
©f a false word must overlap st least ome box in a code word, If
the false wurd starte st an odd-numbered position in a code word,
its 'herald' will include a box of the code word where the ialse

word, to be identical wit: & code word, needs a (1l pair.

Thus any falsze word whish is identical with a code
word must start in an even<mumbered poeition of a code word, ard

must include the herald of the next code word,

Since n is odd, and eince the falce word begins in an
even-nmumbered position in the false word, there arc 2u consecutive

Ol paire beginning in oddenumbered positioms in the false word,

But in a code word there iz a hox beginning in an odd

position somewhere in svery stringz of 2u digits.

Thus in thie case the false word has Ol in two positions
where a code word has & boxe Thus no false word is identical with

any code word, and a K code is synchronous.

we mentioned in section 5.5 that a K code does not need
& box in its last two poeitiams, although a Gilbert code has a fixed
unit in its last vosition. Ve proved above that the lack of this
cuneluding box does not upset synchronisationg howasver, it does give
rise to a possibility of a Qequance of more than u Ol pairs, In
this case, we shall have to tell the receiver tc fix on the last u Ol
pairs of any sequence cf wore than uw Ol pairs as a possibls herald

of & words
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5¢7 Adaption of the Formet
The ¥. code format sllors for any number of boxas, Sy

either odd or even; however, if we apply the ¥ transformation to
bWnary informetion digits, we need an even mmber of boxes, If
we want to use a X code with an 0dé number of boxes, we fix a wnit
in the first position of & box, or a zerc in the second poeition of
& box, and leave the other position arbitrary; this box now ocannot
contaln Ol, We then proceed to $-encode binary information digits
into the remaining boxes.

Normally, we f-encode 3 binary information diglts into
2 boxesj this mesns that every box is theoretically wath 1§ binary
digite, and mo fixing a position in a box, which leaves ths box sble
to carry no more than 1 binary digit, has comt us a theorstical
% digits We shall in the following sactions give the number of
information digits which can ba carried by a code in terms of s
without regard as to whather s iz odd or eveny in some cases, such

formilae give a fractional value for the mmber of infomation digits.

¥e can overcome this difficulty by specifying that the
actual rmumber of information digits which the code oan carry is the
&reatest integer not {;feater than the value specified by the formula.
Wo shall designate the formula value by the letter I,
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Se8 Spegifications of the I code

Let us evalunte our K code, It contains in all
208 + 2 + 1 = 2c positionsy 2u of these are fixed in the herald,
and another 28 of them are poeitioned in boxes. If we assume that
the # transformation is used on binary digits to £ill the greatest
poseible even mmber of baxes, we obtain the following statisticsse
Bew2us +2u+lae2
IwZug =98 +1 = 20

Thus we have loet no more than 2u + #(s + 1) digite to

achieve synchroniestion,

The ratio I/n, the efficiemncy of the code, ic greatest

when ¢ i smalleat 1,64 ¢ = Oy In these circumstances

neszus + 20+ 1

I=2u8 -8+ 1, . ,
where the equality is really an

equivalance, since every bhox is aseumed abls to ecarry 1 ‘arbitrary
d gita?,
But if we cannot find a astisfactory pair (u, s) sudh

that n = 2us + 2u + 1, then we must choose ¢ > 0,

It is easy to see that the advantare of the X code of a
certain length over a Gilbert code of tha sama length, and approxie
mately the same herald length, ie that, although the X code has twice

as many restrioted positions as the Gilbert code, it can carry 3 bits
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of information in evaery 4 of its restricted positions, while the
restricted positions in the Gilbert oode are fixed and not
available to carry any information. This results in s net éain
in the number of information digita that can be carried of half the
number of fixed units in the Gilbert code; this ir at least one
éreater than the mumber of boxes in the K oode, because of the last

fixed digit in the Gilbert oode.

In this argument we have assumed that we know the best
choice for u and 8 for a given length; to aid the oomparison we
chose Zu as close as poesible to the length of the harald of the
Gilbert code, But this may not be the best choices in the next
section we will derive a formula which relates the best choice of

u to the value of n.

5e8s1 An Approximation we Shall Use

Ve eball first of all develop the K code in its most

efficlent form; a K code in this form can only be usad for trans-
mitting information if binary infomation can be trammitted in the
arbitrary positions and ternary information in the boxes at the same
tine.

To allow for simplicity in figuring, and so that we can
qui ckly adapt the results to allow for the case when we must use
information which is entirely in binary form, and hance feancode the
information ;hiﬁh is placed in the boxes, ws will use the approxi-
mation of logz'.’i a8 1.5 This is accurate enough to illustrate the
pointe we wish to make.




T™ie approximation slso facilitatee adaption of the
formulae to cover the # transformation case, since it says in
effect that we can carry (theoretioally) 1.5 information bits in
sach lvxe, This tiea in precisely with the figure of 3 bite in 2
boxes which the § transformation gives us; the only difference is
that we aseume 1,5 information bits, and not 1 infomation bit, can

be carriesd in an odd box.

¥hen we have daveloped final formulae uaing this
appraximation, we shall give formulae which use a more precise

value of 10323.

549 Ihe Optimum Length of the Herald

Ve know that if n = 2us + 2u + 1 (i.e. ¢ = 0) for some
u and s, then the K code of this length is more efficient than that
of length 2us + 2u » 1 (1,64 ¢ = 1), if the same valuse of u and s
sre used in both cases,s However, we have not yet shown that there
is not another choice of u, & and ¢ which would not lead to more

efficient codes in either, or both, cases,

In this section we shall find the optimum choice of u,
v and ¢ in terms of ne There is always more than one acceptable
integer triplet (u, s, c) which solves n = 2us + 2u + 1 « Z¢,

provided n is odd,
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The difference between n and I is
2u + 8 arbitrary digits, by our approximation.
(The exact valus is 2u + (z.logzs)a).

The moet efficient code of a gziven length n i=s the ons
generated by the triplet (u, s, c) which loses the laast number of
arbitrary digits, i.e. the one with 2u + s minimm,

We will proceed to a solution of cur problem by finding
first of all particular values of n for which one triplet (uy ¥4 ©)
gives a more efficisnt acde than any other triplets OUnce we have
this informatiom, it will not be difficult to discover other values
of n for which one choice of u and & gives at least as efficient

codes as any other choica,

If we minimise 20 + $8 subject to 2us + 2u 4+ 1 = 26 =
n, u>1 8>0, ¢ 20
without insisting that u, v and ¢ be integers, we obtain the

solution
c=0

§=dyewl]

Consider the partioular value of n which is equal to
2u(d4u = 1) + 2u+ 1 « O for given u,

i.e.n-&uz«a-l

The number of *digits® lost to synchronisation
=20+ #(4a - 1)
» e é’

(We do not really lose half a digity our boxes have cost ue an
approximation of holf a aigdlt),
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Consider & code of langth 8u” + 1 with (u + 1) 01 peire
for a herald,

2u+1)8" +2(u+ 1) +1 =20 = Bu” 41
Therefore, &' > 4u = 5

L= 20u+1)+ e >4

Consider a code of length 8a® 4 1 with (u - 1) Gl pairs
far & hersld.
2(u=1)8" + 2(0=1) +1 = 2 = Bu° + 1
"> -3
Therefore, 2(u - 1) + £8" > 4u

Thus a K code with u 0l palrs for a herald is the nost

efficient K code to use for n = 8\12 + 1.

¥a agsume that, given a choice of two distinct triplets
(uy vy c) which give the same valuss for n and whioh have the seme
efficiency, we would choose the triplet which provided the longer
herald, the smaller number of boxes and the larger number of arbitrary
digite, since the longer harald mekes for easier synochronisation, and
the less boxes and more arbitrary digits we have, the easisr is our

decoding procedure.

Since the bect value to chocse for u when
n = 811,2 +1 is u = u,, as shown previously, we know that, far
progresaively larger values of n, we s hould choose progressively

larger values of ue We shall nowr find the best valuse to choose for
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u for given n, keeping in mind the assumption made above that if
two choices give equal efficiencies, we shall choose the larger
valus of u.

%e shall only compare codes ghimined with v smd u + 13
we know that there iz at lesst ome value of n for whieh u + £ and u

do not give as efficient a code s u + 1, vis. 8(u + 1) 4+ 1,

If the codes are of equal lengths and have equal

efficienciea

2us +2u+l -2 = 2u+1)8' + 20 +1)+1 =20 A
2us+i2s =» 2(u+ 1)+ 280 B

From By, a =g+ 4 c

We note in paasing from C that 8 and s' have equal
parity modulo 23 therefare, happily, we do not have o consider
whioh one better suits the § trensformation, whioh we would bave to

do if they were of opposite parity.

The upper bound for the values of n for which we shall
uge u will occur when ¢ » O {aimnce if the K code obtaimed for a

cortain value of n by using u is more efficient than the K code
obtained by using u + 1 for ¢ > 0, the K code cbtained far a
greater n, = 2us + 2u + 1, by using u will alsc be moxe efficiant
than that obtained by ueing u + 1,




Consider s = 4u + 1, and auppose for the moment w > 2.

2un+2u+1-8u2+4u+1-n
If2u+1)s' + 20 +1)+1 2" un

8! > 4du =3
isde 8' >4du e
For thie velue of n,
2u+ 48 =4u+ 3
B+l)+ et mdu+l
Therefors, for this value of n, we should use u Q1 paira for a

herrald.
lbreonsidernamz-thq-s

Yo know the best ohoice for s is now 4u + 2, since

Bu2+4uolinthenmmlmgthofaxeodewithummrsfar
& herald and only 4u + 1 boxss.

Therefore, 2u + 48 = 4u + 1,
Howaver, if 8' = 4u = 2, 2(u 4 1) + 38' = & + 1 also, snd

2@+ 1)a?' + 2 (u+1) +1
2 2
- 8u°+6u-1>8u"+ 4+ 3,
since u > 2, except in the

case of the ¥ code, which will be discussed ir detail later,
Thereforse, we can chooss o! ) 0 20 that the triplet
(w+1l, 4u -2, of) satisfies the equation for n .

2utl) ¢+ 2 (uw2) =dusl=2u+0n
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Therefare, this latter triplet gives as efficient s code

as (u, 4u + 2, o), and so ve use it to comstruct our K code of
2
length Bu + 4u + 3,

Unfortwnetely, the values of n for which we chcose
u Ol pairs for a hersld have not been menticned yet; there is one

other case 10 comsider,

The maximm length of & K code which can be comstructed
with 2 + 1 Ol pairs for a herald and 4u « 2 boxes is
8!124»6!1-1

Conpider n = EXuz + 6u 4 1

The minimum choice of 59 1a 4 - 1
Therefare, 2(u + 1) +3 = 4u + 13

Bowever, if 8 = 4u + 2,

2us+ 20+ 1=6u°46usl

Therefare it is possible to comstruct a K aode of length
Bu° + 6u + 1 with u Ol paivs for a herald and 4u + 2 bomese

In thie cass
2u+ fa=du+sd

Therefors we should use this latier construction whers we

tantacodeoflangtheu2+6u+1.



ull"q

It can easily be shown that there mre no values of n
greater than this for which use of u Ol pairs for a herald zives a

nore effjcient code than the use of u + 1 01 vaire,.

By reducing the value of u by 1, we can find the upper
bound on n for which we should use (u = 1) Ol pairs for s herald,
and hence the lower bound on the values of n for which we ahould

uss u Ol pairs,
In fact, we use u Ol pairs for a K code herald if
2 2
fu" =12u+7naBa +4du+1l
2
or nw=8u +6u+l

but nﬁ8n2-10u+5 (#hen we use u = 1 01 pairs),

Vhen u = 1, 8u2+&u+1-8ua+4u+3.

50 we can still use ur formula if, for

n6u’ + 4u+ 5, we use (u +1) O pairs for our herald in all

caBeg,
The only case we need consider is when u = 1, In this
case the fuencoded K code has the ssme efficiency as the f-encoded

K codey and in this case we choose the code with the longar herald,
We can therefors apply our farmula for all values of u.

Ve ashould note at this point that cur formula only holds
if we are using binary inputy if ternary input is available, the
choloe of u may be different in oertain borderline oanaes,
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We have now shown that for every odd value of n we can
choose values of u and s which are optimm with regard to sfficiancy.
Ve need this fect in the next proofs for the basis of our proof is
that we oannot construct a more efficient synchronouws aode than the _
K code, at least if we attempt to comstruct it wsing s hermld and
boxes in certain set positione in a oode word. ‘This may not seem
to be very important at the moment; but it will beooms important in
section 8, where we shall ses that, unless we broaden our concaption

of a herald, we camnot oonstruoct a mare efficient synchronous code,

In the following thearam, a 'herald and boxes' code is
one which has a herald composed of a certain mumber of (1 pairs and

boxes in certain set positioms throughout the remainder of aach waord,

5¢10 Theorem

For & given odd len;th n, we can choose u and g with
which to construct a K code which is at least as efficient as any

'herald and boxes' code of thellength,.

Proofs

Suppose we can construct a more efficient (herald and
boxes) code. Let it begin with u OL pairs and have s boxes in
some set positions, which we shall not presoribe, throughout each
worde

Suppose ¥W and X ars two consecutive code words in a
magsage, and that a false word % begins somewhere in the digit string
iXs Ye shall define Z' ag an arbitrsry code word with which Z nay

O0r may not be identical,
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7 cannot be identicsl with Z¢ if agnd only if some
restricted positions of "X which sre in = corraspond to certain
restrictod positions in 2!, and sre unaccavtable in Y¥, For
example, if £ begins at the second position of ¥, % bagins with
& 1, and %' must begin with a 0. Thus ! cannot begin in the

second poaition of ¥,

The K code will be synchronous only if Z is nrevented
frem beginning in all the positivne in ¥ from 2 to n (i.c¢.

n - 1 casea),

The four cases when 7 cannot be identical with %' are
the following:
(1) The first position of = coincides with a 1 in the herald
of 7 (u cazes),
(2) The {2u)th pesition of 7 (the last in its 'herald?) coincides
with a C in the herald of X (u oames).
(3) 2 receives a box from WX in positicns where 4 roguires a
Ol pair for its herald (us cases - ona for sach poseible
pair and box).
(4) 2 receives & Ol pair from the herald of X in positions where

%' requires a box (again us casas),

Now these cases may not all be distinet, ior exmuple,
both (1) and (3) may be smatisfied for a given starting position, or

(4) may be satisfied twice. BRut if ws spread these cases as thinly
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as poesible, end ensure that Z is not identical with 2% for only
oneé reason in any starting position, we can prevant a false word
beginning in no more than (us + us + u + u) = 2us + 2u positions.

But we know that this figwre must not be leess than
B =1, if the code is to ba synchronous., Thus a synchronous code
with u Ol psires and s boxes ie of length at most 2us + 2u + 1 which
is the length of the X code with the same u and s, and with ¢ = O,

This proves that the K code is as efficient as any
‘herald end boxes' code for any velue of n at which the ¥ code
attains the locel maximum on ite efficiency, as illustrated in
section 5.9 The result must be true for other values of n as
vell, for if for any value of n we choose u and s which give the
mogt efficient 'herald and baxes' code (i.e. 2us + 2u + 1 = 20 = n),

we can oomstruct a K code using the same values of u, # and c.
This completes the proof.

We have now shown that a K code is a highly efficient cods,
at lsaat by comparison with any *herald and boxes' code of the sanme
langth, Therefore, a calculation of its effioiency wwuld be

helpful in evaluating its efficiency compared with the upper bound
derived by Golomb st al, and also in comparison with the other codes

mentioned so far,
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5.11 ZThe Upper Bound on the ifficiency of a X Code

¥a have already shown in section 5,9 that the moat
efficient X code for given u and s is the one with ¢ = U3 we alsc

know that for given u, the moet efficient X code hae & = 4u = le
Thus the greatest efficiency attaimed W K codes

constructed with u Ol pairs for a herald occurs when n = 81.12 + 1

For this value of n, the efficiemcy of the K code is

1= (201 - 1/n)% 4 '
This is the value obtained by our approximetion of

10323 as le¢5.

If we requirs that binary data be f-encoded to fill
the baxes, the fact that our value of s is 0dd (= 4u - 1) means
that we lose another # of an 'arbitrary digit' (the last, odd, box
canow only oarry one arbitrary digit instead of the 1 ‘arbi trary
digite® allowsd by our a;proximation, Thus the meximm efficiency
of a X code for which binary data has to be P-ancoded to £ill the
boxes is

1e (2@ -2/a))f

However, if wa can uss the baxes fully, and not have to
f=sncode binary data to fill them, we get maximum efficiemcy from our
K code., This efficiency approaches

1« (4R(2-1))%/n + Kn"2

wvhare K = 2 = 10323
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It never reaches thie bound, since s would have to be irrationsl,
{(n =1)/K) =1, if it were reached. However, it is approached

closely for certain values of u and s,

5.11.1 (Comparison of . fiiciencies

We can see why the K code of given n is more ef:icient
than the M code of the same length, for most velues of n; the
efficiency of an li code is always less than 0.8, no mstter what
the valus of nj but, as s general rule, the larger the value of n,

the more efficient thae ¥ code we can cumstruct for it,.

The efficiencies of the varicus typec of codes

comeidered so far are

(i) X code (theoretical) 1 = 1.29n"% + O(n™')
(1) K code (f-encodsd) 1.411;'%., O(n'-)
(1i1) oilbert's code 1 = 2,000 + 0(n™")

P |
(iv) codes 792 . +0(n”)

We showed in section 3.15 that the M codes were more
efficient than Gilbert?s codse for n { 79, We shall now show

that ths K codes are an improvement on the i oodes for n 717

3ince we can see from the formulae that the K codes
are much more afficient than Gilbert's code for large valuss of n,

it follows that the K code of a given length should be highly




efficient compared to any synchroncus code of that length, Ve

pursue this thought further in section 8,

501142 Lemag
For n > 17, we can oanstruct a K code which is at least

as afficient as the 3 code of the same length, provided Peencoding

must be used,.

Proof:

e observed previously, in section 5.5.1, that an #
code is identical with the corresponding K code with one Ol pair
for a hernld. CSince this is 80, we can use the fornula darived in

saction 5.9 to obtain the result stated above,

ie0e We ohoose u Ul pairs for a herald in preference to u = 1

pairs i.fn)tm2 -1l2u + 7, excaptwhenn-&uz-lou-ra
i1e6e When uw 2, n > 15 and n £ 15, Q.B.D.

If ternaxy input is availatle, the K code is the mare effioient

for n > 21,

S50 far, so goody But we have Bo far only considered
the values of n which ygivaes local maxima of effiolency in
astablishing the above formulse. There is still a poseibility thet |
there are sume valueg of n for which the most efficient K ocode of

thet leangth which can be constructsd falls far short of this bound,
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@ have 30 far only proved, in section 51U, that there is a K
code of any odd longth which is as efiicient as any 'herald and
boxes'! code of the mame lengthsy we do not yet know if ths 'hersld
and boxes' system of synchronous code construction is particularly

efficlent for all (odd) values of n.

This next theorem proves that the effiolancy of the K
code of any langth approaches the upper bound. This is reascnable,
since the two values of m which should provide the greatest
dieparity in efficiency are those for which n = Zus + 2u +1,
eoke u and s, and the value of n two greater than thigj in this

lattermsvaunms+1bms,mdputcsu-1
leeen'*s2u(s +1) + 2u+ 1 = 2(u = 1)

This is the only cese where there are not two nore
arbitirary digits in the code of length greater by 23 but there must
be at least lf 'arbitrary digits' extre, because there is snother

box in place of the two arbitmry digits.

1f we remember the results of section 59y in mome cases
nuybanﬁletoohoossadﬂfemt value of u with which to
construct the larger K code, and sc obtain a higher efficiency than
by using one more boxj but the case we have illustrated is the worst

that can occur,
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512 Theprem

For any given 0dd length n, we can conmstruct a K cods

of efficiency at least
1 «(4X(n - 1))%/11 + O(n-.)

rroofs

The only valuee of n for which the nost efficient K
code that can be comstructed im less efficient than the most
efficient K codes that san be gonstructsd foar both n two greater
and n two lese are those values of n for which the zost efficlemt

X code is construoted with certain uand s and ¢ = u = 1.

This ie the same argument as in the preamble, exceapt
that it 1s stated differently; we now say that, since we can con-
struot a code of length two less with one less box and the same
nuzber of arbitrary digits, this latter code will be mcre efficient
tzan the code of length ny the code of length two greater has two

more arbitrary digits, and is therefore more efficient.

e 2uf +2u+1e2042
e 2us + 3

This code loses 2u + %8 digits to synchronisation., Its

efficiency is therefors at warst
1 - (2/n)% 4 O(n~"

when the X code is used in its P-enccded form, or
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-t
1 - (e&/m)* + o(n™")
where L = 2 = 10323, if the code is used in ite theoretically
best form.

Incidentally, these wurst cases accur when we use
nxeuz =80 + 3 1.0, ¥hen s = 4u = 4,
If 6=4 =5, n=8°«10u+3; by section 5.9, we uss (u = 1) Gl

pairs for our K oode and obtain a highly efficient code.
Thus the cosfficiente of n'% are the same as in the

foraulae in section 5.11j in fact, if we analyse the coefficients of

n". we find that they differ by . This is in line with cur

conjectura that efficienay is only less for & value of n two larger
wvhen the longer cod: has one more bax and no more arbitrary digitss
and the coefficient agrees with the difference botween two arbitraxy

digite and the 1i; 'arbitrary digits' in a two-digit box.

5613 Another Adaption of the X Code Format

If the nost efficient K code of & given length hae an odd

number of boxes, we can of course adapt the formet in the seme way
as we did with the I oode in seotion 4.5.33 if wa have an odd box
after ,ﬁ—encoding binary data into pairs of boxes, we can fix the firet

digit in such & box a® a wiit and leave the second position arbitrary.
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There is another method which i1s just as efficiant and
perhaps helpful from the viswpoint of error correction; we csn
include another box, in place of two arbitrery digits, to pair
with the odd boxs This costs nothing in efficiency; we Feenocods
three arbitrary digits into the pair of boxes, where befare we had
two arbitrary digits and the odd bax, The advantage of this
syatem is that the extrs tox is an aid to gynchronisation; the
disadvantage is that it converts three arbitrary digite into two
boxes, which lmve to bs Pesncoded and f-decoded,

He shall now consider an exmmple of the effects of the
mecessity for euch format adaptions on code efficienayj) we chouse
for our example the values of n for which it maey affeoct ow
decision as to whether we use an N code or a K oode; these are the

valuss of n between 11 and 20,

5.13.1 Example

¥We know from section 5,112, tat, theoretically,
the X code is more effiocient for n > 17; we chall see if the
practiocal oase, using @P-encoding, gives any differemt values.
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Each type of oode will be asaigned three headinga; the
nuaber of boxes, the number of arbitrary digits, and the total

mmber of information bits they can carry,

n H code K oode
Boxes a.de Bits, Baxes 8ol Bite.

11 4 1 7 2 3 6
13 5 1 8 2 5 8
15 & 1l 10 3 b 9
17 7 1 11 3 7 11
19 &8 1 13 4 7 13
2 9 1 14 4 9 15

We sos from the above table that for n = 15 the feencoded
K code, as efficient as the feencoded M cods, would now be
preferable, because of its longer heralds tut in all the other cases,
the practical choice i no different from the thecretically bdest
choice,

5.14 Comparing the M Code amd K Code

The major dif ference between the two is that all the
digits in the K code are at least as restricted and scme are more
restricted than their counterparts in the K codes this conpensates
for the shorter heralds Now, for synchronisation purposes alone,

it will probably be better to use a K code; the longer herald,
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and the subsequent reduction in the probelility of a false herald,
makes the location of the horald easier. (inothar factor to be
considered is that a Ol pair begimning in an odd positiom in the
middle of a word, allowable in a X code, iz to be weloomed, since
it removes the possibility of a false herald, whioch reguires all
1C combinations at that point)., But, since so many of the digits
in a K code are arbitrary, and since ths synchronisation mechaniem
only obeerves a small fraction of the digits in a ward, we lose
some of the error detection ability provided bty a synchronised

M codes ‘This latter, hovever, is not reslly important with small
srror probability,.

Sel4el ‘eight Diatribution of the X Code

In the next few sections we shall determine the waeight
distribution of the words in a K code, and then we shall compare it
with the weight distxibution of the M code and Gilbert's coda,

In the following sections, we shall illusimte the X code
firet, and then the ¢-e:ncoded versiong howevér, the formulae we
obtain will be complicated, and a simple approximation will be

found in saction 5,17,
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BelS5 THR WEICHTS OF SURDS IN A X CODE

5¢15.1 Leoma

In the & boxes of a K code, not feenoocdsd, we can
arrgnge w' wdts in
¥
= \
E " Comb{s,p)Comb(s ~ p, v = 2p) ways.,
p=0
Proofs
Suppose we choose p 11 boxes, q 10 boxes and r 00 daxes

to fill the s positians.
Then 2p + q = w?

Ve can arrange the p 11 baxes anong the a popitions in
Comb(s,p) wayss we can arrenge the q 10 boxes anong the resmining

8 = p positions in Camb(s = p, q) wayss and we then place the
r%bmmmml-pnmmiﬁminjmtumway.

For given p and q, the total mumber of arrangments of the

boxes is
Comb(e,p) Comd(s - p, q)

For all pomsible choloes of p and Gy the total nmber of arrange-

muts is

[_.!11
2 |
> 'J Comb(s,p) Coub (e = p, w' = 2p)



S5e15.2 Lemmn

In the g boxes of a P-emcoded X code, where s is even,

we can arrange w' units in

"
=)
7 £"' %P couh(je, w' - 2p) Coub(s = w* + p, p) vays

p=0

Proofs

Ve note in passing thet this result can be applied to a
f-ancoded K code with an odd mmber of boxes which hes heen
format-adapted, if mincr alterations are made to n and w,

The s boxes are éivided into #s pairs of boxes for the

purposs of P-encoding, q < 38y vhere p,q and T are respectively tha
mumber of 11, 10 and 00 baxes among the s boxes, ss before,

The total mumber of ways of allocating the 10 boxes emong
tle 4s pairs of boxes, one 10 box to a pair, is

Comb(ts, ¢).

But, since the 10 boxes can go in twou possible positions
in each pair, then the total mumber of ways of allocating the 10

boxes is
2% Goab($e,q).
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To each way of allocating the q Ol boxes, thers is Coab(s - q, p)

ways of allocating the 1l hoxms.
Hence, for ziven p and q, there are altogether

2% cuab(ie, q) Comb(s - q, p)
ways of allocating the

boxase But w! = 2p 4+ q¢ Therefore, the number of ways of
allocating the w' unite among the s boxes is

sl

Z 2% =4 Comb(#s, W' = 2p) Comd (8 = w! + p, p)

p=0

Ye ave now in a position to develop the formulae for

the number of words of weight w in both the K code and the fesncoded
K code of langth n EHowaever, it will ba appreciated that the
formulae are toc complicated for practical use; & reasonable

approximetion will be derivad later.

5.,16.3 Tha rumber of worde of weight w in the K code and the

$-ancoded Kcods of lenzth n ave

W-a __-‘_":_
2 Comb(n « 2u = 26, w « U = w') '>2— Comb(s,p) Comb(s-p, w! = 2p)
w'-()i ;0_‘
s ww
> "Comb(n = 20 = 28, W = U = ¥') times
wi=0
LA
=]
> 2" "% Comb(3m, w -2} Combls=w' PyD)
p=0 respectively.
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Proof's

The result follows from the two precadin: lemmas, For
each value of w and each value of v', we have w = 1 = w! units
to distribute among the n « 2u = 29 arbitrary positionsj this ocan

be done in Comb(n -~ 2u = 28, w = u = ¥!) ways,

H:nce the total number of arrangements of the digits,

i.s, the total number of words, is as above.

5«16 Ths Average Distance 3etween Vords in & K Code

distance between ocde words is desirable since oversll i{ decreases
the probability that a word whieh collects errors during trans-

nission will be mistaken for ancther word by the decoder,

¥e alaso showad at that time that the averaee distance
between words in an ¥ code was 4n/9 - 1; between words in s Gilbert

code it was sbout 4n . n"id.

Since there are generally more wards in a K code of length
n than in sither the ¥ code or Gilvert's code of that lengzth, we
should not be disappointed if the averaje distance between words in
& K code does not approach the figure #m which is the average distance
between all the words in WD), 1 does in faot s:proach this figure
fairly closely; this sroximity allows us to make the asproximations
of the farmulae in section 5.15.35 and o we do derive some practical
benefit from the result,
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5¢16.1 Leuna

In & K code of langth u with u Q1 pairs for a hemld,
the average distance between words is approximately

- a¥
Proofs
Consider all the words of the X code arrenged in & columnm.
Suppose the K code has s boxes, and ¢ = 0
The code has (2u = 2)s + 1 arbitrary digits and 2s digits
in boxes.

In the colusns of our ward columm which correspond to
arbitrary digite, there ave 4N serces and 4§ units, where ¥
designates the mmber of words in the K oode.

In the columns, which represent boxas, there are % of one
kind and 24 of the other kind, (This latter is the same result as
for the M code, ses pectimm 3.14),

Thus the total mumber of differences between words, spread

over £H(N - 1) pairs of wards, is
(2 = 2)8 + 1)0%/a + 20, 26°/9
« ¥ ((2us + 2u + 1)/4 - 8/18 - u/2)

== !2(3/4 - 3u/4),
assuming 8 <= M.
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Therefore, since N soon becomes very large, the average distance
betwean words is
!izgn-Sul — %(n-su)

2N(N - 1)

#%n-n-%. ii'n*Buz

This is the same result az we derived for Gilbert's code
of length ng éo although the K code of length n has more words than
Gilbert's code of that length, the average distance between words

is no leas,

If we apply the same argument to the column of s&ll words
in the P-encoded X code of lenzth n, we find that the average

distance is even greater (i.e. approximately Zmn - 0.7né).

5.17 Approximation to Formulse in 5.,15.3

W@ can now say that the distribution of weights of words
in the K oode of length n iz scmewhat similar to the weight dimtri-
bution of the words in w(n). 50 we slall make our approximation,

for the mmber of words of weight w in a K code of length n, 8

number proportional to the number of words of weight w in W(n).

Thus we say that the number of words of waighi wina K

code of lemgth n is about



gheRu=28 58  Comb(n,w)/2®

1) 2n-&.’a-2a 8

vhere e 3 is the nuomber of worde in the X code

of length n
(1i) Comb(n,w) is the number of words of weight w in w<")

(i11) 2" 1s the total number of words in V(n)

i.e. the number of words is arproximately
o Goub(n.w)lzem e=

By the same method, the number of words in the f#-emcoded X oode of
langth n is about

gP=Ru~ts Comb(n,w) /2”

« Comb(n,w) /2201

%e will not attempt tc justify this approximetion; we ean
only say that it has bean tested in the two cases zives in the mext
section and found to give good results for values of w not too cloge
tc either O or n, although, understamdably, the approximations near
both U and n are not good; in these areas almost every cycls is
representesd in the K code, and this is not the result we get with
our forsmulae.
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W can etate our approximation in another wayj since
there gre 20=2U-28 38 words in a K code of lagth n, and sbout

2"/n ayoles of length n, the mtio of the mmber of words in the

K code of weight w to the mumber of words of weight w in ¥'®) showld

be approximately constant at
- '{zzne. Kowd)
fa the K code
and at n/zzu"‘#
for the feancoded K code.
Again, this approximation should only be used for w not

too close to O or n,

We will now finish this seotion with some illustretive
&€raphs which show clearly the weight distributions mnd efficiencies
of the various types of codes for certain values of n.

5,18 Notes on the Graphs

5¢1841 We have shown on the first graph the efficisncies
atteinable with X codes which use four different values of u, not
beceuse the codes with lower efficiencies are practical, but to
shor the 'leapfroggzing' effect as a certain value of u gives the
most efficient K oode for only a few values of n,



5¢18.2 It is a;parent from the difference between the M code and
the f-encoded M cude graphs that the neceseity of adapting to binary
input greatly affects the efficiancy of the M code as well as
requiring a mare oomplicated encoder. IHowever, we notice that the
feencoded H code is still more efficient than the fixed-place code.

5.18s3 It is a pity that we have tc use a log scale, since it
makes the crossovers on the n = 51 graph appsar mors izportant
than they are, Vhen we remember that the mumber of words of weight
up to 12 is only a very smell frection of the total mmber of woxrds,

we see the importance of thege crossovers in a truer poerepactive.

5:18.4 Apart from this, notice the way in which the X code gaing
groaand on its rivals around the most important point - the high
point of the graphs. For example, in the n = 21 graph it has only
about 2/5 as many worde of weight 4 as the M code, but sbout 15/11
of weight 10, 1In the n = 51 graph, it improves from about
equality with the il code for w = 12 up to about 7,/2 ae many words

for w = 25,

501845 Always the mmber of oycles remains an unapproachable upper
limits Thie is also most anparent towards the centre of the &ruph,
where the lack of the balanced Ol combimmtions tells sgainst both
the K code and the X oode in achieving worde of welght about half the
lengths This indicates the oconclusion that efficiengy cannot be

much improved using the 'herald and boxes! structure.
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5.,18,6 lNotice that for moderately large valus of w (e.ge Over
the range n/4 < w < 3n/4 the graph of the K code runs spproxi-
mately parallel to that of the number of eycles. This helpes us to

cheok our approxdmation.

a1
eege forn = 21, when u = ise 2, ,,/22“‘"252 %
It can be seen from the graphs that the difference betwean the

graphs is about 10523, or about l.6.

For n = 51, when u = 3, s = 8, the fraction is about 1/20, and the

sap between the graphe is about 1031020 = 1,3.

8418,7 On the graph of sfficiencies, the charmcteristio
"leapfrogging” of the various K codes for different u is shown,

Ve can also clearly see that the offioiency of the fixed place code
lags far behind that of the most suitable K code, although it ocatches

the X code at n = 79,

5018,8 The last graph gives & greater magnification of the
crogsover between two representative K codes using different u codes,
and shows the way in which mctwml efficiency differs from the the
theoretical values cbtained previously, if we use fmancoding on the
boxes.
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The Various Codes n = 51
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6. CODES OF EVEN LENGTH

6.1, Introduction

So far, the codes we have considered (the M codea and
the X codes) have been codes of 0dd length. With both these
codes, we ensured that any false 'heralds' would begin in an even=
nuzbered positiong and, becauss of the odd length, even numberad
positions in the next real word, which the fslse word sverlapped,
became even-muabaered positions in the false word, and odd-
numbered positions in the next resl word vhacame odd=nunbered
positions, in the false word, In partioular, the herald of the
next resl word began at an cdd-numbered position in the false word,
and this ensured that a O1 pair would be found where the false

. word, to be identioal with s code ward, needed a box.

In our examination of the synchronous property of ocodea
in this section, the only false words which will concerm us are
those which are identical with code words. Go we say that a false
word requires a unit in & certain poeition if and only if every
code word has a unit in that positiony only if this regquirement : is

fulfilled can the false word possibly be identical with a code word.

¥ith codes of even length, we could still ensure that all
felee words begin in even-numbered positions by beginning all our
boxes in odd-numbered positions, Ilowever, in this case the herald

of the next real word would begin at an even-nuubered position im
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the false word, and would give a 10 where the false word requires

a box = and this would not prevent the false word from being
identical with a code worde So the boxes zust be positioned
dfferently; same must begin in even-mmbered positions and some in
od d-numbered positions. One technique which is used later begins
aach of the boxes bsfors the midéle of the informe tion-carrying part
of the word, (the whole of the word except for the herald) in an
oddsyumbered position, and each of the boxes after this point in an
even=rmumbered position, It will be shown later (in section 6.5)
that it is possible to construct synchronous codes by applying this

iden.

For the rest of thia section, we will compare the ocdes
cons trusted here only with codes which use both boxes and fixed
places to achieve gynohronisation, However, it will e skown in
gection B that there is sirong evidence for assuming that
gynchronous codes constructed using the *herald and boxes!
technicue are at least as efficient as synchronous codes which do
not vee this technique. And ®0, when we sny that a code constructed
in this section is the meet efficisent 'hersld and boxes' code of a
certain length which can be constructed, it is definitely poeaible
that no other synchronoue code of that length {excapt a generalised

therald end boxee' code {see seotion 8)) could be more efficiente.
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A *herald and boxes' code ias a gynchronous code which
has a herald composed of 0l pairs, and boxes imbedded in the

razainder of the code word,

We should stress that the codes comstruoted here are not
eg efficient as codes of the saus length constructed by the Golomb
method, However, Golomb oodes are not synehronous codes, and in
section & evidence is sadduced that synohronous codes cannot lave the

efficiency given YWy Golomb'®s upper bound,

In this section, when we refor to 'ths £ code' we will

maan 'the X code of a siven langth',

6,2 DTafinition

vie shall define an £ coda as g code of the 'harald and
boxes! type which comsiats of all the possibls warde which have the
format

0101 eses Ol‘blbzxx see xb3b4n see Ih5b5 YY) bzs-lhzsu ese X

where
(1) The herald comsists of u Ol pairs.

(1) b, .b . represents the ith box, 1 = 1, ... , B} each of
2121

these boxes i3 either 00, 10 or 1ll.

(1i1) P; consecutive arbitrary digits follow the ith box.

(iv) 4s in the K code, =212 oo, 5=1pd =1
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How n=2u+ 28+ > Py » and n is even,
il

Therefare, it folloss that, in an I code, S p, must be aven,
=1

¥We shall show that by suitable positioning of the baxes
and, in some cases, reduction of the mmber of digits, we can find

synchronous E codes.
If“&llwmypi,i.ul, oo-.!-lgmbﬂmw

than 2u - 2, it is possible for falee wards to start at bSoth evem
and odd-pumbered poeitions among these Py digitsy the mestriotion

that p1< Zu =2 meane that false worde whose firet 2u digits ave

identical with the code herald may begin in al ther even-mmbered or
odd~mmbered positions amongz the Pys but not both.

(1) e.g. u=3,p =2u=8

sse bﬂ-lbﬁ XXXXXX bm+1b21+2 ese 010101

Poasible » e 010101 oo .Ibb& oes
false J
words

e 010101 +e0 'th.'H' ese

0 1 0 1 0 1 sse béb}.’ ete

We see that false words can begin at 3 consecutive

poeitions,
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Suppose that b ;jb j41 represants positions where a false

word, to be identical with s code word, would need 2 box, In

two of the cases the naxt code herald will ensure that Ol go in
these positions, and so prevent the false word from locking like a
code wcrdy howaver in the middle case the next code herald would

put 10 in b and, since this is permisaible in a boxy the

P
false word could be identiocel with a code wordes In those circu=
stances we would have to have another box coinoident with the next

real hersld at the same time,

€8s 010 101

LAWY

But this means that By < 2 - 5. (o)
In fact using this method we can show that ﬂpi> 2 -2, 1i{s,
the there mtbeapjsuchmt;pi+pj<4u-4. Since
1rpiandpjmbothequal to 2u -2, pi-o-pj-éu-&, there is
nothing to be gained by allowing any of the pi'a to excesd 2u = 2,
The case for Py is slightly different, for here the next digit
aftar the end of the string of Py arbitrary digits is not just the

first position in a box, which may be O or 1, as it is for the

other Pi"' ut a fixed 0, the first digit of the next xesl woxd,.
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Now a false word identical with a code word camnot begin
at the first position of the last bax, It cannot begin at the
second position of the last box only if the first 'box? in the
false word overlaps the firat 01 peir of the herald of the next

code word; this is the case if pﬁ< 2u -1,

Any false word begiming in the last arbitrary string
will not be identicael with a code word, since the oode herald
supplies eithar a unit where the false *herald' needs a0, 0rs
Ol pair in the first *box® of the falsme vord,

A code is gynchronous if and only if none of tha set of
false words which may cocur is identical with any code worde The
next theorem definee the positions where false words could bagin
in & string of symschronous code words, by virtue of the faoct that
it is poseible for a false herald sequence to begin theree. The
theorens etc. which follow this theorem will show us that, if we
impose certain mtﬁctiona on the E code, it is possidble to ensure
thet no false words beginning in these positione can be identical

with any oode word.
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6.3 Theorem
Iet @y, X be words in an E code with u 01 pairs for a
herald and s baxes, Suppose that the sequence of n conmecutive

digits of WX beginning at the pth position of
W(2{ p n) is a word % of the E code.

Then & > 2 and
J

P=u+ Z (py +2) - 2,
Uml

vhere 1 J< 8«1l and X is an integer, 0<k<‘bd

Proofs

let ¥ « Q0101 ... 01 '1'2' owe "3" ese '254 '2.' oes W

X = 0101 see Ol XXX ase XXX, coe Ky 3 X5 X see X

Z = 0l01l oe» o 5133‘ ene "5'4 ecae ‘2’.’1 82" sen B

Clearly, the herald of 2 camuot overlap thw herald of W,

begamss this would imply that v ¥, aTe 0l regpectively,

Similarly 2 camnot begin at e

Thus
P>R2u+ 3 (1)
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Again, the herald of Z camnot overlap the hereld of X, since this

would imply that 2,8, are Ol respectively. Similarly, the herald

of Z oannot end at the last digit of W.

Thus
p< n=2u (2)

It s -'1, we have

n-2u+p1+2.andpliam.

Fut by (1) end (2)
L-202u4+2

1.0 P1> 2u

This ocntradiots our assumption that F1< 2 =1l, (We can show
thgt thias inequality must hold, as there are no other pj's from
which we can choose one to satisfy the inequality (a),

py + Pj < 4u =4y
given in seotion 6ele)o

Thus '.> 2

Let J be a poritive integer such that

3-1 il
Zav () (p+2)+1<p<ms () (o, +2)s1  (3)
i=l i=l
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-]
Since 2a+(i (p1+2))+1-n-(p°+2)+1
i}l

.nd p’<&l-1,

8=
2u + (,>_:p1+2)) +1l>neu
i=l

> be by (2)e

From this it follows that j < & = 1.

Since P3< 2u - 2, the herald of Z must completely
overlap 2501”2442 (which must be 10) or else the last dgit of
the herald Z must correspond to ¥2541 } thle latter omse can only
occur when pj =2« 2 and p ""gj' Simoe '234._1 oocupiss the

position

3
&#(Z(pii-z))q-l
i=] of ¥ and

'?d +1ﬁ23#2 cannot be 01, then

J
2u+(Z(p1+2))+1-p must be odd
i=l

Put J
Z=2ue (S (o +32)-p (2)
iml
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By (3)y k2O and k<ﬁj

, 3
From (4), p-m-r(Z(pid-z))-ﬁt
1=
QED.

In this theorem, we proved that, if &2 = 1, an E code is
always synchronous, However, this is not a very important case,
since, for u > 2, tte fact that there are more fixed places than
boxed positions means that ths E code so constructed will not be
very efficient; a more efficient oode oould be comstructed with
U less and £ greater, Since an B code 80 closely resembles a
K code, we would suppose that the maximm efficiency of the E code
would oocur when the ratio of Ol pairs to boxes is about the same
as for the most efficient K oodes and thie ratio is about one Q1
pair to four boxes (sse section 5.9).

We shall now gonsider the case where s > 2, The next
theoren describes s necessary ané sufficient conditiom that an
E code with s > 2 must satisfy to be syncilronous.



6.4 Theorem
An B code of a given langth with two or more bexes is
syrohromous if mad only if for every pair of integere J, k such that

138 ~1 )

0k #py (@
md

Z(’:*z)*”‘>g“"' (s)

imjeld

thers exist integers my, q suck that either

(8 olms-1 (¢)
0 qgu=1 (5)

omd .

h+201+2)-(Lb102)+&)-h+1 (8)
=1 13+l

or

k) I¢(ms-1 (7)
1{q<u=~1 (8)

and

mnlz (pg +2) =m2g =1 (9)
[P |
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Proof
Suppose that ¥ and X are words in an E oode, where

¥ = QlOL 06 01"1'2" oss “3'4 eee '28-1'28' coe W

X = QlO1 .40 Glxlxgn sae XXX, soe Xy (X, X coo X

Suppose also that the sequence of n consecutive digits of WX
beginning at the pth positiam of ¥, 2 pm, is a vord Z in the
E code, where

Z = 010l 4e» 01‘1‘2“ ese "3" ese '&-1.2.! see &

By the laet theorem, there exist integers j and k such that (1)
and (2) are satiafied and

p.zu+zl_'(pi¢z)-2k (10)
il

The herald of Z cannot ovaerlap the herald of X, Decause
this would imply that %, %y are (Ol respectively; hence, since the

herald of Z ends in poeition p ¢+ 2u - 1 of W, we have
p+2u=-1¢n

J 8
1.00 &1+Z(pi+2)-&-1<2u+2(p1+2)
ial i=1

a8
Z_i (b +2) + &> 21
tm3el

i.0,
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Ifs Now for ), k satiefying (1), (2) and (3), suppose tbat
there exist integers m, q such that (a) (4), (5) and (6), ox

(®) (7), (8) and (9), are satisfied.
{t) Bow suppose (7), (8) and (9) are satisfied

'&1’1 ogcurs in poeition

n
2u+2(pi+2)+1
i=l

of the ward ¥, hence in position

2ueS (ps2) +2-p
iml

of the word Z

i.e. ths poeition

=
) (py+2+Zx+2=241

imjel of %e

How the herald of 7 goes as far as the 2uth position
of Zy and so the (2q + 1)th position of Z should ba 0 and the
(20+3th position of Z should be 1, Putw, _, andvw, ,,which

fall in these positions, are not 0Ol; This contradiois ocur
asswaption that Z is identical with a eode word.
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{(a) Xow suppose (4), (5) and (6) are satisfied, and consider
Samel 3 Spype

“ﬁ-ﬁl oocure 1n_thc poeition

n
§
i=l

of Z, hence
in position t=p+r-1lan
Oon
Then
J =2 8
t =22+ L (914.8) -&+&S§L(y1+2) *l3l e (mql(pi*z»
il il i=l

- 2u+i(pi+2)-(i (Di+2))"a
11 i=hil

-2q+1

Now, sinceQ {q{ u=1, the (2q + 1)th position of X
is an odd-numbered position in the herald of X. Hanee

PR and Sons2 contain O and 1 respsctively. Again, this

oontradicts cur aseumption that 7 is identical with a code ward,



Only ifs
Suppose now that the E code is synchronous and that
j and k are a pair of integers satisfying (1), (2) and (3). Put

J
p-h+T@i+ﬁ)-&
iad

We shall now shor that under these oconditions, if there is no pair
of integers m, q satiafying (7), (8) and (9), then there exists
a pair of integers m, q satisfying (4), (5) and (6).

Considexr the word W

WV 0101 oes 01(1)00 ses 00101 ase 0100 sece 0
2u digits 20 digite

Suppose that the second string of u (1 pairs begins in the pth

position of o PFor sach £, 1 = 1._ ess 5 By lot Yos 1o indicate
the pair of digits in positions
i
ei-m+L@“+2)+1
Uml

and .1«01,01"

weshllnolpmnthtwisawordinthcﬁoodp. It is

suffigient to show that for esoh i, Yoy 3V AT not 01 respectively.
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d
Pee = Z‘ (pu+2)-&-1
<
I
>>_(,u"'g)‘pd”l
u-:l‘
3-1
- Z(vu+2) 2 1
m.

Hence ta.l and w

2t ars both O,

When 1 > J + 1, we have
LS |
o =p= Z (pn+2)+&61
sl
Therefore ei ther
(1) ¢ =p> 2u - 2, in which case w,, . =1 andw, =0

(ifoi-p-&-l) o W,y 3 =0 and w, =0

(@) =+1 e

1-p<2u-2

Ifveput i « 1 = n; we seo that

i{n{n =1
and

n
&gZ(pnq-a)-p xS -3
vwdel



-lsbu

Now, by ouwr assumption that () is not satisfied

n
(pu+2)+2kism

umjel
Therefare o, =P is odd. Tue Yy " 1l and

'23-0

This proves that ¥ is a wvard in the E cods.
“Also, clearly, if
Xm 0101 sae Q11il see 1
2o digite
then X iz a ward in the E code.

The sequsnce of n consecutive digits of WX beginning at
the pth digit of W is represented by

Z w QLA oo 01 '1‘2' see '33" ese .23-1828‘ eoe 8§

Now, wvhen s isinWw

A=l

:a_a_:msoo,andwhpnzgilieabtho right of the

herald of X,

la -1‘21 = 11,
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Now, sinoe the B code lms been asswmed synohranous, Z is not
identiocal with a code word, ‘Thig being the cape, there must
exist an integer my O m s « 1, such that

(1) PonelSomg 18 entirely contained within the herald of X and

(1) =g, -0 snd 3, o =1,

1.0, there exists an intege q such 'lhatgz"l h-yinthe
(2q + 1)$k position of X, 0{q{u=1,

Then

=
p+2u+Z (pioz)-n-zqq-l
i=}

3 n
1.0.&4-2(;1-&2)«-&4-2\:4-2(91-02)
1=l iml

-(2n+i (pi+z)).zq+1
i=l

1.0, m*i(y1+z)-(>i(pi+z)+&)-zq+1
i=l i=jel :

This is equation (8), and, mince our cholces of m and q satisfied
equations (4) and (5) respectively, thia completes the proof.

The author is indebtsd %0 Dr. J.H. Michael for this proof
of ths theorem,



- 162 =

The reason that we made J and k satisfy equation (3) was
illustrated in the proofy if this inequality does not hold for any
pair of integers j, k, it is imposaible for a false word identicsl
with a code word to begin at that position p definad by j and k,
since it would overlap the next reel herald (that of X). If, for
given j, k satisfying (1) (2) and (3), there exist integers n, q
satisfying (4), (5) and (6), the false word cannot begin in that
position p since the positions whers such a falss word to be
identical with a oode word, wmld require a box, it will mve a O

pair from the next real herald, And if there are m and g
satisfying (7), (8) and (9) then & rearrangement of (9) gives

L oy +2) "Z@ )
2u+Zpi+2-2k+2q~m+ ' g +2)+1
1=l i1

ie0e p+2q = v, 1

Thus a false word cannot start in this position since
where it would require a Ul pair in its herald, it will find a box
of W, This is not the same came of interference with a false
herald as was exhibited in theorem 6.3, That result indicated
positions where a false word caild not begin bacause of the
restriction imposed by the bax in W which was the first after the

pth position of W, at which the false word started. This latter



result containg this restriotion (which was helpful in determining
our choice of p), but also generalises it to indlude any box of ¥

which comea within the string of 2i digits of ¥ beginning at p.

Unfar tumately, this extra restriction is not often
usefule In an E oode with high efficiency, most of the values of

piarecloectozn-z. pri-Zu-2,astringaf2udigitacan

only include either mever both.

%21 <121 T YaiaVaiez T
And so the box of W which is the first after p is, in the majority
of cames, the only one which affects positions at which a false word

may bagin.

%e will now apply the preceding resulte to particular
cRBe8. ’i‘he_ definition of a particular E code of a certain lagth
with an odd number of boxes las two points of interest., Firstly,
it is remarkable in its similarity to the K ocode whose length ie
greater by 13 in faot, it is precisely that K code with cone
arbitrary digit removed from the middle string of arbitrary digits.
This explains the similarity between the results derived conoerning
the sfficiency of the E code with s odd, and thase results derived
for the K oode in section 5. Secondly, it illustrates the use of
ths idea given in section 6.1 of begimming all the baxes bafore the
midpoint of the string of infomationecarrying digits in odd=
numberad positions, and all the boxes aftar this point in even-

numbered positions,

We shall ses that the implomentation of this idea in the
E oode with s odd gives us an even-length cude of high efficiency.
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b5e Defini Eon

AnEo code is an E code sush that
(1) = is 0dd amd > 3,

(1) py=2u=1

(ii1) Pi(ge1) = 20 - 3

(iv) p; = 2u - 2, ife,ifd 5(s+1)

We will show in the next few sections that an Eo ocole of

& given langth is synchronous, and that it is at least as efficient
as any other synchronous code of the same length which uses the
'herald and boxes' prineiples Cbviously, if we have fixed u and s,
we camot expect to nominate a length n at random and supposs tmt
by loeating the s baxes correctly we can cbtain a synohronous code,
no matter how large n mey be. TFor example, ws have al ready seen

that it is advisable to restrict tie Py's to 2u - 2, i< s, and
20 el, i=g, and that values of pi's greater than these do not

appear to snhance the efficiency of the codes And sc we can say
that fcr given u and 8, there iaacaminlangthnl gudh that if a

code of length n is constructed with u Ol pairs and e boxes, and

n> R, , then the code will not be synchronous. We will show later,
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in section 7, that this bound is almost the sams as for um K cods,
amd thutthoﬁooodeattaimthhbmnd. To this end, we should

notcatthhpointthutﬂmlmgthofthcxooododthum

- pairs for a herald end s baxea is
2us + 2u,

The resaon that we have particularly chosen e odd in
this case is that the mid-point of the #tring of informatione
oarrying digits is then sbout in the middle of a string of digits
between two boxss. The importsnee of this will become apparent

later when we consider the came of 8 even.

66s Theorem
An Eo cods of a given length is synchromcus,.

Proofs

In this proof we make repsated use of the result of
theorsm 4.

Consider arbitrary imtegers j, k such that

1 38 =1 (1)
~ and o<z<§j (2)
Define m =g = j (s)

and

h.auchﬂa)-(i(p“a),m). )
1m} i=jsl
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(a) 1£ 3<3 (e +1), them m> % (s +1)

end hmZu+m () =1« (s~ §)(20) = &
1,0,
heaekel (5)
() 1£35>% (s +1), then
a2 (s+1)

snd he2u+nm (2u) « ((§=3)(22) +1 + 2Xx)
i.ee
h'gu.-&-l
Howy if we choogs g ms U w k = 1

then
1) h=2g+1

and (13) qlue1l
also since k\(@j {uel
a2l
and, by our definition of m,

1\<.<'-1.

Thus there exist m and q such that the firet alternative
of theorem 4 is satisfiesd,

We see that m and ¢ can be fuund for all poasible peirs
Js ke Theorez 4 then asserts that the E° code is synchronous.
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This proof depends largely om the fact that the boxes in

the Eo cods begin in odd-numbered positions before the mid-point

of the arbitrary diglt stiring of a code word and in even-numbered
pogsitions after it, Thue false worde which begin bafare the
mid=point must begin in even-rumbered positione, by theorem 6.3.
¥We go forward until we strike the next resl herald, which begins
at an even-numbered poaition in the false word, But at the end
of this next real herald we are more than half way through the
false word, which then, to be acode word, requires boxes begimning

in even-nmumbered positions, The I-}o oode is s0 cunstruoted that a

0l doublet occupies ths positions where the false word needs a box,

It is surprieing that we cannot use a similsr comptruction

to ths Eo code in the case of an E code with an even mumber of

boxese. The latter case is in fact not nearly as simpla, and the
only reason which can be given is that the mid-point of the

arbitrary digit etring in the came where s is even and the Pi"

approach 2u = 2 falls closs t or actually in the (48 + 1)th box.
This would tend to allow false words begimming cloase to this box

to be identical with code wordee In the casa of the Bo code the

mid-point fell in the niddle of the centrs digit string, and thias

problem was not encountered.
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¥e can noteat this point that the Eo code consists of

2u fixed positions for the herald, 2s digits in boxss and 2s¢.(u - 1)
erbitrary digits. This last figure ie the one we should specially
notice, az it will be used as & lower bound for the number of
arbitrary digite in an ¥ code with one more bk, in section 6.8, and

we slall mset it amin later.

We will now detarmine the upper baund on tha length of
an evan-length synchronous *hemald and haxes' code for fixed u and s,
This bound is determined by the number of positions which can be
sxcluded as starting points far a false word becguse of the format
of the code, A posmition can be sliminated as a starting point far

any ane of three ressons,

(1) It can suffer direct interference from a resl herald. For
exanple, a false word cammot begin in the second position of s code

word, which oontains a 1.

(1) To be identical with s code word, a falsa word needs u
consecutive Ol pairs for ite heralde If the position where any one
of these pairs is needed ocoincide with positions where & code word
hes a box, 2 false word beginning in that position cannot be identieal

with a code word,

(111) To be identical with a code word, a false word needs boxes in

certain pairs of positions. If any one of these pairs of positions
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ooincides with a Ol pair of the herald of the next cale word, the
false word beginning in that position cannot be identical with a

code word.

6.7¢ Theorem

A synchronous E code with only u Ol pairs for @ hemald
and no more than a baxes positioned throughout its length has a
maximum length of

2us + 2u

Proofs
(i) Clearly, no false word can begin in s position where a code
word me & fixed unite This mears that no false ward can atart in
the positions 2, 4, 6, ese 4 2u, u positions in alles Also, no
'herald' of a faise word gan end in a position where a code word has
& fixed Os This eliminates the positions ny n = 2, e n = 2u + 2,
again u positions in all,

There sre nc other exclusions possible under case (i).

(1) Clearly, each box in & real cole can clash once end only
once with each U }iV in a hypothetical 'hermld' of a false word.
This meane that the baxen of & code word can prevent a false word

from starting in at most us positiomns,

(i11) Similarly, each Ol pair in the herald of the next cods word
oan occupy the sams positions as a hypothetiocal *bhox' of a falee
ward onoe and only once. Thus the pairs of the next meal herald

can prevent false words beginning in at most we positions,.
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Each of these three values given is an upper bounde In
the last two ouses, it may or may not be attained; for a given
value of p there may be two or mora clashes betwesn positions where
the false word requires Ol and the code word gives a bax, or viace
versa, In this cese ths mumber of eliminated starting positions

may be less than the figure given.

The same considerations spply to the sum of these values,
The ocode format may eliaminate Zus + 2u positions as starting
positione, but the actual figure could be less if thers is "doubling
up" of eliminations, as sug ested above. But if we ensure that
each position p is eliminated for only one reason, we cen indeed

eliminate 2us + 2u positions,

Now we obviously need to eliminate all the positions
except the first poeition as possible starting points, And so the
maximum nusber of positions, or digits, in an E code with fixed u

and 8 is at moast 2ue + 2u + 1,

But we know that an F code is of seven length, Therefore
its maximum length is
Zus + 2u.

This is exactly the same figure that we obtained for the
length of the E L code with u Ol doublets end 8 hoxes in section 6.5,
Thus, in the B, code wa have a code as efficient as any "herald and

bexes! synchronous code can be.
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We cannot generalise this and say that the Eo code of a

certain length is as efficlent as any synchronous cole of that
lengthe In faot, in section 8 we will élve examples of synchronous

codes which, although somewhat similar to the Eo code, use a mOTE

refined format to achieve greater efficiency. The positioning of
the u 01 pairs in the herald means that they only eliminate 2u
poeitionss if the same mumber of 0% and 1l's were spaced randomly
throughout the word, they could eliminate as many ss 2u? positions
a# starting points for false word, Whils for cther ressons this
bound is not attainable, there is obviously room for improvement in
this direction,

We are now equipped to consider the case of an E code with
an even number of boxes. As previously stated, the construotion is
not as simple or as straightforward as that of the Eo eala, which we

obtained ly removing one arbitrazy digit from the middle string of
arbitrary digits of the corresponding K code. Rather than set our
eights too high and attempt to conatruct E codes with an even nmber

of boxes which reach the bound attained by the Eo oodes, we shall

first find a more realistic lower bound and then attempt to oonstruct

codes to surpass this bound,

As a starting point, we shall make the assumption that an
E code with u Ol pairs and s sven can have at least as many

arbitrary digite as the Eo code with the same u and s one less,

ices (8 = 1)(2u - 2). This may appesr to be a low estimste far the
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number of arbitrary digits, since at first sight it would appear
that the code could contain 2u = 2 digits more than this.
However, use of this estimate will lead us to the upper bound for

codes of this type.

6.8 The E' Code

We define an E' code to be a synchronous = code with an
even number of boxes., Ve shall make the assumption that an E?
code hes at least (s = 1}{2u = 2) arbitrary positions. ¥e can give
et this stege no justification for this sssumption, except that, if

it is not the oase, the E! code iz not as efficient as the Eo code

with one less bax, and if this is so then it is not a practical
proposition. But, practical considerations aside, we must allow
lataer results to justify our choice of a lower bound.

Obviously, themn, the valuas of p; cannot all be very much
less than 2u - 2, although a particular p; may become mmall and

even vanish, However, there are restrictions on the sums of

dif ferent pi's. a8 illustrated in the next lemxg.

€EeBel %

In an E' code
1) py+pt>2u=4,1410.

(1) p, + D'+ D" Sdu a6, i L1 4in,
SR | 1
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Proofs
By our assumption,

) By (=) -1)
4
We also know that

Z Py < (- 2)(0-2) +1
ik tr43

Therefore, p; + pi' > 2u~-3.

Similarly, X

TR FALIP® Py (Ru=-2)(a=3)+1

whence
pi-;-pi' +pi">4n - 5o

We now lmve to define some terms we will use later.

6+8.2 Preparation

We have to proceed slowly from here to a proof that an E¢
code can eontain no more than (s « 1)(2u = 2) arbitmry digits.
Since the E' code is synchromous, we ean apply the rasulte of
theoren 6.4, However, this result will be easier to apply if we
adapt it elightly; the following lemma verifies our adapticn.
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6eBe24l !ﬂ
We know from theorem 6.4 that if
1{3i<n -1
0<k<;§pd

and Z (pini-z)-l-&}&-l
isj+l

then there exists integers m, q such that either
odm{s =1
0 g u=1

audaui-.Z'(pii-Z)-(i (p1+2)+2k)-2q+1
im]l 1misd

or
J{m{n =1

1{q{ue=1

n
and 2k & Z(p’_-ri!)-zq-l
3=}l

Suppose for given j and k the second alternmative holds,
equation (9)
a
q-1=-Z%e > (p +2)
imjsl

ioﬁqby (8) n
2ao1-2>3" (p +2)

injel

@)
(2)

®

()

(5)

(6)

(7)
(8)

(®

By

Msfﬁro,&-l}i (pi + 2).

i=j+l
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But, by lemnats.l,
J+2
Z (pg +2) > 2u
i=nj4l
Therefmrs, m = J + 1.
Putting this in equation (9) we find

&-2q-5-p3+1<2u-5-p$1

Therefore, we find that fhers mst exist m and q satisfying (&),
(5) and (6) above wmlasn

(1) P31 is odd
and (11) kC#(2 -5 -py,)

Ws can thus rephrase theorem 4 in the following way.
Por every integral J, k, such that

1{ §J{e =1 (a+)
G<k<bj: (2*)
8

and N ' (pi-ha)q»&}?u-l (3)

there gxiets integurs my, r such that
odm a =1 {41)
0r -1 (sv)

and i(pi+2)+&-2r-i(pi+2)+l (6*)
{i=}+1 i=l
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whers
G = O, pj+1 evan

= #H2m-3- Pyale Py, 44

it is this form of theorem 4 whioh we shall use in

subsequent proofs.

6.8.2.2, Definitian

Now we define (lcj) as the set of all integers betwean O
and 4p 5 inclusive which must with certain m and r satisfy

eqmation (6}, If there exist m and r which satisfy equation (&)

for same k o and n® and r* which satisfy equation (6" for some
k;' >kj, there must exist =" and r" which satisfy the nquatim for

k" 4 k! >kd“>k€§. always provided that k3>é-(2u -5 pj+1).

If » = m*, then we oan alwaye provide a sclution by choosing

" between r and r'. However, in same cases we will not be abla
to find a common valus for m and' 1u'; and in thie case the finding
of values of m" and ' which satisfy equation (&) for X" assumes a

greater importance.

In a large majority o cases, ki and kJ will overlap, we

will find in the next lemma the only conditions for which there is

no' overlapping,
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The sets (kj)and(ki)havonom.aeinmifmd

anly if
(1) i=j+1

(11) Py,y 1s odd
(1ii) pj+1<u-2
Proof:
We know 0<&1<pi,vhumkinamhror£ (x.).

W aleo kunow from the argment given in sectioniB.2.1
above that (kd) includes O unless Py is odds Since O is

included in (ki),nkml that Pia is odd.
Bow in this case
m‘s’Pj+1\< &1\<PJ'
so that,
if there is no overlapping,
au-s-p‘m>p1
therefare, Py * p1\<2n - B,
By lemma 8.1, thie ocan only ogour if j + 1 = i,

In this case it follows ismmediately that

Psi<ua-2
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We are now in a popition to prove a lemma which is
important in the mroof of the succeeding thecrem., We are setting
up an apparatus for examining the conditions which the format of
the E' oode has to obey in order to be synchronous; in particular
we shall examine the properties of false words which oould begin at
or mear the middle of the arbitrary digit string of a code word,
because, as we mentioned befare, that is where the main difficulties
arige. And we shall show that these difficulties are of such a
magnitude that the only way to overcomae them is to reduce the
central arbitrary digit strings to such an extent that the E! code
baging to resemble the E° code with one less bax,

2?0 slmplify the argument, we shall define the set of all kj,
positive integer values for which there exist j, m and g which
satisfy equation (6') of lemua{B.2.1.a8 Aj(n). Obviously, by the

fact that the E? code is synchronous, a glven k_-] must be contained
in AJ(I) for at least one valus of m,

It ie of course quite posaible that A d(n) will be empty;

this will gertainly be the case if

ey

a
(Pi +2) amd E (pi + 2) are either both odd or both
iejel iml

even, for then one side of equation (6') will be odd and the other

evan. The next lemma will ghow the consequence of such an empty set.
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Se Lanmg

If Aj(n) is not empty and Aj(xn - 1) ic empty, then svery
elemant of (kj) is containsd in Ad(n') for some n' > m,

Suppose the lemms is not trus, and that there exists
some valnes of j and 1:.1 for which equation (6') is satisfied for

come 2" m = 2 and suitable r, but for no m' > m, whataver value
of r we may ohoose, #ince we know that there is at least ome

element in A 3(’) which we shall oall k' and we have azsumed an
element in Aj(n « 2), whioh will be called k", we know that there

are values of r, r' and r*, which satisfy the equations

>i‘_ (py +2) + & -2r--i(,$+ 2) +1. = (M)
i-;f i=l

|
Z(pi+2)+&"—2r"-2(pi+2)+l. - (&%)
1=+l i1

Yo aleo know that k" is not in Aj(n). Tharefore , Aj(n_)
must have a least member kl' If the value of r which satisfies
equation (8') for k, were greater than 0, we could find a lesser

value of k to satiafy it.

Therefore ,
8 n

L(pi+2)+2k152(p1+2)+1. - (3%)

imj+l . iml
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Subtracting (8') from (94), we get
&1-&“+&"'sp._lfp.+4
> 2u+l
1.0 kl-k“+f'>u+1

10 k) =K"Su+lar>2

Since this holds for any slement k" not in A j(n) then k" + 1 is
neither in Aj(a) nor in ij(l -2

But, by our definition of k' and k", we know that all the values
betwean them should be in Aj(-l) for some m,, if the oode is

synchranous, This contradicts our assmusption that the lemma was
false.

Now it is obvious that overy time we ﬂ.ndanoddpi,n
will also find an smpty Aj(n), for if p_ is odd and AJ(. -« 1) is
not empty, Aj(n) mst be supty, since the addition of an o0d4d mumber

to the right-hand side of equatiom (6') upsets the parity. And, as
we have seen in the preceding lemma, the effect of this ampty set
";j(‘) is to ensuwre that all the possible values of k, are in Ajcll)

for some 112 R.
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We can by similar means prove the oomplementary result

that if Ad(‘ - 1) is enpty and Aj(n ~ 2) is not eapty, then all
the values of J and k;] can be satisfied for some value of

.1< B - 2 and suitable choice of r, This of course means thut
unleas either Aj(”_) or Ad(n = 2) is empty we may, if the code is

synchronous, finish up with two solution pairs of m and r for sach

This does not mean that either nj(n) or AJ(- - 2) is

always emptys in fact, for & even it very often is not. »Fut if

for any given j and k:l there are two pairs of m and r, which

satisfy squation (6'), we are 'doubling up' on our false word
!stoppere’, If we refer to section 6.7, we see that this is not
a good thing, since the efficiency of the Eo ocode only attains the

upper bound given because it spreads its 'stoppers' as thinly sa
possible « anly one for each position which must be stopped. But
unfortumtely, it is imposeible to mchieve this thin spread in sn
E' code,

6.9 Lazmmg

We mmed one othar thing hefare we embark on the proof of
the theorem; we need to show that Aj(n) and Ah(;)) are identical,
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¥e can do this by showing that equation (6') is reversidle.

We ooneider equation (6!)

»n
Z (P1+3)4~&-31‘3_Z(p1+2)+1
i=jed i=l

We subtract both sides of ths equation from

i‘ (pi + 2), and we obtain

1=l

3 8
Z(pi«'-z)-&-»a-- Z (pi-l-a)-l,

i=) 1emsd

which, under reorganisation, gives

s J
, (pi-c-?.)«v&-zr- '(p1+2)+1. - (20v)
2. z

p O TN §

This is exmotly what we should have expected. It says
that, if we cannot start a false ward at a eertain point because a
box of the code word interferes with ths 'herald' of the false
wurd, then there is a corresponding position where the false word
cannot begin because there 1 a Cl pair in the next code herald which
occure where the false word, to be identical with a cole word, needs

a box. This oneeto-one correspondence simplifies owr work to some
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extent, since if for example j < s and m > 38, we can say that

if no false ward can begin in the arbitraxyy digit string following
the jth box of a resl ward , no false word can hegin in the
arbitrary cdigit string following the (m + 1)th boxe For exanple,

in the preceding lemma we ses by inverting Aj(m) and Aj(m =-1)
that A‘(j) is nonemmpty and A'_l(j) is empty. But this still

does not help us with the case of the box in the middle of the
arbitrery d git string.

The next theorem strik=s at the heart of our trouble -
this midepoint of the arbitrery digit string. We first of all
looate the hoxes which eurround the mid-point, and then prove
certain properties of the arbitrury digit atrings closs to this

point.
€4l0 Theorem

If, in an £' code, we choose t such that

P; +2)+ g= 5 + 2 1
\f i & ? Py
i=l 1=

vhere (1) S = i(piq-a)
i=l

and (1i) o¢ 24 Py, * 1

then (i) Py, 1is odd

(11) Ay (t +1) 1is not empty.
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Proof:

Ir ‘3(3) is not empty, there is a solution of the

equation

8 +
(p1+2)+&-2r- Z(pi+2)+1
intsl i=l

t
Adding ';%l (p; + 2) ® both sides, we get

1
_i:'(pi+2)+2k-2r - 2(5_'(1:1-92))1-1

isl i=]
which is a contradiction of our definitiocm of S.
Therefors, A, (t) ie sapty.

Suppose At(t + 1) 48 also empty; this will be the case if Py
is even. ndﬂitiam,menntnwﬂntat(t-&z)md
2,(t+3) (or A (t - 1) and At(t = 2)) togethar sountain (k*),

since if At(t + 4) is not empty, for some k_ end r,

t

i(p 2) + X 4 (P, +2) &1 (2)
g * + t-Zr- 1+ 2} « 1.
i=tel %J

and by mbtracting each term of (1) from S we get

& 8
PR RREL AL PSSORDRE (s)
i=tel inte2



2]
leee 38+ (py,y +2) > Z(pjL + 2) ()
i=t+1

Substituting in (2)

5 + (pt*1+2)+&t-2r>2_; (p1+2)+1
i=

But from (1) ve get

M ted
2 (pi+z)+(p“1+2)+&t-2r >L(pi+2)+1
i=) il
14
Therefare, p, ., + 2+ &, - 2r >Z(p1¢-2)+1
imte2

1e8e Pepy * Pyt 2 Pyp ¥ Preg * Py * 7

By Lesmma 6.8.1, thie is impossible.

Now if we suppose that At( t+2) is enpty (1.0¢ Py, i8
also even), then we assume $lat Ay (t+3) or by (# = 1) contains
(lgt); in the former cass, since we have assumed Py, 9V, we oan

chooge k,c 48 Os This leads uas to the egquation

) £+3
2@1*2)-2}' - ‘Z (pi+2)+1

<=t+l i=1

i,e. M(S) . 3
Brg-2r = z (p; +2) +1

i=l



and from (1)

%&s'zﬁ'rphl"’l}és"‘pﬁa*ptw"s

f10s Zusla22r>2+2
which is impossible,by G.8.1.

Now, if At(t + 2) 18 empty, A (t = 1) must contain
(kt)"‘. 1f we choose k, = %(pt e d) whare d = O or 1 depending on

the parity of Pys we got

s t=1
——‘zl(pi+3)+pt-d-2r- Z(pi+2)+1
imtsl i=l

and from equation (4)

1
%S+g+pt-&‘rzv-2_,(pi+2)-pt-l
i=l

< *& "9 =P, =1
which is impossible,
Therefore Lt(t + 2) is certainly not empty, and therefare by the
preceding lama
At(t + 2) and At(i + 3) contain (1;,‘). We alsc know thet

pmisodd.




- 187 =

We now have %0 find a value of m, which we shall call

™, S0 that At*l(l) is not empty.

Obviously, increase in j (here increased to t + 1) should
not be accompanied by increase in m, Henoe we will assums that

ll<t+2.

%o find that At(t + 1) is empty, by cur first supposition,
and we know At-»-l(t +1) 15 eaply,

From this we know that either Atﬂ(t + 2) contains
(kt-i-l) or A, (¢t - 1) contains (kt-o-l)' In the former case,

putting k, . =% ez = d) wa get

o w2
E' (py + 2) + gy 2r = Z:(pi+2)+1
1=te2 1al

And from (5) and (1)
%B#pw-d-&->ﬁ+pt+z+3,
which is imposeible.

Similarly, in the second case putting Kepo = a2 = da)

we get

8 tel
>"(p1+2)+&t+2-2r-§ _(pi+2)+1
iwt+2 i=l
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Fut since we can choocse kt = 0

[ 2]
E:(pi-o-z)-o-o-zr'-2‘(1:14-2)4-1
imtsl i=1

Subtracting
Ppyg ¥ 2+ 3 = 2rt =P o+ d = P+ Dy PP+ 6

which is imposaible.
This means that our basic assumption that At(‘b-!-l)
was empty must be wrong. Therefore A‘t(t + 1) is rot eapty, and

this implies Pia1 is odde

This means that the mid-point of the information digit
string of the E® cgoda must fall in sn odd-mmmbered string of
arbitrary digitse This ties in very well with the observations

made concerning the £ A codaj there the mid-point falle precisely

in the middle of a string of (2u - 3) digits. But if all the
strings of an 5' code except the last and one other were 2u - 2
digits long, the midepoint would fall in the middle of a box, and
any shortening of the string on either side of this box (to make
the string of o0dd length) must be accompanied by grsater shortening
of & string on the other side of the box so that the midwpoint will

fall in the odd-numbered string.
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So the first result th:t thie verifies ie that, while

we can ounstruct an Eo code with efifciency which reaches the

upper bound given, it now becomes apparent that an £' code cannot

reach this bound,

We shall show in the next theorem that the upper bound
on the efficiency of an I' gode is even lower then this
rezaoning would indicate; for if the X* code could reach the bound

attained by the Es:o code, it would have the same configuration as
the E 5 code, except that another box and another string of

{2u - 2) arbitrary digits would be inserted in the information
digit stringe ©So far the thecrems have only shown that the
mid-point of the information string wust be adjusted to fall in the
middle of an odd=-numbered arbitrary digit string; this should be
posaible with the removal of only a few digits fron the arbitrary
digit stringe. However, ti® next theorem will show that we have
to remove the equivalent of a complete digit string, and,
incidentally, will justify our cihovice of a lower bound on the total

number of arbitrary positions,

As an example, lest us consider an ' code with four O1
pairs for a herald and two boxege In .rder to prevent a false
word identical with a code word beginning in the tenth pusition

(the last position of the first bax), the second box must begin in
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the sixteenth position (or fourtesnth , or twalfth). How consider
a false word beginning in the eleventh poeition. The first
poeition of the second 'hox' of the false word corresponds to an
even-numbered position in the next code word, and so camnot
carrespond to a 01 pair in the code word. Since the X' code is
synchronous, the falee word is not identiosl with a code word, and
80 the first "box' of the false word must correspond to a (1 pair
in the next code word. This can be so only if the code word hae
length7§raater than eighteen. In comparison, we can construct e
K code with four Ol pairs, two boxee and length 27, This simple
example shows us that we cannot expect to obtain as high an

efficiency with an Bf ocode as with a K code.

There ars two results we shall need before we begin the

final assault, One follows directly from the last theorem.
We know that At(t + 1) is not empty. This implies that
for some kt s T

8 t+l
S gt e&xo-2r « S (p+2) 4l (1)
1=l

£ .

Since A, (t) is also not empty, for mome kig o »!

8 ~t
Z;(pi+2)+&ﬂ1-2r' gLZ(pi+2)+1 - (2)
i=t+l i=1

The minimum value of k, in At(t +1) is, by 6.8.2.2 at most

‘ﬁ(au -3 = pt'ﬁl).
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We shall now prove the following lemma, which we shall
need in our proof of the succeeding theoram. To enable us to give

partioular valuss to kt’ we need to show first that such values will
be in the set At(t +1).

Part of the procf rests cn the duality of At(t + 1) and
Atﬂ(t)‘. which follows fron the fact that equation (2) is identical

with equation (1) with (pt‘a + 2) substracted from both sides.

6,11 Lemma

The integer $(2u = 3 - phl) is in A,‘(t + 1) and

Ay (%)
The integer 3(p, - d) is in cither 2,(t + 2) or both

Lt(t + 1) and A,‘"ﬂ(t),
where d = 1, Py odd

0, Py oven

We know by the duality of At(t + 1) and A,m(t) that any

integer that is in one is alsoc in the other.
Lewmm 6.8¢2.1 tells us #(2u = 3 = phl) is in At(t + 1),
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Suppoee «?5-(11t = d) is not in At(t + 1) because it is under the

lower limit given by lemma 6.8.2.l1.
i.e, 'ﬁ'(pt - d) < ﬁ(a: -5e Pt‘l‘l)

Therefare, 2a=5+4

Pe + P41
{ -4
This contradicts lexma 6.8.1.

Therefare, *j;%(p,t - 2) is in At(t +1) or in At(t + 2)e

If in the former, it is by duslity alsoc in At 1(t),.
.

Having now obtained a set of valuse of integers whish
are in At(t + 1), we shall use these and equation 1 from seoticn
6.10 to prove the next theorem, E£ince we cemnot prove that

é;(pt « d) is in A't(t + 1), we must prove the theorem for ths case

whan it is and the case whon it is not.

6 Thearem
The maxizum lemgth of an L' cole for given u and o is
cus + 2
Sinece 2u of these are in the hereld, and 28 ars in boxes, we know

that an E' code can oontain no more than
2u8 + 2 -2u =208 =2(u~1)(s - 1)

campletely arbitrary digits (not counting thoee in boxas),.
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Proofs
%e shall use our equations
[ ] 4l
Z(pi+a)+a:t-z=-z:‘(pi+z)+1 (1)
jetel i=l
and
< (5, + 2) S, + 2) (2)
P, +2) ¢+ 2k, =20 & +2)+1 2
L—-‘ o t+l 2__4 i
iwt+2 iml

and substitute into them either 3(p, - d) or 3(2u - 3 - Pegy)s
which, lemms 8.11 tellsus, arTe in At(t +1) or At(t + 2)
(1) Suppose %;{pt -d) 1s in At(t +1)

(*) ¢ >

8
ST ) mn - 41
imts2 '

Substituting k w #(2u =3 - phl) in equation (2)

t+l
t+1

i (p1+2)+3u-1 2}: (p1+2)+1
iml

e 5 7%

4l
Thersiore > (p; +2) < 2ulds 1) + 1+ 2u - 2
=1

Therefca'é, s{ (s ~1)
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) < 4o

t
Then y:(pfz)‘sm(h ~2) +p +2
el

Using squation (2), and choosing K,y = o, - @)

| i(ﬁi-&z)*pt-d-&<2ﬂ§t-2)¢pt+5
fwtel

S

2 (’a,_'l'?.) < 2u(ds -1) + 2

L=kl

Therefors, S< 2u(e « 3) + 4 2u(s ~1)

(11) swpposs #(p, - d) dsina(t+2).

mnfm'

8 te2 |
Z(piw)nt-a.%.yr(pﬁa)u (s)
i=t+l 11
(a) As befare, 1 t > e can chooss k = 2u - 3 = p .

| and show that
s 2a(s ~ 1)



= 195 »

() t< 28
<
E“J(p1 +2) { 2u(is = 1)
i=l

Substituting k, = u - 2 = K in equation (2)

we got

i(pi+2)<2u(%s-1)+1-2u+4+ﬂ+2(n-1)
iteR

Therefcre, S 2u(s =1) +2

This latter case provides the maximam walwe for the
langth of the information string for given u and s. If we add on
the 2u digits in the herald, we arrive at the word length

n=Z2us + 2
while if we sublract the Za

digits in the boxes, we find that thers are 2{(u = 1) (s = 1)
arbitraxy digits.
Now if we refer back to section 6.6 and to section 6.8,

we discover that thie is precisely the nmumber of arbitrary digits

in an Eo code with one less box than the B! code we bave Just

discusseds it is aleo the figure we chose as the lower bound on the

number of digits if ths E' codes were to be practically worthwhile.
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We now know that it is aleo an upper bound, but we still have not
pattled the question as to whether an ' code can be construoted
with this number of arbitrary digits. It would be remarkable if

the only way to tmnsform an Eo code intc an E' code happemd to be
t0 remove two or more arbitrary digits to make way for the extra box,.

In fact, this is not the case. Ve shall construct in
the naext seotian a particular class of E' codes which attain this
new upper bound and then we will prove that cades in this new clase

are synchronous.

6.13 Definition
An EE code iz an B code with the following values for the
p1‘

Piery = ©

Py = 2u « 2 otherwise,

It is not neoessary to have one of the Py equal to Oj the

format may be altered quitse considerably and still remsin that of a

synchronous code, 3Jut we have proved that there can be no increase
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| in the total number of arbitrary digits if the ocode is to remain
amﬂmmm;mdmeumphmfmunRi&n&ﬂatmsgwm
closely to the Ee gcde, Bince it is now apparent that the EE cade
hJutmE”mhtﬁhhmhmuaﬂu&hauqund&@x

string instead of onees Sinae this is the case, we should expect

the EE code to be synchronousy our expectations are fulfilled,

8.14 Theorem

ThEEwhiaqMMMmm

Procof:s
By theorem 8.4, the cods is synchronous if for all
J sk, such that 1 J(s -1, OCk(ip,, there exist

m and g such that
omg s ~1

amd 0 quel

mdm+'iih&+2)—(§:&&+z)+&)n%+l
i=1 imjedl

(1) Supposs j £ is.

Choose m=8 -3, geu=-leak

(8) 3{=m -1 i m>da+1
i(pi-&ﬁ)-ai(n«l)-1-211(3-.1-1)-1
i=1
8

Z(pi+3)= 2u(s - § - 1)

1=3+1 Therefore, IS = 2u - X -1 = HES
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() 2% nia =1

i(pi«»z) = 2m = 2u(a = j)
i=l

8
Z(piw) = (s - 3) +1
iaj+l
Agxin’ LoHoSc s RMH.G.
(1) J=wis Choces m=is =1

Since Py =2 -3 k{u=-2

Therefore, we can choose g = u = 2 = k,
u E

3 ‘(py +2) = 2ulds -1)

KA

1=}

i‘(pi-rz) e 28 =38 - 1) + 3
i+l
Therefare, L,He3e = 2u = Zk =« 3 = RH.S.
Thus for every permissible pair of j and k,j wa can find
m and g which satisfy the equation. This proves the theorem.

WehnnmpmedthutthaEﬂcodeammngmlm

the nost efficient E codes for & odd and even respectively.
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¥e sre noe, than, in & position +to meek an answer to the gueations

¥hat is the most efficient coda for a given even langth?

There is another cemplication which aenters the picture at

this point, Obviously, if we can find an E 5 code which hae about

the maximum length possible for the given u and s, it will
obvicusly be more efficient than the corresponding K ocde of length
one less, Jut if the most =fficient cods for a cartain even

langth is an EE code, wa have to consider the questions is it more
efficient than the K ccde ¢f length one lava?
To use an 1&;0 code oy EE code for a given length n we lave

to bs able to solve one of the equations
2us + Zu = n

or 2ue + 2 =n with integers u and se
If thess were tha only valuss of n for which fﬁo codss or
E,, codes were suitable, they wculd not be very important. But,

beczuse of their gimilarity to the K codes, it can readily be under-
gtood that we oen construct a synohroncus code of any given length
by finding a larger value of n which satisfies one of the squations
above, and removing 2{ digite from the arhitrary digit strings to
reduce the length to the valuse requireds Ve shall sall the classes

of ocodes which can be derived in this way frum the ED and a}' codes

the Eo' and EE' codag respectively.
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If we remove digitz with a certsin amount of finesee,
we can ensure that the resulting codee are still synchronous,.
For exasmple, removal of the firat arbitrary digit in the firat
string will enmsure that the left hand side of equation (1) from

gaction 6,10 remeins unaltered.

However, in practice, we may want to find the minimum
code length which will carry a certain amount of information. In

this oase, if the E‘E' code can not carry more information than the

K code of length one less, it is not practicable to use the I:IE'

gode, Ve shall also attempt in the next few sections to consiruct

codes which satisfy these requirements.

6,15 Efficiencies of the E codes

Wch:nmrﬂxatan}ﬂocoda, of lemgth 2us + 2u, has Zs
digits in boxes and 2((u - 1)8) arbitrary digits. This means that
it has a maximum efiiciency when 5u = 83 the value of this

efficiency is

l - 1.28811.% + o415 !l-l

This compares favourably with the efficlency of the K code, at best
32 52
@™ )

1 - 1.286n"F 4 4150 4+ 0~ <4 0

This comparison reflecta the similarity of their construction.



But if we consider an E‘E code of length 2us + 2, we find

that it has 28 digits in boxes but only 2((u-1){s-l)) arbitrery
¢igits. Again considering the best case, when 5u = s, wa find

the efficiency is

-3/2 | -5/2 )

1l - 1.288!!-%4' +644n + 0(1!

-1

Thare is no temm in n = in this expresaionj and so this

code is not going to compare in efficiency with the Eo oode and

the X oodes Although it may be argued that this term will become
exceedingly small as n becomes large, it should be remembered that
the number of words i gl’n, where Y denotes the efficiency; and so
1

oeven a term in n = can meke 2 great difference to the number of

possible code words,

ligving proved that the }'E code is theoretically inferior
in sfficiency to the Eo code for most n we shall now determine the
precine values of n for which it is superior,

The formulae given only refer to the casze when ¢ = 03 for
some values on n it may not be possible to choose a value for o

close to O for either an Eo' code or an BE' code of a ocertain length,
while if we want to use an Eo' code, we cannot find any ¢! near O
which give this value of ne It is in this oase that it may be

batter to use an HE code for certain n.



e 202 =

€6.16 Theoram

The only vslues ¢f n for which the ,JE' code can bae
superior in efficiency to the most efficient Eo' code of the same
length are those values which are golutions of the equation

2ug + 2 =n

for some u and a,

Proofs

We can quickly show thet an Eo code of length
2n°so+2u° = n is superior in efficiency to an E_.' code with one

more box and two less arbitrary digits, since the bex is less
efficient then the two arbitrary digits it replaces, GSince this is

the oase, if both the Eo code anc the EE' code are reduced by two
arbitrary digits, the E ! code of length (n = 2) 80 obtained must
be superior in efficiency to the EE' code of the em length, asince
this latter Eﬁ' code still ha= a& hox in place of two arbitrary
digits of the E 0' coda.

This state of affairs must persist for the lengths

(n = 4), (n = 6) stce until wo reach tho value of n which is equal

to ano(no = 1) + 2. Since this value is greater than
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axo(ao -« 2) + 2u, the most efficient E, code of this length has
U =u and 8 = 8 e Thua it has 2a° digits in boxes ard only

-2(1:1o - 1)(30 «l) - 2a, srbitrary digits.

But we know the E_ code of length 2uo(s° =1) 4 2 has

2(5o = 1) digits in boxes end
2(110 - l)(sl_b “l) - 2u + 2 arbitrary digits.

Thus the E. code has two arbitrary digites instesad of the digits

3

inside tre extra hox in the Eo' code, the E, code is the more

efficient for that particular length. However, for a lenzgth 2
leas we can use an I code with (8= 2) baxes, and so by induction

we can arrive at the result stated in the theorsm.

This is not to ssy thet all the sclutions of the given
equation represent codes which are more efficient than the best

Eo' code of the same lengths indeed an E_ code of lenzth 94, which

B
is the langth given by subatituting u = 23 and 8 = 2 in the equation
abowe, only has 44 arbitrery positiuvns and 4 digits in boxes. If
weusoanEocodawlthu-E, 8 =15 and ¢ = 1, we obtain 58

arbitrary positions and 3G digits in boxes,

S0 we could rephrase our statemnt and say that if & is

cloge to Su, the E, code of length 2us + 2 mey have a higher
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efficiency than any Eo' code of the same length. TBut this state-

ment is not cefinite encugh to be applied etrictlys and we snall

use it with caution when we bagin representing actual values of ne
We have now shown that the Eo' code of a given length
is generally superior in efficiency both to the E.' code of the

pame length and the X! oode of length one less. Howsver, it is
immtructive to ocompare the latter two, and see again how heavily
the restrictions that both tha length of the code and the number of

boxes are even weigh againat the aefficiency of the “"f‘" code.

fle shall now compare the E  codes with K codes. Since

the formula for the length of the £, codes does not bear the same
similarity to that for the i. codes as does that of the 3 cod 9,

we aid cur ability to make a suitable comperison by defining a K'
code as & K oode which may have extra boxes in place of arbitrary
dglts, By means of this device, we can construct a code which is
a close approximation to a K code and whidc: has a similar number of
U1 pairs apt boxes to any klﬁ code, and a longth cloce to that of

the EE code,

Ubviously, a K' code with u = Qs & =8 and length n

cammot he more efficiant than an Eﬁ' code with u = Uy 8 =3 and

length n + 1 whatever value o takes in buth cases, far the formar is
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always ons arbitrary digit shorter than the latter. But there
is no restriction on the parity of s in the former cage, and po
we shall compare a K' code, withu-uoam s-lo-l, with . -

ths EE' code given.

6.17 Theorem

The EE' code of a cortain length is never moxe efficient
than a K' code of length one less, Howaver, the EE' code is
capable of carrying more information than the K code.
Proofs

Since the lengths are different by only one

2us +2-2, = (2u°(u°-1) -o-au°+1-2ax) +1
This equation solves with Sp = Ope

B tha EK' oode has 230 digits in boxes and
(2u°- o= M, = 20.-28 2) arbitrary digite.
The K?! cole has 2(:0 = 1) digits in boxes and
(axo(so -1l) = z(lo -1l)+l- anx) arbitrary digite, Thus the

K' code has one mare arbitrary digit and one less box than the

corresponding EE' oode,
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Since the one arbitrary digit is more efficient than the

box, and szince in sll other things the ¥? cade and the EE' code
are equal, the k' code is the uore efiicient.

However, the extra Yox will always carry at least as

much information as the one arbitrary digit; the E.' code can

always carry more information than the K' code of length cne less.

This applies eepacially to the EE codas with suitable choices of

u and 8, and means that they can carry at least ag much information

as any code of their length or less.

6,18 Reactions to feencoding (see 4.2 et seg)

80 far, the codes have been compared under the tacit
assumpticn that mixed binary and ternary input is available teo be
traremitted in the infomation string. I1If we consider the effect
of f-encoding on each type of code in turn, we shall find certain

changes in the relationshipe hetween them.
Firstly, consider the E ' codes. Under f-encoding, we

will have to epply the same fomat adaption ae we used on the K
oodes in 5.15; we place a fixed O in the mecond position of one of
the oxese But this only costs about & of an arbitrary digit
(since two boxes can carry as much information as thres arbitrary

dizits) compared to a code with an even number of boxes.
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imilarly, if we consider a K' code with an odd number
of boxes (the only kind we worked with in this section), we agasin
lose abaut v an arbitrary digit, compared to, in particular, an

E}_' code.s Of course, since an EF' code hes an even number of

F

boxes, it requires no format adaption tc make it sui table fur

f-encoding. Thus if only binary input is available, the E_'

cods becomes a slightly bettsr proposition compered to the other

codas.e

In fact, under this system, it is at least as efficient

to use an EE' oode as an Eo' code of the eame length., If we refer
back to theoran 6,16, we sea that if an Eo' ccde and an EE‘ ocode
with the same value of u are of the same length, then the Eo' cade
has two arbitrary digits in place of the bax in the EE' code. How,
if we compare the vdd bax and two arbitrary digits in the Eo' code
with the two baxes to which they correspond in the ;"IE' code, we

find that each set can carry thres arbitrary infomation digits,.

Thus in every case the EE' code can carry at least aa much infor-
nation as the Eo' code of the same lengthj in the particular oase
given in theorem 6,16, the EE' code is more efficisent than the E ¢

o

code of the same length,
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Since both the .‘:io' code arnd the K' code with an odd number
of boxes react the same way to @-encoding,the & code will be mare
efficiant than the X' code of length one lessa.

So wnder Yeencoding, the E.' codes have develuped from

codes useful only in isolated cases, if binary and ternsry input
are both available, to codes which are as efficient as any code

when sven-length codes are rsquiraed.

6,19 Sumnaxy

In this mection we have constructed 'herald and boxes!
synchronous codes with even length. Wo have shown that if the
constructed code has an odd number of boxes, it is at lsast as

efficiant as any 'herald and boxes! code of the same lengthe.

If, however, the constructed code must have an even
number of bhoxes, the efficiency drops and the code, althouzh it is
woved to be se efficient as any like it, has no advantaze over one

with an odd number of boxes.

But if we must use f-ancoding, this latter code assumes
much greater significance, and under these conditions is shown to

be at lsast as efficient aa any of the other codea ziven.

In many places the oonatrusted codes are compared with

the X' codes of length one less; in the majority of cases they show



up favoursbly, and thus ensure that they should be comidaered in
attenmpte to find the ninimum synchronous code length to carry a

given mmber of information digits.
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7. FIXD PLACE SYNCHROEOUS CODES WITH FALSE HERALDS

7.1 Introduction

Wa have seen that codes like Gilbert's code prohibit
falee heraldss but we know from our oonsiderations uf the H, K and
E cotes that such a prohibition is not neceesary, In fact, herald
sequences which are identical with a code word hernld can begin at
numerws positione in the informetion strings of the latter three
types of code mentionedj the codes only ansure that no complete

false word can be identical with a code word,

S0 far we have only compared these 'herald and boxes!
codes which allow falge heralde, to Gilbert's codes, In this
comparison, Cilbertts code suffers becauee of the restriction on it
that there muat be no possibility of a false herald mequence, as
well as from the fact that we have shown that fixed places, which
cost one arbitrary poeition vhenever they sre used, are not as
efficient synchronising units as boxes, which cost one d gt for
evary two of them used if the binary input must be g-encoded, or
elightly less than this if temary input is aveilable (the value in
this latter case works out to about 4 arbitrary digits lost for

avary 10 boxes used),
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However, because of the Gilbart's code's restriction on
false herald sequences, the comparisona we have made are not fair
to the class of fixed position synchronous codes in gesneral; we
would tend to expect that wae could find a synchronous code which
wes only fixed positione to achiseve syncironisation, mut which
allowe false herald sequences, and we should further expect that
such a code would be more efficient than Gilbert's code of the apue
length, As yet we cannot cay whaethar it would be as efficiemt as
ons of the kK, K o E codes for a certain length and for a ocertain
vractical pwrpose, for slthough we know that its theoretical
afficiency will not be as high 28 that of & 'harald and boxes! code
{because boxes are superior in efficiency to fixed placed for
carrying information) we cannot yet assess the effect of the
reduction in efficiency of the 'herald and boxes' aodes, due to such
things as V—enooding; in a particular cases Also, in a partioular
case, Pf-encoding may not be considered worthwhiles and it is here
that we require a code which uses only fixed places to achiave
synchronisation, and which has the maximum rumber of arbitrary

digits in ite given length,

Before we begin to ccnsider particular codes, we will
determine the relationship betwaen tha length of the code and the
ninimum number of fixed places tc enable the code tc be synchroncum,
Tor example, u code with a fixed 01 herald followsd by ten arbitrary
digite is not synchronouss in fact, i{f we reduwce the numbar of

arbitrary digits to two, the code is atill not synshronous,
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Far both these lengths, we need to fix more positions
bafors the code can hope to be synchronouee In the latter case,
there is no diffioulty, if we fix ths third pos;itions in the oode
word as either O or 1, snd laave only the last position arbitrary,
tﬁa code is obviously synchroncus. Hut fixing three positions in
order to transmit one arbitrary digit is sxtremely wasteful,
although, surprisingly, it is the best we can do for a code of

length 4,

In the former case (of the 01 followed by ten arbitrary
digits) there is no swch easy solution. We could construct
Gilbert types of codesby either fixing all the even positions among
tha arbitrary digits as O, or by fixing the two positions direotly
gfter the Ul herald as units, and fixing the sixth and last digits

of the arbitrary digit string as zeroes.

We cannot prove by axauination that the latter code (which
is more efficient than the former) is a most efficient fixed place
synchronous code of length 12 (in fact, it is not, as will be

shown latar)e

The next theorem will determine the minimum number of
fixad places in a synchronous code of given lengthj but first we
naed a neat mathematical expression of the condition "A fixed
place code is synchronocus", This is given to us by the next

lemma ,




T¢2 Leomma

If we bave & code with O's fixed in the positions

8y » i =1, e py and 1's fixed in the positions bj s =1, 60099,

the code is synchronous if and only if for sach t = 1, +se o R =1,
there exist positive integers i, J such thet either

8y -bj =t (mod n)

or

b =t (mod m)

3°%
Proof:

Suppose ‘bj -6, =t (mod mn)e.

How consider a false word beginning in the (t' + 1)th

position of a code worde.

The (t' + 8) (mod n)th position of the code word (ar the
next codea word) corresponds to the sth pogition of the false word
for all s between 1 and n inclusive, In particuls, putiing

th

th position of the code word corresponds to the a,

l-ni,ﬂubj

poeition of the false word.

But the b th position of the code word holds a fixed 1,

J
and the false word, to bes identical with a code word, needs & O in

its a,th position. Thus no falee word can start in the (¢t + )8

poeition,

The same argument applies if a, = bj e t! (mod n)e
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On the other hand, if there is no solution of either
equation for a given t', a false ward can begin in the (t' + 1)th
position, since all the pogitions whem the false word has fixed
digite correspond to positions in a code word which contain either
arbitrary digite or the 'right' fixed digit, and these arbitrary
éiizite could be arranged to make the false word identicsal with a

code word.

We can now procesd to our theorems once we have found our
lower bound on the number of fixed places, we shali oonstruct codes

which attain this bound.

7.3 Theorem

A fixed place type synchronous code of length n has at
least r fixed places, where r is the least integer such that
4
r> (2(n - 1))*
Proof:
¥e will use the notation of the previouas leumna.
Since the code is synchronous, for every t we need a

pair ("1 s b j) which satisfies ons of the equations. How it is

poseible for a given {1 thet there may be more than one solution

paire But in the best possible case, there will be onae solution
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peir (ai : bJ) for each valus of t between 1 and n - 1. In this

casge, if

-bj- = t (mod n)

s,
i 1

1

then ,i,z.bég;lt(mdn) for any 3, # 3, 1, £ %,
and by -a; £ t (any 1, J)e

But even in this case, p values of a; and g values of "j cannot

provide more than pq solutions far values of t in the first
equation, and a similar mumber of solutions of t in the eecond
equation. Thus there can be no mom than 2pq values of t which

are solutions of either equation.

We know from our previous lemma, that there must be at
least (n - 1) solutions of one or other of the equations, so that
there can be at least one solution for every value of t from 1 to

R =1,

Phis leads us to the inequality
2”} n=-1,

But r = p + q, and the solution of the problem ‘iinimise p + q
subject tc 2pq > n - 1! can quickly be shown to be
p+a>(2a - 1)

whaence

r>@@-nﬁ
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This gives us our lower bound on the number of fixed
places necessaxy. We can construct codes which attain this bound
for all n., These ocdes, which we shall call the F codes, are thus

the most efficient fixed place synchronous codes possibles

Te4 Jefinition
An F code of length n hanm

(1) fixed O%s in the positions 1, 2, ... , 7y, and

(i1) fixed l's in the positione n, n - Ty s eesn = (:.-2 - ZI.)z'1

&
whore (&) » is the least integer not less than (2(n - 1))”

() r, is the least integer not less than 4r

(e) T, =T er

fixed O's and r

2 fixed 1'8 — »r fixed

This coude has Ty
positions in alls A= such, it reactes the bound of theorem 7.3,

¥e now have to prove that it is synchronous, and lemma 7.2 tells us
this will be mo if and only if we can find solutione for one of the

equations for every £t from 1 ton - 1,

We slmll later compars the ¥ code of a certain length with
other types of codes of the same length. Since it is at least as
efficient as Gilbert's code of the same length, we siall only

coupere it with codes of the 'hersld and boxes! type.




Before we procsed to the proof of the theoren, we need
the following lemma, It will be used in ths theorem to ashow that
falase worde carmot begin in positions close to the centre of a
code words thus, as is the oase with the E codes, the positions we

kave to worry most about are those mear the centre of the code word,

Tedel Lumue

If r is the least integar not less than (2(n - 1))”%, r

the least integer not less than 4r, and r, = r - i

Proofs
¥’ > 2 - 1)
(1) r is even
rlnrz-ﬁr
z "
TyeTy = &= > 2(n-1)
(41) =r is odd
2
r is odd, and so -

1> 2(n -1)
rl-ﬂr+1), rznﬁ(r-l)

rr, =367 - 1) > Ha - 1)
Therefare, In all cases r;r, > #{(n « 1),

Now that we have this lema, we oan procedd with the theorem,
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75 Theoram

An ¥ code 1is gynchronous,

in the motation of lemme 7.2, ihe "1'8 ere i, i = 1, 2,
see 3 rlandtheb;'lmn-(j-l)rl » 3= 1y 2 eos y Typo
By lemma 7.2, we only have to show that for all ¢t from

i
orbj-ai‘-t(mdn).

1l ton -1, there is & sclution of either a -bj-t(nodn),

Congidering a; --bj Considering bj -8
al-bl-l(lodn) bl-a.lun-l(mdn)
aa-b1n2(mdn) hl-aa-n-?.(no&n)
arloblnrl(lodn) bloa.rl-n-ri(mdn)
al-bzsrl-t-l(mdn) 'bz-c.l-n-rl-l(nodn)
‘r]. - bra = r T, (mod n) br2 - ‘r]. =n-nr, (mod B)

Thus (a.i -b 3) satisfy all the values of t from 1 to
T, (mod n) and (hd - ai) satisfy all the wvalues of t from

n-rlrzton-l.



But lemmma T.4 showed us that

2r,v, > (n - 1)

therefare, rxr,>n-1-nr,
ie0e ©yr, +13> 8 =mT,.

Therefore, since n = nr, and all grsater values have as

a solution paira, and b, of b

5 3 3 ° 240 OF

2 + 1l also bas & solution

. o ®
pair -.i and b:j of bj a,

Thus there is a solution for a1l the numbers from

1l ton - 1,
By lemma 7.2, this proves that the F code is synchronous,

By the definition of the F cude, the F code is the most
efficiemt fixed place synchroncus code for any given length n.
¥rom the proof abovae, it iz evident that the P code oan be construs-
ted for both even and odd lengths. Thiz is ons of ite advantages
over the M, £ ani B codes, in that we do not have te firat
determine whether we want an even or an odd laagth code; we know
that, wvhatever the parity, the F code of that length will be

gy nchronous ¢
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Of course, the big advantage of the F code ouver the
M, K and ¥ codes is that it requires neither ternary input nor a
#-encodery in fact it needs very little more apparatus than a
Gilbexrt code, and so it represents an advanca on Gilbert's code.
it trans.its more information in a gziven length while etill
retaiming the asynchronising property, and thus relisves slightly
the sreatest burden on synchronous code efficiency - the digite
which are restricted in order to. ensure that synchrunisation may
be regained et the first correctly received word after it is lost,
but which, when the message is coming through normally, only take

up what could be much-needed space,

This, then, iz the reason that 7 cules can do the work of
Cilbert's codes, and do it better. VWhen we use a Gilbert code,
we scan the incoming digits far the first herald sequence that
appears after synchronisation is lost. This requires a holding
srea Ifor the length of the hersld. ¥ith an ¥ cude, we scan the
incominz digits for the firet acceptable wordsy this also raquires
a holding arca, this tina the length of the word, bt this is the

only change from the hardware necessary to implement Gilbert's code.

Obviously, synchronisation will be regained with the first
correct code word that comes throuugh, since if the digit string is
error fres the first position of a code word, and only the {iret
poeition, can begin a string of n digite which is acceptavle as 8

code word,



We have proved befors that fixed places are not as
aefficient as boxes in a synchronous codej therefore the ¥ osode of
a given length can never, at least theoretically, be as efficient
a8 the nost efficient *herald and boxes' code of that langth.
However, in practice this may not be true, since if for exauple
only binary input is available, the F code may be as efficient as
the corresponding K code {or E code) after it has been P-encod ed.

In this next section we will investigate this possibility.

There is another side %o the argument. If a P-encaied
K code is only slightly more efficient than a F code of the same
length, would it not be better to save ourselves the trouble of a
f-encoder and use an F code? Ve ocannot answer this question
directly, since it depends largely on practiocal considerations.
But wa must remember in all our arguments that a K cods may not be
better to use than a F oode of the same length just because it is

more efficient.

e will first compare the ¥ code with the P-emcoded XK code
of the sams length. Thie comparison must fall into two partsy the
case when the K code has an ¢ven number of boxes, and the case
when the number of boxes is odde The comparison will be more
favourabls to the F code in the latter case, when f-encoding
reduces the efficiency of the X code more. So we ghall oconsider

the former case first.
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7.6 Comparison of the F codes and X codes

Suppose we have a length equal to 8&2 + 28 + 1 where a
is any integer. +ith a K code, if we have 4a boxes and a Ol pairs
wa obtain a code ahle to carry 8a2 = 2a 4+ 1 binayy input digits of
infarmation—8a> - 8a + 1 by arbitrary digits, and 6a in the 2a

boxes.

Now an F code of the same length requires at leest
(16a° + 4a)% fixed positions, Thus it requires 4a + 1 fixed
positiona, and s0 has only Baz = 2Za arbitrary poeitiouns.

Now if we consider similar codes sach with two arbitrary
digits less, the new F code will still require 4a + 1 fixed
positions and so it will still have one 'arbitraxy digit' less than
the corresponding K code, We can continue considering codes with
the number of arbitrary digits lees by two and repeating the argument
until we reach tha stage where the F code only requires 4a fixed

positionss the first case ie when n = 8a° + 1.

If we have a K ocode two arbitrary digits shortar than
the K code of length 852 + 3, ths new K code will only be as sfficient
as the F code of the same length, since tlw F code now only requires
4a fixed positions and so one of the fixed pesitions can become an
arbitrary digit. Howsver, at this length, since we have removed 2a
arbitrary digits from the original K code, we must conpider ancther
K code ~= the one with 4a = 1 (an odd nuwber of bares) buxes and u 01

pairs for a herald.



Ve know that the F code of length 8&2-5-1 has

89.2 = 48 + 1 arbitrary digits, the saie as the farmer X code

reduced to thet lengthe The later K code cen carry Ga> = 10m + 3
binary input digits through its arbitrary digits and 6u - 3
binary input digits through 4u = 2 of its boxes. But in the odd
box, under f-encoding, we can do nothing but fix the last digit as
@ Zero, and 80 we can only carry one binary digit in it, Thus

this lattsr K' code of length Baz + 1 can also only carry
&2 = 48 + 1 binary input digits,

Thus, for n = aa.z + 1, the F ocode is as efficient as any
ff~encoded K cods, and we can consider the ouies shorter by two
srbitreyy digite without altering this relationship until we have
to consider the K code with u (1 pairs far a harald and 4u = 2 vozese
The firet case we must consider is when n = 8a° - 28 + 1 e are
again comparing an F ogode with a X code with an even number of boxes,
and the results are similar to those obtained at the atart of this
gection - the F code can carry one less binary input digit than the

K code of the same length,

We have now shown that, if the most efficient F-encoded X
code of & certain length has an odd number of hoxes in it, the F
code of the same length is just as efficient, but if the Peencoded X
code has an even number of boxss, the ¥ code oan carry one less binary

input digit,
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Wbalnumtlmtbetwesnnsasz+23+land
nw &2 + 1, the most efficient K code had an even number of boxesj

Between 8&2 + 1 and &2 = 2u + 1, an odd number. This indicatses-
that for half of all possible cases the ¥ cole of a certain length
is as efficlent as the corresponding K codej for the other helf it

is less efficiant,
Vs shall now coupare the P codes with the Eo and F‘E codes.

Since we have already shown (in pection 6) a close affinity between

the £ codes and tha X codes, and the reactions of f-encoding on
them and on the EE codes, we have a good idea of what to expeoct

from this eomparisone There are no unexpected results,

7.7 Comparison of the ¥ codes end fesncoded E codes

In section 6.18 we showed that under J-emcoding an By

code is at least ae efficient as the Eo code of the same length,
' /

S0 we will only compare the ' sodes amd the g codes.

If we choote 8 = 4a and u = a for some intezer a, we

arrive at an &E_ code of length &2 + 2 which can carry 852 - 4a + 2

binary input digits, and we know that an F code of that length
requires 4a + 1 fixed positions, and sv can only carry Bag -4a + 1

binary input digitsze But far n = 8&2, wa remove two arbitraxy
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digite from our original . coday and the EE. code we obtain can

CATXYTY only 8.2 = 4a binary input digita. But we showed before
that a» ¥ ocode of this length only requires 4a fixed positions, and

80 it too can carry 89.2 « 4a binary input digits,

#e have now shown that for synchronous oodes of even
length, the F code is as efficient as the most efficient f=enooded

therald and baxes! code except in a few isoclated cassce.

We can sum up the resulisz of the past two sections aa
followss  if f-encoding is necessary with a 'herald and boxes'
code, it is preferable to use an F oode unless efficiency ie
important, and then, if the length required is odd and the most
efficient K code of this langth has an even number «f boxes, it

may be prefersble to usme a X coda,

The following graphs show these propertiesz clsarly,
The first one ocompares the P acode with the P-encoded 'herald and
boxes' codes; the second compares the P codes with the therald

and bozes' codes in thelr most efficient state. Tha affect of

fencoding on the latter codes is well illustrated.
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7.8 Notes on the Grashs

The first thing we must note is that the position of
the ¥ code is exactly the same on both graphs. Once thie is
recognised, the difference feencoding maskes to the efficiency of

the *herald snd boxas' codes is immedintely apparent.

If however, pesencoding aust be used to implement 'herald
and boxes' codes, tneir efficiency advantaga:—lx disappears Uver a
large part of the range chosen (and over any range) the P code can
be seen to be the equal in efficiency of any of the *herald and
boxes! oodes, and, if this is so0, there is no need to complicate our

hardware with a ,ﬁ-encodarg we uee the F code of the length required.

Later, when we compare all these codes with thas code
bound derived in section 8, we shall see examples of what happens
for large ne HDut the results we have collected hera on these
graphs are representative of all tha spectrum of n valuesj anyway,

ve can gee this from the thecretical resulte already obtained.

7.9 Summary

In this section we have constructed a class of fixed place
synchronous gsodes which are in many osses as efficient in handling
binary input dataas the more sophistiocated 'herald amd boxes'! codes,
alt‘hough they are theoretically not as efficient, ¥e have also
ehown that the ¥ codes are as efficlent as any fixed place

synchrcnous code can ba.
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€. A NZ¥ UPPLR BOUND OF THE EFFICIENCY OF SYNCHRONOUS CODES

Besl Imtreoduction

S0 far we have discussed seversl new classes of
gynchronous codes, the M codes, K codes, E codes and F codes.
Each are useful in particular casesj the L codes are ihe most
efficient synchronous codes for small n, the K codes amd E codes
are the most efficient 'herald and boxes'! synchronous ccdes of odd
and evan langths respectively, and the F codes are the most efficient
fixed place synchronous codes possible, But ona gquastion remains

unanswercd: how afficient is the most efficient synchroncus code of

a given length?

ya know that we can disregard all but the ¥ and = codes
fr - the discussion, since we have proved, and verified from the
graphs, that the F codes are not as efficient as the former two
classes for given n. This proves tnat tle most efficient sy.nchrom-
ous code possible will not be a fixed place code, but will rely on

the herald and boxes' principle to some extent.

¥e shall show the 'two digite to a bax! system‘ ia. nace
afficient than the 'tiree digits to a box! system with more
complicated boxes; so we shall assume that somewhere among the
possibilities of modification of the 'herald and baxes' theme lies

the class of most efficient synchronous codss,
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In 1958, Golomb, Welch and Gordon published their paper
on commaefree coies, Comma~free codes have the synchronisation
property that no false words are code words. However, they do
not appear important in the field of informati on tranamission,
since the digite are interrelated, and so cannot accept arbitrary

input.

The important thing about the comma-fres codes they
constructed is thet they proved for odd n up to 15, and poésibly
beyond, the comma-free codes reached the upper bound given in
paction 2 on the number of posaible words in a selfesynchronising
code, Jiggs in 1963 verified this result for n = 17, DIut comza-
free codes do not submit to the restriction on synolronous coGss
that some digits must be sufficiently arbitrary to carry informetionm,
and it appears that this additional restriction mecans that the

ebove bound is not a leaat uppar baund for synchronous codes,

%We shall construct a bound for generalised 'herald and
boxas'! codes which, if there is no other more afficienf way of
conetructing synchroncus codes, will be an upper bound for all
gynchronous codeas. ¥e slall then show that this bound ie raalis-
tic in that it can be attained for all n up to 93, but we shall also
ghow that in some cases it is unattainable and, in fact, for values
of n greater than 93, it may never be attainsble. But even then it
is @& great deal closer to an actusl value than the bound given in

caction 2.



8.2 The genermlised 'hersld and boxes' code

7a have shown, in our procfs thet the K codes and ¥
codes are the most efficient 'herald and boxee' codes posaible,
that we have in thase two cases stretched to the limit the pumber
o startinge positions whioh can be eliminated becauwse of the fact
that the false ward has (1 where a code word needs a bax, or vice
varsay i.ae if we ave u Ol pairs and s boxes, wve oan eliminate
2us etarting positions, and no more, becauss of the interactions
betwesn theme The only other feature of the code which could be

adjusted to improve synchronisstion is the herald,

In the harald of a code word are u fixed (O's and u fixed
1'3, ¥e have seen, from owr proof thet the F code is synchronous,

that if these were placed correctly throughout the word, we could

elix&inate

/2u” ptarting positions. GSince the ¥ oode dvee not provide for
boxes of twoe digite, even in the generalisad form outlined below,
we cannot expect to obtain Bua 8liminated starting positions from
our herald; but we could expeot some better return than the 2u

eliminated positions we have obtained in the past.

The problem then becomes; how can wa arrsnge the (1
pairs 8o that we obtain the best returm in eliminated starting

positions,
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This is an easy gquestion to ancwer by itself, although
when cowbined with other factors the solution becomes more complex.
If we could merely ensure that no two digits in the Ul pairs
interacted with other digits for the same starting position, we
would obtain the maxisum mumsber 2u> (given above), of eliminated
positions. But since we must retain the box character of the (1
pairs, in every case there must be u interactions far a false word
beginning in positicns 2 and n of e code word, for in the former
case all the lesding geroes of the Ul pairs of the false ward
interact with the umits dirvectly following the zeroes in the code
word; in the latter case the units of the false word interact with

the zeroes of the code word.

However, apart from these two positions, it is possible to
position the boxes in such a way that no two positions of a code
ward interaot with two positions of a false word for any value of n.
For example, consider the synchronous code of length 7 with Ol pairs
beginning in the first and fourth pesitions, and the positions where

a false word could start,

Two code words 01 x 01 xx 01 x 01 x x

2 o'l x 0'1 x x
Palse word 3 0 1'x 0 1 x x
starting 4 ¢ 1 x 0 1'x x
positiona 5 'l = 01 x x

6 01 x 0'1 x x

7 ¢ 1'x O 1' x x
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The ta;e indicate poeitions where the fzlse word interscts with

the cods words.

txcept for positions 2 and 7, which we have already
explained we can do nothing about, there is unly one interaction
between the code word and the false word for every starting
position, Thie is the condition we must aim for in positioning

cur 01 pairs.

The above is not a good example of the type of code we
hope to obtain, since it contdins only fixed places and no boxes.
But use of such a good example would bave made the code word too

longe

Of course, there will be more then one way of positioming
the Ol paira in a particular osse; for example, in the above case,
fixing the (1l paire as beginning in the first and fifth positions
would have accomplished the same result. And, since placing
becomes important in the more complex cases when we have to handle
boxes as wall, the sbogve ie nut a complete answer to the problem.

But, anyway, we now have our limity we know that with u O1 pairs

correctly placed we can eliminate 2(u2 « u + 1) starting poeitions

(we lose (u = 1) in both the second amd nth positionsl.

Thare is one other generalisation we should mention,

although so far it has not helped to enhsnce the efficiemcy of any
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gynchronous code. e have assumed that the two digits in s box or
0l pair must be next to each other, No reascn has been given for
thigg it just sesmed the logioal thing to do. But none of aur
argunents would have altered If the digite in the bcxes and (1 peirs
were two, or three, or p digits spart, so long ae each Ul pair and
box had the same distance between its digits. 4And so we must
congider this aspect also before we deoide that a synchronous code

of a certain length and efficiency cammot be constructed,

We should note here that this technique of eplitting the
boxes canmmot affect the number of starting positions eliminated hy
the herald, since there will still be u interactions with a false
word gtarting in the second of the peired positione and the

complenmsntary position .

We are now in a poeiticn tc derive the maximum bound.
The derivation is closely allied tu those used in reference to the
K and E codes, and eo we will give here only the bare bomes of the

arguasht,

§e3. Theorem

A synchronous code with u Ol pairs and e boxes cennot have
a length greater than

2u{fu+a=1)+3
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Proofs
Interactions between the boxes and the Cl pairs eliminate

no more than 2us starting positions,

Interactions between the digits of the Ul pairs eliminste
ro more than 2(\12 = u + 1) starting positions.

So there ars no more thanz(uz+m - u + 1) starting
positions alizﬁ.nated altogether.

So the length is at most 2(u2+ns -=u+1l)+1,

A X code of this length would require u Ol pairs and
(8 + u » 1) boxess So if we can construct a code which attains

this bound, we can convert (u = I') of the boxes in the K code into

" arbitrary digits, and this gives us four arbitrary digits instead of

the three binary input digits the K code could carry in the boxes
under @-encoding.

For small u, this ié not very importants for large u,
where it would be important, we mey not be abls to construct the
codes, But we shall show first that in the partioular cases when
us 2 and u =3 that codes can be constructed, and alsoc show that
wheni u = 4 and 8 = 1 a code of the maximum length given by the

formula ocan not be constructed,

This latter result seems to indicate that the bound we

are seeking may not be a leazt upper bound for u > 4.
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But first we will show that when u = 2 and u = 3, codes
can be constructed which attain this bound, ¥or the first part

of this demomstration, we shall prove the following theorem.

Be4d Theorem

A code of langth 48 + 7, with Ol paire begimning in the
firet and (2s + 4)th positions, and boxes begimning in positioms 3,

By eee 9 28 + 1, is synchronous «

Proof':
No false word can begin in the positions numbered below
for the reasons given.
(1) 2 and 48 + 73 both Ol pairs interact between the false word and
the code word,
(2) 3, 55 ees 28 + 13 the first Ol pair of the false word inter-
acts with a box of the code worde
(3) 4, 6, ees 28 + 2} one of the boxes of the false word intermcte
with the second Ul paire.
(4) 28 + 3, 28 + 53 the firet 01 pair of the false word interacts
with the second Ol peir of the code word.
(5) 28 + 4, 28 + 63 the second Ul pair of the false word interacts
with the first Ol pair of the next code word.
(6) 28 + 7, 28 + 9, +esy 48 + 53 the second 01l pair of the false

word interacts witi: a box of the next real word.
(7) 28 + 8, 28 + 10 , eee , 48 + B3 the boxes of the falsa ward

interact with the first Ol pair of the next real

worde
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This proves that the code is gynchronous. But in theorem 8,3
we showed that 48 + 7 was the maximum length posasible with only two
Ul pairees So for u = 2 we can construct codes which reach this

upper bound.

%e can obviously construct a synchronous code of length
48 + 5, 48 + 3 etc. by successively removing two of the arbitrary
digits; but the fact that we can conatruct even length synchronous

codes by thie process of digit removal is not so evidenmt.

In fact, it ie not possible to construct a synchronous
code of length 48 + 6 using only two Ul pairs, It is poesible to
sonstruct a synchronous code by removing three digits from the last
digdt string, ut remeval of only one digit leaves a non=synchranous
codes the second Ol pair of the code ward and the firast Ol pair of
the false word correspond at the same time as the second (1 pair of
the false wourd corresponds to the first 01 pair of the next ccde
word, and so it would be pessible for a falee word identical with

a code word to begin at the second Ol pair in a cade worde

This i8 not a proof that it is impossible to construct a
synchronous code of length 48 + 63 the proof follows similar lines

to that given later in section 8.6,

This completes the discussion «f the case u = 2, Ve shall
now consider the case whan U = 33 this case is remarkably aimilar

to the case Just discussed.
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8¢5 Theorem

A code of length 68 + 15, with O} pairs beginning in the

positions 1, 28 + 4 and 48 + 12 and boxes beginning in the

positions 3, 5, 7y eee 5 28 + 1, is synchronous.

Proofs

Yo false word can start in the poeitions indicated for the

reasons given,

(1) 2 and 68 + 155 all three (1 pairs interact between the false

(2)

(3)

(4)

(5)

(6)

(7)

(8)

3y

23

2a

28

28

28

word and the code word.

5y ese » 28 + 13 the first Ol pair of the false word intere
acts with a box of the cole word.

6y see » 28 + 23 a box of the false word intersctis with the
second Ol palr of the real warde.

+ 3, 28 + 53 the firet Ol pair of the false word interacts
with the second 01 pair of the real word,

+ 4, 28 + 65 the third O1 pair of the falae ward interacts
with the first Ol pair of the next code word.

4+ 7y 28+ 9y eve 3 48 + 53 the third (1 pair of the fales
word interacte with & box of the next code word.

+ 8, 28 + 103 the third 01 pair of the code word interscis
with the second (1 pair of the false word,

+ 12, 28 + 14, see 3 48 + 105 the third Ol pair of the code

vord interacts with a bax of the false woard,
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(8) 48 + 7, 48 + 93 the third Ol pair of the false word inter-
acts with the second 01 pair of the next code
worde

(10) 4s + 11, 48 + 13; the third Cl pair of the code ward interacts
with the first Ol peir cf the false word,

(11) 4s + 12, 48 + 14; the second Ol pair of the false ward inter-
aots with the firet 01 pair of the next code
word.

(12) 48 + 15, ese , 68 + 13; the second Ol pair of the false word
interacts with a box of the next code word,

(13) 48 + 16, eee 5 68 + 143 the firet Ol pair of the next code

word intemots with a box of the false ward.
This proves that the code is synchroncus.

Again, we can construct synchronous ocdes of odd lengthe
lees than 68 + 15 by removing pairs of arbitrery digits. And sgain,
the code of length 6e + 14 is impoesible to conmstruct with only 3 01
peirs. Also, it is impossible to construct a synchronous code of
length 68 + 12 with only 3 Ol pairs, but the code of length 6s + 10

can sasily be constructed,

We sesm to have found a pattern, which couprises the same
arrangement of the first 2s + 5 digits and the other Ol pairs gzpread

throughout the worde But this pmttemn dose not work for u = 43



in faect no pattern works for u = 4 and 8 = 1, &8 the following
theorem showe, And so onoe azain we find ourselves in the
position of not knowing whethsr any code we cunstruct is the most
efficient possible, or vhether there is another wore efficient code,
the result of a mors judicious arrangement of the Ol pairs and the

boxes e

¥From the formula given in thecrem 8.3, with u = 4 and
s = 1 we could hope to construct & code of length 2u (W + 5§ = 1) +3=235,
%e shall show in the next theorem that such a code cannot be con-
struw ted, at least with Ul paire and boxes which have adjacent digits.,
It is unfortunate that the method of proof is so tediouss so many
cagss have to be considered that vroof of the gemeralised theorem,
with a certain number of pomitions between the digite of each (1
pair and each box, will not be atiempted here; however, evary attempt
to construct a synchronous code of length 35 with only 4 Ol peirs and
one box has faileds in this searck many different separationg have
been tried, But there is no reason why a different separmmtion than
the one used in the proof would enable such a code to be comstructed;
in fact, the sxperimental evidence indicates that a similar proof
oould be applied for any separation,for the results bear a close
resemblance to the results cbtained when trying to construct the code

with adjacent digite in Ol paire and boxes.
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The proof is also instructive for another reasong it
shows that there is an element which affects the feasildlity of
constructing synchronous codes which does not submit to the
rationaliestion we have used to obtain our upper boundsy indeed, the
proof indicates that we are expsecting too fine an accumacy if we
assume that we can apread our position elinimtione' as thinly as
possible in all gynchronous code congtructions; since we achievad

this maximum spread with the K and Eo codes, we have taended to

aspume that we can do it with all similar codes, although our

axperisnce with ths E_ code could have been taken as a warming,

E

8.6 Theorem

If the digits in the Ol pairs smd in the bmes are edjacent
it is impoesible to position 4 Ol peirs and one box in such a way as
to meke a code of length 35(-2ns+2(n2-u+1) + 1) be
synchronous,

Proof:
Let us supposa, without loss of generality, that the bax

begins the code wordse; we can do this, since any oyclio permutation

of a synchronous code is itself synchronous,

Suppose the (1l pairs begin in the positions a, b, ¢, d,

where

2<adbp el a5
The positions where false wards cannot begin are the

positions as follows:
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(i) =&, b, ¢, 4, where positions in which the false word, to be
identical with & code word, needs a bax, coincide with a Ol pair

of the code word,

(ii) 37-e, 37-b, 37-6, 37=d, where positions in which the false

word needs a Ol pair ocoincide with the bax of the next code worde.

(i11) 2, b~a, b-a+2, o-a, c-a+2, d-a, d-a+2,
6=b, 0-b+2, d=b, d=b+2, d=c, dec+Z,
35, 37+a<b, 35+a-b, 374a=c, 35+e=0, 37+a=d, 35+a-d,
37+bec, 35+thec, 37+bed, 35+b-d, 37+c=d, 35+0=d,
whers positions in which the false word needs a saro coincide with

a fixed unit in the code word or vice versa.

All the sbove expressions are modulo 35, If a, b, c and
d ocan be chosen so that the resulting code is synchronous, then the
above expressions must represent every residue modulc 35 from 2 to
35 inclueive, Since in thie case the residues are spread as thinly
as possible, no two residuse may be equal, This is our basic

premiss. Let us consider which of the set could represent 3 (mod 35),
There are 5 poesibilities
By beggcebyd=~-0, 37 =4a
We shall oconsider these possibilities in turn,.

Case le a=3J3,

We shall consider whigh of the remainder caild represent

4 (mod 35),
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Thers are 4 possibilities
b-a,c-b,d-»c,:.’ﬂ-d

Again we shall oconsider these possibilities in turn,

Case lel D -a=4
We siall now consider which of the remainder ocould
represent 5 (mod 35).
There are 3 posaibilities
¢ =by d gy 37 =4d

Again, we congider the posgibilities in turn.

Cage lelel:. ¢ =h =5
Vaing these equations, the set of residues is
3, 7, 12, 4, 34, 30, 25, -4,
2, 4, 6, 9, 11, d=3, d=1, 5, 7, de7, d=5, d=lZ, d=10

35, 33, 31, 28, 26, 40=d, 38«d, 32, 30, 44-d, 42-4, 49~-d, 47-d.
The least of these expressions in @

d =12 - or I7 « 4, must be 8.
oe d - 20 or d =29

But then 40 e d = d or 3B -4 =9,

Tl;us tvo residues are equaly this ecntradicts our premiss.
Case 112, d=c=§

But than d = b + 2 = ¢, contrary to our premiss.
Case 1,13, 37 = d =B

But then 35 + a = d = b « a + 2, contrary to our premise.
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Cage 1.2, c¢=b = 4,

Again, we siall consider which of the remainder could
represent 5 (mod 35).

There are 3 poesitdilities

bea,dmey, 37 =4

Case 1l.2.,1, b-a =5
The set of reeidues is
3, 8,12, d s 34, 29, 25, 37-d ,
2, 5 7, 9 11, d4-3, d&-1, 4, 6, d-8, d-b, del2, 4-10

5, 32, 30, 28, 26, 40-d, 38-d, 33, 31, 45-d, 43-d, 49-d, 47-4

The least of these exprseseions in d,

d =12 or 37 - ¢ , must be 8
d =20 or d=29
Therefare, d = 40 = d or B =-d=9

Thus two of the residues are the same, contrary to our
premise.

This latter section uf the proof is identical with the
came part of the proof in case l,l.l1.s If we proved every possible
case, we would meet this duality often. o we shall only prove
this case (case 1 3 a = 3) in detailj the procf of the cases
c-b=3andd -0 =3 ars very similar to case 23 the proof of

the case 37 - d = 3 is similar to case 1.
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Cage 1le2.,2, d =¢c =5
The set of rosidues is
3, b, b+d, b+9 34, 37-b, 33-b, 28-b
2, b=3, b-1, bsl, be3, D46, b48, 4, 6, 9,11, 5, 7
35, 40=b, 38=b, 36=b, 34=b, 31-b, 29-h, 33, 31, 28, 26, 328, 30

T™he least of these expressions in b,

b -3 or 28 « b must be 8
Therefore b =11 . or b = 20
Therefore, b = d + 2 ar 40 =d =D

Thus, again, two residues must be egqual.

CMO 1:2.3. 37 - d - 5

But then 35 4a=d = ceb+ 2, contrary to omr preniss,

Cage leJe d-0cw4d
The expressions which could represent 5 {modulo 35) are

bewnyg c=Hy 37 - ¢

Casa 13l b =n=b

This cave ie ginilar to camse l.l.2.
Casa 155.2. Qg = b = 5
Thig case ig similar o case 1l.2.2,

Case 1.3.30 SV «d =5

Inthis case d =c 4+ 2= 35 +a -~ d,
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Case lede 37 - d = 4
There are three expressions which could represent 5

b-t,e-'b,d-ﬁ

Case ledelse b -~ a = 5,

This is similar to case 1.1.3.

Case 1.402. ceb=j

Thig is similaxr to cane l.2.3.

Case l.4.3,.

This ia similar to case 1.3.3.

e have now proved that it ie impoesible to have a
synchronous code of length 35, with 4 Ol pairs and one box
beginning in the first position, which has a Ol pair begimming
direotly after the box in the third position, The cass when
37 = d » 3 is very similar, since this represente a code with a 01
pair directly befare the box, at least in the message ssquance, in
positions 34 and 35,

The only other expressions which could be equal to 3
(mod 35) are b = a, c = b and d - 0. These three cases are very

similar, and so we shall only expound the proof of the first one

Case 2, D =a=3
Thare are 4 possible ways to represent 4 (mod 35)
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Cage 201. a=4
Ifbea=3,b=a+ =5, ¥We must then consider the
expressions which ocould equal 6.

They are ¢ = by d = ¢y 37 - d,

Case 2sledle c=b =8
The set of residues is
4, 7, 13, 4 33, 30, 24, 37-d
2, 3, 5 9,11, ded, 42, 6, 8, d-7, d=5, del3, d-ll
35, 34, 32, 38, 26, 4l-d, 39-d, 31, 29, 44-d, 42-d, 50~-4, 48-d

The least of these expressions in d

d - 13 or 37 - d, must be 10
Tharefore, d = 23 or d =27
Therefora, d =4 =42-4 or d=13=4] - 4

This contradicts ocur premies.

Case 2.1.2; d-a=§
Tha set of residues is
4, 7, c, c + 6 33y 30, 7«0, Jl=c
2, 3, 5, o=d, c=2, o+2, c+4, c-7, ‘c=5, c-l, c+l, 6, 8
35, 34, 32, 4l-o, 39-c, 35-0, 33=c, 44-c, 42-0, 38-a, 36=-¢c, 31, 29

The lsast of these expreseioms in ¢

¢ =7 or 31l =c, muat be 3
Therefore, ¢ = 16 or c =22
Therefore, ¢ + 4 = 36 - o or C=7m=37 =g,

contrary to our premiss.
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Cape 2.,1.,3. 37 -d =6
The sat of residuss is
4, 7, c, 31 33y 30, 37-g, 6
2, 3, 5, ce=t, c=2, 27, 29, c=7, 0=5, 24, 26, 3lec, 33~c

35, 34, 32, 4l-¢, 39-¢, 10, 8, 44-¢, 42-0, 13, 11, o+6, c+4

The loast of thepe expressioms in o,

¢ -7 ar 31 - ¢, must be 9
Therefcre, ¢ = 16 or c =22
Therefore, o =5 =11 or 0=7=237 =g,

contrayy to our premiss,

Casze 2.2, C=ob=nid
Inthis cas8a 60 = b+ 2 = 6., Vo knowalsooc «g =7,
We have to find expressions which could sequal 8.
There are 3 6f these

I,d-ﬁ. 37-d

Case 2,2,1. a =38
The residuee are
8, 11, 15, ¢ - 29, 26, 22, 374
2, 3, 5 7, 9, d=8, d=6, 4, 6, d-l1, d-a, del5, d-13
35, 34, 50, 28, 45-d, 43-d, 33, 31, 46-d, 44-d, 52-d, 50-d
The least of these expreesions in 4
d =15 o 37 - d must be 10
Therefore, d = 25 or d = 27
44 «ded-8 or d-8=46 = d
contrary to our Mas.
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The residues are
8, a3, a+7, 8+lD, 37-a, 34-a, 30-a, 22-a
2, 3, 5, 7, 9y 15, 17, 12, 14, 4, 6, 8, 10
35, 34, 32, 30, 28, 22, 20, 25, 23, 33, 31, 29, 27.
The least of the expressions in a,
3 or 22-a, must be 11
Therefare a = 11

Therefore, a + 3 = 14, contrary to owr premiss,

ca“ 2.2.30 3” - d = B

The case is similar to case 2.2.l.

Case 2,3. d-0c=4

The case is similar to came 2.2,

Cabe 2.4. I =-d= 4

The case is saimilar to case 2.1

We now know that we can comstruot a mynohronous code of
a certain length which attains the upper hound on its efficiency if
the most efficient code of that length has two or three Ol pairs for
its generalised ‘herald', If the moet efficient oode requires fowr
or more Ol pairs, we do not know whether we can construct it or not.
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So the firet value of n for which our upper bound may not be the
least upper bound ie the loweat value of n for which a generalised
therald and boxes! code with three (1 palrs would be less efficient
than one with four Cl pairs, if the latter could bs construsted.
This value of n is 94,

Conedder n = 93 and n = 94,
(1) n=93
(8) u =13, 8 =13,
There are 61 arbitrary digits and 13 boxes in this code.
Total information-carrying cgpacity
= Ble6 'arbitraxy digitst'.
(b) u=4,58=29
There are 67 arbitraxy digits and 9 boxes in this code.
Total information cerrying capeoity
= 81,3 tarbitrary digits’
(3i) n = 94
{a) u=3, 8 =14
The 80 arbitrary digits and 14 boxzes cculd carmy
82.2 'arbitrary digits'.
(b) umdg, s=9
Tha 68 arbitrary digites and 9 boxes could carry

B2¢3 ‘arbitrary digits'.

For values lass than 94, the code with 3 Ol pairs is more

afficient; for n greater then this, the codas with 4 Ul pairs would
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be the more aefficient and would attain the upper bound on their
efficiency if they could be constructed; but if they cannot be

constructad, our upper bound is no longer a least upper bound.

847 Uther Types of Synchronous Codes

We have inveatigated both the 'herald and boxes'! codes,
typified by the M, K and £ codes, and the fixed place codes,
Gilbert's codes and the F codes, in considerable detailes The reason
we have glven for this is that these codes are the easiest to
implement in a practical application; in fact there does not seam
to be any other type of synchromoue code which could be umed for
information trsnamiseion,

Howaver, we bave made refersnce to the fact that no more
efficient clase of synohroncus codes can he constructsd; we have
assumed in making this statement that there is no method of con-
etrueting synchronous codes other than one of the methods which use
interactions between fixsd positions or reatricted stringz of
positions (e.g. baxes) to achieve synchronisation. We have also
stated that longer strings of digite 4o not provide zreater

efficiency.

Intuitively, there are arguments for and agminst this
latter statements; we can either argue that, since the ¥ code, which

vees boxes, is nore efficient than the ¥ code, which uses fixed
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Places, *boxes' of 3 or more digits will provide zreater efficiency;
or we can say that the greater oclumsiness of larger boxss will
reduce tha efficiency of the resultant oode, We will show that the

latter argument is correct,

This ties in with the result of theorem 8+6.. To con-
struct such a code of length 35, we would not choose u = 4 and 8 = 1§
in fact chooging u = 2 and 8 = 7 gives a code which reaches the upper
bounde The main reason that we chose such an unlikely pair, apart
from the fact that it was the simplest case with u = 4, was to
illustrate the fact of uncertainty about the upper bound being a
least upper bound; in fact, it appears that because of the construc-
tional difficulties of long synchronous codes of this type which first
become apparent in this proof, the uppsr bound may still be lowerad
further., Bulthis iz all prematurey we have not yet shown that it is

an upper bound for all methods of construction.

We will now oonsider the problsm of construacting
synchronoug codes using other mathods than the fixed place mathod and
the *'herald and boxes' methods The only method whick appears to
have any possibilitiez of usefulnsess in a practical application is a
method which uses box~p's, which we shall define to be sets of p
digits, p>2, in the same way &8 a 'herald and buxes'! code uses boxes

containing two digitse



- 2853 -

¥a shall not ccnsider hybrid cases, whaere & ccde uses,
gay, boxes snd hox-3's, tc aohieve synchronisatione Such a
hybridisation was used cut of necessity when we had to fesncode
binary data and required an odd mumber of boxes; at this time we
fixad the first unit of the 0dd box as & unit, and the resultant
code becams a cross between a fixed place code and a *herald and
boxes' code, although we did not refer to it as such. But, just
as in this case ths unit placed an unnecessary resiriction on the
first position of the bex, sc would a box place an unnecessary
restriction on the first two places of a box-3. So it is reasonable
to assume that if we e¢an find a synchronous code which uses box-p's
and is more efficient than the generalised 'herald and boxes' code,

it will use only one kind of box-p's.

Fven if such a code could be constructed, it would have a
drawback. With the f-transformation, we had only to encode sets of
% binary digite into 8 box palrej thus we needed a 'dictiomary'! of
8 entriese But if a code using box-3's achievaed high efficiency,
we would still have to use one triplet as a herald, as we used 01 in
the 'herald and Loxes! codesj this #riplet could not then be usad in
the positions corresponding to boxes. So we would have at nost

gaven triplats available for use in the body of the ccde word.

8+7.1 Ixample

Suppose we had seven poseible triplets into which to

encode our informetion. We could set up & l-1 transiormatiom of
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two arbitrary digits into the trirlet set
8efs 00 > 000,
but this is highly inefficient, since

the maximum efficiency of a cole using this transformation is 2/3.

Wa could envode 5 digits into the set of box-3 pairs, and
this gives a maximum efficiency of 083, which is bettar than the
naxinum sfficiency of the i codej but now we need a ‘diectiocnary?
with 32 entries. And, with the longer herald, this improvement is
not attained for moderately mllvvnlues of nj for example, the M
code of length 97 can carry 142 arbitrary information digitss if we
cauld construct & box-3 code of the type cutlined above of the same

length, it could carry no more than 155, and probably less.

B.7+2 The Use of p-tuples in Boxes

The reason that the above code may not carry 155 'arbitrary
digite' is that although there must be at least one triplet, the
herald triplet, that we cannot use in the body of the code word,
there may be othars which we have to omit to ensure that the ocode ims

gynchronous.

As an aexanple, consicder an M type boxe3 code which uses
001 for a herald; and suppose that its length is equal to 1 (mod 3).
With the M code, the fact that Ul was not used as an information
box meant that no false word identical with a code word could start

in an odd-rumbered position modulo 2, and the odd length sufficed to



place the Ol herald of the next real word in a box poeitian of any
falae ward beginning in an even mmbered position. “¥ith & boxe3
code, no false word can start in positions equal to 1 (moc 3) or

2 (mod 3) for the same reasons given above; but false worde can
certainly start in positions equal to 0 (mod 3) as in the following

examples s

Suppose 001 blbabsb 4\’51’6‘1: is a word in & box-3 code, where the

bi's represent digite in box-3's, any digit triplet except 0Ol, and

a8 represants an arbitrmry digit, A meseage string espears as

No false word identical withk a code word can begin with b].' for
blbzbs is not 00]1, or at }’2' for then the next 001l would appear as
8 boxe3 in the false word, But a false word beginning at bs could
certainly be identicel with a code worde

S0, with only OCl for a herald, we would have to prevent

bbb, from being 00l. We could do this in two ways} we could fix

b,

5 28 1, which would lose us 4 of our so far ascceptable triplets, or

ensure b 4b5 wag not Ul, which would mean that we ocould not use ClO

or 011 in the body of a code worde In this latter case, with only
5 acceptable triplets (001, 010 and Ol1 being unavailablae) we could
not transform 5 arbitrary digits into the set of available bhox=3
pairsy thus the efficiency of a code constructed in the precading

exazple would be even less.
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There i8 a more efficient method of accomplishing
synchronisation in this particular case. If we construct a
gimiler code with herald, 0010, wa would be able to use Oll in
proeitions equivalent to the box-B's in the previous axample, and
would only have to prohibit (0l and 010 from box-3 's, Dut we still
have only six of the eight triplots available to carry informations
this is no batter than the i code, which has three of the four boxes
available to oarry informmationj and any advantage in the efficiency
of the hypothetical code is more than compeneated by the siampler

fdictionary' we can ume with the M code.

Thers is yet another method of achieving synchronisation
in & box=3 code if it is rather lomger than in our previous example.
We can construct & memiegeneralised box=3 code of which all wards of
the following type ars members

001 &4 0L B1¥gdy see bybobebbgboby by by, &y &,

vhqre again b31+1 b3:1+2 hsi +3 representg a bax-3 not 001, and a;

represents an arbitrery digit. In this code, ne false word which
begins in a position equal to O (mod 3) can be identical with a code
word, since either the second 0Q1 overlaps the next code word herald
or it occupies a box=3 in the false word., In this latter cass, we
can us@ all seven triplets not 00L, and 8o we can probably comstruct
more efficiant box=3 codes using this method than any other, But
we have fixed six vlaces instead of the thres we originally intendsd

to fix,
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8,75 Summary

What we have said about boxe3 sodes applies equally to
box-p codes for p > 3, axcept that the bigger 'building blockse!
make ths latter codes even more cumbersome, So box-p codes have
the following propertiess
(1) They have comparitively longer 'heralde' (or sltermstively,
lese freadom in ths choice of arbitrary boxes) than the il code,

(1) If only binary input is available, then something like
f-encoding will be required; this imvolves a much larger 'diction-
ary' than the d code and its f-transformation, although the sise
of such a 'diotionary' iz not even remoutely close tc the sise of
the one we would have to use wit: a oomma-free code, when the

number of tentries'! would be the mmber of code woprds.

(111) Trensformation of the same kind as was used to generalise the
¥ codes to the K codes is conceivable, but could scarcely be se

easy to implement,

8,8 Dafinition of the Froblem

Howsver, the result thet we want to develop requires that
wa consider all nossibilities such as this, So we will assume we

can construct 8 box-p code with: the following rroperties:

(i) The fixed places in the code are made up of u identical
p=tuples {corresponding to the Ul pairs ussd in the generalised
'herald and boxes' code) and cartain other fixed O'%s and 1's.

These are poeitioned throughout the word in peositions we shall not

Finpoint.
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(ii) There are 8 p=tuples of positions which cannot contain the
p=tuple mentioned in (1); they may or may not be able to contain

any cther petuples.

(iii) There are also positions in the ward which are completely
arbitrary.

(iv) 7e will sssume a fixed p-tuple occupies the first p positiona
and that it containe at least one unit and une sero. e shall
first develop the maximum efficiency of such a code in a general
way, and then refine our choice of varisbles umtil we obtain a
olass of codes which are the most efficient obtainable using the
box~p methods described above. We shall then compare this class

of codes with the generalised 'herald and boxes' codes.

89 The p-tuples wo can use

Befors we attempt our proof, we must amalyse the way in

which we shall construct a box-p code of high sfficiency.

Wa know that it will be of a form analogous to that of a
generalised 'herald and boxes' code, i.e. 2 code word will compist
of *herald! p-tuples end box-p's imbedded in arbitrary digits. Ve
have to & soover the p-tuples we cannot use in the box-p'sj
obviously we cannot use the ‘hersld! p-tuples -— are there any

others?

To answer this question, we refar to section Be7e2., in

which we showad that the most efficient way to construct & box-3



code analogous to the M code was to use two of fset 'herald?
p-tuples. However, this method will not work in a generalised
box=3 codes even if we can position our *herald' p-tuples in such
a fashion and still retain maximum starting-position eliminating
potential (and theorem 8.6 showed that this latter is not always
posaible, even if we do not attempt to place additional restrictions
on our positioning), the arbitrary digits between box-p'e, where a
false word identical with a cole word may start, do not restrict
any starting positions; the restrictions ere imposed only by

'herald' p~tuple interactions between themselves and with box-p's.

If we consider the X code, the baxes are positioned in
such a way that no false word can start in an odd-numbered position
without heving a box in its 'hersld', This probebility of
predictability of positions el iminated by the code farmat is not
possessed by the generalised ‘herald and boxes' code, where

expediency is the key to the placing of the reastricted positions.

In connection with this, it is interesting to note that
there are cyclic permutatione of the codes given in sections 8.4
and 845 which have sll their Ul paire beginning in odd-numbered
pogitionse There mey be a relationship between thia proparty and
the fact that we ocamnot construct the synchroncus code of lemgth

S withuwdand s =1,
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As an example of the difrerence of L type and X type
box-p codes, consider the following examples of code words of the

two types

00l a 4 001 b1b2bs ese b 4b5b6b7b8b9b10b11b12 8%

001 my OO Byboby ese Dybgbg &8 8 by b1 Yo By By 0

where the bi repregant digite in box-p's, snd the .'.1 represent
arbitrary digits.

The firat exampls is the one we used in szsction Be7.2 to
shor that we could constrixct an ¥ type box=3 code which usss all
seven other 3-tuples in the box-3's, But in the K type code we

get by making b,?hsbg independent arbitrary digits, a false word

which is identioal with a code word can start at ap.

¥e know from our experience with the M code that an M type
box=3 code will not in general be as efficient as a K type box-3
codes, S0 there will be many arbitrary digite between bux-3's, and
the problem illustrated by the above example will arise many times

in the most efficlient hox~3 code,

%ith the kK code, the boxes ensured that any false words
without Cl in their herald began in en even-mmbered position in a
code wordy it was this regularity that emabled us to prove so earily
that a K code is synchronous. It is likely that in a K type box-3
code, the boxes will emforce a similar restriction on the starting

positions of false words which have 'heralds' identical with that

¢f the code wards.
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Ideally, then, we would expect that false heralds eould
ouly start in positions a (mod 3), where a was a fixed digite
This would involve elininsting 010 ané Oll from the set of J=tuples
available for box=3's, as in section 6.7.2; in gensral, it would
involve tha elimination of a large percentage of the otherwise

available box-p's.

It may be unnhecessary to restrict starting positions of
false words &0 striotly; but we must discard at leaest one p=tuple
in any casa, and in the final analysis the number we discard will
probably be oonpiderably greater than this, especially for large

values of p.

We will show thset, for any given valus of p, even if we
hava to discard only one othsr p-tuple, the generalised *'herald and
boxes' code of a particular length should be more efficient than
any box-p code of that length; we will not consider particular values
of n, but shor that the upper bound on the efficiency of box-p codes

is less than that on generalised *herald and baxes' codese

We will in turn find formulse for the meximum efficiencies
of the generalised ‘'herald and baxes' code, and box-p codes for

P=3,p=4, and p = 5 gasuming in the last three cases that

2F o 2 p=tuples can be wed in the box~-p's. (This assumes that the

‘herald! p-tuples and one other camot be wsed), But first we need
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the following lemma, which gives us a precise value of the number
of positions which oan be sliminated as starting points for false

words identical with code words by interaction betwesn 'herald!

p-tnples.

Be10.1 Lemma

In & code with u 'hersld? p-tuples, the maxismum number of
positions which can be eliminated as porsible starting positions
for false words identiocal with code words because of interaction
between the ‘'herald' petuples is

2(p - 1)(\12 -u+1),

Proofe

If two 'hersld' p-tuples begin in positions bi and b 3

respectively, the starting positions which can be eliminsted are

those positione betwean and including the position where b1+ p_lin

the false word coincidaes with b 3 in the code word, and the positiom

vhore b J_._p_iin the code word coincides with b, in the false word,

i

excluding the position where b, in the false word ocoincides with b

i J
in the oode word.
880 Code Word s e s 001 4 oo
e 06 001 ¢ 0 s
False e s o6 D01 o6 @
Words 001, . 6 Not eliminated

.‘.001...
...001...

L N e T N . N an
)
®
®
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Thus each mir of p-tuples can eliminate at mest 2(p - 1)

starting positions, and there are uz pairs of p-tuples,

But ii‘_‘i_- 3 each“af the u p-tuples is interacting with
itself at the same time, This reduces the number of efieative

rairs of p-tuples by u - 1,
?‘.‘E..E.DI.

We shall now devise an approximation which simplifies our

caloulations in the next saotion,

861042 m

A close spproximation to the theoretiocal number of digits
lost to synchronisation by the & box-p's in a box-p code is

pe.2t?

Proofs

The mmber of 'qu that the digits ocan be arranged in a
box-p ism

(2° - 2)

Arbitrary digits could be arranged in the positione in
2P ways.

The theoretical fraction of a digit lost to synchronisation
by each position in a bax-p 18 then
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p - logy (2P - 2)

- p-mgé-m

- pa%fu-%ﬂ

= - logy(1 - 2'P)

whichy to & first approximation is

2P

But there ars altogether sp digits in box-p's.
QeEsDe

¥We are now in a position to exsmine the following cases.

8011 The Lfficiencies of the box-p codes

8.,11.1 The generalised ‘herald and baxes' code has

n-2(u2-u+1)+2ue+l and

L =2u + 48,
where L represents the theoretiesl

number of tarbitrary digits'! loat to synehronisation.

¥e again appm:;imte 10523 by 1.5 at this stage, where it
is accurate anough for our purposes,

The maximum efficiency cocurs when
8 =20+l

and is 1
1-@%F+wﬁh
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In this and the following sectiona we congider the maximum
theoretical value of n 28 if a code could be constructed of this

1ength.

8e11.2 The box-p codeg

We showed in lemms 8,10,1 that interaction between the u
‘herald? p-tuples can eliminate at most 2(p - 1»-}(1:2 -u+ )

gtarting positions,

Ve know that interaction betweon u 'herald' p-tuples and

® box=p's can dalininate at most 2us starting positions.

The maximum length of a box-p code is one greater than the
sumn of thess,

i.a.n-z(p-l)(nz-u+1)+2us+1

for this, L = up + pe.?.l'p.

by lemma 8,10,2,

8+11.3 The bx=3 gode

n-4(u2-u+1)+2us+1

L =3+ 3a/d

The maximum efficisngy occurs when

s =2

end is 1 - {9/4!1)% + D(n'l)
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Bell.4 The bhox-4 code

n-s(uz-u-t-l)-c-zm-c-l
L-4ﬁ+‘éﬂ

The maximm efficiemcy cccurs when

g e 2u+d
and s 1 - (5/20)% + o))
8el1.5 The box=b oode
n-a(uz-uio-l)-om‘rl
L = 5u + 58/16
The maxdmm officieay occurs when
s = 8ue4

and is 1 - (75/3&)\& + O(n']‘).

Although this code appears more afficiant than the box-4
code, we can reasomably asaume that in practioe we would have to
discard more than one S-tuple apart fram the herald; a similar
argument would apply to greaster wvalues of p. This comparison may
appear pointless, since wa have not shown that we can construot a
generalised 'herald and boxea' code of a given length with given u
and 83 in fact, we showed that it was quite likely that for many
values of n we could not comstruct a code as efficient ag the upper

bound would indicate.
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However, for any value of n we can construct a K code,
an £ ocode or an M godes For a given length n, the generslised
thersld snd baxes' code will be at least as efficient as the most

efficient code from any of these classes.

We will only compare box-p codes with X codes, since E codes
are clossly related to X codes and for the values of n where the N
ocode is more efficient than a K code, the bax-p codes are inefficient,

¥e can now prove the following theorem.

8,12 Thaorem

The noet efficient generaslised 'herald and boxes' code for
& given length n is the most efficient synchronous code of that

langthe

Proofs
The afficiency of a K code of a given length n is, by the

formula in 5.11, 3 Y
1« (2/m)*+0m")

Thie code oan be constructed, and it is much more efficient
than any of the bax-p codea given; these latter codes may or mey not

be capable of construction.

%e alec chowed that a X code of a given length is mare

efficient than an F code of the same length,
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Since the K code ie a particular cage of a 'herald and
boxes! code, the generalised 'heruld and baxes' code of a ;ziven

langth must be at least as efficient as the K code of that length,.

BalZ2el If we use the actual value of logzii inetead of the
soproximation 1.5, we find that the upper bound on ths efficiency of

a generalised 'herald and boxes' coude is

1 - 150" + o ).

8413 [The sign representation

In eection 2.15, we showed that Golomb's camma-free code
of a certain length consists of all the words which have certain
sign repressntations. Ve shall show that our generelised 'herald

and boxes' codes can be represented in similar fashion.

When we find the sign representation of & woxrd in &
goneralised *herald and boxas' code, in the same way as we found the
Bign representation of a word in & ocomma-free coda, there is always
a plus sign in the position in the sign sequence corresponding to
the first position in a Ol pair in a oode word, and we alwaye have &
minus sign in the positimm corresponding to the first position ina
boxe Apart from these restrictions, and the restriction that there
cannot be two consecutive plus signs in a sign representation of a
ward in & binery oode, the generalised *herald and boxes! code of &

certain length will be shown to coneist of all words with permissible
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gign reprasentations.
8.ge¢ Consider the ¥ code of length n = 11. This is not a good
exanple of a generalised 'herald and boxes' ocde, but it is the

moet efficient mynchroncus code of that length,

The sign representation of a word in the I code 1s

where the x's represant signs

which are either plus or minus arbitrarily.

The second and last sign in the =tring rmst be minuaes,

gince there cannot ba two comsecutive plus signse

If we use the representation of the sign sequences by the
lengths of the strings of mimus sigms, as in seciion 2,15, we find

that the permissible sign sequences are represented by

10 2,1, 5 2y 141, 3

2, 7 2y 3, 3 2,1, 3, 1

4, 5 2y 5, 1 2, 3,1, 1

6, 3 4,1, 3 4, 1,1, 1

8, 1 4, 3, 1 2% Tgpilegs by 11
6y 1, 1

If we compare thesse represantstions with those given in
saction 2,16, we find that each of the above representations is a
cyclic permutation of one of the representations of the comma=free
codee The represantations in the latter set for which there is ne
counterpart in the i code are those with more than one even~-mmbered

minuz string.
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Because of this, we can quickly see that the ¥ code of
length 11 must be synchronous, since the only even-numbered minus
string in each representation is the first one. Thus any false
code word beginning with 01 (i.e. whose representation begins with

& plus sign) would have an odd-numbered first minus string.

Zveary i code Ims the same type of met of reproaentations,
i.e. every sign sequence has a first even-nusbared string of minus
signs, and no other even-numbered string., This is not so
important when we consider n = 11, for there are only two represen-
tations in the comus-free code sat with more than one even-mumbered
string; but for large values of n, thers are many suh representa-
tions, and so the M code represents a smaller and smaller percentage

of the total number of cycles of order n.

if we consider the X code of length 13, we find that
there are now ten representations in the comma-free code set given
in 2,17 which have no counterpart, But we ahall consider in
detail the K code of length 13 which has two Ol pairs for a hersld;
although this is not as efficient as the i code of that length, it

gives us a better idea of the comparison for large n,

A word in the K code of length 13 has & sign representation

of
+-+--xxx-xxxx,

where the x's again represent

signe arbitrarily plus or mimus.
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The permissible sign configurations are

1, 10 1, 2, 7 12,1, 5 1, 2,1, 1, 3
1, 3, 6 1, 2, 3, 3 1, 2, 1, 2, 2

1, 4, 5 1, 2, 4, 2 1, 2,1, 3, 1

1, 6, 3 1, 2, 5, 1 1, 2, 3, 1, 1

1, 7, 2 1, 3, 2, 3 1, 3, 2, 1, 1

1, 8, 1 1, 3, 3, 2 1, 4,1, 1, 1

1, 3, 4, 1, 2,1, 1,1, 1

=

-

s

-

1Y)

L )
A T I ]

Again we can quickly show that the K code of length 13 is
synclronous, since every representation begins wi th 1, followeéd by
an even number or 3, The only possible false vords which may have
representations identical to those of code wordas would have a
representation beginning with 1, 3, 1, which does not begin any

representation in the set,

The K code, unlike the X code, can have representations
with more than one even-numbered minus atring; however, if we
compare this set with the one given in 2,18, we find that the
ma jority of the reprssentations in the latter set without an equiva-
lent in the K coda are the ones with a small number of minus strings;
for example, 1, 10 is the only one of the six in the first column

with an equivalent in the K code, This is explained by the fact
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that a word in the X code of lanpzth 13 with two Ol padrs far &
herald has at least two plus s8igns in its representation, whereas a
commg-free code may have only ones But, simce for larger and larger
n, a smaller and amaller parcentage o« the total number of aycles ie
represented by repreaentations containing a few large minus strings,
the efficiency of the K code is not impaired to the same degree as

that of the M ocode.

¥With any generalisged ‘herald and boxes' code with mox then
one fixed Ol peir, we find that the necessity of at least two plus
gigns in every representation means that not many of the representa-
tiong in the cama-fres code with only a fow minus sirings are
represented, This is another way of stating the reason why a
generalised 'herald and boxes! code can never be as efficiemt as a

comma~free code of the same length far n > 7.

However, we have shown that there is a marked correlation
betwaen the sign representations of the words in a generalised
therald and hoxaes' code and a comma-free cods, and that the calems

are not as dissimilar as they appear on the surfaca.
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9. SUMMARY

I ———

We have constructed many &iffarent types of aynchron-
ous codese In particular, we have construsted codes of the 'herald
and baxes'! type which attain a high.degree of efficiencye In fact,
we have shown that unless there is a radically different method of

constructing synchronous codes, the K codes (and the B, codes) are

not far below the iimit on efficiency we established in section 8y
generalised 'herald snd boxoe' codes can be constructed which reach

this bound far n< 94,

Ve shall use the following table to compare ihe main

types of codes we have constructed for a range of values of n .

Efficiency

nw9 n=l5 n=17 n=37 n=856 n=20l n=393 n=1353 n=l0369

Cycle Upper _

Bound o648 T390 760 85F ,925 «962 978 #9982 «999
Hersald & Boxes

BmXIId .659 .?01 0711 .808 0872 .919 .940 0967 .988
K code o508 651 691 .802 886 911 .936 «965 987
X code

(f=ancoded) <444 600 647 784 .847 900 .929 962 .986

F code «D56 G600 647 J76T 847 500 ,929 L,962 .986
N code o839 L701 o711 755 776 .786 .789 L7T9l .79
K code

(f-encoded)  .556 667 .647 705 729 741 .746 L7489 750

Gilbert's code .333 .467 .529 676 776 .B56 .B98 9456 .980
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