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SUMMARY .

During investigations of the X-band microwave spectrum of
Mn2+ ions adsorbed on bacterial cells, weak doublets were noticed
between the main (Am = o) hyperfine lines. Similar doublets had
been reported in the spectrum of Mn2+ adsorbed on inorganic ion-
exchangers, which at the commencement of this work had not adequately
" been explained. These doublets were tentatively assigned as
foarbidden (Am = + 1) transitions, and investigatiorns to test this
hypothesis were carried out. Initially it was found that there was
poor agreement between the experimentally determined line positions
of these doubtlets and line positions calculated using simple non-
angular expressions. When angular dependent terms were taken into
account, utilizing a method used by Bleaney and Rubins to explain
splitting of hyperfine lines observed from a plasticine sample,
agreement between theory and experiment could be obtained for the
spectrum of the adsorbed Mn2+ ion.

Investigation of spectra from powdered samples containing Mn2+
in sites of large axial crystal fields then showed that the original
theory of Bleaney and Rubins was unable to even qualitatively explain
féatures of spectra observed. Because of this, exact methods were
used to predict the intensity variations of allowed and forbidden
transitions with angle between the crystal field axis and Lhe wpplied
static field, ahd interpretation of all powder spectra was then

obtained.



The ef%ect of rhombic crystal field symmetry on powder spectra
was then considered, and it is shown that certain component lines
of powder spectra are preferentially broadened, and as well,
splitting of hyperfine lines can occur.

During the search for suitable sampies, materials were obtained
which prcdﬁced Mn2+ spectra piéviously not reported.

Finally a technique is reported which, when refined, could
enable investigations of central (M = +9M = =%) transitions
without the complication of overlapping fine structure, and enable

identification of component lines in overlapping spectra.
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CHAPTER I

The Spectrum of Adsorbed Mn2+

1.1 Introduction.

The ion-exchange properties of bacterial cells is a well
known phenomenon (Dubos 1949), and electro-negative cells washed
in Manganese solutions readily take up IVIn2+ iors.

The X-band microwave spectrum recorded from a sample of E.Coli
washed in 0.01 N MnClz, is shown in fig. 1.1, and may be cuompared
with an E.S.R. speétrum from Mn2+ adsorbed on the ion-exchange resin
Amberlite IR-120(H), fig. 1.2. The observed spectra are seen to
consist of six broad hyperfine lines (am = 0, M = b— M= -1
betwsen which can be observed five pairs of broad weak lines. These
broad doublets, observea in the speétrum of adsorbed Mn2+, were
originally identified as 'fine structure' by Faber and Rogers (1959).
Although fime structure is observable in certain Mn2+ powder spectra
(Kasai 1962, Bleaney & Rubins 1961) it seemed unlikely to this
author that the doublets observed in the spectrum of adsorbed Mn2+
were fine structure. In Mn2+ powder spectra,fine structure lines,
if observed, should also appear outside the central hyperfine
sextet (M = %), whereas the weak lines observed in the spectra
shown, all lie inside the central sextet. These weak lines were
then tentatively assigned as forbidden transitions (am = t1) and

investigations carried out to test this hypothesis. Identification

of the weak doublets which are observable in the spectrum of



N.B. The numbers running across this and other chart recordings
shown, are inch markings, and do not refer to lines in

spectra.
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adsorbed Mn2+, as forbidden transitions, was made by Nicula et al
(1965) on the basis of line position measurements. The analysis
used in this work does differ, however, from that used by Nicula et
al (who have used incorrect expressions for line positions, as shown
later). The analysis used to explain features in the adsorbed

Mn%+ spectrum may also be extendéd to obtain an interpretation of

Mn2+ powder spectra in general.

1.2 Crystal Field Symmetry For The Adsorbed Mr°' Ion.

Forbidden tfansitions have been observed when the Mn2+ ion is
in sither & sile ol cubic or axial cryslal field symmnely ., (hee
for sxample Lyons and Kedzie 1966.) In acqueous salution the Mn2+
ion is surrounded by six hydrated water molecules, and neglecting
perturbations,might be expected to occupy a site of cubic crystal
field symmetry. It is shown in appendix A that the reiative inten-
sity of forbidden transitions of Mn2+ ions in a site of cubic field
symmetry is proportional to the square of the cubic field parameter
nan, Title (1963) has presented evidence that this parameter is
small when the hyperfine parameter A is large, which is the case
experimentally for the adsorbed ion. Because of the relatively
large measured intensity of the doublets,we must then consider that
the adsorbed Mn2+ ion is in a éite of axial or rhombic crystal field
symmetry, which may be due to distortion of the surrounding hydrated

cage of water molecules, due to the adsorption process,



1¢3 Experimental Line Positions and Spacings.

For powder spectra the parameters A and g (or HD = h\E/gB)
may be determined approximately by a fit between experimental line
positiorns, or field differences between adjacent lines, and non-
angular dependent expressions (Faber & Rogers 1959, Wolga & Tserng
j964). For field differences between adjacent resonances, Wolga &

Tseng (1964) have given the following exﬁressions:-

’ _ .
HA(m) = =|A - lSﬂ.J + ﬁ? .[Zm—i] (1.1)
aH® 2H
3 8] 0
- 3 2
Ho(m) = <[ 25A <[2m-4] + 17A° + 2g.H (1.2)
FYo = — N'o
2H 2H
.. © o

A best fit between field sSpacings for allowed transitions
observed in tHs adsorbed anflspectrum,,fig. 1.2, ard spacings cal-

culated, using equations (1.1) is obtained for :-

A = =-97.3 Oe

H = 3,270 Ge
m Experiment Theory
-3/2 90.5 (Y- 1.0) Ce 91.2 Oe
-1/2 93.4 L L 54.0-"
1/2 97.0 it " 97.0 "
3/2 100.7 - " O Y

5/2 1N2.9 " " 102.8 "



If these values of the parameters are ihen used to calculate
spacing for forbidden doublets, using equation (1.2), the

following results are obtained -

m Experiment Theory
-3/2 23.5 (£1.0) Ce 22.8 Oe
~1/2 24.5 moom 24,9 "
1/2 26.0 m 274 "
3/2 27.0 n w 29.2 "
5/2 26.0 v 3.4

The poor agreement between theoretical and experimental
spacings would then seem to indicate that simple non-angular
expressions are insufficient for the description of the experi-
mentally determined line positions for fhe adsorbed Mn2+ spectra.
As well, theoretical line positions for single crystal spectra also
predict that forbidden doublets should lie midway between allowed
(M = &, am = 0) transitions. Experimentally it is found that the
doublets observed in adsorbed Mn2+ spectra are shifted towards the
high field side relative to the midpoint between allowed transitions,
with the relative shift increasing with field. Similar shif'ts

have been reported for forbidden doublets observed in powder

specimens containing Mt (Waldner 1962, Odenhal 1963).



1.4 Previous Attempts to Explain Shifts.

Wolga and Tseng (1963) considered thé possible effect of
variations of line positions due to random crientation of the
crystal field axis in the crystalites comprising a powder sample,
relative to the applied static magrnetic field, using an averaging
method, and concluded that for a value of D = 50 Oe, no large
relative shifts between lines should occur. Their conclusion is
however suspect for two reasons, firstly, their apparent incorrect
derivation of higher-order corrections using perturbation meihnds,
and secondly, by following through the calculations sugyested by
these authors, il is apparent that they have failed to weight the
function they averaged, when considering forbidden transitions, to
take into account the 8in229 angular variation of intemnsity observed
for low values of D.

Waldner (1962) and Nicula et al (1965) have alsc considered the
effect of random orientation, using as an average shift the weighted

function: =

T
H = EH(Q).SinQ.I(Q)’.dQ_

where H(B) is the variation of line position with angle between the
Z axis of the crystal field and the direction of the applied
magnetic field, and I(8) is the angular variation of line intensity.
Relative shifts of forbidden doublets were predicted using this
averaging method. As explained later, however, these authors have

used incorrect expressions for H(B).

If an average is to be taken, the following may be considered.



1.5 Averaging Over Random Orisntations.

Suppose H = H(B) is the predicted field at which resonance nccurs,
' and the directions of the crystal field axes are randomly oriented
with respect to the direction of the static field. To maintain con-
tinuity with angles defired in the next chapter, we may consider,
alternatively, that the crystal axes are fixed in space and the static
field diréction is randomly oriented with respect to these axes. The
probability that the fieid direction will lie in the solid angle dw,
abocut the direction 9,%, as shown, is

dw = sin@ d8 dy

an aT

The probability that the field direction

Y
© will lie between 8 and 8 + d8, irrespective
Df\f is then -
2T
sinB8 dB8 d = sinB d8
_ im 2
¥=o

If P(H) dH is the probability of transition occurring in the
range H to H + dH, then P(H) dH is equal to the probability of B8 lying

in the 8 to B + dB range corresponrding to the H(B) function =~

i.e. P(H)dH = ;—sinQ d8
1o, o dH
or P(H) = 7 sin8 ig
which may be referred to as the line shape factor. (Bersohn & Baird

1966.)
If the intensity varies as a function of H or 8, the intensity in

the range H to H + dH is P(H) dH.I(H), and as -



I(H)dH = I(8)d8
the intensity in the range B to B + dB, wr H to H + dB8 is then
P(H)dH.I(H) = I(B)sinB dB
2 dH
de

The average or effective shift due to angular terms can then be

taken as the first moment of H(8)

J% H(B) I(8) sinB d@

[H(g) P(H) I(H) dH ! 48
H = =
[p() T(H) an I 1(0) sing a8
dif
A T

When this function is evaluated for both allowsd and forbidden
lines, shifts of forbidden lines relative to allowed transitions
are predicted. Averaging methods are however unable to explain
evern qualitatively other features observed in some powder spectra,
such as splitting of hyperfine transitions. As well, as shown in
section 4.2, averaging methods may predict yalues which differ
considerably from experimental results. An extension of the
method used by Bleaney & Rubins (1961) to explain observed splitting
of hyperfine lines observed in modelling clay, will predict the
observed shif'ts of lines. In addition, the method erables an
interpretation of all powder spectra, when intensity variations of
allowed and forbidden transitions, computed by exact methods, are

used,



4]

Before describing how the Dleaney & R.vina' selhod may be
used to predict line shifts, etc., it is first necessary to
derive expressions for line positions, correct 1o third order,
for which considerable disagreement exists 1in the published
literature. As well, it was felt necessary to test the relstive
sffect of the so called cubic component of & crystal field on
predicted intensity variations. For this purpose an electro-
static crystal field of trigonal symmetry is arbitrarily

consideved.



CEAPTER II
THE SPIN HAMILTONIAN FOR TRIGUNAL AND RHOMBIC SYMMETRY

2.1 The Crystal Field Potential for Trigonal Symmetry.

The Spin Hamiltonien representing the interaction of a para-
magnetic ion with an applied magnetic field, and with surrounding
ions, may be written as:-

H = S .g.H+V, (2.1)

where the first term represents the Zeeman interaction energy, and

the second term the "crystalline" potential energy due to the electric

field of the surrounding ions. \/C can be represented in the form:-
VC = ? -aV(xi,yi,zi) (2.2)

where V' is the potential of the crystal field and Xis Yys 2, are the
coordipates of the i-th electron in the unfilled shell. By assuming
that the wave functions of the paramagnetic ion and the surrounding

ions do not overlap, the potential V satisfies lLaplace's equation, and

may be expanded in a series of Spherical Harmonics -

m
Y] (8,4) (2.3)

This expression may be considerably simplified by retaining only
3 . , 2+ S . U
some of the terms. The Mn ion has a 3d~ electron configuration,
and when Vc is calculated with the aid of d-electron wave functions,
the YT fdr.which 1%4 will give matrix elements equal to zero
(Al'tshuler & Kosyrev 1964). All terms in odd 1 may also be omitted
as their matrix elements equal zero, since the electron wave functions

are invariant under an inversion transformation. The term in 1 = O
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giveé an additive constant which may be set to zero, and further
simplification is obtained by considering the symmetry of the
crystalline electric field at the site of the paramagnetic ion.

For the case of trigonal symmetry, i.e. V (4 + ZW%) = V(g), the

+,. o+

values of m must equal O, 1—3, -6, =9 ..... since the # dependence is

determined by elmﬁ. The previous condition, 1 = 4, with m = 1,

1-1, 1-2, ..... =1; then gives the possible values for m as 0 and L3,

The terms which are then applicable for the Mn2+ ion, in a crystal

. : » +
field of trigonal symmetry, are Y;, YZ and Y4 , and we write:-
o 2,0 o 4. o 3 4.3 -3 4 -3
Vo= Zo-e (Ar Yo + A Y, o+ Apx Y, + AT, ") (2.4)

For a real potential, and with a choice of Spherical Harmonics

. ) X #* -
auch that (YT)‘ (-1)"y 7"

3 -4
-1}y we must have A, - =A {c.f. Darain

1’ 4 4 "

1958).

The matrix elements of VC may now be calculated by direct inte-
gration using Wigner coefficients, or by expressing the Harmonics in
cartesian coordinates which allow "operator equivalents" (Stevens 1952)
to be calculated, which can then be used to obtain the matrix elements.
The latter method will be used by this author.

If we assume that the Zeeman interaction $S.g.H is much larger
than the crystal field interaction it is convenient to use a co-
drdinate system in which the Zeeman term is diagonal. If H is
parallel to the Z axis of a coordinate system which has Eulerian

" angles (¢,8,4) relative to the crystal system, then on the assumption
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that the g factor is isotropic, the problem involves transformation
of our Hamiltonian by rotation through (¢,8,4). (Low 1960, Kikuchi
and Matarrese 1960), and in practice the g rotation is arbitrary and
may be set mqual to zero.

Under this transformation ﬁé.g.ﬁ-—»gBSzH

The transformation of the crystal field terms may be accomplished
by first cenverting them teo their operator equivalents, which are
functions of the spin operators SZ, 8+, 5_. Known transformations
may then be applied to each of these operators, to obtain a transformed
operator aquivalan£ (Low 1960).

Alternatively, and with much less efiort, one may use Lhe ool
that the operator equivalents,denoted by TT, which are derived [(rom
the cartesian form of the Spherical Harmonics, possess the same trans-

formation properties (Dorain 1958), as outlined in the next section.

2.2 Transformation of Operator Equivalents.

Following Hamermesh (1962) we denote the transformation by
R(ﬁ,@,*) where the transformation is described by -
1) A rotation through the angle % about the Z axis —»(X',Y',Z) axes
2) A rotation through the angle B8 about the Y' axis —s(X",Y',Z') axes
3) A rotation through the angle # about the Z' axis —s(X"',Y" Z') axes
with positive rotations defined by the right hand screw rule.

The same rotation is produced for a rotation about fixed axes in

the order #, then 8, theny.



12

Associated with the transformation is the operator DR such that

m m'_m'm
DR(ﬁ,Q,%) Tl = X Tl Dl (4,8,y) (245)

m t
i 1
where the DT m(é,9,+) are matrix elements of the irreducible repre-

sentation of the rotation group, given by :-°

DT'm(ﬁ,9,+) . eim'”eim*dz'm(a)
dT'm(Q) g 'y (1) ™D /(L+m) 4 (1-m) L(1+m" )4 (1-m"' )}
) A%k
(l+m=n)t(1-m'=n)tnt(n+m'-m)?
Acosg/2) oMM =2n g )™ TR 5 gy

and the range of the integer n in the summation, is determined by
non-negative factorials in the denominator.
| For our purpose, the final rotation g is completely arbitrary,

and may be set equal to zero.

Before (2.5) is used to transform the crystal field terms to
the Zeeman diagonal system, we may first consider establishing a
relationship between the coefficients AZ and Ai. This has been
established by Kikuchi & Mataresse (1960) using an alternative
transformation - the following, it is hoped, is a clearer exposition.

For a fourfold axis of symmetry the crystal field potential
is given unsmbiguously by:-

V- s [TZ +jﬁ§_l(Tj N T;A)J Kikuchi & Mataresse (1960)

15 14 Ballhausen (1962)
Cavenett (1964a, 1964hb)

(2.7)

where 3a = zero field splitting. This expression contains no term
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1
in TZ : We may then transform the cubic potential expression

referred to a threefold axis, to a fourfold axis, and equate the co-
efficient of Tl, derived from this transformation, to zero. From
fig. 2.1, it may be seen that the transformation may be performed in

two nen-equivalent ways, viz. :-

a) a rotation about Z by —'%, then a rotation of —c05_1(J%) about VY,
OR '
b) a rotation about Z by - %3 then a rotatior of +cos-1(j%) about Y,

i.e. R(aﬂ,tcus-1(j%), 0)

4
Performing the transformation we find - -in
, 4
T+ =-1,1 o0 3.3 =34 - 0+ 3,1 /
UR(-d’_CDS (JH)’D) [A4T4+/\A(T4—T4 ﬂ ﬁr(J1O.AA - J? AA)TA'B // 18

3 + '1[] (%]
whence H - | — B )
N 7./\ (/.”)

(The ambiguity of sigr has been discussed by Kikuchi & Mataresse 1960)

S -+ -1, 1 0.0 + EE; 3 -3 3 ,o0.0
Similarly: DR( 4 €08 (/3),0) [A4T4 -/ ?(TA_TA il—)- = A414

and on equating with the coefficient of Tz in equatior (2.7),
0 2a
A4 = . 45 .

2.3 Transformation of Crystal Field Terms to Zeeman Diagonal System.

As our crystal field potential we use:

u] 2a o + TE_ 3 -3
Ve =BT 45 [Td '/ 70Ty = Ty )] (2.9)
0

where we havé put D = A_, and will be referred to as the axial field

N

parameter,

For a general transformation by R(D,Q,%), we then obtain -
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p| 12 (3c0329-1) + T1 (=J& sin2B) + T2 (fg sinzg)'
2 2 ry _ 2 ry _

=8 T: (3500549-30 COSZQ + 3-'_- ZDﬁSinagCDSQC053+)

8

K|

™

+T;l{} 20.[75in29c0329 + sin2@8 ¥ 4J§A(35in29c053¢ = 45in49cms39

+ i3 sinEGcostinﬂ'}] }

+TV_{ 10 [ﬁsinzg - 75in4Q a2z {2ccsjgsin9cn53¢
8

- i (3sir@ = 251n9)51n3¢4]}

+T2{-j 40 [TSihagdo,aQ ; j—2- '{cns3~_/¢(4coszg + 4éin49 - 7sin2'9)

56
A = L A - 2
+ i ninlyg (4cosB - 9sin” Boosd ﬁ]}

' | o - . -3 :

+T3.{jlg [Sin49 + 4 sz{cosaf (4sinBcos B + 3sin39cosg)

-2 . : s )

+ i sind¢ (4sing - ,3sin39)}] }] (2.10)
where for brevity we have listed only those terms which produce

diagonal or above-diagonal matrix elements, noting that the resultant

matrix is Hermitian

2.4 Rhombic Component of the Crystalline Field.

When the electrostatic crystal field at the site of a para-
magnetic ion possesses rhombic symmetry, the energy interaction may
be represented by the fine structure Hamiltonian (Al'tshuler & Kozyrev
1964) .,

+ o+ +
HC (Rhombic) = A + A4 T4 + A T4 (2.11)

0.0 o}
22 2 4
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i

For the purpose required,the so-called cubic terms T4 will be

neglected.
A trigonal or tetragonal field may be taken to be the sum of

an axial field (rapfesanted by A;T;) and a cubic field (represented

by terms in TZ), Similarly, it is convenient to regard a rhombic
field as being equivalent to an axial field with a rhombic component
[ g )ty .

(represented by A2 T2 ). Transformation of this rhombic component

to the Zesman diagonal system then produces:-

2.5 2 [_o 2
0.(0,8,4)AST- = AZ | T2. /6 .sin“Bcos2y
R 2'2 2| 2772

+ T; {sinQ (cosBcoszy + i sin ?%)}
2 (. 2 =

+ T? {cos 2¢ (cos™8 + 1) + i sin2¢cosA8)
) 2

(2.12)
where again we list only terms which produce diagonal or above

diagonal matrix slements.

2.5 0Operator Equivalents.

The form of the operators used are listéd below. 7° T1 T2

2! 2 2

and Tl are derived from the Spherical Harmonics in appendices C and D.

Others have been taken from the tables listed by Al'tshuler & Kosyrev

(1964).
o 2 1
T, =85, -35(5+1)

+ -
+ 1
T2 = /E (sti + StSZ)
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ng =1 52
Vg &
7% -1 |35 5% - 305(541)5% + 25 §2 - 65(S41) «+ 352(5+1)2]
4 E‘ z z z
1’1 3
T [Sf(5}+f(5)5]withf(5)=:75—35(S+1)S—5
4 ti 172 + 1" 72 z z z
s 2o .2 2
Ty / [ T2 (5,) + £,(5_) J with £(S ) = 750 = §(S+1)-
+

=3 = 3 3
T4 = +/_h_[ +72 Si}

The Fine Structure Hamiltonian .

Collecting all terms we use as our transformed Hamillonian

L] : ) 2 ) )
He = oBHS, *-01(52—1;5 (5+1) +/:5 +/o& + M5 S 45 5 )

* .
+ A (55 +55 ) + (35 54-305(5+1)52
Zz = - 2z Z Z

N 255§ - 65(5+1) + 35°(541)9)

+ BAS, T (5,) + £,(5,)8,) + BL(S_f (S ) + (5 )5 )

# YISIR,(5,) + £,(5,)8%) + YiUS A, (S) + £,(5 )57)

3 *
+8(5°5 + 5 53) + 3,(535 + 5 53)
+ Z z + - 2 zZ -

+ €S + ) 54 (2.13)



For rhombic symmetry the following expressions are then used:-

o = _1__[ (3c0529-1) + 3t sinzgcos'Z\/:] ' ©(2.14)
> :
. 2, . .
p = 1 [D sin“® + E (cos2ycos 8 + cos2¢) + 2;Ec05981n2¢']
i (2.15)
A= L ‘sinQ[ cos8 (D-E cos2¢) ~ iEsinZ;‘r] (2.16)
2 , ,

and we neglect all cubic terms,ahdﬁhava put Ag = E,JE/Z to conform
to the most common notation.

For trigonal symmetry we use:-~

o = Q(ECOSZQ—H (2.17)
2
. 2
p = Dsin'Bd (2.18)
4
A = D sin2e (2.19)
7
4 2 + A . 3 ,
« = a (350s 8 - 30cos B + 3 = 20./2 .sin BcosBcos3y)
1,440 (2.20)
B = =a [YSiHZQCDSZQ + 8in28 - 4/5
= , +
576 _
e . 4 - PR
(38in“Bcosdy -4sin Bcosdy+ idsin BcosBsin3y) (2.21)
6 = g_[ﬁsin?g - 75in49 b 2 /E-{ZCOSSQBich083¢ - i
288 ' : ' =
(3ein’s - 2sing)sin3¢}] (2.22)
§ = a [ YSinagcosQ ;/5(c033¢'(4cos29 + 4sin49 - TSinZQ)
144+ ’ ‘

+ i 8in3y (4cosB - 95in29c059)] (2.23)



a sinag ¥4, \/‘2'7 {00534;_(4 sin8c0539 + 35in3QcosQ)
576

3
+ 1 sindy (4sinB = 3sin Q)}J

(7 .24)
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CHAPTER III

EXPRESSIONS FOR LINE POSITIONS

3.1 Line Positions for Fine Structure.

To obtain an expression for the field intensity at which an
induced transition may occur, which is often sufficient to describe
the fine structure to the accuracy warranted, we need only consider
diagonal terms in our Hamiltonian. The energy eigen values are

then, for trigonal symmetry :-

E(M)

]

(M| H] M)

gBH.M + 21300529-1)[M2-§i§i1)]
2 K|
+ a [3500349—30c0529 + BiZD.JEisinagcochosﬂ¢]
1,440
-[35M4-305(5+1)M2 + 25MP-65(541) - 357 (541) "]

This expression is equivalent to that derived by Kikuchi &
Mataresse (1960), noting that a rotation (¥,8) about 0Z and then
oy’ is gquivalent to a rotation (m -¢ ,8) about 0Z and then Dx', as
these authors have used. ’

The expression for the eigen_values derived by Dorain (1958)
is considered by this author to be incorrect,

The resonance condition is then given by :=
vo = gBHD B E(M) - E(M—1)

For 8 = 0, we then obtain:-

Hosy . Ho - 4D + 4a
- 3
a2 = Hy-2D - 58

3
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H1/2 = HO (3.1)
H-1/2 = H0 + 2D + 5a

K|
H-3/2 = HD + 4D - g%

where the parameters D and "a" are now expressed in Oersted.

3.2 Hyperfine Structure.

When the nucleus possesses a non-zero spin, the Hamiltonian

may be supplemented by : (Al'tshuler & Kosyrev 1964)

2 , 2,
Hy = AS, 1+ B(S, 1 +5S 1) +_§[121% I(I+1)](3008 8-1)-g,B\H1,

F0r>the Mn2+ ion, A £ B (Ingram 1967) and putting SX = 5+ +S_,

et et

2

etc.,, we use -

H, =AS I +A(SI +S51I) +_Q[12 -1 I(1+1)](3cos29;1)
+ -+ z
- gNBNHIz'
To first order the correction to the line positions is then
H = - Am

for the allowedam = o transitions, and

H = = A (2m=1)
2

for the am = ~ 1 forbidden transitions.

3.3 Second Order Corrections to Line Positions.

The corrections to the eigenstates are found to be :-
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(zy. MM
E = X (Mm 1 H'L M'm*)(M*m]| H'[ Mm)
Mo Mtm? E - E
Mm Mim?
= A? [ m{M2—8(5+1] + M(I+1) - mz}]
ZQBHD

+ Iﬁjz[ 2M[BM?—45(5+1} + ﬂ]
gPH

+ Lglz[ 2m{25(5+1) - M2 Q]'
gfH

where we have included only terms in D, E and A. The term in A2
has been given by Bleaney & Rubins (1961), Folen (1962), Waldner
(1962) and the terms including D have been derived by Bleaney &
Ingram (1951). From these terms the following correction to line

positions is calculated:-

H = A? [m24IkI+1) - m(2M-1)]
2gﬁHU :
- 2IM°? [24M(M—1) - 45(5+1) + 9]
gBH
- 21p1° [25(5+1) - 6M(M=1) - 3]
af,
For M = + 1
H = Ai (mz-gg) + 64IAI° - 32!912 (am = o)
ZQBHD 4 gBHl_J gﬁHCl
A2 (nPomed) + GAIM? - 321p1%  (em = 4 1)
2gPBH | gfH gPH

(3.2)
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= A? . (m2—m1§1) + G641 Al ? 32]9]2 (am = =1)
2gPH 4 gBH_ gBH_

To second order, for rhombic symmetry, agreement is obtained
with the expressions derived by Morigaki et al (1958) and Kasai
(1962). Brovetto et al (1953), Takeda (1967) and Bir (1964) 1list

various different expressions which are considered incorrect by

this author.

3.4 Third D:der Corrections.

: 2
Third order perturbation calculations, relevant to the Mn * ion

in a site of axial crystal Field symmetry, have been carried out by

a number of authors (Bleaney & Rubins 1961, Waldner 1962, Folen 1962,
Wolga & Tseng 1964, Nicula et al 1965, Odenhal 1963), with remarkably
little agreement between the expressions derived. In an attempt to
résolve which, if any, ol the expressions was correct, the calcula-
tion was carried out by this authaor, the ful%_calcqiigign.being set
out in appendix B, a o

The general form of the degenerate perturbation solution may be

derived from expressions listed by Condan and Shortley (1951), viz. -

Mt £M '
Ej(Mym) = & (Mml H'{ MimY) {aM'm'| sz} (3.3)
Mtmt
{aM'm'IZMm} I (M'm'lH'lMﬂ)(MméH'le)
(e - Ey)
- X (M'm'lH'IM"m"){aM"m"l1Mm} (3.4)
MM " (EM| _ EM}
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{aMm|1Mm} = 0 (3.5)
{aM""‘"hMm} (MUt |HT] M) (M7 £M) (3.6)
E, - E
M Mll
. 140
{aMm ‘1Mm} _ 5 (Mm"IH'IM"'m"'}ﬁM"'m"'IH'IMm)
Ui (EM-EM"')(EMm-EMm") (3.7)
(m"#£m)
Substituting (3.4) in (3.3) produces:-
Mt £M
Ey(Mym) = 2 (MmlH M mt) (Mtmt VH!  Mm) (Mm TH ' Mm)
M¥m? (E E )2
MY T M
MU£AM T
=L S (Ml Mt ) (Mt T M) 2 | 4}
M'mt Mtm" (E - E )
i M (3.8)

If equation (3.6) is now substituted directly in (3.8), the
mxpression listed and used by Waldner (1962) and Nicula et al (1965)
is obtained, fhis substitution is not correct, however, as (1.6)

is defined strictly for M"#M, whereas the summation %  in (3.8)
M"m"

or (3.4) involves a summation over all M" (and m"), including M"=M.
The correct expression for the third order perturbation may be

found by writing this summation as -

5 (mrme H ) £ L4} o (rmetHol M) $a™] 1M
1" 1}
M m" (Eye = Ey (Eyy = Ey)
mn#m , M"fM ,
e 2t A ey M, s Mmoo {110
" (Eqr - Ey) M (Er = Ey)

(3.9)
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Substitution of (3.5), (3.6) and (3.7) in this expansion of the

summation then produces:-

MY £M
Ea(M’m) = - ) (MmlH MYt ) (M'm®tHY I Mm) (MmlH*] Mm)
Mim? (£ . )2
MY T M
MUAM MY AM
€ 3 T (MmiH UMYt ) (Mrmt H Mtmt) (MM LH L Mm)
MI 1 M" n i .
m m (EM‘ EM) (EM EM")
MYZM  m"Zm  M"1£M
L 3 > % (Mml H Mtm?) (Mtmtl HY] Mm®) (Mm"LH' M ' ) (M 'm" 'L H'] Mm)
MI 1 H Mlll mnt
mor i (EM'_EM) (EM'EM"') (EMm'EMm")

(3.10)

The first two terms only in this expression are given by Waldner
(1962) and Nicula et al (1965).

Performing the calculation, using (3.10), the following is then
derived for the third order correction to the eigenvalues, where we
list only terms invclving both quantum numbers m & M, which contri-
bute to the expression for line positions of the central hyperfine
transitiaons.

£,(M,m) = [Dsin2g i Am_[(MZ-S(S+1))2-M2]
| 4gBH_ M

+. [\Dein?0]? 2AMm[2M2+1-25(s+1)]
_4gBHO

B(gBH )

o

+ DA .(acoszg_1x[{5(5+1)-M(M+1)}{1(1+1)-m(m-1ﬂ

(2M1) = {5(5+1)<m(M-D}{T(T41)=m(m+1 )}

(2M=1) ]
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+ A3 )2[{5(5+1)—M(M+1)}{1(I+1)_m(m_1)}{m_M_1}

(2gBH

+{5(5+1)-M(M-1)}{1(1+1)-m(m+1)}{M-m-1}] (3.11)

Comparing this expression with those derived by other authors we

find :=-

1) Complete agreement is obtained with the expressions derived by
Odenhal (1963) and de Wijn and van Balderen (1967).

2) The first term in this expression is the resultant of ferms
derived from the single, double and triple summations in the
perturbation calculation. As shown in the appendix we find for
this teim in AD°sin“28 -

a) I ;[Dsinzg]z.AMm[(2M+1)2{s(5+1)-M(M+15}+(2M-1)2{5(5+1)-M(M-1)ﬂ
4gPH_ | ”‘ ’

which is the expression given by Waldner;

b) T + I [Dsinzg]zAm[(2M+1)2{5(5+1)-M(M+1ﬁ -(2M-1)2{5(s+1)-M(M-1ﬂ
4gBHD ’

which is the expression given by Nicula et al;

c) Tz 18[D5in29]2 Am[MZ-S(gilﬂ 2

™ 3

AQBHG M

which is the expression originally given by Bleaney & Rubins
(1961 ). This term, as these authors have stated, is the most
important term (in magnitude).

3) As shown in the appendix, terms in Lﬁ , which are functions of

H2

only one quantum number (M) are also obtained, but these terms

do not contribute to the expression for line positions for

M=++—>M=-7%).
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4) The third order corrections for the case of rhombic symmetry
(E£a) may be derived from the above equations (3.11) by sub-
stituting -

o = %-[D(3c0529-1) + 3Esin QCDSZ¢:] for Q_(3c0529-1) etc.
2

3.5 Line Positions Including Third Order Corrections.

From the expression for third order corrections to energy
levels obtained in the previous section, corrections to the
expressions for line positions may be obtained. Performing these
calculations and collecting all terms we obtain the following

expressions for line positions:-

am = o© ¢ H=H —Am+ A2 (m2-35)—A3m (m2—65) + H, (A,D,Q,8,m) (3.12)
o = 2 )-Am it 1
) a)

am o= + 1t HeH ~A(2m=1)4A° (moemsd) A" (2m=1) (m°-me73)

(HIGH FIELD) By 2H e 2
o ]
+YH_+H, (A,D,Q,8,m) (3.13)
am = - 1 t  H=H 1&(2m-1)+ﬁ? (m2-m1§1)153 (2m-1)(m2—m—195)
(LOW FIELD) e 2H_ 4 4H02 4
=YH +H (A!Dlaig’m) (3.14)
o 3

where the parameters are all expressed in cersted, Y = gNBN , and

gB

the Hi(A,D,Q,Q,m) are angular dependent terms, which for convenience

we write as :=

H. = E.(3c0s°8=1)+F, (sin°20)+G,8in"0 (i =1,3)  (3.15)
1 ) 1 1 1
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E. G,
1
i1 ~4DA m 4D’ -2D° + 2AD°m
(am=0) H H H 2
a a] a]
' 2 .2
i =2 -Q(2m=-1) 4D° -18AD" (2m-1)| =2D° +AD" (2m-1)
(am=+1) 2 H H H 2
0 o] o
i=3 _apA® 4D°-18AD” (2m-1) ~20° +AD® (2m-1)
(am=-1) H 2 H Ho HC
[u] o ]

N.B. The term HD in expressions derived by perturbation methods is

an approximation for the field at which resonance® occurs. Better

agreement between theory and experiment was obtained substituting :-

for Ho’ in the denominators of expressions.

This substitution is

used in all future calculations of line positions for axial spectra.



CHAPTER 1V
TRANSITIUN PROBABILITIES

4.1 Transition Probabilities by Second Order Perturbation -

Axial Fields.

The theory of the variation of intensity of the forbidden
(am = 1) transitions was first considered by Friedman and Low
(1960) . The expression derived by these authors predicted a sinZZQ
variation in intensity of the forbidden tramsitions, which for small
values of D is observed experimentally (see later), but could not
account for the observed variation of intensity with the applied
static field. An expression for the intensity variations was
finally obtained by Bleaney & Rubins (1961) which predicted the
sin229 variation, and a %‘variatiun with applied static field.

A derivation of the expression given by Bleaney & Rubins is now
outlined to illustrate the general method, which will be used later
to derive a correct expression for the intensity variation in the
case of cubic crystal field symmetry. (Appendix A)

The transition probability describing the transition from a

state @M’m , to a higher state ¢M',m' , 1s given by =

) (4.1)

Iocl(lﬁ W LY R
where 5' is a spin operator which reflects the polarization of the
inducing R.F. field. For linear polarization in the Y direction of
the crystal axis, which is the case experimentally

5' ¢ (S+ + 5_) (Shulz-Dubois 1959)
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To obtain an expression for the intensity we first expand the

| @ M h) as a linear combination of zero-order wave functions,
’

1l1.8s =
— M"m" n n
|¢ M,m) - ﬁ",m" aI"I,m |m,mt)
whence -
*
M" " I\/I" " 2
I o (ZaM":' (M m" I(S+ + S_)(ZaM ;m fMm mm ) (4.2)
’ ’
11 n"
The coefficients aM '™ in the expansion of the perturbed wave
M',m? =

function may be calculated to second order in perturbation theory,
using the general expression given by Condon & Shortley (1951),

which in our present notation may be written:-

mtAm MU"£M
1§y )= tmym) + % % (Mmr HYE MOmt) (MUt L L M), (Mt )
! mt M"m" [IM—LM")(LMm—EMm') (4.1)

For our perturbation Hamiltonian we use:-

H' = D 52-15(S+1)]-(30052Q—1) +D[s (s +5) + (5 +5 )5 ].sinZD
-2-23 ZZ+— + - Z

+ D 52+52]Sin29 +AS I +A (51
2 + = z'z 5 oF

+51) {4.4)
-+

For the operators in this expression,the possible terms in the
summation are:-

(M, m+1 | 5'+| M=1,m+1) (M=1,m+1 | ST I | Mym)| M,m+1)
)(E )

(g, -E

M~ M-1 M,m'EM,m+1

(Mymed | STIT| Matym) (Mel,m| ST | M,m) |M,me1)

(B =By 4 ) (E

M™ M4+ M,m'EM,m+1)
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(Mym=1] S! | M4+1,m=1)(M+1,m=1 | SlIl] Mm) | M,m=1)

(EM'EM+1)(EM,m'EM,m-1)
(M,m=1] Sllll M=1,m)(M=1,m| S_{Mm) IM,m=1) (4.5)
(B =Euet ) By, ot )
where S' = D[(S 5 +585 ﬂ sin 28 etc,
+ al 2+ +7z
Teking Ey = gBHbM and EM,h = gBHOM+AMm as approximations, we
then obtain:-
1§ wod = IMm) + C,IM,m+1) + C IM,m=1) (4.6)
. WETHIE 21 { } ¥
where C, =  Dsin28{5(5+1) = M § 11(I+1) - m(m1)
4gBH M
el . 2 y +
and €, = =-Dsin20{s(ss1) = M} {1(1+1) = m(m=1)}

4gBH M
Forbidden transitions occur between states (M,m)—-é(M—1,mi1),

and for the am = +1 transitions, the transition probability is then:-

2 (4.7)

Teoc|(d Ml (54 + S0 ! Mo et )

For the expansion of |¢ Y we obtain:-

M=1,m=1

K] Mot et ) = IM=1m=1) CIM=1,m) + C I M=t ,m=2)

4

where Cé = Dsin28{5(5+1) - 3@’]—14)27}.{'111#)—m(m-’l)}-17 (4.8)
' 4gBHD(M—1) ‘
and C, = -nsinzu{5(5+1)_3(MH1)2}{i;;¢1)_{m-1)(m-2» i (4.9)

4gBHD(M-1)
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Substituting in the expression for the intensity we then obtain:-

*

»*
IFOCI(M,mI + C1(M,m+1| + E2

(M,m-1l)(s++s_)(|M-1,m-1)
+ C.IM=1,m) + C. | M=1,m=2) l2
3 b 4 H
- |F_(M)(C2+E3)|2 where F_(M) = [5(5+1) - M(M-1)]T (4.10)

Substituting for the coefficients C, anrd C3 we find:-

2

Ith[FZ(M)[ 3Dsin29]2_[1 + 5(s+1)1? [I(I+1)-m(m—1)]] (4.11)
- 4gBH_ IM(M=1

For the allowed transition (M,m)— (M-=1,m) we obtain in A

similar manner:-

1A¢x[r M1+ uni“nu]Q {5 (541)=3m" } {s5(541)-3(m=1)""}
- 49BN M(M-1)

2 [ 1(z+1)-nd} }]2 (4.12)

For D ((HO s ]}rFZ(M) , and for the intensity of the forbidden
transitions relative to the allowed transitions, we thus obtain the

expression derived by Bleaney & Rubins:-

3Dsin28 2_ 1 + S(S5+1) ? [I(I+1)-m(m—1) (4.13)
4gBHD 3IM(M=1)

4.2 Relative Intensity in Powder Spectrum.

.Bleaney & Rubins (1961) have stated that for the purpose of esti-
mating the magnitude of the parameter D, using the relative intensity
of forbidden to allowed transitions observed in a powder spectrum, the
sin229 term in equation (4.13) should be replaced by 8/15. A value

of IDI = 125 Qe was then calculated by these authors for the measured
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relative intensity observed in the Mn2+ spectrum from a sample of
modelling clay (plasticine).

The manufacturers (under licence) in Australia, of Harbutt's
plasticine (Bellco Ltd., Melbourne), kindly provided this author with
samples o the ingredients used in the manufacture of this material.
The comporent responsible for the Mn2+ spectrum was found to be
powdered calcite. If we assume that the Mn2+ spectrum from the
plasticine sample used by Bleaney & Rubins, was also due to Mn2+ in
calcite, ( /Dl = 81 Oe, Hurd et al 1954), the computed value of
[D] = 125 Oe from the plasticine sample spectrum is then seen to be
in error by ~50%. Fig. 4.1 shows a spectrum recorded from a

powdered sample of Magnesite (MqCDa), from which a value of

ID} ~130 Oe was obtained from the relative intensities of forbidden

to the first allowed transition (m = =5/2), using the Bleansy &
Rubins' expression for a powder spectrum. From single crystal
measurements, however, a value of [DI| = 85.5 Oe has been obtained

(Vinokurov et al 1961), and once again a value of the parameter |DI,

}

larger by ~50% than the single crystal determipation, is obtained
from powder measurements. An even larger relative error was found

in a similar determination of 'D' from the spectrum of powdered

2+
n

Zn(M )COo fig. 4.2. From the relative intensity of forbidden

3’
lines observed in this spectrum, a value of Dl ~ 90 Oe was obtained.
From single crystal measurements however,|Dl = 44 Oe (Burley 1964).

It must then be assumed that the determination of the axial

splilting parameter D, by applying the expression for the relative
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intensity of forbidden transitions in & powder spectrum, given by
Bleaney & Rubins (1961), to experimentally determined values, may
produce relatively large errors. The expression derived by these
authors for the relative intensity observed in single crystal spectra,
equation (4.13), does however predict values which are in reasonable
agreement with experiment, for the Mn2+ spectrum observed from
crystalline calcite. For this spectrum, the predicted intensity
ratios of forbidden to allowed trarisitions, in the central group
(M = +) of lines at X-band, and B = 45", as determined from (4.13)
with D = 81 Oe, H = 3,300 Oe, are approximately :-
m = =3/2 = 1/2 1/2

Relative Intensity 1 : 5.2 1 ¢ 3.2 1 ¢ 2.9

From the spectrum shown by Ursu et al (1966), corresponding ex-

périmehtal ratios of
1 4.2 1 3.2 1 3.1

arem obtained.

It would then appear that the relatively large error in the
determination of 'D!' from powdsr spectra, is due to the substitution
of 8/15 for sin22Q in (4.13). The factor of 8/15 was obtained by
Bleaney & Rubins by an averaging method. The failure of this averaging
process to produce a factor which would enable reasonable agreement to
be obtained bstween the theoretical expression and experimental values
of relative intensities in powder spectra, would then seem to cast a
doubt on similar averaging methods used to predict relative shifts of

line positions in powder spectra. (Nicula et al 1965, Waldner 1962.)
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4.3 Transition Probabilities by Second Order Perturbation -

When the electrostatic crystalline field possesses rhombic
symmetry ,the analogous expression for the relative intensity of the
forbidden transitions may be found by substitution of | A1 for

Dsin28 , viz. :-

4
3N 1+ sg5+1)] ’ [I(I+1)—m(m-1)] (4.14)
aBH am(M=1)
with |A| = sin® [CDSQ(D—ECOSZ%) + iEsinZ%]

2

4.4 Intensity Variations Using Computer Diagonalization of the

36_x_36_Energy Interaction Matrix.

When off-diagonal terms in the energy matrix (M*,m" | H{M!',m')
are no longer small compared to diagonal elements, perturbation
methods are no longer accurate, and exact methods are necessary to
calculste (say) the coefficients of the zero-order wave functions in
the expansion of perturbed wave functions.

Suppose E denotes the eigenvalue of the eigenstate I@ )

M,m M,m

ie. Iy ) = Ey ol 8 0 ) (4.15)

Substitution of the expansion in terms of zero-order functions,

multiplication by (M",m"| , and integration, then allows us to
write:-~
M¥m!
z A (M"m™ HIM"m?*) - E . (M"m"IM'm') = O (4.16)
Mm M, m

Mim?
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or:-—
1 2 3
AMm[(1lHI1)-EM’m] v A (1IHIZ) + A (TIHI3) +  cuae
eeee + A (11HI36) = ©
M, m
1 2 3
' - 3 e s Q00
Ay (21HIT) + AM,m[(ZIHIZ) EM’m] + Ay o (21H13) +
-suw0 +A36 (2!HI36) = D
Mym
1 36 [ :
N < sveo s + | =li= = o s s
AMm(36IH|1) + + AM,m (361H136) [M,m 0
(4.17)
With modern digital computers ihe (16 x A06) enerqgy interaclion

matrix (M"m"{HIM'm') may be readily diagonalized to find the eigen-

values EM n® Substitution of a particular eigenvalue in equations
?
tmt
(4.17) above, then enable the coefficients Ammm to be found. In

practice one coefficient Amz is set equal to unity, and the ather
coefficients expressed in terms of Am:. Any 35 of the 36
simultaneous equations may then be solved to find these co-
efficients.
Noting that the operators S+ and S only link states (Mt1) and
+ + + . . .
(M), and that S=IM,m) = F=(M)IMZ1,m), the intensity of a forbidden

transition may then be written:-



36

R
. n " 1] 1
tac[ £ Ay 2" ;l(M",m"I](S s )l = oAy tm,mo)]| 2
M +1,m+ iy n= Mim?! sM
. M"m"*' [AM"_H ’mn " M- ’mn "ot 2
= M,Z,m,, wat met | Puym M Vo Ry g M- ﬂ
(4.18)
| e
where Fi(M) = [s(s+1)-m(ME1)]

The intensity variation for the central forbidden doublet, for
D = 81 Oe, obtained using the method described above, is shown in
figure 4.3. As described in Chapter VI, the computations
necessary to obtain intensity variations may be reduced by a

factor 0f--103, using a method described by Bir (1964).

N.B.

The vertical scele in fig. 4.3 is completely arbitrary. The
absplute values computed for the forbidden transition intensity by
this method would have to be normalized, using the 8 = 0% value

obtained in a similar manner for allowed transitions.
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CHAPTER V

Line Positions in Powder Spectra.

5.1 Line Shifts Using Bleaney and Rubins' Method.

Having derived required expressions, we are now in a positiaon
to return to the problem of line shifts, etc., observed in powder
spectra.

The observed splitting of the am = o hyperfine lines observed
from Mn2+ in a sample of powdered calcite (CaCDa) has been
adequately explained by Bleaney and Rubins (1961) by considering

extreme values of the intensity function -

I'(8) = sing I(8) (5.1)
pelal
de

For the forbidden transitions we may use, for values of |Dlless
than about 100 Oe (as shown later), the intensity variation with
angle -

IF(Q) msinZZQ (5.2)

and for the same range of D, we assume that for the allowed

transitions -
IA(Q) = constant. (5.3)
L 2 . 2 . 4 .
Using H., = E.(3cos“B-1) + F,sin“28 + G,sin 8 (i = 1,3)
i i i i
dH. = sin2@(U, + V.sin°8) (5.4)
i i i
dd
where U, = 4F, = 3E.
1 1 pa
Vv, = 2G. - 8F. where £E., F., and G, are defined
i i i i* i i

ir section 3.5.
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We then have for our intensity or line shape functions for
allowed and forbidden transitions by substitution of (5.2), (5.3)

and (5.4) in (5.1) :-

11(8) o __ 1
A S >
cos8(U. + V.,sin 8)
i i :

For allowed transitions,axtremc values occur for 8 ='g and

—

V.

B = arcsin f—Ui ,and for the forbidden transitions we have one
i

Vv

extreme value at 8 = arcshw/—dL ,which corresponds approximately
i
i

to B8 A«409, and will be referred to as 8 ~ 40° peaks in the later
discussion. Typical intensity or line shape functions are shown

plotted in fig. 5.1.

8 = arcsin _Ei is a turning point (or maximum) of the H(8)
. V .
i
versus 8 curve. The physical significance of the peak corresponding

to this value of 8 is that for resonance in the range H(8 ~ 407) to

H i dH, there is a much larger number of spins contributing teo the
resonance, compared with another general range (except H(B = 90°)
to HZ dH).

The shift in the line position from that calculated using only

non-angular dependent expressions,can now be evaluated by substitution
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FIG. 5.1
Intensity functions for powder samples. D=-80, A=-84
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of the value of 8 for a maximum, in the appropriate angular depen-

dent expression Hi (8).

5.2 Application to_the (Mgff)_fgygggﬁ§gectrum from Calcite.

As a test of the theory we may first consider in more detail
the powder spectrum of Mn2+ in powdered calcite for which the approp-
riate parameters are A = -940e, D = -810e and g = 2.0 (approximately).
(Hurd, Sachs and Hershberger (1954), Mataresse (1961)) Experi-
mentally determined variations of intensity with angle between the
crystal axis and the applied static magnetic field,are shown in fig.
5.2. These intensity variations were obtained using a natural
calcite crystal (picked from crushed marble), which was slightly
strained (as evidenced by laue backscatter photographs). In this,

and other strainmed crystals,such as CaW0l, discussed later, the outer

4

(a]

sextets of hyperfine lines are so broadened,that away from 8 = 0,

observations of the central transitions are not obscured as the
crystal is rotated in the applied magnetic field (fig. 5.3). For

these outer transitions (M = p 5/2«=> M = p 3/2 and M = p 3/2 <«

M= 2 1/2) the field position at which resonance occurs is much more
angular dependent than field positions for the central transitions,
and variations in the directiorn of the crystal field axis throughout
the ionic sites in the crystal due to strains,would thus produce much
greater broadening of the outer transitions,than for the central

resonances, With the assumption that observed intensity variations

for a strained crystal do not differ greatly from those in an
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unstrained crystal, our previous assignment of a sin229 variation
for forbidden transitions, and constant intensity for the allowed
transitions is gualitatively (at least) justified. (Quantitatively
the assumption of constant intensity for am = o lines is not
justified.)

The predicted shif'ts for the forbidden transitions and components
of the split allowed transitions, using the method described in the
previous section, are shown in fig. 5.4.

From these calculated shifts we could thus expect:-

1) The spacings between the low field (B8 = 9DD) comporients of the
split allowed transitions should be slightly less (~0.2 0e) than
spacings predicted using non-angular expressions.

2) Spacings between high-field (8~40°) components should be widex
(~2 Oe) than predicted by the non-angular expression.

3) The forbidden doublets should be approximately midway betwsen the
High-field components of the allowed transitions.

Fig. 5.5 shows a spectrum recorded from powdered calcite. By
comparison with spacings calculated using non-angular expressions,
and by observation, it is readily seen that predictions 1-3 are con-

_firmed experimentally.

5.3 Explanation of Observed Line Shifts in Adsozrbed an+ Spectra.

The observed shifts of the forbidden doublets relative to the
mid points between the allowec transitions in the adsorbed ion

spectrum, and other powder spectra mentiored earlier and now readily
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explained. In a sample in which the lines are troadened by any
mechanism,the component of each allowed transition may be so broad
that orly a single rescnance for each allowed transition will be
observed. The centre of this observed line will lie approgimately
midway between the centres of each unresolved component, and from
fig. 5.4 we can readily see that the forbidden transitions will then
be shifted towards the high field side of the spectrum more than the
observed allowed transitions, with the relative shift between for-
bidden aoublets and allowed lines increasing with field, as is
obssrved experimentally. Fxperimentally this is also found foxr the
spectrum of a powdered sample ol calcite which contains a higher
percenfage cf Mn2+ than the calcite sample which produced thes spectrum
discussed earlier. For this heavily doped sample, fig. 5.6, the
lines are cipolar broadened, no splitting of the allowed transitions
is observed, and forbidden doublets are seen to be shifted towards

the high field side relative to the allowed transitiors.

5.4 The Calculation of Parameters from Powder Spectra.

To further test the theory presented, a computer programme was
written to evaluate parameters by a best-fit between theoretical and
experimental line positions,using an iterative least squares method.
described by Marriage (1965).

The following assumptiors were made:-

1. The position of lines in a powder spectrum are given by equations

(3.12), (3.13) and (3.14),
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, =u,
with 8 = ﬁ72 and arc sin vi for allowed components)and
i

V.,
i

-U,
8 - arcsin/ —L  for forbidden transitions.
2. When allowed comporients are broadened into a single observable
line,the centre of this broadened line is at the mid-point of
centres of the components.
The programme was tested on the broadened calcite powder

spectrum shown previously in fig. 5.6. A best fit was obtained

for the following value of parameters -

Powder Single Crystal
A = 94.3 Ce A = 54.0 Oe
D = -75.8" c.f. D =-81.0"
Q = =02 "

The thecretical line positions and spacings obtained for these
values of the parameters for this powder spectrum, and the experi-
mentally determined values, are shown in table 5.1. The

theoretical values are shown in brackets.



Table_5.1:

Experiment and Theoretical Line Positions and Spacings

Line Spacings (Oe) Line Positions (Oe)

e e e 3,065.5 (3,064.3)
36.0 (36.8)

_— 3,101.5 (3,101.1)

B8.4 (89.5) 20.7 (21.1)

3,122.2 (3,122.2)
3.7 (31.6)

e — 3,153.9 (3,153.8)
37.3 (38.2)

et g 3,191.2 (3,192.0)
91.8 (92.2) 23.1 (23.4)

SS—— 3,214.,3 (3,215.4)
31.4 (30.6)

e 3,245.7 (3,246.0)
39.6 (39.9)

R = 3,285.3 (3,285.5)
94.6 (94.8) 25.4 (25.4)

. - 3,310.7 (3,310.9)
29.6 (29.9)

= : 3,340.3 (3,340.8)
41.8 (40.9)

= 3,382.1 (3,381.7)

97.8 (98.4) 26.6 (27.2)

R I 3,408.7 (3,408.9)
29.4 (29.3)
P N RSO 3,438.1 (3,438.2)
43.1 (42.3)
IR s 3,481.2 (3,480.5)
100.,2 (100.1) 28.5 (28.8)
—— e 3,509.7 (3,509.3)
28.6 (29.0)
o R 3,538.3 (3,538.3)




44

Better agreement between the parameters determined from this
powder spectrum,and parameters determined by single crystal
measurements, may be obtained however, if it is assumed that a
small relative shift of lines may occur as outlined in the next

section.

5.5 Line Shifts due to Line Shape Functions.

By previous theory, the line shape or intensity functions,
used to predict peaks in powder spectra, have infinite values at
certain points. In practice the value of the intensity at these
points must be finite, and il could be expectec that for (say) the
allowed transitions the line shape functions would rise gradually
to maxima at 8-~ 407 and 8 = 900, as shown exaggerated in fig. 5.7,
together with a line shape function drawn (qualitatively) as a
function of field strength. IlFe resultant nhape ot Lhe absorptiorn
curve expected may then be calculated from the I'(H) function by
assuming a line shape (Lorentzian or Gaussian generally), and
summing the contributions at each point, of the Lorentzian or
Gaussian lines (modulated by the appropriate value of the intensity
furction I'(H) ) originating from all points at which resonance may
occur. If this is done it is readily seen, as shown in fig. 5.8,
that the maxima of_the resultant absorption curve do not coincide
with maxima of the intensity functiom I'(H), i.e., the peaks in &
powder spectrum would be shifted from field positions corresponding

to 8 = 90° and 8 ~ 40° by an amount determined by both the shape of
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the intensity or line shape functiom, and the natural line-widths
of the resonance lines. From fig. 5.8 it may be seen that the

g ~40° components would be shifted towards the low field side and
8 = 90° components shifted towards the high field side, by such a
mechanism. We might then expect that the splitting of the
allowed hyperfine lines in a powder spectrum, would be less than
the field difference between turning points of the H(8) variation.
Experimentally this appears to be the case for the splitting of the
hyperfine lines in the calcite spectrum shown earlier in fig. 5.5.
Theoretically a field difference of 15.9 Oe between turning points
of the H(B) variation for the m = - 5/2 transitions, is predicted
using line positions listed in section 3.5. Experimentally, a

field difference of 15.3 (t 1.0) Oe was found for turning points in

the (m = * 2

/2) line position observed, as a single crystal of
calcite is rotated in the applied field. The measured splitting

of the m = i 5/2 allowed transition in the calcite powder spectrum,
shown in fig. 5.5, is found to be 14.3 (¥ 1.0) De however, indicating
a possible shift of powder lines of~0.5 Oe. Conversely, it might
be expected that a determination of 'D' from observed splitting of
allowed transitions in a powder spectrum, would yield of value of

'D' slightly lower than that obtained from single crystal measure-
ments . It may be noted that Bleaney & Rubins calculated a value of
IDI = 70-80 Oe from the splitting of allowed transitions obhservec

in the spectrum of plasticine (calcite), which may be compared to

the single crystal value, [DI = 81 Oe.
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In a powder spectrum in which the B ~40° and 6 = 906° com-
ponents of an allowed transition are broadened into a single line,
the field position of this broadened line may not be ehifted by
this mechanism. The 8 ~ 40° forbidden doublets would, however,
be shifted towards the low field side relative to the observed
allowed transitiors. If this were so, it would be expected that
the parameter fitting method, described in the previous sectior
would return values of parameters closer to single crystal values,
_if small positive increments were artificially added to each of the
experimentally determined forbidden line positions, or a small
equivalent negative shift included in the theoretical expression
for forbidden line positions. Such was found to be the case.

As increments are added to each of the experimental forbidden
line positions, shown in table 5.1, the values of the parameters A
and D determined by the parameter fitting programme, decrease and
increaases, respectively.

The best fit between the values of parameters detlermined from
single crystal measurements (A = - 94.0 Oe and D = - 81.0 Oe) and
values determined from the calcite powder spectrum (A = - 94.2 Oe
D = - B1.4 Oe) was obtained when an increment of 0.8 Oe was added
to each of the forbidden line positions, e.g. 3102.3 Oe c.f.
3101.5 Ne, used for the first forhidden line position, efc.

As well, for this value of the increment, the sum of the

squares of the differences of experimental and theoretical line
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poSitiuns (denoted S) is smaller (4 .09 Dez) than calculated when
no increment has been added (4 .58 Uez).

The parameter fitting programme was also applied to line
positions given by Waldner (1962), for Mn2+ in powdered MgAlde.
For this spectrum, however, the sign of the parameter 'D' is not
known o The third-order correclions to line positions contain a
term in DAZ/in , and the sign of this term, depends or the sign of
‘DY, It was thus necessary to obtain best-fits for the parameters
of this spectrum, for both negative and positive 'D'. Without the
sddition of increments to forbidden line positions, the following

parameters were determined from the fourteen line positions listed

by Waldner.

D (+ ve) D (-~ ve)
A = =80.9 Ue - 080.0 Qe
D = 52.,3 " - 52.0"
Q = o7 " -0z "
S = 1.13 De2 0.47 082

As evidenced by the relatively small values of 5, an extremely
good fit between theory and experiment is obtained.

Lower values of S were again obtained, however, by the
addition of increments to forbidden line positions. The para-
meters corresponding to the minimum values of S, together with the

corresponding increments, were:-
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D (+ ve) D (-_ve)

A = - 80,6 Oe - 80.8 Ce

D = 66.9 " - 53.2 "

Q = 0.2 " - 02"

S = 0.76 DBZ D.46 Ue2
Increments = 1.6 Oe 0.2 O0Oe

It must be noted, however, that the better agreement obtained
for parameters obtained from single crystal measurements and powder
spectra measurements, by the addition of a small increment to
forbidden line positions in powder spectra, to compensate for a
shift attributed to the line shape factor, may alsoc be explained, if
one of our original assumptions in section 5.4 is incorrect. It
was there assumed that in a broadened spectrum,the line position for
an observed allowed transition lies midway between the line positions
of the broadened components. If the line position of an allowed
transition in a broadened spectrum does in fact lie towards the high
field side of the midpoint of line positions of the components, by
a small amount, the spacings between forbidden and allowed lines
would differ by this amount from that predicted, by the method
described in the previous section. A small increment added to the
measured forbidden line positions observed in the powder spectrum,
would then produce closer agreement with single crystal parameters
using the best-fit method described, with assumption (2) of section

5.4 taken to be valid.
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A more detailed investigation of a comparison of line positions
at turning points of the H(B) variation observed with single crystals,
and line pbsitions in powder spectra, is planned in an attempl to
clarify the mechanism(s) for this small relative shift of the for-
bidden doublets in powder spectra. The addition of small increments
to the experimentally determined forbidden line positions does
produce an inérease of the parameter 'D' and a decrease of the para-
meter 'A' using the method described in the previous section. The
vélues of these parameters determiﬁed using this method, without the
addition of increments, may be taken as an indication of lower and

upper limits of DY, and 'A', respectively.

5.6 Parameters_for the Adsorbed Mn2+_§pectrum,

Gorter (1932) has shown that the axial field parameter 'D' is
poﬂitiVa when an ion site is surrounded by an octohedran of water
moleculéé, which is the cass for the adsorbed Mn7+ ion. ll-e para-
meters then obtained for the spéctrum of Mn2+ adsorbed on the ion-
exchange resin shown in fig. 1.2, by the method p;eviously described

in section 5.4, were:-

A = =-96.4 Ce
D = 78.6 "
Q = o.8 "
Ho = 3270.0 "

A comparison of experimentally determined line positions anr
spacings, and corresponding values calculated for these values of
the parameters, are shown in table 5.2. Theoretical values are

shown in brackets.
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-1/2

1/

3/2

5/2

. A . 2+
Line Positions and Spacings for Mn

Tabhle 5.2:

Adsorbed on

90.5

93.4

57.0

100.7

102.9

(X-Band : T = 88°K)
77

Line Spacings (Oe)

37.0 (37.7)

(91.5) 23.5 (23.8)

30.0 (29.8)

39,0 (39.1)

—— e

(94.2) 24.5 (25.2)

29.9 (29.9)

41.0 (40.5)

(57.0) 26.0 (26.6)

29,9 (30.9)

43.6 (41.9)

(99.8) 27.0 (27.9)

(102.6) ”gélﬁm(za.a)

31.0 (30.3)

Line Positions (0e)

3,026.0
3,063.0
3,086.5
3,116.5
3,155.5
3,180.0
3,209.9
3,251.0
3,277.0
3,306 .9
3,350.5
3,377.5
3,407.6
3,451 .0
3,479.5

3,510.5

(3,025.1)
(3,062.8)
(3,086.6)
(3,116.4)
(3,155.5)
(3,180.7)
(3,210.6)
(3,251.1)
(3,277.7)
(4,407 ..0)
(3,349.5)
(3,377.4)
(3,407 .4)
(3,450.8)
(3,479.7)

(3,510.0)

50
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For these line positiors, S = 4.2 0e“. A minimum of S occurs
at 4.07 DEZ for a shift of the forbidden doublets of 0.7 Oe, with

the following values of parameters:-—

A = -96.2 Oe
D = 83.4 "
n = D.g "
HO = 3é7D.D "

From the Bleaney & Rubins' expression, equation (4.13), a %
variation is predicted for the relative intensity of forbidden
transitions. Fig. 5.9 shows the spectrum of Mn2+ adsorbed on
Amberlite resin, recorded on the -band microwave spectrometer at

the Department of Physics, Monash University, by courtesy of Mr.
Gordon Troup. The doublets, which have a relatively large intensity
in X-band spectra, are harely resolvable at the higher frequency.

The line posilions ol these doublets, and Lhe intengily varr La Liar
with applied frequency and magnetic field, are then adequately
gxplained if these doublets ére forbidden transitions, as originally
postulated.

From the relative intensity of these forbidden doublets, a
value of the parameter 'D' of ~ Y100 Oe, is obtained by using the
method of Bleaney & Rubins, discussed in section 4.2. This esti-
mation of the parametexr 'D' is then ~ 25% larger than the value

calculated from line positions. Other powder spectra were shown

to predict values larger than single crystal values by > 50%. As
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shown later in section B.3, a rhombic component of the crystal
field mey reduce the relative intensity of forbidden transitions
in powder spsectra. The overestimation of the parameter 'D' by
only ~ 25%, compared with the.valpe gbtained from line position
measurements, may then be taken as a possiblelindicatign that a
small rhombic component is present in the crystal field at the

adsarbed IVln2+ ion site.

5.7 The Determination of the Parameter 'A' from Powder Spectra

Using Non-Angular - Dependent Expressigns.

From the predicted shifts shown in fig. 5.4, it may be seen
that if the components of allowed transitions are broadened into a
single observed peak, the centres of the measured allowed transitions
will have field separations wider than those predicted or calculated
using only non-angular expressions. Coanrsely,it could be
expected,that if experimentally determined spacings between the
obgserved allowed peaks, and non-angular theoretical expressicns were
used to calculate the magnitude of the hyperfine parameter TAY, a
value of A larger by ~1 Oe than the value as determined by single
crystal measurements would be obtained. Experimentally this is
found for the broadened calcite powder spectrum shown in fig. 5.6,
for which a values of A = - 95,4 Oe was determined usiﬁg non-angular
expressions. This value may be campéred {o the value of A = 94.0 Oe

obtained from single crystal measurements (Hurd et al 1954), and the
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value of A = =94.3 Oe cbtained using the method described in
section 5.4. Similarly, the value of A = =97.3 Oe, determined
from experimental line positions of the adsorbed Mn2+ ion in
section 1.3, is higher by ~1 De, than the value obtained when
angular terms and shifts are used, aslgiveq in the previous

section.

5.8 Failure of Theory to Explain Features of Other Observed
' Spectra.

The fhéory of powder spectra as presented has only limited
‘application, as a brief survey of spectra from available powder
samples;containing Mn2+ in trace amounts,quickly showed. The theory
of Bleaney & Rubins, as presented and applied to explain features
of the powder spéctré of Mn2+ in sites of electrostatic crystal
field symmetry characterized by an axial fisld parameter |Dl of less
than ~ 100 Oe, is unable to sven gualitatively explain features
6bserved in high=D Mn2+ powder spectra. For example, if we con-
sider the powder spectrum of Mn2+ in apatite (Ea1U(PD4)6(F,Cl»,
reported by Kasai (1962), we find that for the values of IDI~ 433 Oe;
and |Al~ 96 Oe,obtained from single crystal measurements (Burley
1964), we should expect to find, using the Bleaney & Rubins' theory,
a splitting of the allowed hyperfine lines of the order of hundreds
of oerSteq. It is immediately seen; however, on inspection of the
spectrum shown by Kasai, or the spectrum of a powdered sample of
apatite from Erenfriedersdorf, fig. 5.10, wﬁich ﬁontéiné Mn2+ ion

impurities, that no splitting of the allowed transitions is
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observable at all. As we;l, rno forbidden doubletg are :esnlvable,
whereas the simple expression for forbidden transition internsities
derived by Bleaney & Rubins (1961) predicfg, that for this value of
D, the forbidden transitions would rival the allowed transitions

in intensity. For intermediate values of the axial parameter D,
the powder spectra are extremely complex, Fig. 5.11 shows the
anf spectrum recorded from a powdered sample of Scheelite (Caw04),
for which from single crystal mgasuraments the Mn2+ ion is in a
site for which 1Dl ~ 150 Oe (Lyons and Kedzie, 1966). For both
spectra, complete line jdentification is not possible with any
degree of certainty by existing theory. However, as will now be
outlined, interpretation of all anf powder spectra is obtained

when exact methods are used to predict intensity variations.
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CHAPTER VI

TRANSITION PROBABILITIES - BIR'S METHOD.

6.1 Introduction

The expression for the variation of intensity of the forbidden
transitions as derived by Bleaney & Rubins has only limited
applicatiori, as acknowledged by these authors themselve;;\ When
the axial crystal field splitting is large, perturbation methods
are no longer accurate enough, and it is necessary to use exact
methods to obtain intensity variations, as outlined in section 4.4.
Simplification of the computations necessary may be made by using
a method given by Bir (1964).

The derivation of expressions, which enables a calculation of
intensities for the case of trigonal symmetry, is now given,
including terms in the parameter "a" which Bir has neglected

because of their general smallness.

6.2 General Theory

Bir considered that when hyperfine interaction occurred, the
direction of quantization for the nuclear spin was not the direction
of the applied field, but instead the direction of the effective
field due to the magnetic moment of the unpaired electron. This
effective field was much larger than the applied field,and its
direction depended on the electron state and the angle B8 between
the applied field and the axis of the crystalline field. The

dependence of the effective field an the electron state,then led to
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a non-orthogonality between the nuclear spin functions for different
electron states, and the nuclear spin projections, which resulted

in the Am = I transitiors becoming allowed, with a corresponding
I

reduction in the normal allowed transitions.
Bir considered that the eigenfunction @ M,m, which diagonal-
ized the Spin Hamiltonian, could be written as a product of electron

and nuclear functions.

i.e. Q Mym = *’M' ¢ éM) (6.1)

wherE\PM is the eigenfunetion which diagonalized the fine structure

Hamiltonian, and ¢ éM) were nuclear spin functions corresponding to

an electron state, denoted (M). If ¢ ﬁ represented eigenfunctions
in the absence of a crystal field,. the ¢ ;M) could be expressed as

a linear combination

1" o
¢ ;M) N _mm (q(MH )) ¢ 0

M o

" 1 (6.2)

mm" (Mrﬁ
where the D (g

1 ) were matrix elements of the irreducible

o
M
representation of the rotation group of weight I = 5/2, and g( H)

is the transformation which rotates the direction of the effective
field H® in the sbsence of a crystal field,to the direction of the
effective field HM for a given electron state, when a crystal field
was present at the site of the ion. The components of the field,
HM}could be found by calbulating the expectation value of the
electron spin in the state denoted (M).

— (M)

A (\PMl Sal‘PM) (@ = x,y,z) (6.3)
9Py
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Bir then showad that the transition probability between states
labelled (M,m) and (M',m') was proportional to the product of the
square of the modulus of the matrix element of the electronic
transition (which produced only small angular variations of inten-
sity), and the square of the modulus of the product of the spin

(M1)

M
functions @ ; ) and , which was strongly angular dependent .

m?
. : (M) (M) 2
e. 1 .
i.e (angular) 0C|¢ = @ o (6.4)
Bir then derived -
mm! 2
IoC dI (pMM')I (6.5)
where the dmm' ( ) are k f ti id = s o
B I HMM' a nown functions an HMM“ = CO MM
with aMM‘ , the angle between the quantization axis of the nuclenr

spin for electronic states M and M'.

This expression for the intensity is correct for the transitions

Mot 5/2esM =t 3/2, and M=t 3/2eem =1 15 , but is not strictly
correct for the central hyperfine sextet (M = +—M = - %). This

is shown most easily by considering axial symmetry, for which the
effective field has components, using Bir's expressions, for a

general angle 8 between the applied field and the crystal field axis

) 2 1
HXOCM -3 5(5+1)

H =0 (6.6)
Y
H_ ocM
2
The effective field directions for the (25+1) electronic states,

is then shown diagramatically in fig. 6.1. In the absence of a
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ﬁrystal field the expectation values of Sx and Sy are zero, and
hence H)< and Hy are both zero, and the direction of the effective
field acting at the nucleus,is then parallel to the direction of the
applied field for electronic states M = + 5/2, + 3/2 and + ¥ and
antiparallel for M = -+, -3/2 and -5/2.

With our convention for positive rotation, defined in section

2.2, we then have for oux gxpansions:-

(+3) mmt (+5,H0) 4 (@) (+3,H)
(l) m ° - ZmNDI (g 2’ ) ¢ m" with g 2 = +B
Similarly =
(-4) mimt (=, H)y ¢ (@) (=+,H%)
¢ m‘j = ZuD; (g 7' ) @ o' with g 7’ -B
Then -
mm" mim" 2 . o o .
IOCl %"DI (B) DI (_B)‘ using ¢ m ¢ mt Smm'
" Tttt 2
[z d™ @) o] B
m"
1" Mt 2 tmt n ]
= | " (B) e " (®)] as a7 " (-B) = a7 7" (B)
mm ! 2 ) mm '
= dI (2B) from the closure properties of the dI
From the diagram, 28 = T - a% -4 whence:
?
1
I oC ‘ d?m (m = 0y L)l . or as a function of Yy j=cosl; 1
292 2972 2372
, .
I oc |d’;“‘ (~py l)l ‘ (6.7)
292

The non-appearance of the negative sign in the general expression

given by Bir for the transition probability,is compensated by the
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non-appearance ofaenegative sign, when M = L --M = - %, in his

general expression for UM mr o @s will be shown later.
. ?

. 1
For the functions dTm (W), Bir has used the expressions listed

by Gel'fand et al (1963), viz. :-

dT'm'(pMM,) = (;L)I—T .I' (I-m) !t (I+m') n
(I-m)y 2 (I+m) 4 (I-m')!
-(m!=m) ~(m'+m) Tem!
1=p) 2 ) 2 .d " ((1-p)Ifm(1+p)I+m)
de-m'

For continuity, we will use the equivalent expression defined in

section 2.2

™ (e = £ (=0T (Lem) 4 (Len) 4 (Tent )1 @-m) 8

AL (I+m=n)L(I-m'=n)t{n+m'=m)?

21-2n+m=m"' 2n+m'—m
5% p .L. 2 (6.8)
2
For the M = + —= M = - + transitions, the intensities for allowed
and forbidden lines are then :-
Allowed (am = o)
m I5/2 ta/2 !
5/2,5/2 2 3/2,3/2 2 3,4 2
as (-u)l |05 7% )| 4272 (=)
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Forbidden (am = =1)

m | tasee>Is/2 el 3 o> 4
5/2,3/2 l 2 3/2,% 2 3,5 2
'd_5/2 (=) |d5/2 2("”1 |d5/§(+p)

2

| 1
where we have used |d?’m (p)l £ Idm a

Y

and Id?’fm'(u)lz

[d‘}"m'(-p)l i

For the expressions of interest we obtain using equation 6.8 :-

a2 )| 2 - (1__5_}95 (6.9 a)
dgg'a/z(-p)l Y 5g)a(a ;i@)z (6.9 b)
dé}g (-u)l g (1__;_3}_)(592 + gu - 1)2 (6.9 c)
d;x’ 1/?(—u)l ' 51 Ep)au ;LL) (6.9 )
dg//g’% (—u)l . (1_;_}3)2(” W1+ 50) ° (6.9 e)

Note that the power of three is missing in the equivalent
expression for (6.9 b), given by Bir & Sochava (1964), and the error
has been duplicated by Manoogion (1968).

In the absence of a crystal field we have & Ty=% = n*p = =1,
The intensity of the allowed transitions 18 then unily, il.e. no
change with angular variation, and the probability of transition for

L+ i
am = = 1 1is zero.
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6.3 Components of the Effective Field for Trigonal Symmetry.

To derive an analytic expression for P (= cos® ), we must

MM?

first derive expressions for the components of the effective field:-

Wt A Wl sl @ v Bk}
g, P .

n

Expanding the\pM in terms of zero-order eigenfunctions of SZ,

we have:=

M+1
M

M+-2

M-1
| M+1) + aM

M

M-2

I\PM) = M) + a IM+2) + a [M=1) + ay IM=2) +

where by first-order perturbation theory

1
ay = (LLHY_ MY,
Mo e
M M1
and to first order in C%) it is only necessary to calculate
aM+1 . alVI--1
M sV

As our perturbation Hamiltonian we use:-

H' = K(SZ(S++S_) + (S++S_)SZ) + B(S+f(SZ) + f(SZ)S+)

*

+ B (S f(S) + f(5.)s )

Dsin28

where A 2

B = 5%% (7sin28c0s28 + sin2@ & 4./5(-4Sin4gcos3% + 3sin29c053% +

iasinzgcosgsin3¢))

-+
—
wy
—
it

753 ~ 35(5+1)S_=-5
z z z
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Then a1 o (A(2M1) + B (F(M) + £ID)) FLN
-gBH,
it = M-+ BURINET) 4 TN P (6.11)
P,

L
where FE(M) = (5(5+1) - M(MY-1))? and we have taken EM = gBHOM as
an approximation.

The components of the effective field may now be calculated -

M ,
H, = AB (wy 15,1 wy)
INFN
A [a;M—T(M-ﬂ a;M+1(M+1| + (MI](S++5_)/2
Py
M-1
M )]

'[IM) + aM+1 fMe1) + ay

*¥M-1 M1 *M+1
A E%4 I_(M) + oAy F_(M+1) + ay F+(M)

M=1
+ aM F+(M—1ﬂ

= A *M=1 M=1 *M+1 M+1
ZQNBN [r_(M)( ay + ay ) + F+(M)(EM + ay ﬁ

Y [FZ(M) frzm-n o+ et P (8™+))
2By gPH_

2 * i
P2 {2men) (V0 « (P TN (B +B)ﬂ

gfH,

- A [FZ(M)_{(ZM—1)X + (F(M-1) + f(M))R(B)}- Fi

A - (M),
g, By P,

-{(2M+1)K + (F(M+1) = f(M))R(B)}] (6.12)

where R(B) = real part of {3,and R(A) = A,
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For M = +% : (2M=-1) = f(M=1) + f(M) = O
Fe(m) B
(2M+1) = 2
F(M+1) + £(M) -30 ,
M= -7 (2M+1) = F(M#1) + F(M) = O
Ff(M) = 8
(2M-1) = -2
f(M=1) + (M) = +30
and we obtain :-
Hi - H;% = -16A (A ~ 15R(B) (6.13)
g, By 9PH,
Similarly -
N W R N N e S A I 2

InFn INFp 21

and on substitution of the expansion of the‘PM and reduction we

ohtain -
1l =
H; Hy; -16A  ( =151(B)) (6.14)
9By aPH,
and M
Ho = A (! szl Yy) = AV
anPy By
i -1
HZ = =H % = A (6.15)
Z z

29,By
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6.4 Calculation of Y = coslyy,

The cosine of the angle between the directions of the effective
fields corresponding to electron states M & M' may be calculated in

terms of the components, viz. :-

b= HMHM' W
=L (6.16).
[{(HM]Z 3 (H . (H ) } {(HM 2 e 1My? . (HM')Z}]
X y z

For D ((140 and 'a' « HD; Hy and Hr are both &« Hz and we may use

the Binomial approximation to reduce this expression to :-

?

Mn 2 M Myt 2

uoo HH 1 -1 (H" - H R (6.17)
i S ) T x Sl X
Mt L - v
[(HMJZ(H )ﬂ z T T
r4 Z zZ < Z
For M= 5/2=eM =% 3/2 and M = "= 3/2 =M =% 1,
1]
HMHM = +1
2 Z
M2, M2 &
(2 2] *
y4 Z

(as HZIOCM, and noting that the denominator must be positive). For

1

the transitions M = ¥+ —M = - %+ , however, this term = ~ 1 , and
we obtain =~
1 L ! i
b==11-1 H? - H? B 1 \H - H *? < (6.18)
243 1 2\ o
HS  H? H?  H?
z z z z

Substituting for these components from (6.13), (6.14) and (6.15)

we ubtain -



bW=-|1-2,048 [x s 15R(5)]2 + 15 1(p)] ?
2
(2
] (gﬁ)HD)
i
=~ |1 - 2,048 [Q_sinzg
RGN
)
. . + .4 ¢ 312 2
= 158{751n29c0529+81029—4.j?(—451n_9cos@j351n Qcos3%)}]
576
= . 2 . 2
+{15a.12.J2 .sin Qc05951n3+] (6.19)
276

6.5 Discussion.

Writing Y4 = -f(D,a,8,¢) we find that for a = 0O, f(D,0,8,0) is
identical with the expression for W derived by Bir (for M = R
M=%, and E = 0), and that identical expressions are obtained

for intensity variations, i.e. -

Bir:
1 ]
W = +f(D,0,8,0) and Iocldrl“’“ (+p)l ° |drl”'“ (f(D,O,Q,D))lZ ,
This author:
] 1
b = -f(D,0,8,0) and IocldTm (-p)‘ 2 |dTm (f(D,D,g,D))|2

This double change of sign may be regarded as trivial, if the
approximate expressions only, are used, in the calculation of
intensity variations. When exact methods are used, however, to
predict these varistions for the M = %'transitions, this double
change of sign must be taken into account.

Only first-order perturbation methods are necessary to derive

the expression for W and it would be expected that for values of (DI
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which are not small compared with H, more exact treatment wou 1d
be required. For IDI> ~400 Oe,we in fact find from this approxi-
mation that at B = 450, the value of W (= cosa MM') becomes
greater than unity. Rather than derive expressions for W, using
higher orders of D/H,and higher order perturbation methods, an
exact solution was then found. A computer programme was written
which found all coefficients in the expansion of the perturbed
wave function, by computer diagonalization of the 6 x 6 energy
matrix for the fine structure, and values of U were found by direct
‘ substitutioﬁ of the calculated components of the effective field,
in equation 6.16. The computed intensity variations by exact
methods for various values of ﬁarametars, are shown later in
figures T.1, 7.2, 7.5, 7.1 = 7.16.

Am staled bsfore, the number of calculalions necessuary Lo
obtain predicted intensity variations by this method, are of the
order of three orders of magnitude less than the number required
using the method described in section 4.4. The total computer
time required to obtain intensity variations for six lines, in the
range B = 0 to B = n/2, at 2%0 intervals, was in fact less than one-
half that required to obtain a single point of the intensity
variation, by diagonalization of the 36 x 36 matrix, as described
in sectiuvn 4.4.

The effects on the predicted intenmsity variation of a forbiddern

transition, of variations in the parameter 'a' are shown in fig. 6.2.



Intensity ( arbitrary units )

S = M ® =~ O
1

N W s O X W

—

m=5/2<«>m=3/2
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Qualitatively these variations may be taken as having no effect on
the resultant intensity variution, but gquantitatively, significant
variation may occur if the 'cubic" terms are neglected, for
small values of D,

For the purpose cf the following work, in which interpretatiaon
of powder spectra is mainly nqualitative, the cubic terms will be

neglacted.

6.0 Intensity Variatloos o

It
[Ivi)
[
f—
=
Let]
—

Hhombic Crye

For rhombic crystalline field symmetry we obtain:-

with |A] = sin® [msg(n-‘k.cosz«/’) N iEsinN]
2
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CHAPTER VII

Interpretation. of Other Axial Powder Spectra.

7.1 Introduction.

We have.seen that features of some Mn2+ powder spectra are

adequately explained using the intensity or line shape function:-

1'(8) = sing.1(8)
291 /90
and I'(8) ¢ 1(8)
cosQ(Ui+Visin29) (7.1)

where we have previously used -

I(8) o ) (am = £1)
and I(8) = corstant (am = 0)

Quantitatively, features of all axial powder spectra may be
sxplained,by considering maxima of the line shape function,
mquation (7.1) above, using intensity variestions I(8), predicted
using Bir's method.

For our interpretation we assume that the I(8) variation

modulates the ___ 1 _ function, which has finite values

cbsQ(U.+V_sin29)
i i

at 8 = /2 and B8 = arcein , ~ 40° , rather than undefined

values,
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7.2(a) Apatite : Transition Probabilities in Single Crystals.

The intensity variations predicted, for allowed and forbidden
transitions of the central hyperfine sextet, are shown in figures
7.1 and 7.2, using the exact methods described in section 6.5.
Experimental verification of these predicted variationsg for all
lines was not possible because of the overlap of outer transitions,
and the rapid rise of am = Iy (and possibly Am = : 3) transitions,
as the angle between the crystal axis and the applied static
magnetic field was increased from zero. It was, however, possible
to follow the variations of intensity for the first allowed line
(m = = 5/2) and the first forbidden transition (m = - 5/2 —m = =3/2)
over a large range of angles for a single crystal of apatite from
Erenfriedersdorf. These variations are shown in fig. 7.3, and by
comparison with the predicted variations we obtain excellent
qualitative agreement between theory and experiment. The experi-
mental intensities near 8 — 45° are smaller than the predicted
intensities. This would be expected, however, as overlapping by
adjacent lines would produce a reduction in the observed peak to
peak of the derivative of the absorption curve,which was taken as

a measure of the intensity.

7.2(b) Apatite : Explanation of Features of the Powder Spectrum.

Assuming that for the other allowed and forbidden lines, for

which intensity variations with rotation could not be followed,
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the intensity variations are as predicted, but with the measuread
peak to peak intensities smaller near 8 ~ 45° than shown in figs.
7.1 and 7.2, we may conclude that the intensities of all lines are
very small near 8.~ 40 - as®. When this modulation is applied to

the function 1 . we could then expect that for a

cosQ(Ui+Visin29)
powder sample the 8 ~40° peaks predicted by this function would
only be of very small intensity, and may not be observable. For
the allowed transitions we could then expect only 8 = 900 peaks,
i.e., in a powdered samples of apatite ,we would not expect to observe
splitting of the allowed transitionms, as is observed for low D
samples, and we would expect the observed line positions of these
lines,to coincide approximately with line positions observed for a
single crystal at & = 90 . Such is the case for the apatite
powder spectrum shown in fig. 5.10.

Kasai's (1962) assumption that the Mn2+ apatite powder spectrum
corresponded to the B = 90° single crystal spectrum, in his deter-
mination of parameters, is therefore justified. It may be noted
that Kasai has used only second order calculations in his analysis
which predict equal angular shifts for each hyperfine lire. Third
order terms predict unequal angular shifts for the central hyperfine
lines, and as shown previously in section 5.2, predict that the
spacings between adjacent allowed hyperfine lines, at B = 900, is

less than the spacings calculated using only second order terms.
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Conversely it would be expected that if the hyperfine parameter A
(or Ay and A, ) was determined by fitting experimental 8 = 900

line positions from a powder spectrum, to theoretical terms con-
taining only up to second order corrections, a value of A lower

than that obtained from single crystal measurements would be
obtained. This could then explain why Kasai's determined values
(Ay =94.4, A, = 92.4) are slightly lower than values obtained from
single crystal measurements (A, = 95.0, A, = 92.6 : Dhkubo (1963);
Ay = 96.2, A, = 95.5 : Burley (1964); Au = 96 (1), Ay = 93 (1)
Vinokurov et al (1964 b)).

For the forbidden transitions,the modulation by I(B) produces
a small broad peak in the intenmsity function at B~ 70° - 80°.

It could then be expected,that in the powder spectrum,fthe forbidder
doubleta, possibly broadened into a single broad resonance, could
be obssrved at line positions corresponding to 8~ 70" - HDU, or

20 - 30 Oe towards the high field side relative to the mid point
between the allowed transitions. For the spectrum shown in fig.
5.10 ,such broad resonances are cbserved.

In the single crystal studies of apatite,a much weaker spectrum
was observed underlying the main spectrum, fig. 7.4. This weaker
spectrum has been reported by Vinokurov et al (1964 b) and Ohkubo
(1963).

It has been assumed that the apatite powder spectrum discussed

in this section was actually the spectrum due to the main ion site.
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As shown later in sections 7.4 and 8.4, if two or more non-=
equivalent an+ ion sites exist in a material, the features of a
powder spectrum may be dominated by the site of'lower axial crystal
field splitting. This may occur,even though the single crystal
Mn2+ spectrum of the lower 'D' ion site, may be of relatively

small intensity,compared to the single crystal spectrum from Mn2+
ions in the hiéher D' site. Because of this, a brief investiga-
tion was carried out to verify that the apatite powder spectrum

previously diccussed,was in facl ,due to the ion site which produces

the main spectrum in single crystal studies.

7.2(c) Apatite - Single Crystal Spectra and Annealing Experiments.

There are two non-equivalent Ca-sites in the apatite crystal
structure (St. Naray - Szabo 1930). The Cal site is on a trigonal
symmetry axis in the centre of a slightly twisted prism of six
oxygen atoms (point group symmetry CB)' In fluorapatite the Call
site is in a reflection plane containing an adjacent fluoride ion
also in the reflection plane (point group symmetry C1h). In the
chlorapatite the halide lies on the same hexagonal screw axis as
the fluaoride, but between the reflection planes (Johnson 1962) .

Butler and Jerome (1950),and Ouweltjes (1951), have concluded
that the shift in the luminescence emission of Mn2+ with change of
Cl1” and F~ composition, is evidence that the Mn2+ is in the Call

site. Narita (1961), however, has calculated the effect of change
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in lattice constants on the emission spectrum of Mn2+ in halo-
phosphates,assuming the manganese to be in the Cal site, and found
that the calculated shift was in accord with the experimentally
obsérved effect or the Mn2+ emission spectrum of changing the
[le]/ [ Ff] ratio. Johnson (1962) has applied symmetry arguments
to explain the observed spontaneous polarization of luminescence

of single halophosphate crystals, and has concluded,that in
fluorépatite the Mn2+ is predominantly in the Cal site, in chlor-
apatite the Call site is preferentially occupied, and in mixed
halides, including natural crystals, both sites are occupied.

Kasai (1962), or the basis of the electrostatic symmetry at the two
sites, concluded that the paramagnetic resonance of Mn2+ in powder
synthetic apatite phosphors,was due to the Mn2+ ion occupying the
more symmetric Cal site. Vinokurov et al (1964 b) have come to the
game coliclusion for Lhe mors intense single cryatal spectrum
observed in natural apatite crystals. These authors reported

observations of a much weaker spectrum underlying the main spectrum,

which they attributed to Mn“' ions in the Call site. Ohkubo (1963)

has published spectra from naturally occurring apatite crystals,
showing this much weaker set of linmes,which he also attributed to
IVIn2+ in the Call site. The parameters for the Mn2+ spectrum,
generally attributed to this ion occupying the Cal site, have kteen
given by Burley (1964), Vinokurov et al (1964 b), Kasai (1962) and

Ohkubo (1963). No parameters have yet been determined for the Mnd+

iorn in the Call site.
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Johnson (1962) reported that E.S.R. observations of synthetic
chlorapatite crystals containing Mn2+ impurities, indicated that
this ion was in the Call position. In reply to a letter by this
author reguesting the parameters for Mn2+ in the Call site, Johnson
(November, 1967) has stated that "due to large departures from
stoichiometry resulting in many centres of the type studied by
Pipar et al (1965) having hyperfine interaction with the two Cl
isotopes, the £.5.R. spectra of chlorapatite crystals are hopelessly
complex" |

Apple and Ishler (1962) observed that the rate of cooling from
elevated temperatures affected the structure and luminescence of
calcium halophosphates with Sb and Mn. These authors proposed that
very fast quenching (~sec) from high temperatures (800 - 1,DDUDC),
"fregszes in" a more random distribution of Mn over the two Ca sites,
whereas on slow-cooling,the Mn2+ tends to migrate to,and occupy,the
Cal site, and suggestec that E.S5.R. measurements on annealed samples
could help to substantiate or disprove their proposals.

Ohkubo (1963) reported thst the weak;r Call - Mn2+ spectrum
was reduced in intensity with annealing, which would seem to sub-
Sstantiate the proposal of Apple & Ishler (1962), that Mn2+ woﬁld
migrate from Call sites to Cal sites, with annealing. Quenching
and anrealing experiments were carried out by the auther, using
single crystals, but in all cases a large reduction of the intensity

of the weaker spectrum was the only effect observed. This large
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reductior of intensity of the weaker spectrum with quenching,would
then seem to cast a doubt on the proposal of Apple & Ishler, if
this weaker spectrum is due to Mn2+ in the Call site.

No large reduction of the intensity of lines observed in IVln2+
apatite powder spectrum occurred with ahnealing; If the lines in
the powder spectrum were due to IVIn2+ ions, which produced the
weaker spectrum in single crystal studies, these powder lines should
be reduced in intensity with annealing or quenching. We may then
conclude that lines in the powder spectrum discussed in the previous
section, are, as originally assumed, due to Mn2+ in the ion site

which produces the main spectrum in single crystal studies.

7.3(a) Scheelite : Transition Probabilities.

The existance of strained single crystals of CaWD4 containing
manganese for which only the central (M = =M = - +) transitions
are observable (Lyons & Kedzie, 1966) ,enables the study of intensity
variations of allowed and forbidden lines in the central transition,
without the complication of overlapping fine structure. Natural
crystéls of Ca\nll]4 of unknqwn locality, which contained Mn2+, and
produced intensity variations similar to that described for the
synthetic crystals, was found among specimens in the Geology Depart-
ment of the University of Adelaide. Near B = DO, all fine structure

2
in the Mn - spectrum was observable, but for 8 greater than about

_50, the fine structure was so broadened that observations of the
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central structure were not hindered. Experimentally determined
intensity variations obtained from this natural crystal are shown
in fig. 7.5 and predicted variations shown in fig. 7.6.

Taking into account the reduction of observed intenéity due
to overlapping by adjacent lines, excellent agreement between
experimental and theoretical variations is once again obtained.

The experimentally determined intensities were all taken
relative to a D.P.P.H. signal. At certain angles between the Z
crystal field axis of the turgstate crystal,and the applied field,
this D.P.P.H. line overlapped the central forbidden lines of the
tungstate spectrum, Because cf this, the intensity variations of

these forbidden lines were nol fully determined.

7.3(b) Scheelite : Powder Spectrum.

For the allowed transitions it is seen from the predicted
intensity variations shown,that at B8 -AUO, the first (m = - 5/2),

and last (m = + 5/2), of these transitions still have a relatively

1+

+

)

N|—

large intensity, whereass the other allowed lines (m = /2,
are relatively wesk.

We could thus expect that for the powder spectrum, the B~ 40°
peaks in the intersity function would be relatively large for the
first and last allowed transitions, and relatively small for the

central four allowed lines. Splitting of the allowed transitions

would then be observed only for the m = : 5/2 resanances,
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For the forbidden transitions (am = = 1))thé intensity at
B ~40° is relatively lafge, and the intensity variation could be
approximated by a sin229 variation. In the powdexr spectrum we
would thus expect forbidden peaks corresponding to 6 ~ 40°. These
predictions, both for the allowed and forbidden transitions, are
verified experimentally.

For this, and all other powder spectra from samples for which
the Mn2+ ior is in a site of axiai field symmetry, we could perhaps
generalize,and state,that the resultant powder spectra can be
regarded as the resultant of the single crystal spectra at 8 = 90°
and 8 ~ 40°, This is shown for the tungstate spectrum in fig. 7.7,
where the powder spectrum, and B = 90° and 8~ 40° spectra from
the strained single crystal, have been aligned using a D.P.P.H.

marker, making possible a complete identification of major lines in

this powder spectrum,

Line Identification

1
.} Split allowed transition (m = =-5/2,am = o)
P

3  Fforbidden (m = =5/2-—m = =3/2, am = +1)

4 Allowed (m = =3/2, am = o)

+ Forbidden (m = =3/2 —sm = =5/2, am = =1)
5 Forbidden (m = =3/2 ——m = =%, am = +1)
6 Allowed (m = =%, am = o) + Forbidden (m = -%—m = =3/2,am = =1)

7 Allowed (m

I

|
Nl
3

'|
+
Nf—
[~
3

It
+

++, am = o) + Forbidden (m



FIG. 7.7
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8 Allowed (m = 3/2, am = o)
9 Forbidden (m = 3/2—m =%, am = =1)

10 Allowed (8 = 90° component) (m = 5/2, am = 0)

+ Forbidden (m = 3/2—m = 5/2, am = +1)
11 Forbidden (m = 5/2—m = 3/2, am = =1)

12 Allowed (Q-«4DD component) (m = 5/2, am = o)

7.4 Dolamite : Single Crystal and Powder Spectra.

The spectrum of Mn2+ in dolamite, EaMg(EDB)Z’ has been reported
by Vinokurov et al (1961). These authors reported the existance
of two overlapping spectra, ore characterised by | D] = 150 Oe, and
the other of relatively small intensity by D —~ 0. The Mn2+
spectrum from a sample of powdered dolamiie is shown in fig. 7.8,
together with 8 ~ 40° and 8 - 90° single crystal spectra, the three
spectra being aligned using a D.P.P.H. marker. (For this sample of
dolamite, the outer fine structure zlso fell rapidly in intensity
away from B = DD, enabling observation of the central hyperfine
transitions.) Complete identification of the lines in the powder
spectrum is then possible and it is seen that the major lines in the
powder Spectrum are due to the |"|n2+ ion in the D~ O site, which

produced relatively weak lines in the single crystal spectra.

Transitiors of the |D| = 150 Oe site are much more angular
dependent than correspording transitiors of the D ~0 site. The
powder spectrum of this |D| = 150 Oe site would then be spread over

a much larger field regior, with a corresponding larger reduction
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"in the observed pesak to peak intensity, than would occur for the

powder spectrum of the D~ 0 site.

7.5 nkerite : Single Crystal and Powder Spectra.

The spectrum of Mn2+ in ankerite, Ea(Mg,FeZ+,Mn)(C03)2 has been
reported by Vinokurov et al (1961). These authors, however, were
unable to determine parameters accurately, dug presumably to the
broadness of the lines observed for the sample used, which they stated
were broadered by an Fe - Mn dipolar interaction. The B8 = o° epectrum
from a single crystal of ankerite from Western Australia, obtained
from Mineral Specimens Ltd., S.A., is shown in fig. 7.9. For this
spectrum a best fit between experimentally determined lime positions
and theoretical line positions was obtained for the following values

of parameters -

2.00 (¥ 0.005)

g =
A = -94.1 (2 0.5) 0e

D =I1s5a (I 5) 0e

a =% 11 (X5)0e (T =20% =29.17 Ge/s.)

The values of these parameters appear identical (within experi-
mental error) with those determined by this author for dolomite. The
spectrum of a powdered ankerite sample is shown in fig. 7.10 and
appears to be just a broadered version of the dolamite powder spectrum
(fig. 7.8). As the dolomite powder spectrum was shown to consist of
two cverlapping sets of lines, it is reasonable to assume, from a
comparison of the powder spectra, that there are two sites available
for Mn2+ ions in ankerite as well, with a weaker spectrum masked and

unobservable in the single crystal observations.
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7.6 Summary of Theory for Axial Spectra.

At this point we may summarize the theory of axial powder
gpectra as follows:-
1. For any value of the axial parameter ‘D', a powder spectrum
may be regarded qualitatively,as the sum of the 8 = 50° and
g ~ 40” single crystal spectra.
2. For values of |[DIK~100 Oe, the intensity of all allowed transi-
tiors at 8 ~ 40° is relatively large, and a powder spectrum should
consist of both B = 90° and 8 ~ 40° allowed peaks, which may be
broadened into only a single observable line. Forbiddern douhblets
should be observable (corresponding to B ~a4UO),and in broadened
spectra will appear shifted towards the high field side of the
spectrum,relative to the observed allowed transitians.
3. An additional small relative shift of the forbidden doublets
towards the low field side,may possibly be attributed to the line
shape factor.
4. The determination of the parameter 'D', using the Bleaney and
Rubins' expression for rglative intensities in a powder spectrum,
may be larger than the value determined from single crystal measure-
ment by > 50% (for values of IDI<~ 100 Oe). The method is not
applicable for large values of iDL
5. Forl|Dl—~150 Oe, the intensities of only the first and last

. :
(m = = 5/2) allowed transitions might be sufficiently large, near

8 *-400, to have an effect orn a powder spectrum. Doubling of only
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these allowed lines may therefore be observable in a powder
spectrum. 8 ~ 40° forbidden lines should be observable, but may

be so shifted relative to the allowed B = 900 pesks, that overlap

OCCUTsS., e.g. EaWD4 powder spectrum, fig.S5.1.
6. For |D| = 250 Oe and ID| = 350 Oe, predicted intensity
variations are shown in figs. 7.11, 7.12, 7.13 and 7.14. From

the variatiorns for allowed transitions, it is seen that near

8 ~ 40° the transitior probability is relatively small for all lines.
In axial powder spectra of Mn2+ in sites for which 1D} ~250 - 350 Oe,
we might then expect that all B8 ~ 40° allowed components may be of
relatively small intensity, compared wifh g = 90° peaks, and may

not be observable. For forbidden transitions, the predicted inter-
sity near 8 ~40° is relatively large for only the first and last
pair of transitions (m = + 3/2«>m = + 5/2), and only these pairs

of lines may be observable in a powder spectrum. High-field lines
have a larger variation of field position for resonance, as B is
varied, than low field lines. High field lines in powder spectra,
are therefore broadered more than low field lines, and it might be
expected that the low field forbidden doublet (m = - 3/2<¢>m = =5/2),
would have a larger intensity than the high field doublet,

(m =+ 3/24»m = + 5/2), and may even be the only forbidden lines
clearly discernable.

7. For larger values of 'D' (~450 Oe) the intensities of all

transitions at 8 —~40° may be sufficiently small that peaks in a
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powder spectrum, corresponding to crystallites possessing this
orientation, may not occur. The resultant powder spectrum then
consists basically,of allowed transitions, corresponding to
8 = 90°, e.g. Apatite powder spectrum, fig. 5.1Q.
8. Predicted intensity variations for |D| = 876 Oe are shown in
figs.: 7.15 and 7.16. From these,we may predict ,that for values of
'D', of this order, 8 = 90° allowed peaks should still be the
dominant feature of a powder spectrum.

It is of interest to compare the intensity variations, for
I =5=5/2, Dl =876 Oe, calculated by Bir's method, with
intensity variations for I = 7/2, S = 3/2, |D| = B76 Oe, shown by
Bleaney and Rubins (15961), calculated by computer diagoralization

of the 36 x 36 energy interaction matrix. For m = % 7 (am = 0,

24 1), the variations predicted by the two methods are

am o=
gqualitatively in agreement, as may be seen by a comparison of

figs. 7.15 and 7.16, with fig. 3 of Bleaney and Rubins (1961).
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CHAPTER VIII

The Effect of Rhombic Crystal Field Symmetry

8.1 Introduction.

Hayashi and Ono (1953) have reported the existence of four
non-equivalent Mn2+ ion sites in MgSDA.YHZD. These ion sites
were characterized by the parameters A = - 94.7 Oe, D = 428 ODe,
E~D. The 7 axes of the crystal fields at these sites possessed
direction cosines relative to the crystal axes a, b and c cf

+ : +
(- 0.282, 0.952, 0.122), (- 0,282, 0.952, -0.122).

For this value of the parameter 'D', the theory presented

above predicts that the spectrum from a powder sample of

2+ a]

MgSDA.YHZU (Mn ), should consist basically, of six B = 90
allowed lines., Contrary to this prediction, the spectrum

obtained was axtremaly complex (fig. 8.1), which suggested that

the published paiameters were incorrect, and single crystal studies
were then undertaken. Agreement with Hayashi and Ono was

obtained for the magnitude of the parameter 'D', but a relatively
large value of E(~80 Os) was necessary to describe the observa-
tions that for rotation in the X-Y plane (B = 900), large variations
“of line positions and line intensities occurred. It was then
po;tulated that the complexity of the MgSD4.7H20 (Mn2+) powder
spectrum was due to the rthombic comporent of the crystal field, and
the theory of such a component, and its effect on powder spectra,

was then investigated.
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It_haé been assumad by some authors that the only effect of
a rhombic comporent of the crystalline field, on a spectrum from a
'pqwdered sample containing Mh2+, is a broadening of lines. (Kasai
1962, de Wijn & Van Balderen 1967.) It will now be shown, however,
that if a rhombic companent exists -
a) the 8~ 40° components of the powder spectrum are preferentially
broadened, compared to the 8 = 90° lines.

b) Splitting of the 8 = 900 lines may occur.

8.2 The effect of Random Orientation.

For a powder sample we have seen in section 1.5 that the
probability of the dirsction of the applied field lying in the
elementary solid angle dw, about the direction B8,y , is:-

sin@d8dy (8.1)

AT
From the symmetry of the % variation, it then follows that for
a given B, the intensity or line shape function for the + variatior
is:~

I'(¥) o Li¥) = I(Y) (842)
dH/d¢ 8 = cons 3H/b¢

The angular variation of line positions for rhombic symmetry,
may be derived from line positions for axial symmetry, given in
section 3.0

Substituting -

o = l_[D(3c0529—1) + 3Esin29c052¢ for 2}3c0529—1)
2 . 2



IN? = 1 [{sin@cosQ(D—ECOSZ\,&)}Z + {ESlngsinZA,b}Z]
4
. 2
for(Dsin28)
|pf = l_l{DsinZQ + E(cos2¢00829 + 0082%& 2+—{2Ecosgsin2$}2]
16 5 ' '
for Usindg
4
we ‘cbtain -
2 2
H.(8, ) = RO +S..AN" +T..p (8.3)
i i il i
R 93 1
i il i
i=1 ~8Am 64 - 576Am -32 - 32Am
(am = 0) H H He H H
a o o o o
i=2 - 64 - 2BBA(2m-1) | -32 - 16A(2m=1)
(am = +1) H He H HE
‘ 0 o 0 o
i= 3 -BAEQQm—1) 64 - 2BBA(2m-1) -32 - 16A(2m-1)
(am = =1) He H H2 H He
o 0 0 0 o

Differentiation then produces:-

JH, = sin2+[-3ERisin2Q + Si{Esinzgcoszg(D-Ec052+) + E25in290082+}

+ Ti{4E2c0829c052+ - E(00529+1)(Dsin29+tc052¢(c0529+1)ﬁ] (61.4)
4

Extreme values of ]43H then occur at Y = 0 and ¢ = 9DD, and

C

may occur at intermediate values depending on the magriitudes and

relative signs of the various parameters.
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For I($) we use the expression in Chapter Vi, viz, =

Hgec|d]™ (- )| °

where the expression for U (= cosa 4 1), when the crystal field
2=2

possesses a rhombic symmetry, has been given in section 6.6 as:=

- (1 - 2,048 I\ %)

H2
o

B

At this point we may note that for £ = 0 :-

(A e Dzsin22Q/ 16
but for E £ 0, and 8 = 90° :=-

Il ¢ - (2E)zsin22¢/’1e

and by comparison we may conclude that the I(g) variations at
8 = QDD,are similar to the I(8), (E = 0) variations, with D = 2L.
8.3 Discussion.

1

Typical values of 9H , I(y¥) and I'($¥)oc I(¥)/OHAy are
oy

shown qualitatively in fig. 8.2, and the I'(y) variations, coupled
with the spread of the lines, due to the %rrotation, calculated
from equations (8.3), shown in fig. 8.3. From this latter diagram
it is seer that the spread of lines is greater for 8 ~ 40° than for
8 = 90°. The observed intensity of a line in a powder spectrum
generally decreases with an increase of the field region over which

resonance may occur for the randomly oriented microcrystallites.

It might therefore be expected, that, when Mn4+ iorns are in a site
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of rhombic crystal field symmetry; (E£0) the B8 = 90° allowed

lines dominate the spectrum from a powdered sample. Such appears
to te the case for the spectrum observed from a powdered sample

of querched NaEl(Mn2+), shown in fig. B.4 for which the parameters
listed in fig. 8.3 ‘apply. (Morigaki et al, 1958) The magnitude
of the parameter 'D' for this spectrum, is approximately the same
as for the EaW04 gspectrum, discussed in section 7.3. If a rhomtic
component broadened all lines of a powder spectrum equally, the
powder spectrum of NaCl(Mn2+) should then be a hroadened edition
of the tungstate powder spectrum. N comparison ol these spectra
shows that this is not so. lhe observed features of ihe chloride
powder spectrum are explained however, if 8 ~ 40° comporients are
preferentially broadened.

This preferential broadening could ther introduce an urder-
estimatiorn of the parameter 'D' from a powder spectrum, using the
Bleaney & Rubins' expression for relative intensities, derived
purely for axial symmetry. The ratio of forbidden (8~ 400) to
allowed (B8~ 40° and 8 = 90°) intensity would be smaller for EZO,
than for £ = 0, for the same value of D. An urderestimation of the
parameter 'D' could then result if the Bleaney & Rubins' expressior
was then applied to the measured relative intensity observed in a
'rhombic' powder spectrum.

In the case of 'axial' puwder spectra, forbidden doublets may

not be relatively large for both very small (D ~ 0) and large
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(D ~ 400 0e) values of D. For rhombic spectra these doublets may
not be relatively large for all values of this parameter.

For IEl = BD Oe, the computed intensity variations in the X-Y
plane,for allowed transitions,are ghown in fig. B.Q:and it is seen
that the intersity of all lines is a maximum at ¢ = 0% and 90°
(i.e. H//0X and H//0Y) and relatively small near ¢ = 45°.  As
1/9Hé¢ also has maximum values at ¢ = 0° and ¢ = 900, it would
be reasonable to conclude ,that as the line shape function for
rhombic symmetry I'(y), is the product of I(y) and 1/3Hé¢, both
of which have maxima at Y= 0 and ¥ = 90°, that for E —~ 80 Ce,

B = 90° powder peaks are not spread evenly by a rhombic component
but concentrated into two components, corresponding to ¢ = 0 and
f': 9DD, with the magnitude of the splitting approximately constant

Fig 8.hb)
for easch line. For axial symmetry we have seen that qualitatively

a powder spectrum may be regarded as the sum of 8 ~40° and B8 = 90°
single crystal spectra. In a similar manner we may generalize
and state that for rhombic symmetry the resultant powder spectrum

could be expected to be the sum of the H//0X and H//0Y single

crystal spectra.

8.4 Interpretation of the Mg(Mrd+)SD4,7HZD Powder Spectrum.

Single crystal spectra with the applied static field parallel
to the 0OX and 0Y crystal field axis of one of the ion sites are

shown in fig. 8.5)t0gether with a powder spectrum, with an
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interpretation of the powder lines illustrated bya projection of
lines in the single crystal spectra. Rezsonable agreement with
theory presented, that for rhombic symmetry a powder spectrum may
be regarded as the sum of single crystal H//0X and H//0Y spectra,

is then obtained.

8.5 Mno¥ in Tremolite.

The spectrum of Mn2+ in tremolite, H2Ca2Mg5(5i03)B, has been
studied by Manoogian (19668 a, 1969 b). He reported the existence
of a single ion site characterized by the parameters:-

.g = 1.995, A = =T79.9 Ue, D = -442.9 Oe, E = -79.4 Oe.

For the value of the parameter 'E', it could be expected that
a complex powder spectrum could be obtained. The powder spectrum
obéerved from the first sample of tremolite obtained by this author
(locality : St. Lawrence County, N.Y., U.5.A.) is shown in fig. 8.6.
In contrast to the predicted complexity, a relatively simple six-
line spectrum is obtained. Because of this, single crystal inves-
tigations were carried out to check the parameters given by
Manoogian, and an additional Mn2+ spectrum was detected. Struc-
turally, tremolite and diopside are similar. (Manoogian 1968 a)
Two Mn2+ ion sites have teen reported for diopside (Vinokurov et al
1964 a) and a second ion site in tremolite could be expected. Fig.
8.7 shows a single crystal spectrum recorded with the applied
magretic field parallel to the Z axis of the site (dercted I)

described by Manoogian. Lines of this seccnd spectrum (IT) may
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be seen on either side of, and underlying, the central hyperfine
sextet of spectrum I. These lines are also observable in the
spectrum of white tremolite shown by Manoogian, who has acknow-
ledged the existence of these weaker lines (personal communication,
January, 1969), but stated that he could not definitely identify
these lines as part of a Mn2+ spectrum. In the X-Y plane of the
ion-site I, however, the lines of spectrum II almost rival in
intensity the lines of spectrum 11, for the sample of tremolite used
by this author. (The lires of spectrum I are of smaller intensity
for H//0X and H//0Y. than for H//0Z.) This is shown in fig. 8.8,
and the additional six line spectra clearly seen in these records
may bé assigned as originating from Mn2+.

No fine structure could be firmly associated with this second
spectrum, and parameters could not therefore be fully determined.
From the spectra shown in fig. 8.8, a mean hyperfine splitting of
92 .5 Oe was obtained. During rotation of the sample in the applied
magnetic field, only relatively small variations of intensity and
field position were cbserved for lines of spectrum II compared with
variations for spectrum I indicating a much smaller value of the
parameter 'D' compared to that for spectrum I. From fig. 8.6 it
is seen that the powder spectrum consists of a reasonably sharp six
line spectrum with no large forbidden transitions or splitting of

hyperfine lines visible, centred rear the D.P.P.H. rescnance.
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These features all indicate that the an+ ion site mainly responsible
 for the powdér spectrum is characterized by {Dl~ 50 Qe, E~ 0, or

a slightly larger D value with |El~ 10 - 20 De. I+ may then be
assumed that the powder spectrum shown in fig. B.6 is due to Mn

irn site II and this spectrum masks the épectrum from site I, for

this particular sample of tremolite.

The relative occupation of the two sites, by Mn2+ impurities,
apparently varies from sample to sample,as the spectrum from pink
tremolite shown by Mancogian (1968 a) shows no second spectrum.

This was confirmed by single crystal observations using samples of
this pink tremolite,which was kindly sent to this author by Dr. A.
Ménoogiah (February, 1969). The powder spectrum from this sample
was extremely broadened however, and showed no clear hyperfine
structure. The broadening is attributable mainly to dipolar inter-
action, the Mn2+ concentration in this particular sample being ~ 3%.
(Manoogian 1968 a).

Another sample of tremolite obtained producecd the powder
spectrum shown in fig. B8.8. The seven-line spectrum observed,could
possibly be interpreted as being due to Mn2+ with "OX" and "OY"
peaks of spectrum I, overlapping, as shown in this figure. Tre
sample from which this powder spectrum was obtained was poly-
crystalline,and single crystal studies were not possible. The "OX"
and "DY" spectra, shown in this figure, are from the New Jersey

sample.
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The thermal breakdown of tremolite to a pyroxere of diopside -
clinoenstatite type by dehydroxylation, has been studied by
Freeman and Taylor (1960) . Attempts to follow these changes, by
observing changes in the Mn2+ gpectra, met with no success howevel .
After heat treatment at 1,0000 - 1,2000 C for periods up to 24
hours, no hyperfine structure could be observec in the samples.
It is known {Wittels, 1952) that iron impuritims in tremolite under-
go a change cf Dxidatioﬁ state at — sao° C, and this would probably

pccur with IV|n2+ impurities as well.

8.6 Mn2* in Cordierite (Dichroite, lolite) AlMg,(SigA1)0,q-
&

Cordierite, a natural silicate of aluminium and magnesium, 1is

: oy
a semi-precious gemstone (water saphire). The spectrum of Mn T in
this mineral has been reported by Hedgecock and Chakravartty (1966),

_ . . . . i . 3+
who were however mainly concerned with an investigation of a fe

spectrum also observable, and gave no parameters for the an+
spectrum. Quoting these authors - "Preliminary observations indi-
cate that manganese occupies a single site, having nearly axial
symmetry about the C axis and with a comparitively small crystalline
field. (The groups of hyperfine lines overlap at X band.)
Presumably manganese is located substitutionally at the Mg sites."
The spectrum obtained from a powdered sample of cordierite was

recorded, and is shown in fig. 8.10. It was apparent from the

features of this spectrum (six broad lines, no observed splitting
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of allowed transitions and no large forbidden lines), that the Mn2+
ion was not occupying a site of "comparitively small crystalline
field" - "having nearly axial symmetry" and single-crystal investi-
gations were therefore carried out.

Samples of cordierite from three localities were obtained
(Ceylon, Hart's Range (Australia) and Tsihombe (Madagascar)). These
samples had the appearance of a glass with no recognizable crystal
faces,and exhibited the intense dichroism characteristic of this
material. Viewed in unpolarized white light the samples appeared
blue in a direction parallel to the C axis (Miers 1929), and yellow
away from this direction, as described for the Madagascar cordierite
used by Hedgecock and Chakravarttiy. The spectrum obtained from the
Ceylon sample with the applied static magnetic field parallel to the
C axis is shown in fig. B8.11. Identical spectra were obtained for
the samples from Hart's Range and Madagascar, and it is readily seen
that for this X-band recording, the groups of hyperfine lines do not
overlap, in contrast to the observations by Hedgecock and Chak-
ravartty. The parameters obtained from single crystal measuremnenLs
were -

g = 2.00 (% 0.005) M)

Al

9,457 G Hertz

A = 92.5 Oe (% 0.5) il 290° K
+
D = 430.0 De (= 10)

E ~ 10 GCe



FIG., 8.11



94

The features of the powder spectrum discussed above, are
then in agreement with theory presented previously, for these
values of parameters.

It could only be assumed by this author, that the observations
by Hedgecock & Chakravartty were made in the X-Y plane of the
crystal field. This was confirmed in a letter received from

<
Hedgecock (January, 1969) . In this letter Hedgecock has also
pointed out that the "comparitively small crystalline field" at the
Mn2+ ijon site, was meant to imply that the field was small compared
to the field at the Fe ' site, for which D = 14.6 k Oe.

The following parameters for the lVInZ+ spectrum in cordierite

were also communicated by Hedgecock.

300°_K 77° K

b = a2t 2 432 T 2 2 - D
2 2

b2 oy b 5 18 f o3 b° 3E
2 - 2 -
bj = =4 L -5 ¥
bz _ 13 % 9 +3 X9

a4

b, = =23 pAED 14 12

+
g = 1.997 I 0.003

% Isotropic within experimental error
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BeT Mn2+ in Pectolite : CaZNa H(SiUB)B'

The spectrum from a powdered sample of pectolite is shown in
fig. 8.12. The difficulty of obtaining precise information about
the cfystal field symmetry and parameters, from certain powder
spectra, is illustrated by considering this spectrum as an example.
The broadness of the observed allowed transitions could possibly
indicate a large D value, if the crystal field symmetry was com-
pletely axial. However, the same effect could be produced if the
field possessed rhombic symmetry, with E relatively small (~ 30 Oe),
and |D| < ~100 - 200 Ce. The same choice would apply when considering
the lack of any relatively large forbidden doublets in the powder
spectrum.

The ﬁarameters for the Mn2+ spectrum from this naturally
occurring silicate have not been published, to this auther's know-
ledge. The normal habit of this mineral is acicular crystals, or,
fibrous masses of radiating structure, which are not suitable for
single crystal studies. A sample of columnar pectolile {New
Jersey, U.S5.A.) was, however, obtained from the Adelaide Muéeum,
which produced crystals ~ 1mmx1mmx3mm, and allowed single crystal
observations.

Spectra obtained from these crystals are shown in figs. 8.13

and 8.14. The parameters determined from these spectrs were:-
g = 2.000 ("= 0.001) D = 250 (X 10) De
A = - 93.5(X0.5) Oe E ~ 25 Oe
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The features of the powder spectrum discussed earlier, are
then explained by the rhombic crystal field symmetry, with E
relatively small.

The structure of pectolite has been determined by Buerger
(1956) and a projection in the a-b plane, showing only Ca and
oxygen sites, is shown in fig. B.15. he perfect cleavages {1UU}
and {001} , and the relatively large refractive index variations in
the a and c directions (Dana 1932), enabled alignment of the crystals
in the applied magnetic field. Experimentally, the Z axis of the
crystal field was found to lie at an angle of 50%(% 2°) to the b
axis, and at an angle of SD(t 20) to the a-b plane. This direction
is approximately parallel to the directions between the oxygen
sites marked '1' and '2', or '3' and '4' in the structure diagram,
which are the most distant of the six oxygen sites about the

calcium sites.

2+

8.8 The Powder Spectrum of NH, Mg (5[34)2 (Mn™ ).

4

The hypothesis that a large rhombic component of the crystal
field may cause complexity in powder spectra, by splitting of lines,
appears to be further verified by a comparison of powder spectrs
obtained from the Tutton salt, NH, Mg (S0,), (Mn“t), fig. B.16, and
the powder spectrum of pectolite, fig. 8.15. For the Tutton salt

(Bleaney & Ingram 1951), the magnitude of the axial parameter 'pt

is comparable with that obtained for pectolite, but the rhombic

parameter 'E' is much larger at room temperature and T = 90° K for
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the Tutton salt, than for pectolite. The complexity of the

powder spectra from this salt, compared with the powder spectrum

of pectolite, may thus be attributed to splitting of allowed B = 900
lines, due to the relatively larger rhombic component of the

crystal field at the ion sites in this salt.

With a decrease in sample temperature, the magritudes of the
parameters 'D' and 'E', for the Tutton salt, increase and decrease
respectively. The value of |Di increases from ~ 260 Oe to
~294 Oe, and the value of |E|l decreases from ~ 107 Oe to ~ 75 Oe,
as the temperature is reduced from room temperature, to T = 90 K.
(Bleaney & Ingram 1951.) For theses changes of parameters,
relatively large changes in the splitting of allowed H//0X and
H//0Y powder peaks are predicted. The marked differences evident
in the powder spectra recorded, and shown in fig. 8.16, may then
be attributed to the differences of splitting of these powder peaks,

at the two temperatures.
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CHAPTER IX

The Spectrum from Cement and Cement Components.

Spectra obtained from two dry cement samples are shown in

fig. 9.1. The main features of these spectra are -

1) a six-line powder spectrum attributable to Mn2+

2) A broad signal at g = 4.23, attributable to F83+ in a site of
low crystal field symmetry (Castner 1960 ).

3) a broad signal underlying the Mn2+ spectrum, which may also be
attributed to Fe

The relative intensities of these three signals, observable in
all cement samples examined, varied with the type of cement.

Calcium carbonate is one of the principal ingredients in the
preparation of cement, and during the manufacturing process is
converted to calcium oxide which then combines with other components
to form various calcium-aluminium-iron silicates. Manganese is a
common impurity in naturally occurring calcium carbonates, and
possibly other ingredients used in the cement industry, and should
be incorporated in various silicates formed. As the microwave
spectrum from Mn2+ ions can indicate the crystal field symmetry at
the ion siimes, changes in the ionic esurroundings of the |"|n2+ ion
may be detected. During the hydration of the various silicates in
the cement-setting prccess, changes in the ionic surroundings of
the incorporated an+ ions might occur, which would result in changes

in the £.5.R. powder spectra, and any observed changes might then
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provide some useful information about the cement setting process.
In view of this, a brief investigation was carried out on cement
samples, to see whether changes in the manganese powder spectrum
could be detected during the setting process.

Samples of various types of cement were mixed with water,
allowed to set at room temperature, and periodically examined over
a period of six months. Samples wers also autoclaved (15 p.s.i.)
for 24 hour periods. In all cases, no observable changes in the
Mhzf microwave spectra were recorded.

ﬁowdex samples of two of the main component silicates, doped
with 0.05% Mn2+, were kindly prepared by the Division of Applied
Mineralogy, C.5.I1.R.0., Fishermen's Bend, Victoria, in an attempt
to identify the component(s) containing the F83+ and Mn2+ producing
the observed signals. Figs. 9.2 and 9.3 show spectra recorded
from dry CBS (tricalcium aluminium silicate) and C4AF (tetracalcium-
aluminium - Fe phase). The IVIn2+ spectrum cbserved from the ESS
sample appears similar to that observed in the various cement
samples, and within experimental error possesses the same hyperfine
splitting. No changes in this Mn2+ spectrum from these components
were observed following a 24 hour autoclave.

It can only be concluded that during the setting process, no

5 . ] R 2+
large changes in the ionic environment of the Mn ion occurs.
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CHAPTER X

A Modulation Technigue

10.1 General Theozy.

The use of strained crystal to study intensity variations of
the central (M = +—»M = - }) transitions, although convenient, may
be criticized because it is known that strain may produce changes in
the crystal field parameters {Zaitav 1967). Because of
this, same means of observing these central transitions, without the

. . . . , + - +
complication of overlapping outer structure (M = = 5/2—M = = 3/2,

M = A 3/2;:P4: g %) was sought. A technique was devised, which in
its simplest form showed some promise of achieving the unobscured
observation of the central transitions in unstrained crystals, and
also enable the identification of component lines in overlapping
spectra.

If the angle B8, between the crystal axis and the applied magnetic
field is varied periodically with an amplitude B, the field position
at which a resonance occurs will vary periodically, and for a given
8,the amplitude, and hence the velocity, of the variation of field
position for a transition to occur,will be generally larger for the
more angular dependent outer transitions,than for the central transi-
tions. As the recorded intensity of a resonance depends on the
sweep rate through the resonance, it was reasoned that if B was
varied periodically during a sweep of the applied magnetic field

(+ a.c. modulation) through a complete spectrum, the transitions



would be broadened,and decreased in peak to peak intensity.
broadening would be larger for the more rapidly varying outer tran-
sitiens than for the central transitions. The effect may be
explained more fully as follows:-

We can imagine that a periodic oscillation of thke angle 8 about
a mean angular position QD’iS causing an oscillation of an absorp-
tion curve. We can also imagine that the applied magnetic field and
the small modulatior field used for a.c. detection, constitute an
'information probe' which samples the slope of the absorption curve.
This information probe is then swept slowly over the field regioan
containing the oscillating resonance. Suppose the resonance for QD
is centred at Ho,and the information probe is at a field position A,
as shown in fig. 10.1(a). During one cycle of the 8 variation, the
information probe wogld record the slope of the curve from 0-I(A)-0,
as shown. For the next cycle the informatiom probe can be imagined
to have moved to B, and during this cycle will record the slope from
0-1(B)-0, as shown in fig. 10.1(b). If for the next cycle the probe
is at C, pest the field position corresponding to a point of inflec-
tion of the resonance curve, the output will be as shown in fig.
10.1(c). The output as the information probe moves completely
through the field region of interest,is then shown diagramatically
in fig. 10.8, together with the integrated recozrd which would be
obtained. For a small amplitude of oscillation, such as may occur

for the central transitions, the output is shown in fig. 10.3.
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To provide the varistion in 8, a coil was mounted around the
microwave cavity to provide a varying magnetic field (~2000e)
perpendiculer to the applied static field. The resultant field at
the sample, being the vector sum of these two fields, could then be
periodically varied in direction relative to the sample. To provide
the coil current, the output of a Hewlett-Packard low frequency
function generator was amplified using a d-c coupled power amplifier.
A frequency of 2-3 c.p.s. was found to produce satisfactory results

for the spectrometer used.

10.2 Applications.

Fig. 10.4(a) shows part of the normal spectrum of single crystal
calcite, near g~45°, In fig. 10.4(b) the spectrum recorded with
the vertical modulation applied is shown. The main (am = o) crystal
transitions of both spectra are roughly aligned. The dramatic
reduction in the intensity of lines in outer hyperfine groups, may
then be seen,from a comparison of ihe two spectra.

The technique even in its present simple form,is capable of
removing the overlap of a central forbidden line by one of the outer
allowed lines. This is most easily shown using video display of
the spectrum, but can also be seen in the chart recordings shown in
fig. 10.4. Forbidden lines in the normal spectrum, marked 2' and
3', are partly,or completely overlapped,by outer transitions. This
can be seen by considering the relative intensities of the doublets

2 and 2', and 3 and 3'. In the modulated spectrum, the overlapping
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lines have almost complestely been removed, as can be seen by the
relative intensities of 2 and 2', and 3 and 3', in this spectrum.

The use of this modulation technique in identifying components
of overlapping spectra is shown in fig. 10.5. The lower record was
obtained from a single crystal of the Tutton salt NH4 Mg (504)2(Mn2+)’
with the applied magnetic field parallel to the Z axis of the crystal
field of one of the two ion sites in this material which may be
occupied by Mn2+. (Bleaney & Ingram 1951). The transitions for
this 8 = 0° site are much less angular dependent, for a change 8, than
transitions for the other site,for which the Z crystal field axis is
not parallel to the applied field. With the vertical modulation
applied, lines in the 8 = 0° spectrum are only slightly broadened
compared to lines in the other overlapping spectrum. These latter
lines are then broadered out, enabling easy identification of lines
in the 8 = 0° spectrum. The spectra shown in this figure have been
roughly aligned using a D.P.P.H. marker to allow a comparison of the
reduction of lines. The central (am = o) hyperfine sextet, of the
g =0° spectrum, is easily identifiable when the modulation is applied
(marked 1 - 6), whereas without this modulation line identification
of this sextet is much more difficult. 0f perhaps more importance
in the determination of parameters for overlapping spectra,is the firm
identification of outer groups of hyperfine lines. In the normal
spectrum, shown in fig. 10.5(b), some ambiguity exists as to which

lines belong to which spectrum. With the modulation applied,
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pos: itive identification of the M = 3/2 sextet of the @ = 0°
spesctrum (marked 2' --6') is possible.

This extremely interesting modulation technique was devised near
the completion of this thesis, ahd time did not permit the investi-
gation of any sxperimental refinements, or relevant theory. One
future refinement planned,is the application of an additional varying
field in the direction of the static field, at the same freguency as
the pﬁrpendicul&r modulation. With the correct amplitude and phase,
the information probe could then be kept "in step" with an oscillating
iine, or lines, of interest, and effectively,no broadening of thase

lines would then result from the vertical modulation.
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CONCLUSIONS.

A general theory of axial and rhombic powder spectra has been
presented, which for all powder spectra considered, is in agreement
with experimental obse;vations.

It has. been shown that for Mn2+ iors in sites of axial crystal
field symmetry, not only field positions, but relative intensities,
of main lines observed in powder spectra, arée correlated with line
positions and relative intensitises observed in single crystal spectra
at 8 = 90° and B ~40°,

It has also been shown that the use of Bir's method to predict
intensity variations of both allowed and forbidden transitions,
produces agreement with experimentally deternined variations for the
central (M = + %) transitions observed in single crystal spectra for
axial symmetry.

To this author's knowledge, the expressions derived by Bir have
only been tested previously on outer transitions (M = 5/2, = /2, - %)
for axial and rhombic symmetry (Bir and Sochava 1964, Manoogian
1968 b). Intensity variations obtained using this method have been
used to predict features of powder spectra characterized by
IDI~ 250-350 Oe and ~ 850 Qe.

_In the case of rhombic spectra, it has been shown that B~40°
components of a Mn2+ powder spectrum are preferentially broadened,
resulting in B8 = 90° comporients being the dominant feature of these

powder spectra. Using the intensity variations predicted by Bir's
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method, for rotation in the X-Y plane (8 = 900), evidence has been
presented that splitting of g = 90° powder lines may be observed for
large thaombic fields (iElAVBD - 100 Oe).

For axial powder spectra characterized by ID!~80 Oe, it has
been shown that an indication of parameters may be obtained by a fit
between experimentally determined line positions, and theoretical
expressions given in this work, and a determination of parameters
for the case of Mn2+ adsorbed on an ion-exchangs resin has been made
using the method.

The theory presented, and spectra shown in this thesis, will be
of help to workers engaécd in future E.S.R. investigations of
materials for which single crystals studies are not possible. For
example, splitting of allowed lines for both rhombic and symmetry,
and the relative intensity of forbidden lines observed in some axial
spectra, are all due to second and higher order effects and all
decrease with field. The complexity introduced into powdeTr spectra
by these factors would then be expected to be reduced considerably
by recording spectra at higher frequencies and fields.

If (say) microwave spectroscopy was to be used by any investiga-~
tor, as a non-destructive method to determine the presence of IVInZ+
impurities in powder samples, Q-band, rather than X-band, investi-
gations would then seem to be preferable. If Q-band investigations
of a powdered sample of unknown symmetry produced a relatively simple

2+
Mn spectrum, but X-band spectra from the same sample were complex,
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this could be taken as an indication that either a relatively large
rhombic field, or an axial field characterized hy |D|I~150 Oe,
exiéted at the Mn2+ ion site. Any attempt to obtain quantitative
estimates of parameters from such complex X-band powder spectra by
line position measurements, could not hope to be su;cessful however,
because of the virtual impossibility of identifying powder lines
without the aid of single crystal spectra.

The determination of parameters from line position measurements
at Q-band may be possible for samples whose spectra at X-band are
complex., It was not possible, however, for the author to chtain
Q-band spectra of Mn2+ in such materials as Scheelite and Tutton
salts, at the time of completion of this work, to substantiate or
disprove this suggestion.

Correct derivatiorns of (a) third-order corrsctions to eigen-
values, and (b} intensity variations for cubic crystal field
symmetry by perturbation methods (Appendix A), have been given,
and finally, it is felt that the modulation technique described in

the final chapter, will be of interest to many investigators.
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APPENDIX A.

Transition Probabilities for Cubic Crystal Field Symmetry .

A.l. Introduction.

The theory of the intensity variations observed when ions are in
a site of cubic crystal field symmetry has been considered by Cavenett
(1964a, 1964b), who has derived, using second-order perturbation
methods, the following expression for the relative intensity of

forbidden transitions.

[na 2; \:{sinzgm-ccsa\p) + sin 2Qcoszg(7+cosa+)} ‘
8

gfH i
a 2 -
£ +{%5in Qsin4+}2]-[l(1+1)~m(m+1ﬂ (A1)
The theory has also been cansidered by Hir et wl (196h) who have
derived for MMM'
Pums = f1 - ll: E]Zl:{’(%g):l Z[FM - FM:JZ . e (A2)
— — 1
8 | 6gBH " T (MM
where -
FM = 35 M4 - 30 M2.5(5+1) + 25 M2 - 65(5+1) = 352(5+1)2
[c}('{f,g)] 2 | 1202012002 . w212 (m2-n?)? 4 0212 (n2_1%)2
1 = sinBcosy, m = sinBsin, n = cos8

Bir (1964) has shown that for small values of parameters the relative
intensity may be approximated by -

I o~ (1) [I(I+1) -m(m+‘|)] (A3)
2

Substituting for W in equation (A3), an expression is ublained

which is not in agreement with that derived by Cavenett. Although



AZ,

spectra from samples containing Mn2+ ions in a site of cubic field
symmetry are not considered in this thesis, it was felt desirable that
this disagreement should be investigated.

The derivation of an expression for the intensity variations
using both second-order perturbation methods (as for the case of axial
symmetry) and Bir's method was then considered, and it was found that
Cavenett had made errors during his derivetion. The following
derivation, using perturbation methods similar to that used to obtain
the Bleaney and Rubins' expression, is now outlined and an expression

which is in agreement with that obtained using Bir's method is derived.

A.2., Intenmsity Variations Using Perturbaticn Methods.

For a four~fold axis of symmetry, the crystal field potential

expressed in dperator equivalents is :-

Vo= g_(TZ + [5 (Tj + T;4)) (A4)
® 15 12

When this potential is referred te the Zeeman diagonal system, by

rotation through the Euler angles (¢,8,0), the expression for the
+

potential contains terms T4 , which are functions of the spin operators

S+, S and SZ, necessary to obtain the expressions for intensity

+
variations. Considering only the terms TZ , we Tind on applying the
transformation -
- -4
R 8. (T° 3/5_(T + T77)
(¢,8,0) 1c 4 12 4 4
i
—_ T4 _ a. 20 (7sin2B8cos28 + sin28

- 48in BcosBcosdd & idsin Gsindy) (A5)
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+

4 is given by Al'tshuler and Kozyrev

+:

(1964) and derived fram the Spherical Harmonics Y4 in Appendix C

The form of the operators T

viz. -
-1 =
T, = % f%— (5’: (5, ) + £(S,) Si_)
where f(5 ) = 753 ~35(5+1)5 =~ S (AG)
V4 z z 2

(Cavenett has incorrectly derived f(SZ ) = 752_35(5+1)52 - 5952)

We thus obtain for our perturbation Hamiltonian :~

4= 3%4(8+f‘('52) + £(5,)5, )f(8,¢)

+ 5_I+} (AT)

+ & (5.7(5)) + f(SZ?S_}f*(Q,+)) * A5

384 2

where f(8,¢) 7sinZB8cos28+sin28 - 4sin3Qcoch084+ + idsinagsin4¢

*
and f (B8,¢) is the complex conjugate.
For forbidden transitions (M,m)—» (M+1,m+1) we have for our
expansions of the perturbed wave functions :-

I@ in ) " [M,m) + € 1 Myme1) + €, 1 Mymet)

I@M+1,m+1}= | M+1, m+1) + C, [M+1,me2) + c, [M+1,m)

where the coefficients Ci(i=1,4) may be found by using the perturbation
method as before.

The intensity is then -

2
Irec (@ M1, md | (s, + 501 @ M,m)l
x| 2
II__ocl F,(M(c, +¢c,) (AB)
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N

where F+(M) = (5(5+1) - M(Mt1))

2

F+(M). a  f(e,y). 1 (F (M)F (M+1)F (m) (F(M) + £(M+1))
384 gBH_ = =

(Cavenett has derived : Ifoc|F+(M) C1l

1}

F_ONF, (M=1)F, (m) (F(M) + F(M=1))

M

+ F_(M+1)F+(M)f_(m+1)(f(M+1) + (M)
M+ 1

2
4 - -
M+ 1

- F (M#1)F (Me2)F (m+1) (F(M+1) + f(M+2)%}

1
where f+(m) = (I(I+1) = m(mi1))2

2
For the central sextet of hyperfine lines in the Mn * microwave

spectrum M = ¥, and on substitution and reduction we obtain :-

[NIE

2

Ioec _% . a . f(Q,+),F+(M) (I(I+1) = m(m+1))

gPH

For the allowed transitions Iec Fi(M), and for the relative

intensity we thus obtain -~

gpH

[ S5a ]2 (I(I+1) - m(m+1))((73in29coé29 + sin28
4
)

—4sinagcosgcosd¢)2 + (4sin3Qsin4+)2} (A10)

which may also be written as :-

ha 2 [I(I+1)—m(m+1)] [{3in29(1-cos4¢) + sin2QcosZQ.(7+cos4¢)} )
4gBH0 . .
+ {asin Bsinas} ] (A11)
On ramparison with the expression given by Cavenett (1964a) we

find that the factor of 73 in Cavenett's expression is replaced by 5.
8 4
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For the (110) plane, \% = 45°, and we obtain :-

f. ———

4H
5}

Iy 2 1:5a= } 2. [1(141) = m{m+1 )] .[2sin26 + 3sin48 ] . (A12)

A

A.3. Intensity Varistions for Cubic Field Symmetry Using Bir's Method.

Using the perturbation Hamiltonian (Equation A5) we obtain for

M=-%—=-M=-%, S =5/2,

P [1 - 258° {(7sin29coszg + 5in28 - 4sin OcosBcasdy)”

+(4sin398in4¢)2}]

This expression can be shown to be identical with that derived by
Bir et al (1965), Equation A2.

Substituting for P in Equation A3, theén produces an expression
for the relative intensity which is identical with that derived by
second order perturbation theory, Equation A10.

The intensity variation for rotation in the (110) plane, calcu-

mm‘(

I 2, is shown in figs. A1, aesd AR,

lated from I oC d

-p)

The experimentally determined intensity ratios for transitions
observed by Cavenett (1964b) in the ZnSe : Mn2+ spectrum, for Q = 31°
in this plane, are shown in Table (A1), with theoretical ratios shown
for comparison. The experimentally observed intensities of the
forbidden transitions are smaller than predicted by Cavenett's

expression, whereas the observed intensities are larger than predicted

by this author's expression (A12).
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Table A1.

Intensity Ratios of Allowed and Forbidden Transitions.

ZnSe : Mn“ , a' = 20.6 Oe , H_ = 3310.6 Oe

$-45° , 8 =31°,

Ratio Lxpt. Theory Tigggy(Dmbney) Theory (Bir)

(Cavenett) (Cavenett) Second Order (From
Perturbation Fig. A1)

9 9

A IF 30 : 1 17 01 100 : 1 101 ¢ 1

9 8 -

g IF 50 : 1 20 ¢ 1 112 1 114 1

9 - 15 BO : 1 30 ¢ 1 180 ¢ 1 182 : 1



APPENDIX B.

Third Order Perturbation Calculations.

As our perturbation Hamiltonian we use:-

7#' = D(52—1S(S+1))(3c0529—1) + D
£ k. 2
: 2 4
2 . 2
+ D(5+457)sin B + AS I + A(S I +5 1)
7 - z'z T4

(S (S 45 ) + (5 +5 )5 )sinz28
z' T+ = + ="z

The possible terms in the single, double and triple summations

of equation (3.10) are then:-

B1.

MT£M
1st Term:= = 3 (Mml H'] M'm*)(M'm'l H'] Mm)(Mm | H' | Mm)
M'm? 2
(EM' - EM)
(Mm]| Operator| {M'm') (Mrm| Operator| |Mm) | (Mm] Operator | Mm)
2
11 M,m S_ M+1,m M+1,m S+ M,m| M,m SZ,SZIZ M,m
1.2] 5 M1,m | M=t,m 5 wolo " "
1.3 ) I M+1,m=1 [ M+1,m=1 S+I L u L i
1.4 " I M=1, m+1| M-1,m+1 S1I i " " "
+ -+
1.5] 5° M+2,m | M+2,m 52 T I " "
1.6 i Si M-2,m M-2,m 52 " " " "
where S = etc.

-

D
4

(55 + 55 J)sin28
z = -7z




Mt £M
2nd Term:- = 1 (Mm| H* 1 M*'m")
Mtm?
M";éM
. 2 (.M_l[nl | HY I M"tm" ) (M"m" [ H? | Mm)
"t P -
M"m (Eyi= Ey) (Ey Eyn)
e -
(Mmi| O | [M'm") {MrmY 0 [M*m") (M"m"l.‘ (0 W | Mm)
2.1 Mym S M+1,m M+1,m 52 S I M-+1,m M+1,m S Mm
’ = ’ ’ 2?72 ! ’ ’
2 N
242 " ) L " S+ M-1,m M=1,m 5 n
23 it S " L S M+2 ,m M+2 ,m 5 "
2.4 s, M=1,m M=1,m 57,5 1 | M-1,m M=1,m 5 n
245 " 5+ i " S+ M=2,m M=2,m S i
2.6 n 5+ " " 52 M+1 ,m M+1,m 5 "
2.7 L S 1 M+4 ,m=1] M+1,m=1 52,5 I M+1,m=1] M+1,m-1 "
-+ z' 2z +
2.8 o S+I M=1,m+1]| M=1,m+1 Si,SZI M=t ,m+1| M=1,m+1 "
2 2
2.9 n 5) M+2,m M+2 ,m SZ,SZI M+2 4m M+2,m S "
2
2.10 " S N N S+ M+1,m M+1,m S L
2 ) 2
2.11 " S+ M=2,m M=2,m SZSZ . M=2,m M=2,m S it
2.12 " Si n " S M=1,m M=1,m S o

B2.




B3.

- M*£M m"£m
3rd Term:- X (Mm | H'| M'm') % (M'm* 1 H'| Mm")
S tmt n N
M'm m (Eye— Ey!
M";éM
,Z (Mm"{ H'| MU ) (M gy | H Mm )
" - E . I .
Hm (Ey= Epn o) = Eye
Mt £M m"#m M*P M
(Mmf O IM'mf) (M'mY 0 IMm" )i (Mm"| O {Mremee)] (Mrrml QO le)
Jo1tMym S+I M=t ,m+1 M~1,h+1 5 [MymitiM,mety 5 M=t ,m4 1| M=1,m+1 H‘f+ M,m
3.2| "l s {Mt,m (Mel,mo |S I | n Melm o |Met,m | s |
3,3 " IS I M—T,m+1 M=1,m+1] S " " _ " " S "
+ - -+ +
J4 " S_ |M+1,m M+1 ,m S+I i " S M+l ,m+1 | M+1 ,m+1] S I+ "
3.5y " S_I+ M+1,m=1] M+1 ,m-1 S+ M,m=1|M,m=1; S M+t ,m=1| M+1,m=1| S I L
3.60 " IS |M-T,m M-T,m ST " " L |M=t,m M=t ,m SH
3.7 n S-I M1 ’m_'] M+1 ’m_'l S+ " " . " n 5 .
3.8¢ " S+ M=1,m M-1,m S I " " 5 M+1 ,m=1] M+1,m-1 5+I n
SE—— ——




Approximations Used.

We take :- Ey = gBHDM
Eym = gBH_M + Abm
Then - Ey=Epet = - g, = Ey_4-Ey
“er~Em =+ oy = EymFu
FM,m—EIVI,m+1 = — AN - EM,m—‘l-E—M,m
LM,m41‘lM,m L LM,m—LM,m—1
EM—EM+2 = - ZgBHD etc.

Operations on Wave Functions.

L
1)}‘by F_(M) and F_

+1

Denoting {5(5 + 1) = M(M
+ +
L
and {I(I + 1) - mim ¥ 1)}bby £ (m) and f_
+ +
we use i~
5,1_ | M,m) = Ff_ | M1, m=1), S I_ | M,m+1) =
5 I, | M,m) = F_f, I M1, m+1), S_I |M+1,¢_1) =
ST |M-1,m) =F f [Mm1), 51 {Mgl,m) =
+ - - -+

il
-
-+

i

5,1_ 1M=1,m+1) | M,m), 5.1, IM,m-1)

(55 + 55 )1MT) (2M*3) F (ME1) 1mi2)
z 4+ +z +

(55 +55)IM - (2M=1) F (M) IM-1)
Z - - 7 -

Ff
+ +
Ff
-

Ff
-

Fof

B4 .

| M+1,m)
| Mym)
| M,m)

| M=1,m)



(55 + 55 ) IMet) = (2M+1) F (M) IM)
Z = - Z o+

(SS + 55 ) IMm = (2M+1) F (M) IM+1)
Z 4+ + z +

(5SS +56°) IM-1) = (2M=1) F (M) (M)
zZ + + z -

(55 +55 ) IM¥2) = (2M¥3) F (M3¥2) IM+¥1)
2 1 iz 5

2 AM) = F (M) F (Mel) IM+2)

+ + +

52 |M-é) = F (Me2) F (M=1) M)

+ + 4

53 IM) = F_(M) F_(M—1) § M2 )

5; IM+2) = F_(M+2) F_M+1) M)

2 M) = MM

Z

si i) = (aED? IuEn)

S I IM,m) = Mm | Mm)
2z

B5.
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The Expression in (Ds’inZQ)2

.

.

N.B.

(2.

(2.4) — [DsinZQ 2(2M-1)2(S(5+1) - M(M=1)).A . (M=1)m

N.B.

1)—> - {?sin29]2(2M+1)2(S(S+1) = M(M+1)). AMm

4gBH

2)—» - Sinzg]z(zM-1)?(5(5+1) = M(M=1)), AMm
4gBHD '

The sum of these terms is the expression given by Waldner.

1) —>» [Dsin29]2(2M+1)2(5(5+1) - M(M+1)).A . (M+1)m
4QBHQ '

493 H,

The sum of the above four terms is the expression given by

Nicula, Ursa & Nistor, viz. :-

(Dsinz@) Am((2M41)°(5(5+1) =~ M(M+1)) = (2M=1)7 (5(5+1) ~M(M=1)))

6
P (3,i)—> - [DsinZQ]z A ((2M=D) 2R (£2-72) + (2men) PR (£2r)
i=1 4gBHod 4M &
| 22,2 .2 0
+ (2M+1)(2M-1)F+F (#°=f°)) where F_ = F_(M) and f_ = f_(m)
. - -t ¥ + + +

- 18 {DsinZB]ZAijZ - 5(541))

49BH0 M 3

2

which is the term given by Bleaney & Rubins.



The Expression in sin4Q.

(1.5)—> = [nsinzg*Z M (F_(Ma2)F_(M#1) F_(M)F (M41))
4 1. 2 ~ - *
(2gBHD)
(1.6)— - E]sin2912 AMm (F (M=2)F (M=1)F (M)F (M-1))
4 Il " . 2 + + = =
(2gBH )
(2.9)—> + Dsin<8]% A(Ms2)m (F (M+2)F (Me1)F (MF (M+1))
o a2 - "
(ZQBHD)
(211)— + [DsihZQ*Z A(M=2)m (F.(M42)F+(M-1)F (MYF (M=1))
4 — 2 * -7
4 (2gBH )

The sum of these terms is then:-

:,Dsinze' 2 2AmM(2M2+1 - 25(5+1))

The expression in (3c0329—1)

e 2. 2.2
(1) - Wi[® - %5(S+1)](3cos 6-1) . L
2 2 7 (gBH_)
(1) - W20 [¥ - Is(s+1)](Beos’e-1) . 1 F2e?
2 2°- 2 T F
(gBHO)
(2.7)— + (A)°D [(me1)? --%5(5+1)](3cD52g-1) N A
2 2" Pa o
(gBH_)
- . 2
(2.8) e + (A)ZQ.QM-1)2 _ %§(5+1)](3ccs e-1) | 1 2'Fff2
' 2 2 (GBHd)

The sum of these terms is then:-

DA% (3cos2@-1) (5(5+1)=M(M+1)) (L(I+1 )=m(rm1)) (2M+1)
) =(S(5+1)=M(M=1)) (T (I+1)=m(M+1)) (2M=1))
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A3
The Expression in /H2 .
(1.3)—> = (A)° AMm  (5(S+1)=M(M+1)) (I(I+1)=m(m=1))
2 (gBH)”
(1.8)—> - (A)2 AMm  (S(5+1)=M(M=1)) (I(I+1)=m(m+1))
2 2
(gBH)

(2.7)—= + (3)2 A§M+1)(m—1)(5(8+1)-M(M+1))(I(I+1)-m(m-1))
2
(gBH)

N

(248)— + (A)z A[M—12§m+1!(S(S+1)-M(M—1))(I(I+1)-m(m+1))
2 2 -
(gBH)

S AD (5(5+1)-M(Me1)) (1(I+1)-m(m=1)) (m=M=1)
(2gBH)°

+(S(5+1)-M(M—1))(I(I+1)—m(m+1))(M-m-1))

The Expression in (D3/ HZ)(3c0529—1)sin229.

(2.0)—> + D° (3cos28-1)sin228 (2M+1)%(S(S5+1)=M(M+1)) (M41)2 25 (5+1)
32 2 ‘

(gpH)
(2.4)—> +-2? (3c0529—1)sin229 (2M—1)2 .

35(5+1)
32 (QBH)Z

(S(S5+1)=M(M=1)) (M=-1)

(14)—> - D° (3cos’8-1)sin 28 (2M+1)°(S(S+1)=M(M+1)) M5 (S41)
2 a2

(1.2)—> - D° (3cos°8=1)sin°28 (2M=1)7 (5(5+1)-M(M=1)) M

;%5(5+1)
32 (QBH)Z

5 s D3 (3c0528-1)8in228 (2Me1)7 (5(5+1)-M(Me1))=(2M=1)"

32 (gBH)2
(S(5+1)-M(M=1))



BS.

The Term in (D3/H2)(3c0529-‘| Ysinte .

(1.5)—= -D”(3c0s°8=1) (sin®@) F_(M+2)F_(M+1)F_(M)F_ (M+1) Me 35 (541)

32 _(ZQBH)Z
(1.6)—= F(M-2)F (M=1)F_(M)F_(M=1) MP-25(S41)
+ + - - 3
(2.9)—> " F_(Me2)F_(Met)F (F (M) (1e2)7-25(541)
(2.11)~> " P, (We2)F (M-1)F_(M)F_(M=1)  (M-2)"=35(5+1)

St DY (Joos B=1)5in@  (Me1) (S(541)=M(M1)) (S(S+1)=(Me1) (Me2))

32 Z
(gfiH) = (M=1) (G(5+1)=M(M=1)) (5(S+1)=(M=1)(M=-2))

The Term in (D3/H2)sin2295in49.

(2.2)> -D’sin’28sin’@ F_(Ms1)F_(M)F_(M=1)F (M) (2M+1)(2M=1)

64 (oo
(2.3)= +D sin28sin’a F (Me1)F (Me2)F (M)F (M+1)  (2M41) (2M43)
64 2 - - A
2(gfH)

(2.5)— +D sin°28sin’@ F (M-1)F (M=2)F (M)F (M=1) (2M=1)(2M-3)
64 2 * * -7
2(gBH)

(2.6)—= ﬁgésinzggginag F

M=1)F (Me1)F (M)F (M) (2M+1) (2M=1)
64 2 - - *
(gBH)

R

(2.10)—4-+£E5in2295in49 F (M+2)F (M+1)F (M+1)F+(M) (2M+1 ) (2M+3)

- - +
64 5 (gpH)?

(2.12)= -D sin’28sin’8 F (M-2)F (M=1)F (M-1)F (M) (2M-1)(2M-3)
64 2 * * - -
2(gpH)

T DYsin28sin’8  (2Me1)(2M43) (S(54+1)=M(M+1)) (5(S+1 )~ (M1 ) (Me2)

2
64 (gBH) +(2M=1)(2M=3) (S(5+1)=M(M=1)) (S(S+1)=-(M=1) (M-2)

=2 (2M+1) (2M=1) (5(5+1)=M(M+1)) (5(5+1)=-M(M-1))



APPENDIX C.

The Operator Equivalent for Y; = = l%(x + iy)(723 a‘32r2).
rz = x2 + y2 + 22, and sﬁbstiﬁutihg, WQ obtain:-
Yl = = q@f(dxza + it‘.yz‘3 - 3kyx2 - 3><zy2 = 3i yzxz - 3i yzyz}
A 4

(€41
We denote Sx, Sy and Sz by X, Y, Z respsctively. With this
qotétion the commutation rulss ars:-

XY = YX

= iZ (C.Za)
YZ - ZY = iX : (C.2b)
ZX = XZ = iY ' (C.2c)

- The operator squivalents are found by substituting X, Y and Z
for x, y, z with a mean value of all permutations of combinations of
x, 'y and z being considered.

Then -
3 2 3

axzlw Xz3 4 ZXZ° + 2°%X2 4 27X

x29 & 2% & (X2 + iV)Z% + 2°(zX - iY)

H

= 2xz0 + 229 + 1(YZ% - Z°V)

= 2X23 + 223X + i, {(ix + 2Y)Z -VZ(-iX + YZ)}
= 2x2° 4+ 22%% - Xz - 2X - (C.3)
Similarly -
a3 3 3 ,
idyz —w 1(2YZ" + 22°Y = ZY - YZ) (C.4)
Inzxl 3 (XZX2 + 2X°0 + X7Z 4 XP2X)

3
4
vy 2
= 3 (2XZX° + 2X°2X + ZX + XZ) (C.5)
4



iyzye e 3i(2Y2Y° + 2Y°ZY + YZ + ZY) (C.6)
4

axzye 3 (X2Y2 4 ZXV2 + 2Y2X 4 X2 + Y2ZX + YOx2

12

+ YZYX + YXYZ + XYZY + ZYXY + YZXY + YXZY)

3 (6X2Y° 4 6YPZX - 5XZ - 5ZX) (C.7)

12

2 a2 2

Yiyzxw 31(6YZX" + 6X°ZY = 5YZ = 5ZY) (C.8)

12

1 3 3,
Then - Y,~- /5 {zxz + 227X = XZ - ZX
4

+ i(2YZ3 + 2Z3Y - 2Y = YZ)

g_(zxzx2 ¢ 2X°ZX + ZX + XZ)
4

(2YZY° + 2Y°ZY + YZ + ZY)

o w
-

1_(6x2Y2 + 6Y2ZX = SXZ - 5ZX)
4
L 2 2 A
i(6YZX" + 6X7ZY - 5YZ - SZYf}
4

=5 {8(X+1Y)zd b 827 (X+iY) - AZ(X+iY) = A(X+iY)Z
16

e 6 (X+iY)Z (X24YD) = 6(X°4Y2)Z(X4dY)

+ 2Z(X+iY) + 2(x+iY)z}

Putting - S+ = X + iY and S(S+1) - Si = X2 + Y2
we obtain - Y1*- N JE {S (753 ~ 35(5¢1)S =5 )
4 E’ + z z z
+ (753 - 35(%+1)5 =5 )5S = T‘|
4 z z' T+ 4



APPENDIX D.

1 2

. o
The Spin Operators T2, T2, T2.

Spherical Harmonics in rectangular coordinates are given by

Ballhausen (1962) -

Y; = 5 . 1__322 =% = C WL (32° - %)
4T 4 2 4
r
Y12 = =[5 3z2(x+diy) =-C [E(z(x+iy))
aw 2 2 V2 '
e
2 e[ Teees® - © [Toew
4t B 2 g
r
where C - [5.1
ey 2
41 T
Then -
1
T,7 e ¢ 3 (52 -1 5(5+1)) = c1[52-1_5(5+1)]
Ja 3 Z 3
" - 1
TZH—CIQ.l(SS +85) ==-C (55 +5,5)
B JE z p4
1
T22(-—>Ej1(5i) s € (Si)
8 JE
where C = 3C
&
Or =
o 'o 1
o= 10 5% - 5(5 + 1)
3
1
T12 = T21/E1 = -1(55 +55)
ﬁ; z
i 2
2 12/c = 1 (59)
T2 = T2 / z +
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APPENDIX E

Experimental Details

The microwave spectrometer used to record the majority of
spectra shown in this work has been described by Caverett (1964a,
1964b), and is shown in fig. E1.

The spectrometer utilizes 135 c.p.s. field modulation for
chart recorder output, 50 c.p.s. modulation for video display,
superheterdyne detection, and a resonance cavity frequency of
approximately 9.2 G c.p.s.

The cavity operated in the TE10? mode, and samples could be
rotaled in the cavity about a direction parallel to the radio-=
frequency magnetic field. The static field could be rotated in a
horizontal plane.

Magnetic field intensities were measured using proton resorance.
The frequency at which proton resonance occurred was obtained by
zero beating with a signal generator, the zero beat frequency of
the generator was then measured with a Hewlett-Packard counter. At
the proton resonance frequency yp, the following corversion was

used:~

H = 2.3487 x 10'4 Vp

Corrections to line positions measured by proton rescnance,
were made by placing a small quantity of D.P.P.H. on the sample.
The field intensity at which resonance occurred for the D.P.P.H.

was calculated using:-



.‘n

| '.ll-i.“llb ";7

,, - As LA F
4.9 8L |




E2

HpppH., h%/B 9y p.p.H.

with h = 6.62518 x 10727 BErg-sec

6 = 0.92732 x 107°0 emy

IP.PPH. < 4R0S

and the klystron frequency VY, was measured with a Hewlett-Packard
transfer oscillator, and counter.

lor Y - gNBN/gB, a valus of 3.76 x 10_4 wat uned .

Line positions of forbiddeﬁ doublets in the adsorbed Mn2+
spectrum, were determined by linear extrapolation between allowed
transitions, using chart recordings.

Crystals of MgS0,.7H 0 were grown from aqueous solutions at

4 2
room temperature. Dehydration did occur if these crystals were left
. ] ; . . 2
exposed to air. lnvestigations of the Mn - spectra from such

samples were always carried out on freshly grown crystals.
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APPENDIX F

Mn2+ Spectra from Other Minerals

Sbeﬁtra attributable to Mn2+ have also been observed in three
other naturally occurring silicates by the author, and are currently
being investigated. A preliminary report of these spectra is given
below.

Wollastonite (CaSiDa)

Three overlapping spectra have been observed from a sample of
Wollastonite from New Jerssy, U.5.A. Fig. F1 shows an X-band
recording with the applied static Field at an angle ol 17(:!)D to
the c axis in a plane normal to the b axis, and at an angle of 60(22)°
to the negative a axis. This direction appears to be the z crystal
field axis of one of the ion sites. The overlap of the spectra and
the broadness of lines have prevented any determination of parameters.
Specimens are being sought which may produce spectra with narrower
line widths.

Olivine (Mg,FeZ+) SiD4

Portion of a spectrum obtained from a small polished sample of
the gem-stone peridot (olivine) is shown in fig. F2. The exact
composition of the sample used has not as yet been determined.
Investigations are planned to determine the crystallographic axes,
in an attempt to correlate electrostatic crystal field axes with
crystal structurse.

The minerals of the olivine group show complete diadochy between

the atomic pairs Mg and Fe, i.e. between forsterite, MgZSiDA’ and
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fayalite, Fe25i04, and other samples of this group are being sought
to see what effect, if any, changes in tHe Mg:FeZ+ ratio have on

tHe Mn2+ spectrum. It will also be of interest to compare the
parameters of the spectrum shown, with those eventually published

for Mn2+ in monticellite (EaMgSiDa) which is also included in the
olivine group. This latter spectrum has been observed independently

by Mr. G. Troup of Monash University (personal communication -

August, 1966), and by Dr. A. Mannoogian of the University of Ottowa

(personal communication - January, 1969, to be published in the
Canadian Journal of Physics).

o e = = : 0, .
[alc Mg:j(un)zrugi]lg(;. 500, b 9.15, ¢ 10.9 R, B 100715

The powder spectrum obtained from a sample of baby powder is
shown in fig. F3. The features of this spectrum indicate that the
Mn2+ ion(s) is in an electrostatic crystal field of axial or rhombic
symmetry. Talc usually occurs in massive foliated or fibrous
aggregates or in globular stellar groups. Rarer tabular crystals
do exist, and the author has recently been able to obtain a sample
of this form (locality : Harford County, Maryland, U.5.A.), which
has enabled single crystals investigations. The crystals exhibit
perfect {001} cleavage, and the a and b axes have been determined
from interference figures observed. X-band observations indicate
that Mn2+ occupies a number of non-equivalent sites in the talc
structure. Fig. F4 shows a spectrum recorded with the static field
parallel to the c axis. This direction appears to be the Z crystal

field axis of one of the ion-sites. Fig. F5 shows another spectrum



Fic. f3
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recorded with the direction of the static field approximately in
the (110) plane and at an angle of ~ 45° to the ab plane. This
direction appears to be the Z axis of another ion-site or sites.

Insight into the structure of talc was first gained by L.
Pauling (Proc. Nat. Acad. Sc. U.S.A. 16 (1930) 123). Lattice
parameters have been determined by J. W. Gruner (2. Krist 08 (1934)
412) and verified by S. B. Hendricks (Z. Krist 99 (1938) 264).

The idealized talc structure is shown in fig. F6.

Talc has a layered structure in which a sheet of octahedrally
coordinated Mg ions is sandwiched between two sheets of linked SiD4
tetrahedra. The two possible ways of stacking SiDA—DH sheets, as
discussed by Hendricks, are shown in fig. F7, with coordinating
octahedral groups about Mg sites outlined. If the ions surrounding
the site of a paramagnetic ion are octahedrally coordinated, the Z
axis of the electrostatic crystal field at the paramagnetic ion site
might be expected to be approximately parallel to the direction
between two of the surrounding ions. The direction between ions
marked 1' and 1" in fig. F7 (b) lies approximately in the (1,1,0)
plane and is ~45% to the ab plane, and it could be expected that
the spectrum shown in fig. F5 is due to Mn2+ substituting foz
magnesium at such a site. The octahedral groups of ions surrounding
the Mg sites have the same orientation in space for a given stacking
of SiDA—DH sheets, and it does not seem feasible (to this author)

. 2
that the Mn N spectrum shown in fig. F4, for which the electrostatic

crystal field Z axis is approximately parallel to the c axis, arises



(a) Plan of the idealized structure of tale, MgS(DH)jSi401D ,
projected on a plarne perpendicular to the x axis.
(b) Schematic representation of the same structure, showing the
co~orndinating octahedra about the magnesium atoms.

The numbers indicate the heights of the various atoms ahove

the plane of projection.



_ Bottom Layer

Top Layer




F4

from Mn2+ substituting in such sites as 'shown in fig. F7. Such a
direction for the crystal field Z axis could be expected however
if Mn2+ was at positions between layers (fig. F6), with surrounding
ions at the cormers of a triangular prism.

Detailed investigations of the microwave spectra from this

mineral are continuing.
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