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SUMMARY

A wave packet formulation of non-relativistie
scattering is used to discuss the definition and
measurement of time delays in collision events.

The incident particles are represented by an
jncoherent mixture of Lorentzian wave packets, while
the scatterer is characterized by the Siegert-Humblet-
Rosenfeld expansion of the collision matrix. The
possibility of determining the time delay depends in
general on the spatial localization oé the incident
particles which for a pure state is given by the energy
uncertainty of the beam. For mixed states it is
necessary to distinguish classical and quantal effects.
The dependence of the shape of the scattered packet,
end hence of the cross section and time delay, on the
jnitial beam characteristics 1s calculated.

| In ordinary experiments poor energy resolution
is classical in nature whereas the gquantal energy
uncertainty assoclated with the finite extension of
the incident wave packets is negligible.
Consequently the time delay is indeterminate,
However, it is shown that when the quantal uncertainty

is large, time-dependent scattering experiments, which

are complementary to the usual energy-dependent



experiments, are possible in principle. For these
experiments the time delay is determinate and a
sequential description of the scattering is valid.

We suggest time dependent experiments which are
within the range of present experimental techniques,
and which should provide an experimental confirmation
of the theorye.

The latter part of the thesis is devoted to a
detailed study-of the temporal interpretation of the
optical model of nuclear reactions. By considering
tﬁe complementary time--dependent picture, we are able
to give a Jjustification of the energy averages
introduced in the definition of the model. It is
shown that the formal definition is physically
mean ingful only if, in the context of good. time
resolution, the particles are scattered in two
distinct pulses, that is events with intermediate
timevdelays are insignificant. The coherence
of the shape and compound elastic scattering is
discussed and correlation functions, which express the
relationship between the scattering amplitude amnmi the

time spectrum of the scattered particles are defined.




In the fiml chapter, an experimental method of
resolving direct and compound inelastic scattering,
based on the parity rule, is proposed. Some

illustrative calculations are described brieflye.
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1.1

CHAPTHR 1

I}NTRCDUCTICI.

The aim of this work is to clarify the physical
meaning of the averaging procedures used in deriving
the opticall—3 and direct reaction models of nuclesr

L-7

reactions from the formal, exact scattering theory
To carry out this aim it is necessary to give a more
general discussion of thé definition and observation of
time delays in collision processes than is customary and
in particular to develop a scattering formalism which
includes a more realistic description of the incident
beam.

Frpm the first, the varlous phenomenological models
of nuclear collisions have rested heavily on the concept
of time delay. Bohr's argurﬁentss’9 for the hypothesis
of the independence of formation and decay of the com-
pound nucleus were based on a sequential description of
the scattering process. More recently, characteristic
delay times have been used in the interpretation of the

optical model and direct-reactionslo’22.

During the last
few years there has been considerable intevest in the

possibility of measuring delay times in nuclesr reactions




1.2
in order to distinguish different modes 6f interaction}2
Although the language of delay times, lifetimes
and collision times has been both popular and useful,
there has been little éttempt to relete this semi-
classical type of description to the mathematical form-
alism of the quantum theory of scattering.

The usual discussion of time delay is based on the

definition of Wigner and Eisenbudll:

Ot = - ik 1ns(B) (1.1)

At being the time delay of the scattered particle and
S(E) the relevant S-matrix element. This definition
has a practical difficulty. According to the relation
(1.1) a time delay is defined for a precise energy but it
is clear from the uncertaiﬁty relation for energy snd time
that if the energy of the scattering system is definite,
Suéh a time delay is 1pdeterminate. The definition is
incomplete in that it does not indicate the experimental
context for which delay times are observable and hénce
meaningful. N

In orde; to introduce some of the considerations
which lead to the view of time delay taken in thils thesis,

let us consider how the time delay in the one dimensional

scattering experiment of figure one would be measured.
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Clsessically, a time origin is defined by determining

the time that the incident particle passes through a de-
tector at x,, before interacting with the system repre-
sented by V. Another detector is placed at x, which
measures the time of arrival € of the particle after the
interaction. The experiment 1s repeated with the inter-
action removed so that the particle propagates freely
between x, and Xx,. The result of this measurement 1is
To and the time delay T-To .

Quantally, the influence of the measurement at x,
cannot be made negligible and this determination of the
time delay must be modifled so that the-experiment is
consistent with the uncertainty relations.

Suppose the incident particle 1is prepared gt to in
a state |[W¥,) which is localized about x,, having a spread
Ax along the x-axis with &%/y <<l. From the un -
certainty relation for momentum and position ((AQx Ap~ﬂ)

the minimum uncertainty in the wave number k, is Ak with
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Ak ~ Z& . We assume here that the state preparation

is such that an incident particle can be represented by

a single state vector and that the optimum definitlion of
wave number is obtained. Later the conseguences of
dropping this assumption will be examined. If a scatter-

ing experiment is to be feasible }?k must be much smaller
(-]

than one, so that the energy and momentum of the incident
particle are well defined. The time taken for the par-
ticle to arrive at x5 in the case where the interaction
is removed 1s

: [}
., m _Xe g AX
To = = >

: o ketiak
with m the mass of the incident particle. Thus the un-

certainty in the time taken is

T ~ M__X. eﬁ + _A_t
A ﬁk. He ke ) (10 2)

Any time deiay smaller than AT is unobservable.
Usually it is assumed that the wave packet state
'W%) does not spread during its propagation from Xx, to_

Xz e This requires

Bk (¢ Bx
o ‘ Xeo
or .
(A k)2 = % ;}2—° N>>1 (1.3)

with the use of the uncertainty relation. We assume that
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thils condition of negligible natural spreading is satis-
fied by the experiments discussed here as it simplifies
the calculations in chapters two and three without harm-
ing our understanding of the effect of the interaction
on the state [ W) . With this condition, relation

(1.2) can be written as

(1.4)
Té-being the time taken for a classical particle
with energy Eo to travel a distance %; . From (1.4)
we see that AT can be made to assume its minimum value
by taking 4 k as large as possible. The upper limit on
the magnitude of Ak is fixed by the relation (1.3). Tt
would seem possible to achieve any degree of accuracy by
making xo small enough but it is an advantage to use
later the asymptotic form of the scattering state wave
function and for this purpose X, must be taken much larger
than the range of the interaction. Indeed if x, is too
small, the process can hardly be consldered as a scatter-
ing event.
A numerical example 1llustrates the relation (1.4).
The scattering of a particle from a nucleus can be divided

into two types with respect to a time interval T, and a
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corresponding energy interval I ( ~ If the scatter-
=

13

T ).
ing amplitude as a function of energy varies rapidly over
the energy interval f", the scattering is said to be com-
pound, if the amplitude varies slowly over this interval,
it is called direct. T¢ 1s several order of magnitude

greater than Te. For an incident protqn whose energy is

22 secs. whereas T, ~ 10717 secs.  With N= 10°

20MeV, T,~10"
and X, = 1 metre, AT is approximately 10712 secs. Even if
the detecting apparatus at x, is capatle of measuring time
to any order of precision the time delay associated with
compound scattering by equation (1.1) is indeterminate,
and certainly on the basis of time measurements cannot bhe
distinguished_from the direct scattering. However, in
principle by arranging the experiment such that N took its
minimum value and by making x, small enough, the time de-
lays would be measurable,

In general the localization of the state [%>
determines whether there 1is in fact any discernible time

delay. The state [¥> has a certain spread in energy

AE, which we call the guantal uncertainty. Normal scatter-

ing experiments are characterized by AL «f'where Mis the
average width of the fluctuations in energy of the scatter-
ing amplitude about the energy of interest, The time

delay corresponding to Mis then unobservable since
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AT >> K .
/r (1.5)
p;

In experiments, real ©, or hypothetical as in the

example, for which AE<< /" and

AT << kK, .
7 (1.6)

the time delay is observable.

‘We . regard >*c$;ditions (1.5) and (1.6) as de-
fining complementary scattering experilments, 'complemen-
tary' having the special meaning emphgsized by Bohr. A
full understanding of the guantum scattering process is
based on two complementary classical pictures, one
associated with good time resolution,the other with good
energy resolution.

Experiments’which satisfy conditions intermediate
between the limiting cases (1.5) and (1.6) are possible
and one of the aims of this thesis 1is to present a
scattering formalism which is sufficiently general to
show the relationship between the observable time deley

and the quantal uncertainty in a given experiment.

4 A real scattering experiment for which condition (1.6)
holds has been proposed by the author and -I.E. McCarthy
.and is discussed in chapter L and reference (1L).



1.8

By considering the average time delay 1n the
emergence of a wave packet inthypothetical time depen;
dent experiment complementary to the usual energy de-
pendent experiment, we can associate a characteristic
time delay with the scatterer.

Let us review very briefly the dependence of the
ususal scattering theories on the description of the
state [Wo>. The time independent treatment 12 in which
/¢g> is a plane wave represents an idealized physical
situation since properties of the beam such as collima-
tion and energy resolution are disregarded. The time
dependent treatments fall into two categories, formal

16,17 end wave packet methodsls. The former

theories
heve the advantage of being easier to apply in complica-
ted situations while the latter have greater appeél to
physical insight. Although both have more realistic
initial conditions thanlthe_stationary treatment, in

the form in which they are generally presented they

glve the same results, since the parameters describing
the beam are taken with extreme values. In the formal
theories various limits are taken. In the wave packet
methods, the initial wave trains are taken much longer

than the region of interaction yet much shorter than the
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microscoplic distance of the scattering centre to the
detector; they apoproach the plane waves of the
stationary theory.

Previous vresentations, with few exceptions, have
been directed toward showing tnat the sequential de-
scription provided by the wave packet.method reduces
under conditions (1.3) and (1.5) to the stationary pic-
ture of ingoing plane waves and outgoing spherical waves
at infinity. However, as will be shown in chapters 2
énd 3, the wave packet method is not egquivalent to the
stationary theory and is capable of giving quite differ-
ent results when the condition (1.6) applies.

Mention should be made 6f Sasakawa21, whose 1ideas
are similsar to those presented in the early chapters of
this thesis. He shows with a different mathematical
technique that the cross sections are modified when the
finite length of the incident wave packet is taken into
account. The work -reported here was carried cut without
the knowledge of Sasakawa's treatment and in the author's
opinion is physically more transparent and has greater
generality. In his discussion of the optical model,
Sasakawa has taken a special form for the collision
matrix which obscures the meaning of the averaging pro-

cedure,
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Also Austern22 has given a review of general wave
packet scattering with applications to nuclear reactions

which forms a good introduction to this thesis.

It is tempting to attribute the poor energy resolu-

tion of experimental beams to the finite length of the
incident wave packets but in actual scattering experi-
ments the energy uncertainty of the incident beam is not
accounted for by the quantal uncertainty of the state
[Vo> 5 the 1limits on the energy resolution of the in-
cident particles are much wider than those imposed by
the uncertainty ﬁrinciple. For example scme particles
mey be moving faster than others because they wére
accelerated a little more by the accelerator. jIn fact
the beam is not prepared in a single state but must be
described by a mixture.of wave packet states. The fast
and slow beams in principle could be separated by a
magnetic spectrometer. This type of uncertainty will

be called the classical uncertainty in contrast to the

quantal uncertainty which results from the attempt to
define the time of arrival of a particle at a point.
Chapters 2 to 5 give in detail the consequences of
introducing the classical and quantal uncertainty in the
description of the incident beam and are preparatory to

the discussion of the optical model in chapter 6.

-
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In chapter 2, the scattering of a wave packet from
a potential is considered. The method of Chew and Low18
leads to the ordirary time independent results for small
values of the quantal uncertainty; the shape of the wave
packet is undistorted by the potential and there is no
discernible time delay. Calculation of the scattering
for other wvalues of the quantal uncertainty is facili-
tated by splitting the scattering amplitude into a part
which varies slowly with energy, the amplitude for
potential scattering, and a fluctuating part, the ampli-
tude for resonsnt scattering -. A number of different
ways of making this separaticn are possible but for
reasons stated latef the method of Slegert, Humblet and

6,32

Rosenfeld is chosen. With the aid of a Lorentziand

shape for the incident packet and the condition (1.3) of
negligible natural spreading, the shape of the outgoing

packet, which depends on the energy variation of the

6 Of course the shape of the wave packet depends on the
nature of the state preparation and details could be altered
by choosing a different form factor. The sartificiality of
the Lorentzian shape is compensated by the ease of calcu-
lationQ%nd the physicia transparency of the results, cf,
Newton and Sasakawa™ . Newton discusses the case of

an isolated resonance using a Gaussian factor. Sasakawa's
results are complicated by the fact that he uses a
rectangular factor, which has a sharp cut off, giving™
rise to transients. The essential results, however, are
independent of the precise shape of the packet.
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scattering amplitude is easily calculated. When the
scattering amplitude has an isolated resonance, the
collision function is dominated by a single pole near the
energy of 1nterest. For this simple case the scatter-
ing cross section is found as a function of the quantal
uncertainty, the energy of the incident particle and
the resonance parameters. The observable time delay
is derived as a function of the guantal uncertainty and
this is compared with the definition (1.1). The inter-
ference between the potential and resonant scattering is'
also calculated.,

In chapter 3, the discussion is extended to the
case of wave packet scé£tering from many overlapping
resonant states, and the cross section and the shape of
the scattered packet derived. It is shown that the time
delay depends on the spacing of the resonances as well as
their widths and the magnitude of the scattered packet
depends on the correlation over the residues associated
with the poles of the collision function. | .

A high energy sapproximation is considered for which
the level spacing is much less than tﬁe level width. . When
there 1s complete correlation between the résidues, there
1s no time delay and the cross section is independent of

the quantal uncertainty. Generally the cross section
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falls off as the quantal uncertainty is increased, but
the rate of decrease depends on the degree of correlation_
between distant levels.

The classical hnceftainty of the beam is introduced
in chapter L. A beam with both classical and quantal
uncertainty 1is described by a collection of wave packets
with different mean wave numbers. Using the density

24

matrix formalism™", we show that the classical uncertainty
implies an average of the cross section with respect to
ENErgy. It is also shown that the distinction between
classical and quantal umcertainty obreaks down if the
incident wave packets are not spatially separated by

the device which produces them. It is decided that the
poor resolution of actusal scattering experiments is due

to classical rather tham guantal uncertainty but an ex-
periment is proposed which would test some of the con-
clusions of chapters 2 and 3.

In chapter 5, we return to the problem of making
sequential descriptions in terms of micro-events of
experiments for which time intervals are not defined.
This type of description which is valid only in the

complementary sense, hag lesd to difficulties in the

interpretations of scattering experiments. The question
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of whether the amplitudes for scattering processes which
have different characteristic times can be added inco-
herently is answered with the help of the preceding dis-
cussion. The compound nucleus provides an instructive
example.

Chapter six is devoted to a detailed study of the
temporal interpretation of the optical model.

It is well known that the optical model describes
some sort of average behaviour of the scattering, the
incideht 5eam having a spread in energy, whereas the
resonance theories describe the scattering of beams of
perfect energy resolution. The single particle type
of description associated with the optical model has been
shown to be compatible with the resonance theories in a
number of theoretical papersj’u’7’25 by making the
correspondence that the scattering amplitude predicted
by the optical model be a certain average over energy of

the exact scattering amplitude.d It is then assumed

6 The following arguments are also relevant to inelastic
channels. The direct reaction model may be defined by
requiring thet it give the averages of the appropriate
elements of the collision matrix (e.g. reference (7)).

In order to keep the formalism as simple as possible, we
discuss only elastic channels.
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that the potential defined by this procedure is similar
to the potential abstracted from experiment.

Our concern will be the explanation of the energy
averages used in the formal definition but not the equiv-
alence of the phenomenological and theoretical potentials,
the complete justification of which requires a knowledge
of the dynamics of the nuclear many-body system. More-
over, we will show that the formal definition of the model
leads to a reasonable picture of the part played by the
optical potential.

The main question initiating this study was: can
the averages with respect to energy used in the definition
of the model be introduced at the beginning of the scatter-
ing calculation by assuming a more realistic characteriza-
tion of the beam? In this way the averages which must be
added to the ideal resolution theory would arise naturally
from the more accurate description of the experimental
situation. Specifically, does the energy average of
the scattering amplitude follow from the wave packet
nature of the beam?

Friedman and Weisskopflo have given a partial answer
to this question which in some respects is misleading.
Thelr interpretation. is based on a descript;on of the

scattering using a wave packet formalism and the notion
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of time delay. They try to show that the undelayed part
of the scattered packet (shape elastic scattering)
corresponds tolthe averaged scattering amplitude. Haya-

11 14 Namiki26:27

kawa et _al. have extended their approach.
A feature common to their arguments is the introduction of
short wave packets to describe the brogress of the incident
particles when they interact with the nucleus.

In section 6.1, we examine the arguments of Friedman
and Weisskopf. It is found that their discussion 1s in-
complete, especially for the case of medium energies,
where the resonance levels overlap, The attractive idea
of identifying the averaging of the scattering amplitude
with the finite 1ength of the wavé packet is rejected
8ince the beams of actual experiments have negligible
quantal uncertainty. The time dependent picture with
large quantsl uncertainties must be regarded as inter-
pretative and referring to hypothet;cal rather than real
experiments.

The experimental quantities measured are average
cross sections. Since an energy average of the_cross
section corresponds to cléssical uncertainty, the question

of why the scattering amplitude 1is averaged 1is considered

in section 6.2,
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In egreement with the seml-classical picture of
the optical model as a model for which the time delay
is small, we define the shape elastic scattering as thst
part of the scattering which is undelayed in a comple-
mentary time dependent experiment. A definition of the
optical potential which is consistent with the uncertain-
ty principle and which also has a straightforward physical
meaning, is that the potential predict the correct shape
elastic scattering in a time dependent experiment. Our
task then comes down to demonstrating that this physical
definition is equivalent to the formal definition in
terms of the averaged amplitude.

The formalism developed in the previous chapters

equivalent only if certain dynamical assumptions about
the cooperative behaviour of the resonances in the
scattering amplitude are. made. In particular, the fact
that the optical potential of the formal theory gives
correctly the shape elastic scattering is a result
emphasized by Brown28 that the scattering amplitude when
averaged over an energy 45, a fraction of the width of a
glant resonance, should .be a smooth function of energy
over severald i, - This implieé that in.a complementary

time-dependent experiment, the scattered particles can be
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\
separated into two distinct groups; there are no particles
which suffer an intermediate time delay.

In section 6.3, we consider the question of the in-
coherence of the shape elastic and fluctuation scattering.
Some arguments which rely on the use of characteristic
times are criticised and it 1s shown that dynamical con-
dition referred to in the previous paragraph must be
assumed if the two types of scattering are not_to inter-
fere.

In order to make the discussion of the fluctuations
in the scattering amplitude more quantitative, correlation
functlons are Introduced. An‘experiment has been suggested

29 which measures the re-

by Eisberg, Yénnie and Wilkinson
lative amount of shape elastic aﬁd compound elastic scatter-
ing. Although this experiment is often clted as measuring
a time delay, it actually defines an energy interval which
is the reciprocal of the time delay. The information is
obtained from the energy spectrum of bremstrahlung from

the elastic scattering of charged particles, which 1s
expressed in terms of a correlation function similar to

the one which we have defined. We give & time dependent

interpretation of their experiment by deriving & very

interesting expression for the correlation function of
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the scattering amplitude; it is shown that the correla-
tion function for the scattering amplitude is approx-
imately the Fourier cosine transform of the time spectrum
in the complementary experiment. This relation allows
one to translate statements about energy fluctuations
into the language of time delay.

It is difficult to carry further this discussion of
time delay and the problem of separating different modes
of scattering without making far-reaching assumptions
about the structure of the scattering amplitude or more
fundamentally about the statistical properties of the
positlions of the poles of the collision matrix and the
residues associated with them. There is a need for ex-
perimental techniques which will allow an empirical
analysis of the energy correlations in the scattering
amplitude to be devised. It is expected that the
bremstrahlung experiment will be valuable, and that the
correlation function obtained from this experiment may
be used to test the assumption emphasized here that
multiple scattering processes which have intermediate
time delays are negligible.

Finally in chapter seven of this thesis, we
suggest a method30 based on the parity rule31 of
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assessing the relative'cOntribution of the compound
nucleus and\diregt reaction models to inelastic
scattering. The results of this experiment should
help to answer the gquestion of whether nuclear scatter-
ing processes at intermediate enefgies proceed via two

distinet mechanisms.

1
~*

-
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CHAPTER 2

2.1 GEVERAL METHCD

In this section the formalism for the non-
relativistic scattering of a wave packet from a poten-
tial in three dimensions is introduced. The wave
packet descrivbes particles whose position and momentum
are determined sub ject to the 1imitat;ons imposed by the
uncertainty principle. By describing the bropagation
of the wave packet, we obtain a sequential description
of the scattering. It is shown in section 2.2 that
this method gives the same results ‘as the time indepena-
ent theory provided certain conditions are satisfied.
The discussion of sections 2.1 and 2.2 is essentially
the same as that of Merzbacherl9 which is based on the
lecture notes of Chew and Low18.

Consider the wave packet states \VL‘. which des-
cribe particles localized in the region R, macroscopic
distance r, from the scattering centre (located at the
origin) and moving towards the scattering centre with

mean momentum k,, as in figure 2.
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Pig, 2
This is the initial situation. The problem is to find

what has happened to the wave packet at a later time
when it has passed the scattering centre and reaches
the detector. Now the time behaviour of the eigen-
states of the total Hamiltonian of the system 1s known,
8o that if the wave packet can be expressed as a com-
bination of fhese states, its temporal behaviour can be
derived; the initial state ‘*&, must be expressed as
%' = Z‘: ‘0;(.&0)¢£ + [w(f-,l_s) ?,5 4!_( (2.1)
where the scattering state 7; corresponds to an eigen-
value in the continuous part of the spectrum of eigen-
values of the total Hamiltonian H, and the bound states

¢; correspond to the discrete eigenvalues.
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The states @$; and fkx satisfy the equations

H ¢,

H Jx

E,_'(O

'
Ly
:e~

E. >0 (2.2)
k

L]

m
=
~q
=

where H is given by H = T4V, T is the operator for
the kinetic energy of the incident particle and V the
potential which is assumed to vanish for (r] > a.
Although the functions h are not square integrable
they may be normalized su—ch that

STk i de = se- k) (2.3)

and with the states ¢; normalized such that

]¢i $f dr = &

they constitute a complete set, which makes the expan-

(2.14)

sion (2.1) permissible.
The coefficients in (2.1) are found with the aid of
the orthogonality conditions (2.3) and (2.4),

[\Pg. §: dr (2.5)

/\P‘Sv ?'_‘ dr (2.6)

The time behaviour of the states ¢¢ ) ik is given by

W, (!So)

w(ke, k)
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1}“) = 7‘5 e-%Est

b ]

- L Et
¢G‘(*) = ¢‘- c 2 °
(2.7)
The wave packet at time t 1is then
~iEt L EF
V()= Z wikd g e %" + [wcg.,g)}’,_,-e* * dk (.5}
In particular take the iniﬁial packet as
-3 l:ko(.'.“ro)
= 2 k - k
\P,S. (21) jA(-) e dk (2.9)

The weight function A (kx) has mean value Ko and 1is

negligible for values

.kj> koj + ‘k,‘ kj < koj'-fkj (1‘:!,2,3).

(2.10)

We call | £k| the quantal uncertainty; it is a
measure of the difference of the physical initial

state from the idealized initial state eiE°'£

of the
statlionary theory; for small quantal uncertainty the
wave packet state tends to a plane wave. if the
Fourier transform of equation (2.9) is taken to obtain

the wave function in the momentum representation it is
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found that the wave packet has spread Qg in momentum
space, so that, by the uncertainty relation, it has

spread {; in coordinate space with
Skj §rp ~ 1 (j=1,2,3) . (2.11)

Thus equation (2.9) defines a wave packet which is local-
ized about r, and hes mean momentum Ko o

Next we evaluate the coefficients (2.5) and (2.6).
The overlap integral in (2.5) is negligible. The wave
packet vanishes outside of the region R and in R the wave
function ¢; will be extremely small since ¢;is & bound
state and concentrated in the region of the origin where-

as r, is a macroscopic distance, The state i; is

-3 ck.r ,
Fe(r) = M2 [ e F(e,r)] _—

The first term represents an ingoing plane wave and the
second tends asymptotically to an outgoing spherical

wave; for large r the second term is proportionsal to

eikr
/5 . Then

Wk, k) = f Ve, i [e%2 0y ] ar
) (2.13)

= ~-ck.r ' =
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Consider the plane wave part first,

¢-_k: _'_!" —l-*:
(ﬁ)’f/“’-"“’ RRPTORLLIP

(2.14)
We wish to show that the second integral in (2.13) is
negligible. If it 1s assumed that the potential is
central then it is well known that F(k,r) can be written
for large r (taking the plane wave incident along the z
axis in spherical polar coordinates) as

Flly) ~ 2, Caean) (€ B tesb) ALE k) €7

_ Chr
= f‘“”” = (2.15)

Since ¢@. vanishes outside the region R, the range of
the integralvmay be restricted to R, and since this
region 1is a macroscopic distance from the scatterer, the
asymptotic: form for F (k,r) may be used. From the
expression (2.15) it can be seen that f(k,8) is a slowly
varying function of & in the region R, R subtending a
small angle 49~%' at the origin where d is the width

of the collimating slit, Thus the ingoling spherical

wave of 5.(5,2) may be represented in R by a plane wave,

= 7 ik.r
F(ﬁ,!‘)‘v {(kJ”) e =T ,;. R
r. 2 (2.16)
with the propagation vector k having = the same direc-
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tion as k . Then the integral in question becomes

f(k,m) -f’;- [A(g')e"'f"-"fc‘.(-'"*i‘)"'45 d
R

’

2

The integral over R is n_egligible unless g'lies in
the range ,

-k —Skj & ki & ~ky+ 8§k ()=123)

but in this range A(k‘) vanishes since k [[ ko and
[ke| > [8K] .

This physical argument differs from the one which
uses Green's functions and assumes that the scattering
amplitude is a slowly varying function of k. The read-
er is referred to Merzbacherl9 or Goldber,g;ery4 for the
detalled proof.

We see then that at t = O the physical wave pack-
et states, cbnsisting of eigenfunctions of the operator
T may be expanded in terms of the ideal scattering
states of the total Hamiltonian H = T + V, and with
Insignificant error, the coefficient in the expansion
in terms of the eigenstates of T and the coefflicients
in the expansion in ferms of the eigenstates of H are
identical.

From (2.8), the wave packet at time t 1is
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VRERY =[au_<)exp(.eg._r.-c25f) Fe@ d'k (2.17)

The probabllity of detection at time t is
3 kY
‘ W‘s, (_E‘d, 1)' ra dfla ’

Ld being the position vector of the detecting apparatus

and dﬂd the angle subtended by the detector. The

total probability of detection is therefore

+ 0
A4 - vori j | Wk, (ra, )] at
d-n-d_ . 2

where SUko (;_d,'t) is given by equation (2.17), after

(2.18)

appropriate normalization.
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2.2 SCATTERING FOR SMALL QUANTAL UNCERTAINTY AND

SMOOTH VARIATION CF THE SCATTERING AMPLITUDE.

In this section we wish to show that with the con-
dition that the quantal uncertainty is small compared
with the width of the fluctuations in the scattering
samplitude with energy, the evaluation of (2.17) leads
to the same result for the differential cross section
as given by the usual time independent theory. The
method due to Low18 is worth repeating as it shows the
assumptions which are implicit in the stationary treat-
Fﬁnt and provides a basis for the more complete dis-
cussion which follows in later sections.

To evaluate the integral (é?17) the first approx-
imation made is to replace the energy term in the expo-
nential by a term depending on k rather than k2. This
means that the spreading of the wave packet during the
scattering is assumed to be negligible.

f ( (k-ko) + Eo)z
= (k-ko)Z + ko2

k

+ 2kg (k-ko)

In order to drop the (g-g,)z term, we require

Ry
(5-ko) T'h<< .

2m
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with T the time taken for the particle to reach the
. 2le M
detector(T- —tf‘;z:) 3
i.e. ( §x)%x,

Ko

. (2.19)

Compare this with equation (1.3) of the introduction.
This condition can be easily satisfied without destroy-
ing the localization of the wave packet which was

necessary for the arguments leading to the équation

(2.17). As a numerical example consider the allowable
spread in wave number for 9 MeV neutrons with re = 10cms.
S T
(§:)2.3%. L5 =107

Sk = 108 inverse rermis .
This uncertainty in the initial momentum allows a local-

ization 1in position of Srﬁojgi = 108 fermis.

The wave packet is large compared with the dimensions of

the scattering centre (~10 fermis) but small compared

with the distance 1, . Thus the two conditions

$x << 1
o

(§x)%2 << 1
ko

are not incompatible (for this case), and it is easily
seen by taking numerical examples that this is so i1n

general for atomic and nuclear scattering experiments.,
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With the approximation (2.19) equation (2.17)

becomes
= A(k) ex “.Is-(ro*ru")'f“k)of k(")dih.
Vi (o) f k] et ¥ ~ (2.20)
with Vo = E_ko ) )‘-‘.w. = SLMV: .

m
A second basic assumption 1s necessary?

The scattering amplitude f(k,8) is a slowly vary-
ing function of k in comparison with the weight function
A (x). In other words the quantal uncertainty must be
much less than the average width of the fluctuations,
denoted by, of the scattering amplitude at the re-

levant energy, i.c.

r.
§ << (2.21)

When this condition is satisfied, the scattering
amplitude may be brought outside the integral in (2.20).
For large r the form (2.12), with F(k,r) given by equa-
tion (2.15), may be substituted in (2.20) and by compar-
ison with the initial wave packet (2.9), the wave packet
at time t is '

W (o1) = B (2 -ret, 0) et 4 2 f(k,0 giwet

(an)s ~p

x fa(g) exp {i[kr - K. (o +wat)]} 4k .
| (2.22)
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Purthermore in this approximation
kr ~ _12.12, r
so that
Vi, (£,1) = Wy (£-ret, et fﬁF_ue)q/k.(rE,-y,to)c“‘f"

The first term represents the original wave packet dis-
placed to the right of the scatterer and more important
it propagateslas if the scatterer were not present. The
second term represénts the scattering and is a replica
of the original wave packet multiplied by the factor
£(k,8)/r. Tt is important to note that with the above
approximations the shape of the initial wave packet is

unimportant and moreover, there is no possibility of dis-

tinguishing the type of scatterine mechanism by observing

a time delay in the propagation of the scattered packet.

The time of flight of the wave packet is independent of
the potential whose only effect is to modify the ampli-
tude of the scattered packet through the function
£(k,, @ ).

The probability of detection is from (2.23) and

(2.18) (for the scattered packet only)
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O _ ® a a
I ko, at [ 1% (k00T (2.20)
A 2 -
but fl V. (tk,0)| dv is the number of incident
particles per unit area.
Therefore %%d = [2(x,,8,)] 2. (2.25)

This result for the differential cross section is iden-

tical with that derived by the usual stationary method.
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2.3 SCATTERING #OR VARTABLE QUANTAL UNCERTAINTY

It was shown in the last section that with certain
reasonable assumptions the wave packet formalism pro-
duced the same results as the stationary method. However,
in this identification of the two methods, assumption
(2.21) was essential, If this condition is not satis-
fied, the quantal uncertainty being comparable with the

fluctuations in the scattering amplitude, the amplitude

cannot be taken outside the integration in (2.20) and
the integral cannot be evaluated in this way. In this
cilrcumstance, it is reasonsble to expect that the shape
of the scattered wave packet will depend very critically
on the exact form of the amplitude and that the time
behaviour of the packet will give information about the
scattering mechanism, in contrast to the behaviour found
in 2.2.

These considerations do not apply to the unscatter-
ed wave packet, which is obtained as before and since
this wave packet is confined to small forward angles,
it can be omipfed from the expression for the wave
function at thé detector. f

Our task then is to evaluate
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q/k (¢,1) = ;fA(k) exp (-ck. r.—ctk ,«) e {(k 0)d'k
3 - k'kt
- (;':r)-} JAe (Bk)ﬂkfk) b,f,.fﬁt’) exp(-ckrcos B =

x €% 5k, 0. dk .
r

Suppose that the spread of the angular parts Ae (Bk)
and A¢( ¢k) is much smaller than the spread in Ak(k).
This means that the effects of collimation are dis-
regarded and only the finite length of the wave packet
is taken into account.

This is not, of course, & necessary restriction
but it is recasonable from our point of view; the main
concern is the time of arrival of a scattered particle,
which is chiefly determined by the finite length of the
incident packet, rather than distortion effects due to
over-severe Qollimation.

Then $(8,~T) A k)

2T Sin 9‘( k‘

D (6) D 4 (8e) Aylk) ~

and
o) = s [ Atk espfiton- 2491 €501, 0l
) N (2.27)
Take again the condition of negligible spreading of the

wave packet but this time the approximation

32




k~ — 4« E
2 3 (2.28)

is used in the exponential with the aim of changing

the variable of integration to energy, ylelding

C iketresm) [T g
Y, (1) = (m—'—){ %‘* [A(e) exp [ (" —f)} £(k,8) dE
- o

To proceed we need an explicit expression for £(x,0)
as a function of energy. There are & number of
possible 'resonance' expansions of the amplitude, in-
cluding those of Kapur and Peierls33, Wigner and
Eisenbud5, Feshbach7, and Siegert and Humblet6’32.
The expansion of Humblet and Rosenfeld6 1s used here.
Thelr formélism has the advantage of having parameters
which do not depend on the cut-off radius of the
potential and the energy of the incident particles.
The expansions of Kapur and Peierls, and Feshbach can
also be used if 1t is assumed that the parameters in
these expansions vary sufficiently slowly with energy.
A drawback of the method under consideration is
that the amplitude must be expanded in partial waves,
so that there is no easily stated relation between the
resonances in different partial waves, although physic-

ally one expects such a relation to exist, 'Feshbach36

has given a complex eigenvalue expansion of the scatter-
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ing amplitude in which the resonances are associated
with the poles of the amplitude, without making an
expansion in partial waves. However, this expansion
is best fitted for the discussion of isolated reson-
ances because only a limited number of poles (reson-
ances) can be made explicit; all resonances cannot be
taken into account since the asympfotic behaviour of
the poles for large energy and momenta is uncertain;

‘ For the reason that we will be interested in
the region of overlapping resonances, we will make use
of the Humblet-Rosenfeld-Siegert expansion (hereafter
called the HSR expansion) and consider only one partial
wave at the time, thus sidestepping the problem of
asymptotic behaviour for lerge angular momenta. How-
ever, 1t should be emphasized that since the essential
consideration is the temporal description of the
scattering process, any expansion of the amplitude that
shows 1its energy dependence is appropriate.

The partial wave expansion of the scattering

amplitude has been stated in equation (2.15). In the
notation of Humblet and Rosenfeld (see equation (1.22)

of reference 6)

f(k,0) = ;'5<2:,_('144')B(w=9)(U¢-l) . (2.30)
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The scattering matrix element Uy is a meromorphic
function of k and it is assumed to have only simple
poles ky, The Mittag-leffler theorem leads to the
following expansion for Up in the complex energy plane

with cut, (c.f. equation (2.15a) of reference 6),

i
U, = I+ (2_-_;_;‘)»[@(5” 2n E—Re::ﬁd}..:l- (2.31)
Here Cp (E) is a smoothly verying function of the
energy and in the resonance térm, Ren 1s complex, €gn
and [}, real and Ry, ,lpn, €sn  are independent of
energy. Humblet and Rosenfeld show that the poles of
UL in the complex k plane are restricted to the lower
half plane and are symmetrical about the imaginary
k-axis with the proviso that poles corresponding to
bound states lie on the imaginary k-axis in the upper
half plane. The corresponding positions of the poles
in the complex E-plane with cut from origin to large

negative real B are shown in figure 3.
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The coefficient Ry, depends on the residue at the
pole at €44 = £ilkn =Ezn- The general limits on the
positions of the poles as discussed above are a result
of a completeness relation; the exact positions &;h‘%‘V}n

of the poles, and the residues Ry, at
these poles are determined by the dynamics, that is by .

the exact form of the Hamiltonian being considered.+

For nuclear scattering at low energies the aver=- *

age spacing between the levels, denoted by D, is much

+ Nussenzveig35 has plotted the positions of the poles
for the case of the square well.
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greater than the average level width, denoted by I
In this case it 1s sufficient to consider only one or
two terms in the expansion and the scattering may be
fitted with a few varameters describing the nearest
resonances to the energy in question. At higher
energies the poles are closer together and [>» D.
Too many parameters are needed to use the resonance
expansion directly for the fitting of expepimental data,.
It is for this reason that médels such as the optical
model are important to fit gross properties of the over-
lapping resonances such‘as the strength function.

With the expansion (2.31), the wave packet (2.29)

becomes

Wk, (2,1) = K2, (2e+1) [lest) [A(E) exp[:‘EX)( Ug - I) dE
ol ° T‘T

: KZ;(uu)&zma)fo A(E)exp(c'sx)[cecsn Za Ren _Tac (2.32)

E‘E‘n
. 'ko ot -
with K '_,"'.L' expf‘f (r h)} so that Kic ¢ —_
(2")" Ql'r' ’”r‘ (2.33)
and X = I [ Po+ P :
Lok f (2.34)

We now split the scattered wave packet into a resonant
wave packet associated with the resonance terms and a

non-resonant packet in the following way,
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W, (2,t) - Kz‘('ll.ﬂ)&(wse)fb(ﬁ) exp ((6X) Cyle) dE (2.35)
, A _

. re . R
q/R'(g,f) = KZ‘ (uu)_l’g(g Q)L O(e) exp(sEX)Z“-—-—--E ":':n dE) (2.36)

G, = W+ Pro . (2.37)

Also let us assume a Lorentzilan weight factor

A(F‘)$5\E)= $
TT{(E'Eo)‘-I-S‘f (2.38)

with & , the quantal uncertainty, the spread of A(B).
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2.4 EZEVALUATION OF THE NON-RESONANT SCATTERED PACKET

The non-resonant packet is

- § exp (c€x) C,(€) AE
r E (ws® _ 2z
W (1) = k2, (ate) R (o) T (6-E5)(E-Ey)

(2.39)
with Es- = E;“ ':g ) RY-} 'Hw\.f E‘_E‘- = 2‘.{ 3 (2.)40)

Now since C 4 (E) is a slowly varying function of E, the
same considerations as given in section (2.2) apply and
C, (E) may be brought outside the integral. The integral
can now 1_>e evaluated by contour integration around in-
finite semi-circles in the upper and lower halves of the

complex energy plane:

Wp (r,1) = K Z, (2201)) Py (w05 6) Cy(€) exp(cEgX) , x>0

e, 4) = KZ, (20+1) PeCusB)Cple) exp(EgX) , XL O,
Wp (e, 1) K2y (2000 fe 2(€) exp O (2.11)

From (2.41) the wave packet for potential scattering is
centred upon the point X=0, or from the definition (2.3L)

T, 47

t = A

We conclude that the non-resonant wave packet propagates

without delay, since a wave packet propagating freely has
velocity Vo .
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Now

2, (ee0 (ws9)f¢(5)l exp (-2€ Ix1). (2.42)

=L
[Wle,1)] - Py

The time spectrum of [ qé(faf)l‘ is an exponential

rise and fall, exp (- 8t/ ).
The unnormalized probability of detecting a

particle is from equation (2ﬂ18),

Z2,( PpCos8)C,pte)|* AN
srrJ | 240 ICele [ * (2.43)

where djld_is the solid angle subtended by the detector.
Equation (2.43) is normalized by dividing by the number

of particles incident per unit area, which is

"V [fA(k)e‘kzdka(k') e"'"dk dz
2

7" fA(k) Alk) dk

:‘ f [(E_-Ei)‘-f $* r“f

.k
A (2.44)

From (2.43) and (2.44)

dop . 1 | Z, (aa+1) Fpluwcb) ch)[‘
n 4
A g (2.45)



2.2,

Comparing (2.45) with (2.30) and (2.31), we see that
the differential cross section for potential scatter-
ing is independent of the quantal uncertainty §

and identical with that for a normal beam in which §
is negligible. In this evaluation of the non-
resonant wave packet, we have merely illustrated the

conclusions of section 2.2 with a specific form factor.
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2.5 THE RESONANT PACKET FOR AN ISOLATED RESONANCE

We now turn our attention to.the resonant wave
packet (2.36). If
S <<

the same discussion and method which was used to eval-
vate the non-resonant wave packet applies and no
difference from the stationary treatment results. On
the other hand if § is comparable or much larger than
n s we may still evaluate the integral easily, as the
HSR expansion is convenient for complex integration.
With the notation

I, - f"A(s) g(e) exp(cEX) AKX,

geey = 2. Ren = 3, — Ren

E-£fan E-€utichhn

e Ale) = )

T (e-£5) (€-E¢)

the resonant wave packet 1is

W (2,t) = K 2, (22+1) Bycwst) I, .
: * 5 + (2.46)

The positions of the poles of the intégrand of Ii

are shown in figure L. -

3
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By complex integration in the upper half plane

around the contour shown, for X > O

I‘ . ZU\ -Rlﬂ- QKP(“E‘X) +
Eg-Egn

the contribution from the arc at infinity vanishing for

X>0 , Similarly, by complex integration around the

contour marked in the lower half plane, for X € O

fﬁ(e) g(e) exp (cEX)dE, (2-47)
G
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' (]
1, = 2.\ __R!'_“__exp (c‘fs’() - WS 2., - R_'-"‘ 5 pr(cE..X)
4 E‘- El'l . (Eq‘ E‘)(t_ﬂ'f‘)

+ f ACE) 3(5) exP(cex) d€ .
" (2.18)

The primed summation includes the proper resonances
only, the bound and virtual states do not contribute.

The integrals along G and H are strongly damped
by exponential factors when X% 0 , since E is imaginary.
In addition the weight factor A is small along the imag-
inary axis. Therefore provided the singularities of g
are not near the origin, the integrals G and H
are small and may be discarded. ; Cne case, however,
requires special consideration; é pole representing a
bound or virtual state, which lies close to the origin
may dominate the scattering. A note about this situation
is apﬁended to this chapter.‘ )

¢
Generally, we have

I = 2., Ren exp(tEgX) for X >0

E Egn (2.49)
and
I, = Z,‘ _R"_"___ erp(c't?gx> - 2c Z“ Ran egP(.‘E..X)
Es—Ean (En-E) (6n-E5)

fop X< O . (2.50)
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where the summations now include only resonant states,
since the contribution from virtual and bound states
is assumed to be small.

Suppose that the peak energy Be of the incident
packet is close to the energy €g; of an isolated
resonance so that only the Mth pole in the summations
need be retained. The other resonancescan be omitted
or put with-the amplitude for potential scattering. The
s-wave 1s considered for simplicity of notation.

From equation (2.49), and (2.46), Her X>0

[ Wale,t) [ = - . Ra—E.: - exp filEs -de} .
&EMr* (£,-€:)(E¢-Ei)

(2.51)
This shows that the leading edge of the scattered packet

thet is the part for times less than gy

is propa-
-] . -
gated with the same shape as it originally had, but, of
course, with a different magnitude.

From equation (2.50), for X £ O

J

[waer]* s Rk [-————' exp fi(Ea-EcX
gmwr (E"E;)(E&'EC)
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+ AL
(Bi-£5)(6-F¢) (6i-Eg)(Ei-E)

exp {t‘ (Et'fc‘))(}

1\‘: - QXP{“(E"E')X}
(Es-ec)( Ec-E5) (€0 -Eg)
o - 2:8 - ea:P{.'(e.--E;)x}
(6¢-E:) (ec-€4) (€ -Es) .

(2.52)

In this expression for the tralling edge of the
wave packet there are terms resulting from the pole in
the scattering amplitude, which were not present for
the potential scattering. The time spectrum is a
decaying oscillatory funci’.ion. In particular if the
time width of the incildent particle is much less than
the decay constant 1;/rr‘. of the resonant state, the time

spectrum has a tail falling off like

exp {“(Ec"Ec')X} = pr(f'.;X) fo.p X< 0 .

The other terms which result from the specific form
factor die away much more quickly if & >> ¢

This corresponds to exciting the resonance suddenly and
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watching it decay with its natural time constant.

The chance of detecting a particle before time

D L. ’
T Ar*dna f | We (XD aX
X

with x = L f‘.“‘d_T].
I S A

For T > Petrd this integral is
Ve

% d2y R: R [ L A exp (25X) ]
g I(E-E ), -£1) 26 (G-E) (6 Tr)

8§71 - exp(”ﬁ)ﬁ)}
P66 )6 -E)(E: -6 ) (Fi-£5)

-+

28 [1- exp(i(e-€)X) exp(({’w{)x)}
(€s-E)(F-E5)(F: "€ )(E4-E)

-+

a8 {1~ exp (i (&-E)x) explf £543)x)
(& &) (ro-63)(6c-F) (€ -E)

For §>» I we have the familiar result that particles

associated witl} the resonant scattering are delayed with
respect to those associated with the potential scatter-
ing. in figure 5 the magnitude of the resonant wave .

packet is pletted for various ratios of §/m; and com-

pared with the potential wave packet. It is clearly
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seen from this comparison that as § is made larger, the
exponentially decaying tail of the resonant wave packet
becomes more significant.

The differential cross section is found by taking

T+ in (2.51) and normalizing in the same way as before.

T e 25 (E5-F() (E5-€4) 26 (€4-E: ) (E5E)
Ls™
+ — -~ — —
p; (c~€5) (€:-€3) (Fe—E$)(EC Es)
. as[(gies)+ife-ed]

(£5-€:) (Ec-Es)(€c-Eq) [(£-€:)(F+8)

pig E(5i+6) + itered)]
{(E- €) +(0<+8)" § [E;-E‘c)(fc‘ﬁ)(&'ﬁ)

e

Ao (s) RR [ Dite-ea™s (£i8)(§4 2)]
R s - T

AN ar [(e-e) + (345.) ]

(2.53)
Equation (2.52) shows the dependence of the differential
cross section for resonance scattering on 1I;he quantal
uncertainty. It is important to note that as the quantal

uncertainty of the beam 1s increased the probability of
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seeing a particle scattered from the resonance ls de-
creased, the resonance bump in the cross section is
broadened and its peak lowered. This fact which
erises explicitly from the formalism is suggested by
the uncertainty principle. As the measurement of
time in the experiment becomes more precise, the de-
tailed energy behaviour is blurred.

Some special cases of (2.52) are:

(1) Perfect resolution, i.e. §=0

dog _ R¢ R L
dng y ((€-€)*+ 1)
i

(2.54)

which agrees with the usual time independent theory.
(11) Poor resolution, i.e. §—= =
0 N I
4% & 0(%)
d0,
(2.55)

(11i) Mean energy of the beam equal to the peak energy

of the resonanceJE=Ec P

@__O'RI < R.'Ec (?"“‘)
dNa ar (e g)”®

(2.56)
The modified shapes of a resonance for different quantal

uncertainties are shown in figure 6.

A ¥
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2,6 INTERFERENCE OF THE RESONANT ANRD POTENTIAL

SCATTERING

So far we have lgnored the interference between
the potential and the resonant scattering. The scatter-
ed wave packet was split into two parts, equation (2.37),
a wave packet which was transmitted without delay and a
wave packet which had an exponential tail and resulted
from the isolated resonance level. This division leads
to a third term, the interference term, in the differen-

tiél cross section
| @ D= (% @D+ G EA] + 2Re[Fr (o) B )

a0 = d_o—P + do—R + d_'_q—I

dna da g4 dng ANy

and

A0x _ amSet J“” —
=T = 272 2Re fWp (1) Wple,4){ dt .
d.Q.(_ t\ (-] [ £ ! : ’ }

(2.57)
Using the expression (2.50) and (2.41) (for the s-wave

only) after some manipulation we arrive at

% . LR (R [(£-6) ¢ il 434)]
dne 2 [(e-ed+c(fe6)]) 5 (.50)




- .

2.3,
which for d-=0 is

as required.

1 Re { R; Colé) }
2 .
(E-¢€) + «3/%

On separation into real and imaginary parts (2.58)

becomes

1 Re ( RiCace)) (=€) (E~ec)'+ (£i48)(T4434) ]
2 [ (e-€)* + (Lies)’ ]

41 S (R Gotey) [ 5™+ (L4 26)
[(e-e) +(£evs)* ]

(2.59)

The coefficient of Re(Rbal(E))fis O(%1 ) for large §.
The coefficient of Im(R;Ce(E)) is o(:-ls——) for large §.

It 1s sometimes thought that the interference between
the potential and resonance scattering vanishes when
the wave packet Iltreatment 1s used, since the wave packets
for the two proc;esses overlap less as the quantal un-
certainty is inéreased. This is true. However_, it is

usually overlooked that the wave packet associated with

the resonance becomes smaller in magnitude as time is
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better defined. A comparison of (2.59) and (2,53)

show that the interference and resonance contribution

to the scattering fall off at roughly the same rate
with increasing s .
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2,7 TiE TIME DELAY AND DISCUSSICN

The average time of arrival of a scattered particle

at the detector is

@ 2
1' IWS.(':,'*)I t dat

_[: l U’L(. (r,1) |"at

. j: 1P, ) [ ("5 - t.x) dx
J: | Wi ) [* X

x| W) ax
J:: l W_‘E.CX)rdX

o + Nd _ t
Vo

(2.60)
Thus the average time delay for particles scattered

from a resonance is

j:l W, )| ax
[0 1 Wet) ] ax

ot = — K

I (2.61)
with l Wa(x)vllt given by equation (2.50). The de-
nominator has been evaluated in section 2.5 and the -
numerator can be calculated similarly. After some

manipulation, we obtain the time delay for an isolated

resohance of width [ and energy E, as

|
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5 —1;(1',42;)[
at (€-€:)* +("'+S)

P+ 2800 - 4s$*
r; ({"(E-Ee)‘+ (2&+{¢)({’6+J)‘) ’

(2.62)

Some special cases are -
(i) peak energy of the incident packet equal to
the energy of the resonance, i.e. E = Ei’

At - -2K WS+ bsP e S
M g5+ ¢sr¢ + 0~

I(2.63)

(11) gquantal uncertainty large f.e. §-= @,

(l + r"(e Es))
4s’

(111) quantal uncertainty small &+ o ,

(2.64)

At = AP (o)t )

(2.65)

When the incident and resonant energies are equal,
the mean time delay takes values between — -:-_‘:- and ~2F_‘
) v

the lower 1limit corresponds to extremely short incident

wave packets whereas the upper 1limit corresponds to wave

)
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packets of infinite length. This shows clearly that a

unique time delay cannot be associated with a given

scatterer in all possible experiments. The mean time
delay depends on the mode of preparation of the beam in
addition to the particular scattering mechanism.

For § = 0 the time delay is - %f which is the
same as the value resulting from the u;ual definition

(s 151 This time delay would be extremely difficult

to observe in practice for the following reason: with

the very long wave packef required by the condition §-+o
the terms exp (- §1X| ) in the equations (2.50) mask the
exponential decay of the resonance. The arrival times
of particles at the dectector vary between wide limits.
J The time interval ji defined by these limits is many
orders of magnitudezgreater than the mean time delay.
Sincde the time delay in the experiment with small

quantal uncertainty is essentially unobservable, we prefer

to define the characteristic time delay of the scatterer

E as the time delay given by the complementary experiment
for which the guantal uncertainty is large. This seems
e sounder procedure, because the time delay defined thus
1s the value which would result from an experiment

designed to give good time resolution. Hence the

i
1
!
:
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characteristic time delay for an isolated resonance
is = th? . In general the characteristic time delay
for a séatterer is defined by
= a
, f | Y% ()] X dx
fom + e e
§»0 N
f [ Yi0)| ax

(2.66)

The results of this chapter lead to the following
conclusions,

(1) The particles which are scattered from an
isolated resonant state of width . are delayed'on the
average by Z&T-"FVL‘ with respect to those particles
associated with the potential scattering provided that
the condition &>> ¢ holds. To an energy fluctuation
in the scattering cross sectlon for a beam of perfect
energy resolution, we can assoclate a time delayt/n( in
the complementary, time dependent experiments of large
quantal uncertainty.

(11) As the quantal uncertainty is increased so
that the incident wave packet is better defined with
respect to time, the number of particles scattered from
the resonance decreases with the result that the cross

section loses its detall with respect to energy. This

result is expected from the uncertainty principle.

3~
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(11i1) The interference term in the cross section
decreases with increasing definition in time as does
the resonance scattering. For large quantal uncertain-
ttes only the wave packet for the characterless, smooth-
1y varying background scattering remains and this is

propagated without time delay.
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2.8 NOTE ON BOUND AND VIRTUAL STATES

It was remarked in section 2.6, that for a bound
(or virtual) state of small binding energy, the integrals
along the imaginary axis in equations (2.48) and (2.49)
may be large and their contribution to the scattered
packet cannot be ignored. To estimate this effect, we
evaluate the contribution to Iz for X=0. |
At X = O, _
L Oe) 9 (€) exp (CEX) dE = fH ace) 4(€] dxp(!'EX) dE

«©
: ff D (E) 9UiE) AE |
[

(2.67)
with .
D (CE) = § ) 3("5) ~ ———R—-——‘ .
' w(cE-£,)"+§) € + &

R is the strength of the bound state and E its binding
energy. The evaluation of the integral (2.67) is-

straightforward and ylelds

R [( en(c""'“) — 2(Eot€) tan™ ﬁ):[
amr f (Eove€)*+6%} et £,

which for small €, i.e. 'é <L Eq is
RS €
—_ - - 'en( ) . (2,68)
(& §') (67 +s




2.’42

As the binding energy of the state approaches zero,
the integral (2.67) is logarithmically divergent.

Also we note that for large negative times
- i ”
fa(e) g(€) exp (cEX)AE = cd(o)/g(:‘i) exp ((£x) dE
Q

¢
‘§ @
. R ___expl-n)d
m(Ee+8°) ), ;'?+ex PC) 7

SR 4 (ex)
m(EA+S)

— ¢§R o
mer+s*)  €X (2.69)

14

Similarly, for large positive times

fw Ace) q¢c) exp(cEX)dE =~ —¢§R A (e X)

ﬂ(fo‘# “)
> ) ‘R l

M +5%) ex

The characteristic time duration of the wave packet
resulting from the bound state is of the order #/&e .

Therefore for a state which is only loosely bound,
the contribution to the emergent wave packet swamps the
contribution f#om the resonances which are close to the
peak energy of\the incident packet. The long'wave length
component of the ingident packet is strongly reinforced
88 the incident particle and the scatterer tend to form

a bound state.
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Actually the choice of the Lonentzian shape for
the Incident packet overestimates this éffect, because
the tail of the Lorentzian does not decrease rapidly
enough. With a smoothed, rectangular form factor for
the incident packet, which then has no low energy com-

ponent, the integrals along the imaginary axis can

certainly be discarded.

iy,

SRE—————_ R




CHAPTER 3

SCATTERING FROM MANY LEVELS

3.1 SHAPE OF THE WAVE PACK&T

It is necessary to investigate the behaviour of
a wave packet which is scattered from a number of over-
lapping levels. This cagse 1is not usually discussed
from the point of view of a time dependent theory al-
though it is of considerable relevance to the physical
interpretation of the optical model. It is just this
region of overlapping levels which motivates the optical
model description. I

A wave packet scattered froﬁ a group of overlapping
levels differs in two important chéracteristics from one
scattered from an isolated level.

(1) The shape of the scattered wave packet depends
on‘the/spacing and correlation between levels as well as
their widths.

(11) The magnitude of the resonant packet may
remain appreciable for large gquantal uncertainties, if
the residues of distant levels are correlated.

These differences arise from the fact that in

some circumstances, which will be discussed, there may

]
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be either constructive or destructive interference
between the levels.

The wave packet %(g,t) for X<0 (ecf. equation
(2.50) ) which contains the exp(+MX) term responsible
for the tail of the wave packet and thus tune time delay,
may be written in a more revealing way. Writing some
of the factors with their real and imaginary parts shown

explicitly and again only considering the S-wave, we

have
= R ex (iEX)exP(SX)
(:;f bt KZ P
% ) e E’éh" ‘(gﬂ__g)
- 2¢k§ Zn eXp (CEnX) exp(f f"x) R-.
[e- €nsi(ras)]] €venri(5-5)] -
i | (3.1)
That 1is

R.
E-€+ G'(,-:"—S>

208 exp (°X) exp {i(en= EIX]
E-€uvr i (D+s) .

Wa(rst) = kexp(¢EX) 2,

— gy e e

X [exp(JX) ~

 —

! First we note that for perfect energy resolution

f -

the quantal uncertainty is zero ( §=0), and the wave

packet degenerates into the spherical wave of the sta-

tionary method, since

K exp(1iEX) ~ exp {i(krf %t )} /v . (3.2)
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In the last chapter we considered the situation
with [ <<D,lMveing the 'mean width of the levels
about the energy of interest and D the mean spacing
between them. In this case for small guantal un-
certainties it is sufificient to omit all but one of
the terms in the sum. For larger guantal uncertain-
ties, compafable to D, it is necessary to take more
terms to evaluate the cross section but even then the
inferference between different terms may be neglected,
so that the results derived for the isolated level
still apply. The cross section is Just the sum of
the cross sections for each partiéﬁlar resonance,

On the other hand, in the region of overlapping
levels the mean width is comparable to or greater than
the mean spacing between levels, so that several or
many terms make a significant contribution to the sum
in equation (3.1) and the total scattered packet may
be regarded as a superposition of wave packets, one
from each of these levels.

Qualitatively, one can see how the shape and
magnitude of the resonant packet depends on the phases
of the residues Rn. For good resolution of time, we
require a short incident packet, i.e. §>> M. Then

all those levels with &; such that
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- tant levels the period of the phase factor is much

3.4

E-§ £ €. S E+S (3.3)
contribute to the sum in egquation (3.1). If the
residuecs Rn are uncorrelated, in other words they
have random phases, the terms of the sum tend to
mutually cancel, and the magnitude of the resultant
packet is diminished as the quantal uncertainty is
increased. However, if the Rn are correlated the
terms add coherently and ti:e magnitude of the
scattered packet remains large. But in this case
the shape of the wave packet is changed for the
following reasons: the tail factor exp(-é}lxl )
of each of the contributing wave packets is multi-

plied by a phase factor exp {i(e.,—E)X} . ¥or dis-

less than the half life of the exponential tail.
Thus although distant levels which are correlated
may give a large undelayed contribution from the
exp(- §/X] ) part of the pascket, the contribution
for large X is small. For correlated levels a larg-
er proportion of the resonant scattering is propagated
without time delay. -

This behaviour 1s very important for an under-
standing of the optical model. In sectionm (6.14) it

is shown that in the limiting case when the ratio of

i ¥
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the mean level spacing a&s the mean level width
approaches zero, the resonant packet-no:lenger has
an exponential taill characterizling a time delay.
It is scattered promptly.

It is well known that in the dispersion the-
ories where the positions of the resonances dépend
on the radius of interaction, small changes in the
boundary conditions produces large changes of
position in the high energy resonances, and similar-
ly that small changes of the potential shift the
high energy poles by large amounts. The wave packet
method confirms the idea that individual high energy
poles have no observaﬁle consequences, although their
average properties are important. »Again this con-
clusion seems obvious from the uncertainty principle.
No matter how we decompose the cross section at high
energies into 'resonances', if the cross section is
a smooth function of energy, the time behaviour of
the scattered packet is characterless (c.f. the dis-
cussion of the high energy limit of the optical model

in chapter 6).




3.2 THE CROSS SECTION

From (2.49) and (2.50), for X20

+ = x ('(E{'EJ)X}
( t = —g,-— :Rn R'\' Py 2 P{ iy
, \Pk )I arrr® ZM’H (&s 'E‘)(EJ'Ei)(EA -Eh){EJ'Eh‘)
(3.4)

and for X< O B

[wen[= & Z,.m.‘[ L AR,
r. J

on (6-Es)Es-6) (Fi-En )6 F2)

exp {0 (Es~E)X ] N exp {i(E-5)X{
(€-Eg ) Es-En)(Far=Eg )Ent - E) (s -Es)(Ee ~ B )(Es -E)(Eu-E1)

,  epil (En-Eac)X -
(fu'f‘)(fn' 'E()(E."EJ)/F‘F‘E‘)

(3.5)
With the substitutions
Es-E¢ = A 3 E¢-En= B, €5-€Eu =¢
Es-En = B+A Es-Eg =(-A
‘- -En' o C'B—
- A (3.6)
equations (3.).:;) and (3.5) are
|$ele,)]™ = — X LR ZPEYAX) ()
0 " n'
' anr* 7 A*BC 2

for X >0




3.7

“VR (f)f)l" ol _E: z“ N R.. E\, [ — exp (CAX)
L A*(c-A)(84A)
4 Up{t'(C-B—A)X} 2 exp(cCX)
exp (- 8X)
e ,CD, X <0
Ba (¢c-A)(8+4) (3.8)

Then the unnormalized cross section is given by
(] a had 3
* f | Yalot)|*dx + & f [ We (2, 0] ax
- o0 (-]

which is

> . ‘ - ]
_5__ ._# Z”J.Hl R" RH’ [~ - [}
Sare 3 | ,; ASBC AT (c-A)(B4A)

1 1 1
+ = + ¥
B2A(C-A)(B+A)  G2A(B+A)(C-A)  BC(C-A)(B+A) (C—B—A.)}

f A(84c™) +28BC (B-c)}‘
A¥B*Cc*(c-B-A)
since the factors (B+A),(C-A) cancel.

> ' -—
- _5—-— .;_:k. Z‘.‘Uh' RA R."

amrr*

With the same normalization as before,

iy R L) e
dn & ’" B*c*(8-c+A) (3.9)
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=
o
=
hg
i}

o/
L

ES-EH = E'fCIJ‘fq*‘;::ﬁh = e..+",;‘
c = £Eg- Ent = E-d&- 6.,'-('_/_7q' = e..'—t'ﬁ,'
2

S .
(B—C+A) Py e-.-éo.' + ¢(_iq'.'- ;"n) 2 Cunt 4t )’nnc (3.10)

if the definitions

- §+ I Cn * E-é,
Can' > €En-E€En’ bgi = [t tn
2 (3.11)
are made.
The real part of % {A(Bz+02) + 2BC(B-C)} B2cZ s

].BA P 28 [(e,:- + 5 ) Frens _[e;,+[;",) e,.r;‘}
hn .
[y - L = > > b9 LY
+ (014 (T {(eT+ I Lenari)en ) (5 q5)
and the imaginary part is
5‘)’)' = "J {(e‘*""rhy) ,(e‘ﬂl-d-ﬂ:) +(€;‘ +’u"‘)/en, 'ru‘-)}

+ (Ol Newriar) [/;.'(e.hﬁ AT+ 0 (el J‘-"')} .« (3.13)

So that

ryn’ .
a4 4 (@82 )" (el + 2 ) (e + 8l

4._0"& _ /'Z R,‘ R—.‘: {{ﬂnn' Cunt + ):,,:jn.‘r) < ‘-{\fm'c“"'—fn"’}:"')}

Let Thnt = an."em‘.' + ?«m"zu' + "(zm' Cune = ﬂk’/:h')
(en"\" ,“t/ ,(e‘:.' # 127)’(eu:' -P/:q:')

-
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and form 1/ [ﬂh, Tont RuR + Z:.;.‘ Tern B Ry

2

¢ Sy { Tt RR 4 Ta RRLT -

From inspection of equations (3.12) and (3.13) and the
definitions (3.11)

xnu" 'Kh’n , 3«»' = Ja'n

Cunt = —Cuwlq 5 Tani= i

o
so that Taar = Totn

g 4

{
Consequently the cross section is

dO" « d Z ‘ﬂﬁ(ﬁ" z\') {zlm' Cunt + Kaq’ )Q..'}
pry w,n'!
AdNg ¢ (e.:'+ ﬂ") ’(e:'+/:,‘)*(¢;~,,,,::,)

Y'h (’ﬁ\. Z:'){Y‘u\'ehu' s fﬁu'nu'?

(ete £2)™ (e ¢ #2%) (€l + #anr)

Z ‘\/‘t’

<\~

(3.14)

.
If P4<D and §<¢<D, the factor (€an' + dou’)

in the denominator of the cross product terms (n¥n’)

is much greater than the other factors. Thus in the

low energy region where the resonances are isolated,

the interference terms in the cross section are neglig-

ible, provided the quantal uncertainty is no{; too large.

~

A . il e Bk
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Then

0_(0'; - 7{2‘1 ﬁﬂ. En g‘nn
Al (el + #2) A

J . ke R. [eX(F-§)+ V(tz44)]
27, (@:4 ﬂ')b

(3.15)
Each term in the sum (3.15) is of the form (2.53).
In this approximation the cross section for the reson-
ance scattering from many levels is just the sum of

cross sections, one for each resonance.
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3.3 HIGH ENSRGY APPROXIMATION

It is reasonable to assume here that the neigh-
bouring levels are approximately equidistant and that
their widths are nearly equal. First suppose that
the residues R, are as correlated as they can be, in

particular R, =/o for all n. Then

d_rk = [JE-Z" » «Run'en;ﬂ 4+ Fant 3“".' |
oAQa & T (eR+N) (e + R Y)(ean's biont)

| f (3.16)
The double sum in (3.16) is only conditionally convergent.
This is a result of the unrealistic assumption that
the residues are constant. Actually the residues must

be such that the series

R
ZE; converges, in order that
+ =\ 1
G +f..)1
¥

the Mittag-Leffler expansion be valid.6

Therefore we take

_ A
Rw //9 v or

k]

(3.17)
and let A- 2 at the end of the calculation. Equation

(3.16) now becomes, with J?kk' and 3:~’ written in

terms of e, and e_r

J
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do—k - /O’E Z v A‘ A;

— -— n,n

ey “ (A*+el) (a4 eur) (durs dli)

X €an'Cu’4 i dpnt 4 Oaldna! = €un’Cu
(e:,-l-d‘:,;) (e.“--(-ﬂ})

28w lutn= Gurd(67-8)  2680€n' lan' + fom S fe2- 1)

(e+037)* (e~ + ke

(3.18)
For small level spacing compared with level width,
the double sum may be replaced by a double integral and

0: taken as constant.
*h = & Kn' =

Z.ew — & [xax

With these substitutions the cross section (3. 18) becomes

?. k

7 fe o 7
ax
41>* ((e-9)*+ )( 87+ 27) (8¢ y")

xﬁ“*ﬂ".‘])“"”"") + 28 (x-y)x ¢ = 41 (x=d") |

(4> ¢°)* (e++°)"

| ¥
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(rey)y+rr i - (x-ylx
(”1_‘ ry (t"-fd'v

The interchange of the variables of integration in

the second and fourth terms in the squere brackets

gives
- @« o
47« - [2F 00f/:(Y A’
A4 _2p* -n -n ((e-pt¢p¥)(0e8) 0y 87)

-8y (x-9) + 24741 (x-9)9 + P(r-4)
(947" (y+7)

(3.19)
By two contour integrations around infinite semi-
circles in the upper halves of the X and y-planes.
@ “°
4
A= jptx fd’ a
ca Tea ((x-9)n ) (348709 + 87) (9 r)

m>a>(r+i2a+ )
Po (a+r)(r+asd)(r+28)

(3. 20)
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B = f:fx/- & bx 9) Y
o S0l ey we s ) 8) )
; . n*a’
(A+r) (8459 7)( 1+ 2p) '
(3.21)
And
C = ]ax[dy - AY

" (O gr ) (480 5w 87) (g0447)"

|
3%
(N

L fdx[ av
= o7 ((- -9) +I’)[¢’+A )(] ve 0‘)6‘7”’*)

> &> (P420+7) [__,* | o
2PY*(b4r)(rsb+7)(r420)

f;x f:'” &% (2-9)x
-a J_n

((x-9) e r¥)(»*+ 6)( g*+0%)(4*+ 1)*

(3.22)

& rener  DHF A'H‘-H'J
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. L 2 f;rj;:, LY (x-9)x
BEOE Ja Jom ((e-yg)r e P) 0+ 2 ) g 487 )(y 4 )

w* A (284 30+ D)
20 (84F) (a4 hy§)E(r+24)

(3.23)

Expanding the factors in the above integrals in terms
of € = i‘- and retaining only the first power of €, we

have

A %(:-6({’*”})

Q
]
\q
[
N
|
3
-

|
\

and

(v * oo
4_" = T 2P /"()‘-J)A+B+U‘z<(l"6424d'{-b) )
ANy 2D*

To first power of € , the cross section is

dO"R TTZE‘
— = |+ € -
i e [ (24 )]

(3.24)
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We now compare this cross section with the one which
is obtained from the stationary theory by making the

same approximations used in deriving (3.24).

0{0"' i
=F = = [Vo=1l]™
A0y i k
- 4 . R E«'
0
YUY tenrit ) few-ctin)
! D .
e v Ty Re [ _Es R
(ew+ c‘ﬂ)(e.‘/_t'n,)
A* '
and with R, = ﬂ————— in the limiting case
A‘- + e“l-'

S CE fufay e Gy E)
Y WSS T e ) )i g )

= ’_ZZ(,—éﬂ)
4D*
(3.25)

In the limit € —» O, the results (3.24) and (3.25) are
identical.

Under the conditions

(a) complete correlation of -phase

l
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(b) 1level spacing small compared with level widths,
it has been shown that the cross section is independ-
ent of the quantal uncertainty. In other words the
scattering is independent of the shape of the incident
wave packet.

More generally, 1f the residues R, are correlated
in some other way, the cross section may be estimated
approximately by placing p = {RaDg with <Ra)g
the average of the residues associated with the ener-
gies €, in the interval

E-§ < €n £ E+S (3.26)

The cross section (3.24) then becomes for J > I,
P, €e—»0,

dO’k . < RiVg <R\>;
doy, D, <
& <P2; (3.27)
with <D>S the mean spacing of levels in the interval

(3.26).w

Similarly the equation for perfect resolution

(3.25) becomes

4_0-—“ ~ Ir; (RN){ <Rq>_.f.:
Ay & 0>p ~ (3.28)
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It should be noted that in deriving (3.27) the
diagonal terms (n=n’) of (3.16) are neglected. This
can be seen by considering the case of completely
random phase for R,, for which the equation (3.27)
gives a vanishing cross section. In this situation
the diagonal terms glve the major contribution to the
cross section. /

id_o—k Z‘ /R\/, 3‘\»;'

v

LY
d.ﬁ.d. 4 (el !:;)/1"

2 g RSy D (0es)'(436)S
T 2m f(ee) e(Bnrs) ]

~ ,(Rn§h>; f(#_ + 2{4 x
<D>; x*+q* Pq {lc‘.fql) )

(3.29)
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3.4 DISCUSSICN

In section 3.1 it was shown that the shape of a
wave packet scattered from overlapping resonances
depends not only on the level widths but also on the
other resonance parameters. It was seen that one
could not associate a definite lifetime with a Peson—

ant . state which overlaps other states. In the region
of overlapping levels the co-operative behaviour of the
levels and their average properties are more important
than their individual parameters.

This is confirmed when the cross sections for
are considered. From equations (3.27) and (3.28),
we see that the cross secti?n for variable quantal
depends on the correlation between levels. As the
spread in energy of the incident wave packet is in-
creased, more levels contribute to the averages which
determine the cross section._ By varying the quantal
uncertainty at a fixed energy, the range of the cor-
relations between the levels can be determined. For
example if the levels are correlated in energy iﬁter—
vals of width ~I" and uncorrelated over 1argef energies,
as the time resolution of the beam is increased, there

is a sharp drop in the cross section when S.becomes
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larger than r.

We mention that if beams of suitable character-
istics were obtainable for nuclear scattering experi-
ments, in accordance with equation (3.27) the long
range correlations be£ween nuclear resonant states
responsible for the gross structure of the cross
sections could be observed directly, uncbscured by
the fluctuation cross section which mesks the cor-
relations over smaller energy intervals of rn
(equation 3.28). This aversging of the cross section
which accompanies good time resolution will be dis-
cussed in more detaill when the odhysical interpretation
of the optical model is considered.

The cross section for f'comparable to D have not
been discussed in any detail and unfortunately 1t is
difficult to say much about this region without eval-
uating (3.1L4) directly.

Nevertheless, the gualitative conclusion made for
the case " >> D apply. The cross section depends on
the correlatioﬁ between levels, since as § is in-
creased more terms make a significant contribution to
(3.1u), and in particular the off diagonal terms cancel

if the phases of the residues R,, are random. Generally
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the cross sectlon falls off as & is increased, but
for correlated levels the rate of decrease “is much
slower than for uncorrelated levels. This is

verified by calculation of (3.14) in particular cases.

-
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CHAPTER L.

CLASSICAL UNCERTAINTY AND PO3SIBLE TIME-DEPENDENT

EXPURIMENTS .

4ol TLi !'BANING OF CLASSICAL UNCHERTAINTY.

So fsr the possibility of uncertainties due to
an incomplete specification of the initisl state of
the scattering system has not been considered. The
initial wave packet of the preceding chapters is a
pure state of the guantum mechanical system. Although
it is not an eigenstate of the energy dperator it 1is
the eigenstate of some'dynamical varianle. The guant-
al uncertainty is a measure of the difference of this
state from the scattering state of the stationary
theory, and when accounted for, leads to a smoothing
of the cross section and allows a description of the
behaviour of the scattered particle in time.

Now suppose we describe‘the incident beam as a
succession of wave packets of the form (2.9 ) but
with different mean wave numpers ko and different
initial vectors re. One such wave packet may be

written

Wi (e0) = (a'/w%jmls,-,s;k)erpuf-u-m) S gn
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The subscript i labels the individual wave packets
and j enumerates the various possibilities.for the
peak wave number Xo. The value of Fi specifies the
starting time of the wave packet at the source. Sup-
pose further that the number of packets of type j is
given by n ,

n = %%N (h.2)
with N the total number of packets.

We wish to know the cross section for a scatter-
ing experiment with an incident beam which can be
described in this way. We must be careful to dis-
tinguish two cases.

Case A. If the ri are such that the wave packets
do not overlap both before and after scattering, the
scattering of each wave packet may be considered as an
individual, distinct, event. The total cross section
is then just the sum of the cross sections for the
scattering of each wave packet.

Case B. The ri are such that the wave packets
overlap. There will be interference effects between
different packets and the simple relation of Case A
between the total cross section and the individual

cross sections is not wvalid.
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The density matrix formelism provides a con-
venient mathematical description of these cases.
For case A instead of taking wave packets with dif-
ferent Ci, we use an incoherent superposition of wave
packets with the same initial vector r,, weighted by

the factor 'éf‘ . The initial density matrix is then

Lre,rie) = 2:! fj Wes (2,0) Woy (che)

(L.3)
with
Wil = o f Aki.ik) € ok
(Lok)
At time ¢+
rr' - . h PY L';"' —0' :' .
plecst) = T 8 Wajlet) Waj (1) (1.5)

The wave packet - \H,s-(:‘,f) resulting from the scatter-
ing of the wave packet \V,"(C,O) of equatior (L.4) is
calculated by the methods of chapter 2. The density of

particles at the detector is

L(ra,ra,t) = ZJ‘ éj “Voj (ra,t) %j(m'f) ' (L4.6)

If the packets are normalized as before, the cross section

is

do _  am§ ve ra

L - '[.:o (Ta,ra,t) dt

(Le7)

P Toihbinir.




L.Ly

After an interchange of the order of summation

and integration, equation (L.7) yields

am§ Vo rd” ¥ L (ra, )]’
Z; 3, n L;W,(-d ) at

S
Q
"

L; §; 49¢ j, §)
dn4
(1.8)

where do’(!}ja‘)/dﬂd is the differential cross
section for the scattering of the wave packet (l.lL),
with the labels kj and § shown explicitly. For par-
ticular values of kJj and § this cross section must be
calculated by the appropriste method of chapter 2 or 3.
Equation (4.8) is the result stated above for case A.

For simplicity suppose that a]:l the incident wave
packets have the same direction of propagation and that
only the peak energy Ej = (*.[zj )‘/').m varies. Also,
assuming that there are many kJ which are closely spaced,
we make the approximation of replacing the summation
over j by an integral so that ﬁ:l is rep]:a‘t;ed by

(o) dEo , then equation (4.8) becomes

q_..o_ e fg(f.) da'(E’:S> dEo
d{14 d0 4 (L.9)

The cross section is just the energy average of the cross

section for the scattering of & wave packet with peek

3~
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energy Eo and quantal uncertainty §.

If § is small enough, according to the discussion
of section 2.2, the cross section for a particular wave
packet is given by the perfect resolution theory. There-
fore for beams of negligible quantal uncertainty the
cross section is the cnergy average of the cross sections
for scattering events with plane wave and outgoing
spherical wave boundsry conditions. In other words
the cross section for the case under consideration is
equal to the one obteined by performing a number of
distinct experiments with ideal resolution a2t different
energies and averaging the results with the weighting
function E(E) By distinct, we mean physically dis-
tinct, that is separate in space or time. It is for
this reason that we will call ¢ , the width of the

welght function f(E), the classical uncertainty.
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L.2 THE DISTINCTION BATWEEN CLASSICAL AND QUANTAL UN-
CERTAINTY.

It is interesting to ask whether, given the most
general density matrix describing the incident particles
(for this spinless case), we are able to maintain the
distinction between classical and guantal uncertainty.
In terms of the plane wave states 7(_15) s the most
general de‘nsirty matrix at time 4=0 is

pLr, o) = [/a(fo,lt-')'ffea')7(!«)4300!!6-'

| (4. 10)

After writing the density matrix (L4.10) in terms of the
wave packet states \VOJ such that

plr,rh0) = _Zj f,f Wej Yo (4. 11)

we ask whether this diagonalization is unique. If so
a definite classical uncertainty ¢ aséociated with }}
and a definite quantal uncertainty § essociated with A
can be assigned to the incident beam. If not the dis-
tinction is meaningless.

In mathematical terms the question 1s stated: can
the hermitian matrix (4.10) be diagonalized by more than
one transformation of the type (u.u) of the basis vectors?
A necessary condition fof the diagonalization to be un-

fgue 1s that the states Wej must be orthogonal like the

states 7(’.!)2;'4
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In fect as they stand the wave packet states

are only approximately orthogonal.
f oy Vo

i — ‘(&-k') re —_ . ’
= (,},,;3 HA(/;) b (k') e‘[‘ ¢ f7(fz)7(!e)a_k ak" dr

jg(fhfjé)z(kﬂgjg)df

(4.12)
However, it must be remembered that the different initial
vectors tj in (u.B) have been suppressed and in fact
~ the wave packet states may not overlap by virtue of hav-
ing initial vectors which are sufficiently different.
Yet is is also obvious that in the matrixz (L4L.11), there
must be only & finite number of such wave packet states
if they are to be made orthogonal by taking them with
Lorentzian packets

different rj . But a finite number of | Wej do not
form a complete set so that clearly it is not always
possible to write the density matrix (4L.10) in the form
(4.11) in a unique way.*

These considerations confirm the distinction be-
tween the cases A and B. For case A we have verified

that the quantal and classical uncertainty have defin-

ite values (the diagonalization is unique), whereas for

# It is always possible to perform the diagonalization
uni quely in terms of the eigenfunctions of p. However,
these states may not have the required wave packet
properties.
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case B, ¢ and § have no such definite meaning.
In case A the wave packets have a definite phys-
ical significance; the guantal uncertainty leads to
alterations in the usual cross sections. In case B
the wave packets may be regarded as mathemstical aids

to tne visualization of the scattering process. For

example we can decompose a plane wave into an infinite
number of overlaoping wave packets arnd then follow the
propagation of ocne of these packets. Nevertheless this
would be without physical significance because the
scattering amplitudes for all the packets must be fe-
combined to obtain the observed cross section.

This point is vital to the discussion below. The
notion of quantal uncertainty has physical meaning only
1f we know from an analysis of the experimental produc-
tion of the beam that the wave packets constituting

the beam are gquite distinct and do not overlap.

A %

e T e v
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L.3 DESIGN OF EXPERIMANTS.

There are several possible descriptions of the
incident beam in a scattering experiment and the methods
of calculating the cross sections associated with these
descriptions are not egquivalent. Furthermore the
results derived from these calculations reveal 4different
aspects of the same scatterer. Some kinds of initial
conditions lead to information about the behaviour in
time whereas others give information about the energy
properties of the system. Some possibilities for the
initial conditions and the corresponding methods of
calculation of the cross section are listed in table 1.
The type of boundary condition for a particular experi-
ment is determined by the detailed, physical conditions
at hand, and the next step in this discussion is to
take up the gquestion of Jjust which description is re-
levant to actual experiments. ¥When béams of poor
energy resolution are used in scattering experiments,
we would like to know how much of the energy spread is
due to classical and how much is due to quantal un-
certainties. How do we describe the state .of the
particles making up the beam?

These are physical questions which must be answer-

ed on the basis of a detailed analysis of the mode of
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preparation of the beam. In the author's opinion
further analysis of the actual details of preparation

of states would be worthwhile. Nevertheless, for

the usual scattering experiments, we take the view

that poor energy resolution is due almost entirely to
classical rather than quantal uncertainty; the incident
particles may be assumed to be in eigenstates of energy,
although often we are unable to say which eigenstate;
the beam consists of an incoherent superposition of

wave packets of long duration. We accept this descrip-
tion for the following reasons. If the beam is con-
sidered to consist of wave packets of short duration,
there is an ambiguity aﬁout their position vectors

as was explained in section L4.2. Since there is no
other information to hand, to avoid bias, all possible
initial position vectors must be assumed to be equally
probable; the wave packets overlap and have no physical
significance. Consider a numerical example. A beam
of 9 MeV neutrons has an energy resolution of 100 KeV
The length of the wave packet needed to produce a qguantal

uncertainty of 100 KeV is

N :
(4% ‘ 7’ E l. ~ 30 -fgpm.'s "
2E (4.13)
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which is very much smaller than the dimensions of
the scattering apparatus. It is difficult to see
how such a small characteristic length could enter
the theory.

The factors which cause less than perfect re-
solution apart from classical uncertainties cén only
be due to the finite size of the experimental appara-
tus and the fact that the beam was switched on some
time in the past. Both these limitations involve
extremely small quantal uncertainties because they
involve macroscopic times and dimensions, e.g. from
the relation (u.lj),.a wave packet for 9MeV neutrons
which is one metre long has 2 quantal uncertainty of
the order of 10™'* MeV !

Yet if there is a characteristic rhythm intro-
duced during the production of the beam, the quantal
uncertainty may be large and should lead to observable
conseguences. For example, the particle source might
emit particles in regular bursts, or we could imagine
some device rapidly opening and shutting the collimat-
ing slits so that the very long wave packet of the
steady state experiment is chopped into many, short

wave packets which do not overlap. For this experi-
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ment the quantal uncertainty is roughly %/ where T
is the period of the chopper.

To produce appreciable quantal uncertainties for
nuclear experiments, the chopping device would have to
be very much faster than any mechanical or electronic
device in existence at present; An exception will be
discussed in the next section. At lower energies, for
atomic systems, time-dependent experiments which would
require the theory of chapters 2 and 3, are feasible.
In particular, an experiment which could easily be mod-
ified to test some of the conclusions of chapter 2, is

described in the next section.
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L.ly POSSIBLE EXPERIMENTAL VERIFICATION.

The necessary condition for a time~-dependent
scattering experiment is that the experimental defini-
tion of time must be accurate in comparison with the
characteristic time t/r. of the scattering amplitude.
That is we reguire s>nr,

Experimental definition of time is at present
possible for times as short as about 107'° sec.
'fypical nuclear values for _t/rv are lO'-"r S€C., SO
experiments with good time resolution cannot be per-
formed with nuc,l‘e;‘i except in special cases. These
cases are metasfable states which have life times as
long as 1077 sec.

In the experiment of Holland et. a1.37’38which
utilizes the Mdssbauer effect, the nucleus Fe57 was
prepared in an exclted state by the spontaneous decay
of Co57. The Fe57 nucleus returns to its ground
state by emitting a 137 KeV ¥ -ray or a 123 KeV Y -ray
followed by a 14 KeV ¥ -ray. The 1l KeV resonant
state has a 1o‘ng life=time of 10°7 sec. The time of
formation of the 14 KeV “level was defined by observ-
ing the time of emission of the 123 keV ¢  -ray (a fast
decay). The spectrum of total elapsed time between

the excitation of the 1l keV 1level and the detection
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of the corresponding ¢ -ray after it had passed through
a foll of resonant absorber was then mecasured. The
time spectrum of the final state and the increased width
of the absorption line were both observed.

Our interest in the experiment derives from these
factors:

(1) time intervals comparable to the lifetime of
the resonance are defined and thus the wave packet method
is relevant, the condition §~ 1 holding rather than the
condition &§ €</ of the usual scattering experiment.

(11) the M&ssbauer effect eliminates classical un-
certainties which predominate over the guantal uncertain-
ty in the ﬁsual scéttgring experiment.

(111) the observgtion of the 123 KéV radiation de-
terminés'the quéntal uncertainty of the system.

We cen regard this experiment as a scattering
experiment in which the packet incident upon the reson-
ant absorber haé a half exponential time spectrum with
§ = K/m+% sec. Defining the starting time of the
excitation of the metastable state puts a gquantal un-
certainty into the beam of [ .  The method of Holland
et al., defines the starting time With a minimum tolerance
equal to the lifetime of the next highest state in the
Y -ray cascade. This is shorter than the experimental
time resolution which is itself much shorter than .#Aﬂ .

3~
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If the energy amplitude of the incident packet is taken as

Aee,rs ) = ‘fm

F-Eo+ Ty, . 1)

it follows from equation ( 2 .36 ) that the cross section is

dr . R !
dL24 Ar (E.-E5)* + st (L.15)

Thus we have the well known result that the line
width in the Mossbauer éffect is twice the width of the
level, assuming all the nucleil in the target foil are
capable of absorbing resonantly.

The width of the incident packet in this experiment
is fixed. One way of varying the time width of the wave
packet would be to vary the resolution with which the start-
ing time is_measured. It ié possible by this method to
decrease §, but not to increase it.

A better experimental way of varying the wave packet-
width has been suggested by the author and I.=. McCarthy%4
A third resonant absopber.is introduced between the source
and target. The absorber is accelerated in a very short
time (1077 sec.) to a speed sufficient to shift the reson-
ance so that the incigent beam is no longer absorbed and
can hit the target. It is then slowed down again quickly

so that the duration of the pulse 1s of the order of 10! sec.

%
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This method would produce approximately the exponential
wave packet that has been used in the calculations of
chapter 2. The broadening of the absorption cross
section could be observed by altering the frequency of
the pulsing.

It is experimentally just possible to produce the
reguisite pulsing by using a very thin foil of Fe57 8s
one plate of a parallel plate condenser in a vacuum which
is charged first with one sign and then with thie opposite
sign by a rf pulse. dowever, the acceleration may be
achieved more easily by using a plezo-electric crystal.
Anothier possibility is to use the stark effect to shift
the resonané;. This requires a tightly bound dielectric
- crystal containing nuclei with a metastable state.

Vave packet experiments in the atomic energy region
may be of interest. An absorber of laser material placed
in a laser beam and moved for a short time as suggested
above would produce wave packets of laser intensity.

All such experiments observe only the scattering
of a wave packet from a single resonance with a trivial
angular distribution. Overlapping resonances even in
atoms, would probably have widths of the order of a few
tenths of an electron volt. Waeve packet experiments

in this region with §~n would require time lengths of
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16_15 sec. which seem impossible at present. The
possibility of doing time dependent electron scattering
experiments from atoms is not experimentally remote.

With laser wave packets, 1t may be possible to
observe the changes in angular distribution due to the
intepference of potential and resonant scattering as
the quantal uncertainty is changed. The potential

scattering could be oﬁtained by diffraction of laser

light around & small crystal of laser material,
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CHAPTER

COMPLEMEITTARITY CF SMERGY AND TIME DESCRIPTIONWO

N

5.1. THi RCOLE CF TIME I Tidd DESCRIPTION OF SCATTHRING.

The arguments already stated make the following,

basic points
(1) Various initial conditions in the gquantum theory
of scattering lead to meaningful descriptions of the
scattering process.
(ii) These conditions are not eguivalent because the
physical answers depend on the choice of initial con-
ditions.
(i11) Thé particular form of the initial conditions re-
levant to a given experiment must be decided from an
analysis of the mode of preparation of the beam.

In the time dependent experiments of the last chap-
ter either the observation of the 123 kev &-ray in the
case of the experiment by Holland et al., or the pulsing
of the beam makes reference to a time origin possible.

Ve emphasize again that in the scattering experiments in
which the quantal uncertainty is small (and if our dis-
cussion of section 4.3 is correct, this condition applies

to the usual scattering experiment) small time intervals

are not defined. The poor energy resolution of this type

S~
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of experiment results from classical uncertainties, that
is an incomplete specification of the state of the. in-
cident particles.

Tt is essential to make a distinction between what
can be observed about a system in a given experiment and
what can be observed in principle by 41 theoretically
possible experiments. In chapter 2 it was shown that
if we wish to consider the behaviour of the system in
time, the incident packets must be of short duration.

In other words a single energy eigenstate does not
provide an adeguate description of the scattering. For
small gquantal uncertainties and wave packets of macros-
copic length, the shape and temporal behaviour of the.
wave packet 1s independent of the properties of the
scatterer, I‘So a consequence of the fact that actual
experiments have only small quantal uncertainties is
that the temporal properties of the scatterer are not
revealed. Rigorously, the sequential description of
the interaction of the beam with the scatterer is invalid
for these experiments; with wave packets of macroscopic
dimensions a sequence of events on the nuclear or atomic
scale is not defined.

In spite of this fact many arguments made about

nuclear reaction mechanisms in particular depend on &
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well defined ordering of events and the use of character-
istic times which are vefy small compared with the time
intervals defined in the experiment. For the purpose

of forming an intultive 'picture', this is & harmless
enough procedure, if the necessary reservation is made
that this type of argument is based on the complementar-
ity of energy and time; the experiment to which the‘argu—
ment in terms of characteristic times applies, 1s hypo-
theticel and complementary to the actual experiment.

Let us review briefly the usual ways of introducing
characteristic times into the scattering process. For
definiteness we consider the scattering from an isolated
resonance level, If the beam of the actual experiment
has nearly ideal energy resolution, there is an energy
'sump' in the cross section. The simplest way of intro-
ducing a time interval is to invoke the uncertainty
princip1e39. The energy widthl" of the resonance is
assumed to result from the finite lifetime of a metastable
state. ‘W#ith the aid of the uncertainty relation, the

lifetime of this state is defined as

r (5.1)

However, in this experiment the energy of the

incident and scattered particles is quite definite, so
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that it is incorrect to conclude from relation (5.1)
that the time T is actually observable. We suggest the
following interpretation: the uncertainty relation (5.1)
implies that if the complementary experiment is performed
so thet very short wave packets are incident on the
scatterep, the particles are delayed on the dverage by T
(c.f. section 2.7). But then the variation of the
cross section with energy is structureless. Thus T
and " cannot be observed in the same experiment but the
relation (5.1) may be tested by measuring T and ' in
complementary experiments.

Instead of using the relation (5.1), F.T. Smitn"®
has made a direct definition of the delay time on coll-
ision time of a scattering event by an extension of the
definition (1.1) of Wigner and Lisenbud. IHe introduces
the lifetime matrix Q

Q = -ikU*dU
- AE (5.2)
U is the collision matrix. For an isolated resonance
the definition (5.2) admits a definite lifetime at a
precise energy which is inconsistent with the principles
of quantum mechanics. To obviate this difficulty, the

observable lifetime is taken as an average value

Q> = rp(s) R(e) AE (5.3)
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where P(E) is to be determined by the experimental
conditions. In our theory the wave packet nature of
the beam introduces this average in a natural manner at
the beginning of the scattering calculstion. As Smith
suggests the collision matrix Uand the lifetime matrix
Q both contain the same information but refer to
different experimental contexts. In our language e

is more useful in situations where the guantal uncer-
tainty 1s large whereas Uis of interest when the quantal
uncertainty is small. Of course there may be inter-
mediate situations ( £~/ ) in which neither U nor & are
directly applicable in which case a formalism like that
of chapters 2 and 3 should be employed.

Goldberger and Watsoﬁul have shown how the definition
of time delay (1.1) can be used to provide a 'coarse-
grained! ordering of scattering events. They show that
'if a complex process involves a sequence of interactions
sufficiently separated in time, the S-matrix factors into
a product of-g-matrices for the separate interactions.'
Thus one can order the‘individual events and the time
delays associated with the various stages of the process
are additive. This result is based on thq&replacement of
the exact unitary operator (}(K y tw.r) which describes the

n-th stage of the interaction, by the S-matrix element
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S=U(w,-® ). This means that the time interval

At, = T = Tan must be such that

R o« I
Arh (5-’4)

where [? is the characteristic energy fluctuation of the
S -matrix element. In our terminology each of the
individual stages must be considered as having small
quantal uncertainty so that the time ordering is macros-
copic. .

In contrast our approach is based on the principle
of superposition of states for energy and time. By
taking a coherent superposition of energy eigenstates,
we are able to define and observe tiﬁe durations of
quantum events. The scattering system is not always
on the energy shell between scatterings.

Both the present formalism and that of Goldberger
and Watson use only the ssymptotic form of the scattering
state. Thus the experiment suggested in the last chap-
ter provides a test of the superposition principle for
energy and time but not the Senrddinger equation, since
the time development of the system is not observed in the
vicinity of the scatterer.lu |

The above application of the idea of complementarity

has been stressed, because mistakes in the interpretation
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of scattering experiments are often made through neglect-
ing some of its implications. In particular it does not
follow tnat the time-dependent picture of the complemen-
tary experiment can be used to justify approximations in
the description of the actual experiments.

As an example of this type of erroneous argument,
consider the following: potential and resonant scatter-
ing occur on different time scales, therefore they are
incoherent and do not interfere, that is if We is the
wave function for the potential scattering and e the
wave functioﬁ for the resonant scattering, the term
depending on.2Rc(LVp(pR ) mey be dropped from the cross

section. . '
OJA/ I(VPTWRI1= /(-vbpl’-f' /ngl'f 2»?(’/(%2[;&)

= /KP$11 + ILFkI> (5.5)

Now it is true that in the experiment with large
quantal uncertainty, the resonant wave packet has a tail
and overlaps less with the potential wave packet as the
guental uncertainty is increased and the incident and
potential wave packets become more localized; It does
not follow that the interference term can be omitted in
the experiment with good energy resolution, as the wave

packets V? and (P% are very long and overlap.
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In fact this fallacious argument is not applied to |
this case of potential and resonant scattering. In %
practice one calculates the interference between the ‘
isolated resonance and the background scattering. Despfte \
this,in a parallel case, the interference of direct and |
compound scattering in the region of overlapping levels
is neglected by many authors on the basis of this same
argument. Lxamples will be given when the optical model
is considered.

A second type of misleading argument results from
the failure.to distinguish between what we have called the
classical and quantal uncertainties. If there is AFf
uncertainty in the energy of the incident beam, we cannot
deduce that times are defined to within .#/ZE : As we
have shown in section 4.2 poor resolution is usually due
to classical uncertainty in which case, nothing more is
known about time than would be known 1f the beam consisted
of a single energy eigenstate. The uncertainty relation
for time and energy specifies the ideal amount of informatior
in an experiment with classical uncertainty energy may be

poorly defined and time not at all.
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5.2 BEXAMPLE: TiE COMPQOUND NUCLEUS

The criticisms above may be applied to the concept
of the compound nucleus in 2 very instructive way. This
example is taken because of its familiarity. The same
sort of arguments appear in the next chapter.

The idea of dividing nuclear reactions into two
distinct stages was introduced by Bohr8’9 in 1936 and
proved a stimulating picture of nuclear reactions, dom-
inating the theory for some years, Briefly stated the
compound nuo;eus assumption8 is

" _.... a collision between a high speed neutron and a
heavy nucleis will in the first place result in the
formation of a compound system of remarkable stebility.
The possible later breaking up of this intermediate
system by the ejection of a material particle or 1its
passing with the emission of radiation to a final
stable state, must in fact be considered as separate
competing processes which have no immediate connection
with the first stage of the process".

The argument justifying this assumption is often

stated in this wayuS:
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", ... the energy of the incident particle is rapidly
" ghared between all the nucleons of the system and it
is not until sufficient energy 1s again concentrated
on one nucleon that the compound nucleus can decay
with the omission of that nucleon. This is likely
to take a considerable time on a nucleer time scale
the characteristic time of a nucleus being the time
it takes for a nucleon to travel across the nucleus
and this is of the order 10 ‘2cms/107cms/sec = 10721
SecC, Thus the compound nucleus will have 'forgotten"
how it was formed by the time it decays."

This description is only valid if the incident part-
icles are represented by extremely short wave packets,
small compared with the dimensions of the nucleus (d>> N )!
so that the above sequential picture refers to the ex-
periment complementary to the actual scattering experiment
(§<¢<P). The basic mistake in the analysis of the
scattering mechanism is the assoclation of a definite
charscteristic time with the nucleus without regard to
the experimental context. In actual experiments the
characteristic time is the time taken for the wave packet
_to pass the nucleus, which is much larger than both 'the

1ifetime' of the compound nucleus and 'the time taken for
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a nucleon to cross the nucleus', so that these terms are
eaningful only in the complementary sense.

For an isolated resonance the temporal argument
gives the same result as thie more rigorous argument in
terms of energies which relies on the condition that the.
level width i3 much less than the level spacing; the cross
section factors into the product a cross section for the
formation of the compound nucleus and a probability for
the decay of this compound nucleus in a particular way
(the single level Breit-Wigner formula>?). However, in
the region of overlapping levels, | 'comparable to D, the
temporal argument leads to wrong conclusions.

It has been pointed out by Er:i.cson’"”'Ir that with long
wave packets associated with good energy resolution, the
essential part of 'the wave packet for compound scattering
is already being emitted while the ipcident wave packet
is interacting with the nucleus. This is also clear from
equation (3.1). If § << the weve packet for the reson-
ant scattering has the same spread in space &s the 1incident
wsve packet, and is not delayed with respect to the incident
packet. For a beam of good energy resolution, in the over-
lapping resonance region, there isllittle justification for
making. the assumption of the independence of formation and

-decay of the compound nucleus.
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Furthermore, even with beams of poor resolution,
the temporal arguments only apply if the uncertainty is
quantal in nature. According to our analysis the un-
certainty is classical, and therefore the temporal argu-
ment is invalid.

In his discussionb'LIr of the compound nucleus, Zricson
appears to have confused the part played by classical and

A

quantal uncertainty.. He assumes that if the beam has
energy spread A E, the incident wave packet has time
Quration + / AE, and because of the localization of
the incident packet the compound and direct contrivbutions
dé not interfere. N

Now the cross section for the experiment with class-
ical uncertainty is the average over energy of the cross
section for ideal'resolution (section L.1). This provides
a way in which the compound nucleus assumption may he
justified for the averageé cross sections. .
For example Bethe's assumption of random sigﬁsh6
allows the average cross section to be factored into two

parts for particular values of the angular momentum of the

compound nucleus.

6 Tn discussion of this point Zricson nas stated?,
'Ordinary beams are classically sufficiently well defined
. that this should not lead to difficulties. The cuantal
widths are typically in the kev region which is quite
large'.
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Let us outline Bethe's arguments in the context of

the HSR expansion. The géneralization of equation (2.31)

which takes account of the possibilities of other collision

processes in addition to elastic scattering is given by

equation (Al) of Appendix A.

1) -R(:r) (3)
(V) . : J . C‘A <
UC'G _Jcoc = J.ktl ¢ QC'C (E) — LZA
’ ' E —&)
o (5.6)
E’E> = EC—ECA+f;':n,\ = Ecl't:'_\“’-"‘r',\ )

The subscript c¢c represents the set of quantum numbers which
characterize the ingoing channel while ¢/ labels the out-

going channel.

The average cross section apart from the background
scattering is then

: Rc'- Re /-é—c' ﬁ
LoD ~ Z_sz-\,,u : a Rea ,: cat JE
¢ (c-£,)(e-E.)

(5.7)
which, following the procedure of Betheh6, is
Ly Rera Res Reta Re (FA*’:L)
7 Shalme) N
| (ECA“ Ecy) f-‘;— (r + Ij‘._)" (5.8)
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with the sums over )M, » to be taken in the energy inter-
val €, the spread of the classical uncertainty.

If we assume that the phases of Rc'> and Rck are
uncorrelated, the non-diagonal terms (A% ) may be
dropped.
chQlt ’Rc>,‘

n : (5.9)

<o..t"> ~ 'é' Z) (o'n.é)

which can be written

‘?:',%A Fiea
AN (5.10)

<°'c'c> ~ -6'_ Z)(c-.\G)

with
Z N, = 1
c CA 2
(5.11)

With the assumption that the partial widths My sre

uncorrelated for different channels {5.10) becomes

<Owe? ™ 71_FC . les
D rn
= C. f_c'
r (5.12)

with D the average erergy spacing between levels, and
the suffix A is dropbed, as the quantities Fev sna 77
and g refer to the averages of Py , M, g, 1In the

energy interval € . O, ~ is interpreted as the

q
R 0 AN C
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probebility for compound nucleus formation through

channel ¢, and Ik'

as the probability for the decay of
this nucleuns tlhrough channel c¢ .

It is clear that characteristics of compound
nucleus formation, such as symmetry of angular dis-
tributions and independence of formation and decay are
only seen in experiments with beams with classical un-
certainty. The misleading argument which depends on
times, suggests that these characteristics be present
at definite energies.

The important point here is that the compound
nucleus gssumption can only be Justified on dynamical
grounds. In a sense the introduction of wave packet
arguments is specious, since emphasls is shifted from
the underlying dynamical assumption of raﬁdom phases.

The wave packet picture complements our understanding
of compound nucleus formation but is no substitute for
the rigorous argument in terms of energy.

In summary, although the time dependent picture may
be helpful in suggesting a model of the scattering inter-
action, it is necessary to make apparent the corresponding
approximations in the experiment with classical uncertain-

-—

ty.
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CHAPTER 6

THE INTERPRETATICN OF THE OPTICAL MCDEL

6.1 DEFINITICH OF THE OPTICAL MODEL AMD THE PICTURE OF

FRIEDMAN AND WEISSKCPH.

In this chapter we use the scattering theory of the
preceding chapters to discuss the physical significance
of the optical model. In an extension of the argument
of Friedman and Weisskopflo, we give an interpretation
of the energy averages of the optical model by consider-
ing time dependent experiments complementary to tﬁg ordin-
ary energy dependent experiments.

Strictly the results already derived apply to the
sCatfg%ing from a potential,-but the generalization to
the many-body case is simple. In an appendix it is
shown that the results of the preceding chapters . hold for
the elasticallj scattered wave packet of the many channel
problem.

3,4,7,25 wnich

In the fundamental theoretical papers
relate the optical model to the general theory of nuclear
reactions, the optical model is defined by requiring that
the complex potential of the model reproduce the average

elastic scattering amplitude of the formal, exact, many

channel theory:

2=
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pt
where the bracket denotes an energy average defined in
this way
<fewryd> = ﬁr(g-f’)ﬁe—') de’
_ , (6.2)

with «k(e-¢’) a sultable weighting function.

Feshbach, Porter and Weisskopr first gave the
relationships between the cross sections predicted by

the model and the cross sections averefged OVEr energy.

L o> = I Zl, (2z+1) <Il-— U‘(_I P
= L’ ZeCiert)f 11— <u>* + <lgl? 2= l<u¢>l;2
- (6.3a)
. = 0_‘::" + ’E‘:z‘(z‘“')(r</%l')- I<U¢>/"3
L
Kowe> = I, Z,C2e+1)( 1~ <V l’>)

-

w2, Geer) | U= I<ver [cue> (™= <1V 1>}

ey T 000 1<) <luel’>3 (6.30)

<0-+o+> = :'—T Ze (2{4.,) (I— Ke <U_&>)

'. )
| = o'-ro:r (6.3¢)
“ <Oee”, (o*;.,'> , <O4.¢> are the elastic, reaction
and total cross sections averaged over energy whereas
opt opt spt
o, g—ﬁf; ) a—ﬂl;_ are the cross sections

predicted by the model.
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FPW call the cross section for elastic scattering
predicted by the optical model, the shape elastic cross

sectionlo“s.eb , and the cross section

T r, Gen [ <1Vl - 1< ve>l*f = o

the compound elastic cross section a; ce ° The relations

(6.3) are expressed more succintly as

COee> = O5ee T T et (6.3a")
opt _ 0_
(0-”;3 = O",e c.eld (6.3.bl)

<O—+°f> - o_opf'
et (6.3c")

Although the names 'compound elastic' and 'shape
elasticf have physical associations, it is important to
note that the above definitions are entirely formal.
Without furfher aésumptions the terminology 1is arbitrary
and the only virtue of the model as defined above 1is
that it yields the average total cross section; the
equations (6.3) are merely the consequences of the
formal identification of the amplitudes in equation (6.1).
To avold confusion we call the cross section defined by
(6.4) the fluctuation cross section and reserve the term
'compound elastic cross section' for the cross section

associated with the decay of the compound nucleus.
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Priedman and Weisskopflo attempted to show that
although both terms on the right hand side of equation
(6.3a ) represent elastic scattering, they are physic-
ally quite distinct and describe different types of
scattering process. Their argument centres on showing
the equivalence of the reaction cross section of the
model and the cross section for compound nucleus forma-
tion. The nuclear collision is depicted as a ogé or
two stage process. An incident particle may be elas-
tically scattered immediately on reaching the target
nucleus, or it may unite with the nucleus forming a long
lived compound state. This compound state may then
decay in such a way that a particle of the same kind and
energy as the incident particle is emitted. This pro-
~ cess is called compound elastic scattering. In this
plcture, which is an extension of Bohr's original com-
pound nucleus idea, the cross sections predicted by the
model have a clear physical significance. The cross
section for compound elastic scattering is transferred
from the average elastic cross section to the reaction
cross section. The reaction cross section gives the
number of particles absorbed from the incident beam, even
‘though some of these may be re-emitted without change of

energy. Thus if the collision process can be considered
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as taking place in two stages which are gquite distinct
in-time, a clear interpretation of the model cross
sections 1is possible.

An immediate objection which can be brought against
this picture is that it depends on the identification of
the compound elastic scattering with the time delayed
part of the elastic scattering. We heve already dis-
cussed in the last chapter the difficulties involved in
the description of actual scattering experiments in
terms of a sequence of micro-events, but before present-
ing this objection in detail let us outline the argu-
ments that Friedman and Weisskopf make to Justify theilr
interpretation.

Using a resonance expansion for the collision matrix,
they show thaf the identification of the compound elastic
cross section with the fluctuation cross section is
correct in the low energy region ( << D). They also
remark that the equivalence holds in the high energey
region (P>> D) for the following reasons: compound
elastic scattering is negligdible in this energy range
because there are so many competing reaction modes and
the fluctuetion cross section is very small as the high

energy amplitudes are smooth functions of energy.
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Furthermore, they split the collision matrix into

two parts

Ve > + [y — <4>} (6.5)

and take ZIUA‘<V£>/‘) = </U¢/1)— /(U¢>/"_ (6.6)

Then by considering the scattering of a suitable
wave packet they show that the vart of the wave packet
corresponding to the average amplitude {U, > is propa-
gated immediately, whereas the wave packet corresponding
to the fluctuation amplitude U- {U,> has an exponen-
tially decaying tail. In this way the fluctuation crosé
section is identified with the time delayed part of the
scattering, which is just that contribution which one
would expect from the decay of the compound nucleus.

The following limitations and difficulties of their

argument will be taken up in this chapter.

A, The medium energy case (which is of most interest)

has not been discussed. We have already noted in chapter
L the difficulty of defining the compound nucleus in the
region of overlapping resonant states (FﬂfD). The nucleus
exclted to these energies cannot be conceived as being in

a definite resonant state as for lower energies of excita-

tion. The state of the system is a superposition of
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many resonant states and its lifetime cannot be assoc-
jated with the width of any particular resonance. The
lifetime depends on not Just the average width of levels

but also the other resonance parameters.

B. The temporal interpretation is based on the corres-

pondence
fluctuation scattering shape elastic
! | | )
delayed wave packet - immediately scattered packe

Friedman and Weisskopf show that the wave packet
associated with the fluctuation amplitude contains a
delayed component, but they do not demonstrate that
the part of the fluctuation packel which is undelayed 1is
small. Thus there is an omission in their argument, for
if this part is considerable there 1s a large overlap
between the fluctuation and the shape elastic packets
and the distinction between the two sorts of scattering

is rather arbitrary.

c. The difference between quantal and classical uncertain-
ty'is obscured. As indicated in the last chapter actual
experiments involve large classical but small quantal un-

certainties., On the other hand the wave packet inter-
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pretation requires 1apge quantal and smsll classical
uncertainties. Although Friedman and Weisskopf refer
to a 'pulsed neutron beam', it is not clear which of
their arguments apply to the actual experiments and
which apply to the complementary, 'ged anken' experi-
ments. This is evidenced by the frequent misapplica-
tion of the temporal arguments to the question of
coherence of shape elastic and fluctuation scattering.
The incomnpleteness of the wave packet interpreta-
tion as presented by Friedman and Welsskopf can be seen,
if it is recognized that theif‘argument depends only on
kinematical factors (the assumption of an expansion of
the collision matrix in terms of resonances and an in-

going wave packet) but not on the dynamics of the nuclear

. system (the particular numbers for the widths and resi-

dues of the resonance levels). It does not jJjustify
completely the sharp distinction between the model
amplitude and the fluctuation amélitude which one
expects 1if the experimental predictioﬁs of the optical

model are to be relatively independent of the way in

which the average in (6.1) is taken.
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6.2 THE INTERPRETATION OF THE ENLRGY AVLRAGHES.

In order to give a physicel interpretation of the
optical model, the mathematical averages of equations
(6.1) and (6.3) must be related to the physical pro-
cesses taking place during the collision.

It is reasonable to expect that the energy averages
are connected with the experimental difficultieé of
obtaining beams of precise energy. In experiments to
which the optical model theory can be applied dirgctly
there is appreciable undzrtainty in the definition of
the energy of the incident particles.- According to
the discussion of chapter L, this uncertainty derives
from two different sources, the incident wave packets
are localized to some extent and secondly their peak
energies may differ. In ordinary experiments, includ-
ing those described by the optical model,aﬂy%he latter
is important; the quantal uncertainty resulting from
the finite spread of the incident packets is negligible.
To obtain the cross section for this situation, it was
shown in chabter l,, that the cross section which is
valid for monoenergetic beams and which is calculated
with the perfect resolution theory, must be averaged
over an energy interval equal to the classical un-

certeainty.
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Thus the significance of the avereging procedure
on the left of equations (6.3) is quite clear, this
averagring of the cross sections is in accordance with
the boundary conditions of the experiment.

The meaning of the aversged matrix element in
equations (6.1) and (6.5) 1s more difficult to see.

The real part of the collision matrix element, aver-
aged with respect to energy, is connected with the
averaged cross section, through equation (6.30). The
averaging operation is the same on both sides of the
equation. This establishes how the matrix element is
to be averaged in equation (6.1). The soread of the
average is given by the classical uncertalnty. HZqua-
tion (6.30) then ensures that the total cross section
will be given by the model but does not yield a direct
physical interpretation for the averaged matrix element.
Similarly the identity (6.5) is merely a formal splitting
of the amplitude which is always possible, and hes no
special physicel significance.

The expression for the outgoing wave packet, equa-
tion (A.13) of the appendix, may be regarded as the
energy average of a quantity which is essentially the

collision matrix element. This suggests that the aver-
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aged matrix element may have an interpretation in terms
of the temporal properties of the scatterer. But the
conditions of the actual experiment (§<M<< @ ) apre such
that the definition of time is not precise enouzh to make
any time delay distinguishable.

Nevertheless we may consider the complementary ex-

periment with §>>/77. In this thought experiment we
replace the long wave packets, which have different peak
energies, of the real experiment with short localized
wave packets which have the same peak energy.

If tﬂe Lorentz weighting factor is used in the
average (6.2), then by contour integration the average
of the diagonal entry of the collision matrix (A.13)
over an interval 2¢ equal to the classical uncertainity

is

™*
Wedg = 1+ (2315),'[@ €) - (I, — & ]
* £- €t ((Fsg)
(6.7)
with ¢ >> Gy
Qt(E) and E'{are not averaged as they are supposed to be
smoothly varying over the interval ¢ e Thé fluctuation

element is then
]

. 4 b !
- _,/2mEY k ———— - _ .
Ut" <%>¢ l‘( -‘K—‘-) 2; £ [E"QA":'"&A . E-Ees+ ‘[_g(o\-l-#)
(6.8)
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The quantity <Ue>4 varies slowly in energy intervals
less than §, so that if we consider only incident wave
packets for which $#>$§>>/{, the shape elastic scatter-
ing may be evaluated by the method of section 2.L.
For X>0©

Yoot = K2, (2601) Peleoc B)[<Uedg — I} exp(iEX) exp(-6X)

(6.9)
and for X £0

Yeet = K Lo (3¢41) Pprsi) [<Up>p- (] exp (iEX) exp (4x)
(6.10)

This wave packet is centered on X=0

ro+ P

i.eo t = .
Ve

and its spread is 28 ; the wave packet for the shape
elastic scattering is propagated immediately and has the
same spread as the incident packet.

Now consider the wave packet for the fluctuation
scattering. Since U fluctuates over the interval [T
and &>>7 | the result of chapter 3 must be used (c.f.

equation 3.1). For X <0
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Re>
E-éuf"-(f‘:f*-{)

(4x) —25¢ exp (7ax) exp [iC€E)X} }

£- € 41.(‘-_;;“""()

Yoo = K expli€X) I, (24+1) P, (016) [5

X [exp

Z, R _ [expls x)- 24 exp[(249)x] c"Pﬁ(@wi)ﬂJ
2 5 ,,—-64,+£(';.¢A4¢-a) F-€ps ,;(;:;_.)+¢+J)

(6.11)
and for X > 0

nga. =k eyP[t'EX) Z-L (1£+I) f_e (-wse) exP(—‘X)

Ry | == - :
X \g . : . - .
>0 L e-tans (T 48) E-bst (TE 4§ +s)
2 A iy |
’ (6.12)
The argument of Friedman and Weisskopf is confirmed by

an examination of the time dependence of V{%

luc
Since

exp (NX) >> exp (£X) > uf [(¢+’_:€>)XJ for X<<o

& comparison of (6.10) and (6.11) shows that the fluctua-
tion packet includes the delayed part of the scattering.
In chapter 3 we noted that for correlated levels the

undelayed part of the resonant scattering is large.
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Similarly, although the fluctuation scattering includes
the time delayed part of the scattering, it is not clear
that it does not also have a large, undelayéd component
for the case of correlated levels.

To sharpen the distinction between the fluctuation
and shape elastic scattering, the magnitude of the
fluctuation packet for small X will now be found, thereby
giving an estimate of the overlap with the shape elastic
packet.

The resonant wave packet contains

3, ko [NP (6X) = 25 _€XP (Lerx ) exp [‘-(s,;s)x}]
5"‘-‘1.\4"(’."-‘-{) E- €, + i(Te> +J)
2 . >

> R exp (§X) [‘ _ yuplemelix(e-gurilsis)] - 1}
> B
r'e‘(;#l‘(’_:-(o\‘_‘) E_El—\ +l.(;.¢—\_")

(6.13)

which for small negative X is

L, KR oxp (4% [/- 26X =8 (-6)x? u'”’/ﬁ'%}]
E- € ¢ ey
22+ (; '*‘) (6.14)

With the aid of this result,(kgluc for small negative X

is given by
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K exp (4X) L (32+41) Pelos)

R 4
iV R e bR
3 .
E=Cer '(';-"hg) E-€xt ¢'[f_f*+£+ ¢>

X f 1-28X —:(’;-u_s)x’+c:x‘{e-64_\).-.}

Relnterpreting the terms in square brackets as averages,

we have
Wfluc = k expl(€x) 2, {wo58) (21+1)[<U_¢>‘ - <Lj_>¢,‘]

x [ 1-28x . - } (6.15)

and from (6.12), for X > ©

W flue = KexP[-&)() 2; Py lwsB8)(2+1) [(U¢>‘ - (U4>‘,,¢]
| (6.16)
Thus‘+éluc vanishes for positive time and small
negative times if. < Updp — <Ueg>s4¢ = ©
Consequently the wave packets for fluctuation and shape

elastic scattering have minimum overlap if the condition

UeSe = <Ydgue= <U=<U>¢23 0 (5.17)
holds. |

This condition can be regarded as supplementing

the purely formal definition of the optical model in
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(6.1). It is necessary to stipulate such a condition
to make the sepasration of the amplitudes in equation
(6.5) meaningful. The condition.(5.17) has been de-
rived on the Dbasis of an argument which depends on time
delay but it has another simple meaning. It requires
that the collislon matrix when averaged over an energy
interval ¢ should very slowly over energy intervals
greater than ¢. This means that the aveféged colli-
sion matrix element musf not depend strongly on the way
in which the average is taken; if this condition did not
hold, the optical potential would depend markedly on the
energy uncertainty of the incident particles which make
up the beam. Thus (6.17) supplies a criterion which
must be satisfied 1If the optical potential-is to be use-
ful in the description.of scattering experiments.
Friedman and Weisskopf assume implicitly an equiva-
lent condition in the relation (6.6). ,In going from
U= <U> + Up— >
to K IWel') = [ <Yl |t + < Up-<tpe>[?)
they omit the interference term

: # :
28e << U2 (Up—<p>) > 2 18

This ensures the equivalence of the fluctuation cross

section in equation (6.6).
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The approach of this section suggests that if
{Ug>4 when considered as a function of ¢, is weakly
dependent onfa‘oo_ut ¢ fa compound elastic scattering be
defined in the following way: 1in a thought experiment the
incident wave packets of the actual experiment are re-
placed by wave packets of guantal uncertainty ‘¢o . The
compound elastic scattering is then that part of the out-
going wave nacket which arrives at the detector after

time

(6.19)

With this definition it has been shown that compound
scattering is equivalent to fluctuation scattering. Also,
the averaged metrix element <0&> has a direct physical
meaning in the cogtext of this hypothetical experiment:
if the elastic scattering is only observed for times
rztre . &

=, ; the cross section is glven by

less than

.7’;7-; zZ, (2¢+1) Q(w:a) | 1— (U‘>¢J‘.
Thus, the shape elastic cross section is observed directly.
It must be emphasized that this interpretation is only
legitimate if condition (6.6) holds.

In general the wave packet for the fluctuation

scattering has an appreciable component for 1<T.
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.Usually no distinction is made between the fluc-
tuation and the compound elastic scattering, the two terms
are regarded as synonymous. This has the difficulty that
the compound elastic scattering may have a significant
undelayed component in spite of the fact that one would
like to associate this type of scattering with the decay
of a metastable state of long lifetime.

Thus there are at least two different ways of de-
fining the optical model:

(1) the optical model is the model which predicts
the average scattering amplitude, snd the compound elastic
scattering arises from the fluctuation amplitude,.

(ii) the optical model is that model which, in a
time dependent experiment, gives the cross section for
propagetion without time dela& and the compound elastic
cross section is thé remainder.

It is not obvious that these two definitions are
equivalent. In fact it has been shown that they are |
only equivalent if the scattering amplitude satisfies
an additional condition. It is just this condition
which allows the simple physical interprctation of (ii)

to be attributed to the formal definition (1).
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6.3 INCOHERENCE OF SHAPE ELASTIC AND COMPOUND ELASTIC

SCATTERING.

It is often argued in the following way that shape
elastic and compound elastic® scattering are incoherentu7.

'FPeshbach, Porter and Weisskopf have pointed out that
the resonance scattering is incoherent with body elastic
scattering if the energy spread of the inpideﬁt-beam is
sufficiently broad. It can be seen from the uncertainty
principle that the interaction time is well defined for
the scattering experiment made with a neutron beam which
has a large energy spread. Therefore scattering which
results from the formation and decay of narrow, long-
lived compound states will, however, interfere with
neither beam nor body elastic scattering.'
Or more baldly,LL8

'Compound elastic scattering will be,iﬁcoherent with
direct elastic scattering because it occurs so much later'.

The error of this type of argument resides in the
misuse of the uncertainty principle. If there is A E

uncertainty in the energy of the incident beam, the un-

certainty principle does not necessarily imply that time

+ DYote that here compound elastic scattering is used in
~its customery sense and not in the more precise sense of
the definition (6.18) advocated here.
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intervals are defined to within & /AE. The uncertainty
relation for energy and time provides an upper 1limit to
the accuracy of the measurement of time intervals, which
is achieved if the energy uncertainty of the beam is
wholly quantal in origin. On the corntrary, according

to the considerations of chapters L4 and 5, the uncertainty
of the experimental beam is essentially classical and
there is no resolution of time in the actual scattering
experiment. This is consistent with the choice of the
stationary theory to evaluate the scattering amplitude
and the use of an energy average over the cross section
to represent the effect of the spread in energy of the
incident beam. For small guantal uncertainty, that is
for incident packets of long duration, the wave packets

for shape elastic and compound elastic scattering are of

the same extent and there is no possibility of distinguishing

the two sorts of scettering by time measurements.
Nevertheless; it might -be thought that the argu-

ment cited above could be made valid by considering

the complementary experiment with wave packets of short

duration. Yet even in the experiment with a pulsed

beam, we have shown that there is appreciable overlap

between the two packets (equations (5.10) and (6.11)) ana
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that to eliminate this interference the condition (6.17)
has to be assumed. Now this condition is equivalent

to omitting the interference term (6.18) so that the
argument depending on time is circular. The 1ncohérence
of compound and shepe elastic scattering is an assumption
which must be justified in each particular experiment as ~
1t implies additional knowledge about the structure of

the scattering amplitude which is not contained in the
definition (6.1).

It is'clear that the condition (5.17) implies that
there are no fluctuations of width intermediate between
the narrow fluctuations in the scattering amplitude-
assocliated with the compound nucleus and the much wider
fluctuations associated with the\optical model In the
context of good time resolution, this is the same as
assuming that pgocesses which have delay times inter-
mediate between the lifetime of the compound nucleus and
the lifetime of the glant resonances of the optical model,
are unimportant. The statement that the scattering of -

a wave packet, comprising_a broad spectrum of energles
takes place ih two distinct stages 1is not a conseguence
of the formal definition of the optical model but is, of
course, the condition which makes the definition meaning-

ful.



5.22

Tt

The questlon of just whet kinds of fluctnations
are present In the scattering amplitude cen Oﬂly jo¥)
answered on the nasis of a knowledge of the ststistiesl
properties of the nositions of tne poles Hpa and taeir
residues nigy In section 6.5, we will try to make

lie consideration of the fluctuations more guantitative
oy introducing correlstion Tunctions, but at present we
conslder a simple example wihich illustrates tne idesas
of tnis and the oreceding secction.

The Collowing plausible assumptions 2bout the
structure cf tiie collision matrix ave sometimes madekz’B:
(1) For wedium enevrzies tue total widtas [y may

5 qwjg

be re

('1\

25 constant 7,  Puis assumption iz Justified
or the ground tiaet there are many competing orocesses (cof.
equation A.h).

(ii) The mean level width M is much zceater tusn
tae level spacing D.
kN

(iii) The residues iy  heve a simple lons range

correlation; they may ve split into two parts
kY 2 2
Res = <Raady + SRay (6.20)

2 . . .
where the avoprage value <3QA>¢ i3 s8lowly verying asnd the

fluctusting part SRLA random over an interval larser

then @ .
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Then the collision function has the form

-l Q, (€) + "@34 ~iZ R
2k 4 €8x (6.21)
The first two terms comprise the shape elasticvscatter—'
ing amplitude and the third is fluctuation amplitude. Qﬁ
has fluctuations of width.ﬂ»¢ from the firsti?ernxand
fluctuations of width~ resulting from the denominator
of the fluctuation term. I 1is often called the
coherence energy. It is easily seen that the conditions
(6.17) and (6.18) are satisfied and the fluctuation and
shape elastic scattering are incoherent Since the |
phases SR;‘\ ‘are assumed to be random, the fluctuation
cross section can be evaluated as in section 5.2.
If the collision matrix has a more complicated
structure than this simple model indicates, the separa-
tion of the scattering amplitude into two parts may not
be clean cut. ° For example other sorts of correlations
may be present in the ﬁk: « In particular the 'door- '
way states' of FeshbachHt?s50 have an energy width inter-
mediate between the giant resonance of the optical model
and the Ericson fluctuations associeted with the coherence
energy . |
Obviously more sophisticated separations of the

-~
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scattering amplitudes sre possible, the various types
of fluctuations being described by a hierarchy of
potentials. In the time depéndent picture these
fluctuations correspond to various groups of particles
having time delays intermediste between thet of the
giant resonance and the compound nucleus. ‘Whether these
processes are important for a detailed analysis of ex-

perimental information is an opeén gquestion.

6.4 HIGH ENERGY APPROXIMATICHN.

-

The second term in equation (6.13) for the trailing

edge of the resonant wave packet 1is

2 - . .
Z) Rys e,xP(.{)() [ tvp{—LX(E‘E;g,\+L(’%¢A,;')}_|

- (e ' € -€,y + o f Po> _

E é&; +"(3 4‘) L > ‘( < ‘) (6.23)
At high energies the level spacing is much smaller than
the mean level width and the level widths may be regarded

es constant. Then the sum of (6.23) is written as an

integral

ji{_e) [ef.xp {-ix(€-¢ +c'(-"-_'-8)z - 1] die

e-e+i (0 ce +0(F -
(e-c+i(grs)][ £-e +elf-4)) (6.21)-

with S(B) = R(&) | R(8) 1s distribution function
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which approximates the behaviour of the residues and
D(€) is the averagellevel spacing. Now with the
assumptions that S(€) has no singularities in the
lower half of the complex €-plane and at the worst _
tends to a constant at infinity, by integration around
& semi-circular contour in the lower half plane the
integral is given by the residue at € = €+ ¢ ({-€) which
is zero; the integral vanishes and the resonant wave

packet for X< 0 1is

KK exp(dx) Z,(2¢+1) Ptzms)f; RZ.\
€-€uvi(nayg)(6-25)
Thus the resonant packet is scattered pro;ptly. The
fluctuation packet is
Wirae = kexp Lcixl) £ Btab)izess) [<ve> — <Ur>arg]
e T (6.26)
If the average scattering amplitude is insensitive to
the range of the average, the wave packet for fluctuation
scattering vanishes.

At high energies the inferpretation of the optical
model 1s particularly simple; the cross section given
by the model is i1dentical with that obtained in an
experiment‘w;th large quantal uncertainty. The cross
section for this case has already been evaluated in

chapter 3. For the S-wave only
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dop _ n* < R;;):‘CR;§>

dna ¢ ) * (6.27)
whereas for perfect resolution

doe . T LRexDr < Rox >p

404 ¥ 2° (6.28)

With the choice £2 @ , equation (6.27) gives the shape
elastic cross section.

Hence for closely spaced levels there is, in
principle, & method of observing the shape elastic
cross section directly; the scattering experiment is
performed with & pulsed beam, the time duration of the
pulse being egqual to'h/ﬁ where ¢ is a fraction of
the width of the optical model resonance. Also by
varying the frequency of the pulsing the range of the
correlation between different ;evels could be

determined.,
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6.5 CORRELATION FUNCTIONS

We define a correlation function for the

scattered packet:

cee) « e [ Wiltme,) Wil tea, el dr
. -0

(6.29)
where ‘V;.' (r4,t) 1is the emergent wave packet
corresponding to an incident wave packet which is
very well defined in time

How would such a correlation function arise
physically? Consider a scattering mexperiment in
which two identical, sharply peaked wave packets
separated in space by a distance Vo T aeare incident
on the scatterer. In principle this could be
achieved by interrupting an incident monoenergetic
beam with a shutter, the shutter opening for a time

?— << 'C) being closed for a period T and reopening
for HF/¢ . Then at the detector (which should be
close to the scattering centre to prevent loss of
{nformation by the natural spreading of the packets)

the wave function is

el / e )
\V,_(, (*:4) ++T) 4+ E.I(rot. 1’) ‘ (6.30)
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The chance of detecting a particle at time T 1is

ed X ] kY el e .
Iw!o (_"o()f‘-l't), + lq);. (l_",(‘f)l 42?3 (‘Vb. (!‘d’f) L*J-ke:(!‘,(Jf,,t)
and the differential cross section is

x [_: /(V,:.'(g‘d,f‘)/zdf'

do- Vord
[V (rkeyo) P at

—

A4

el

+ Vo Vg Re [. WS- (re ,t) VJ;' (gw)‘r-ﬂ) Aar

f: | We! (rke o) [ at

(6.31)
The first term is the cross section which has been
derived before. The second, which involves the
correlation function (6.29), did not appear in chapter
4, as it was supposed there that the incident packets
were so far apart that they did not interact after
scattering.

From equation (A.13)

el tza,1) - ik [ Al f8) St ) expinn) T

with f(£,n4) denoting the amplitude for elastic
scattering.

Then Y el ,
"A‘f Ve (ra,t) V. {f'4/++T) oAt
- - -
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2 L KK &g Ldt Ale)fce) f;ﬂf'd (E')f—(e") exp (f%:c) f:xp(c(:-e‘)x)dx
e to ) o) e
° . *

Thus o
C(zt) = tfolﬂte){fe)l‘wS(?)dF (6.33)

For good time resolution the function A (s) 1is
very slowly varying compared with‘f(E) and the relation
(6.33) states that the correlation function for the
scattered packet is approximately the Fourier cosine
transform of the scattering amplitude. This result
18 analogous to the Wiener-Khintchine theorem in the
theory of stochastic processes*. The incident wave
packet (signal) hes a 'power spectrum' [A(€)/* and
the emergent wave packet (response) has a 'power
spectrum’ | A(E){(E)11 The scattering amplitude
f(E) 18 the 'complex response function' for the
linear scattering system. In order to sample & large
number of the fluctuations of f(E) the 'banawith' §
of the incident signal must be large.

+ I’ort'.er'"9 and Nami.ki26 have used the analogy with

the theory of stochastic processes to derive a Nyquist-
like theorem for nuclear scattering.

~~—
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Wilkinson, Eisberg and Yennie29 have suggested
that time delays for the reglon of overlapping levels
may be measured by observing the low energy bremss-
trahlung which is produced when charged particles
are scattered. Yennie and Feshbach58 have given a
quantal derivation of the cross section for bremss-
trahlung production. The expression for the cross -
section contains a term which is proportional to

Tle) - &fp(t,te;;‘)f_(:) fle-€)dE el

f is the classical uncertainty of the beam which has
peak energy Eg,j:(E) is the elastic scattering ampli-
tude for the incident particle of energy E and € is
the energy of the bremsstrahlung.

In their discussion of the correlation function
(6.3&) Feshbach and Yennie suppose that so many fluc-
tuations of the scattering amplitude are containedl
in ¢ that (6.34) may be calculated as a -statistical
average of e ;?;)/}e—e) over an appropriate
probability distribution from which these fluctuations

could have beén selected, so that

Ice) = Re <ﬁ;~) fte-¢€)7
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They introduce an energy interval " over which there
are substantial correlations between the resonance
parameters. Then for € >/

Ie) = Re <fey> {fee-€2
The shape elastic and the fluctuation cross section
may then be obtained by extrapolation as in figure To.
Of course the measurement of the coherence

energy " does not yield the time delay directly and
1t is interesting to ask whether the correlation func-
tion I(€) has an interpretation in terms of the com-

plementary time dependent experiment. Consider

rd [1WE ra, 0] exp (L6 (ron) dr

with to = rotrd \
Vo ‘

. 4
This expression yilelds __

Y KK ratt ﬂfA ce) ace’) {(&) f(e!) exp ((e-E9x)erp (cex)AX
=8 [ace-e) AlE) {ce-e) feer dE
That is (6.35)
-~ N el 2 . © =
g f IWy, (ca,t) | cos[€ 1] dr « Reh f 8(e-¢) ble)fee) ffe-¢) AE

For very good time resolution, we have §>> E so that
A(e) & A(E-¢) ., For the purpose of evaluating the
correlation function we may neglect the leadlng edge

of the wave packet. Hence equation (6.35) is approx-
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imately l

"ffl‘/’:.'(rd,f)/twi (ii"))dr = Re b [ple50,8) fte)fee-e) dlE
4 = A . - (6.36)

This equation allows us to translate statements

about the fluctuations in the scattering amplitude into
the language of time delays.

For the particular model (6.21), neglecting the
detailed behaviour about X = O, we have for the ¢-7A

partial wave

We ~ Ropt explile-eqt)X] exp(([ortX) + 2,6 Ry explile cu)exp (1x)

where we have supposed that the energy dependence of
the shape elastic amplitude in the neighbourhood of Eo
may be represented by the glant resonance

> a
_ Rt~ pe) + TLRED
E-Copt 44l D
Then for X<o

SR Y - r
el 2 tet X - T + Z; ISR l eXP( :E-';“)
W |~ [Reptle b Topt - (6.37)

e, -k
Lon = -Cu'\ = 5_
with Fopt ) T » the cross term

vanishing because of the randomness of SEQ:- The time
spectrum is shown in figure 7a. The corresponding

correlation function for the complehentary experiment

follows from equation (6.36),

Teey = [Roptl”_ Tt 5 ysky/" 1

e € Frr e (8
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and is shown in figure 7b.

The broken line corresponds to processes with

delay times intermediate between TCept and Ceen

which are not included by this model.

[

I(e)

tepf relh
los T

‘3C_i_g- 7a. Time Sfe,c,'f'r-um

n . ;10’1‘
) 'og'é

__fL3.7b- Arnplitude Correlation Function
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7.1
CHAPTER 7

THE RESOLUTION OF DIRECT AND COMPOUND

INELASTIC SCATTERING.

7.1 INTRODUCTION.

We have shown that shape and compound elastic
scattering are two extreme types of scattering process.
In the time_dependent picture shape elastic scattering
occurs as soon as the projectile and the target nucleus
begin to interact whereas compound scattering has a
comparatively large delay time. In the complementary
energy dependent picture, this division of scattering
events into two distinct types according to their time
delay corresponds to a separation of the amplitude
into & part which has a long range energy fluctuation
and a part which is supposed to have only short range
correlations. Similar considerations apply to_pro-
cesses other than elastic scattering. For example
the amplitude for inelastic scattering may be separated
into a smoothly varying amplitude for 'direct' processes
and an amplitude for compound processes which varies
rapidly with energy.

In some experimental work it is possible to assume

that either the direct or compound part of the ampli-
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tude is dominant. In these cases it 1s relatively
easy to explain the characteristic features of the
experimental cross sections in terms of one or other
of the simplified reaction models. However, at
medium energles, it 1is expected that both compound
and direct processes are important, so that some sort
of superposition of the extreme models is necessary.
Furthermore processes with intermediate lifetimes may
also play a significant part, so that a unified model
should perhaps be capsble of producing other energy
fluctuations in addition to those required for direct
and compound processes.

In order to answer these open questions, it is
of gredt importance to be able to separate direct and
compound effects experimentally. There has been
little systematic work on this problem, because un-
anbiguous methods of analysing the experimental data
have not been availsble*.. The time dependent .ex-

periments already discussed, if practiceble, would

+ For example: the angulasr distribution for a com~-
pound process is nearly isotroplc or at least symm-
etrical about 90° in the centre of mass system whereas
for direct reactions 1t was thought that the angular
distributions were peaked forward as the Butler theory
indicates, However, it has been shown that the dis-
torted wave Born approximation can produce large
backward peaks so that a superficial symmetry about 9
does not necessarily indicate compound nucleus form-
ation.
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provide a direct way of distinguishing different re-
action modes. Unfortunately for nuclear energies,
the requisite pulsing and time measurement does not
seem possible at present. Other possible techniques
include a study of the correlation functions for cross
sections, and the bremsstrahlung experiment referred
to in the last chapter.

In this chapter we suggest a methodBQ based on

31 of separating direct and compound

the parity rule
effects in inelastic scattering.

In the next section we discuss the general theory
and in section 7.3, we describe briefly numerical cal-

culations for a particular example.
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7.2 THE PARITY RULE AND GENERAL METHOD

The amplitude for inelastic scattering may be
written

Tei - <Tge> + Tge ~ <Tge2 ,
(7.1)
where <Tff> is the amplitude averaged with respect
to energy (c.f. equation (6.1) for elastic scattering).
In the distorted wave Born approximation (DWBA) the
averaged amplitude <Tj.) 1s equal to

T{){wa - fol’r- X§  (kg,e) X (keyr) Wy

| . (7.2)
o) ¥

where X; (ki,r) ana X (ks, r)  are the wave functions
of the incident and scattered particles with wave vec-
tors _Iga and [q: respective1y25. The state 7(.;@) contains
a plane wave in the incident channel distorted by the
optical potential for the giwen ground state of the
target n'uclieus. Xf‘“ i3 distorted by the optical
potential corresponding to the final excited state of
the struck nucleus and is essentially the time reverse
of XE) . Y(r) contains all the properties of

the initial and final nuclear states and the interaction;

Yoy = (@ VDD (g
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W, am Y% being the initial and final nuclear

states and U (v, _§) the residual interaction between

the projectile and the target.

)
The partial wave expansions of x& ke, *) end
-) %
Xfc) (k. r) are22

X () » L Tam € Sy, 0 Y TR Y,
XV (kiyr) = AT 3 e g (k)Y (R Y, )
From the properties of the spherical harmonics Xh we
have C)i(k{’n) (H(__ k;,_)
and xct'”(f‘.") -r) = XChi,2)

Thus with the transformation r — = r in the

integral (7.2),
[ X; (-k¢,r) Xi (ki ) W) *

()

drYf (k‘f, )ZL ('ﬁ r)¥er)

(7.4)
Now i1f there are no space exchange potentials,
Y0 = (-0F w(=) (7.5)

where P 1s the parity change of the nuclear state 1in
the transition EL)( . Y{ . Also 1f the optical poten-

tlals for the incident and scattered particles are

similar and 1f ki ¥ kg | )

)
‘”(~k‘,n)1’ '(kiyn) = Xy ks, 2) X0 (ke )
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8o that from (7.4) and (7.5), we have
7}?”8 = (—0P7.1WR , ke x kg
(7.6)

Thus the parity rule states that in the DWBA for
reasonably small Q-values and parity change of the
target nucleus, the amplitude for inelastic scattering
at forward angles 1s negligible.

It can also be shown51 that for even parity changes
the amplitude at forward angles is large. This result
follows from the general characteristics of the optical
model wave functions and 18 not as strong as the rule
for odd parity. Thus by finding whether the differ-
ential section is increasing or decreasing at forward
angles, the parity change in inelastic scattering can
be determined. The reader 1s referred to the original

31,51

papers for a more complete discussion.

Our interest in the rule derives from the fact

that the DWBA amplitude is identical with the average

25

amplitude and thus is the amplitude for direct pro-

cesses. From the amplitude (7.1) the differential
cross section is

A0 T4 (T = <Te2 ]

¢
A
DwE ¥

+ 2Re {T-(i (Tge = (T{D)} (7.7)
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where we have omitted kinematical factors. For

pwB
1—45 =0 we have

ATHE ~ [Ty~ <Tyi> [P, ke = k¢

AN (7.8)

Therefore a direct estimate of the fluctuation
scattering may be obtained by looking at forward angles
with good angular resolution in experiments which obey
the Q-value and parity conditions. _

Now if intermediate processes are negligible,
the fluctuation and DWBA amplitudes are on the average
incoberent, and the interference term disappears from

the averaged cross section.

s> = TP 4 <o = <Tee> 7>
<4A <IT (7.9)

In particular, if it 1is assumed that the relevant
collision matrix elements have a structure of the type
(6.21), the fluctuation amplitude 1s a sum of terms of

the form
Z N § Rery § Rea

£ - E»
multiplied by the appropriate spherical harmonics and

spln factors. In the region of overlapping levels we
may apply the procedure of section 5.2 and the average
fluctuation cross section is given by the statistical

model (e.g. see discussion of reference 5). The trana-
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mission coefficients resulting from J§£., are of
course different from the usual ones since the coher-
ent part of the Ay has been removed. Sano’2 gives
a8 useful discussion of this point. It must be sf.ressed
that 1t 1s an assumption that the fluctuation cross
section is describable by the statistical model, since
1t must be supposed that the residues §£c, are ran-
dom.

To apply fhe statistical model to the fluctuation
amplitude, the classical uncertainty of the beam must
be larger than the coherence energy 7 . Thus if

Q@ is the Q-value of the reaction, we require

Q> ¢ >nr (7.10)

To test the assumption that the statistical model

describes the second term in (7.9), the variation of
a0 (o°)
AL

variation as in figure 8 indicating that this model

with energy should be examined, a smooth

is appropriate. For beam widths less than [ ,
fluctuations appear in the cross sect.icms.53 In
this case variation of od-(—a-_n—_-(o.) with energy can be
used to estimate the coherence energy, the period of
the fluctuations giving r » and hence the lifetime of

@he compound system. At forward angles the masking



4

79

|
effect of the direct reactions is eliminated. |

Another practical advantage of the parity rule
18 that it provides a normalization for the DWBA. Since
from the symmetry of the statistical mode15,

A Ospap (120°) | dAOipap (0°) _ d Oecp (0°)

a2 AN aAre
Then
Dwe .
LT 00y = Ao 1) AGey (o)

- (7.11)
an_ - an . '
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7.3 ILLUSTRATION: INELASTIC SCATTERING OF
TRONS ON F1J,

As an i1llustration, we have calculated cross
sections for inelastic scattering of neutrons to the
first excited state of F17, a 2+ o L— transition.
The Q-value of 0.11 Mev is very favourable.

The DWBA anguler distribution was calculated+ by
the method of Kromminga and McCarthy. In this approx-
imation the distorted waves X%’ ana X% of
equation (7.2) are represented by simple functions..
Further details may be found in reference 5lL.

The normalization in this approximation is not
fixed. In practice, it should be fixed by the ex-
perimental results using equation (7.11). Since we
have no experimental data, we take the maximum differ-
entlal cross section as about 20 mb/sr from a consider-
ation of similar experiments. With this normalization,
at 10 Mev and 0°, the cross section is 0.003 mb/sr, at
3% 1t is .02 mb/sr and at 6° about 0.8 mb/sr.

+ A Fortran code for this calculation was provided by
Dr. McCarthy and the details of this calculation are
not included here. The Fortran code for the statis-
tical model cross sectlion was written by the author
and 1s listed in Appendix C.
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The compound part of the cross section was found by
a calculation similar to that of McDonald and Douglas?5
Square well penetration coefficients and Newton's
expression56 for the level density were used. The
spin cut-off parameter 0" has not been well determined
and the value 3 was taken for O . Competing
effects such as proton emisslion were not considered
so that the calculated cross sections are an upper
limit. The results at 10 Mev give the cross section
at 0° between 2 and 4 mb/sr. Some detalls of this
calculation are given in Appendix C.

In the case where condition (7.10) holds, a
typical differentisl cross section obtained by adding
incoherently the cross sections for the two models is

shown in figure 9..
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APPENDIX A

WAVE PACKET SCATTIERING KFCOR MANY CHANNELS

For the applications to the optical model the
wave packet formation of chapters 2 and 3 must be gen-
eralized. |

In the case of scattering from-a local, central
pétential the collision maetrix ([L i1s diagonal since the
only collisions which are allowed energetically are
elastic. On the other hand for collisions between sys-
tems with internal degrees of freédom, inelastic scatter-
ing and reactions are possible processes. The general-
ization of the single channel collision matrix (2.31)
which applies in this multi-channel case is given by

equation (10.15b) of reference 6. :
(s) )

(T) (r) . R¢_’ Rg
uc:; - Scc' = Jk-c Rc'[QCC'(E) - LZ) __%E_—é ]
E - Ea (A.1)

wlth the resonance denominators

) B D @ @) . e
E-£x= E¢ —Ecstaclh = Ecr- £en 3l (A.2)

d is the quantum number for the total anguler
momentum of the system, while the subscript ¢ represents

the set of other gquantum numbers which characterize the

———
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ingoing channel and ¢ labels the outgoing channel. Also

from reference 6,

,ch," - B !1“\ for Eca>> 0
Eés

(4.3)
with 7>a constant independent of the channel and the par-
tial widths [}, are related to the total width 1\ by
Zc [ea = AN
(A.L)

In our discussion of the optical model, we need only
consider the interactions of épinless particles since
the complications introduced by spin are irrelevant. In
this case the total angular momentum of the system is
equal to the angular momentum of the relative motion of

. the colliding particles and the expansion (A.1l) becomes

) (e) )
©) @ . Rura Reax
oo i [t 1, D

o’ Sua E-E,
(A.5)
with @ @ @
e) L&) L) ) .
B~y = Eu -Exntdily = Er-Ean 3000 ()

o 1is the set of guantum members associated with the
: |
energy eigenstates of the colliding particles whereas

«’ are the quantum numbers of the products of the

collision.

With the help of the collision matrix (A.5), the
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wave function which includes all the possible collision
brocesses and which satisfies the boundary conditions
appropriate to the scattering problem (incident plane
wave and outgoing spherical waves in channel & , and
outgoing waves in the other channels) can be expressed

asymptotically as

o o & B
P [el'fd.fd ___Z (2040 F (“‘9)(01-(")80(‘&:".()]

(zn)%

2t ky
' IZ (2-‘4') [“‘9.()Ud.( e_xp(;kq,lr)
+ ik k, (2n) dgq L. =
(A.7)

This is to be compared with the gcattering state for the
single channel case given by equations (2.12) and (2.15).

’;';,e is almost identical with this state. There is an
additional label \x { to distinguish the entrance channel
from the othér channels and an extra factor ¢Q which 1s
the wave function describing the internal states of the
colliding systems before interaction. The second part

f:& has no counterpart in equation (2.12). It re-
presents outgoing waves in channels other than the entrance
channel.

‘Instead of the incident packet (2.9), we take the

" wave packet <
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(A.8)
By following the procedure of chapter 2, the incident
wave packet (A.8) may be expanded in terms of the states
z?(fy,f%f—- ~) . In the expansion corresponding to
(2.13) for the expansion coefficient, the additional
terms with «’¥ &« make no contribution as the integral

over the internal coordinates gives zero,

j‘l’« K{' AT = dua’

(A.9)
Thus the expansion coefficients are unchanged and
the outgoing wave packet is given by (2.17) with ;}
replaced by (A.7). The elastically scattered part of
the emergent wave packet is
L) ef . 2 el
k = L. A(k-z)exp('kd-!‘-”ﬁ_"*f); dku
- Gm)> = P « -
(A.10)

and that part of the outgoing wave packet corresponding

to inelastic scattering and reactions is

(‘)"e ! f . N he
e © = A(’S-\)ev (-ckare —tf«_’Qf) 4k
- re .
the wave vectors k¢’ in o DPeing written as functions

of S" .

S

In the calculation of cross sections it is possible
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to consider the wave packets (A.10) and (A.11) independent-

ly because the interference term vanishes by virtue of
the orthogonality of $x and  @us . With the method of

section 2.3 the elastic wave packet (A.10) reduces to
jel ~ o ‘ '
\PH a KZe (22-”) &(wsei) f Ale) expls EX)
= ©

- ) . le) ) _
5 [Quate) - i Zy Ko Ko ]¢« ac .
E'F:_: ":’l'f'_\(e)

where the expansion (2.31) has been replaced by the more
general expansion (A.5) (c.f. equatidn (2.32) ).~

Since the outgoing wave packets in tihe channels
with o«’$« are not of interest in the discussion of
the optical model, we omit the 1a@el distinguishing the
entrance from the other channels.i Also since the in-
ternallstates of the colliding systems does not change
during elastic collisions (for this spinless case), we

suppress the wave function for the internal state. Then
(A.12) may be written ,

u o
Vi, (z,%) = KZ, (224+1) Py leos o) j A(e) ex,bft'EX)

K .

i *=
x [Q,,cﬂ - ¢l Res ] dE
E'6¢L4-5,(.ﬁ£)

- ‘ (A.13)

with X « ro+ r
| O (L

Vo

ey v
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and K = (;—")

which is formally the same as equation (2.32).

Therefore the results of chapters 2 and 3 are
relevant to the elastically scattered wave packet of
the many channel problem; the equations have only to
be modified by replacing the parameters of the Mittag-
Leffler expansion of the collision function by the
corresponding parameters of the expansion of the
dlagonal element of the collision matrix.

One caution is, however, necessary. The branch
point at E = O in the expansion (2.31) is removed from
the integral (2.32) by the factor-t in the scattering
amplitude, The function

Ug—1t . C, CE) + 2, Ranm
K E-Egn (A.1L)

1s defined for all finite values of E in the complex

E-plane except for -the poles at Egune However, in
@

@ @) . e) @«
(_/i'f(___l = Qe('o( (E) 1 Z> R.(_; qu_}
Ko £~ &

(A.15)
the function &«%(E) has a number of branch points

along the positive real axis in the complex E-plane,

each branch point corresponding to a threshold where
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another reaction becomes energetically possible.6 There-
fore in the evaluation of the non-resonant wave packet
the energy integral of the form (2.39) has contributions
from the branch cuts. Yet, if the peak energy of the
Incident packet is such that the contribution from the
nearest threshholds are small, the considerations of
section 2.4 apply and the non-resonant wave packet is
scattered without time delay.

The temporal behaviour of the wave packet .at the
threshhold energies can only be evaluated if fhe
explicit form of the background function - ®uw (£) is

known.
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The articles in this appendix were
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TIME-DEPENDENT SCATTERING EXPERIMENT
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The principle of superposition of states for po- *
sition and momentum may be verified, for exam-
ple, by observing the diffraction pattern built up
by single photons scattered from a system whose
characteristic space dimension is comparable
with the wavelength of the photon.

The verification of the principle for energy and
time requires the measurement of very short
time intervals on the atomic scale. The time
development of the state y(¢) of a quantum me-
chanical system with a Hamiltonian H is described
by the Schrédinger equation

thdy/dt =Hy. (1)

The proposed experiment is a scattering ex-
periment in which only the asymptotic form of
the wave function in space and time is used and .
the development of the wave function from {=-e °
to ¢t =+ is given by the S matrix without the use
of the Schrédinger equation. Thus the time de-
velopment of the wave function y(t) is not observed
in the vicinity of the scattering potential, as
would be necessary to verify (1).! :

The time interval characteristic of the scatter-
ing of a particle of energy E in the isolated reso~
nance region by a many-body system is the re-
ciprocal of the width I'g of the compound state
Is) whose energy € is closest to E. The case
where more than one compound state contributes
appreciably to the scattering amplitude in the
vicinity of E will be treated in a subsequent pub-
lication.

Most compound nucleus states have lifetimes
of the order of 107!® sec. Times of the order of
107'° sec are the smallest that can be experimen-
tally resolved, so it is impossible to do a time-
dependent experiment with such a system. Ex-
ceptions are the metastable states of nuclei, for

anan

" nucleus.

example, the 14-keV state of *"Fe which has a
lifetime of 1077 sec. Atomic states and particu-
larly laser states of longer lifetime are well
known, If a photon is scattered from such a reso-
nance it would be easy to observe the effect of
small time changes.

On a nuclear scale a time-dependent experi-
ment has been performed by Holland et al.,? who
essentially measured the spectrum of total
elapsed time between the excitation of the 14-keV
level in an *'Fe source and the detection of the -
corresponding y ray after it had passed through
a resonant absorber. This may be regarded as
a scattering experiment in which the incident
wave packet has a half-exponential time spectrum
of width /I"c. The time spectra of both the ini-
tial and final states must be known separately
for a time-dependent scattering experiment.

The proposed experiment consists in following
the time development of a wave packet with aver-
age energy E (near €g) and variable time width
T (corresponding to an energy width 26 =#/T)
which is scattered resonantly from the appropriate
The theory of the experiment is as fol-
lows.

The initial state is a wave packet which can be
written as a superposition of the complete set of
asymptotic states yi; of the scattering problem:

by = o R e @

. where, if a Hamtiltonlan H for the problem exists,

H".’E =Epyr. @)

" The integral in (2) corresponds to a sum over

discrete eigenstates and an integral over eigen-
states with continuous eigenvalues.
The time development of Vi is given by inte- .
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grating (1):

wE(t)=¢Eexp(-tEEt/h). | C(4)
Substituting this into (2) gives the time develop-
ment of the wave packet 5‘

In the asymptotic region ¥ is given for a spher—
ical scatterer by .

b r) 1 F e, 00 /1), (5)
where f(k, 6) is the S-matrix element for the prob-
lem, assuming only one spin state is involved.

The usual theory of the scattering of wave pack-
ets® gives the time development of ¢, in the case
where the dimensions of the wave packet are large
compared to those of the scatterer and small
compared to those of the macroscopic apparatus,
as

gE(F, Topt) = (27)737 J'A(E' ik, 6) exp(-ik’s ¥y - iE't /K)
X [ekp(ik'r)/r]f(k', 0)d%’, (6)

where T i8 the position of the center of the wave
packet at £=0, A(k’;k, 6) is a weight factor which
confines the incident wave packet to a time width
T =#/26 and an angular region in which we are
not interested and which may be made very small
on the atomic scale by defining the beam by mac-
roscopic slits.

Integrating out the directions of k’ and substi-
tuting k’=E’/fic, we have

(.. ‘) (21;1);“’ exp[lk(rjﬁf)/z]f dE'A(E"E 6)

xexpGE'X) (k' 6), (1)

where
X=[(ro+r)/c-t]/R. (8)

Near an isolated resonance we can express f(k’,8)

RR

(21 + l)Pl(coso)] {

rhic

leﬁ(f.t)l'%[

218R R
[ s 8

+ m—_m—_ﬂ exp[;'(E -0~ (s = ilrs)X] +complex cqnjugate] } .

8 s s 6 s b

as - ) ‘
Sk, 6)= (21 + I)Pl(cose)Rs/iE' -€ +§frs)' 9)

where ! is the angular-momentum quantum num-
ber of the compound state 1s).

We will assume that the incident wave packet
can be prepared with a Lorentzian energy depend-
ence which implies an exponential time depend-
ence:

AE%E, 0= O/M/E - P67, (10)

For photons we are not concerned with the con-
tribution of bound states to the integral in (7),
80 we can replace the lower limit of lntegration
by -0,

. The time development of the wave packet is
now glven by

E=(F,2)=K(20+1)P (cose)f 4B o/n
g =R D5 L™ CT-EJE-E,)
R ,
xE—,_-sE; exp(iE'X), (11)
where
E =¢_-}iT, /
E,=E +id,
KK = (8nr#h3c?)1, (12)

For X <0, contour integration round an infinite
semicircle in the lower-half plane gives for the
integral in (11)

R . . R
(-E;%;exp(zbe)-zzo———s-———(Es_Eo)(E )
xexp(iEsX). (13)

The time development of the probability of ob-
serving the scattered particle is given by

4RR6’

&, E)(E “E) °"p(2°x) &, -EJE, ET‘E “EJE, exp(ré")

(14)

"

For an incident wave packet whose time width T is very small (26 is large compared with Ig), the
second term in (14) is most important. The probablllty of observing the particle decays exponential-

ly in time with a time constant [}.

Exponential decay has been observed by Holland et al., for the 14-keV state of *’Fe. The initial
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time for the system was defined by the emission of the 128-keV y ray resulting from the decay of *Fe
into the 14-keV state. The uncertainty in this definition is small (~107!° sec), so we have the case 20
»T'g. Of course, this case is different from the one under consideration because the 14-keV state

was excited in a short time by a different process from resonant absorption.

section® corresponding to (14) is

The differential cross

g 1, 5
o ’RsRsI: fic

The significant thing is that the energy depend-
ence of the differential cross section now has a
width I’ +26. This contrasts with the width T'g
found in ordinary resonance fluorescence with a
nonmonochromatic beam.®

For short total elapsed time, which puts an
upper limit on the time length of the incident wave
packet, Holland et al. found departures from ex-
ponential time decay due to the apparently shorter
lifetime of the state. They also found increased
energy width, but they did not know the time spec-
tra of the initial and final states separately except
in the case where they integrated over all time.
The incident wave packet is then a half-exponen-
tial with lifetime &2/, Their experiment was
explained in terms of radiation from damped os-
cillators.®

It is proposed that a beam of photons produced
with very small energy width by the decay of a
state |s) with long lifetime should be modulated
into exponential (if possible) pulses of width T
which can be varied, but which is much less than
h/l“s. The pulses must be separated by a time
greater than k/I'g. This can be done, for example,
by having another resonant absorber in the beam
between the source and the scatterer.
mediate absorber can be put into a nonresonant
condition for a time T, for example, by moving
it or by shifting the resonance by the Stark effect
with a strong external field applied for a short
time.

In the ¥Fe case accelerating the absorber fast
enough or applying a strong enough field at the
nucleus are all on the borderline of present ex-

@1+ 1)Pl(cose) 2 [i-l"s (- es)' +} (l"s +6)%( I + 20)]
I‘s[(E - es)z +(6 +§.l"s)’]’

The inter- ..

(15)

perimental technique. With an appropriate atomi¢
or molecular level it should not be so difficult
because the time T can be longer.

We now have a beam consisting of minimum
wave packets whose central energy is €g. We
could observe directly the dependence of the ab-
sorption spectrum on T [Eq. (15)], or we could
observe the time dependence of the probability of
detecting a scattered photon [Eq. (14)].

The latter experiment would be a scattering ex-
periment in which purely time rather than energy
is resolved. The intrinsic energy uncertainty
Iy is much smaller than the width 26 introduced
by observing small time intervals T.

We are indebted to Dr. C. A. Hurst for helpful
criticism and one of us (I. E.M.) would like to
acknowledge helpful discussions with Dr. W. J.
Knox, Dr. C. A. Levinson, Dr. K. M. Watson,

- and Dr. D. R. Yennie.
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The wave-packet nature of an experimental beam is discussed. The theory of wave-packet scattering is
applied to wave packets with exponential time dependence scattered from resonances in both the isolated-
resonance and overlapping-resonance regions. It is shown how a sequential description of scattering de-
pends on some of the resonance parameters in the scattering amplitude. The meaning and usefulness of
some experimentally possible wave-packet experiments is discussed.

1. INTRODUCTION

SCATTERING of a particle from a many-body
system can be divided into two types with respect
to a time interval r and a corresponding energy interval
d(~/7).} If the scattering amplitude as a function of
energy varies rapidly over the energy interval 8, the
scattering is said to be compound scattering; if the
amplitude varies slowly over this interval, we have
direct scattering. 7 is several orders of magnitude
greater than the time.it takes the incident particle to
traverse a distance the size of the scatterer in free
space.

In most actual scattering experiments time is not
resolved. The incident beam has an energy spread. The
cross section can be regarded as the weighted sum of
cross sections for independent experiments, each with
definite incident energy. This will be discussed in Sec. 2.
It is still possible to define a time delay Af according to
the definition of Wigner,?

Al= —ik(d/dE) InS(E), 1)

where S(E) is the S-matrix element for the scattering
problem. This time delay may be thought of as the
time it takes for the phase of one incident wave to
catch up with that of another whose energy differs from
it by an infinitesimal amount, and whose phase shift
in the scatterer is therefore infinitesimally different.

If the S-ma:rix element is divided according to some
physical prescription into a rapidly and a slowly
varying component, this definition is difficult to apply
and it certainly does not tell us anything about each
component separately. The rapidly varying component
corresponds to a large Al, that is, to particles that spend
a long time on the average in the scatterer, and the
slowly varying component corresponds to a small Al

* Supported in part by the U. S. Atomic Energy Commission
and the Australian Commonwealth Scientific and Industrial
Research Organization.

1 For example H. Feshbach, C. E. Porter, and V. F. Weisskopf,
Phys. Rev. 96, 448 (1954).

1 E. P. Wigner, Phys. Rev. 98, 145 (1955).

that is to particles that pass rapidly over the scatterer
without significant time delay. '

An experiment which measures the relative amount
of direct and compound scattering has been suggested
by Eisberg, Yennie, and Wilkinson.® The experiment
also defines an energy interval which is the reciprocal
of the time delay. The information is obtained from
the energy spectrum of bremsstrahlung from elastic
scattering of charged particles. A

One would like to make a classical picture in which
particles are described as being in the scatterer for
varying times. To do this one must make a wave-packet
argument, It will be shown in Sec. 2 that the physical
situation corresponding to a meaningful wave-packet
argument is necessarily a time-dependent scattering
experiment.

Wave-packet arguments are made for example by
Friedman and Weisskopf* for the case of shape-elastic
and compound-elastic scattering. They show that for
nonoverlapping levels (resonances) of the compound
system the time delay is the average over the beam
energy spread of the time delays for the individual
Jevels, If time delay is defined according to Wigner’s
definition, this result is obtained at once. It has been
done explicitly for example by Goldberger and Watson.®

Tf, however, time delay is defined as the average
time delay in the emerging of a wave packet in a
hypothetical time-dependent experiment complemen-
tary to the usual energy-dependent experiment, then
the result is not so clear., The delayed wave packet
would be expected to interfere with the immediately
scattered wave packet from the shape elastic scattering.
It is commonly stated that if the two wave packets are
sufficiently short in time they will not interfere.’ This

3R. M. Eisberg, D. R. Yennie, and D. H. Wilkinson, Nucl.
Phys. 18, 338 (1960).

{F. L. Friedman and V. F. Weisskopf, Niels Bohr and the
Development of Physics (Pergamon Press, Ltd., T.ondon, 1955).

I;Ol\g) L. Goldberger and K, M. Watson, Phys. Rev. 127, 2284
( ¢ For example, H. G. Preston, Physics of the Nucleus (Addison
Wesley Publishing Co., Inc., Reading, Massachusetts, 1962).

R. K. Adair, S. E. Darden, and R. E. Fields, Phys. Rev. 96, 502
(1954). -
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situation is now extreme hypothetical. It requires very
good time definition in the experiment. In an actual
cxperimental  situation, time is undefined and the
wave packets interfere completely. It may also be asked
whether the scattering amplitude, and hence, for ex-
ample, the angular distribution will not be dependent on
the width of the incident wave packet, since, for short
wave packets (in time), we might not expect such
complete interference as for long wave packets.!

The question of what actually happens to a scattered
wave packet has been investigated by Sasakawa.® He
shows that for the scattering of a wave packet from an
isolated resonance, the variation of the cross section
with energy is characterized not by the width of the
resonance but, in addition, by the width of the wave
packet. In Sec. 3 we will re-derive this result using a
different mathematical technique and Lorentzian wave
packets. The Lorentzian shape is one shape for the
energy spectrum that can be realized experimentally.

In Sec. 4 we will consider the scattering of wave
packets from a system in which the compound levels
overlap. This gives new insight into the optical model,
which is defined for this purpose as the model for which
the time delay in the complementary time-dependent
experiment would be small. Our treatment is more
general than Sasakawa’s treatment of the same situa-
tion in a special case.

The usual definition of the optical-model scattering
amplitude? is that it is the average of the actual scatter-
ing amplitude over an energy interval 8. In the actual
situation, amplitudes for different energies are in-
dependent and it is the cross sections that are experi-
mentally averaged. The meaning of the energy averaging
process will be discussed.

In Sec. 5 we will discuss the possibility of performing
scattering experiments with time definition which are
complementary to the usual ones in which energy but
not time is resolved. One such experiment has been
suggested by the present authors.'®

2. DEPENDENCE OF THE SCATTERING CROSS
SECTION ON THE INITIAL BEAM
CHARACTERISTICS -

A beam consists of particles whose energy is defined
within certain limits. The time of arrival of particles
at a specific point may also be defined within limits by
modulating the amplitude of the beam. In general the
limits on the time and energy resolution of the beam
are wider than those imposed by the uncertainty
principle. For example some particles may be moving

11, E. McCarthy, Proceedings of the International Symposium on
Direct Interactions and Nuclear Reaction Mechanisms, Padua, 1962
{Gordon and Breach Publishers, Inc., New York, 1963).

8T, Sasakawa, Progr. Theoret. Phys. Suppl. 11, 69 (1959).

? For example G. E. Brown, Rev. Mod. Phys. 31, 893 (1959).
(1;06%)' R. Dodd and I, E. McCarthy, Phys. Rev. Letters 1Z, 136
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faster than others because they were accelerated a little
more in the accelerator. The fast and slow beams could
in principle be separated by a magnetic spectrometer.
This type of energy uncertainty will be called classical
uncertainty. On the other hand, if the time of arrival of a
particle at a point is defined within a time interval 7,
we cannot in principle measure its energy with a
definition better than 8=4%/7. This type of uncertainty
will be called quantal uncertainty.

A beam with both classical and quantal uncertainty
is described by a collection of wave packets with
different mean wave numbers k; whose position at time
¢ is measured with respect to different initial position
vectors r;. The value of r; specifies the starting time
of the wave packet at the source. One such wave
packet may be written

£tn,) = (2m) [ Ak;; k) explik- —1) 1. (2)

Suppose that the number of packets of type j is
given by # where
n=<I>,-N . (3)

N is the total number of wave packets.

We wish to know the cross section for a scattering
experiment with an incident beam which can be
described in this way. For simplicity we will consider
only one spin state. We must be careful to distinguish
two cases. - -

Case A. If the r; are such that the wave packets do
not overlap both before and after scattering, the
scattering of each wave packet may be considered as
an individual event. The total cross section is the sum
of the cross sections for the scattering of each wave
packet.

Case B. The r; are such that the wave packets
overlap. In this case different wave packets will
interfere and the cross sections for individual wave
packets do not add incoherently.

The mathematical description of these cases is as
follows. For case A we will consider wave packets with
the same value 1, of r; and describe the beam by means
of a density matrix. The density matrix at time ¢ is

p(r,e'1)=2; ®;toi(r,t)éos* (') )

According to the standard theory of wave-packet
scattering,!! £o; is given in the case where the space
occupied by the wave packet is large compared to the
size of the scatterer but small compared to the distance
of the detector by ’

fos ()= (2m) / Alk;5; K) exp(—ik-ro—iEl/#)

X[exp(ikn)/r]f(kQ)dk. (5)

1t See, for example, E. Merzbacher, Quantum Mechanics (John

Wiley & Sons, Inc., New York, 1961). A review of general wave-

packet scattering with applications to nuclear reactions has been

given by N. Austern in Selected Topics in Nuclear Theory (Inter-
national Atomic Energy Agency, Vienna, 1963).
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f(kQ) is the scattering amplitude for scattering of
particles into a detector whose angular position is .
A(k;,5; k) is a weight function which confines the wave
packet to a volume in momentum space centered at
k; and of width é. & is the quantal uncerlainty.

We will not be interested in the angular uncertainty
in the wave packet, so we will write

8(0x—00)8 (1~ o)

Akys; k)=
ks ) 2xk? sinfy,

A(k/,ﬁ ) k)’ (6)

where (0x,0x), (Bo,00) are, respectively, the angular
coordinates of k and kj, the beam direction.

The probability P,(f) of detecting a particle at time
{ at the detector whose position is r4 is, for the wave

packet 7,
P;(t)=N 4| Eos(rat)|ra*dQ. ()]

This defines the nonnahzatlon N; of &y The differ-
ential cross section is

(do/d2)(ey8) =vol 72 [ ltuCadli, 8

where v is the group velocity of the wave packet.
We may write the differential cross section for the
beam described by the density matrix (4) as
/

do/d= 1N / p(tarad)de. ()

—0

Substituting from (4) and interchanging the order of
summation and integration we have

do/dQ=3;®;0N 14 f | £0s(rayt) |2

=Y ;®,do(k;8)/dQ. (10)

This is the result stated above for case A. Since we
are only interested in the differences of the peak
energies E; for different wave packets j, we may
replace the sum in (10) by an energy integral.

cp(E')d"(E' 5)dE'
dQ—,[ do "

The cross section is the energy average of the cross
sections for individual -wave packets with different
peak energies. In particular, for beams with negligible
quantal uncertainty the cross section is the energy
average of the cross sections for scattering events with
plane wave and outgoing spherical wave boundary
conditions. For this reason we will call ¢, the width of
the weight function ®(E), the classical uncertainty.

We will now consider the more general case B and
see under what circumstances the distinction between
classical and quantal uncertainty can be maintained.

L. R. DODD AND I.
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In terms of plane-wave states n(k), the most general
density matrix is

p(er )= [ [ ok K )Y (PP . . (12)

We wish to write (12) in diagonal form in terms of
wave-packet states &

p(rx =2y ikuikis* (1/3)

We must know if this diagonalization is unique. If
so, we can assign a definite classical weight factor ®
with uncertainty ¢ and a definite quantal weight
factor A with uncertainty 8. If not, the distinction is
meaningless.

In mathematical terms the question is as follows.
Can the Hermitian matrix p(r,r',f) in' (12) be diagonal-
ized by more than one transformation of the type (2)
of the basis vectors? A necessary condition for the
diagonalization to be unique'? is that the states £ must
be orthogonal like the states 1.

In fact we have

f Lo pdr=(2m)) / A(k;,5; K)A (k8 k)

Xexp[—ik- (t;—1,) k.  (14)

The overlap integral in (14) is approximately zero
if the wave packets have sufficiently different starting
times given by r; and r;» because of the rapid oscillations
of the integrand.

In case A the wave packets have a definite physical
significance. The quantal uncertainty leads to altera-
tions in the usual cross sections, as will be shown in the
succeeding sections. In case B the wave packets may
be regarded as mathematical aids to the visualization
of the scattering process. For example we can de-
compose a plane wave into an infinite number of
overlapping wave packets and then follow the propa-
gation of one of these packets. Nevertheless, this would
be without physical significance because the scattering
amplitudes for all the packets must be recombined to
obtain the cross section.

The vital point is that the wave packets both before
and after the scattering must be quite distinct in space
and time for the quantal uncertainty to have any
physical significance.

3. SCATTERING OF A WAVE PACKET
FROM A RESONANCE

In the usual theory of scattering it is assumed that
f(%,2) in Eq. (5) varics much more slowly with energy
than the wave packet amplitude factor A(k;,0; k), that
is, that the quantal uncertainty & is negligible in com-

1 U, Fano, Rev. Mod, Phys, 29, 74 (1957).
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parison with the width of the energy fluctuations of the
scattering amplitude.

We will consider the case where 6 is comparable with
I',, the width of the compound state |s) of the system
comprising the incident particle and the scatterer
whose energy ¢ is near the central energy Eo of the
wave packet. In the present section we will suppose that
only one state |s) contributes to the scattering ampli-
tude at the energies covered by the wave packet.’®
We will be interested in only one wave packet j=0.

Since we are interested in the energy rather than the
momentum of the wave packet, it will be convenient
to transform the integral in (5) to an energy integral.
The transformation is trivial when £ is proportional, to
E as it is for photons (E="#ck). .

For our discussion of hypothetical time-dependent
experiments with finite-mass particles complementary
to the usual energy-dependent experiments, we canmake
the assumption, following Friedman and Weisskopf,?
that the source and detector are sufficiently close to
the scatterer for wave packet spreading to be negligible.
We will neglect the final term in the following expansion
of E:

E=—|:2k'ko—k02+|k—k0|2]. (15)
2m

Photon wave packets do not spread for practical
purposes.

We must now consider a particular form for the
energy amplitude factor A(Eod; E) corresponding to
A(ko,d; k). Wave packets made by electronic means
(see Sec. 5) would have a rise and decay function in
time that is something like an exponential. We will
therefore consider a wave packet that has an ex-
ponential rise and decay, with time constant %/8. We
will assume that the beam is switched off as soon as it
has attained full strength, so that there is no time for
which the beam intensity is constant. The experimental
difficulty is in fast switching on and off. Since we want
as short a packet in time as possible, this is then the
most realistic form. The energy amplitude factor for

this form 1s
&/2mw

A(Ey$; E)=———.
(E— Eo)*+8%/4

(16)

One shape of wave packet is already available in'

nature. This is the photon wave packet from the decay
of a level |s) of a many-body system. It has a half-
exponential time spectrum. If the moment of excitation
of the level is taken as zero time, then the probability
of emission of a photon decays exponentially with a
time constant #%/T',. In this case we have

i/ 2%

A(EyTy; B)= ————.
E— Eg+iT',/2

7

. 1 Nole added in proof. The decay of a single resonance has been
investigated by R. G. Newton, Ann. Phys. (N. Y.) 14, 333 (1961).
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We will use the form (16) for most of our discussion.
For the scattering amplitude we will use the expan-
sion of Siegert, Humblet, and Rosenfeld,”®

1
Lk (E),0]=-2—_ 3 1(204-1)Picosh)
i

X[Cz(EH-Zr—"‘f‘]- (18)
E—eint3Tin

The nonresonant term C;(E) varies slowly with energy.
The splitting off of this term is not unique and can be
made according to some physical prescription. Equation
(5) now becomes

( t)—KZ(ZH-lP 6 i ’
£ I, —21[' i ‘ ) I(COS )'/; (E—Ea)(E—-

Ey)
Rin
Xexp(iEX )I:C (E) +an:|dE , (19
—€ln in,
where
X=[(rotn)/vo—1t1/1,
Ey=FE\—15/2,
KR=1/8xr2. (20)

We have dropped the subscripts on £(r,f) because we
are now interested only in one particular wave packet.

The integral in (19) is now in a convenient form for
contour integration if we make the approximation of
extending the lower limit to — o, thus neglecting the
contributions of bound states.

We will first consider the scattering of the wave
packet according to the nonresonant scattering ampli-
tude C;(E) whose variation with energy can be neglected
over the energies of the wave packet. Performing the
integration in Eq. (19) we find

£(r,) =K ¥ 1(21+1)Pi(cos6)Ci(E) exp(iEsX), X>0
=K Y1(2141)Pi(cos8)C.(E)

Xexp(iEsX), X<0. (21)
The wave packet is centered at X=0, i.e., at
© t=(ro+r)/vo. (22)

Hence, the nonresonant packet is propagated without
time delay. The time spectrum of [£(r})|? is an ex-
ponential rise and fall, exp(—dt/%).

The differential cross section is, according to Eq. (8),

do/d@=%| (A4 1)Pi(cos®)Ci(E) . (23)

Thus, the differential cross section for nonresonant
(potential) scattering is independent of the quantal
uncertainty & and identical with that for a normal beam
in which & is negligible.

18 A. Siegert, Phys. Rev, 56, 750 (1939). J. Humblet and L.
Rosenfeld, Nucl. Phys. 26, 529 (1961).
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We will now consider the scattering from an isolated
resonance state |s). Taking one term of the sum in (18)
we have for the integral in (18)

[ jex : GEX)dE, (24)
_/_w (E—E3)(E—Ey) E—E, T ’
where
E,=e,—il,/2. " (25)

Integration round an infinite semicircle in the upper
half plane gives

I= exp(iE:X), X>O0. (26)

8T Ly
This means that the leading edge of the wave packet,
that is, the part for times greater than (ro+7)/vo, is
propagated with the same shape as it originally had,
but, of course, with a different magnitude, The propa-
gation of the trailing edge (the tail) of the wave packet
is given by integration round a contour in the lower
half plane '

I. E. McCARTHY

The time spectrum given by ||? is a decaying oscilla-
tory function. In particular, if the time width of the
wave packet is much less than the decay constant of
the state |s), the time spectriim of the tail has the shape
exp(—TI',t/k). This corresponds to exciting the resonance
suddenly and watching it decay with its natural time
constant.
The differential cross section is

do RE.L(E— &)L/ 24 (T8 (T2/248)/4]
i 20, [(E— &)+ (T +8)Y/4T '

This reduces to the Breit-Wigner form for very
small quantal uncertainty 8. The most significant thing
is that the width of the energy spectrum is I',+6. Note
also that the differential cross section for scattering from
a single resonance is reduced in magnitude for large
quantal uncertainty. For large 8, do/dQ is of order 1/4.

In view of the arguments often made about the
noninterference of potential and resonance scattering
for large §, it is interesting to consider the interference
term. Denote the additional cross section due to the
interference of potential and resonant scattering by
dor/dQ. It arises from the last term in the splitting

(28)

I= R exp(iEsX) of the scattering into potential and resonant parts
o [e@n 2= (r) |+ [ £r(rt) |2
R, +2 Rekp(r,f)ér(rd). (29
i6 — exp(iE.X), X<0. (27) ) . i ) e
(E.—Ey)(E,—Ej) Taking only the s state for simplicity of notation,
d E—e¢,)+1(T,/2406
_052% RCo(B) (E—e))+i(Ts/249) , (30)
s [(E—e)+i(Tat0)*/4T
E—e¢,) (E—€,)*+ (Ly+6) (1 36)/4
s Ry E D Em P E A T3/
[(E—e)*+(T.408)/4F
(E—€,)T,/2+ (T 46)2(D,+28)/8
+3 Im[R.Co(E)] . (31)

The coefficient of Tm[R,Co(E)] is of order 1/8 for
large 8. Hence the interference term in the cross section
does become smaller for larger §, that is for better
defined wave packets in time, but so also does the
resonant scattering term, both being of order 1/5. The
potential scattering term is not affected by 8.

4. SCATTERING FROM MANY LEVELS
AND THE OPTICAL MODEL

We will now consider the energy region where, for a
given channel, the resonances in the scattering ampli-
tude are such that the average width is greater than the
average spacing, so that many levels contribute at each
energy over the energy spread of the wave packet,

(E—e)+(TF0)%/4

The levels in this region are defined by some plausible
model such as has been discussed by Brown? for nuclei.
Their widths are of the order of 1 eV, so that the
corresponding lifetime, 1071 sec, is too short for a
practical wave-packet experiment. However, it is
interesting to consider a hypothetical wave-packet
experiment in order to give a proper quantum mechani-
cal sequential description of the passage of a particle
through the scatterer, when we know the S-matrix
element for the scattering.

This gives us another way of looking at the optical
and direct interaction models. We will restrict ourselves
to elastic scattering for simplicity. The optical model has
been considered in two ways, each with a different
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starting point. The first way starts with a Schrodinger
cquation. The optical-model Hamiltonian is shown to be
an approximation to the many-body Hamiltonian. The
second way is independent of any Hamiltonian assump-
tion and starts with the scattering amplitude. The
average over some energy interval I of the scattering
amplitude S is shown to be capable of being calculated
from an optical-model Hamiltonian. The average cross
section is split into two terms.

(o)=L S—(SH.

The first term is the optical-model or shape elastic cross
section. The second term is the fluctuation or compound
clastic cross section.

A third, classical, definition of the optical model is
sometimes given. The optical-model cross section is the
cross section for propagation without time delay while
the compound elastic cross section is the remainder.

It is not clear that the last two definitions are
equivalent. The splitting in Eq. (32) requires a definition
of the averaging procedure. Some authors, for example
Brown,? have gone to much trouble to discuss the
averaging procedure. Brown’s argument is essentially
a wave-packet argument since it uses an average of the
scattering amplitude over an energy interval I. We
have seen in Sec. 2 that for a beam without significant
time resolution it is the cross sections, not the ampli-
tudes, that are averaged.

Another condition for the validity of this definition
of the optical model is required. The average over
amplitudes must be nearly equivalent to the average
over cross sections. This means that the compound
clastic cross section must be very small compared
with the optical model cross section.

A quantal statement of the third definition of the
optical model must be given by a detailed wave-packet
description. It is quite conceivable that the scattering
amplitudes for certain problems are such that a large
proportion of the cross section is due to time-delayed
wave packets. This question will be discussed in detail
by one of us (LRD) in a subsequent publication.

At present we will just consider the propagation of
the wave packet in general and show how it leads to a
large proportion of immediate propagation in the case
I>>D where T is the average level width and D is the
average spacing.

Considering only the S wave for simplicity and
omitting the potential scattering term, Eq. (19) gives
for the time dependence of the trailing edge of the wave
packet

£(r,)=K exp(iEX) Xn

(32)

" l
F— extiTi—5)/2] exp(8X/2)

id exp(T'aX/2) expi(en—E)X
E— €n+1‘(rn+§)/2

The second term in the bracket is the one containing

(33)
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the properties of the scattering amplitude rather than
the wave packet. Each level  contributes an exponential
tail to the amplitude with a time-delay constant
%/T'n. However, this contribution is multiplied by a
phase factor exp[i(e.—E)X] which gives a partial
cancellation of the tails when the packets from different
levels are superposed.

If the level widths I', are much greater than the
average spacing D, the factor e;—E can be large so
that the phase factor oscillates rapidly. In this case
the phases of the contributions from different levels
tend to be random so the tails cancel out giving a large
proportion of propagation without time delay.

Thus the sequential description of scattering gives
the same result as the usual energy description. The
optical model is valid when I'>>D.

The dependence of (33) on the magnitude of the
quantal uncertainty 8 is also intéresting. As é is in-
creased the magnitude of the contribution from each
level to the scattered packet decreases. However more
levels contribute significantly to the sum. If the phases
of the residues R, are random the magnitude of the
scattered packet will decrease rapidly with increasing .
If they are correlated, the magnitude will decrease
less rapidly. The range of the correlations between
Jevels can be determined in principle by varying 8. This
will be discussed in detail in a subsequent publication.

5. POSSIBLE WAVE-PACKET EXPERIMENTS

The condition for a time-dependent scattering experi-
ment is that the experimental definition of time must
be accurate in comparison with the characteristic time
of the scattering amplitude. That is, we must have é not
much less than T

Experimental definition of time is at present possible
for times as short as about 107 sec. Typical nuclear
values for %/T' are 107'% sec, so wave-packet experi-
ments cannot be performed with nuclei except in special
cases. These cases are metastable states which can have
lifetimes as long as 1077 sec.

One experiment has actually been done using the
Mossbauer effect with the 14-keV v ray from FeY,
which has a decay constant of 10-7 sec, by Holland,
Lynch, Perlow, and Hanna.¥ The time spectrum of the
incident wave packet was defined by using as zero time
the time of formation of the 14-keV state, which was
defined by the time of emission of the 128-keV v ray
(a fast decay) from the next highest state in the y-ray
cascade from the decay of Co%. The wave packet has
an exponential time spectrum with §=7%/10"7 sec. This
wave packet was scattered resonantly from an Fe®
target. The time spectrum of the final state and the
increased width of the absorption line were both

4R, E. Holland, F. J. Lynch, G. J. Perlow, and S. S. Hanna,
Phys. Rev. Letters 4, 181 (1960); F. J. Lynch, R. E. Holland, and
M. Hamermesh, Phys. Rev. 120, 513 (1960).
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observed. In this case §=T,. The width of the wave
packet in this experiment is of course fixed. By looking
at the scattering at times less than 10~ sec, Holland
e al. were able to observe greater widths, but for these
cases the shape of the incident packet was not defined.
The spectrum of total elapsed time gives only an upper
limit to the time width of the incident wave packet
because it is not known if the delay occurred in the
source or the scatterer.

The Mossbauer effect is, of course, a wave-packet
scattering experiment in which the absorption cross
section is measured. If we do not define time but
merely observe the cross section we lose the wave-packet
property, that is the quantal uncertainty. The cross
section is obtained using Eq. (17) to define the energy
amplitude factor of the wave packet,

de R2 1

— —_— (34)
dQ 2T, (Ey—E,)*+T2

Thus, we have the well-known result that the line-
width in the Mbssbauer effect is twice the width of the
level, assuming all the nuclei in the target are capable
of absorbing resonantly.

Defining the starting time of the excitation of the
metastable state puts a quantal uncertainty into the
beam equal to T',. The method of Holland et al. defines
the starting time with a minimum tolerance equal to the
lifetime of the next highest state in the vy-ray cascade.
This is shorter than the experimental time resolution,
which is itself much shorter than #/T,.

One way of varying the time width of the wave
packet would be to vary the resolution with which the
starting time is measured. It is possible by this method
to decrease 6, but not to increase it. o

A better experimental way of varying the wave-
packet width in the Md&ssbauer effect has been sug-
gested by the present authors. A third resonant absorber
is introduced between the source and the target. This
absorber is accelerated in a very short time (10-? sec)
to a speed sufficient to shift the resonance so that the
incident beam is no longer absorbed and can hit the
target. It is then slowed down again quickly so that the
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time duration of the pulse is of the order of 107 sec.
This method would produce approximately the ex-
ponential wave packet [Eq. (16)] that we have used in
the calculations of Secs. 3 and 4. It is experimentally
just possible to achieve the requisite acceleration by
using a very thin foil of Fe’ as one plate of 4 parallel
plate condenser in a vacuum which is charged first
with one sign and then with the opposite sign by an rf
pulse. ITowever, the acceleration may be achieved more
easily using a piezo-electric crystal. Another possibility
is to use the Stark effect to shift the resonance. This
requires a tightly bound dielectric crystal containing
nuclei with a metastable state.

Wave-packet experiments in the atomic energy
region may be interesting. An absorber of laser material
placed in a laser beam and moved for a short time as
suggested above would produce wave packets of laser
intensity. The quantal uncertainty would be much
greater than that of a beam from a pulsed laser, whose
quantal uncertainty can be no greater than the width
of the laser state.

All such experiments observe only the scattering
of a wave packet from a single resonance with a trivial
angular distribution. Overlapping resonances, even in
atoms, would probably have widths of the order of a
few tenths of an electron volt. Wave-packet experi-
ments in this region with 6~I' would require time
lengths of 107° sec which seems impossible at present.
The possibility of doing time-dependent electron-
scattering experiments from atoms is not experimentally
remote and would be interesting.

Using laser wave packets, it may be possible to
observe the changes in angular distribution due to the
interference of potential and resonant scattering as the
quantal uncertainty is changed. The potential scattering
could be obtained by diffraction of laser light round a
small crystal of laser material.
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APPENDIX C

STATISTICAL MODEL CRO3SS SECTION.

We use the channel spin representation and the
theory as presented by Lane =nd Thomass.

L)§ denote the spins of the target nucleus and
incident neutron respectively and the channel spin

in the incident channel is

The total angular momentum is

T = s+ ¢

(6.2)
where € 1s the angular momentum of relative motion in
the incident channel. The corresvonding quantities
in the outgoing channel are primed and

= ' '
= ¥+e . (a.3)
With the random phase appfoximation, the differential
cross section fof inelastic scattering from the

nuclear state o to the state &’ is

i u-) b §
P s — T g Zypqr(2e0) Ay (51€518¢) [ Usires oy
(2aT+)(2iv) (c.1)

The angular part A(€s|e's'lB) 1s given by the
following combination of Clebsh-Gordon coefficients

and spherical harmonics



m! b N
Sl 85 mo 17m) (64 memtmt 152) Y, (0249 |

(c.5)

We assume that the collision matrix element U(‘:)‘z ras 2

does not depend on the channel spins, and that lU-usz,'qu.

takes the form

J b
IU-(S'C KSLI - T:ILG‘(E«) -’:ycl(Eul') (C 6)

-y

i.L“.{"J de.( T;ue'l(ed")P(Ed. I")

where the double primed summation is taken over all

T
the possible competing intermediate states and 7;,_
1s a transmission factor. /J(E«")I") is the level
density factor.
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NOTES _ON THE 7090 FORTRAN CODE FCR N (F'?) FA )n

The subroutines SIGN, LEGEND, WIGNER, ADIST
calculate the angular factor Az (&S [ L) s'] B) .
LEGEND gives the spherical harmonics and WIGNER the
Clebsch-Gordon coefficlents. The subroutines RIP,
HKL, DHKL, PENET produce the transmission factors

Te(E) . Simple transmission factors for a real
square well potential following Blatt and Weisskopf39
are computed. We essume that the transmission factors
do noﬁ depend on J er S .

COMET, ADDS, SUMUP, SETUP compute the denomina-
tor in (C.6). Simpson's rqle is used to perform
the energy integration.

SDEN, EDEN glve the spin dependence and energy
dependence respectively of the level density factor.

The spin dependence is taken as

o(e,1) = pe)(RI+D oyp f"(“'“i( (c.7)

2.0 0™

0~ 1s the spin cut-off parameter.
The energy dependence 1s taken from yhe work of
Newton56.
For n(P" F')n' to the first excited state,
the possible channel spins are O and 1. This and the

angular momentum rules limit greatly the possible
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values in the sums over J, £,£' s,s’ The MAIN CODE
performs two summations which take into account all
possibilities.

The input parameters for the projectile are
EINIT, EFINAL ang THETA, being respectively the
incident neutron energy, the final neutron energy
and the scattering angle. The input parameters for
the target are POT, WP, LP, RD, K, EJN, EJP, SIGMA.
The first four determine the potential well and the
last four the level density. LSTOP, ISTOP, and NOP
are parameters specifying limits of the sums over
intermediate competing states and LMAX 1s the number

of partial waves taken in the calculation.
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e
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SUBROQUTINESTIGN{NsXS)
NA=N—-(N/z2)*2
IFINAYIZ,243
2 XS5=1.0
GOTO4
XS==140
RETURN
END
SUBROUT INELEGEND
COMMONFGoLWI1sLW2 s LW3 oMW1 sMW2 9 IWsLSHIMSHes THETASPHI o IW1lsIW2sL114L27T
ULJsL1F L 2FsCLEB9YLMRsYLMI s ANGD
DIMENSIONFG(100)
IFDIVIDFCHECK1O00,110
100 PRINTI1O01
101 FORMAT(80H DIVIDE CHECK TRIGGER FOUND ON AT START OF LEGEND SUBROU
1TINE)
110 ISPILL=Q
JSPILL=0
AlL.=LSH
AM=MSH
AM=AL+1 ,~AM
RPHI=0.01745329252%PHI
RTHETA=0eC1745329252%THETA
IF(THETA) 301,300,301
300 SN=0.
CS=1le
GOTO304
301 IF(180.-THETA)303,3025303
302 SN=0,
CS=~1.
GOT0304
303 CS=COSF(RTHETA)
SN=SINF (RTHETA)
SNL=LOGF{SN)
SNLL=AL*SNL
2304 IF(90.0~-THETA) 19243
1 ACS=ABSF(CS)
CSL=LOGF (ACS)
50CSsS=-1,
CS=ACS
GOTO4
2 CSL=1.
S0CS=0.
GOTO4
3 CSL=LOGFI(CS)
SOCS=1.
4 IF(PHI)5e647
5 PRINT1O02
2 FORMAT(49H PHI NEGATIVE IN STATEMENT 4 OF LEGEND SUBROUTINE)
6 U=0.
IF(AM)8,9,10
7 IF(AM) 2728429
8 AM=ABSF (AM)
N1=XFIXF(AM)
CALLSIGN(N1sR)
GOTO17
9 N1=0
IF(S0OCS)Y11s12413
10 N1=XFIXF({AM)

£ W



R=1,
GOTO17
11 CALLSIGN(LSHsR)
GOT0Z21
12 TF(LSH=(LSH/21%2) 145154916
13 R=1l.
G0T021
14 PRINT103
103 FORMAT (41H LSH INCORRECT IN 12 OF LEGEND SUBROUTINE)
CALLEXIT
15 LH=LSH/2
CALLSIGN(LHsR) ]
FE=FGI(LSH)=AL¥FG(2)=2+*FG(LH)
GOT0S58
16 FF=0.,
R=0.
GOTO59
17 IF(S0CS5)18919920
18 CALLSIGN(LSH=-N1,2)
R=R%*Z
GOTO24
19 GOTO46
20 GOT024
21 1F(THETA)80523,80
80 IF(180.0-THETA)224+23,522
22 GOTO46 |
23 FF=0a.
GOTO58
24 IF(THETA)81:26581
81 IF{180.0-THETA}25+26525
25 GOTO46
26 R=0.
FF=0.
GOTDS59
27 AM=ABSF (AM)
CP=COSF (AM*RPHI)
SP=—SINF{AM*RHPI)
N1=XFIXF({AM)
CALLSIGN(N1sZ)
GOTO30
28 CP=1,
SP=0,
N1=0
Z=1e
GOT0O30
29 Z=1.
N1=XFIXF{AM)
CP=COSF (AM*RPHI)
SP=SINF (AM¥RPH1)
30 R=Z*CP
U=Z#5P
IF(S0CS5)31332933
31 MM=XFIXF(AL-AM)
CALLSIGN(MM»Z)
R=Z#*R
U=zZ#%Uy
GOTO34
32 IF(LSH=(LSH/2)%2)170+71s72
70 PRINT104




104 FORMAT (41H LSH INCORRECT IN 32 OF LEGEND SUBROUTINE)
CALLFXIT o =

71 LH=LSH/2
CALLSIGN(LH»2Z)
FF=FGILSH)~AL*¥FG(2)=2%FG(LH)
R=Z %R e
U=zZ#U
GOTO58

72 FF=0,
R=0e
U=0,
cOTO59

33 GOTO34

34 IF(THETA)B2+36,82

B2 IF(180.0-THETA)35,+36935

35 GOTO46

36 IF(LSH+1-MSH)T73+74,73

73 FF=0,
R=0s
U=GC,
GOTO59

74 FF=0,
GOTO58

46 IF(LSH=N1-1)47,48,49

47 FF=SNLL4+FGI2¥LSH)}-AL¥FG(2)~FG(LSH)
GNTD58

48 IF(50CS5190591590 :

90 FF=CSL+FG(2%LSH)+SNL*{AL~1+)—AL*FG(2)-FG(LSH)
GOTO58

91 FF=l.
R=0,
U=0,
GOTO58

49 JL=LSH :
F1=SNLL+FG(2¥LSH)~AL*FG{2)~-FG(LSH)
F1=EXPF(F1)
IF(S0CS5)92+:93+92

92 F2=CSL+FG(2%¥LSH)+SNL¥ (AL-1«)~AL¥FG{2)~-FG(LSH)
F2=EXPF(F2)
GOTO94

93 F2=0,

94 AJL=JL g5

50 F3=(2¢*(AJL~14)#CSHF2-SN*¥F1)/SN/(AL+AJL=-1s)/ (AL~AJL+2,)
IFDIVIDECHECK105,106

105 PRINT107

107 FORMAT(52H DIVISOR IS ZERO IN STATEMENTS50 OF LEGEND SUBROUTINE)

106 IF{N1+2-JL)51452,+53

51 AJL=AJL-1,
JL=JL-1
Fl=F2
F2=F3
GOTO50

52 FF=F3
AF=ABSF(FF)
IF{FF)54955+56

54 SOF=-1.
GOTO57

55 SOF=0,
GOTO57



59

200
210
201
202
220

203

202
201
203

SOF=10

GOTO57

PRINT108sJL

FORMAT (48H INCORRECT LOOPING IN 350 OF LEGEND SUBROUTINE E15.5)
CALLEXIT

FF=LOGF (AF )

R=R*S0OF

U=U*S0OF

NZ2={ SH=-N1+1

ANZ2=N2

N3=LSH+N]

FF=FF+{LCGF (2 #¥AL+14)+FGINZ2)~LOGF(ANZ)—LOGF (4 ,,%3,141592£%)~FG{N3))
172,

YLMR=R*¥EXPF (FF)
YLMI=U*EXPF (FF)
IF(ISPILL)200,2014+200
PRINTZ210s1SPILL

FORMAT(23H UNDERFLOW OCCURRED AT 16s21H IN LEGEND SUBROUTINE)
IF(JSPILL)Y2024+203,5202
PRINT220sJSPILL

FORMAT(22H OVERFLOW OCCURRED AT 16921H IN LEGEND SUBROUT INE)
CALLEXIT

RETURN

END

SUBROUTINEWIGNER

COMMONFGOLWL oL W2 oL W3 oMW sMW2 9 IWeLSHIMSHs THETAWPHI s IW1lsIW2,L11,L27,
ULJsL1F ol 2F s CLEBsYLMRIYLMI » ANGD
DIMENSIONFG(100)

ISPILL=0

JSPILL=0

AJ=LW1

AK=LW2

AL=LW3

AL2=ABSF({AJ-AK)

AL3=AJ+AK

IF(AL2=-AL-0e5)1491s29
IF(AL3=AL+0e5)294242

AM=MW 1

AN=MW2

GOTO(3s4)s1IW

GOTO5

AJd=AJ/2,

AK=AK/2,

AL=AL/2,

GOTO5

AM=AJ+] ,~AM

AN=AK+1,—AN

AAM=ABSF (AM)

AAN=ABSF(AN)

FM=AM+AN

AFM=ABSF(FM)
IF(AFM=AL~045)6+6+29
IF(AAM=AJ~0e5) 797629
IF{AAN~AK=0.5)8,8429
IFIAM)201,20245201
IF(AN)201+20345201

GOT0100

JT=AK+AL+AJ

JTH=JT/2



IF{JT~ ?*JTH3204a205 204
204 CLFB=0,
GOTO30
205 11=JT-2%L Wl
I1H=11/2
[2=0T=-2%L W2
12H=12/2
13=JT-2%L W3
I3H=13/2
All=11
Al2=12
Al3=13
Al1H=TI1H
AT 2H=12H
AI3H=13H
AdT=JT
GY=FG(I1+1)+FG(I24+1)+FG(I3+1)-FG(JT)
Y=(Y+LOGF((2.0*AL+1.0)/(AIl+1.0)/(AIZ+l.O)/(A13+l.0)/{AJT+1.0)))/2
1,
YY+FGIJUTH)-FG(I1H+1)=FG(I2H+1)=FG(I3H+1)
Y= Y+LOGF((AIlH+1.)*(AIZH+l.)*(AI3H+1.))
I6=(LWl+l Ww2-LW3)/2 B
CALLSIGN(IAsXS)
CLEB=XS%#EXPFI(Y)
GCTO30
100 11=AL+AJ-AK+0,41
All=11
12=AL-AJ+AK+0.1
A12=12
I3=AJ+AK-AL+0,.1
Al3=13
[4=AL-FM+0,1
Ala=14
I15=AL+FM+0,1
AlI5=15
16=AJ+AK+AL+1.1
Alé=16
17=AJ-AM+0,1
Al7=17
18=AJ+AM+0,1
Al18=18
19=AK-AN+0,1
AI9=19
I110=AK+AN+0Q.1
All10=110
9 Y= FG(Il+l)+FG(12+1)+FG(I3+l)+FG(14+1)+FG(I5+l)~FG(16+l)-“G(I7+1)~
1G(IB8+1)-FG(I9+1)~FG(I11i0+1)
Y=Y+LOGF( (2 *AL+1.)*(A16+1.)*(AI7+1.)*(A18+1.)*(AI9+1.)*(AIIO+1.)/
l(AIl+1.)/(AIZ+1.)/(AIB+1.)/(A14+1.)/(A15+1.))
Y=Y/2e
I111=AK+AL+AM+0,.1
Alll=111
NU=XMINQF(I12+s154111)
IFINU)10s11912
10 GOT029
11 115=AJ=-AK~-FM+0,.1
All5=115
IF(115113s16914
13 CLEB=C,



14

12

15

17

18

19

16

20

GOTO30
CALLSIGN(I110sXS)
YL=FG(I11+1)+FG{17+1)=FG{I5+1)=FG(I15+1)~FG(I12+1)
YL=YL+Y+LOGF((A12+1.)*(A15+1.)*(A115+1.)/(A111+1.)/(AI7+1.))
CLEB=XS*EXPF({YL)

GOTO30

115=AJ~AK~FM

IF({I15)15s164+16

115=XABSF(115)

All5=115

IF(NU-1153117+18+16

CLEB=0,

GOT030

116=110+115

CALLSIGN{1164XS5)

I11=111-115

Alll=111

112=17+115

All2=112

113=12-115

All3=1113

114=15-115

ATla=114
YL=FG(I11+1)}+FG(112+1)~FG(I113+1)-FG{I14+1)=FG(I115+1)
YL=Y+YL+LOGF((A113+1o)*(A114+1.)*(A115+1-)/(AIll+lo)/(AIlZ+1-))
CLEB=XS#EXPF (YL)

GOTO30

NUMIN=I115+1

NUMAX=NU

116=110+115

CALLSIGN(T1169X5)

117=111-115%

All7=117

"112=17+11%

ATl12=112

I113=12~115

AIl3=1113

114=15-115

All4a=114
SUML=FG{I17+1)+FG{I1124+1)~FG(113+1)=FG(I14+1)~FG(I115+1) )
SUML=SUML+Y+LOGF((A113+1.)*(A114+1.)*(A115+1.)/(A117+1.)/(A112+1.)
1 ) :::3
SUM=XS*EXPF (SUML)

I115=-115%
GOT020
NUMIN=1
NUMAX=NU
CALLSIGN(I10,XS)
All5=11s5
SUML=FG(I11+1)+FG(I7+1)~FG(I2+1)~FG(1I5+1)=FG(115+1)
SUML=SUML+Y+LOGF((AIZ+1.)*(A15+1.)*(A115+l.)/(A111+1.2/(A17+1.)}
SUM=XS#EXPF (SUML)
DOZ2INU=NUMIN s NUMAX

121=111-NU
Al21=121

112=17+NU
All2=112

113=12-NU

All3=1113



21

29
30
60
160
61
62
162

114=15~NU

ATl4=114

122=NU+115 =it

A122=122

116=110+NU - =
CALLSIGNITI169X5) TE

SUML = FG(I?]+1)+FG(112+1)*FG(113+1)—¢G(Ilh+l)—FG(IZZ+1)—rG(NU)
SUML= SUML+Y+LOGF((A113+1.)*(A114+1.)*(AIZZ+1.)/(A121+1.)/(A112+l.)
1)

SUMI=XS#EXPF (SUML)

SUM=SUM4+SUMI

CONTINUE

CLEB=SUM

GOTO30

CLEB=OQ

IF(ISPILL)6Cs61560

PRINT160sISPILL

FORMAT (23H UNDERFLOW OCCURRED AT I6s21H IN WIGNEP SUBROUTINE)
IF(JSPILL)62+63,+62

PRINT162

FORMAT (22H OVERFLOW OCCURRED AT 16921H IN WIGNER SUBROUTINE)
CALLEXIT

RETURN

END

SUBROUTINEADIST

COMMONFG;LWl’LWZ,LW39MWlaMW29IW9L5H9M5H9THETA9PHI:IWlsIWZ;LlI9LZI0

ULJsL1FsL2F sCLEBsYLMRsYLMI » ANGD

DIMENSIONFG(1G0)
N1=2%L271+1

F=0.,0
DO7TM1=1,N1
ITWw=1wl

LWwl=L1l1

Lw2=L21

LwW3=LJ
MW1=L11+1
MW2=M1
CALLWIGNER
A=CLEB#*CLEB
LWl=L1F

Lw2=L2F

LwW3=LJ

Iw=1Iwz

B=0,0

NZ2=2%#L1F+1
DOEM2=14N2
MW1l=M2
MW2=L2F-L2T+L1F+14M1-M2
IF(MW21}3s344
E=0.0

GOTO6

IF(2%L 2F+1-MW21)345,45
CALLWIGNER
C=CLEB*CLEB
LSH=L1F

MSH=MW1

PHI=0,0
CALLLEGEND
D=YLMR*YLMR+YLMI*YLMI



100

100

E=C#D

B=F+B

F=A¥B+F

ANGD=F

RETURN

END
SUBROUTINERIPIL2s5XsSHsTH)
H1=0.0

H2==1s0/SX

H2=H2

H4=H3/5X

IF{L2-1)3s495

SH=H1

TH=H2

GOT0O100

SH=H3

TH=H4

GOTO100

DOBNH=2,L2

AN=NH#*2~1

SH=AN#¥H3/5X-H1

TH=AN¥H4/ SX-H2
IF(NH=L2)7+8,8

H1=H3

HZ2=H4

H3=5H

H4=TH

CONTINUE

CONTINUF

RETURN

END
SUBROUTINEHKL (L. 4¢SXsHL)
CALLRIP(L4+SXaSHs TH)
HL=SH* %24+ TH#%2

RETURN

END

SUBROUTINEDHKL (L3sSXsDHL)
D1=1.0

D2=0,0

D3=1.0/58X
D4=—1a0+1,0/SX%k%2
IF(L3-1)39495

UH=D1

VH=D2

GOT0100

UH=D3

VH=D4

GOTO0100

AH=L3
CALLRIP({L3-195XsSH1IsTH1)
CALLRIP(L3=29SXsSH2+TH2)
UH=SX#SHL1=AH® {2 O%¥AH~1,0)%SH1/SX+AH#5SH2
VH=SX*¥TH1-AH* (2 (O#AH~140)*TH1/SX+AH*TH2
DHL =UH##2 4V H# %2

RFTURN

END

SUBROUT INEPENET (L +SXsBXsTC)
[FISX)154596

TOP=0.0




=

12

BOT=1.0

GOTO7

CALLHKL (L sSXoHL)Y
CALLDHKL (L sSXsDHL)}

TOP=4 4%#BX
BOT=BX#BX#SX¥HL +2 ¢ #BX+5X*¥DHL
TC=TOP/ROT

RETURN

END
SUBROUTINESDEN{SIGMASNSPINSISs5D)
IF(IS~1)3+3+4

ASPIN=NSPIN

GOTOS

A=NSPIN

ASPIN=A/2.,0

D=2+, 0%SIGMA*¥SIGMA
B=~ASPIN¥ASPIN/D

E=ASPIN+1.0

C=—-E*E/D

SD=EXPF(B)-EXPF(C)

RETURN

END
SUBROUTINEEDEN(EJINsEJP sKoE s ToED)
IF{E—~e5)1s192

z o5

A=K

B=(EJN+EJP+1,0)

AL=LOGF (A)/3.

AT=EXPF (AL)

TOP=4 4 ¥F
BOT=e4982%,4982#B®AT*AT
C=TOP/BnT

T=8SQRTF(C)

UT=(2%¥F+34%T)
BN=SQRTF (2 ¥FJN+1e)
BPp=SQRTF(2,*EJP+1.)
TDEN=(ATH#%5) *BN#BP#yUTHUTH*EXPF (8475)
W= o4982%AT*SORTF (B#E)
TNUM=EXPF (W) #1C %3¢
ED=TNUM/TDEN

RETURN

END
SUBROUTINESETUP(P1sP2+sEYsSXsBX)
A=P1#EY+P1%P2

B=P1¥EY

BX=SQRTF{A)

SX=SQRTF(B)

RETURN

END
SUBROUTINECOMET {1 sLsLSTOPsINDsSXsBXs TSUM)
LSPEC=LSTOP

IA=1-(1/72)%2

IF(IND)192s3

IF{IA)12+12.13

LMIN=L-14+2

LMAX=L+1

GOT021

LMIN=L-1+1

LMAX=L+1+1



GOTO31
2 IFUIA}14e144515
14 LMIN=L=]+1
LMAX=i+1-1
G0OT021
15 LMIN=L-1
LMAX=L+1
GOTO31
1 IF(IA)1As16s17
17 LMIN=L~T
LMAX=L+1-2
GOT021
16 LMIN=L=-1-1
LMAX=L+1~-1
GOT031
21 IF(LMIN)22423+23
22 LMIN=LMIN+2
GOT021
23 IF{LMAX-LSPEC)Y244244,25
25 LMAX=LSPEC
24 TSUM=0.0
27 IF(LMAX-LMIN)100+28,+28
28 LMAX=LMAX+1
LMIN=LMIN+1
DO26NI=ILMINsLMAXs2
N=NI-1
CALLPENETI{NSsSXsBXsTC)
26 TSUM=2.#TC+TSUM
GOT0100
31 IF(LMIN)32+33433
32 LMIN=LMIN+2
IF(LMINY32535435
35 IF(LMAX-LSPEC)364+364+37
37 LMAX=LSPEC
GOT024 :
36 CALLPENFT(LMAXsSXsBXsTC)
TSUM=TC
LMAX=LMAX~-2
GOTO27
33 IF(LMAX-LSPEC)41+41442
42 LMAX=LSPEC
CALLPENETILMINSSXsBXsTC)
TSUM=TC
LMIN=LMIN+2
GOT027
41 CALLPENET(LMAXsSXsBXsTC)
TSUM=TC
CALLPENFT(LMINSSXsBXsTC)
TSUM=TC4+T SUM
LMIN=LMIN+2
LMAX=LMAX~-2
GOT027
100 RETURN
END
SUBROUTINEADDS(Ls INDsLSTOP s ISTOPsSXsBXsSIGMASSTSUM)
5STSUM=0,0
DO21I=1s1STOP
CALLCOMET(TIsLsLSTOPSINDsSX9sBXsTSUM)
A=TSUM




NSPIN=2%1-1
CALLSDEN{SIGMASNSPINS325D)
B=SD
2 STSUM=A#B+STSUM
RETURN
END
SUBROUTINESUMUP(Pl,P29LSTOPsISTOPsNOP;SIGMA;E}N’EJP’K9L91ND5EMAX,5
1UM)
Z2=NOP
DELTA=EMAX/(2.%27)
CALLSETUP(PI9P29EMAX’SX96X)
CALLADDSILSINDsLSTOPsISTOPsSXsBXsSIGMASSTSUM)
CALLEDEN(EJNSEJP sK»,o,5+T5ED)
A=STSUMH*ED
CALLSETUP(P1sP2,0495XsBX)
CALLADDS{(LsINDsLSTOPsISTOPsSAsBXsSIGMAsSTSUM)
CALLEDEN(EJNSEJP sKsEMAXsTSED)
B=STSUM*ED
SUM1=(A+B)I*#DELTA/3,
C=2a
SUM2=0,
NMAX=2#NOP -1
DO2M=1 s NMAX
Y=M
E=DELTAxY
CALLSETUP (P1sP24sF +sSXsBX)
CALLADDS(L s INDsLSTOP s ISTOP+SXsBXsSIGMAsSTSUM)
X=EMAX~F
CALLEDEN(FEJUNSEJUP sKsXsTHED)
Cz=6e~-C
2 SUM2=(C*DELTAXED#*STSUM/3,)+SUM2
SUM=SUM1+SUM2
RETURN
END
COMMONFGoLWI sLW2 s LW3sMWLoMW2Z2 s IWsLSHoMSHs THETAGPHI o TW1oIW2oL 11,027
ULJsL1FsL2FsCLEBsYLMRsYLMI s ANGD
DIMENSIONCNT1(50) sCNT2(50)9sCNT3(50)
DIMENSIONFG(10C)

FG(1)=0,0
DOT7K=2,100
AK =K

7 FG(K)=LOGF{AK)+FG(K=1)
READINPUTTAPE2 92 sKsEJNIEJP s CPsWT sRDsPCT o SIGMASITESTL s ITEST2, ITESTS
WRITEOQUTPUTTAPE 3,55
WRITEQUTPUTTAPE 3359sKsEJNsEJPsCPosWT sRDsPOT s SIGMASITESTI,ITEST2,51T
1EST3

4 READINPUTTAPE23+3sLSTOP sISTOP sNOPsLMAXSEINITSEFINAL o NTHETASDELTA
WRITEQUTPUTTAPE3,500
WN2=CP/ (2. *WT*EINIT)
P1=2,0%WT#RD*¥RD/CP
" P2=POT
LY=LMAX+1
DO110LZ=1,LY
M=LZ-1
CALLSUMUP (P1sP2sLSTOP s ISTOP sNOPsSIGMASEJINsEJP 4K sMs1sEINIT, SUM)
CNT3(M)=SUM
WRITEOUTPUTTAPE3,503sCNT3(M)
CALLSUMUP(P1+P2sLSTOP s ISTOPsNOPsSIGMASEINSEJP 3K sMsOsEINIT SUM)

CNT2({M)=5UM



WRITEQUTPUTTAPE3s504sCNT2 (M)
CALLSUMUP(PL1sP2sLSTOP s ISTOP 3 NOP s SIGMASEINsEUP oK eMs=19EL NIT o SUM)
CNT1(M)=5UM
110 WRITEOQUTPUTTAPE3sS505sCNT1 (M)

WRITEQUTPUTTAPE3+502
DO30OON=1sNTHETA

TN=N=-1

THETA=TN*DELTA

IWl=1

Iwz=1

SPWT=0,

LX=LMAX+1

DO10OLI=1,LX

L=tI~1
CALLSETUP(P1sP2+sEFINAL 9SXsBX)
LPLUS=L+1
CALLPENET({LPLUSsSXsBXsTC)
Ll1I=L

L2I=1

LJ=L+1

L1F=L+1

L2F=1

CALLADIST

A=ANGD

L1I=L

L21=1

LJ=L+1

L2F=0

L1F=L+1

CALLADIST

B=ANGD

S3=(A+B*¥TC

L1I=L

L21=1

LJ=L

L1IF=L+1

L2F=1

CALLADIST %,
C=ANGD

L1I=L

L21=0

LJ=L

Li1F=L+1

L2F=1

CALLADIST

D=ANGD

S2A=(C+DI*TC
IF(ITESTLII11s11512

12 WRITEQUTPUTTAPE 3450
WRITEQUTPUTTAPE 335519l sTCsAsBsS3+9CesDsS2A
- 11 LMINUS=[ -1

CALLPENET(LMINUSsSXaBXsTC)
LiI=L

L21=1

LJ=L

L1F=L~-1

L2F=1

CALLADIST
E=ANGD



L1i=L
L21=0
LJ=L
L1IF=L~-1
L2F=1
CALLADIST
F=ANGD
S2B=(E+F ) *TC
$52=52A+528
L1I=L
L21=1
Ld=1L-1
LiF=L~1
L2F=1
CALLADIST
G=ANGD
LiI=L
L2I=1
LJ=L-1
L1F=L-1
L2F=0
CALLADIST
H=ANGD
Sl={(H+GY¥*TC
TERM3=S3/CNT3 (L)
TERM2=S2/CNT2 (L)
IF(CNT1(L})1014101,10C2
101 TERM1=0,
GOTO103
102 TERM1=S51/CNT1(L) =
103 TOTAL=TERM1+TERMZ2+TERM3
IF(ITEST2)13+13,14
14 WRITEQUTPUTTAPE 3452
WRITEQUTPUTTAPE 3353sL s TCsEsF s52BsGeH3S1:S52sTERML s TERMZesTERMZ
13 CALLSETUP(PL1sP2sFINITsSX9BX)
CALLPENFT(L aSXsBXsTC)
Z=2%L+1
SPWT=TC#Z#*TOTAL+SPWT
IF(ITEST3)100+100515
15 WRITEQUTPUTTAPE 3,54
WRITEQUTPUTTAPE 3456sTCsSPWT
100 CONTINUE
DCS1=SPWT*#WN2¥%,7854
CALLSDEN{SIGMAs152+5D)
E=FEINIT-EFINAL
CALLEDEN{EUNSEJPsKysFosTsED)
DCS=DCS1#SD*ED
WRITEFOUTPUTTAPE 3457
300 WRITEQUTPUTTAPE 3458 sL.STOP s ISTOP sNOP s LMAXsEINITSsEFINALSTHETASDCS]1 s
1DCS i
2 FORMAT(13+7E8445311)
3 FORMAT (413,2E844413,E844)
502 FORMAT{9H CHECKTWO)
500 FORMAT (9H CHECKONE)

50 FORMAT (90H L TC A B S3 C
1 D S2A )

51 FORMATI(1H I13s7E12e4)

52 FORMAT(116H L TC £ F 528 3

9
1 H S1 52 TERM1 TERM2 TERM3 )



53 FORMATIIH 13511E1044)

54 FORMAT(28H TC SPWT )
503 FORMAT(1H F10.4)
504 FORMAT(1H E1lCe4)

505 FORMAT(1H E10.4)
55 FORMAT(51H DIFFERENTIAL CROSS SECTION FOR THE CONTINUUM MODEL/1H /

114 /111K K EJN EJP ce Wl RD
2 POT S1GMA ITEST1 ITESTZ2 ITEST3

56 FORMAT(1H 2E12.4/1H )

57 FORMAT{B9H LSTOP ISTOP NOP LMAX  EINIT EFINAL THE
1TA DCS1 DCS ) i

58 FORMAT(1H 416+5F1244)

59 FORMAT(1H I3s7E12e44317/1H )
GOTO4
END





