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SUMMARY

An account of a theoretical and experimental study
of the development of laminar natural-convective flow
in heated vertical ducts is presented in this thesis.
The ducts studied were open-ended and circular in cross-
section, and the heated internal surface either had a
uniform temperature or dissipated heat uniformly. In
addition, the effect of restricting the flow at entry
was studied in the case of ducts with uniform surface
temperatures. In this work the flow restriction was
provided by keepipg the lower part of the duct at
ambient temperature.

Relationships between Nusselt and Rayleigh numbers
were derived by relaxing the governing equations. The
general solutions obtained on a computer were corrobor-
ated at both small and large Rayleigh numbers by theor-
etical analysis.

For uniform surface temperature ducts two distinct
laminar flow regimes were observed. At small Rayleigh
numbers the flow was fully developed and at large Ray-
leigh numbers boundary layer flow occurred. An entry

restriction had the effect of lowering the Nusselt
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number. However, it was found that the flow ceased to
be laminar when the entry restriction reached a certain
size and that the size of the largest entry restriction
for laminar flow decreased with increasing Rayleigh
numbers.

Besides confirming the theoretical work, the
experimental studies supported the hypothesis that entry
restrictions that were too large to allow laminar f{low
throughout the duct produced a mixing flow above where
the laminar flow degenerated. Furthermore, it was
found that, if the entry restriction were very large, an
unsteady open-thermosyphon flow occurred in the top part
of the duct. In this case, the open-thermosyphon flow
dissipated heat in the upper part of the duct as did
the restricted-entry flow in the lower part.

Prandtl numbers greater than about 0.7 were found
to have only a small effect on the theoretical relation-
ship between the Nusselt and Rayleigh numbers. However,
the influence that the Prandtl number had on the rela-
tionship was shown to increase significantly as the
Prandtl number decreased below 0.7.

In uniform surface heat flux ducts, it is not
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possible to obtain fully developed flow because the
filuid is receiving heat along the entire length of the
duct. However, small Rayleigh numbers produced a flow
that resembled fully developed flow. At the other
extreme, large Rayleigh numbers produced a boundary
layer flow. For boundary layer flow, it was found
that the Nusselt number relationship for the uniform
surface temperature ducts could be satisfactorily used
if the entire surface were assumed to be at the mean

surface temperature.
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i, INTRODUCTION

1.1  Scope of the investigation - In many industrial

applications, the internal surfaces of vertical ducts
have to be cooled by natural convection. Since there
is 1little information in the literature on the subject
of natural convection in open-ended vertical ducts, it
was considered profitable to carry out a theoretical and
experimental study into the mechanism of laminar natural
convection in such ducts. The results of this study,
including those which have previously been published
(1,2)1, are presented in this thesis.

All the work to be described was undertaken on ducts
of circular cross-section, and the following specific
problems in natural-convective heat transfer were exam-

ined:

1. Ducts with uniform surface temperatures and
plain entries
2. Ducts with uniform surface temperatures and

restricted entries

(WA

Ducts with uniform surface heat fluxes and

plain entries

References, shown on page 173,
s g



Shown in Fig. 1.1 are sectional views of these ducts.
It will be seen in Fig. 1.1(b) that the entry restric-

tion is simply an unheated scection of the duct.
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Fig. 1.1 Diagrammatic sectioned views of the heated ducts

(a) Plain-entry duct with a uniform surface temperature
(b) Restricted-entry duct with a uniform surface temperature
(c¢) Plain-entry duct with a uniform surface heat f{lux
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2

List of symbols

General:

Cross-sectional area of the duct

Internal surface area of the heated section of

the duct

Specific heat at constant pressure

Constant

Acceleration of gravity

Heat dissipated by convection from the bottom of
the duct to a particular elevation per unit time
Thermal conductivity of the fluid

Length of the heated section of the duct

Length of the unheated section of the duct (entry-
restriction)

Pressure

Pressure defect, (p-po)

Hydrostatic pressure

Prandtl number, ucp/k

Volume flow

Radial coordinate ,
Dimensionless radial coordinate, r/rw
Temperature

Velocity of the fluid in the x- direction

Velocity of the fluid in the radial direction



Gr

Gr

Nu

Dimensionless fluid velocity in the radial direc-
tion, rwv/v

Vertical coordinate; x=0 at the bottom of the
heated section

Coefficient of thermal buoyancy of the fluid
Dynamic viscosity of the fluid

Kinematic viscosity of the fluid, u/p

Density of the fluid

Applicable only to ducts with uniform surface
temperatures:

Grashof number based on both the heated length and
. - , B N 2

the radius of the duct, gB(Tw To)rw/v L

Grashof number based on only the heated length of
B _ 37,2

the duct, gB(Tw TO)£ /v

Dimensionless heat dissipated from the bottom of

the duct to a particular elevation per unit time,

hx/pcpvQGr(Tw—To)

Dimensionless length of the heated section of the

duct, 1/Gr

Dimensionless length of the unheated section of

the duct, zi/RGr

Nusselt number based on the radius of the duct,

htrw/A(Tw~T0)k, which reduces to ht/ZHE(Tw-TO)k



Nug Nusselt number based on the heated length of
the duct, htz/A(Tw—TO)k, which reduces to
ht/ZHrw(Tw—To)k

P Dimensionless pressure, prv':"/plzszr2

Py Dimensionless pressure defect, pdr&/plzszrz

Q Dimensionless volume flow, q/2vGr

Ra Rayleigh number, Gr Pr

Rer Reynolds number based on the radius of the duct,
umrw/v or Ger/HrW

U Dimensionless velocity of the fluid in the
X-direction, ur@/szr

X Dimensionless vertical coordinate, x/2Gr; X=0
at the bottom of the heated section

0 Dimensionless temperature, (T—To)/(Tw~TO)
Applicable only to uniform surface heat flux ducts1

f Uniform surface heat flux

F Dimensionless uniform heat flux, 1/Pr

Gr#* Grashof number based on both the length and the
radius of the duct, ngr;/vzzk

1 The symbols for the dimensionless variables that are

not common to those for ducts having uniform surface
temperatures are identified by * for variables based
on the uniform heat flux and by + for variables
based on the mean temperature of the surface.
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X*

Grashof number based on only the length of the
duct, gpfe*/vik

Gr*/Nu#®
Dimensionless heat dissipated from the bottom of
the duct to a particular elevation per unit time,
h. /Ra®*fr

X w
H)’;(Nu*)2

Dimensionless length of the duct, 1/Gr#
Nusselt number based on the radius of the duct,
frw/(Twm—To)k
Nusselt number based on the length of the duct,

£4/ (T, -T )k

win
Dimensionless pressure, pr;/pzzszr*z

H/pQJZ\)?_Gr*Z

Dimensionless pressure defect, Pa v

Dimensionless volume flow, q/%vGr¥
Q*Nu*
Rayleigh number, Gr*Pr
Ra*/Nu#*
Reynolds number based on the radius of the duct,
. xO)*%
umlw/v or Gr*Q &L/HrW
Dimensionless fluid velocity in X-direction,
2 ~ %
rwu/ﬁle
Dimensionless vertical coordinate, x/8Gr#*; X*=0

at the bottom of the heated section



Dimensionless temperature, (T"To)k/frw

O%Nu*



Subscripts:
ct On the vertical axis and at the top of the duct
cX On the vertical axis and at elevation x, X, or X#*
d Defect (pressure)
e Refers to the smaller diameter entrance used in

the experimental study

1 Refers to the unheated section of the duct
j jth row of the relaxation grid

k kth column of the relaxation grid

L Based on the heated length of the duct

m Mean value

me At mid-elevation

o Refers to ambient conditions

opt Optimum value

P Constant pressure

T Based on the radius of the duct

t At the top of the duct

w Refers to the intermal surface of the duct

wm On the internal surface, and the mean value of

the variable
wt On the internal surface and at the top of the duct

wX On the internal surface and at elevation x, X or X#
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Abbreviations:

usT Uniform surface temperati

—

Te

USHEF  Uniform surface heat fiux
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20s THEORETICAL CONSIDERATIONS

2.1 ggneral

Heating the surfaces of the vertical ducts shown in
Fig. 1.1 will produce an upward natural-convective flow
through the ducts. The buoyancy forces giving rise to
the flow are produced by density differences in the
gravitational field.

In the case of the partly heated duct shown in
Fig. 1.1(b), the flow, and consequently the heat transfer,
will be reduced owing to the resistance presented by the
unheated section. If, however, the restriction exceeds
a certain size, the flow will cease to be laminar and
fluid may even enter the top of the duct. This produces
a flow in the upper part of the heated section similar to
that in an open-thermosyphon duct (3) (a vertical duct
that is open at the top and closed at the bottom).

Elenbaas (4) established the heat dissipating
characteristics of plain-entry ducts of circular and
other cross-sectional shapes with uniform surface temper-
atures. This was done by transforming the results of
his theoretical study of natural-convective flow through
heated vertical channels formed by two parallel and in-
finitely wide flat plates (5). It was not possible,

however, to obtain temperature and velocity profiles in a
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duct by using this method of solution.

This short-coming of Elenbaas's method (4) can now
be remedied by relaxing the governing equations on a
high-speed digital computer. Hence in the present work
the development of laminar flow in vertical ducts of cir-
cular cross-section was determined by relaxation. The
method adopted was similar to that used by Bodoia and
Osterle (6) in their study of natural-convective flow

through heated vertical channels.

2.2 Laminar flow equations
Throughout the analysis to be presented the follow-
ing simplifying assumptions have been made:
(a) The fluid is Newtonian
(b) Fluid properties, except demsity, are indepen-
dent of temperature
(¢c) Density variations are significant only in
producing the buoyancy forces
(d) Flow in the duct is steady, incompressible and
axisymmetrical
(e) Heat generated by internal friction is negli-
gible
(f) Pressure variations in the duct are too small
to have any effect on the propertiés of the

fluid
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The entry restriction shown in Fig. 1.1(b) was
chosen because it allowed laminar flow to be produced in
both sections of the duct, and thereby the mathematical
analysis was simplified. It should be noted that a sim-
ilar type of flow restriction was used by Dyer and Fow-
ler (7) in their analysis of the problem of the restric-
ted-entry vertical channel.

Fig. 2.1 describes the system of cylindrical coor-
dinates used in the analysis. Using the assumptions on
page 12, the equations of continuity, momentum and energy

in c¢ylindrical coordinates for laminar flow (8) are:

Continuity equation

du , LA . cee (2.1)

.

Momentumnggggﬁjons

ou du| _ _ 9p 13 du
p[u 5 TV 5&«] 5x © VT T {1“ ar] !
9%u
+ a_)_C_ZJ = gp . oa e (2-2)
IV av| . _ 9p E) 1 orv
p[” 5 * VBT 3r [&r ['f ar_J !

A 2‘\’ R
&e ”\\l voae (2 N 5)
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Energy equation

AT 3T k [9%T _ 1 8T , 92T
u'--+V—=**[*rar +?"a‘i~"+$€2’] ike (2.4)

The fluid entering and leaving the duct is under
hydrostatic pressure. However, as the flow is confined,
the pressure within the duct (p) will be less than the
hydrostatic pressure (po) at the same elevation. The
difference between the two pressures (p—po) will be
called the pressure defect (pd) (6).

The hydrostatic pressure decreases with elevation

(9) according to the equation

dpO
dx~ = " P,8 s (2.5)
3P, .
Hence adding both % and P8 to the right hand side of
Eq. (2.2) vyields
o(p-p,)
ou dul|l _ o) 1 92 2u
p[“ 7 ‘a—f] BT 'z')'f'[r E)—r] v
» 38+ 5o -0 (2.6)
ax? ELPy7P T '

The last term on the right hand side of Eq. (2.6)

is the buoyancy force. It can be expressed in terms of
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the temperature difference (T-TO) by introducing the
coefficient of thermal buoyancy (9) which is defined by

the equation

B = = % [%RJP e (2.7)

As an approximation for the small density difference
caused by a temperature variation (9), the following

relationship can be written:
(py-p) = pB(T-T)) cae, (2.8)

Substituting Eq. (2.8) into Eq. (2.6) yields

ﬂ + v _31_): = - .()_.Pd + 1 l ..a.___ T 9.9. 4
P 9X or oX ! T or or
+ 22Ul R (T-T) (2.9)
oxX o e '

Eqs. (2.1), (2.9), (2.3) and (2.4) can be expressed
in the following dimensionless forms by using the dimen-
sionless variables in the List of Symbols on pages 4 to 10.

The dimensionless equations for uniform surface

temperature (UST) ducts reduce to:

3U .V . 9V _ .
x*R*sg" 0 el (2.10)



5P
SU 5U d . 32U . 13U
Y 4 9y = o = Lt 6
Ust * VR 5% V3R "R T
D>
__8__1_d = O
SR
Y 06 1 320 1 99
Usx * VR " 57 [—TaR R z‘m]

17.

(2.11)

(2.12)

(2.13)

Using another set of dimensionless variables, the

equations for uniform surface heat flux (USHF) ducts

reduce to:

dU* av

SRR Sl

BPg -

oR

N N it

The reason that some of the symbols in Eqgs.

(2.14)
+ 9% (2.15)

(2.16)

(2.17)
(2.14) to

(2.17) are without an asterisk is that they are common to

both UST and USHT ducts.

applicable only to USIF ducts).

(Symbols with an asterisk are

Terms containing rw/zGr and rw/zGr* were omitted
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from the foregoing sets of dimensionless equations.

This is permissible because in most practical situations
these parameters, which are raised to the second power,
are very much less than unity as illustrated in the
following example. A 2 in. diameter duct has an inter-
nal surface temperature of 200°F and stands in a fluid

whose temperature is 100°F. Calculations show that:

-5
2 x 10

for air, rw/zGr

3 x 10 °

1t

for water, rw/RGr

In each case the value of the parameter will be seen to

be very much less than unity.
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3a PLAIN-ENTRY DUCTS WITH UNIFORM SURFACE
TEMPERATURES
3.1 General Nusselt relationship

The plain-entry duct with a uniform surface temper-
ature illustrated in Fig. 1.1(a) has a dimensionless
length (L), which, by definition (see List of Symbols),
is the reciprocal of the Grashof number (Gr). This
Grashof number is the product of gB(waTo)r&/vz, which is
a Grashof number of the conventional form, and the ratio
rw/z (6).

Since it has been assumed that the density of the
fluid does not vary (see page 12), the dimensionless
flow volume (Q) is constant throughout the duct and 1is

given by

1
Q = 21 [ U R dR co. (3.1)
0

It follows from Eq. (3.1) that the dimensionless heat
dissipated by the surface from the bottom of the duct to
a particular elevation (X) is given by

1

H = 21 U e R dR cis (3.2)
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The Nusselt number of the duct with the radius as

the characteristic dimension is given by

ht rw
Nu = AThT )k i w3 (3.3)
w 0

where ht is the rate at which the internal surface of
the duct dissipates heat. When the surface area (A) is

replaced by 2Hrw£, Eq. (3.3) becomes

h

_ t
Nu . ZH,Q,(T "T )k LT (3.4)
w 0

Expressing ht in terms of the dimensionless rate (Ht),

Eq. (3.4) becomes

Gr Pr Ht

R (3.5)

Nu =

Replacing Gr Pr by the Rayleigh number (Ra), Eq. (3.5)

reduces to

Ra Ht

Nu = T “ e (3.6)

Since the relationship between Nu and Ra alone is required,
Egqs. (2.10) to (2.13) will be solved for the followiﬁg
boundary conditions based on the geometry of the duct

shown in Fig. 2.1.
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Boundary conditions

X=0 and R=1 ; U=0, V=0, 6=1, Pd=0. (a)
X=0 and 1<R¢0 ; U=%, V=0, =0, Pg=0. - (b)
0<X<L and R=1 ; U=0, V=0, 6-1, Pd<0. (c)
-0 & _ oU_ 90

0<X<L and R=0 ; V=0, Pd<0, 3R 0, "R 0. (d4)
X=L and R=1 ; U=0, V=0, 6=1, P, =0. (e)
- ~ _ ~ 3U_ 90_ i
X=L and R=0 : V=0, Pduo, EK—O’ IR 0. (f)
0<XgL i Q is a constant. (g)

The assumption that the fluid enters the duct with a
uniform velocity (U=Q/Il) was based on the practice usually
adopted in analysing the development of forced-convective
flow in pipes (9).

Before beginning the general solution of Eqs. (2.10)
to (2.13), simplified solutions for the extreme values of
the ratio Q/rw will be obtained. The Nusselt relation-
ships yielded by this analysis are useful for the corrob-

oration of the results of the general solution.

3.2 Nusselt relationship for fully developed flow

Fully developed flow is obtained when the ratio
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SL/rw is made sufficiently large. This will produce a
duct that has a small Ra.

When the flow is fully developed, the temperature
of the fluid is the same as that of the surface, that 1is
6=1, and the velocity profile is parabolic. Thus, for

fully developed flow Eq. (2.11) reduces to

+ 1 . (3.7)

and the velocity at a radius R for a volume flow (Q) is

given by

U= 22 (1-r%) .. (3.8)

Substituting Eq. (3.8) into Eq. (3.7) yields

P
d _ . _ 8Q
ax - L 1L oo (3.9)

Clearly, the positive pressure gradient in the upper part
of the duct will decrease as the length of the duct 1is
increased and in the limit will approach zero. Thus,
making an/BX equal to zero in Eq. (3.9) yields Q = 1/8,
which will be the maximum value of Q. Comparing Egs.

(3.1) and (3.2) will show that both Q and HX have the
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same value when 06=1. Thus HX will be equal to II/8 for
fully developed flow and, since the fluid cannot absorb
any more heat when the temperature of the fluid has

reached 6=1, H also will be equal to /8. Substituting

t
Ht=H/8 into Eq. (3.6) gives the Nusselt relationship

R )
Nu = T% ce. (3.10)

which shows that for fully developed flow a linear rela-

tionship exists between Nu and Ra.

3.3 Nusselt relationship for boundary layer flow

Boundary layer flow occurs in a duct that has a
small SL/rw ratio and consequently a large value of Ra.
The temperature and velocity distributions near the sur-
face will be similar to those in the natural-convective
boundary layer on a heated vertical flat surface. Thus,
if the duct is opened out to form a vertical flat surface,
there should be very little difference between the rate
of heat transfer from the flat surface thus formed and
the duct. Therefore, Nu will be independent of the
radius of the duct and consequently can be expressed by

the equation

Nu = C{Ra® . (3.11)
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where C; is a constant. Expanding Eq. (3.11) and multi-

plying both sides by & gives

ht rw

A /Q/
A(T, T K

g %
s _ L
gBLTw To)r

W s
C1 . Prag, ce. (3.12)

which, on eliminating T reduces to

or

o N

NUQ, = C1 Ra

The subscript & in
teristic dimension

It should be noted

= C, z Pr

N

1 N 3“
gB (Tw TO) £

N

(3.13)

v

(3.14)

Eq. (3.14) indicates that the charac-
is now only the length of the duct.

that Eq. (3.14) has the same form as

the simple relationship for a vertical flat surface, for

which an accepted value of the constant is 0.59 (10).

Hence putting C; equal to 0.59 in Eq. (3.11) gives the

following relationship between Nu and Ra for a duct in

which boundary layer flow occurs:

1/
Nu = 0.59Ra™

(3.15)
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The Nu-Ra relationships for fully developed flow
and for boundary layer flow, given by Eq. (3.10) and Eq.
(3.15), are illustrated in Fig. 3.1. The actual rela-
tionship should be approximately asymptotic to the two

straight lines in this figure.

3.4 Method of solving the flow equations

In order to obtain Nu for all laminar flow values of

Ra, and to study the flow development, Egqs. (2.10) to
(2.13) were solved for the boundary conditions given in
Section 3.1 by relaxation on the CDC 6400 computer at the
University of Adelaide.

Finite difference forms of Eqs. (2.10) to (2.13)
are given in Appendix A and the relaxation procedure is

described in Appendix B.

3.5 Theoretical results

Examination of Eq. (2.13) will show that the
Prandtl number (Pr) of the fluid is a parameter of the
problem. Since air is the fluid in many natural-con-
vective processes, most of the computations were based on
Pr = 0.7. However, to study the influence that DPr has
on the Nu-Ra relationship, some calculations were made

using other values of Pr.
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Fig. 3.2 shows the laminar flow relationship
between Nu and Ra for Pr = 0.7. For small Ra, the curve
will be seen to be asymptotic to the relationship
Nu = Ra/16, which was derived in Section 3.2 for large
values of the ratio z/rw. However, for large Ra, it is

asymptotic to
1
Nu = 0.63 Ra™ ... (3.16)

and not Nu = 0.59 Ra%, which was derived in Section 3.3
for small values of the ratio z/rw. The discrepancy
between the equations, however, is insignificant bearing
in mind that the constant 0.59 was based on the vertical
flat surface relationship.

It will be seen in Fig. 3.3 that, for Pr » 0.7, Pr
exerts only a small influence on the Nu-Ra relationship.
In fact, changing Pr from 100 to 0.7 produces only a zero
to a 10% reduction in Nu as Ra increases from 1 to 10".
However, it will be observed that the influence of Pr
becomes increasingly significant as Pr decrecases below
0.7; when Ra = 10%, a change in Pr from 0.7 to 0.01
(Pr = 0.01 is a typical value for a liquid metal) pro-
duces a 40% decrease in Nu. Thus for Pr » 0.7 a

relationship of the form Nu = f(Ra) is satisfactory.
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For Pr < 0.7, however, the viscous forces become less
important in relation to the inertia and buoyancy forces

(9) and the relationship has the form

Nu = f(Ra, Pr) ... (3.17)

Elenbaas's relationship for Pr = « (4) has been reproduced
in Fig. 3.3, and it is interesting to note that the curve
lies very close to the relationship derived in the present
study for Pr = 10 and 100.

Fig. 3.4 shows the dimensionless volume flow (Q)
and total heat transfer (Ht) plotted against Ra. Both
curves at small values of Ra will be seen to converge and
approach 1/8, which was shown in Section 3.2 to be their
maximum value.

Heat transfer from the bottom to various positions
along the duct is presented in Fig. 3.5. It will be seen
that hx/ht rapidly approaches unity as the value of Ra
decreases below 10 and that hx/ht is almost independent
of Ra in the boundary layer regime.

Fig. 3.6 compares the temperature and velocity
profiles at the top of the duct for a wide range of Ra.

In this figure both fully developed and boundary layer

profiles will be seen. The temperature growth in the
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fluid along the axis of the duct for these Ra is shown
in Fig. 3.7. It is interesting to observe in this figure
that when Ra reaches 10° the temperature of the fluid in
the centre part of the duct rises barely above ambient.
Fig. 3.8 shows the pressure defects along ducts for
a small and a large value of Ra. The pressure gradient
for Ra = 0.2 will be seen to be constant above x/2=0.05.
This condition, it should be recalled, was assumed 1n
Section 3.2 to derive the Nu-Ra relationship for fully

developed flow.

Heat transfer per unit flow area

For given values of the length and surface tempera-
ture of a duct, there will be a radius which maximises
the rate of heat transfer (ht) per unit flow area (a).
The optimum radius of the duct is determined by the Ra

which yields the maximum value of

h h

t
ﬁ‘?g e (3-18)

Expressing ht on the right hand side of Eq. (3.18) in

dimensionless form yields

h H, Gr ¢ vi(T -T
= L " p TyTo) . (3.19)

a Nr*
W
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From Eq. (3.5),

. 2II Nu ~
H, Gr = Sp— (3.20)
and substituting Eq. (3.20) into Eq. (3.19) yields
EE _, N p cp*vl(Tw—TO) 0]
a Pr = r% e ’

Multiplying the numerator and denominator of the right

hand side of Eq. (3.21) by /Ra yields

. -,
_ 3]

nt B Nu Bgt (Tw To)

a — P Pr

(3.22)

Inspection of Eq. (3.22) will show that, for given values
of %2 and (TW—TO) and for constant fluid properties, the
terms to the right of Nu//Ra are invariant. Hence it

follows that

h
qqu- . (3.23)
“ /Ra

It will be seen in Fig. 3.9 that, for a given Pr,
the parameter Nu//Ra has a maximum value. Hence a duct
can have a Rayleigh number (Raopt) for which the heat

transfer per unit flow area is a maximum for given values
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of & and (T _-T ). Fig. 3.9 shows that Ra is almost
w o opt
independent of Pr for Pr » 0.7 but increases as Pr de-

creases below 0.7. When Pr has the value 0.7

Ray ¢ = 32 | co. (3.24)

and therefore the optimum radius of the duct is given by

I
= y 32 v2g
w opt gB(Tw-TO)Pr v (3.25)

It is interesting to note that both the present study for
Pr = 10 and 100 and the work of Elenbaas for Pr = « (4)

gave 30 as the value of Raopt'

Reynolds number

Based on the radius of the duct, Reynolds number

(Rer) is given by

Re = T i cv. (3.26)

a = -4 oo (3.27)
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Substituting Eq. (3.27) into Eq. (3.26) yields

Re = ng - ... (3.28)
W

Expressing q in Eq. (3.28) in dimensionless terms yields

_ Gr Q L
Re &8 —= , = s (3. 299
W
or
- Ra Q % .
Re. = rpy - T ... (3.30)

Fig. 3.10 shows the parameter (Rer Pr rw/ﬂ) plotted
against Ra.

Critical values of Rer can be estimated in the
following manner. Since both natural convection in ver-
tical ducts and forced convection in pipes produce para-
bolic velocity profiles for fully developed laminar flow,
it is reasonable to assume that the two flow conditions
will have the same critical value of Reynolds number.
Hence the critical Rer for fully developed flow in ducts
should be about 1150 (9). However, for boundary layer
flow the critical Re . is likely to be less than 1150
because the flow has a less stable velocity profile, as

shown in Fig. 3.6.
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4. RESTRICTED-ENTRY DUCTS WITH UNIFORM SURFACE
TEMPERATURES

4.1 Introduction

The entry restriction, as shown in Fig. 1.1(b), 1is
provided by leaving the lower part of the vertical duct
unheated. The sketches of the velocity profiles in
Fig. 1.1(b) show that the fluid enters with a uniform
velocity and that the flow develops in the unheated sec-
tion. If the length of the unheated section (li) is
large compared with the radius of the duct (rw), the flow
will be fully developed when it reaches the heated sec-
tion. It should be noted that, as the unheated section
presents a resistance to the flow, the pressure defect
will increase along its length.

A restricted-entry duct can be classified by two
dimensionless parameters: the Rayleigh number (Ra) aﬁd
the ratio of the lengths of the unheated and heated sec-
tions (Qi/l). It should be emphasised here that & in
the denominator of Ra is the length of the heated section
(2), and not the overall length of the duct (£i+2).

Considering the extreme values of the ratio zi/x,
if zi/z is made equal to zero the duct will become a
plain-entry duct and if the ratio is made infinitely
large the duct will closely resemble an open thermosyphon

duct (3).
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As in the case of the analysis of plain-entry ducts,
the Nu-Ra relationships for fully developed flow and for
boundary layer flow will be derived to corroborate the

general solution for the extreme values of Ra.

4.2 Nusselt relationship for fully developed flow

To obtain fully developed flow in both the heated
and the unheated sections, the ratios z/rw and 21/2 are
made large. The large JL/rW means that the’duct will
have a small Ra.

The momentum equation for fully developed flow 1in
the heated section is the same as that given by Eq. (3.9)

for the plain-entry duct namely,

3P
ﬂ_d =1~%9. c. (4.1)
heated
The corresponding equation for the unheated section is
derived in the same manner as Eq. (3.9), except that the
dimensionless temperature (8) is made equal to zero
instead of to omne. Thus the momentum equation for the

unheated section becomes

d . _ 8Q
3% = T . (4.2)

unheated



44,

According to Eqs. (4.1) and (4.2), and as illustrated
in Fig. 4.1, the pressure gradient in each section 1is
constant. Hence the pressure defect at the top of the

unheated section 1is

- . 8Q
= - =0 (4.3)

i
and at the bottom of the heated section the pressure

defect is

) 8
Py xeg ® [1 - ﬁg]z ce (4.0

Since the pressure defects given by Eqs. (4.3) and (4.4)

are equal, it follows that

(4.5)

Eq. (4.5) shows that for fully developed flow, the value
of Q is a function of only the ratio of the lengths of
the two sections of the duct.

Inspection of Fgs. (3.1) and (3.2) will show that
for 06=1, Q and HX have the same value. But HX is equal
to Ht for that part of the heated section in which the

flow 1s fully developed and therefore He and Q will have
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the same value. Substituting Ht for Q in Eq. (4.5)
yields
_ I
Ht = u———h—jtf~ ... (4.6)
8[1 + E“]

and substituting Eq. (4.6) into Eq. (3.6) gives the foll-
owing relationship between Nu and Ra for fully developed

laminar flow:

Nu = Ra T o (4.7)

It is interesting to note that as £i/2 approaches zero

Eq. (4.7) reduces to Eq. (3.10), which is the Nu-Ra re-
lationship for a plain-entry duct. Obviously, Eq. (4.7)
cannot be valid for all values of zi/z. For example, if
zi/z were to approach infinity, Nu, according to Eq. (4.7),
would approach zero. In practice this would not be the
case, because an open-thermosyphon flow (3) would develop
in the upper part of the duct and heat would be dissipated
accordingly. A discussion on the largest values of zi/z

giving laminar flow will be deferred until a later section.
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4.3 Nusselt relationship for boundary layer flow

To obtain boundary layer flow in the heated section,
the ratio z/rw is made small. Thus Ra will be 1large.

It 1s reasonable to assume that the form of the
Nu-Ra relationship will be the same as that for plain-
entry ducts. However, the values of Nu will be smaller
owing to the entry restriction reducing the flow rate.
Thus it follows from Eq. (3.11) that the Nusselt rela-

tionéhip is given by

1
Nu = C, Ra™ ce. (4.8)
where C, 1s a constant for a given value of Qi/z. The

maximum value of C, will be 0.63, which is the value
given by Eq. (3.16) for the case of zi/z = 0. lowever,
the lower limit of C, can be obtained only by solving
the flow equations. This will be done in a later

section.
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4.4 Method of solving the flow equations

The procedure used to solve Egqs. (2.10) to (2.13)
to give the general solution for the following boundary

conditions is described in Appendix B.

Boundary conditions

X=-L. and R=1 ; U=0, V=0, 0=0, P,=0.
E . . = 9 3 = =
X=-L; and 1<R<0 ; U=f, V=0, 6=0, P,=0.
-L;<X<0 and R=1 ; U=0, V=0, 6=0, P,<0.
L.<X<0 and R=0 ; v=0, 6=0, P.<0, Y=g
i ’ ’ » FatYs FR
0<X<1, and R=1 ;o U=0, V=0, 6=1, Pd<0.

. L . _ oU_q4 286_
0<X<L and R=0 V=0, P<0, $3=0, $p=0.
X=L and R=1 i U=0, V=0, 6=1, P,=0.

— — . V= = _agz égz
X=L and R=0 : V=0, Py=0, =0, §7=0-

—Li<X<L ;7 Q 1s constant,

(a)
(b)
(c)
(d)
(e)
(£)
(g)
(h)
(1)
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4.5 Theoretical results

Fig. 4.2 shows Nu as & function of both Ra and the
volume flow (Q) for Pr = 0.7. The top curve describes
the relationship for plain-entry ducts (zi/z = 0), and
branching off it are constant volume flow (Q) curves for
restricted-entry ducts. In the fully developed regime,
Nu will be seen to be proportional to Ra for a constant
value of Q. The explanation for this is obtained from
Eqs. (4.5), (4.6) and (3.6). According to Eqs. (4.5)
and (4.6), Q and Ht have the same value when the flow 1is
fully developed. Hence it follows from Eq. (3.6) that.
Nu for small Ra is proportional to Ra for a given value
of Q.

The relationship between 21/2 and Ra for various
values of Q is shown in Fig. 4.3. As Ra decreases, 1t
will be observed that the constant Q curves become inde-
pendent of Ra and that the value of Q is determined only
by the ratio gi/z. This finding is consistent with
Eq. (4.5). Further, at large values of Ra it will be
seen that the curves for Q < 0.021 terminate when zi/z
is between 2 and 4.

The Nu-Ra relationship in a more practical form,

with zi/z instead of Q as the third parameter, is shown
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in Fig. 4.4. (In cross-plotting this figure from
Figs. 4.2 and 4.3, the maximum value of zi/z in the
boundary layer regime was taken to be 2). The relation-
ship agrees with Eqs. (4.7) and (4.8), which were derived
for fully developed flow and boundary layer flow respec-
tively. As the entry restriction increases, the fully
developed flow regime will be seen to extend to larger Ra.
This is readily explained by the fact that the flow
becomes more developed as the flow rate decreases.
Further, the maximum value of 21/2 for a given Ra
will be seen in Iig. 4.4 to decrease progressively from
18 in the fully developed flow regime to 2 in the boundary
layer regime. Hence it follows that if a duct has a
ratio of £i/2 greater than the values shown in Fig. 4.4,
the flow will not be laminar. The reason for this will
be discussed later.
An entry-restriction can reduce the value of Nu
for fully developed laminar flow by a factor of 19 as

shown by the following equations:

Ra

Nu = 16 when zi/z = 0 oo (4.9)
Nu = 32 when 1./% = 18 (4.10)
20 : :
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However, for laminar boundary layer flow, Nu can be
decreased by a factor of only 1.3 as shown by the

following equations:

Nu

1
0.63 Ra™ when 21/2 = 0 e (4011

n

9
Nu 0.48 Ra™ when zi/z = 2 .. (4.12)

The laminar flow Nu-Ra relationship in Fig. 4.4 1is
valid only if it lies above the relationship for open-
thermosyphon ducts. In order to test this criterion,
the theoretical relationships between Nu and Ra for open-
thermosyphon ducts which were derived by Lighthill (3)
for Pr = « and Leslie and Martin (11) for Pr = 0.7 and 1
are also shown in Fig. 4.4 (the latter did not provide
data on non-similarity flow). It will be observed that
for Ra < 4 x 10% these curves lie below those for the
restricted-entry ducts. Consequently, for any Ra below
4 x 10%, a restricted-entry duct for which the ratio Qi/ﬂ
is within the range of values allowed by Fig. 4.4 will
produce laminar flow. On the other hand, the situation
for Ra > 4 x 10% is more complicated. Comparing Fig. 4.4
with Fig. 3.3, it will be found that for Pr > 0.7 the

curves for open-thermosyphon ducts lie just below those
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for restricted-entry ducts. Therefore, for Pr > 0.7
laminar boundary layer flow for ducts with small entry
restrictions appears possible. In the case of Pr = 0.7,
it will be observed in Fig. 4.4 that the open-thermosyphon
curve almost coincides with the curve for 21/2 = 0.1.
However, Lighthill (3) showed theoretically and Martin and
Cohen (12) experimentally that for Pr less than about 1,
the laminar boundary layer regime of the open-thermosyphon
duct cannot occur and its place is taken by the impeding
flow regime. In this regime inter-action between the
upward and downward moving streams reduces the rate of
flow in and out of the duct, and this causes a marked re-
duction in the rate of heat transfer. The resulting
lower Nu-Ra relationship persists until Ra is sufficiently
large for a turbulent boundary layer regime to establish
itself. Hence, it would appear that the relationships
shown in Fig. 4.4 for restricted-entry ducts for Pr = 0.7
are valid.

It will be recalled in Fig. 4.4 that the zi/z
curves ranging from 4 to 18 are not continuous. Each
curve reaches a maximum Ra, which increases with decreasing
Ri/K. An explanation for this result can be obtained by

considering Figs. 4.2, 4.5 and 4.6,
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In Fig. 4.2 it will be observed that the constant
Q curves ranging from 0.021 to 0.3 emanate from the curve
21/2 = 0 and continue into the fully developed flow
region. On the other hand, the curves which have Q
values less than 0.021 terminate in the boundary layer
region, In an attempt to obtain Nu-Ra values beyond the
termination points, it was found that the relaxation
(described in Appendix B) ran out of control. It was
conjectured that the flow situation had changed when the
point of termination was reached. To explain this
phenomenon further, the temperature and velocity profiles
in Figs. 4.5 and 4.6 for the continuous curve Q = 0.0Z1

will be examined. It will be seen in Fig. 4.5 that the

1

velocity distribution for Ra 1180 changes from a fully
developed parabolic profile at the bottom of the heated
section to a boundary layer profile. At the top of the
duct the velocity on the axis has fallen to zero. The
effect on the velocity and temperature profiles of
reducing Ra to 64 and maintaining the same value of

Q (Q=0.021) is shown in Fig. 4.6. Again the velocity
profile is parabolic at the entry to the heated section,

but in this case the boundary layer profile with zero

velocity on the axis occurs near the bottom of the heated
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section at x/% = 0.05. Further up the duct, velocities
in the centre region begin to increase and the fluid
reaches the top of the duct with a fully developed profile.
It should be noted in studying Fig. 4.6 that there is a
radial outward component of the velocity of the fluid
between x/%& = 0 and 0.05, and a radial inward component
above x/& = 0.05 to the formation of the fully developed
flow. On the other hand, by increasing Ra above 1180
and maintaining Q = 0.021, boundary layer flow was pro-
duced similar to that shown in Fig. 4.5 except that the
velocity on the axis did not drop to zero at the top of
the duct.

Consideration will now be given to the curve
Q = 0.020, which according to Fig. 4.2 terminates at about
Ra = 2 x 10°%, At this value of Ra, the velocity profiles
were similar to those already shown in Fig. 4.5 with the
velocity dropping to zero at the top of the duct. For
the same Q of 0.020 and a larger flow restriction to give
a smaller Ra, boundary layer flow with zero velocity on the
axis was found to occur below the top of the duct. How-
ever, instead of the velocity increasing above this
point as it did for the curve Q = 0.021;,as shown in

Fig. 4.6, velocities in the centre region of the duct
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became negative and the computer solution ran out of
control because reverse flow is incompatible with in-
creasing temperatures. Under these conditions, laminar
flow could no longer be sustained and the flow degenerated,
as illustrated in Fig. 4.7, into what will be referred to
as mixing flow. Describing it in another way, degenera-
tion occurs when the laminar boundary layer is still
growing but there is no flow in the centre region from
which the boundary layer can draw fluid. This condition
can occur only when Q is less than 0.021.

In Fig. 4.8, showing the pressure defect along a
restricted-entry duct for a small Ra, it will be observed
that the pressure gradient in each section is almost
constant. This distribution of the pressure defect is
in accord with the assumption made in Section 4.2 to

derive the Nu-Ra relationship for fully developed flow.

Heat transfer per unit flow area

The heat transfer per unit flow area for a restric-
ted-entry duct is given also by Eq. (3.22). It follows
from Eq. (3.22) that, if the temperature excess of the
heated surface and the lengths of the two sections of

the duct are constant and the fluid properties do not
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vary, the heat transfer per unit flow area will be pro-
pqrtional to Nq/{a. In Fig. 4.9 it will be observed

that the optimum value of Ra (Raopt) increases with the
ratio Ri/ﬂ and coincides with the maximum values of Ra

for 21/2 > 0,

Reynolds number

The relationship between Reynolds number (Rer) and
Ra is the same as that for plain-entry ducts and is given
by Eq. (3.30). As shown in Fig. 4.10, Rer decreases with
increasing values of the ratio 21/2. This is explained
by the fact that an entry restriction reduces the flow

rate.
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5. UNIFORM SURFACE HEAT FLUX DUCTS

5.1 Introduction

In this section vertical ducts of circular cross-
section with uniform heat fluxes will be considered.
As shown in Fig. 1.1(c) it will be assumed that the
fluid enters the duct with a uniform velocity and that
the unknown temperature of the surface increases from

ambient at the bottom of the duct.

5.2 General Nusselt relationship

In order to obtain the relationship between the
Nusselt and Rayleigh numbers the following theoretical
analysis is adopted. |

The dimensionless volume flow (Q*) and the rate of
heat transfer (H§) from the bottom of the duct to eleva-

tion X* are given by

1
Q% = 21 [ U*R dR sve (5.1)
o)
and
1
H; = 21 [ U*8*R dR iic (5.2)

o
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H§ can also be expressed in terms of the dimensionless

uniform heat flux (F) as follows:

H; = 201 X* F sias (5.3)

Since the surface temperature varies along the duct,
a reference temperature has to be adopted. The mean

surface temperature given by

%
[ (TWX—TO)dx
T =

0
- 7 ... (5.4)

provides a suitable reference temperature (14).
The Nusselt number of the duct (Nu*) with the

radius as the characteristic dimension is given by

AL Ty
Nu#* = KT, -T.) * & coo (5.5)
which reduces to
Nu?* = (TE%§¥M)K. v.. (5.6)
wm o

Multiplying Eq. (5.6) by the dimensionless mean surface
temperature (eam), which is given by

(Twm_To)E

e* =
W fr
W

(5.7)
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yields

1
Nu¥ = % ... (5.8)

wm
By definition, the overall dimensionless rate of

heat transfer (H%) is

ht
% =
S e (5.9)
w
Substituting 2r % f for ht in Eq. (5.9) yields
211
% o R
HE = s cev (5.10)

where Ra* is equal to Gr* Pr.
It should be noted that dividing Eq. (5.10) by the dimen-
sionless surface area (20L*) and replacing L* by 1/Gr*

yields the dimensionless heat flux (F). Thus

F =1
PT c.. (5.11)

Eq. (5.11) states that the dimensionless heat flux is
simply the reciprocal of the Prandtl number.
From Eqs. (5.8) and (5.10) the general Nusselt relation-
ship is obtained namely,

Ra# H%

Nu# = e
Nu zn-ﬁih .. (5.12)
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The strong similarity between Eq. (5.12) and Eq. (3.6)
for UST ducts should be noted.

Although hitherto it has been implied that the
uniform heat flux (f) 1is known, in practice only the
temperatures along the surface may be available. There-
fore, Nusselt number relationships will be derived for
both a known uniform heat flux and a known surface
temperature.

To corroborate the general solution, laminar flow
Nusselt number relationships for extreme values of the
Rayleigh number will be established in the sections that

follow.

5.3 Nusselt relationship for small Rayleigh numbers
based on the uniform heat flux

Small Rayleigh numbers are obtained by making the
ratio ﬁ/rw sufficiently large. In contrast with UST
ducts, fully developed flow cannot be achieved in USHF
ducts. The mean temperature of the fluid will always lag
behind that of the surface because the fluid is receiving
heat along the entire length of the duct. However, to
simplify the analysis, the velocity distribution will be
assumed to be fully developed and the radial temperature

gradients to be negligible. Thus the dimensionless
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vertical component of the velocity at a radius R will

be given by
*
Ut = 3% (1 - R2) . (5.13)

and the dimensionless temperature of the fluid at eleva-

tion X* and radius R by

e*: e* =

Eo=pE (5.14)

For flow that is almost fully developed, the momentum

equation, Eq. (2.15) reduces to

oP%
d 3 2U* 1 3U%*
AYXE = T + R 5} + g% . v (5.15)

Substituting Eqs. (5.13) and (5.14) into Eq. (5.15)

yields
oP% ;
d 8Q*
W o e::]x - '—% . . (5.]6)

For a uniform velocity profile, e;x will increase
linearly along the length of the duct, and hence it
follows from Ed. (5.16) that BPg/BX* will also increase
linearly. Furthermore, since Pg is zero at both the top
and the bottom of the duct, apg/ax*, as illustrated in

Fig. 5.1, will change sign at mid-elevation (X* = L*/2).
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Fig. 5.1 Diagrammatic distribution of the sur-
face temperature (eax), the fluid temperature (9;),
and the pressure gradient (dPg/dX*) in a uniform

heat flux duct for a small Rayleigh number



Also at mid-elevation, since
the bottom to the top of the
the surface will be equal to
*
(ewm).

Hence Eq. (5.16) at

- 8Q*

& =
me il
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e;x increases linearly from
duct, the temperature of
the mean surface temperature

mid-elevation reduces to

(5.17)

The rate at which the lower half of the surface dissipates

” D
heat (Hme) is given by

& = Bk
HES = QFOE
Using Eq. (5.18), Q* in Eq.

X & ]
Hme/ewm to yield

(5.18)

(5.17) can be replaced by

* =
Ch (5.19)
Since the heat flux is uniform along the duct
He
* T
Hme 5 (5.20)
Using Eq. (5.10), Eq. (5.20) becomes
Il
£ = b
HE Rk (5.21)
and substituting Eq. (5.21) into Eq. (5.19) gives
8 .
O
6 o (5.22)



Finally, substituting Eq. (5.22) into Eq. (5.8) yields

the Nusselt relationship

Nu =/ 22 .. (5.23)

Eq. (5.23) shows that, for small Ra*, Nu* is proportional
to vRa*. In the case of the UST duct, it will be re-
called that Nu is proportional to Ra for small Ra.

It is interesting to note that according to Egs.
(5.17) and (5.22) the relationship between Q* and small
Ra* is given By |

s _ I
/8§ Ra*

(5.24)

5.4 Nusselt relationship for boundary layer flow based
on the uniform heat flux

Boundary layer flow will occur if the ratio z/rw is
made sufficiently small. Consequently, Ra® will be
large. As in the case of the UST duct, it is reasonable
to assume that the rate of heat transfer will be the
same as that from an equivalent vertical flat surface.
Therefore Nu* will be independent of the radius of the

duct, and this requirement is achieved if

1
Nu* = C;(Ra*)¥T ... (5.25)
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where C3; 1s a constant. Expanding both sides of Eq.

(5.25) and multiplying through by £ yields
1
Nug - Cg(RaE)s ... (5.20)

where the subscript & indicates that the length of the
duct is now the characteristic dimension. Sparrow and
Gregg (14) derived the following relationship for a ver-
tical flat surface dissipating a uniform heat flux for

Pr = 0.7:

1
k= ®YE (5
Nu} = 0.62(Ra%) .. (5.27)

Eq. (5.26) will be seen to have the same form as Eq.
(5.27). Hence, if C3 in Eq. (5.25) is assumcd to be
equal to the constant in Eq. (5.27), the relationship
between Nu* and Ra* for laminar boundary layer flow in a

vertical duct is given approximately by

1
Nu* = 0.62(Ra*)% ... (5.28)

5.5 Nusselt relationship for small Rayleigh numbers

based on the mean surface temperature

In order to obtain the Nusselt number relationship
based on the mean surface temperature, it is necessary to
establish a Grashof number based on the mecan surface

temperature (Gr+). As shown by the following set of
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equations, Gr® is obtained by dividing Gr* by Nu#* (14).
* .
Gr' = O .

5
g B fry (Twm—TO)k

Gr g
W

(5.29)

n
<
N
=
Iy
Y

_ L
+ _ g B(Twm To)rw
Gr = ”
ve L

=

Hence the Rayleigh number based on the mean surface

temperature 1s

+ _ Ra*

Ra" = {oa (5.30)

Introducing Eq. (5.30) into Eq. (5.23) yields for small

+
Ra

Nu* = B% ... (5.31)

Comparing Eq. (5.31) with Eq. (3.10) will reveal that the
Nusselt number of the USHF duct is twice that of the UST
duct. The following analysis will explain the reason
for this.

Multiplying 6% by Nu* yields a dimensionless tem-
perature (6+) which is based on the mean surface tempera-
ture of the duct as shown by the following set of

equations.
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07 = % Nu* W

(T-T Dk fr
+ 0 W
3 = e . —— ... (5.32)

f ]w (lwm 'To)k r’
e+ ) T—TO
=
wm o

It was shown in Section 5.3 that eam for small Ra®* is
approximately equal to the temperature of the surface at
mid-elevation, which in turn is approximately equal to
the temperature of the fluid at the same elevation.
Hence it follows from Eq. (5.32) that the dimensionless

fluid temperature at mid-elevation is given approximate-

ly by

6f =9 =1 ... (5.33)
Since, as shown in Fig. 5.1, the temperatures of the
surface and the fluid will increase linearly when the

flow is approximately fully developed, the temperature

of the fluid at the top of the duct is given by
6 = 200 = 2 e (5.34)

From Eq. (5.17)

&
Q* = § %wm .. (5.35)
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and using Eq. (5.8) to replace e@m in Eq. (5.35) yields
& ES &H 7
Q*Nu#* = T ... (5.36)

However, the product of Q* and Nu* gives the dimension-
less flow (Q+) based on the mean surface temperature, as

shown by the following set of équations.

Q+ = Q* Nu#* R

Q+ = ﬁﬁ.’* . Nu* (k siss (5.37)
. - q

Q = T v er J

Substituting Eq. (5.37) into Eq. (5.36) yields

ot =1 ce. (5.38)
The heat dissipated by the surface of the duct is

H, = Q 68 e (5.39)
Hence using Eqs. (5.34) and (5.38), Eq. (5.39) becomes

(5.40)

s
o+ +
I
NS

In Section 3.2 it was shown that the heat dissipated by

the surface of a UST duct in which the flow is fully
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developed 1is

II
H, = 7 ce. (5.41)

An inspection of Egs. (5.40) and (5.41) will show that

+

Hy = 2H, e (5.42)
Since H; = H;(Nu*)z, Eq. (5.12) can be written
Ra" H
E i
Nu 5T _... (5.43)

Hence it follows from Egs. (5.42), (5.43) and (3.6) that,

for small values of Ra' and Ra, Nu* is twice Nu.

5.6 Nusselt relationship for boundary layer flow
based on the mean surface temperature

To obtain the relationship between the Nusselt
number and the Rayleigh number based on the mean surface
temperature for boundary layer flow, Eq. (5.30) is

introduced in Eq. (5.28). This yields
+ L
Nu* = 0.55(Ra )™ .. (5.44)

An inspection of Eqs. (5.44) and (3.15) will show that

for boundary layer flow the Nusselt numbers of a USHF
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duct are about 7% less than those of a UST duct. This
means that using the mean surface temperature in the

UST duct relationship (Egq. (3.16)) will give a good
estimate of the Nusselt number for a USHF duct for
boundary layer flow. Sparrow and Gregg (14) reported
the same finding for a vertical flat plate with a uniform

heat flux.
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5.7 Method of solving the flow equations

In order to obtain Nusselt numbers for all laminar
flow values of Rayleigh numbers based on both the uniform
heat flux and the mean surface temperature, Eqs. (2.14)

to (2.17) were solved for the following boundary condi-

tions.
Boundary conditions

X*¥=0 and R=1 i U*=0, V=0, 0*=0, P§=0. (a)
X#=0 and 0<R<1 | u#=3] v=0, o#=0, P%=0. b)
0<X#<L* and R=1 ; U%=0, V=0, P£<0. (c)
0<X*<L#* and R=0 ; V=0, pi<o, 28%-0, 280 (a)
X*=L* and R=1 ; U%*=0, V=0, P£=0. (e)
X*=L* and R=0 V=0, p=0, 23", 28%a0. (£)
0<X*gL* ; Q* is constant. (g)

The finite difference forms of Eqs. (2.14), (2.15)
and (2.17) are given in Appendix D, and the relaxation

procedure is described in Appendix E.
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5.8 Theoretical results

Relationships between the Nusselt number and the
Rayleigh number for Rayleigh numbers based on both the
uniform heat flux (Ra*) and the mean surface temperature
(Ra+) are shown in Figs. 5.2 and 5.3 respectively. It
will be seen that the curve based on the uniform heat
flux agrees satisfactorily with Egs. (5.23) and (5.28)
for the extreme values of Ra* and the curve based on the
mean surface temperature with Eqs. (5.31) and (5.44) for
extreme values of Ra” . For boundary layer flow the gen-

eral solution yielded the following relationships:

1
Nu# 0.67 Ra*% sae (5.45)

1l

and

1.
+4

Nu* (5.46)

0.61 Ra

It is interesting to note that the relationships based

on a vertical flat surface dissipating a uniform heat

flux, Eqs. (5.27) and (5.44), have constants that are

about 10% smaller than those in Eqs. (5.45) and (5.46).
The UST duct relationship is also plotted in Fig.

5.3 and it will be seen that for boundary layer flow the

two curves are almost identical. This means, of course,

that for boundary layer flow the Nusselt number relation-
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ship for UST ducts could be used if the entire surface
were assumed to be at the mean surface temperature.

Fig. 5.4 compares the dimensionless temperatures
along the surface (egx) of the duct with those along the
axis (eng. It will be observed that for small Ra*
these temperatures increase linearly as assumed 1n
Section 5.3. However, for large Ra*, it is interesting
to note that the temperature distribution on the surface
approaches that of a USHF vertical flat surface (14).
This finding is in accord with the assumption made in
deriving the relationship between Nu* and large Ra® in
Section 5.4.

In Fig. 5.5, Q*, H%, egt and Gam are plotted
against Ra¥*. Unlike Q and Ht for UST ducts, which are
jllustrated in Fig. 3.4, Q* and H% do not asymptotically
approach a common value at small Ra¥*. In fact, Q* for
small Ra* will be seen to approach the relationship
given by Eq. (5.24) namely, Q* = I//8Ra*, and Hf for all
Ra* to be inversely proportional to Ra* in accordance
with Eq. (5.10).

Figs. 5.6 and 5.7 show the stages of development
of the temperature and velocity in ducts having a small

and a large value of Ra* respectively. The shapes of
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the temperature and velocity profiles will be seen to
justify the assumptions made in Sections 5.3 and 5.4
to derive the Nu¥*-Ra* relationship for the extreme
values of Ra¥,.

Fig. 5.8 shows the pressure defect along ducts
having a small and a large Ra¥. The zero pressure grad-
jent which will be observed to occur half way along the
duct with the small Ra* is in accord with the assumption

made in Section 5.3.

Heat transfer per unit flow area

The USHF duct, unlike the UST duct, does not have
a radius for which the heat dissipation per unit flow
area 1s a maximum. This can be shown by the following
analysis.

The heat dissipated per unit area 1is

T " Y oo (5.47)

and substituting 2Hrw2f for ht on the right hand side

of Eq. (5.47) yields

t . 2af oo (5.48)
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From Eq. (5.48) it will be seen that, for given
values of the length of the duct (2) and the uniform
heat flux (f), the heat transfer per unit flow area 1s

simply inversely proportional to the radius of the duct.

Reynolds number

Based on the radius of the duct, Reynblds number

of the uniform heat flux duct is given by
Un Ty |
Re? = i : oo (5.49)
Expressing‘um in terms of Q* yields

»— ... (5.50)

Re®* =
r .
or

Re* = (5.51)
T

|
ot

Fig. 5.9 presents the relationship between (Rei Pr rw/z)
and Ra¥*.

Since for small Ra* Fig. 5.6 shows that the vel-
ocity profile is almost fully developed, it is reasonable
to assume, as in the case of the UST duct, that the
critical value of Reynolds number will be approximately

the same as that for forced-convective flow in pipes.
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Thus for small Ra*, the critical Re? will be approx-
imately 1150 (9). However, for large Ra*, the critical
value is likely to be smaller, because the velocity

profile has a less stable shape as shown in Fig. 5.7.
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6. EXPERIMENTAL STUDY

6.1 General

Experiments were conducted to confirm some of the
theoretical findings. The tests were carried out on
plain- and restricted-entry ducts with uniferm surface
temperatures.

With air as the working fluid, a range of Rayleigh
numbers was studied which extended from the fully devel-
oped regime to the boundary layer regime. The study
included tests with entry restrictions which were larger
than the theoretical maxima for laminar flow shown in
Fig. 4.4 and, for comparison, tests on open-thermosyphon
ducts.

Gross heat transfer data were sought and also tem-
peratures of the fluid along the axis. Owing to their
smallness, no attempt was made to measure pressure defects

and velocities.

6.2  Apparatus
Three ducts of different diameters, details of
which are given in Table 6.1, were required to study a

range of values of Ra from 10 to 10*.
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Table 6.1

Experimental ducts

. Nominal
Characteristic internal diameter
of the duct of the duct
(in.)
1 2% 3%
Internal
diameter 0.999 2.240 3.737
(in.) . '
Heated
length 48 48 48
(in.)
Wall
thickness 0.128 0.128 0.128
(in.)
Material Aluminium
External
surface Hard anodised
finish

As illustrated in Fig. 6.1, the ducts were heated
in three sections by independent electrical resistance
elements and the external heat losses were reduced by
surrounding the ducts with fibre-glass insulation. An
insulation thickness of 6.5 in. was chosen as a suitable
compromise between satisfactory insulation and the over-

all size of the duct. Fig. 6.2 shows the lower heating
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element of the 3% in. diameter duct, and Fig. 6.3 the
same duct after the addition of the insulation.

The design of the heating elements was based on
calculated values of the local rates of heat dissipation
and heat losses through the insulation. The details of
the elements are given in Tables 6.2, 6.3 and 6.4. To
form the elements, the bare resistance wire was wound
directly on to the hard-anodised external surface of each
of the two smaller diameter ducts. This was possible
because the hard anodising provided a surface that was
electrically non-conducting. After the turns of a
coil were correctly positioned at the specified pitch,
they were held in place by an epoxy resin adhesive. To
position the coils more readily on the 3% in. diameter
duct, shallow helical grooves were machined around the
wall. Unfortunately, the edges of the grooves were
inadequately radiused and consequently the anodised sur-
face was damaged in several places when the clements were
being wound. The problem was overcome, as shown in
Fig. 6.2, by insulating the whole surface with fibre-glass
tape before rewinding the elements.

The 240 volts, 50 cycles per second, A.C. mains

provided the power supply, and, as shown in Fig. 6.4,
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the voltage across each element was controlled by a.
variac. Since the breakdown voltage of the anodised
surface of the ducts was between 200 and 300 volts, 1t
was decided for safety reasons to limit the maximum
voltage across each element to 50 volts. Calculations
showed that the inductive reactance of the elements was
negligible compared with the resistance, and therefore
voltages and currents were in phase.

Three graded heating elements on each duct provided
adequate flexibility for controlling the temperature of
the surface; examples of the uniformity of the surface
temperatures achieved are shown in Fig. 6.5.

Temperatures along the internal surface of each
duct were measured by a number of 30-gauge copper-
constantan thermocouples (Leeds § Northrup catalogue no.
30-5-1). The thermocouple junctions were cemented in
grooves machined in the wall, as illustrated in Fig. 6.1;
this method of mounting placed the junctions close to the
internal surface and allowed the wires leaving each
junction to be run along an isotherm for a short distance.
The locations of the junctions are given in Table 6.5.

It will be seen that five thermocouples were placed under
each heating element on the 1 in. diameter duct, which

was the first of the three ducts to be built. However,
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Table

103.

Heating elements for the 1 in. diameter duct

Location

Heating from bottom  Wire gi;ﬁ Nug?er W;?iiﬁg
element o%igugt material (in.) turns (turns/in.)
48.0 13
Top to Eureka 0.036 213 to
24.0 3
24.0 3
Middle to Eureka 0.040 134 to
4.8 9
4.8 6
Bottom to Bureka 0.022 40 to
0 11




Table 6.3
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Heating elements for the 2% in. diameter duct

Location ; ‘s
Heating from bottom Wire g;;ﬁ Nug?er w;?iig5
element oiiiugt material (in.) - (turns/in.)
48.0 14
Top to Nichrome 0.028 120 to
36.0 10
36.0 9
Middle to Nichrome 0.064 270 to
9.0 12
9.0 6
Bottom to Nichrome 0.036 90 to
0 20




Table 6.4
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Heating elements for the 3% in. diameter duct

Location

Heating from bottom Wire 32;3 N”ﬁ?er Wi?iiﬁg
element of duct material o S P -
(in. ) (in.) turns (turns/in.)
48.0 10
Top to Nichrome 0.036 102 to
36.0 8
36.0
Middle to Nichrome 0.056 135 5
9.0
9.0 6
Bottom to Nichrome 0.048 58 to
0 8
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tests with the duct indicated that only three thermo-
couples under each element would have been quite satis-
factory and therefore a total of nine thermocouples
instead of fifteen was used on each of the two larger
ducts.

Ambient air temperatures were obtained from two
thermocouples located 20 in. from the axis of the duct
and 10 in. above and below the heated section.

Temperatures along the axis of the duct were meas-
ured by a travelling thermocouple, which is illustrated
in Fig. 6.6. It should be noted that the lower actuating
cord of the travelling thermocouple was positioned to
move along the surface of the duct so as not to disturb
the flow approaching the junction.

The thermocouple E.M.F.'s were measured by a
potentiometer, which was coupled to a null detector to
give greater sensitivity. A recording potentiometer was
used to observe the direction of surface temperature move-
ments when equilibrium conditions were being established
and to record the unsteady temperatures that were encoun-
tered within the duct.

In planning thec tests on restricted-entry ducts, a
serious problem concerning the overall lengths of the

ducts was encountered. Ducts that were longer than
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Table 6.5

Locations of the thermocouple junctions along the ducts1

Distances of junctions from
bottom of duct

(in.)
1 in. 2% in. 34 in.
gzgimgzzggie diameter diameter digﬁeter
g duct duct duct
15 47.8
14 41.4
13 36.0
12 29.7
11 24.3
10 24.0
9 19.2 47.8 47.8
14.5 42.0 42.0
7 9.8 36.2 36.2
6 2.0 35.9 35.9
5 4.6 22.5 22.5
4 3% 7 9.2 9.2
3 2.4 8.9 8.9
2 1.2 4.5 4.5
1 0.5 0.4 0.4
1

The junctions are grouped according to the heating
elements under which they arc located.
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about 100 in. could not be accommodated in the laboratory
and therefore, because 48 in. long unheated sections were
to be used, the largest value of the ratio zi/z that it
was possible to obtain directly was about unity. To
obtain the equivalent of a larger 21/2, a smaller diam-
eter restriction, as illustrated in Fig. 6.7, was fitted
to the bottom of a 37 in. long unheated section. The
equivalent length (zi) of the combined restriction was
estimated by a procedure described in Appendix G. The
heated and unheated sections of each duct were joined by
a coupling made of nylon so that heat transfer to the
unheated section was minimal.

To allow the air to enter the duct smoothly, a
small bell-mouth, examples of which are shown in Figs.
6.2 and 6.8, was fitted. It was made of nylon to min-
imise heating the air before it reached the actual duct.

The ducts were suspended in a laboratory in which
the diurnal temperature variations were relatively small.
A large draught-shield protected the ducts from any

abnormal air movements.

6.3 Procedure

To carry out a test, the heated surface of the
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Fig. 6.8 Smaller diameter duct with bell-mouth entrance
fitted to the 37 in. long unheated section; this combined
entry restriction gave an equivalent 21/2 of about 48
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duct had to be at a uniform temperature that was in
equilibrium with its surroundings. Obtaining this con-
dition was a tedious task, taking from 6 to 8 hours to
achieve. It was expedient to raise the temperature of
the surface quickly above that required, and then to
reduce the voltages across the elements to the estimated
values., Temperatures along the surface were monitored
by a recording potentiometer to determine the direction of
their movements and the voltages were adjusted accordingly.
To ensure that the temperatures were in equilibrium, the
readings for the test were not taken until 2 hours after
the final voltages had been established. As voltage
stabilisers were not available, very small adjustments to
the variacs were occasionally necessary to keep the
voltages constant.

The rate at which the%internal surface of the duct
dissipated heat was obtained indirectly by subtracting
the heat losses through the insulation from the power
input to the heating elements. The relationship between
the heat losses and the surface temperature was obtained
by operating the duct at various temperatures with the
ends plugged and the bore filled with pieces of fibre-glass

insulation to prevent internal air movements. Since
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calculations showed that for the temperatures under con-
sideration the heat losses from the exposed surfaces of
the plugs were very approximately equal to the heat
radiated by the internal surface through the ends when
the duct was open, the heat dissipation of the duct was
treated as purely convective.

The mean temperature of the surface of the duct
was obtained by averaging the temperatures recorded under
each heating element and then weighting these averages
according to the lengths of the elements.

Axial temperature measurements were not made until
after the surface temperatures had been measured because
the travelling thermocouple slightly impeded the flow and
thereby brought about a small increase in the surface
temperature.

For most tests, the temperature difference between
the surface of the duct and the ambient air was kept
within the range from 10 to 120F°1. Temperature differ-
ences less than 10F° could not be obtained with suffic-
ient accuracy because the subtraction involved magnified
small errors in the measured temperatures. On the other

hand, neither were large temperature differences suitable

Temperature diffecrences are shown thus, F°.
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because, as shown in Fig. 6.9, (TW—TO)/\)2 and consequently
Ra increase at a diminishing rate with temperature
difference. Furthermore, large temperature differences
would violate the condition on Page 12 that the density
variations should be small.

For evaluating Nu and Ra, the air properties,
except the coefficient of thermal buoyancy, were based on
the temperature of the surface of the duct (9). The
coefficient of thermal buoyancy (B) of the air was ob-
tained from the following relationship, which was derived

for a perfect gas (9).

. 1
~ Absolute temperature of
the air entering the duct

sue (0.1)

Inspection of Fig. 6.10 will show that the pro-
perties of dry air at atmospheric pressure, unlike those
of the ideal fluid considered in the theory, vary sig-
nificantly with temperature.

To study the behaviour of the flow into and out of
the duct, smoke was carefully injected into the air. The
smoke was produced by passing air through a smoke gener-

ating tubel.

1 The smoke generating kit was manufactured by Drdgerwerk

of Libeck, West Germany.
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74 EXPERIMENTAL RESULTS

7.1 Plain-entry ducts with uniform surface temperatures

Experimental values of Nu for plain-entry ducts
with uniform surface temperatures are presented in Fig.
7.1. Air was the convective fluid. It will be seen
that these results compare satisfactorily with the theor-
etical laminar flow relationship reproduced from Fig. 3.2
and also with the experimental results of Elenbaas (4).

Smoke studies revealed that for Ra in excess of
about 10° the out-flowing plume became less laminar in
appecarance. Hence, an inspection of Fig. 7.1 will show
that for some of the tests on the 24 in. diameter duct
and for all of the tests on the 3% in. diameter duct the
flow was transitional. These findings are in accord
with the following critical values of Ra obtained from
the theoretical analysis: wusing 1150 as the critical
value of Rer (see Section 3.5), Fig. 3.10 yields critical
Ra of 3 x 102, 2 x 10% and 4 x 10° for the 1 in., 2% in.
and 3% in. diameter ducts respectively.

In Fig. 7.1, it is interesting to observe that for
large Ra the experimental values of Nu are smaller than
those given by the theoretical curve. This is attributed
to the mixing which took place in the transitional flow

bringing about a reduction in the flow rate and, conse-
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quently, the rate of heat transfer. The validity of
this deduction is strengthened by the fact that for the
same range of Ra there was less mixing in the air emerging
from restricted-entry ducts with zi/z = 0.8 and, as will
be seen later, there was better agreement between the
experimental and theoretical values of Nu.

Fig. 7.2 shows temperatures measured along the
axis of the 1 in. diameter duct for Ra = 11 and 069. As
the air approaching the entrance of the duct was heated
by the underside of the insulation and by the bell-mouth,
temperatures obtained from the theoretical analysis for
comparison were based on the slightly higher entry temper-
atures. Although their trends were similar, the experi-
mental temperatures will be seen to be still higher than
the theoretical for a number of reasons. First, the
travelling thermocouple slightly impeded the flow and
therefore, as the heat input remained constant, the sur-
face temperature and temperatures in the air stream were
raised. Secondly, although the values of Ra were well
below the critical Ra of 3 x 10%, some mixing did occur in
the air strcam. This mixing would have reduced the rad-
ial temperature gradients in the centre part of the duct
and thereby would have raised the temperatures along the

axis. Thirdly, the increasing temperature in the
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thermocouple wires directly above the junction would have
produced a temperature reading that was too high.
Although all the tests conducted on the 1 in.
diameter duct yielded Ra below the critical value of
3 x 102, it was surprising to find that temperatures along
the axis fluctuated at random as shown in Fig. 7.3.
Turning to Fig. 7.4, it will be seen that the maximum
variation in temperature recorded over 10 minutes was as
large as 11% of (TW-TO) and that this occurred at
x/% = 0.3, In actual fact, the temperature variations
would have been in excess of 11% of (TW—TO) if the thermo-
couple junction had had a sufficiently large frequency
response to enable it to follow the temperature changes
accurately. Since smoke studies revealed that the flow
pattern at entry was axisymmetric and also varied with
time, it was decided to shield the entrance from the in-
fluence of stray air movements in the room. Hence a
cylindrical shield, 7 in. in diameter and 8 in. long, was
concentrically attached to the bottom of the duct. As a
result, it was found that the amplitudes of the fluctua-
tions were reduced by about 50%. This modification to
the duct clearly showed that the temperature fluctuations

were brought about by flow irregularities in the air as



T

cx

TW - TO

T

o]

122.

1.0
| l l I I
= Duct - tin.dia. x 48in. long ]
Ra = 72 s Pr =07
08| — li/l =0 ae

x/l = (0.85

0.4 ._ j\f‘l

0.2 [

06 <“\A¢/‘f"‘ﬂ\u/\1 AT

P
013
S I I I |
0 200 400 600
Time
Seconds
Fig. 7.3 Temperature fluctuations on the axis

of the 1 in. diameter plain-entry duct with a

uniform surface temperature.

(The temperatures

at each elevation were not recorded simultaneous-
1ly). The Rayleigh number was smaller than the

transitional value of 300



12

AT, .
=V 100/

Duct - 1in.dia. x 48 in. long
Ra =72, Pr =07
lil[ = O

Fig. 7.4 Distribution of the largest temperature

variations in Fig. 7.3

x/

—

‘gl



124,

it entered the duct. More evidence will be presented in
a later section, where it will be shown that the tempera-
ture fluctuations in the 1 in. diameter restricted-entry

duct with xi/z = 0.8 were quite insignificant.

It is interesting to note that temperature fluctu-
ations along the axis of the duct were simulated by
solving the flow equations for two different velocity
profiles at entry which yielded the same value of Ra.

The difference between the axial temperatures obtained at
each elevation simulated the amplitude of the temperature
fluctuations. An example of simulated temperature fluc-
tuations is presented in Fig. 7.5. Comparing Fig. 7.4

with Fig. 7.5, it will be seen that the simulated temper-
ature variations along the axis are remarkably similar to
those which were measured. In each case, the largest

variation occurred at approximately x/& = 0.3.

2 Restricted-entry ducts with uniform surface
temperatures

The heat dissipating characteristics of the res-
tricted-entry ducts are presented in Figs. 7.6 and 7.7
for the 1 in. diameter duct and the 2% in. and 3% in.

diameter ducts respectively. Also shown in these figures
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for comparison is the theoretical Nu-Ra relationship in
Fig. 4.4.

In the following discussions on the results, it
should be noted that the values of 21/2 exceeding 0.8 are
only approximaée because unfortunately, for the reason
explained in Section 6.2, it was necessary to use a

smaller diameter restriction at the bottom of the 37 in.

long unheated section.

Laminar flow

Smoke studies showed that the flow in restricted-
entry ducts was laminar for those tests that yielded
values of Nu within the theoretical laminar flow regime.
Referring to Figs. 7.6 and 7.7, it will be scen that the
results of these tests compare satisfactorily with the
theoretical relationship.

Fig. 7.8 compares for two values of Ra the tempera-
tures measured along the axis of the 1 in. diameter duct
having xi/z = (0.8 with those obtained from the theoret-
ical analysis. In each case the experimental and theor-
etical temperatures will be observed to display similar
growth patterns. It should be noted that near the top

of the duct the temperature of the surface was slightly



1 1 ‘ I | [ *.-—'”-»L”T"—[ +
| I +
Ra =11 s
08 — T _T. =95F° Duct - 1in. dia.x 48 in. heated section”
Pr = 0.7 5
0.6 |— ]
-‘rc;:"To
Tw=-To
0.4 |t L
0.2 -
; | |
" | | | | | i
O 0.2 0.4 0.6 0.8 1
x/1

Fig. 7.8 Temperatures along the axis of the 1 in. dia-
meter restricted-entry duct; the theoretical curves
were based on the actual entry temperatures

"6CT



130.

lower owing to the heating element not fully compensating
for the external heat loss. A comparison of Fig. 7.2
with Fig. 7.8 will show that the restricted-entry duct
for the same value of Ra produced higher temperatures
along the axis than the plain-entry duct. The explana-
tion for this is that the entry restriction reduced the
flow rate which, in turn, led to greater flow development.
The amplitudes of the axial temperature fluctu-
ations shown in Fig. 7.9 will be seen to be considerably
less than those in Fig. 7.3 for a plain-entry duct. The
smaller temperature variations were brought about by the
37 in. long unheated section smoothing the flow before it

reached the heated section.

Open-thermosyphon ducts

Some tests were carried out with the ducts closed

at the bottom to yield zi/z = o, The results of these
tests on open-thermosyphon flow are presented in Figs.
7.6 and 7.7 and will be seen to agree satisfactorily with
the experimental work of Martin and Cohen (12) and with
the theory of Lighthill (3) and of Leslie and Martin (11).

Smoke studies revealed that when Ra was below

4 x 10% the open-thermosyphon flow was laminar. However,
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for Ra > 4 x 102 the down- and up-flowing streams were
observed to mix with each other. This interaction
between the streams produced the impeding flow regime
which gave lower values of Nu (3, 12, 13).

It should be noted that, as in other work on open-
thermosyphon ducts (3, 11, 12, 13), Nu and Ra have been
based not on (TW-TO), which was used in the case of plain-

and restricted-entry ducts, but on (TW-TC Since the

t)'

temperature on the axis at the top of the duct (Tct) was
higher than that of the ambient air (TO), (TW—TCt) was

less than (TW—T ).

0

Combined upward and open-thermosyphon flow

When the entry restriction was very large, it was
found that an open-thermosyphon flow occurred in the
upper part of the heated section of the duct. Smoke
studies revealed that air still entered the bottom of the
duct. Thus heat was dissipated by a restricted-entry
flow in the lower part of the heated section and by an
open-thermosyphon flow in the upper part.

In Fig. 7.6 it will be seen that a 1 in. diameter
duct with zi/z >> 20 yielded smaller values of Nu than

the same duct operating as an open-thermosyphon duct.
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It should be noted that since a smaller diameter entrance
was used (see Fig. 6.7) a more accurate value could not
be given to zi/z for reasons stated in Appendix G.

In comparing the values of Nu for zi/z >> 20 with
those for the open-thermosyphon duct in Fig. 7.6, it is
important to realise that the temperature of the air
entering the top of the restricted-entry duct was higher
than ambient. This was brought about by the hot out-
flowing air heating the air space above the duct. Thus
the problem involved not one, but two temperature differ-
ences. To be consistent with the other tests on res-
tricted-entry ducts, the temperature difference for calcu-
lating Nu and Ra was based on the temperature of the
ambient air (TO). On the other hand, basing the temp-
erature difference on the temperature of the air entering
at the top (Tct), the results for Qi/k >> 20 will be seen
in Fig. 7.6 to be similar to those for the open-thermo-
syphon duct. This was because the open-thermosyphon flow
was the predominant heat transfer mechanism.

In Fig. 7.10, showing temperatures along the axis
of the heated section of the 1 in. diameter duct with
zi/z >> 20, it will be observed that from x/% = 0.15 to

0.8 the air stream was at the same temperature as the
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surface. Hence it follows that heat dissipation took
place only near the two ends of the heated section.
Turning to Fig. 7.7, tests on the 2% and 3% in.
diameter ducts with 2i/£ = 48 also produced a&combined
upward and open-thermosyphon flow. Although most of the
values of Nu for zi/z = 48 will be seen to be only
slightly larger than those obtained for the open-thermo-
syphon ducts, the rates of heat transfer were not similar.
The reasons for this are as follows. First, higher
temperatures were experienced in the open-thermosyphon
ducts and therefore the properties of the air in these
tests were quite different. Secondly, Nu and Ra for the
open-thermosyphon ducts were based on a different temper-
ature difference namely, (Tw—Tct). An inspection of
Table 7.1 will show that for approximately the same value
of Ra, the open-thermosyphon duct dissipated 110% more
heat than the restricted-entry duct with Qi/£ = 48.
Furthermore, it is interesting to observe in Table 7.2
that, despite the open-thermosyphon flow, the lower part
of the heated section of the restricted-entry duct with
zi/z = 48 was responsible for the greater part of the
heat dissipation. Of course, if the entry restriction
had been increased, the open-thermosyphon flow would have

assumed greater significance.
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Igble =l

Comparison between the heat dissipated by a
restricted-entry duct with £./4 = 48 and by
an open-thermosyphon duct; the ducts were
2% in. in diameter and the heated sections
were 48 in. long

- Restricted- Open-
Heatdziznsfel entry duct thermosyphon
zi/z = 48 duct
1
Ra 1040 1060
Nul 0.71 0.66
Ty 112 216
(°F)
To 68 75
(°F)
T
ct 98 (av.) 126
(°F)
Temperature (TW—TO) (Tw-Tct)
difference
(F°) = 44 = 90
Heat
dissipated 12.7 26.5
(Btu/hr)

The fluid properties for calculating Nu and Ra were
evaluated at the temperature of the surface.
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Table 7.2

Percentage of the total heat that was dissipated
by each heating element; the ducts were 2% in.
in diameter and the heated sections were 48 in.

long.
Distance Percentage of the total
above the bottom rate of heat transfer
of ?he iSadEgd Restricted-entry Open-thermo-
section .
(in.) duct with syphon duct
’ L./8 = 48
i
Ra=1040 Ra=1060
36 to 48 7 95
9 to 36 27 5
0 to 9 66 | 0
Total 100 100

Temperatures along the axis of the heated section
of the 2% in. diameter duct with zi/z = 48 for Ra’= 1040
are presented in Fig. 7.11. It will be observed that
the temperatures were unsteady with the largest fluctua-
tions occurring near the bottom of the heated section and
at the top of the duct. At x/% = 0.04 and 0.12 the
fluctuating temperatures were caused by the laminar flow

degenerating into a mixing flow as illustrated in Fig. 4.7.
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At x/% = 1 the entering air in the open-thermosyphon
flow was responsible for the lower mean temperature, and
flow visualisation studies revealed that the large tem-
perature fluctuations were caused by the air being
alternately drawn in and pushed out.

For the test on the restricted-entry duct des-
cribed in Table 7.1, Reynolds number (Rer) of the upward
flow in the lower part of the heated section can be
obtained as follows. In Fig. 7.11 it will be seen that
between x/8 = 0.37 and 0.87 the air had almost reached
the temperature of the surface. In addition, the heat
dissipated up to x/% = 0.75 was 3.47 watts. A heat

balance yielded the following equation.

=4 2 -
hx/2=0.75 Try uy e Cp(Tw To) (7.1)

Solving Eq.‘(7.1) gave a mean flow velocity (um) of

570 ft/hr. and from Eq. (3.260) Rer was found to be 80.
Rer being very much smaller than the critical value of
1150 supports the explanation given in the previous para-
graph for the temperature fluctuations in the lower part

of the heated section.
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Mixing flow

If the entry restriction were too large for
laminar flow to be sustained yet not large enough for an
open-thermosyphon flow to deVelop at the top, a mixing flow
occurred above the degeneration of £he laminar flow, as
illustrated in Fig. 4.7. The 2% in. diameter duct with
zi/£ = 8 produced such a mixing flow. Flow visualisa-
tion studies for these tests showed that considerable
mixing took place in the air stream as it emerged from
the top of the duct with the intensity of mixing increas-
ing with Ra. In Fig. 7.7 the experimental values of Nu
for the 24% in. diameter duct with zi/z = 8§ will be seen
to approach the theoretical laminar flow regime just
below the curve derived for fhe same value of li/l.

This discrepancy could have resulted from errors inherent
in the method of estimating zi/z (see Appendix G) and
from errors -arising out of the use of small temperature
differences in order to obtain values of Ra less than

6 x 102.

It is considered that ducts with values of 21/2
just larger than those allowed by the laminar flow regime
merit further investigation to obtain a better under-
standing of the heat transfer mechanism in the mixing flow

regime.
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8. CONCLUSIONS

From the theoretical investigations into laminar
natural -convective flow in vertical ducts described in

this thesis, the following conclusions were drawn.

Plain-entry ducts with uniform surface temperatures

For Ra < 1 and Pr = 0.7, the flow was fully devel-

oped and

R
Nu=l4f3L ... (8.1)

At the other extreme, for Ra > 3 x 10% and Pr = 0.7,

boundary layer flow occurred and
1
Nu = 0.63 Ra™ o (8.2)

For intermediate values of Ra, Nu can be obtained from
Fig. 3.2.

The ﬁrandtl number of the fluid was found to have
only a small influence on the Nu-Ra relationship for
Pr » 0.7 but an increasingly significant influence as Pr
decreased below 0.7 as shown in Fig. 3.3.

The heat transfer per unit flow area was found to
be a maximum when Ra = 32 for Pr = 0.7. Fig. 3.9 shows
that as Pr decreased below 0.7 the optimum value of Ra

increased.
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Restricted-entry ducts with uniform surface
temperatures

An entry restriction in the form of an unheated
section of the duct reduced the flow rate and consequent-
ly Nu was dependent upon both Ra and the ratio of the
lengths of the unheated and heated sections (zi/z). The
largest value of zi/z yielding laminar flow was shown to
decrease from 18 in the fully developed flow regime to
about 2 in the boundary layer regime.

For Ra < 20, Pr = 0.7, and li/l = 18 (the largest

value of the ratio yielding fully developed flow)

=

Nu = 33 ce. (8.3)

|

=

At the other extreme, for Ra > 3 x 10°®, Pr = 0.7 and
zi/z = 2 (the largest value of the ratio yielding boundary

layer flow)
L
Nu = 0.48 Ra® ... (8.4)

For intermediate values of Ra and other laminar flow

values of zi/z, Nu can be obtained from Fig. 4.4.

Uniform heat flux ducts

The relationships between Nusselt and Rayleigh

numbers for uniform surface heat flux ducts were derived
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in terms of both a known heat flux and a known mean sur-

face temperature.

In terms of the uniform heat flux, the relation-

ships obtained for laminar flow are:

For Ra* < 0:1 and Pr = 0.7, a flow resembling fully dev-

eloped flow occurred and

-
Nu* = %3 co. (8.

At the other extreme, for Ra* > 8 x 10% and Pr = 0.7,

boundary layer flow occurred and
g L
Nu# = 0.67 (Ra*)s iis (8.

In terms of the mean surface temperature, the
corresponding relationships are:

For Ra' < 0.9 and Pr = 0.7,
Nu#* = =— o (8.
and for Ra' > 2 x 10° and Pr = 0.7,
+. Y4
Nu* = 0.61(Ra )? _ ce. (8.

It is interesting to note the similarity between Eqs.
(8.2) and (8.8). Nu#* for intermediate values of Ra#®
and Ra' can be obtained from Figs. 5.2 and 5.3 respec-

tively.

5)

6)

7)

8)
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The experimental investigation yielded results
that agreed satisfactorily with those obtained theoret-
ically for laminar flow. Although air was the only
fluid used in the experiments, it is reasonable to infer
from these results and from those of other studies in
natural-convective heat transfer that the theory is also
valid for Prandtl numbers in excess of 0.7 (9).

An interesting experimental finding was that the
temperature of the air in plain-entry ducts fluctuated
even though the flow was nominally laminar. Since the
fluctuations were caused by flow irregularities as the
air entered the duct, they were much less apparent in
restricted-entry ducts owing to the smoothing effect pro-
duced by the unheated section.

The experimental work was carried beyond the
laminar flow regime. Tests revealed that if the ratio
of the unheated to the heated length of a restricted-
entry duct (Ri/i) were greater than that allowed by the
laminar flow theory, laminar flow entering the heated
section degenerated into a mixing flow, as illustrated
in Fig. 4.7. Furthermore, if the restriction were very
large, an unsteady open-thermosyphon flow was found to

occur in the top part of the duct. As a result, heat
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was dissipated in the lower part of the heated section by
the upward flow through the restriction, and by the open-
thermosyphon flow near the top of the duct. Unfor-
tunately, it was not possible to carry out a sufficient
number of tests to establish the values of zi/z at which
open-thermosyphon flow began.

As large entry restrictions are of some practical
interest, it would be profitable in future work to study
the behaviour of mixing flow and of combined upward and
open-thermosyphon flow in transparent ducts (15).

Although the only entry restrictions considered in
this work were unheated sections of the duct, it would
be permissible, in the absence of any other information,
to transform other entry restrictions into an unbeated
section of the duct and use the Nu-Ra relationships

presented in this thesis.
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APPENDIX A

Finite difference equations for uniform surface
temperature ducts

Since the flow is assumed to be axisymmetrical,
the relaxation can be performed on a two-dimensional grid
passing through the vertical axis of the duct as shown in
Fig. A.1.

In the finite difference forms of Eqs. (2.10),
(2.11) and (2.13) which follow, it will be seen that
separate equations have been written for points on the
axis of the duct. To write these equations, terms con-
taining %'%F s wh}gh in finite difference form cannot be
directly evaluated at R = 0, were reduced to %gaby

L'Hospital's rule.

Continuity equation

When 0 < R < 1:

2 Vj,k+1 Rk+lbvjsk R +
RetRe1 hK
U ¢ q#Us 1) (U, *Uso1,10
. j,k+17 75,k j-1,k+1 "j-1,k° _ 0 .. (AT

2 AX
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The continuity equation in finite difference form for
R = 0 was not required to solve the flow equations.

However, it should be noted that when R = 0

V. = 0 o0 (AL2)

Momentum equation

When 0 < R < 1:

U,
U i,k

j-1,k AX

_U_
J-l,k] N

N

U. -2 U. +U. P,.-P,.
j,k+1 i,k Tj,k-1| dj "dj-1
[ ) iR — + ej’k ... (A.3)

When R = 0:

] R N
Jsk J_:_lf J’k 1] ” [(}j_d,-_l__]]+ e_’j,k . (A.4)
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Energy equation

When 0 < R < 1:

U ej,k-ej_l’k +
j-1,k AX

’ Vj—lak

2 AR

9j,k+1-ej,k~1]

0. -2 0. L +¥0.
[ j,k+1 Aaék j,k ]] . (A.6)
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APPENDIX B

Relaxation solution for uniform surface temperature
ducts

Since laminar flow in a duct is unidirectional,
the governing equations were solved by a step-by-step
relaxation (6, 16). With this method, each row of the
grid shown in Fig. Al was relaxed in turn, beginning at
the bottom of the duct.

For the boundary conditions in Section 3.1 for
plain-entry ducts and in Section 4.4 for restricted-

entry ducts, the procedure is as follows:

1. Values are chosen for Pr, the volume flow (Q)
(0<Q<n/8) and the length of the unheated section
(Li) (Li=0 for plain-entry ducts).

2. On the bottom row of the grid the pressure defect
(Pdl) is set equal to zero, the temperature of the
fluid (6 ) to zero, the flow velocity (U ) to

1,k 1,k
Q/M, and the radial velocity (Vl k) to zero.
s

3a. Plain-entry ducts:

For initial values of the temperatures on Row 2,
ez’k is set equal to el,k. The energy equation
in Appendix A is relaxed until satisfactory

values of 62 L are obtained. An over-relaxation
3 AN
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factor of about 1.2 was found to be advantageous
in reducing the number of iterations.
Restricted-entry ducts:

Throughout the unheated section ej’k is zero,

The momentum equation in Appendix A is relaxed
for the grid points on Row 2. Both UZ,k and sz

are unknown and therefore the equation is solved

for

o s lazfar| Vi, ¢
2,k BX X OER®

where C = 2 for 0 < R < 1 and C = 4 for R = 0.

Since P has the same value for each grid point

d2
on Row 2 and Q is constant throughout the duct,
Eq.(S.Q in finite difference form is used to sep-
arate the two unknown variables.

The continuity equation in Appendix A is solved
directly for each point on Row 2 to give Vz,k'

The procedure is repeated for Row 3 and subsequent
rows until Pd ceases to be negative. Linear
interpolation yields the elevation at which Pd=0;
this elevation gives the top of the duct.

The rate at which the fluid transports heat across

each row is obtained from Eq. (3.2) in finite

difference form.
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8. = The reciprocal of the dimensionless length of the
heated section of the duct (L) yields the Grashof
number, and the Nusselt number is obtained from
Eq. (3.6).

9. Restricted-entry ducts:

The Nu-Ra relationship for restricted-entry ducts
is obtained by successive solutions of the equations
for constant values of Q and increasing values of

L..
i

The computer programme, which will be presented
in Appendix C, was designed to place the top of the duct
between Rows 40 and 100. Since the changes in tempera-
ture and velocity near the bottom of each section were
relatively large, a smaller row spacing was used between
Rows 1 and 21.

Twenty-one grid points per row were found to be
satisfactory for all calculations. However, it 1is
interesting to note that trial computations using 41 grid

points per row yielded almost identical data.
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APPENDIX C

Computer programme for uniform surface temperature ducts

The programme for uniform surface temperature ducts
given in Fig.C.1 was originally written for a CDC 3200
digital computer and later modified to run on a faster
CDC 6400 computer. The actual computing time for a
solution on the CDC 6400 computer was usually between
5 and 60 seconds.

Information that is required on the data cards
will be found in Statement No. 100 of the programme.

The symbols used in this statement are defined as

follows:
Data Card Symbols

Q Dimensionless flow volume; 0<Q<II/8

PR Prandtl number

DX Dimensionless spacing of the rows from
the first to the LLLth row in each section

DCX Dimensionless spacing of the rows above
the LLLth row in each section

WT Over-relaxation factor for temperatures,
WT is usually 1.2

LLL Row at which the grid spacing changes from

DX to DCX; LLL is usually 21



ITI

PHI

XP

LX

TA

TB

LCO
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Number of rows that are relaxed beyond the
highest row having a negative Pd; IIT is

usually 1

Angle of the duct to the vertical; PHI
should not exceed 0.2 and is zero for a

vertical duct

Dimensionless length of the unheated

section
Number of rows in the unheated section

Constant in the expression for the tem-
perature of the heated surface; TA=1 for a

uniform surface temperature duct

Constant in the expression for the temper-
ature of the heated surface; TB=0 for a

uniform surface temperature duct

Controls the amount of data printed;

LCO=1 gives Nu and Ra, and temperatures,
velocities and the pressure defect for each
of the top three or four rows, and LCO=0
gives, in addition, temperatures, veloc-
ities and the pressure defect for each

tenth row
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1

5
10
15
20
25
30
32
35

PROGRAM JRDU3LU (INPUT»TAPEGU=TNPUT OUTPUT s TAPEGL=0UTRUT)
DYER HECH ENG DEPT U OF A TEL X243G

NATURAL COMVECTION THHROUGH A CYLINDER

WIYH FLAT VELOCITY PROFILE AT INLET

VARIABLE WALL TEMP OR UNIFORM WALL TENMP

JRD/y31U

DIMERSTONUL2922) 9T (3522) yVI{2R) +SUL22) s TULRE) «UU(22) s WU (22) s XU (22)
DIMENSIOQNZU(22) s AU(22)2BU(22) ,CU(22) sYU(22) sDU(22,
FORMATIGELD43¢F5a282145F 9. 6¢EY429 [4/2E10,3912)

FORMAT {/1H1 ¢5%9 13HJRD/V3LY 13)

155.

FORMAT(1H
FORMAT (1K
FORMAT (1H
FORMAT (I H
FORMAGT ¢1H
FORMAT (IH
FORMAT (LM

v5Xs 3THNATURAL CONVECTION THROUGH A CYLINDER)

95X 35HUTTH FLAT VELOCITY PROFILE AT INLET)

$5Xe26H2]1 EQUALLY SPACED STATIGONS)

sHXe ITHSTATION 22 = HALL)

15X 24HSTATION 2 = CENTRE-|INE)

9HXe LTHWALL YEMP = feB#X)

USX!IUHUATA CARD IIEIO-JIFE}»Z!ZI"éfF"Q-ﬁ!ngzoI4V2E10n3!12)

40
45
&7
50

FORMAT (1IH
FORSAT (1M

s5XAs4HQA  =FT7.4457K9 18HKUNREATED LENGTH  =E9,2)
25X 9 6HPR =FTe337XeSHPHI =F7,3:7X)}

FORNUAT (1M +5Xe13HuALL TEMP = E1063+:2H +E1Ge3s4H & X/)
FORMAT(LH s TXe47HX DP/DX P DIFF HT/TRANS
136X s THO2U/DR2)

55 FORMAT(/1H 95Xs5E10,3¢1659XsI5¢5Xe154F103)

60 FORMAT(/1H s5X91E10e3910Xe3E10435168%XsI505XsI59E10,3)
65 FORMAT(IH +S5XsS5EL043610Xe5020,3)

70 FORMAT(/1R sTZséaHL GR®
V17XV&7HLIZL PR Q " H
FORMAT(/IH +5XeS5FE10.35s10X35F1003)
FORDAT(/1H ¢7Xs26HTH MEAN  GRPR TWi
FORMAT (/YH +5493E103/)
READI6D¢1)105PRyDXeOCK s WTolLLLy ITLsPHIs Pl XsTAsTBsLCO
LLLL=l

IFtR.EQ.0.)GOTO360

WRITE(61e5)LLLL

MRITE(HL41D)

WRITE(51415)

WRITE(6)+20)

WRITE(51+25)

WRITE(6]¢30)

WRITE(61:32)
WRITE(6}230)QePRsDX s DCKeWTolLL o ITIIsPHI¢XPsLRKyTAsTB¢LCO
WRITE{61440)QsXP

WRITE(51445)PRsPH]

WRITE(6194T)TA:TB

WRITE(61550)

DOYP0K=2422

YeiK~p

YUR)=Y#,05

V{K)=0,

U1 sK)=U 25K =Q/ 31415692656

T(LsKI=T(29K) 260

PI=G.

IF(LX-NE.0)G0TOL22

T(}22)=TA

X=P=H2D2U=0,

DB X=DY,

AA=,0)25/DX

GRPR¥* NU

TW OUT)
75
80
85

100

NU TuM)

105

120

122

Fig. C.1-1

FLOW UPs

Sheet 1 of 4 of the computer pro-

gramme for plain- and restricted-entry ducts

with uniform surface temperatures



PRA=400,/PR ’
PRE=PRAY¥2
II=L=0 156.
LC=2¢0
LXL=LX
LL=}l
WRITE (61,60 2sPsHQelLslel.sD2U
WRITE(GLs65) (T(1sK) oKu2522)
WRITE(61465) (U(1eK)9K=2922)
Ulls22)=U(2022) 70,
Cutz22)=.00125
WU (2) =wi(2)=FRB
AU{2)=BU(2)=800,
DClZzoK=g,21

126 DUGK)= (YUKl Y #YU(K+1)=YU(K)#YU(K))#1 570796327

128 LL=1_L+}
X=Xe¢DX
TFILL eLToaLXeURLLsEQ.,LX)GOTO130
T(2s22)1=TAsTH#X
IF(T(2+22) LT 0,)GOTOY00

130 DO135K=3521
ZUK) =V {K) =1 o /(PR¥YU(K)) ) /W]
UUIR Y =PRA+ZU(K)

WU(IK)}=PRA-ZU(K)

TUIK) =U{1eK} /D)

XUK) =TU(KI®*U (1 vK}
BUIKR)=(V(K)=1e/YU(K)) /4l
AV (K) =4004=~BU{(K)
BU(K\):"[FOOQ“BU(K)

CUlKY =T,/ (TU(K)+800,)
SUK) =TUIK)I 4T (14K)

135 TU(K)=TU(K) +PRB
SU(2Y=U(1+2)%T(192) /DX
TUIR2)I=UL1s2)/7DXePREBN 2,
CU(2)=1./7(U(Ls2)/0X+16004)
XU(21=U(1+2)%U(1+2) /DX
IF(LL=LX}170+1364138

136 LL=)

LC=20
LX=u
GOTOL170

138 L=9
N=3
FT=1le

140 DO1IS50OM=14N
Lat+l
SUM=0.

T(2s11=T(2+3)

DOISO0KK=1420

Ka22-KK

TEMP= (T {20 KoL) #WU(K)Y + T (29 K=1) #UU(K) +SUIK) ) /TU(K)
TEMP=F TR (TEMP~T (2¢K))

SUN=SUM: TEHMPRTEMP

TL2el) =T (24K) ¢ TEMP

150 COMYINUE
IF{LL«GT 1000 AND L% EQoOIVYRITE(GL1s65) (T (2sK) ¢K=2522)
IFISUMGLTe1oE~141GOTOL170
FTauT

Fig, C.1-2 Sheet 2 of 4 of the computer pro-
gramme for plain- and restricted-entry ducts
with uniform surface temperatures



190

200

210

2zo

230

260

2ue

Fed .22
286
290

242

300
305

310

N=1
GOTQL40
R=VU, :

DO190K=242] 157.
T(3+K) =T (24K) #COSF (PH])
T(3sK)=T(2:+K)

R=R4DU (K) & (CU(K+1) +CU(K) )

Suz2)=0.
1=0

I=1+1
SUM=A=(,

U(291)=U(2+3)

DOZ210KK=1320

K=22=K¥

SUKI = (XYIK) D (29 K+1 ) RAU(K) +U(2sK=1)#BU(KI +T (31K) ) #CU(K)
D0220K=2,421

Az=A+DU K #* (SU(K+1) +SU(K))

DPDs=({a=-Q) /R

SU22)=DPDX/300,

DO230K=2421

TEMP=S14{X) -DPOX#Cu (K)

TEAF=TEMP=1(24K)

U(2+K)sU(2.K) ¢+ TEMP

SUM=SUM+ TEMPSTEMP
TF(LLeGT,1000AND.LX.EQ.0)WRITE(61965) (U(2sK) yK=2+22)
TF(SUMeGT,1abE=14)G0TI200

DOZEDK=2420
VIKeL)=(U(29K+T)1+U(2eKIm (U(L19K+1) «U(LoK}IIPIYU(K)+YU (K41} )®AA
V(K1) = {VIK)#YU(K)Y=VIK+1))/YU(K+]1)

P=OPDX#DX+P

IF(LLwE.1160T0282

DX=L6X

Ah=,0125/DX

x=0,

T(1e22)=T(24221=1],

PI=p

GOTLR29"

TF (L eGT o999 AND e LXeEQo Qe AND e (P44 0¥DPDX®*DX) oL Te04)G0T0290
IF{LCO.EQel e ANDLL«GT44)GOTO0285

IF(LLeLT.20)6070290

IF(LL.EQ LCeAND L. XaEWe0) 2844286

LC=LC+10

GOTOZ2Y"

IF (P46 o oRUPDARDN e 6T eNa e ORVLLGEGI999+0RLLEQ. (LX=1)) 2909300
R=H=0,

DO292K=2¢21

H=HeDU(K) $(UL2s K+ 1) #T(25K+1)+U(25K)OT(2oK})

R=zR+DU(K) #(U(Z9K+11+U(29K) )

D2U={U(2s3)~U(2s2))%8B00,

WRITE(E)+55) XeDPUXIPsHsRsLLsls1sDU
ERITELE1651 {T(21K) 21K=2422)

WRITE(61565) (U(29K)sK=2522)

WRITE(6]465) (V(K)sK=2522)

IF(PeGTaNa)3U59310

Il=11+1

IF(II=I11)310¢350

DOQ32CK=2¢27

T(1sK)=T (25K)

Fig. C.1-3 Sheet 3 of 4 of the computer pro-
gramme for plain- and restricted-entry ducts
with uniform surface temperatures



320

350

354

360

Fig. C.1-4

UlleK}=U(29K)

PP==p

QP=n

HP=h
IF(LLMNELLLLIGOTOL128
DX=0DCX

AA=.0125,DX

GoTV128
A=X=P&OX/(PP+P)
GR=1./X

GRPR=GR%PR

Q=UP+ (Q=QFR) 2PP/ (PP+P)
H=HP + (H=HP ) #PP/ (PP+P)
TO=T (14221 +(T(2322)=T(1922))2#PP/(PP+P)
FUSHBGRPR/6,2831853
R=XF/X

ARITE(61470)
WRITE(61s75)XsGRyGRPRyFUIPIWR¢PRsQyHTO
TM={TA+T0) /2.
GRPR=GRPR®TH

FUSFU/TH

WRITE(6]14+80)
WRITE(5]+85) TM«GRPRyFU
WRITE(O6Ls47T)TA»TH
IFC(le=TO)¥%2ul.Te2ebE=07cANDGLLGT39)GOTOL100
Ti=(]le=TA)/X
TB=(TB*30.+T1)1 /31,
DX=URX

LX=UXL

LLli=LiLL+1
IF(LLsLT,94)G0TO354
DX=LBX%2,

DCX=DCX#2,

GO T0O 105
IF{LL«GT4n)GOTO105
DX=DBX/2 ¢

DCX=DCX/2.

GO T0O 1%

STOr

END

158.

Sheet 4 of 4 of the computer pro-

gramme for plain- and restricted-entry ducts
with uniform surface temperatures
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APPENDIX D

Finite difference equations for uniform surface
temperature ducts

The finite difference forms of Eq. (2.14), (2.15)
and (2.17) become identical to those in Appendix A for

ducts with uniform surface temperatures after replacing

d d
U by [t
X by X*®
G by g%

and substituting Vj,k for Vj—l,k in Eqs. (A.5) and
(A.6).
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APPENDIX E

Relaxation solution for uniform surface heat flux ducts

Again a step-by-step relaxation was used but the
procedure differed slightly from that described in
Appendix B because the local surface temperature of the
uniform heat flux duct had to be determined concurrently
with the other temperatures on each row.

An expression will now be derived which was used
to obtain the surface temperature of a row. From Eq.

(5.10) it follows that

HE = %% . X* ... (E.1)

and according to Eq. (5.2)

1
HA = 21| U* 6% R dR e, (E.2)

Combining Eqs. (E.1) and (E.2) yields

X* '
T = U* 6* R dR seu (E.3)
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For the boundary conditions in Section 5.7, the

relaxation procedure 1is as follows:

1. Values are chosen for Pr and the volume flow (Q).
2. On the bottom row of the grid shown in Fig. A.1l

the pressure defect (Pgl) is set equal to zero,

the temperatures of the surface (ef 21) and the

b
fluid (0% .) to zero, the flow velocity (U% ,) to
1,k 1,k
Q/I and the radial velocity (Vy k) to zero.
2

3. On the second row:

U% X is initially made equal to U%

1,k

and

o - .
ez’k is initially made equal to ei K

]

4. The momentum equation (see Appendix D) is relaxed
for all fluid points on Row 2. Since both U%
. )
and sz are unknown at each point, the equation

is relaxed for the variable

/

Pk %
U% + iq_z.v pf]_L .U__z.]“
2,k AXF AXF

+ ﬁ 2

=

where C=2 for 0<R<1 and C=4 for R=0.

As each point on Row 2 has the same value of sz,
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the variables ar€ separated by using Eq. (5.1)

in finite difference form.

The continuity equation (see Appendix D) is solved
for each point on Row 2 to give VZ,k'

The energy equation (see Appendix D) is solved

for all the points in the fluid on Row 2. Eq.
(E.3) is then solved to obtain a new estimate of
the surface temperature 63’21. This procedure

is repeated until all temperatures on the row are
satisfactorily relaxed.

The procedure is repeated for Row 3 and subsequent
rows until Pd ceases to be negative. Linear
interpolation yields the elevation at which P§=0;
this elevation gives the top of the duct.

The reciprocal of the dimensionless length of the
duct yields the Grashof number. The Nusselt

number is obtained from Eq. (5.8).

The computer programme will be presented in

Appendix F. As in the case of the programme for UST

ducts 21 grid points per row were used.
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APPENDIX F

L]

Computer programme for uniform surface heat flux ducts

The programme for uniform heat flux ducts is given
in Fig. F.1. Information that is required on the data
cards will be found in Statement No. 100 of the pro-
gramme; reference should be made to Appendix C for the
definitions of the symbols. It should be noted that
the dimensionless volume flow (Q and not Q* in the pro-
gramme) is no longer restricted to values less thaﬁ

N/8 as in the case of uniform surface temperature ducts.
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PROGRAM JRDO31M (INPUT!TAPE60=INPUT|0UTPUT1TAPE61=OUTPUT) 1(}4
DYER MECH ENG DEPT U OF A TEL X439 COMPILE ON CDC6400 *
NATURAL CONVECTION THROUGH A CYLINOER WITH
UNIFORM WALL HEAT FLUX
JRD/031M
DIMENSIONU(2922) s T(3322) sV (22)sSU22) s TUR2) Y ULI(22) WU (22) s XU(22)
DIMENSIONZU(22) s AU(22) sBU(22) yCU(22)3YU(22) 4 DU(22)RU(22)
1 FORMAT(4E10e34FS¢252143F9465EG.2416912)
5 FORMAT(/1H195Xy 8HJRD/G31IM)
10 FORMAT (1H +5Xe 3THNATURAL CONVECTION THROUGH A CYLINDER)
15 FORMAT(1H +5Xs3SHWITH FLAT VELOCITY PROFILE AT INLET)
18 FORMAT (1H 25Xs22HUNIFORM WALL HEAT FLUX)
20 FORMAT(1H +5Xe26H21 EQUALLY SPACED STATIONS)
25 FORMAT(1H 95Xs17HSTATION 22 ~ WALL)
30 FORMAT(1H s5Xs24HSTATION 2 = CENTRE=-LINE)}
35 FORMAT(IH 5% 10HCATA CARD 4E10e3,F5.292149F9.60EF:2514912)
40 FORMAT(IH #5Xs4HQ =FT,3s7Xs 1BHUNREATED LENGTH =E£9.2)
45 FORMAT{1IH 95Xe4HPR =F 73y TXySHPHL =F7,3}
50 FORMAT{1H +7Xsa4HX De/DX p DIFF HY/TRANS FLOW,
136Xy 17HD2U/DX2 H CHECK)
56 FORMAT(/1H ¢5X¢SE10e391699%915¢5X:1592E10.3)
60 FORMAT(/1H 35Xs1E1063310%Xe3E10,3,16+9X3I5es5XsISsE1063)
65 FORMAT(lH $S5Xs5E10e3s10XsSE10.3)
70 FORMAT (/1H »TXs&4HL GR#» GRPR# NU TwM PIs
117Xe4THLIZL PR G H TY OUT)
75 FORMAT(/IH eBXsS5E10.3510X015E103)
80 FORMAT(/1H sTXs1BHTW MEAN GRPR TwH)
85 FORMAT(/1H ¢5X¢2E10631
100 READ(609))Q1PRsDXeDCX W TolLLsITITsPHIsXPLXsLCO
IF(0cEQe0,)G0TO260
WRITE (6145}
WRITE (61410}
WRITE(61+15) -
WRITE (6)518)
WRITE(61,20)
WRITE(61425)
WRITE(G) ¢30)
WRITE(61+35)QsPReDXoDCXsWToLLLsITIToPHIsXPsLXsLCO
WRITE(61¢40)QsXP
WRITE(61545)PRsPHI
WRITE(61+50)
DOl20K=2¢22
YzKo2
YUlK)Y=Y# .05
U1K =U(29K)=Q/3,14159265%
120 T(leK)=T(2sK)x=V{K)=0,
IF(LXeEQ.0)1219122
121 P1=0,
122 X=Pz=H=D2U=0,
DEX=0DX
Ab=.0125/DXK
PRA=4500+/FR
PRB=PRA%?,
Ii=L=9
LC=10
Li.=2]
WRITE(61¢60)XsPsHeQelLyLsLsD2U
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126
128

130

135

190

200

210

220

230
250

260

262

HRITE(61+65) (T(1eK) oK=2422)
HRITE(61:65) (U(13K)sK=2y22) 165
U(le22)=0(2922)=0¢ ‘
THM=0 e

CU(22)=,00125

VU(2) =WU(2) =PRB

AU(Z) =BUtZ) =800

Do126K=2421 .
DUIK) = {YU(K+1)#YU(Ke¢1)=YU(K)&YU()}#1,570796327
Lisll=#1

IF(LLeGT.201)GOTOL100

X=X¢DX

IF(LL eLTelLXeoORLLEQsLX)GOTOL130
D0135K=3,421
ZUIKYE(VIK)=) e Z(PR¥YU(K})) /ol

UU (K) =PRA+ZU (K)

WU (K} =PRA=ZU (K)

TULK) =U{1»K} /70X

XUIK)=TU(K)#U (1K)
BUK)=(V{K)~14/YU(K})/.]

AU(K) =400o=BU{K)

BU(K) =400«¢BU(K)

CUKY=1+/(TULK) «800,)

RUIK)Y =TU(K) #T (19¢K)

TU(K) =TU(K) +PRB
RU(2)=U{1s2)¢T(1s2) /DX
TU2)=U{)2) /0X¢PHBE2,
CU(2Y=)a/lU{162)/DX+1600,)
XU(2)=U{1s2)#U(1s2)} /DX

R=0

DO190K=2,21
T(3sK)=T{2sK)®COSF (PH])

R=R¢DU (K} 2 {CU(K*+1) #CU(K))
SuU(22)=0,

I1=0

I=le]

SUM=A=( .

Ul2s1)=U(2:3)

DO210K=2s21

SUIKI= (XULK) +U(2¢K+1) PAU(K) +U(2eK-114BUK) «T (3K} ) #CU(K)
D0220K=2:21
A=A+DUK)#(SU(K+1) ¢SU(K))

DPOX= (A=Q) /R .

SU(22)=DPDX/8B00

DO230K=2;521

TEMP=SU(K) =DPDX#CU (K)
TEMP=YEMP=U(24K)

SUM=SUM+TEMP#TEMP
U(2:K)=sU(2sK) ¢ TEMP
IF(SUWLTeleE=12)2504200
DO260K=2:20

VIK#1) 2 (U(2eKe1) 2U (24K =(U(1oK21)2UEleKIIIMIYUIK) YU (Ke1)) ®AA
VIR = (VIKYSYU(K) =V (K1) ) /YU(K+])
P=DPDXsDLP

IF(LL=LX)280¢2629264

LLs)

LC=10

LXs0
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264

265

2bb

267
268

270

28¢
281

282

283
284

284
294

292

300
30%

3l¢

3é0

33¢

GOT0280

L=0 166.
N=3

FT=1.

H=6.2831053%X/PR

HR=0,

DO286K=ge 19

HRZHR4DU(K) ¥ (U (29K21) 2T (2¢K+1) ¢U(29K)#T(2:K) )
TEMP=T (242])

T(2:21) 7 (H=(HR>DU(201 #U{2+,20) ¥T {25202 1)1/ 1LDUI20)+DU(2]))2U(2021))
R= (TEMP=T(2s21) 2002

DOZ2BTH=1 N

L=tel

SUM=R

TL2¢1)=T (23

DO26TK=2:20

TEMP={T (2 cK*1) #WU(K) ¢ T (23K=1) %UU(K) +RU(K) ) ATUIK)
TEMP=FT® (TEMP=T {2+K))

SUM=SUM+ TEMPRTEMP

T(2yK)=T (29K) ¢ TEMP

CONTINUE

IF (SUNLTs1eE=22)270+268

FT=%T

N=1

GOT0265
TE2y22)=(T12:21Y8TU(21) = (T(2920) 20U 21} 2RU(2]1)) ) /WULZL)
TH=THs (T(1922) +T(2s22) ) #DX

IF(LLEG,1)281s282 #
DX=D8X

AA=.01257DX

X=0e

Pi=p

G0T0290

IF(LCOEQel e ANDoLL«GT+4)G0OTO286
IF(LL.LT&10)290+283

IF(LL.EQ.LC) 284,286

LC=LC+) 0

6010290 .

IF (Peb o 0nDPDXRDXeGTc00e0RLL.EQe201)290,300
R=HC=0 *

D0292K=24521 .

HC=HCsDULKY P (U (2eK+1) 2T (2eK+1) cU (29K #T{2¢K))
R=ReDU(KI#{U(2sK41) ¢U(24K))
D2U={U(R:3)=U(2,2))%800,
WRITE(61:+55)1%9DPDXsPsHeRsLLoLoIsD2UrHC
WRITE(61:65) (T(2:K)sKz2422)
HRITE(6L¢65) {U(29K) e Kz2422)
HRITEL61:65) (VIK) eK=m2422)

IF{P.GT«0:)305:310

IT=]Te}

IF(1I-111)3104350

DO3ZOK=2 22

TC(1eK) =T ¢29KY

U(1sK)sUe2sKy

PPm=ep

HP=H

IF(LL.FQ.LLL)Y 3409330

¢0701238
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340 DX=DCX
AA=.0125/DX
G0T0l28
350 TM=TM/(2.%X}
K=X=P&DX/ (PP+P)
GR=}e/X
GRPR=GR%*PR
H=HP+ (H=HP) #PP/ (PP+P)
TO=T{)p22) ¢+ (T(2+22)=T(1022) )PP/ (PP+P)
FU=1e/TH
R=XP/X
WRITE(61470)
WRITE(61175)X;GR!GRPR,FU,F‘I‘RgPﬂgQ;HeTO
GRPR=GRPR#*TM
HRITE(61:80)
WRITE(61+8%) Ty GRPR
GOTCl00
360 STOP
END

Fig. F.1-4 Sheet 4 of 4 of the computer programme
for uniform surface heat flux ducts
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APPENDIX G

Entry restrictions yielding values of 21/2 in excess
of 0.8

An entry restriction- larger than -that given by the
37 in. long unheated section of the duct was obtained,
.as shown in Fig. 6.7, by using either a smaller diameter

entrance or an additional duct of smaller diameter.

Smaller diameter entrance

A smaller diameter entrance is suitable only for
the laminar flow regime. The reason for this is that
for the other flow regimes it is not possible to deter-
mine the volume flow (Q) whose value is required to
obtain the equivalent length of this additional entry
restriction.

The equivalent length of the combined entry

restriction can be estimated in the following mantier:

1. The @imensionless volume flow (Q) is obtained
by plotting the experimental values of Nu and
Ra on Fig. 4.2 .

2. Reynolds number (Re.) 1is obtained from Eq.
(3.30) .

3. The mean flow velocity in the duct (um) is

obtained from Eq. (3.26) .
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4, For fully developed flow in the unheated

section of the duct, the pressure drop per

unit length (Apl) (17) 1is

2
bpy = p 7+

c

32
B ... (G.1)
T

1
2T
4

=

5. The pressure drop (Apz) produced by the

abrupt enlargement of the flow cross-section
(17) 1is

2

N

Ty Uy
bpy = gz - 1| P 7
€

(G.2)

where Lo is the radius of the entry passage.

A very much smaller pressure drop (APS) occurs in
the entry passage. A bold assumption is made that this

. pressure drop is the same as that for fully developed

laminar flow. Hence

S T
32
bpg = p me e

2 Zre Rere

(G.3)
where the subscript e refers to the entry passage.

The combined equivalent length (Ri) of the unheated

section of length £, and the smaller diameter entrance 1is
given by
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Ap2 + Ap3

Ly 0= &y ¥ +——7ﬁ;;——— ... (G.4)

It is clear from the foregoing equations that the
equivalent length of the combined restriction (Ri) is a
function of Rer. Hence it follows that li will vary
with Ra. This dependence of %; on Ra can be seen by
inspecting the experimental results in Fig. 7.6; a
0.400 in. diameter entrance gave values of zi/z ranging
from 1.8 to 4.2, a 0.219 in. diameter from 8.7 to 20 and

a 0.098 in. diameter in excess of 20.

Additional duct of smalier diameter

Since the equivalent length of an additional duct
of smaller diameter can be obtained without requiring a
knowledge oflthe volume flow Q, this.entry restriction ié
suitable for tests in all flow regimes. However, the
length and diameter of the additional restriction should
be chosen so that the pressure drop produced by the
abrupt enlargement of the flow area is sufficiently small
to be ignored.

Referring to Fig. 6.7, the equivalent length of
the combined restriction is estimated in the following

manner. The flow in each of the unheated sections is
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assumed to be laminar and fully developed. Therefore
the pressure drop (Ap4) in the larger diameter section,

designated by the subscript 1, -is (17)

u? 2
ml 1 32
Ap, = p . (G.5)
4 2 2 T Rerl
and the pressure drop (Aps) in the smaller diameter
section, designated by the subscript 2, is
u? R . .
2 2 32
Ape = p —= . ... (G.6)
5 2 2 T2 Rer2

Since the volume flow in each section is the same, divid-

ing Eq. (G.5) by'Ed. (G.6) yields

y

Ap L T
4 71 | TwZ e (G.7)
ApS 22 w1

The equivalent length of the combined restriction is

given by
_ 5
L. = 8. + —2 & ... (G.8)

and using Eq. (G.7) gives
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= wl Q
L= 8, + &, [rw?] sew (G.9)

In this case, Eq. (G.9) shows that the equivalent length
of the combined entry restriction (£i) is independent

of Rer and consequently of Ra.
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