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SUMMARY

The problem of analyzing multiport distributed
resistance~capacitance networks is considered. In particular,
the problem of obtaining the admittance matrix elements and its
poles and zeros is investigated.

The potential in the resistive layer of the DRC network
satisfies the two-dimensionazl Helmholtz equation, which may be
transformed to a system of coupled first-order differential
equations or to an integral equatione.

The basic solution technique is to reduce the differential
or integral equation to a matrix equation. Approximate solutions
of the differential equations are obtained by the Rayleigh—-Ritz
variational methode. The integral equation is solved by point
matching, which is equivalent to the method of moments.

Numerical results for a number of examples are presented,
and the different methods are compared. In addition, some
numerical results obtained by one~dimensional analysis and two-

dimensional analysis are compared.
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Chapter 1

INTRODUCTION

The central problem considered in this dissertation is that
of analysing thin-film distributed resistance-capacitance (DRC)
networks,

A cross—section of a portion of a thin film DRC network is
shown in Fige Tele Fige 1.2 shows a top view of a typical DRC
networke As shown in the diagrams, the DRC network consists of
registive, insulating and conducting layers placed on top of one
anotheres Electrical connections are made to the device by means
of conducting strips placed on the boundary of the resistive layera

The study of distributed networks has been prompted by the
trend in electronic equipment toward smaller and smaller physical
structuress Distributed RC networks can be combined with lumped
passive elements and active elements to produce a wide range of
filter characteristics (70). Such realizations usually require
fewer components than comparable realizations using lumped
elements.s The most common DRC network for these applications is
the two=port DRC lines Although the uniform RC line with a
simple rectangular shape is easy to analyse, there are definite
advantages to be gained by geometrically tapering the RC line;
it has been shown that tapering is useful for obtaining sharper
cutoff low pass filters, and for narrowing the rejection band of
"notch" filters (5).

In the following Chapters we will consider numerical
methods for analysing DRC networks of arbitrary shapes Chapters

2=6 are concerned with two-port networks which can be represented
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by a one~dimensional model i.ce the hnetwork can be represented by
a noneuniform line having a prescribed series resistance and shunt
capacitance per unit lengthe The techniques used to analyse such
networks can obviously be applied to DRC networks where the
variation in resistance and capacitance per unit length is due to
variations in the composition of the resistive and dieclectric
layers, instead of variations in the width of a line whose
registive and dielectric layers are of uniform compositione.

Ch%pters T=10 are concerned with the two—dimensional
analysis of multi-port distributed RC networks The importance of
this work is that it provides a means of assessing the errors due
to the assumption of a one=dimensional models In addition, it
provides a means of investigating phenomena which do not occur in
one dimensional structures; for example, transmission zeros can
occur in tapered structures, but these are not predicted by the
one—~dimensional model (17), (58), (69), (71)e

In Chapter 2 the properties of the admittance parameters of
DRC lines supporting one-dimensional current flow are discussed.
Some important results derived from the theory of Sturm equations
(1) are presented,

In Chapter 3 the problem of obtaining the poles and zeros
of the two=port parameters of nonuniform RC lines is considered.
The poles and zeros are proportional to the stationary values of a
suitably chosen functional, and the Rayleigh~Ritz method is used to
obtain approximate solutions. Some problems associated with the
practical application of the method are considerede. In particular,
methods of reducing the effccts of rounding errors by using

orthogonal polynomials are considered., Although it has been



sugzcsted previously, (12), that it is advantageous t0 use
orthogonal polynomials for problems such as least=squares curve
fitting, the use of these methods for solving eigenvalue problems
of the type considered here does not appear to have been
considered previously. IMinally, numerical results are presented
for a number of examples.

In Chapter 4 an alternative method of obtaining poles and
zeros is presented, The variational method of Chapter 3 gives a
solution which approximatcly satisfies the second-order differential
equation (Sturm equation) which determines the potential along the
trensmission line. In Chapter 4 the Method of Moments (14) is
uged t0 obtain approximate solutions of a pair of first—order
equations which are equivalent to the Sturm equation. One problem
considered here is that of detecting or avoiding 'extraneous"
solutionss; +this problem does not appear to have been considered
previously., By slightly modifying the basic technique presented in
(14) it is found that the extranecous solutions are eliminated, and
the accuracy of the numerical results is improveds, Finally, the
rate of convermence of the Moment method solutions is investigated
and compared with other methods,

In Chapter 5 the results obtained by the Rayleigh-Ritz
Varistional method of Chapter 3 are compared with the Moment
method of Chapter 4., In particular, some inequalities which are
believed to be new, are derived to show the relationship between the
two methods.

In Chapter 6 a brief discussion of other numerical methods

for obtaining poles and zeros is presentede



4 brief discussion of numerical methods for two—
dimensional analysis of DRC networks is presented in Chapter 7.

The Variational method for obtaining poles and zeros of
DRC networks by solving the two~dimensional Helmholtz equation is
considered in detail in Chapter 8. A number of functionals
whose stationary values are proportional to an admittance matrix
element or its poles or zeros are presentede Although the
functicnals which are uged to obtain the poles and the zero
frequency values of the diagonal elements of the admittance matrix
have been presented previously, (25), the other functionals
presented here are believed to be new. Application of the
Rayleigh-Ritz method to the problem of obtaining stationary values
of the functionals is considered in detail. Several methods of
obtaining suitable expansion functions to approximate the unknown
potential functions are discussed, and some numerical results are
presenteds In particular, the numerical results show that finite
zeros of transmission occur. In addition, the results obtained
from the two-~dimensional analysis are compared with those obtained
by a one-~dimensional analysis.

In Chapter 9 the Variational method is used to obtain the
poles and zeros of DRC networks by approximately solving a system
of first-order partial differential equations which are equivalent
to the second-order differential equation, (Helmholtz equation)
considered in Chapter 8. A number of new functionals whose
stationary values are proportional to the value of an admittance
matrix element or its poles or zeros are derivede The Rayleighe
Ritz method is then used to obtain the stationary values of these

functionalse One of the difficulties associated with this method



is that of detecting extraneous solutions, and this aspect is
considered in detaile The numerical results obtained by this
method are also compared with those obtained by the Variational
method of Chapter 8,

In Chapter 10 an alternative method of solving two-
dimensional problems is considered. The partial differential
equation is transformed to an integral equation which is then
solved by point matching. In most previous applications of the
Integral equation method, it was necessary to approximate the
boundary by straight line segments. In this Chapter we also
consider methods for solving problems with circular houndaries
without the need for such approximations. Some numerical solutions
are presented, and methods of minimizing the effects of rounding
errors by using orthogonal polynomials are discussedes

A discussion of some problems which can be solved by the
methods used for DRC networks is given in Chapter 11. The methods
used in previous Chapters are shown to be directly applicable to
other problems such as analysis of lossless transmission line
networks. In addition, the results of some further work on
transient anelysis of transmission lines and the applications of
equivalent network theory are discussed.

Finally, in Chapter 12 the methods studied in previous
Chapters are reviewed, and their relative advantages are assessed
with the objective of determining which is the best method for

solving a given problem.
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Chapter 2

DISTRIBUTED RESISTANCE — CAPACITANCE NETWORKS

SUPPORTING ONE=-DIMENSIONAL CURRENT FLOW

2.1 Introduction

A cross section of a portion of a thin-film DRC network is
shown in Fig. 1e1.. Fige 1.2 shows a top view of a typical DRC
networke, As shown in the diagrams the DRC network consists of
resistive, insulating and conducting layers. Klectrical connections
are made to the device by means of conducting strips placed on the
boundary of the resistive layers

If the layers of resistive and dielectric materials are
homogeneous and of constant thickness the potential ﬁ in the

resistive layer can be shown to satisfy the partial differential

equation, (1) pp. 241-243,

2% + 2°8 - smcg (2.1)
ax2 Byz
where
R is the sheet resistance of the resistive layer,
C 1is the capacitance per unit area coupling the
resistive layer to the ground plane,
and

8 1is the complex frequency variable.

It is assumed that the resistive layer is sufficiently thin
that variations of ﬁ in the direction normal to the ground plane
can be ignoreds On each of the conducting strips the boundary
condition is that the potential be constant, and on the remaining
segments of the boundary of the resistive region the boundary
condition is that there is no current flow out of the resistive

region. This is equivalent to the condition,

ne Vf = 0 (2.2)



on the insulating parts of the boundary; n is the unit length
outward—-pointing normal to the boundary,

In the following discussion we will be primarily concerned
with the problem of calculating the admittance parameters of two-
port DRC networks (only two conducting strips on the bounddry of the
resistive layer)s The pole~zero approach will be emphasized in the
analysis because it provides a direct connection between lumped and
distributed=parameter systems, and it also facilitates evaluation of

the admittance parameters at any desired frequencye.

242 Properties of Admittance Parameters of Non-uniform RC lLines

If the physical boundaries of the distributed circuit match
the coordinate lines of an orthogonal coordinate system, the partial
differential equation (2.1) may be solved by the method of separation
of variables. Only four such coordinate systems exist for planar
two dimensional networks. These are the rectangular, polar,
parabolic, and elliptic coordinate systems ((1), Chapter 7). For
distributed networks of other shapes, the variables cannot be
separated, and hence one dimensional current flow is not possibles
However, in some cases, one dimensional current flow can be approx-
imated to an acceptable degree of accuracye (69).

Consider the two=port tapered DRC network shown in
Fig. 2+1. An orthogonal coordinate system (x,z) is chosen so that
a fixed value of x represents an equipotential, and z represents
the distance along an equipotential line from a reference axis such
as the centre line of the element. A circuit model of an elemental
section of the network may be consbructed as shown in Fig. 2,2,

As the length of the section approaches zero, the voltagze and current
in the resistive layer can be shown to satisfy the differential

equations,
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Figure 2.1. Two-port tapered distributed RC network.
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Figure 2.,2. Circuit model of elemental section of

distributed RC network.
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a% les) « = r(x) I (x;8) (243a)

9T (x,8) = =s¢(x)V (x,8) (243b)
ox

where

8 1is the complex frequency variable

r(x) = Ofu(x)en, (2.3c)

o(x) = € 'w(x)/h2 (2434)
/© and b, are the resistivity and thickness of the
resistive sheet,
€ and h, are the permittivity and thickness of the
dielectric sheet

and
w(x) is the length of the equipotential line at X

i.es r(x) and o(x) are the series resistance and shunt
capacitance respectively per unit length of the section.
From equations (2.3a) and (2.3b) the second order

differential equation obtained for V(x,s) is

-d-i— [w(x) %x‘l] + Auw(x) V = 0 (2.4)
where
A= =s r, S,
and
ro= r(o)
¢, = c(o)

It is noted that (2.4) is a Sturm Equation, and the known properties
of solutions of these equations can be used to deduce a number of
interesting conclusions about the behaviour of distributed RC
networks.

It is known from the'theory of differential equations that

a second—order differential equation has two linearly independent
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solutionse Thus the solution of the voltage equation (2.4) can be

written as
V (syx) = a Vo (s4x) + b Vi (s,x)

where a and b are determined by the network boundary conditions, and
VI and VII are the linearly independent solutions.

The "basic set" solutions ((2), pe 531) defined by

av.
V. = 1, —= '« Oatx=0 (245a)
I ? dJC &= .‘& = = e
av.
II '
Vig =0y =555= V= Tatx=0 (245b)

are particularly convenient for calculation of the two-port
admittance parameters,
The short-—circuit admittance parameters are given in terms of

the basic set solutions by the following simple relations ((1), p. 33)

Vy (s,d) (2.6a)

y = 1 .
L r(0) VIIi S44.)

(2.6b)

1 . 1
r(o) Vg (s,d)

1 . V;I (s,4) (2.6¢)

Yoz * r(d) Vig (s,d)

where d is the network length (Fig. 2,2 ).

A number of interesting conclusions can be drawn about the
behaviour of distributed RC networks with w(x) and w'(x) continuous
and bounded in the interval O0Lx<d. These results follow from the
theory of St@rm equations.

1o Vg (s4x), Vg (syx) and Voo (s,x) are analytic functions of
s and x over the interval 0<x¢ d. Hence the poles of (yij)

are determined only by the zeros of Voo (syd)e
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| ] ]
2.  The zeros of Vi (s,4) and Vg (syd) do not coincide with the

zeros of Vo, (s,d). Hence the zeros of .Y . : and

1
yg? ., are determined only by the zeros of V. (s,d) and
t
VII (s,d) respectively, since there is no cancellation of

common factors in numerator and denominators

3. The poles and zeros of Yqq and y22 lie on the negative real
axis, and are simple, and have no accumulation point in the
finite plane. The poles and zeros are infinite in number with
an accumulation point at = o0

4e The poles and zeros of Y91 and Yoo interlace on the negative
real axise

5¢ The first zero of Yqq OF ¥y, ocours closer to the origin than

the first pole.

243 Obtaining Poles and Zeros of Admittance Matrix Paramciers

In the preceding section, we gaw how the two-port admittance
matrix parameters of a tapered distributed RC network may be written
as simple relations containing ratios of the basic set solutions.
By using the Factor Theorem of Weirstrass ((1), Appendix B), and the
series expansions for the basic set solutions ((2), ps 531), it can
be shown that the functions Vo (=,d) Vg (syd) and V;I (spd) can
be expressed as infinite products. For VI (syd), the infinite-

product expansion is

o0
() = v (o) || (=) (2.7)
ka1

where

0»s,>8,.7s

i i = =R
1 5 3 and lim sn

Similar infinite-~product expansions are obtained for VII (s,d) and
?
Vog (syd)e

The poles and zeros of the short—circuit admittance
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parameters (yij) coincide with the zeros of Vi (syd), Vi (syd),
and V;I (syd). Thus we need to determine the values of
;\: = ST O such that V (s,x) satisfies the differential equation
(2.4), and also satisfies certain homogeneous boundary conditionse

The boundary conditions which must be imposed on V (s,x)
to determine the poles and zeros of thé admittance matrix parameters
are as follows:

Te Poler of the admittance matrix

V (s,0) = O (248a)

V (syd) = O (2.8b)
2+ Zeros of Y14

v (s40) = © (249a)

Vv (s,d) = O (2491b)
3. Zeros of Yoo

v (s4yd) = © (2410a)

V (s,@) = O (2.10b)

For some special classes of tapered DRC networks the
basic set solutions are known in closed forme These include %2e
uniform, exponential, squ@re law, trigonometric and Bessel tapers
((1), pe 30)e The poles and zeros of the admittance matrix
parameters are the zeros of transcendental functions, and in mos%
cases, closed form solutions for the zeros are not known. Various
methods for computing the poles and zeros will be presented in

the following Chapters.
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Ohagter 3
BTAINING POLES AND ZEROS OF NON.UNIFORM RC LINES

BY THE RAYLEIGH-RITZ METH(D

3.1 Introduction

In this Chapter we will consider the Rayleigh-Ritz method
for obtaining approximate values of the poles and zeros of the
admittance matrix parameters for non-uniform RC lines. The
theoretical basis of this method is given in (3) Chapter 6, and (4)
Chapter 6 and 7, and only the essential results are given here,

With the Rayleigh-Ritz method, the potential function along
the transmission line is usually approximated by a linear combin-
ation of polynomials with undetermined coefficients. These
coefficients are determined from the condition that a suitably
chosen functional should be stationary with respect to small
variations in each of the coefficients. In practice when the
necessary computations are carriegrgn a finite-precision computer,
the results will be subject to rounding errors. In the following
section, we will show that for high-order polynomials it is sometimes
extremely difficult to obtain accurate solutions because of the
effects of rounding errors. However, it is also shown that this
problem can be solved by using orthogonal polynomials.,

Although it has been shown previously that it is
advantageous to use orthogonal polynomials for problems such as the
caleulation of least-squares polynomial approximations, (12), the
application of these methods to eigenvalue probiems of the type
considered here does not appear to have been discussed ih the
literature,

The Rayleigh principle ((3) Chapter 6) asserts that any

particular solution Vj(x) of equation (2.4) which is consistentwlth
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the boundary conditions (2.8); (249) or (2.10) renders the value of

the "Rayleigh quotient'.

R(Vj) = .I wix) | I

[d w(x) VJ.Z dx

(3.1)

stationary; these stationary values are equal to the corresponding
eigenvalues aj’

The simplest use we can make of the Rayleigh principle is
to appraximate the lowest eigenvalue )(1 of the corresponding
boundary value problem; since w(x) is assumed DO for 0<x< d, it
follows that ?\ 0. If we choose any continuous function u(x)

satisfying the boundary conditions, then ((3), Chapter 6)
R(u) 2 A1 (3-2)

The itz generalization of Rayleigh's method rests in a
more general choice of the minimizing function u(x) ((3) chapter 6).
Suppose that va.(x) denotes any polynomial (or function)
satisfying all required boundary conditionse. Let us now choose
our minimizing function to be a linear combination of yj(x)!s of

the form

u(x) = c,v, (x) + ézvz(x) temdqu (x) (3.3)

Where the cj's are coefficients as yet undetermined.

Suppose now that we introduce the above minimizing function
into the Rayleigh Quotient R(u)e We find that both numerator and
denominator become homogeneous and guadratic forms in the
undetermined coefficients cj. From Rayleigh's princip;Le we know
that R(u) is a minimum for the smallest eigenvalt_lg A 11 and
becomes stationary for the functions u(x) = V;j (x) corresponding to

the larger eigenvalues )j (3 ?1). The necessary conditions that
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R(u) be stationary are

—5—(—”&.“ = 0 (344)

1

Now after performing the differentiation of the Rayleigh

Quotient, we obtain the homogeneous system of linear equations
1

\{'[A - ¥8]fc] - o \ (345)
Hiiexe a dv, dv, '
a4 = 844 -I w(x) ey 7‘-;1 dx (3.6)
[o]
a
'bij - b‘lel =f w(x) vy vy dx (3.7)
o]

k = R(u) (3.8)
and o
el - |
°2 (369)
|

The eigenvalues k§ of the homogéneous system (3.5) can be

shown to be always greater than, or equal to the exact eigenvalues
;\j' and are all positive and real, By increasing the number of
terms in (3,3) the errors in the approximate solutions can be made
arbitrarily small,

In addition, we note that it is not necessary to constrain
the expansion functions vi(x) in (3.3) to satisfy boundary
oonditions of the form g% = 0at x= 0or x = d, since these are

"natural" boundary conditions for minimization of the Rayleigh

quotient R(u), (4) p. 152+ However it is necessary for the vi(x)
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to satisfy "prescribed" boundary conditions of the form V{x) = O
at x= 0 or x = d; this restriction on the expansion functions
vi(x) oan also be removed if an "extended" Rayleigh quotient
(14), Chapter 7, is used instead of (3+1). When the extended
Rayleigh quotient is used it is not necessarily correct to assume
that the approximate eigenvalues are upper bounds on the exact

eigenvalues.

3¢2 Numerical Results

We consider the problem of calculating the poles and zeros
of the admittance matrix parameters for a distributed RC network

with a linear taper. In this case we have

w(x) = W, (1 + o x) (3.10)

for
0< xX%d

WHeT®  (x) is the length of the equipotential line at x.

We define a taper factor T as the ratio of the network

width at Port 1 to the width at Port 2.

T = w(o)/w(a) (3.11)

Thus .
%= & -1)/a (3412)

The poles and zeros of the admittance matrix parameters
are the zeros of functions containing products of Bessel functions
of the first and second kind of order zero and one (5).

Define an auxilliary parameter k by

2 2
kKK = -8 r o, d (3.13)

The poles of the admittance matrix are the solutions of

I, (,-’%) - Y (%—1-) -7, —f%) . Y, (-I'ET’;) = 0 (3.14)
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The zeros of ¥yq are the solutions of

J, (;15-3 A (,,—1:7) -7, (,-,,i_fT) . Y, (%_11) = 0 (3415)

The zeros of Yoo are the solutions of

3, (,-1-“,_11) . Y, (.,%1) -7, (__-r-_lf—1) . 5, (,%) = 0 (3.16)

It is easily shown that the zeros of the impedance matrix
parameter Z,4 aTe equal to the zeros of Yoor and the zeros of Zyn
are equal to the zeros of Tqqe In addition, the poles of the

impedance matrix are the solutions of (5),

J, (llf—:';-) .Y, %) -7, (_r_ET) . ¥, L%_l;-) = 0 (3e17)

The first four solutions ky (i = 1,2,3,4) of (3.14) and
(3.17) are tabulated for various values of 7 between 1 and 4 in
((6)y pPs T4 and pe 75)*: Also in (7) the first ten solutions
ki/(1-T) (1 = 1,2 = = 10) of (3.14) and (3.17) are tabulated for
various values of T between 0.05 and 0.95. We note that the
solutions k, of (3.14) and (3.17) are unchanged if T is replaced by
1/7T. Also (3.17) has a solution k = O,

Asymptotic expansions for the zeros of (3.14), (3.16) and
(3.17) are given in (8) p. 374 for T > 1. The asymptotic
expansion for the zeros of (3.16) with T > 1 can also be used to
obtain approximations for the zeros of (3_.15) with 'T'_{ 1« These
asymptotic formulae are most accurate for T approximately equal to
unity, and for ki/(T-‘l) 721

A computer program which can be used to calculate accurate
values of the zeros of (3.14) = (3.17) for 0.1 < T<10 was

developeds Approximate values of the zeros are obtained from the

% In the limit T = 1,(3¢14) to (3416) are still valid, and the

amrenndkadda mnladdane dn TRY R 274 aro avant.
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asymptotic expansions, or from empirical formula based on the
numerical results ziven in (9)s These approximate zeros are then
refined using the secgnt modification of Ne{whon's method in which
the derivatives of the function are replaced by difference
quotientse Values of the Bessel functions J (x), Y, (x), Jy (x)
and Y, (x) are calculated using the polynomial approximations in (8)
pPe 369 =370,

Table 3.1 shows the first 20 poles and zeros of the
impedance and admittance matrix parameters for a taper factor
Te Qele (The numerical values shown are ki = =8; T, ©, d2 where
the s; are the poles and zeros). The results are believed to be
accurate to at least 7 significant figures. This conclusion is
based on comparison of these results with those given in (7), and
the fact that the polynomial approximations for the Bessel functions
are accurate to at least 7 decimals.

We now consider application of the Rayleigh-Ritz method to
the problem of calculating the poles and zeros of the immittance
matrix parameters for a linearly tapered distributed RC network.

A convenient form of the minimizing function u(x)

(equation (3.3)) is

u(x) = v(x)Z o xJ (3.18)

where v(x) is a polynomial satisfying the "prescribed" boundary
conditions of the problem, and which has no zeros in the interval
O0<x<Ld.

For calculation of poles of the admittance matrix we choose

v(x) = x (1=x/4) (3+19a)
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TABLE 3.1. Exact eigenvalues corresponding to the first 20 poles and zeros of the immitfance matrix parameters
for a linearly tcpered distributed RC line.
T< 0.1 = network width at port 1/width at port 2

The poles and zeros, s;, are related to the eigenvalues ki by equation (3.13)e

POLES POLES ZEROS ZEROS
ADMI TTANCE IMPEDANCE o ylr Y22
N MATRIX B MATRIX - D 122 11
1 8.89557362 ~ 12.58012664 B 4,85448790 0.98490701 |
2 T 38,09138441 T 43,52716112 T 26455534506 20,07398068
3 | 87.22959042  93.,57739449 67.01051331 59427239275 |
4 156.19448471 163.06709480 126476360512 118.33356857
5 244.94342422 252414182854 2C6.03919601 197.19490623
6 . 7353,45703888 360.86391882 30493795013 295,.82851028
7T | 481.725339520 _ ) 489.28616714  423,50%08661 414.22083664
8 T629. 74296570 637 ,40956879 561, 77857671 552,36463928
9 | 797.50643158 805.,25119781 719.76105499 710.25569153
10 985,01377869 " 992,.81772614 897.46520233 €87.89146423
11 | 1192.26364136 ~ 1200.11337280 1054.89640808 1085.27032471 |
12 1419255096 4% 1427.,14102173 1312.05822754% 1302.39118958
13 | 1665.98760986 B 1673490252686 1548.952%4189 1539.25334167
14 1932.46075439 1940.35918518 1805.58213806 1795.85630798
15 | 2218.6T7419434 | 2226463192749 2081.94699CS87 2072.,19967651 |
16 2524.62763503 253260159302 2378,04830633 2368.28314209
17 2850632038389 2858.30844116 2693.88671875 2684,10656738
18 3195, 75405884 ) 3203.,75305176 T 3029.46258545 3019.66979980 |
19 3560, 92675781 3563493569946 3384.,77609253 3374,97274780
20 3945, 83505029 3953,85638428 T 3759,82803345 3750401528931
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For the zeros of‘y11

v(x) = (1—x/d) (3419b)
For the zeros of Yoo

vix) = x (3419¢)
And for the poles of the impedance matrix

vix) = 1 (3.194d)

The next step is the calculation of the matrices A and B in
the homogeneous system (3.5). With u(x) defined by (3.18) Equations

(346) and (3.7) become

d

8 = ay = [ w(x) d—%—[v(x)xi-‘]-d%[}r(x)qu] dx (3420)
d . o
bij =bji = J w(x) [v(x)]2 x1+3-2 dx (3.21)

for
igd = 1,243 ~== (k+1)
with w(x) and v(x) defined by (3.10) and (3.19).

It is seen that the aij and b, . are linear combinations of integrals

ij
of the type

d
I = J w(x) X" dx (3.22)

for °

M= 0,142 =o=2(ktl)

where 1 is the degree of v(x)

For a linearly tapered DRC network, w(x)s= w°(1 + O(x), and
the integrals in (3.22) can be easily evaluated. For other types of

taper functions w(x) such as exponential, and squared tapers (9),
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analytic expressions for the integrals (3.22) are readily obtained.
However, for other taper functions, it may be necessary to resort to
approximate numerical integration techniques (3), Chapter 8.

The final part of the calculation is the solution of
‘ 2 . . .
'[A -k B [C]. = O. This was done by a library program (10) which
starte by decomposing B into the form Llﬁ where L is a lower
triangular matrix. Matrix A is then premultiplied by L_1 and

postmultiplied by (Lt)-1 to give

[L_1 A (" - kzﬂ[LtC] -0 (3423)

This is the usual form of the eigenvalue problem, and we
note that the symmetry of the problem has been preserved. The new
matrix L~ A (L¥)™7 can now be tridiagonalized by the Householder
algorithm, and the eigenvalues found by Sturm sequence &md hisection
(11), Chapter 5.

The output from this procedure consists of a set of
eigenvaiues ki, and the corresponding eigenvectors Lcji] g Where
cji is the jth coefficient for the ith eigenfunction defined by
(3.18).

Thus the ith eigenfunction is

ui(x) = v(x) :E:: °s4 x3 (3424)

The procedure described above was used to compute approx—
imate values for the poles and zeros of the immittance matrix
parameters for a linearly tapered DRC network withT=1 andT=0e¢1.
An attempt was made to obtain solutions with polynomials u(x) of

degree 5, 10, 15 and 20, using two computers with different word
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lengths; the computers used were an IBM 7090 with a word length of
36 bits, and a CDC 6400 with a word length of 60 bits. When the
program was run on the IBM 7090, it either failed for u(x) of

degree 215 because it was determined that a negative diagonal
element occurred during the decomposition of B into LLt, or a
negative eigenvalue was found. Both of these conditions result

from rounding errors during the calculations. For u(x) of degree 10,
it was found that the lowest eigenvalues obtained using the program
on the IBM 7090 agreed with those obtained using the CDC 6400
program to T significant figures, but the largest eigenvalues agreed
only in the first 1 or 2 significant figures.

The reason for the difficulties encountered above is that
the off-diagonal elemente of the B matrix are not significantly
smaller than the diagonal elements for the larger row or column
numbers. In fact, for a taper factorTe=1, and v(x)=1, the B
matrix is identical to the principal minor of order k+1 of the
infinite Hilbert matrix (12). It has been observed frequently
that systems of linear equations involving minors of thi; matrix
are very difficult to solve accurately. Thus we conclude that
solution of the eigenvalue problem with a minimizing function of
the form (3.18) is likely to be inaccurate.

We now consider some possible methods of reducing the
problems of numerical inaccuracy experienced with the method
described above. Firstly we note that the elements in each row of
the lower triangular matrix il (or each column of (Lt)-1) are the
coefficients of a system of polynomials which are orthogonal with

respect to the weight function W(x).iv(x)]2 on the interval

0 Sx $d..
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Let Te L (3.25)
and
i
P, ,(x) = EE: by g v (3.26)
J=1
Then
a
S w(x) ,[v(x)} 2 Pi_1(x),Pj_1(x)dx = 1 for i=j (3.27)
© = O for ifj

This follows since, by definition,

B = LL' (3.28)

o PBPY = I = Unit matrix (3.29)
and the left hand side of (3.27) is the (i,j)th element of the
matrix product (3+29).

It is now clear that the (i,j)th element of the matrix
D = I a@h)"! = rarc?t (3.30)

in Bquation (3.23) is given by

8y - dy J j u(x) « & [0, @] & [vpy ()] ax
(3431)

If the minimizing function u(x) in Equation (3.18) is

replaced by

k
u(x) = v(x) ch Pj(x) (3432)

3=0
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Then Equation (3.23) becomes

[D - K° I] [CI - 0 (3433)

Thus both choices of the minimizing function u(x) (3+38) or (3.32)
lead to the same matrix eigenvalue problem,

The problems we are now faced with are the determination of
the orthogonal polynomials Pj(x).saiisfying (3.27), and accurate
evaluation of the integrals in (3.31).

It can be shown that any set of polynomials which are
orthogoﬁal with respect to some weight function w(x) over an interval

aix<b satisfy a three-term recurrence relation (12), (13)

Pr(X) = (x—o&l) Py (x) -8.. Pr_z(x) for r22 (3434a)

with
P1(x) = (x—o{1)Po(x) (34341)

and

Po(x) = 1 (30340)

For certain classes of weight function w(x), the
coefficients e, B are known (8), Chapter 22. In other cases,
these coefficients may be computed as follows (12), (13). We define

the scalar product .of two functions f1 (x) and fz(x) by

b :
(f1, fé) =J w(x) £, (x) f2(x) dx (3.35)

Then
o, = <P (x), P, _,GD/P_ (=) P (x))  (3.36)

for r21

and

Pr <x Pr-1 (x), Pr-2(x)>/<Pr-2(x)’ Pr-Z(x)> (3637)

for r>2
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We note that the highest coefficient of each polynomial
is unity, so that they are not orthonormal in general. The
orthonormalization is achieved by dividing each of the’bolynomials

in (3.34) b

= <Pr(x), Pr(x»% (3.38)
For purposes of numerical work it is necessary to replace
integrals of the type (3.35) by appropriate rules for numerical
integration. That is, we introduce a fixed set of abscissae

Xy Xy = = = Koo and assume that

<f1,f2>j W(x) x)f(x dxewf(x)f(x)
i=1

(3.39)

is sufficiently accurate for the functions in question. For
certain classes of weight functions W(x), the values of the weights
Wy and abscissae X, which render the numerical integration formula
(3.39) exact for polynomials f, and f, up %o a certain degree
have been tabulated (3) Chapter 7, Appendix 4. For the case when
w(x), £1(x) and f,(x) are polynomials, the Gaussian quadrature
formula, (3) Appendix 4, yields a numerical integration rule which
is exact when the integrand in (3.39) is any polynomial of degree
legs than 2m.

We now return to the problem of determining the coefficients

= _, B, and ¥, for the case of a linearly tapered DRC network with
W(x) = w(x). [_v(x)]2 where w(x) and v(x) are given by Equations
(3.10) and (3.19) respectively. We use Gaussian integration to
evaluate the integrals on the right hand of equations (3.36) and

(3.37), and the recurrence relation (3.342) is used to generate the
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values of the orthogonal polynomials as required at the abscissae
Xgy Xy == =X o The integrals in (3+31) can also be .evaluated

. u
using Gaugsian integration once the values of a%- rv(x) P’(x) |

for r«0, 1, == k, have been determined,
From (3.34) we obtain
v(x) Po(x) = v(x) (34402)

v(x) P1(x) = v(x) (Sc-o(1) Po(x) (3.40b)
and

v(x) Pr(-x);= (x) ((i—«l) Py (x) -'grpp_z(x)] for r>2  (3.40c)

m

Thus the values of % l—v(x) Pr(x)J at .'}E= Xy Xy === X

can be found using the following relations

s

&) = & v )] = v (3441a)
81 () = 3 [ V) By(x) [= vlx) + (x-oxy) g, () (3+410)

gr(x) = % l:v(x) Pr(x)]= (x—o‘l) Epn (x) + v(x) P_ ,(x)

r=1

(3+41¢)
- pgr_z(x) for r>»2

The method outlined above was used to calculate the poles
and zeros of the immittance matrix parameters for linearly tapered
DRC networks with taper factors T equal to Q.1 and 1.0. The program
was run on both the IBM 7090 and CDC 6400 computers. It was found
that for k = 5, 10, 15, 20 (Equation (3.32)) the eigenvalues
obtained using the two computers, (one with 36 bit words and the
other with 60 bit words), agreed to at least 6 significant figures.
Tables 32-36 show the approximate eigenvalues obtained for

distributed RC lines with taper factor T equal to 1.0 and O.1.

* Ag discussed in (12); and verified by the results obtained here, roundoff
errors in the computation do not accumulate excessively when the recurrence

relations (3¢34), (3e35); (3+40) and (3041) are used.



TABLE 3.2.

Approximate eigenvalues corresponding to the poles of the admittance matrixz for a uniform RC line.

«

NP is the degree of the polynomial used to approximate the potential function.

The poles, 84y are related to the eigenvalues, ki, by equation (3.13).

N INP 5 10 15 20 EXACT
L 9, 869749 9,869604% 9.,869604 9.869604 3.869604
2| | 39.50155 | 39.47841 | 39.47841 39.,47841 39.,47841
3 102.1302 88.82644% 88.82b644% 88482644 88,82643
4| |2C0e4984 | 157.9569 | 157.9136 | 157.9136 | 157.9136 i
5 247, 0427 24647401 24647401 246,7401
6 3764744 | 355.3062 355,3057 355.3057 |
7 531.5718 483,8120 483,6106 483,6106
8 11298090 | 632.4449 | 63146551 |_631e6546
9 1852.,589 825.8688 799,4410 799.4379
w0l 1 e _11039.418 987.3940 | 986.9604 |
1l 1630.858 1195.545 11944222
112 | _ _ 2067,941 | 1451.099 | 1421.223 = |
13 5596,024 1723.096 1667.963
L L ol 176774497 | 2303.,771 | 1934.442 |
15 2749.649 2220660
BT R S S —— | 4762078 | 2526.618
+7 57284540 28524315
2 5.3 I T SNSRI S 18153,30 | 31974¥51 |
=9 21934.68 3562.927
' 0 3947.841

gc
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TABLE 3.3. Approximate eigenvalues corresponding to the zeros of the admittance matrix elements y11 = Yoo for
a uniform RC line.
NP is the degree of the polynomial used to approximate the potential function.
The zeros, 8, are related to the eigenvalues, kg, by equation (3e13)

NYNP 5 10 15 20 EXACT

1 2.467401 2.467401 20467401 2.467401 2.467401
2| 22,21385 | 22.20661 | 22,2066l | 2220661 | 2z .20661 |

3 63.02767 61.68503 |  61.68502 |  61.68502 61.68502
4|  148,2050 120.9046 | 120.9026 | 12049026 | 120.9026 |

5| 545.7527 500.0428 | 199.8594 | 199.8594 | 199.8594
6 302.5545 | 298.5558 298.5555 298.5555

7 451.8311 417.0108 416.9907 41645907
8| | 742.4795 | 555.7070 | 555.1652 555.1652

9 1563.910 TT719.4639 |  713.0808 713.0789
10l  16011.918 | 930,7517 | 890,7922 | 890.7317 |
11 T1254,004 T1089.081 1088.1238
t 1) | DE—— b 11843.956 | 1213.523 | 1305.255
13 3127.797 15854402 15420125
14 i | 68114562 | 19560095 | 1798.735 |
15 26729407 2522.980 2075084
el 3472.600 | 2371.172 |
a7 5234,998 2686.999
I L 90584351 31452936
19 20000.0% 3377.872
20 7911191 3752.917
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TABLE 3.4. Approximate eigenvalues ocorresponding to the poles of the admittance matrix for

a linearly tapered HC line.
Tw 0.1 = network width et port 1/width at port 2

The poles,: sy, are: related to the eigenvalues, kz, by equation (3.13).

NP is the degree of the polynomial used to approximate the potential function,

NENP 5 10 15 20 EXACT
1 8, 905809 8,895589 2.895573 8.895573 B.895573
2| 38.12073 | 38.09143 38.09138 |  38.09138 | 38.09138 |
3 91.60245 T87.22962 B7.22959 87.22959 87.22959
| 4| 201.7800 | 156.2063 156,1944 | 15641944 | 156.1944
5 245.3986 244 .9434 T244.9434 | 244.9434
- 365.0764 | 353.4580 353.4570 353.4570
7 £31.9913 T 4B1.8123 481,7254 481.7254
| 8| ~ |1089.6852 | 630,7700 | 629.7431 629.7429 |
9 18540019 813.7700 | ¥97.5114 | 797.5064
o} ~]1039.551 | 985.2309 985,0138
11 1516.524 T11932.876 1192.263
12 B (N 20684745 1438,731 [ 1419.255
13 5142.097 17234147 1665.987
|14 _ = 7679.,079 | 2215.945 | 1932.460
15 2750.220 2218.674
Y D  437B.051 | 2524.627
17 T 5729.565 2850,320
(18 | — e 15979.16 3195.754
19 21936,38 3560926
20 3945,839

TABLE 3.5. Approximate eigenvalues corresponding to the zeros of tne admlitance matrix

element y” for a linearly tapered RC line.

The zeros, 8,, aTe related to the elgenvalues, ki, by equation (3.13).
T and FP gre as in TABLE 3.4.

NfnP 5 10 15 20 EXACT |
1 4.B854510 4.854488 4.854488 4.854468 4,854487
2 26056305 26.55534 | 26455534 | 26,55534 | 26.55534
37,3671 | 6T7.01052 67.01051 67.01051 | 67.01051
4| 165.6900 126.7638 | 12607636 | 12647636 | 126,7636
Bl T403,0070 | 206.2692 206.0392 206.0592 206.0392
6 306.5022 | 304.9382 | 304.9379 | 304.9379
T T T466.5106 423.5138 423.5091 423,5060
8 67643830 562.4187 | 561.7786 | 561.7785 |
9| 1716.533 722.5191 T19.7632 719.7510
10/ |4521.535 | 945.1306 | 897.4821 | 897.4652
ul 1201.358 10964012 1064.896
L) B | 1925.024 | 1315.889 11312.058
13 2725.284 1599.438 1548.952
14 | .7331,931_ | 1908.852 | 18054582
15| e 21333.12 2538,217 | 2081.947
el 4 b} 3216.986 [ 2378.048
17 5470.335 2693,886
[R:} R R ) 1892.402 | 3029462
19 a 21223.57 3384776
20 65931 .30 3759.828
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TABLE 3.6. Approximate eigenvalues corresponding to the geros of the admittance matrix

element Yoo for a linearly tapered RC line.

The zeros, 8,y are related to the eigenvalues, kg, by equation (3.13).

T and NP are as in TABLE 3.4.

T 5 10 15 20 EXACT
1 0. 987317 04984910 0984907 0,984907 0.984907
2| 20,0981 | 20.07901 20.07898 |  20.07898 20.07898
3 60.15842 59.27245 59.,27239 59427239 59,271239
4| 125.2%19 0 118.3343 118.333% | 11843335 | 11843335
5 64043668 197.2177 197.1949 197.1949 197.1949
e | 300.0832 . 295.8285 295.8285 | 295.8285 |
7 428, 6888 414,2392 41442208 414.,2208
8|l | T71.5219 552.4891 .| 55243646 55243646
9 1219,237 T17.2805 710.2559 710,2556
10 |6693.059 . 907.0734 | BBT.9524 _BBT.B914
11 1273.773 1085.553 1085.270
2y e 1656.542 | 1311.577 | 1302391
13 3299.329 1561.604 1539,253
Yal| = | 5458.,202 1972429 1 1795.856
i5 28905.62 2379.161 20724199
1 BN R S, I ya— | 35T7T4.251 2368.283_
17 4629.479 2604106
- 1| U, | === | 9521s190 3019.669
19 16625.08 33744972
20 8410934 3750.015
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The eigenvalues k: are related to the poles and zeros of the
admittance matrix parameters by (3.13).

We therefore conclude that this method is numerically
superior to the one previously described, which uses a minimizing
function u(x) of the form given in (3.18).

Some additional numerical experiments were carried out

using a minimizing function

k
u(x) = v(x) Z o Tg (x) (3442)

J=0
where %
T;j (x) is the Chebyshev polynomial of degree j, shifted
to the interval O <x%d.

In this case, the elements of the A and B matrices become

d _ A

Byq= 8y = J( w(x) - %E(x) 'I':_1 (x)] %l}r(x) '55_1 (x)] ax
° | (3.43)
4

bij s b:ji =J w(x) - [v(x)]z T:_1 (:v:).T':;.._.I (x) ax (3.44)

The Chebyshev polynomials satisfy a three-~term recurrence
relation of the form (3.34) and the coefficients K.y Pr are known
(8), Chapter 22. Gaussian quadrature can then be used to evaluate
the integrals in (3.43) and (3.44) since T: (x) and -%rv(x) Tr(x)-]
are easily obtained at x = Xyy Xpy == X using recurrence
relations of the form (3.34) and (3.41) respectively.

It was found that the eigenvalues obtained using Chebyshev

polynomials differed from those obtained using the orthogonal
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polynomials Pr(x) in only the last one or two decimals. Thus we

conclude that both of these methods give essentially the same

numerical accuracy.

Finelly, the eigenvalue problem was solved with

k
u(x) = v(x) Z e Lj (x) (3.45)
=0

where

Lj(x) are the Lagrangian interpolation polynomials

corresponding to equally spaced points in the interval 04x<d
(3), Chapter 2, It was found that for the larger values of k, the
accuracy of the lowest eigenvalues decreased markedly, while the
largest eigenvalues were in close agreement with those obtained by

the two methods described above,

3.3 Conclusion
Although we have only consideresd the class of non-uniform

transmission lines for which

r(x) = v /w(x) (3.46)
and
e(x) = cohw(x) (3.47)

the method can easily be adapted to solve problems for which

r(x) r /£(x) (3.48)

i

c(x) c, g(x) (3.49)

In this case the Rayleigh Quotient (3.1) is replaced by, (1), p. 59,
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- f(x) '% ¢ ax
R(u) /9 (3.50C)

g(x) W ax

and the solution is obtained in the manner previously describeds
In order to minimize the effects of rounding errors it is
better to choose the minimizing function u(x) of the form (3.32)
instead of the form (3.18); 4if the form (3.18) is chosen, an
ill-conditioned system of equations is likely to resulte The
Pj(x) in (3.32) may be any system of orthogonal polynomials, but it
is generally most convenient to use polynomials orthogonal with
respect to w(x) in the interval 0€£x<d. The integrals should be
evaluated by a numerical integration formula of the type ( 3039)
where the values of the orthogonal polynomials at the abscissae *y
are obtained by means of a recurrence relation; this method was

found to give better numerical accuracy than other methodse
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Chapter 4

OBTAINING POLES AND ZEROS OF THE ADMITTANCIT MATRIX

BY SOLUTION OF FIRST-ORDER DIFFHRINTIAL EQUATICNS

41 Introduction

We now wish to consider a direct method for obtaining
approximate eigenvalues of the boundary value problem defined in
Chapter 2, which uses the pair of first=order differential equations
(2.3a) and (2.3b), The first—order equations (2.3a), (2.3b) are
equivalent to the second-order differential equation (2.4), and the
eigenvalues are proportional to either the poles or zeros of the
admittance matrix parameters, depending on which of the boundary
conditions (2.8) ~ (2.10) are satisfied by the eigenfunctions. As
before, we consider only two~port distributed RC lines supporting
one-dimensional current flow.

The numerical technique used here is known as the Method of
Moments, which is described in some detail in (14), Chapter 7.
Although the method as described in (14) is directly applicable to
analysis of lossless transmission lines, it is easily modified to
solve distributed RC transmission line problems. One intercsting
feature of the present method is that under certain conditions the
approximate eigenvalues are smaller in magnitude than the exact
eigenvalues; with the method described in Chapter 3, the approx-
imate eigenvalues are always larger than the exact eigenvalues,

This sometimes introduces difficulties in the practical application
of the method, since the approximate eigenvalues corresponding to
the larger eigenvalues may be comparable with the vmaller (dominant)
eigenvaluess This problem does not appear to have been considered

previously in the literature, and some techniques for detecting
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these "extraneous" solutions are described in this Chapters 1In
addition, by modifying the triangle functions which are used to
approximate the unknown voltage and current in the transmission
line it is shown that the accuracy of the solutions may be improved,
and the "extraneous" solutions mentioned above are avoided,

In (14), Chapter 7 it is shown that when similar series
expansions are used for the unknown voltage and current functions,
the solutions to the first-order equations converge faster than
those to the second-order equations It is shown here that if the
transmission line is divided into a number of incremental sections
of length p, and piecewise linear approximations are used for the
voltage and current functions, then the asymptotic error in the
eigenvalues is generally of order hA. For the second—order
differential equation the asymptotic error is generally of order h2.

4e2 Solution of IMirst-Order Differentiasl Equations by the Method
of Moments

The first—order equations (2.3a), (243b) may be written in

the form
0 = v sc{x) O v
dx = (441)
d
> 0 I 0 -r(x) 3
where

c(x) and r(x) are the capacitance and resistance respect—
ively per unit length of the transmission line, and V(x) and I(x)
are the voltage and current in the resistive layer at x.

The poles smd zeros 8y of the admittance parameters are
the values of s such that (4.1) has a non~trivial solution when
V(x) satisfies the boundary conditions (2.8) = (2410)e These

boundary conditions may be put into the form:—
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Te Poles of the admittance matrix

v(0) = o (4e2a)

vid) = o (4421)
2+ Zeros of Y4

1(0) = 0 (4432)

v(d) = 0O (443b)
3e Zeros of Yoo

v(0) = 0 (4¢4a)

"
O

I(d) (4440)

where
d 1is the length of the transmission line, and 0<x<d

Next, we choose two sets of basis functions, }51, ¢2,

-, and !,1/1, 51}2" -==~, and approximate V(x) and I(x) as follows:

k

v(x) = Z e, ¢j (x) (4e5a)

1

1
Ix) =) a4y @ (4+5%)

J=1

where
c. and dj are coefficients to be determined. The number

J
of basis functions, k and 1 respectively, need not be equal.
The unknown coefficients cz:j and d;j and the approximate

eigenvalues are obtained by the method of moments as described in

(14), Chapter 7. The matrix eigenvalue problem to be solved is

[A— NB] [c]uo (446)
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N M7 [LW} (4472)

B - f (4470)

A = -9 (4.70)

and

a
A4 =J ¥: i?;i dx (4482)

o]

3
il

d
il'g J' r(x) Sl’i (x).’Uj (x) ax (448b)

o

d

i3 } c(x) ¢i (X)-¢j (x) ax (4480)

=
i}

The coefficients d are obtained from c¢ by using

]+ o) W]

In the above it is assumed that the ﬁj(x) are such that the
V(x) satisfies the boundary conditions (4.2) — (4+4). However, it
is not necessary to constrain I(x) to satisfy the boundary conditions
(4;3) - (4.4), since these are "natural" boundary conditions which
must be satisfied by the exact solution of our problem. In
addition;the boundary conditions on V(x) could be made "natural" by
modifying (4.8a); this is discussed in (14) pp. 147 - 148.

Techniques for solving the matrix eigenvalue problem (4.6)
have already been discussed in Chapter 3, and will not be considered

further here.
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43 Numerical Results

We now consider the choice of the expausion functions ﬁj
and (/..
nd ¢ 5

Piecewise linear approximations to V(x) and I(x) may be
obtained by choosing triangle functions for ¢:j (x) and ()bj(x) as
discussed in (14), Chapter T.

Suppose we choose N points, 0 = x1 < xzf. x3 - - xN_1 <

x.N = d, and denote the distance between successive points by

h., = x. , =X, (4.10)

for )
o= 1y2== (N-1)

We now define the triangle function Tj(x) as follows

(x=x.)
T.(x) = 1 = et for x.<x4£xX,
J h'j Ip= 3+
(x-x._1)
= ——h——'l— for X: 1% XEx,
31 g 2 (4e11a)
= 0 elsewhere
for j = 2,3 4 -= (N-1)
T1(x) = 1 = —Jli—1- for 05::53:2
(4¢110)

- 0 elsewhere
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(x - )
'I‘N(,x) = -1 for x _,<x€4d (4¢110)
| Pyms
= 0 elsewhere

The piecewise linear approximations to V(x) and I(x) are

N

Z o5 Ty (x) (4412a)

j=1
N

Z: a7 (x) (4012b)

=1

v(x)

]

I(x)

Since

T. e 1 f = X,
.J(x) or x = X

and
Ti(x) = 0 forx=xj and i £ j

the coefficients cJ. and d;j are interpreted as the values of V(x)
and I(x) respectively at x = Xy
) With ¢k (x) and }&k(x) replaced by Tk(x), the integrals in

(4.8) may be easily evaluated.

Using (4.8a) it can be shown that

Lmé - i -1 1 T
-1 0 1

0-10 1 @,

1 0y [N

5 e . (4.13)
O Q.

-1 1
L i

where the number of rows and columns is N



Althougb exact analytical solutions for the integrals
(4.8b) and (A.8§) #caﬁ be found for various e(x) and r(x),
sufficiently accurate approximate solutions can usually be
cbtained by assuming that ¢(x) and r(x) varying linearly in each

interval x $x$%.,q for k=1,2- - (n-1),

Assuming a linear variation of ¢(x) in each interval,

the integrals in (4.8c) are given by

m_% = % (3 C(x,) + C(xz))

- Bl (6 (e )+ 3 0(x)

h
+ 2k (3005 + Clxgey))

41

for k = 2,3, == (N-1) (414).

mg,kﬂ = Mty T % (Blxg) + Olxgq )

h,.
fm '1-%1 (Clxy 4) + 3 C0xy) )

for k¥ =1, 2, 3=- (N1)

g

and mij = 0 otherwise

Similarly, assuming a linear variation of r(x) in each

interval, the integrals ng in (4.8b) are given by & set of
equations identical to those in (4.14), but with c(xk) replaced

by r(’ﬁ{)f
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We note that Mg and Mﬂ are symmetric, tridiagonal
positive definite matriees.

As yet, we have not considered the problem of choosing
the approximations to V(x) and I(x) such that they satisfy the
homogeneous boundary conditions (4.2) = (4e4).

When the basis function ¢j(x) and ﬁk(x) are triangle
functions as defined above, boundary conditions of ‘the type
V(0) = 0 or I(0) = O are satisfied simply by setting the coefficient
¢, or d1 to zero, while boundary conditions of the typs V(d) = 0 or

I(d) = O are satisfied by setting ¢ or dy to zero. This means

N
that wo simply delete the rows and columns corréépbnding to these

zero coefficients from the matrices [ﬂg ] ,I-M¢J 'andI_MﬁJ

Having formed these matrices, we can then obtain the A and
B matrices using equations (4.72) and (4.7b). ~We note that
although B is a tridiagonal matrix, & has no zero elements in
general, because [Mﬂ] '1is a full matrix, even though [Mﬂ] is
tridiagonal,

Table 4.1 shows the approximate eigenvalues

2
Ai =~ 8, (o) c(o) 4 obtained for a uniform distributed RC

line with boundary conditions V(o) = V(d) = 0 i.e. the
corresponding s; are the poles of the admittance matrix, These
results we obtained with all h,, 1 =1, 2 -~ oqual to the values
of H given in the table, and with r(o) = c(o) =d =1,

Firstly, we note that the approximate eigenvaluss are all
less than the exact eigenvalues. This was also found to be true

for the zeros of the admittance matrix parameters Y11 and Yoo.

In addition, it was found that the approximate eigenvalues



“PATLE 4.1. Approximate sigenvelues correspending to the poles of the admittence
matriz for a waiform RC line.
The poles, &, are related to the eigenvglues, Ai’ by ll- --.<:,L1.~(O}o::(0)d2

Ha 1/(]\10, of segments into which the line is divided)
The voltage and ocurrent in the resistive layer are epproximated by
triangle functions Tj(:r).

NEH = 0.25 0,125 0.0625 0.03125 EXACT
1 9.,82475 |  _9,866346 |  9.B6543 . 3.86955 |  S.862604
2 3640000 39.2990 39.4677 39,4777 39,47841
3 43,0732 86,5005 88,7026 __B8B.8i88 88.62543
4 144.000 157.196 157.871 157.9136
5 187.958 243,893 246,576 | 246.7401
5 172.292 346,402 354,810 355.3057
7 I 72,8415 | 459,965 | 482,343 | 483.6106
8 576.000 628.784 631.6546
9 - ) 680.329 | 793,509 | 799.4379
10 751.935 975.57 IB6. 9604
11 763,453 1173e59 | 1194,222
12 689,171 1385460 14214223
13 ] 5204811 1608,91  11667,963
14 291.366 1829. 86 19340442 |
15 . o 84,4155 2073.63 | 2220.660
16 2304400 25264618
17 e e W e e e B 252111 28524315
18 2721.31 3197,751
w9 ] 2887.11  13562.,927
20 ~ 3007434 394 7,841

TABLE 4.2. Approximsate eigenvalues corrssponding to tus voles of the admittance
matriz for a uniform RC line.

s ?\i, and H are as in TABLE 4.1, but the voltage and current in the

1,
resistive layer are gpprozimated by triangle functions Tj(x), and

"
Tj(x) respectively,as in Fig. 4.1.

NIF = 0,25 0.125 0.0625 0., 02125 EXACT

1 9.,831088 Y.,ATCAQ7 G.8693675 9, 869608 Qe BHYOUG
2| 40.76470 | 39.55503 | 39,48294 | 39.47869 | 39,47841

3 98.10891 89.68572 £8,87787 88, 82955 88.82643

6| - 162.5293 158.,2¢18 157.9311 157.9136

5 262.3656 247.8333 246,8068 24647401

6 289.4754 35845361 355,5049 355,3057
17 517.4557 431.6325 4B&,1123 483,4106
8l L 649.0547 | 632,7706 | 631.6546

9 £33,2017 801 .6952 799.4379
0| U | | 1046.157 59141950 986.,9604
11 S B 1287.783 1201.693 1196.222

12 o ]1552.053 1433,750  11621.223
13 1822.146 16884073 1667,963
M| o 12066.068 1 1965.534 1936,442
15 _ 2240,283 2267.159 2220.660

16 e N — | 25944105 | 25264518
17 2947.603 2852.315

18 b 13328.849  13197,751
19 o 3738,823 3562.927

20 4178.073 3947.861

e e e e v S R i et i e o2 i ¥y o A E S I i R e D e Il s s U e A R R R I N WP i I S
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obtained for various types of tapered distributed RC lines were
less than the exact eigonvalues, There does not appear to be a
formal proof that this method always gives eigenvalues less than
the exact eigenvalues, although all numerical results obtained are
in agreement with this conjecture.

In comparison, the Rayleigh-Ritz method for solution of
the second-order differential equation for V(x), always gives
eigenvalues which are greater than the exact eigenvalues., Thus by
using both the Rayleigh-Ritz method and the method described above,
to solve the same eigenvalue problem, we would expect to obtain
rigorous upper and lower bounds on the exact eigenvalues.

A further examination of the approximate eigenvalues
given in Table /.1 shows that for the smaller values of H, the
eigenvalues are not arranged in order of increasing magnitude i.e.
the eigenvalues near the bottom of the table are less than those
immediately above them. The reason for arranging the eigenvalues
in this manner is as follows, Upon inspection of eigenfunetions
corresponding to some of the smaller eigenvalues, it was found
that they had a greater number of nodes (zero-crossings) than
the eigenfunctions corresponding to larger eigenvalues. It is
known from the theory of Sturm-Liouville equations that the
eigenvalues increase as the number of nodes in the exact eigen-
functions increases (2), pp 72! - 723, Therefore, instead of
arranging the approximate eigenvalues in order of increasing
magnitude, we should arrange them according to the number of nodes
in the approximate eigenfunctions, However if this method of
ordering the eigenvalues is used, ambiguities may arise because

some of the eigenfunctions corresponding to the smaller
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eigenvalues have the same number of nodes. An alternative method
of ordering the approximate eigzenvalues which avoids these

ambiguities was used. The Rayleigh Quotient,

& 2
j wGx) (@ ax
R(u) = - (4415)
j w(x) W oax
where
r(x) = r(o)/w(x)
c(x) = c(o)ew(x)
and

u(x) is an eigenfunotion
was computed for each approximate eigenfunction. The approximate
eigenvalues are then ordered such that the corresponding Rayleigh
Quotients are monotonically increasing.

Finallykwe note that the approximate eigenvalues in
Table 441 converge to the eract eigenvalues as the interval
length H decreases.  In all cases the lowest order eigenvalues are
most accurate, and the error increases to about 10% at the mid—
point of each column. (Note that there are actually 31 eizen=
values corresponding to H = 0.03125, but only the first 20
eigenvalues are given in the table)s Below the mid=point of each
column in the table, the error between the approximate and exact
eigenvalues increases markedly, and the successive approxinate
eigenvalues begin to decrease at some point, whereas the exact
eigenvalues are monotonically increasing.

If the method just described is used to obtain approximations

to the poles and zeros of the two-port admittance matrix parameters,
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and these are then used to calculate the frequency response of the
distributed RCfnetwork, it is evident that better accuracy will

be obtained if we discard all of the "higher—order" extraneous
eigenvalues i.ee if we adopt the procedure of ordering the eigen—
values according to the magnitude of the Rayleisgh Quotient, then we
discard those eigenvalues which are decreasing while the Rayleigh
Quotient is increasings In practice, this means that approximately
one‘third of the total number'Of eigeﬁvalues calculated would have
to be discarded.

We now &escribe g'modification of the preceding method
which was found to zive more accurate eigenvalues; does not zive
"extranecous" higher—ordér eigénvalues; and which is just as easy
to program on a computers

The modified pfocedure uées piecewise linear approx=
imations to V(x) and I(x), and the approximation to V(x) is
identical to that given by (4.12), with triangle functions defined
by equations (4+10) - (4.1%)s TFor I(x) we use a different set of
triangle functions. 'For convenience we suppose that the triangle
function Ti(x) used to approximate V(x) are centred on‘N equally

spaced points, 0 = x, < x.« Xy$=m =Xy g Xy = d, and denote the

1772

distance between successive points by h = The piecewise

d
N-1) *

linear approximation to I(x) is

N1

I(x) = z:: dj T;(x) (4.16)
. 3=1

¥
where the modified triangle functions Tj(x) are as shown in
* .
Fige 441s We note that the Tj(x) are centred on a number of

equally spaced points which are midway between the centre points
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for the T,(x), and in addition, at x'= O and x = d, the spacing

between triangles is h/2 instead of h.

1,60 Y, Ta) == = = - - (0

* - B :
Tw 100 T30 — Z L Ll T 0V

¥*
Figs 4.1 Triangle Fuhction.é:"Tj(x’) and T.(x)

B *
The integrals 1{{‘;5 in (4.8a) with ;Ji(x) - T, (x) and
ﬁj(x) = Tj(x) are readily evaluated, and we obtain

-
o

1}‘333-15 -2 2
=5 4 1 (:j)

-1 =55 1
=132 d (417)

i
-
N\
v
-

]

—

]
S
w

L e

where the number of rews is (N+1) and the number of columns is Ne.
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The integrals mfj

equations similar to (4.14), with c¢(x) replaced by r(x). A4s

in (4.8b) may be evaluated using a set of

previously mentioned the equations (4.14) are exact only if c(x)
or r(x) vary linearly with x. In the computer program which was

written, equations (4.14) were not used to evaluate gj and

mgj « These integrals were evaluated using an automatic numerical
integration routine which is based on the method described in (15),
The advantage of this is that the integrals can be accurately
evaluated for arbitrary r(x) and ec(x).

Boundary conditions of the type given in (4.2) = (44) are
satisfied by setting the coefficients e, or d1 and cN or dN+1 to

zero in equations (4.5a) and (4.5b), This is equivalent to

deleting the corresponding rows and columns of the matrices

[ﬁﬂﬂﬂ ’ [Mp], and[mNFq, Then the A and B matrices may be formed

and the eigenvalues are computed as previously discussed.

Some numerical results obtained using the method just
described are shown in Tables 4.2 - 4.9, The Tables show the
approximate eigenvaluesp = =54 rocod2 obtained with h = 0,25,

are the poles or zeros of

0,125, 0,0625, and 0,03125, where 84

the admittance matrix parameters for three different distributed
RC networks. Tables 4.2 and 4.3 give the eigenvalues for a
uniform RC line; Tables 4.4~ 4.6 give the eigenvalues for a
distributed RC network with a linear taper, and a taper factor of
0,1, and Tables 4.7 - 4.9 give the eigenvalues for a distributed
RC network with an exponential taper, and a taper factor of 0.1,
In the latter case; the exact eigenvalues were obtained using

equation (16) of (9) for the poles, while the zeros were obtained



TABLE 4.3.

matrix elemsnts Y4

= Yoo

tor a uniform RC line.

Approximate eigenvalues corresponding to the zeros of the admittance

859 A 4 H, and the approximaticne to ithe voltage and current in the

resistive layer are as in TABLE 4.2.

| \lF= 0,25 0.125 C.0625 | s 02125 EXACT
1 2.467701 2.461418 24467402 | 24607401 22467401
2| 22.42)43 22.21946 | 22,2C738 | 22.20665 | 22.20660
3 65.59141 61.95834 61.7C171 61.68605 61.53502
4| 12943639 122.5081 121.028¢C 120.9: 03 120.9026
5 208,3C04 200.4238 199. 8944 199.85%
5 321.9457 3CC,. 4234 298.6718 298,5555
7 455,5366 42240183 417,3073 41649907
8l _560.0707 | 5¢6.7858 | 559.9111  555.15652
S 736.9CC8 71446565 713.0781
10 934, 7C82 893. 7187  890,7317
11 1161.56C 1093, 695 1088,123
12 ) ) ) - 1415,157 1314,828 1305.255
13 1685.017 157,819 156424125
el oo 1304T7.5)13 - 11823,448 1 T¢98,738
15 2163.53¢8 2112.6%9 2075.084%
116 - | 2287.617 2426,507 | 2371.172
17 27664211 26864999
18] e, . |3132.983 | 3145.936
19 3527.939 3377.872
20 3951.879 3752.4917
TABLE 4.4. Approximate sigenvalues corresponding to the peles of the admittance
matrix for a linearly tapered HC line.
Taper factor, T 0.1 = (width of line at port 1)/(widtk at port 2)
89 )i’ H, and the approximations to the voltage and current ia the
resistive layer are as in TABLY 4,2,
FFE= 025 0.125 C. 0625 0,03125 EXACT ]
i T, 166074 Be 51653 8.GC7216 |  Be837402 B2B8955173
2| 40.09537 38.40583 38,14069 38,09857 38,09138
3 95.92762 BB.61445 87.38480 87.24833 87.22959
4| 161.6077 156.6174 15642406 156,1944
5 261.1370 24643594 | 245,0572 | 244.9434
""" 6 - 386.,5710 357.1771 353,7280 353,4570
7 512.5960 490.4186 | 482.3314 | 481.72564
oY e [ ' €47.9773 631.0050 629.7429
3 832,1584 7999018 797.5064
10 S 1044486C 589,51 00 985,0138
11 1285.815 120040726 | 1192.263
12 = E=n o 1548,739 1432,206 14194255
13 L |1e16.797  [1686,620 | 1665.987
A 2059.01C 1964,179 1932,460
15 B | 2233.885 2265,905 22184674
16 - D BES 25924946 23244627
17 o . |29464518 2850320
el o 3327.300 3195.75¢4
19 I Sz |3737.757 | 3560.4926
20 i i 41764874 3745,839
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TARLE 4.5, Approzimate eigenvalues corresponding +0 the zeros of the admitiance

matrizx elsment g

'T,:si,

i1

for a linearly tapered RC line.

the resistive layer are as in TABLE 4.4,

A, H, and the spproxzimations to the voltage andzourrast in

[k = 0.25 0a125 Ce 0625 0, 03125 EXACT
1 44857061  4,854901 | = 4.854547 b B K496 44854487
2 26,T72479 26.5€6C3 26455611 26455541 26.55534
-3 70,36537 67425632 67.02567 67.0.148 67.,01051

4 131.3946 128.6333 126.,8815 1267709 126,7636
5 214.0067 206,5798 20640727 20640392

6 227.0071 3067456 305.,C509 304.937¢9
71 1 458.7866 | 428,4(22 423, 8187 423,5090

8 557.8932 573.13C8 56245:13 £61.7785

9| ) 743.GC718 72143155 719.7610

10 940.5427 9C0.,4936 897.4652
11 o 11664841 1100, 406 1094,896

12 1419.613 1321.537 1312.058
13- o oM. y 16€R.3¢4 15644505 1548,952
14 1949.113 1830,088 1805.582

15 | 2162,.344 2119.218 2081.947
16 228046C5 2432,971 2378.048
vy | - ==, s 2172.534 2693,886

18 3139,1.7 3029.462

e 1| (e — ol 1 3533.809 1 3384,776
20 39574464 3759,8258
DABLE 4.6, Approximate eigenvalues corresponding to the zeros oI the admittance

matriz element Io0 for a linearly tepered RC line.

T, Bys ?«i, H, and the spproximations to the voltage and current in

the resistive layer are as in TABLE 4.4.

:‘1"‘: 025 0.125 (.0625 0.03125 EXACT
1 1.036632 |  0,9976405 0.GE73677|  0.9£52989|  0.3849070
| 217 20.81635 20,222175 20.1C437 20,08287 20.07898
3 64408126 55.92643 5G.35936 59.28407 | 59.27239
4| T 126.6718 | 121.0933 118.6C60 118.,3628 118.3335
|3 206.6705 198,€229 197.2672 197.194¢9
6 319.7013 298.1233 2964 0044 295.8285
7 5 451.1202 419.8833 81446270 | 414.2208
8 T | 556.0315 564,8556 §553,2397 55243646
9 735.1416 | 72,0132 | 710.2556
10| === 32,9185 891,20L9 887.8914
11 1159,513 1091.163  |1085,270
ne O T 1412.186 1212.378 1302.3291
13 - =  |is8C.4csd  |1555.469  |1539.253
1wl B 1940, 7C4 1821.212 1795.856
15 2155.666  |2110.539  |2072.199
16] o T 2283.CC7 26244525 2368,283
17 ) | |2764.352  [26B4.106
w8 i 3131.223 3019.669
19 - I — 35264223 |3374.912
20 - 3950.,154 3750.015

s i

T D e s e T




TARLE 4.7. Approxzimate eigenvalues corresponding to the poles of the adnittence
matrix for sn exponentially %eperad RC linz.

Ty 855 ?\i, E, end the spproximations to the voltage and current in

the resistive layer are as in TABLE 4.4.

NIt = 0.25 Q.125 00525 0,03125 EXACT
1 11.31465 11.21069 11.,19705 11.19532 11.19507
| 2| 41.91339 |  40.91840 |  40.81497 |  40,80506 |  40.8038%
3 95, 05331, 90.99382 90,21372 90.15680 90.15191
4| ] 183.4532 | 159.5334 | 159.2591 | 15942361
5 262.0231 24941398 748,1349 248,0655
6 386,208l | 3 $9.7777 |  356.8316 | 356.6312
7 509, 8301 492.7255 485,4352 484,93560
el ] 849.8705 |  £34.0860 | 632.9801
9 833,5321 802.9974 800,7634
110 S o 11045.694 | 9924762 | 988,2859
11 12864113 1202,.943 11954547
12 1 154R,735 1434,953 | 1422.548
i 18164,681 1689,211 1669.288
we| b | 2058,415 | 1966.581 1935.767
15 | 2230.839 2268.083 2221,986
w6l | 2534.866 | 2521.944
17 2948,149 2853.641
wlooo ] 3329,118 | 3199.,077 _
19 3738,750 35644252
20 4177.549 349,167

TABLE 4.8. Approximate cigenvalues corrssponding to the zeros of the admivtance

matriz element y” for sn exponentislly tagered RC line.
Ty 8.9 A 52 H, and the approximations to the voltage and current in
i,

the resistive layer sre as in TABLE 4.4.

H=_o0.2% 0.125 0.0625 0.03125 EXACT
1 5.656630 5.641721 5.639533 5.639235 |- 5.635193
2| 25.84061 | 25.75834 | 25.,74411 | 25,74218 | 25074191
37 67.13958 6548066 65429510 | 65.27830 65.27692
4| 126,6009 | 126.0972 124.6227 | 124.5194 | 124,5118
5 210.4688 | 203.9840 203.5090 | 203.4760
6| | 321.9298 | 303.8929 | 302.2858 | 302.1758
T 452.4101 425.3059 | 420.9152 | 42046132
8| | 554.9278 | 569.7532 | 559.5061 | 55847891
9 739.3320 718.2297 T16.7037
wof L 936.3252 | 897.3382 | 894.3572
11 1162.020 71637.185 1091.749
12| 14144117 | 131B.249 1308.881
13 1682.306 1561 ,145 1545,752
le| _  11943.042 | 1B26.646 | 1802,362
15 2157.738 2115.681 2078.711
el | |2281.272 | 2429.324 | 2374,799 |
17 2768.756 726904626
18] i e | 3135.189 | 30264193
19 3529.728 3381.499
20 3953,166 37564544
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TABLE 4.9, Approxircate eigenvelues corresponding to the zeros of the admittance

matrix element Ioo for an exponentiglly taspered RG line.
T, 8y 7\1, H, and the approximations to the voltage and curremt in

the resistive layer are as in TABLE 4.4.

NllH = 0.25 0.125 0.0625 0.03125 EXACT

1 0. 8652050 0.8586579 0,8577600 0.8576426 0.6576258
2| 21.50543 | 21.26247 | 21,21766 | 21.21517 | 21.21487

3 64.09272 61.00713 60472697 60.70456 6£0.70282
4| 122.7866  |121.9162 | 120,0577 119.9320 | 119.9229

5 ~ 1 206.9738 | 199.4561 | 198,9178 | 198.8808

6 _]319,3461 | 299.4488 _297.6965 297.5773

7 4497270 4210134 | 416.3228 | 41640129
8  |550.1308 565,7033  5544,9367 554,1875

9 T T 735.6312 | 713.6811 7l2.l0L13 7
o} 933.0695 892,8203 | 889.7543
11 1159,238 1092.711 1087.146
2| b |1411.676 1313.833  [1304,277
13 1679.831 1556.806 1541.148
[14) i ~ l1939.958  |1822.405 _  |1797.758
15 2153.604 2111.562 2074,107
D3 R B 22764139 |2425.,353 (23704195
17 2764.961 2686.022
8l el o ]3131.594  |3021.58%
19 3526,357 3376.894
20 3950.033 3751.939
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al
by numerically solving equation (15) of (9), which, incidently, is

incorrect, and should read

tanh @ = < (4.18)

2
1

tanh 6 = -’le

instead of

In the tables, only the first 20 eigenvalues are shown for
h = 0.03125, although the number of sigenvalues actually calculated
is 31 in the case of the poles, and 32 in the case of the zeros.

On examination of the tables, we see that with the exception
of one of the larger eigenvalues in some of the tables, the
approximate eigenvalues are greater than the exact eigenvalues.
Comparing Tables 4.1 and 4.2, we see that the approximate eigenvalues
in the latter are more accurate, In particular, we note that the
higher order approximate eigenvalues in Table 4.2 are generally
within 10% of the exact eigenvalues, whereas the accuracy of the
corresponding eigenvalues in Table 4.1 is much worse.

Comparing the results in Tables 3,2 - 3.6 with those in
Tables 4e2 - 4eb6, we see that the smaller eigenvalues are less
accurate in the latter, whereas the larger eigenvalues are much
more accurate,

The outstanding feature of the method using the modified
triangle functions is the greatly improved accuracy of the larger

eigenvalues, in comparison with the previous methods discussed.
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4+4 lLxtrapolation procedures

One a.dvant‘age of the methods using triangle functions to
obtain approximations to the eigenvalues is that extrapolation can
be used to obtain more accurate eigenvalues, and to estimate the
accuracy of the éolufions. “In the polynemial approximation method,
increasing the higheéf order of polynomial improves the accuracy of
the eigenvalues, but in an irregular and unpredictable manner.

In the approximation methods using ¥riangle functions, we
agsume that the error in each eigenvalue is 'an analytic function
of the interval h between N equispé.céd points on the interval. =
0<x<£d. Suppose that f1 is the approximate eigenvalue obtained
with h = h1, and fo is the exact eigenvalue, and we assume that the

error is given by

f1 = fo + A11P1 (4.19)

Similarly, if f2 and f3 are the approximate eigenvalues

obtained with h = h2 and h = h3 respectively, we assume

£, = £+ A1h§ (4+20)
£, 0= £+ ang (4e21)

The constants £1 A,y and p are readily calculated if

1
hythythy=13:0;: c®. Tt is easily verified that

£, = 1,
P = In 7= /Inc (4422)
3 2
ul
and £, = £, = = (4.23)
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The procedure just described is known as Aitkint's g?

extrapolation (16), In general, the value of fo given by (4,28)
will not be equal to the exact eigenvalue because we have ignored

hI‘

terms of the form A2 hQ; A3 =—=e« in equations (4.19) - (4.21).
However, for h sufficiently small, the value fo given by (4.23) ?s
a better approximation to the exact eigenvalue than f1, f2 or f3,
and we are then able to estimate the error in the approximate
solutions,

Application of ' : Aitkin's %2 process to the
approximate eigenvalues given in Tables dely 4e2 and 4.3 for the
uniform distributed RC line indicate that for h sufficiently small,
the value of p given by (4.22) approaches 4 i.e, the asymptotic
error in any approximate eigenvalue as h20 is of order h4. The
results obtained using Tables 4.4-4.6 (linea.rly tapered distributed
RC line with ¥aper factor = 0.1) indicate that the asymptotic
value of p for the lowest eisenvalue is about 3 or slightly less,
and that the asymptotic value of p increases with the number of
the eigenvalue to a maximum of about de

For other similar methods of solution such as the
finite=difference method (25), which gives about the same accuracy
as the variational method of solving the second-order differential
equation with triangle functions (41); the rate of convergence is
somewhat slower. A typical value of p in (4.23) for the two
methods just mentioned is 2 or less. However for these two methods
the A and B matrices (4.6) are tridiagonal or diagonal, which
reduces the computer storage requirements, and in addition,

special techniques are available for computing the eigenvalues

(72); with the Moment method described in this Chapter the A
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and P matrices are full matrices, and these special techniques

canfiot be used,

4% Conclusion

The Method of Moments has been used to obtain eigenvalues
of the first~order system (4.1). Some numerical results were
obtained by using piecewise linear approximation for the unknown
voltage and current functions. When the trianzle functions for
V(x) and I(x) were chosen to be the same, the approximate eigen=
values were found to be less than the exact solutions i.ee lower
bounds. However when the triangle functions for V(x) and I(x)
were chosen as shown in Fige 4.1 the approximate eigenvalues were
greater than the exact solutions. In general, the second type of
piecewise linear approximation gives more accurate solutions than
the first type.s In addition, the second method does not appear to
give "extraneous" solutions,

An advantage of the Moment method discussed here is that it
appears to give smaller errors and more rapid convergence than other
methods when the same expansion functions are used, The basic
reason for this is that we are approximating the voltage function
and its derivative with the same order of accuracy, whereas with
other methods the differenzgon of the voltage function increases
the errorse. This aspect is discussed in more detail in the next

Chaptere
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Chapter 5

COMPARISCON OF RAYLEIGH-RITZ AND MOMENT METHOD

SOLUTIONS OF DIGENVALUE PROBLEMS

S5e¢1 Introduction

In Chapter 3, the Rayleigh-Ritz method for obtaining
eigenvalues of the second-order differential equation (2,4) was
presented., The eigenvalues are the stationary values of the
functional (3.1); In practice the stationary values of the
functional (3;1) can only be found approximately, and if the
expansion functions satisfy the "prescribed" boundary conditions
v(x) =0atx=0 and/or x = d, the approximate eigenvalues are
greater than the exact eigenvalues,

In Chapter 4, the Moment method for obtaining eigenvalues
of the first-order differential equations (4.1) was presented;
these first-~order equations are equivalent {o the second—order
equation (2.4). It has been suggested that this method provides a
lower bound to the eigenvalues (14), p 142, However, from the
results presented in Chapter 4, it is clear that this is not
necessarily so. It appears that for certain types of expangion
functions, the approximate solutions are lower bounds.

We now propose to investigate in more detail the
relationship between the two methods mentioned above, in an
attempt to determine why the Moment method sometimes gives lowepr
bounds, In addition, it will be shown that the two methods give

identical results for some types of expansion functions.
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5+2 Variataomal Tnterpretation of the Noment Method

From (14), Chapter 7, it is obvious that the voltage and

current functions V(x) and I(x) obtained from the Moment method

satisfy
d d
X vEH - S c (x) V2 ax (541a)
(o] [¢]
d d
S I %Ju - J r (x) 1° ax (5.1%)
(o] o}

when V(x) and I(x) satisfy the appropriate homogeneous boundary
conditions,

By using integration by parts it is also obvious that

dr av
—L Vadxaglaxdx (542)

(o)

is satisfied under these boundary conditions, and from (5.1a), (5.2)

we see that the eigenvalues and eigenvectors satisfy

(
v ax -S 1< ax
-s= ° s 2 (5-3)
{d
¢ (x) v ax j c (x) v ax
‘0 e

In order to compare this result with the Rayleigh Quotient
used in Chapter 3, we will need to use the inequality (38), pe 16

a 2 a I a 2

—jI%xde < g r (x) 1% dx 5?1_5‘%1 dx (5+4)

o] o] 0
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From (5.1b) We see that this is equivalent to

r\x

a a
-S 1< ax SJ —1(—5 £ a (545)

(] (o]

Thus from (5.3) and (5.5) it is seen that the eigenvalues and

eigenvectors satisfy

4 2
1 dav
S r(x) [ax Y dx
- 8 < 0 (5'6)
- d
{ c (x) v dx
o
The expression on the right side of (5.6) becomes
identical to the Rayleigh Quotient (3+41) if we substitute
r(x) = r(o)/u(x) (5¢72)
c(x) = c(o)ew(x) (570)

into (5+6), and then multiply by r(o).c(o).

"Prom (5.3) and (5.6) we can immediately deduce the
following. If V(x) is any continuous function satisfying the
boundary conditions of the eigenvalue problem, and I(x) is chosen
to satisfy (5-1b), then (5.3) may be used to approximate the
smallest eigenvalue 7%?%. The approximate solution given by the
right hand side of (5.6) will always be greater than or equal to
that given by (5.3). Since the Rayleigh Quotient is an upper
bound on P\1, it follows that (5.3) gives either a more accurate

upper bound than (5.6), or else it is a lower bound. Clearly
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if I(x) is chosen to satisfy

I(x) = - ’;1(77 s (5.8)

then (5.5) becomes an equality, and the expressions on the right
of (5.3) and (5.6) are identical. Noto that if (5.8) is satisfiecd
then (5.1b) is also true, but the converse does not necessarily
apply, i.e. (5.1b) is a nccessary condition for (5.8) to be
satigfied, but it is not suffiecisent,

In general, the approximate eigenfunctions and eigenvalues
obtained by the methods of Chapters 3 and 4 will be different
even though the voltage function V(x) is approximated with the
same expansion functions, Therefore, it is not possibles to state
on the basis of the relations (5.3), (5.5) that the Moment method
will always give eigenvalues which are less than those obtained by
the Rayleigh-Ritz mothod. In practice, it usually happens that
this is so, provided that (5.8) is not satisfied,

When piocewise linear approximations are used for both
V(x) and I(x), it is gonerally impossible to satisfy (5.8), and
the approximate eigenvalues are likely to be lower bounds as
found in Chapter 4. However this will depend on the type of
approximation used for I(x). When the modified triangle functions in
Chapter 4 were used to approximate I(x) the eigenvalues were
generally upper bounds. Intuitively the reason for the improved
accuracy found with these modified triangle functions is that the
errors in (5.8) are reduced, but are not zero. Since the
eigenvaluss obtained when (5.8) is satisfied are upper bounds,

and the method which uses identical triangle functions for both



61

V(x) and I(x) appears to give lower bounds, we would therefore
expect the solutions obtained with the modified triangle functions
to lie somewhere between these upper and lower bounds, and would
therefore be more accurate, These expectations are supported by
the numerical results obtained in Chapter 4.

When polynomials are used to approximate both V(x) and
I(x), (5.8) is exactly or almost exactly satisfied, and the
Moment method and Rayleigh-Ritz solutions are equal or almost equal,
For example, if r(x) and c(x) are independent of x, i.e. a uniform

RC line, the two methods give identical eigenvalues.

5.3 Conclusion

We have considered the relationship between the solutions
obtained by the Rayleigh-Ritz method and Moment method. From the
inequality (5.5) we generally expect the Moment method to give
smaller eigenvalues which are either lower bounds, or are more

accurate than those obtained by the Rayleigh-Ritz method.



62

Chapter 6

ALTERNATIVE METHODS FOR ANALYZING NON-UNIFCRM RC

DISTRIBUTED NETWCRKS

6.1 troduction

In previous Chapters we have considercd in some detail the
Moment method and the Rayleigh~-Ritz method for obtaining poles and
zeros of the admittance parameters for non-uniform RC lines. In
this Chapter we will briefly consider some altornative methods.

As discussed previously in Chapter 2, and in (1), Chapter 2,
the admittance matrix clements can be cxpressed as ratios of the
basic set solutions, and the zeros of these basic set solutions are
either poles or zeros of the admittance matrix elements. The
basic set solutions may be expanded as infinite power series in the
complex frequency variable s, or as infinite product expansions.

Once the coefficients of the power series expansion have
been determined, the zeros may be found approximately by
truncating the series to a finite number of terms, and then using
a polynomial root extraction program on a computer. Some numerical
techniques for obtaining the coefficiants in the power series
expansion are given in (1), Chaptor 2, Section 5, and will not be
considered further here.

In the following we will consider only dirsct methods for
estimating the poles and zeros; with these methods it is not
necessary to compute the coefficients in the power series expansions.

Several of the methods to be discussed give both upper and

lower bounds on the exact solutions, which is a desirable feature,
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6.2 MNumerical Methods

One of the simplest methods which can be used to obtain
approximate solutions of the differential equation (2.4) is the
finite.difference method, which is also known as Lagrange's method,
(1) pp 52 = 59, (3) pp 299-319. In this method a number of points
are chosen on the line, and the potential at each point is expanded
in the form of & truncated Taylor series. The derivatives of the
potential function at cach mesh point can then be estimated from
the values of the potential function at the mesh points. When
these approximations are substituted into the differential equation
a matrix eigenvalue problem is obtained, and this may be solved for
the eigenvalues and the unknown potential values at the mesh points.
This method is equivalent to dividing the line into a number of
incremental lengths which are then modelled in the form of a
T-network, (1) p 54. The accuracy of the results is improved by
increasing the number of mesh points, and extranolation procedures
can also be used to improve the accuracy and to estimate the errors
in the solutions,

Another method which was developed by Schwarz is based on
the Rayleigh Principle (1) p 60. This is an iterative procedure
by which more accurate solutions are generated from an initial
approximation., At each step of the . iteration both upper and lower
bounds on the desired eigenvalue are obtained, so that the iteration
can be stopped when the desired accuracy is achieved.

One possible disadvantage of this method is that it does not
appear to be easy to program on a computer for arbitrary taper
functions,

Another method for obtaining upper and lower bounds on the

eigenvalues is based on the Enclosure theorem which is due to



64

Gollatz (1), p 64. However, this method also suffers from the problem
that it is not sasy to program for arbitrary tspers; in general it
would be necessary to prepare a separate computer program for each
type of taper.

In addition to the above methods, there are a number of
numerical techniques which exploit the capability of computers to
solve initial value problems. The possibility of using these
techniques to solve eigenvaluc problems was first presented by
Fox (73), and subsequently several variations were presented (74).
The use of these methods avoids some of the difficulties associated
with the methods previously discussed. For example, with the
Rayleigh-Ritz and Momont Methods it is necessary to solve a high
degree determinantal equation in order to obtain the higher order
eigenvalues, and to reduce tha error for the low order eigenvalues.
The solution of this equation may then entail such an accumulation

of round-off errors that accurate eigenvalues cennot be obtained.

6,3 GConclusion

In addition to the methods discussed in this Chapter there
are many others.

In (87) it is shown that both upper and lower bounds on the
eigenvalues can be obtained from the Rayleigh-Ritz solution with
piecewise linear approximations to the eigenfunctions.

In (88) a method which involves a change of dependent
variables is used. This transforms the boundary value problem to an
initial value problem, and the eigenvalues are obtained by Newton's
method,

Finally, in (89), the non-uniform transmission line is

replaced by a cascade of uniform lines. This method is claimed
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to give much better accuracy at high frequencies.

Clearly there are many methods which may be used to solve
non-uniform transmission line problems. Since the various methods
all have some assoclated problems, the method chosen will be

determined by personal preference in most cases,



PART II

TWO DIMENSIONAL ANALYSIS
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Chapter 7

BOUMDARY BFFTCTS IN DISTRIBUTED RC STRUCTURES

7,1 Introduction

Up to this point, we have been concerned with the network
properties of distributed RC circuits with one-dimensional
veriation in per-unit-length series impedance and shunt conductance,
We have placed particular emphasis on the analysis of distributed RC
networks since these structures have epplications in micro-
electroniecs.

In practice it is advantageous to use tapered RC networks
instead of uniform RC networks in certain applications. In
particular, sharper rates of cut-off are achieved for low pass
filters, and better selectivity is cbtained with notch networks
(5), (17).

So faﬂ, ﬁe have not considered in detail the physical
realization of tapered distributed RC networks. If we consider the
class of tapered distributed RC networks which support only one-
dimensional current flow, we find that electrical taper and
geometrical shape are generally different. Furthermore, one
dimensional current flow is only possible if the physical boundaries
of the distributed circuit match the co-ordinate lines of one of
four orthogonal co-ordinate systems (1), Chapter 7. These are the
cartesian, polar, parabolic, and elliptic co-ordinate systems.

The cartesian and polar co-ordinate geometries represent ths
uniform RC line and linearly tapered RC lines respectively. The
parabolic and elliptic co-ordinate geometries represent more

complicated electrical taper functions which approximate the
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square-root and linear electrical tapers respectively for small
taper ratios (1), Chapter 7.

Various other procedures can be used to determine the
geometric shape of a distributed RC network which approximates a
given electrical taper. One such method uses a conformal trans-
formation of the cartesien co-ordinate system, and an alternative
graphical construction procedure is based on the use of
curvilinear squares (1), Chapter 7. Both of these methods yield
geometric shapes which only approximate one-dimensional current
flow, and are most accurate for smell taper ratios.

In this Chapter we will briefly consider some methods for
two-dimensional analysis of distributed RC networks. Firstly, we
will consider the problem of obtaining the zero frequency
admittance matrix parameters for a multi-terminal network. Then
we will present solutions which may be used to evaluate admittance
matrix parameters at any desired frequency. These solutions are in
the form of a partial fraction expansion which is obtained by
expanding the unknown potential functions in terms of solutions
of Laplacs's equation and a set of eigenvalues and eigenfunctions
which satisfy the Helmholtz equation in two dimensions.

In Chapters & and 9 we will consider in more detall
variational methods for obtaining approximate values of the
admittance matrix parameters and the poles and zeros, and in
Chapter 10 we consider a method which is based on the solution of

an integral equation.
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7.2 Iwo-Dimensionsl Analysis of Distributed RC Lines

Az discussed above, there is a very limited range of
gaometrical shapes for distributed RC networks which can be analysed
exactly by assuming one-dimensional current flow. In addition,
experimental results given in the literature indicate that the
assumption of a one-dimensional model for the distributed RC network
may result in considerable errors. For example, experimental studies
have shown that the frequency of the notch produced by a circuit
containing an exponentially tapered RC network may bhe in error by
10 percent or more when compared with the theoretical prediclions
(17), (18). 1In view of the inadequacies of the one~dimensional
model for many types of tapered distributed RC lines and also with
the objective of investigating whethsr it is possible to obtain
better electrical performance from distributed networks which do not
support one-dimensional current flow, we now wish to consider methods
for two-dimensional analysis of distributed RC networks.

The first requirement to he considered when attempting a
two-dimensional analysis of a distributed RC network is that the
potential, @ between the resistive layer and the ground plane must

satisfy the Helmholtz equation, (1) Chapter 7

7R § = sRC ¢ (7.1)

where
R is the resistance per square of the resistive layer
C 1is the capacitance per unit area coupling the
resistive layer to the ground plane
s is the complex frequency variable

and

A¥i ig the two-dimensional Laplacian operator
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In addition, the potential in the resistive layer must
satisfy certain boundary conditions. The boundary of the resistive
region is made up of metal contacts and insulating segments. On
each of the metal contacts, the boundary condition is that the
potential be constant., On each of the insulating parts of the
boundary, the boundary condition is that no current flows out of the
resistive region. This is equivalent to the condition,

~
n

P =0 (7.2)

on insulating parts of the boundary; 7 is the unit- length
outward-pointing normal to the houndary.

Having found the potential function f satisfying (7.1),
and the boundary conditions of any particular problem, we are then
able to compute any desired set of network parameters. 4
convenient set of network parameters for many applications is the
admittance matrix which relates the potential between the metal
contacts and ground to the current entering the metal contacts. If
there are N metal contacts on the boundary of the resistive layer,
the relation between the N voltages and currents may be written in

matrix form as,

1] = [¥] ] (7.3)

where ‘
I] and VJ are column vectors of length N,

[Y] is the N X N admittance matrix

Ij is the current entering the jth metal contact

Vj is the potential between the jth metal contact and

ground
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If the potential, @, within the resistive layer, or the
normal derivative of @ on each metal contact is known when the
jth metal contact is at a potential of 1 volt and all other metal
contacts are at zero potential, the elements in the jth column of

the admittance matrix may be computed using the relation

%ﬁ- ai (7.4)

i

==

Yij

where
Ci is the boundary segment containing the ith metal
contact
dl is the elemental distance along the boundary.
By choosing j = 1,2 == = N, and computing the yij for

each j, the complete admittance matrix in (7.3) is obtained.

7.3 Distributed Resistance Calculations
Before considering in detail methods for solution of (7.1)
we wish to discuss the solution of a simpler problem. If the

complex frequency variable s in (7.1) is set to zero, the Helmholtz

equation reduces to Laplace's equation,

<72¢ = 0 (7.5)

Analytical solutions for the resistance between two
terminals placed arbitrarily on the perimeter of resistive films
having a restricted set of geometries have been obtained by various
tochriques. The usual method for solving such problems involves
the determination of some conformal transformation which maps the

given geometry into a rectangle such that the conducting terminals
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become two opposite edges of the rectangle. The resistance between
these two terminals can then be easily determined. An example of
this approach is the work of Moulton (19), and Wyndrum (20@) which
provides the resistance between two terminals placed arbitrarily
on the perimcter of a rectangular structure.

The Schwartz-Christoffel transformation was alsoc used by
anderson (21) to calculate the capacitance per unit length between
coaxial cylinders of rectangular cross-section. This is analogous
to the problem of calculating the resistance between a pair of
terminals placed on opposite edges of an "L" shaped resistive film;
having solved this problem, one can then easily solve the dual
problem of a distributed resistor consisting of a right-angle bend.
Numerous other examples of analytical solutions for two terminal
distributed resistance networks may be found in the literature.

A comprehensive list of these results is given in the work of
Hall (22).

Computer implementation of resistance calculations using the
known analytical solution techniques is feasible. However, any
such computer program of reasonable sophistication can only
handle resistors of a restricted set of predetermined geometries,
and not resistors of general shape. Furthermore, it cannot handle
multi-terminal distributed resistive networks, with the exception of
three-terminal resistive networks with a plane of symmetry as
considered in (20),

Because of the limitations of analytical solution techniques,
greater emphasis has been placed on numerical techniques for
analysing multi-terminal distributed resistance networks in recent

years. Although the results obtained by these numerical techniques
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are not exact in general, there is much greater flexibility in the
types of networks which can be analysed. In addition, some
numerical techniques provide two approximate solutions which are
upper and lower bounds on the exact solution, and this allows the
user to decide whether the approximate solutions are sufficiently
accurate,
We now wish to discuss some of the numerical techniques
which are applicable to multi-terminal distributed resistance networkg

of arbitrary geometries.

7.3.1 Finite Difference Method

The finite difference technique is perhaps the most popular
numerical method for solution of Laplace's equation. In this method
the partial differential equation is approximated by a system of
linear algebraic equations. This is done by superimposing a
regular grid over the region of intercst, and assigning an unknown

potential to each intersection of the grid. Approximations to

°W/3x> and  DWBy? at cach grid point are obtained in terms
of differences between the potentials at adjacent grid points (24).
At grid points on or near the boundary, the difference equations
must be modified to account for the boundary conditions. Various
techniques have been developed for satisfying boundary conditions
when the boundaries do not coincide with the grid points. In
practice, however, this is one of the major drawbacks of the
method, and it is no mean feat to program the logic for boundaries
of arbitrary shapel?).

In this method an initial guess at the potential is made

with a fairly coarse mesh. An iterative procedure is then used



73

to reduce the error in each finite difference equation to a
sufficiently small value; iterative methods are generally more
practical than direct methods for solving the simultaneous equations
since the coefficient matrix is very sparse, with only five non-zero
elements per row in most cases. Once the potential values have been
computed, the normal derivatives along the terminals of the
distributed resistance network can be found using Finite difference
approximations, and then (7.4) is used to obtain the admittance
matrix elements. A further limitation of this method is that for

a multi-terminal structurc one would have to repsat the whole
iteration scheme each time a different potential configuration is
specified.

In spite of the difficulties associated with this method,
it does permit solutions of any desired accuracy (1limited only by
round-off errors in the calculations) by using successively smaller
mesh intervals. 4n excellent reviaw of this method is given by
Green (23), end verious aspects arc described in (24) and (25), A
comparison of this method with one other method (to be discussed

later) is also given in (26).

7.3.2 Integral Equation Method

In addition to the finite difference method, another method
which reformulates the partial differential equation (7.5) as an
integral equation has been used by various authors to obtain
numerical solutions of Laplace's equation in two dimensions. The
integral equation method is based on the fact that the potential at
a point on or inside the boundary of the region depends on the

weighted integrals of the charge density (for TEM field problems),
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and the potential on the entire boundary. This relationship is

expressed mathematically by

T (xly! ).ﬁ(x"yv) = j[(io(r).y(x,y) - G (r) .ﬁ(x,y)] ds (7.6)
T-'

where

O (x',y') is a constant depending on the position of the
point (x',y")
yy(x,y) is the normal derivative of the potential function
#(x,y) on the boundary
T is the distance between the points (x',y') and
(x,y)
and the integral on the right is evaluated over T the boundary of the
resistive region.

The weighting function Gb(r) is a Green's function for
two-dimensional space, and the weighting function G1(r) ig the
normal derivative of Gb(r).

The relation (7.6) is derived from (7.5) by using Green's
boundary valus formula in (27), (28), (29).

The Green's function Go(r) satisfies Laplace's equation
inside the boundarﬁ, except at x=x', y=y'. 4t this point Gb(r) has
a singularity, and behaves as k log r as r-»0., The simplest example

of a function which satisfies these conditions is the free-space

Green's function

y ]

Gb(r) = .logT = -1og,\ff(x—x')2 & (YFY')Z (7.7)
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By choosing a Green's function which satisfies certain boundary
conditions it is possible to obtain an explicit solution for the
potential in terms of the specified boundary conditions of the
problem. This subject is treated in some detail in (4), pp 243-259.
However this approach has several disadvantages. If the natural log
function is not used for the Green's function, a suitable one must
be found for each problem. Often this can be as difficult as the
original problem itself, In addition, this Green's function will
usually be expressed as an infinite series, and therefore techniques
must be found for efficiently computing it and its derivative.
Some examples using a Green's function which satisfies homogeneous
boundery conditions on a rectangular boundary are given in (30).
Approximate solutions satisfying the integral equation
(7.6) can be obtained as described in (29) - (31). This problem

will also be considered in detail in Chapter 10.

7.3.3 Integral Equation Method Based on Cauchy's Integral Equation
We now consider an alternative method of reformulating the
partisl differential equation (7.5) as an integral equation (32).
From the theory of complex varisbles it is well known that if a
function?b(z) is defined on the boundary C of a region R, and is
analytic in R and on C, then at point Z' in the region R, the

function is given by Cauchy's integral formula,

Yz = Lo L) g (7.8)
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Now it is also known that the real and imaginary parts of a complex
function (subject to restrictions given above), both satisfy
Laplace's equation in the region R, We may therefore consider tha
real and imaginary parts of the complex function.%(z) to be the
potential function V(x,y) and the stream function U(x,y) (integral
of the current density), respectively.

For the type of physical problems under consideration,
part of the boundary consists of metallized segments, and the rest
of insulated segments. On each metallized segment, the real part V
oflf is constant and given, whereas on each insulated segment the
imaginary part U of %'is constant and unknown. Additional
unknowns are the function U(z) on metallized segments, and the
function V(z) on insulated segments,

For purposes of numerical computations it is necessary to
approximate the integral equation (7.9) by a set of simultaneous
equations which may be solved for the unknown potential and stream
functions on the boundary. One such method is described in detail

in (32).

7e3¢4 Variational Method

In zddition to the methods previously discussed for
solving Laplace's equation, there is another method commonly known
as the Variational Method. This method is based on the following
principlet

The functional F(@) given by

@) = |} |voPa- 293 s (7.9)
" 3
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has for its stationary conditions (BEuler equation) (765) and the

natural boundary conditions

g = g(s) on ¢, and g'é"e 0 on G, (7410)
where

Cw= C1 U C, is the boundary of a region R,

2

The set of admissible trial functions for F(f) is the
class of continuous scalar functions ﬁ with bounded, piecewise
vp|

continuous, first derivatives such that da exists.

The proof of the statement that F(P) given by (7.10) is
stationary when (7.5) and (7.11) are satisfied is quite straight-
forward as shown in (33).

Methods for solving the stationary problem will be
discussed in more detail in Chapter 8, In addition, it will be
shown that if g(s) is suitably chosen, then F(f) given by (7.10)
is proportional to the zero frequency value of an admittance matrix
element yij' Furthermore, it is shown in Chapter 8, that other
functionals can be constructed such that the stationary value is

proportional to an off=diagonal element yjk'

Te3¢5 Reduction to First-Order Partial Differential fquations
An interesting variant to the above methods is proposed by
Harrington (14), pp 162=166. Equation (7.5) can be reduced to

the following system of coupled first—order differential equations:
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{]
o
o

-<7¢ (7.11a)

t
O

=T (7.110)

is the potential in the resistive layer

oW

is the sheet resistance in ohms/square

?

is the current density vector in the resistive layer
(amperes per unit width).
In cartesian co-ordinates, the system of equations (7.11)

becomss

- 28 = Ry, (7.12a)
ox
- 98 = RrJ (7.12b)
oy y
3 + oJ
e —. = 0 (7.12¢)
ox oY

Although the method of solution described in (14)
pp 162 - 166, is concerned with eigenvalue problems, it can be
easily adapted to obtain approximate solutions of Laplace's
oquation. Alternatively, as shown in Chapter 9, approximate
solutions of the first-order system (?.12) may be obtained by
the variational method. It is shown there that it is possible
to construct functionals whose stationary conditions are (7.12),
subject to certain boundary conditions, and the gtationary value
of the functional is proportional to an admittance matrix

element .
Yk.
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Te4 Erequency Domain Analysis of Distributed RC Lines

In this section we will consider techniques for frequency
domain analysis of distributed RC networks., As in the one-
dimensional case, we will concentrate primarily on the problem of
obtaining poles and zeros of the admittance matrix parameters.
The pole-zero approach provides a direct connection between
lumped and distributed-parameter systems, and also simplifies the
calculation of the various network transfer functions at any
desired frequency.,

As discussed in Section 7.1, the admittance matrix
parameters may be obtained by calculating the current entering
each metal contact when the potential V between the jth metal

contact and ground is prescribed for j=1, 2-# N. For example,

if Vj is unity and Vk = 0, for k#j then the current entering

the kth metal contact is y _where [Y]is the NKN admittance
kj

matrix.
The potential @ in the resistive layer satisfies the

Helmholtz equation (7.1), which we will write in the form

<4 +Ag = 0 (7.13)

subject to the boundary conditions

”AVP = 0 on insulating boundary segments
g = V5 on @4, where V; is the (7.14)
potential on the jth metal contact
and # = 0  on all other metal contacts



Where
8 1s the complex frequency variable, and R and C are as

previously defined,

In the following, the surface of the resistive region will
be denoted by R, and the boundary of the resistive region by C.

The boundary valus problem with the homogeneous differ-
ential equation (7.13) and non-homogeneous boundary conditions
(7.14) is essentially equivalent to a problem with a non-
homogeneous differential equation with homogeneous boundary
conditions as discussed in (4) Chapter 5.,

If there exists a twice differentiable function F, which

J
satisfies the same boundary conditions as #,
n.‘VFj = 0 on insulating boundaries
F.o =V, on the jth metal contact
] j J 2 (7.15)
and Fj = 0 on all other metal contacts
Then we let

w = @F, (7.‘16)

We then have
LAY
¥

From (7.16) seobtain

i
o

on insulating boundaries
(7.17)

i
O

on the metal contacts

v2¢+3%= 9B+ M- v-sz - AT, (7.18)

If we define
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szj+RFj= £ (7.19)

then from (7.13), (7.18), (7.19) we obtain

i AY = -z,

j (7,20)

Thus Sb satisfies a non-homogeneous differential equation
(7.20) and homogeneous boundary conditions (7.17).
The non-homogeneous problem may be solved in terms of the

eigenfunctions of the homogeneous problem, (4), p 223.

v Y >‘i¥"i = 0 (7.21)

. VWi = 0 on insulating boundary
(7.22)
Sl/i = 0 on the metal contacts

The eigenvalues -Ai may be shown to be positive and real,

and the eigenfunctions % are also real.

The coefficients in a "best" approximation to Sbby a

linear combination ci‘f/i in the least-mean-square sense are,

Ci = If 5‘/. ?’j_ da (7.23)
R
The %i are orthogonal, and are assumed to be normalized so that

j‘]bi‘?&j da = 6]‘_3' (7+24)
R
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The ¢, are obtained from the coefficients,

¥, = JT fj.% da (7.25)
R

As shown in (4), p. 223 we obtain

o, = O/(A ) (7.26)

1

The approximate solution of our original problem is then

given by
=5 : ¥ W (xy)
¢(X3Y) L‘j(X’y) W_.T)- (7027)

By using an argument similar to that in (4) pp 158 ~161,
it may be shown that the eigenfunctions ybi form a complete set
with respect to continuoﬁs functions gy(x,y) which satisfy
homogeneous boundary conditions of the form (7.,17), and which
have piecewise continuous first derivatives. In addition to
proving that the eigenfunction expansion converges in the mean,
it is also possible to establish uniform convergence at any
point in R or on C.

Once the potential function has been found in the form
(7.27), the admittance matrix element Yij °an then be computed by
using (7.4).

The result is
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av. aq/
3 A2
Vij = -ﬁ§ 5—;11-&1 '@'1_-737 (7.28)
C

i

This equation can be put into an alternative form which
shows the symmetry of the admittance matrix. By using the Green's

formuls

é v Bn al n{ yu.gvda + vv2 u da (7.29)

R R

=]

QL

|
s

and by defining a function Fi which satisfies the boundary

conditions
A VFi = 0 on insulating boundaries
Fy o= Vg on the ith metal contact (7.30)
= 0 on all other metal contacts

We can put (7.28) into the form

-a.al f f Fy ylaa ff Fj.x,l/lda
UF..YF. da + R R
i J
R

(A =)

(7.31)

where

Fi and Fj are assumed to satisfy Laplace's equation.

Clearly it follows frem (7.31) that

yi:j = yji (7'32)



84

as otie would expect from consideration of reciprocitye.

In addition, we note that (7.31) has the form of a partial
fraction expansion of the Foster canonical form for an RC driving
point admittance. The complex frequency variable s is related to.A
by (7.14). Since the eigenvalues Ai are positive and real, it
follows that the poles are all negative and reals In addition,
since the residues of the partial fraction expansion (7.31) are
all positive for diagonal elemerits of the admittance matrix, the
zeros of these elements must be on the negative real axis, and the
poles and zeros altermate on the negative real axis. Ior an off-
diagonal element of the admittance matrix the residues are not
hecessarily positive, and the zeros may be anywhere in the complex

frequency plane.

T«5 GConclusion

In the preceding sections some methods for obtaining
approximate values of the admittance parameters for distributed
resistance networks were presented. The numerical results obtained
by several of these methods will be presented in the following
Chapters,

A method for obtaining the admittance parameters of
distributed RC networks was also discussed. The solutions
obtained by this method are in tlhe form of a partial fraction
expansion which is obtained from the eigenvalues and eigenfunctions
corresponding to the poles of the admittance matrixe This method
also requires the zero frequency admittance parameters of the

network to be computed.
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In the following Chaptérs we will concentrate primarily on
direct methods for obtaining the poles and zeros of the admittance
parameters, i.e. methods which do not require calculation of the
eigenfunctions,

The eigenfunction expansion method has been included here
for completeness since it is the classical method given in textbooks

for solving boundary value problems of this type.

The author is indebted to one of the Reviewers who suggested that some
comment on the work of Weinstein should be included. A good source of
information is the book by S.H. Gould, "Variational Methods for Eigenvalue
Problems", University of Toronto Press, Second Edition 1966, which is
gevoted entirely to the Rayleigh-Ritz method for upper bounds, and the

Weinstein method for obtaining lower bounds on the e@lgenvalues.
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Chapter 8

VARTATTONAL METHODS FOR OBTAINING ADMITTANCE

MATRIX PARAMETERS OF DISTRIBUTID RC NITWORKS

8.1 Introduction

In this Chapter we will consider variational methods for
obtaining the poles and zeros of the admittance parameters, and/or
the value of any desired admittance parameter at a ziven frequency .
The required solutions are proportional to the stationary values
of a suitably chosen functional., Thesc stationary values are
found (approximately in general), by using the Rayleigh-ditz
method.

Silvester, (62), has considered an analogous problem to
that of analyzing distributed RC networks. The problem considered
by Silvester is analysis of planar microwave networks, but the
technique is directly applicable to distributed RC networks, since
the transformation from one type of network to the other is
equivalent to the lc — rc transformation for lumped networks.

The solution for the admittance matrix in (62) is in the form of
a partial fraction expansion involving potential functions
satisfying Laplace's equation and a set of eigenvalues and
eigenfunctions satisfying the Helmholtz equation in the two—
dimensional region. In practice the infinite partial fraction
expansion must be truncated to a finite number of terms, so that
each admittance matrix term may be expressed as a rational
function in the complex frequency variable. If desired, the

zZeros may be obtained by computing the roots of the numerator
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polynomial; the poles are proportional to the elgenvalues.

A possible disadvantage of the above method is that the
time required to compute the eigenvectors of a matrix is much
greater than that required to compute the eigenvalues, In
addition, on a finite precision computer, the accuracy of the
eigenvalues is generally better than that of the corresponding
eigenvectors, which means that the zeros of the rational function
may be subject to rounding errors.

In the following sections we will consider direct methods
for computing the poles and zeros of the admittance matrix; it
is not necessary to compute any eigenvectors with thesc mcthods.
Although variational methods have been used previously to obtain
the poles of the admittance matrix, (62), these methods do not
appear to have been used to obtain the zeros,

In addition, the use of variational methods for obtaining
numerical values of the admittance parameters at a given frequency
does not appear to have been considered previously.

After presenting the theoretical basis of these techniques,
methods for obtaining numerical solutions will be discussed, and

some numerical results are prssented.

8.2 JVariationsl Expressions for the Admittance Matrix Elements
gnd the Poles_and Zeros

We agssert that the functionals

[[wurean
(R

=

{s.1)

F1(u,v) =



Fz(u,v) =\|gu.vvda -X u.v da (8.2)

R

88

are variational expressions whose stationary values are proportional

to the poles or zeros, and the value of an admittance matrix

element respectively, provided that the functions u and v are

constrained to satisfy certain Dirichlet boundary conditions; the

parameter A\in (8.2) is proportional to the complex fregquency

variable,

In addition, the functionals

v du
T U, VYV da - [(u—.gu) So* (v—gv) 3—5-] dl

R C2+Cj+0

Fy(u,v)= _ & (8.3)
f] u.v da
R
F4(u,v) =l [wu.gv da - [(u—gu)%'% + (v-gv) g—z‘- a1 (844)

R C C.+C
g J+ k _AJ[ Ue Vv da
R

are also variational expressions whose stationary values are
proportional to the poles or zeros, and the value of an
admittance matfix element’respectively; in this case u and v

are not constrained to satisfy any boundary conditions, although
appropriate values of &y and &y must be specified on the boundary
segments C

2

The area integrals in (8.1)=(8.4) are evaluated over the

+ CJ+ Cko

two—dimensional region R The boundary of R is denoted by C,

which is divided into a number of sectors, C1, 02, Cj and Ck'
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such that

C = C1+02+Cj+ck (8.5)

The functionals presented above were derived from
consideration of the differential equation and the boundary
conditions which must be satisfied by the potential function
u(x,y) which is appropriate to the problem being considered., The
potential function v(x,y) satisfies the adjoint equation, and
boundary conditions adjoint to those satisfied by u(x,y), Appendix
A, (42) p 148 - 149, By taking the scalar product of the adjoint
field v(x,y) and the differential equation satisfied by u(x,y),
and rearranging the resulting equation we obtain a functional
which is either proportional to a pole or zero of an admittance
matrix element, or is proportional to the value of an admittance
matrix element at a given frequency. The functionals (8.3),
(8.4) were obtained by using an “extended" differsntial operator
which operates on functions u(x,y) or v(x,y) which need not
satisfy any boundary conditions, but which is identical with the
original operator when the boundary conditions are satisfied (14)
p 161,

In Appendix B it is shown that 1f u and v are congtrained
to satisfy the boundary conditions

u = 0 on 02 + Ck
(8.6)

u = Uj = constant on Gj



v = 0 on C_+ C,
2 J
(8.7)

= V = t
v K constant on Ck

then the necessary conditions for F‘l (u,v) to be stationary are

2

<7 ui+hi u, = O inR (8.8a)
du.
i - y
= 0 onh C1 (8.8b)
aui ]
_ 5 dL= 0 if V,#0 (8.8¢c)
C
k
and
‘e N
Vo ovy+ A= 0 inR (8.9a)
3vi o o
—t == on o
5~ 1 (849b)
v,
L = 0 if Uj;!o (8.9¢)
n
C,
J
whare
>‘i = F, (ui,vi) (8,10)

Now the boundary of the distributed resistance

capacitance network consists of metal contacts and insulated

90
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segments. On the insulated boundary segments which will be

denoted by C., the potential function w, or v, satisfies (8.8b)

19
or (8.9b) respectively. On each of the metal contacts the
potential function is a constant. The boundary segments
corraesponding to metal contacts will be denoted by 02 + Gj + Ck’
where Cj and Ck are the jth and kth metal contacts respectively,

and 02 denotes all of the remaining metal contacts., In the special

case where j = k the boundary segments corresponding to metal

contacts will be denoted by C

5t Cj and in (8.6), (8.7) 02 + Ck

20
The poles of the admittance matrix of the distributed RC

and 02 + Cj are replaced by €

network are the frequencies of the free modes which can exist in
the two dimensional region with zero potential on each of the metal
contacts, and zero normal derivative on each of the insulating
boundary segments, Assuming that these modes are of the form
s.t
i
¢i (X:Y) e (8011)

then we recall that the function ¢i(x,y) must satisfy the

Helmholtz equation

2
7 pi(x,y) = SiRC ¢i(x,y) (8.12)

where
R is the resistance in ohms per square of the resistive

layer, and C is the capacitance per unit area between the

resistive layer and the ground plane of the distributed RC network .
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I% therefore follows that the poles of the admittance matrix,

S;» are related to the eigenvalues,ki, of the eigenvalue problem

given by (8.6) - (8,10) with UJ_ = 0 and vk = O by

s, = - A, /RC (8.13)

Note that u, and vi are identical for this probiem, since they

satisfy the same differential equation and boundary conditions i.e.
we have a self-adjoint probiem‘, Appendix A.

The zeros of the admittance matrix term yk’j may be obtained
by noting that if the potential function u(x,y) satisfies the
boundary conditions (8.6) and (8.8b), and also satisfies the

Helmholtz equation (8.8a), then

= -l
ykj- UR dl (8-14)

(]

It therefore follows that the zeros of ykj’ si, are related
to the eigenvalues Ai’ of the eigenvalue problem (8.6) - (8.,10) by

(8.13),

Similarly, it can be shown that since

_ L& 2
Ve = TR 3n dl (8.15)
c,
j

then the zeros of yjk are equal to those of ykj' This is what we

would expect from consideration of reciprocity.
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By similar reasoning to Appendix B, we can alsc show that
the necessary conditions for Fz(u,v) to be stationary, with u and v

constrained to satisfy (8.6), {3.7), are

2
vV u+ Au = 0 inR (8.162)
J
32 =0 onG, (8.16b)
and
2
VY v+ Ay = 0 inR (8,17a)
Sy _
30 = 0 on C1 (8.,17b)

In this case, U and Vk are fixed cohstan‘ts, so that in Appendix B
J

=Q0onC and”h=0 onC
/;u k 7 j*

By using the Green's formula

é vgﬁ ={f Vvegu da + Ve Vz- u da (8,18)
C

R R

together with the boundary conditions (8,6) (8.7), (816b) and

(8,17b), and (8.16a), (8,17a), it follows that

(o}
= 2u
F,(u,v) ka 3 dl (8,19a)

%
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dv
= U 55 @ (84190)

where Fg(u,v) is the stationary value of Fz(u,v) for a given value

of ;\ .

It then follows from (8.14), (8.15) that

(o}
F.(u,v)
Vi = Vigj = <2 (8.20)

where A and the complex frequency variable s are related by

s = = A/RC (8.21)
Note the admittance matrix elements satisfy reciprocity as

expecteds
Next we consider the functionals F3(u,v) and F4(u,v).

In Appendix C it is shown that if

8y = 0 on C, + Ck

2
(8.22)
= U, = oconstant on C.
J J
gv = O on 02 + Cj
(8.23)

= Vk = constant on Ck

Then the necessary conditions for Fs(u,v) are (8.6) -
(8.10). In the special case j = k the boundary segments corres—
ponding to metal contacts will be denoted by 02 + Cj,and in (8.22),

(8.23}! 02 + Ck and C, + Cj are replaced by C2.

2
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We note that if functional F1(u,v) is used,then the

functions u and v must be constrained to satisfy the "prescribed"
boundary conditions (8.6), (8.7), and the remaining boundary
conditions (8.8b), (8.8¢c), (8.9b), (8.9c) are "natural conditions
for the functional to be ststionary i.e. it is not necessary to
constrain u and v to satisfy the "natural” boundary conditions
since these must be satisfied at a stationary point of the

functional, For the functional Fa(u,v) the natural boundary

conditions are (8,6), (8.7), (8.8b) and (8.9b), and the prescribed
boundary conditions are (8.8c), (8.9¢c).

By similar’ - reasoning to that in Appendix C we can show
that the necessary conditions for FA(u,v) to be stationary are
(8,6), (8.,7) and (8.,16), (8.17). 1In addition, it is easily shown
that the stationary value of FA(u,v) for a given‘) is related to

the admittance matrix terms y,k and ykj by

o
(u,

ke kj
RY U

!

! (8.24)

f

v
J

Thus we have shown that the poles and zeros of an
admittance matrix element are proportional to the stationary

values of functional F, (u,v) or FB(u,v), where the functions u

and v are constrained to satisfy prescribed boundary conditions
as discussed above., In addition, it was shown that the value

of an admittance matrix element at a given frequency is
proportional to F2(u,v) or F4(u,v), provided that u and v satisfy

the prescribed boundary conditions,



8.3 Solution of the Stationary Problem by the Rayleizh-Ritz Method

The Rayleigh-Ritz method for obtaining approximations to
the stationary values of the functionals presented previously is
based on the agsumption that the unknown functions u and v may be
approximated by a class of functions containing n linearly
independent parameters. For our purposes it is convenient to
choose the approximation in the form of a linear combination of
n linearly independent functions with undetermined coefficients.
In addition to satisfying any prescribed boundary conditions, the
only restriction on the approximations is that they must be
continuous, with bounded, piecewise-continuous first derivatives
in R, and on C, such that the required integrals in (8.1) - (8.4)
exist,

The approximations to the unknown functions u and v may

be written in the form

n

u = Z o, T, (x,y) (8425)
i=1
n

v = Z di g (x,y) (8.26)
i=1

Then the conditions for the functional F(u,v) to be stationary

are
2F = 0  fori=1,2--n (8,27)
oc,

and %-(F-li = 0 for i=1,2-=n (8.28)
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After substituting the approximations (8.25), (8+26) for u

and v into (8.3) and (8.4) and imposing the stationary conditions

(8427), (8.28), we obtain

[A - ?\B] d] = - du]Vk (8.29)
[At - ?\Bt] c] = - dv]Uj (8.30)

where

e of;
a'i;j=' §7fi.vg:j da = fimll+ gjﬁ dl

R Cz'l'c;j"'ck

b 5 =( £; & da

R

af. (8+31)
a =§ -— a1l

u, on
Oy

i = 28;

v:.L f -a—-r-; al
C.
J

For the functional F3(u,v) to be stationary it was
previously shown that it is necessary to constrain the u and v
functions to satisfy (8.8c) and (8.9c) respectively. These

conditions are equivalent to

[c] [du]= 0 (8.32)
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and

[d]t [dv] = 0 (8.33)

From this it follows that the coefficients c; and di are not
all independent, and one of each set of coefficients, the nth say,
may be expressed as a linear combination of the remaining

coefficients as follows,

n-1
1
o = = 7 [ a, o (8.34)
un 1
ie=1
n-1
A, = = 3 d,  d; (8435)
v 1
n .
i=1

If the expressions on the right of (8,34);(8.35) are
substituted into (8.25), (8.26) and the stationary conditions (8.27)
(8,28) for i = 1, 2 =~ (n-1) are applied to (8.3), it can be shown
that the conditions for F3(u,v) to be stationary subject to the

constraints (8.8¢c), (8.8d), are

[s]t [2- AB] [T] d]n_1 < 0 (8.36)

[T]t [ a® -,]Bt][s] c]n_1 = 0 (8437)

where A and B are defined by (8.31), and
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n—1
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(8438)

(8+39)

(8+40)

(8+41)
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Clearly (8.36) may be converted to the usual matrix

eigenvalue problem of the form

[A'-?\I] x] = 0 (8.42)

- -1 ‘
by premultiplying (8.36) by l_S]t [B][’I’] In the special case

where [A] and. [_B] are symmetric and [ S] = ['I‘] , other methods for
obtaining an equation of the form (8.42) with A' symmetric are
available (53), (55).

Now considering the functional F4(u,v), we note its

stationary value obtained from (8.29), (8.30) is

-
FZ (u,v) = ka 52 d1

Cye
(8.43)
3y
= U —
J'lf an al
C.
J
where :
u and v approximately satisfy (8.6), (8.7) and (8.16),
(8417)0

This follows since (8.29) is equivalent to

[f (Cuvv = Au.v)da —7§ (ug—;{+v%§)dl
o

02+ Cs,v;—Ck

du
o vkj{ sndl = 0

Cy

and (8.30) is equivalent to



101

f(Vu-VV -A uev) -? (ug—:{ + v?-;) a1

R Og+ C5+ Gy
Qv
+ Uj5£ 5pdl = 0
C.
J

and when these expressions are substituted into (8.4) we obtain

(8.43). Thus we choose as our approximate solution,

t

[du] - 5‘1,—[ d]t [d,, ] (8e44)

1
Iy, = Y. £z T—— [0]
kj jk RU;j k

where [c] and [d] satisfy (8.29), (8430).

We now consider the functions Fy (uyv) and Fz(u,v). Since
the functions u and v are required to satisfy the boundary
conditions (8.6), (8.7) it is convenient to choose the expansion

functions fi(x,y) and gi(x,y) in (8.25), (8.26) as follows

fi(x,y) = gi(x,y) = 0 on 02 + C:j + Cp (8445)

for i = 1, 2= == N=1

fn(x,y) = O on G, + Cp

(8446)
fn(x,y) = 1 on C:j
gn(x,y) = 0 on C, + C

(8.47)
g,(xyy) = 1 on C,

For the functional F, (u,v), application of the stationary
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conditions (8.27), (8.28) gives

[A-AB]a] = o (8448)
(a8 -2 5%)c] - o (8.49)
where
/
a:ij = f .Vg da
‘3R
(8450)
.
biJ = . ° g da
IR

The matrix equation (8448) may be transformed to the form
(8+42) by premultiplyiné the left side by [:Bj—1, or when [A] and
[B] are symmetrical the methods described in (53), (55) may be
usede

For the functional Fz(u,v), u(x,y) is fixed on C; and
v(x,y) is fixed on Cpo ﬁet w(x,y) = Uj on Cj and v(x,y) = V,_ on

Ck' These constraints are then satisfied by choosing

[+] = U 0
n J

(8+51)
dn = Vk

Then by applying the stationary conditions (8.27), (8.28) for

ie1,2--(n~1) and substituting Uj and V, for ¢ and 4,

respectively, we obtain two systems of linear equations which may
be solved for the unknown coefficients d,-=-d and ¢,-=-C .
1 N1 1 n=1

The equations are

_[a- 7\13] . a] = - du] v, (8452)
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H/[At - ?\Bt]_ e](n_1) - dv] o) U, (8453)

n

where !'A] denotes the matrix obtained by deleting the nth row

n n

and column of [A] , d] and c] are given by (8.38),

(n=1) (n=1)
(8.39), and du] and dv] are obtained by deleting the
(n-1) (n~1)
1 t
nth element from the nth column of [A —AB] and |A = NB
respectively.
coee (8,52) and (8.53) have been solved for the unknown
coefficients the admittance matrix element yjk = ykj may be computed

as follows.

Since our approximation to the stationary value of F2 (u,v)

is

Fo(u,v) = [ot :‘ [A - 7\3] d] s [dt] [At-aBtJ c]
(854)

where
c] and d_] satisfy (8¢52), (8.53), Vi = Ve ™Y then be

(o]
obtained from Fz(u,v) as in (8420). In addition, because of (8.52),

(8453) it is easily shown that (8.54) is equivalent to

Folu,v) = cpep [A - 7\]3] d] =d . [At—?\Bt] c]
(8+55)

WiEED u [A - RB] denotes the nth row of [A -7\]3].
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8.4 Functional Approximations for Variational Solutions

In the preceding sections we have considered the
theoretical basis of variational methods for obtaining approximate
solutions for the admittance matrix elements and the poles and
zeross, e now wish to consider in more detail the problem of
choosing suitable expansion functions for use in the approximations
to the potential functions u(x,y) and v(x,y), (8.25), (8.26).

In addition, we will also consider the problem of . evaluating
the area integrals over a two~dimensional region R, and the contour
integrals over the boundary C as required for the Rayleigh-Ritz
solutions,

When the functionals F1(u,v) and Fz(u,v) are used, the
expansion functions fi(x,y) and gi(x,y) are required to satisfy the
boundary conditions (8+45) = (8.47)s When the functionals F3(u,v)
and F4(u,v) are used, the expansion functions are not required to
satisfy any boundary conditions. However the exact solutions of
the boundary value problem are required to satisfy boundary conditions
of the form given in (8+6), (847) and (8.8), (8.9) or (8.16), (8.17)
as well as the Helmholtz equation, and we should therefore attempt
to choose a set of expansion functions which will satisfy these
requirements as closely as possible.

As previously mentioned, the functions u(x,y) and v(x,y)
must be continuous with piecewise continuous derivatives in R, in
order to ensure the existence of the integrals occurring in the
functionals (8¢1) = (8.4)s 1In addition, we note that when the
approximations to u(x,y) and v(x,y) are constrained to satisfy
the Dirichlet boundary conditions (846), (8.7), it is not necessary

to evaluate any contour integrals. However, it is often extremely



105

difficult to obtain expansion functions satisfying these conditions,

and it is then more practical to use the functionals (8.3), (8e4).
One of the simplest types of approximation which is

commonly used is a polynomial in the two coordinates x and ¥y,

(10)' (53), iece

u(x,y) = Z o4 xF 32 (8456)

i=1

which is defined over the entire region R.
If the order of the polynomial is N, then it contains all
p,q combinations such that 0<p + q¢N, and the total number of

terms, n, is
n = 3 (1) (W2) (8.57)
A simple linear ordering scheme is obtained by taking
i = (p+1) (p+q+1) + p+1 (8458)

thus giving an expanded version of (8.56) that is

u(x,¥) = o+ ¥+ cyx + c4y2 + CgXy + 06x2 - - (8.59)
Comparing (8¢25) and (8.59) we make the identification

£5(xy) = x° ¥ (8460)

where
i, p and q are related by (8.58).

Similarly, if v(x,y) is approximated by a polynomial, i.ce

vix,y) = Z dg x® 2 (8461)
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we make the identification,

g; (xyy) = Pyt (8.62)

The problem of evaluating the surface integrals over R
and the contour integrals on C in (8.31) when fi(x,y) and gi(x,y)
are of the form (8460), (8.62) has been considered in (10), (53),

and (56). A1l of the surface -integrals involve terms of the form

Ij xmyn dy dx (8463)

R

If the boundary is represented by piecewise polynomials,
the resulting integrals can be easily evaluated on a computere, For
simplicity, it is common to approximate a carved boundary in a
piecewise-linear (polygonal) fashion. In this case both the contour
integrals and surface integrals are linear combinations of terms of

the form

b
(X + /Sx)n dx (8+64)

Since the integrand is a polynomial in x only, these integrals are
easily evaluated by using integration by parts (56), or by
Gaussian quadrature (3), (10), (53).

For reasons of convenience it is often preferable to choose
fi(x,y) and gi(x,y) such that the coefficients c, and d; are the
values of the potential functions u(xj,yj) and v(xj,yj) at n
particular node points specified by the coordinates'(xj,yj). In

this case, instead of (8.60), (8.62) we choose fi(x,y) and
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gi(x,y) to be complete polynomials of order N such that

£(xy.) = g lx,y.) = 1
3733 b A

(8.65)
fk(xJ,yJ) = gk(xJ’yJ) = 0

for k{j

In the finite—element method described by Silvester (54),
(55), the region R is subdivided into a number of triangular
subregionse The node points (xj,yj) are chosen so that there are
(N+1) equally spaced points on each triangle side, and the
remaining points are regularly spaced in the triangle interior.
Silvester, (54), has computed a set of wniversal element matrices
which simplify the numerical evaluation of the surface integrals
in (8.31) for triangles of any shape and size for polynomials of
order 1 to 4. The contour integrals in (8.31) may be evaluated
by the method described in (56).

Since the potential function is required to be continuous
in R it is necessary to place constraints on the potential function
in each triangles These constraints are satisfied by ensuring that
all points which have the same coordinates (i.e. points on an edge
common to two triangles), are assigned the same potential value
(cj or dj)'

One advantage of the finite-element type of approximation
over the polynomial approximation given previously is that it is
sometimes easier to obtain a potential function which satisfies
Dirichlet boundary conditions of the form (8.6), (8.7).

In addition, better accuracy is sometimes obtained by

using a piecewise polynomial approximation to the potential instead
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of a single polynomial over the entire region Re The finite-
element method is one example of a piecewise polynomial
approximation. An example using a piecewise polynomial
approximation with polygonal subregions is given in (10), and in
(56) the possibility of using "triangular" elements with one
curved side is discussed,

In addition to the polynomial approximations discussed above,
it is sometimes more convenient to use other types of expansion
functiong for example, Thomas (57) has used expansions involving

the polar coordinates (r,@) of the form

N‘ N‘
u(r,8) or v(r,8) = b + Z me nrm cosn © (8466)
?
m=1

=1

In this case the integrals (8431) can be transformed into
integrals involving the variable @ only, if the boundary is
expressed as a radial function of angle R (0). The integrals may
be evaluated exactly if R(®) is expressed in the form of a Fourier
geries, but in general it is necessary fto use aporoximate numerical
integration techniques.

The potential functions could also be expanded asg products
of trigonometric functions in the coordinates (x,y) (55). However,
these functions are most suitable for rectangular regions, and will
not be considered here,

We now wish to consider the problem of obtaining polynomial
or piecewise-polynomial approximation to u(x,y) and v(x,y) which
satisfy the Dirichlet boundary conditions (8.6), (8.7). We note
that it is not necessary to constrain the approximate solutions to

satisfy the Neumann boundary conditions (8.8b), (8.9b), since these
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are natural conditions for the functions (8.1) —~ (844) to e
stationary. An important advantage of using functions which
satisfy the Dirichlet boundary conditions is that for self adjoint
problems, i.es u(x,y) = v(x,y), the approximate eigenvalucs are
always greater than the exact eigenvalues i.e. they are upper
bounds. In addition, the approximate values of the diagonal elements
of the admittance matrix for s=0 are upper bounds on the true values,
and lower bounds can be obtained by solving the dual problem as
discussed in (35).

A polynomial approximation which satisfies homogeneous
Dirichlet boundary conditions of the form (8.45) can be obtained by

choosing(53)

£, (x,3) = g;(xy5) = x" 5% (x,9) (8.67)

for i=1,2 == (n-1)

where
g(x,y) is a polynomial such that

g(x,y) = 0 on 024-Cj4-Ck (8.68)

g(x,y) does not vanish inside R.

F'or gome problems a suitable g(x,y) can be found by
inspection (53)e For example, if the boundary condition is g(x,y) =0
for x=0 and x=1, we choose g(x,y) = x(x=1). *%or more complicated
boundary shapes it is necessary to use other methods. Bulley (53)
used a numerical technique to find a g(x,y) polynomial whose
integrated squared amplitude along the boundary is a minimum. This
led to an algebraic eigenvalue problem whose solution yielded a set
of functions having nodal lines corresponding closely with the

boundary segments C, + Cj + Ck‘ The eigenfunction having no nodal

2

* The following description of Bulley's method (53) in this paragraph is
extracted from (33).
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lines well within the boundary was selected for g(x;y). The method
worked well, but suffers from the disadvantage that more work must
probably be done in discovering the g(x,y) polynomial than in the
remaining computation. Also, human intervention is required to
inspect the eigenfunctions and reject those having internmal nodal
contours,

Next we consider methods for obtaining functions fn(x,y)
and gn(x,y) which satisfy the Dirichlet boundary conditions (8.46),
(8.47). Suppose that each of the boundary segments corresponding

to metal contacts is defined by

y = wi(x) (8469)

f i=1,2=< N
or i=1, o

where
Np is the number of metal contactse

Then, provided that wj(x)7wi(x) is non-zero inside R for

i;!j, then a suitable fn(x,y) is

N
b
f (x,y) = l . ,_y—-wi(x) (8.70)
e wjixs-wiix)
=1
A3
Similarly,
N
b
g, (x,y) = H y =y (x) (8.71)
=1 W (x) =w, x)
ifk

Note that fn(x,y) and gn(x,y) defined by (8.70) and (8.71)
are not polynomials in general, even when the Wy (x) are polynomials,

so that the previous methods for integrating polynomials over
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two-dimensional regions are no longer directly applicables
If the above method does not provide a suitable fn(x,y),
the coefficients of aileast—squares polynomial approximation may

be found by minimizing

(£,(xyy) = g,)° a1 (8.72)

C,+C.+C
J

where
g, Satisfies the boundary conditions (8.46). This leads

1o a system of equations of the form

[c-] cg_] = b] (8.73)

where

. p+r _q+s
Gij x ¥y dl
02+Cj +Ck
P ._q
bi = £, X ¥ dl
02+ Cj"' Ck

and the cg; are the coefficients of the polynomial fn(x,y).
A similar method may be used to find a gn(x,y) which gives
a least—squares approximation to gy which satisfies (8.47)e
Finally, we consider the constraints which must be imposed
on finite-element solutions in order to satisfy homogeneous and
inhomogeneous boundary conditions of the form (8.45) - (8.47).
Because of (8.65), the coefficients in the expansions (8425), (8426)
are equal to the value of the potential function u(x,y) or v(x,y)
at a number of node pointse If triangular elements are used, there

are generally (N+1) node points on each triangle side, and the
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potential along each side is a polynomial function of the distance

along that side, Therefore, if the boundary segments 02 + Cj + Ck

can be accurately represented by triangle sides, then polynomials
u(x,y) and v(x,y) satisfying the required boundary conditions (8.45) -
(8+47) are obtained by constraining the node potentials c; and d

i

to be equal to the specified values on these boundary segments,

8¢5 Numerical Results

8s501 Solution of Laplace's Bquation

We now present the results of calculations to determine
the zero frequency admittance parameters of a number of two port
distributed resistance networks.

The type of network considered is shown in Fige 8e1

Figure 8.1. Two port tapered resistance network.
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The input and output ports are the conducting strips at
x=0 and x=1 respectively and thc width of the resistance layer is
specified by a taper function w(x) for 0£x<1l. The taper ratio
is defined as the ratio w(o)/w(l). Since the structure is assumed
to be symmetrical about the x axis it is only necessary to consider

the portion in the first quadrant, which is bounded by the curve

Yo w(x
y = 5 FE-;;- for 0<x<1 (8474)

and the input/output ports at x=0 and x=1s The first step in
obtaining a solution is the choice of suitable expansion functions
fi(x,y) and gi(x,y) £0 be used in the approximations (8.25), (8.26).
For the problem of Fig. 8.1, polynomial functions satisfying the

required Dirichlet boundary conditions are

I

£ (xyy) =1 -

g (x,y) = % (8475)

fi(X1Y) = gi(x’Y) g(x,y) xp yq

for i=1, 2 == (n=~1)
where
g(X1Y) "-"}15 (1 - 2{')
The next step in the solution is the evaluation of the
integrals aij’ (8450) which are lincar combinations of terms of
the form

Yo

2

=

=

of 3. ox ¥ dy ax (8.76)

¥x=0 y=0
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The final steps are the solution of equations (8.52),
(8453) for the coefficients d} or c] y and the zero frequency
admittance parameters are then obtained by using (8.55).

Numerical solutions were obtained for two different taper
functiongs

These were the linear taper defined by

wix) = (1 +ox) B (8.77)

and the exponential taper defined by

w(z) = @ %% (8.78)

where
©( is determined from the taper ratio 7“, and the length l.

When these expressions are substituted into (8.76) the
integral becomes a function of the single variable xes The required
integrals may then be generated recursively using integration by
parts to express the integrals involving higher powers of x and
w(x) in terms of the integrals involving lower powers of x and w(x).
Alternatively, when w(x) is a polynomial, as in (8.77), Gaussian
quadrature may be used to evaluate the integrals. In connection with
the recursive method for generating the integrals it should be
realized that the integrals for the higher powers of x and y can
sometimes suffer from loss of accuracy due to an accumulation of
rounding e¥rorse

Since the expansion functions (8.75) satisfy the
Dirichlet boundary conditions, the values obtained for Y11 and
y22 are upper bounds on the exact values. In additiom, it is
only necessary to compute one of the admittance parameters, since

for a two port resistance network of the form of Fig. .1
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Y919 = Y22 = Ty = TVpy (8.79)
Lower bounds on the exact solutions can also be

obtained by solving the dual problem to that in Fige 8.1. The
dual problem is obtained by interchanging the conducting and
insulating boundaries. Because of symmetry about the x axis, we
need only consider the portion of the network in the upper half
pPlane, so that the input and output ports are on the curve defined
by (8.74), and the vertical boundaries of x=0 and x=1 become
insulating boundaries. A lower bound on Y44 or y22 for the original
problem is the reciprocal of y11 or y22 obtained for the dual
problem if the resistance of the resistive sheet is one ohm/square
in both cases (35). The method of solution proceeds as before,

except that fn(x,y) and gh(x,y) in (8475) are replaced by

£ (xy) =1-%

R, = Yo w(x 8.80
g, (xy¥) ok ?RF% (8.80)

glx,y) ey [t = 7o wlx

Numerical results were obtained for linearly and exponentially

tapered resistance network having various widths ¥, and taper

ratios T » Upper and lower bounds on yi;j i,j=1,2 were

obtained by using u(x,y) and v(x,y) functions of the form given
p_q

previously, where terms containing x  y* were chosen to have

Og&p + 47T
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Tables 8.1 and 8.2 show the averagze of the computed upper
and lower bounds, together with the maximum percentage errors which
were obtained by taking the ratio of the difference between the
upper and lower bounds to the mean values The numerical results are
normalized to a sheet resistance of one ohm/square, and the length 1
is assumed to be unity. We note that the accuracy of the numerical
values in the tables decreases as Y, increased with T constante
Also for yo/l constant, the error increases as T deviates further
from the value unity.

These results may be compared with the admittance
parameters obtained by assuming a one-~dimensional model of the
tapered networke The one=dimensional results are obtained by
integrating the resistance per unit length r(x) from x= 0to %=1,

where r(x) is inversely proportional to the width w(x), (5)

r(x) = Rfu(x) (8481)

where
R is the sheet resistance in ohms/squares.

After performing the integration

1
1
y11 = j I‘(]{) d}C (8-82)
o
we obtain for the linear taper
Yo (o ¢

Y19 = F® Tog, (1+X1)
(8.83)
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and for the exponential taper

Y, e
Y11 = F® of 1
e -1
(8484)
.y_o 1oge'T
R Y= 1

Values of y”/(yo/Rl) for these two tapers are given in Tables 8,3
and 8¢4 for the same values of YT as in Tables 8¢1 and 8.2
Comparison of the numerical results obtained from the one
and two dimensional analyses shows that they are in close agreement
for networks with taper ratios near unity, and for networks whose
maximum width is less than or equal to the lengthe For other shapes

there are considerable differences between the two sets of resultse



gL - —
> Oe1 0.4 1.0 245 10.0
+37028 ! 1.06625 1.89397
el + o4Th | + 5.3 + 17%
0.4 « 163412 1 4639016 147945 3,21489
+.004% | + «O5% + 44 + 2.5
1.0 0e1 04 1.0 25 1040
2.5 260765 «639016 | 1447945 | 4.80967
£40095% |+ «OB% | + o4db | i+ 5e4b
10.0 «37028 17978 | 1.8397
i + 4Th | + 255 | + 1Tk
"
Table 8.1 Zero Frequency Admittance Parameters for

Linearly Tapered Resistance Networks

(Two Dimensional Analysis)
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N 001 004 1«0 2.5 10,0
~ < L
0.1 24820 | 8374 1.6709
+e016% | + 2T%h | + 2.7%
152466 | 59781 | 1.4028 | 3.132
s +.003% | +4022% | + o15% | + 1425
1.0 0.1 0e4 1.0 245 10.0
0243356] 459781 | 1.4029 | 44737
= +006% | +4022% | + 1T | + 3B
24820 | 45698 | 1.6709
10,0 +e016% | +.1% +2Th
Y
1

Table 8,2 Zero Frequency Admittance Parameters for

Ixponentially Tapered Resistance Networks

(Two Dimensional Analysis)
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T Oe1 0ed 140 245 1040
Yo/ (FfRy) | 3.90865 | 1.63703 | 1.0 | 0.65481 | 0.39086
Table 8.3 Zero Frequency Admittance Parameters for
Linearly Tapered Resistance Networks
(One Dimensional Analysis)
’T’ 0.1 04 140 25 1040
v/ /Ry) | 255842 | 1.52715 | 1.0 | 61086 | 25584

Table 8.4 %Zero Freguency Admittance Parameter for

Exponentially Tapered Resistance Networks

(One Dimensional Analysis)
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It can be shown that the results obtained from a one-
dimensional analysis (8.83), (8.84) are always greater than those
which would be obtained from an exact two~dimensional analysis with
T#£1. This follows since (8.83), (8¢84) can be obtained by
assuming that the potential function in the two—dimensional region

has the form given in (5), and then calculating '% (<7¢)2 dae
R

S8ince this surface integral is a minimum for the potential function
¢ which satisfies Laplace's equation and the boundary conditions of
the two-dimensional problem, it follows that the one-dimensional
admittance parameters must be greater than or equal to the exact
values,

In addition to the numerical results given above, the zero
frequency admittance parameters of the linearly tapered resistance
network shown in Fig. 8.2 were obtained by using the finite

element method.

2
>

B~

Y
e

Figure 8.2. Linearly tapered distributed resistance network solved

by the finite-element method.
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The resistive sheet was divided into seven triangular
elements as shown, and the admittance matrix element ¥qq was
computed with polynomials of order 2, 3, and 4 in each element.
The computer program used was a modified version of the one described

in (55) and (61)9 The main modifications required were

(1) the substitution of a subroutine for solving simultaneous
equations in place of the package of subroutines for computing
eigenvalues and eigenvectors,

and

(2) the incorporation of constraints to ensure that the potential
is constant on the triangle sides which coincide with input and
output ports.

The original program allows the user to constrain the
potential function to be zero on specified triangle sides. This
facility, together with the second modification described above
allows the user to compute diagonal or off-diagonal admittance
elements of a multiport network by specifying the triangle vertices
which lie on the input port or output port, as well as those vertices
on the ports at zero potential.

In addition to the problem in Figze 842 the dual problem,
which is obtained by interchanging the insulating and conducting
boundaries of the original problem, was also solvede The
triangular elements and polynomial orders were identical with those
used to solve the original problem.

If it is assumed that the resistance of the sheet is one
ohm/square for both problems, the reciprocal of the value of Y11 or
obtained for the dual problem is a lower bound on ¥q4q OF ¥pp for

Yoo

the original problem. Since the approximate solution for Y14 of
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the original problem is an upper bound on the exact value, we can
take the mean of the upper and lower bounds as our solution, and

the maximum possible error is one half of the difference between

the upper and lower bounds, The values obtained for Y41 or Yoo

with polynomials of order 2, 3 and 4 in each element are shown in

Table 8.5
Polynomial Lower Upper Mean
Order Bound Bound Value Error
2 322846 335921 +329383 2%
« 326585 «331095 +328840 1e4b
| 4 «327518 «329755 «328636 0 34%

Table 8.5 Numerical Values of the Zero Trequency

Admittance Matrix Elements Y14 8 Yop

For the Resistance Network of Fig. 842
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8e5e2 ILigenvalue problems

We now present the results of some calculations to determine
the poles and zeros of the admittance matrix parameters of some two
port distributed resistance ~ capacitance networks. The first
problem considered is shown in Fig. 8e2. Two different forms of
polynomial approximations were used for the potential functions
u(x,y) and v(x,y)e One form of approximation used was an nth order
polynomial defined over the entire region R; the approximation for
u(x,y) is given by (8+25), (8.75) and %he approximation for
v(x,y) is given by (8.26), (8475). The second method of solution
used was the finite element method, i.e. the region R was divided
into a number of triangular subregions, and the potentials in each
sub-region were approximated by nth order polynomials defined by
the values of potential functions u(x,y) or v(x,y) at a number of
regularly spaced node points.

With both types of approximations, the polynomial
coefficients or node potential values were constrained to satisfy
the appropriate Dirichlet boundary conditions on the metal contacts.

The computer program in which the potential functions is
approximated by an nth order polynomial defined over the entire
region R is a modified version of the program ZHFOL (53). This
program can be used in its original form to compute the poles of
the admittance matrix since u(x,y) = v(x,y) satisfies homogeneous
Dirichlet boundary conditions on 02 + Cj + Cpy and only the first
(n=1) expansion functions in (8.75) are used in (8.25), (8.26).
when the zeros of an admittance matrix element are computed it is
necessary to include the terms fn(x,y) and gn(x,y), (8.75) in

(8.25), (8.26), and additional programming is required to evaluate
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the integrals in (8.50) which contain these terms. Since the
fn(x,y) and gn(x,y) are polynomials, all of the required
integrals are obtained as a linear combination of integrals of the

form J:( xpyg: da  so that very little extra computation is
R

involved, Finally the cigenvalues of (8.48) or (8.49) are computed.
When the zeros of a diagonal element, yjk with j=k are to be found,
E]and[B]are both symmetric matrices and the eigenvalue-eigenvector
subroutines in FHPOL are used. For the zeros of off-diagonal
elements of the admittance matrix,[A]and[B]are asymmetrical, and
the QR method (11) for general real matrices is then used to find
the eigenvalues of (B_1) (a).

The second computer program, in which the region R is
divided into triangular sub-regions, with an nth order polynomial
approximation to the potential in each triangle, is a modified
vergion of the finite element program described in (55), (61).

This program can be used in its original form to compute
the poles of the admittance matrix, since u(x,y) = v(x,y) satisfies
homogeneous Dirichlet boundary conditions on 02 + Qj + Ck' Since
the expansion functions fi(x,y), gi(x,y) are piecewise polynomials
satisfying (8.65), these constraints are satisfied simply by
setting the coefficients Cs di corresponding to node points on
02 + Cj + Ck to zero. #hen the zeros of an admittance matrix term
yjk = ykj are to be computed, the coefficients ci corresponding to
node points on C‘,»'j are constrained to be equal, and those
corresponding to node points on Ck are zero; the coefficients di
corresponding to node points on Ck are constrained to be equal, and
those corresponding to node points on Cj are set to zero. Since

the existing program contains all of the programming necessary to
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compute the integrals (8.50), the modifications required to compute
the zeros of yjk are fairly trivial. When the zeros of a diagonal
element yjj are required, the matrices (A] and [B] in (8.48),
(8.49) are symmetrical, and the cigenvalues are computed by using
the package of subroutines in (61). When the zeros of an off-
diagonal element are required, [A] and [B] are asymmetrical in
general, and the QR method, (11), for general real matrices is then
used to find the eigenvalues of [ 5] “[ 4,

We now present the results obtained for the poles and zeros
of the admittance matrix elements for the network of Fig. 8.2

The results in Tables 8.6 - 8.9 show the eigenvalues
obtained by using the modified version of the program EHPOL, with
the potential functions over the entire region R approximated by
polynomials of order 5 to 8. The poles and zeros (Si) are
obtained from the eigenvalues Ai_by using the relation
A == siRC, where R and C are the resistance in ohms/squére of
the resistive layer, and the capacitance per unit area between the
resistive layer and the ground plane respectively.

The corresponding eigenvalues obtained by using the
modified finite—element program (61) are shown in Tables 8410 =
8413+ The resistive sheet wag divided into seven triangular sub--
regions as shown in Fig. 8.2, and polynomials of order 2 to 4 were
used in each triangle,

The results obtained for the poles and zeros of the diagonal
elements Y91 and Yoo will be considered first,

Since the potential functions were constrained to satisfy
the appropriate Dirichlet boundary conditions, the eigenvalues

obtained are greater than or equal to the exact values. It is seen
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TABLE 8.6 APPROXIMATE EIGENVALUES CORRESPONDING TO THE

POLES CF THE ACMITTANCE MATRIX FOR A LINEARLY TAPERED

RC LINE - FROM PROGRAM EFPOL .

THE DIMENSICNS OF THE LINE ARE GIVEN IN FIG. 8.2,

DEG = CEGREE OF POLYNOMIAL USED TO APPROXIMATE THE
FCTENTIAL IN THE RESISTIVE LAYER

THE POLES, Sg ARE RELATED 1O TEE EIGENVALUES;ikig BY

.1’
EQUATICN (8.13)
NIDEG 5 [¢ 1 g
1 8.,12861 8.040C2 1.683274 7.54715
2 31.4263 . 21,1101 30.E8885% 30.7894
3 46.1805 45.1892 44,GEEC 44, E767
4 83.5809 6E€LT1T77 68.16C6 67.3885
5 114.731 9€.6162 G2.45¢5 G1.4197
6 160.021 124,022 113.273 112.514
7 189 .460 159.179 127.6ES 125.264
B 220.178 208.315 169.744 158.573
9 331.031 2711.937 203,484 176381
476.592 223%.413 248.328 208,310
3€€.301 26T 1€4 234.281
377.591 340.26C 267.325
522.459 430.573 208,286
728.930 505.2¢62 372.228
984,932 S€2.C72 412,068
583.2C6 4260445
732.367 521,277
783.721 £€52.373
1072.6C 1524150
1407.61 EC2.156
1§23.4C €86.4T2
10C3.25




TABLE 8.7 APPROXIMATE EIGENVALUES CORRESPONDING 10 THE

ZERGCS CF THE ACMITTANCE MATRIX ELEMENT Yyll FOR A

LINEARLY TAPERELC RC LINE -

FROM PROGRAM EHPQL.

THE DIMENSICNS QF THE LINE ARE GIVEN IN FIG. B.2.

DEG

CEGREE OF POLYNOMIAL USED TO APPROXIMATE THE
PCTENTIAL IN THE RESISTIVE LAYER '

128

THE ZERCS, Sj, ARE RELATED TO THE EIGENVALUES, ki' BY
EQUATICN (8.13)

N |DEG 5 6 1 g

1 4,233907 4,232570 4,23224¢€ 44232135
2 2244235 222554 22.24C3 22.2351
3 41.4555 41.14€0 4C. 8533 40. £485
4 62.7522 59.00¢8 58.35C2 58,2480
5 111.548 81.2114 8C.4CC2 . 78. 6539
6 154,649 121.859 112.C84 110. €974
7 170.481 124.846 1184442 115.681
8 210,193 202.058 141.2¢€1 13G.£49
9 330.773 2€8,649 201l.64C 176.C30
10 403.213 302z.354 2C6.5¢€2 165.C33
11 47564680 34241773 248.¢844 224+ E56
12 377354 3254647 2344473
13 523.40C 429.44€ 3C7.254
14 722,937 450,16C 212.678
15 72¢.260 534,369 372.559
16 984.951 5€2.92% 4244594
17 732.144 483,563
18 783,641 €514 609
19 1072.3C 7143823
20 124C.177 €Cl.588
21 1407.74 €12. €38
22 1823.4C 10C2.109
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TABLE 8.8 APPROXIMATE EIGENVALUES CORRESPONDING T0O THE
ZERQS OF THE ADMITTANCE MATRIX ELEMENT Y22 FOR A
LINE = FROM PROGRAM EHPOL.

LINEARLY TAPEREUD RC
THE DIMENSIONS OF THt LINE ARE GLVEN

IN FIGe.

Bele

DEG = DEGRFE OF POLYNOMIAL USED TO APPROXIMATE THE
POTENTIAL IN THE RESISTIVE LAYER

THE ZEROSs S.

ARE RELATED TO THE EIGENVALUES: Ays BY

1

EQUATION (8.13)

N DEG > o 7 o)

1 0.873%07 P B856B2 0.845716 U.B384aT
2 17,0822 16.8661 16.75508 l6.6814
3 43,4349 42,9803 42.79535 42,7892
4 53,7772 49,7216 49,22508 48,9116
5 113.212 87,6061 8o,11484 84,9741
6 115.654 113,018 97.27345 96,4706
7 164,703 124 . 244 119,387 117.253
H 210,803 197,058 151.8447 148,037
9 331,031 213,558 199,.,7081 159.997
10 476,572 2] 4303 206,1948 193.334
11 640,539 340.898 248,4939 232.744
12 377.236 309.,2218 239,178
13 S523.+173 357.,9057 307.186
14 128.899 4424,3242 330,375
15 984 .v41 222.6257 372.425
16 116244 562.5322 424,481
17 732.1293 453,972
18 783.081¢ 560.569
19 1072.839 663,807
2 U4 1407.618 771,009
21 1823.399 802.5248
22 1947.645 1312435
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TABLE 6.9 APPROXIMATE EIGENVALUES CORRESPONDING TO THE

ZEROS OF THE ADMITTANCE MATRIX ELEMENT Y12 FOR A

LINEARLY TAPERED RC LINE = FROM PROGRAM EHPGL.

THE DIMENSIONS UF TH4E LINE ARE GIVEN IN FIGe BeZe

DEG = VDEGREE OF PULYNOMIAL USED TO aPPROXIMATE THE
POTENTIAL I4{ THE RESISTIVE LAYER

THE ZEROS, Sis AkE RELATED 70O THE EIGENVALUESS )i; BY

EQUATION (B.13)

NJDEG 4
REAL IMAGINARY
1 -2%5.0105 2le6342
Z -¢5.0155 ~cdle6342
3 12.06¢c0 51.1533
4 12.06020 -21,1533
5 53.0249
6 115.919
7 194,874
NADLE G 6
SCAL [FAaG1daARY ~EAL [HAGTNARY
1 43,3450 4341970
l -45,0630 ~26,7424 21,8279
3 -21.,6834 50.4164 -96,742% =27 .8279
4 -21.,6834 -50 4164 87,9467
5 27.3290 T3.541/7 -3,6275 90,3006
6 27.3290 -73.5417 ~9,6275 ~J0.3006
7 114,281 44,9131 92.3616
8 163,074 44,9131 ~92,.,3616
9 208,169 123,930
10 331,029 204,861
11 476.563 215,549
12 336,742
13 3717.2656
14 223.524
15 128,833
le S84y ,929




TABLE &.)0 APPROUXIMATE EIGENVALULS CORRESPONDING TO THE
POLES OF [HE ADAITTANCE MATRIX FUR A LINEARLY TAPERED

RC LINE

NFIT =

- FROM FINIVE ELEMENT PRUGRAM.

DEGREE OF
POTENTIAL LN

POLYNUMIAL
cACH

USED

TO APPROXIMATE THE
TRIANGULAR REGION
THE POLESs S549 Axc 2ELATED TO THE EIGtNVALUESsRio 3Y

EQUATION (8.13)
N|NFTT 2 3 4
1 7.995170 18392938 Te27061
2 32.1244 30.7247 30,6013
3 iO.?blb 45,3918 44 . (765
4 76,2957 Be 71300 61.222%
5 114,049 92,5073 90.9687
6 152,571 127.088 112.390
7 196.023 139.587 1260487
8 256.461 173.862 156,672
Y 2RY HYTF 188.53¢ 175.649
10 353.138 236,401 202.707
11 466,917 2784357 235.534
12 599,135 294.211 255.065
13 631.302 343,705 278.714
14 905,759 428.,00601 3246203
15 1216.30 439,912 342.299
l6 3174.21 2064292 379.507
17 572559 391.289
18 630.481 4324147
19 T1o.952 4534107
20 175,523 542,265

TASLE 8.11 APPRUXIMATE EIGENVALUCZS CORRESPUNDING T0 THE
7EROS OF THE ADMITTANCE MATRIX ELEMENT Y11l FOR A
LINEARLY TAPERED RC LINE = FROM FINITE ELEMENT PROGRAM,
NFIT = DEGREE OF rOLYNOMIAL USED TO APPROAIMATE THE
POTENTIAL 1N FACH TRIANGULAR REGION (FIG. Be2)
THE ZEROS, S, Akt RELATED TO THE EIGENVALUESSY hi’ BY

EQUATION (8.13)
N e LT - 3 <t
1 4,24G071 Gol3213 4,23200
2 22.74509 2242558 22.2313
3 45,5731 4142930 40,8599
4 Hu, 7319 59.00l19 58.2653
5 34,3366 2l.05V6 78.3017
o] 146,912 1lo.41> 111,116
7 165,548 1eTeuat 1169056
8 223577 157.513 137.941
S 265,978 183,482 173.917
10 341,508 210,139 189.521
11 378,273 2584991 220,054
1z 494,307 cdi,.lcel 241.136
13 601,234 3a3.290 277.150
14 780,539 371.8a39 238.274
s 1040,26 43246940 331,300
16 1270.97 492,014 365.409
17 3207.31 S0B.J44 382.666
1 HUSe 194 4254507
19 0954194 434,599
20 765.190 495,969
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TABLE 8.12 APPROAIMATE EIGENVALUES CORRESPONDING TO THE
ZERQOS OF THE ADMITTANCE MATRIX ELEMENT Y22 FOR A4
LINEARLY TaARPEREUL RC LINE = FROM

NF

THE ZEROS. S.s ARE RELATED TO THE EIGENVALUES A,

IT =

FINITE ELEMENT PROGRAM.
DEGREF OF POLYNOMIAL USED TO APPROXIMATE THE

POTENTIAL IN £ACH TRIANGULAR REGILON

i

FQUATION (B,13)

NINFIT 2 3 PR

1 D.t43011 0e321508 0.5823089
Vet 16,8757 16,5913 16.5335
3 49,9712 43,2404 42.8317
4 51,6774 49,1388 43.02220
5 113.259 B6.7T539 85.4301
o] 121.314 98,7780 95,0693
7 183,157 131.01¢2 119.869
8 228,133 lo2.707 147.133
9 271.634 176.334 157.513
10 287.534 216167 1877177
11 360,839 2hH5.839 225.008
12 467,314 2944 104 239.020
13 607.647 342.,0605 261387
14 631.374 407 ed77 30248373
15 905,769 430,093 324.215
16 1217.10 471,091 356,137
17 3174.29 250,673 391.287
18 613.398 417.315
19 688.24Y 450.129
20 720,959 504.536
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TABLE 8.13 APPROXIMATE EI1GENVALUES CORRESPONDING TO THE

ZEROS OF THE ADMITTANCE

LINEARLY TaPERED
NFIT = DEGKEE OF POLYNOMIAL USED TO APPROXIMATE THE

POTENTIAL IN FaCAd TRIANGULAR REGION

MATRIX ELEMENT vl2 FOR A
RC LINE = FROM FINITE ELEMENT PROGRAM,.

(FIGes B,2)

THE ZEROSs Si+ ARE RELATED TO THE EIGENVALUESs A » BY

EQUATION (B,13)

N NFIT
PEal kO INARY REAL IMAGINARY
1 50.1701 4345020
2 ~-51,1325 65.4668 85,8413
3 -51.1%2>5 -65,4668 127,458
4 118,047 ~146.835
5 171.079 -26.1047 156.536
6 -24.638U 195,080 -26,1047 -156,536
7 -24,6380 -155.080 187.809 725718
8 -131,644 1ol.026 187,809 -7-.25718
9 -131.,.644 -lbi.026 2904542
10 272.202 =314,306 39,4208
11 319,339 ~314,306 -39.4208
12 441,554 337.621
13 649,071 385,982
1o 765.132 345.998 -39.6328 400.987
15 765.132 -345.9908 -39.6328 -400.937
16 853.152 2b3.203 313.590
17 2872 .45 263,263 ~313.590
18 476,106 12,7057
19 476,106 -12.7057
20 703.50¢ 44,3550
21 703.502 ~-44,3550
NINFIT
REAL TAAGINARY
) 42,9855 i
2 34,2393
3 114.840
4 147,056
5 168,797
6 -196.154 1084795
7 -196,164 -108,795
8 232.445 11.3714
9 232,445 -11.3714
10 31.9759 cT44336
11 31.975Y -cT4.936
12 287,952
13 323,708
l4 391.796
15 420.461
16 435,354 63.4992
17 435,394 ~03.499¢2
18 -274.647 3334550
19 -274.647 ~335.500
eu -430,11¢ 222049
2l ~440,11¢ - 2274549
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from the tables that the eigenvalues decrease as the polynomial
order increases. The smaller eigenvalues are generally more
accurate than the larger ones, since the eigenfunctions corres-
ponding to the larger eigenvalues are required to be orthogonal
to each of the eigenfunctions corresponding to the smaller
eigenvalues, and the smallest eigenvalue is the minimum value of

the functional F1(u,v). A comparison between the results

obtained with the two different types of polynomial approxe
imations may be made with the same order of matrix eigenvalue
problem in both cases. For example, the number of eigenvalues
obtained by using program EHPOL with a polynomial of degree 6
is one less than the number of eigenvalues obtained by using
the finite element method with polynomials of degree 2 in each
of the seven triangular regions. 4 direct comparison of these
two sets of results shows that most of the eigenvalues obtained
by the former method are less than those obtained by the latter
method. Since the approximate eigenvalues are greater than or
equal to the exact ecigenvalues, this observation tends to
support the view that better accuracy is usually obtained if
the potential is approximated by a high order polynomial over
the entire region instead of lower order polynomials in several
subregions. However, a disadvantage of the former method is
that for polynomials of high order it is more difficult to
obtain accurate numerical solutions of the eigenvalue problem
[h.-?\B] é] = 0 Dbecause of the accumulation of rounding
errors during the computation. The results in Tables 8.6 -

8.9 were obtained by using single precision arithmetic on a

CDC 6400 computer, which gives an accuracy of about 14 significant



figures for each arithmetic operation. An attempt was then made
to solve the same eigenvalue problems with polynomials of order
seven or greater, on an IBM 7090 computer, which performs single
precision arithmetic operations with an accuracy of about 8
significant figures. This attempt failed because it was found
that a negative diagonal element occurred during the Choleski
decomposition (10), (53), of the[B} matrix into upper and lower
triangular factors. Since the [B] matrix is known to be positive
definite for this class of problems, a negative diagonal element
can only occur as a result of rounding errors during the
computation, A similar problem was sncountered previously when
using polynomial approximations to solve one-dimensional eigen~

value problems, Thus the finite element method is generally
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preferable to the polynomial approximation method since it is less

susceptible to loss of numerical accuracy due to rounding errors.
Wo now consider the eigenvalues obtained for the zeros
of the admittance matrix element Yo (Tablgs 8.9 and 8.13)s In
contrast with the previous results where the eigenvélues are all
positive and real, ws find that negative and complex eigenvalues
are aleo obtained., However, as the polynomial order increases it
is seen that the positive real eigenvalues tend to decrease in
magnitude, and each one appears to be approaching a different
limiting value. The negative and complex eigenvalues appear to
be increasing in modulus as the polynomial order increases, and
they do not appear to be approaching sny limiting value. This
type of behaviour has been observed in connection with the
solution of a somewhat simpler eigenvalue problem (14),p! 48150,

i.e. when the potential functions are not constrained to satisfy
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all of the boundary conditions it is possible to obtain extraneous
eigenvalues whose eigenfunctions do not approximately satisfy the
boundary conditions of the problem. A comparison of the results
obtained by using the two different types of polynomial approx-
imations shows that the smaller positive real eigenvalues are in
close agreement, whereas the negative and complex eigenvalues are
quite different, It is therefore concluded that only the small

positive real eigenvalues obtained for yHZ are accurate, while the

negative and complex eigenvalues are extranseous and should be
ignored, It should also bs realized thet if it is desired to
compute the admittance parameters at low frequencies, then it is
only necessary to consider the smaller eigenvalues, (poles and
zeros), in the product form expansion. In any case it is seen
that the larger poles and zeros are approximataly equal and their
effects would tend to cancel one another at low frequencies,

The poles and zeros obtained by a one-dimensional analysis
of the linearly tapered network Fig. 8.2 differ considerably from
those obtained from the two-dimensional analysis., The one-~
dimensional results are given in Chapter 3, Tables 3.4 - 3.6, The

smallest poles and zeros differ by about 10 percent, while there
are larger differences between the larger poles and zeros. The
eigenvalues obtained from the one-dimensional analysis are all
greater than those corresponding eigenvalues obtained by the two-
dimengional analysis.,_In addition, the zeros of the off-diagonal

elements Y5 obtained by the one-dimensional analysis are all at

infinity, while the two-dimensional analysis yields some zeros
on the negative real axis of the complex frequency plane,

However, these finite zeros have only a small effect on the imput/
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output characteristics of the network at low frequencies since they
are very nearly coincident with poles of the admittance matrix.
There will still be considerable differences between the admittance
parameters obtained by one and two dimensional analyses, because of
the differences between the zero frequency parameters and the
smaller poles and zeros.

We now wish to calculate the poles and zeros of the
admittance matrix of a rectangular structure "a" units long and
"' units wide, with the input/output ports occupying the two
ends of width "o", The admittance matrix of this structure is

easily shown to be (1), pp 243-245 and pp.7-9.

coth ¥Fa ! - csch ¥a

= _b¥
[-Y] r - csch ¥a( coth¥a (8.85)
where
¥ = Jsrc, andr and c are the resistance and cap-

acitance per unit area respectively. It is assumed, as is usual
in transmission line theory that no lateral variations in voltage

can occur, It is easily verified that the poles of [Y] are

given by
2_2
82 p £ il (8.86)
Pn 2
are
for n=1,2 . .
and th £ =
e Zeros o yi1 y22 are
2.2
2n=1)"77
S = Zn = - 'g—"-l"'“-—- (8.87)
a re

forn= 1,2 - -
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while Yyp = Yoy has no finite zeros.
However, if one obtains the poles and zoros by solving the
appropriate boundary value problems, the eigenvalues and eigen-

functions corresponding to the poles are found to bhe

A o (n2n2 . m27r2)
n,m rc a2 b2
and
(8.88)
Vonlme) = sin B x) cos (BF )
for n= 1' D - - -

me= 0y 1 = =~
Clearly the poles (8.86) correspond to the eigenvalues
and eigenfunctions of (8.88) with m=0, i.e. the poles given by
(8.86) correspond only to the eigenfunctions with no lateral (y)
variation.
The eigenvalues and eigenfunctions corresponding to the

zeros of 11 = Yoo are

y N 5 i
n,0 rc 4 a?
and (8.89)

for n=1, 2 = ==~
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(8.90)

and

for n=1, 2, N = =

and m=1,2,3_....

The eigenvalues and eigenfunctions corresponding to the
zeros of Y10 = y21 are also given by (8.90). Clearly the zeros
(8.87) correspond to the eigenvalues and eigenfunctions of (8.89)

i.e. the eigenvalues and eigenfunctions given by (8.87) correspond

only to the eigenfunctions with no lateral (y) variation.

We note that the zeros of yij given by (8,90) exactly

cancel the poles corresponding to m>0 in (8,88), so that the
remaining poles and zeros of the admittance parameters are given by
(8.86), (8.87).

The eigenvalues corrssponding to the poles and zeros of
a rectangular RC structure with length a=1 and width b=1/9 are
given in Tables (8,14) - (8.,16), These values were obtained from
(8.88) - (8,90) where the rc product is assumed to be unity,
Approximate solutions were also obtained by using polynomials of
order 4 to 6 to approximate the potential functions u(x,y) and
v(x,y) over the entire rectangle i.e. the modified version of the
program EHPOL was used., The numerical results are shown in
Tables 8,17 - 8,19, In addition, solutions were also obtained by
using the finite element program with the rectangle divided into
6 identical right angled triangles., The numerical results obtained

with polynomials of order 2 to 4 are shown in Tables 8,20 - &.22,
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TABLE B8.14 FXACT EIGENVALUES CORRESPONDING TO THE
POLES OF THE ADYITTANCE MATRIA FUR A UNIFORM RC LINEe
LENGTH OF ([ INE = WIDTH = .
M AND N ARE MODE NUMBERS, )
THE POLESs Sy ARE RELATED TO THE EIGENVALUESoAi, BY
EQUATION (8.13).

Ml N N i 2

1 g,.,85%00 SuUde ST 3cu7.6¢

2 39,4784 B3R ,910 3237.23

3 BR,8264 B8 e £ 0% 3286.,57

4 157,913 957351 3355,66

5 246,740 1046417 3644 .49

6 359,305 1 154%«il4

7 433,610

8 631,654

9 799,437

10 9RE, 960

TABLE 8.15 EXACT cIGENVALUES CORRESPONDING TO THE
ZEROS OF THE ADMITTANCE MATRIX ELEMENT Y11 FOR A
UNIFORM RC LINE.

LENGTH OF LINE = 1s wIDTH = 1/9 .

M AND N ARE MODE NUMBLRS.

THE ZEROSs S:» Axe RELATED TO THE EIGENVALUESs A.e BY

1 L
EQUATION (8.13).

M N 0 i 2

1 246740 s0Ye3u7 3207.62

2 222066 838.910 3¢37.23

3 61,5850 B35 .264 3cB6.57

4 120,902 9574321 3355,66

5 199,859 1046417 3444 4,49

6 298.555 1154.74

7 416,990

8 555,165

9 713.9078

TABLE B.16 EXACT EIGENVALUES CORRESPONDING TO THE
ZEROS OF THE AUMITTANCE MATRIX ELEMENT Y12 FOR A

UNIFORM RC LINE.
LENGTH OF LINE = 1, WIDTH = .
M AND N ARE MODE NUMBERS.
THE ZEROSs Sys ARE RELATED [0 THE EIGENVALUES» Ajs BY
EQUATION (8.13).

M N 1 z

1 809,307 22ul.062

2 838,916 3237.23

3 8R33.204 3280657

4 927.351 335566

5 1046.17 3444 .45

6 1164, 74

7

8
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TARLE 8.17 APPROAIMATE EIGENVALUES CORRESPONDING TO Irik
POLES OF THE ADMITTANCE MATRIX FOR A UNIFORM RC LINE -

FROM PROGRAM

LENGTH OF LINE =

DE

G =

DEGREE
POTENT LAL
THE POLESs Sy

CHFOL «
ls
OF 2ubywumlal

wIDTH = 1/9 .
JSED

IN THE RESISTIVE
ARE SELATED [0 THE EIGENVALUESs Ajs 8Y

LAYER o

EGUATION (8.13).

Nl DEG i 4 ! 5 A

1 9.8097% YetsHI (4 e HOHIG0
2 42,0002 3Ye0024 39,5024
3 102,141 1o2.141 A, h4oTT
4 852,000 201l.121 201le04v
5 1014%,00 609835 394993
6 470,00 1013699 BU9.832
7 1074404 340,532
& 4870.00 1074.01

S 09006 74 1152,96
10 136873 3231430
11 4887.13
12 49083.93
13 13772.8

ba 13505.3

) 30/ 76,1

16

170,

ZERQS OF THE
UNIFORM RC LINC

LENGTH OF LINE =

DE

o =

DEGREE OF
POTENTIAL

-

ADMITTANCE
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TABLE 8019 APPROXIMATE EICENVALUES CORRESPONDING TO THE

ZEROS OF THE MATRIX ELEMENTS

1
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LENGIH Of LINE =

DEOG
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POTENTIAL In

EQUATION (8.13).

WIDin =

PROGHAM ERPOL .
173
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142
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70 THE EIGENVALUESS )i. BY
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Ny

— et e
o F W
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13301.9
3075549

NlDEG 4
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TABLE 8.272 APPRUAIMATE CIGENVALUES CORRESPONDING TO
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FoTHE
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ADMITTanCE
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MATRIK ELEMENT,
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FOR A
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Considering the results obtained from program EHPOL first,

we see that the eigenvalues obtained for the zerovs of y12 are all

positive and real, except for some extraneous complex and negative
real eigenvalues, The positive real eigenvalues are seen to be
exactly (except for rounding errorg) equal to a subset of the

eigenvalues obtained for the poles of Y and the zeros of yi1.

The complex and negative eigenvalues are extraneous because they do
not converge to a definite limit, as the polynomial degree increases,
and they do not approximately satisfy the boundary conditions. It
is interesting to note that the number of extraneous eigenvalues

is exactly equal to the order of polynomial used, This was also
found to be true for the linearly tapered RC network (Fig. 8.2)
considered previously., In addition, the poles and zeros which do
not cancel one another approximate the solutions (8,86), (8.87).

The remaining poles 2nd zeros which are common to each yij

approximate the solutions given by (8,90).

Now considering the results obtained from the finite
element program, we note that we do not get exact cancellation of
the eigenvalues corresponding to laterally varying eigenfunctions.
This is particularly noticeable for low order polynomial approx-
imations; when higher order polynomials are used the poles and
zeros corresponding to laterally varying eigenfunctions are
almost exactly equal., This effect is believed to be due to the
choice of triangular elements which are not positioned symmetrically
with respect to the mid-point of the rectangle; all of the eigen-
functions have either even or odd symmetry about this point. 1In
addition, we find that the eigenvalues obtained for the zeros of

J.

12 include some extraneous eigenvalues which are positive and
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real, and which appear to converge to some limiting value; as
with previous solutions we also obtain some extraneous complex
eigenvalues. The extraneous positive real eigenvalues can only
be positively isolated by examination of their eigenfunctions.

Apart from the extraneous éigenvalues obtained with the
two types of polynomial approximations, the'remaining eigenvalues
approximate the smaller eigenvalues (8.88) - (8.90) quite
accurately, Thus we expect that the accuracy of the admittance
parameters obtained frém the product form expansiom:wbdld be
adequate at low frequencies.

Finally, we note that Silvester (62) has used the finite
element method to analyse a rectangular structure having the same
dimensions as that just considered. The network considered by
Silvester was a lossless TEM mode transmission line, whereas we
have considered a distributed RC line. The results obtained for
one problem are directly applicable to the other problem, since
the methods for transforming r-c admittance functions into l-c
admittance functiions can be used., For example, if an admittance
function of a lossless l-c network is in the form of a partial

fraction expansion

o0
1 p 1
¥ = + (8491
13 = &, E 2l & )

k=

then if each inductance L is replaced by a resistance R, the

partial fraction expansion becomes
o0

+ b ! (8.92)
o jii:. p+&@ 2 Ry

k=1 k

~
it
?‘dﬂ_‘

ij
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Thus the lc network has a pole of yij at p=0 whereas the rc network

ag a transfer admittance ﬁl' between ports i anu j at p=0s The
o

lc network has imaginary finite poles at p=+ jui whereas the rc
network has real poles at p=~ﬂ§?. The numerical values of

LO’ L1, L2 - - ,QJ12,6052- - — for the distributed lc network
will coincide with R Ryy R

- - _}J 2, 0022 ~ - = for the

2 1
distributed rc network respectively if the inductance and capacitance
of the former per unit area is equal to the resistance and capacitance
of the latter.

The partial fraction expansions for the admiftance matrix
of a lossless planar-TEM mode network given by Silvester (62) are
essentially equivalent to that given in Chapter 7 for distributed
RC structures. Both expansions involve the eigenfunctions
corresponding to poles of the network, and zero frequency potential
functions satisfying Laplace's equation and boundary conditions of
the form ﬁ = 1 on one port and ¢ = O on the remaining ports.

For the rectangular structure just considered, Silvester
calculated the admittance matrix elements Y14 and Yo at
frequencies up to the third pole. The finite element method was
used to compute the poles and the residues of the partial
fraction expansions, with the rectangle subdivided as previously
discussed into 6 triangles, and with second order polynomials
in each triangle. For frequencies up to the third pole it was
claimed, (62), that Y19 and Jqp Were accurate to four significant
figures when compared with the exact solution obtained from a

one-dimensional analysis. It was further claimed that for
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frequencies beyond the third pole, inclusion of laterally varying
eigenfunctions in the partial fraction expansion precludes dstailed
agreement with the one dimensional solution.

This latter statement is considered to be incorrect, From
the analysis and results given here it is evident that the laterally
varying eigenfunctions have no effect at all on the admittance
matrix, since they correspond to poles and zeros which exactly
cancel one another, This is equivalent to having residues which
are exactly zero in the partial fraction expansions., The
difference between the theoretical and numerical results observed
by Silvester (62) is believed to be due to errors in the eigen-
values and eigenfunctions corresponding to poles greater than the
third pole. These errors are primarily due to the approximation
of the potential functions by polynomials, and in principle the

errors can be made arbitrarily small by using higher order

polynomials,
8.6 Conclusion

In this Chapter we have presentsd the theoretical basis of
variational methods for obtaining the poles and zeros: and
numerical values of the admittance matrix elements for a
multiport distributed RC network.

Some numerical results were presented, with the potential
functions approximated by polynomials or piecewise polynomials
defined either by coefficients or the potential values at a set
of node points. The examples chosen were such that polynomial
approximations could be found to satisfy the appropriate Dirichlet

boundary conditions on the imput/output ports. However, there are
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no particular difficulties in solving problems where polynomials
cannot be found to satisfy these boundary conditions. The main
problem encountered with the methods used here is the isolation
of extraneous eigenvalues when the zeros of off-diagonal elements
of [Yﬁ]are computed. The only satisfactory method of detecting
these extraneous solutions seems to involve inspection of the
corresponding eigenfunctions. Alternatively, it may be convenient
with some problems to restrict the approximating functions to
satisfy all of the boundary conditions which the exact solution
must satisfy.,

One aspect which has not been considered in detail is the
relationship between the zeros of the admittance parameters which
are obtained from partial fraction expansion as in Chapter 7, and
those which are obtained by the direct methods presented in this
Chapter. It is this author's conjecture that at least in the case
where the approximate potentisl functions satisfy the appropriate
Dirichlet boundary conditions, and where these approximations are
linear combinations of the same set of basis functions, then both
methods should give identical results. A theoretical justification
of this conjecture is not known. Some numerical computations which
were performed suggest that this conjecture is correct, but it is
difficult to obtain accurate solutions for the zeros from the
partial fraction expansions. The main difficulties with the
partial fraction expansion are in obtaining accurate eigen-
functions, and in the numerical solution of the polynomial whose
roots are the zeros of the admittance matrix element, The direct
methods for obtaining the poles and zeros by solving a matrix
eigenvalue problem appear to be less subject to problems of

numerical accuracy.
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Chapter 9

VARIATICUAL SOLUTIONS OF FIRST-ORDER DIFFERENTIAL

EQUATIONS USING TRIANGLE FUNCTIONS

9.1 Iptroduction

The admittance parameters of a multiport distributed
resistance capacitance network are obtained by solving the second

order partial differential equation

g = g (9.1)
where :
R is the resistance per square of the resistance layer
C is the capacitance per unit area between the
resistive layer and the ground plane
s is the complex frequency variable
and

Vv  is the two-dimensional Laplacian operator.

In addition to satisfying (9.1) the potential in the
rosistive layer, @(x,y), is also required to satisfy certain
boundary conditions as previously discussed.

The second-order differential equation (9.1) is equivalent
to the set of coupled first-order differential equations (14)

p. 162, (1) p. 242,

o~

-V R.J (5.2)
ki -scf )

where

~

J 1is the current density vector in the resistive layer

( amperes per unit width).
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In cartesian coordinates, the system of equations (9.2)
is

- 28

5= RJ, (9.3)

- é_Q RJ (9.4)

1l

oy y
BJX oJ
3% + ﬁ = - SC}S (9-5)

Thus instead of attempting to solve the second-order
differential equation (9.1) we may attempt to solve the first—
order system of differential equations (9.3) to (9e5)e

One method of obtaining approximate solutions of the
first—order system (9.3)=(9+5) is the method of Moments, (14),
pp 126-128, and pp 162-166. 1In this reference, application of
the method of Moments to obtain approximate solutions for the
eigenvalues and eigenfunctions corresponding to Ti or TM modes in
waveguides of arbitrary cross—section is discussed, and some
numerical results are given. With appropriate modifications this
method could also be used to obtain approximate solutions for the
poles and zeros of the admittance matrix elements for a distributed
RC network.

In the following, we will consider variational methods for
obtaining approximate solutions of the first—order equations (9.3)—
(9¢5)e In particular, it will be shown that the poles or zeros of
an admittance matrix element are proportional to the stationary

values of a suitably chosen functional. Alternatively, one may
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obtain the value of an admittance matrix element at a given
frequency as the stationary value of a suitable functionale.
The differential equations (9.3) = (9.5) together with certain
boundary conditions, are shown to be necessary conditions for
these functionals to be stationarye.

Although variational methods have been used previously for
solving partial differential equations, application of these
methods to the first—order equations (9.3) = (9.5) does not appear
to have been considered previously. In addition the functionals
presented here do not appear to have been presented elsewhere.

In the following we will show how the Rayleigh—Ritz method may be
used to obtain approximate solutions of the stationary problems,

and in addition, it will be shown that the variational method is

equivalent to the Moment method, Finally, some numerical results
are given.

One undoubted advantage of the present method is that the
derivatives (Jx and Jy) of the potential f(x,y) are approximated
with the same accuracy as the potential; with the variation methods
discussed in Chapter 8, the derivatives Jx and Jy are generally

less accurate than the potential B(x,y)e

9.2 Variational Solution of Firgt-=Order Differential. Equations

In the following, it is more convenient to use the equations

(9.3)=(945) in either of the following forms

— g']éc = ku (9'63')
-1 S (9+6b)

8y
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% * %;. = k}é (946¢)
where
k% = - sCR
RJ
u = __J_:'
k
RJ
v = __1
k
or
-
-éé . ' (9.7a)
2
- 5§ - (947b)
aé—z' + %‘? = k2¢ ' (9.70)
where
k2 = = sCR
u = RJ
b'd
v = RJ
y

The first form, (9.6:.), is used for solving eigenvalue
problems i.e. poles and zeros of the admittance parameters, and the
second (9.7), is used to obtain a variational expression for the

admittance matrix term yk;j at a given frequencye.

Now let
_ 5 5 —
0 3x 3y
2
L = - 5; 0 0 (9.8&)
o
- 0] 0
ki 9y ;




k¥ 0 0
M o= 0 1 0 (9480)
0
and
#
£ = h? 8 (9.80)

Then (9.6) and (9.7) may be written in the standard

operator forms

Lf = kf (949)

Lf = MNf (9+10)

respectively,

We will now indicate briefly the procedure for obtaining
the functionals whose stationary values are proportional to the
value of an’ admittance matrix element, or whose stationary values
are proportional to the poles or zeros.

Pirst, we will need an inner product for the function

space £, which is chosen as (14), pe 163

ity 5,0 = f( £, « £, da
R
=f( (¢1 ;62 +u, u, + v, V2) da (9.11)
R

Next, we will nced the adjoint operator La, and the function
space % on which it operates. These are found as described in
Appendix A, and in (42), pp. 148 -=149. As shown in (14), p. 163

we obtain



<fa, Lf> = <La' fa, f) +§ [nx(ﬁﬁa'u-u%é) + ny(yfa -va'ﬂ)} dl
c
(9.12)

where

(9413)

and n, and ny are the x and y components of the unit outward-
pointing normal on the boundary Ce

The function space £% is determined by the requirement that
the boundary integral in (9.12) must vanish for all functions f
and £ within the domain of the operators L and La respectively.

If we wish to compuite the admittance matrix elcment ykj of
a distributed RC network, then we require a potential function f
which satisfies the differential equation (946) or (9.7), and the

boundary conditions

n, W+ BV o= 0 ongC, (94142)

g = G, onC,+ Gy + Cy (914Db)

where G, = 0 ong, (9e14c)
= Uj = constant on Cj (9.14d)
= 0 onCp (9.14 e)

where . _ Cy + Cp+ Cy+ O is the boundary of the resistive

layer, C1 corresponds to the insulating boundary segments, Cj and

Ck are the jth and kth metal contacts respectively, and C2 denotes
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all of the remaining metal contactse.
Once a solution satisfying (9.6) or (9.7) and the boundary
conditions (9.14) has been found, the admittance matrix element

may be computed by using

k
Yy = ~ W (nxu + nyv) a1 (9.15a)
Gy
or
1
Vi = wT ?ﬁ (nku.+ nyv) dl (9.15b)
J Je
k

(9.15&) is used if u and v satisfy (9.6), and (9+15b) is used if
u and v satisfy (9.7).

If we wish to compute the poles of the admittance matrix,
then we require the eigenvalues of the system of equations (9.6)
where ¢, u and v satisfies the boundary conditions (9.14) with
U. = O¢ The poles §; are then found from the eizenvalues ki by

J
using

- k2/cr (9416)

o]
f

If we wish to compute the zeros of ykj’ then, in addition
to boundary conditions (9.14), it follows from (9.15) that u and v

must also satisfy

(nxu + nyv) dl = O© (9.17)

Ok

From the requirement that the boundary integral in (9.12)
must vanish, we obtain the boundary conditions on the adjoint

field = as
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nxua + n.yva = 0 on C, (9418a)
a
¢ = G on Czd-Cj4-Ck (9.181b)
where 8
GV = 0 on 02 (9.1 G)
= V. = constant on C (9.184)
= 0 on Cj (9.189)
or G, = Uj = constant on Cj (9.18f)
= 0 on Cy (9+18g)
from which it follows that
a a
Vkag (nxu + nyv) al = Uj# (nxu + nv ) a1 (9.19a)
Ck Cj
or
a a
Uj Eﬁ (nxu + nyv) il = Uj (nxu + v ) a1 (9419b)
C. C.
J J

where (9.19a) applies when the boundary conditions are (94184) =
(9.186), and (9.19b) applies when the boundary conditions are
(9.18£), (9.18g).

When we wish to compute the poles or zeros of ykj' beth
sides of (9419) are zero since Uj =0, or (9417) must be satisfieds

When we wish to consider an off-diagonal admittance matrix
element (i.es j£X), the boundary conditions (9418d), (9+18e),
(9.19a) apply, and for a diagonal element yjj the boundary

conditions (9.18f), (9¢18z), (9.19b) apply. In addition, when we
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congider a diagonal element y.. in the following, i.ece j=k, Vk is

replaced by Uj’ and? is replaced by%c . If £ satisfies the
Ck j
boundary conditions (9.18a)-(9.18f) and the adjoint equation
2% - kr? (9.20)
or
1% = wf? (9.21)
it follows that
Ty = = L (nu® + nv™Y) dil (9.22a)
ik v, % ¥
4G .
J
or
1 a a
y,jk = - Rka (nxu +nyv) dl (9.22b)
C.
J
where a
(9.22a) is used if u” and v° satisfy (9.20),
and

(9.22b) is used if u® and v> satisfy (9.21).

In addition, if f satisfies (9.9) or (9.10) and £% satisfies

(9+20) or (9.21), it follows that
<t uey = (P (9.23)
which is equivalent to the condition previously stated, that the<

boundary integral in (9.12) is required to be zero. In addition,

from (9¢15), (9.19) and (9.22) it follows that

Vs Y sk (9+24)



which is the reciprocity relation, i.e. the reciprocity relation
follows naturally as a result of the requirement that f satisfies
(99) or (9.10) and the boundary conditions (9.14), while the
adjoint field £ satisfies the adjoint equations (9.20) or (9.21),
and the adjoint boundary conditions (9¢18).

The basie technique for obtaining a functional whose
stationary values are equal to the eigenvalues is the following.
We take the scalar product of the adjoint field £% with both sides
of the differential equation (9.9), and then after dividing both
sides of the resulting equation by <:fa,f> sy Wwe take the
expression on the left side of the equation as the desired functional,.

e can now show that the functional

5,00, = <:*Z,m">"= (Lai,a,fg (9.25)
Cat DI €
is a variational expression which has for its stationary conditions
the differential equations (9.9) and (9.20), if the functions f
and % are constrained to satisfy the boundary conditions (9.14),
(9018), and both sides of (9.19) are constrained to be zero. The

stationary values of the functional J, are equal to the eigen—

1
values ki’ and these are related to the poles and zeros by (9.16).
The proof of the preceding statements is quite direct. Let ?z

be an arbitrary function, and ¢ an arbitrary parameter, and
substitute
f = £, +<X
! K (9.26)

and

into (9.25), where f, and f? are such that J, is stationary,
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and f1 tXm satisfios tho boundary conditions of our problem.
Next, differentiate (9,25) with respect to X, Then by hypothesis
the derivative vanishes when X= 0, and we therefore got (9.20) as

a stationary condition., Similarly by repeating this procedure with

(9.27)
and 7= £ st
= f n

we obtain (9.9) as a stationary condition., Similarly, if we wish
to obtain a functional whose stationary value is proportional to an
admittance matrix elemoent ykj’ wo procead as follows, We take the
scalar product of the adjoint fiecld fa, with both sides of the
differential equation (9.10), and then transfer the term on the
right side to the left side. Thc resulting expression on the loft
side can be shown to have a stationary value which is zero. To
obtain the requirsd functional, we add a boundary integral which
is proportional to ykj to the expression obtained in the previous
step. The boundary integral is obtained by rearranging (9.12)
such that the integral proportional to y  is on the same side of
the equation as the inner product <:fa, Li‘> .

Thus ws obtain the functional

T,(£,£%) = %18 ) - <fa,MfS - ”]6;25& (nw+ nv) dl
c

k (9.28)

- 1Pfr) - e ) - f¢ (nu® + nyva) a1
=Gl
j



161

which has for its stationary conditions the differcential equations
a
(9.10), (9,21), provided that f and £ are constrained to satisfy

the boundary conditions (9.14), (9.18). In addition, it then

follows that the stationary value of Jé is relatad to the admittance

matrix elements by

- I I L O 9.29a )
yjk ykj RU .V 2 (£,£) (
ik
or
1 r(,e) (9.29b)
Y53 RUR 27 ’
where

Jg(f,fa) is the stationary value of Jé(f,fa) for a given
value of k, and (9.292) is used for j#k.
The stationary conditions for the functional J2 are derivaed

in the same manner as those for J1.

Next we wish to derive functionals such that the trial
functicns £ and £* need not satisfy all of ths boundary conditions
of our problem, and yet we ere assured that the stationary value
of the functional is furnished only by the solutions which satisfy
the required differential equations and boundary conditions. This
simplifies the problem of obtaining approximate numerical solutions,
since it is often as difficult to find trial functions that satisfy
the boundary conditions as it is to find the solution itself,

These functionals are formed by defining an extended

operator Le, and an extended adjoint operator L?°, such that

<) = <101 (9.30)
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or an equivalent condition is satisfied for functions which need
not satisfy the boundary conditions of our problem, and the
operators Le and Lae are identical to the original operators L and
L? when the boundary conditions of our problem are satisfied; we
have previously shown that the solutions of the boundary value
problem must satisfy (9.23) which is identical to (9.30) when the
boundary conditions are satisfied.

When the functions ﬁ and ﬂa satisfy the Dirichlet boundary
conditions of our problem (9.14b) - (9e14e), and (9.18b) - (9.18g),
we define the extended functionals as follows for eigenvalue

problemss—

<&fe D = L£f,1r) -§ £ (nu+ nv) dl (9.31)
c

<%, > = (13%, 1) -§ g (nu®+ nyva) d1 (9432)
C

(9431) was obtained by rearranging (9.12) so that the inner product
containing Lf was on the same side of the cquation as the boundary
integrals containing nxu + nyv, and the resulting expression was
identified with f%L%,f> o Similarly, (9.32) was identified
with the expression on the other side of the rearranged equation.
We note that the boundary integrals in (9.31). contain: only

those components of f which have not been constrained to satisfy
the appropriate boundary conditions, and similarly in (9+32) the
boundary integral contains only those components of £%* which do not
satisfy the required boundary conditionse When (nxu + nyv) and

(nxu? + nyva) satisfy the required boundary conditions L® = L, and
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Lae « 12 as required.

When we wish to compute the value of the admittance matrix
element instead of the poles or zeros, we use the following

definitions of L° and 12° in place of (9.31), (9432),

<fa',Lef> = <fa;1.f'> —§ g2 (nxu + nyv) al (9.33)
[¢
1

<128, 1) = (1%%,e) - § # (nxua + nyva) d1 (9434)
c
'

Then, instead of (9.30), it follows from (9.12) that the solutions

gatisfy the equivalent condition

<ﬁ@%>-§'f%%u+%ﬂ d1
Ok (9435)

= <1®%3,¢) -% ¢ (nxua’ + nyva‘) a1
F

We note that (9.35) is actually equivalent to (9.30),
since it follows from (9.19) that the two boundary integrals in
(9435) are equal for the exact solution of the boundary value
problem.

Finally, if none of the functions f, n, v or ¢a, ua, v
are constrained to satisfy the boundary conditions of our problem,

for eigenvalue problems, we define
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(£2,1% ) = e -§ g (nu+ nv) dl
c
]

(9.36)
+§ [(Mu) (nxua + nyva')-Gv(nxu + nyv)] al
C2+Cj+ck
and
2o, e ) = <12e%,r) - 3§ g (nu®+ nyva’) a1
“ (9.37)

{1;[K¢a;Gv) (nu + nyv) - Gu(nxua + nyva)] al

C2+Cj+ck
where

G, and G_ are defined in (9.14) and (9.18)s (9.36) and

(9437) were obtained by rearranging (9.12) and subtracting

# {C—u (nxua + nyva’) + G (nxu + nyv)} a1
02+Cj+Ck

from both sides of the resulting equation. It should be noted that
if ¢ and ﬂa satisfy the Dirichlet boundary conditions of our problem,
then (9.36) and (9.37) are identical to (9.31) and (9.32)
respectively.

Similarly, if we wish to compute the value of an admittance
matrix element with no constraints of the potential functions, we

define
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<2 ) W o2, -§ £ (np+ny) @
| 1 (9.38)

a a
+ § ([é—(}u) (nxu + nv ) a1
02+Gj+ Ck

and

<La.efa'f> - <Lafa"f> -§ ¢ (nxu + nyv) al
Ky
(9439)

(P -0,) (nu+ny) a1

02 + Cj+ck

We note that (9438) and (9+39) are identical to (9.33)
and (9.34) regpectively if ¢ and ﬁa’ satisfy the required
Dirichlet boundary conditions.

In addition, from (9.12) it follows that (9+36), (9437)

satisfy (9.30), while (9.38) and (9.39) satisfy

<%, ) - Gv(nxu + nyv) al
02 + Cj + 0y

(9.40)

- <Laefa',f> - 9D G, (nxua‘ + nyva) al

(‘,2+Gj+ck

We now consider the functionals
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Jy(£,£%) = Lty 3, € P % 9 (9.41)

<5260 (£,£>

where

L° and 1?° are defined by (9431), (9.32)

and
£ and £f% are constrained to satisfy the Dirichlet boundary

conditions (9+14b) = (9.14e) and (9.18b) — (9.18g) respectively.

It may be shown that the conditions for J3 to be stationary
are (9.9), (9+20), and the boundary conditions (9.14a), (9.18a).
In addition, the stationary values of J3 are equal to the eigen—
values ki' and the eigenfunctions are such that both sides of
(9+19) are zero.

Similarly for the functional

3,(£,2%) -‘ <fa;Lef> - {&* gD -§¢a (na + nv) 4l
Cy

(9.42)

e <122, 1) - <£Pufd -f g (n ™+ nyva') al
C,
i

where o
L® and 1?° are defined by (9.33), (9.34),

and
£ and £ are constrained to gsatisfy the same boundary

conditions as for J3, it can be shown that the stationary conditions
are (9410), (9.21) and the boundary conditions (9.14a), (9.16a).

In addition, the stationary value of J, is related to the admit-

4

. by (9.29), where J

j is replaced by

tance matrix elements yjk = ¥y 5

J4.
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Finally we consider the functionals

(fa",Lef> ) <Laefa,j,‘- S

I (£,£%) (9.43)
i (e %)
where
L® and 12° are defined by (936), (9437) and
Js(f’fa') s <fa,1_,ef>_ - &% ue) -¢ G, (nu+ nyv) d1
C,+C.+C
2k (9.44)

= 12?1 )< <fa,Mf>-§Gu (nxua' + nyva') a1

02+ CJ.+Ck

where

L® and 12° are defined by (938), (9.39)e No boundary
constraints are imposed on £ or £ in (9.43), (9.44).

In Appendix D it is shown that the stationary conditions
for Jg are (9+9)y (9.20) and the boundary conditions (9.14a) -
(9¢14e), and (9+18a) - (9418g). Similarly, the stationary
conditions for J6 are (9.10), (9.21) and the boundary conditions
(9414a) = (9414e) and (9.18a) = (9.18g)e The stationary values
of J5 are also equal to the eigenvalues ki' provided that the

solutions are constrained to satisfy

Gv(ﬁxu+ nyv) dl = O (9.45)

02+Cj+ck
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and

a a
G, (nxu +nv Ydl = O (9446)

02+cj+ck

Similarly, it can be shown that the stationary value of J6
is related to the admittance matrix elements i = Yij by (9.29),
where J2 is replaced by J6.

We now consider application of the Rayleigh=Ritz method to
the problem of obtaining the stationary values of the functionals
presented previously. Appr;ximate solutions are obtained by

assuming that f and £2 may be expanded as

PIZ aiﬁi(x.y)-  Blxry)

Plxyy) = | 3 Pend) | o | u(xy) (9.47)
Zcivi(x,y) v(x,y¥)

) O fi(x,y) #*(xy¥)
£(xy) = Y BiviGy) | = u®(x,¥) (9448)
EBEV? (xy5) v (x,5)

where i, (4,7)y w (xay)s vy (a3)s B10e0)s w3(xy) and vi(xyy) are
arbitrary functions of x and y which may or may not be constrained
to satisfy boundary conditions. The unknown coefficients are
determined by applying the Rayleigh-Ritz stationary conditions
g—i"‘a?-f"g%:'o (9.49)

1
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and
°J 0J 2J
S-i- = é-ﬁ-.; ] 5?; = O (9050)

First we consider the functional Js(f,fa’) (9+43) where £
and £ are not required to satisfy any boundary conditionse.

From the stationary conditions (9.49) we obtain

i | a | all 1 [ & | | 1
o 1 || P o o ||
._u .;%_r e | iy
1 I o+ 0 ||B] ~x | o om0 B
a L U
Lo o |7 o ., o0 : mo ||
e ! i - L. L 1 I L I
I 0 1 (9051)
- | wu
g
—
g
where k is identified with J5(f,fa'),
and
du.’?
?5"1& o a
Y o- R 3~ d8 - ;0,5 dl (9452a)
R 01
a V.
gv " d _ a .
A Jf g 2 da §¢inyvj a1 (9+52b)
R C1
v 2 ¢ N
1:‘.;] ==t u 3_-Lx da + ¢jnxui dl (9+52¢)

R C,+C.+C
J
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a 47
vie . i a d
1% H vy sy da 4 ﬁ'}jnyvidl (9.52d)
R 02+ Oj+ Gk
gga 2
my3 = £;8; da (9.526¢)
R
where
g = P u, or v,
and

a, 2, a a
R = . R V.
€5 ¢a' Yy Y

if @, satisfies the boundary conditions (9.18d), (9.18e) then

g = Y n ugdl (9.52¢)

uv
gy = TV n.v 401 (9452¢)

Cy

and if G satisfies the boundary conditions (9418f), (9.18g) then

_vu

g = U;P nma (9.52h)
C.
d

uv ¥ .

g = Uj§ A a1 (9+521)
c
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From the last row of (9,51) we obtain

] £ 1T [0 - [ o

is = Vk or Uj

Similarly from the second last row of (9.51) we obtain

- T [ -] e

After substituting these two results into the first row of (9.51)

we obtain

which may te rearranged to give

K2 [M]dﬂ = [.A. ]OE]+ [B]g} (9456)
where . [ m¢¢af]

o= ] ] 8]+ [ o] (o]
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T T

D = v, or Uj'

Since f and £ (9-45), (9.46) are not constrained to
satisfy any boundary conditions, the expansion functions ¢i’

Uy vi, ¢i’ ’ uia;, via belong to the same function space and hence:
¢i = ¢ia' w = uia and v, = via‘

Thus from equations (9.53) - (9.56) it is seen that M and A are

symmetrical matricess.

To obtain the poles of the admittance matrix, we impose

the constraint &= 0 in (9.56) which becomes

{[A] - kz[M]} 04] = 0 (9+57)

The approximate poles are then obtained from the
eigenvalues k]?_ by using (9.16).

To obtain the zeros of the admittance matrix term yk;j or
yjk we have to impose the constraint (9¢45) or (9.46) on the
solutions of (9.56)

If we define

a
g?u -# nxui’ dl (9.58a)
¢
v a
g = n v, al (9458b)
¢



then (9.46) may be written in the form

B R e e

By using (9.53) and (9.54) this may be transformed to the

form

[c]t [d] - 0 (9460)
Methods for obtaining the eigenvalues of a system of the
form (9.56) subject to the constraint (9.60) are presented in (52)
and (63), and will not be considered further heres
We now consider the functional J6’ (9444)s From the
stationary conditions (9.49) we obtain a system of equations which
are identical to (9.51), except that the second matrix in this

equation becomes

§ | | N
12uf? 0 o0
e e om o o
o | m™ | o (9+61)
— — e }... — — !,. —
o ! o !'n"|
- =

By using the procedure outlined previously, the equation
may be transformed to the form (9.56), which may be solved for the

unknown coefficients Cx] for any given k2. The approximate value

of J, may then be obtained by solving (9¢53) and (9.54) for 69
and ‘8], and then using
t_ B
J U uua' uva ( 62)
6 = Us\ | & Bl+ e 3 9e
ua® uv>

where g and g are defined by (9.58).

We now consider the functional J3, (9¢41), where f and £
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are constrained to satisfy only the Dirichlet boundary conditions

in (9+14), (9.18)s From the stationary conditious (9449) we obtain

o e [ e (o |
;“56& i o "o |Bl = x|o im““a; 0 ,3
2 L 0 ; 0 ;m""a ¥
L | | | 8 d
(9.63)
where

a
k is identified with the stationary values of J3, n’p¢ ’

a a
n™ and m'Y are given by (9.52), and

2 =”¢321aa- fon u a1
ij 19x 1"x75
R C
(9+64)

R C
2 g
w®
lij = uy 51][- da
R
2 ¢2
vﬂa A
11‘_1 = - Vi Y da

From the last two rows of (9.63) we can obtain pJand_ ?f]

in terms of 0(], and then after substituting these expressions into
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the first row of (9463) we obtain an equation of the form

{[A] - ¥ [M]]o(] - © (9465)
which may be solved for the eigenvalues ki which approximate the
poles or zeros of the admittance matrix elements.

Similarly, when we apply the stationary conditions (9.49) to
the functional J4, we obtain a matrix equation which is identicald
to (9.63), except that the matrix on the right side is replaced by
the matrix in (9+61)e However, the potential functions g(x,y) and
¢a(x,y) are required to be fixed constants on the boundary segments
Cj and C, respectively, Thus if the ﬁi(x,y) and ﬁ?(x,y) in (9.47),
(9448) are such that

g, (xy7) = pi‘(x,y)_ = 0 onCy+C,+Cy (9.66a)

for i=1y 2 === (n~-1)

B (xy) = 1 on G,
(9.660b)
= 0 on C2 + Ck
and
Pxyy) = 1 on C
n i (9.66¢)
= 0 on 02 + C;j

Then the boundary conditions imply that a, and Mn are fixed

constants equal to U;j and Vk respectively, and the stationary

conditions g—'; = a-aa‘l = 0 cannot be appliede This is equivalent
n n

to deleting the nth row of (9465)e If the nth column of the matrix

on the left side of (9.65) is multiplied by ---Vk and moved ‘to the

right side of the equation we can solve for the coefficients <><1,
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°<2 . — O"n—‘l for any givea k2., Finally, our approximation {o the

stationary value of J, is obtained by taking the 3calar product of the

4
nth row of the matrix on the left side of (9465) with the vector of
coefficients O(J, and then multiplying the result by a, = Uju The

approximate value of the admittance matrix element ykj = yjk is then

obtained by substituting this value of J, into {9¢29).

4

9.3 Comparison of Variational Solutions of First-Order and Second-
Order Differential iquations

We now wish to consider the relationship between the
functionals derived in Section 9.2, and those which were used in
Chapter 8., In particular we will consider self adjoint problems
for which f = ¢a, u = ua, and v = va, and f is assumed to satisfy
the Dirichlet boundary conditions in (9.14), (9.18).

By using Gauss’ Theorem and the rule for differentiating a

product we can then put (9.41) into the form

a F)
_2‘{[ (u5£+v~a-$) da
J3(f,fa) = B (9.67)

fj P+ v+ v°) aa
)y

where the stationary values of J3 are identified with the eigen-

values k = k3 kyy ky === in (9.9), (9.20).

In Chapter 8, we used the functional

2
Iv;él da
P f?) = —= (9.68)

7
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where the stationary values of F‘1 are identified with the square of

the eigenvalues, i.ee k2 = k12, k22, k32 ———

For self adjoint problems the eigenvalues are all positive
and real, and the approximate eigenvalues obtained from (9.68) are
always greater than or equal to the exact eigenvalues.

N A
Let ki and ﬂSi be an approximate eigenvaluc and eigenfunction

obtained from (9.68). Then we have

Ao .U ‘vﬁilZda

K2 = =3 - (9.69)
No
J jéi da

R

% 2 = A
Let ki’ ¢i’ uy and Vs be the corresponding eigenvalue and

eigenfunction obtained from (9.67)s Then we have

aﬁ ~ 3,\
A i ~
. —2[[ (ui—-;c-+ vlay)da
T{ = .-aR (9070)
: (’?2 22 A 2y 4
;6_1 + "+ vy a

3. a ({2

R R
and
~ 3. ~ A
A i ~ 2
= Vi 3 da = k; v,” da (9471b)
R
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Then from (9.70), (9.71) it follows that

4.
Jf (ulﬂ+v.-;i§:) da

a
k, (9.72)
jid
From Schwartz inequality (38), p. 16
ABf, =« B a A 2
[(uié—f-+ $‘_§_ < (%i + viz)d f I‘V,ﬁi| da
R R R
(9473)
From (9¢71a) and (9.71b) this is equivalent to
a A
n 3P, a0, ; ~ 2
_S‘( (Gi-a—-;-é+ vi-e-—;-)da Sf— ‘vzz_l da
| R i R
(9474)

Then from (9.72) and (9¢74) we obtain

a2 -H \'V’%ﬂzda

< R (9.75)

7=

R

A
As previously mentioned the approximate eigenvalues kiz
are greater than or equal to the exact eigenvaluese. Since the
/\
approximate eigenfunctions ¢i and ’6:1 are generally different we

nNo N2 .
cannot conclude from (9.69) and (9.79) that ki < ki ; which would

inea:n that kiz could be taken either as a lower bound on the exact

A
eigenvalue k.2, or as a more accurate solution than k12
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For certain classes of problems (14) p. 142=146, 165, it was
found that the approximate eigenvalues §;2 were lower bounds on
the exact eigenvalucse However, as will be shown later, this is not
necessarily true for other eigenvalue problemse

Although it is not possible to deduce from (9.69), (9.75)
that the variation method for solution of the first order differential
equations will always give more accurate eigenvalues than those
obtained from a variational solution of the second order differential
equation, the form of these relations tends to support this view; it
must be emphasized that the solutions obtained by the former method
will depend on the number and form of the expansion functions used
to approximate u and v as well as ﬂ, whereas in the latter method the
expansion functions used to approximate the derivatives of the
potential function cannot be arbitrarily chosen. If the expansion
functions used for u(x,y), v(x,y) and f(x,y) are such that it is
possible to satisfy ku(x,y) = —%g and kv(x,y) = -:—é everywhere
inside R, then both methods will zive the same numerical results.

A comparison of the zero fregquency admittance parameters may
be made in a similar manner to that for the eigenvalucse. As before
we consider only self adjoint problems, i.ce f = fa, and the potential
function ﬁ is assumed to satisfy the Dirichlet boundary conditions in
(9.14), (9.18).

From Chapter 8, the approximate value of the admittance matrix

element Y53 obtained from the functional Fz(ﬁ,ﬁa), (8.1) is

2
A 1 /
V.. w  —— \vg/ da (9.76)
JJ Rsz l I
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The approximate solution obtained from the functional

J4(f,fa), (9442) can be shown to satisfy

W

3 —--—-— H ("Eﬁ + v?-ﬁ) da (9.772)

where
s
"~ Fal
_H 4 2«5 da = 22 as (94770)
R R
S
H "éé da = 22 dn (9.77¢)
R R
and hence
2 < V’A‘z
V35S =7 $| da (9+774)
J

f=e)

A
As previously discussed the approximate yjj given by (9.76) is

an upper bound on the exact yjj' In addition, from the form of
N ~
(9.77d), we would expect the approximation §jj to be less than yjj so
that it is either a lower bound on or a more accurate approximation
$ R
than yjj' This is not necessarily so however, since the value of yjj
N /X
depends on the form of the expansion functions used for A and'@

A

as well as those used for ﬁ, The value of §}j depends only on the

. . T . A 2
expansion functions uzed for ﬂ; if we wish to compare yjj and yjj
o
the expansion functions for § and # will usually be identicals
~

For the problems to be considered later it was found that'§jj was
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N
'?.. was still an upper bound on the exact

less than ?., but
J JJ

solution y..
Y33°

944 Area Integrals for Pyramid Functions in Rectanzular and Triangular
Regions

We now consider the evaluation of the matrix elements
required for a variational solution of the firgt-order differential
equations.

For simplicity it will be assumed that the region is
subdivided into a number of rectangular and triangular subregions by
a system of grid lines parallel to the x and y coordinatese The
grid lines need not be equally spaced in either the x or ¥y directions,
but it is assumed that the boundary is approximated by linear
segments, and each boundary segment either coincides with a grid
line or lies on the diagonal of a rectangle enclosed by adjacent
pairs of grid lines.

A potential function P(x,y) which is defined by the value of

the po-l;ent:i.a.l‘53'(:.L at each mesh point may be expressed as follows:

¢(xv3’) = Zo(i ¢i(3‘515') (9-78)

i=1
where
ﬁi(xi’yi) = 1
g (x13,) = © for 1 £ i
and.

(xl,yl) are the coordinates of the 1lth mesh pointe

One of the simplest interpolation functions which zives a

continuous ﬁ(x,y) with piecewise continuous first derivatives is



defined as follows. Suppose that the mesh points at the four
corners of a rectangular element are numbered i, j, k, 1 as shown

in Pige a1

Figure 9.1. Rectangular element with a mesh point at each corner.

182
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Then, inside the rectangle, a set of functions satisfying

the requirements given above, is

(x=x5) (3-33,)

L) = T ) (9:152)
$xy) = Ezzs(b(’;j_l—;l) (9.79b)
helor) = Eziii) (Zii;i ) (9479)
folo) ¥ st L (9.794)

(xj=x) (y1-¥5)

Similarly, if the mesh points at the corners of a

triangular element are numbered i, j, k as shown in Fige 942

k

Figure 9.2, Triangular element with a mesh point at each vertex
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A set of functions satisfying the above requirements within

the triangle is

' X—Xi y"'yi
fy(xyy) = 1- S " e (9+802.)
K=,
Bilxy) = =% (9.80m)
i T
Fy=J;
¢k(x7Y) = =— 3 (9.80¢)
kY5

A similar expansion to (9.78) can boe used for the functions
u(x,y) and v(x,y). Let pi and K'i be the values of u(x,y) and
v(x,y) respectively at cach mesh point. Then the approximations may

be written as

u(x,y)

bR ) (9.61)
i

V(de)

), vy (x) (9.82)
i

where
ui(x,y) and vi(x,y) are identical with ﬁi(x,y) defined above.
We have assumed that the boundary of the two dimensional
region is polygonal and each boundary segment coincides with a side of
a rectangular or triangular element. In addition, the potential
function ﬁ(x,y) varies linearly along each side of an element and
is defined by the potential values at each mesh pointe. Thus it is

easy to obtain a potential function ¢(x,y) which satisfies Dirichlet
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boundary conditions of the form (9.14); we simply constrain the
c(i to be zero at mesh points on boundary segments where ¢(x,y)

is required to be zero, and on boundary segments where ﬂ(x,y) is
required to be constant, we choose the‘Dﬁi to be equal.

Consequently the matrix elements required for a variztional solution

are linear combinations surface integrals of the form

u¢ j
b u, ~a-=;1- da (9.83)
4.
v
lij = vy 55 da (9.84)
R
.28 _ .
mla = 8 gj da (9085)
R

where

g, = BGy)y wixy) or v(x,y).

The contributions to each of these integrals from a
rectangular element can be easily evaluated, and if the mesh points
iy Jy ky 1 in Fige 9«1 are replaced by 1, 2, 3, 4 respcectively they

may be written in matrix form as

_ (0 2 1 -1
{1"1’5] i fﬁ.f 2 =2 1 - (9.86)
12 1 -1 2 =2
1 -1 2 =2




] ?
- N = N

IO VO S-S

N = NN -

(ST O N
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2 1]

S (9.87)
-2 -1

-1 =2

2 1]

1 2 (9.88)
4 2

2 4|

Similarly if the mesh points i, j, k in Fige 9.2 are

replaced by 1, 2, 3 respectively, the elemental matrices for a

triangular element are

(]

=1

-1 0 (9.89)
-1 0

0 -1

0 -1 (9.90)
0 =1

11

5 1 (9491)
1 2
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Once the elemental matrices (9.86) = (9.88) or (9.89) = (9.91) have
been evaluated for each rectansgular or triangular element, the
surface integrals (9.83) ~(9.88) can then be evaluated.

The only remaining step in the solution is then the

solution of a system of linear equations, or an eigenvalue problem.

9¢5 Numerical Results

Som¢ numerical results obtained for a number of differcnt
problems by using the variational method described in the preceding
sections will now be presented. The two—dimensional regions were
divided into rectangular and triangular sub-regions, and the
potential functions ﬂ, u and v were approximated as described in
section 4. For cach problem considered, the potential function J)]
was constrained to satisfy the regquired Dirichlet boundary
conditions. The approximations for u and v were not constrained to
satisfy any boundary conditions in general, since these boundary
conditions are "natural" for each of the functionals used. However,
for some problems a comparison was made of the results obbained with
u and v constrained to satisfy the Neumann boundary conditions, and
with no constraints on u and v.

Examples 1 = 3

Zero Frequency Admittance Parameters for Linearly-Tapered
Resistance Networks

The network considered is shown in Fige 9¢3; the two-
dimensional region was divided into rectangular and triangular sub-
regions as shown therein,

Three different approximations to Iqq (=y22==—y12==-y21)

were computed for four different mesh sizese
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NROW
- 1 m
| ]
1
1
1
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ymax *
T
1
[ ]
]
% ymin
N 4
b = _
e max gl
Figure 9.3 Linearly tapered RC line - Subdivision into
rectangular and triangular elements.
k b= 1
NROW ' N
]
]
L}
1
L | a=o5
]
3
2
1 \
1 2 K S NCOL

Figure 9.4 Rectangular waveguide - Subdivision into

rectangular elements,
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The first approximation, §ﬁ1' was obtained as the minimum
value of the variational expression (9.76)s This approximation is
an upper bound on the exact solution. The sccond approximation
AN L 3 . . )
¥qq was obtained by using ths potential function ¢ found for Y94
in the variational expression (9.77a), where u and v are related
to B by (9.77b), (9.77¢c)s Tor each of the problems consideredf3a1
was found to be smaller than ;;1, but was still greater than the
7
exact value. The third approximation &11 was obtained as the
stationary value of the functional (9.42). For each of the problems
A ~ AA
considered, Yqyq was found to be less than y11 and Yyq0 but greater
than the exact values. From the results in Section 9¢3 it was
. A A

conjectured that Y99 would be less than I1q°

The numerical results and the dimensions of the network
for examples 1-3 are shown in Tables 9.1 =9¢3. The number of
simultaneous equations solved in each case is shown in the tables
as NBE, . Approximate solutions for examples 1 and
2, with error estimates, were obtained by using polynomial approx—
imations for the potential ﬁ(x,y). I'or example 3 an analytical
solution is known (32). Comparison of the approximate solutions

A A n
Y11 and 311 with the "exact" solutions shows that the error in Y14

is about twice as large as the error in‘§21. Thus if the approx~
imations for f, u and v are of the form discussed in Section 9.4, the
variational method based on the first—order differential equation is
likely to be more accurate than the variational method based on the
second-order equation. However the former method generally requires

more computation since the coefficient matrix [A] is obtained from

the matrix on the left of (9.65) which requires the inverse of the
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TABLE 9.1 APPROXIMATE VALUES OF THE DC ADMITTANCE
MATAIX ELEMENTy Y11, FOR A LINEARLY TAPERED RC LINE.
NCOL, MNRLy AND MeOA ARE DEFINED IN FIG. G.3.

THE DIMENSIONS ARE - XMAX=1, YYAX=1ly AND YMIN=.1
WE = HUMEER OF STIMULTANEOUS EQUATIONS SOLVED.

THE EXACT Y11 IS BETWEEN 3275 AND «3297

WCOL= 4 5 6 7
HRL = 3 4 4 5
NROW= 6 8 9 11
NE = 9 18 26 4C
T 37177 «35766 .34588 « 34502
X «36043 «349591 34351 +33999
Yu 35707 +346617 .34115 < 33809

TABLE 9.2 APPROXIMATE VALUES OF THE DC ADMITTAMCE
MATRIX ELEMENTy Y11, FOR A LINEARLY TAPERCD RC LINE.
NCOLs Nele AND NAOW ARE DEFINED IN FIGe 9e3.

THE DIMENSIONS ARE - XMAX=1y, YMAX=.5; AND YMIN=.2
NE = HUMBER OF SIMULTANEDUS EQUATIONS SOLVED.

THE EXACT Y11 IS BETWEEN <3193 AND 3197

NCOL= & 5 6
NR1 = 3 4 4
NROW= 6 8 g
NE = 9 18 26
A 32376 232202 .32120
Y .32150 .32060 32019

TABLE 9.3 APPROXIMATE VALUES OF THE DC ADMITTANCE
MATRIX ELEMENT, Yy1ll, FOR A L INEARLY TAPERED RC LINE.
NCOLs NR1,y AnD NROW ARE DEFIMED IN FIG. 9.3.

THE DIMENSIONS ARE - XMAX=2, YMAX=3, AND YMIN=1

NE = HUMBER OF STMULTANEOYS EQUATIONS SOLVED.

THE EXACT v11 IS .776943

NCOL= 3 5 6
NRL = 2 3 4
NROW= & 7 9
NE = 3 15 26
Y .83490 .79719 .7915C
Y 81092 .78820 . 78524
9 .80537 .78578 | .78338 |
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matrices[:muu] and[ﬁvvj as well as a number of matrix products;
with the latter variational method, the coefficient matrix (2]
is assembled directly from the element matrices for rectangular
and triangular subregions.
Exanple 4

T and TE Modes in Rectangular Waveguide

The eigenvalues k2 obtained for the TM modes in a rec—
tangular waveguide with two different megh sizes are shown in
Table 9.4, together with the exact eigenvalues. This problem has
also been considered by Harrington (14), p. 166, where the
eigenvalues k obtained for the 'I'M21 mode are given. The cross—
section of the rectangular guide was subdivided into smaller
rectangular elements as shown in Fige 9d4e

The approximate eigenvalues are all found to be lower
bounds on the exact solutions for this problem. The approximate
eigenvalues obtained by a variational solution of the second-order
differential equations are always upper bounds on the exact
solutions if the potential function ﬁ satisfies the appropriate
Dirichlet boundary conditions., In addition, the convergence is
significantly faster when the first order equations are used (14)
pe 160, ps 166. It should be noted that the exact eigenvalues are
arranged in increasing order of magnitude, but the approximate
eigenvalues are not. The order of the approximate eigenvalues
was obtained from inspection of each sigenfunction to determine
which waveguide mode it approximates; we recall that a similar
procedure was necessary in the solution of one-dimension eigen—
value problems, Chapter 4.

We now wish to consider the approximate eigenvalues obtained
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TABLE 9.4 APPROXIMATE EIGENVALUES CORRESPONDING 10
TH MODES IN RECTANGULAR WAVEGUIDE. (£=2A)

THE EXACT EIGENVALUES ARE (Mea2+4Nue 2)xP I#el,

FOR B=1.

M AUD N ARE THE MODE NUMBERS.

NCOL AND NROA ARE DEFINED IN FIG. 9e4.

NCOL= 5 1 &
(M, 0| NROW= 3 4 EXACT
(1,1) 45,825 48,741 4G, 348
(2,1) 72.0 77760 78.657
(3,1 79.073 119.88 128.304
(152) 117.86 167.78
{(4,1) 146 .88 197.39
(2:2) 146.88 197.39
(5,1) 101.87 246. 74
{3:2) 189.00 246.174
(4,2) 216 .00 315.82
(552) 170.99 404465

TABLE 9.5 EXACT EIGENVALUES CORRESPONDING TO TE MODES -
IN RECTANGULAR WAVEGUILE. (B=2A)

THE EXACT EIGENVALUES ARE (M##2+44Nwux2)#PI¥*2,

FOR B=1.

M AND N ARE THE MODE NUMBERS

NCGL AND NROW ARE DEFINED IN FIG. 9.4

M 0 1 2 3

0 0. 39.4784 167.78 365.17
1 9.8696 49,348 197.39 394.78
2 39.4784 78.9568 246074 444413
3 88.8264 128.304 315.82

4 157.913 197.392 40465

5 246.740 286.218

) 3554305 394.784
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for TE modes in a rectansular waveguide. The exact eizenvalues,

k2, for this problem are given in Table 3.5 for the first few modes.
For ThH modes, the exact ecigenfunctions satisfy %é = 0 over the
entire boundary. This is equivalent to nu+ nyv = 0 on the
boundary. When the expansions for u and v were constrained to
satisfy these boundary conditions, the approximate eigenvalues shown
in Table 9.6 were obtained. The first thing we observe is that some
of the eigenvalucs are simple and the others are of multiplicity two
or four. The exact eigenvalues however are generally simple except
for a few which are of multiplicity two. A comparison of the
approximate and exact cigenvalues indicates that if the multiple
eigenvalues are considered to be simple, then the approximate
eigenvalues are all less than the exact solutions, i.e. they are
lower boundse It is difficult to determine which modes should be
identified with the eigenfunctions corresponding to multiple eigen—
values since the eigenfunctions are not uniques. i.ece if ﬁ1(x,y)

and ﬂz(x,y) are c¢igenfunctions corresponding to the same eigenvalue,
then a ¢1(x,y) + b ¢2(x,y) is also an eigenfunction.

If the expansion functions for u and v are not constrained
to satisfy the condition nu+ nyv = 0 on the boundary C, the
approximate eigenvalues shown in Table 9.7 are obtained., We recall
that the boundary condition nu + gyv = 0 on C is a "natural"
condition for stationarity of the functional J3(f,fa). Thus, in
general, the eigenfunctions obtained by the variational method will
approximately satisfy this boundary condition, although we must
expect that there will be some "extraneous'" eigenfunctions which
will not (14) Pe 148. The approximate eigenvalues in each line of

Table 9.7 are arranged so that the approximate eigenfunction has the
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TABLE 9.6 APPRUXIMATE EIGENVALUES CORRESPONMDING TO

TE MODES IN RECTANGUL AR WAVEGUIDE. (B=2A)

g=1

NROW AND NCOL ARE DEFINED IN FIGe. 9e4.

(U AHD V CONSTRAINED TO SATISFY THE NEUMANN
BOUNDARY CONDITIONS).

HCdL=s 5 7 “
N[NROW= 3 4
1 0. Oe
2 Oe O
3 O. 0.
4 Oe 0.
5 9.82475 9.8610
5 9.82475 9.8610
7 36.0 38.879
8 36.0 38.879
9 36.0 38.879
10 36.0 38.879
11 43,0731 48.741
12 43,0731 62,990
13 45.8247 62.990
14 72.0 T7T.759
15 79.0731 8l.0
16 81.0

TABLE 9.7 APPROXIMATE EIGENVALUES CORRESPONDING TO

TE MODES IN RECTANGULAR WAVEGUIDE. (B=2A)

B=1

NROW AND NCOL ARE DEFINED IN FIG. 9.4.

(U AND V NOT CONSTRAINED TO SATISFY THE NEUMANN
BOUNDARY CONDITIONS).

NCOL= 5 NCOL= 7
N|NROW= 3 EXACT _ |NROW= 4 EXACT
1 0- 0- 0. C
2 9.8919 9.8696 9.8732 9. 8696
3 32.622 39.4784 38.279 39,4784
4 48.000 39.4784 38.513 39.4784
5 57892 49.348 48.386 49,348
6 80 .622 78.9568 64.80 EXTRANEDUS
7 99. 88.8264 76.752 78.9568
8 79.995 88,8264
9 103.31 EXTRANEQOUS
10 118.51 128304
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same form as the mode corresponding to the exact eigenvalue.

Compared with the previous results, we see that there are no
multiple eigenvalues in Table 9.7, and at least for the dominant
7% modes it is easy to identify the mode corresponding to an
approximate eigenfunction. In addition, we obtain some extraneous
eigenvalues, but these are easily identified because their eigen-
functiong do not approximately satisfy the boundary conditions.
Example 5

™ modes in Right Angled Isosceles Triangle

For this problem an exact analytical solution is known (2),
Pe 755=756.

Approximate solutions for the first few eigenvalues were
obtained by subdividing the triangle into rectangular and triangular
sub-regions as shown in Fige 9.5. The approximate eigenvalues
obtained with several different mesh sizes are shown in Table 9.8
together with the exact eigenvalues. The approximate solutions are
all less than the exact solutions i.e. lower bomnds; this was also
found to be so for the TM modes in rectangular waveguide.

Lxample 6

TM and T Modes in Ridge Waveguide

The cross—section considered is shown in Fig. 9.6; since
the ridge~waveguide is symmetrical we only need to consider one
half of the cross—section with the boundary condition ¢ = 0 on the
centre line for those modes with odd symmetry, and %é = O on the
centre line for modes with even symmetrye.

The approximate eigenvalues obtained for the TM modes with
odd symmetry about the centre line are shown in Table 9.9 for two

different mesh sizes; the approximation to ¢(x,y) was constrained
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TABLE 9.5 APPRAXTMATE EIGEMVALUES CORRESPGNOING 70

[ HiaE

S IN A RICRT=ANGLE ISJSCELES TRIANGLES

NROW ANC WCOL ARFE DEFINED IN FIG. 9.5, WHERE A=l.
NCOL= 4 6 g .
M| NROKE 4 6 8 EXAZT
1 41.383 48,096 49.039 49.348
2 B1.705 94,820 98. 696
3 112.5 124428 128,304
4 142,74 167.783
5 115.11 176432 197.392
6 142,65 220446 24674

TABLE 9.9 APPROXIMATE EIGENVALUES CORRESPONDING TO THM

e

{CTRY ABOUT THE

AND THE DIMENSIONS ARE A5

9.10 AFPROXIMATE EIGENVALUES CORRESPONDING TO TE

IN RIDGE WAVEGUIDE WITH EVEN SYMMETRY ABOUT THE

MODEs IN RIDGE WAVEGUILDE WITH ODD SYMH
PLANE COF SYMMETRY .
SHOWM IN FIGe 9.6
NCOL= B 7
WCl = 3 4
NROW= 5 7
HINRL = 3 4
1 35.681 37.606
2 52.739 59,443
3 72.000 77.760
4 T4.757 93.865
5 76.386 a5.171
6 109.16
TABLE
MODES
PLANE OF SYMMETRY.
NCCL, NC1, NROW, NRI,
SHOWN IN FIGe 9.6

AND THE DIMENSIONS ARE AS

(U AND V NOT CONSTRAINED TU SATISFY THE NEUMANN
BOUNDARY CONDIT IONS)

NCOL= 3 5 1 g
NCYl = 2 3 4 5
NROW= 3 5 7 9
N[NRY = 2 3 4 5
1 O, 0. 0. 0.
2 7.7313 5.8984 5.9162 5.8909
3 16.917 14.164 14.125 14.132
& 37.232 33.767 380357 39,284
5 384433 35.964 384357 39.322
6 53,121 52.048 44.583 45.470
1 60335 56.458 43.425 50.192
8 T6.230 70.981 65,818 75. 4564




to be zero over the entire boundary. Althouzh the exact eigen—
values are not known for this problem it appears that the
approximate eigenvaluss are less than the exact solutions since
they all inorease as the mesh size becomes smaller. Thus the
results of all problems solved so far suggest that the approximate
cigenvalues obtained for T™ modes by variational solutiong of the
first—order differenti#lequations are almost certainly lower bounds
on the exact eigenvalues; for cach of the problems considered the
approximate potential function was constrained to be zero over the
boundary of the region,

The approximate eigenvalues obtained for TE modes in the
ridge waveguide with even symmetry about the centre line are shown
in Table 9410¢ The approximations for #(x,y), u(x,y) and v(x,y)
were not constrained to satisfy any boundary conditionse The
results obtained for this problem by Bulley and Davies (10) are
shown in Table %11 together with the results obtained from the
finite—element program described in (55); the approximate eigenw
values obtained by these two methods are greater than or equal to
the exact eigenvalues i.,e. upper bounds, Inspection of the
approximate eigenvalues obtained by the present method shows that some
of the approximate ejgenvalues appear to be upper bounds which
converge monotonically to the exact eigenvalues as the mesh size
decreases.

The remaining approximate eigenvalues agppear to be converging
to the exact eigenvalues in an oscillatory manner i.es the successive
approximations do not decrease monotonically with the mesh size,

The approximate eigenvalues for TE modes in the ridge wave—

guide with odd symmetry about the centre line are shown in Table 9.12



TABLE 9.11 APPROXIMATE EIGENVALUES CORRESPONDING 10 TE

Lo Lnhe T 199
MODES IN RICGE WAVEGUIDE WITH CVEN SYMMETRY ABUUT THE

PLAIL: CF SYMMETRY .
{A) FROM BULLEY REF.(53).f tg) FRIM SILVESTER*S FINITE-
ELEMENT PROGRAM (6 TRIANGLES
i WITH 4TH OROER PUL YNOMIALS)
1 O O,
2 6.0641 5.95C5¢6
3 14,156 14,1382
& 39479 39.490¢
5 39.480 39.46G61
6 45,6110
7 50.4358
8 79,0882

u

TAGLE 9.12 APPROXIMATE EIGENVALUES CORRESPONDING TO TE

MODrs IN RIDGE WAVEGUILCE WITH 0ODD SYMMETRY ARBOUT THE
PLANE CF SYMMETRY. )

NCOL, NCl, NROW, NRLy, AND THE DIMENSIONS ARE AS
SHOWN IN FIGe 9.6

(U AD V HOT CONSTRAINED TD SATISFY THE NEUMANN
BOUMDARY CONDITIONS)

NLOL=E 3 5 7 S
NGl = 2 3 4 5
NRDW= 3 5 1 9
Nlanl = 2 3 4 5
1 1.3047 1.2675 1.2648 1.2642
2 12,715 10407 10.425 10. 409
3 28.895 23.979 23.993 24,125
4 38.067 34.916 39,628 40.565
5 54,566 41.683 434655 44,762
6 70,163 53.939 58,468 59,978
7 66.514 62,511 65. 635
B 79.167 65.905 75.552
TABLE 9.13 APPROXIMATE EIGENVALUES CORRESPONDING 10 TE
MODES 1N RIDGE WAVEGUICDE WITH ODD SYMMETRY ABDUT THE
PLANE CF SYMMETRY.
(A) FROM BULLEY REF.(53)J(B) FROM SILVESTER'S FINITE-
ELEMENT PROGRAM (6 TRIANGLES
WITH 4TH ORDER PDLYNOMIALS)
N
1 1.2799 1.2702¢€
2 10.520 104517
3 244249 2441713
4 40837 40,8456
5 44,8429
6 61,0171
7 66,3752
8 87,6C02 NUSER.

DAVIES AND MUILWICK (S0) DBTAINED A VALUE OF 1.2648
FilR THE LOWEST EIGENVALUE BY USING A FINITE-DIFFERENCE
PRUOGRAM
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together with the results obtained by Bulley and Davies (10)

and Silvester's program (55). Since the approximate potential
function ﬁ(x,y) was constrained to satisfy the Dirichlet boundary
condition ﬁ(x,y) = 0 on the centre line the eigenvalues obtained by
the latter two methods must be upper bounds on the exact eigenvalues,
As with the previous example, some of the approximate eigenvalues
obtained by the present method appear to be upper bounds which
converge monotonically to the exact solution, while the remaining
solutions appear to be converging in an oscillatory manner. The
approximations for u(x,y) and v(x,y) were not constrained to satisfy
any boundary conditions for these computations.

In addition to the results just presented, an attempt was
made to obtain solutions for the T modes in ridge waveguide with
the approximations for u(x,y) and v(x,y) constrained to satisfy
the appropriate boundary conditions, It was found that none of the
eigenfunctions appeared to satisfy the required N umann boundary
conditions, and the eigenvalues differed significantly from those
found previously. An explanation of this behaviour will be presented
later,

Lxample 7

Poles and Zeros of Admittance Parameters for Uniform RC Line

The results obtained for the poles and zeros of the admittance
parameters of two distributed RC lines will now be presenteds The
first example to bz considered is a uniform RC line of width 0.5
units and length 1 unit, with the input/output ports on the two
narrow edges; the exact solutions for this problem were given in

Chapter 8,
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The results obtained by variational solution of the first-
order differential equations are given in Tables 9414 and 9.15.
The rectangular region was subdivided into smaller rTectangles and
the approximations for @(x,y), u(x,y) and v(x,y) were of the form
given in Section 9e+4e For both sets of results, ﬁ(x,y) was
constrained to satisfy the appropriate Dirichlet boundary conditionss
In addition, the results in Table 9414 were obtained with no
constraints on the approximations u(x,y) and v(x,y) while the results
in Table 915 were obtained with the Neumann boundary condition,
nu+ nyy = 0, satisfied on the two longer sides of the rectangle.
Thé smaller cigenvalues in Table 914, are secen to be approximately
equal to the exact eigenvalues, and the errors become smaller as
the mesh size decreases. In addition, most of the smaller eigen-
values are less than the exact eigenvalues i.ee. lower bounds. The
results in Table 9415 where n u + nyv was constrained to satisfy
the Neumann boundary condition, contain a number of smaller
eigenvalues which do not converge to any of the eigenvalues
obtained from an exact solution; in addition, the eigenfunctions
ﬁ(x,y) corresponding to these extraneous solutions do not approx—
imately satisfy the required Neumann boundary conditionse In both
Table 9¢14 and Table 9.15 there are a number of poles of [Y] and
zeros of Y91 which exactly cancel one another. The remaining poles
and zeros in Table 9.74 are seen to coincide exactly with those in
Table 915, and in addition, these eigenvalues are seen to correspond
to the one-=dimensional solutions whose eigenfunctions have no
variations with position along co-ordinate lines which are parallel

to the input/output portse
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TABLE 9.14 APPROXIMATE EIGENVALUES CORRESPONDING TO

THE POLES AND ZEROS OF THE ADMITTANCE MATRIX ELEMENT
Y1l FOR A UNIFORM RC LINEe.

NC
FI

OL, NROW,
G\l 9.7.

AND THE OIMENSIONS ARE AS SHOWN IN

(U AND V NOT CONSTRAINED TO SATISFY NEUMANN BOUNDARY

Cco

THE POLES AND ZEROS»S5,

NDITICNS)

ARE RELATED

EIGENVALUESs ki » BY EQUATION (9.16)

T0 THE

POLES OF ADMITTANCE MATRIX ZEROS OF Y11
NCOL= 5 7 5 1
N|INROW=_ 3 4 3 4
1 982475 9.86109 2.4676 2.4675
2 36,0000 38.8800 21.6151 22.1033
3 43,0731 4843740 41,4275 48.3740
4 57.8247 629909 57.8241 57.0937
5 84.0000 77.3929 84.0 65,7826
6 91.0731 81.0000 91.0731 77.3929
7 153.824 101.503 95.5264 9G.2115
8 180.000 108.000 153.824 101.503
9 187.073 119.512 180.0 1139.512
10 1460512 187.073 146.512
11 204.261 204.261
12 233.279 216,077
13 252.148 233.279
1% 257.390 252.148
15 275400 257.390
15 275.4

TABLE 9.15 APPROXIMATE EIGENVALUES CDRRESPONDING TO

THE POLES AND ZEROS OF THE ADMITTANCE MATRIX ELEMENT

Y11 FOR A UNIFORt RC LINE.

NCOL, NROWs, AND THE DIMENS IONS ARE AS SHOWI IN
FIGs 9.7.

(U AMD V CONSTRAINED TO SATISFY NEUMANN BOUNDARY
CONDITIONS) .

THE POLES AND ZERDS,S;,» ARE RELATED TO THE
EIGENVALUES, k; , BY FQUATIDN (G. )

POLES OF ACMITTANCE MATRIX ZERDS OF Y11

NCOL= 5 7 5 7
N|NROW= 3 4 3 4
1 9.82475 9.86108 2.46766 2.46144
2 9.82475 9.86108 $.82475 9. 86108
3 36.0 38.88 21,6151 22.1033
4 36.0 38.88 36.0 38, 88
5 43.0731 48.7410 4144275 48.7410
6 43,0731 62.9909 43.0731 57.0937
7 45,8247 62.9909 45,8247 62.9909
8 72.0 77.76 72.0 65. 7826
9 79.0731 81.0 79.0731 77.76
10 81.0 95.5264 81.0
11 101.870 99.2115
12 108.0 101.870
13 117.861 108.0
14 119.88 117. 861
15 11988
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TABLE 9.16 APPROX IMATE EIGENVALUES CORRESPONDING TO
THE POLES OF THE ADMITTANCE MATRIX FOR
A LINEARLY TAPERED R{ LINE.

NC DL,y MRl1y NROW,

AND THE DIMENSIO

(U AND V NOT CONSTRAINED TO SATISFY NEUMAN

CONDITIONS)

THE POLES AND_ZERUSsS;+ ARE RELATED TO THE

EIGENVALUESs K

BY EQUATION {9416 )

NS ARE AS SHOWN
N BOUNDARY

NLOL=E 4 5 6 T
NIfIRl = 3 4 4 5
HNADOW=__ 6 8 9 11
1 8.39292 8.18886 8.,0764C 8.01810
2 29.2423 30.6590 30.9835 30.9226
3 4047034 43.6034 44,5295 44,7211
4 T4.4462 503457 62,7207 66.0839
5 118.676 67.0780 65.6938 75.4483
6 266.591 89.8142 81.3580 86. 7408
7 319.686 105.583 96.0426 102.026
8 2166.48 154.550 104.954 111.763
9 2191.06 213.118 109.018 120.973
10 . 352.199 142.789 122.807

TABLE 9.17 ApPROXIMATE EIGENVALUES CORRESPONDING TO
THE ZERQS OF THE ADMITTANCE MATRIX ELEMENT Y11 FOR
A LINEARLY TAPERED RC L INE.

IN FIG. 9.3,

(U AMD V NOT CONSTRAINED TO SATISFY NE

CONDITICNS)

THE POLES AND Z ER0S,5,,
BY EQUATION (9.

EIGEMVALUES, K »

ARE RELATED TOo THE

)

UMANN BOUNDARY

NCOL= 4 5 6 1
N|NRL = 3 4 4 5

NRQW=__ 6 8 9 11
1 946439 «89 3344 .870666 . 856780
2 17.4620 17.3936 17.0505 16,9423
3 40.5974 404427 4243394 42.6185
4 568437 45,6286 48.5355 48.7876
5 81.3860 63.9118 63.7300 14,6852
) 118.639 85.1139 81.1706 82.5053
1 266.606 96.1599 91.1755 90.4539
8 319.791 121,962 104.085 111.558
9 2166448 155.256 107.192 119.437
10 2191.06 213.144 130.776 122.802
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TABLE 9.18 APPROXIMATE EIGENVALUES CORRESPONDING TO
THE ZERCS OF THE ADMITTANCE MATRIX ELEMENT Y22 FOR

A LIMEARLY TAPEREC RC L INE.

IN FIG. 9.3.

(U AND V NOT CONSTRAINED TO SATISFY NEUMANN BOUNDARY
CONDIT IONS )

THE POLES AND 7 ERDS,Si, ARE RELATED TO THE
EIGENVALUES, ki s BY EQUATION (9.16)

NCOL= & 5 6 T
N|NRL = 3 4 4 5

NRDW= 6 8 9 11
1 4, 26144 4 424441 4£,23721 4.23494
2 21.8692 22,1006 22.2128 22.2299
3 40,3738 40,6793 40,8742 4G. 8550
4 46,8584 46,8266 54.5874 56.8306
5 84.3863 06 .7335 65,6549 T4.4402
& 125.976 T75.4993 15.2706 T78.8257
7 266.5931 91.5494% 94,8336 97.8233
8 319.710 116594 104.260 110.521
9 2166.51 171.050 107.330 114.6€16
10 2191.,.27 216.281 117.714 122.629

TABLE 9.19 APPROXIMATE EIGEWVALUES CORRESPONDING TQ
THE ZEROS OF THE ADMITTAMCE MATRIX ELEMENT Y12 FOR

A LINEARLY TAPERED RC LINE.

IN FIG. 9.3,

(U AND V NOT CONSTRAINED TG SATISFY NEUMAMN BOUNDARY
CONDITIONS)

THE POLES AND ZERDS,5; s ARE RELATED 70 THE

EIGEHVALUES, k2, BY EQUATION (S. )

N NCOL=4 NR1=3 MNROW=6 NCOL=5 NR1=4 NROW=8
REAL IMAG INARY REAL IMAGINARY

1 -20.4639 -21.2515 24,3632

2 40.8720 ~2142515 -24.3632

3 17.4594 41.7500 42.240C1

4 17.4594 -41,7500 64.8467

5 110.098 55.8818 26.1574

6 139.892 59,8818 ~26.1574%

7 266.537 92.9139

8 318.084% 180.904

9 216629 232.481

10 2190.45 350. 630

N NCOL=6 NR1=4 NpOW=9 NCIL=7 NR1=5 NROW=1l
REAL IMAGINMARY REAL IMAGINARY

1 -34.4514 42,8299

2 42.6484 -33.4763 32.2283

3 ~.283409 564267 -33.4763 -32.2283

& -+284309 -56.4261 14,6344

5 65.1968 82. 7480

b T78.2449 55.5649 T8.6999

7 97.6711 10.6243 555649 -78.6999

8 97.6711 ~10.0243 110.687

9 105670 116.195

10 1i8.596 122.824
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Poles and Zeros of Admittance Parameters for Linearly
Tapered RC line

The distributed RC network considered is identical with
that in Example 1, and the same subdivision into rectangular and
triangular eolements is used., The poles and zeros obtained are
shown in Tables 9616 = 9619; the potential function ﬁ(x,y) was
constrained to satisfy the Dirichlet boundary conditions of the
problem, but the approximations for u(x,y) and v(x,y) were not
constrained to satisfy any boundary conditionse. This problem
was also considered previously in Chapter 8, where variational
solutions of the second-order differential equation were obtained
with polynomial and piecewise polynomial approximations for ﬂ(x,y).
A comparison of the results obtained by the two variational methods
shows that the smaller, (i.e. dominant), eigenvalues are generally
in close agreement; the main differences are in the complex and

negative eigenvalues obtained for the zeros of y12 = y21o

9.6 Conclusion

The functionals considered in this chapter have for their
stationary conditions the first-order partial differential
equations (9.2) which are equivalent to the second-order partial
differential equation (901)0 Approximate solutions of the
stationary problem may be obtained by the Rayleigh-Ritz method which
leads t0 & system of linear equations or a matrix eigenvalue
problem, It should be noted that the solutions obtained by the
Rayleigh~-Ritz method are identical with those obtained by the
Moment method described in (14), Chapter 8, section 8e5 = 8473

although the derivation given in (14) is concerned mainly with
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self-adjoint problems, it can also be extended to non self-adjoint
problems,

It has been shown how solutions may be obtained if the
region is divided into rectangular and triangular subregions, and
the potential function in each subregion is approximated by a linear
function as discussed in Section 9e.4es Clearly this method could
be extended to handle curved boundaries, and more accurate solutions
could be obtained by using more complicated expansion functions such
as polynomials.,

The numerical results obtained show that the variation
method discussed in this chapter generally gives more accurate
solutions than the variation method based on the second-order
differentjal equation; any such comparisons are done with the same
expansion functions for the potential functions in both methods.

The reason for the improved accuracy with the former method is that
the derivatives of the potential function are approximated more
accurately. Howaver, a computer program based on the former method
is likely to be more complicated, and generally takes more time to
execute than the latter method. It should be noted that the two

methods are identical if the approximations for u(x,y) and v(x,y)

=)
are proportional to —g—(i-‘-y-)- and é_%&&;}ﬁ_)_ respectivelys This would

be so if f(x,y), ulx,y) and v(x,y) were chosen to be polynomials

of order n in the two variables x and y over the entire region ite
One difficulty encountered with the present method is the

occurrence of extraneous eigenvalues which are comparable in

magnitude with the dominant eigenvalues., These extraneous solutions

were obtained only when the approximations for u(x,y) and v(x,y)

were constrained to satisfy the Neumann boundary conditions, and
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the approximation for ﬁ(x,y) was constirained to satisfy only the
Dirichlet boundary conditions of our probleme In addition, it
was found that these extraneous solutions ¢(x,y) do not approx-—
imately satisfy the Neumann boundary condition %é = 0.

When solutions were obtained with no constraints on the
approximations for u(x,y) and v(x,y) but ﬁ(x,y) was constrained to
satisfy only the Dirichlet boundary conditions, it was found that
extraneous solutions still occurred, (i.e. they do not approx—
imately satisfy the Neumann boundary conditions), but the eigen~
values were generally much larger in magnitude than the dominant
eigenvalues,

The reason for the difficulties mentioned above is
believed to be due to the fact that it is inconsistent to constrain
the approximations for w(x,y) and v(x,y) to satisfy Neumann boundary
conditions nu + nyv = 0, without imposing corresponding constraints
on the approximation for ﬁ(x,y). This follows since the exact
solutions for u(x,y) and v(x,y) are proportional tog-é andg-é
respectively. Thus the exact solutions u(x,y) and v(x,y) are
dependent on ﬂ(x,y). In addition, the coefficients of the
approximate solutions u(x,y) and v(x,y) are related to those of
P(x,¥) by a pair of equations of the form (9.53), (9.54)s These
equations show that if the approximate ﬁ(x,y) is constrained to
satisfy boundary conditions of the form %é = 0, then the
corresponding u(x,y) and v(x,y) will approximately satisfy
nu + nyv = 0 on the same boundary segment. However, if nou+ nyv
= 0 on part of the boundary, there must be certain constraints on
the coefficientsp and ¥ . Thus (9.53), (9.54), cannot be

satisfied unless corresponding constraints are imposed on the

coefficients, &, of B(x,¥)e
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It is therefore considered that in the practical application

of the Variational method considered here, the boundary condition

x
potential function ﬂS(x,y) should be constrained to satisfy

n_u+ nyv = O should be left as a natural condition, and the

%?1 = 0 on the Neumann boundaries, or this should be also left as

a natural conditione



Chapter 10

RAFORMULATICON OF THiS FARTIAL DIFFELNTIAL BQUATIN

AS AN INTEGRAL SQUATTON

1061 Introduction

In this Chapter we will consider a numerical technique for

the
golving distributed RC networks which is based on,transformation

of the partial differential equation

vl - wcP (1041)

where

¥2 - pRC (10.2)

to an integral equation. ﬂ is the potential in the resistive
layer, p is the complex frequency variable, RS is the sheet
resistance of the resistive layer, and C is the capacitance per
unit area between the resistive layer and the ground plancs

The transformation of (1041) to an integral equation is
accoumplished by using Creen's boundary value formula as
described in (27) and (29)e Some numerical techniques for
obtaining approximate solutions of the integral equation are
described in detail in (29), and the special case with p = O in
(10.1), (10.2) (i.e. Laplace's equation) is considered in (26),

(30), (31) and (65).

Although a method for obtaining approximate values of the

210

admittance matrix elements at any desired frequency is described in

detail in (29), numerical results are only given for the zero

frequency case, (p = 0)e In this Chapter some numerical results
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obtained by the method described in (29) are presented for the zero
frequency case, and also for frequencies on the jwaxis in the
complex. frequency plane.

In addition, we will also consider the application of
the method to calculation of the poles and zeros of the admittance
parameters. Spielman (90) hag uged a similar method for
calculation of T& or TM modes in waveguides of arbitrary cross—
section, but application of the integral cquation method to the
calculation of poles and zeros of the admittance parameters does
not appear to have been considered previously. Some numerical
results obtained by this method are presented in this Chapter.

One problem which arises in connection with the practical
application of the method described in (29) is that loss of
accuracy can occur when the calculations are performed on a finite
precision computer. Therc are essentially two steps at which
errors can occure. The first is in the svaluation of the various
integrals which are required. If analytical solutions are used,
the results may be inaccurate becauss it is necessary to subtract
two quantities which are almost equale Methods of improving the
accuracy of the integration by using quadrature formulae are
discussed in this Chaptere The second source of errors is in the
solution of the system of linear equations for the coefficients of
the polynomial approximations to thc unknown functions. It is
shown here that these errors can be reduced substantially by using
orthogonal polynomials to approximate the unknown functions.

Most of the previous methods for solving the integral
equation have been restricted to two=dimensional regions where the

boundary is assumed to be polygonale Although curved boundary
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segments can often by approximated by a number of linear segments
it is desirable to have a method which can solve such problems
directlys In this Chapter we will consider in some detail, methods
for solvingz problems where the boundary includes circles or arcs of
circless Problems containing circular boundaries are often
encountered in practice in connection with the solution of
Laplace's equation for lossless transmission lines. In addition,
other boundary shapes can be approximated by circular arcs and
straizht lines,

The method of solution to be described is useful for
problems where the boundary conditions on the contour C which bounds

the two-dimensional region R are of the general form

o
e (1)f +,8(1)a—§ =3(1) (1043)
where
O(,p and § are given functions of 1, the distance along C
from some reference point. The general form (10.3) includes the

following special cases:

(a) Dirichlet Boundary conditions, with ﬂ specified on
¢ bx=1, B=0)
B
(b) Neumann Boundary conditions with 3n specified on

¢ (X=0,B=1)
B o

(c) Impedance boundary conditions with ¢Van specified on

C (0("- 113 - 0)‘ |

For distributed RC networks the boundary conditions are
"mixed" ie.ees OVer a portion of C we will have ¢ specified, and over

Y .
the remainder, will be specified.

on

On each of the boundary scgments correspond to a metal
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contact we have }é equal to some constant, and on the remaining

g-é is zero since no current can flow out of the

resistive region on these segmentse

boundary segments,

If the boundary segments corresponding to the metal contacts
are denoted by C1, C2, 03 - CN’ and the potential has a value Vk
on the kth metal contact and is zero on all other metal contacts,

the admittance parameters are given by

1 3é
_— d1 104
Yk = TR o (1044)

for j=1, 2 === No

The poles of the admittance parametcrs are the frequencies
such that yjk goes to infinity, while the zeros of yjk are the
frequencies such that yjk is zero.

The method of solution is to transform the partial
differential equation (1041) into an integral equation, i.ee the
potential at any point is oxpressed as a contour integral
involving the potential and its normal derivative on the boundary.
On the metal contacts, f is known (specified), and g is to be
determinedes On insulating boundary segments g—é is zero, and
P is to be determined.

Approximate solutions for the unknown boundary values of
¢ and g-é can be obtained by the general method of Moments (14),
which is egquivalent to the point matching (collocation) method

(29). The integral equation is thus reduced to the matrix form

LA_] g] e b] (1045)
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where
[A] is the coefficient matrix
b] is a vector which depends on the specified potentials
on metal contacts
and c] is the vector of coefficients of the series expansions
for the boundary values of ﬁ and g-g o
The coefficient matrix [A] depends on the complex
frequency variable p, so that it must be calculated for each
frequency at which the admittance parameters are to be evaluateds
The admittance parameters are then obtained by substituting the
solutions of (10.5) into (10.4)e Alternatively the poles and zeros
of the admittance parameters may be obtained as the frequencies
such that Y 5 defined by (1044) tends to infinity or zero. If [A]
in (10.5) is a square matrix, the poles of yjk are the frequencies

such that

det [4] = © (106)
where the expression on the left side of (10.6) denotes the
determinant of [A] « In general, the poles and zeros are found by
evaluating det [A] and/or yjk at a number of different frequencies,
and then by using an interpolation or extrapolation formula, the

desired poles and zeros may be obtaineds.

102 TIntegral guation Formulation
The derivation of the integral equation from the partial

differential equation is ziven in (27) and (29). The result is

T (et ) - [0 Ui - g 2522

¢ (10.7)
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where
= (emxt)? 4 (ye30)° (10.8)
g (xt,y*) = 277 for (x',y') inside R
= O for (x',y') on C (10.9)
= 0 for (x',y') outside R
and

@ is the interior angle at (x',y') subtended by C, equal
to 7T if (x',y') is not a corner point of the boundary. When (x',y')
is on the boundary the integral on the right of (10.7) is
interpreted as a Cauchy principle value integral, i.e.

b [ o-d b ]

fx)ax = Lim, fx)dx + fx)dx (10.10)

=0
a a c+d

when f(x) is unbounded in the region of C.
The function G(¥ r) in (10.7) is a Green's function which

ig defined as follows:

(a) sz_ 21'2G=2TT S(r) (10e11)
with respect to both pairs of variables (x,y) and (x',y')

(b) at x=x", y=y', G is singular, and

G (xy3y x*yy')~ = log, S Gex)? 4 (y=yt)?

(10412)
(c) §(r) 1is the Dirac delta function defined by

S(r) = 0 forr # 0] (10013)

B (x,3). 8(r) da = p (x*,5")
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for all continuous functions P(x,¥).

The physical significance of the Green's function is that

R

s=-. ¢ (Ur) (10.14)

is the potential at a point (x',y') which results from a unit
point current source at (x,y).

This is verified by (10.7), since the current per unit
width entering the resistive layer on the houndary C is
1, 98

o T [

Rs on

By considering the potential due to f@a.pair of point current
sources of magnitude + IS and —Is, and allowing the distance 4

between these sources to approach zero we obtain

B, 2
8 ¢ @r)
P(x',y') = (Is.d) oS 8 « 7=+ I, (10.15)
where the geometry is shown in Fige 10e7e
Then, since
cOS Qé'g' = ?'g (10016)

ar ~dn

where
7 is the unit outward pointing normal on the boundary,

it follows that the contribution to the potential at (x',y') from
the second term on the right of (10.7) is equivalent to that from
a double=layer of current sources, one layer on each side of the

boundary, such that

RS (Is.d) = p (X,y) (10'17)

where +Is and —Is are the currents/unit width, and the spacing d

between the two current layers is infé#nitesimal.
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Figure 10.1 Definition of parameters for potential 'of e pair

of point current sources.



218

We note that the Green's function is not uniquely defined
by (10.11), (10412), and if G(fr) is chosen to satisfy appropriate
boundary oonditions)an explicit: solution may be obtained from (10.7).
As previously noted, for distributed RC networks ﬁ is ziven on each
boundary segment corresponding to a metal contact, and on the
remaining boundary segmen‘ts;%g = Os Therefore, if we choose
G(¥ r) = O on the metal contacts, and €%§$§££l = O on the
remainder of the boundary, then the right side of (1047) can be
evaluated since there are no unknowns, and we have an explicit
solution for the potential at any pointe

For many problsms it is extremely difficult to find a

Green's function which satisfies all of the necessary boundary
conditions which allow an explicit solution to be obtained.
Another approach is to select a Green's function which does not
satisfy all of the boundary conditions, and is thus simpler to find.
An example of the latter approach is ziven in (30).

In the following, we will consider methods for obtaining

approximate solutions of (10.7) with
o(¥r) = Ko(b’r) (10.18)

where Ko is the modified Bessel function of the second kind,

order zeros The advantage of this approach, which is also used in
(29), is that it can be used for two dimensional regions of
arbitrary shape; otherwise it would be necessary to find a different
Green's function for each problem we wish 10 solvec.

For Laplace's equation we use

G(UI‘) = -—10g‘el" (10019)

instead of (10.18),
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10e¢3 Numerical Solution of Intesral Hguation

An approximate solution to the boundary wvalue problem will
be obtained by transforming the integral equation (10s7) = (10.9) to
the matrix form (10.5), which may be solved for the coefficients

- - o
of the series expansions for the boundary values of ﬁ and 3n °

The admittance parameters are then obtained by using (10.4).

10e3¢1 Linear boundary segments

The usval method for obtaining approximate solutions of
the integral equation (10.7) is to assume that the unknown
potential or its normal derivative on the kth boundary sezment may

be approximated as

m, (k)
3 :
p(s) or .-sé(s) = S c. f.(s) (10.20)
N J J
j=m, (x)
where s is the distance along the boundary from some reference

point,
fj(s) is a given function
and the cj are coefficients to be determined.
If n(k) is the number of expansion functions fj(s)
used on the kth boundory segment then
k
m2(k) = Z n(k) (10.21a)
i=1
and
m1(k) = mz(-k) - n(k) + 1 (104211)
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For simplicity it is common to divide the boundary
into N straight line segments, the kth segment being denoted by
A}Ck.

When the approximation (10,20) is substituted into the

integral equation (10.7) we obtain

N m (k) )
O (xt,y) Hlxt,yt) = )_ £ ()E(¥ x) ds
=1 | i m1(k) (10.22)

where

r is given by (10.8), and is of the form

2

r‘ - (s-sp)2 + D2

(106220)

K(¥r) = Ko(ﬁr) on conducting boundary

segments (10.23a)
k(¥r) = -2%07)
an
(10.23D)
UpK1®r)
= - on insulating boundary
r

segment s
K1(5r) is the modified Bessel function of the second kind, order
one, and p is the perpendicular distance from (x',y‘) to the
segment ASCk as shown in Fige 10.2.
The sign of p is chosen to be the same as that of the
scalar product of the vectors T and 7 in Fige 10626

For Laplace's equation (10.23a) and (10.23Db) are

replaced by

K@r) = -loger on conducting boundary segments
(106242)
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Sl

Figure 10.2, Definition of parameters for a typical element

b Ck
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K(¥r) = J% on insulating boundary segments  (10.24b)
r

If M points (xi, yi) are chosen on the boundary, then

(10422) becomes

N

O"(xi,yi) ﬂS(xi,yi) = Z 85 °; (10625)
=1

where

¢(xi,yi) on the left of (10.25) is replaced by the
expression on the right of (10.20) on the boundary segments where
the potential is unknown, and on the remaining scgments the known
value of ﬁ(xi,yi) is inserted into (10.25). (T'(xi,yi) is defined in
(10.9).

The matrix clements aij are given by

a5 = fj(s) K(&r) ds (10.26)
thk

Once the matrix elements aij have been evaluated the
system of linear equations (10.25) can be solved for the unknown
coefficients c; provided that M 2 mZ(N).

We now consider the choice of the expansion functions
fj(s) in (10.20). The only restriction on the fj(s) is that the
integrals (10.26) must existe

One of the simplest types of approximation, but one
which is entirely adequate in many cases, is obtained by choosing
the fj(s) to be pulse functions, (14), Chapter 1. This gives a

step approximation to the unknown boundary values of ﬂ(s) and

2
a—ggg) o Cristal (26), (31) used this method to solve some TEM
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transmission line problems with circular and rectangular
conductorse

Blue, (29), used piecewise polynomial approximations
for P(s) a.nd%%g), which is equivalent to choosing

J = my(k)

fj(s) = 8 (10.27)

in (10.20).

When either the step approximation or the piecewise
polynomial approximation is used, and polynomial approximations
are used to approximate the Bessel functions KOGKr) or K1(a}) as

discussed in (29), then the matrix elements (10426) are of the form

8

2
2 5 B_X [loge (S2d-p2> q(s) + R(s)] ds (10.28)

4

where
Q(s) and R(s) are polynomials in s, These integrals can be
evaluated exactly by using integration by parts and a recursion
formula to express the integrals involving higher powers of s in
terms of integrals with lower powers of s.
When the Bussel function K1(3:r) appears in (10.26)
the integrals are of the form (10428) plus an additional term of

the form

o
T s
j -2—(-L2- ds (10.29)
g + P
S

where T(s) is a polynomialy Analytical solutions for this integral

are also casily obtained.
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For large arguments the polynomial approximations for the
Bessel functions require a ldarge number of terms for convergence,
and accuracy is lost on a finite~precision compufer due to
cancellation. It is then more satisfactory to use the asymptotic
expansions for Ko(x) and K1(x), in which case it is necessary to
evaluate the integrals in (10,26) by a numerical integration routine
as discussed in (29),

The accuracy of the solutions obtained can be incresased
by using higher order polynomials on cach boundary scgment, or the
number of boundary segments may be increased while the polynomial
order is unchanged. In general the former mcthod is better, up to
a point (29). If the order is too high, the matrix of the linecar
equations becomes illwconditioned, and accuracy is lost due to the
finite word length of the computer. In addition, the effect of
errors in the evaluation of the integrals becomes more noticeable
for higher order polynomialse. Inaccuracies in the evaluation of
the integrals can occur because the analytical solutions sometimes
require the differcnces of two quantities which are almost equalj;
other inaccuracies occur because it is necessary to use numerical
integration when analytical solutions are not available. It was
found by Blue (29) that the numerical accuracy generally tends to
become worse for polynomials of order greater than six or eight
on a computer with 8 digit words,

One method of reducing the effect of rounding errors is

to replace (10.27) by
fj(s) = Tj_mz(k) (s) (10.30)

where Tj(s) is the Chebychev polynomial of order j shifted to the
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interval s1 -5 which corresponds to the kth boundary segment;
other orthogonal polynomials may also be used instead of the
Chebychev polynomials, if desired.
One method of evaluating the integrals (10.28), (10.29)

is to expand the Chebychev polynomials in the form a,ta.s +
azsz + === The contributions from each term may then be added
togethers This method is unsatisfactory for numerical purposes
because of the loss of significant figures due to subtraction of
terms which are almost cqual; this problem is most severe for
high order polynomialse

A more satisfactory method of evaluating the integrals
is by means of a gquadrature formula. When polynomial approximations

are used for Ko(dr) and K1(8b), the integral of the polynomial portion

of the integrand in (10.28) is obtained in the form

M

b
J Pn(x) dx = Z Wy pn(xi) (10,31)

i=1
where pn(x) is a polynomial of order n.

Tables of the weights W, and abscissae x4 for the Gaussian
Quadrature formula are given in (66); an M point Gaussian
Quadrature formula is exact for polynomials of order not greater
than (2M=1).

The integrals involving the logz term in (10.28) can also
be evaluated by Guassian Quadrature. For the special case p = O,

Fige 1041, these integrals are evaluated by using

1 M

.{ Pn(x) In Q%) dx = z::: Wli pn(xli) (10.32)

o i=1
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The weights wli and the abscissae xli are given in (66);
the M-point Gaussian Quadrature formula is exact for polynomials of
order less than 2M,.

For the case p # O, Fige 10.1, the integrals involving

the log term in (10.,28), are of the form

b

pn(x) ln(x2 + p2) dx (10433)

An exact evaluation of this integral by Gaussian Quadrature
would require calculation of the appropriate weights and abscissae
for each value of p and for each set of limits (a,b).

An approximate method which can be used is to subdivide
the interval (a,b) into smaller intervals and then apply the
Gaussian Quadrature (10.31) to each subinterval. The errors in
the integration can be made arbitrarily small by increasing M,
and/or by increasing the number of subintervalse A similar method
is also suitable for integrals (10.29).

In addition to polynomial trial functions, it is
sometimes advantageous to use special trial functions. For
example, near corner points on the boundary, the potential may
not have a convergent Taylor series expansion; a low~order
polynomial is then a poor approximation to the potential or normal
derivatives This difficulty may be overcome by using non-
polynomial trial functions (29). Near a singular corner the

potential may be expanded as

#lme) = ¢° + Z fyn(f)). (Jl\1 sind @ + B cos?, @) (10.34)

n
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where
- ‘s o . £
fy(/a) I”(VP), the modified Bessel function of the first
kind
or ) )
f’)l(P) = ro for Laplace's equation
and

(fﬁG) arc the cylindrical coordinates with the origin at
the corner.

The )h's depend upon the geometry of the corner, and are
chosen to satisfy the boundary conditions;(26).

In order to improve the approximate potential near a
singular corner it is only necessary to use (10¢34) for small f’,
in which case ﬁvn(F» in (10.34) may be approximated by'f;%n, and
only the first two or three terms are retained in (10.34).

When these special trial functions are used it is generally
necessary to evaluate the integrals required for the matrix elements
24 5 by numerical integration (26).

The only remaining aspect to be considered in relation to
the solution is the selection of the boundary points, (collocation
points), (xi,yi) at which the integral equation is to be satisfied.
This problem was investigated at some length by Blue (29)s The
results obtained for some test problems suggest that it is generally
better to distribute the points on the boundary sesments in the
same way as the zeros of the Tchebyschev polynomialsj the number of
points on each boundary segment is chosen to be one greater than
the order of the polynomial approximation used on that segment.

Other choices of points such as equal spacings along each segment

generally gzive less accurate solutionse
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10e3e2 Curved boundary segments

Although it is possible to approximatec a curved boundary
segment to any desired accuracy by a number of straight line
segments, it is sometimes prefcerable to use special techniques
for the more common types of boundary shapes which are likely to
be encountered, For example, it is often necessary to obtain the
characteristic impedances of transmission lines with conductors
of circular cross-section (31); +the characteristic impedances are
obtained from the static capacitances per unit length between the
conductors,

We now wish to consider in detail, methods for solving
Laplace's equation in two-dimensional regions where the boundary may
consist of circles, arce of circles, and straight line segmentse
The geometry and parameters to be used for the circular boundaries

are defined in Fige 10e3e

T =~/%2+d2—2dﬂ cos(@-@o)
p= R-d 005(6-90)

S== Re

u
tan e =.Tf

Figure 10.3. Geometry and definition of parameters for circular

arcs,
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For a circular boundary of the form shown in Fige 10.3,

we replace the expression (10,22b) for r, by

r? = B + d° - 2dR cos (ﬁ -6,) (10435a)

where
s = RO (10.35b)

sy R, dy © and 8, arc defined in Fig. 10.3, and @,  is the angle
subtended at the centre of the circular arce

The matrix elements are defined by (10.26). For
Laplace's equation, K(¥r) in (10.26) is given by (10e24), ieee

(10.26) is of the form

F2
a3y = -J’ log, T fj(s) ds (10.36)

1

for circular conductors
and r is given by (10e35).
For probleme involving circular conductors with Gk = 277

it is convenient to expand - ln r in a Fourier series,

ol
2 2 i 1/v k
-ln/u + V = 2uv cosS@ = ~ln u+ -E(-'l-].) cos k&
k=1

(10637)
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Then, because of the orthogonality of the trigonometric
functions cos 1@ and sin m@ over the interval 09 <277, it

follows that if

fj(s) = cos 10 (10.38a)
then
a3 ;= 2MRInv (10.38b)
}
for 1 =0
2TtR/u 1
= —1-(-;) cos 160 (10.38c)
for 1 £ 0
and if
fj(s) = sin 1@ (10.38d)
then
27TR fu >
ai}j = —1-—(-;) sin 1@ (10438e)
where
90 is defined in Fig. 10.3
and

Vv = maximum of R and d
u = minimum of R and d.
For distributed RC networks with circular conductors a
Fourier series expansion of the Bessel function of the second kind

can be written as (8), p. 363
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o0
YO(J;E+ V2 = Ditv o8 @ ) = Yo(u) I, (v)+2 ZYk(u) Jk(v) cos k@

k=1

(10439)

The integrals a‘ij can then be easily evaluated for circular
conductors with @ = 27V if the trial functions fj(s) are chosen as
(10.38a), (10.384d).

For conductors which consist of circular arcs (i.e.

Ok < 277) there is no particular advantage to be gained by using
the Fourier series expansions (10.37). It is then more convenient
to choose fj(s) of the form (10.27), and (10.36) may then be
evaluated by using the following approximationse

Por the particular case 4 = R and Oo = 0, Fige 10.3, it

ig easily shown that

2
log 2 = 1n|2d cos (2 ~T%) = 1n (2d sin _O_) 2
e 2 2

(10.40)
Ren<cdW . . N
For -2-5 © £ == the following polynomial approximation was
obtained
1 = 2
~ OO T o 41249990 + 4005220931878
(10441)
+ 200032260 + « 00004091 cx6+ e(x)
where
X =TT= §
and

l@(x)! < 1.3 x 10°°,

This approximation is adequate for most practical purposes.
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the following polynomial approximation

was obtained

. 5
In 02 - ln_lé gin g]
5 — = 0083333438
62

+ .00069368258 & (10442)

+ .000011833165 &% +€(x)

where

]G(x)l < 1a1 x 1077

Thus if 2%-1;1(—8-1 on a circular conducting arc is approxs
imated by a polynomial With fj(s) of the form (10.27) it is seen
that the integral;aijg (10¢ 36), along this boundary segment can be
easily evaluated for q = vay gsing the polynomial approximations
(1049, (10042); the integral is of the form (10, 28),

When the observation point (x| ,y!) is not on the circular
conducting arc (i.e. d f R)Ean alternat;ye method is availables The

integral (1Qs36) is a linear combination of integrals of the form

s

X

J, s]ft;ln (% + d%) 4 1n (1 =cxcos %)] ds (10.43)
/e,

where

X = —g—f-{-dz—<1 for R f
R +4d

The first term in (10.43) is readily evaluated, and the

second may be evaluated by integrating by parts, as follows
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Sa 8o
5" i (1 =txcos 2)a ﬁ- In (1 =tcos =)
' R/%® = TN R
5, 5
g
2 1+1 . s
o 8 sin 3
- — ds
1+1 s
4 1= ®(cos T
1
(10.44)

The second term on the right of (10e 44) may be readily
evaluated by using the following polynomial approximations for

cos @ and sin @:=

008 @ = 1 = 4999888 €% + 004158502 &+

6 (10445)
where
|€ (o) s 00002
for |@| £ %}
sig € . .9999115 - .166020 €° + 00762666 &* + (@) (10446)
where

| € ()| € +00009

for’eifl}

The integrand is then a rational function with the
denominator a cubic in 32, and the required integration can then
be done analytically. Since the errors in the approximations

(10445), (10.46) are quite small the integrals should be
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sufficiently accurate for all practical purposes.
For Laplace's equation with circular insulating boundary
segments and fj(s) of the form (1027 ), the integrals (10.26)

are of the form
a,, = (s+ sp)l.-P-— ds (10647)

where
p and r are defined in Fige 1036

This integral may be put into the form

5

1 (° 1 |, r2~g°

3 (s+ sp) 1+ ds (10.48)
8y R2+d2-2dRcos-§

When the observation point (x.',y«_') lies on the circular
arc, (i.ce R = 4), the integral (10.48) is readily evaluated since
the second term vanishes, For R ,l d, the second term may be
evaluated analytically by using the polynomial approximation (104 45)

for cos Q.

10e4 Numerical Results

Computer programs incorporating the solution techniques
discussed in the previous sections were written.

Some numerical values obtained for the conductance matrices
of a number of distributed resistance networks are presented below,
and these are followed by some results obtained for distributed

resistance capacitance networkse
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10¢4¢1 Laplace's equation

The computer program for solution of Laplace's equation
generally requires less computer time than that for solving the
reduced wave equation (10.1), since the Green's function for the
former is simpler, and the latter involves complex arithmetic for
golutions at frequencies not on the real axis of the complex
frequency plane.

The approximate conductance matrix [G] has the form

[¢] - © s . (10.49)

€1 Bnp  Sp3y  ° *  ®°nn

Because of the approximations involved, thele] matrix
obtained will not be exactly symmetrical in general, but except for
rounding errors the sum of thc elements in any row is zero, as one
would expect for the exact solutione. The amount of assymmetry in
the approximate solution gives an indication of the errors in the
solution,

Example 1

The conductance matrix of the two-port resistance network
shown in Fige 10+4 was computed with the unknown potential or its
normal derivative on each side approximated by polynomials of order
1 to 114 Curve A in Fige 10.5 shows the maximum error in the

approximate solutions; +the maximum error is the greater of
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Figure 10.4. Two port resistance network — Example 1.
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For network in Fig. 10.4,with
polynomial trial functions only.

\

For network of Fig. 10.4, with
special trial functions at

singular corners.

/For network in Fig., 10.6, with

polymomial trial functions only.

Accuracy of approximate conductance matrix elements

for distributed resistance networks,



238

[g” - g“ (exact )] /g11 (exact),and. [g22 - g22 (exact )] /g22 (exact)o

The collocation points on each side were distributed as the zeros
of the Chebychev polynomial of order one greater than the order of
the polynomial approximation.

This problem was also considered by Blue, but the results
obtained, (29) Pig. 7, do not agree with those obtained heres One
possible explanation of this discrepancy is that the polynomial
orders shown in Blue's Fig. 7 should be increased by onej the
two sets of results are then almost identicale

Some additional computations were performed with special
trial functions at singular corners as discussed in Section 103
and also in (29)s Curve B in Fige 10.5 shows the results obtained;
the special (non-polynomial) trial functions were used on the
boundary segments extending from the singular corner to a distance
of approximately 1/10 of the length of each side adjacent to the
corners,

The most significant feature of the results is the marked
improvement in the accuracy; for example, it is seen that the
accuracy with sixth order polynomials and the special trial
functions at singular corners is as good as that obtained with
eleventh order polynomials only. A possible disadvantage of using
these special trial functions is that it is generally necessary to
use numerical integratione In addition, it is necessary to ensure
that the length of the boundary segment where the special trial
function is used is not excessive, as the resulting accuracy of
the solution is then likely to be worse than that obtained with

polynomial trial functions only (29).
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Example 2

The conductance matrix of the two—~port network shown in
Fige 10,6 was computed with the unknown potential or its normal
derivative on each side approximated by polynomials of order 1 to Te
Curve C in Fige 10+5 shows the maximum error in the approximate
solutionse A comparison of these results with those for Example 1
shows that the errors for Lxample 2 are considerably smaller for

the same order polynomiale

Example 3

The conductance matrix of the two—port network shown in
Fige 10.7 was computed with the unknown potential or its normal
derivative on each side approximated by polynomials of order
3 to 11,

The exact solution for this problem has not been computed,
however upper and lower bounds on the exact solution were obtained
previously, Chapter 8, by the Variational methocdj +the results

obtained previously were,

or

819 = &pp = « 32865

with an error not greater than + «35%.

The results obtained by solving the integral equation

Ne3

(6] - 2330960 -~ 4330960
- 332505 +332505
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Figure 10.6. Two port resistance network - Example 2.
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Figure 10.7. Two port resistance network - Example l.
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N=1T

« 328767 -6 328767

[G] - —328767 328767
N = 11

—-4328526 0328526

where

N is the order of polynomial used on each sidee.

Comparison of the solution for N = 11 and the mean of the
upper and lower bounds obtained by the Variational method shows
that they differ by about .035%.

Some computations performed on the IBM TO30 computer (with
a word length of 36 bits) showed that the accuracy of the resulis
decreases markedly for N 25 because of rounding errorse However,
when Chebychev polynomial trial functions were used instead of
power polymomials, the error in the solutions due to rounding
errors were less than + 1 in the sixth significant figure for
N <9« These results demonstrate that the system of linear
equation is well conditioned when Chebychev polynomial trial
functions are used; as discussed previously it is recommended
that numerical integration be used to obtain the matrix elements,
otherwise the numerical acouracy is likely to be poors

We now present some solutions of Laplace's equation where
the boundary includes circular arcs as well as linear segmentse
Example 4

The conductance matrix of a distributed resistance network

congisting of a pair of concentric circular conductors was computed
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with the normal derivative of the potential on the conductors
approximated by a Fourier series. Since the normal derivative is

a constant independent of the angular position, and the integration
can be done analytically, without the need for numerical integration,
the results obtained for this problem are exact except for rounding
errors,

This problem was also solved by using polynomials to
approximate the normal derivative of the potential on each of the
conductorse. Since the normal derivatives can be represented
exactly by a polynomial for this problem, the errors in the
solution are due to the approximate evaluation of the integrals,
and to rounding errors, TIor a pair of concentric conductors with
a diameter ratio of 1.5, and polymomials of order 6 on ecach side,
it was found that the error in the approximate conductance matrix
was less than +1 in the sixth significant figure; these errors
are consistent with those which would be expected as a result of
using the approximations (10.41), (10.42) and (10.45), (10.46).

In addition to the above examples, the computer program
was also used to calculate the conductance matrices for the
netwerk shown in Pige 10.8 with the subtended angle @ =7y/2 and
© = 317 /2, and several diameter ratios between 1.5 and 3. For
this problem a further source of error is introduced by having to
approximate the potential on each of the radial lines by a
polynomial. For each of the problems solved, polynomials of order
six were used on each boundary segmente The resulting error in
the solutions was less than :1 in the sixth gignificant figuree
Example 5

The conductance matrices of the two networks shown in
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Port 2
Port

Figure 10.8. Two port resistance network - Example 4.
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Fige 1069 were computed with the potential or its normal derivative
on each boundary segment approximated by polynomials of order 4 and
6o The results obtained for the two networks (a) and (b) are shown

below
(a.) Ne={ (b)

[¢] -

Ne 4
[ ] 1440007 =1.440007 14285372  =14285372
Gl =

=1+440016 14440016 1285378 1285378

(a) Ne6 (b) N=6
[] 16440032  =1,440032 1.285385 =1.285385
G = G =

<1 4440032 14440032 [ ] ~1.285387  1.285387

This problem was also considered by Sinnott (67) who
obtained the following results:

For network (a) in Fige 10e9

|gij| 104399 + oth

and for network (b) in Fige 1069
|gij| = 1.2854 + o1h

Note that these results differ from those obtained by
the integral equation method by less than ,0001, so that the error
limits are probably somewhat less than e1%e

The solution of problems of the type given in Fig., 10,9
is important for the design of comb=line and interdigital band=—
pass filters, and other transmission line components such as

directional couplers (31), (68).
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Figure 10.9. Two port resistance network ~ Example 5.
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10s4e2 Frequency domain analysis of distributed RC networks

We now present the results of some calculations to
determine the admittance matrices of several different distributed
aC network at frequencies on the imaginary axis of the complex
frequency pléne. In general it is difficult to determine the
errors in the approximate solutions since exact solutions are
known for only a few geometries.
Eixample 1

The admittance matrix of the uniform RC line shown
in Fig. 10410 was obtained at wRC =1, with the potential on each
insulating boundary segment approximated by a third or sixth order
polynomial; +the normal derivative of the potential on the
conducting boundaries can be exactly represented by a constant for
this problem.

With N = 3 we obtain,

[] 14022027 + jo3¥12422  —.9B07584 + 41646413 |
Y| =
--9807484 + ‘j-1546413 1022027 + J.3312422

With N = 6 we obtain,

+

1022013 + ja3312381 -.9807634 j.164‘6375

-.9807634 + jo1646375 1022013 J'.1646375

+

which is equal to the exact solution to seven significant figures.

fixample 2

The admittance matrix of the two~port network with an
exponential taper, Figs 10.11, was computed with the unknown

potential or its normal derivative approximated by a polynomial of
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Figure 10.10. Uniform distributed RC line
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Figure 10.11. Distributed RC line with exponential taper,
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order 6 on each side. At the two corners where the interior angle
is not equal to 900, special trial functions were used as
previously discussed. The curved boundary segment was approx—
imated by 9 linear segments.

WithwRC = 1, the admittance matrix was found to be,

Y| =
| =e2791723  + J.047243o6 02886483 + J.o5986082

, This may be compared with the approximate solution

obtained by one-~dimensional analysis,

0301250137 + J‘.16035349 -e28559058 + J‘.o47152108

[l

—¢28559058 + (j.o47152108 «294763907 + ‘j.o5899o751

The differences between the two solutions are about 2%,
which suggests that the accuracy of the one-dimensional solution
is adequate for this particular probleme
Example 3

The admittance matrices of the two networks in Fige. 10.12
where computed with the potential on each boundary segment
approximated by fourth order polynomials. In addition, special
trial functions were used at the singular corner (interior angles=
270°%).

For the network of Fige 10.12a, the admittance matrix was

found to be,
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Figure 10.12: Two port distributed BRC networks -~ Example 3.
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[] 30250652 + je1107953  =3.248589 + J=.‘05923675"
Y|=

where W RC = 1
For the network of Fige. 10.12b, the admittance matrix

was found to be’

[] (3221658 + [.1956044  =.3015412 + J'.o5233333"
Y! =
~.3015397 +J’.05235143 03118521 + J‘.07161765

where W RC = 1
Since the off=diagonal elements Yio0 Yoq 8¥e Very nearly

equal for these two matrices, the errors in this solution are

likely to be quite smalle

10.4¢3 Eigenvalue problems

We now present the results of some calculations to
determine the poles and zeros of the admittance parameters of
distributed RC networks. If the admittance parameters are evaluated
at two or more frequencies in the complex frequency plane, a first
approximation to the required pole or zero may then be found, by
using an appropriate interpolation or extrapolation formula. If
a pole of the admittance matrix is required, we may extrapolate
or interpolate the value of the determinant of the coefficient
matrix, or the reciprocal of any of the elements of the
admittance matrix. Once an approximation to the required pole
or zero has been obtained, successive approximations may then be
found by interpolating with the previous’ - solutions; usually
only three or four iterations are required to give sufficiently

acourate solutions.



Suppose that a zero of a function f(s), s = s, Say,
has been found by the above method, A second zero may then be
found by applying the method to the function f(s)/(s-—s1), and

so on wuntil all of the required zeros have been found.

Ixample 1

The first pole of the admittance matrix of a unifoem RC

line of unit length was obtained by interpolating the values
obtained for 1/y11 and. 1/y12 at pRC = =9.8, =9.85, =%9.90.
The potential on sach of the insulating boundary

segments was approximated by a sixth order polynomial; the

normal derivative of the potential may be represented exactly by

a constant on each of the conducting boundary segmentss

The values obtained for the first pole are
DRC = =9.8696103 and pRC = =2.8696097 respectively, depending
on whether 1/y11 or 1/y12 is interpolated.

These values agree closely with the exact solution
72 = 9.8696044,
fixample 2

We now congider the linearly tapered RC network shown
in Fig. 1040 .

When polynomials of order 5 are used on cach boundary
segment, the interpolated value of the first pole of the

admittance matrix is found to be

(the interpolation points were chosen to be PRC = =T«8, =T¢9,
~8.0),

iWhen polynomials of order T are used we obtain

DRC = =T+8544

251
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Finally, when polynomials of order 10 are used with the
interpolation points, PRC = =7.84, =7+85, —T7.86, we obtain the

first pole at
PRC = ~T.850065

These results may be compared with those obtained
previously by the Variational method (Chapter 8)¢ The most accurate

result obtained previously was
DRC > -7.87061

which agrees closely with the results aboves

The first zero of the matrix element y,, was obtained
with polynomials of order 5 and 7 on each boundary segment, and
intorpolation points at PRC e =442, =4¢25, =4s3es The approximate

values of the zero were found to be

PRC = =4e2314  for 5th order, polynomials
and PRC = =4.2319 for Tth order polynomials.
The most accurate result obtained previously (Chapter 8)

was

PRC > =4423205

which agrees closely with the above resultse

The first zero of the matrix elément Yoo was cbtained with
polynomials of order 5 and T on cach boundary segment, and with
interpolation points at PRC = =810, =8¢30, =¢850

The approximate values of the zefo were found to be

PRC = =482125 for 5th order polynomials
and PRC = =,81981 for Tth order polynomialse

The most acourate result obtained previously, Chapter 8,



was DRC » =-.823089 which agrees closcly with the above results.

In addition to the above computations, the admittance
matrix was computed at a number of different points in the range
PRC » =10 to pRC = =50 The poles and zeros of the admittance
parameters obtained by interpolating through the computed points
were all found to agree closely with those obtaincd by the

Variational method (Chapter 8).

105 Conclusion

In this Chapter we have considered the solution of the
reduced wave equation (10.1) by transforming it to an integral
equations

When attempting a numerical solution of the integral
equations it is necessary to take certain precautions to ensure
that the accuracy of the results does not suffer unduly from the
offects of rounding errors. If the unknown potential function
alongiboundary scgment is approximated by a polynomial, it is
preferable to use numerical integration instead of analytical
solutions to evaluate the matrix elements. Secondly, if high
order polynomial approximations are used, it is necessary to use
a Chebychev polynomial approximation, or some other set of
orthogonal polynomials, in order to avoid having to solve an ill-
conditioned system of equations. In addition, it should be noted
that it is possible to obtain accurate solutions with low order
polynomials, provided that special trial functions are used at
any singular corners of the networke.

It is very difficult to make a quantitative comparison

of the integral equation method with other methods such as the

253
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finite~difference method and Variational methodse. For the types of
problems considered here it appears that the intezral equation
method gives more accurate solutions than the other methods for
the same amount of computing time. The integral cquation is
considered to be superior to the finite~difference method since
the iterative procedure used to solve the system of equations in
the latter method often converges slowly; this is especially true

~for regions with complicated boundaries. A further disadvantage
of the finite-difference method is that for a multi-terminal
network the entire  iterative procedure must be repeated for each
set of specified conductor potentialss With the integral equation
method it is only necessary to solve a set of eguations with
several different right hand side vectors, which takes little
longer than one right hand side.

With the Variational methods of solution one has to
integrate the products of the trial functions and/or the products
of their derivatives over a two-dimensional region; this problem
can usually be reduced to a one-dimensional integral. Similarly,
with the integral equation method, the integrals are also one=
dimensional, but it is necessary to use special techniques to
evaluate these integrals because of the logarithmic singularity
in the Green's function,

Finally, it is not considered that the integral equation
method is suitable for obtaining the poles and zeros of the network
parameters unless the approximate locations of these frequencies
are known bhefore hands. Otherwise, there is a possibility that
some of the poles and zeros may not be located, or an excessive

amount of computing time may be requireds In this authork
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opinion, the "direct" methods, such as the Variational methods,

are most suitable for determining the eigenvalues, even though

the integral equation method may be capable of greater accuracys
The integral equation method is probably most suitable for problems
where the admittance matrix parameters are required at a
relatively small number of frequencies. For problems where these
parameters are required at a large number of frequencies it is
probably preferable to first obtain the dominant poles and zeros;
the admittance parameters are then obtained in the form of a
product form expansion which is readily evaluated at any specifiad

frequencies,



Chapter 11

RELATED PROBLEMS

111 Introduction

Many of the theoretical results and numerical techniques
deseribed in the previous chapters can be used to solve problems
arising in the analysis of other distributed networks.

In addition, the results of some work concerned with the
transient analysis of transmission lines, and the application of

equivalent network theory will be discussed in this chapter.

1142 Two Dimensional Field Problems = Cartesian Coordinates

The methods described in previous chapters were
primarily concerned with computation of the dc admittance parameters
(i.ee the conductance matrix), and the poles and zeros of the
admittance matrix of multiport distributed RC networks.

The conductance matrix of a multiport distributed resistance
network may be easily transformed to the capacitance matrix of a
multiconductor lossless transmission line network with the same
cross—section; +the characteristic admittances or impedances of the
lines are obtained from the capacitance per wnit length between
the lines as described in (31). For both of these problems the
potential between the conductors satisfies Laplace's equation, and
the boundary conditions are identicale

For the distributed resistance network the current per

unit width entiring each conductor is

J = - 24 (11.1)



257

where

¢ is the potential in the resistive layer

R, is the sheet resistance (ohms/square)

T is the outward-pointing unit normal on the boundary
and

J  is the current density (amperes/unit width).
For the lossless transmission line network the charge

per unit on the conductors is given by

P, = e.g_é (11.2)

where

Fjs is the charge density/unit length

and
& is the dielectric constant of the dielectric

between conductors,

Then, provided that the boundary conditions on ﬁ are
suitably chosen, the required conductance or capacitance matrix
elements are each equal to the total current entering a conductor
or the total charge on a conductor, which is obtained by
integrating (11.1) or (11.2).

The method for computing the poles of the admittance
matrix of a thin film distributed RC network can also be used
to obtain the cutoff wavenumber of T or TM modes in homogeneous
waveguides of arbitrary cross—section. This follows since the
waveguide modes can be obtained from a scalar wave function which
satisfies the same differential equation and boundary conditions
as the potential function for distributed RC networks (14),

Chapter 8, (6).
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In addition, the electric field normal to the conductors
of a TEM planar microwave network, (62), also satisfiés the same
differential equation and boundary conditions as the potential
function for distributed RC networks. For this class of networks
the current pe? unit width entering each-port‘is given by

R0

1 2
J = ‘,‘]-W_/Ean (11-3)

in ‘place of (11¢1)s w is the frequency in radians per second,
/u is permeability of the medium between conductors, and Ez is

the electric field normal to the upper and lower conductorse

113 Two Dimensional Field Problems -~ Cylindrical Coordinates

One important class of problems which has not been
considered here is that of analyzing lossless transmission lines
with circular conductors and a field distribution which does not
vary with the azimuthal angle.

The sclution of such problems is important for the
calculation of discontinuities in coaxial lines. Another important
problem in this class is the calculation of the resonant frequencies
of a coaxial cavity with longitudinal discontinuities in the
conductors,

For this class of problem, Laplace's equation is

9° 1 94 2%
-5—];% + -r- aI‘ + azz = 0 (11'4)

where
r and z are the radius and distance along the axis

respectively in cylindrical coordinates. (11.4) is identical in form
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with Laplace's equation in cartesian coordinates except for the

term 1 §'é .
r 9r

It can be shown that the differential equation (11.4)

is a necessary condition for the functional

F(g) = 2neﬁ rlv;ﬁ,z dr dz (11.5)
R

to be stationary, where the integral is evaluated over the region
between the conductorse.

The stationary value of (11.5) can also be shown to be
proportional to the static capacitance between conductors in the
coaxial system, provided that ¢ satisfies appropriate boundary
conditionse The Rayleigh=Ritz method may be used to solve the
stationary problem in a manner similar to that discussed in previous
chapters,

Similarly, for TM modes in a coaxial resonator, it can be

shown that the azimuthal component H¢ of the magnetic field

gatisfies
2
- 20 2H JH o°H
.u = -1. 7—4 +‘_.é . ——A- -8 w2 €H (1106)
ar2 r r BI'Z az2 /u ¢

and the eigenvalues wi /uE: corresponding to the resonant
frequencies are proportional to the stationary values of a functional

of the form
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2 (11.7)

Application of the Rayleigh=Ritz method to this problem
leads to a matrix eigenvalue problem of the form obtained in

previous chapterss

11«4 Application of iquivalent Network Theory

In accord with the meaning of equivalence used in lumped
network theory, distributed networks are considered to be equivalent
when they are electrically indistinguishable at their terminals.

For a distributed RC network with a given resistance
r(x) and capacitance c(x) per unit length it is possible to generate
an infinite number of equivalent networks with different r(x) and
c(x)s

One reason for considering equivalent RC lines is to
broaden the limited class of nonmuniform transmission lines for which
known solutions are available. A further reason for considering
such lines is that it may be easier to fabricate and adjust av
equivalent line obtained from a given line.

| Some methods for generating equivalent transmission lines
are given in (78) - (81)e In general it is found that the
equivalent lines do not have r{x) c(x) = constant. In practice

this means that if the line is constructed with uniform resistive
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and dielectric sheets, the width of the ground plane will not
be equal to that of the resistive film (81).

In addition, it should be noted that exact eguivalence
between tapered RC lines will not be achieved in practice because
the one~dimensional model is only approximate.

An alternative method of generating eguivalent RC lines
is to apply the equivalent network theory of lumped networks (82),
to an RC ladder approximation to the RC line. The results of

some work carried out in this area are gziven in Appendix .

e e 7

In the course of the work on distributed RC networks, a
method for transient analysis of lossy transmission lines (85) was
investigateds At first sight this appears to be a very attractive
method for computer solution; an exact solution for the voltage and
current along the transmission line at a point x and time (t + h)
is given in terms of the voltages and currents at x + A x and
time t.

Unfortunately it was discovered that there was an error
in the derivation of the solution, and the results are only correct

for a distortionless line, as discussed in Appendix F.

11«6 Conclusion

Mcthods for solving some problems related to those
encountered in the analysis of distributed RC networks have been
considered,

For several problems it was seen that the analysis

techniques are either identical to those for distributed RC
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networks, or require only minor changese

Thus the basic techniques described in this thesis are

applicable to a wide range of practical problems.
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Chapter 12

DISCUSSION

In the previous chapters we have considered numerical
techniques for obtaining the admittance matrix of a multiport
DRC network.

Some DRC networks can be adequately rcepresented by a one-
dimensional model, but in general it is necessary to perform a two-
dimensional analysise

Three methods were studied in details These methods may
be classified according to the type of equation that the potential
function is required to satisfy, as follows:

(1) Second—order partial differential equation (Chapter 3 and 8)
(2) Coupled firsteorder partial differential equations

(Chapter 4 and 9)

(3) Integral equation formulation in terms of Green's functions

(Chapter 10).

In addition to satisfying these equations, the solutions are
also required to satisfy certain boundary conditions as previously
discusscde

The types of expansion functions which were used to obtain
approximate solutions of the bhoundary value problem may be classified

as follows:

(a) nth order polynomials defined over the entire two~dimensional
region Re
(v) nth order polynomials defined separately over each of a

number of subregions of R, with constraints to ensure that

the rosulting solution is continuous over Ra
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(c) Continuous piecewise linear approximations over triangular
Bubregions? and "{riangle" functions over rectangular
subregionss (These are extreme cases of 2).

(d) nth order polynomials defined separately on segments of the
boundary C of R.

The first three types of approximation are used in
conjunction with methods (1) and (2) above, The fourth is used
in conjunction with the integral equation method (3), where the
unknown potential within R is obtained from the potential and its
normal derivative on C. Nonpolynomials expansion functions can
also be used with methods (1) and (2), but they are generally not
as convenient to use as polynomials, and they do not appear to
offer any significant advantages. However it is definitely
advantageous to use nonpolynomial expansion functions with the
integral equation method (3), since the accuracy can be grecatly
improved as discussed in Chapter 10.

One question which naturally arises in this discussion is
which is the best method for solving a particular problem?

From the reosults obtained in Chapters 8-10 it appears that
for a given number of expansion functions the integral equation
method gives better accuracy than the other two methods. However,
when we wish to determine the poles or zeros of an admittance
matrix element by using the integral equation method, we find that
the eigenvalue appears as a nonlinear parameter in the matrix
equation, Thus the numerical solution is not automatic = some
"judicious” scarching is noeded, and this can be very time
consuming. In contrast, to this method,; thc methodg (1) and (2)
lead to matrix eigenvalue problems which can be solved via well

established algorithmse



A further problem which arises with the integral equation
method is that it is generally more difficult to evaluate the matrix
elements. In general it is difficult to evaluate the required
contour integrals because of the singularity in the Green's
function, and in addition, complex arithmetic is required. In
contrast, the integrals required for methods (1) and (2) involve
only real arithmetic, and the two—dimensional integrals and
contour integrals can usually be transformed to one~dimensional
integrals where the integrand is a polynomiale. These one-dimensional
integrals are easily evaluated by using a quadrature formula.

A comparison of the results obtained with methods (1) and
(2) indicates that when piecewise linear expansions and triangle
functions as in (c) above arc used to approximate the unknown
functions, then the accuracy of (2) is significantly better than
(1). Howsver, if nth order polynomials as in (a) above are used,
then the results obtained by methods (1) and (2) appear to be
identicale One problem which has not been investigzated is whether
(2) is significantly better than (1) when approximations of the
type (b) above are used; this is an area for further research.

A disadvantage of method (2) compared with (1) is that more work

is required to get the equations into the standard matrix—eigenvalue
forme With both of these methods, we generally find that extraneous
solutions occur, and these can only be isolated by inspection of the
eigenfunctions.

An important consideration in the application of the above
methods ig the availability of the computer programs. Only two
such programs appear to have beun widely distributeds Both of

these are based on (1) aboves The program described by Bulley (53)
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uses polynomial approximations of the type (a) above, and
Bilvester?!s program (55) uses approximations of type (b) abovej
where the region R is subdivided into triangular elements., As
discussed in Chapter O, both of these programs can be rcadily
modified to obtain the poles and zeros of the admittance parameters.
Howevor, with both of these programs the polynomial approximations
are required to satisfy the Dirichlet boundary conditions, which
may sometimes be a restriction. These restrictions could be over—
come by using the techniques described in Chapter 8, and in (33)

and (56).

It appears that there are no readily available computer
programs based on method (2). The results presented in Chapter 8
were obtained with a program which could solve only a restricted
class of problems, and it was nccessary to modify a part of the
program for each problem considered.

A program based on the integral eguation method was
described in (29), but it is not known whether a listing is available.
In any case, (29) contains sufficient detail for the interested user
to prepare his own program.

In conclusion, it appears that at present, there is no
"best" method for solving the problems of the type considered here,
and the method to be chosen for a particular problem will depend
to some extent on the availability of a suitable computer prozram,
and the personal preferenee of the users

ile have demonstrated the usefulness of several numerical
techniques for solving multiport DRC networks, and we have shown
that appreciable errors may result from the assumption of a one-

dimensional model,
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Appendix A

NOTATICQN OF LINEAR SPACKES AND OPERATORS

The general methods of solution will be presented in the
notation of linear spaces and operators, which are defined as
followse

Given a deterministic problem of the form L(f) = g, We
must identify the operator L, its domain (the functions on which
it operates), and its range (the function g resulting from the
operation)e The operator L may be a matrix operator which operates
on a vector f, to give another vector g, or it may be a differential
or integral operatore

We usually need an inner product <f ,g> s which is a

scalar defined to satisfy

{uy, vy = <m> (8.1)
<a1u1 + azuz,v) - a, £ u1,v> + o, <u2,v> (ae2)
<u,u> >0 if uf O (4.3)

=0 ifuEo0 (Aed)

where the bar in (A..1) indicates the complex conjugatcs

We sometimes need the adjoint operator 12 and its

domain, defined by

<Lu,v> = <u,La'v> (4.5)

for all u in the domain of L. An operator is self adjoint if

L% = L, and the domain of L® is that of L. iece
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<Lu,ir‘> = <u, Lv> (4.6)

Properties of the solution depend upon properties of the

operators An operator is real if

Iu = Lu (AeT)

In addition, a self adjoint operator is positive definite

if
<wu) > o0 (4.8)

where u is not identically zero, and vanishes only when u Z O,
An example of a scalar product for two-dimensional

problems involving a differential or integral operator is

<upvd -fj W.v da (4.9)
R

u and v are real functions, and R is the surface of

where

integration,

The procedure for obtaining the adjoint of a differential
operator is presented in (42), pp 148 ~149, together with some
examples, |

To find the adjoint of a differential operator in a
space S, consider the scalar product <:V,Lu:> ¢ With the help
of integration by parts, consider it as the scalar product of u
with some vector w which depends on ve The transformation from v
to w defines the adjoint operator 1% The boundary conditions on v
are determined by the requirement that the boundary tcrms resulting

from the integration by parts vanishe
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Appendix B

STATIONARY CONDITIONS FOR THE FUNCTIONAL F, (u,v) WITH
u AND v CONSTRAINZD TO SATISFY DIRICHLET BOUNDARY

CONDITIONS

Congider the functional

j Ve Vv da

F1 (u,v) = R (B.‘l )

j u.,v da
R

u and v satisfy the following boundary conditions

where

u = 0 on02+Ck
(Be2)
u = U, % constant on C.
dJ J
v = 0 on C, + C.
2 J
(B.3)

v = V. = constant on Ck

In addition, u and v are one differentiable in R, but
are otherwise arbitrary.

Let

U= U+ X, 72 (xy7) (Bed)

and

Ve v+ ,6 /u(x,y) (Bs5)
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where

& and p are arbitrary parameters, and 12(x,y) and

/o.(x,y) are arbitrary in R, but

7?(x,y) « 0 on G, + Oy
' (B.6)
= ‘7;] constant on Cj
/u(x,y) = 0 on C, + Cfl
(Bo7)
= /uk = constant on Ck
In addition, suppose that Uy and v, are such that
El(u,v) is stationary, and
)O = F1 (uO'VO) (B.8)

The conditions for }%(u,v) to be stationary are

gﬁi—'—l-' U,V = 0 (B'9)

dex
=0

and

Bu)l (B«10)
P
fe=0
If u and v in (Be1) are replaced by the expressions on

the right of (Be4) and (B.5), and the stationary condition (B.10)

is applied with @(= 0, we obtain
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jf Vige QA da = i o] Upe B da = O (Bo11)

R R

Then by using Green's formula

v%—% dl = Jue Vv da + Ve Vzu da (3512)
R
we obtain
‘ 2 avy
= ) (9T + Agny) da 4 [ 5 dl=0 (Be13)
C1+Ck

The contour integral in (B.13) is evaluated only over

C1 + Ck because of the boundary condition (B.?), and
C = Cy+C,+ Cy+ Oy (Be14)

Now choose /u = 0Oon C, + Ck’ but let /u be arbitrary in R.

1
Then it follows from (Be13) that

\72110 + )Ouo = 0 in R (Be15)

Next choose /u = 0 on Cp, but let /u be arbitrary on

C1 and in R.

Then it follows from (B.13) and (B.15) that

—-—= = 0 on C (B+16)
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Then, since /u = constant on Ck’ it follows that

- dl = O (Ba17)

Similarly, if the stationary condition (Be9) is applied

to (Ba1), with § = 0, we obtain

Vzvo + 7‘0"0 e 0 in R (B.18)
avo
3—1-1— = 0 on C1 (Be19)
v
=La1. o (B.20)
an
C
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STATICNARY CONDITIQNS FOR THE EXTSNDED FUNCTIONAL F(u,v)

WITH NO BOUNDARY CONSTRAINTS ON u OR ¥

Consider ‘the functional

fjvu-vv da-§ [(u—gu)g—z- + (v-gv)%%] a1
R

P (u,v) = O 6 40
ff UV da
R
(Ce1)
where
gu = 0 on 02 + Ck
(C.2)
= U. = constant on C.
J J
&y = 0] on 02 + Cj
(Ce3)
= Vk = constant on Ck

u and v are onee differentiable in R, but are otherwise
arbitrary.

Let
n = u0+o(.rl(x,y) (Ced)

Vo= v, +ﬁ/u (x,7) (Ce5)

where & and p are arbitrary parameters, and »rl(x,y) and /u(x,y)

are arbitrary in R.
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In addition, suppose that u, and v, are such that F(u,v)

is stationary, and

7\0 = F(uo,vo) (C.6)

The conditions for F(u,v) to be stationary are

= 0 (0‘7)

=0

and

ﬂd%-ll -0 (c+8)
g =0
If u and v in (Ce1) are replaced by the expressions on

the right of (Ce4) and (C.5), and the stationary condition (C.8)

is mpplied with{= O, we obtain

22U

R 02+Cj+ck

(c.9)

Then by using the Green's formula

VE;-;-’; dl = ff U9V da + Jf v.wzu da (Ce10)
R R

we obtain

C
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-g( /u(v2u0 + 7\0110) da ? (uo - g, ) ?-ﬁ a1l

R C+C+C

o
§ P
¢y

L
Now choose 3= = 0 on 02+ Cj+Ck and /u = 0 on 01, but

let /" be arbitrary in R. Then it follows from (Ce11) that

(Ce11)

Sl
r
1
o

V2uo + 7\0110 = 0 in R (0.12)

Next choose /u = 0 on C,', but let /u be arbitrary in R

and on C,+C_+C Then it follows from (Ce11) and €.12) that

27 Y37 Yk*
u, = g on02+Cj+Ck (Ce13)

Finally, if we allow /u t0 be arbitrary on C1 it follows

from (Ce11), (Ce12) and (C413) that

— = 0 on C (Ce14)

dimilarly, if the stationary condition (Ce7) is applied

to (Ce1) with g = O, we obtain

vzvo + Aw. = 0O in R (Ca15)

Vo = & on02+Cj+Ck (Ce16)
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ov
0
an - 0 on C, (Ce1T)

From (Ce6), (Ce12) =(Ce14), (Cs16) and the Green's

formiula (C.10) it also follows that

ou
a——-g dl = 0 (C.18)
Cx

is a necessary condition for F (u,v) to be stationary.

Similarly
av
0
5—3 dl = O (0.19)
C.
J

is a necessary condition for F (u,v) to be stationarys
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Appendix D
STATIONARY CONDITIONS FOR THE FUNCTION Js(f,fa')

functional J5(f,fa') is given by (9.43), where

and <fa',Lef> are defined by (9¢36) and (9437)

respectively,

By using Gauss' Integral Theorem (38), Pe 9y iece

I
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[-g-;; (fau) + -g—;(;é.v)]da -é ¢(nxu + nyv) dl (Do)

c

and the rule for differentiating a product, we obtain

[[lrae- 30 mat 35

R

_§ [(gﬂa-(}v) (nxu + nyv) + (f-a) (nxua + nyva')] dl

C

a a
il [Gu(nxu +n.v ) + Gv(nxu + nyv) ‘I a1

Js(fa,f)if

2

C "'Cj"'ck A

j @8 + w®u + v¥v) da

R

(De2)
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_f((u%g+v%g+ ua‘%?+ vaa—zr ) da

§‘_(¢-G)(nu+nv)+(;6-G)(nu+nv):]

i C2+CJ+Ck

J5(fa,f) - -
(¢Q¢ + v + vv) da
(Da3)
Let
- - B ¢a, ¥
gy 0
a
fos uo and fg' = u‘0 be functions such
a
hvo vo

that J5(fa',f) is stationary.
Now if £~ = )63’ +o<)? (x,3) where'll(x,y) ig an arbitrary
function, and & is an arbitrary parameter, then the condition

for Js(fa',f) to be stationary is

i{i - =0 (D'4)

dex
o(=0

From (De2) and (De4) it follows that

ff‘az( +——)da. -~ ’)?(nu + nv) dl = J, ([’)?¢Oda-

(Dy5)
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which must be true for arbitrary "rl(x,y).
Jg is the stationary value of Jg(fa,f).
First choose ’Yl(x,y) = 0 on C1, but arbitrary inside Re

Then from (De5) we obtain

Next choose ')'Z(x,y) arbitrary on C1 and in Re Then from

(De5) and (De6) we obtain

nu. + nyv = O on C1 (De7)

Now choose u° = ug +o(’.12(x,y). Then from the stationary

condition (De4) and (De3) we obtain
4

j{ 3){’ da + (;éo-(})n vzdl— ff v, da = O (D.8)

C+G+G

Choose 72(x,y) arbitrary inside R, but ’YZ(x,y) = 0 on

C.+C.+C

o+ Cy+ Cpe Then from (D.8) we obtain

%‘i_o - 2 - (0.9)

0

Next choose n(x,y) arbitrary on C,+ C;j"'ck and in R.

Then from (D.8) and (D.9) we obtain

¢o = G on C,+C.+C (D.10)

277 K
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Similarly, if we choose Vv° w vg' +e(.??(x,y), from the

stationary condition (D.4), and (D.3) we obtain

(-3
0 .0
-—— J . R D11
35 J5 Yo in ( )
and

;60 = G on C,+ Cy+ Cye (Ds12)

The corresponding relations for ﬁg, ug', and vg' are obtained
by choosing § = ﬁo +o(.7'l(x,y), u = U +o(.7!(x,y), and v = Vg +
Q(.ﬂl (x,y), and then applying the stationary condition (D.4).

From (De6), (De9) and (De10) it follows that

<Lafi,fo> - J;) <fz‘,fo> (D.13)

and, in addition we have

ae,a 0 a
<L £, fo> = <f° ' o) (De14)
where 12 is defined by (9.37).
I+ therefore follows by equating the expressions on the
left of (De13) and (De14), 2nd by using the boundary conditions
(D."{) and (D.10), and the corresponding boundary conditions on
£y ug s vy that
a a
Gu(nxu + nv ) a1 = O (De15)

(}2+Cj+ck

ig a necessary condition for Jg 1o be stationarye.
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Similarly it can also be shown that

G, (nxu+nyv) dl = O

02+Cj+ck

is a necessary condition for Jg to be stationarye
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