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The problem of ana"Lyzíng multiport distributecl.

resistance-capacita¡rce netvrorks is consid.ered.. rn par*icurar,

the problem of obtaining the ad.mitta¡rce matrix eLements a,nd. its
poles a¡rd. zeros is investigated-.

The potential in the resistive layer of the DRC netrvork

satisfies the two-d.imensional llermhortz equation, whioh may be

transformed. to a system of coupled first-ord.er d.ifferential

equations or to an integral equation.

The basic sorutíon technique is to reduoe the dÍfferential

or integrar eqr:a,tion to a matrix equation. Approximate solutions

of the differential equations are obtained. by the Rayleigh-Ritz

variational method.. The integrar equation is solved. by point

matching, which is equivalent to the method. of moments.

Numericar results for a number of examples a.re presented.,

ancl the d-ifferent method.s are compared.. rn ad.d-itio]r, some

numerical results obtained. by one-d.imensionar analysis and. two-

d.imensional analysis are compared..

l-v
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Chapter 1

INTRODUCTICNü

îhe oentral problem consid.ered. in this d-issertation is that

of analysing thin-film d.istributed- resistanoe-capacitanoe (lnC )

networks.

A cross-section of a portion of a thin film DRC netnork Ís

shown Ín l'ig. 1.1¡ Fig. 1.2 shows a top view of a t¡pica1 DRC

network. As shomr in the diagrams, the DRC network oonsists of

resistive, insulating and. oond.ucting layers placed on top of one

another. EleotricaL ooruoections are made to the devioe by means

of cond.ucting strips placed. on the bound.ary of the resistive layer"

The stud¡r of d-istributed. networks has been prompted. by the

trend in eleotronic equipment toward. smaller and smaller physical

structures¡ Distributed. llC networks ca¡r be combined. with lumped.

passive elements and active elements to produce a wide range of

filter characteristics (ZO). Suoh realizations usually require

fev,¡er components than comparable rcalizations using lumped-

elements. The most common IrRC netl'¡ork for these applications is

the two-port DlìC line. Although the r:niform RC line wíth a

simple rectangular shape is easy to analyse, there are d.efinite

aclvantages to be gained. by geometrícally tapering the iìC line;

it has been shown that tapering is useful for obtaining sharper

cutoff low pass filters, a¡rd. for narrowing the rejection band. of

frnotcNt filters (5).

In thc following Chapters we wí1I consid.er numerical

method.s for a^nalysing DlìC net¡¡rorks of arbitrary shape. Chapters

2-6 ate conoerned. with two-port networks which. ca:l be represented
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IiIEII.AIJ

Figure 1..1. cross-sectiOn of a poTtion of a DRC netrvork.
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Flgure l,2o Top view of a t"vpioal DRC net$,ork.
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by a one-d'imensional mod'e1 i.eo the netrn¡ork can be represented" by

a nonq¡¡¡iform line having a presoribed. series resista¡rce and. shr:nt

capacitance per r.rnit length. The techniques used to analyse such

networks cau obviously be applied. to DRC networks where the

variation in resist¿mce and. capacita,nce per ulit length is due to

variations 1n the oomposition of the resistive and dlielectric

la,yers, instead. of variations in the wiclth of a line whose

resistive and. d.ieLectric layers are of u¡liform composition¡

Chapters ?-1O are concerned. with the two-dimensional

analysis of multi-port clistributed. RC network' The importance of

this work is that it provid.es a meaï.s of assessing the errors d.ue

to the assumption of a one-dimensional mod.el. Tn aclditionr it

provid.es a me¿uls of investigating phenomena whioh d.o not ocour in

one d.imensional structures; for exarnple, trarrsmission zeros oaJI

occur in tapered. struotr:res, but these a¡e not pred.ioted. by the

one"'.dimensional mod-el (lf), (fg), (69), (?t).

In Chaptcr 2 the properties of the ad.mitta¡rce parameters of

DRC lines supporting on+-dimensional cument flow are d.ísoussed..

Some important resul-ts d.erived from the theory of Str.:rm equations

(t) a¡e presentedr

fn Chapter 3 the problem of obtaining the poles and' zeros

of the two-port parameters of nonu¡riform RC lines ís oonsid.ered-.

The poles and. zeros are proportional to the stationary values of a

suitably chosen firnctíonal, and the Rayleigh-Ritz method is used to

obtain approximate solutions. Some problems associated. with the

practical applioatíon of the method. are oonsid.ered.. fn partioulart

method.s of recluoíng the effects of round.ing eruors by using

orthogonal pol¡momials are consid.ered.. Although ít has been



4

sug3cstecL prer,riously, (lZ), ttrat it is advantageous to use

orthogonal polynomial's for problems such as leasÛ-squ.a,lles curve

fítting, the use of these method-s for solving eigenrralue problems

of -bhe type consid.ered. here does not appear to have been

consid-ered. previouslyu Finally, numerical results are presented

for a nunber of examples"

In Chapter 4 an alternative rnethocL of obtaining poles and

zeros is ¡resen'bed.o The variational method. of Chapter 3 gives a

solution which approximatcly satisfíes the second-orC.er d.ifferential

equati-on (Stu-r* equation) lvhich d-etermines the potential along the

-bransnissj-on U.neo In Chapter { the l,{et}rod. of Moments (14) is

uscd. 'i;o ol¡'baÍn app::oximate solutions of a pair of first-ord.er

equations which are equivalent to the Sturm equation. O:e problem

consicìered- here is thai of ri-etecting or avoid-ing r¡elrtraneousrr

solutíons; this problem does not appear to have been consid.ered-

prc.riousJ-yn tsy sJ-ightly mod-ifying the basic technique presented in

(t4) :.'l is found- that the extraneous solutions are eliminated, and-

the accuracy of -bhe numerical results ís improved" Finallyr the

:iate of coill-crgen.ce of the }loment method. solutions is investigated.

ar:.ci corn-pared- wi-lh othe:: methodso

In Chap';er ! the results obtained. by the RayleÍgh-Ritz

Vari¡.tiona.I method of Chap-ber 3 are compared with the Moment

rnethocl of Chap-ber {" In particular, some inequalities whioh are

believed. to be nevr, are deriveC. to show the relationship between the

twc meth.od,s"

Tn Chapte r 6 a brief disoussion of other nurnerical rrrethod-s

for obtaining 'ooIes and zeros is presented.o



5

å brief d.isoussion of numerical method.s for twe

d-imensionar analysis of'DIlc networks is presented in chapter ?.

The Variational method. for obtaining poles and. zeros of

DRC networks by soì.wing the twed.imensional llelmholtz equation is
consid.ered- in d.etail in chapter B. a number of fi¡nctionars

¡rhose stationary values are proportional to an ad.mittance matrix

element or its poles or zeros are presented. although the

fi¡¡rctionars which are used to obtaÍn the poles a,nd. the zero

frequency values of the d.ia6ona1 elements of the admittance matrix

have been presented. previously, (ZS), the other fi;¡ctionals

presented. here a.re believed. to be new. Application of the

Rayleigh-Ritz method to the problem of obtaining stationary values

of the fi¡¡ctionals is consid.ere<l in d.etaiL. several method.s of

obtaining suitable expansion functions to approximate the r¡nlc¡ror,m

potential. functions are d.iscussed, and. some nuJneríoal results are

presented.. rn particurar, the nunerical resurta show that finite
zeros of tra¡rsmission occÌLrr In ad.clition, the results obtained.

from the two-d.imensional analysis are compared- with those obtained.

by a one.-dimensional a^nalysís.

fn Chapter 9 the Variational method. is used to obtain the

pores a¡rd, zeros of DRC networks by approximately solving a s¡ætem

of first-ord.er partial d.ifferential equations which are equivalqnt

to the second-ord.er ilifferential equation, (tteLmhortz equa.tion)

consid.ered. in chapter 8. A number of new fi.mctionals whose

stationary values a¡e proportional to the value of a¡r admitta¡rce

matrix element or its poles or zeros are d.erived. the Rayleigh-

Ritz method. is then used. to obtain the stationary varues of these

fu¡nctionals. One of the cl-ifficulties associated with this method.
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is that of d.etecting extraneous solutions, a¡rd. thís aspect is

oonsid.ered. in d.etail. The numerical results obtained. by this

method. are also compared. with those obtained- by the Variational

method of Chapter 8.

In Chapter 10 an alternative method. of solving two-

d.imensional probLems is considered. The partial d.ifferential

equation j.s transformed. to a,n integral equation ruhich is then

salved- by point matching. fn most previous applications of the

fntegral equation method-, it nas necessary to approximate the

bound.ary by straight line segments. In this Chapter we also

consid.er rnethods for solving problems with circular bor:¡daries

without the need. for such approximations. Some numerical solutions

are presented, and. method-s of minímizing the effects of round.ing

errors by using orthogonal poI¡momials are d.iscussed..

A d-isoussion of some problems which can be solved. by the

method.s used for DRC networks is given in Chapter 11. fne method.s

used in pre'rious Chapters are shown to be il.irectly applicable to

other problens such as analysis of lossless transmission line

networks. In ad.dition, the results of some fi¡rther work on

transient a.nal¡rsis of transmission lines ancL the applÍoations of

equivalent network theory are discussed.

Finallyn in Chapter 12 the method.s studied in previous

Chapters are reviewed., and theír relative ad.vantages are assessed.

with the objective of d.etermining which is the best method for

solving a given problem.
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Chapter 2

ÐISffi.IBUTED ITESISTAT'ICE - CIIPACTTANCE NI'.IThIORKS

SUPPORTING O¡TTFDIIvIE{SIOITAI CUI{RENT FLOI¡I

2.1 Introductùon

A cross secti.on of a portion of a thin-film DRC network is

shown in Fig. 1.1. Fig. 1.2 shows a top viernr of a typical DRC

network. As shou¡n in the d.iagrams the ÐRC network consists of

resistive, insulating and. conducting layers. Electrical connections

are made to tbe device by means of cond.ucting strips placed. on the

bowidary of the resistive layer.

If the layers of resistive and. dielectric materials a¡e

homogeneous and of constant thíclsress the potential y' in ttre

resistive layer can be shown to satisfy the partial dÍfferentiaL

equation, (l ) pp. 241-2431

à2ú * -?L
è*2 Ðy2

aïc þ (e.r)

where

R is the sheet resistance of the resistive layer,

C is the capaoitance per r.mit area coupling the

resistive layer to the ground. pla.ne,

a¡¡d
s is the complex frequency variableo

ft is assumed that the resistive layer is suffioiently thÍn

that variations of þ in the d.irection normal to the gror:nd. pJ.ane

can be ignored.. On eaoh of tlie contLucting strips the bowrdary

cond.ition is that the potential be constant, and. on the remaining

segmente of the bounclary of the resistive region the bound.ary

cond.ition is that there is no cunent flow out of the resistive

region. This is equivalent to the cond.ition,

!r vþ = o (z.z)
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on the insulating parts of the borlndary¡ È ís the tullt length

outward.-pointing normal to the boundary.

In the following d.iscussion we wiII be primarily concerned.

with the problem of calculating the admiltance parameters of two-

port DRC networks (on1y two concluctíng strips on the bor:nd.aiy of 'Èhe

resistive layer). The pole-zero approach will be empha,sized. in the

analysis because it provid.es a direct corurection between lumped. and.

d.istributsfl-parameter systems, and it also facilitates evaluation of

the aclmittance parameters at argr d.esired. frequenoy.

2.2 Properties of Ad.mittance Parameters of Non-r¡niform RC Lines

If the pÌ5rsica1 boundaries of the cListributed circuit matoh

the coord.inate lines of an orthogonaÌ coorcl-inate system, the partÍaI

differential equation (2.1) may be solved by the method. ofseparatLon

of variables. 0n1y four suoh coord.inate s¡rstems exist for pla^nar

two d.imensional networks. îhese are the rectangular, polar,

parabolic, and elliptic coord.inate systems ((l), Chapter J). For

d.istributed. networks of other shapes, the variables ca¡¡rot be

separated¡ and. hence one d.imensional current flow is not possible.

However, ín some cases, one d.imensionaL current flow oa¡r be approx-

imated. to an acceptable d.egree of accuracy. (69).

Consid.er the two-port tapered. DIIC network shovùn in

Fig. 2.1. An orthogonal coord.inate system (*ru) is chosen so that

a fixecl. value of x represents an equipotential¡ a¡rd z represents

the ilistanoe along an equipotential line from a reference axis such

as the centre line of the element. A circuit mod.el of an elemental

seotion of the network may be constnrcted as shown in Fig. Z.Z.

As the lengtb of the section approaches zero, the voltage and. current

in the resistive layer can be shown to satisfy the d.ifferential

equations,
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ærJrPcrxÐfÎrAi,
TITüES
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T5TIVE I,AY}R
DIiìtmTRIC LTIYIR
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SECTTOI{ OF NEII,íONK

Figure 2.1. tho-port tapered distributed RC network.

f(x)a¡ I(:t¡ '6¡ç"¡

cG)qx v(x).Av(t)

Figure 2o2. Circuit model of elemental seotion of
distributed RC networko

r(x)
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ðv (*.s) - r(ru) r (xrs)
?x'

10

(e¿¡a)

(e.¡t)èr. (x. s) E -sc(x)V(xrs)
äx.

where

s is the complex frequency variabLe

r(x) = p/w(x).h, ( z.3o)

n(*) =ewQ)/t, (e.¡¿)

¿0 ""rd 
h, ane the resistivity and thickriess of the

resistive sheet.

€ and. h, are the permittivity a.nd. thickness of the

tlielectric sheet

and.
w(x) is the length of the equipotential line at x.

i.e¡ r(x) and c(x) are the series resistance and. shr.¡nt

capaoitance respectively per unit length of the section.

Fron equations (2.3a) a^trd (e.¡t) the second order

differential equation obtained for V(xrs) is

#[",",#] +]w(*)v = o (z'+)

where
ì- -sroCo

and.
r- E r(o)o'

c^ = "(o)o'

It is noteil that (2.Ð is a Str¡¡m Itquation, and the known properties

of solutions of these equatíons can be used to ded.uce a nurnber of

interesting concJ-usions about the behaviour of d.istributeit RC

networks.

ft is known from the theory of cLífferential equations that

a second-ordei clifferential equatíon has two linea¡l¡r ind.epend.ent
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solutions. Thus the solution of the voltage equati on (2.4) oan be

written as

v (s,x) = a V, (srx) + b vr, (srx)

where a and b are d.etermined. by the network bound.ary oond.itions, and,

V, a^ncL Vr, are the linearly ind.epend.ent solutions.

The ffbasic setfr solutions ((e¡, p. 531) defined. by

dVt rVI = 1t -ã" B f = Oatx=o (Z.ia)

dVtt rVtt -o, 6i:= Vtl= latx=O (e.5t)

are particularly convenient for calculation of the two-port

ad.mittance paramet ers.

The short-circuit ad.mittance paraneters are g'iven in terms of

the basic set sorutions by the following simpre relations ((t), p.¡3)

!12 = Y21 = 1

vr, (srd)

rrr E (2.6a)

( e.6u)

)

a

uoo = 1 .ulr-!:-,-t (2.6c¿¿ 'fÐ' Ç13;fI
where d is the network length (fig. 2¡2 ).

A nu¡nber of interesting conclusions can be drawn about the

behaviorr of distributecl RC networks with w(x) and wt (x) continuous

and bound.ed. in the íntenral ojx-<d. These results follow from the

theory of St¡¡m equations.

1. v, (srx), VII (srx) and. ur, (srx) are anal¡rtic functions of

s and lc over the interval Ol.xld. Henoe the poles of (yij)

are d.etermined. only by the zeros of Vr, ("r¿).
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2. The zeros of vf ("rd) ana Vl, (*rd) do not coinoide with the

zeros 9f Vff ("r¿). Hence tho zeros of ,tr., I . and.

ì
,rZ ,., : are determined only by the zeros of V, (srd.) and

LVff (srd.) respectively, sinoe there is no cancelLation of

common factors in numerator and d.enominator.

3. The poles and. zeros of y1, and. f* lríe on the negative real

axis, a¡rd. are simple, a¡ld. have no accumulation point in the

finite plane. The poles and. zcros are infinite ín number with

a¡ accumulation point at - eO.

4. The poles and. zeros of y11 *d T2, ínterlace on the negative

real axis.

5. The first zero of Jr' o* l2Z occtlrs closer to the origin than

the fÍrst poler

213

In the preced.ing section, we srahr how the two-port aclmittance

matrix pa.:rameters of a tapered. d.istributed. iìC network may be written

as símple relations containing ratios of the basic set soLutions.

By using the Factor Theorem of lfeirstrass ((t), Appendix B), and the

series expansions for the basic set solutions ((2), p.53t), it ca¡¡

be shovrn that the functions v, (",d) vtt (",d) and. vl- (sra) c*,

be expressed. as infinite prod.ucts.

prod.uct expansion is

For v, ("rd)¡ the infinite-

vr (",d) vr (o,d) Tl cr - Ën) (2.7)
k¡1

where
0)s.,)sr)s, and. lim sn -of.ì

similar infinÍte-prod.uct expansions are obtained. for vr, (sra) ana

ui, (s,d).

oO

The poles and. zeros of the short-circuit admitta¡¡ce
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pararneter" (ytj) coinoid.e with the zeros of V, (ur¿), VII (ur.I)t

ana vj, ("r¿). Thus we need, to determine the values of

ch that V (srx) satisfies the differential equa'tion¡\= - S"o co su

(2,Ðr ild also satisfies certain homogeneous boundary conditions.

The bor::d.ary cond.itions which must be imposed. on V (srx)

to d-etermine the poles a.nd. zeros of tire ad.mitta¡rce matrix parameters

are as follows:

1. Potres of the admittance matrix

v(s,o) B o (e.8a)

v(srd) E o (e.eu)

2. Zeros of Jr1 
1

vt(u,o) E o (2.9a)

v(",d)Eo(e.9b)

3. Zeros of T2Z

vt("ra) E o (e.toa)

v("ro)co(z.tot)

For some special classes of tapered. DRC networks the

basic set solutions are knov,rn in cLosed-'form. These inclucle the

r.miform, exponential, s{USf-e law, trigonometric and. Bessel tapers

((t)r p. 3O). The poles and. zeros of the admittance matrix

parameters are the zeros of transcendental fi¡¡otionsl üd Ín most

cases, closed form solutíons for the zeros are not knovrn. Varioue

method.s for computing the poles and. zeros will be presented in

the following Chapters.
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0hapter 3

{BIIINING POI.,ES ÂI\]D ZIIR,OS OF NON-UNIFMM RC LINES

BY TT{E RAYIEIC.II-RITZ METHCÐ

3.1 IntJ,pÈqg!.19,s

In this Chapter we will consider the RayleiglrRitz method

for obtaining approximate values of the polos and zeros of the

admittance matrlx parameters for norunÍform RC lines. The

theoretical basis of this method, Ís given in (3 ) Chapter 6, an¿ r(¿o)

Chapter 6 and 7¡ and only the essential results are given hero,.

füíth the Rayleigh-Ritz method, the potential function along

the transmission line is usually approxinated by a llnear courbin-

ation of polynonials with undetermined coefficients. these

coefficients are determined f¡om the condítion that a suítably

chosen functional should. be stationary with respect to small

variations in each of the coefficients. In practice r¿hen the
out

necessary computations are carried.^on a finite-precision conputer,

the results will be subject to rounding etrors. In the following

section, r¿e r,riIl show that for higÞorder polynomials it ls sometimes

extremely dÍfficult to obtain accurate solutions because of the

effects of rounding errors. Hor¡ever, Ít is also shov,m that this

problem can be solved by using orthogonal polynomials.

Although ít has been shot¿n previously that Ít is

advantageous to use orthogonal polynornials for problems such as the

calculation of leasLsqua:res polynomial approximatlonsr (12), the

application of these methods to eigenvalue problems of the t¡po

considered here does not appear to have been discussed th the

literatr¡re.

The Rayleigh principle ((3) Chapter 6) asserts that any

particular solution Vr(x) of equation (a.¿r) which is consistentwtth



the bound.ary oond.itíons (2.8), (2.9) or (e.'lo) renders the varue of

the |tRayleigh quotienttt.

B(v Jl ',., l#l'*)

t5

(l.t ¡j

t(* V dr(j

these stationary values are equal to the correspond.ing

f" )
2

stationary¡

eigenvalues

The simprest use hre cari make of the Rayreigh principle is
to approxímate the lowest eigenvalue l, of the comespond.ing

bor:nd.ary value problem; since w(x) is assumed. )O for 0(x3 d., it
follo¡rs that àj ) o. rf we ohoose argr continuous fi:nction u(x)

satisfying the bowrd.a,ry cond.itions, then ((:¡, Chapter 6)

n('r) ) à,| (3.2)

The -ilitz generarizatíon of iìayleighrs method. rests in a

more general choíce of the minimizing frxrctÍon u(x) ((¡) 
"rtapter 6).

suppose that v.(x) denotes ar¡J¡ polynomial (or firnction)
J

satisfying aIr required. bor-rnclary conditions. Let us now choose

our minimizing funotion to be a rinear combination of vr(")rs of

the form

u(x)
"rt,,(*) + "rvr(*) + - - + cnv*(*) (¡.¡)

hlhere the c.rs are coefficients as yet rrnd.etermíned..
J

Suppose now that we introduce the above minimizing f\:nction

into the lìayreigh Quotient n(u). Ìfe find. that both numerator a¡¡d.

d-enominator become homogeneous atrd. gqad.ratic forms in the

t¡nd.etermined. coefficients cro tr'rom Rayreighrs principLe we lsrow

that R(u) is a minim¡m for the smalrest eigenvalue ä 1r a,nd

becomes stationary for the f\rnctions u(x) = vr(x) comespond.ing to
the Larger eigenvatues ), (i >r). The necessary conditions that
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n(u) te stationar¡r are

0 (¡.+)

for t

where

Now after porforming the dÍfferentiation of the Rayreigh

Quotientr we obtain the homogeneous system of rinea¡ eqnations
\

'\[o ntr][.] r ô ' 
(¡.r)

a.rJ ji "(")
d.v.I
d:ß

u(*) ri v
J

dJ(

o1

dJc

d.v.

-¡1dxf"

ftj

oz

"L

!¡a ll

b Ej1

(¡.e )

b.
1 (¡.t)

for irj

a^nd

E 1r2r3 --k
È n(u)

-

-¿K (¡.e)

þl
(¡¡g)

The eigenvarues r<! or the homogårr"oo" s¡ætem (¡.¡) oa¡r beJ

shown to be always greater tha', or eEral to the ercaot ei,genvarues

ä ¡r and' are arl positÍve and rear. By increasing the number of
terms in (3J) the errors in the approximate solutions oan be mad.e

arbitrarfþ small.

rn ad.dition, vÍe note that it is not neoessar¡r to const:rafn

the expa,nsion fw¡ctions ri(+) tn (3.3) to satisfy bor:nd.ar¡r

cond.itÍons of the fo¡m ff= Oatx- Oorx= d., sincetheseare
rrnaturalr bound"a,ry cond"itions for minimization of the Rayleigh
quotient R(u), (4) p. l:)z. However ít is nsoess¿rry for the .,rr(*)

a

a
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to satisfy [prescribec].ft boundary oonditions of the form V(x) = O

at x = 0 or x * d.¡ this restriction on the expansion functions

vr(x) oan also be removed if an rrextendedtt Rayleigh quotient

(t+), Chapter ?, iÊ r¡sed. instead of (l.t¡. Trlhen the extend.ed.

Rayleigh quotíent is used it is not necessarily oorrect to assume

that the approximate eigenvalues a¡e upper bound.s on the exact

eÍgenvalues.

3.2 Numerical Results

We consid.er the problem of calculating the poles and. zeros

of the aùtnittance matrix pa¡ameters for a ctistributecl RC network

with a linear taper. fn this case we have

w(x) - wo (t + o( x) (l.to¡

for
Of xS ct

where w(x) is the length of the equipotentiar line at x.

i¡üe d.efine a taper factor T as the ratio of the network

width at Port 1 to the witl.th a,t Port 2.

T È w(o)/w(a) (¡.t t )
rhus 

o( = q -ù/d (l.re)

llhe poles a¡rd. zeros of the admittance matrix pä,raneters

are the zeros of fi:nctions oontaining products of Bessel functions

of the first and second kind of order zero a¡rd one (5).

Define an ar¡cilliar¡r parameter k by

.2
K (1. r l)-Sr o

o
o

drz

'" ÇSl . '" Ç+) - ro Ç*l . ïo ËÍ)

The poles of the ad.mittance matri:c a¡e the solutions of

o (1.t4¡
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llhe zeros of y11 are the solutions of

rr ç*t . "a Çå) - ro *t . Yî c*ål o (r.r:)

The zeros of yz* are the sol.utions of

r" (g) . ï1 Él - r, *l . 
"o Ç$) (¡.rø)0

It is easily shown that the zeros of the imped.ance matrix

parameter uI1 u. equ*l to the zeros of JrZZ¡ a¡rd. the zer.oa of uz,

a-re equal to the zeros of y11. In addition, the poles of the

imped.anoe matrix are the solutions of (5),

J t*+) . Y1 *l -', Ç+) . Y1 ffil E0 (¡.rz)

Thë first for¡r solutions k* (t - I Gr3r4) of (3.t4) a¡ra

(¡.tZ) are tabulated. for various values of T between I a^r¡d 4 ln
((6), p. 74 "",¿ 

p. ?5)Ï also in (7) trre firsr ten solutiong

Yy/U-T ) (i - 1¡2 - - 10) or (3.14) ar¡d. (3.t?) *" taburatect for

va¡ious values of f between O.O5 and. O.95. We note that the

solutions k, of (3.t4) anA (:.t7¡ are unchanged if T is replaoed. by]-

1/^(. Atso (3.1?) has a sotution k = 0.

AsymptotÍc expansíons for the zeros or (J.t4), (3.t6) a¡ra

(¡.t?) are given in (8) p. 3?4 forîl ) 1. The as¡rmptotic

expansion for the zeros or (3.16) with T ) t ca¡r arso be used, to

obtain approximations for the zeros of (3.15) withTSl. These

as¡rmptotic formurae are most acor¡râte for T rpp"o*imately equal. to

unity¡ and for ur/(T-t) ))t.
A computer prograln which can be used. to calculate aoou¡ate

values of the zeros of (3.14) - (3.tT) fo" O.l 3"lS1O was

developed.. Approxímate values of the zeros are obtainerl. from the

1

" I:.i5^liïtl^.,1.;^-1'Íl'l*ì l:,fÌ'lil i:^stlr1 ria'lcr, and' the



asJrmptotíc expansiorls, or from empirioal formula based on the

numerical results 3'iven i" (9). Ttrese approximate zerog are then

refined. using the seo6nt mod.ificatíon of Nçbonts method in whioh

the derivatives of the fwrction are replaced. by difference

quotients. Vafues of the Sessel functions ,lo (x), Yo ( "), 'f.¡ (")

and. ï,, (x) are oalculated. using the polynomial approximations in (8)

p. 369 - 3?0.

Table 3.1 shows the first 20 poles a'nd' zeros of the

impeda,nce and admittance matrix parameters for a taper faotor

-f- 0.1 ' (The numerical values shown u,. X? = -si to oo d'2 where

the s, are the poles and zeros). The resul-ts are believed' to be

accurate to at least J significant figures. This oonclusion is

based on comparison of these results with those given i" (?), æd

the fact that the pol¡momial approximations for the Bessel fi¡-nctíons

are accurate to at least J decimals.

l,le now consider application of the Rayleigh-Ritz method' to

the problem of calculating the poles and zeros of the immittance

matrix parameters for a linearly tapered" distributed' RC network'

A oonveníent form of the minimizing function u(x)

(eqr¡ation (¡.¡) ) i"

u(x) "(")f J

k

19

(1. t e¡c. x
J

j=o

where v(x) is a pol¡rnomial satisfying the frprescribedrf botuad-ary

cond.itions of the problem¡ and. which has no zeros in the interval

O <x:3 d..

For calculation of poles of the admittance matrix we choose

v(") E x(r-x/a) (¡.t9a)



ÎABLE 1"1. Exact eigenvarues corresponding to the first 2o poles and zeros of the immittance natrix paraneters

for a Ilnearly tiB.ered' <ìistributed' RC line'
1= O.1 E net$tork vridth at port lfvidtln at port 2

The poles arrd zerosr si, are related to the elgenvalues oi of equation (3't3)'

I
2
3

6
7

4
5

I

16
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t8
19
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13
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10
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For the zeros of y

a.1J -

11

v(x) (t-x/a) (¡. r 9r)

For the zeros of y
22

"(*) a)(' (3. t 9o¡

And. for the poles of the impedance matrix

*'(*) (¡. r 9¿)

The next step is the caloulation of the matrioes a and- B in
the homogeneous system (3.5). tr{ith u(x) aerined. by (¡.rA) IJquations

(¡.e) an¿ (3.?) become

1

4..
J1 =f] ",., #þc.r.'-J *[,,*r*i-1] a* (¡.ao)

(¡.er )

(1.¿z)

ij jÍ "(*) ["(*)] 
2 *i+i-2 dlcb =b

I
m

/\mür(x/ x dJc

t= I
for

i, j = 1êì --- (t+t)

with w(x) a^nd v(x) clefined. ty (j.1o) and (3.t9).

rt is seen that the a* and. b*, are linear combinations of integrars

of the type

J"for
m = or1r2 ---z(t+f)

where I is the d.egree of v(x)

For a rinearly tapered. DRC network, w(x) = wo(1 + orx)r ild
the integrars in (l.zz¡ ca^n be easiry evaruated, !'or other types of

taper funotions w(x) such as exponentÍaI, and. squared. tapers (!),
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analJrbic expressions for the integrals (3.22) are rea'd-iIy obtained'

However, for other taper functions, it may be necegsary to resort to

approximate numerical integration teohnique" (3), Chapter 8.

The final part of the calculation is the solutíon of

[O - nt{[t] r O. This was done by a tibrary prosram (1O) wrricrr

starts by d.ecomposing B into the form L Lt where L is a lowe¡

triangular matrix. Matrix A is then premultiplied by Ll1 and

postmultì-pried. ty (lt)-1 to give

L

,t (t,t )
-1

"üt'-']
0 (l.zl¡

this is the usual form of the eigenvalue problem, and we

note that the s¡rmmetry of the problem has been preserved. The new

matrix t-1 ¿, (f,t¡-t can now be tridiagonalized by the Householder

atgorithm¡ antL the eigenvalues found. by Sturm sequence a¡d ¡isection

(lt), chapter 5.

The output from this prooed.ure consists of a set of
,D

eigenvaiues *?, and the corresponding eigenvect"t" 
L"rr] 

, where

c., is the jth ooefficient for the ith eigenfi:nction clefined by
Jr

(3,r8¡.

Thus the ith eigenfu¡ction is

k+1

(l.z+)

ii- 1

The procedr:re described' above was used to compute approx-

imate values for the poles and. zeros of the immittance matrix

parameters for a linearly tapered. DRC network with'lÍ=1 and.f-O.1o

An attempt was macle to obtain solutions with potynomials u(x) of

d.egree 5, 1O¡ 1! and_ 20, usíng two computers with different word.

or(")
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lengths; the oomputers used Ïrere ar¡, IBI{ ?O9O with a word length of

36 tits, and. a CDC 6400 with a word length of 60 bits. Mren the

program Íras rì.ln on the IBill ?O9O, it either failed- for u(x) of

d.egree |15 beoause it was determined that a negatíve cliagonal

element occurred. d.uríng the d.ecompositíon of B ínto LLt, or a

negative eigenvalue was found.. Both of these oonditions result

from round.ing errors cì.uring the calculations. For u(x) of clegree 10,

it was for¡nd. that the lowest eigenvalues obtained. using the program

on the I3M ?O9O agreed. with those obtaíned. using the CDC 6400

progratn to J significant figr:res, but the }argest eigenvalues agreed.

only in the fi¡st 1 or 2 signifioant figures.

The reason for the d.iffioulties encountered above ís that

the off-diagonal elements of the 3 matrix are not signifioantly

smaller than the d.iagonal elements for the larger roür or oolumn

nu¡nbers, In fact¡ for a taper factorT=1, a.nd. v(x)= 1, the 3

matrix is iilentical to the principal minor of ord.er k+1 of the

infinite Hilbert matrix (lZ). It has been observed. frequently

that systems of linear eqr.ntions involving minors of this matrix

are very difficult to solve accurately. Thus we conclud.e that

solution of the eigenvalue problem with a minimizing f'unction of

the form (¡.tg) is Ìikely to be inaccurate,

lüe now consider some possible method.s of reducing the

problems of numerical inaocuracy experienced with the methocl

d.escribed. above. FirstJ,y we note that the elements in eaoh row of

the lower triangular matrix L-1 (or each column or (lt)-1) are trre

ooefficients of a system of pol¡momials which are ortbogonaL brith

respeot to the weight fi¡nction w(x).["(")]2 on the interval

O Jx $d..
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and.

Then

P xi-1

-1T- L

T

Let

d.

I.

(t.zj)

(¡.zo)

(t,zt)

(l.ze¡

(¡.¡o)

(¡.¡r )

( ) t. . *å-1
1J

j=1

2w(") ["(-)J

in Equation (3.e3) is given by

P x j-11-1
o

This follows since, by d.efinition,

B

D

(x) ¿" o 1 for i=j

= O ror Í/j

TAT t

( ) P

;. TBTt = r = unit matrix (!..eg)

and, the left ha^nd, side of '(3.27) is trre (irj)trr element of the

matrix produot (3.29).

ft ís now clear that the (iri)tfr element of the matrix

LLt

r-1 ¿ (lt)

dr "(*) - å þt"lrr-.(*)]"* þt"rj-,(*)] drc. = d... =JJl f.
If the minimizing function u(x) in Fquation (3.18) is

replaced. by

k
o. Pr(x)o(*) .rt(") fj-o (l.lz¡



flhen Equation (3.e3) beoomes

D k2

E

P (x 1E

(*-dr ) no(")
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(t.tr¡

(l.r4t¡

(:.¡4o)

t '] ['] 
E o

llhus both choices of the minimizing funotion u(x) (3.¡:a) or (3.3e)

lead. to the same matrix eigenvalue problem.

The problems !ìre are nolr faced with are the d.etermination of

the orthogonal pol¡momials Pr(x).satísfying (1.2.7)r and accurate

evaluation of the integrals in (3.31).

It can be shown that any set of polynomials which are

orthogonal with respect to some weight function w(x) over a¡r Ínterval-

a$x{b satisfy a th¡ee-te,rm recurrence relation (lZ), (l¡)

(x (*-Ç ro_r(x) -Frpnz(x) for r22 (3.34a)P )r
with

ancl

r.' (x)

)o

For certain cLasses of weight funotion w(x), ttre

coefficientsol", Fr æ" lsrown (8), Cfrapter 2?.. fn other cases,

these coeffioients may be computed. as follows (te), (t¡). l^le define

the scalar product .of two fwrotions f, (x) a^na fr(x) bf

(ft, tr) 'w(x) r, (x) rr(x) a:c (¡.¡l )

Then

o(r (* P"-r (*) , po-r Ø)/(r*, (x) , rr-, (x)) (¡.¡e )

for r)1

F, E G p"-l(x), p"_zG))/(pr_r(*), r"_r(x)) (¡.¡t)

l^

and.

for r) 2
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't¡le note that the highest coeffÍeient of each polynorniaÌ

is unity, so that'they aro not orthonormal in general. The

orthonormalization ls achieved by divldíng each of theiþotynomials

in (3 JL) ay

õ" =(Pr(*),P"(*Då O-.re)

For pqrpoSes of numerical work it is necessary to replace

integrals of the typ" (3.35) by appropriate rulos for numerical

lntegration. that is, we introduce a fixed set of absclssae

\, x2 x*r and assume that

I
b

a

m

(rr , tr) = w(x) r., (x) rr(x) dxãrf "Í 11 (x.) r, (xr)

i=1
þJg)

is sufficiently accurate for the functions in question. For

certain classes of weight functÍons W(x)r the values of the weights

t^¡. and abscissae x. r,¡hich render the numerical integration formula
I].

(3.39) exact for polynomials f,, and f2 *p to a certain rilegree

have been tabulated (3) Ctrapter 7¡ Appendix {. For the case when

w(x), f1 (x) and fa(x) are polynomials, the Gaussian quadrature

formula, (3) Appendix /r, yields a nrunerical integfation rule which

is exact when the integrand. io (3.39) is any polynomial of degree

less than 2m.

l^Ie now return to the problem of determining the coefflcients

q"rÊ" and?jr for the case of a linearly tapered DRC netr¡ork with

lr(x) = w(x). þt*l]t where w(x) antl v(x) are given by Equations

(3.t0) and (3.19) respeetively. 'rnle use Gaussian integration to

evaluate the integrals on the right hand of equations (3J6) and'

().31), and the recurrenco relation (3,3lra) is used to generate the
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val"ues of the orthogonal pol¡rnomials as required at the abscissae

*1, *Z - - - xm. The integrals in (¡.¡t) can also be.evaluated

using Gaussian integration once the vàIueu or ¡þ [",", 
pr(*i]

for p0, 1, -- k, h4ve been d,eterminedr

Fbom (3.34) vre obtai¡r

v(x) ro(x) - v(x) (3.4o")

v(x) n, (x) v(x) ("-a) ro(x) (¡.+or)

v(x) rr(x), = v(x) [t--"; r"-r(x) -F"p,,-r(*)] ror rì2 (3.40c)

rhus the varues "t * Fr", r"(") | ar í= *1, *2 - - - xm

and.

can be for¡nd using the following relations )ß

so(x) = * ["t-i r"(*)] EB v'(x)

s, (=) - * ["("1 r, 
(*) l= v(x) + (*-{r ) so(*)

s"(*) - * [",*) r"(x) ] = f"-.Ð e'-, (*) + v(x) ro-, (*)

P s"-r(*) for r ) 2

(3.4rr)

(¡.¿lr)

(¡.4r c)

llhe method outlined. above was used to calculate the poles

a,nd zeros of the immittance matrix parameters for linearry tapered.

DRC networks with taper factors'l"egua1 to O.1 and 1.0. The program

!¡as run on both the rBM 7o90 a¡rd coc 64oo computers. rt was found

that for k = 51 10, 15t ZO (nquation (¡.¡Z)) tftu eigenvalues

obtained. usíng the two computers, (one with 36 bit words and the

other with 60 bit word.s), agreed. to at least 6 signíficant figu¡es.

Tab1eç32-t6 show the approximate eigenvalues obtained. for

d'istributed. RC lines with taper factor Íequar to 1.0 and. o.1.

* As discussed in (tZ)i and. verified. by.the results obtâi ed. here,round.off
errors in the computatign qo not accumulate excessively when the recurrence
rerations (¡.¡+), (3.35), (¡.+o) and (3 "41) are used..



TABLE 3.2. Approximate eigenvalues oorrespondí$g to the poles of tbe admitta¡¡ce natrix for a r'¡niform RC line'

NP is the degree of the polyzronial used. to approrj¡ate the poteritial f¡¡r¡ction'

The polee, Êi, are related to tbe eigenvaLues, n?, by equation (3'13)'
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TASLE 3.3. Approxirnate eigenvalues corresponding to the zetos of the admittance natrix elenents x1 I ' Y22 fo'

a unifor"sr EC 1ine.

Np is the degree of ihe pol¡nronial used. to approxi¡oate the potential function'

The zeros, si, are related to the elgenvalues¡ f!, lf equation (3''13)'

!9
:ta

iT
1B

r5
tó

9
0

1 I

t3

7
I

6

3

4

I
7

?67?,9 "07

2 " 
467401 7.+61+OL

?2"?oóól__
ó1. ó 8503

? "+67qOL2?.20óól
2.467¿+O

?2.2L385 ?? zo66L
63" 0?7 67

L48" 2050
ól "68502 ó1.68 2

i20.9046 r20 eo?6 o.go26
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lA3tE 1.4.

ÎA¡LE 3.5.

A-pproxillûte eigenvalues oorrespontì.ing to the poles of i;he adrnlttar¡ce natrix for

a linearl.u tapered RC li¡re.
T- O.l - netrtol'k width at port l/uid'bh at port 2

The polesr,sir a.re;related to tha eigenvaluesr t!, t¡, equ¿tlon (¡.1¡).

I.IP is the degree of the polynomial used to approxjlate tbe pote:rtial firnction'

Approximate eiSenvaluet corresponding to the zerog of ¡ne admlttance roatrix

element Yi.l fo" a linearly taperetl RC 1l¡re.

llhe zeros, B1r are relsted to the e]-genvslues, rt!, ur equatiou (¡'l¡)'

l and ÌT! e¡e as in f.A¡LÐ 3.4.I

l

I

¡

I

t

I

l

!

j

¡

I
j
I
I

i

1

I

356Q.9?6
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]5312r-I-þ-----
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20
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2
The eigenvalues k. are related. to the poles and. zeros of the

actmittance matrix parameters ty (3.t3).

I¡le therefore conclud.e that this method. ís nurnerically

superior to the one previously d.escribed, which uses a minimizing

fwrction u(x) of the form given in (3.t8).

Some atld.itional numerical experiments vÌere carried- out

using a minimizing funotion

32

(1.+z)

(¡.+3)

(¡.ø)

k

Lj-o
tÊ

u(x) v(x)- To
J

(")
J

where
rl (x) is the Chebyshev pol¡momial of degree ir shifted'

to the interval O {xld.
In this caÉ¡er the elements of the A and B matrices beoome

ã,.,-â..=lJ JI Í] ",-, *[r.r ,î-,(.1 *þt-r 1-,(-)] cbr

b..'- b.. =lJ Jl
(") ["t"t]' {_,(") ni_.,(*) o,

.d

-J"

The Chebyshev poþnomials satisfy a three-term recurrence

relation of the torm (3.34) *d the coeffioient" ür, Po are knovm

(8), Cfrapter 2?. Gaussian quad.ratr^lro oaï then be used. to evah¡a;te

the integrars in (¡.¿¡) and (3.44) since rl (x) *'u * ["t-l r"(*)]

are easily obtained. at x - *1, x.r 
- 

xmf using reourrence

relations of the form (3.34) a"d (1.41) respectively.

It was found that the eigenvalues obtained. using Chebyshev

pol¡momial-s d.iffered from those obtained. using the orthogonal
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pol¡moníals Pr(x) ln on].y the last one or tr¡o decimals. Thus we

conclude that both of these nethods give essentially the same

numerical accuracyr

Finally, the eigenvalue probLem r¡as solved ,r;¡ith

u(x) = v(x)
J

(") 0,as)

k

tj

where

L-(x) are the lagrangían interpolation polynomials
J

corresponding to equally spaced points ln the interval O3:x(d.

(3 ), chapter 2. It r¡as found. that for the larger values of k, the

accuracy of the lor¡est eigenvalues decreased markedly, while the

largest eigenvalues w€rre in close agreernent with those obtained by

the tr¡o mothods descrÍbed above.

3.3 Conclusion

Although we have only considered the class of nor¡uniform

transmissÍon llnes for which

r(x) = ro,/w(x) (2.4A)

and,

c(x) = co' w(x) þ.+Z)

the method can easily be adaptecl to solve problems for r¡hich

r(x) = r"/t(x) (9.4e)

c(x) È, co e(x) 0.t*9)

fn this case the Rayleigh Quotient (3.t) is replaced nyr(1 ), p. 59t
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f.
s(") l#l' dx

¡
d

/\ 2g\x, u clx

o

and. the solution is obtained- in the ma¡nner previously desoriþedr

fn ord.er to minimize th.e effects of ror¡nd.ing errors it is
better to choose the minimizíng function u(x) of the fqrm (¡.¡¿)

inetsad of the form (3.18)¡ íf the rorm (3,18) is chosen, an

ill-conditÍoned system of eqrrations is like1y to resuLt. The

fr(x) fn (¡.32) may be an¡r system of orthogonal pol¡momials, but'it
is genorally most oonveníent to uee po\rnomials orthogonal wf.th

respeot to w(x) in the lnterval O jx(d. The integrals should be

evah¡ated by a numerical i.ntegration formrla of the typ" (3.39)

where the varues of the orthogonar porynomiars at the absoiscae xi

are oþtElaed by means of a reourrenoe relation¡ this method. was

foud. to give better numerioal accuracy thar¡ oJher methods.

n(u) (1.5c)



35

rt
Chapter {

CtsTAINING POLIIS AI\]D ZIIIROS OF TITU ADMTTTANC]I MATRIX

BY SOLUTIOIü 0F FIRSÏLORÐER DltrF.,mirT'lTIÀL IIOI]ATICNS

4.1 Introd.uction

lile now wish to consid.er a d_irect method for obtaining

approximate eigenvalues of the bound,ary value problem defined. in

Chapter 2r which uses the pair of first=onder d.ifferential equations

(e.3a) and (2.3b). The fírst-order equations (e.3a), (2.3b) ar.e

equivalent to tbe second.-ord.er differential equation (2.+), a^nd. the

eigenvalues are prroportional- to eithe¡ the poì.es or zeros of the

ad.mittance matrix parameters, d.epend.ing on wirioh of the bowrd.ary

cond.itions (2.8) - (2.1o) are satisfiecl by the eigenfirnctions. As

before, we consicler only tvro-port d.ístributed_ RC lines supporting

one-d.ímensional current f Iow.

The nunerical technique used. here is knorn¡n as the Method of

Moments, which is cl-escribed in some detail in (l+), Chapter J.

Although the method as descríbecL in (l+) is directly applicable to

analysis of lossress transmission lines, it is easiJ.y mod.ified. to

solve clistributed. RC transmission line problems. one interesting

feature of the present rne'thod. is that under certain cond.itions the

approximate eigenvalues are smaller in magnitud.e than the exact

eigenvalues; with the method. d-escribed. in Chapter 3, the approx-

imate eigenvalues are always langer than the exact eigenvalues.

This sometines introduces clifficulties in the practical application

of the method.j sÍnce the approxÍmate eigenvarues comespondíng to

the rarger eigenvalues may be comparable with the smaller (d.ominant)

eigenvalues. This probl-em cloes not appear to have been consid.ered.

prerriousry in the literature¡ and some techniques for d.etecting
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these rrextraneoustr solutions are d.escribed. in this Chapter. In

add,ition, by mod.ifying the trùrng1e functions which are used to

approximate the r¡r¡ls¡own volta"ge and ourrent in the tra¡rsmission

line it is shown that the aocuraoy of the solutions may be ímproved.t

and. the rrextra,¡neou*¡tr solutions mentioned. above are avoided.

fn (t¿), Chapter ? it is shown that when similar series

expa^nsions are used for the unJmown voltage anrd. current furrctionst

the solutions to the first-ord.er equations convexge faster tha"n

those to the second-ord.er equation. It is shor,rn here that if the

transmission line is d.ivid.ed into a numbe¡r of lncremental sections

of length h, a.nd. pieceurise linear approximations are r:sed. for the

voltage and. current fi¡nctions, then the as¡rmptotic error in the
t

eigenvalues 1s generally of ord.er ha. For the second-order
2d.ifferential equation the as¡rmptotic error is generally of ord.er h .

4.2 galÆge[iong-þ¿-tþ-ç-¡nelloa
of Moments

The first-ord.er equations (2.3a), (2.3U) rnay be written in

the form

[; *] [; ] l
sc(x)

0

(+.r )

where
c(x) and r(x) are the capacitance a^nd. resistance respect-

ively per r:nit length of the transmission line, and. V(x) a¡rd I(x)

a¡e the voltage and. current in the resistive layer at x.

. The poles a¡d zeros s, of the ad.mittance parametera are

the values of s such that (+.t) has a nor:¡trívial solution when

V(x) satisfies the bowrd-ary cond.itions (e.8) - (Z.tO). These

bound.ary cond.itions may be put into the form:-
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(4.2t)

(4.2.:o)

(4.3")

(4.:t¡

(+.+,)

(+.+r)

(4,5r)

(+.st¡

v(o) È

v(a) =

r(o)

v(a)

o

o

o

o

2. Zeros of Jr11

3' Zeros of y
22

where

1

v(s) -
r(a) =

o

0

cL is the length of the tranrsmissíon 1ine, a¡rd. osxld.
Nextl we choose two sets of basis fi¡nctions, 11, Ø2,

*U 
P1 , fr, and approximate V(x) anA f (x) as fotlows:

k

1

c. d.J'J

j

(")

r(") f 9¡ (*)

j=1

tlE

d

j=1

where
o. and. d.. are coefficients to be d.etermined. The numberJJ

of basis fir¡ctions, k a^nd. r respectively, need not be equare

The u¡knov¡n coefficients c, a,nd. d.- a¡¡d. the approximate

eigenvalues are obtained. by the method. of moments as d.esoribed. in
(l+)r chapter J. The matrix eigenvarue probrem to be sorved is

A h¡ o (+.e)
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wt¡qre

arrd

A

B

À

l"rr]' L,r]-' l,rrl
Mø

(4.7")

G.ra)

Ø.7")

(+.8")

(+'et¡

(+;eo¡

-s

d.

^.1/.1J "G) f i G) Yi (*) a"

*, dx

"G) þt1") /i (x) ¿"

%
d.x

o

þ
m.

1J

r"

J"

The coefficients d. are obtained from c by using

f.l e -["fJ-' [,nø]þ ] k.g)

In the above it is asr:umed. that the Þ ¡(") are such that the

V(x) satisfies the bor¡r¡dary cond.itions (+.2¡ - (+.+). However, it
is not neoesSary to oonstrain I(x) to satisfy the boundary oonditions

(+.f¡ - (+,q), since these are trnaturailr bound.ary cond.itions whioh

must be satisfied. by the e:ract solution of our problem. fn

atldÍtionrthe bor.¡ndary cond-itions on V(x) could- be mad.e rrnatw.alrr by

mod.ifyins (4.8"¡; this is discussed. Ín (lq.) pp. 147 - 148.

Techniques for solving the matrix eÍgenvalue problem (4.6)

have alread.y been d-iscussed in Chapter 3, and. will not be consid.ered.

further here.



4.3 Numerical Results

I,üe now consid.er the choice of the expansion firnctions f,

^nuf i'
Piecewise finear approximatíons to V(x) a¡rd f(x) may be

obtained. by choosing triangle functions for Þr(") anat!r(x) as

d.iscussed in (f +), Chapter J.

Suppose we choose N points, O = x., <x.{.x3 --- :1_t<

x'n = d, and d.enote the d-istanoe bet¡¿een suocessive points by

39

(4.ro)

(4.t r r)

(+.t tt¡

h j+1 X.
JJ

for
J 1r2-- (rU-t¡

lrle now d.efine the triangle fuaotion T (x) as follows
J

T (*) 1-
J

(x - *j-t )

for x 1x1 x j+1j

for x j-1 1x(x
J

elsewhere

j-1h

o

for i 2, \ 4 -- (t't-t )

r., (x) å
ht for 0l*l*¿I

elsewhereoIt



a

o elsewhere

Îþe p-i,eg.ewise linear approximations to V(x) a^nd. I(x) are

r*(x)

Lüþ

Nfj'1

40

(4.tto¡

(4.tza)

(4.r:)

(* - \_r)
\-r

v(x) L c T (")
J

fo:r \¡_ 1 
( x5 <1

3

N

j
j*1

¡(*) d T (") (4.tzv)j

Since

rr(") r 1 for*=*j

and.
r*(x) E O forx=xJ anai/J

the coeffícients c, and. d. are interpreted as the values of v(x)

and. I(x) respectiv"t" 
1* 

x = x,¡

- witit { (x) .na f ¡(x) reptaced ty ro(x), rhe fntegrars in
(+.8) may be easily evaluated.

Using (4.8") Ít oan be shown that

J

3

-1

-1 I

-1 0'l
o-1 0

I
2

1

a

a

a

a

a

a

a

a

o

1

1

1

where the number of rows and. columns is N
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ÁIthough oxalt analytlcal solutions fo:: the integrals

(4.8u) and (l*.8.) cot be found for various e(x) ancl r(x),

sufficiently accurate approximate solutions ean usuaLly be

obtained by assuning that c(x) and r(x) varying linoarly in oech

interval *tS*S xn*t for te1 ,2- - (n-1 ).

Assuning a linear variation of c(x) in each interval,

the integrals in (U*.8") artr given by

4.
ht
12

(3 c("i ) * c(xa) )

^økk þrt,.h.-,)*3c(\))

h=r.

h (: c{*) * c(t*r ) )

for k = 2¡3, --- (t\L1 )

+
12

(lr.l lr)

4.,n*.=*k*1 ,n=* (o(a) *c(1*1 ))

ú
mNN (c(xx-r)*3 c(xrr) )12

for k e1r22 3--(lL1 )

and #
r_J

0 otherwise

Similarly, assuning a linear variation of r(x) fn each

intt¡rvalr the intesrals mfr in (4,,8u) o" g5-von by a set of

equations irtentical to those in (2,,.t4), uut wÍth c(1tr) replaced

bv t(tr).
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l¡Ie note th¿t ,P and ,P are sJnnmetric, tridlagonal

positive definíto matri¡çs.

As yet, we have not considered the problem of choosing

the approxÍmations to V(x) and I(x) sueh that they satisfy the

homogeneous boundary conditions (L.Z) - (lr./r).

lnlhen tho basis function Ør(x) an¿ l¡G) are triangle

functions as defined above, boundary condítion^s of 'the t¡rpe

V(0) = 0 or I(0) = o are satisfiod simply by setting the coefficient

c.., or d,,, to zero, r¡hi1e bound.ary conditions of the type V(d) = O or

I(A) = 0 are satísfied by setting cN or: d* to zero- This means

that r^¡o simply delete the ror.¡s and columns correspondiirg to these

zero coefficients fron the matríces V\ ,l"P ) "^uIt/]
Having formed theso matrices, ï¡o ean then obtaln the A and

B u¡atrices using equations (4.7u) and (¿r.fu). " W" note that

although B is a tridiagonal matrix, A has no zero elements in

generar, because Ml-1i, * full matrix, even though [*øl tt

tridiagonal.

Table ^{.1 shor.¡s the approxÍmate eigenvalues
2

i r(o) c(o) ¿ obtained for a uniform distributed RC

line with boundary conclitions V(o) = V(a) = O i.e. the

correspon<ting s1 are the poles of the admittanco matríx. These

results we obtained. with all h. , i = 1, 2 -- equal to the values

of H given in the tabIe, and with r(o) = c(o) = d = 1.

Firstly, we note that the approximate eigenvalues are aII

less than the exact eigenvalues. This was also found to be true

for the zeros of the admittance matrix paraneters J¡1 t und yZZ.

fn add5-tion, it was found that the approximate eigenvalues

li = - "



, tl)+J

-fAiLE 4.1. Äpproxloate eigenve,-1-tres corlespcndj¡rg to i\6 ¡io1es of tbe ariltittA:ce

natrl*, fcr a u:rlforur IìC line'
lbe polee¡ Bir â:re rel.atêd to the eiSsrvaiuesr ì a, tv L -srr(c)o(o)a2

n - 1/(ìro. of eegnre*ts i¡i;o vri:lch the ll¡s ia divided)

ÎÌre voltage arrd cu:rrent j¡ the ¡esiative lqyêr sre approximstecl by

tïfantle fturctlons T

3q,47841
88

157.9I3ó
46.7 40L

35i. ) O57
483. ó 6
61t.6546
99.4379

i?"6.9 604
tLe4.22?
r¿,2r.223

îAILB 4.2.

\93+.4 42
220.6

2526.6t I
2

3\91.75L

Âpproxl&ete eigenvalue€j coFespondbg to trre polee of 'uire adnitta¡ree

matrir for a unlfor¡r RC li¡re.

s1r À1r sr¡d H are as i¡r Îa.tslE 4.1, but the voltage e¡c1 ourrerrb i¡l li:e

reeistlve layer are appro¡j¡ated by trlangle f\nctlotls T.,(x), ena

tl(r) tu"n""t1ve1yras 1n ¡'is. 4.1.

B1+e4I

c057ó.

o05
39.2 9e0
9,8

2et. 366
55

ó99. l7l
453

7 5L. 435
80. 32 e

346.402
41.897

144.000
t 8?.958
172.2e2

39.4671
88.702ó

157.1eó

9.8ö9t5 I-zs"+tti - 
|

- Bs.Ei.so---l
157. B7t

354. 81 0
482.347
628. i ð4
793.509
91 5. 17

, I l_73. 5e -_ -L385.60
lé4g-,eL-- -t839.8ó
7011.6)
2304.00

_?5?L1\r_ __
272L.31
2887.tI
3007.34

6.51 624

36.0000
43. 011

14

I

5
t
+
3
z

l2

lo
I

l6
l7
l8
Ie

0.06250,I25H - O.25\ c" 03125 EXACT

34141
I9
I

I

l5
ló

2
2947.6C)3

18.
738.833

2267.L59
594.I05

88. 82 955

46.80ó8
355.5049
484.1123

433.'/,5 0
ló88.07

45

I950991

.9757I II

93

801.6e
672.

e33.20L7
lc4ó. I 57

87.783
1552.C93
t82?.t46

2?40.2e3

8€

539
632

I

0547

8?787
158
247
358
491
ê,4e

I
5

2C18
8333

9 I9 I I

09.89 9.8ó9675
79 - 44? 94

89.6857
1
z

289.4154
5L1 .4r5'l

I62.5 293
262.3656

.5550
9.8ô9ó06

39.41 869 39.47 84
88" 82643
57 " 9t36
4ó.r40I

355.3 057
483"5106

986" 9ó04
4.22?

2?20" 660

2852.3I5

o

9.43I
43I

Ið2526

ol¿)
.963

4

þ=N 0. 0ó2 5 0.03 I25 Ë XACT

)-.3a4-¿tL't:
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obtained for various t¡pes of tapered, dístributed RC lines r¡ere

less than the exact eigonvalues. There does not appear to be a

formal proof that thís method always glves eigenvalues less than

the oxact eigenvalues, although all numerlcal results obtained are

in agreement with this conjecture.

fn couparison, the RayleigÌr-Ritz method for solution of

the second-order d,ifferential equation for V(x), alwalæ gives

eigenvalues v¡hich are greater than the exact eigenvalues. Thus by

using both the Rayleiglr-Ritz methocì and the methocl described above,

to solve the same eigenvalue problern, we would expect to obtaln

rigorous upper and lower bounds on the exact oi-genvalues.

4. fr:rther examinatÍon of the approximate eigenvalues

given in Table /0.1 shows that for the smaller values of H, the

eigenvalues are not arranged in order of increasing magnitude Í¡e¡

the oigenvalues near the bottom of the table are less than those

ir¡nedÍately above them. The reason for arranging the eigenvalues

1n this manner is as follows, þon inspection of oigenfirnetiohs

corresponding to some of the smaller eigenvalues, it r.¡as found

that they had a greater nur¡ber of nodes (zero-crossings) than

the eigenfunctions corresponding to larger eigenvalues. It is

known from the theory of Strrrrn-Liouville equations that the

eigenvalues increase as the number of nodes in the exaet eÍgerr-

functions incneases (2), pp 72J - 723, Therefore, tnstead of

arranglng the appnoxÍmate eigenvalues in order of increasing

nagnitude, we should arrange them according to the nunber of nodEs

in the approximate eigonfunctions. However if this method of

ordering the eigenvarues is used, ambiguitios may arise because

some of the eígenfunctÍons comosponding to the smallen
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eigenvalues havc the sa¡ne number of nodes. Ân arternative method.

of ordering the approxi.mate ei,3envalues whlch avoid.s these

ambÍguitios hras used.. The iìayleigh Quotient,

w(x) z,d.vr
\ dx/ ¿lx

n(") (¿. t5 )¡

2

f
J"

w(x) ,r2 drc

where

r(x)

o(x)

= r(o)/w(x)

rÊ o(o).w(x)

and.

u(x) is a,n eigenfirnotion

vras computed- for each approxirn¿.lte eigenfìlrction. The approximate

el'genvarues are then ord.ered such that the corresponcling RayLeigh

Quotients are monotonically increasing.

Finally, we note that the appr.oximate eigenvalues in
Table {.1 convsrge to the e;:aet eigenvalues as the interval

length H d.eoreases. ,, In all cases the lowest order eigi:¡y¿1¿ès are

most accurate, and. the error inoreases to al¡out 1t/o at the mid-

point of each corumn. (uote that there are actually 31 ei3en-

values coryespond-ing to H - o.o31z5¡ but onry the fi¡st 20

eigenvarues are given in the tabre). BeLow the mid:þoint of each

corumn in tho tabre¡ the error betweon the approximate and exaot

eigenvalues increases markedly, and. the sucocssive appr.oxinrate

eigenvalues begín to d.ecrease at some point, whereas the exact

eigenvalues a:re monotonioally increasing.

ff the method just desoribed is used tb obtain afiproximattons

to the poles and. zeros of the tweport admfttaitce màtrix pararneters,
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and these are then used. to oarculate the frequency response of the

d.is'bríbuted. RC network, it is evid.ent that better accuracy wilr
be obtained. if l,¡e discard. all of the frhigher-ord.ern extraneous

eigenvaluos i.e. if we adopt the prooed.ure of ord.ering the eigen-

values accord.ing to the ma¿;nitud.e of the Rayleigh Quotient, ilren we

disoard- those eigenvalues whiôh ane decreasing while the Raylei,gh

Quotient is increasing. rn practice, this means that approxÌmately

one third. of the total nunber of eigenvalues cal-oulated. wouLd. have

to be discarded.o

ì¡Ie nor+ ¿esori¡e g. mod.ificati.on of ilre preced.ing me.thod.

which was found. to ¿1ive more accurate eigenvalues, d-oes not .Eive

tîextra¡reousrr higher-ord.er eig'envalues, and which is just as eaÊy

to progra,rn on a computerr

The mod.ified prooed"ure uses píeoewise linear approlr-

imations to V(x) and. I(x)r æd ilre approximation to V(x) is

id.entical to that given by (4.1â), with triangle functions defined_

by equations (4.1a)- (4.tf ). For r(x) hre use a d.ifferent set of

triemgle functions. ,For convenience ïre suppose that the triangle
function T, (r) used. io approximate v(x) are centred on N equally1'
spaced pointsr 0 = *1.*Z< *3(--- \_f îN = d, anrl clenote the

distance between successive poi-nts by h = îrh . The piecewise

linear approximation to f(x) is

N+1

r (") I tê
il (")m

JJ (q.t6)
' j=1

where the moclified tria¡rgre fwrotions rI(x) are as shown in
Ì-ig. {.1. l¡üe note that trre nl(x) are centred. on a nu¡nber ofJ'
equally spaced. poÍnts which are midway between the oentre poÍnts



for the lr("),n and. in add-itiori, at x'i O and. x : d.; tho spacing

between triangl-es ís h/Z inetead of h.
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(+.t7)

1

Iof
o

(x) rþ (r)

l4- h *--*_ h

)

n --+l
¿

r'*1.,c"1

o ',x

rl+ ri.*,(f)
1 -4

aaa a

a a

aaa a

aaa a

C¡,1
I

I
I
I

t
I

I

I

ø
l¡t

o
*I -+F* h+-- h *--*þ4

--tFfe. 4.1 Tria¡¡sle !\¡notÍons Íl

-22
-5 41
-1 -55t

-t-5 5 1

C¿

rhe intesr "rt ,Vfl ir, (¿.e") r.rth fr(x¡ - rl {*) and.

í¡(") = rr(*) are readily evaluatedr' and. we obtafn

\ÉÅ 1!'E

a

'1-55 1

-1-4 5

-22

where the number of ro¡rs ts (l.I+t) and the number of oorumns is N..
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Ihe integrrf, r{, Ín (¿*.8b) may be evaluated using a set of

equatÍons similar to (4.t/+), with c(x) replaced by r(x). å,s

previously mentioned the equations (ln.ltr) are exact only Íf c(x)

or r(x) vary linearly r,rith x. In the computer program which was

rrritten, equations (lr.ll) were not used to evaluate f . unA
rJ

^(. . These integrals r¡ere evaluated using an automatic nur¡erical
r.J

integration routine which is based on the method describeil in (15).

The advantage of this is that ühe integrals can be accurately

evaluated for arbftrary r(x) and c(x).

Boundary conditions of the t¡rpe given in (/+.2) - (1r,,4) u"u

satisfled by setting the coefficients c., or d.,' and c* or dN*1 to

zero in equations (1r,5^) and (lr.lo). This is equivalent to

deletÍng the eorresponding rows and eolu¡nns of the matrices

1"f4, [-4, ""uL#1. ïhen the a and B matrices may be rormed.

and the eigenvalues are couputed as previously discussed..

Some numerical results obtainect using the method just

described are shown Ín Tables 4.2 - 4.9. The Tables show the

approxinate eigenvaluesÀt- = -ui "o"od2 obtained. with h = O.25,

0,125t 0.0625, and 0.Q3125t where sl are the poles or zeros of

the adnittance matrix parameters for tlree different distributed,

RC nstworks. Tables /¡.2 and l+,3 gj-va the eigenvalues for a

uniform RC line¡ Tables 4.lr- l+,6 give the eigenvalues for a

distributed RC netr¡ork with a linear taper, and a taper factor of

Q.1, and Tablos 1,7 - /¡.Ç give the eigenvalues for a dlstributed

RC network with an el<ponential taper, and a taper factor of O.1.

fn the latter case, the exact eigenvalues !{ere obtaÍned usir¡g

oquation (16) of (9) fo" the poIes, while the zeros were obtained
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TASLE 4.3. Approxí.nate elgen'rqlues col.lesporrCùr8 to the zeros of lire aCmltÙa¡rCe

natrfx eleíerhs lll - ÍZZ îol a uniforn RC line.

eir à ir I1, and the approxJ-uraticrrs to ihe volt¿¿e aild cu¡r'ent i¡r the

resietlve 1.qyer are as in Î,l,¡LE 4.2.

25
2.4614û2

"2
ó1.7C171

I21.C28C
2CO.4?38

ó1. ó8605

298. ó71 I
¿+!1.1O13
559.91 1l
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ÎÂBtE 4.4. .Applo:Joate el6envalues correspondl¡rg to tbe pol€€ of the aCrcittarice

matrix for a llnearly tapered RC I'ine.

laper factor, ^r. O.l - (vrj'citb of line at port 1)/(wratl a-v por+' 2)

"i, )1r Hr and the approxinations to the volt¿ge and current i¡ the

registl'ro layer are es i¡l U¡LIJ 4.2.
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TÂ3f,8 4.5. ÀÞprcr:xirrate eígé-nvelì:es u.f,lresilorrâiJtg tc the zeros of the adrrlij:eJr¿e

¡¡¡atri:s elerr,ent .vr., for s linea¡ly ta¡rered it0 line'

T}si, Àir H, aad tbe approriilatioas to the vol.tage a?lc'iouTfÉùt iÛ

the resistive l3yer are as ln T¡'BIE 4.4.

1Â3LE 4.6. Approrloate eigenvalues oorresponàing to the zeros of the s.dmlù'uênce

natrix ele¡¡ent J2, for a llnearly tapered BC 11¡e'

.l¡a,t)l,Elancltheapgroximatior.etothevoltaÈèandcurre¡tin

tbe reslstivo layer are â'3 i¡ îA¡LE 4'4'
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îÀBL¡i 4,?. tlppro:rirrraì:e elgetiva¡uec cc:':asponäi::¿ 'to the pcles of the al*iti;¿¡ce

matrl¿ for a¡r expolontially tepcred iìtl 11¡e"

lr e1r À ir Er 411i' the approziosijolrs to tþe voltage ËJrd current í:1

the resietive layer are aE j¡r TAILiI 4'¿1'

3738.75 0
77

I13LE 4.8. .Àpproxieate elgenvslueo correspond'iilg to tbe zelos of the ariml'¿tance

matrÍz element Xf 1 fo" an ex¡ronenti¿l1y tçored RC 1l¡e'

'( t ajt À ,r flr anct the approxj¡¡atlo¡re to tbe voltoge ani cu¡Tent in

the resistivs lqyer e:'e aß in T.A3LÎ '4.4'
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T 1 ø1t I 1r 8r antl the approfl¡ationE to tho voltage ånd our¡€lrt Ín

the reeietfve la,yêr a¡6 as 1rr |P.ffif,E 4.4.

3376.894
315L.e)9

7126.357
1950.03 3

19
?o

2686.O22
3021.589

2764.96L
3131.594I7

l8

l54l.l frB

r?97.758
aLLI.562
2425.35?

2 I 53. ó04
2?76.179

I5
I6

155ó.80ó
t822.405

1ó7 9.8 3 I
I 03q.95 II3

t4

o
889 1 543
0r092.71 1

r?13.833

735.63L?
93^2_.369r-- _

1r59.238
1411.ó7ó1I

1?

713 ¡ ó8I I
892.A201

9
10

41óo 0 l2 9
,54.1 815

4t6,V228
t54.9V67

42L cOL14
565.7037

449.7 21 O

550. I 308
7
8

I 98.8 808' 297.517?

O.8 64?6
2L 5 7

119.9320
L

291.6965
L99.45bL
299.4488

6I.0071.3
L2L.eL62-zoó.s1iï --
31 9. 3 4ól

5
ó

6tr.09272
t22.7e66

?
4

A
51 5

.2 148?

L19.9229

0 .8 577ó0 0
21._2_17ó6
60.72497

1 20.0577

0.858ó579
2L.24247

0.8ó52050
21.50543

I
2

o. 06250.1 25H = 0.25N



53

ê1
by nunerically solving equation (11) of (9), wnich¡ incidønt'Iyr ls

incorrect¡ and. should read

t,anh p =-- I (4.18)
7

instead of
tanh 6 = -1 e

In the tables¡ ohly the first 2O eigenvalues are sho',rn for

h = 0.O3125, although the nunber of oigenvalues actually calculated'

is 31 Ín the case of tho po1es, and 32 in the case of the zerosr

On examinatÍon of the tables, we see that r¡ith the exception

of one of the Larger eigonvalues in somo of the tablesr the

approximate eigenvalues are greater than ths exact eigenvalues;

Corqparing Tables /+.1 and l¡.2, $re see that the approxinate eige'nval-ues

in the latter are [tore aocurate. fn particular, we note that the

higher order approxÍmate eigenvalues in Table l+,2 are generally

wÍthin 1t/" of the exact etgenvaLues, whereas the accuracy of the

corresponding eigenvalues in Table /r.1 is much worse.

Cornparing the results in fbbles 3.2 - 3.6 r¡ith those in

Tables /r.2 - /+,6, we see that the smaller eigenvalues are less

accurate in the latter, wheroas the larger eigenvalues are much

more acourate.

The outstanding feature of the method. using the noèifÍed

triangle functions is the groatly improved accuracy of the larger

eigenvalues, in conparison with the previous methods cliscussed.
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4.4 itxtrapolation proceclures

One ad.vantage of the method.s usÍng triangle functions to

obtain approximations to the eigenvalues ls that extrapolatlon carr

be used- to obtain more accuiate eigenvalues, and. to estimate the

accu¡acy of the solutions. 'fn the potynomial appraximatíon metl¡od.,

increasing the highest ord-er of pol¡momiãl improves the accuracy of

the eigenvaluos, but ín an irregular iüd. unpred.ictable manner.

In the approximation method.s using friangle fr:nctions, we

astsume that the error in each eigenvalue is 'an anal¡rbic functÍon

of the interval h between N equíspaced. points on the íntervaL- ,,

0 fx( cL. Suppose that f, is the approxímate eigenvalue obtained,

with h - hl r and. fo is the exact eigenvalue, and we assume that the

error is given by

ft s fo + Arf. Q.19)

Simllarly, if f2 a^nd f, are the approximate eigenvalues

obtained. with h = h2 and h - h, respectively, we assume

rz r fo + Arh! (+.zo¡

f3 fo + A.h! Ø,zt¡

The çonstan:ts f
ht:hrrh3=1

A.,r a,nd p are readily oalculated. íf

It is easily verÍfied that

gt

ot
230:c t

P In
f 4

1 2 / tnaT=E (4.22)

o 1
and. f (¿.2¡ )
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The procedure just describecl is known as AÍtkÍnrs E2

extrapolation (t6), rn general, the varue of fo given ty (Areg)

lviIl not be equal to the exact eigenvalue beoause we have ignored.

terms of the form A, t{, A3 ¡T --- in equations (4. 19) - (4.2,t).

However, for h sufficien'bry smarl, the vaLue fo given by (4.e3) i"
a better approxímation to the exact eigenvalue than f1, f2 or f3r

and. we are then able to estÍmate the error in the approximate

solutions.

Application of : ; Aitkint" å2 prooess to the

approximate eigenvarues gi.ven in T.ebles {.1, 4.2 a,nd. {.3 for the

uniforrn distributed. RC line inc1icate that for h sufficiently small-,

the value of p givenby (4.22) approaches { i.e. the as¡rmptotic

error in argr approximate eigenvalue as hlo is of ord.er h4. lhe

results obtainecl using Tables 4.4-4.6(linear1y tapered dÍstributed

Ì1c line with raper factor = o'1) índ.ioate that the as¡rmptotiç

varue of p for the lowest ei3envarue is about 3 or slightrln }essr

and. that the ao¡rmptotic varue of p increases with the number of

the eigenvalue to a maximum of about 4.

I'or other simil_ar meürods of solution such as the

finite-aifference method (zS), which gives about the s¿une accuracy

as the variational method. of solving thc seoond-ord.er d.ifferential
equation with triangle fwrctions (4t), ttre rate of convergenoe is
somewhat slower. A typical value of p in (+.23) for the two

method-s just mentioned. is 2 or less¡ However for these two method.s

the A ancl B matrioes (+,6) a¡e trídiagonal- or diagonal, which

red'uces the computer storage requirements, and. in ad.d.ition,

special techníques are available for computing the eigenvalues

Qz¡, r.rith the Moment method- d.escribed- in this chapter the A
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and D matrLoes a¡e fuII matricesr æd these special techniques

ca¡not be used.

4.5 Conclusion

The Method of l,îoments has been used. to obtain eigenvalues

of the first-ord.er system (+.t). Some numerical results were

obtainec. by using piecewise linear approximation for the r¡nknown

voltage a¡rd. current functions. Ïühen the tria.ngle fi:nctions for

V(x) and. I(x) were chosen to be the same, the approximate eigen-

vaLues were found. to be ress than the exact solutions i.e. Iower

borxrd.s. However when the tria^ngle firnctions for v(x) a¡rd r(x)

were chosen as shown in Fig. 4.1 the approximate eigenvalues were

greater tha¡l the exact solutions. rn general, the second t¡rpe of

piecewise linear approximation gives more accurate solutions tha¡r

the first type. rn add.ition, the second method. d.oes not appear to
give rrextraneousrr solutions.

An ad.va¡rtage of the Moment method. d.iscussed here is that it

appears to give smal,ler errors a¡rd more rapid. convergence than other

method.s when the same expansion fw¡ctions a.re used. The basic

reason for this is that vre are approximating the voltage fr.r¡rction

and. its d.erivative with the same order of accuracy, whereas with
iat

other method.s the d.ifferent^Íon of the voltage function increases

the errors. This aspeot is d.iscussed. in more cLetail in the next

Chapterr
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Chapter I

CCN'trARTSCN OF IìAYLEIGH-RITU AND MCPIIBIT I\TETÍIICD

SOLUTI ONS OF UIGIINVALUE P1ìOBLL:il{S

5.1 Introd.uction

In Chapter 3, the Rayleigh-Ritz method for obtaining

eigenvalues of the second-order differential equation (2.4) was

presented. The eigenvalues ar.e the stationary values of the

fi¡¡rctionaf (3.t)¡ In practice the stationary values of the

functional (¡'.1) can only be found. approximately, and- if the

expansion functions satisfy the rrprescribed.rr bowrdary oond.itions

v(x) = o at x = o ancLr/or x = d., the approximate eigenvalues are

greater than the exact eigenvalues.

In Chapter {, the Moment method. for obtaining eigenvalues

of the first-grder d.Ífferential equations (4.t) was presented;

these firpt-ord.er equations are equivalent to the second-order

eqrration (Z.q). It has been suggested that this method. provid.es a

Iower bound. to the eigenvalues (t4), p 1[2. However, from the

::esults presented in Chapter {, it is olear that thfs is not

necessarily so. It appears that for certain typos of eïpa$cien

fi.l¡ctions, the approximate solutions are lo¡rer bounds.

lüe now propose to investigate in more detail the

relatíonship between the two methods mentioned. above, in a,n

attempt to deterrdne vrlgr the Moment method sometimes gives Lower

þoundsr In additton, it wiII be sho!ún that the two method.s give

ícLentíoal results fo:r some types of expansion firnctions¡
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5.2 Jgtr$-&Iþo¿
from (14), Chapter 7t it is obvious that the voltage and.

current fi¡nctions V(x) url¿ I(x) obtained. from the Moment method

satisfy

d

o

f

V

I

d.

f"

d

J"

*l¿*=
d.rc

S¿x-ox

-s . (*) v2 ¿x

r (*) t2 ¿x

(5. t "¡

(5. tt¡

when V(x) a¡rd I(x) satisfy the appropriate homogeneous bound.ary

cond.itions,

By using Íntegration by parts it is also obvious that

-_ d.I
V-CUC F

CLK

-_ d.rv 
- 

cLlr
diK

d"\I

=- ctx
0.x

d

i
/d,

J.
-¿vI '3 clJc

(Ltc $.2¡

is satisfied wrd.er these bound-ary condition¡, and. from (5.1^¡, (5.2)

hle see that the eigenvalues ancl eigenvectois satisfy

cL d.

J"

(

J
r

o (1. r¡-S =

J"

d.

c (x) v2 ax o (*) v2 a*
J"

In order to oompare this result with the lìayleigh Quotient

used. in Chapter 3¡ we will need to use the ineqr.ra,lity (39), p. i6

[-i 'ff0,.].[ "(*),'*] [-+l*l 
'{

$.+)
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from (5.1b)'we see that this ls equivalent to

2

dJ(

Thus from (¡.¡) an¿ (1.5) tt fs seen that the eigenvalues and

eigenvectors satisfy

f" '*cr 
a* tJ" rtÐ 

I 
g 

I

(1,5)

2

Ctv

alx
dJ(

-s (l.e ¡

(5.?r)

(5.?r)

" (') ,l or.

The expression on the right siale of (5.e) becomes

identioal to the Rayleigh Quotíent (¡.t) if we substitute

"(*) "(o)/w(*)

( c( o).w(x)

o

o x )

into (5.6), and then rm¡Itiply by r(o).c(o).

From (5.3) anct (¡.e) we cen immectiate\r deduce the

following. If V(x) is a,rgr continuous firnction satisfying the

bouncl.ary cond.itions of the eigenvalue problem, and. f(x) is chosen

to satisfy (5.tt¡, then (l.f¡ may be used. to approximate the

smallest eigenvalu" 4=-?. The approximate solution given by the

right l¡a¡rd. side of (5.6) will always be greater tha¡r or equal to

that given ty (5.1).' Slnce the Rayleigh Quotíent ie an upper

bor¡nd on À,,, it fol.Iows that (l.l¡ g.ives either a more aocuÍeté

upper bor:nd than (5.6)l or else it 1s a lower botrnd. Clearly
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if I(x) is chosen to satisfy

I(x) = -1 dvfiÐ # (¡'s)

then (5.5) becomes an equalíty, and ths expressÍons on the right
of (5¡3) and (5.ø) are idontical. lloto that if (5.8) is sattsfied

then (5.1b) is also true, but the converse.:loes not necessarily

applh i.e. (5.tu) is a necessary cond.ition for (¡.8) to be

satisfie¿l, but it is not sufficient,

In general, tho appro>d-mato elgenfr¡nctions and eigonvalues

obtaíned by the methods of Chapters 3 and. 4 will be different

even though the voltage function V(x) ís approxlnated wlth the

same eryansion functions. therefore, it is not possible to state

on the basls of the relations (j,J), $.f) that the þloment method

v¡i1I alt¡ays gÍve eigenvalues which are less than those obtaÍned by

the Raylefglr-RÍtz method. In practice, it usually happens that

this is so, provided that (¡,8) ís not satisfiecl.

I,lhen piocewise linear approximations are used for both

V(x) an¿ f(x), it is gonerally impossÍble to satisfy (5.8), and

the appnoximate eigenvalues are tÌkely to be lor.ror bounds as

found in Chapter /¡. However this r^ri[ depend on the type of

approximatþn used for f(x). I.lhen the nodified triangle functions in
Chapter {, were useil to appnoxlmate I(x) the eigenvalues uere

genorally upper bound,s. Intuitively the reason for ¡þs tmproved

accuracy found with theso modified trianglo functLons is that the

errors in (5.8) are red,ucod, but are not zero. Since the

eigenvalues obtained when (¡.9) is satisfied are ræper bounds,

and. the method which uses identÍcal triangle functlons for both
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V(x) and I(x) appears to glve lor"rer bounds, we r.nuld t,herefore

erçect the solutÍons obtaineit r¡ith the modified triangle functionç

to 1ie somewhere betr,¡een theee upper and lor¿er bounds, and would.

therefore be nore accurate, These expectations are supported by

the nr¡merical results obtained. 1n Chapter {.
llhen polynomials are used to approximato both V(x) and

I(x)r (¡.8) Ís exactly or almost exactly satisfied, and the

Monent method and Rayleiglr-Ritz solutions are equal or almost equal.

For exarnple, if r(x) and. c(x) are independent of x¡ l.ê. a uniform

RC líne, the two methods give identical eigenvalues.

5,3 gse-fi¿E¿qg

Inle have considered the relatiorship between the solutions

obtained. by the RayleigÞRitz method and Moment method. From the

ineqrralíty (5.5) r¡e generally eripect the i'fonent method to give

smaller eigonvalues which are either lotpr boundsr or are more

accurate than those obtained by the RayleiglrRítz method.
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Chapter 6

ATTMNÂTTVE METHODS FOR I!}üI'LYZI1\IG NOTI-UNTTCNM RC

DISTRIBUTED NETI¡IORKS

6.1 lpt¡_aduc'lian

In previous Chapters we havo consíde¡rod in some detail tho

Momont method and tho Rayleigh-Ritz nethod for obtaining poles and.

zeros of the admittance parameters for non-uniform RC lines. fn

this Chapter we will briefly consid.er some a.l-ternative nethods.

As discussed previously in Chapter 2, anct in (1 ), Chapter 2,

the admittanco matrix olements can be expressecl as ratios of the

basÍc set solutions, and thc zeros of these basio set solutions are

elthrer poles or zeros of the admittanco matrÍx elements. Tho

basic set solutions may bo e:çand.ed as infÍnite power series in tho

complox frequency variable sr or as infinite product erçansions.

Once the coefficients of the power serj-es eq)ansion havè

been determined, the zeros may be found approxímately b¡r

truncating the series to a. finito nunber of terms, and. then using

a polynomial root exbraction program on â computer. Some numorical

techniques for obtaining the coefficii:nts in the power series

oxpansion are givon ín (1 ), Chaptor 2, Section J, and will not' be

considered fi:rther here,

In the following r,¡e r^rill consider only direot methods for

estimating the poles and. zeros; lvÍth t'hsso methods it is not

necossary to compute thc coefficients in the power sories e:çansions.

Several of the methods to be d.iscussecl give both upper and

lower bounds on tho exact solutÍons, which is a desirable feature.
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6"2 -S¡sqtoa]_yglhggs

one of the simpl.rst methods which can bc usecl to obtain

approximate solutions of the differential equation 1Z.t) is the

finite-difference methocl.¡ which is also known as Lagran€çers method,

(1 ) pp 52 - 59, 0) pp 299-319. In this method' a number of points

a.re chosen on the line, and the potential at ea.ch point is elçanded.

in the form of a truncated Taylor series. The derivatives of the

potential func'bion at each mesh point ean then be estimeted. frorn

the values of the potential function ¿rt the mesh points. Idhon

these approximations are substituted into the differential equation

a na.trix eigenvalue problem is obtained, and this may be solved for

the eigenvalues and the unknown potential values at the mesh points.

This method is equivalcnt to dividing the l-ine into a number of

incremental lengths which are then mo,1ellerl in the form of a

T-netr,¡ork, (1 ) p 5/*. The accuraey of thr.¡ rr:sults is improvod by

íncreasing the nurnber of mesh poinì;s, and axtranolation procedures

can also be used to inprove the accuracy and to estimate the errors

in the solutions.

Ânothel method' which wa's d-evelopcd by schwarz is based on

the Rayleigh PrinciplO (t ) p 6O. this is an iterative procedure

by r+hich more accurate solutions a¡e generated from an initirrl

appr.o>rimation, I't each step of the . iteration both upper and lower

bou-nds on the desired. eigenvaluo aro obtainecl, so that the iteration

can be stopped. when the deÉired. accuracy is achíeved.

One possi'ol-e disadvantage of this methocl is that it does not

appear to be easy to progran on a computer for arbitrary taper

functions,

Another method. for obtainÍng upper and lower bounds on the

eigenvalues is based. on the Enclostrre theorem which is due to
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uc-rllatz (1 ), p 64. Hor¡evc;r, this methocl also suffers from the problem

that it is not easy to prog3an for arbitrery tapcrs; in genera.I it

woukl Ì.¡e rrecsssary -i;o prepare a separate computer program for each

t¡rpe of taper.

In adclition to bhe above mtuthods, tÏrere are a nrìmber of

numerical technirlues r,¡hich exploit the capability of computers to

solve inítial value problems. The possíbility of u-"ing these

techniques to solve eigenvaJ-uc problens I,Jas .first presente<l by

nox (?3), and subsequently several variations wore presentecl (ll).

The use of these ¡netho<Ls avoids some of the difficr¿lties associatod

with the method.s previously cliscussed. For exampler with the

Rayleigh-Ritz ancl I'hm¿nt llethods it is necessary to solve a high

degree cleterrninantal equation in orcl.er to obtain the higher order

eigenvalu-es, and to red.uce the error. for the low orcler eigenvalues.

The solutíon of this equation may then entail such an accumulation

of round-off errors that accurate eigenvalues cennot, be obtained.

6.3 .@sg!ç$
In addition to the methods di"scussed in this chapter there

are many otherÊ.

fn (82) it is shor,¡n that both upper ancl Ior.rcr bounrls on the

eigenvalu,es can be obtained, from the Rayleigh-Ritz solution with

piecewíse linear approximations to the eigenfunctions.

In (8S) a method. which involves a change of dependent

variables is use,l. This transforms the boundary value problem to an

initial val-ue problem, and. the eigenvalues are ohtained by Nernrtonls

netho,.L.

Finally¡ i" (S9), the n<¡n-uniform transmission line is

replaced by a cascacle of uniform lines. This method is claimed.
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to give much bettÈr accuracy at high f::equencies.

Clearly there are many methods which may be used to solve

non-uniform transmission line problems. ,Since the various methods

all have some associated problems, the methorl chosen wíII be

determined. by personal prefierence in most casesr
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Chapter 7

BOUI'IDjJìY Ll¡-'.rr' :iCTS ]i'l LIIS TìIBUF:ìl) RC S TRUCTIIIìES

7.1 Introcluction

IIp to this point, we have been concernorf with the netr¡ork

properties of distributr¡d RC circuits wíth one-dÍmensional

variation in per-unit*length series inpcdarnce ancl shr¡nt conductance'

'do have placed. particular emphasis on the analysis of distributed RC

networks sínce these structures hav,s applica,t,ions in micro-

electronics.

In practice it is advantageous to use tapered RC networks

instead of uniform RC netu¡orks in certain applications. fn

particular, sharoer rates of cut-off are achÍoved for low pass

filters, and bettor selectivity ís cbtained witLr notch networks

ß), (rz),

So fd, we have not consirlered^ in detail the physical

raaLLzat,ion of tapererì distributed RC networlcs. If r+e consider the

class of tapered distributed. RC netr¿orks which support only one-

d.imensional current flow, we fínll that electrical taper anrì

geome'brical shape are gcnera.lly clífferent. Fwthermore, one

d.imensional current flow is only possible if the phpical boundaries

of tha distributed. circuit match thc co-oriline-te lines of one of

four orthogonal co-ordinate systems (1 ), Chapter 7. Those are the

cartesian¡ polar, parabolic, and elliptic co-orrlinate systems.

The ca:.tesian and polal co-ortl,inate geometries rapresent the

uniform RC lin,: and linearly tapered RC lines respectively. Tl:e

parabolic ancl elliptic co-orclinate geometries represent more

complicated. electrical- taper functions which approxima.te tha
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square-root and linear electrical tapers respectively for small

taper ratios (1 ), Chapter ?.

various other procedr-rres can be used to determine the

goometric etrape of a dl.istributed. RC network which approximates a

given electrical taper. One such method uses a conformal trans-

formation of the cartesia.n co-orclinate system, and an alternative

graphical construc-bion nrocerlure is based on the use of

curvilinear sguaïes (1 ), Chapter ?. Both of these methods yield

geometric shapes whj.ch only approximate one-dimerrsional current

flow, and are most accurate for smell taper ratíos.

In this chapter we will briefly considor sone methocls for

two-<limensional anal¡æis of distributed RC networks. Firstl¡ uI€

wil_1 consider the problem of obtaining the zero frequency

admittance matrix parameters for a multi-terminal network. then

we r.¡i1l present solutions which may bo used to evaluato admittance

matrix pararneters at any d.osired. frequency. Thcse solutions are in

the form of a partial fraction expansion which is obtained by

expanding the unknoun potential functions in'berms of solutions

of Laplacers equation and a set of eigenvalues and eigenfunctions

which satisfy the Helmholtz equation in two dimonsions.

In Chapters I and' Ç we r^ri1l consider in more detail

variational rnethod,s for obtaining approximate values of the

admittance matrix parameters anrl the poles ancl zeros, ancl in

Chapter 10 we consicler a methoil which is baserf on the solution of

an integral equation.
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7 . 2 "X\æ*Ðisç nE rçJ¡sI Jnal:s ie -ef'. Dielciþ uls ci-B!--!i-açs..-

' Às cliscussocl a-oove, theri; is a very limitcd range of

geometrical shapes for r.l.ístributed RC networks r,rhich can be analysed.

exactly by assuming one-climensional current flow. In add.ition,

eleerimcntal resultr: givi:,n in the literature inCicate that the

assurnption of a one-cìimensional mo,jel for th.e distribrrted. RC netl'¡orh

uray result in considerable errors. For example, exoerimental stuclios

have shown that the frequency of the notch produced by a circuit

containing an exponentially tapered RC network ma.y be in error l:y

10 pereent or more when r:ornpared r¡ith the thcoretical pred.ictions

(ll), (tg). fn view o:rî the Ínadeqrracies of t.he one-dimonsíonaI

mocicl for many t¡pes of tapererl ,Jistriiru"terL RC lines and also wÍth

the objectj-ve of investl.gating wheth¿r it Ís possible to obtain

better electrical performance from distributed networks which tlo not

support one-dimensional cirrrent floru, we nohr wish to consider methods

for tr¡o-dÍmensional analysÍs of d.istributed RC netwo:rks.

The first requi::ement to be consid.ered vrhen attompting a

tr"¡o-climensional anal¡rsis of a distributetl RC nctr¡ork is the.t the

potential, p between tho rr:sistive layer and the ground plane must

satisfy the Helmholtz equation, (1 ) Cfrapter 7

vzø=sr7cØ (z.l)

where

c

is the resistance per square of the resistine layer

is the capacitance per unit area coupling the

resisti.¡e layer to the ground plane

is the complex froquency variables

1ì

2
and

ís the tr¡o-dimensional Laplacian operator
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In additionr the potential in tlle resistive layer must

satisfy certain bound,ary conditions. The bounclary of the resistive

region is mad,e up of metal contacts and irrsulating segments. 0n

each of the metal contacts, the boundary conctition is that the

potential be constant. 0n each of the insulating parts of the

boundary, the boundary condition is that no current flows out of the

Tesistivê region. This is equivalent to the condition,

Ç,.gþ = a (z.z)

on insulating parts of the boundary; â is the unit- Iength

outward-poÍnting normal to the boundary.

Having founcl the potential functi'on þ satisfying (?.1 )t

and the boundary conditions of any particular probl-em, r,æ 
'are then

able to compute any desired. set of network paramoters. A

convenient set of network parameters for many applications is the

admittance matri;ç whích relates the potential l¡etween the metal

contacts an,1 gi"ound to the current entering the metal contacts ' Ïf

there are N rnetal contacts on the boundary of the resistive layert

tho relation betr¡een the N voltages and currents may be r,¡ritten in

matrix form as,

where

rl = þl ul Qr)

I] and tl are column vectors of length N,

[r] it the lrl X lü admittance natrix

tj is the current entering the jth metal contact

Uj is the potential betr¿reen the jth metal contact and

ground.



7O

If the pctential, þ, wi.t'hin the resistive layer, or the

normal derivative of þ on each metal contact is known when the

jth metal dohtact is at a potential of 1 volt and all othor metal

contacts are at zero potential, the elernents in the jth colu¡nn of

the admittance matrÍx nay be computed using the relation

v..
rJ

u_
ân d1 (2.4)

where

is the boundary segment containing the ith metal

each j,

contact

dl is the elemental distance along the boundary.

By choosing i = 1r2-- - N, and computing *ne Jfij for

the complete adnittance matrix in (7.3) is obtained.

7 .3 DiÊ!r,iþ]rled-&ei.E !ånse -k1çsk!,ise
Before consiclering in detaiL method.s 1'o¡' selrrtion of (Z.t )

we wish to discuss the solution of a simpler problem. If the

complox frequency variable s in (?.1 ) is set to zero, the Helmholtz

equation reduces to laplacers equation,

v o (t.s)

Analytical solutÍons for the resistanee betr¿een two

terminals placed arbitrarily on the perimoter of resistive films

having a restrÍcted set of geomotrios have been obtained by various

techrtques. The usual method for solving such problems lnvolves

the determination of some conformal transformation r¡hich maps the

given geometry into a rectangle such that the con4ucting terminals

c
L

,þ
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become two opposite edges of the rectangle. The resist,ance between

these two terminals can then be easily determincd. An example of

this approach ís the r,¡ork of ll{oulton (1^9), and lnþndrum (29) wfricfi

provides thc resistanee between tr¡o terminals placed arbitrarily

on the perimc:,ter of a rectangular structr:re.

Tho Schr¿artz-Christoffel transformation rvas also usecl by

Ànderson (Zt ) to calculate the capacitance per unit length betr¿een

coaxial cylinders of rectangular cross-section. This is analogous

to the problem of calculating the resistance between a paír of

termina.Is placed on opposite eCges of antrlrrshaperl resistive film;

having solvetl tlris problem, one can then easily solve the dual

problem of a d-ístributed resistor consisting of a right-angle bend'

iilumerous other examples of analytical solutions for tr¿o terminaL

clistributed resistance networks may be founcl in the literature.

À comprehensive list of these rosults ís given in the r¡ork of

natt (22),

Computer implementation of resistauce calculations using the

known analybical solution techniques is fea.sible' Howevel, any

such compr-rter program of reasonable sophistication can only

handle resistors of a restricted set of pred.etermined geometries,

and not resistors of general shape. Furthermor(1, it cannot handle

multi-terminal distributed resistive networksr \^rith the exception of

three-terminal resistive networks with a plane of symrnetry as

considered in (zO).

Because of the limitations of analytical solution technÍques,

greater emphasis haS been placed. on numerical techniques for

analysing mul-ti-terminal rlistributed. resistance net'nrorks in recent

years. Although the results obtained by these numerical techniques
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are not exact in general, there is much greater flexibility in the

types of networks which can be analysed. In addition, some

nunerical techniquos provid.e two approximate solutions r,¡hich are

upper and l-or,¡er bounds on the exact solution, Ë-ind this allows the

user to decicte whether the approxÍmate solutions are sufficíently

accr¡r ate .

We now wish to discuss some of the numerical techniques

which are applicable to multi-terminal distributed resístance netr^¡orks

of arbitrary geometries.

7.3,1 Finite Difference Mcthod

The finite difference technique is perhaps the most popular

numerical method. for solution of Laplace r-o equation. ln this method

the partial d.ifferential equation is approximated. by a system of

linear algebraic equations. This is done by superimposing a

regular grid over the region of intercst, and assigning an unknown

poùential to eaeh intersoction of the grid.. Âpproximatíons to

8ø/a"2 and 32ø/by2 at each grirl point are obtained. in terms

of iliffcrences betr^reen the potentials at a.Jjacent grid points (zl*),

At grid points on or near the bound.ary, the difference equations

must be modified. to account for the boundary conditions. various

techniques have been developc-.¡d for satisfying boundary cond.itions

whsn the boundaries do not coincide r¡ith the grid. points. In

practÍce, however, this is one of the major drar^rbacks of the

method.r and it is no rnean feat to program the logic for boundaries

of arbitrary shape(ã)-

rn this method an initial guess at the potentiar is made

with a fairly coarse mesh. An íterative procedure is then used



73

to red"uce the error iu each finj-te differ'::nce eqr-ra1;ion to a

sufficiently sna1l valuc; itera'hive mothods are generally more

practical than cìi-::r-;ct methocls for solving the simultaneous equations

since the coeflfi-cÍ.ent matrix is very spar'sc, with only five norÞzero

elements per ïow in most cases. Once the potential values have been

comprrted, the nor.mal derivatives along the terrninals of the

distributed resistance net,..rork can be flouncl. usin¡:; finite difference

approximations¡ and then (?.4) is used to obtain the admittance

matrix el.emen-bs. ¿\ further limitation of thís me'bhoci Ís that for

a rnulti-termj.nal structure one would have to repeat the whole

Íteration scheme each tíme a cliffereni potential configuration is

specified.

In spite of 'bhe <lifficulties associa.bed ¡;ith thi-q method,

it docs per:,mit solu'bions of any desired aceuracy (limite¿ only by

rounrj.-off errors in the c¿rlcuLations) by using successively smaller

mesh inte;:vals. Àn excellont revi¡t^¡ of 'this mcthod- is given by

Greor¡ (n), e,ncl. various aspects alfci described in (2/r) anO- (25). A

comparison of this metho.l uri-bh one other method (to ¡e cliscussed'

later) is also given in (26).

1 .3.2 Integral Equartion lvlethod

In adùition to the finite difference method, another method

whieh reformulates the partía1 clifferential equation (?,5) as an

Íntegral equation has been usecl by variou-c arrthors to obtain

numerical solutions of Laplacels equation in trn¡o riimensions' The

integral equa'Lion method is based on the fact that the potential at

a poínt on or inside the boundary of the region depencl's on the

weighted" integrals of the charge density (for TriÞi fieLd problems)r
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and the potential on the enti¡e bounilary. This relationship is

erpres scd mathematically by

f (xly' ).þ("]y') =

r¡here

(F(xtry') is a constant depenoling on the position of the

point (xtryt)

Ú G,Ð is the normal derivati've of the potential function
I

Ø(xry¡ on the bounclarY

T is the ,:listairce bett+cen the points (xtryt) and'

(*,y)

and the integral on the right is evaluated over 7atft" bounclary of the

resístive region.

The weighting frrnction Go(r) is a Greenrs function for

tr¿o-rLimensional spece ¡ and the weighting function G., (r) is tfre

normal derivative of Go(r).

The relatilon (7.6) is derived frorn (1.;) by using Greenrs

boundary vafue formula tn (27), (28), (29),

The Groents function Go(r) satisfies Laplaeefs equation

ínsÍde the bounclary, except at leXrr iFyt. At this point Go(r) has

a singularity, an<l behaves as k 1og r as rl0. Thc simplest example

of a function which satisfies these conclitions is the free-spaee

Greenls function

(

I [n," ).f (x,Y) - cl (r ) .l(x,v)] as

-f
(2.6)

(z.z)co(r) = -1oB'r = -1og (*-r,t) + (y-y')
;'1
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By choosíng a Greenrs function which satisfies certain boundary

eonditions it is possible to obtain an e.rçlicit solution for the

potential in terms of the specified boundary conditions of the

problerrn. Tlris subject is treate,f in some d.etail in (/*), pp 2/+3-259.

Howevor this approach has several d.isadvantagos. ff the natural 1og

functíon is not used for the Greents fu.nctiori¡ å suitable one must

be found. for each problem-, Cften this can ì:e as difficult as the

original problem ÍtseIf. In addition, this Greenrs function will

usually be expressed as an infinite series, and therefore techniques

must be found for efficiently computíng it ancl its derivative.

Some exampl-es using a Greenrs function which satisfies homogenoous

bounclary conditions on a rectartgular bounclary are given in (30).

Approximate soÌutions satisfying the integral equatíon

Q.6) can be obtained as described in (zg) - ßl). This problem

r¡iII also be considered in detail in Chaptel' 1 0.

7,).3 fntegral llquation lvlethod Based on Cauchyrs fntegral EquatÍon

rrtre now consid.er an alter"native method of reformulating the

partial differential equation (?.5) as an integral equation (32),

From ths theory of complex variables it is well knoún that if a

function lþ(z) is definad on the; boundary C of a region R, and' is
I

anal¡rtic in R and on C, then at point Zt in the rogion Rr the

function is given by Cauchyrs integral formula,

1z

f,
(z.g)Ll(

æ dz



Nor^¡ it ís also known that the real and imaginary parts of a complex

function (subject to restríctions given above), toth satisfy

Laplacets equation in the rogion R. l,le may therefore consíder thr:

real and imaginary parts of the complex function f(") to bo the

potentía1 function V(*ry) and the stream function U(xry) (integral

of the ewrent density), respectively.

For the type of physical problems under consideration¡

part of the bounclary consists of metallized segments, and the rest

of insulated segments. On each metallized' segment, the real part V

of t/ is constant and. given¡ whoreas on oach insulated segment tho
I

irnaginary part U of (y' is constant and unknor¡n. /rdctitional

unknoltns are the function U(z) on mstallized segmontst and the

function V(z) on insulated segments.

For purposes of numerical cornputations it is necessary to

approximate the integral equation (l '9) by a set of simultaneous

equations which may be solved for the unknown potential and stream

functions on the boundary. One such method is described in detail

in (32).

7.3.4 Variational }4ethod

In ad,ctition to the methods previously tliscussod. for

solving Laplace ts equation, there Ís another method' commonly known

as the Variational Method. This method is based on the following

princÍpIe¡

The functional f(Ø) eiven bY

=ï lvøl' uu -
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(z.g)

{
q

2

B

F(ø) @stffi ds
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has for its statlon&ry ooncl-ftfons (ßuler ec¡ua'bion) (Zrf ) and- the

natural bortrrd.ary oondltions

þ g(s) on c,, arid # =È OonC (?. t o¡
2

where

is the bound.ary of a region R.

The set of admissible trial functions for n(/) is ttre

cLass of continuous scalar funct

continuousr first d.erivatives su

The proof of the statsment tfrat n(/) givr:n ty (t.10) is

stationary wiren (7.5) and. (?.tt) are satisfj.ed is quíte straight-

forward as shown fn (33).

Method.s for solving the stationary problem rvill be

d.iscussed- in more cletail in Chapter B. In addition, it will be

shor'm that if g(s) is suitably chosen, then n(f) given ty (?.tO)

is proportional to the zero frequency v¿:.Iue of a¡t ad.mitta¡rce matrix

element y... Furthermore, it is shown in Chapter B, that other-¡.J

fir¡rctionals can be constructed such that the stationary value is

proportional to an off-d.ia"gona1 element yrn.

J.3.5 Reduction to First-OrC.er Partial Differential itrquations

An interesting variant to the above methods is proposed. by

Harrington (14)r pp 1 62-166. Equation (t.¡) can be reduceù to

the following syste¡n of coupled- first-ord.er differential equations:

C*CrUC,
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_vø = Ri (7,11 a )

o (7.11b )

þ is the poten*,Íal in the resistive lay'ar

R is the sheet rosistanco in ohms'/square

f is the current density vector in the resistíve layer.

(amperes per unit width).

In cartesian co-ordinates, the s¡rstem of equations (z.tt )

a6 RJ* (7.12a)

V. J

becomes

?x

àJ
X

èx

L
Dy

=RJv

+ð¡
*-J- =ãy

0

(7.12b)

(7 ,1Zcl

Although the method of solution described in (14)

pp 162 - 166t is concorned wlth eigenvalue problems, it can be

easily adaptod to obtain approximate solutions of laplace rs

eiquation. Alternatively, as shown Ín Chapter Ç, approximate

solutíons of the first-order systern (-?"ta) may be obtaÍned by

the variational method. ft fs shor¿n thecc that it ís possible

to construct functionals whose stationary conditionF are (7.12),

subject to certain boundary concitions, and the stationary value

of the functional ls proportional to an admittance natrix

element y. .,
KJ
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In this secti.on we will consider techniques for flequenc¡r

domaln analysis of clistríbuted RC networks, As in the one-

di¡nensional case, we will concentrate prímarily on the problem of

obtaÍning poles and zeros of the aimÍttance matrix paraneters.

The pole-zoro approach provi,les a d.irect conneetion betr¡een

Iumped and distrÍbuted-pararnetor systems, and. also simplifies the

calculatíon of the various network transfer functÍons at any

desired frequency.

As discussed in Section 7.1, the admittance matrix

parameters may be obtaíned by calculating the current entering

each metal contact when the potential V between the jth metal

contact and ground Ís prescribed for j=1, 2-; N. For example,

if V. is unity and V. = 0r for t</¡ tfren the crrrrent entering
Jlc

the kth metal contact is y. wtrere [f] ir the MN admittance
kj

matrÍx.

The potentiaf ø in th.e resistÍve layer satisfíes the

Helmholtz equation (Z,l ), which r.re wÍlI vnite in the formr

v ø *^ø o (1.t3)

subject to the boundary condi{ilons

2
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Q,l lr)

î. vl
ø

ø

=O

=vj

=O

on ír¡sulating boundary segnents

oo q, where V¡ is the

potential on the jth metal contact

on all other metal contactsand

À = -ånc
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l,thêf þ

s fs the complex frequency varíable, and R and C are as

provlously deflned.

In the following, the surfaee of the reslstive reglon will
be denoted by R¡ ancl the boundary of the reslstlve region by C.

The boundary vaì.uo probiLem wlth the homogeneoue ¿iffer-

ontial equation (7.13 ) and non.hÒmogeneous bounCery conditfons

0,1lr) is essentfally equivalent 'bo a problem with a non-

homogeneous differential equatfon with homogeneous boundqry

condltions as d.isoussed in (4) CUapter 5.

ff thero exlsts a twlce ilifferentiable functLon F, whfch

satisfles the same boundary condltions as þ,

â v¡' = O on insulatfils boundarl-esj

V on ths jth metai- contact 0,t S)

and o on all other metal contacts

Then we let
É.F¡ (7,16)

J
F

F
J

v

j

l,Ie then have

'h. v on insulating boundaries

on the metal contacts

v o
(l.tl)! 0

-f,'bom (?-t 6 ) .,ue,obta1n

v'V.^/ e?þ * àþ - vfu¡ - ìF¡

If ue d,efine

(?.18 )
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f2t *lrv jjJ

(z.t 9 )

0.n )

(z.zz)

then flom (7,13), 17..18) , ('1.19) we obtain

rv'f*ÀY = -f j (?.zo¡

Thus If satfsfies a nor:-homogeneous differential oquation

0.zo) and homogeneous boundary condítlons (?.1?).

Ïhe non-homogeneous problem may be solved Ln terms of the

oigenfunctions of the homogeneous problem, ç¡r¡, p 223.

v

â.o1, = o

tþ.
IL

o),r,
+

o

on insul¿rting bounclary

on the metal contacts

6i¡

The eigenvalues ì, *u" be shoürn to be positive and real,

and the eÍgenfunctions þ, "r. also rea1.

The coefffcients i.n a rrbesttr approximation fto tAV a

linear combinatio" "rt, in the least-mean-square sense are.,

ci Q.n)

q, are ortlægonal, and. aro assr¡ned. to be norrnalized so that
I'

the

lÍv'r, d.a ft.24¡
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The c are obtained fro¡n the ooefficients tI

Y i t¡fr*

As shown in (4), p. 223 we obtain

õil(Àr -h )

R

0.zr)

Q.z6)c
1

The approximate solution of or¡r origlnal problem 1s then

given by

6 (xry) (t.zt)f,(xry) F.(*ry)
tu-à

+

I

By using an argunent sinrilar to that f n (/*) pp 158 -161 ,

it nay be shor¡n that the el-genfunctions f i îor^ a complete set

with respect to contínuous functions þ("rÐ which satisfy

homogeneous boundary conditions of the form (7,17)¡ and which

have píecewÍse continuous first derivatives. In addition to

provÍng that the eigenfunction erçansion converges Ín the m€ant

it is also possible to est,ablish uniform convergence at any

point Ín R or on C.

once the potential function has been founcl ín the forn

(7.n), the ad¡nittance matrix element X1¡ can then be conputect by

using (7.t).

The result is
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Yij=*

u.çlv d.a +

-àt

d.1 Q.zB)

0.zg)

(?.3o¡

{,

ð r'.

#ut +
èVt
ñ

t f
fàr-il {,t

I ii

This equation can be put into an al-ternative form whích

shows the s¡rmmetry of the admittance matrix. By using the Greenrs

formula

and by defining a fi:nction F. which satisfies the bound.ary

cond.itions

î. vn O on insulating bound.aries1

F on the ith metal contact

o on all other metal contacts

We can put (?.28) into the form

v.
11'

-4 IIt

"ij R

where

.vF d,a +
1 j

yij - yjr

( tI -a)

I

I

F, and. F, are assumed. to satisfy Laplaoefs equation.

Clearly it follows f¡oo (?.3t ) tnat

(?.:r ¡

(?.¡e)
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as óne r¡rourd- expect from consid.er.a-bion of reciprocity.

fn addition, vre note that (7.3l) frr" the form of a partial
fraction expansion of the rr'ostel cahonical form for arr RC ilriving
poÍnt adrnittance. The complex frequency vaniabre s ís relate¿ to À
ty (2.14). Sínce the eigenvalues l, *" positlve a-nd real, it
follows that the poles are arl negative and. real. rn add_ítion,

sihce the residues of the partiar fraction expansion (7.3î) are

arl positive for d.iagonal èrements of the admittance matrix, the

zèros of these erements must be on the negatÍve real a>cis, ancl. the

poles axrd. zeros alternate on the negative rear anis. Iior an off-
diagonal erement of the ad.mittance matrix the resld.ues ale not

necessarily positive, and. the zeros may be argnuhero in the comprex

frequency p1ane.

7.5 Conclusion

rn the prroed.ing sections some method-s for obtaining

approximate varues of the admittanoe pararneters for d_istributed.

resistance networks were presented.. The numerfoal resuLts obtained.

by several of these methods wíll be presented. in the following

Chapters.

A method- for obtaining the ad-mítta¡roe pararneters of

distributed. RC networks was also d.iscussed. The sorutioïrs

obtained. by this method. are in the form of a partial fraction
expansion whleh is obtained from the eigenvalues a¡rd. eigenfirnctions

correspond-ing to the poles of the ad.mittance matrix. This methocl

also requires the zero frequency ad.mitta¡rce parameters of the

network to be com¡ruted.
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rn the folLowing chapters we wilr ooücentrate primariry on

d'irect method-s for obtaiaing the poles and. zeros of the ad.mitta,r¡ce

parameters¡ i.e. method.s which d.o not require caloulation of the
eigenfirnctions"

The eigenfi¡nction expansion method. has been includ.ed- here

for completeness since it is the classical method. given in textbooks

for solving bound.ary value problems of this type.

The author is ind-ebted. to one of the Reviewers who suggested. that some

oomment on the work of lteinstein should. be included.. A good- souroe of

information is the book by S.H. Gorld., ttVariational Methods for Eigenvalue

Pr.oblemsil, University of Toronto Press¡ Second" Ed.ition 1966, which- is

ct-evoted. entirely to the Rayleigh-Rítz method. for upper bor.rnds, and the

lùeinstein method. for obtaining lower bounds on the eigenvalueso
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Chapter I

VAIìIAITO}üAL MTTIiOXS FOR OBTAINING ÀDMTTTANCE

I,IATRIX PAR-AIIETìi,RS OF DISTRIBUï¡ID RC lf ;ilTlrlOltKS

8.1 fntrocLuction

In this Chapter we will consider variatíonal- method.s for

obtaining the poles and. zeros of the acimitta¡rce parameters, and-/or

the varue of any d.esired. acLmi-btance parameter at a given frequenoy .

The requíred. solutions are p::oportional to the stationary vaLues

of a suitably chosen fr.urctional. These stationary values are

found. (approximately in general), by using the iìayleigh-Èitz

method..

Silvester, (62), has consid.ered. an anal-ogous problem to

that of analyzing d.istributed. RC networks. The problem consid.ered-

by Silvester is analysis of planar microwave networks, but the

teohnique is d.irectly applioabte to d.istributed- tìc networks, since

the transformation from one type of network to the other is

equivalent to the lc - rc transformation for lumped. networks.

The solution for the admittance matrix in (62) is in the form of

a partial fraction expansion involving potential functions

sati-sfying Laplacets equation and_ a set of eigenvalues and

eigenfi:nctions satisfying the lIelmholtz equation in the two-

dimensionar regiono rn practice the infinite partiar fraction

expansion must be truncatecl to a finite number of terms, so that

each admittance matrix term may be expressed" as a rational

function in the complex frequenoy variabLe. ïf d.esired., the

zelos may be obtained by computing the roots of the numerator



B?

polynomial; tho poles are proportÍonal to the eigenvalues.

A possible disadvantage of the above method is that the

time required. to compute the eígenvectors of a matrix is much

greater than that requirod to compute the eigenvaluos. In

ad.dition, on a finite precision computer, the accuracy of the

eigenvalues is generally better than that of the corresponding

eigenvectors, which means that the zeros of the rational function

may be subject to rounding errors.

In the following sections we will consider dÍrect methocls

for computing the poles and. zeros of the admittance matrix¡ it

is not necossary to compute any eigenvectors vtith thæc mothods.

Although variational methods have been used previously to obtain

the poles of the adnittance matrix, (62), these methods do not

appear to have been used to obtain the zeros.

In addition, the use of variational methods for obtaining

numerical values of the admittance parameters at a given frequency

does not appear to have been considered previously.

After presenting the theoretical basis of these techniquest

methods for obtaining nunerical solutlons r¿ft1 be dÍscussed, and

some numerical results are prtsented.

8. 2 IeriaÈie-qet-E æprçss iens .Jer -!¡e -.Adni!Se!.çc-Yatråx-4le:Ee$s
qnd thp"Poles-e!4-æI$

lnle assert that the functionals

(g.t )

lf- "' v da

F.,' (urv)
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rr(u,v) u .Vv d.a - (8.2)

are variational expressions r¡hose stationary vafues are proportional

to the poì-es or zerosr ancl the value of am admittance matrix

element respectively, provid.ed- that the funotions u and v are

constrained. to satisfy certain Dirichlet boundary conditíons; the

parameter À itt 1e.z) is proportional to the complex frequency

variable.

In ad.d.ítion, the firnctionals

lfr
{urvd&

{¡"-*,, rt+ . (.,,-s.,,) B* ] ut
t rr*c, + cn

F3(urv) =
(e.¡)

(8.+)

f
u.gv cla -

]l¡V d-a

l,t,
(',r-so) H . (.,r-s.,) 3'*l .t
+C À

+

^f.f- 
ü¡v dâJ

are also variational expressions whose stationary values are

proportional to the poles or zerosr and. the vafue of an

ad.mittance matfix el-ement ,respectively; in this case u and v

¿re not constrained. to satisfy any bowrd.ary cond-itionsr although

appropriate values of Bu and. g.,, nnrst be specified" on the bould-ary

segrnents C^ + C, + C,_,¿JK
The area integrals :.n (8.t)-(8.4) are evaluated over the

two-dimensionaL region R. The bor:nd.ary of R is d-enoted. by Ct

which is d.ivid.ed. into a number of sectors, C1 , CZt C . ancl C¡r
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such that

c c+c+cc j21

(s.5)
k

The functionals presented above were derived from

consíderation of the differential equation and tho boundary

conditions which must be satisfied by the potential function

u(xry) which is appropriate to the problem being considerod. Ihe

potential function v(xry) satisfies the adjoint equation, and

boundary conditions adjoint to thoso satisfied ¡y u(xry), Appendlx

L, (lrZ) p 1l+8 - 149, By taking the scalar product of the adjofnt

field .rr(xry) and. the dÍfferential equatíon satisfied by u(xry),

and. rearranging the resr¡Iting oquation we obtain a functÍonal

r-¡hich is either proportional to a pole or zero of an admittance

matrix element, or is proportional to the value of an ad'mÍttance

natrix element at a given frequeney. Ihe functionals (8.3)r

(S.¿) were obtained by using an rrextend.ed" d'ifferential operator

r¿hich operates on functions u(xry) or v(xry) uhich need not

satisfy any boundary conditions¡ but r^rhich is identical r'rith the

original operator when the boundary conditions are satisfied (1/+)

p 161 .

In Appendix B it is shown that 1f u and v are constrained

to satisfy the boundary conditions

u=0 onCr+Cn

u = {J.=
J

constant on C j
(s.6)
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v=

v=

0on

vk= constant on ct

+Cjc
2

(9.? )

then the necessary oonditions for F., (urv) to be statlonary are

2 *lvoi .u.Lt- O inR

0 onC

if vkl o

inR

(8.8a )

(e. gb )

(8.8c)

(8.9a )

(g.gu )

(8.9c )

1

o

and

v2\
v.+À.v.=O1t-t-

f
c

ãv.
I

fn = O onC.,

þur= o irujy'o
òn

j

where

].
F., (urrvr)

Now the bounclary of the ùistributed resistance

capacitanco netruo¡þ oonsists of metal contacts and insulated

) (g.l o)
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segments. On the insulated bound.ary segments which r^rill be

denoted ¡y Cl, the potential function ui or v. satisfies (S.8U)

or (8.9b) respectively. On each of the metal contacts the

potential function is a constant. The bounclary segmonts

corresponding to metal contacts will be denoted by C^ + C + C_ ,"2ik'
where C. and C,_ are the jth and kth metal contacts respectively,

Jl(
and C, denotes all of the remaining metal contacts. fn the special

case where j = k the boundary segmonts corresponding to metal

contacts will be denoted ty CZ + C- and in (8.6), (8.7) a, * tn

and C, + C- are replaced by t2.

The poles of the admittance mat¡ix of the distributed RC

netrn¡ork are the flequencios of the flee modes which ean exist in

the tr,¡o dimensional region r^rith zero potential on eaeh of the metal

contacts¡ and. zero normal derivative on each of the ínsulating

boundary segnents. Assuming that these modes are of the form

s.t
t-

Ø, G,Y) e (e.tt )

then we recall ühat the function Ør(*ry) must satisfy the

Helmholtz equatÍon

2V 4r?,v) = srRc Pr(xrY) (e.t e)

where
R is the resistance in ohms per square of the resistl,ve

layor, and C is the capacitance per unit area between the

resistive layer and the ground plane of the distributed RC network ..
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It therefore follows that the poles of the adrnittance matrix,

sir are related to the eigenvalu"rrllr of the ei-genvalue problem

given by (8.6) - (S.10) with U- = O ancl V- = O byjk

s.
1 = - ÀrÆc (9.t3)

Note that u- and v. are id.enticai for this probiem, since theyt_L

satisfy the same differential equation ancl boundary conàition, i.".

we have a self-adjoint problern, Âppendix A.

The zeros of the admittance matrix term y. -. may be obtainod
KJ

by noting that if the potential function u(xry) satísfies the

boundary conditions (8.6) and (8.8u)¡ and also satisfies the

Helmholtz equation (8.8a), th"n

ð3
ðn dI (s.t /*)

It therefore follor¡s that the zeros of y,.r s.r are relatecl
KJl

to tho eigenvalues Àr, or tho eigenvaluo problem (8.6) - (S.10) uy

l_
u.R

J"tj

.í

(8,t3),

Similarly, it can be shown that since

v dI

c
J

then the zeros of tjn are equal to those of Íkj.

woulcl expoct fYom consideration of reciprocitp

al
ân (g.t 5)jk

This is what we



By similar reasoning to Appendix B, we can also shou¡ that

the necessary condítions for F*(urv) to be stat,ionary, with u and v

constrained to satisfy (8.6), (i3,?), are

2v ínR (8.1 6a)

ðJ¡
?n 0 on C., (8,16b)

inR

93

(8.t ?u )

(s.1 ?b )

(8.18)

and

u+ Ào = o

v2.r+ ìv = o

fn this case, U. and V, are fixed. oonstants, so that in Appendlx B
JK

/O=OonCnandt=0 j'onC

By uslng the C¡reonls fornula

a-s
ðn

0 on C.,

v to
ân dl= Çv. yu da +

together with the boundary conditions (8.6I (8.7), (8.16b) and

(grt?t)¡ and. (8.t6a), (8.1?"), it rotlowl that

f
U

ll^

o
F (urv)

2
( É.1 9a)
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(8.19b)

where f'!("r") is the stationary value of Fr(urv) for a given value

ofl,
It then follows rrom (8,t4), (8.15) trrat

rik = vki = å*¿ 
(B'zo)

"'k" j

where À and the complex frequency varíabl-e s are related- by

s = À/nc (8.et )

Note the ad.mitta^nce matrix elements satisfy reciprocity as

expeoted.

Next we consider the functionals rr(urv) and. fO(urv).

In Appenclix C it ís shown that íf

p = O on0
2

+

U constant on C
J

VO * oonstant on Cn

cL

E
J

(8.22)

(8.23 )

SvEo onCr+C,

G

Then the necessary cond.itions for rr(urv) are (8.6) -
(8.tO). fn the speoial oase i = k the bound-ary segments corres-

ponding to metal contacts ¡¡iII be denoted. Ay CZ+ Crrand in (8.22),

(B.zl), Ç, + Cn and C, + C, are replaced bÍ Cr'
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$Ie note that if functional F., (urv) is usedrthen the

functions u and. v must be constrained to satisfy the rrprescribedrl

boundary conditiors (8.6), (8.?), and the remalning boundary

conclitions (8.8u), (8.8c), (9.9t ), (8.9") æ* tt¡¡aturâltr conÔitions

for the functional to be st¿tionary i.e. it is not necessary to

constrain u and v to satisfy the ¡rnaturalft bound.ary conditions

since these must be satisfiod at a stationary point of the

functional. For the functional Fr(urv) the natural boundary

cond,itions are (8.6), (8.?), (s.sb) and (8.9t), and the prescribed

boundary conditions are (8.8c)¡ (8.9c),

By simi1ar..' reasonÍng to that in Appendix C we can show

that the necossary conditions for F.(urv) to be statlonary are

(8.6)r (8.?) and. (8.16), (8.t?). In addition, it ls easily shown

that the stationary value of F.(urv) ror a given ) is related' to

the aùnittance matrix terms tjU und tnJ Ot

y.. =y-.=JK r{J
(g.z/*)

Thus r,¡e have shown that the poles and zeros of an

admittance matrix elemont are proportional to the stationary

values of functional F., (urv) or Fr(urv), where the functions u

and. v are constrained to satisfy prescribed boundary conditíons

as dÍscussed above. In additÍon, ít was shown that the value

of an adrnittance natrix element at a given frequency is

proportional to Fr(urv) or F,(urv), provicted that u and v satisfy

tho prescribed boundary condiùions.
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8.4 fuIu.tlongL-the Sþtþgelv Blsblem bv the RaylpJtgh-&LÈg Methoê

The Rayleigb-Ritz method for obtaining approximations to

the statíonary values of the functionars presentecl prevÍously is

based on the assumptÍon that the ur¡known functions u and v may be

approximated by a class of functions containing n linearly

ind.opendent paramoters. For our purposes it ís convenient to

choose the approximation in the form of a linear combinatÍon of

n linearly independ.ent functions uÍth undetermined coefficients.

rn addition to satisfying any prescribed bounda¡y condÍtions, the

only restriction on the approximations is that they nust be

continuous r with bounded, piecewise-contÍnuous fi¡st derivatives

in R, and on C, such that the required integrals ín (8.1 ) - (S.¿)

exist.

The approximatfons to the unknown functions u and v may

be lrritten in the form

I
I
l_= I

l-=l

di Bi (*ry)

(s.25)u= e.
I

I (*ry)
t

v= (8.26)

then the conèitions for the functional F(urv) to be stationary

aTe

âr 0 forl=jt7__n (9.2?)
Ec t-

âr'
ãat

n

n

and 0 forl=1rZ__n (s.zg)
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After substituting the approximatíons (8.25)r (A.Ze) for u

and v into (8.3) and. (S.+) and. imposing the stationary conùit,ions

(B.z?), (B.zB), we obtain

[n* - rat] "] -

q-lç

,J

(8.29)

(8.¡o)U j

where

'r, =ff v ri'o*, u' - 
$RC

bii = ll "8¡ 
cta

tì

t|--"J'

d.I

ck

c.
J

í

{

(e.¡r )

dv.
1

dr

tr'or the fi¡nctionaf f'r(rrrv) to be stationary it was

previously shown that it is necessary to constrain the u and. v

fi¡nctions to satisfy (8.8c) a¡¡¿ (8.9c) respectively, These

conditions are equivalent to

d.
11.

1

àt.
1

ãï'

âsi
þn

d.r

laLu 0 (4.¡z)
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and

(8.33 )

From thís ít follows that the coefficients o, and. d.. are not

all ind.epcnd.ent, anci one of each set of coefficients, the nth say,

may be expressed. as a linear combination of the remaining

coefficients as follows,

t c.
].

0

on
J
d.un

n-1

n-1

du.
1

d. d..v. 1
a

(s.34)

i=1

I

d.v
d lt Ë t (8.35 )

i=1

If the expressions on the right of (8,34), (8"35) are

substj-tuted. into (8.25)r @.ze) and the stationary conditions (8.27)

(B,Ze) for i = 11 2 -- ("-f ) are applied to (S,3), it can be shown

that the cond,itions for fr(urv) to be stationary subject to the

constraints (8"8c), (B"Ba), are

r.Ï E 0 (o.re ¡

and-

n

t-Ï [o' - i u'l f '] "1"_,

[o - ¡ul [n] ul"_,

o (s.3?)

where A and B are dofined. fy (8.3t), md



99

d,t

ùz

d. l E

d
o1

dun

orr-1

1

d.

-i!=1
dun

(4.¡a)

(8.39)

(s.+o)

(e.+r )

n-1
a

a

dn-1

t1,

t2o 3

n-1 a

a

1 c
[']

1¡

e 'l

it

þ
d.un

1

In] -

dtr
d.vn

1

duz

dv
11
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úlearly (8.36) may be oonverted to the usual matrix

eigenvalue problem of the form

[*'-¡tl"l E o (e.+z)

-1by preuutriplyins (e.¡o) ry þf [nJ[r ] rn the speoiar case

where I Al ana [A] .re s¡rmmetríc ana I sJ E ltl , other method.s for

obtaíning an equatÍon of the form (8.42) wíth Al symmetric are

available (ff¡, (SS).

Now considering the functional nO(urv), we note its
stationary vaLue obtaÍned rrom (8,29) r (8,3o) rs

r! (unv) v.
K

f,j

ãu
ET

êV
ãn

d1

d.1

(4.¿¡)

u

j

where

(8' r? ).

llr*u vv - ) u.v) aa f ,
,8v(uA-l + v

, + C¡,+Cn

""f 3*u, Ë o

cL

u and. v approxirnately satisfy (S.6), (8.7) and (8.t0),

This follows since (9.29) is equivalent to

ãu
ãn dL)

+

ana (8.30) is equivatent to
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ff(v ,,. ?v -À u.v) { ("3i * .,, 

!X) u,

R Cr+C.+Gn

+U

rrr(xrr)

rrr(*rv) 1

0j
c j

and- wben these expressions are substítuted into (4.+) we obtain

(9.¿¡). thus we choose as our approximate solution,

yr.j E yn " uq ["] 
- 

[-"J- ütrJ- [* I c a.44)

where ["] a,r¡d t.] satisf] (a.29) , (g.3o).

lrle now consid.er the funotions F,,(orr) and Fr(orr). since

the fr¡nctions u a¡¡d v are required, to satisfy the bor.urd.ary

conditions (8.6), (9.?) it is oonvenient to choose the expansion

functions tr(xrv) and g. (xry) rn (8.25)r (B.zÐ as forl_ows

ro(xrr) s1(*rr) AZ* CJ * Ck (8.+¡)

È

Oon

0

0 onC +
2

for i = 1|2-r n-1

on ct

onC j

cz*

q(",r)

err(*rr)

c.
J

(s,+e )

(8.¿z)
1 on Cn

For the fi¡nctionar r'r(urv), applioation of the stationaqr
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conttitions (8.2?), (8.e8) gives

[e -Àal dl

[o* -¡ "*l "]

0

0

f["" 'vsi cra

¡

F

(s.48)

(s.+g)

(e.5o)

where

a.
1J

b..
1J

3

The matrix equatíon (9.49) may be tra¡rsforrrred. to the form

(8.+z) by prermrltiprying the left side by [uit, or wrren [l] a^nd

IUJ are symmetrical the method.s desoribecl' in (:f ¡r (55) may te

f..Ã.dar. -J

)

used.r

tr''or the functionar nr(orn), u(xry) is fixed on C, a^ncl'

t(*ry) is fixed. on Cn. Let u(xry) - Uj on C, and. v(xry) - vn on

Ck. These constraints are then satisfied by ohoosíng

u j
(8.5r )

vt

Then by applying ttre stationary condítions (8.e7), (8.28) fo"

i = 1r2-- ("-l) a¡¡il substituting U, and. Vn for c' a,nd- d'

respeotively, we obtain two syste¡ns of linear equa,tions which may

be solved. for the r¡¡rkrrown coefficients d1---do-1 a^nd. c.t---orr-1e

The equations are

cn

ctn

- [r - Itl-nn
tt],,*., -a-lul (tr¡r )

vt* (4.52)



U--[o* - àt:-l
;L J; e l atvl

r03

(8.¡¡)
("-t )

d.enotes the matrix obtained. by d.eleting the nth row

and. corumn of fu] , a ] and 
"]

are given by (8.38),
("-t ) ("-l )

(8.39)e and u"] and. ¿t are obtained. by dleleting thev
("'t ) ("-t )

(n-t ) J

[^jwhere
f,f,nn

I

nth element from the nth column of

respectiveþ.

[r -rr] hr* land [n*

[n -ãr].

(s.l¡)

oee (8,52) a"nd (g.l¡) have been solved. for the u¡knor,vn

coefficients the ad.mitta,nce matrix eLement ljk = ytj tÐ be computed'

as followsn

Sínce oìlr approximation to the stationary value of Fr(ort)

is

r'!(urv)

(8.¡+)

where

"l ana^ a] satisfy (8.52), (A.l¡)r ¡r¡r = tkj may then be
o

obtained. from Fr(orr) as in (g.eo). In add.ition, beoause or (8.5e)t

(g.l¡) it is easily shown that (8.54) ís equivalent to

f'r(urv)

= ["*] [o - an] .] = [J] [o*-**J "]

= dn.n [o* -art] "]Gn.n [o - an] a]

where
II [a - rr] d.enotes the nth row of
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8.4 F\rnctional .Aooroximations f or Variationa1 Solutions

In the preced.ing sectÍons we have considered the

theoretical basis of variational method.s for obtaining approxinate

sorutions for the adrnittanoe matrix erements and. the poles and.

zeros. ìie now wish to consid,er in more d-etaiI the problem of

choosing suitable expansion functions for use in the approximations

to the potential firnotions u(xry) and v(xry), (9.25)t (8.26).

rn ad.d.itionr we will al-so consid-er the probJ-em of evaluating

the area integrals over a two-dimensional- region R, and. the contour

integrars over the bor.urd.ary c as required for the Ì-layreigh-Ritz

solutions.

I¡lhen the fr¡nctionals Fr(ort) a^nd, Fr(*rr) are used, the

expansion firnctions rr(xrv) and gÍ(*ry) are required. to satisfy the

boundary conditions (8.45) - (s.4t). lfhen the fi¡¡otionars Fr(orr)

and. Fo(urv) are used., the expansion fu¡rctions are not required. to

satisfy an¡r bowrdary cond.itions. Hol.¡ever the e::act solutions of

the boundary value problem are required. to satisf'y bormd.ary cond.itÍons

of the form siven in (8.6), (g.z) and. (B.g), (8.9) o" (8.t6), (B,tT)

as well as the Hetmholtz equation, and- we shourd. therefore attempt

to choose a set of expansion fr.mctions which will satisfy these

requirements as closeÌy as possible.

As prerriously mentioned., the functions u(xry) arrd v(xry)
must be continuous with pieoewise oontinuous d.erivatives in R, in
ord-er to ensure the existence of the integrals occurring in the

fi¡nctionats (B.l) - (8.4). rrr ad.d.ition, Î¡e note that when the

approximations to u(*ry) and v(xry) are constrained to sabisfy

the Dirichl-et bounc.ory concì.itions (8.6), (8.7), it is not necessary

to evaluate any contour integrals. However, ít is often extremely
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difficult to obtain expansion fu¡ctions satisfying these conditionst

and. it is then more practical to use the fi¡r¡ctionals (8.3), (8.4).

One of the sÍmplest types of approximation which is

commonly used is a pol¡momial in the two ooord'inates x and yt

(to)r (53), i.".

11

u(x,y) - t "if yq (s.56)

Í¿'ll

which is d.efined. over the entire region R.

If the order of the polynomial ís Nr then it contains all

prq combinations such that 0lp + çtf Nr ancl' the total nt¡nber of

terms, n, is

n G f {"*r) (r,¡+z) (e.lz)

A símple linear ord.ering scheme is obtained by taking

i e (p+ 1) (p* q+ 1) + p+ 1 (8.58)

thus giving an expand.ed. versi.on o¡ (8.56) that is

u(xry) = "1 
* cZY+ crx + cOVz

2
o5rcy + c6x (a.lg)+

Comparing (8.25) 
""d 

(9.:g) we make the id.entification

rr(xrr) *P yQ (8.60)É

i, p and q are related. ty (8.58).

Similar1y, if v(xry) is approximatetl by a polynomial¡ i.e.

where

n

L dÍ*PYÇv(xry)
i-1

(8.61)
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vre make the id.entification,

si(xrr) a xp
(a.oz)

The problem of evaluating the surface integrals over R

a¡rcl the contour íntegrals on C in (8.3t) when fr(xrv) and gr(x¡y)

are of the form (8.60), (8.62) rras been consid.ered. in (to), (ff¡,

an¿ (56). All of the surface.integrals involve terms of the form

cfv'

(a.er )

If the bornd.ary is represented. by piecewise pol¡rnomials,

the resulting integrals can be easily evaluated on a computer. For

simplicity, it is common to approximate a qirved bor:nd.ar¡r in a

piecewis+-linear (polygonal) fashion. In this case both the contor¡¡

integrals and. surface integrals are linear combinations of terms of

the form

*t (o(* F*)t dx (s.64)

Since the integrand. is a pol¡rnomial in x only, these integrals are

easily evaluated. by using integration by parts (Se¡, or by

Gaussian quadrature (3), (to), (51¡.

For reasons of convenience it is often preferable to choose

ft(xrv) and gr(xry) such that the coefficients c. a,nd.'d., are the

vaJues of the potential functions u(xrrf'¡) a^na v(x¡rI¡) at n

particular node points speoifietL by the coordinates (*¡rV¡). In

this case, instead of (8.60), (8.62) we choose fr(x¡f) a.nd

f[-'v'dv ¿"

xa
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Sr(*ru) to be complete polynomials of ord.er N such that

l st x
J
rl

J
) 1

(8.65 )
rn(*rrrr)=eo(xrrvr)Eo

for Ç¡

In the finite-element method d-escribed. by Silvester (54),

6S), the region R is subd.ivÍd.ed into a number of triangutar

subregions. The nod.e points ("rrf¡) are chosen so that there are

(ttt+t ) equally spaced points on each triangle side, and the

remaining points are regularly spaoed- in the triarrgle interior.

Silvester, (S+), has computed a set of u¡riversal element matrices

which simplify the numerical evaluation of the surface integrals

in (8.3t ) tor triangles of a"ny shape and size f or pol¡momials of

ord.er 1 lo {. The contour integrals in (8.3t ) *ry be evaluated

by the method desoribed in (56).

Since the potential fr.mction is required. to be continuous

in R it is neoessary to place constraints on the potential function

in each triangle. These constraints are satisfied. by ensr:ring that

al1 points which h¿rve the same coord-inates (i.". points on an edge

co¡nmon to two triangles)¡ are assigned. the sarne potential value

(c. or dr).

One ad-vanta.Ee of the finite-element type of approximation

over the pol¡momial approximation given previously is that it is

sometÍmes easier to obtain a potential function which satisfies

Di¡ichlet bor:ad.ary conclitions of the form (8.6), (8.?).

fn ad.d.ition, better accuracy is sometimes obtained. by

using a piecewise polynomial approximation to the potential instead.

(r, (", 'rr)
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of a single pol¡rnomíal over the entire region R. The finit+-

element method is one exarnple of a piecewise polynomial

approximation. l\n exarnple usíng a piecewise polynomial

approximation with polygonal subregions is given in (1O), and in

(50) tire possibility of using r¡triangularfr elements with one

our'r,'ed. sid.e is discussed.

In ad.d-ition to the pol¡rnomial approximations discussed. abovet

it is sometimes more oonvenient to use other types of expansion

functionq for example, Thomas (5?) fras used. expansions involving

the polar coordinates (rr€) of the form

NNt-r
u(r¡e) or v(rrê) = oo * 

L Lorrrrrm 
cosn 6 (8.66)

r>1 n=1

In this case the integrals (8.31 ) can be tra¡rsformed- into

integrals involving the variable I only, if the bor,md.ary is

expressed. as a ¡ad.ial fi.:nction of angle n (g). The integrals may

be evaluated. exactly if n(e) is expressed in the form of a Fourier

series, but in general it is necessary to use a¡¡oroximate numerioal

int egrat ion t eohnieü€sr

The potential firnctions could also be expanded as prod.ucts

of trigonometric functions in the coordinates (xry) (5¡). However,

these functions are most suitabLe for rectangrlar regions, and. wiLl

not be consid-ered. here¡

lrle now wish to consid-er the problem of obtaining polynomial

or piecewise-polynomial approximation to u(xry) a"nd v(xry) which

satisfy the Dirichlet bor:r¡dary oonditions (S.6), (8.?). i'üe note

that it is not necessary to constrain the approximate solutions to

satisfy the Neuma¡¡n ìooundary conditions (8,8t), (8.9¡), sinoe these
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are natural oond.itions for the fwrctions (8.1) - (8.+) to te

stationary. .A,n important aCvantage of usin.g firnctions l¡hich

satisfy the Dirichl-et l¡owrdary cond.itions is that for seff ad.joint

problems, i..e. u(xry) - v(*ry), ttre approximate eigenvalucs are

always greater than the exact eigenvalues i.e. they are upper

bound.s. In acld.ition, the approximate values of the cì.iagona1 elentents

of the admittance rnatrix for s = O are upper bounds on the tlue valuest

and lower boud.s can be obtained by solving the dual problem as

d.iscussed in ( 35 ).

A polynomial approximation which satisfies homogeneous

Dirichlet bor:nd.ary conditions of the rorm (8.{!) oan be obtained by

choosing(53)

rr(xrv) = ei(*ry) = *PyQe (xry) (8.6?)

for i = 1t2 -- (n-t)

where
S(xry) is a pol¡momial such that

g(xry) = o on cr+ c.+ Cu (8,68)

and.

S(*ry) d.oes not vanish insid.e R.

For dome problems a suitabl-e S(xry) can be found. by

inspection (53). Ii'or example, if the boundary cond.ition is g(xry)=0

for x= O and x= 1r we choose S(xry) = x(x-1). to" more complicated.

bound.ary shapes it is necessary to use other methods. ¡uIIey (53)

used. a numerical technique to find. a g(xry) polynomial whose

integrated. squared- amplitud-e along the boundary is a minimum. This

l-ed. to a^n algebraic eigenva.Iue problem whose solution yield.ed. a set

of fi¡nctions having nod.al lines correspond.ing closely with the

boundary segments CZ * Cj + Cn. The eigenfuction having no nod.a1

* The following d.escription gf Bulleyrs method. (¡:) :." this paragraph. is
extracted- from (33).
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rines welr ni-thin the bowrd.ary was serected. for s(xry). The method.

r'rorked. we1I, but suffers from the d-isad.vantage that more work must

probabry be done in discovering the g(xry) por¡rnomial than in the

remaining computation. Ârso, huma,n intervention is required. to

inspect -bhe eigenfunction,s and. reject those having internar nodal

contours.

Next we consid.er method-s fo¡ obtaining firnotions rrr(x¡rr)

and- grr(xry) lvhioh satisfy the Diriohlet bou¡rdary cond.itions (8.46),

(8.47). suppose that each of the bound.ar-y segments correspond.ing

to metal ccntacts is d.efined by

where

for i=1t2-- Np

tn is the nurnber of metal oontacts.

Then, prorrided that w¡(x);wr(x) is rron-zêro ínsid_e R for
í/ i, then a suitable frr(xrr) is

y=
", 

(") (e.og)

(e,to)rrr(xrv)

Similarly,

srr(xrr)

Np

r-f
i=1
rÉ¡

Np

il
i/k

(e.?r )

Note that rrr(xrv) and grr(xry) aetinea by (B.lo) and (8.?l )

are not pol¡rnomials in genoral, even when the wr(x) a.e polynomials,

so that the previous rnethod.s for integrating polynomials over
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two-climensional regions are no ronger directly appricable.

If the above nrethod. ci^oes not provid.e a suitable frr(xrV),

the coeffícients of a;least-squares polynomial" approxinration may

be found by minimizing

{
(9.?z)

2
ca

where
gu satisfies the bound.ary conditions (8.q6). This lead_s

to a system of equations of the forrn

E b (s.z¡)

where

C. +
J

+c

(t r(*rv) - s,r)2 ar

l['] "-J

{
c

{

LJ

2*cj *
*r" yQ*" d.l

cL

Bo *P yçI dl

c¡.

b
L

C^+C.+¿J

and, the cg. are the ooefficients of the porynomiat frr(:crr).

A similar method may be used. to find. a Arr(*rf) which gives

a l-east-squares approximation to q which satisfies (8.4?).

Fínally, we consid"er the constraints which must be inrposed.

on finite-element sol.utions in order to satisfy homogeneous and

inhomogeneous bor-u:d.ary cond.itions of the form (8.45) - (8.4?).

Because or (8.65), ttre coefficients in the expansions (8.e5), (e.ze)

are eqr:al to the value of the potential firnction u(xry) or v(xry)

at a number of nod.e pointsr rf triangular elements are used., there

are generally (N+1 ) nod.e points on each triangle síd.e, and. the
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potential alon8 each sid.e is a polynomial function of the distance

along that side, Therefore, if the bound.ary segrnents C, + C, + CO

can be accurately represented by triangre sid-es, then polynomiaLs

u(xry) and v(xry) satisfying the required boundary condi-bions (8,45)-
(8.47) are obtained. by constraining the node potentiars c. and d.t

to be equar to the specified, values on these boundary segments¡

8.5 Numerioal iìesult s

8.5n1 SoLution of Laplacer s .Ðquation

hle now present the results of calculations to d.etermine

the zero freguency ad-mittance parameters of a number of two port

d.istributed. resistance networks.

Tlie type of network oonsid.ered. is shov,m in Fig. 8.1

Port 1 Port 2

r

t-
1r

Figure B.l. n¡uo port tapered resistarrce network.
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The input and output ports are the conducting strips at

x=O and. :rr1 respectively and. thc width of the resistance layer is

specified by a taper function w(x) for O(x!I. The taper ratio

is d-efined as the ratio w(o)/w(f). Since the struoture is assumed'

to be synmetrical about the x a¡cis it is only neoessaJ'y to consid-er

tho po::tion in the first quadrant ¡ wltich is bormcled- by the ourve

olx(1yE
Yo w(x)æ2 w(o)

for (s.z+)

and the input/outpr¡t poïts at rc=O tn¿ ¡c=Io The first step in

obtaining a solution is thc choice of suitable expansion firtctions

fr(xrV) and. g.(xry) to be used in the approximations (8.25), (B'26)'

For the problem of Fig. 8.1, Poltrnomi¿¡.I functions satisfying thc

required Dirichlet bormclary conclitions are

rrr(xrv) = 1 -T

/ \ rc (8.?5 )8rr(:rrY/ = T

rr(xrv) = Bi(trY) = g(xrY) *P YQ

for i=1 , 2 -- ("-t )

where

the form

s(*,v)=f(r-f)
The nert step in the solution is the evaluation of the

Yo ,"(*)
-ÐÞàb2 w(o)

integrals arrr (0.5O) which a¡e linoar combinations of terms of

YQ.

:fo1

Ivx v (e.ta)

rc=O Y=o

vxp
s dy dx
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The final steps are the solution of equatíons (8.52),

(8.53) for the coefficients d] o" cl ¡ and. the zero frequency

ad.mittance parameters are then obtained- b¡r using (9.55).

Numeríca1 solutions were obtained. for two d.ifferent taper

functions6.,

These rr¡ere the linear taper definecì. by

w(x) = (t +o<x) (B.tl)

and the exponential taper defined- by

w(*) =e-d* (8.18)

where
o( is d-etermined from the taper ratio T¡ and. the lenglbh 1.

i,Ihen these expressions are substituted. into (8.?g) tfre

integral becomes a funotion of the single variable x. The required.

integrals may then be generated recursívely usíng integration by

parts to express the integrals involving higher polrers of x and.

w(x) :.n terms of the integrals involving lower pohlers of x and t(x).

Á,lternative1y, lvhen w(x) is a polynomiaL, as in (9.??), Gaussian

quadrature may be used. to eval-uate the integrals. In connection with

the reoursive method. for gerrerating the integrals it should. be

realized. that th.e integrals for the higher poüIers¡ of x and. y can

sometimes suffer from loss of aocr.l¡acy d.ue to an accumulation of

round.ing ef.rors.

Sinoe the expansion functions (9.?5) satísfy the

Diriohlet bound.ary oond.itions, the values obtained. for y.,., and.

l2Z ^ru 
upper bound.s on the exact values. In add.itionr it is

onl.y necessary to compute one of the ad.mittance parameters, sinoe

for a two port resistanoe network of the form of Fig'8'1
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x11 = Y22 = -t12 = -Tz1 (g.zg)

Lower borrnd.s on the exact solutions can also be

obtainetL by solving the d.ua1 problem to that in Fig. 8.1, The

d.ual problem is obtained. by intercha,nging the cond-ucting and.

insulating botrnd-aries. Because of s¡rmmetry about the x axisr we

need only consid.er the porbion of the network in the upper half

planer so that the input and output ports aTe on the curve d.efined.

tV (8.?4)r and the vertical bound.aríes of :c=O and.:r=1 become

insulating borrnd.aries. A lower bound. on yl 1 o, y22 for the original.

problem ís the reciprocaì- of y, 1 o, IZZ obtainecl for the d.ual

problem if the resistance of the resistive sheet is one ohmr/square

in both cases (35). The method. of solution proceeds as before,

except that frr(x¡y) and err(xru) i.n (8.?5) 
""" replaoed by

.v
f ("rv) = 1 -

.v

(a.ao)

n ro w(x)
?;G)'

err(xrr) w(x)
rG,I

yo

¿

.v

e(x'v) Èy

$umericai- results r¡rere obtained. for linearly ancl exponentially

tapered. resistance network having various widths ¡ro ancl taper

ratios f " Upper and. l-ower bor.¡ncls on ¡rij iti=1¡ 2 Ìdere

obtained. by using r(xry) a^nd v(xry) functions of the form given

previou.sly, where terms containing *Py{ were chosen to have

o$n + qlT.

Yo w(x)#
2 w(o)
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Tab1es 8.1 and.8.2 show the a,verage of the computed- upper

and lower bound.s, together with the rnaximum peroentage errors which

were obtained by taking the ratio of the difference between the

upper and lov¡er bouncs to the mea:r value. The numerÍca1 results are.

normarized to a sheet resistance of one ohm'/squaret and- the length I

ís assuned to be r:nity. trrie note that the accuracy of the numerical

vafues in the tables d.ecreases t" Jro íncreased. with Ï consta,ntr

Also for V"/1 constant, the error inoreases "" 
7 d.eviates fi¡rthe:r

from the value r:aity.

l}hese results may be compared with the admittance

parameters obtained- by assuming a one-dimensíona1 mod.el of the

tapered. network. The one-d.imensional results are obtained- by

integrating the resistance pel unit length r(x) from :e O to :c=1,

where r(r) is inversely proportional to the wid.th w(x)r (¡)

r(") V"(")

R Ís the sheet resistance in ohms/sÇtlåirer

After performing the integration

rtt

we obtain for the linear taper

yo d
r1t = ç ="eTfl."<ff

yo
-ffi f-t

(s.81)

where

1F (8,82)

(8.83)

Tlos.T
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and. for the exponential taper

Y'll
o(

q.'r.
e -1

(e.e+)

e^r

values of y1 ,r/Go/n) for these two tapers are given ín Tabres B.J

and. B.{ for the same values of ^f a" Ín Tables 8.1 and. 8.2.

Comparison of the numerical results obtaíned- from the one

and. two d.imensional analyses shows that they are in close agreement

for networks l¡ith taper ratios near r¡nity, and. for networks whose

mæcimum wid.th is l-ess than or equal to the length. For other shapes

there a¡e consid.erable d.ifferences between the two sets of results¡

yo

R

RI a- 1

Yo log
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1.8397

+ 17fo

.17978

+ 2.5/o

.3? o2g

+ ,47{o

'' 
-. r/r

T --t-

O.1

o.4

1.0

2.5

10.o

4.80967

! 5.4{"

1.47945

+ .4,(o

.639016

! .ö'/"
.260765

+.OO95/"

1 0.02.5

1.4-7945

+ .4,(.

1.0

.639016

+ .ö/"
t--:

o.40.1

3.21489

! z.fl"
.163412

+ . OO4/o

10"o

1.Bg3g7

t 17'/"

1.06625

! 5.3i"

,37028

+ .47'/o

2.51.0o.4o.1

Yl..

Table 8.1 Zero Frecruenc-v Admittance Param

Linearlr¡ Taoered iìesistance Netrvorks

( gq _Ð¿qq-_i_s4.l!r? 1{Ë+, )
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2.5

.24820

+.O16/o

.r698

!.1f.

10.0

10.0

4.737

1.6709

!2'T/"

3y"+

1 0.o

v
11

Table 8.2 Zero Frequenc-rr Admittance p ers for
Exponentiallv llaoered, Resistance ltretworks

1.4029

+ .1flo

.59781

+.O2{o

.243356
.y.006/"

2.51.0O14o,11.O

3.1 32

+ 1,2/"

1.4028

! '151"

.59781

+.O22i/o

.152466

+.OO3"f"
o.4

! 2.7r"

1.6709.9374

!'27/'
.24820

+"O16f.
0.1

2.51.0o.40.1
T

Yo/ l
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Table 8.3 Zero

1"0 o,65481 o.39086

Admittance Parameters for

( gns. -Usg+e:-p"' l-¿sl¿gæ )

Admit tance Pararneter forIabIç*B:4 Zero

ilkPonentiallY TaPered' Resistanoe Networks

(gry. Djryeael3rr.ly-æ,)

1,637033,90865Y,,,/ G r/nr)

10¡02.5lto0.40.1f

.25584.61 0862.55842 I
I

1.52715 1.0v.,/ 6 o/nr)

10.02.51.0O.40.1T
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It ca¡r be shown that the resul-ts obtained from â. ollo-

d.imensional analysis (8.83), (8.84) are alr,rays g.reater tha,n those

whÍoh would. be obtained from an exaot two-climensional analysis with

T/1. This follows since (8.83), (A.g+) can be obtained by

assuming that the poten-bial function in the two-dimensional region

has the rorm given in (5), æd then calcurating tll^(vþ)2 aa.

Since this sr¡¡face integral is a minimum for the potential fir¡otion

f which satisfies Laplacer s equation and the bor:nctary cond.itions of

the two-dimensional problem¡ it follows that the one-d.imensional

ad.mittance parameters must be greater than or equal to the exact

values.

In adclition to the numerical results given above, the zero

frequency ad.mittance parameters of the linearly tapered. resistance

network shown in Fig. 8.2 were obtained. by using the fínite

element method.

1.0

+x
1.0 4

FÍgure 8.2. I,inearly tapered d.istributed resistarroe network solverl

by the finite-efement rnethod"

v

I
0.'lr \l
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The resistive sheet was d.ivid.ed. into seven tria,ngular

elements as shor,úr and- the ad-mj-ttance matrix elenent 111 *""

computed with polynomials of ord.er 2, 3, ancl. { ín each element.

The computer program used- was a mod.ified. version of the one d.escrÍbed.

i" (55) and- (6t), The main modifioations required were

(t ) the substitution of a subroutine for solving sirnultaneous

equations in place of the package of subroutines for computing

eigenvalues and. eigenvect ors,

and.

(Z) the incorporation of constraints to ensure that the potential

is constant on the triangle sid.es which coinoide with input and'

output portso

The original program allows the user to constrain the

potential function to be zero on specífied- triangle sid.es. This

faoilíty, together with the seoond mod.ification d.escribed. above

allows the user 'uo compute d.íagonal or off-diagonal admitta¡rce

elem-enta of a multiport network by specifying the tria,ngle vertioes

whioh l-Íe on the input port or output port, as well as those vertioes

on the ports at zero potential.

In ad-d.ition to the problem in Fig. 8.2 the d.ual problem,

which is obtaineri. by interchanging the insulating and oonducting

bound.aries of the original problem, was also solved.. The

tríangular elements and- polynomial ord.ers were id.enbical with those

used to solve the original problem.

If it is assumed. that the resistanoe of the sheet is one

ohmr/squale for both problems, the reciprooal of the value of Y1,l or

12, obtaíned for the d.ual problem is a lower bou¡d on y1 a or V* for

the original problemo Since the approximate solution for Jrr.t of
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the original problem is an upper borrnd. on the exact valuer -$Ie can

take the mean of the upper a,nd lower bor.l¡rd.s as our solutionr and.

the ma¡cimum possible errox is one half of the d.ifference between

the upper and lower bou¡ad.s. The values obtaíned for tr11 o, YZ2

with polynomials of order 2, 3 and. { in each element are shown in

Tab1e B.)

Pol¡momial
O¡d.er

//"

1.flo

.34'/"

Table 8.5 Numer lues of the Zero

Admir t a+c_ç__Mq1_til_Ele¡le4$ Í 
1 1 E v 22

tr'orthe ltesi st:nao Ne*, work of Fiø- 8^)

2

3

4

.335921

.331 O95

.329755

.322846

.326585

.J27518

.329383

.ìeB84o

.328636

Upper
Bound

Lower
Bound.

ErrcrI{ean
Value
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8.5.2 lligenvalue problems

lr¡e now present the lesul-ts of some calculations to determine

the poles and zeros of the acÌmitiance matrix parameters of some two

port d.istributed. resistance - capacitance nr:tworks. The first

problem consider.ed. is shown in Fig. 8.2. Two d-ifferent forms of

polynomial approximations r¡ere used- for the potential functions

o(xry) and v(xry). One form of'approximation used. was an nth ord.er

polynomial d-efined. over the entire region Iì.¡ the approximation for

u(*ry) is given ty (8.25)r (4.75) and t.he approximation for

v(*ry) is given ¡y (8.26), (8.?5)' The second, method of solution

used was the finite element method, i.e. the region R was d.ivid.ed.

into a number of triangular subregions, and- the potentials in each

sub-region vrere approximated by nth oràer pol¡rnomitls defined. by

the values of potential functions u(*ry) or v(xry) at a number of

regularly spaoed nod.e poínts.

Irüith both types of approximations, the po]¡momial

ooefficients or node potential val-ues lüere constrained. to satisfy

the appropriate Dirichlet bourirlary conditions on the metal contacts.

The computeï progr¿ìJn in which the potential functions is

approximated. by an nth ord-er polynomì-al rLefined- over the entire

region R is a mod-ified. version of the progranì SIPOL (5:¡. This

pfogram can be used, in its origi-nal form to compute the poles of

the ad.mittance rnatrix since u(xry) = v(xry) satisfies homogeneous

Dirichlet bound.ary conditions on C, + C, + C¡r and only the first

("-r) expansion functions in (8.?5) are used. in (4.e5)r (8.26).

Irthen the zeros of a.n admi-bta.nco matrix element are computed- it is

necessary to include the terms rrr(xrv) ancl grr(xry), (8.75) in

(8.25 ) r (8.26 ) , ancl aitclitional programming is required to evaluate
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the integrals in (8.5O) which contain these terms. Since the

rrr(xrr) and grr(xry) are pol¡rnomials, arl of the required

integrals are obtained as a linear cornbination of integrals of the

form ff *PyQ da so that very little extra computation is
JJ*

involved. Finally the eigenvalues of (8.48) or (8.49) are computed..

lrihen the zeros of a cliagonal elementr trrn with j=k are to be found.t

þ.lanaþ]are boih symmetric matrices and the eigenvalue-eigenveotor

subroutines in EIPOL are used.. For the zeros of off-diagonal

el-ements of the acmittance rnatrix, [Al *ta[U]are asJrmmetrical, and'

the Q!. method. (tt) for general real matrices is then used to find.

the eigenvalues or (¡-1) (a).

fhe second. computer proglam, in whichthe region R is

d.ivid.ed. into triangular sub-regions, with an nth ord.er polynomial

approximation to the potential in each triangle, is a modified

version of the finite element progranì described in (55), (0t).

This program can be used in its original form to compute

the poles of the ad.mittance matrix, sÍnce u(xry) = v(xry) satisfies

homogeneous Dirichlet bound-ary conditions on C, + C, + Cn. Since

the expansion functions rr(xrr), si(xrl) are piecewise polynomials

satisfying (8.65), the=e constraints are satisfied. simply by

setting the coefficients "ir di oorresponding to nod.e points on

C, + C, + Cn to zaroc inlhen the zeros of an admittance matrix term

Ijk = 
"nj 

t"u to be computed, the coeffioients ci correspond.ing to

nod-e points on C- are constrained. to be equa1, and those

corresponding to nod.e points on Cn ate zero; the coefficients d"

comespond.ing to node points on CO are constrained- to be equalr and.

those correspond.ing to nod.e poínts on C. are set to zero. Since

the existing prograrn contains a1l of the programming necessary to
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compute the integrats (8.5O), ttru mod.ifications required. to compute

the zeros of 
"jn 

are fairly trivial. lrlhen the zeros of a cLíagonal

element rjj r"" required., the matricus [e] and. Ia] i" (8.48),

(8.+g) are sJrmmetrical, and. the eigenvalues are computed. by using

the package of subroutines in (6t). '¡Ihen the zeros of an off-
d.iagonar element are requirea, [a] ""a frl are asJr¡nmetrioal in
generar, and the Qfl method, (lt), for general real matrices is then

used. to find the eigenvarues of [4-'t ^].
ir{e now present the results oþtained for the poles and. zeros

of the ad.mittance matrix erements for the network of Fig. 8,2.

The results in Tables 8.6 - B.p show the eigenvalues

obtained. by using the mod.ifíed. vergion of the program ),lHpol,, with

the potential fwrctions over the entire region R approximated. by

pol¡momials of order 5 to B. The poles and zeros ("r) are

obtained. from the eigenvalues ài O" using the relation

À i = - s.RC, where R and. C are the resistance in ohms/square of

the resistive layer, and the oapacitance per r:nit area between the

resistive layer and. the ground. plane respectively.

The corresponding eigenvalues obtained. by using the

mocLified. finite-element program (6t ) are shown in Tabres B.1o -
8.13. The resistive sheet was d-ivided. into seven triangurar sub-

regions as shown in Fig. 8.2, and. po1¡momials of ord.er 2 to 4 were

used- in each triangle.

The resul-ts obtained. for the poles and. zeros of the d.iagonal

elements Jrr., *d y22 will be consid.ered first¡

Since the potential functions r^rere constrained to satisfy

the appropriate Ðirichlet bound.ary cond-itions, the eigenvalues

obtained. are greater than or equal to the exact values. rt is seen
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T ABLE 8.6 APP

POLTS CF THÉ
RC LI NE
THE DIIlENS ICN
DEG = CËGREE

FCT ENT I
TIIE PÛLES' S

E8UÀI I tN ( I .13 )

ROXIMATE EIGEf\IVALUES CORRESPOI'IDING 10 THE

ATI'IITTAi.JCE MATRIX FOR A LINEARLY TAPERED

M PROGRAM EhPfJL.
S OF T I-E L Ti.IE AR.E GIVEN IN FIG. 8.2.
OF POLYJ.IDM TAL USED TO APPRNXIMATE THE

ÊL IN TI.E RESiSTIVE LAYER

, ÁP.Ë RtLÁTED TD 'Il.E EIGE¡IVALUËS,lir BY
a

I
2
3
4
5
6
1
B

9
10
l1
L2
t3
14
I5
16
L7
1B
t9
20
2L
22

8.l2B6I
31.4263
46.1805
83.5809

114.731
160.Ð 2l
189 .4 60
220.L18
331.031
416.592

8.ù4C02
31.1I01
'45 . LB92
6t. .1 t11
9ê,.6L62

L24.O22
r59.179
20e .-3I5
211, .931
?2?.4L?
366,.30I
37-i.59 ì
52?.459
128.930
98,4.932

7.98314
30.8885
44.9e,5C
68.1écó
9?.49 t,5

II3. ?-15
L21 . ô,e5
169.1 44
2C3 "48q248.378
267 .184
34A.29C
43Q .91?

5Q5 .262
562.C12
5B).2c9
132.391
1 83 .121

tal2.9C
1407.ól
lB23.4C

1 . c.4715
39.?894
44. E7 61
61 .3885
91.419?

TT2.514
r25.264
158.913
I 7ó.3 81
2C8.3r0
?34.28r
261.325
ZCB.286
31 2.228
412. Có8
426.445
';2I.271
t,52.373
152.150
EC2.L56
886.412

rcc3.25

6

\
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TABLE .8.? APPROXII¡ATË EIGENVAI-UES CBRRËSPIINDING TO THE

ffifnf "ÀDMITTÁî.iCE t"lATRIX ELEMEI'¡T Y1I FOR A

li¡¡r¡RLy TApËRED RC L INË - FRûiE PR0GRA¡4 [HP0L.
THE DII'¡ENSICNS 0F Tl-E LiFIE ARE GiVEN IN FIG. 8.2.
DEG=DEGßEEoFPoLYi.JÛMIALUSEDTTJAPPRtIxIt".IATETIIË

PCTET..ITIÅL IN THE RES STIVE LAYER

THE ¿ERCST S¡ I ARE RELATED Ít¡ Tl.E FIGEI'JVALt,ES, li r BY

TQUATICN (8.131

I
2
3
+
5

6
7
I
9

IO
1l
t?
t3
14
l5
IÍ)
L7
IB
l9
20
2L
2?

+.23390
22.4235
4L.4555
62.7 522

I1l.548
L54.549
170 .48 I
210.193
330 .17 3
4O3.213
475.ó80

4 .23257 0

22.2594
41.14é0
59.0088
Bl.2rl4

12l.B5g
I24.849
?a2.a5B
zee.649
3a2.354
342.7-15
371 .354
52?.4OC
7 2? .931
1?t.260
994.951

4.23224 E

22.74C3
40.8533
58.?5C2
8C.4CC2 .

112.084
LLB.4ttz
L4r.2ê1
za|. ê4C
2C6.5e2
248. t 44
325.641
429.44t
49c.l9c
534.3ê,9
562.925
1 32.144
7e3"ê4L

l9l z.3C
L24C.17
l4a7 .1 4
1 823.4 C

22.235L
4 0. €485
58.2480
1 B. ê539

11 0. 8914
115.9tl
139.ó49
l7ó.C30
195. C33
22.4.856
234.473
1Cl.254
?I2. 97 I
f 12.55,)
424.994
483- 563
á51.909
143.823
Ëc1.9BB
812.838

1CC2.109

¿
N ùiiG 5 6 1 ls
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TAT]Lf 8.8 APPiiCXII'4ATL I-iGE IVALUES CORRTSPONDING TO THE

ZEROS TJF THi ADI'11TTÂNCE iVIATF(IX ELEMENI Y?2 FOR A

LINEAiìLY 1¡PI--RE.U RC I-INF- - FROI'4 PROúRAVI EHPOL"
1-Ht Dii4ËNSIOI\S OF THL LINÉ ARE GIVENI I\ FIG" 8.2.
DTG = DF:GREE OF POL.Yi{ÛI'IIAL USED TÙ APPROXi.'4ATi THÊ

POTEi{T I AL I N Thf RES I5T I VË LAYER
ïhE t¿ROS, Sir A¡ìE RÈtATeO TO THL EIoE\vALiJeSr Àir AY

EAUATiON (8.I3)

0.d73.-U 7'

1.7.0ó??
43.¿+349
5'3.777¿

IT3.?T?
I 15.65¿+
164.703
2I0"rJ03
33I.031
+7 6 .5'l ?
640.t¿39

I
?
3
4
5
6
7
tJ

9
IO
ti
t?
l_'3

T4
l5
Iô
l7
t8

2T
?2

I
2

(,ì. U56¡J2
I6.dó61
42.9803
49.72L6
Èi7.606I

II3.0l8
L¿¿+ . ¿44
I97.058
213.598
2tJl.J03
3+0.ó98
377.¿3b.
>23.+I3
7 lð.Pr99
9ð4"vJI

ii62.+4

0.8+57t6
16.7:508
+2.795J5
49.?¿;08
do. I I 484
91 .2.13+5

I I9.3uu7
15I.84+7
i99.'/081
¿06. I 948
¿46.4939
309.2¿L8
3i7 .90a7
+4¿.3¿+¿
tl-è.6¿57
56'¿ "532?l 3?- " 1?-9'3
783.08I¿

lO'l?. Bt-J9

14U7.61.ù
I ts¿3.399
I9+7.6+ó

0.838447
l€r.6El¿t
4¿"789¿
4ö.91 I6
84 .97 4l
9b.4706

I I 7.¿5E
I48.037
I 59.997
193.331+
?32.744
¿J9. I 78
JUT.IBb
3J0 . J75
3l?.4?5
4Z¿+ " 4E L

+53.972
5b0 .569
6o3 " 807
771.00c)
ð02.52[)

lJl2.-15

a)llr 7 E

t

(',

(,.ì

(.;
-l
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TAiSLE d.9 APPIITJXii"IATL ËIGENVALUES CORRESPONDIí!G TO TI-IE

ZEROS OF THE ADI"IITTAt'ICL 14AT}ìIX ELE¡4ENT YJ'2 
''OR 

A

L iNiaRLY Tr\PERED RC L INE- - FR0Þ! PFìOGR/\V F-HPOL.

THE DIMENSIONS UF T.Ib- LINE ARE GIVEN I\ F IG. 8.2.
DËG = ÙEGIìEF- OF PULYi!OI"1IAL USED TO APPiIOXI\4ATb. THE

POTENT I AL I .I TiJE ÊES i ST I VE [Ê\YÈR
THL IeROSç Sin AxI RtLAltD To THL EIGENvALUES' ].; tsY

ËQUATIONI (8.}3)

¿L.6 342
-dI.63t+7
5I.I533

-51..I53:i

- ¿5.0 r:>:
-'¿5.0 t 55

L?.06¿()
I2.0o20
53 "0 ¿49

Il5.9l?
I9+.8'14

I
?
3
4
5
6
7

F(F AL I"1 AG
4f)t_GN

¿l.a?79
-¿'l .t{¿7i,

e0.3006
-e003006
92.-ìólt)

-9?.3616

+3.157U
-ró o 

-l +24
-56.7+24

ð f .9+67
-9.6¿75
-9.6¿75
44.9I3I
44.913I

I¿3o930
204.dô1
?_l c.5+9
336.'l +?
Jl7.?65
5¿3.5¿+
l¿8.8J)
9¿q.9?)

50.4Ió4
-50. +Lo,,

7 .).54I I
-7J.5qIl

4J. J45b
-45.063u
-21-oú3'+
-2 I .6d34

27 .3¿90
"_'l 

.3¿90
ll4.¿dl
163.074
208.I69
331.0¿9
416 .563

I
?
3
4
5
6
7
8
,)

10
II
T2
I3
l4
I5
l6

À,i ¡\ ;I Y

6DL Ti JN

{

(',

T
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.TAi]LL rJ. }O APPiìOÅII.4¡\TL T.IGEIIVALULSJ CCJ(IìESPCI'JDING TO TFIf
POLÉS OF I-Hb- AI]',IIITAi!CT- MATh:IX FUTI A L.T}ILARLY T/\PË-RED

RC LIir¡l- l.R0r'1 f'rNLl E tL['f ¿ilT p¡si'Q{l'1.
NFIT = Di:_tì|<EË OF P0t_ll\UMIAL rJSED IO APP(OXIf"l;lTE THE

POT[r!TIAL 1:'l r--ACl-l ]tìiAItGtJLHÈ Rt-uICí'l (r IG" 8.2)
THE P0LtS; Si, A.(c -ILLATLÙ T0 Ti-li- EIGi\vAL-,JE5r À'ç i3Y

EQUAT I O¡I ( 8. I3 )

l.ú706I
30.ouI3
+4 . l'l 69
67 . èJèi+
90.'Jb87

112.390
,r-çt .1137
15t)"672
1.75.5+tl
?07 .7 07
235. >ti¿+
255. 0 b5
?7t3.TL4
3?_4 "?,J:)
34'.¿.799
379.507
39I.¿39
43?. L+7
453. I á7
Ii4Z " ¡b5

7 " 8 r¿.)iJ
30.72+7
45.39 i B

biJ . 7 3'c(t
92.9073

l¿2.0¿lrì
I39.5d7
r I 3.86¿
l- 8d.586
¿3b.4ùl
l'l ë. s5 I
29+"¿LL
34i"705
4¿b. 0b I
439.9 I ¿
50b.¿9)
572.559
6Ju "4U I
7 I b.552
I 15.523

f.)93iio
3 2 .1?4+
50.7bI5
7't "?vj:

114.049
l5z.57l
I9ó.r)2i
?56.t+6I
?4t.69:)
353. Ì J8
46o .9 l7
5cr9 " I35
631.302
90li " 75c)

l2lÉ..3Û
3l. /4 .21

I
'¿

J
4
5
6
I
ö
9

IO
l"I
te
l3
i4
l5
IO
l7
Itl
i9
¿(,

43\I- IT ?N

IABLE B.Ii A

ZER0) 0F Tt-tf
L lhlËA'ìLY TAP
NFIT = DEGIìE

POT E NT
THE /E¡l0S r S

PPR
AD

E.ì E
EO
IAL

tI

ÜÁIf"IA I E ¿iGENVALU"5 CO'ì{ESPOI\DII'IG TO TtlE

14lITAI\CE I"1ATI?IX fLL14Ei\iT YII TOR A

D RC i-II.IT- - I.ROM F INITT tLE'4ENT PROGRAI"l.

É poLYl'¡ol.lJAL USt-:D I0 APPrìO)(Ii'1AII THt-

II'I qACH TRiAI\¡GULA'I REGION (F IG' E'2)
A(E- RrLATrti TO THL F:IGtNVALJtt' ài I tsY

EGìUATiCN (8"].J)

\

r'

{l

('

I
2
3
4
5
b
7

B

9
10
tt
L2
I3
I¿+

ls
l6
r-l
Ib
.19
¿0

/+ "24tJ I
?2.745Ù
45.5731
64.7.419
94.3366

L46.)l?
I65. >41ì
?¿3.51T
?65.97I
341.603
37iJ"?73
4c;4 .30 7

cO L .2'lq
7EC.5J9

L040.7-b
I¿7 0 .97
3207.Jl

4"¿3¿Is
z?.25>8
q-I .7't J tJ

59.0oI9
31.05ù6

ll¡.<I>
L ¿1 .'ù4 I
i57.tl3
I43.4ó¿
¿I0.lE9
¿5ó.99I
¿d0.l.¿I
-l+-i.2i0
J7 l. . ij cl9
+J2.9+t>
+92.01'r
50¡i.944
ò05.rY4
o95. I 9+
/b5.l9U

+.232Ùr
??.?313
40.8599
58. ¿653
78.801'¡|

llI.lló
LI6.et6
137.9+I
L73.)17
I89.i2I
?20.054
24I.Iò6
?1'l . 150
298. 2 J¿+

331.3U0
365.4 ó9
382.66õ
4?5 .'a57
/+34.5t9
495 "959

hi irr I t ? 1f
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TAt]L-Ë 8. }2 APPRO¡.I14ATT- EIGEi'IVALUTS CORRESPONDING TO THE

ZEROS OF T}lE ADI''lITTAi!CI r"1AI'XIX ELII'1ËNT Y?? FOR A

LIi!ÈAiìLY T¡TPEREU IIC LIIiE . I-ROfVJ FINIfI tLE.'lENT PROGRAM.

NFIT = DEGREI OF POt-YNOTqIAL tJS[{J I0 AP?R0XIl'4Ati: TllE
POTF.I']TIAL IN F-ACTI TRIAI\GULAiì REGì.ON (FIG' 8'2)

THE zEr<OS; Sr , A,FìE RLLAT¿D TO TH¿ EI(ìE\VALÜËSr ), ' 8Y

EOuATIOf'l (8.I3)

0.ó?30d9
16.5J35
47,83r7
t+'ò.>?'Zo
85.4ù01
95. 0 693

I I 9.869
I47.I33
I57.513
lB7 ."1 7 7
225.008
239.020
¿6I .,J87
302.8)3
-\?4 "7- L5
35ó. I 37
39I.¿87
417 . JL5
+50. I ¿9
504.53ó

0.ò¿ /508
Ib.59l3
43.2+64
+9.I388
86 .75J9
98.17ó0

l3l.0l¿
Io2.707
I'/6.9J4
¿16.7 67
¿55. E39
è'l+. t64
34¿.o05
4ùÌ.c7t
43o.09J
4lL.c9l
550 . ó7ú
b I J.398
688. ¿4v
7 ¿0 .559

0. cl4J) I I
16.875/
49 .97 r?
51.677$

I13.259
121'31¿+
l9-?.157
228. I 33
27 r .634
2ð1 .534
360. []89
461 "3L4
607.647
631.374
905.769

l2t7.i0
3174.?9

I
?
3
4
5
6
7
I
9

IO
II
T?
t3
I4
I5
I6
T7
l8
l9
'¿()

LçJf.ii- I I ?t!

C;

(.]

(-

C

L
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T/\8Lb. 8.I3 APPRÙXiI"iAIt ÈIGi--.NVALULS COR.ìfSPONDING TO TilE
ZEROS OF TÊF ADI'1iT'I'1i.]Cf I.lATiìIX fLENIT-NT YI2 FOR A

LINEeRLY TaP5rìtÜ iìC ¡-irtE - fRù¡4 l- Ii!ITt ELEr"lEr"lT PROGIìAi''.l.
NFiT = DEGkEf 0l'P0t-YI{0r,1iAL USfD TO APPR0XII"lATE IHE

POTF_NTIAL II'I F. qCd TrìIAi..¡GULAì REt¡ION (FIG. 8,.¿)
THE ZER0Sç 5i' iì(F- .¿r-t-eTED T0 THt EIGL\VALUISr ì1 r t]Y

EIJUAII0N (8.13)

50"170I
-51.I525
-51.152:
IIU.047
171.079
-?.4.ó38U
-?4.638C

-i3I "644-I3i.644
?7'¿ . ¿0 2
319.3i9
441.554
649.0 7I
765. I 32
765.1ò?
B53"l5z

?97 2 .45

+3.5U ¿U

u5.8+ i I
L ¿7 .4?ó

-I46. BJ5
-¿6.1041
-¿6.I0r7
.i37.809
.Id7.809
¿90.542

-j14.306
-¡l/+.3U6

337 .6¿l
395.9u2
-39,6328
-J9.6J¿3
lZc-3"?o3
¿63. Zb3
476.1ù5
476. l.0 ó
703.502
703.5u2

b5.4ÕbB
-65. 466ð

r95.ù80

s4= "993
-J45.99d

.0¿b

.0¿6

.08tJ-r95
rbL

-1.ô1

I 5ó.536
-156.536

7 .¿57 ló
-7 ,1157 l8

J9.4208
-J9"4208

400.9t17
-+0 0 .9ri /
Jl3.b90

-3 I 3.590
12.7 057

-12.f057
/+4 . 35lt 0

-44 .355 0

n AL i'rA(iIl'¡Akl
L

?
3
4
5
ó
7
B
I

IO
II
T¿
I3
I+
1:
I6
I7
I8
I9
?0

NAR;l
lìF i T ¿t.t

a

I 0d.795
-1ù8.795

II.J7I+
-11.3114
¿7 +.936

-¿/+.93O

63.499¿
-o3. +992
JicJ.550

-J4ú.50 0

¿?.¿.5+9
- ¿-Li:.. r49

4¿.9ti jÛ
¿4.?J93

114.840
l+7.05ó
r68.797

-ì96,15+
- I96 .r54

23'¿ ,445
73?.145

.1I.975Y
3 I .9759

?81 ,95:¿
323. 7 ti u
391.796
420.¿+6I
435,35¿+
435.354

-27 + .6t+7
- 27 + .647
-4:J0 " I I E

-4rjr)"llc

I
?
3
4
5
6
7
8
9

l0
II
I?
I3
I4
I5
l6
I7
tri
l9
¿0
¿l

RÉÀL TÍ,ìÀ(rIr''lAiìl
i!F I T +N
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from the tables that tho eigenvalues decrease as the polynomial

ord.er increases. The smaller eigenvalues are genorally more

accurate than the larger onês, since the eigenfunctÍons coTres-

pond.ing to the larger eigenvalues are required. to be orthogonal

to each of the eigenfunctions corresponding to the smaller

eigenvalues, and. the smallest eigeriveluo is the minimum value of

the functional I'., (urv). A comparison between the results

obtained. r¡ith the tr-ro different t¡rpes of polynomial approx-

imations may be made with the same order of matrix eigenvalue

problem in both cases. For example, the number of eigenvalues

obtained by using program EHPOL with a polynomial of degree 6

Ís one less than the number of eigenvalues obtained by using

the finite element method. with polynomials of degree 2 in each

of the seven triangular regÍons. A direct comparison of these

two sets of results shor^rs that most of the eigenvalues obtained

by the former method are less than those obtained by the latter

rnethod. since the approximate eigenvalues are greater than or

equal to the exact eÍgenvalues, this observation tends to

support the vier,¡ that better accuracy is usually obtained if

the potential is approximated by a high ord.er polynomi"tl over

the entire region instead. of lower ordor polynomíaIs in soveral

Subregions. However, a dísadvantage of the former method is

that for polynomials of high order it is more difficult to

obtain acct¡rate numerical solutions of the eigenvaluo problem

[a - ]s] 4 = o bscause of the accumulation of rounôing

errors during the computation. The results in Tables 8.6 -

8.p were obtained by using single procision arithmetíc on a

CDC 6/+00 computer, which gives an accuracy of about 1/* significant
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figrrres for each arithm,:tic operatÍon. .å.n attompt was then made

to solve the same eigenvalue problems with polynomials of order

seven or greater, on an IBM J@0 computer, r¡hich performs single

precision arithmetic operertions with an acclLracy of about I

significant figures. This attempt faíIed because it was found

that a negativo diagonal element occurred during the Choleski

docomposition (10), (Sl), of the[n] matrix into upper and lower

triangular factors. Since tfre [n] matrix is known to be positive

definite for this class of problemsr a negative diagonal element

can only occur as a result of rounding errors during the

computation. A similar problem was encountered' previously when

using polynomial approximations to solve one-rlimensional eigen

value problems, Thus the finite element metho,l is generally

preferable to the polynomial approximation rnethod since it Ís less

suSceptible to loss of'numerical aecuracy due to rounding elrors.

I¡le now consider the eigenvalues obtained for'the zeros

of the aclmittance matrix element f.,, (Taft?t 8.Ç and 8.13). In

contrast with the previous results r,¡here the eigenvalues are all

positive and. real, ve, find. that negative and. complex eigenvalues

aro allo obtained. However, as the polynômial ord.er increases i-t

is seen that the positive raal eigonvalues tend to decrease in

magnitud.e, and. each one appears to be approaching a clifferent

limiting value, Tho negative and complex eigenvalues appear to

be increa.sing in mod.ulüs as the polynomial ordor increases, and

they do not appear to be approaching any limiting value). This

type of behavior¡l has been observed in connection wÍth the

solution of a somewhat simpler eigenvalue problem (14)¡p1 t+{15O,

i.e. when the potential functions are not eonstraÍned to satisfy



136

all of the boundary conclitions Ít is possible to obtain ext^raneous

eigenvalues whose elgenfunctions do not approximatoly satisfy the

boundary conrlitlons of the problem. A comparison of the results

obtained by using tho two different t¡pes of polynomial approx-

imations shows that the smaller positive real eigenvalues are in

close agreement, whereas the negative and complex eigenvalues are

quite dífferent. ft is therefore concludt¡d. that only the small

positive real eigenvalues obtained for y., 
Z 

ur. accurate, t¡hile the

negative and, complex eigenvalues are extraneous and should be

ignored, It should. also ba realized that if it is desired to

compute the admittance parameters at low fYequencíes, then it is

only'necessary to consid.er the smaller eigenvalues, (poles and

zoros), io the prod,uct form e4pansion. In any case it is seen

that the larger poles and, zeros are approxirnatoly equal and their

effects t¿ouLd tend to cancel one another at Iow flequencies.

The poles and zeros obtained by a one-dimensional anal¡rsis

of the linearly tapered netr¡ork Fig. 8.2 differ considerably from

those obtained fYom the 'two-'fimensional analysis. The one-

dimensional results are given in Cha.oter 3, Tables 3. l+ - 3.6. The

smallest polos and zeros dÍffer by about 1O percent, while thene

are larger ôiffe::ences between the larger polos and. zeros. The

eigenvalues obtained flom the onædimensional analysis are all
greater than those corresponding eigonvalues obtained. by the two-

dimensional analysís. ,. In add.Ítion, the zeros of the off-diagonal

elements X1, obtained by the ono-dímensional analysis are aII at

irrfinity, i¿hile the tr¡o-dimensional anal¡rsis yields some zeros

on the negative real axis of the complox frequency plane.

However, these finite zeros have only a smalL effect on the irput/
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output characteristics of the network at low frequencios sÍnce they

are very nearly coincid.ent wlth poles of the admrttance matrix.

Thero r,rilI still be considerable differences bêtwoen the adnittance

paraneters obtained. by one and two dimensional analyses, because of

the differences betr¿een tho zero fYequency paranoters and the

smaller poles and. zeros.

I,le r¡ow wish to calculate the poles and. zeros of the

adnittance matrix of a reetangular structrte rrarr units long and

rrbil units wide, with the input/output ports occupying the tr,¡o

encls of r,ü'idth trbrr. The admittance matrix of this structr¡re is

easily shown to be (1 ), pp 2/ê-2/*5 and-pp.7-9.

S=Z =

csch Ùa

- csch Ua

coth ða
(s.s5 )L

hlacot

lvl _þE
ï

where

( = @, and. r and. c are the resistance and. cap-

acÍtance per unit area respectively. It is assumed, as is usual

in transmission line theory that no lateral variatíons Ín voltage

It is easily verified. that the poles of [fl arecan occur.

given by

s=D E

and the zeros of Xtt

fOr n=1e2..

=v are'22

(a.a6)

n a. rc
for n = 1t2 - -

(a.al )
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while l,l, = X2., has no finite zelos¡

However, if one obtains the poles and z+ros by solving tbe

appropriate loound"ary value problems¡ the eigenvalues and eigen-

fi.¡nctions co"respond.ing to the poles are found to be

À J_
rctrlI )( æ

2a
+

2a,

and.
(8.88)

/ r,,n'(*'") sin (åJI . *¡ "o" 
($ y)

for n=1r2---

m= Or 1---

Clearly the poles (8.86) correspond. to the eigenvalues

and- eígenfirnotions of (8.88) with nr=O, i.e. the poles given by

(8.86) comespond. only to the eigenfirnctíons with no lateral (y)

variatíon.

The eigenvafues and eigenfi:nctions correspond'ing to the

zeros of y1 I = {ZZ ure

À 1

Dro = rc

(8.S9)
and

/ nro (*'v) (2"-!11
= COÊ oX

for n= 1t 2
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À trrh
1

+rc
(a,go)

and.

Vn,^G")
. nfls]-n oX COS

m7T
v

for n=11213
and. m=1t2¡ 3---

The eigenvalues and eigenfunctions corresponcling to the

zeTos of y1 Z= TZ1 are also given uy (8.9O). Glearly the zeros

(8.8?) corresþbnd to the eigenvalues and. eigenl'unstÍons of (8.89)

i.e. the eigenvalues antl eigenfunctions given by (8.8?) correspond

only to the eigenfunctions with no lateral (y) variation.

Ïte note that the zeros of ytj given uy (8.Ç0) exactly

cancel the poles corresponûing to m)o in (8.99), so that the

remaining poles and, zoros of the aclmittance parameters are given by

(s.s6), (B.B?).

'Ihe eigenvalues corresponding to the poles and zeros of

a rectangular BC structure with length a=1 and. r¡idth 6=1 /) are

given j-n Tables (g.tZr) - (8.16). These values uere obtained flom

(S.SS) - (9,90) where the rc product is assumed to be unity.

Approximate solutions l,rere also obtained by using polynomials of

order l+ to 6 to approximate the potential functions u(xry) antt

v(xry) over the entire rectangle i.e. the modified version of the

program EHP0I, was used. the numerical results aro shown ín

Tables 8,17 - 8.19. In addítion, solutions were also obtained by

using the finite element program with the ractangle divided into

6 identical right angled triangles, The n¡norical results obtainecl

with polynomials of order 2 to /+ are shown in Tables 8.20 - 8.22.

ba,
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POLES OF THE AD,.1IITÀ\CÈ i'lATRIA TUR A UNIFO¡ìi'1 fiC LINE"
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IABLL. 8.17 rrt)pi.ìuÀtr"laìi- E.t(ii-r.iV¡{l-uEs cORRE:sPOl''lDlNG TC IHI:
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I)OTENTIAL 1N TrII h-.ËSI JIIVT LAYF:iì.
THE POLtS, Sir ARI iLLATED IO THL EIGr-'\]VALtJES'Ài' BY

F-OUAT i 0l! ( 8. I3 ) .
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UOTO_¡¡1iAL Il"'¡ Tr.-iE ,lt-Sl rTIvi: LAYF-R.
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-l.AtìLE ¡J.ls A.pPtìoÀI'4rrlE F_ICrrrvALÚÉ.s cUdiìESPONDiN6 TO TH5

ZF-ROS0FT|.lEADi4.lTfÀi.¡cIt.l¡lTxlXÉLc-t4E|.JTlYl2lF0RA
trNIF0rì1'1 RC Lil\f - ¡:¡--'Üi4 PR0rìil¡rlvl ElrPOt-' 

-
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F:QUAT IOt'l ( 8. L -l ) .
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TAIJLL Èì.20 APPiìOXIr'ìA IC L-JGCIVVALUL!; COI<RT.SPOf\DING TO ]11i:
froLËs oF Tt1[ Aijl.tl.l'T¿rt'rct r.1À.irìI] FOiì A L'NIFOFìi"1 HC LINE
FR0M l' Il"iITb El.Ë.¡{b..1'lT PROCRAi'l.
LtNGl¡ OF LI,.lL = lr urlDTñ = L/9 .
NTiT = I]E(]REE Oi.. FOLYNO14]IAL IJS[:.) IO APPIìO}iI14AIE THE

POTENTIAL I¡J r,AÙh TNTAi\¡GUI-AIì REGIOi'J.
THE POLES r S, e Ar{Ê 'RtLATtD l'O Iilt ËIGE',tVALrJËSr l¡r BY''--- "t - t

ErluATJOt't (ts.I3).
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TABLI B,¿?,1PPRLIÀiþ1,'iTT- TIGEf!VAI-UC5 CORTIiSPONDiI\G TO

ZEI'ìOS 0f THI AD¡liTTAi\¡CL i'lATRI,( EuEt"lfN'tç Yi2ç f-0R A

Ui\iFORM Ri LINÉ - FIìÙr'I FINITT EI-t]i'îEf!T f,ROGRI\M.

LENG.TH OF L INE = I ç 
'V 

IrJTt.I = T/9 .
NFIT = ùEr.ìIIËF- CI- POLYf\O14IAL USLIJ IO APP"¿OXli"lATf THf

POTÉNTIAL II.'I F'ACI-1 fXIHNGULER Rf'-JiOII" \
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Ê.0uAIi0N (8.13).
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consideríng the results obtained flom program EHpoL first,
I¡¡e see that the eigenvalues obtained. for the zerc-rs of y1, are arI

positive and rear, except for sorne extraneous complex ancl negative

roar eigenvalues. The positive rear eigenvalues are seen to be

exactly (except for rounding errors) equar to a subset of the

eÍgenvalues obtained for tho pores of T and the zeros of r11.

The complex and negative eigenvalues are extraneous because they d.o

not converge to a definite limit, as the polynomial d.egree increases,

and they do not approximatery satisfy tho boundary conditions. rt
is interesting to note that the number of extraneous eigenvalues

is exactry equar to the order of polynomial used. This was arso

found to be true for the rinea¡ly tapered RC netr¡ort (¡'ig. g.e)

considered previously. rn adclition, the poles and. zeros r,¡hich do

not cancel one anotherrapproximate the solutions (s.86), (g.g?),

The remaining poles and zeros which are common to each y..
approxinate the solutions given ty (g.90).

Now considering the results obtainecl from the finite
element program, we note that we do not get exact cancerlation of
the eigenvarues corresponding to laterally varying eigenfunctions.

This is particularly noticeablo for low ord.er polynomial approx-

imations; whon higher ord.er polynomials are used. the poles and

zeros corresponding to latorally varying oigenfunctions are

almost exactry equal. This effect is believed to be duo to the

choico of triangular elements r¡hich are not positioned s¡rmmetrically

with respect to the mid-point cf the rectangle; all of the eÍgen
functions have either even or odd. syrnmetry about thÍs point. rn
addition, we find, that the eigenvarues obtained for the zeros of
r.,, include sone extraneous eigenvalues rn¡hich are positivo and
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real, and. whieh appear to convorge to some limiting value; as

with previous solutions r^¡e also obtain some extraneous complex

eigenvalues, The extraneous positive real eigenvalues can orùy

be posÍtively isolated by examination óf their eigenfunctions.

/rpart from the extraneous eigenvalues obtainod. r,¡ith the

two b¡pes of polynomial approximations, the'r"*uining eigenvalues

approximate tho smaller oigenvalues (8.SS) - (S.90) quite

accurately. Thus r¡e e>çect that t,he accuracy of tho admittance

parame-bers obtained from the product form erpans:ionrrybrll-d be

adequate at low frequencies.

Finally, r¡e note that Silvester (62) nas used tho finite
element method to analyse a rectangular structure having the same

dimensions as that just considered.. The network considered by

Silvesterwas a lossless IEit{ mode transmission line, whereas we

have considere<l a distrÍbuted RC line. The results obtaÍned for

one problem are d.irectly applicable to the other problem, sinee

the methods for transforming r-c adnittance functions into I-c

admÍttance functíons can be usod." For example, if an ad¡nittance

function of a lossloss l-c network is in the form of a partial

fbaction e4pansion

oo

Yi¡=[ L o2 *ct22-k h.
1 p 4

I+

k=1

then if each inductance L is replaced. by a resistance R, the

partial fþaction expansion becomes

(8.91)

.1_
Rlo

*p-_
p*uk2

1Yij = fr: +

k=1

(a,gz)
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Thus the lc network has a pole of yij r* p=O whereas the rc network

as a transfer ad.mittanoe between ports i ano j at p=O. The

Ic network has imagirrr"y rlnite poles at p=t iî. whereas the rc

network has rear pores at p='{f,2. The numerioar values of

LO, L1 , L2 - - ,Q1', -r' for the distributecL l-o network

will coincicle vrith Ro, R1 , Rz- - -rd12, ö22 - - - for the

d-istributed. rc network respectively if the incluotance and- capacitance

of the former per writ area is equal to the resistance and capacitance

of the l-atter.

The partial fraction elcpansions for the ad.mittanoe matrix

of a Ìossress planar-TEflJ mod.e network given by silvester (62) are

essentially equivarent to that given ín Chapter J for distributed.

Ilc structüT€sr Both expansions involve the eigenfi:nctions

correspond.ing to poles of the network, and. zero frequency potential

functions satisfying Laplacer s equation and. bound.ary cond.itions of

the form þ = I on one port ancl þ = O on the remaining ports.

For the reotangular structure just oonsid.ered., silvester

ca1oulated- the admittanoe matrix elements J¡1, and. y1Z ut

frequenoies up to the third. pole. The finite element method. was

used. to compute the pores and. the resid.ues of the partial

fraction expansions, with the rectangle subd.ivÍded. as previousry

discussed. into 6 triangles, and. with second- ord.er polynomials

in each triangle. For frequencies up to the third. pole it was

clairned, (62), that lrl *d Jr.,, were accurate to fou¡ signifioant

figures when compared. with the exact sorution obtained. from a

one-d.imensional anarysis. rt was fi:rther cLaimed. that for

1

ñ--
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frequencies beyond the third polo, inclusÍon of lateraJ.ly varying

eigenfunctions in the partial fYaction expansion precludes d,etailed

agreement v¡ith the one dfmensÍonal solutÍon.

This latter statetnent is considered to be incorrect. From

the analysis and, results given here it is evident that the latorally

varying eigenfunctions have no effr¡ct at all on the admittance

matrS-x, since they correspond to poles and zeros which exactly

caircel one another. This is equivalent to having resirlues whÍch

are exactly zero in the partial fYaction erçansions. The

ùifference betweon the theoretical and numerical results observed

by Silvester (62) is believed. to bo due to errors in the eigen-

values and. eÍgenfunctions corresponding to poles greater than the

third poIe. These errors are prÍ-marily due to tho approximation

of the potential functions by polynomials, and in principle the

errors can be made arbitraríly small by using hÍgher order

pol¡momiaIs.

8.6 ConclusioJc

In thÍs Chapter we have presented the theoretical basis of

variational methocls for obtaining the poles and zeros and

nunerical valuos of the adnittance matrix elements for a

multiport ûistríbuted RC network.

Some nr¡merÍcal results were presented, wíth the potential

functions approxímatetl by polynomials or píecewise polynomials

defined either by coefficients or the potential values at a set

of node points. The examples chosen were such that polynonial

approxlmations cor:Id be found to satisfþ the approprlate DÍrichlet

boundary conditions on the irputr/output ports. Hor,tever, there are
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no particular difficrrltÍes in solving problems where polynomials

cannot be found. to satisfy these boundary conditions. The main

problem encountered with the methods used here ís the isolation

of extraneous eigenvalues when the zeros of off-diagonal elements

of [f l"t" computed.. The orùy satisfactory method of d'etecting

these extraneous solutions seems to involve ínspection of the

corresponding eigenfuncùions. Alternatively, it may be convenient

with some problems to restrict the approximating functions to

satisfy all of the bounclary conditions which the e:ract solution

must sati-sfy.

One aspoct wtúch has not been considered Ín detail is the

relationship between the zeros of the admittance paramoters whÍch

are obtained. fYom partial fraction erçansion as in Chapter 7, and

those which are obtaÍnecl by the direct methods presented in this

Chapter. It is this author ts conjecture that at least in the case

r¡he¡e the approximate potential functions satisfy the appropriate

Dlrichlet boundary conditions, and r.¡here these approximations are

lÍnear combinations of the same set of basis functionsr then both

method.s should, give id,entical results. A t,heoretical justÍfication

of this conjecture Ís not known. Some numerical computations which

were performed. suggest that this conjecture ís correct, but it is

difficult to obtain accurate solutions for the zeros flom the

partial fraction er,rpansions. The main úifficulties tuith the

partial fYaction e:çansion are in obtainÍng accurate eigen.

functions, and Ín the numerical solution of the polynonial whose

roots are the zeros of the admittance matrix element. The dÍrect

methods for obtaining the poles and zeros by solving a natrix

eigenvalue problem appear to be less subject to problems of

numerÍcal accuracy.
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Ghaptw 9

VAAIAîI0N¡'II., SOLIIIIOI'IS 0I' FIRST-ffiDER ÐIIIFEIìE}ITLIIL

EQUATIOI\S USING IRIANGLE FUIWTIONS

9-1 Introduction

The adnittance pa::ameters of a multiport distributecl

resistance oapacitance netr¡ork are obtainect by solving the Second

ord@r partial differential equation

(9.t )

where
R fs the resistance per square of the resistance layer

G is the capacitance per unit area betwoon the

resistive layer and. the ground plane

s is the complex flequency variable

and.
2\7 is the two-dÍmensional Taplacian operator.

rn add'ition to satisfying (9'1 ) ttro potential in the

rosistive layer, þ(*rV), 1s also required. to satisflr certaln

boundary conùitiors as previously discussed.

The seconùorder difforential equation (9'1 ) is equiælent

to the set of coupled fi¡st-ord.er dífferential equations (1{.)

p. 162, (1) p. 2tr2,

-vø (9.a)

v"9 = srroþ

R Ja

v.J -scþ

is the cr¡rrent density vector in the resistive l-a¡rer

( eø¡leres per unit rrldth).

J
where
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In cartesian coord.inates, the system of equations (9.e)

tg

òú
ôx

ãú
ãY

RJ
v

RJ (l.r¡

(g.q)

x

à,1

-ëpx +
ôj
av scþ (9.>)

Thus instead of attempting to solve the second-ord.er

diffenential equation (9.1) we may attempt to solve the first-

ord.er system of differential equations (1.:¡ to (9.5).

One method. of obtaining approximate solutions of the

first-orCer system (9.1¡-i9.5) i" the method. of Moments, (t+)t

pp 126-128r and pp 162-166. In this reference, application of

the rnethod. of Moments to obtain approximate solutions for the

eigenvalues and. eigenfirnctions correspond.ing to Titr or fM mocles ín

waveguid.es of arbitra^ry cross-section is d.iscussed, and some

numerical results are given. l{ith appropriate modifications this

method- could also be used- to obtaín approximate solutíons for the

poles and- zeros of the ad.rnitta¡rce matrix elements for a d.istributed.

RC network.

fn the foIlor,ring, we will consider variational method.s for

obtaining approximate solutions of the first-ord.er equations (g.¡) -
(g.>). In particular, it will be shown that the poles or zeros of

an admittanoe matriz element are proportional to the stationary

values of a suitably chosen functional. Alternativelyr one may
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obtain the value of an ad.mitta¡ece matrix element at a given

frequency as the stationary vafue of a suite,,bJe fi:nctional.

The d.iffelentíaI equations (g.¡) - (9.5) together with certain

bound.ary conC.itions, are showu to be necessary conditions for

these fi:nctionaLs to be stationary.

Although variational method-s have beerr used previously for

solving partial d.ifferential equations, application of these

method.s to the first-ord.er equations (9.¡) - (g.¡) does not appear

to have been considered. previouslyn Tn addition the functionals

presented. here do not appear to have been presented elsewhere.

In the following lve will show ho¡u the Rayleigh-Ritz method may be

used to obtain appro:iimate sol-utions of the stationary problemst

and in ad.d.ition, it will be shown that the variational method. is

equivalent to the Moment methodo Finallyr some numerieal results

are g"iven.

Qne r¡ndoubted. advantage of the present method. is that the

derivatives (.f-- and, J--) of the potential É(*rv) are approximated'lc y'
with the same accuracy as the potential; with the variation method.s

discussed" in Chapter 8, the d.erivatives J* a^nd, JU are generally

l-ess accurate than the potenti.af /(xrfr).

9.2 Variationa.l Solution of First-Ord.er Differential rlquations

In the foJ-lowing, it ís more convenient to use the eqr:at'ions

(1.:¡-(9.5) in either of the following forms

dJ
an

ku (9.er¡

ú
âY

kv (9.et¡
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ôu
)x

ðv
ãË+ kø (9.eo)

(9.7r)

where

.2K

u

- sCR

RJ

-Jk
RJ
*¿
k

or

where

à¿
lx
eú
òv

v

k2

b
)x +

GU

E\r

-¿s
ây Êø

(9.?r)

vÈ"t"

The first form, (9.6u,¡,

problerni.e. poles and. zeros of

seoond. (g.Z), is used to obtain

aclmittance matrix term Jrn, at a

Now let

a-æ

a
-æ

(9.7")

ís used. for solving eigenva,lue

the ad.mittanoe pa.rameters, and. the

a variational expression for the

g:iven frequenoy.

ct

av

u

- sCR

RJx

a
àx0

00

0o

L (9.8"¡
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M

f

['

o

1

0

Ii]

0

0

1

(y.a¡)

and-

(9.8";

Then (9.6) and" (g.l) may be written in the standard

operator forms

Lf = Ef (g,g)

and.

Lf Ivtf (9. t o¡

respectively,

lrie wÍlI now inclicate briefly the proceclure for obtaining

the flurctÍ.onaIs whose stationary values are proportional to the

value of an,' ad.mittance matrix elemen'b, or whose statíonary values

are proportional to the poles o1 zeros¡

!'irst, i're will need. an inner prod.uc-b for the fiu:ction

space f, which is ohosen as (t4)r Þ. 163

(rr, ,r) = ll t,,. rrda
D
IL

Ø1 þz+ o1 o2 + v, vr) ar (9.tt¡

Next, we will nced" the ad.joint operatol La, and the firnction

space fa on which it operates. Thcse are found as d-escribed in

Appendix A, ana in (+Z)r pp. 148-149. As shown in (l+), p. 163

we obtain
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(r", rr) - (l'r", r) * {rL"*ffu-fll * nr(Øuu-""11] ut

G,lz)
where

Lt (9.tr¡
þx
o

and n_- a¡rd n__ are the x ancl y components of the unit outward-Jcy
pointing normal on the boundary C.

The fi,mction spaoe ft i= determined. by the requírement that

the hor¡¡d.ary integral in (9.12) must vanish for all fi:nctions f

and. fa within tire cì.omain of the operators L and La respeotively.

If we wish to oompute the adni.ttance matrix element Unj ot

a d.istributed. RC network, then we require a potential fi.¡nction f

which satisfies the d-ifferential equation (g.6) or (9.?), and. the

boundary cond,itions

nxu+tyt = O onC., (9. t 4r¡

ø G on C^ + C. + C.uzJK (9. t4t¡

where Gu onC
2

(9.t4"1

È constant on C j (1. t4a)j

O onCn (9.t4 
")

where c = c, + C, + C, + cn is the boundary of the resistive

layerr C., correspond.s to the insulating bor:acl.ary segmentsr C, antL

Cn are the jth and. kth metal contacts respectively, and. C, d.enotes

o

er

aaaî a-t
,o

þ

o
u

vQ

q
f0

o

0

o

o

u



all of the remaining metal contacts.

Once a solution satisi;ring 0.6) or (9.'() u¡rd the bound.ary

cond.itions (9.12f) has been found., the ad.mittance matrix element

may be computed. by using

Ytj (nu+nv)aI'lr y (9.t5"¡

(nu+nv)¿I'lr y
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(9. r5r)

or

k
RU.

J

1

RU.
J

Ytj

(9.t5"¡ is used if u and. v satisfy (g.g), and (1.f5¡¡ is used if
u and. v satisfy (9.7),

ff we lvish to compute the polr-:s of the ad.mittance matrix,

then ¡¡e require the eigenvalues of the system of equations (9.6)

where þ, u and. v satisfies the bounclary cond.itions (9.1{) with

[J. = 0r The poles si a].e then found. from the eigenvalues ki by

using

"i = -ulcn Q.te¡

If we wish to compute the zeros of ykj¡ then, in addition

to bor.¡ndary conditions (9.14), it follows from (9.15) tirat u a¡rd v

must also satisfy

{
Ja,k

(nu+nv)'x y'

From the requirement tlut the bowrd.arJ¡ intesal in (9.12¡

must vanish, we ol¡tain the bor¡¡rd.ary cond.itions on the ad.joint

fieÌcl fa as

d1 0 (y.t z)
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or Gv

from whioh it follows that

O onC,

G' on Cr+ C,+ CO

0 on0,

Vn e constant on Cn

0 on C.
J

U. = conSt¡rnt on C .JJ

O onCU

(9. t 8"¡

(9. t at¡

(9. t a"¡

(9. teo¡

(9'te"¡

(9.rgr)

(9. t eg¡

tr .,r") d.l
v

(9.t9"¡

anu +x
anv

v

ø"

Gv
where

or

vk
r
? (n*u+f)ar =

tk

{
c.

J

J

tãtnu +'x "¡") ar (9.t9t¡

where (9.19"¡ applies when the bounclary cond.itions are (9.tAa¡-

(9.te"¡, and. (9.t9u¡ applies when th.e bound.ary oonditions are

(9. t or¡ , (9. t Bg¡ .

trrtrhen we t¡ish to compute the poles or zeros of Í*jr both

sid.es of (9.19) are zero sincu Uj = O, or (9.17) must be satisfied.o

When we wish to consicler an off-cliagonal admitta¡rce matrjx

element (i.e. ¡/l)¡ the borxrdary conctitions (9.tBa), (9.t8"¡t

(9.19"¡ applyl and for a diagonal element 
"jj 

*hu bound.ary

oond.ition= (9.t8r), (9.tag¡, (9.t9b) apply. In ad.clition, when we

", f . 
(**o + 5v) ar =

J

U
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the follotoiitg, i.eo i=kr Vn is
r

ea t:rpa . rf fa satisfies the
j

bor:.ndary conditions (9.18a)-(9.tBf) and. the actjoint equation

Lafa = kfa (9.2o¡

La fa Mfa

or

it follows that

Yjt

ot

Yjt

k
(

f, 
(t*oo * "".''*)

J

(9.22^¡

(9.zzu¡

(s.zt7

0.24¡

Ììv

-LRV.K

k
dt

d1dnux +

whore
(9.zzu¡ is used if ua and va satísfy (9.2o¡,

a,nd.

(9.zza) is used- if ua and va satisfy (9.21),

In addition, if f satisfiu" (9.9) or (9,10) ancL fa satisfies

(9.2o¡ o" (9.21), it foÌlows tnat

( r', Lr> = (r" ", r) (9.e1¡

which is equivalent to the cond.ition p:'eviously stated.r that the

bound.ary integral ir (9.t2) is required. to be z€ro¡ In addition,

from (9.t5), þ,lg) and (9.22) it forrows that

Ytj YjL
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wltioh is the reciprocity reì.ation, i,ê. the reoiprocity relation

follows natr:rall¡r as a result of the requirement that f sa,tisfies

(g"g) or (9"1o) and. the bound-ary cond.itions (g.lÐ, while the

ad.joint field. fa satisfies the ad-joint equations (9.2O) o, (9.21),

and- the adjoint bowrdary conditions (9.18).

The basio teohnique for obtaining a functional whose

statíonary values are equal to thr: eigenverÌues is the following.
-!le take the scalar prod.uct of' the acljoint field. fa l¡ith both sides

of the differential equation (9.9)t and then after divicting both

sid.es of the resulting eguation Uv (ftrf) r wê take the

expression on the left sid-e of the equatíon as the ri.esired. fi:¡otionaL.

i'le can now show that the frrnctional

J1(f ,fa)
(r,"rt, r)

(rt,r ) (r",r )
is a varj"ational expression r,¡hich has for íts statÍonary conditions

the differential equations (g.g) ana (9.2o), if the functions f

and. fa are constrained. to satisfy the bormd,ary conclitions (9.t4¡,

(l"lA¡, ancl both sirLes of (9.19) are constraíned to be zero. The

stationary values of the functional J,, are equal to the eigen-

val-ues krz and. these are related to the poles and zeros Uy (9.t6).

The proof of the preced.ing statements is quite d.irect. Let \
be an arbítrary frxrction, and.6( an arbitrary parameter, and-

substitute

f f +o( ,l
0.za¡

and.
ra= rf

1

0.25)

into (9.25)¡ where r., ana rf are such that J, is stationary,
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and. f1 *o(? satisfios tho bour:dary conditions of our problcm.

Next, differentiate (9.25) with respect to o(, Th'rr by h¡pothesis

the derivative vanishes whon ç(= Or and wc therofore got (9.20) as

a stationary concÌition, Simílar1y by repeating thts procacï:re wÍth

and

f fr
1

L1 a

(9,22)

f f1 * o(r¿

we obtain (9.9) as a stationary conditíon, Similarly, if we wish

to obtain a functional whose stationary valuo is proportional t'o an

aclmittanco matrix elemr¡nt tnj, "" proceocl as follolts. lle take thc

scalar procluct of the a.djoint ficld fa, with both slcles of the

differc;ntial equation (9.1 O), and then transfer thc torm on the

right side to the loft sitlo. the rosulting e4pression on thc loft

sille can be shor¡n to havo a stationary valuo whfch is zriro. To

obtain the requir¿d functional, we acld a bounCary integral which

is proportional to ytj to th¿¡ etçression obtainscL in the provious

step. Th,¡ bounclary integral is obtainod by rearranging (9rlZ)

such that the integral proportional *l tU¡ is on the same side of

the equation as thc inner procluct (f', f,f ) .

Thus we obtain the functional

= (r"r?r> - (r",ur) - f ,(.**' *,,u',,")

d1

ck

c j

dI

(1. ee¡
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r¡hich hag for its stationary conditions thc ùifferentie.l equertions
a

(9.1 0) , (9.21 ), provtded. that f and f are constraincd to satisfy

the boundary condítions (9.14), i9.18)' In addition, it thon

follor¡s that the statÍonary va1u.r of J, is relatod to the edmittance

matrix elements by

y.. =y-.=
JIc l{J

(rrru ) (9.29a)

(9,29a)

o

2

or

= 1,. Jo(f
RU.¿ 2'

J

a
fv..

JJ
, )

where

$Grgt) is the stationary valuo of Ja(frfu) fot a given

value of k, and (9.29a.) is used for jfk.

The stationary condltions for the functional J, are derivi:d

Ín thc same manner as thoso for J1.

Next we wish to d.erive functionals such th¿,rt the trial

functions f and fa nsecl not satisfy all of tho bounr-lary conditions

of our problem, and yet we ere assurerL that the stationary valu,;

of the functional is furnished only by 'bhe solutions which satisfy

tho required. differential equations ancl boundary conditions. This

simplifies the problcm of obtaining approximate numorical solutions,

since it is often as cliffÍcult to find trÍaI function's thlt satisfy

ths boundary conditions as it is to find the solution itself.

thoso functionals are formed. by defining an oxtended

.-ooperaror I , an¡. an extenclod adjoint operator Lao, such that

( rurr,"r) = (i,u"r"rr) (ç.30)
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or an equivaÌent condition is satisfied. for funotions which need.

not satisfy the bowid-ary cond-itions of our problem, a¡rd. the

operators l,e a^nd. Lae a"e id.errbical to the original operr-r,tors L a¡rd.

La when the bor¡nd.ary cond.itions of our problem are satisfied; !Íe

have previously shown that the solutions of the bounclary value

problem must satisfy (9,23) whích is id.entical to (9.1O¡ when the

bounclary cond-itions a.re satisfied"

l.lhen the frrnctions þ ana fa satisfy the Dirichlet bounctary

cond,itions of our problem (9.t+t) - (9.14e), ana (9.18b) - (9.t8g¡,

we d.efine the extend.ed" functionals as follows for eigenvalue

problcms:-

d1 (9.1t 1

{,
(rturtrf ) = (l"rtrf> - d 1 (9.12¡

(9.¡l ) was obtained. by rearrangine (9.12) so thai the inner product

containing Lf was on the same sid.e of the cquation as the boutd.ary

integrals oon-b,:,".ining nxu * ryr, and. the resulting expression hlas

id.entified with (r"rl"rr) r similarly, (9.1e¡ was identified

vuith the expressíon on the other sid.e of the rearranged equation.

lile note that the bouncLary integrals in (9.31) containri only

those components of f whioh have not been oonstrained to satisfy

the appropriate bound.ary cond.itions, and similarì.y ín (9.32) tfre

bounclary integral contains only those co¡nponents of fa which d.o not

satisfy the requi¡ed. bound.ary cond.itions¡ l,ühen (n*u + 5v) and

tã,âr(n--u* + n--v*) satisfy the required. boundary condítions Le = Lr and'x y



163

-ae -aL-- = L- as requÍred..

When we wish to compute the value of the ad.mittanoe matrix

element instead of tlie poles or zeros, r'Jfe use the following

ttefinitions of Le a¡¡d. Lae Ín place of (9.31)r (9.1e¡,

(r"rlur) = (rtrrr) {, þu (n*o * """) d.1 (9.¡¡ )

dl (1.r4¡

1

(ltur"rr) =(L*f"rrr-$ þ (n*o'* 1,"")
1

Then, instead. of (9.3O), it follows from (9.12) tfrat the solutions

satisfy the equivalent cond.ition

(tt,l"r ) Þ^ (n*o * """) ctI

( lt"rtrr) ø ("""^ * "y'")

(g.¡¡ )

f, d1

J

hre note that (9.35) is aotually equivalent to (9.30),

since ít fotlows fro¡n (9"11) that the two bound-ary integrals in

(9.¡5) are equal for the exact solution of the bouad.ary value

problem.

FinaIIy, if none of the firnotions þ, v, u o, þ^, ot, t"

are constrained. to satisfy the bor¡¡clary conditions of our problemt

for eigenvalue problems, we d.efine
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G",r*r) = (r",rr) 
{

lt (n*o * ir") d.1

1 (l.re ¡

ßp-*rl (rr*o" . """"1-crr(r,*,, 
. """)I dI

a¡rd.

,+ Cr+ Cn

,+C.+Cn

(l"urtrr) = (Ltftrr) -

{,

Þ ø 6#" + r,",r')
t1

d.1

(g.¡t )

lØ"-c") (n*u + 5") - c*(r,*ot. """"1] ut

where
Go and G' are ctefined. ir, (9.14) ana (l.te¡. (9.36) ana

(9.3?) were obtained. by rear.ranging (9.12¡ and subtracting

d1

from both sides of the resulting equation. ft should- be noted. that

it þ ana fa satisfy the Diriohlet bound-ary conditions of our problem,

then (9.36) and. (1,f7¡ are icrenticar to (9.¡t ) and (9.12¡

respectively.

Similarly, if we wish to compute the value of an ad.mitta¡rce

matríx element with no oonstraints of the potential fi.urctions, we

d.efine

p" [þ ti* . n""') + G., (n*u . """)]rC^+C.+C.
¿JK
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(r",r,"t) - (r",r,r) -{ þ^ (n*o* 
""") d-'l-

1 (1.:e¡

(g.¡g)

(g.+o)

+
{

(l-c") ("""". tþ"") dl

2 j ct

t,
(lt"rtrr) - (r,tftrf) ú Ga + n v) clL' '¡x y

c +C +

ancl

$*" - o", (n*u + 5v)

G",r"t)- t'*r{"***,, ')

d1

C, + C.+Cn

hle note that (9.æ¡ 
""rA 

(9.39) *u iilentical to (9.:3)

"¡r¿ 
(9.34) respectively ir f a^na fa satisfy the requirod

Dlrichlet borurd.ary oonclitions.

In addition, from (9.t2¡ lt follows that (l.fe¡, (9.¡7)

satisfy (9.1o¡, while (9.:0¡ arod (9.39) satisfy

d.1

c +C
J

c.
K2

+

- (l""f"f f> - G (n ua + ,, .r")u'x y
+C.+C.JK

I'Ie nov¡ oonsid.er the f\¡nctionals

d1
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J3(f, fa)
(lt"rt, r)
(r"rr )

(g,+t)

where

Le and L"u ar" d.efined. ¡y (9.¡t), (9.f2¡

and.
f anct fa are constrained- to sabisfy the Dirichlet bowrd'ary

conditions (9.14b) - (9.14u) and (9.18b) - (9.teg¡ respectively.

It may be shown that the cond,itions for J3 to be stationary

are (9.9)¡ (9.eo1, and the bound.ary conditions (9.14^), (9.18"¡.

In ad-dition, the stationary values of J3 ¿r'e equal to the eigen-

values krr and- the eigenfirnotions are suoh that both sicles of

(g.tg) are zeror

Similarly for the functional

J (r,r') , G',r"r) - (r",Irr> -$ø" (n*u + n¡)
J

d.t
4

(g"+z)

6ø
J'c,

J

= (Lttftrf) - ú"ruf) (n ut * ,, nt) d.l'x y

where
Le and Lae are defined. ty (9.¡¡), (9.+I),

and.
f and. fa are constrained to satisfy the same bor:nd.ary

cond.itions as for J3, it can be shown that the stationary oond.itions

are (9.1o), (9.21) *rd the bouncl-ary oonditions (9,14^), (9.18a).

In ad.o.ition, the stationa.ry value of JO is rel-ated. to the admit-

tanoe matrix elements Xjk = ytj b" (g.Zg), where J, ís replaoed by

J4'

ck
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tr'inalIy we consid.er the functionals

J5 (frfa) E (9.¿:)

where

r6(r,ra) = (r'rl,"r> - G"rMr) -{ r, (n*u + n¡)

Le a¡rd. Lae are defineit uy (9.¡ø), (9.3?) a¡rd

Cr+Cr+Cn
(g.q+)

cL1

dI

Cr+Gr+C*

where

Le axrd Lae are ctefined. by (9.38), (9.¡9). No bound.ary

constraints are imposed. on f or fa in (9.41), (9.44).

fn Append.ix D it is shown that the stationary cond.itions

for J, "t" 
(9.9), (9.20) ancL the bor:ndary condition" (9.t4r)-

(9.t4"¡r a¡rd (9.t8.¡ - (9.t8e). SimíIar1y, the stationary

oonditions for JU are (9.10¡, (9.21) 
""d the bor¡¡rdary conditions

(9.'t4"¡ - (9.1{.e) and. (9.t8r¡ - (9.18s). The stationary varues

of J, are also equal to the eigenvalues kir provided. that the

solutions are constrained. to satisfy

r
f 

t"("*" * """) dl E o (g.+¡)

Cr+Cr+Cn

E (r""r"rr>- Gu,ur) -{-r(r,*'".* 5r'l
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and.

{,,
cu (tcua + nyva) dl o

þG,v)

o(*ry)

t(*ry)

þ"Gr"l

:i::l

(g.+e)

+G
J

ck+

similarry, it ca^n be shown that the stationary value of J5

is related to the admittance matrix element" IjL = Ïkj Ay (9.29),

where J, is replaced b¡i J6.

lle now consider application of the Rayreigh-Ritz method to

the probrem of obtaining the stationary values of the fi¡nctionaLs

presented previously. Approximate sorutions are obtained. by

assuning that f a¡rd fa may be expa,nd.ed. as

f (*'y) G

f "rlr(",v)
f rr"r(x,v)

¿ orv*(xrr)
O.qr)

r"(*ry) t È (9.+B)

where /¡(*rÐ, ur(*rr), 'tr*(*rl), ll(.*rÐ, "f(*rr) ""ra 
rf(xry) *"

arbitrary functions of x a¡rd. y which may or may not be constrained.

to satisfy boundary cond.itions. The r¡r¡t<nown coefficients are

determined- by apprying the Rayleigh-Ritz stationary oond.itions

ã¡
âbi

?s-
ãai E -

â¡
âoi

E o (g.+g)



169

and.

AJId.

â; ð ¡ ?,r
e-ã; t ãE Ë! q 0

-k o

(9.5o)

First we consider the fiurctíonat ,rr(rrr") (g.+:) rshere f

and fa are not required- to satisfy an¡r bound.ary cond'itíons.

tr'rom the stationary cond.itíons (9.49) we obtain

[. ',þ"

lr"þ"i-o

þøi-;

I

I

I

d

?

r

{:

9_"

0

JM^ o o o(

P
auu

m

0

þi

0 m r
(g.¡r )

where k is i¿lentified. with .fr(f rf"),

d.1
ault

ð u.a

-rlíàx dð (9.52"'1

(l.5zu¡

x j

1

,ø:"rJ

,if' :.{,"."'JL u" .{
RC

c I

d^.n u. d.1
'J X 1

2*tj*tn

(9.52"¡
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,f,."
1J - -lJ ',t#i -' ., { þi^"v,dl

R " QZ* Cj* Ct

f,.
vk n v.cl.Iy1

ß,52a'¡

(9.52u¡

(9.52t)

þ,52s¡

arrø
m??

1J

ß,Þl þ{ o¡ or vi

where

a^nd.
a

ßloj
)aaA,lD.. [. or v.IJ' J J

if Gv satisfies the bor¡ndary cond.itions (9.tea), (9.t8") tttutt

vk n*urcllfvu8i

U

ck

uv

antl if G., satisfies the bouncla.ry conditions (9.18f)r (g.t8s) th"tt

þ.52n)

rÞl

f,
.Iru
81 j n u. d.lx1

j

uv
81 g, n v. cllyr (9.52¡)
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From the last row of (9.51) we obtain

-tt"1 t"{-'[-{. þ^"] [*1-'t'tilt'l ='

[o] =

-1
(9.¡¡)

where

6 V. or U.KJ

SimíIar"ly from the second. last row of (9.51) we obtain

Ê¡

which may te reamanged. to give

[*1 + þ,"1 þ-1-'[,"1 -"'Vr]]t"l

r'] + ['"{ ti þ.s+)

þ.s>)

(g.¡6)

After substitutlng these two resul-ts into the first row of (l.lf ¡

we obtain

-'['].1 = þ]"1. Þl d
where

,,/þ")M

A = 
[rø""1 [..,-1-' t "r¡ " [rø1 |,,l,"]' t"øl
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B

an¿L

€; = Vn or U..

Since f a¡rd. ta (g.45) t G'+Q are not constrained. to

satisfy arqr bound.ary cond.itions, the expansion functions y'r,

of, üÍo þir"ir rrrt bulorrg to the same fr¡nction space and hence:

Þi= llror * or"and- u, = v,a

Thus from equations (g.l¡) -0.5e) it is seen that M and A are

symmetrical matrices"

To obtain the poles of the admitta¡roe matríx, we impose

the constraint 5= O in (9.56) which becomes

[t^l -'t'lJ ".] E o 0.>t)

The approximate poles are then obtaÍned. from the
t

eigenvalues kf by using (9,16¡"

To obtain the zeros of the aùnittance matrix term Jrn, or

Ijk r" have to impose the constraint (9.+5) o" (9,46) on the

solutions of (9"56).

If we d.efine

(9.j9")

c
J

duv

- 
[,^'] þ"1-' [-"..] 

. 
F^1 [*1-'[-,-]

a(# -l "*uiar

6Þ (9.58r)
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then (!.46) *y be written in the form

t

t'l + t"1 þl
By using (g.5¡) ana (9.54) tfris may be tra^nsformed to the

form

(1.øo¡

Ëî1
o G.sg)

t'f ["] E 0

Ir[ethod.s for obtaining the eigenvalues of a system of the

rorm (9.56) subject to the constraint (9.eo) are presented in (5e)

arrd (63), and will not be considered. f\rrther here.

Ì{e now consider the firnotional J5r 0.q+). f¡hom the

stationar¡r cond.ition" (9.+9) we obtain a system of equations which

are id.entical to (9.5t ¡ r except tbat the second. matrix in thie

equation becomes

n"r# 0 o

o

I

I

T'

I

È.

f

I

I

t---

ltu
m o þ.61)

olg ;
fn

3y using the prooedure outlined. previouslyr the equation

may be transformed. to the form (g.yû, which may be solved fo¡ the

u¡¡known ooeffioients X] tor argr given k2. the approximate value

of J6 may then be obtaíned by solving (g.t¡) a¡¡ (9.54) for d)

a¡rcl. p], "",a 
then using

16 - "' { [-""1-þl . t'*l þ] ] þ'62)

tot ottg ana g are clefined by (9.58),

We now oonsider the fi¡nctional J3r (g.4't), where f a.nd. fa

where
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are cons-brained. to satisfy only the Dirichlet bound.ar¡r cond-itions

in (9"14), (9.r0¡. From the stationary oond.itiols (9.49) we obtain

0 ,fu" 0 o(ø" o

,"þ"

,"ø"

,y," =_ij' ,,ffiu,
R

auu
0 p1? o nì

0 o 0 ú
a

l¡V
m

(l.e:¡
where

duun

k is id.entifiect with the stationary values of J3r
a

and. mw are given av þ.]:lz) I and

#ø"

',þo^
1J

{

d.n u? ar'1xJ

0.e4¡

?j
ôv d.a ó.n v? at'ayJf

c

d.a

From the last two rows of (l.el¡ úre can obtain Ê]""a 
"]in terms of ot]l and. then after substituting these expressions into
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the first row of (l.ef¡ rn¡e obtain an equation of the form

It^ I
-¿rl(

[']
o (g.es)

which ma¡r be solved. for the eigenvalues k, which approximate the

poles or zeros of the admittance matrix elementso

Similar1y, when we apply the stationary oonditions (9.49) to

the fi.¡nctional JOr we obtain a matrix equation which is id.entit¡l

to (9.63), except that the matríx on the right sid.e is replaced- by

the matrix rn (9.6t ). However, the potential fwrctions f (xry) a¡d

þ^Grù are required to be fixed. sonstants on the bound'ary segments

C, a^nd Cn respectively¡ Thus if the fr(xry) and {("rr) in (9.4?)r

(g.+8) a¡e suoh that

y'i("rr) {(",r) t 0 onC2* cj* cr (9.eer¡-

for L=1t 2 --- ("-l)

finGrY) 1 onC j
(9.66b)

Ê onCr*Ck

and.

/ff(*'r) 1 on CO
(9.ea"¡

0 on C" +C j

Then the bound.ary cond.itions impJ.y that a' ar¡d. e(n are fixed.

constants equal to U. a,nd. Vn respeotivelyr and. the stationary

cond.ítion" 
ä 

n. 
# 

- o canr¡ot be applied.. This is equivalent

to d,eleting the nth ro¡¡ of (9.65). If the nth column of the matrix

on the left sid.e of (9.65) is nnrltiplied. by -Vn a"nd moved, 'bo the

right sid.e of the equation we oa¡a solve for the coefficients q1r

o

Ê

E



176

o(2 --- ãn-1 for arSr given k2o Final1y, our approximation to the

stationary value of JO is obtained- by takíng the ,Ecalar product of the

nth row of the matrix on the left sid.e of (9.65) wíth the vector of

coefficíents où and. then multiplying the result b¡r an * Uj, The

approximate value of the ad.mitta,nce matrix element ykj = Í¡¡ is then

obtained by substituting this vatue of JO into (9.29),

9.3 soll 0 Solutions of

l{e now wish to consid.er the relationship between the

furrc'bionals d.erived_ in Sectlon ).2, and. those whioh were used. in

OÌrapter 8o In partícular we wíll oonsid-er self ad.joint problems

forwhích þ=þu, ü- râr andv= rto utdþ is assumed-to satísfy
'bhe Dirichlet bound.ary cond.itions in (9.t4), (9,t8¡"

3y using Gauss' Theorem a^nd. the mle for d.i:flferentia,ting a

product we carr then put (9.41) into the form

(u +vaJ
äx '$t u"

J3(frfa)

Il^ eþl

(9"eT)

ùa

rr'here the stationary values of J are id.entifiecl with the eigen'-
3

values k = k., t k2, k3 --- in (9.9), (9.2o).

In Chapter 8, we used- the iìrnctional

Íl-*'*o2*"2¡

2

F¡þ,þ")

$, þ' d.a

d.a

(l"oa¡
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where the sta.tionary values of F,, are id.entified- with the square of

the eigenvalues, i.". k2 = k1', n"', nr' --- .

For self adjoint problcms the eigenvalues are all positive

and. real, and. the approximate eigenvalues obtaineC. from (9.68) aru

always greater than or equal to the exact eigenvalues.
4^

Let k, and, þ, be a¡r approximate eigenvalue and eigenfunction

obtained- trom (9.68). Then we have

ftr "4, I

2
d.a

ç9.69)
d.a

à 1â 
^Let liir þr, i, anct ît be the correspond'ing eigenvalue ancl

eigenfunction obtained from (9.67). Then we have

k.
L

2

aL
ôv+v.

].

z â2+v. )l_'fi rî,'*ã',
R

)at
k.

]-

(9"?o)
Ë

da

From (9.63) we obtain

î l( ?,," u-,JJ A

R

ðó.tf-
d.a (g.7t^¡

Ix

aþi

and-

v.
a 7Y d-a

R

(9'ztu¡
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then from (9.1o), (9"71) it rorrows tlrat

-
/\
k.

1
ff,ê,u*-q't) 

a"

d.a

0.72)

(g.t¡ )

From Schwartz inequality (38) t þ, 16

From (9¡l1a) and. (9.?tt) this is equivalent to

Then from (9.12) ana (9.?4) we obtain

-l[ t"l, t'u*

Íê,*.u,*,*r*,ff-R-R

d.a
2

LfrV

2
k.

l-
R

þ,1+)

(s.t¡ )

d.a

R

/\c
As previously mentioned- the approximate eigenvalues ki -

are greater than or equal to the exact eigenvalues. Since the

^Aapproximate eigenfirnctions li "lrra'Þi 
uu genera1ly d-ifferent we

/\o 
^Doa¡rnot conclud.e lrom (9.69) and. (9.?g) tf¡at ki'S ki' ; which would

â^
mean that k.t could. be taken either as a lower bouncl on the exact

1
c A2

eigenvalue ki'r or as a more accrrrate solution thar¡ ki-.
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For certain classes of probfems (14) p. 1[2-1!6, 16!, it was

Ao
found. that the approximate eigenvalues kr- were lol'rer bouncls on

the exact eigenvalues. Howcver, as will be sho¡.¡n laterr this is not

neoessaril-y true for other efgenval¡re problems.

Although it is not possible to deduce from (9.69), (g.?S)

that the variation method. for solution of the first ord-er d.ifferential

equations will always give more accurate eigenvalues than those

obtained- from a variational solution of the second. order differential

equation, the form of these relations tend"s to support this view; it

must be emphasized- that the solutions obtair:ed. by the forrner method

will d.epend. on the number and form of the expansion functíons used

to approximate u ancl v as welL ru þ, whereas in the latter method. the

expansion functions used- to approxinrate the Cerivatives of the

potential fu::.ction carurot be arbitrarily chosen. If the expansion

functions used for u(xry), v(xry) ana þ(xrt) are such Ì;hat it is

possible to satisfy ko(*ry) = - ,4* and. kv(x, ù = -H ever¡rv,rhere

insid.e Ìì, then both method.s will give the same numerical rer;ults.

A oomparison of the zero frequency admittance parameters may

be mad-e in a similar ma¡ner to that for the eigenvalues. As before

we consid-er- only self arljoint problems, i.e. f = far and the potential

fu¡ction / is assrrmed. to satisfy the Diriohlet boirnd.ary cond.itions ín

0.t4¡, (9'tB).

From Chapter Bn the approximate value of the admittance matrix

el-ement Jr¡, obtained from the fi.¡nctional- FZ(þrþ^), (B.t ) is

IvÃ l'xjj - 1

2 þ.ra)
j

R

RU

¡lr



lhe approximate solutíon ob-i;ained- from the functional

1Bo

(9.77r)

þ.rru)

J4(frfa), (9.42) oan be shovrn to satisfy

^òóv -.-
ãv

'^
v + d.a

,fi

^aóuñ )jj

where

d-a =

R

G.7rc)

and. hence

d.a (g.??¿)
RU j

Às previously d-iscussed the approximate 1¡¡ Si.r"r, ty (9.?6) is

that Ít is either a lower bound on or a more acor:rate approximation

thanf*-. This is not necessarily so however, sinoe tfre value of Ç-JJ w ' ,r\ -/)
d.epend.s on the form of the expansion functions used- for â. anal

j

^12'þl1

2jjv

d.a

an upper bound. on the exact Jr.r. fn acld.ition, from the form of
â^(g.ZZa), we woutrd expect the approximation îjj *o be fess than f' so

j

as well as those u"ua rorf;" ^The value of y- - depend.s"JJ only on the

^rtexpa.nsion firnotions u,:ea for fi if we wish to oornpare y .. and. v..
JJ "JJ

the expansion fi:nctions n" fi *rùî will usually be id.entical.
.^

For the problems to be consid-ered later it was 1 ^lound that yjj vùas
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less tha,n î¡r but 1¡¡ *u," still an upper bound on the exact

solution v. ..- JJ

þG,v) f * i Þiî,v)

9.4

I{e nor* consider the evaluation of the matrix elements

required for a variational solution of the first-ord.er d.ifferential

equations.

Forsimplioityitv¡illbeassumettttrattheregíonis

subd.ivid.ed. into a number of rectangular and. tríangular subregions by

a system of gríd. lines paralle} to the x anfl y coordinates. The

grid. lines need. not be equally spaced in either the x or y d.irectionst

but it is assumed. that the bound.ary ís approximated. by linear

segments, and. each bound.ary segmcnt either coinoides with a grid

line or lies on the d.iagonal of a rectangle enclosed- loy ad-jacent

pairs of gricl lines.

A potential fi.urotion f(xry) which is d.efined. by the value of

the potentíal O(i at eaoh mesh point may be expressed. as follows:

Regions

n
(g.te)

i=1

where

li("i'vi)

11("1'r1) rorl/i

1

o

and.

(*rrr1) are the coorclinates of the lth mesh point.

one of i;he simplest interpolaticn functions lvhich Sives a

oontinuou" y'("ry) with pieoewise continuous first d-erivatives is
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d.efíned. as follov¡s. strppose that the mesh points at the four

oorners of a rectangular element are numbered. i, jr kl r as shown

in Figr 1.1.

1k

v

l_

Í

Figure 9.'l . Reciangul¿r element v,¡ith a mesh point at eaoh oorteer.

hÍ
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Then, insid,e the rectangle, a set of fi.motions satisfying

the requirements given abover is

li(*'r) 0 "79"7

0.lga)

(9.79")

(g.tg¿)

Þ rG,Y)
(x-*i) (r-r1)

-C\-\f (ir-vt)

lyGrv)
(x-x1) (r-ri)

I

ly(.",v)
("-"n) (r-r5)

(xr-:rn) (r1-r¡)

Similarly, if the mesh points at the corners of a

tria;agular element are numbered- i, j, k as shown in Fig. 9.2.

k

r-7

h
v

v l_
j

hx

Figure !.2' Triangular elemen-i; r'vith a mesh point at each vertex
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A set of functions satisfying the above requirements within

the tria^ng1e is

Þ1krv)
X-]C.

1---3--)t.-X-
J1

(9.8oa)

(9.eot)

(9.8o"¡

/¡("'r)

-

ly(*rY) Í- ri
Ít -ri

A símilar expansion to (9.?8) can be used for the firnotions

u(xry) and. v(xry). tet pi and Ú', te the varues of u(xry) and.

v(*ry) respectively at each mesh point. îhen the approximations may

be written as

u(xrv) I F, o, ( *,y) (l.or ¡

I

v(xry) = L ãi ri ( *ry) (l,ez¡
I

where

or(*rr) ana. vr(xry) ar. icì.entical with y'r(xry) cterined. above.

bie have assumed. that the bound.ary of the tu¡o dimensional

region is polygonal and eaoh bound.ary segment coincíd.es with a sid.e of

a rectangular or. triangular element. In ad.d-ition, the potential

function þ("rV) varies linearly along each side of an element and.

is d.efined. by the potential values at each mesh point. Thus Ít is

easy to obtain a potenti¿,¡.I f'r¡¡ctí on þ(xry) which satisfíes Dirichlet
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bound.ary cond.itions of the form (!.f4); we simply constrain the

e(, to be zero at mesh points on bou¡:d.ary segments where /("ry)
is required. to be zero, a¡rd on bound.ary segmen-bs rvhere þ("rV) is

required- to be constant, we choose theO(. to be equal.

Consequently the matrix elements required- for a variational solution

are Linoar combinations surfaoe integrals of the form

*4
1J

rY41J

(g.B¡)

(g.aq)

(r.45 ¡
çc

Yi ??rJ
ltc
'i oj d,a

where

gi Ê /r(*rv), or(*rrt) or "t(*rr).
The contributions to each of these integrals from a

reotangular element oar¡ be easily evaluated., and. if the mesh points

ir ir k, Ì in Fig. 9.1 are replaced. by 1, 21 3, { respcctively they

may be v¡ritten Ín matrix form as

hJ
12

2

2

1

1

-2
-2

-1

1

1

2

¿

-1

-2
-2

(9.86)



fþ

"þþ

Le,l

-2

-2
-1

h
lc

12

1

2

1

2

2

1

2

1

4

2

2

1

-1

-2
-1

-2

(9.8?)

t86

(g.eB)

(9.e9)

(1,rc¡

1

2

2

4

2

I

4

2

2

4

1

2

Similarly if the mesh points i, jr k in Fig. 9.2 are

replaoed. by 1 r 2¡ 3 respectively, the elemental matrioes for a

triangular element are

1 -1

-1

-1

hJ
6

1

1

o

0

0

Lø

'"/]
h

]E

o

0

o

0

-1

-1

1

1

1
t

Ii

1

I

2

1

2

1

(g.gt )
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Once the etemental marrices (9.86) - (l.ee¡ o" (9.89) - (9.91) have

been evaluated- for eaoh reotan3ular ol triangurar element¡ the

surface inte,;rals (l.S:¡r(l.e,g¡ oa¡r il:.en be eval-uated..

The only remaining step in the solution is then the

solution of a system of l-inei¿r equations, or an eigenvalue problem.

9.5 Numerical tt-eåql$

some numericar rcsults obtained. for a number of d.ifferent

problems by using the variational methocl d,esoribed. ín the preoed.ing

sections will rrow be presenteri.. The two-d.imensional regiof¡s were

d,ivid-ed- into rectangurar and. triangular sub-regions, and. trre

potential functions þ, u and, v T^rere approximated as d.escribed. in
section {. For each probren consid.erecl, the potential function y'

was constrained to satisfy the required. Dirichlet bound.ary

oond-itions. The approxin:ations for u and- v were not constrained. to

satisfy any bound.ary concLitions in general, since these boundary

cond-itions are rrnaturalrr for each of the functionals ussd-. However,

for some probl-ems a comparison was made of the results obtained. with

u and v constrainecì. to satisfy the Neuma¡rn bound.ary cond.itions, and.

with no constraints on u "îÐ.d- vr

Bcamples 1 - 3

Zero Frequency Àdmittance parameters for Linearty-Tapered.
Resistance Netr,¡orks

The network consid.ered. is sholrn in Fig. 9.3; the two-

d.imensional region was clivid.ed. into rectangular and- triangular sub-

regions as shown therein.

Three d-ifferent approximations to y1 I GJZZ= -11 Z= -ïZ,t)
hrere computed for l'our d_ifferent mesh sizes.
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The fírst approximation, 111r was obtained- as the minimum

value of tÌ¡e variational e:c1:ression (!.76). This approximation is
an upper bound. on the e:ract solution. The second. app:roxirnation

Ár'\'Í11 
"o," 

obt¡¡ineri. by using th.s potentiar function þ for.¡nd. ror 1r,,

in the variational expression (9.?Ja), where u ancL v a,re related.

to þ ay (g.Z?¡), (g.77"). .tì,or each of the probJ-ems consid.ered 
m
Yll

was fourid. to be ^smaller than yr 
1 r but lvas still greater than the

/r
exact varue. The third. approximation iì., t hr,?.s obtained. as the

statíonary vaÌue of the fu:rctional (9.42). For each of the problems
4

consid.ered, iìl vras founri. to be less ilran 1r.| anal,lr but greater

than the exact values. From the results in Section 9.3 it was

conjectured that 1r, rol,,rd be Less than 111.

The numerioaf results and. the cLimensions of the network

for examples 1-3 are shown Ín Tables 9,1 . 9.3. The m¡nber of
simultaneous equations solved. in each case is shown in the tables

as l'ï8. Approximate sol-utions for examples 1 and.

2r witlr e""or estirnates, were obtainocl- by using poI¡rnomiar approx-

imations for the potentiar þ("ry). Ii'or exampre j an anarytÍcal
solution is known (:e¡. comparison of the approxímate sorutions

ä.
t11 *d ŷ11 ÌIith the lrexactfr solutions shows that the error in Yt't
Ís about twioe as large as the error i t11 Thus if the approx-a

1

imations for þ, u and v are of the form disoussed Ín section 9.4r the

variational method- based- on the first-ord.er d.ifferential equation is
tikely to be more acctlrate than the variational method. based. on the

second.-orcler equation. Howcver the former method- general.ry requires

more computation since the coefficient matrix [o] is obtained from

the matrix on the left of (9.øj) which requires the invcrse of the
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TABLE 9.1 APPRI]XTI"lATË VALUË5 OF TIIE I]C ÂDI'III'TAI'ICE
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matrioes[*] ""u[r*] as vref] as a number of matrix products;

with the latter variational- methori¡ the coefficient matríx [^l

is assembled d.írectly from the element matrices for rectangular

and triangular subregi-ons.

lùcample 4

TM and TE lÏodes in Rectangular -i'vavegrrid'e

The eígenvalues k2 obtaínecl for the TM modes in a reo-

tangular waveguide with two d.ifferent n¡esh sizes are shown in

Table !.,{, together with the exact eigenvalues. This problem has

also been consid.ered. by Harrington (t+)r po 166r rr¡here the

eigenvalues k obtained for the [I,t, mode are given" The cross-

sectíon of the rectangUlar guide was subdivided- into smaller

rectangular elements as shown in Fig. !.{'

Tlreapproximateeigenvaluesareallfound.tobelower

bound-s on the exaot solutions for this problem. The approximate

eigenvalues obtained- by a variational solution of the second-order

d.ifferential ecTuations are always upper bounds on the exact

solutions if the potential fu¡rction / satisfies the appropriate

Dirichlet bound.ary cond.itions. In add-ition, the convergelrce is

signifioantly faster when the first order equations are useA (t4)

pr 160, p, 166" It sliould. be noted that the exact eigenvalues are

arranged in increasing ord'er of magnitude, but the approximate

eigenvalues are noto The order offhe approximate eigenvalues

hras obtained. from inspection of each oigenfunction to determine

whioh waveguide mod-e it approximates; we recall tlnt a similar

procedure Ï¡as necessary ín the solution of one-dimension eigen-

value problemsr Chapter {"

Ilve now wish to consid-er the approximate eigenvalues obtained
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for ÎE mod.es in a rectangular wavegui-de. The exact ei3envaluest
ck', for this problem are given in Table 9.) for the first few modes.

For TEI mod.es, the exact eigenfwrctions satisfy $f = O over the

entire boundary. This ís equivalent to n*u + nyv = O on the

boundary. llhen the expansions for u and v r/\iere constrained. to

satisfy these bor:nd.ary conri.itions, the apploximate eigenvalues shown

in lable 9.6 were obtained". The first thing we obserwe is that some

of the eigenvalues are simple a.nd. the others are of multiplioity two

or fou.r. The exact eigenvalues however are generally simple except

for a fernr which are of multipJ.icity two. A comparison of the

approximate a¡rd. exact eigenvalues ind.icates that if the multiple

eigenvalues are consíùered to be simple, then the approximate

eigenvalues are all less than the exact solutions¡ i.or they are

lower bou:d-s. It is d.iffioult to determine which mod.es should- be

identifiecl with the eigenfunctions corresporrd.ing to rmrltiple eigen-

valules sínce the eigenfunctions are not unique. i.e. if ürGrV)

and,þr(xry) are eigenf'unctions correspond-ing to the same eigenvalue,

then a il1þrV) + b frr(xry) is also an eigenfunction.

If the expansion functions for u and v are not constrained.

to satisfy the cond.ition n*u * "y" = 0 on the boundary C, the

approxímate ei-genvalues shown in Table 9.7 are obtained.. Ide recall

that 'bhe bound-ary cond.ition tcu + ,yr = O on C is a rrnaturalr

cond-ition for stationarity of the functional Jj(frfa). Thus, in

general, the eigenfi:lotions obtained. by the variational method- will

approximately satisfy this bor:nd.ary condi'bion, although hre must

expect that there will be some trextraneousfr eigenfunctions ¡,¡hich

will not (14) p, 148. The approxímate eigenvalues in each l-ine of

Table 9.7 are amanged. so that the approxiniate eigenfi:nction has the
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sa¡ne form as the mod.e oorrespond.ing to the exact eigenvalue.

Compared- with the prelrious results, we see that there are no

multipl-e eigenvaÌues in Tabte 9.?r and at least for the dominant

'IE mod-es it is easy to id.entify the mode correspond'ing to an

approximate eigenfi.lactionn Tn ad.dition, !ùe obtain some ertraneous

eigenvalues, but these are easily identífied. because their eigen-

fi;nctions d.o not approximately satisfy the boundary conditions.

Example 5

TM modes in Right Angled. Isosceles Tlia.ngle

For this problem an exact analytical solution is ]mov¡n (2)t

p. 751456"

Approximate solutions for the first felv eigenvalues were

obtained- by subd.ividing the triangle into reotangular and. triangular

sub-regions as shown in Fig. 9.5. The approximate eigenvalues

obtained. with several d-ifferent mesh sizes are shown in Table 9.8

together'¡ith the exaot eigenvalues. The approximate solutÍons are

all less than the exact solutions i.e. lower boqnd.s; this was also

found. to be so for the [M mod-es in rectangr¡Iar waveguide.

llxample 6

TIvl and. TO l,{od.es in Ridge lfavegrrid.e

The cross-section consid.ered is shown in Fig. 9.6; since

the rid.ge-waveguide is s¡rmmetrical we only need to consider one

half of the cross-section with the boundary condition þ = O on the

oentre Line for those mod.es with od.d. syrnmetryr and

oentre Line for mod.es with even symmetry.

ff=o onthe

The approximate eigenvalues obtained for the ts[ modes with

odd s¡rmnetry about the oentre l-ine are shown in Table 9.9 for two

d.ifferent mesh sizes; the approximation +o þ(xr¡) was constrained
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to be zero over the entire bound.ary. A1thou,3h the exact eigen-

values are not known for this problem it appears that the

approximate eígenvalul.s are Less than the o'.act solutions since

they all increase as the mesh size becomes smaller. Thus the

results of all problems sol-ved. so far suggest that the approximate

eigenvalues obta,ineCr for TM modes by variartional solutions of the

first-ord-er d.ífferentiÈlequations ai'e almost certainly lower bowrds

on the exact eigenverlues; for oaoh of the problems consid.ered- the

approxirnate potential fr¡nc-bion was constrained. to be zero over the

bound.ary of the region.

The approximate eigenvalues obtained- for Tii modes ín the

rid.ge waveguid.e with even s¡rmmetry about th.e oentre line are shor,rn

in Table 9.1o. The approximati-ons tor þ(x,,y), *(*ry) and v(xry)

were not constrained. to satisfy any bound.ary conclitions. The

results obtained for this problem by Bulley and. Davies (lO) are

shov,rn in Table 9.11 together nith the results obtaíned. from the

finite-element progï.am d.escribcd in (55); the approximate eigen-

values obtained. by these two method-s are greater than or equal to

the exact eigenvalues i,er upper bound.s, Tnspection of the

approximate eigenval-ues obtained. by the present method, shows that some

of the approrimate eigenvalues appear to be upper bowrd.s which

converge monotonically to the exact eigerrvalues as the mesh size

d.ecreases.

The remaining approximate eigenvalues appear to be converging

to the exaot eigenvalues in ¿rn osoillatory ma:rner i.er the suocessive

approxirnations d,o not d.eorease monotoníca1ly with the mesh si4eç

llhe approxirnate eigenvalues for TE modes in the rid.ge vrave-

guíd.e with od.d. symmetry about the centre line are shown in Table 9.12
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togethor with the results obtained. by Bu[ey ancl Davies (to)

and silvesterfs program (ll). since the approximate potentiar

fr:nction þ("rù was constrained to satisfy the Dirichlet bor:ndary

cond.ition þ(*rù = o on the centre line the cigenvarues obtained. by

the latter two methods must be upper bounds on the exact eigenvalues.

As with the previous example, some of the approximate eigenvarues

obtained. by the present method- appear to be upper bound.s which

converge monotonicari-y to the exact sorution, whire the remaining

sorutions appear to be converging in an oscilratory manner. The

approximations for u(xry) and. v(xry) were not constrained, to satísfy

any boundary cond.itions for these computations.

rn aclditíon to the results just presented.n a,n attempt was

made to obtain solutions for the Tt! mod-es in rid-ge waveguid.e with

the approximations for u(xry) and v(rry) constrainecL to satisfy
the appropriate bound.ary cond.itions. It was found. that none of the

eigenfunctions appearecl to satisfy the required- N,umann bound.ary

cond.itions, and. the eigenvalues differed- sígnifica^ntly from those

folrrtd- previously. An explanation of this bchavior.¡r wiLl be presented.

laterr

E:camnle 7

-

Po1es and- Zcros of Ad.mittanqe Parameters for Uniform RC Line

The results obtained, for the poles and. zeros of th,e ad.mittance

parameters of two distributed. lìC lines wiII, nov¡ be presenteci. The

first exampre to ba consid.ered- is a uniform RC line of width o.5

units and- length 1 unit, with the input/output ports on the two

narrovr ed.gcs; the exact sorutions for this problem were given in
Chapter B.
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The resuLts obtained. by variational solution of the first-

ord.er d.ifferentiat equations are given in Tables 9.14 a¡rd- 9.15.

The rectangular region was subdivid-ed into smaller reotangles a¡rd

the approximations tor þ(xü), o(*ry) ancl v(xry) luere of the form

gíven in Section 9.4. For both sets of results, þ(xry) was

oonstraincd to satisfy the appropriate Dirichlet bouadary oonditions.

rn ad'clition, the results in Tabre 9.14 were obtained' wíth no

constraints on the approximations u(xry) and. o(*ry) while the results

Ín Tab1e 9.15 were obtained. with the Neumann bowrd.ary conditÍont

n--u + r--v = Q. satisfied. on the two longer sid.es of the rectangle.lcy
The smaller eigenvalues in Table 9.11¡, are seen to be approximately

equal to thc exaot eígenvalues, and. the errors become smaller as

the mesh size d.ecreases. fn ad.d-ítÍon, most of the smaller eigen-

values are less than the exact eigenvalues i.e¡ lower bounds. The

results in Table 9.15 where nxu * "y" was constra'ined to satisfy

the \Teumann bound.ary cond,ition, contain a number of smaller

eigenvalues which d-o not converge to any of the eigenvalues

obtained" from an exact solution; in ad.d.ítion, the eigenfirnctions

þGrV) ooruesponcì.íng to these ertraneous solutions d.o not approx-

imately satisfy the requircd. Neumann bowrdary conditions. In both

Table 9.14 ana Table 9.15 there are a number of poles of[f] ana

zeros of y1., which elractly cancel one another. The remaíning poles

and- zeros in Table 9.14 are seen to coincid.e exactly wíth those in

Table 9.15, and in ad.tLition, these eigenvalues are seen to correspond

to the on+dimensional solutions vrhose eigenfirnctions have no

variations with position along oo--ordinate lines which are parallel

to the input/output ports.



202

)-
1r

NROTI

t
I
I
t
I
t

3

2

*

1

I 2 3-- --NCo['

Uniforn BC llne - Subdlvislon into reotstgrtrar

elements

Figure 9.7



203

TABL.E g.14,1PPRûXIMATE EIGENVALUES C0R'RESPDNDING TO

THË POLES ANO Z CÍìOS iJ F T H E ADI"l ITTA\JCË MATRT X ELEMËI{T

Yl1 FTR A UNTFORI4 RC LINE.
f.lc0Lr liRûl4, Af{D THE DIt'lËi\S IoNS ARE As sHoHä IN
FlG. 9.7 .
(u AilD v NoT CONSTRA I¡J ED Tü SAT lSFY NÊUI4Aì.JN B0UNDARY

c0r,iÐIr I ci'ts )

TI-IE POI.E5 A|.ID ZEROSISJI ÀRE RELÂTED TO THË

ËicrnvÀuuEs, k=i, BY rõulrtot'¡ 1e.16l

TABL': 9.I5 APPROXIMATE EIGEi.IVALUES CORRÉSPÛi{DING TI]
THE ADMlTTA\CF HATRiX ELEMËN'TTHE PI]LES AND ZEAÜS üF

YIl FOIì A'JNIFORI.ì RC LINË.
NCiJL' I.JROHI AND THE I]IMENS IONS ÅRF ÅS SHÜHì.I IN
FIG. 9.1 .
(U;\i.ID V CONSTRÁINED TCI SATISFY \ËU¡4ANN BOUNDARY

CÜNDIT ICNS )

THË P0LES AÞlD -Z EF.oSrS¡ r ARE RELAI'ED T0 THE

EIGE;'{VALUES, k, ' BY ESUATION ( 9- )
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TÀBLL 9.16 APPROX IMATE ETGEI{VALUES CORRESPOI'IDING TO

THË POLF-S OF THE ADMIfTAIìCE lIATRIX FOR

'{ 
LII{EARLY TAPËRED RÜ L INË.

¡¡cãL, î.,lRtr flR0l,lr AND Tt-1E DIMENSiO,t¡S ARE AS SHOHN

(u Ai¡D V t!oT CoÑsrRAiNED Tü SAT ISFY NEUMAI'jN B0UI'IDARY

c0nDI r I0ils I
THÈ PoLEs AND^zERtlsrslr ÀRE RËLATED T0 THE

rrcr;.¡vÄLUËsr kzi r BY rhunrrotl { 9'16 )

TABLE 9.I? APPROXIMÀTE EIGËNVALUËS CORRESPONDING TO

îHEZEROSoFTHEåDMITTANCE}4ATRIXELEMEN].YtlFoR
A LIì'¡EARLY TAPERED RC L INE.
IFI FIG. 9.3.
(U Âi..ID V T'IOT CONSTRA]NED TO SAT ISFY NEUMAN¡-I BOUNDARY

CONÐIT ICi{S }

THE POLES ÂND Z EIìT]STSTI ÀRE RELATED TO THE

ËI GEitV ALU ÊS ' k! ' BY EQUAT l0t'l ( 9 ' )
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TAtsLË 9"IB ÁPPROXIMATE EIGENVALUES CÛRRËSPONDlNG TO

THE ¿ERCS OF THE ÂDM ITTAJ{CE ¡4ATRIX ELEMENT Y22 FÜR

A LIf.TEARLY T ÀPERED RC L IF¡E.
il.¡ FIG. 9.3.
(U AiID V NOT COI,ISTRA I¡"IËD TÚ SAT ISFY NEU¡'1ANN BOUI{DARY
coÌiliI T I0NS )

THE POLES AND
EIGEi¿VALUES!
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ti , EY ËQUAT IoN ( e. 16 )
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@nls-!,
PoLes and Zeros of AcLrnittanoe Parameter6 for Linearly
Tapered. RC line

The d.istributed. RC network considered. is id.entical with

that in Example 1 , and the same subd.ivision into rectangr.rlar and

trÍ-anguJ-a:r olemen-bs is usedo The poles and zeros obtained are

shonm in Tables 9n16 * 9"19i the potential function p(xof) was

cons'brained. to satisfy the Ðiriohlet bound.ary conditions of the

problem, but the approximations for u(xry) and- v(xry) were not

constrained to satisfy any bounclary cond-itions" This problem

was aLso consid.ered. previously in Chapter B, where variational

solutions of the second-ord.er d.ifferential equation were obtained

with polynomial and. piecewise polynomial approximations for þ(*ry).

l\ comparison of the results obtained- by the two variational method.s

shows that the sma1Ler, (i.e. d.ominant), eigenvalues are generally

in close agreement i the main d.ùfferences are in the complex and.

negative eigenvalues obtained- for the zeros of y1 Z = 121"

9"6 -Ç.og"lgqi=9.=ti

The functional-s consid-ered in this chapter have for their

statíonary oorrd.Ítions the first-ord.er partial d.ífferential

equations (9,2¡ which are equivalent to the second-ord-er partial

d.ifferential equation (9.1)" Approximate solutions of the

stationary problem may be obtained- by the Rayleigh-Ritz method. which

lead.s to a system .of linear equations or a matrix ei.genvalue

problemo It should- be noted. that the solutions obtained. by the

Rayleigh-Iìitz method are idontÍca-l- r¡ith those obtained by the

Moment method- d-esoribed- in (t+)3 Chapter 8, section 8"5-B'7;

althoughthe d-erivation given in (t+) is concerned mainly with
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self-adjoint problems, it can also be extend.ed. to non self-acljoint

problems.

ft has been shollm hour solutions may be obtained. if the

region ís d.ivid.ed into rectangular and- triangular subregions, aJrd

the potential function in each subregion is approximated. by a Ìinear

funotion as d.iscussed. in Section p.{. C1early this method. could.

be extend.ed. to hand.le curved. bound-aries, and. more acourate solutions

could. be obtained. by using more compLicated- expansion fi:nctione such

as pol¡momials.

The nurnerical results obtained- show that the variation

method. d.iscussed- in this chapter generaJ.ly gives more aocurate

solutions than the variation method. based- on the second-ord.er

d.Ífferenti*l equation; a^n¡r such comparísons are d.one with the same

expa.nsion firnctions for the potential functions in both method.s.

The reason for the improved. accuracy with the former method- is that

the d.erivatives of the potential function are apptoximated more

aocurately. liowever, a computer progr¿un based on the former method.

is likely to be more cornplicated., ancl generaì-Iy-bakes more time to

execute tha¡r the lattel rnethod. ft should. be noted. that the two

method.s are id-entical if the approximations for u(xry) rt d r(*ry)

are proportíonar *" %f*¿) *.d È{f?d respectivety. rhis wourd

be so ir y'(xry), o(*ry) and v(xry) were chosen to be polynornials

of ord,er n in the tl'¡o variabLes x and y over the entire region iì.

One d.ifficulty encountered- with the present method is the

ocourrerlce of extrarreous eigenvalues which aro comparable in

ma,gritud-e with the dominant eigenvalues. These erbraneous solutÍons

were obtained- only when the approximations for u(xry) 
""rd 

v(xry)

were constrained. to satisfy the Neuma¡ur borrnd.ary cond-itions, and.



208

the approximation for /(xry) r.ras constrained- to satisfy only the

Dirichlet boundary cond.itions of our problem. In aclditionr it

was for,:nd. that these extraneous solutions f(xry) do not appror-

imateþ satisfy the Neumann bormd.ary condition # = O.

tthen soluti-ons were obtained. with no constraints on the

approximations for u(xry) ancì. v(xry) but y'(xry) was constrained. to

satisfy only the Diriohlet bound.ary conditions, it was found. that

extraneous solutions still occurred., (i.e. they d.o not approx-

imately satisfy the Neumann bound.ary cond.itions), but the eigen-

values i¡rere generally much larger in magnitud.e than the d.ominant

eigenvalues.

The reason for the d.ifficulties mentioned. above is

believed- to be d.ue to the fact that it is inconsistent to constrain

the approximations for u(xry) urrd v(xry) to satisfy Neuma,¡rn bor:nd.ary

cond.itions n_u + n__v = 0r witirout imposing comespond.ing constraintsxy
on the approxinration for y'("rf), This follows since the exact

solutions for u(xry) 
"rrd 

v(xry) are proportional t" # *tu$
respeotively. Thus the exact solutions o(xry) and. v(xry) are

d.ependent on y'(xry). In arLdition, the coefficients of the

approximate solutions u(xry) and- v(xry) are related. to those of

þGrv) by a pair of equations of the form (9.¡¡) , (9.54). These

equations show that if the approximatu /(*rV) is constrained. to

sabisfy bor.rnd.ary cond.itions of the form # = O, then the

oorrespond.ing u(xry) and v(xry) wi}l approximately satisfy

nxu + ït = 0 on the sarne bowrdary segment. Howeverr if n*u + nyv

= O on part of the bormd-ary, there must be certain constraints on

the coefficients p ana ð . rtrus (9.53), (g.>+), caru:ot be

satisfied. unless corresponding constraints are imposed on the

ooefficients, ó(¡ of y'(xry).
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ft is therefore oonsid.ered. that in the practical applfoatton

of the Variational method. oonsidered here, the borudary oonclition

n_u + n--v E O should. be left as a natr:ra1 condition, amd. thexy
potential funotion þ("rù shoulcl be oonstrained to satisfy

#. O on the Neumann boundaries, or this should. be also left ae

a natu¡al oond.ltLone
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Chapter 1O

R].S'ORVIULIITI ON O}' TH:IJ PARTIAL DI}IF Li' ì..''ì'iT ]AL jj.] QUATICI'Ï

ÀS .¿U\T INTIG-iÌ1rL lilrìUAfTOI{

10.1 Introcluction

2
þv ø

rn this chaptor we wil"l consider a numerioal technique for
the

sotvíng d.ietributed- lìc netlvorks r+hich is based- onntransformation

of tho partial d'ifferential ec¡uation

2 (ro.t)

where

oRC
È

(ro.z)

to an integral eguation. y' is tfre potential ín the resistive

layer, p is the complex frectruency variable, Ru is the sh'¡et

resistance of the resístive layer, and- 0 is the capacitance per

r¡¡it area between the resistive layer and- the ground plane'

The tra¡rsformation or (t0.1) to an íntegral ec¡ration is

accotnplishetL by using Greenrs boundary valuo formula as

d.escribed in (Z?) ana (29). Some numerioal teohniques for

obtaining approximafe solutions of the integral equation are

d.escribed. in detail in ( 2)), and- the special case with p = O in

(to.t), (to.e) (i.e. Laplacers equation) is oonsidered- in (e6)t

(¡o), (31) an¿ (65).

Althoughamethodforobtainingapproximatevaluesofthe

admittance matrix elements at a.rry desired frequency is d-escribed' ín

d.etail in (e9), numerioal results.are only given for the zero

frequenoy caser (p = o). In tiris Chapter some numericaf results

6

l2
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obtained. by the method. described. in (29) are presented. for the zero

frequency case, and- also for frequcncies on tire jYrraxis inthe

complex. fre'cluency pf ane 
"

fn additionr tre u¡iJI also oonsider the application of

the methorL to caloufation of the poles and- zr,rlos of the admittance

parametets. Spielrnan (90) fru* used- a simj-tar nethod for

c¿r.Iculation of T,jl or TI{ modes in waveguicl-es of arbit:'ary oross-

section, but applioation of tire integral cquation methorJ. to the

caloul-ation of poles and. zeros of the acLmittance parameters cl-oes

not appear to have been consid-ered. previously. Some numerioal"

results obtained. by this method a.re presented. ín this Chapter.

One problem r,¡hich arises in corucection with the praotical

applíoation of the method. dcsoribecl in (eg) i.= that loss of

accuracy oan occur when the calculations are perforrned. on a finite

precÍsion computer. There are essentially tt¡o steps at which

errors can occÌ¡r. flie first is in the evaluation of the various

intcgrals v¡hich ars required.. If anat¡rbical solutions are used.t

the resuLts may be inaccurate becau¡:re it is necessary to Subtraot

two quantities which are almost eq1al. l,lethocLs of improving the

aocuracy of the integration by using quadrature formulae are

discussed. in this Chapter. The seoond source of errol:s is in the

soLutíon of the system of Iínear equatíons for the coefficients of

the pol¡monrial approximations to thc ìrr¡knolrryl functions. It is

showrl here th¿r,t these errors can be reducerl substantially by using

orthogoûa1 polynomials to approximate the unlÈnown firnctions.

Most of the previous rrrethods for sol-ving the integral

equation have been restriptqd to two-climensional regions lvhere the

bounclary is asÞr4lned- to be polygonal. Âlthough curved- bor:ldary
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segments can often by approximated. by a number of linear se,.Ements

it is d.esirable to have a metho<l which can solve such problems

d.irectly. rn this chapter we wirl consid.er in some d.etail, methods

for sol.vin.3 probrems where the bound-ary incJ-udes oircl-es or arcs of

circles. Pro'b1ems containing circular bound.aries are often

encountered ín practice in connection with the solution of

Laplacets oquation for loss]ess transmission lines. rn addition,

other bor-rndary sirapes can be approxÍrnatecl by cirourar arcs and.

strai3ht lines.

The method of solution to be d.escribed- is useful for
problems where the bor.rrd.ary conclitions on the contour C which bound.s

the two-d.imensional region R are of the general form

o( (r)/ .FøH= ã(r) (ro.l)

where

or, p and. ð are given functions of 1, the d-istance along C

from some reference point. The general torm (1o.3) incrud.es the

following speoial cases:

(") Diriohlet Bowrd-ary conctitions, with f specified on

C (or= t, p= o)

(t) Neumann Sor,md.ary conditions with aJ
dn specified. on

c (ot= or Ê= 1)

(") fmped-ance boundary cond.itions wíth þl# specified. on

c (q= 1rd = o).

Fbr d.istributecl- RC networks the bound.ary conditions are

rrmixedîr irêr ovêr a portion of c v¡e wil-I have / specified, and over
adthe remaind.err;f will be specified.

On each of the bound.ary segments correspond. to a metal
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contact hre have þ eq:ual' to some constantr md on the remaining

bound.ary 
""Srurrt", ff is zero sínce no current can flow out of the

resistive region on these segments.

If the bound.ary segments correspoTld-ing to the metal contaots

are d.enoted. by C1, C2, C3 --- CN, anC the potential has a value VO

on the kth metal contact and. is zexo on a1l other met¿r,I contactst

the atlmittance parameters are given by

d1

j

vt
aJ
òrLR

S

{

(ro.4)Yjt

for j * 1¡ 2 --- N.

The poles of the admittance parametùrs are the frequencies

such that X¡¡ Soes to ínfinity, while the zeros ot ljL a¡e the

frequenoies such that Irn is zero.

The method. of solution is to transform the partial

d.ifferential equation (10"1) into an integral equation, i.e. the

potential at arqr point is expressed as a contor.l¡ integral

involving the potential and. its norrnal d,erivative on the bound.ary.

On the metal contacts, y' is trorn: (specifie<1), and. ?*, is to be

d.etermined.. on insulating borrnd-ar¡r segments '# is zero, and-

f is to be determined-.

Itpproximate solutions for the r¡¡known bound.ary values of

þ ""d34 can be obtained. by the general method of Moments (14)r

which is equivalent to the point matohirrg (collocation) method

(29). The integral equa.tion is thus red.uoed to the matríx form

L^J-] F b] (to.5)
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vrhere

is the coefficient rnatrix

is a vector whÍoh d.epend.s on the speoifierJ- potentia.ls

on metal contacts

and 
" I is the vector of coeffioients of the series expansions

for the bounclary values ot þ unaft .
The coefficient matrix [n] depencLs on the complex

frequency variable p, so tiiat it must be cal-culated. for each

frequency at which the ad.mittance paramcters are to be evaluated..

The admittance parameters ale thcn obtained by substituting the

solutions of (to,!) into (tO.4¡. Àlternatively the poles and zeros

of the ad.mittance paremeters ma¿r be obtained. as the frequencies

euch that ¡l¡¡ defined. by (rO.+) tends to infinity or zèrot If [^]
in (t0.5) is a squaï'e matri:r, the poles of njO are the frequenoies

such that

d.et [n] E o (lo.e)

where the oxpression on the left side of (t0.6) d.enotes the

[^]
bl

. ïn general¡ the poles and. zeros are found. by

and.r/or yjt of a number of clifferent frequencies,

and. then by using an interpolation or extrapolation formula, the

d.esired. poles and. zeros rnay be obtained¡

10.2

The clerivation of the integral equation from the partial

differential equation is 3iven in (Zt) a¡r¿ (e9). The resul-t ís

determinant of

evaluating d.et

={ [cø")%i+ - þG,v)

c

[^]

[o1

(r o.? )

d (x',J¡r ) y'(xt,y')
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whele

12= (x-xr)Z* (y-yt)2 (r o.B)

6¡ (xr ryt ) = 2 Tí for (xr ryr ) insítle il

E e for (xfryt) on c (1o.9)

= o for (xf ,yr ) outs;id.e R

ancl
€ is the interior angle at (xrryr) subtend.ed. by Cr equal

to rr if (xt ryt ) is not a corner point of the bound-ary. i^lhen (xr ,yr )

is on the bound,ary the integral on the right of (l0.l) is

interpreted. as a Cauoþ principle value integralr i.e.

b

rr(x)ax = Lird)O r(x)ax + r(x)ax (ro.to)

a

when f(x) is r:nbor¡nd.ed. ín the region of C,

The functìon G(õ r) in (tO.?) is a Greenrs fi:nction whioh

is d-efined. as follows:

(') V2c-lze=2n6(") (to.tt)

with respect to both pairs of variables ("ry) and. (xr ryt )

(t) at x = xrr ¡r = ïrr G is singular, and

0 (*ry, rtrJ?)* - tsge (*-*')z * (y-v')2

(to.re)
(o) 5 (") is the Dirac d-elta function d.efÍned. by

do+

[ (") =O rorr/o

ff
R

\
þ Grù.6(") d.a = þ (x',y')

(ro.t¡)
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for all continuous fr:¡ctions p(xry).

The physical significance of the Greents firnction is that

s (õr) (ro.t4)
R

s
2Tl a

is the potentía.I at a point (xt ryt ) whioh results from a unit

point current source at (*ry).

This is verified ¡V (tO.?)r since the current per r-*rit

wid.th entering the rersistive layer on the bor:nC.ary C is

9^ø
þna

,l

R
s

a

By oonsid.ering the potential d-ue to a,pair of point or¡rrent

sources of magnitud.e + I" and -I"r and- allowing the distance ¿t

betlveen these sources to approach zero we obtain

þ(*' ,v') (r".¿)oosê.ãU^. * 6Ð (ro.15)
R

where the geometry is shown in Fig. 1O.1.

Then, since

oo* eaf ôG
ôn

(ro.ro)

where
â is the unit outward. pointing norrnal on the boundary,

it follows that the contribution to the potent i-al. al (xt ryt ) from

the second term on the right of (1O.J) is equivalent to that from

a d-oubl,e-layer of current souïcesr one layer on each sid.e of the

bound.ary, such that

n" (t".a) E y' ("ry) (to.t?)

wliere +I- and. -I- are the currents/r:nit wid.th, and. the spacing d-
SS

between the two current layers is infånitesimal.
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üJe note that the Greenr s fwrction is not unic¡ueIy d_efíned

¡y (tO.11), (10.12), :rnd if C(úr) is chosen to satisfy appropriate

bound-ary oond.itionsran explicit, solutíon may be obtainecl rrom (1o.7).

as previously notect, for d.istributed. EC netv,rorks y' is gi-ven on each

bou¡d.ary segment coruesponding to a metal contactr æd on the

remaining bowrd-ary segment" 

"?É 

= O. Therefore, if we choose

c(ã r) = O on the metal contacts, *rd ll"dd = o on the

remainder of th,c borud.ary, then the right sicLe of (t,f.?) oan be

evaluated since there are no rmknowns, and we have an exprioit

solution for the potential at arqr poin-b.

For many probl,:ims it is extremely d.ifficult to find a

Greenr s function lr¡hich satisfies all of the necessary boundary

cond.itions which al-Ior,r an expJ-icit sorution to be obtained..

Another approach is to select a Greenrs function which d,oes not

satisfy a1r of the bor:ncLary cond-itions, and. is thus simpler to find.¡

Ân example of the leutter approach is ,,liven in (3O),

ïn the foIlor^rÍng, we wiì.l consid.er method.s for. obtaining

a,pproximate solutions of (tO,?) with

q(7 r) = ro(lr) (ro.r8)

where Ko is the mod.ified. Bessel function of the seconcl kind,

ord-er zero¡ The adv¿untage of 'bliis approach, whioh is also used. in
(Zg), is tlut it can be used for.two dímensional regions of

arbitrary shape; otherwÍse it would, be necessary to find a d"ifferent

Greenfs funotion for each problem we wish to sol_ve.

For Laplacer s eguation we use

a(ú")
insteacl or (to. tB).

-Iosr (to.r9)
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1 o. 3 W.trga!--s-o¡tllggå-l@
An approximate solution to the boundary value problem will

be obtained. by transforming the integ::aI eguation (tO.?) - (1O.9) to

the matrix form (tO.5), which may be solved- for the coefficients

of the series expansions for the bor:.ndary values of y' urU* .

The ad.mittance parameters aro then obtained. b¡' using ('tO.4).

1 O.3.1 Líneal bor:rrd-ary segment s

The usual method. for obLaining approximate solutions of

the integraL equat:-on (10.'i ) is to assume that the unknown

potential or its normal d.erivative on the kth bound.ary $eßment may

be approximated as

þG) ""H

rn" (t )L c. rr(s)(") (r o.zo)

¡=*, (t )

where s is the d,istance along the bound-ary frorn ,some referÉnce

point,

rr(s) is a gíven fmction

and. the c. are coeffícients to be deterrnined..
J

ff n(t) is the number of expansíon functions f,

used. on the kth bor:ndary segment then

k

(")

rr(t ) n(k) (to.zta)

i=1

and.

*,, (t ) rr(t ) n(k) + 1 (r o.zrr)



For simplicity it is conunon to d.ivid.e the bounclary

lnto N straight line segments, the kth segment beÍng denoted- by

.A c*.

Tltren the apploximation (1O.2O) is substituted' into the

integral equation (tO.?) we obtain

^2
(r)N

2æ

(to.za)
f (*t ,yr) þ(*t ryt ) =

where

L c (")r(ú r) asj j

2r E )

¡=tn,,(t)

S-Ei
2p (r o.aeu)

k=1

r is given by (to. I ), and is of the form

( 2 +p

r(rr) = ro(ðr)

r(fr) G _aro(dr)

on conducting bound.ary

segments (to.e3r)

(ro.e3r)

on insulatÍng bound.ary

se,gments

on oonducting bound.ary segments

(to.z4a)

æ
ân

r p K1(ü r)

r

f,(Úr) is the modÍfied. Sesse1 function of the second kind., order

one, and p is the perpenilioular d.istance from (xr ryt ) to tfre

segment ÁCn as shown in Fig. 1O.2.

The sign of p is chosen to be the same as that of the

scalar prod.uot of the vectors í and. â itt nig. 1O.2.

For Laplacers equation (1O.e3a) and. (10.23b) are

replaoed. by

r(1") æ -Ios r
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Figure 10.2. DefínÍtion of paratretels for a t¡¡pical element

ocL



r(Ùr) = + on insulatíng bor:ad-ary segments (to.e4¡)
r

If I/I points (x1, X1) are chosen on the bounclary, then

('to.zzì beoomes

¿¿¿

(r o.e5 )

(r o.eo)

c ("i ,yi) þ ( xrrri)
N

f "r, o,

rrlhere

ÞGiryr) on the reft of (lo.z5) ís replaced. by tho

expression on thc right of (1O.ZO) on the bor,mdary segments where

the potential is unlçnolrn, ancl on the remaining scgments the known

value ot þ(xyvi) i" inserted into (10.25). 6¡- (x1rr1) is aerined Ín

j=1

f (s) r(fr) as
J

('to.9).

The matrix clement" *ij are given by

a.
1J

Once the matrix elements a. . have been cvaluated. the

system of l-inear equations ('lO.Z5) 
"*r be solved. for the u¡rknown

ooefficients c. provid.ed that I{ ¿ mr(N).

l¡le now consíd.er the choice of the expansion fi¡notions

rr(s) in (to.20). The only restriotion on the rr(s) is that the

integrals (tO.Ze) must exist.

One ot' the sirnplest types of approximation, but one

which is entirely aclequate in many oases, is obtained. by choosing

the fj(s) to be pulse functions , (l+), Chaptor 1. This gives a

step approximation 'bo ttre unkrroÌün bound.ary values of /(s) and
AJIÐ. Cristar (26), (3t) used this method ro solve some TuuèrL
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transmission Iíne problems with circular a¡td rectangular

oonductorsr

BIue, (29)t used- piecewise polynomial approximations

ror þ(s) a'd 
3-g( 

=), whioh is equivalent to choosing

j - r.(i.)
rr(s)-s ¿ (10.27)

in (1o. zo).

i,ilhen either the step approximation or the piecewise

pol¡momíal approximation is used, ancL polynomial approximations

are used. to approximato the Sessel fi,¡nctions ro(lr) or K, (ür) as

discussed in (29), then the matr'íx elements (10.26) arc of the form

"z
a,

1J -T rog, (s2* p2) q(s) + n(s) d.s (ro.e8)I
s

1

where

Q(s) and R(s) are pol¡momials in s. These integrals ca¡r be

evaluated- exactly by using integration by parts and. a reou¡síon

fornnrla to express the integrals involving higher po¡{ers of s in

terms of integraLs with lower pohreï's of s.

'¿rihen the Bcsse1 f'u¡ction K1(U r) appears ín ( 10.26)

the integrals are of thc rorm (10.28) plus an additionel term of

the form

d.s (ro.e9)

u1

n(s) is a polynomial, Anal¡rtical solutions for this integralwhere

a.re also e4sily obtaíned..
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For large arguments the pol¡moniial appr:oximations. for the

Sesse1 functions rec¡uire a leirge number of terms for convergencet

and" acouracy is lost on a finite-precision compuler due to

canoellatíon. It ís then more satisfaotory to use the asymptotic

expansions for fo(x) and. K.,(.x), i.n whioh case it is necessary to

evaluate the integrals in (lO.Z6) Uy " numerical integration routine

as d-iscussed. in (Zg)t

The accuraoy of the solutÍons obtained can be increased

by using higher ord.er polynomial-s on each Ì:oundary segmentr or the

number of bountl,ary segments may be inoreaseC while the polynomíal

ord-er is unchanged.. In general the former mc'bhod. is þetter, up to

a poínt (a9). If the ord.er is too h.i.gh, the matrix of the IÍnear

equations becomes ill-cond.itioned, and accuracy is lost due to the

finite word. length of the oomputer. In addition, the effect of

errors in the evaluation of the integrals becomes more noticeable

for higher ord"er polynomials. Inaccuracies in the evaluation of

the integrals oan ocour beoause the analytical solutions sometimes

reguire the d-iffererr'ces of two quantities which are al.most equal;

othqr inaccuracies oocur beoause it is necessary to use numerical

integration when anal¡rtical solutions are not available. It l¡as

found. by Bluc (29) ttr"t the numerical accr;racy general-ly tend.s to

beoome v¡orse for poì-ynomials of ord-er greater than six or eight

on a computer wlth B a:.git rvord.s.

ûne method- of reduoing the effect of round.ing errors is

t o replace ('t o. 27) ty

f (") r¡-rr(r.) (") (r o.3o)j

where fr(s) is the Cheb¡-chev pol¡momial of order j sh:ifted. to the
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interval 
"1 - *2 whioh comespond.s to the kth bound.ary segment;

other orthogonal polynomials may also be used. instead. of the

Chebychev pol¡rnomials, if d.esired..

One method of evaluating the integrals (10.28) , (lOrZ9)

is to expand. the Chebychev poL¡momials in the form ao+ a1s +
2

a2s- + --E. The contributions from each term ma,y then be ad.d.ed.

together. This methocl is unsatisfactory for numerical purposes

beoause of the loss of significant figures d.ue to subtraction of

terms which are almost cqual; this problem is most severe for

high orcler pol¡rnomials.

A more satÍsfactory method, of evaluating the integrals

is by means of a quadrature formula, Ìfhen polynomial approximations

are used for Ko(dr) a^rid f.,, (fr) ¡ the integra.l of the pol¡momial portion

of the integrand. in (10.28) is obtained. in the form

Mb

J
a,

n r(x) ax L w, nrr(xr) (r o.¡r )

where nrr(x) is a pol¡momial of ord.er n.

Tabl-es of the weights w, and. abscissae x, for the Gausslan

Quadrature formula are given in (66) i a.ïI lli point Gaussian

Qua<lrature forrmrla is cxact for pol¡rnomials of ord-er not greater

ttran (2u-t)"

The integrals involving the 1og term in (lO.ZB) ca,n also

be evaluated. by Guassian Quad.ratur.e. For the special oase p = 01

Fig. 1O.1, these integral-s are evaluatecl by using

i=1

{

M

n r(x) r" Ç) .f "r. nrr(xtr)dJc =
i=1

( r o.¡z)
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îhe weights wl, and, the abscissae xl. are given in (66);

the Lf-point Gaussia.n Qr.¡adrar.ture formula is exaot for polynomials of

orùer less than 2M.

For the case p / O, tlig. 10.1, the integrals Ínvolving

the log term in (tO.eg), are of the form

( r o.¡3)

An exaot evaluation of this inte'gral by Gaussian Quad.rature

would. require calculation of the appropriate weights and abscissae

for eaoh value of p and. for each set of limits (arb).

An approximate method- which can be used is to subd.ivide

the interval (arb) into smaller intervals and. then apply the

Gaussian Quadrature (1O.3t ) to each sul¡interwal. The errors in

the integration can be mad.e arbitrarily small by increasing Mt

ana/o by increasing the numl¡er of subintervals. A similar rnethod-

is afso suitable for integrals (10.Zg).

In add.ition to polynomial trial funotionsr it is

sometímes advantageou,s to use speoial trial funotions. For

example, near corner points on the bound-ary, the potentierl may

not have a convergent Taylor series expansioni a low-order

pol¡momial is then a poor approximation to the potential or normal

d.erívative. This d-ifficulty may be overcome by using non-

pol¡rnomial tri¿rl firnctions (29). Near a singular oorner the

potential may be expand.ed as

b

f
a

nrr(x) tn(x2 + p2) a*

I T",t,' (q "i"r'e + B' cos?r'e)þo*il@e)
n

(ro.34)
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ÌùheIe
f þ) = I (vp)t the mod.ified 3essel function of the firstyt ! ' -

kind

or f^,(F) = pt ro" Laplacef s equationv'
and.

(Ên) are the cylindrical coord-inates with the orÍgín at

the corner.

The {t s depend. upon the geometry of the cornerr and are

chosen to satisfy the boundary condítions- (26).

In ord-er to improve the approximate potential near a

singular corner it is only necessary to use (to.l4) for smalt pr

in which oase f,oo(p) ir, (t0.34) may be approxirnated. by 1", uru

only the first two or three terms are retained in (tO.34).

l,lhen these special trial fi:¡ctions a¡e used. it is generally

necessary to evaluate the inte,grals required- for the matrix elements

rij b" numerícal integration (26).

the only remainÍng aspect to be consid.ered- in relation to

the solution is the seleotíon of tl¡e bourrd.ary points, (oollocation

point$¡ (*irf1) at which the íntegral equa.bion is to be satisfied.

This problem was investígated. at some length by nfue (29). The

results obtained. for some test problems suggest that it is generally

better to clistribute the points on the boundary segments in the

same rday as the zeros of the Tchebyschev pol¡momials¡ the number of

points on each bor:nd.ary segment is chosen to be one greater than

the ord.er of the pol¡momial approximation used. on that segment.

Other choices of points such as equal spacings along each segment

generally give less acourate solutions.
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10.3.2 Curt¡ed. bowrilary segments

Although it is possible to approximate a cu¡ved boundary

segment to any d.esired. aocuracy by a number of straight line

segments, it is sometÍmes preforabLe to use special teohnigues

for the more common types of bor¡¡dary shapes which are 1ikeLy to

be encorurtered. For example, it is often necessary to obtain the

oharacteristic imped.ances of transmissíon lines with conductors

of circular oross-section (ft¡t the cTraracteristic irnpeda^nces are

obtalned. from the static capacitances per unit length betweon the

cond.uctors.

lrfe now wish to consider ín detail, methods for solving

Laplaoef s eqrration in two-dimensional regions where the bormd.ary may

consist of circles, €lrcs of círcles, and straight line segments.

The geometry and. pararneters to be used for the cÍroular bor¡nd.aries

a¡e defined. in tr'ig. 10.3.

2*a?--z¿R 
"os(a-oo)

t"rt Oo =.1

fp

p = n-a cos(€-oo)

S== R0

(rry)

v
Þ

X,igure 10.3. Geometry arrd d.efinition of paf ameters for circula.r

R

d.

(xtrJ" )

/q

-lFc4

ä.ICS ¡



For a oircula:r bowrd.ary of the form shown in Fig. 1O.3t

we repl.ace the expreesion (1o.22b) ror rl by

2r n2 + ¿2 - 2ctl 
"os 

(f; - so) (ro.l5a)

log"r fr(s) as

229

(ro.35t)

(r o.¡o)

(r o.3? )

where

E

r.J

s=Rg

sr Rr d., I and. €o are clefined. in ]'ig. 10.3r and Q is the angle

eubtend-ed. at the oentre of the circular aro.

The matrix elements are defined' ¡y (t0.26)' tr'or

Laplaoets equation, K(/r) in (to.z6) is given uy (to.24)' i.€.

(to.ee¡ is of the form

i:
for ciroular conductors

and r is given ty (to.35).

For problems invol,ving ciroular cond.uctors !'¡"ith q = 2 Tl

it is convenient to expand. - In r in a Fourier seriest

oO

-In +v - 2uv cos€ È -In u + cos l€
k

+ (i)
t{= I

oO

rorf,{1

[+ (*f""" ,o-Inv+
1çr=1

ror341v-
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Then, because of the orthogonality of the trigpnometríc

fr¡¡rctions oos 1€ and. sin m€ over the interval O4,QS2Í1-¡ it

follows that if

rr(s) cos le (to.38a)

then

4,.
1

27TR l-n v (ro.¡eu)Ej

l
SHgl- cos r€r tv./ o

forl=0

rorly'o

(ro.3B")

(ro.38¿)

and if

then

f (") sin I€j

E ( r o.38e)

where

€o is d.efined, in Fig. 10.3

and.

v G maximum of R and, d.

u E minirmrm of R and. d..

For d.istributed. RC net¡¿orks with oircular oond-uctors a

Fourier series expansion of the Bessel function of the seoond. kind.

can be wrÍtten as (8), p. 363

a.
1,J T(+)t "r" r""
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( t o.4o)

È

tç= 1

(r 0.39)

The integrals a. . oan then be easiì.y evaluated. for circula¡

oonductors with % E 2?rf íf the trial fu¡¡ctions fr(s) are ohosen as

(ro.38a), (ro.38¿).

tr'or conduotors r,rhioh consist of circufar arcs (i.e.

et ( 2ff) tnere is no partioular adva^ntage to be gained by using

the For¡rier series expa.nsions (tO.3?). It is then more convenient

to choose r.(") of the form (10.27), a,nd- (to.¡e) may then be
J

evaLuated. by using the following approximations.

I¡.or the particular case d. = R and. €o - O, tr'ig. 1O'3, it

is easily shown that

¿

"o(

For

obtained

where

2
Trog

+ - 21rv cos € ) ro(u) Jo (v) + 2t rn(u)J*(v) oos k€

ãS" S # the folrowing polynomial approximation was

rr, [za "o= Ç -tt)] = rn (2a "t" !)'e

In oos
o(
2 ! .1249990 + ,oo522o931878 o( 2

(ro.+r )
+ .000322 6oq4 + .Ooo04O91 q6 + É(x)

o( =fiF- €l

le (*)l < t.i x 10-6.
I '! -

Thís approximation is ad.equate for most practical pülposêsr

2

and.
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tr'or

v¡as obtained.

-E<c rT the followlng polynomlal approximation

2
Ln e2 -ln 2 sin I

r .083333438

+ .@0693 68258 e2 ('lo.4z)

+ .oooo1t833t 65 & + €(x) :

where

f 
er"ll a.r.1 x 1d?

Thus if %h) on a oircula¡ oond.ucting arc is approx?

imated by a polynomial- with fr(s) of the form (1 O.27) it is seen

that the inteeral .arr, (tOr¡6), along this bor¡¡rd.ary segment gan be

easily evaluated. fqr d. = R by using the polynomial approxímations

(tO.4t), (to1.4?)i. the integrat ís of the form (10.29.

; When the observation point ("i,yi) is not on the ciroula¡

oondr¡cting afc (i.e. a I n) a¡¡ al-ternatíve method. is available. The

integral (tO.¡e) is a linea¡ combination of integrals of the form

d.s ('tro.4})'

where

-'2

J "tþ. (n2+ a2) + rn (r -c**- Ë)]
"r 1 ..

o( lot <t rorR/a
R¿ + d.¿

The first term in (tO.43) is rea.dily evaluated., a,nd the

second. may be evaluated. by integrating by parts, as follows
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s

"2

J
"1

"z

"1 Lr, (t *o¡cos fi ) u"
I+1

i;¡ rn (r -aoos f; )

I

1+1

dE

1-otoos f;

(t o.44)

The second. term on the right of (t O. M) may be read-ily

evaluated. by using the following po\rnomial approximations for

cos e and sin €:-

oos O Ë 1 - .4999888 e2 + .041585 OZ e4

- .oo1 2998 e6 + € (e)
(ro.+5)

where

le to¡{ s .oooo2

ror lel 3 +

t*Ëf - .9ggg't15 - .166020 02 + .ocrt 62666 & ,çc"l (to.4e)

S

R
s]-ns

where

lr te! < .ooooe

to"lels ?
The integrand. is then a rationaÌ fi.¡nction wÍth the

d.enominator a cubic in s2, and- the required. integration can then

be done anal¡rtically. Since the errors in the approximations

(10.45)r (to.+g) are quíte small the integrals should. be
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sufficiontly accurate for aJ.I practical pr:rpos€s¡

I'or Laplacets equation wÍth circular insulating bound'ary

sogments ancl f*(s) of the form (to27 ), ttre Íntegrals (to¿6)
J

are of the form

a.]lJ

,2

f
"1

d.s

("+ sn)1

(to.4?)

ds (to.48)

(*+ so)r .+
'r

where
p and r are defined. in Fig. 1O.J.

This integral may be put into the form

2È2- d
+

R2+ a2- 2d R.ou €
R

i¡lhen ttre observation point (x.try.t) 1íes on the circular

arc? (i.u. R - d-), the integral (to.48) is readily evaluated since

the seoond. term va¡rishes. For R / a, tfre second term may be

evaluated a,nal¡rtica1ly by using the polynomial approximation (10.45)

for cos (þ

1O.4 Numerioal Besults

Computer programs incorporating the solution techniques

d.isoussed. in the prerrÍous seotions were written.

Some numerical values obtained for the oonductanoe matrioes

of a number of distributed resistance networks are presented. belowt

and. these are followed. by some results obtained for d.istributed.

resista.nce capacita.nce networks.
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The computer prograJn for solution of Laplaoers equation

generalLy requíres less computer time than that for soluing the

reduced. wave equation (1O.1), since the Greenrs fiurction for the

former is simpler, and. tlre latter involves complex arithmetic for

solutions at frequencies not on the real æcis of the oomplex

frequenoy plane.

The approxÍmate cond.uctance matrix [*J *" the form

gtl 8¡z st3 ' 81 ,,a

235

(r o.+9)

€2,

oa[-]

5zt 8zz 8e3

a a

a

{tl 8n2 8n3 .q"nna

Because of the approximations involved, trre IG] matrix

obtained. will not be exactly s¡rmmetrical in general, but exoept for

rourrd.ing errors the s'um of the elements in any row is zeto¡ as one

wouLd, expect for the exact solution. the amor:¡rt of ass¡rmmetry fn

the approrimate solution gives an ind.ication of the er¡ors in the

solutíon.

lùrample 1

The conductanoe matrix of the tlvo-port resistance network

shov¡n ín Fig. 1O.4 was computed. with the lrnl<nown potential or its

normal d.erivative on each sid.e approximated. by pol¡momials of order

1 to 11. 0unre.â. in Fí9. 10.5 shows the ma:cimum error in the

approximate solutions; the mæcimum error is the greater of
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t

Port I

Port 2

Figure 1O.4. Sao port resistanoe networlc - ExanpÈe 1 '
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For network jn Fig. 10.4rwith
pol¡rnomi¿I trÍal functlons on1y.

I

1

1

A1
f{
o
f{
å
\q-

01

For network of Fig. 10.4r wlth

speclal trÍa1 fr¡r¡ctions at

singular cornerso

For network in Fig. 10.6¡ with

polynoni¿I trial functÍons orr1f,.

'0 01 01? 31,56 8s 10 11
PolonomiaL Ortler

Figure 10.5. Accurscy of approxir¡ate conductance uratri: elements

for d.lstributed reslstance networks.
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[*.,, 
- u.,., (exact )) /er, (exact), *u lrr, - Ezz(exact lJ/*rr(exact).

The collocation points on each sid.e were d.istributed. as the zeros

of the Chebychev pol¡momial of ord.er one greater than the order of

tho polynomíal apprørimation.

This problem was also consid.ered. by BIue, but the results

obtained., (29) fie. ?¡ do not agree with those obtained. herer One

possible explanation of this disorepancy is that the poI¡momial

o¡ders shown Ín Bluer s Fig. 7 should. be increased. by one; the

two sets of results are then almost identical.

Some ad.d.itional computations were performed with special

trial frutctions at singulax corners as discussed. in Seotion 1O.3

and also in (29). Cu¡ve B in Flg. 1O.5 shows the results obtained¡

the speoial (norrpolynomial) triat fr.urctions were used. on the

bor:ndary segments extending from the singular cornel to a d.ista¡roe

of approximately 'tflO ot the length of each sid.e adjacent to the

COfll9f ¡

The most significant feabr:¡e of the results is the marked.

improvement in the accuracy¡ for exannpler ít is seen that the

accuracy with sixth ord.er polynomials and. the special trial'

fwrctions at singular corners is as good as that obtained with

eleventh ord.er pol¡momials on1y. A possible d.isad.va¡¡tage of using

these special trial fi.¡nctions is that it is generalJ.y necessar¡r to

use numerioal integration. In add.itionr Ít is necessar¡r to ensure

that the length of the borrnd.ary segment where the speoial trial

fr¡nction is used. is not exoessive, as the resuLting aoouracy of

the solution is then likely to be worse tha¡r that obtaíned with

pol¡r¡romial trial fi:nctÍons onfy (Z!).
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DcampLe 2

-

The oonductance matrix of the twe-port network shovrn in

Flg. 10.6 was computed. with the unlsrown potential or its normal-

d.erivative on each sid.e approximated by polynomÍa1s of ord'er 1 to 7.

Curve C in Fig. 1O.5 shows the maximum error in the approximate

solutíonso A oornparison of these results with those for Example 1

shows that the errors for uxample 2 are considerably smalLer for

the sa¡ne order pol¡momial.

Þ<amp1e 3

The cond.uctar¡ce matrix of the trvo-port network shown in

Fig. 1O.7 was computed. r^¡ith the unknown potentiaL or its normal

d-erívative on each sid.e approximated by polynomials of order

3 to 11.

The exaot solution for this problem has not been computedt

however upper and lower bounrls on the exaot solution were obtained

previously, Chapter B, by the Variational methoC; the results

obtained" previously were,

or 
.32751 I sr - 822 <.32975

811 = 922- .32865

with an emor not greqter tha¡r ¡ 351o.

The results obtained. by solving the integral ec¡ration

are

[tl =

N=3

.l30960

- J32505
- .330960

.332505
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Port 2

Figure 10.6. tbo port resistånce network - Example 2'

Port 2

Port 1

T

Figure 10.?. Ího port resistsnce network - Exanple 3'
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t-l

þl

N=7

.328767

-.328?67

N - 11

.328515

-.328526

-.328767
.328767

-.32-851,
.328526

where

N is the ord-er of pol¡rnomial used on each sid.e.

comparison of the solution for lü - 1 1 and the mean of the

upper and Lower bor.¡¡d.s obtained- by the Variational method. shows

that they d.iffer by about 'O35/.,

Some computations perforrned. on the BI\I ?O9O computer (with

a word. length of 36 bits) shor¡ed. that the accuracy of the results

d.eoreases marked.ly for N )5 beoause of round.íng êTrors¡ llowevert

when Chebyohev pol¡rnomial trial firnctions were used instead. of

power po1¡rnomials, the error in -bhe solutions d.ue to round-ing

errors were less than + 1 in the sixth significant figure for

NS9. These results d-emonstrate that the system of l-inear

eguation is well cond.itioned when Chebychev pol¡rnomial trial

fi¡notions are used; as discussed. previously it is recommended

that numerical integratíon be used. to obtain the matrix elemcntst

otherwise the numerícal accuracy is J-ikely to be poorr

hle now present some solutions of Laplacer s equation where

the bounclary includ-es oircular arcs as well as linear se.gments.

ftample 4

The conductance matrix of a d.istributecl resistance network

oonsisting of a pair of concentric circular cond.uctors l,{as computed.
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with the no¡mal d.erivative of the potential on the conductors

approximated. by a Fourier series. Since the normal d.erivatíve is

a constant independ-ent of the angular position, and. the integration

can be d.one anal¡rbically, without the need. for numerical integrationt

the results obtained for this problem are exaot exoept for rowtding

êfIOTS r

This problem was also solved- by using poi.¡momial-s to

approximate the normaL rlerivative of the potential on each of the

cond-uctors. Since the normal d.eriva,tives can be represented

exactly by a po1¡momial for this problem, the errors in the

solutíon are due to the approximate evaluation of the integralst

and. to round-ing erroxs¡ For a paír of concentríc oonductors with

a diameter ratio of 1.5r md pol¡rnomials of ord,er 6 on each sid.e,

it was for¡nd- that th.: error in the approximate conductance natrix

Ì¡as less than +1 in the sixth significant figure; these errors

are oonsistent with those v¡hich woufcl be expected as a result of

using the approximations (t0.41 ), (lo.4Z) *rd (,lo.45), (to.46).

In add.ition to the above exampÌesr the computer program

was also used. to oalculate the conductance matriccs for the

netxork shown in I'ig. 1O.B with the subtended- angle g-Vyf2 anð'

O = 3 fi /A, and several d.iameter ratios between 1.5 and. 3. For

this problem a further source of error is introd.uced. by having to

approximate the potential on each of the rad-ial lines by a

pol¡rnomial. For each of the problems solvecl-, pol¡momials of order

six were used on each bound.ary segmento The resulting error in

the solutions was Less than +1 in the sirth significant figure"

rbcample 5

The conciuctaRce matrices of the two networks shown in
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Port 2

Port

Figure 10.8. l[ho port reslstanoe aetwork - Exanple 4.
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Fig. 1O.9 were computed. r,¡ith the potential or its normal d.erivative

on each bor.rnd.ary segment approximated. by po}¡momials of ord.er 4 anct

6. The results obtained. for the two notworks (a) and (U) are shov¡n

below

(r) N=4 (t) N-4
285372

285378
[n] -

f ',.++o*r

l-, .oooo., u

-1.44OOO7

1.44OO16

-1,285372

1.285378

(") N=6

1.44OO32

4.44æ32

(¡)

-1.285385

1.285387[o] =

E 1.2854 I .1fi

[o] '

This problem was also considered by SÍnnott (6?) wtro

obtained. the following results:

For netv¡ork (a) Ín Fig. 1O.9

l**i I

1.4399 t .fl"

and for network (t) in fig. 1O.9

l"rl
Note that these results differ from those obtaÍned. by

the íntegral equation method. by less thaJl .0001 r so that the error

Iimits are probably somewhat less l]nan .1fo.

The solution of problems of the type given in Fig. 1O'9

is important for the d-esign of comb-Iine and Ínterd.ig:ital bantl-

pass filters, a^nd. other transmission lino components suoh as

direotional couplers (31), (68).
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Port 2

Port 1

Port I

(")

\ (b)

Port 2

Flgure 10.9. Two port reslstance network - Exapple 5'
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10.4.2 Frequency domain a^nalysis of d.istributed RC networks

l{e nolu present the results of some calculations to

determine the ad.mitta¡rce matrices of several d.ifferent distributed.

¡ì.C network at frequencies on the imaginary arcis of the oomplex

frequency plane. fn general it is d-ifficult to determine the

eru'ors in the approximate solutions sinoe exact solutions are

Ì¡rown for only a few geometri.es.

trkamole 1

-

The ad.mittanoe matrix of the unÍform RC line shov¡n

in Fig. 1O.1O was obtained. atq¡RC = 1, with the potential on each

insulating boundary segment approximated by a third. or sixth ord.er

pol¡rnomial; the norm¿.l d-erivative of the potential on the

conduoting bowrd.aries can be exactly represented. by a consta¡rt for

this problem.

I/üith N=3 weobtain,

['] -
1.o22o27 + j.3312422

-.98o7484 + j.1646413

-.9BV\5B4 + j,1646413

1.o22o27 + j.3312422

I{ith N=6 weobtain,

[r] =

1.O22O13 +

-.98UT634 +

.33 1 2381

,1646375

-.98a7634

1 .02201 3

.164æ71

¡e+en5 )
J +j

+jj

wliich is equal to the exact solution to seven significant figures.

Iücample 2

-_âT.-
The admittanee matrix of the two-port network with an

exponential taper, Flg. 10.11r was computed- with the ur¡kno¡¡r

potential or its normal d.erivative approxi¡naterl by a polynomial of
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Port I Pofr 2

Figure 10.10. Unifo:rsr dlstributed RC llne

Port 2
Port I

Flgure 10.11. Dlstrfbuted RC ltne witb exponentlal taper.
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ord.er 6 on eacl:. sid-e. At the two corners where the interior angle

is not equal to gOor special trial fi¡nctions were used as

previously d.iscussed-. The curved bound.ary segment ?ras approx-

imatecl by 9 linear segments.

I/ùlthøtRC = 1r the ad.mitta¡rce matrix was found. to bet

t"l
.2951221

-.2791723

.1596134

.o47243ú

-.27919OO +

.2886483 +

.o4724454

J .o47152108

"68990751

+ J
+

J

j
j oBe98605a

, This may be compared- with the approximate solution

obtained by one-d.imensional analysis¡

[y.l= [ "lo, 2io137 + i
Lr 

þ.ze:lløO + J

.16035349

.o47152108

-.28J59s59 +

.29476390I + J

The d.iffelences between the two solutions are aloout flo,

which suggests that the accuracy of the one-dimensional solution

is adequate for this particular problem.

Examnle 3

-

The ad.mittanoe matrÍees of the two networks in tr'ig. 1O.12

where computed with the potential on each bowrd.ary segment

approximated- by for¡rth ord.er pol¡momials. In ad.d.ition, special

trial fi¡nctions were u.sed- at the singular corner (interior angle=

z?oo).

For the network of Fig. 1O.12a, the admitta¡roe matrix was

fou¡rd. to be,
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Port 1

Port I

Port 2

(")

(u)

Port 2

I

I

I

I

Figure 10.12. lko port distrlbutecl BC netsorks - Exa¡nple 3.
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.3221658

-.3015397

Jg56a44

.05235143

-.3o15412 +

.3118521 +

+ j,.05923675

+ i-Jq5+94s

j .05233333

.ul161765
J

+ j.1107953 -3.248589

+ j.059¡94o9 3,250983

where úd RC = 1

tr''or the network of Fig. 1o.12br the ad.mitta¡rce matrix

was found. to be ,

t"l
+J

+J

where ¿J RC = 1

Sinoe the off-diagonal elements ï12t ]r21 are very nearì.y

equal for these two matrices, the errors in this solution are

likely to be quite small-o

1O.4.3 Eigenvalue problems

lfe now present the results of some oalculations to

d.etermine the poles and zeros of tlre admittance parameters of

cl"istributecl- ÌìC networks. lf the ad,mittanoe parameters are evaluated

at two or more frequencies in the complex frequency p1ane, a first

approximation to the required pole or zero may then be found¡ by

using an appropriate interpolation or extrapolation fornnrla. If

a pole of the ad.mittance matri:r is required., we may ertrapolate

or interpolate the value of the determinant of the coeffioíent

matrix, or the reoiprocal of any of the elements of the

ad.mittance matrix, Once an approximatíon to the requíred. pole

or zero has been obtained., sucoessive approxi¡natlons rnay then be

found. by interpolating with the previous solutions; usually

only three or four iterations are required- to give sufficiently

acourate solutions.
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Suppose that a zcro of a fi¡notion f(s), s = s1 saür

has been for:nd. by the above mothocl. l\ seconrl zel'o may then be

fowrd. by applying the method to the fwrction f(")/("-"1), æd

so on r¡ntil all of the required zeros h^ave been found.

ltrxample 1

The first pole of ttrc admittarioe matrix of a uniform lìc

line of r¡nlt length was obtained- by interpolating the values

obtained. tor |ff 1,, and l/vp at pRC = -p.B¡ -9.85, -!'po'

The potential on each of the insulating bound-ary

segments vras approximated- by a sixth order polynomiaì-; the

normal d.erivative of the potential may be representod- oxactþ by

a constant on each of the oonducting bound.ary segments¡

The values obtained- for the first pole are

pRC = -9.8696103 and. piìC * -9.8696O9J respectivelÏr d.epending

on whethe, 'l/vl.' or 1ft,r, is interpolatod.

These vafues agree closely wlth the elact solutlon

n2 = 9.8696044,

tjxample 2

ile now coni:ider the linearly tapered. ilc networh shown

in Fíg. 1oJ .

ldhen polynomials of ord"er ! are used. on each bound.ary

segmentl the interpolated. valus of the first pole of the

admittance matrix is fowrd to be

prl0 = -7.86045

(ttre interpolation points wer:e chosen to be pRC = -'f.Br 4.-91

-8.o),
rrihen pol¡momÍals of order ? are used' we obtain

piìC = -7.8j44
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Fína11y, nhen polynomials of order 10 are used with the

interpolation points, pRC = -?.84f -?.85¡ -?.86¡ we obtain the

first pole at

pIìC = -7.810065

These results may be compared- with those obtained-

previously by the Variational method- (Cfrapter 8). The most accu¡ate

result obtaíned. previouslY Ïras

pRc > -7.8'10,61

ruhich agroes closely vrlth the results above¡

Tho firet zero of the matfix element t11 "." obtained

with polynomlaLs of order ! and. ? on eaoh boundary segment r md

interpolation polnts at pRC = -[t2, -Q.25r -4r3¡ The approximate

values of the zero ldere found. to be

DRC - -4.2314 for 5th ord.ex, polynomia'Is

and. pRC = -4.2319 for Jth order po1¡rnomials.

The most accurate result obtained previously (Ctrapter B)

hras

pRc > -4.232Ø

which agrees olosely with the above resultse

The first zero of th<¿ matrix element 122 *^, obtained- with

pol¡momials of oriler 5 a¡rd 'f on eaoh boundary segment t and- with

interpolation points at pIìC = -.81Or -8.30r -¿85Or

The approximate values of the zoro were fowrd- to be

pIìC - -.82125 for 5th order polynomials

a¡rd. pRC - -.81981 for Jth order polynomials.

The most aoor¡rate result obtalned. previousLy¡ Chapter 8,
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was plìC > -.823089 whioh adrees closely with the above results.

In addition to the above computations, the aclmittance

matrix was oomputed. at a number of different points in the range

pRC - -10 to pRC = -!O. The poles and zeros of the ad¡nittance

parameters obtained. by interpolating through the computed- points

were all found. to agree olosely lvith those obtaincd. by the

Variational method (Chapter B).

10.5 Conclusion

In this chapter we irave consid.ered. the solution of the

reducecl wave equation (1O.1) by transforming it to a¡r integral

equation.

l¡ühen attempting a numerioal solution of the íntegral

equations it is necessary to take oertain precautions to ensure

that the accur'acy of the results does not suffer unduly from the

effeots of round.ing errors. If the unknolrn potential function
a

alongfbound.ar:y segment is approximated. by a polJrnomialr it ís

preferable to use nume¡ioa] integration instead of arralyticaL

solutions to evaluate the matrix elements. Second.ly, 1f high

ord.er polynomial approximations are used, it is neoessary to t¡,se

a chebychev polynomial approximation, or some other set of

orthogonal polynomials, ín ord.er to avoid. having to solve arl ill-

oond,itioned. system of equations. In additíon, it should be noted-

that ít is possible to obtain accurate solutions with low ord'er

pol¡momials, provid-ed. that speoial trial functions are used at

ar5r singular corners of the network.

It is very tliffiouLt to make a quantÍtative comparison

of the integral equa-bion method with other methods such as the
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finite-cl.ifference metho<l and Va¡iational methort_s. For the -bypes of

problems consid.ered here it appears that ühe integrar equation

method. gives more ¿Tccurate solutions than the othc¡r me'r;hod.s for

the same amount of computing time. The iretegraL equation is

consid-ered. to be superior to the finite-clifference rnei;hod. since

the iterative procedure used- to sorve the system of eguatíons in

the latter method often oonverges slowry; thís is especialry true

''f,or regions with complioatecl- bounclaries. /\ further disad.vantage

of the finite-d.ifference rnethod. is that for a murti-terminal

network the entire íterative proced.ure must be repeated. for each

set of specifiecì. concluctor potentials; l,riíth the integral equation

method. it is only necessary to solve a set of equations with

severar <lifferent right hanc. sid-e vectors, v,rhich takes rittle

Longer than one right hand- sid-e.

l{ith the Variational methocls of solution one has to

integrate the prod.ucts of the trial frxrotions and,f or the prod-ucts

of their d-erivatives over a two-d.imensionar region; this problem

oan usually be red.uced to a one-d.imensional integral. similarly,

with the integral equation rnethod, the íntegrals are also one-

dimensional, but i't is necessary to use special techniclues to

evaluate these integrals because of the logarithmio singularíty

in the Greenr s firnction.

Finally, it is not consid.ered. that the integral eqr.ration

method. is suitable for obtaining the poles and. zeros of the network

parameters unless the approximate locatíons of these frequencies

are known before hancL. obherwise, there is a possibiiity that

some of the poles and, ze].os may not be located, or an excessive

amount of cornputing time rnay be required. rn this authort
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opínionf the rrdirectfr methof.s, such as the Variational method.st

ar.e most suitable for determining the eigcnvalues, even thougb

the integral equation method- may be capable of greator âccllrâclr

The integral equation method is probably most suitable for problems

where the admittance matrix parameters are required- at a

relatively small number of frequeroies. I¡'or problems ¡rhere these

parameterÊ¡ are required at a large nt¡nber of frequenoies it ís

probably preferable to first obtain the d.ominant poles a.nd, zeros¡

the admittance parameters a1e then obtained. in the form of a

prod.uct form expansion which is read.ily evaluated. at an¡r speoifled'

frequenciesr
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Chapter 11

RELATTÐ PROBLIT{S

11 ¡ I Introd.uction

Marry of the theoretical resul-ts and. numerioal techniques

d,escribed. i¡r the previous chapters can be used to solve problems

arising ín the analysis of other d.istributed. netlvorks.

In ad.d"ition, the results of some work conoerned with the

transient analysis of transmission J-ines, and. the application of

equivalent network theory rvill be discussed. ín this chapter,

11.2 Two Dímensional Fie1d Problems - Carte sia,¡r Coordinates

The method.s d.esoribed. in previous chapters were

primarily concernecl- with computation of the d.c ad.mitta^nce parameters

(i,e. the cond.uctance matrix), and. the poles anrd zeros of the

admittarrce matrix of multiport d.istributed. RC networks.

The concluctance matrix of a multiport d.istributed. resistanoe

network may be easiry transfor¡ned to the capacitance matrix of a

multicond.uctor lossress transmission line network with the same

crosF-seotion; the characteristic ad.mittances or impedances of the

rines are obtainecl from the capacítairce per r:nit length between

the lines as described. in (¡t). For both of these probl-ems the

potential between the concluctors satisfies Lapracers equation, and.

the bound.ary cond.itions are idcntical.

!'or the clÍstributed. resistance network the orrrrent per

t¡¡it wid-th entiring eaoh concluctor is

1aJ
R* )n

J (rr.r)
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whe¡e

ø ís the potential in the resistive layer

R" ís the sheet resistance (ohms/square)

â is the outward-Pointing unit normal on the borurd.ary

and.
J is the current density (amperes/rurit wid.th).

For the lossless transmission line netr.rork the charge

per rmit on the conduotors is g'iven by

PI
(tt.z)

where

P^ is the charge d.ensity/unit length'B

and.
ç is the d.ieleotric consta.nt of the d.iclectric

between conduotors.

Then, provid.ed. that the bor.:nd.ary cond.itions on y' a"e

suitably ohosen, the requirecl eoncl-uotance or capaoítance matrix

elements are each equal to tho total cur¡ent entering a cond.uctor

or the total oharge on a cond.uctor, which is obtained. by

integratin¿l ( 11 .1 ) or (ll.z) .

The method. for computing the poles of the admittance

matrix of a thin film clistributed. RC network can also be used

to obtain the cutoff wavenumÞcr of Titr or TM mod.es in homogeneous

waveguíd.es of arbitrary cFoss-section. This follows since the

waveguide mod.es can be obtained from a soalar lvave ftrr¡ction which

satisfies the samo d.ifferential equation and borrnd.ary cond.itíons

as the potentia} fr:nction for distributed RC network* (t4)t

Chapter B, (6).

Éu\ ðn
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In ad.d.itíon, the electric field. normal to the conductors

of a lDU.t planar miorowave netluork, (62), also satísfies the same

clifferential equation and- bor:nd-ary cond.ítions as the potential

fiutotion for d.istríbuted. RC networks. For this class of networks

the curuent per ur¡it wid.th entering each port is given by

J E

Ðu
z

ñ- (r r.¡)

in'plaoe of (11.1). w is the frequency in ra.d.íans por seconcl,

.....
7u is permeabiLity of the med.ium between conductors, and E, isI
the electric field. normal- to the upper and fower cond.uctors.

1 1.4 imensional Field. Problems C.ylind.rical Coordinat es

One importaxrt olass of problems which has not been

consid,ûred. here is that of analyzing lossless transmission lines

with oírcular cond.uotors and. a f,ield. d.istribution which d.oes not

vary with thc azimuthal ang1e.

The solution of such problems is important for the

cal-ou1atíon of d.iscontinuitiss in coaxial Ìines. Another important

problem in this cfass is the calculation of the resona,nt frequencies

of a ooaxial cavity with }ongitud.inal d.iscontinuities in the

cond.uctors.

For this class of problem, Laplacers equation is

&
à12

1

r PJu
âr + 0 (tt.4)

àu2

where
r and. z are the raùius and distance along the axis

respectively in oylind.rioal coord.inates. (tt.4¡ is id-entical in form
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with Laplacers eguation in cartesia¡r ooord.inates except for the
, 1 aófelm =å .r Òr

It can be shoune that the d.ifferential equation (11.4)

is a neoessanJ¡ condition for the fr:nctlonal

to be stationary, where the Íntegral is evafuated over the region

between the cond.uctors.

The stationary value of (11.5) can also be shown to be

proportional to the statio oapacita¡rce between cond.uctors in the

coaxial system, provid.ed. fhaf þ satisfies appropriate bound.ary

cond.itions. The Rayleigh-Rítz method. may be used to solve the

stationary problem in a ma.nner similar to that discussed. in previous

chapters.

Similarly, for TI.[ mod.es in a coarçial resonator, it ca,n be

shown that the azimuthal coml:onent H¡ of the magnetic field.

satísfies

F(þ) È 2T\.lf. ,iv/ 
I

2

ãu2

d.r d.z

B

(rr,5)

F1
r "'"ú

aró
âr

ru
à"2

,2 ¡en6 (tt.e )+

and- the eigenvalu"" rf /uÉ corresponding to the resona¡rtLl
freguencies are proportional to the stationary values of a funotíonal

of thc form
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F(rrl) + HÊ

{
ú

2r
rd.rd.z + d.1

2 (tt.71

rd.r dz

application of the lìayleigh-Ritz method. 'bo this problem

Lead-s to a matríx eigenvalue problem of the form obtained. in

prerrious chapters.

11.4

rn acoord with the meaning of equivalence used in lumpetL

network theory, cLietributed. networks are consid.ered to be oquivalent

when they are electrically ind.istinguishable at their torminals.

For a d.istributect RC network with a given resistance

r(x) and capacitance o(x) per r.grit length it is possíbIe to generate

an ínfinite number of equivalent networks wíth d"ifferent r(x) anit

c(x).

Ore reason for considering equÍvalent RC Lines is to

broaden the limited. class of nonwriform transmíssi.on lines for l¡hioh

known solutions are available. A fi.¡¡ther reason for oonsid.ering

such lines is that ít may be easier to fabricate and- ad.just art

oquivalent line obtained. from a given line.

Some method.s for generating equivalent transmission lines

arô g"iven in (lB) - (81). In general it is found. that the

equivalent lines d.o not have r(x) o(x) = constant. In practice

this means that if the line is constructed. with uniform resistive
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and- d-ieleotríc sheetso the l.¡id.th of the ground plane will not

be equal- to that of the resístive fíIm (Bt ).

In ad.d.ition, it slioulcL be noted that exact equLnalenoe

between tapered ltC lines lvilÌ not be achieved. in practice because

the one-d.íincnsional mod.e1 is only approximate.

An alternative method. ot' generating equivalent RC lines

is tq apply the equivalent netu.ork theory of lumped- networks (Be) t

to an IìC ladd.er approximation to the RC line. The results of

some work c¿rriecl out in this a¡ea are given in Âppend-ix E.

11.5 _T_ean|1gt_Agly-lrP* ol l,eqAL-Þæ!Êsig+ -Lines

In the course of the wolk on d,j-stribtrted. IIC netluorksr a

method. for transient analysis of lossy transmission lines (85) was

investigated. At first sight this appears to be a very attraotive

method. for computer solution; an exact solution for the voltage and.

cument along the transmission líne at a point x and- time (t + tr)

is given in terms of the voltages a¡rd currents at x + Ax and

time t.

Unfortunately it was d-iscovered that there túas an error

in tht: d.erivation of the solution, and the resul-bs are only comect

for a cl-istortionless Iíno, as discussed in Appendix !'.

11.6 Conclusion

M,:thod.s for solving some problems related. to those

encountered. in the analysis of d-istributed. iì.C netl¡orks have been

oonsid-ered.

For several pr-obl-ems it r{as seen that the analysis

techniques are either idcntical to those for d-istributed. RC
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netrüorksr or require only minor ch¿üÌges.

Thus the basic techniques d.escclbed. ín this tliesis are

applioabl-e to a wide range of practical problems.
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Chapter 12

DISCUSSTCN

In the previous chapters hre have consid.sred. numerical

tecl:niques for obtaining the acìrnittance matrix of a multiport

DlìC nctwork.

Sorne DtìC networlcs c¿:,n be ad.equatcly representecl by a one¡

dirnensional mod.eI, but in general it is necessary to perform a two-

dimensional analysis.

Three method.s were stud-ied- in d-etaiI. ÍIhese method"s may

be classified. accord.ing to the type of ecluation that the potential

fwrction is required. to satisfy, as follows:

(t ) Second-ord.er partial diffcrential equation (Cfrapter 3 and. B)

(Z) Coupled fi¡:st-orcter partiaL clifferential equations

(Chapter 4 a¡ra 9)

(3) fntegral equation formul¿-r,tion in terms of Greenrs functions

(chapter 1o).

In ad-d.ition to satisfyíng these equations, the solutions are

also required" to satisfy certain borrnd.ary cond-itions as proviously

d.iscusscd..

TÌre types of expansion firlotions which b¡ere used to obtain

approximate solutions of the bound.ary value pro'blem may be classified.

as follows:

(u) nth order pol¡momials d.efinod. over the entire two-ctimensional

region R.

(U) nth ord-er pol¡momials d.efined. separately over each of a

number of subregions of rl, with constraints to ensure that

the rosulting solution ís continuous over iì.
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(.) Continuous piecewise linear approximations ovor triangular

øubregions, and. tîtríarrglerl functions ovex reotan,grrlar

subreg:Lonsn (Thu're are extreme cases of 2)"

(a) nth ord.er polynomials clefined- separately on segments of the

bound.ar.y C of R.

The first three t¡pes of approximation are used- in

conjunction with methods (t) a"nA (2) above. The forrrth is used"

in conjunction with the integral eguatÍon method (3), wtrere the

u::knoum potential r,uithin R is obtained from the potential and its

normal d.erívatíve on C. Nonpolynomials expansion funotions can

al.so be usecl with method-s (t) ana (Z), tut they are gonerally not

as convenient to use as polynomials, and. they d-o not appear to

offer any signifícant ad-vantages. Hor¿ever it is d-efinÍteì.y

ad.vantageous to use nonpol¡momial expansion functions with the

íntegral equation method- (3), sínce the accuracy can be grcatly

improved. as d.iscussed. in Chairter 1O"

One question which naturalIy arises in this discussion is

which is the bes-L method- for solving a particular problem?

From the rcsults obtained. in Chapters B-1O it appears that

fo:: a given number of expansion frrnctions the integral equation

method- gives better accuracy than the other two methodsn llowevert

when we wish to d-eterrnine the polcs or zeros of an admittanoe

matrix element by using thc integral equa-bion method, we find. that

the eigenval-ue appears as a nonlinear parameter in the matrix

equation" Thus the numerical sol-ution is not automatic - some

Itjud.icioustr scarching is noed.cd, aird- thie oan be very tinie

consuming. fn contrast, to this methcd¡ the method.s (t) anA (e)

lead. to matr-'r-x eigenvalue probleins lrhich can be sol-ved- vi¿r, well

estabU-shed. algorithmso
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A further problem r.¡hich arises with tlie i.ntegral equation

methocl is that it is generall¡' moro d"ifficult to evalu¿r'te the matrix

elernents. In general it is d.ifficul-i to ev¿uluaüe the required

contour integrals because of the singularity in the Greenr s

function, and. in ad.dition, cornplex arithmetio is required. Ïn

contrast, the integrals requiled for- methoas (t) and" (e) invotve

only real arithmetic, a,nd the two-dimensÍonaI integrals and.

contour integrals can usually bo transforrned. to one-climcnsional

íntegrals v¡here the in-tegrand- is a polynomíal. These one-climensional

integrals are easily evaluated by using a quadrature formufa.

it comparison of th,o result¡; obtained. with methocls (1) ana

(Z) :-na:-cates that l,rhen piecer¡ise linear expansions ancl triangle

functions as in (c) above are usecL to appro:timate the unl<norn¡n

fwrctionse then the aocuracy of (2) is signifioa.ntly better than

(t). How,:verr if nth order pol-ynomials as in (a) above are userl,

then the results obtainecl',oy method.s (1) an¿ (Z) appear to be

id.en-bical. One problem which has not been ínv,:stigated is whether

(Z) Ís significantly bettor than (1) r,'hen approximations of the

type (¡) above arc used; thirs ís an area for fr:rther research.

A disad-v¿urtage of methocl (Z) compared- ¡¡ith (t) i" th¿'"t more work

is required- to get the equations into the stand-ard matrix-eigenvalue

form. Ì{ith bot}r of these method.s, Irüe generally find that extraneous

solutions occur, and- these catr only be isolated- by inspection of the

eigenfwrctions.

An important consicleration in the applícer.tion of the above

method.s is the availabil-ity of thc computcr pro,grarnsr 0n1¡.. ttuo

such prograrns appcar to have bccn r,ricl"ely d.ir.:tributed. Both of

these are based on (t ) abcnre. The program d.escribed. by ¡ulley (53)
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uses polJmomi¿rl approxitrations of the type (a) above, ancì.

Silvesterts program (55) usus approxirnatíons of type (t) above;

vrherc tire re¡4ion tì is subclivicLecl into triangular elements. As

clisoussed. in Chapter B, both of these programs can be read.ily

moclified- to obtain the polcs and. zeros of tire ad-nittance parameters.

Howevcr, with both of these pjrograms the polynomiaf approxirnations

are required to oatisfy the Dirichlet bound.ary oonditionsr r¡¡hich

may sometimes be a restriction. These restrictions could be over-

come by using the techniques d-esoribed- in Chapter 8, and in (33)

an¿ (56).

ft appears that there are no read.ily available computer

p"ograrns based. on method (2). The resuLts preoented. in Chapter B

were obtained ¡rith a program which could solve only a restricted.

olass of problems, and it was nece€isary to mod.ify a part of the

progra¡n for each problem consid.ered.¡

A program based. on the integral er¿uation metlrod was

desoribecl in (e9), but it is not known whether a tisting is available.

In any case, (29) contains sufficient d.etail for the interested. user

to prepare hís ohrn program.

fn conclusíon, it appears tirat at presentr there is no

nbestrr method, for solvin.q thc problems of t.i.re type consid.ered. heret

and. the method- to be chosen for a particular problem wiJ.l d.epend.

to some extent on the availability of a suitable computer pi'oìgra¡nt

and. the pcrsonal prefercnoe of the ü.sêro

i,ie have demonstrated- tire usefulness of several numerical

teohniques for solving multiport DRC netl+orks, and- we have shov¡n

that appreciabl-e errors may result from the assumptíon of a one-

dimensional mod.el.
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Appendix .å,

I'i0TJLTI0tf OF LTN.¡lll:,R SPACI',.IS AIID OPI'iì.4.TORii

The general methods of solution w1II be presented. in the

notation of linear spaces and. operaiors, which a::e tl-efined as

follows.

Given a d.etermÍnistic problern of the form t(f) = gr we

must id.entify the operator L, its d-omain (tne functions on which

it operates), and. its range (tne function g rosulting from the

operation). Tire operator L may be a matrix operator whioh operates

on a veotor f, to give anoth¿r vector g, or it may be a d.ifferen'tial

or integral operator.

trrle usually need- an inner prod.uct (frg) , røhich is a

scalar defined. to satisfy

(o,r) = <îE>

(rtol + azu2rv> - r., ( ur rr ) + u., (o2rv)

(",") >o if uy'o

=0 if u= O

where the bar in (A.t ) inaicates the complex conJugate.

rde sometimes need. the ad-ioínt operator _4,L and ].tË

(¿.r)

(,q.e )

(a.3)

(r.+)

(a,5 )

d.omain, d-efined. by

( r,urv) - (urlav)

for aJI u in the d-omain of L. An operator is self ad..ioint Íf

I,a - Ll and. tbe domain of La ls that of Lr i.ê¡
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(t*rv) = (",t") (¿,g)

Properties of the solution d.epencl upon p'operties of the

operator, An oporator is real if

(¿.? )Lu

if

Lu

rn add.ition, a self ad_jolnt operator is w

(r'"r") (e,a¡

(a.9)

where u is not ictenticarly zero, and. vanishes onry when u ! or

An exampJe of a scalar product for two-d.imerrsional

probrems invorving a d-ifferenti¿:,r or integral operator is

ff,
(tr") : u.v d.a

where
u a¡rd. v are real functions, and. R is the surface of

integ::ation.

The prooedure for obtaining the ad.joint of a clifferential
operator ls presented in (+Z¡, pp 148 -149¡ togethor v¡ith some

exampl-es,

To fin¿ the ad.joj,nt of a ilifferential operator in a

space sr consider the scalar product (vrÏ,u ) . ltrith the help

of integration by parts, oonsid.er it as the scarar prod.uct of u

with some veotor w whlch d-epend.s on vr The transformatíon from v

to w clefines the ad.joint operator La, The bou¡rdary conditions on v

are d-etermined. by the recluirement that the bound.ary terms resulting
from the integration by parts vanish,.,
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Append.ix B

STATICSIftIY COI{DITIü\TS ¡.OR TIIE ¡-T]NCTIONAL T, (uIv) MM

u Al[D v CCNSTIìj,INÐ f0 SATISIY DIIìICFIL]trT BOUNDI|RY

CONDÏTIONS

Consid.er the fi:notional

r'., (urv)

ll¡V da

E (¡.t )

nhere
u and v satisfy the following bor:ndary conditions

u r O on0
2

+ cL

UEU !f consta¡rt on C jj

vËO olt cz*cj

(¡.2)

(n.¡ )

v Ë Vk = oonstant on CU

In ad.d.ition, u a¡rd v are one d.ifferentiable in R, but

are otherwise arbitrErrJfr

Let

u = uo + o(. 7G,ù 
(n.+)

and v=vo+ p1t(x*, (r.5)
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¡(x,y

where

a¡rd.

7G,v)

/'(*'v)

c( and p are arbitrary parameters, amd- t7(xrf) ana

) are arbitrary in R¡ but

e 7¡ E constant on C.

E 0 onCr+Cn

= O onC +C
2 J

(¡.6)

(a,?)

(s.B)

(a.9)

(¡.to)

ft = consta¡rt on Cn

In acld.itionf suppose that % *td vO are such that

q(urv) is stationarY, a^nd

ì E r', (uOrvg)
o

The oond.itions for q(urv) to be stationarY are

0

o-u

P

If u a¡rd, v in (1.1 ) are replaced by the expressions on

the right of (n.4) a¡r¿ (¡.5), æd the stationary cond.ition (¡.tO)

is applied. with Q(- Or we obtain
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II^

ff/o( 
v2oo + |ooo)

R

Àd.a

fl.
oo't d-a E o (a.rt)

0

Then by using Greenr s formula

âu --v :-' d.I r
dnú

c

Vu. Vv da +

âoo
d.a + /"

rLt = O (¡.13)
Jn

1+ ct

(¡.r4)

(n. 15 )

[ 
"' v2o da (¡rtz)

t¡e obtain

Ncxt choose

Ct and. in Ro

t,

The oontorrr integral in (¡.t3) is evaluated_ only over

C, + CO because of the boundary condition (¡.?), and.

0
1

+ Cr+ C, + CO

Now choosu 
/o = O on C., + C¡r but let f b" arbitrary in R.

îhen Ít follows from (8.t3) trrat

2Voo )ooo Ë o ÍnR

c

+

/o = O on C¡r but 1et 
¡u be arbitrary on

Then it follows from (8.13) and. (1.t5) tirat

as
ltâ

E 0 onC I
(¡.re)
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Then, since 
/'u = constant on Ckr it follows that

a

{

oo
o

þn
d.I (s.rT)

lc

Similar1y, if the stationary cond.ítiott (n.9) is applíed

to (n.1)¡ r^rith,Ë = O, we obtain

¿-

Vto + I 0
tO E 0 ÍnR (s.ra)

ô to
o onC (n. r 9)

õñ'- 1

âv^Jd.t:
an

(n.eo)0
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AppencLix C

STATIO,IART COI{DITICI{S FOR TltE I]X(T;jX{DI!D FUNCTIOIIAI F(urv)

i,ilIlÍi NO BOIINÐÂlìY CONSTIIAINTS ON U OR I

Consid.erbhe functi onal

{1"
,¡rvv*-f [,--o,

ôv
+ ',,-q,)*]-t(

An

F (u¡v) - C, +C .+CnR

d.a

onCr+Cn

R

(c.r )

where

(c.z)
È constant on C

J

gv E 0 onCr+C,
(c.¡)

= Vt E oonstant on Cn

u and. v are onoe d.ífferentiable in iì, but are otherwise

arbitrar¡r.

Let

øÞu t

U=

0

U
J

rro * o( qkrv) (c.¿)

v E uo * Ê.¡ Grù (c.5 )

where o( and P *u arbitrary panameters, a,nd. r¿("rv) and. 
7u(xry)

are arbitrary in R.
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In ad,d.ition, suppose that uO and. vO are suoh that F(urv)

is stationary, and.

r(uorvo) (c'6)

The cond-itions for F(urv) to te stationary are

Ào G

t 0

Cr+Cr+Cn

(c.? )

cLI

(c'g)

tla (c.t o)

C(-O

and.

o (c.8)

F-o

If u and. v in (C.1 ) are replaced. by the expressions on

the right or (C.4) ana (c.5), and. the stationary conclition (C.g)

is aBplied withd= O, we obtain

¿¡(',,.r) |dpl

ll "oo.v/o- 
àooo.¡o) a, f [,"-tu)#. ^F]R

ôuv

Then by using the Greenr s formula

R
tt 2v.\ uân

we obtain

d.t Vu.9v da +
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\f ,r"'5 + àooo)

R

da (uo - e,r) ctlt
an

2voo ìooo -0

c.
l<

in lì (c.l z)

(c.rr)

(c. r5 )

Cr+ C r+

âoo
+ t arL

Edl
{

c

o

1

let
/o

ôp
Now choos" # ,E 0 on Cr+ Cr+ C* and f = O on Cr, but

be arbitrary Ín R. Then it foll-ows from (C.1t) ttrat

Next choose

and on Cr+ Cr+ CO.

2
Vto - O inR

f - O on C.,, but Let ¡u be arbitrary in R

Tben it follows from (C.11) and. (c.tz) tuat

oo eÞu on C^+C.+C.¿Jrc (c.r¡)

+

+

E

Finallyr if we allow f fo be arbitrary on C., it follows

from (c.11), (c.lz) and. (c.t3) ttrat

0 onC
1

(c.r4)

Similarly, if the stationary cond.ition (C.?) ís applied.

to (C.1 ) with þ = O, we obtain

õoo
a-ã-

ì oto

to É aa/ on Cr+ C, + CU (c.re)
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¡t 0 onc
1

trrom (c.6), (c"lz) - (c,t4), (c't0) and. the Greenr s

forrmrla (C.lo) ft also follov¡s that

¿LI!O

is a necesÊary oondition for F (orr) to be statíonar¡rr

Similarly

?oo
Qn

?:.
þn{

c.K

f
c

(c.r?)

(c. r B)

cLlË0

j

ts a neoessary cond.ition fon F (ort) to bo stationar¡r.

qå
]n

(c. r 9)
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Appendix D

sTATTONARv COITDTTTONS FOR [ifu FIJNCTTON J5(rrrt)

The fiurctional- J5(frfa) is g'iven tv (9.¿3)¡ where

(r"rr) ana (r"rr,"r) are d.erined by (9,:e¡ ena (9.3?)

respectively.

3y using Gaussf Integral Theorem (fe¡r p. 9¡ i.e.

{t* (t.o) * ${/.',]u. - l(r*o + 5v) ar (o.t)

c

ancl the nrle for cl.ifferentiating a prod.r:ct we obtain

ffþ"e.*)./(#.#,1 u"

{ [ø"-c.')(n*u 
+ """) * (l-c.*)(']'". ^"tr| u'

R

c
1

[co("*o"*r'y'") 
+ Grr(n*u * \,'t) 

-l
d.1

.r, (r"rr) ,+Cr+CU-

It

ll (þ"þ *,.*o + .*,".,,) da

R

(¡.e)
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( +v#*o"#+v#)ða

{[*", 
("-". "y") + (/"-c.r) ( n*u+ *¡)] ar

" or*c.+ co
.rr(rtrt) -

d.a

=0

O(=0

From (D.2) and (u.+) it fotlows that

fl rrr+ uâu + .,"v)

R
(o.¡)

(o.+)

loar' o

Let

and. ^ato- be fwrotions such

that Jr(f"rf) is stationary.

Now Íf þ" = þi*4.t:("ry) wherel(*rv) is a¡r arbitrarv

funotion, and. C( is a.n arbitrary parameter¡ then the condition

fo=

øz

uå

ato

øo

oo

to

for ,lr(farr) to be stationary is

5
d.o(

lí r( * * $"b I u' $ rr*'"+ n"vo) "' -'gff,
1

R c R

(t'¡ )
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which must be trrre f,or arbitrary f1(xrf).

t! is the stationary value ot Jr(farf).

t#o * tyto O onC

First choose 1("rr) = 0 on Crr but arbitrary insíde R'

Then from (1.5) we obtain

ãto
æ þo inR

Next choo"" Q(*ry) arbitrary on C., and' in R' Then from

(1"5) ana (o.6) we obtain

â5
ãT f+ (u.6)

(n.?)
1

Now ohoosu o" = r{ +Of.t(xrl). Then fbom the stationary

condition (1.¿) ana (uJ) we obtain

lt * * *{ (þo-*:,*?ar- 'r!
- R Cr+ Cr+ CO

d.a = o (1.8)

Choose 
\(xrù 

arbitrary inside R, but ! (xtv) = O on

+ Cr+ Cn. Then from (n.8) we obtainc
2

êflo

-
dt x. 'üo.r! inR (1.9)

Next choose Q(xrf) 
arbitrary on Ar+ Cr+Cn a'nd' in R'

Then from (r,.8) an¿ (n.9) we obtain

2* cj*øo Lfu onC ck, (1. t o)
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similarly, if we ohoose .rt"tt tä +c(,|(xrv), from the

stationary cond.ition (p.4)r æd (n.¡) we obtain

øþo 
-o- ãli = '5 'to

lnR

and

þo E G,. on c"+ c, + cn (o'te)

lfhe corresponding relations tor þf,, uf,, a'a ttfr "t" obtained

by choosing þ = Þo*a.1(xrr)r u = uo +o(.1(*rv)¡ and' v = vo t

{"J (xrf), and. then applying the stationary condition (1.4).

nrom (1.6), (1.9) a¡ra (1.1o) it forlows that

(r,"rir") = ,f (rl,r) (r't¡)

and., in addition we have

(r"utI , to) = ti (ti , r) (r't¿)

where Lau is definect by (9.3?).

It therefore follows by equating the expressions on the

Ieft of (1.t3) an¿ (Ð.1{), and by using the bor¡ndqry conditions

(o.?) ana (D.1O), and. the corresponding boundary conditions on

li ' 'fi ' "f, that

(r.r t )

(o.15 )f, Gu(nrcua * """" )

,+Cr+Cn

d.1 0

is a neoessary cond.Ítion tor .i! to be stationary'
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Similarly it can also be shown that

(nu+nv) d.l'r y'
{

\J ov

cL

is a necessaxy cond.ition for JP to be stationary.)

Cr+C.+
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