MULTIPROGRAMMING FOR A SMALL-3CALE SCIENTIFIC

COMPUTER SYSTEM.

J.P. Penny, M¥.Se.

A Thesis submitted to the Department of lathematies
in the Univergity of idelaide
for the Degree of Doector of Fhilosophy.

m‘!' %9650

-~

3

1.
2o

394e

3e

5e

6.

TABLE OF CORTENTS

SUMMARY

PREFATORY STATTMENT
ACENOWLEDGEMENTS

INTROIGCTIOR

TTHT-CHARING AND MULTIFROGRAMMIRG
21 Definitions

2.2 A Swemmry of the Purposes of
*%ﬂtiyregwammimg

A& CuZL POR BOLTIPROGRAMMING SMALYL
COEPUTER SYSTEMS:

Iy THE ARBGUMIHDS FOR BULTIPROGRAMMING
APPLIED 20 SHALL SYSTEMNS

3.1 Central-processor Utilization in
“mall uystams

3.2 The value for s Small System of the
Flexibility given by Enltiprogramuing

iI: IMFROVEMIFRTS POSSIBLE AND FRASIBILITY

4.1 7The Improvement in Jork Capacity
through fultinroesras Uperation

4.2 Some FPreliminary Remarks on
Feasibility

CHOICE OF T B&SIC STRUCTURE

S« Design (bjectives

5.2 Some Illustrations

5.3 Choice of the Store Configuration
THE CIREUD SYSTIN-PRELINIXKAEY REMAREKS
6.1 Externzl Form

6.2 Storage
6.3 iultiprogram Control

Page

T4
T4

&2

90
107

T

&

9.

10.

1.

12.

Page

PERIPHERAT UNIT CONTHCL AND TIME-SHARING 111
7.1 Editirg of Frograms on Paper Tape 112
7.2 Control of Paper Tape Unilts 144
Te3 A Simple Wultiprogran Time-sharing
o Systen - 117
Teé Fore Complex Peripheral gnits 130
SPACT=LHARING PROCEDURES 139
£,9 An Outline of Spesee-~Sharing FProcedures

in CIREUS 140
8.2 Tape Headings 143
8.3 The Prelimirary and Ind Scouences 145
$.4 Program Relocation 144
8.5 Alleecatior of Ferlipherals 154
3.6 The "Lock" and "lelease” Instructions 57
CGMPUTER OFERATION 166
5,1 Conditions to be Flfilled 166
6.2 Status of Control Frograms in the “

Fime~-Sharing Uystem 469
9.% Structure of the Contrel Programs 172
¢,, Time-Sharing Reculremernt for the

Gontrol Programs 75
*YITHIN PROGRAM" TINT-SHARING 178
VAKINISIRG WORE CUTPUT 186
11.1 Frinciples 187
11.7 Stendard Operating Frectlices 390
11.3 Priority idjustment at the Machine~

code level 165

CORCLUSIORS 212

APPENDICHS

A. CIRRUS: A GENERAL DESCRIPIICON

A 3., Systen 3tracture
A Z. H¥achine-code Instructions

B. THY CIRNUS MULZIPROGRAM SYSTEM -~ A SPECIFICATICK

B 1, Program Allocation

B Z. Indicators

B 3. Vierking Space

B 4. #Hiero-code Secuences
B 5., Machire-code Sequences

. THE SIMULATION STUDY

C 1. The Progras Jet
€ 2., 7The Simulatar
C 3. Simuiation Runs

BIBLIOCEAPHY

SUMMARY

Uge of the technigue of smltiprograwmning has
kitherto been confined entirely to the lerger computer
systens. In this thesis, the author pute forward the
propesition that sultiprogramming csn he used tc conslder-
able aévintzaze ir = guite emall computer system,

particularly where the computer is used for sciemtifie

worioe
The factors which have atirscted deslgners of large
computers to smitiprogramming are conslidered, and 1t is

shown that these factors npply =lse for assller systems.
Te develop 2 case for multiprogramr:ing, the author inveutl-
gates = theoretical model of = smell multiprogrsm computer,
and discusses results from a computer simuletion study of
an equivalent model.

ueh of the moaterisl in the thesis deals with a
multiprogrem system developed by the author for = low-cost
computer. This computer, CIRAUS, has been desigred and
sonstructed within thke Universiiy of Adelside. The author's
prineipal sim in developing the multiprogres system hLas been
that the computer should be made te behave ss “a set of
penerste snd independent computera”.

Phe CIERUE system is covered in detall. The

wetsods by whieh multiprogram control fumeitlions have been

Summary pel.

provided and measures taken To ensure that these functions
could be provided econcnieally are deceribed. The author
discusaes the conditioms which 1t was felt should be ful=-
£111ed, and steps bukern to savisly these sonditiona, A
nusber of festures of the system whiech might be congidered
novel eve wlpe deserided.

The cuestion of efilcient srocessor utiligation
in a smlti-operstor computer system is diseussed., LResults
from the semputer simulation study sre also used in this

context to justify arguments which the suthor puts forward.

PREPATORY STATEMENT

The author presented, in 1960, the results of a
preliminsry siudy of multiprogramming as & thesis for the
degree of laster of Sclenmcs in the Usniversity of iddelaide.
Some of the work described in this theeis hes followed on
from the carlier work, and appropriste reference has been
made in the teri., However, the materisl In the present
thepis hoe not teen submitted for & degree in this or any
other wniversity.

The development of ideas in the field of computing
soience takes plsce &% o move rapid rete then in mest other
fields of recesrch. It le iwporitant, therefore, %o point
ot that the proposals for the CIRNUS mmaltiprogrsns systenm
(whieh constitutes = substantiel port of this thesin) were
almost complotely developed by the ené of 1962, (See:
Permy & Pearcey, 19623 renny, 1963; Fewy g} al., 1961).
The CIERUS proceseor first operaited on & restricted basis
{witk a 2000-word store) during 1962. Time-sharing between
independent prozrams {(in the meanmner deseribed in Section 7
of the text) was in fact demonstrested with borrowed
teleprinter sgulpuent 2t this time. Subseguenitly, the
CIRNUS project cnecuntered fimsneisl difficuities, and it
was not wntil 21d-1964 that sufficient store und peripheral
eculpment were available to implement the 1) mmltiprogram

syetem,

Frefatory Statement, p.Z.

The thesls discusses the zystem in aetusl coperation
at September 1964, Appendix B givea 2 detailed specifica-
tlon for this system. Twoe procedures deseribed in the text
have, ©¢ fsy, not been implemented. Section 5,5, deels with
a procedure for zlleszetion of periphersl units beyond the
basic sets. Ho such periphersl units are curvently
available, The "within-irczrew® tine-sharing procedure
(Seetion 1C) has alsc net been fully ivplemented, zlthough
allowance has been made for this mode of eperation ir much
ef the exlsting soltware.

The suthor agknowledges the cooperetion of a
nrumber of persons azssocisted with the CIRRUE projeect. (See
seknowledgements on the fellowing mg*my.\ fiovever, the
material in this thesis %3, %o the hes% of the =suthor's
knowledse, wholly the work of the suthor, ecxeept where

reference has been made o anether source.

May, 1965,

ACKNOWLEDGEMENTS

The suthor wishes t¢ thenl Professors E.i. Corwish,
E.S. Barmes and E.0. Hilloughby for permission to carry out
the work deseribed irn this thesis.

The sather aiso scknowledges the assistance of the
following persons associated with the CIRRUS preject:

Ir. M.¥, Allen and My, E.J. Petier, who co-operated
in integrating into the logieal desige ef CIRWUS the bard-
ware recuirements for mnltiprogramuing,

fir. T+ Pesveey, who read through the author's
early proposesls and made severzl helpivl suggestions,

Yr. §.6. Sondersem, who wrote the CIRIUS compiler
end made, in his own vrogrems, soversl modifications to

adapt %o the needs of multiprogramming.

1. INTROIUCTION

fmltiprogramaing 418 2 technicue which ailows
eoncuzrent operation of processee from a number of sepsrate
programs within a single-prouscssor computer system. For &
aumber of reasons, wse of mltipregramming has been con-
fined almost exclusively to the larger computer systems.
?he aim of this thesis will be to show that multiprogramming
cen 8leo yield considersdle sdvantages in a small-scale
computer syziem, particularly where the system is used for
seientifie work.

The sathor will discuss multiprogramming generally
in Seetion 7. Im Section 3, he will show that the factors
which have attracted the designers of liarge systems %o
multiprogramming apply alse for small systems.

The ecase for multiprogramming with small systems
will be coniimaed in Section &, where it will be shown that
a very considerable improvement in yrocessing capscity
results when %ime is chared between as few as twe or three
programs. A theoretieal model of » smell muitiprogram
computer will be investigated and upper and lower iimits
found for the "improvament factor”, 2 quantitative measure
of the inerease in proceseing capacity resulting {rom
mmltiprogram time-sharing. ilesults from & compuier

Pe

simulation study of an equivalent model will also be
quoted. 7The cmse for multiprogramming will be concluded
with sore preliminary remsrks on feasibility.

In Section 5, the author will propose design
objectives for o small, low-cost multiprogram computer.
Wkere the system is %o be used for scientific computation,
separste operating facilities for on-line working are
considered essential. However, since the peripheral units
used in = low-cost system are likely to be slow, consider-
able attention should alsc be given to achieving reasomably
effiocient iime-sharing of input and output. The question
of ¢hoosing a low=cost structure which will fulfil these
objectives will also be discussed.

The author has developed and brought into operation
a miltiprogram system for a digital computer, CIERUS, wheose
totel system cost has been kept quite low. Iz his eariiest
statenent of design objectives for the CIRRUS multiprogram
systen, the author (Pemuy, 1960) suggested that the computer
should be made to behave ms a set of "separate and
indeperdent computers®. Each operating station of CIRRUS
io equipped not only with an operating keyboard and type-
writer but else with paper-tape input ard output units,
These stations sre therefore more comprehensive than the
"enguiry stations™ to be found in other mmiti-operator
computer cysiems. There are considerable advantages for

3

the on-line user in having an imput and an output unit
entirely to himself, rather than sharing them with other
users.

Where there are to be many separate operating
stations in a large system, designers invariably make use
of a large backing store. Although he recognizes the value
of & iarge backing store, the suthor considers that an
efficient system using two levels of store cannot be
implemented cheaply. If the totel system cost must be low,
a large core store is probably the better investment.

CIRRUS has = 32,768 word core store - & quite large
store for 2 "small" system. The recent merked decremse in
the cost of moderate performance (in thie case 6 ps cycle-
time) core store makes it economical to inelude stores of
this size in & low-cost system. Efficient use of this
storage is nevertheless essential. The CIREUS system allows
for "dynamic relocation” of partially executed programs.
411 vagant store-space ¢en therefore be made available for
any incoming program which needs it. A special technique
allows sequencee of stored inmstructions {for example, those
instructions constituting the compiler or input-output
routines) to be shared simultaneously by independent
progrems. This technigue slso contritutes towards more
efficient use of the aveileble store-space.

¥ueh of the disenssion in this thesis will be

4

contred on the mltiprogram system devéeloped for CIRRUS.
An introductory deseription of the system will be given in
Seotion 6. TPor discussion, the adiitional functions needed
tc achisve mlitiprogran operation have been divided into
three cotegories:

(1} Control of time-sharing,

() Wﬂnmm"?u"m
mean either storage or peripheral units,

{3) Proviesion of facilities for each of a number
of operators to control his own program.

These topics will be covered in Sections 7, 8 and 9
respectively.

In any mmltiprogram computer, the needed control
functions will be provided partly by hardware and partly by
software. In a low-gost aystem, software must be preferred
vherever possidblie. There is, however, the attendent problem
that the guantity of systems program used must be kept
reasonably low. It has been found that, spart from
additionanl storege and peripheral units, the guantity of
gspecial hardware needed to achieve multiprogram operation ise
quite trivial. The amount of software used in CIKRUS has
slso been fairly small. The author will describe measures
taken to ensure that the control funetions coul’ be provided
simply, and therefore economieally in both hardware and
softwnre.

T

The CIRAUS system also provides a facllity fer
"within-program® time-sharinz. It will be shown in
Zection 10 that the user may divide a single extemnsl
program inte a number of separate internal progrems. These
internal programs, though sharing time independently, may
2t11) communicate with one another.

During the development of the multiprogram system,
certain requirements have been borme in mind. The most
important requirement is that the user, either as programmer
or operator, should not suffer from the additional
eomplexity of internmal operation.

The imdependence of operating stations im CIRRUS
makes an important contribution towards the convenience of
the user. The designers of come multiprogram computers have
considered it essential thet jobs be scheduled for execution
in appropriate combinations. If the operating statioms are
independent, scheduling is impossible. However, the author
foels that the variable nature of the work-lead of a small
scientific computer makee an effective scheduling technique
difficult to implement in any ease.

The question of effieient processor wtilization in
this type of multiprogrem computer will be discussed in
detail in Section 11. It will be shown that 2 great deal
esn be done to improve efficiency without prejudieing the

indepandence of the on-line users. Results from the
simulation study will be gquoted in this context.

The successful operation of the CIRAUS maltipreogram
gystem hns shown that, without doubt, mmlitiprogremming is
econonienliy feasible in a low-cost sysiem. Since malti-
progrem operation offers considerable advantages, the author
will conciunde that provision for multiprogramaing should be
considered during the designing of any emallescale computer
system.

7.

5, TINE-SHARING ARDT MULEIPROGRAMMING .

Z+.1. Definitions.

We can regard sny digital computer system as
consisting of an interconnected sei of separate facilities.
If we exsmine the progress of any single program through all
its phases, we can see that certain facilitiee are required
virtually continuousiy, while some are required intermit-
tently and others not at 2ll. It has long been evident that
efficiency can be improved by making intermittently used
froilities share their time between processes which are te
some degree independent.

The term "time-shering" has itself been used with a
variety of different mesnings. In the Computer Handbook
{Huskey and Korm, 7962} it is mentioned omly with respset to
miltiplexing of analogue elemenis. “Mme-sharing” is also
sometimes used to deseribe the mode of operation of equipment
which is actually muiti-purpose. For example, the registers
and logic making up the working-sections of CIRRUS are said
to be "time-shared” (Allen and Rose, 19633 Allen gt al.
1663} in that they are “assigned various roles &s the control
unit progresses through the steps necessary to execute a
giver wachine funetion.”

However, "time-sharing” is more comzonly used to

8.

refer to the particular type of operation desoribed by
Beckmen et sl. (1961)s "When units which work togethex
are widsly disparate in speed, S0 that the faster must often
be idle while waiting for the slower, efficiency can be
inereasad by time-sharing the faster unit among several
glower ones, which operate concurrently. Time-sharing and
concurrency are thus the two gides of the same coin.” Since
the main objeective is greater utilisation of the faster
unit, time-sharing is mos?t appropriste where the time-shsred
wnit is appreciably more expensive, as well as being faster.
If ¢kis ig se t_o a marked degree, it may welil be worthwhile
replicating mere or less jdentical siower and cheaper uni:@s‘
to ailow =n even higher degree of concurrency and utilise-
tion of the ¥soter unit.

Concurrency of operation is a fundamental part of
any definition of time-sharing in this context. Bucholz
(ed., 1961) defines two forms of comcurreney:

(1) “locel coneurrency”’, the voverlepping of the
execution of an instruction with that of one
or more of 1ts neighboura™, and,

{2) "nem-losal concurrency, the gimul taneous
exeoution of instructions which mey belong to
entirely separate and unreleted programs.”

The coneept of non-local concurrency leads directly

9.

t0o the idea of "muitiprogramming™. Bright and Cheydleuwr
{1962) have r:i;ﬁmd multiprogramming as “"concurrency of the
execution phase of two or more programs®. Although on the
whole an apt desoripticm, the cholee of ihe word "execution”
is mnfortunate. Prograsm "execution” usually implies only
what tskes plase foilowing pregram assembly, and the idea of
ng certainly does not exclude the possibility

of congurrent sssembly of separate programs, or of the
assenbly of a program concurrently with the execution of
others.

The technique of malitiprogramming is used in the
iioneywell 800 (Harper, 1960), but hove it is deseribed as
"parallel programming”. G411 {1959} uses the same term.
lodes of operetion covered by Bright and Cheyilieur's
definition are often deserided sinmply 23 "¢ime-sharing”, for
exsmpla in the Perranti computers: ATIAS (Etldurn et al.,
1961)5 ORION (Perranti, 1660); PP6000 (Marcotty et al.,
1963)3 the SABRAC (Lehmann gt 81., 7963); and the LEO IIX
{Lewis, 1963). “Time-sharing" is alseo used by Strachey
(1959} and Corbate (1967).

The author has preferred "multiprogramming” {Pemmy,
1960, 99633 Penny and Pemreey, 19623 Allern gt 2l., 7961},
The designers of STEETCH {(Codd et vl., 19593 Bucholsz, 1961)
use the same term, 2s d¢ Lourie g% 2l. (1960) and Lendos
gt al. (1967). The author justifies his preference by ths
arguments which follow.

10.

In the terminelogy of computer design, the coneept
of "parellel® operation is well established. It is
generally taken %o imply simuitaneous processing {in the
most general sense) by more or less equivalent hardware
wits. Coneurrency of operation is not the only fundamentzl
factor ir eny definition of the type of operaiion under
#scussion; sharing of ¢ unit is equelly fundamental. Use
of the word "parallel® is therefore inappropriate.

spart from its indiseriminate use in other contexts,
n4ime-ghering” was for some years understood o mean con-
current vperation of processes which, though to some degree
gseparate, were parts of = single program. Vhat will here-
after be referved to os "single-program time-gharing” hae
taer possible to some extent with virtually svery computer
built in pecent years. The “concurrent processes" are the
petusl compuitntion and ome or meore dsis irensfers o or
from the computer, 2ll processes sharing the iime of the
gingle central proeessor.

A quite direct development from single- to
muliiprogram time-sharing mey be seen in some systems.
'ATLAS® 3o o good example. For guite leng pericds in this
computer, cne program only shares Uime with simmltaneous
dote ipepsfers (made to or from o backing store) which are

parte of severul separate programs.

11.

Classing operation in ATLAS as "smltiprogran” may
be disputed. There are ecertainly important differences
between the mode of operatiom in ATLAS and vparallel”
progranm operation in the Homeywell 800 or "multiprogram”
operation in CIRAUS. Im each of the latter two, several
programs are at any time competing for processor time.
However, the designers of all three systems have had a
common 2ims to take advantage of the fact that time-shared
operation becomes many times more effective when conewurrensy
of processes from multipis programs, rather thon only &
single program, s possible.

Howaver, the definition of multiprogramming given
by Bright and Cheydleur, &8 it stends, would also include
mm-dmntimofuehmmumm-&w
(Patamation, 1960) and the Burroughs D=285 (Anderson et 21.,
1962) where the computer may have more than one seperate
processer. The operation of such machines hee been termed
"mm3tiprocessing” by several authors (e.g. Nekers, 19613
Amdshl, 18673 Critchlow, 1961).

Critohlow Jistinguishes between the twe. He
definee multiprogremnming as the "sime-sharing of & processor
by many programe operating sequentially,” ond mltiproces-
sing as “independent and simultaneous proceasing accompiished
by the use of several duplieate hardwire unite.” In the

12.

former "seguentislly” must refer only to actual processor
use. 7To be ¢lassed as multiprogreamming, some concurrency
of sepayate programs is necessary.

Aceording to Bucholz (1961}, & STRETCH system might
have one or more central processors, any of which might be
meitiprogrammed. The Gontrol Data 6600 (Control Data, 1963)
contains "eleven independent computers."” However, although
all have separate memories and eam executs programs
independently, 10 are used to comtrel periphersls or to
comrmmigaie with operziors. The elseventh "computer”, ealled
the cemirsi proeessor, is & very high-speed arithmetie
fevice, There is also o large central aemory aveilable to
all 11 computers.

The author feels ithet some mmltiprocesser syateme
{en? the Comtrol Duta 6600 im ome of them) hnve mmeh in
comuor with & small maliiprogram compuier such as CIRRUS.
CIRAUS has a single proecsssor and a muuber of sets of pewri-
pheral sgquipment. As im the 6600, the primary rasson for
mitiprogramming CIAHGS waus & desire to utilize more
efficiently the main body of hardwara by time-sharing, and
the chesen solution required replieation of simpler herdwire
units. Orectar work eapseity for a given %otel aysten coat
has beer the zim ir designing olher multiprocessor systena.
Gamma S0 {Dreyfus, 19587 shich has a number of feirly
speeinliced processors, is one example.

13;

Bowever, the objectives in multiprocessing or
multiprogramming are often fundamentally different. A
computer system may have several more or less equivalent
processors for greatsr reliability in a special situation
(e.g. Anderson et al., 1962) or for vast work ocutput where
use of independent computers is undesirable. Often, the
mnost important objective in multiprogramming is to apply
the computer to activities which, though individuslly too
inefficient to contemplate, become feasibdle if time is
ghared hetwaen them.

In this thesis, we shall be specificeily
interested in smellesesnle systems. . sysiem is unlikely te
be "smsll” if there is more them one precesscor. Henes,
maltiprocessing #ill be ignored exeeri for later mention of
2 eose where a smell smltiprogram eompvder covld proiitsbly
be used as pert of a larger mltiprocesseor system.

2.7 4 Swmemery of the Purposes of Mmltiprogramming.

The advaniages ts be gnined by multiprogramming
eny computer system fail infe the two broad estageries oft
{1) Greater sfficlaency,
and (2} Grester flexidility.
¥roz the deseription of time-sharisg given by
Beclkman et al. (1961) gquoted in Seetiom 7.7, it is clear

4.

that greater efficieney is brought about by more fully
utilising the time of any unit whieh is time-shared.
Greater flexibility resuits because, with many slower units
able to time-share a faster unit, units can be used which
would ctherwise be too siow. The slower “units” mentioned
are not necesserily peripheral units. The human operstor,
for exemple, is an essential unit of any computer system,
and a “unit” whose "operation” is certainly slow. Nor
nesé ithe units be only those which would at present be con~
sidered usual elements of a computer system.

Tn the conditions most commonly associsted with
multiprogramming, the fast, time-shared unit is the central
processor arnd the slower unite sre standerd units of
peripheral eguipment. Tranafers of Gate to or from the
computer reguire mechanical movement of the imput er output
medium through the resding or wiriting usit. The spesd of
deta travsfer is therefore limited in ecmparison with the
speed of the electronic eircuitry of the central procsssolr.

Mngnetic tepe is far superior to other widely
used media for speed of date transfer. Systems nprocessing
large cuantities of data use magnetic tape almost axcings
ively for imput and output. However, use of magnetie fEpe
hos fefinite Jisadventages. Nenuul date preparaticn on
cards or paper-tape requirea suly very simple eguipment.

15.

Wo equivalent equipment is available for magnetic tape daie
preparaiion. Oceasionally, there may be sufficlent data
fron o single souree to justify the cost of special equip-
ment reecording direstly on magnetic tupe. Even 80,
squiprent must aiwsye be available to tranefer data 0if=
iine from ecards or paper-tape to meagnetic tape, or from
magnetic tape to printed output. IFrequentiy, & small
computer with little computing power but considerable
espuelty for handling peripheral equipment is used &3 a
data converier for 5 isrger machine. A comcon example is
the aszoeistion of an IBM 401 with an 133 TOSQ.

Iven with 21l impud aand guipal bsing made from or
to magretic taps, the time of a very fset compubter would be
ineiTiciently used if ac Stime-sharing of The cenirsl
procezsci were poEsible. he fastest cenirul processor
eould nandle perhmpe 5C simultaneous tape trensiers if the
necessary equipment were avsilable. Hearly all recent
compubers &llow periphersal units to operate simuitanscusly
with computation. However, facilitlies %o make this
concurxent operatien poseibhle freguently invelive substantial
expende. If peripherel eguiymemt in ive simpiest form 38
considered, i% will be seen that the individual units of
central procesuor time not required during daia transfers,
though adding up te¢ « high proportion of boval time, are
each very smell. To consoiidnie the many small reriods of

16.

unused time into more convenient units, computer designers
heve often inciunded large-seale buffering and extra-compiter
eontrol for peripheral equipment. In particular, elaborate
and costly magnotie tape controllers have resulted.

It i9 doubtful whether the improvement in work
done every really justified the additiomal cost. Timee
sharing betweer prcecesses from only a ringle program is
iimited in the advantages to be gained baceouse the number
of processes available to time-share must be very small. It
is often diffioult to organise & program to take advantege
of the time-sharing eapability. Theoreticonl calenlations
made by Boyell {1960} for a partienler case of eonemrrent
file searching and cosputation led him tc¢ comelude that an
“fzprovement factor only in the order of T.1 or 1.2 was
iikely.

The development of very complax magnetie tape
gystems preceded and gave impetus to the consideration of
multiprogrammivs. %here there are seversl programs, it is
obvicus that thers will be many mere proecessos o tinee
ahare the centrsl processor simaltaneously. As the proceases
eome from separate programs, thera is no nasd to rearrange
any program to make time-sharing possidle. A mulitiprogram
computor must have the ability to switeh betwesn programs.
If this esn be rapis enough, the need for extensive
imt‘far%;ng. and speeial eontrol hardwars iz removed.

7.

Programs may either control their own peripherals, or
speciel-rurpose progrems {often at o lower program level)

may be used specifically to handle data transfers. This
has been well deseribed by Strechey (1959). It is obvious,
therefore, that mlitiprogramming offers = substential
improvement in the efficiency of input and output over
single program time-sharing and that the cost of time-
sharing herdware can in fact be reduced.

¥ith 2 mitipregram machine, +the designer can
consider using siower units of any given type. Often,
inzreased periphersl spsed is achieved only at substantially
higher cost and guite possidly with sigsifiocently siower
reiisdility. 4Also, units of types necessarily very slow in
operation {sueh as pleotters) may be coupled on-line to the
computer. Use of off-iine converters is unnecessary.

gingle prograa time-sharing has not been neglected
while multiprogramming has been devoloped. Today,
"interrupt subroutines” erc widely vsed. These make the
central processor and part of its own storage take over
many of the fumetions of the peripheral unit controllers.
Hardware cost is reduced, and the systems programmer at
least hee more direct control over time-sharing. However,
the difficuity of making any significant number of processes
function concurrently still reaains.

I% is logienl io develop the use of interrupt

i8.

subroutines further by adding fast auxilisry storage,
preferably a drum, as an input - output reservoir. iiany
peripherz]l units szn then aperate coneurrenily, feecding data
for = number of problems to or from the drum. &s far os
somputeation by the central processor is concerned, the drum
would be the only periphsral unit, and a high degree of
central processor utilisation fs likely. Developmeni of the
ATLAS system was based on ihis fdes.

YHowever, maltiprogramaing doees not give only mors
effictent time-sharing of data transfers. 7The best run
computer will, on oceasions, be idle beecause of a delay by
the human operator. Vhere there is mmltiprogram operation,
nost of what the operator muet do for any given program csn
be done without stopping useful work dy the ecomputer on other
programs. However, really signifieani bemefits from multi-
programming are obtained when seversl separsie operators are
provided for.

Agcording to Beckman (1961} the greatest promise
of multiprogramming lies in "pemmitting closer collabsration
of user and machine". Fhere there are a relatively large
number of operators, or 2 few with at leest one or two
kecring the computer consistently supplied with work, it
becomes remsonable for a user %o work ¢n~line with his pro-
gram even if he makes only infrequent demands for central
progessor time. Seversl authors (e.g. S%rachey, 79593
Corbato, 1962) have stressed the value of on-iine working

19.

in activities sueh as program debugging. DBut the on<line
activities which a miti-operator system makes economieally
possidle range far beyond the present area of computing.
idokilder and Clark (1962) say thet man-maghine commanion-
tion has been greatly impeded hithertc by the "economie
frotor and they sugzest that mltiprogram time-sharing can
do a graat deal to overecome this barrier. They give many
$1lusirations of what could be worth doing with a
comprehensive system. Their point of view is shared by
others. In a proposal for a research and development
program for the Messachusetts Institute of Technology, Fano
{1963) stresses the desirability of an "on-line mode of
operation, where the individual seientisi, problem sclver
or decision maker is %ightly coupled with a computer system.”

If the eperating consoles are truly independent,
they ean bs placed in many different locations, some of which
may be guite remote from the computer itseif. Consoles need
not be ifdentical. Some may even be tailor-made for special
applications,

The activities made econczically feasible by
miltiprogramming are not only those whose low=tiemand ie
ceused by a human operator. The flexibility of the muitie
program computer makes it valuable in, for example, the
f£ield of sutomatie control. The use of high~speed computers
in this field is still to be fully expleited. The econonic

0.

factor is again partly responsidle. BEquipment under
computer control may require atiention only rarely, but that
attention may be mecessary with & minimum of delay., How-
ever, & conirol program can be one of several programs
sharing the time of a general-purpose multiprogram computer.
Time need be ziven to it only when required.

Hoot authors guoted here have discusssed multi-
programming with only large systems in mind. (Corbate (1962),
for example, has saggéctoﬁ posaibly several nunidired consoles
with large core memories of as many @8 a wiliion words.)

The present author believes that there are three main reascns
for the apparent neglieet of the smaller computer:

{1) The initial strong incentive to find 2 better
approsch to the problem of time-sharing imvput
and gutput arose from the ecost and limjtetions
of the elaborate magnetie tape controllers
used with iarge single-yrogram machines.

{11) The protagonists of cleser man-machine contaet
were primarily stiraeted by the possibilities
of having on-line the facilitiez and power
of a very large computer.

(111) The large machine of course seems more readily
adapiable t¢ multiprogram operation. It
would more often have a considerable part of
ite storage not in use by & single program.

21.

¥ultiprogram operation impiies a need for
adéitional hardware. The cosi of such
hardware would be reintively less in a large

aysten.

However, in the following section, we ghall dis~
cuss the extent to which the arguments for using multi-
progremming spply to smslier sysiems. Later sections will
deal with the feasibility of muitipregramming in amall

B,'tm .

CONCLUSIONS T0 SECTION 23

1. Por the purposes of this thesis, the author will
define multiprogramming as “a technique to sllow econcurrent
operation of processes from e number of independent

programs whieh time-share a common processor.”

s, Te obtain the fullest value, both in effieiency
and flexibility, from time-shared operation, it must be
possidble to share time beiween processes which are parts of
separate programs. That is to a2y, maltiprogram, rather
than single-progrem, time-sharing is essential.

22.
3., A CASE ¥OR MULTIPROGRAMMIRG SMALL COMFUTER S¥STEMS.

I: The Arguments for Multiprogramming Applied

t¢ Small Systems.

#3ize” in computer systems invelves many variables.
%hen makinz comperisons, it is necessary o have some
definition of whet in the present context is meant bj
“gmall® computer system. The mest generally acceptable
eriterion is cost. 4ny system costing lese than about
£200,000" can be regarded as smell. Where multiprogremming
i85 contemplsted, there must obvicusly a2lsc ke some lower
1isit. %Yo operate in sultiprosram mode, o systen must be
2ble to hold two or move progrems, which means thait the
facilitice availsble must be significantly grester then are
required Tor oy average problem. Let the lower limit, then,
be £35,000. Ghis glves a range, zdmittedly arbitravy, of
£35,00C = £200,000,

4 conputer sysitem costing £100,000 or @o, though
small, represents s substentiel cepital invesiment. Indeed,
the figures guoted in Teble l.t1. show thai slmest half the
present total investment in computing ie tied up in systems

vhose monthily remtal ie less than §16,000. (§106,000 per

e . 5
k1)1 ¥daguves in £A vnless steted otherwise.
EAY = £s8 Etﬁ- = ta‘?- 25

Z3.

month is ecuivalent to an outright zost near the upper
1imit of £4Z00,000 defined previously.) Ye cen hardly afford
to neglect any technique which might paterially improve the
aifectivenese of cpall computer systems.

The use of =mall computers is not likely to deeline.
The figures in Table 3.1. do show the saller computers
making up a lesser properilion of gonputers on order.
However, there i a much longer delay beiween the plaeing
of ap order sné delivery with larger systems and the propor-
tion of larzer systems on sréer is weighted ao & result.

there ie = esse for considering multiprogramming if,

(1) during normal aperstion there would be
substantial inefficiency in witilisetion ¢f the central
processor, or

{2) there is scope for using the additional flexi-
pildty =hich mmltlprogranming gllows.

Por the momemt, the cuestion of feaslibility is set
saide until » more thorough examinetion has teen made of the
relevant chevecteristice of smsll systems. The suthor
velieves thet uwtilisetion of the central processor during
speration of a swall system cap be at legst ps low @8 pro=
cespor utilisetior in » large syetem. IHowever, the trends
in computer desizn which have produced this inefficiency

have been veally evident only in the last year or iwo. The

4.

TABLE 3.1: NUNEER AND COST OF COMPUTER SYSTIMS IN USE
OF ON CRYFR.

IE USE UN ORDER
Rumber fionthly.. HEumber Nonthly ..

cost(s) Cont(g

Smell-scale systems|18,550 S.1 x 10? 9,118 | 1.6 = 107
(ionthly rental

£510,000)
[ledium~ & large- .) 7 T
scale systems., 2, 390 7.1 x 10 1,64% | 5.4 x 10
(¥onthly rental

£10,000)
Totele 21,345 10,763

*Figurea taken from the Nonthly Computer Census, “Computers
and Automation®”, Outober, 1064. Only computers for which
7 monthly rental is plven have been included.

L &
;aloulated =8

2:: [Caverage monthly rental) z (no. of computers)/
all
entries

Tlexibility ziven by pultiprogremcing can alsc be extremely

valuable where a small systen is used.

3.4, “Uenbral-procesaor Utilisation in Small Systems.
The first twe eniries of Table 3.2. (taken fror Weik

(1957)) give some idea of the computing systems of 1957.

TABLE 3.2.

COWPARISON OF ARLTHYETIC AND

INFUT-CUTEUT

TERECR

roar

. AP?ﬁgﬁézate Storage Arithmetic Speed Inrut Outrut
Small system £200,000 47 (drum) 4dd: 500us (exc. access) |8-4CC ch.t.s..(raver tave) |8-6C ch.p.s.(rarer tape)
] Tossibly small 3ms (inc. access 50-20C c.p.m. (cards) 30-100 c¢.p.m. {csrds)
(1957) delay line stcre [uult: Jms exc, access) -
* 15ms (inc. access) 150 l-p.m. (pricter)
Larze systenm £1, 500,000 £1-32K (core, idd: 24us (inc. access) 150 or 25C c,p.m.(cards) 100 ¢.p (cards)
5 to 12us cycle time)
(1957) 2,000,000 fult: 240us (inc., access) 15 Ke/s (mag. taxpe) 15iie/s (mag. tare)
Small systen $200,000 4¥-32K (core, Add: 2us (24-bit) 120C c¢.r.m. (ecards) 306-1000 1.p.m.(printer)
3 to 1.25us cyele timejfiult:10us (24-oit)
(1264) £300,000
Larze system £1,500,000 16¥-54% (core, idd: 2us (4E-bit) 1000 1.p.m, (vrinter)
(106“)4 to 1.5us cycle time)
703 #2,500,000 fult:T7us (48-bit) 106-20C ¥c/s (mag.dave) 100-2C0Ke/'s(rmag.tave)
CIRRUS £20-25,000 4¥(variable corelada: 30us (36-vit) 50C ch.p.s. (rarer tare) 10Geh.r .
(Cost to ous cycle time) 11ch.zr.
wniversity) 3K (semi-permanehd iult:3CCus (36-bit) *
core, fus cycle
timeB
o
R ds/min. or lines/min., are equivalent to characters/sec., assuming thz%, on aversge, about 60 charact s/card
o] rezent useful information.
1C te Tigures ta¥en from Jelk (A Second Survey ofDonmestic Elecironic Digiftal Computing Systens, June, 1057}, Sqreal]
s within the cost range {70, OOQ—"Cﬁ,ﬁoo of which three or more had been sold, Systems examined: Ferranti 1%17,
Elecom 125 125 FZ, Ferranti :egasus, 5 uata**bn, Zlecom 12C & 102 CRC 1024,
2pig based on the Inl. 704 tyrical of the nswer in 1637,
3?1gures pased on the Control Data 3200, a good examyle of the fa t, spal sysie te,
]

vzced on the Control lata

3500,

a tyvical

large, 1923-4 systen,

*eve

2%.

The ﬂgﬁru are interesting becanse they come from a time of
particular importance for computer development in general
and for mmltiprogramring in partiomlar. Systems such as ihe
I 704 whieh bridged the gap betweecn the first- and second-
generation machines weve then in use, and true secont~
generation machines, such as the TRANSAC (later PRIICO)
S2000 were imminent. The general use of systems with
charactorisiics iike the 704 had stimmiated the first
serious thinking about muitiprogram time-shuring. This
early thinking found expression in such papers as those of
@111 (1958), Strachey (1959) and MeDonough (1959).

The intervening years have brought little signifi-
eant change in the relationship between ceniral-irocessor
speeds and input-output rates for large systems. Indecd, if
we take as a very simple indieators

cre cycle t
charscter trensfer time with megnetic tape

this was

é% for the T04 in 1957 "

and 18

1.5u8 for the CDC 3600 in 1963~64.

The need for multipro:rasmming large systems purely on the

grounds of imefficiency of input-output has probebly changed
very little.

26.

fhe pieture is very different for small systems. It
is only in the last couple of years that the develiopments
which produced the second—-gemeration of computers have had
their izpaect on the smailer systems. Whereas ihe processors
of small systems 1ieted by Weik in 1937 ware fairly equal
in their performsnce, latest tabulations of compuver
characteristics (e.2. Adems Associstes (1964)) show a wide
disparity. Ome thing is clear, however. It is now possible
%o build for a modest price central processors whose basic
gpeeds approach those of all but the fasiert large aystems.

The true speed of any processor of course depends on
many things other than the nominal speed of simple operations.
However, it may reasonably be seid that a small system can
pnow hove a central processor whose real speed is less by a
factor of as 1ittle as 10 than the speed of the central
prosesgor of a system costing 5 or 10 times as much. ¥4ih
such speeds obiainable at quite low cost, it is hardly worth-
while to build much slower central procossors. A subelantlsl
chonge has therefore tskem place. A few years ago, it was
generaily accepted that the larger processors ecould be a
hundred or more times cheaper for a given unit of computation.

The diffcrences in cost of large and of small systems
are brought ebout in meny ways. The large computer has a
more powerful imstruciion sei, substantislly more storage

and a greater range of software. But most important of all,

27

the larger system will have a much greater nuaber and
variety of peripheral units. Each periphersl unit may be
faater and thercfore more expensive than Ite counterpart in
a small system.

Small computers are often assoclated with larger
ones, most commonly fox medls conversions, This applieation
will be dimregarded for the present, and discussion
restricted to the more important use of small computers ae
gseparate systems in their own right.

'mmt all information resches the small ecomputer on
cards or on paper tape. Output is either punched on the
game media for off-line printing by tabulator or flexowriter,
or;;prinm directly by line- or occasionally by character—
printor. The expense mza/g;%:‘i’:-‘im@ converter for transferring
data tc or iro: magneiic iape, however desirable because of
high central processor speed, iz hardly Jusiified because
the cost of the computer itself is low. For the same reason,
autometic data recording, if mede at all,will be made on carde
or paper tape.

A magnetic tape unit or two ean certainly be useful
in @ smell sysiem for backing storage ¢r in file work. The
1atter at least is infrecuent if the system is ueed for
seientifie computing. lHowever, in assessing the zf{iciency
of input-output in small systems, we must coneider the

performance of those units most commonly used. Weik's

figares, summarised in Table 3.7., shor that eard uniis,
paper tape unite and printers in the small systems of %9%7
were iittie slower than today*s fastest. PFor a gliven cost,
performance of amy type of unit would have improved by &
factor of 5 at most. There is a great difference between
this improvement and the improvement in central processor
speeds. The figures of Table 3.3. are intended to summarise
the two tremds for both small amd large systems. These
figures suggest that periphera unit operation i1s many times
less efficient in the smaller systems.

The extont of the need to time-share input and output
ia determined by the degree to which utilization of the
centyal processor would be reduced by periods spent waiting
for informaticz from any peripheral unit. Two factors are
involved:

{1) The efficlency of operation of each periphersl
unit, and

{2} The proportioms of total time Toy which each
vnit is used.

Tor a given proceszor, the “"efiiciency of operation”
of omy peripheral unit in tremeferring a particular type of
information can be defined as the proportion of time for
which the procesaor is actually ia use during operation of
the unit without iime-gharing. Reaconably accurate estimates
of the efficiency of peripheral units chesen for CIEEUS have

been calculated (Table 3.4).

PAPLF 3.3 3 COWPARISON OF CENTRAL PROCESSOR AND
IHPUR=QUTPUT PERFORUANCE USING THE
SMATJ. SYSTEM OF 1957 AS 4 BASH.

SHALL SILTEE LABRGE SYSITH

19857 1264 1957 1964

CINTRAL PROCESSOR 1 | 100 100 1000
SPErD

IRFUT-CUTEUT N 4 50 500
SPETD (ehepeds) (300) | (1200) | (15,000) | (150,00C)

RATIC 1 25 2 2

ppodiotion of the proporition of total time for whieh
any unit will be used 1o more di1fficult. Thile CIREUS was
under conatrueticn, the mature of its work-lood wes, ok
gourse, not known. However, some ugeful information could
be outained from & set of programe prepared for use in a
givulaticn etudy of the time~shuring method. %Ten problems
were chosen at rendom from work being done in the Universiiy
of idelaide {sec Appendix C . and Table C1). Seven of ihcse
problems were being rum on an IBH 1620 {in ome, twe or three
payte) snd three on an IBK T09C. A detailed snalysis was
pade of the prodblems in their originel form, end conversion
fsctors were caleuleted o wrediet the hehavicur of progrems
4o hepdle cquivelent problems on CIRIUS. This irformation

iz sunmarised in Table GZ.

JTILISATION OF CERTRAL PROCESSOR TIHE DURING INFUT
ARD OUTPUT ¥WITH CIRRUS.

 fyansmission

Kon~frivial Triviel cheraeters ;:i OPU uili-
time per charceters 1 ' zation
character et ol i during

Gonversion Spars | Gonversion 8 6
anvcrﬁiaq Spare {w&ﬂYELSEG?A ipare operation

Readingt ' | 1

Decimal Dat= 2.0mg 9+ 1ms | QeIms GeOms 1e5me 45

Objset Programs 2.0ma 1.ms 0+9ms - - »72

soures Irograns 2.0m8 0.5=3%m8 Usual- s
1y none ~- - oY

Punching!

(Decimal Data _

at 100 ch.p.8.) 10.0ms 1.0ms 9,0ms 0.%ms 0,5ms 08

Printing: -

{Decimnl Data ' e

at 11 chepeBs) G . Ome 1.0ms 89 .0ms 0. 5mn £9.5me -1

?

*
*E
*Nn

Spaces and o889 gchanges.

Assuming 2 nen=trivial: 1 trivial character.

spsuning 6 charpeters/word, 3Jws CPU time at end of word.
See Appendixz C1.

‘ot

31.

From the information obtained as described above,
estimates were found for the utilization of the CIRRUS
processor by each of the 10 programs if run without time-
sharing. The total time to complete the Jth program, 8ay,
wag divided into alternate periods Tij' tij wheres

Tij was a period of time in whichk the vrocessor was

used continuously, and

tid was a period following Tij in which the processor

was idle while waiting for a peripheral umnit.
The processor utilization, or "demand" for time, by the

nrograwu, was then:

>F
D, = M.
J » (Tij + tij)

Two valuves of Dj {gee Table C 2) were caleulated foxr each
Progyams
(1) ﬂﬁ, i1f the program were sompiled from source language,

(2) B?, i? the program were assembled from binery object
code.

The values of Dj can be combined to find an sstimate
of the utilization of processor time by the set of programs

as a whole. The most suitable estimate is the weighted value

where

3z.

5 = 2°(Ty4 + %;4), tho time to complete the program,
7 o ¥ assuming compilation,

f? = E:a(ﬁij - tij)' the tizme to semplete the progrem,
i assuming susembly,

p° = prebabliiily of compilation, rather than assembly,
and pﬁ = probability of nssewbly.

By checking 64 successive rung on the 1620, an
estimate of the probability that a program weuld be compiled

was found:

The walue
D = .2@3

was then calculsted.

Beonuse of the small sanple size, this {igure for D
mst be regarded with reservations. The value mey be thought
toc low for = complete work-lomd. However, it should be
pointed out that proecesscor utiligation by a program %o invert
a 25 ¥ 2% matrix, with paper tape imput at S0C ch.p.s. and
output st 100 ch.p.s., was ealculeted o be .35 . This
problen is cne in which the amount of computation ie
shviougly svbhsiantial.

ilthough one cannot teke the value of I stated above
as a highly sccurate estimate of processor utilisation in
prectice, it csn be seld quite emphatically that the denmand

for processor itime @

uring setual program cperation on CIRFUS

33

would be very much below ssturation becsuse of the imbealance
between processor and peripheral unit speeds.

so¢ for, the effesct of delays by =n operator has not
been corsidered. The amount of idle time beiween jobs or
during any job will flnctuate comsiderably. Without e
monitor to run & continucus sequence of Jjobs, at least a few
seconds will be lost before each job. During many jobs,
severel mirutes will be lost. The refuotions in the velue
of D, aa celculated earlier, if there arc mean idle periode
per job of 90, 20, 30 and 60 seconds are shown in Table 3.5.
Bad CIRNUS been constructed as ¢ single-program compuier, it
iz spparent that the grester part of its proeeacing capecity
would have pone %tc wnete.

Returning briefly to the problem of delays during
fnput and ontput, it can be seen irom Table 3.4. that,
neglecting program compilation, CIREUL carries out conversions
between internal snd extesrnsl format in from 50C-1100 i@
per zharnmeter. Fast periphersl units are now gvailadble
which cen supply er accept charscters at rates approaching
the speed at whieh CIRRUS performs charscier ecnversions.
Hewever, even if these unite werec used, s good deal ef
central processor time would 2%1ll De wasted. Very often,
only a smail part of any card or line contains useful
information.

3.

PABLY 3.5, THE EFFECT OF CPERATOR UBLAYS ON CPU
UTILIZATICN DURING OPERATION OF FHE
PROGRAMS 1IN THE SAMPLE.

ean idle itime fitilisation of CFU

{secs.)
CIRAUS 1964 System
(see %ext)

o ‘ 293 247
10 274 151
20 . 256 . 107
30 243 .085

&0 « 207 51

35.

Further, the cost of the faster units is consider~
able and compliecated peripheral controlilers may be necessary.
Substituiing such unlts for ihe simple paver tape unite used
in the CIRRUS systiem would have aimost doubled the total
systen cost. FMarthermore, it must be remembered that the
CIKRUS eirecultry was fully developed by 1962, and that the
periphersl units mentioned are among the fostest available
in 1564,

The processors in today’'s small scientific systems
are many times faster than thet of CIRKUE, Te examine the
cuestion of ingut—eutpqt efficienoy for zyetems currently
econing intc use, let us consider o asystem with:

| (1) 2 processer 10 itimes faster tham the processor
in the CIRRUS system,

(2} & 1200 e.p.n. card reader as the imput unit,

and (3} 4 1000 Il.p.m. printer sz the output wnit.

The performance of this hypotheticsl system would be
roughly equivalent %o <he performance of a Control Data 31200
equipped with the faet peripheral units mentioneéd earlier.
The degree of central processor utilizetion in this syatem
was calculated (Column 3 of Table 3.5) for the work-loaé
consldered sariler.

The figures of Table 3.%. suggest that the efficiency
of input-output for the most recent systems is lower than

36.

for CINRUS, even though the faster periphersl units are used.
Farithernore, iu caleonlating utilization f{igures Jor the
hypotheticel system, 1t was assumed that gll output would be
made at o rate of Y000 Llepem. In practice, some output,
even if only of comments, wonld be made on a monitor fype-
writer. The figures of Table 3.5. s2lso show how mueh more
significant any period of completely idle time is for a
faster processor.

fny marked improvement in the speed of eard units,
paper Gtepe vnite or printers iz unlikely in the neay future.
Tt 4g also d1fTiecult to see what can be done to reduee
operating delays other than resiriciing operaticn to trained
persornel. However, in an era when ihe seientific user is
demanding more direet access to the computer, a “closefi-
shiop® 18 most undesirable.

7o make the follest use of the considerable power of
the inexpensive processors available today, $ime-sharing
scems cusomtial. However, conventional single-program time=
sharing ean fairly guickly be rejeeted ns = possible solution.
ipart from the fast thet subsitaniial improvemenis are
unlikely, a serious dissdvaniage ¢f single-program Time-
sharing is thet thought must be given $¢ ites implementatlon
durd

g the writing of every grogram. In an enviromment of
scientific computation, programe sre prepared by a great
muwber of users, most of whom are only part-time programmera.

37.

Many programs have a very limited 1ife, some belng run only
once. it ie therefore unlikely thot more than a few programs
will be writien in a way whieh mskese good vse of the iime~
gharing fecilities.

On %he other hand, time-shared operatics in a multi-
program computer is sutcmmtic. No thought need be given %o
t.‘une-ahnrina by the individusl programmer. NHultiprogramming
s therefore an immediately attractive possiblliity.

3.2. The Value for a Small System of the Flexibility
given by Muliiprogranming.

Aztivities requiring only s small proportion of
total computer time become mors economic 1f their operation
45 tine~-shared. Ry time-sharing a system between a number of
programs, the arguments sguinst the use «f very slow peri-
pheral unitz, or ageinst en-line computer operation, are
greatly redueced, Many peseible applieations of the computer
which wonld otherwise ve rejected on grounds of ecost becows
feasible. Thie inereased flexibility resulting from muiti-
prozram operation, often considered the greatest benefit
obtainabls from rmitiprograuming large systems, can aiso be
of great vaine with smaller sysiems.

Meenssicn on the aefficiency of peripheral units has
so far been confined %o the operation of those dasic units
ecarrying the btulk of input end cutput. There are; however,

38.

other commonly used units for which time-shared operation is
even more important. %he author is familisr with conditions
im & metwork of Tour computers (one Control imta 3600 and
three Comtyrol Data 3200's) set up by the Australian C.S5el.H.U.
411 four systems include incremental plotters, ani 1t is
already apparent that, since the computers are used for
geientific work, use of the plotters will be particulariy
heavy. To counter the inefficlent operaiion of the plotter
in the large system, steps are being taken %o foree informe-—
tion for the plotter te¢ be writtem on magnetic tepe. The
actual pletting will then time-share withk work on later jobs.

Sueh a solution is not practioable for the smaller
syntems, since one, and possibly two, tape unite are thus
tied up for quite lomg periods.

The “selution® is, in any case, merely a make-shift,
requiring as it does special attention o the needs of one
peripherai. If another very slow umit is te be added toc the
system, a major reconstruction of the time-sharing procedure '
18 necessory. On the other hand, an efficient multiprogram
system would allow time-shared operstion of the plotter on-
1ine %o the program using it. Iater additior of units should
require only the most minor modificaiiom. Oince at most one
program in three or four yequires plotted output, it is un-
necessary to have a pletter for each program of the malti-
program set. The CIRRUS system, for example, assumes that

3%.

there is a “pool® of peripheral umits beyond the basic set
for cach program. A program may réquest allocasion of any of
these units not already allotted o amother program.

A smell computer is often inciuded in lerge inelel~
letions. Theugzh hers ite primsry purpcee is maghnetic tape
preparaticr or outpui conversion for a larger mackine, the
smell computer is zisc useful fer serd listing or seprodueing
gné other odd jobs, The adventages of a smeil multiprogrem,
yathor than a airgle-progysm, compuier in this gitumtion are
cbvicus. A comsistent sdvoeate of multiprogramsing would
sey ihet data convercions are hetter done by the large
system if it ia properly sultiprogrammed, This argument
certainly holds until a peirnt 15 reached when the %ime of
the large systiem is ssturated. It would them ve ifrritating
o feel that e significant preportion of the iime of a very
powerful processor was belng spent em quite trivisl work.

A small mmltiprogram processcr could thus profitably
be imcluded iw the ayetem as shown in Pig. l.i. For data
conversions, a omall provessor Jesigned with this purpose in
mind can be as fast ne the lswge processor at a fraetion of
the cost. If the time of the large processor on 1ta own were
divided Falriy equally between computatior and data conversion,
the total work capecity of the system would he doubled murely
by adding the

smell somputer. In prineiple, thie epproech
19 similar to that used in the Conmtrol Data 6600, with the

40.

 LARGE CPU

OFF.LINE . ON-LINE

FIG.3.1.: USE OF A SMALL MULTIPROGRAM PROCESSOR
(ON-LINE OR OFF~LINE) WITH A LARGER PROCESSOR.

41.

difference that using a single muitiprogram peripheral
processoy vsther than separate single-urogram processors is
suggerted.

The point of the example is that, although malti-
programming hae been regarded as chiefly enitable for large
processurs, situsticns do¢ exist where large and small
processors are used together and where multiprogramming the
small rather than the lsrge is yreferabdle.

Meny emthors consider that the greatest denefits to
be derived from multiprogramming are gained from allowing
the computer to be shared by a number of independent operaiore.
It iz hardly economieal for a small system to have, as the
Hel.T. mystem does (Famg, 79631}, 2 great number of independent
enquiry stations. Nevertheless, a small system can have 3
or 4 separate operating stationa of whieh 1 or 2 are reserved
for users wishing to work on-line. This arrengement nisec
has a profiteble buili-in blas towards ithe running together
of lew~ and high-demand activities. e

The cost of data transmission eovipment makes it
uneconoricsl te place operating stelione at great dletances
from a small computer. However, the cost of low-speed data
transmission links would in some eases he amply repeid. For
example, in the author's exporience of university computing
genires, considerable inconvenience was suffered by some

users whose deparimenis were as wuch as a mile away from the

42.

computer itself. idditional opersting stations, strategi-
cally placed, would have Leern invaluadble. The {iexibility
of the multiprogran computer also showe to advantage when
the guestion of imstalling editing equipment at outliying
etations is considered. For cxmmple, each operaiing station
built for CIRRUS cam reprofuee or print irom paper tape by
using simple programe operating within the multiprogram
aysten. Heo additional 2diting equipment need be provided.

The extremely pomerful program testing aystems which
can be developed for large, multi-operator computers are,
unfortunziely, not adaptable for the smaller compuier. While
kis program ls under %eal; however, each user’s purpose is
fairly well served if he is able to have freguent accesa to
the computer at short sotice. This need should be adeguately
£illed by the one or two consoles of u cmall system reserved
for users,

Strachey (1959) has mentioned the value of om~line
working with probleme involving iterstive caleulaiions.
His remarks apply egually Ho small and do large multi 'rogram
computers. Other suthors have suggesied construction of
special purpcse congscles for sulti-operator computers. Some
appliceticns are psriiculsrly appropriate for the smailer
syotem. /As one example, consoles may serve as elsborasie desk
enlevlators {as suggested by HeCarthy et al., 19€3). 4

further exanmple may be seen in CIRRUS, where a set of

43.

special-purpose miero- snd machine-code programs will make
the eomputer behave, to a user on one specific conscie, as a
digital differemtial anclyser.

A wvery small computer, the Elliott 803 (Cook, 1960},
hins been time shared bhoiween generaltacm@utaﬁiam snd on~line
rrocess control. The computer was designed with thise
particular spnliestion din mind. 4 gemeral-purpcse multl-
program ecomputer storing control programs as high priority
members of the muitiprosram set would £ulfil this function at
leset s well.

Vueh intereet hes recently been shown in the poseible
use of eathode-ray tube displays, particularly as teaching
snchines. One camnot jusiify a very large number of displays
in & relontively small system, althoush a group associated
with CIRRUS 4s having sone success in developing low-cost
ddoplays. These, while ¢perating independently, share a good
deal of common hsrdware. An inexpenaive zeulvalent of the
izhi-pen® facility is also belng developed. 4 progranm
used for tesching will probably be lorge. However; a
techmicone whieh will be deseribed in Secfion 6.2.2. makes
vogsible the siwnliencous and indepondent use of sequences
of stored instruections by = number of separate sources. Ume
roesult ie that 3 sinsle feamching progrer held in store cam
be shared by a number of indenendent users. TVach user necd

be z21lotted only a quantity of private wort-space. The

A4,

storage limitations of the small system therefore do not
prevent the using of the small muliiiprogram computer for
teaching.

Kany other examples could he given, but those offered
shouid be sdequate to show the great advantages in flexibility
which muitiprogramming givea in a smsll system.

COMCLUSIONS TC 2ECTION 3.

Certajr important conclusions may be drawn from the
meterinl of this section:

1. Tremds in gpecds and vosls over the past several
yesrs have seriously invreepsed the imbalance between eentral
processor and peripbercl ecuipnent speeds in szall smeienmiifie
computer gystems. UThe result ie that a processor is llkely
4o very much under-employed oven during actual program
speration. Uoniral processor speed, up Yo o cerdain pointg,
hos bheoone n quite chean commodity. Ome ghould therefeore
sttempt to take fullest advantage of it.

2. The greatly increassed flexibility given by multi-
srogramuing pernits more user-machine contact and allows use
of the computer in areae where it might otherwise be
anseonorie. While the gains may Lo greater for z large
gysten, they are nevertheless of real significance for a

small system.

45.

3. Though single-program time-sharing can be
rejected as a worithwhile means of more effeciively using
the high speed of the processor, m:ltiprogrem time-sharing
should certainly be considered. OCince there are other
potentinl benefite, a thorousi: investigation sieuid be moade
of what muitiprogramning has to offer and whether mmlti-

progran operaticn is possible for a reasonable eost.

46.

4. A CASE POR HULTIPROGRAMMING SMALL COMPUTER SYSTEMS

I1: Improvements Yossible and Femsibility.

From the discussion in the preceding section, 1t was
concluded that the faotors giving designers an ineentive to

mltiprogram large systeme apply aleo shere 2 small system

r

iz connidered. Defore z cese for multiprogram small
systeme ic completely established, however; two obwious
objections must be examined:

{1) The number of programs time-sharing a small
computer must necessarily Ne guite small. It may therefore
be arguec that a worthwhile improvement in work output wouwld
be difficult to achiove.

{2) Tor even as feow az two or three programs to
time-share, certain parts of the aysten must be extended
beyond what would suifice for single program operation.
Although not the only recuirement, additional storaze s the
most cbvious. For a low-cost syastem, any extension of
facilities is relatively more expensive. It may therefore
be felt that the udd@itiomal cost would outweigh the
advantages to be gained.

I% is therefore necessary to £ind, quantitatively if
possidble, ihke value ¢f multiprogramming, and %o zssess the
feasibility of achieving 2 reasonable degree ¢f maltiprogram

47.
operatior ai & moderate cost.

Tiscussior in Seetion 2 has made it clear that at
least two distinetly different pethods exist to provide
maltiprogram time-ciaring. The “irst method reculres =
hoeking store oo an input-cutput reservoir, so that inpude
output processes Irom a mumber of programs may time-chare
the processor with computatior on a single program. Ithe
geoond method, using only one-ievel store, provides Hlme-
shared operation between a npumber of programs which compete
for srocessory tire.

For the CINRUS system, the second of these meihods
was chosen. OIRREUS is alsc & multi-operator ayctem. For
the purposca of a theoretical invesiigation, the CIBRUS
processor ¢an be regarded sz being shared hetween work
supplied to 4t through a mumber of separate operating
stations.

The author's more detailed investigationa of the
ef‘eets and cost of mulsivrogramsing have been mnde For the
case whore, as in UIRRUS, one-level store ic used. %o
arove that muitiprogramming can be worthwhile, it io noces-
gary only to show its velue for ome paréicuiar method of
implementation. Ths relastive merits of am approsch

recuiring a backing ztore will be disecussed later.

48.

4.1, 2he Improvement in Work Capesecity through
Miitiprogram Uperation.

The improvement in work done by time-sharing between
& number of programs depends on meany complex faetors: Zor
exsmple, the average demand and pattern of dcmand for time
by each program, the combinations in which programs happen
to be rum, and the procedure wsed for time-sharing. %Though
provably straightforward as conceived initielly, the time-~
sharing procedure itself msy become ouite complex. Its
detailed development =nd practieesl effects 2ye suhieet to
meny limitaticns of the compuler comfigurstion and the soft-
ware ussd. The number and complexity of such factore
eliminate theoretieal smeliyeic as & method of {inding an
accurate estimate of the improvement poeeible by time-sharing.
Short of an aetual fleld test, the only satisfoctory method
iz by simulation,

However, for the purposes of a preliminary investi-
gation and as a check on the wvalidity of later sismlstions,
upper and lower I1imits will be founé fer an "improvement
factor” I, a measure of the inerease in the copacity of the
processor to deal with the work whieh it must do. In
discusaion which follews, the ‘term "work-load® =41} be used
%0 mean 5 very large number of jobs to be processed.

Let us first consider the situvaiion where the

processor is not time~shared. The totsl +ime T roquired to

44,

process a given work-load can be divided into alternate
sefuenis ?ig tig where

fi iz 2 periocd ever which the processor is used
continuously, zond

ti is a peried, following ?i, ir which the processor
ts not veed.
Frocessor utlilizaticn is therefore

21y 2oy
D & el 3

%;‘Ti*ti) T

o o R S Y

fe can take T, the time required for processing
without time-sharing, se a cuentitative messure of the “wmopk"
in the work-lond. ieleys Ly the operstor contribute tc‘Z:ti,
end therefore to 7. lowever, since the cpersior is pars of
the computer system, what he does is z neceesary contribuiion
e rroceusing of the work-load. Operator delsys umsvoeldable
in single-probram operation mmst ihere fore be teken inje
account irn any compsrisorn asgainst multiprogres operstion.

Supyose that, by time-sharirg, the time recuirved %o
eomplete the work-loed is T'. The cepacity of the system
te ezrry out work has then heen incrensed by a factor I,

where

L

0.

For example, if the time reguired %o process the work-lomd

ie halved, vproceseing capacity is obviously doubled.

How,
Z (T + %) T(r, + %) BT, By
Is= ‘”"‘; - @“;i“‘ :-“é' e

1

where D'r = processcr utilization when the processor is time-
shored. Hence, the ratio:

srocessor utilisstion wiih fime-shared operaiion
rrocessor utiiization wl ut 1 hared coperation

aluo measvres the improvement in ;receasing enpoeity.
Seppose that work is sunciied te the sroceszor
through n stations; 5, eeesses ﬁnﬁ and that each, if allowed
exclusive sccess to the preocesscr, would use a proporition
éz, d = 1y ees ny of total processcr time. II there is no
conenprrent operation of proceases from any wmimgle s@@ﬁian*.

an chvious upper limit for I is therefore

wam

Iy =

"ohe CIREUS system dces in faet allow "intra-progvam” time-
ghering. For reascsone made cleay in Seetion 2.2., the
contribution of this fecility towards iﬁéreasing work catput
moy uet be very grest. Howaver, there werc other ressoms

for providing it. (See Section 0.}

51.

Processor time availahle for the work-lead is
reduced ir practice by "overhead?, or time spent in imple-
menting time-shored operation. tThe computer eonfiguration,
time-gharing method, compesition of ithe work-load and the
distribuiion of the work~loué between ststions will ail
affect overhead %ime, However, for z particular multiprogram
computer and work-load, let us express overhend as ﬁg, where
ﬁ; is & proportion of total processer tims,

inother uwpper 1imit for 1 is therefore

1 -4
U D

%

1

In a systen using only one-level siore, ithe czvacity
6 the utore hss am imporient Beerirz on the Improvement
cotained. For the prasent, it will be assumed thad there is
always suffieient stoeraye fer s progrsa from every stztion.
To establigh a Jlower liwit for i, let us Jirat cone
gider a system where there are two constrainta:
{1) Time i3 shared seccording %o a fixed order of
priorities between stations, work fromz stetion 5i
taking precedence owver work from station 33 s 17 and
(2) There com be concurrency of uweeful work not
reguiring processor tirze wiih work reguiring time
only where tae former takes place on a higher—priority

gtation.

52.

The improvement factor for this hypothetical system
would be well below that for & more gerersl case hecpuseat

{1) Varyiug the pricriiy order depending on the

nature of activities on esch stetion can incresse

the smount of work done, and

{2} in practice, work not recuiring processor time

%111 oftern Le done whilec the processor is busy with

work from 2 higher pricrity station.

Jet us suppose for the moment that the two constrainis
hold, and gonsider first a special case where there is no
overhead time. Through sisiion 51 alone, =2 guantity of work
will Be processed egusl to that done without tiwe~-sharing.
Parthermore, = proportion (1 - ﬂ‘} of total processor time
will ke shered betwesr work from lewer priority statioms.

Yach station will have highest priority use of a proportion

of totzl %ime, and will leave a proportion

-fr (1 i “33{.}!
o=t

agein of total time, frce for lower priority stations.
The improvement factor for this hypothetieanl system

in whiech ﬁﬁ ie ascumed to be zerc, is

53

B =1
» dng Jrmq

cuppose that the work-losd, recuirirne T seec. $e

complete without time~gbhoring, iz instead processed in T

G@Ceg
4 s
w.@ﬁ I}"{"n%ﬁ = .*i.‘t

if, on the other hand, some cverhead time must de
opent, let the time required to process the work lood be T4
BEC o

Let ihe petusl tiwe spent in overhead be © sec.

Row,

£ "+ 0.

inegguality, rather than equality, will hold if any
overheed time coincides with a periocd where no station
wishes to use ke processor.

Therelore,

, P?eg 7
‘E‘L’%,ﬁwﬁ G > my 0 pw

£

: e .
Koule lﬁgrﬁpnff O >/ (% b E"}‘IHyﬁ =0

n
Row T“:Pg y S0
Iﬁ.ﬁﬁ% 0 20 - 1. "M, = 0

The right-hend eide of the inequulity is & lower

limit of the improvement factor for the hypothetieal case,

54.

and, therefore, a lower limit for the more general case
where the two constraints imposed do noet holé. In the

generel eo=2se;, the iwvprovement fector therefore liee in the

ranges » g
(1 g){ z (1 -0 < I\trin{ —Fﬁ”f
77 k=1
Now,
1-;# 1 = 8/n, 1se/§
sy 8 gl < wmeglll

The range of I may be expressed as:

n el
- 1 =8
- T o-a) crcmln 5%

J=2 k=1
ooo(4o?}

Gverhead © can be considered in two sepsrate parde:
(1) Space-sharirng overhesd, processor time spent iw sssign-
ing storsge and periphernl unite,
(2) ?ime~shering overhesd, processor time spent in

switehing from one setivity t¢ another.

It 1s probable that, for awny swltiproezram computer,
the quantity of overhead time in proecessing = giver work-
loud can be expressed in terms of the number of programs and
guantity of input and output in the work-lend. Suppose thet,
for cach progrem %o be wrocessed, & period s such that

B, < 9 K8y

5%
is needed for space-sharing decisions. Suppose also that,
for sech mm* of informetior to be transferred, a period
t sueh that

RS ES>
is spent ir time-shorins decisions.
Ify in the work-load there are p programe and m

wnites of inforpeticn o be transferred, then & lies in the

venge
pe, + why £ O L pa, + B,
Henee,
wiwse +mt, 0
-.-ég-ﬂ < ,;?df \9?’3§t:

2,
il
EN

1 - LIWindn, 1- byt

D
see (éog)

Suppose that the work-load 4s very larze and is
divided roudomly between steticne. Thet is, ‘?i U for all 1.
If the work-load were not divided at random, it can be
agoumed thet the “"scheduling™ carried out would be aimed at
improviug the rate 2%t which the work-lecad wes processed., D

can therefore be substituted for all ﬁi in the expression for

Ip.
.64
(o . P8 ¥0Ty
BLPB A, ' , - o
- B (1-2)N ¢ 1 ¢min ' m, zﬁ* ,
ved”(4.3)

r iny convenient cusntity.

56.

For a particular computer and time-sharing procedure,
%1, %zﬁ 9y and 8, shouid be celeculable with resscnoble
accuraey. For a given work-lcad zwu on this computer, Ty Dy
m and p are constants snd estimates for them should also e
ealeulavle. IL and Eﬁ are therefore expressed in terms of
only one varisbie n, the number ¢f separate stations.

The most importsnt result to be found is the
improvenent in processing rate ¢ be gained by time-sharing
hetween n siven number of programs. ¥rocessor utilization
by the work-lecad without time-shering (D) ie the most impord-
snt factor. The calenlation is very much simplified iY an
estimate can be made feor Q range of ©/%. 1Ir o systen using
only one level store, the guentiiy of time used in overhead
should be remsonably small, dut will certeinly be aignificant.

Let ug take CIRRUS as =n exampls. The time spemt in
space-sharing overhoed now appears %o be leas then a second
per program.

i€y b

o€ <1 sec.
Pollowing a deseripiion of the CIRRUS $time-shering method in
Section Te3e3e; it will be expleined that a period §, such
that

128 <t L 164ps
is spent by the processor Ifor cach character of information

transferred to or from the computer.

57.

1¢€!o, -6

=B

where there are p programs in the work-load, m characters of
inforrmatior to be transferred and the work-icad would require
T ssconds 30 complete witbout time-sharing.

| Yor estimates of p, m and T, consider again the sample
set of ten programs used in simulzstions ond nmentioned in
Section %.%f. Suppose that each of ithe programe le run twiee,
being e¢ompiled once and asscmbled once fror bimary object

code. Then, referrirg 40 Table C 2,, 4t will be seen that:

p‘m.zo
m= 3 x ?0§ charascters
T = 2800 sec.

Therefore,

001 £ 8/% .027

Suppose that, generelly, overhead is such that
0 €6/7 £0.03

i'&"

n-1
(=9} (1+ 3 (1-D)4) < T gwin {m, %} R W
§=1

From {4.i{) upper smé lower limite of I cem be calculated for
particular veluee of P and n. I and I; for <P <1 are
plotted in Figs. €d.1.5, 4.2 4¢3« forn = 2,3 and 4

respectively.

N=2

2 ® SIMULATION RESULTS
RUN 6 — — PREDICTED | FOR CIRRUS

FIG., 4.1.: UPPER AND LOVWER LIMITS Iu, IL, FOR THE
IMPROVEMENT TFACTOR PLOTTED AGAINST
PROCI:SSOR UTILIZATION D. 2-PROGRAM CASE.

*8s

N=3
: '® SIMULATION RESULTS
3 ————— ‘ — — PREDICTED | FOR CIRRUS
~N .
e
\amm':‘
. ‘QRU
QR
2l
1+
0

D

FIG, 4.2.: UPPER AND LOVER LIMITS Iy, Iy, FOR THE
IMPROVEMENT FACTOR PLOTTED AGAINST
PROCESSOR UTILIZATION D. 3-PROGRAM CASE,

*65

i

—
h

- 1 . .
R : .2 4 -8
D

UPPiER AND LOVER LIINITS Iy, Iy, FOR THE
THPROVIMENT WACTOR PLOTTED AGAINST
PROCESSCR UTILIZATION D. 4-PROGRAM CASE.

G n

1-0

009

61.

This theoretical caleulation 18 mmfficient to show
that the work-capacity of a system is very greatly increased
by time-sharing betweem a quite small mumber of programs, If
an estivate of proecessor utilisation can e made for a
partieuniar computer, I’B and IL can be caleulated to give some
idea of the improvement to be expected and the number of
gtations which could profitably de providsd. However, over
an apprecisble range of D for each n, Iauﬂll‘mqutcm
apart. For a more sccurate estimate of I, one must resort to
simnlation.

The suthor eai'rioﬁ out extuiain gimmlations on an
IBM T090 and, later, a Tentrol Date 3600, testing the effect
of different time-sharing procedures with CIRTUS (see
Appendixz &). The objective was not only to find more accurate
estimates for the improvement factor, but also to assess the
value of minor modificstions of the banie ilme-sharing
procedure. The simlation was made in econuidersble detasl,
and the results for the yrocedure chosen to be used should be
an accurate indiecation of what cam be expected in practive.

The “work-load" processed by the simulator was built
up from programs in the sample set deserided in Seetion 3.1.
For each simmiation run, the work-load comprised about 20
programs. 7The ordering of programs in the work-load was
random except for the restriction that n¢ program could be
ineluded twice tofore all programs had been incliuded once.

62.

iiowever, since one aim was to compare slightly different
time-sharing procedures, the order of jobs was kept constant
for 1l sipulation runs,

The incidence and extent of delsys by un operator
was initially coreidered t¢ he ftoo difficult to predict. The
eurly simulation runs were made with no deleys assumed.
dence, processor utilisetion witheut tire-shared operation
would hsve heern about .29 o+ The resmilts of twe simulation

rung should be guoted here:

Pun 6.

8 5 bd
Initis]l conditions: ne= 27 T = ,263
Improvenent expected: 1.62 £1 £ 2
heitnel result: I= 1,09
un 4.

Initial conditionss n= 33 B = .294.
Ingrovewent exzeoted: 2.09L1(3
tetuel result: I = 2.61
For one cimulation run, a 10-second delay by the

operator between jobe wes assumed:

%ﬁ wag calenlsted for work actuslly proceassed. f%he point
at which simulatior termineted varied slightly (see
Aprendix C). THence, swall variations in I were possidble.

63,

Bun 8
Initial conditionse: n= 33 5= 277

Izprovement expeeted: 2.14 €1 €3
Actual result: I = 2,87

Yo good pwrpose would have been served by repeating
the simulation for lewer valuves of D, unless a number of
stations greater than 3 were {0 bde considered. ZExamining the
resultes of these simniations in conjunetiorn with the
theoretical vaiues of }1@ and 1@; plotted in Pige. 4.1.; 4.2.,
quite accuraite estimates of the improvement factor can be
made where D is small end n = 2 or 3. On the other hand, it
is important %c know whether substantial improvements are
%411 obtainsble if the work-load makes heavier demands on
processor time. If there were s slower proeessor or faster
peripherals for the same work-load, or if the work-load were
o contain = higher proportion of computation, D for the
work-load would be larger. For fairly high D, I; and Iy
are ¢lose enough together %0 allow a remsonable estimante of
I %0 be made. iowever, where D = .5 and particulariy for
n=2, Ig and Egy are Tar apart. Simulation is therefore
desirable. 4 parameter im the simulator was altered to
increase the length of each period of computation (see
Appendix ¢ 3), meking D for the work-load about .5 . The
resulis obialned where n = 2,3 were:

64.

Bun 7

Initial conditions: n=23 D= 518

Improvement expected: 141 £ 1 £ 1.93
Actual remmit: I= 1.56

Run D

Inftirl conditions: ne= 33 D= 487

Inprovenent cxpected: 150 £ I £ 2,05
setual result: I = 1.47

The results of these simulation rums have been plotted
in Mgs. 4.1.¢ 4.2. Since each run recuired sbout 45 minutes
of computer time, it was not poszaible to make more than a
very fow runs. However, taking the simulstion results in
conjunction with the graphs ploited for I’ii and E’L’ curves can
be drawn 4o prediet the improvement factor with reasonsble
sccuracy for ail D vhere n = 2 or 3 (Pigs. 4.1. 402e)e

4.2. BSome Preliminsry Remarks on Feasibility.

It is not initended at this stage %o examine the
question of feasibility in detmll. However, before the case
for multiprogramming is concluded, a few preliminary remarks
on feasibility must be made. In the preceding pert of the
present section, improvezents in work cutput were caleculeted
for a situation where processor time was shared between work
supplied ithrough separate statioms. It muet be shown that

the eost of providing time-shared operation is not excessive.

65.

For the particular type of multiprogram operation
under discussion, there are two obvious requiremenmts. First,
there must be, for cach operaiing station, at lesst one input
and one output unit. Second, there musi be suflicient
storage to kold, fer a remsomably high proportion of the
time, a program from every a@atian.‘ Additional cost may alse
be incurred in providing the time-sharing mechanism iteelf.
More detailed discussion on feasidility will later show that
thiz sost ean be kept quite small.

The cost of adé¢itional opereting stationes can fairly
resdiily be ealeulated, and will therefore he dealt with first.
Each operating station used in the CIRINC aystem camgri@aa an
Elllett paper tape resder, a Teletype paper tape punch, an
IBE typewriter and sn operater‘s keyboard. <“he Iirst three
of these units were purchased complete, while the last wes
built on site. Canirelliing eircnits fer 2ll four were =lsoc
constructed on site. The jo0tal cost to the iniversity Ior
each station was under £2,000. A market price for a complete
station should not be more than twice this figure. Honce, the
cost of edéiticnal stations would mot in itself constitute a
berrier to the implementation of muitiprogram operation.

No attempt will be mede here to suggest likely storage
requirements by the programs in a %ypical work-load. However,
muck useful work has been done in recent years by small te
very small scientifie computers such as the IBM 162C or the

66.

Control Data 160. The storesz in these computers held as

fow as 2,000 wowds. The most probable store size ir one of
the small computers now eoming into use is £,000 words.
Furthermore, some comparisons of CIRRUS against the Adelaide
University's 1620 suggest that 8,000 words of store in
CIRRUS are worth not 4, but =% lesst 10 times as mmch as the
20,000 eharacters of the 1620 store. The chief factors
redueing the relative veiue of storage in the 1620 are:
firat, a need o use 3,000 characters of storage for
aritimetic snd imput-ouput subroutines, and second, & much
spaller instraetion set. Im only am 8,000-word store, UIREUS
could hold simultaneously 3 programs whoze respective storage
recuirensnty were n, 2n, m, or 2n, in, Sn and so on, n being
the equivalent total capseity of the 1620. There would no
doubt frequently be large programs requiring most of an
8,000-word store. Nevertheless, the improvememt in work
output when the processor is actuslly being iime-shared is

go significant that the cost of ome or two mdditiomal opera-
ting stetions would probadbly be justified.

However, to take Ffullest advanisge of what muiti-
prograuming has to offer, a lavger sicre must be prouvided.
Let us therefore examine the cconomies of eniarging the core
store. It is not, of sourse, neeessary to inorease storsge

capacity beyond that felt reascmable for a single-program

67.

machine by a factor equal to the mmber ¢f programe we hope
usuelly to be able to hold in store. The magnitude of the
inoresse Gepends on two things: the distribution of storage
requirements by programs whieh weuld have been written for
the smell store, and the extent %o whieh selection cam e
made of progrems whieh are to be run together. Admittedly,
when store sise is inereased, larger programs will be written,
some of whieh will be o large thet they will $ake up almost
the whole of the store. However, one mast assome that the
problems for which such programs are written wonld bhave
resnired two or three programs run sequentially in a machine
with = spaller store. Any lemporary inhibition of multi-
program oparstivr is fhercfore mare than belsnced ont. If
only those programs designed %o fit the origine]l store are
considered, and proviéed also that some amall degree of
gelection of programs ic made, then a doudling of store size
nhw?.& almost alwaye give storeage for three programs.

The true cost of inerescing core store 1s one of
computing's myeteries. Certainly, if one has a system with,
say, £,000 words, and wishes %o add a further store m;‘te.
the price will be substantisl. However, the cost of core
store has deeremsed spectaculsriy in recent years. ir
experience with CIRRUS, the cese for which the asuthor can

speak with most muthority, ie taken as & gulde, core store

68.

cost is one of the less serious jmpediments to mmitipro-
sramming. 7he CIRRUS siore is nddrecsed ané buifered with

genersl purposs 16-bit pegisters. Hence, the greater pard
of the store cost lies in ihe ecost of the core planes them-
geives. The most recent prices mmoted by suppiiers for the
core store itself have beon £1,237 for 2048 36-bit worde,
and £2,783 for 16,354 words.

suppose that a single-pragran CIRRUS system with an
é&,aﬁ%:;%iamwm store ie taken as a basis for comparison.
suppese also that processor utiliszation in this sysiem is
between .2 snd o3 (see Seetion i.7). A system with a
16,00C-werd" store and two edditiomal operating statims,
wonld have a work capecity at least 2i times greater for a
cost only 10 to 20§ higher,

Unforﬁnﬁ'ée‘l.g,, CIRRUS is not in every respect a
typienl example. For many computer installations, punched
card input and output ie recuired. Card units are several
times more costly then paper tape units. Hevertheless,
unless processor utiliszation is guite high, the improvement
chtainadble by multiprogramming should be adequate to justify
the cost of at leaw’ one further set of peripheral eq_nip@t‘

*sve original design for CIREUS included a store of oniy
8,000 worde. lowever, realisation of the ilumporvamece oF
sultiprograrming, together with the drop in store ceat,
hrousat about a decision tc incrense store-size to 32,000
wOrGs.

. = . R

€S.

CIRRUS has only moderate performance (6ius eycle—
4time) store. PFaster stores whose cycle-time 1s as low as
1.5us are now used in many small computers. Since such
stores are, for the presemt, very much more expensive, ihe
economice of increasing store size would be very differemt.

4 fast store ie undoubtedly a strong inducement 0 a
prospective purchsser. However, uniess processor utilization
is fairly high, substituting a fast ztore for a slow one is
of very limited vaine. Where processor utilizatiorn is
§nitially D, an inercase in proceszor speed by m iimes would

$ncrease work output by a factor

' 1
I' = TISBr a5/ eecese (4.5)

A gtore four times faster ir ite operaticm would
inerecuc processor speed by, st most, a fmetor 2of 3. If
utiligation of the original processor were .2%, the lumprove-

ment gained by using the faster store would be only

I. - . + = 1.2

It was stated in Section 3 that proeessor speed has
become a very cheap cormodity, but only up %o a ceriain
degree of speed. Beyond a particular point, the cost of
obtaining increased speed rises steeply. Store speeds sad
coste afford an illustration. A i55us store at present costs
more tham twice as much as a 6ps store.

70.

In the author's view, the first step in designing a low-cost
rrocessor should be to map cut a basie structure which relies
on the inexpensive yet fairiy high-performance store and
eirouitry now available. An sttempt should then be made %o
estimate the ilkely utilizetion of the processor under normal
confiitions oi use. From this estimate, the true value of any
measure 0 ineresse processing eapacity can then be found and
weighed againat the expecied cosi. |

In comsirueting the CIREUS processor, the designers
used only very low-cost couponenis, yet produced a
moderstely high-perfurmance preoceszor. This processor was
completed in 1962, Today, the “hasie” lew-cost proceszor
would ve wignificantly faster. In developing the case Cor
maltiprogyremming CIRRUS 4n this thesis, the sniher bas ol
lowed precicely those further sieps muggested in the
preoedin: paragraph. Unlezs there zre definite recaons for
believing that the time of = processer will be 'mr:; heavily
enployed, similar conclusione on the valiune of multiprogran-
ming should be made by designers of other computer systems.

So far, discussion has dealt only with the inereased
efficiency of processcr utilization gained %y multisrogrem—
ming. The naglect of thz gaine possible in flexibility has
been deliberate, but should not he conatrued %c meswn that
the advantages from inereased fiexibility arz of lezs
jwmportance. The point is that the improvement in work

Ti.

eapaeity and the cost of obtaining it are éirectly
caiguiable; the value of the increased Tlexibility is not.
The arguments given s¢ far have shown that the improvement
ir precessing capacity of a system by multiprogramming should,
in iteeli, more than justify the cost of implementing multi-
program spersation. Izereased {lexibility may de regarded

as an extrs dividend, a dividend which a few examples will
show %0 be considerable. |

Ap a firvst example, let us wuppose that a user wishes

to work on-line. If the "mermal” rete of werking 4= taken
%o be that rete at whieh & trained opersior can dispose of
the work~losd in 2 eingle progror machine, then a user
rerator intercsted only im his own probiem could cause a
reduetion in thic yate By a fsetor of 5 or 10 times. Though
the user will ofter feel that the value of his own work
Justifies the reduced efficiency of cperation, the computer
pansgement will rerely agree with him. On the other hand,
if the user were given '@m operating etation in a 3 station
systen, the reduetion in efflediemey iz not nearly se serious.
Lhate of working is of course proportional to processor
utllizatior. The simulation resuits show that:

(1) Where D for the work-load = .29
Dp = +76 for n = 3 {Simiation run 4),
apd 5y = .55 for n =2 (kun 6),

72.

and {2) When D for the work-lcad = o50
BT-.%fc@n%3 (Rum 5),
and Dy = 81 far n= 2 {Bun 7).

Hence, when @ = .29, no matter how inefficiently the user
chooses to work, the roduction in rate of working cannot be
greater then 28%. When I = ,%, the maximum reduciion is 15%.
Yhe velne of on-line working to the user eertainiy counter-
balances reduced officilency to only ﬁhic-ﬁggree. Fven 4f two
of the three stationa werec given over to the users, the rate
of working wouid stiil be at leest ceual to that obiained
with a eingle-nrogram system.

#imdler srguments cen be used to show the degree to
which on~line operation of s slow peripheral unit such 28 a
plotier is movre ucceptadle on a time-chaored system.

4 sorsllary from the sbove discussion is that multi-
programming ean s%ill be worthwhile evem wherc procescor
utilization is very close %o saturation. The worth to users
of on-line working will in teelf often justily the cost of
an extra operating station or 4wo and additlonel storage.
2ince the sotivitics of the users on thelir privaie operating
gtationg would make very small demands on processor time,
their effeet on the rate at whieh ihe main work-load is
processed would be barely notigeable.

4n @ second example of the walue of the Tlexibility
ziven by muitiprogramming, let us suppese ihat the cemputer

T3

is to be used for some process conirol function. If, as is

total eost of permanently maintaining the comirel functicn
45 11ttle more than the initisl cost of siorage for the
econtrol pregram and the necesgery data links %o and from the

computer.

COBCLUSIONS T0 SECTION 4

1. It was suggeated in Section 3.1. that, if the
proceassor of a zmall seier .ific computer were not time«
shaved, it would be in use for only about 20-30% of total
$4me. 1f such a processor is time-shared between two pro-
grams, the progessing power of the computer system is aimost
doubled., By time-sharing between three programs, progessing
power ie increased to well over 2{ times the power of the
original system.

3, The cont of additional sitorage and peripheral
units, the most obvious requiremente for vaaltiprogras tlme-
sharing, meed not presen’ an eeonomie bhsrrier %o the
implementstien of multiprogram operation. Fer GIRRUS, the
particular example on which much of ihe discuzsion hag heen
centred, the inerease in power and flexibility of the
computer very definitely Jjustifies the modercte increase in

cost,

T4.

5« OCHOICE OF THE BASIC STRUCTURE.

It has been shown in the preceding seetions that
nultiprograssing 1s desirable sund should be economically
fensible in a saell scientific computer. Diseussion hms so
far been restricted to a particular iype of mmitiprosram
computesr, that is, one in which programs wounld be supplied
through separate operating siaticns snd woulé share a gulte
inrge Wult lowecest core store. There are of course
altermative structures.

Iz aiiding o low-cust corputer, ome muet attempt o
make bee: use oI the limited veeources availablie. IT may
not be posaible to fske sdvanisge of 21l that multipregramsing
offers. 7The welative imporisnece of the diverse benelits fronm
multiprogremeing should therefore be copessed.

Ixisting meltiprogras conputere differ substentially
in their structures, apparently se the result of signifi-
eontly different design objectlves. Thyee gysiams will be
examines and, with CIRRUSy will Ye used s iliustretions of

eontrasiing structures and objectives.

S5.7. Desigrn Objeciives.

the suthor has taken the view that the primary
design reouilrement for = multiprogran computer ¢ be used
ir & soientific inetitution should be the provision of

T5.

separate operating steiions. In fact, the guiding priveiple
in decigning CIERUS hes becm thai the computer should "behave
as a set of separate and independent computers” { Penmny,
1960} .

It was sugzested in Seetliom l.1. that the relstively

e

slow operation of the periphersi urdtes in 2 swall computer
pystem is a primsry Isetor causing inefficient processor
usazc. Pariieularly slow peripheral unlts or zlow-gpeed
deta 14nke with other equipmwent will often be wanted in a
acientilfic computer sysies. Hence, if mwalbiprograssing 15 %o
be irglemented, one wust certainly ensure thet 2 substantial
contrivution iz mude towsrds lmproved efiiciency gf input and
outputi.

the other possivie mpplicalions of e muiviprogrem
compuber showld slse not be vegiected. In meny instellationa,
ey&eialwyﬁr;aga'gﬁmﬁslas or computer vonirol of othar equlp=
ment will mot be recuircd. However, there mey be
instellntions in which wne or more of these speeial applica-
tioms sre of Tundamental luportemce. Ihe multisrosran system
mst either provide for ithese applieatioms or e flexikle
enough in struciure o allow modificution ané expension o

allow for them.

76.

5.2, Some 1llustrations.

Before atiempting to specify a computer strusture
which should bhest satisfy the objeetives cutlined in the
preceding part of thiz wection, ome should consider some
existing somputer systems. 4 most obvious difference is
either the use of muiti{=Jevel storage or reliance on core
store only. ATLAS and the Homeywell 800 afford comtracting
illustrations.

The Honeywell 800 (Heferences: Harper; 1960;
Honmeywell 80U Executive System Mamuai, 1961) is a large
computer in which time ie shared between a number of progroms
held in core ctore. Oemerslly, & single instruction is
exceuted from eech progrssm iu yoLabtion. Ihe programe
avaiting completion of a data transfer are simply omitted
Prom Lthe time-sharing process until resdy %o proosed.

In many ways, the Honeywell 80C system is the result
of guite direcet development frow the large, single program
computer of a few years age (Fig. %.1.}. The peripheral unit
eontroller of the single program maechine has its counterpart,
the "Trsfiie Conircl® unlts in the ﬂ@n@yweil 200. Then
supplied with the necesasyy parsemeilers Ly @ dats transfer
instruction in eny srogram, bhis ssit ecubrole the Stranafer
of single words until the reguest is fulfilled. The

rmonitor” rouitine hns besn extended inte an elsborate master

- _ ' _ MONITOR
PERIPHERAL e ASSEMBLY
CONTROL

(OPERATES :

ON_DEMAND) f— 4«——— EXECUTION

oNE) | |

/\A\\ MON'TOR

W

- FIG. 5.1: PROGRAM OPERATION IN A LARGE SINGLE PROGRAM
COMPUTER

TIME SHARING BETWEEN PERIPHERAL UNIT CONTROL -
AND THE MAIN PROGRAM IS ACCOMPLISHED WITH A °
MIXTURE OF ‘HARDWARE AND SOFTWARE.

- OPERATOR ACTION IS LIKELY TO INVOLVE A CONTROL
- TRANSFER TO THE MONITOR.

OPERATOR

" INITIATES
 ASSEMBLY

RETURN
10 |
'MANUAL MODE

Fig. 5.2: PROGRAM OPERATION IN A SIMPLE SINGLE PROGRAM
COMPUTER.

OPERATOR ACTION EITHER REQUIRES A COMPLETE HALT

IN OPERATION, OR MUST BE ALLOWED FOR IN THE
PROARAM

8.

program, "Executive®; which selects and schedules prograns
for a proposed preduciiorn rum. A& "Multiprogrem Control®
unit has becn sdded te give ithe time-shared axecution of
prosreve daring essh produetion rum.

Eacking storsze, partly on drum and perily on Supe,
iz fondsmembal in the time-sherimg systen of AZLAS (liefersnces:
Filburn of al., 19613 1062; IHowarth gt sl., 1963). Over
felvly lomz psrio@s, processor iime ie shared between &
ginrie "objoet program" in core store and a number of
"{nterrunt subroutines” whieh itransler information between
the reriphersl owits and input-output reservolrs or wella®
in the backing store.

AV oxecutior time, the objeet program iaies iis
ingut information from an input well and wtores cutput
inforvation in sm outpus weil. Direet control of periphersl
unite bas thercfope been reveved ‘yom the progrom 1teell.

The interrupt subroutines form pext of the pasier
routine, the “Supervisor®, which alse grovidea nonitor
functione and program selection. Switches of contrel between
the object program in core and ihe Superviser can re nude
vory rapidly. Vhew paper—tape wnits are speraiting, for
exsmple, = switeh is made froem the ¢bjoct pregrsm to the
Suporvisor for each character iramneferrad. Laznges from one

ghieet program %o another may require the interchange of a

9.

large proportion of the contents of core store. Cuch
changes ave, however, necesaary only after fairly long
intervels.

In both ATLAS end the ioneywell 800, the designers'
gole cbjeetive appears te hnve been G0 sein efficient time-
ghorin: of input end ouiput. There is, however, one note-
worthy difference bhetween the two. The references deserib-
ing the Honeywell 800 emphasise the use of fart peripheral
endts. On the other hamd, the referemces on AILAS siress
use of slower umits, pariicularly paper tape umits.

14 is itherefore not curprising thet dissimilar
strucinres were chosen for these two somputers. The
deaigpers of ATLAS onvieaged a nork-lead requiring = good
desl of input smd outpuit through fairly elow peripberal
units. GSinge the ATLAS processor is sxiremely fast, it was
cosentinsl ithat many periphersl units be able $0 opcrete
sim:lteneously. If o stéructure similar to that of the
Poneywell £C0 had been chosen, & Very large number of
programs would have bad to e held in core store.

The idea of nsing separste comscles to glve veers
en-line cceess to the computer appears %o have been neglected
by the designers of the two multiprozyenm computers s¢ far
adeseribed., Fuch of the important development work in the
aesign of large-scele multi-operator computer systems hos

veen carried oubt at the wiapeachusetts Institute of

80.

Teechnology. For his third and final 4llustration of exist-
ing multiprogrem systeme, the suthor w41l consider a fairly
empll system, the PiF-1, whieh is very gimilar 4n principle
(1f not ir secpe) to ithe M.I.T. system.

The purpese of the designers of the PIP=1 $lme-
shering cysten (HeCarthy gi Bles 1¢61) =as to "increase the

fPectivenase of the cemputer Jor thome spplicstions
involvins man-machine interaction”. provision has bheen made
ror five on-limne users, cech to have his own typewriter.

The syotem deseribed in the relerence has a core store of

B, 182 worde plus a drum store.

i pregrem in “run sietus" may use the processor
continvously for 140 msec. Afier thie perlod, the comtents
of core store are transferred %o 2 dpnm field designeted as
the “core image” for this particuvlayr progres. Another
srogran in run statuz then reviaces the preceding progrem
for the following 140 msee. The "memory awap® itself occuples
33 neec.

of the #1192 words in core store, 4096 are reserved
for the time-sharing system. Frograms do not sontrel the
peper tape input snd emiput unite directly. As in the STLAS
gyster, pert of the backing atore ie used ms an imput - outpud
yveservoir. The mathod eof time-sharing input and outpui
appeere very similar %o thed in 4TLAS, except Ehai, as far

as one can gather From the reference, orily one input and one

81.

output vnit are used.

Zhe principles of the CIRRUS structure can be under—
stood from the theeretical model suelysed in Section 4., It
wos suggested carlier thet the Homeywell 80C system iz the
remmlt of o quite direet Cevelopment %o muitiprogras
cperation from the large, single-progren computer of a few
years sgo. The CIBRGS sysiem, of ths other hand, may be
regerded as having been éevoloped irow the smsller system
whose operation is shown disgrasmatically im Fig. 5.2,

fardware sssocinted wiih peripheral wnlts is gpite
elementnry snd each program controis its apite directly.
The wopk-load is supuiled to the somputer through sepsrate
operating sietiors. IFrograms shaye the core store and
"gompete” hoth for store-gpaee and for processor tine. The
gsyateme softwavre is chiefly concerned with ensuring thet
toth store-gpaee snd time are shared in an efficient panmer
ané with sceepting and carrying ouvt inatructions received
from the zeparate operstors.

two of ihe Tour systeme described use backing storege
in addition to eore storssze. %he poseible use of a drum in
a lowecost multiprogrem scmputer will be discussed i the

following part of this section.

82.
8,3, Choice of the Store Configuration.

Consider a simple computer hawing a small core
ctore and one input ond one output wit. Let us suppose
that, insteed of imeressing core store sige wnd repliesiing
peripheral unite as hae been done ip CIRRUS, s dmum store
1s added. It ecan be assumed that a greater totel siore
capacity would be obtained for & given ecost. The additional
steragze aveilable ean e put Ho twe uses. rfirst, a grester
mmber of programe cen be stored. Segond, part of the drum
con be used se sn inpul-sutpet reeervolr. That iz to aay,
input information can be sioxed ju sdvenee of its actuelly
being recuired and ocubput information from the computing
progrem can be stored when it is profuced faster than the
output unit ean hondle it.

By veing part of the drum ag = input-cutput
reservoir, iime-sharing of input =nd outpued can be sehdeved
githovt any repliceiion of peripheral units,. & ponfipareation
iveluding & beeking store is, if oply for this reuson,
worthy of investigation if the total system ecet is to be
lom.

fieplicatiocn of some unit or units nay, horever,
54111 be desivable for reessons which will now be explained:
suppose thet the total time of the system without amy time-

sharing were found to he divided im the following wayi

83.

(1) Idle time ~ a proportion py,

(2) Computing without input or output - a proportion p,,
(3) Input - a proportion Py

(4} Qutput - a proportion p,.

Suppoge alse thei, during time~shored operation, the input
an@ output units sre kept in operaetion Tor proporitions of
total time 1 - & amd 1 - £ vespeetively. TFor this
particular eyetem, the vzlues of

1=~ & and i- &

are therefore upper limite of the improvement factor as

defined in Sectlenm 4.%. f@ & é% are certainly non-zZerc.
Their magnitude will depend partly on the sbility of the
operator %¢ keeyn the &ni%e eperating sud parily om the like-
1ihood of the imput reservoir beimg completely filleé ar the
gutput reservoir completely cmpiled.

Suppose, for example, that the ocvtput uelt would be
in use for knlf the totel time if there were no time-sharing.
If it is found thet, when eperation iz time-cheved, the unit
can be kept workinz for 80% of total time, them

-
o

Eﬁ R -:5 = 1.6 ,
is an upper limit for the improvement factor. However, im

these circumstances, 1t would scon be clear that cutput
gapablility was the feotor limiting the capseity of the
aystem. If the ocutput unit were duplicated, and if each

84.

¢f the two units could be kept cperating for proportions
1 ~ £, of totel time, then the upper limit placed on the

improvement factor by the sutput capadbility would become:

‘i g s 2,,& ,g_‘,.pﬁﬂii*gmﬁ:;a
o

If an accurste prediction cem e made of the relative
quantities of imput and wutput in the worlk-lozd, = ziven
degree of improvement shivuld cerieinly be cbtainable ufter
replication of fewer peripheral umite than are mecesssry in
a system of the CIRRUS type. If interest lay solely in
achieving efficient time-sharing of imput and output, and
pertienlarly if the wnits to be used were of an expensive
type, a system using backing storage might well be considered
first,

However, it wos siated in Jection 5.1. that

highest priority in the design. 4 personel keyboard and
monitor typewriter are the mest likely choices Tor cnch one
line user. If there is to be nc¢ replicetion, or limited end
selective replicstion of input and ouiput units, ecach unit
met be shared between a mumber of users.

The payiticnley type of multiprcgrem operstion chosen
for CIRRUS has made renliecaition of input and cutput snite
obligetory. However, in having an input and an output unit

entirely to himeslf, the user is very much better served

8%,

than if he had only the keyboard and typewriter. NHoreover,
the coet of peplieating the input and cutput vnits need netd
ba a great deterrent if, ss in CIRNUE, puper-tape equlipe
ment is used. One muet therefore conclimde that, unless the
input or oswiput wnite 40 be ueed sre of a very cxpensive
type, choosing a conlflguration with s backing store iz not
jupiified selsly on the ground that periphers]l units need
not be repliceted.

Purthermore, whers input and cutput units are shared
between separate users in o mmlti-operztor system, the
backins store sire muet be congiderable. 1r the FPilP-1
pystenx, foy szsmole, the user does nok "excapt at the begine
ning end the end of hls session, ordinarily uee ithe paper—
tape gpparatus. Instesd, he denignsten s pogition oun the
drun for the punch and a popitior for the resder®. Spuee
st therefore be svailsble en ithe dyum for all input to or
output from each progres which ie do time-share the system.

The core store aszociated with = drum must itself
be of a reaconstle size. Areas of ihe core store must be
reserved for the following:

(1), ¥uffere for informstion transfera to ¢r from the
d¢rom. Transfers Letwesn the drum awnd peripheral
anitn and between ithe dyun and the computing progran
pust be buffered if nn efficient rate of trumsfesr is
$0 be msintained. Une eannot affnrd to sconcmiee on

the size of these uffer arens.

'56'

(2) seftware toc control the operation of peripheral
units and the transfer of information to or from
the dyam.

{3) Software to handle the "memory swap" needed %o
chanpe the computing progyam in core store.

{4) Softwere to read and ivterpret instructions from
the an=line users. %o veer slevld he required to
wedt until his program is iz core store. Ihe
gyster should be able to read an insiruction Ifrom
any operator at any time and sither execute it or
notify the operator that its execution will be

delayed.

The FiP-1 systen described by McCarthy et 2l. has a
core store of 8192 words, half of these being reserved for
the "time-sharing system®”. The suithor econsiders that a core
gtore of this size is the siksclute minimum Tor & reasonabdly
efficiernt time-shared system. Fach pregrammer of the FPIP-1
"gees® o 40%6-word core memoryv. Ore has only to consider the
question ef progrsm compilation te veslize thal, with an
apparent cove stoyre size of 4096 words, a grest number of
inter-gtore itranefere will bave %o be parformed. If the core
store were ony smsller, the position would be intelershle.

A numbey of ftechnlones can as=ist the programmer in

hie use of iwo-level storage. The simulation of one-level

87.

storage in ATLAS {Kilkuyn et al., 1562a)} can be guoted as
an exauple. Unfortunntely, implemeniation of these
technioues reauires elther speeilsl purpese hardware or core

ghore spece. They are therefore not remlly sultsble for &
low-gost sysien.

It ie cbvious thet the minirwm eost at whieck an
effeetive oysten uneing twe levels of slorage can be
implenented ie moderztely high. 4% present costs; a 32000-
wor@ core store of moderste perforuence ia gignificeantly
cheaper than the twmo-level storage for this minimem con-
figmration. It must bs rewerbered thet the eoet per word
of cere storsge deevesses very substantislly as the sise of
the gtore increases.

Uae of only one level of storage gives the edvantage
of simplieity. Let us agair consider the question of pregram
compilation. In CIRRUS; the 3000-cdd instruetions constitu-
$inz the compiler are stored permenently and are availsble
for use independently by eeparate programs. #sch program is
compiled direcily inte the space wmhieh 1t will occupy during
gxecution.

ihe blggest disedvantage in uweins a system which has
only core store is thet ithe number of progreme held in store
must be limited. Though the CIRRUS systen allows for three
separate programs, therc are times when only ome or iwe

prograns will it into the store. If one wishes to permit

acecess %o the eomputer by as meny as, say, half-a-dozen
on~line users, ome would @e;@aiﬁly choese z configuration
with a becking store. However, 2 system having one or more
gets of Basic input-output wnits, balf-s-dozen enquiry
statlone and core znd drum storage og adequate cagueity would
be of guite comnsiderable cost.

it was slso stated in Sectiom 5.1. that a minor
objective should be to ensurc that the system has ihe
flexikility to ellow Tor other possible applications of a
mltinrogram computer. FMulfilment of this objeective depends
less on the store configuration than on the softwere used to —
implerent mltiprogremming. It chould be posaidle to Mlfil
the objective in either configuration, probably more siuply
if sore ctere only is ueed Imt more economically 1Y theys is
s backing store. If core store only has been used, additional
storaze vey ke needed. If one of these applieations reguires
considerasble progre: storaze, the two-level store system
wounld therefore be more suiteble. On the other hend, Iif
frecuent short rverieds of procescer itime are needed, the cne-

level store aystem would be more efficient.

CORCLUSION T0 SECTIOR 5.

The discussior on store configurations must lead to

g conclugion which appears to be something of a peradox.

89;

For a large multi-cporator syeiten, a configuration having
a large baeking piore will ceriainly bLe nsed. Yowever, for

a reelly los-ceet mmltiprogran cemputer ané perilovlerly if

there sre ¢ be separate facilities for on-lire users, one-
level storage muet be prelerred. The requircment foy
mitiple oporating fecilities reduces the welght of srpguments
in Tevour of the use of two-level storage on the ground that
peripheral units need not be repllested. This recuirement
alse inereases ithe cuantity of core snd drum storage needed
to produce an ¢ffective system. The minimum cost for which
& twe=level siore system cem he implemenied is therefore

moderately highe.

90.
6. THE CIRRUS SYSTEM - FRELIMINARY RIMARES

The objectives which guided development of the
CIRRUS multiprogram system and the basic sitructure chosen
have now been described. The methods by which multiprogram
operation has been implemented will be covered in detail in
Sections T 40 9. The present section iz intended %o
constitute ar introduction %o ithe later sections. In
addition, some of the more important decisions which have
beern nade =né some features which might be congidered

vrmusual will be dlscussed.

+i. External Form.

on

The CIRRUS multiprogram system at present allows
for three separate cperating stationa. TFurther stations
could be installed after some reviziorn of the systems
programs. Each staztien must have an cperator's keyboard, a
monitor typewriter snd a paper-tape reader. Hach of the
present stations has als¢ s paper-tape punch. The stations
are therefore rather more c¢laborate than the "enquiry
stationa®, comprising only a keyboard and typewriter, which
might be found in a large, multi-operator computer system.

The cost of paper~tape readers is low enough to

justify providing a reader on cach station. Including these

1.

units in each station is of course the first ster towards
fulfilling the zim that each opermtor should feel that he
hag a commmter enbirely to himself.

It i2 very convenient for eamch operastor to be sble
to work completely independently when operating statione
are close together. It becomes cssential if any station ie
$o be situsted ot some distence from the computer itseiif.
Some preliminary development has in feci been done of low
coat data transmission equipment intended to link the
computer with =x outliyling station.

Only one program csn be contrelled from each station.
i% will however be chowr later (Section 10) that e single
external prograr may be divided indo separste internal
progrene whieh can furstion concurremtly. The system could
certainly have been construcied to permit ftwo or more
prograns te be controlled frowm o single heyboard. [However,
the ecost of an gperalor's keyboard snd the assceizted type—
writer is smsll. Onece a prograrm bne been initleted from a
perticular keybosrd, all subseguent oporating instruetions
must apply to thot progrem. The need t¢ identify the program
to which =n inatruction refere is removed =nd ithe chance of
an operator's srvoer is grestly redunced.

it car now be seen that the ﬁk&&re§i¢a1 nodel
analysed ir Seetior 4.1. deoes in fact cover the CIREUS case.

lowever, in the wodel it wes assumed Tor simplieity that

g2.

the stations through whiech the work-~lead wonld be supplied
were fdemitlenl. Though all CIRNIS gitations need not be
identiczl, ihere iﬁ one defirite advaniage to be gained from
keeping them =& slike as poseible. If stations have the
same units, & user e¢sp take any station wihiclk: happons o be
f?@e.

output ecapability (et lesst for herd cony) of the
system is st present lew. A lime-~printer would be a very
valuable addition. Unfortunately, ihe coet of a line-printer
makeg it feasible to provide only cne 8t most, yet for zimoest
every program the programmer wounlid like o ﬁae it. To¢ obtain
raximum use of the printer, the svihor Line sugsested that it
and & paper-tspe veeder constitute & separsie, speciale-
purpose station. No keyboard iz needed. Leading the rvesdey
emd making it “yeedy® wmonld sutenmsntieslly initiete printing.
Por as long &= paper-iape cuitput were availskle to be printed,
the privter would bhe kept opersting continumousliy. However,
it wonld certainly bhe possible to alleow the printer ic be
used by some other siviicn when circumstances warrant
(Seetion S.5).

There are likely to be other units which may or may
not be needed by smy individual progrem. These units must
not be tied Lo any stotion but shonld rather consiltuie 2

pool of units whiech can Be flexikly allotied to any stetion

93.

(Seetion 8.5). TPoszaible additioms in this category are a
magnetic tape unit or two, and a pletier.

Eele Storage

CIRRUS has a core store ¢f 32,678 words, each of
36 bites. Though v large store for a2 los-cost machine, the
need tc share ite spece between n mumber of separste programs
s nnde ite eflicient use eesentinl., The CIRRUS gystem
permite “"dynamic” relecabion of pertislly executed programs
{Section 8.4.}, smo that vacant seetions of store space may
be gonsolidated intoc » gsingle seetion.

Instead of providing static regleters to carry oud
the functions of accumlators and index registers, s second
core stere of 64 words, the “register' store, hes heen
ineluded, idditiomal expenss hss been incurred in providing
thie store. liowever, use of store rether thew static
registers heo enubled each progrem te heve several “regisiers®
entirely tc itzelf. The conients of registers therefore need
net be stored when changing between programs {Seetion T.i.74)
Effietercy ic imuroved by using o secord store since the wain
end register sitores can be operated in paraliel
(Appendix A Z.}.

0¥ the 32,670 moin store words, 8,192 are reserved

for semi-permsnent "rend-only" storage of = type develaped

%4 .

by Butcher (1964). In this store, validated system routines
and other commonly used programs w11l be held. o be usable
in a multiprogram computer, programs held in fixed store
must be able to refer %o different store addresses Or peri-
pheral units ai different times. A technigue called
"parametric addressing" has been iptroduced which not only
_allows the necessary varying of sddresses, but also permits
sequences of jnstructions o be shared simultaneously by
separate programs.*

Piscussion of the sharing of store-space leads
directly to the important questlion of possible interference

by one program with snother. The author's views on program

protection will be explained in Section 6.2.3.

6.2.1. Efficient Use of Core-Store.

All vacant store space must be available to an
snecoming program which needs it. %hen any program ends, 1t
ja quite likely to legve vacant @ section of store space
between sections of space cccupied by programs which are
atill operating. 76 the author, the most satisfactory pro-

cedure is to shift 21l programs to the head of the store,

*mpis technique was checked out in 1962 (see Penny, 1963) .
It gives a resull gimilar to that of #ype-entrant® procedures
in NPL (see Radin & Rogavay, 1964 ,0.24). 1t must be
stressed, however, that the instruction seguences are

shared by separate programs.

95.

thereby conselidating 211 vecant spaee 8% the end of the
gtore.

Phough relocation of partially executed programs has
4ts diffienities, “dynswic” relocation is possible im =%
1esst two systems, the P GOOO snd CIRWUS. Fech instrvetion
4n the ¥ 6000 referring %0 a store nddrecs holds this
address not se sn sbsclute addéress but az =n address reletive
o the base or “detun® for the pertieular prograf. When
needed, the datum 1= added sutometicelly by hardware before
the instruction is obeyed. When the prosrem is shifted, only
the dstum mmst be wodified.

CIRNUS, on the other hond, stores wain store
gddresses s absolute aéﬁreﬁﬁea*. mhe bape =2divess Tor the
progren is ndded during program loeding. Turing reloeation
of & proegras, these sddrepuen ore molified io becomo consio-
+ent with the nev bagse addreas.

54mu)taneous cowpilation of ceparste progrome is
poszible in gIRRYS. The store space needed %o conmpile @
progran iz uoually greater than would be regvires Jor
execution. ¥hen coupllation of o« progrem 19 complete the
exset storsge recuirement for execution is Lknown. The upper

4wt shown Tor the program's store Space ig then zdjusted.

- : :
Addresses of reglster ctore jocation avre, however, heléd ns
relative addresses - sec Seetion 6.2.2. emd Appendix i 2.

a6,

Should another program have taken store-space while this
program wes being coupiled, there will probebly be a seection
of vacant space between the twe programs. Yhen relocation
is performed, this space zlso will be retrieved for use by
gther ropyrams.

The CIRKLE procedure has reounired nc hardware, and
1t should therefore bo preferred to the FF 6000 wethod for
a low-cost system. However, its implementation presented
certain problems, which will be made clear when the

procedure is discussed in greater deteil ir Seetion 8.4.

6.2.2. Use of Semi-Fermanent Storsge.

Semi-pormanens or "Tixed® sgicrege devices have been
evailsble for some time. Their 1limited use iz evidence
enough of their drawbacks. Fixeé store programe canmnoet be
sltered. The consecuent resiriciion of one seetion of store
spuee to 2 single purpose is, under normal circumsiunces,
the most sericus dissdvaniuge of fixeé storage. Vet it ie
precisely this attridbute, that fixgﬁ store programs cannot
be altered, that mekes fixed stormge attractive Tor the
pulitiprogras computer.

Yhe CIRAUS compller is of the "load-and-go™ type.
In a ssall computer without a backing store, s compiler of

this %ype would usuelly be read inte store from cards or

97.

paper tape for sach program which is to be compiled. After
compilation, the program will frecuently use the compiler—
srace for ite own date. In a meltiprogzram computer shared
by programs origineting from sepmrsie stations, 1t is
zerelidble to store the compller only once znd to let the
sequence of instructions constituting the compiler be shared
by independent srogrems.

the chanece thet the eompiler wouléd bve in use &t any
given time by 2t leest one program is high. It iz therefore
worthwhile to wiore the compiler permenently, thereby
obvieting the need t0 read it in. Seversl other routines
can also profitebly bve held permonently. Stendard inpute
sutput routines, for exmmple, ure used by almosi svery
program. LY the “swell" cempvter were to have a very améll
gore utore, permanent siorsge of routines would he
uneconomical. However, CIRRIE has » guite large store snd
assigning as many =s 8000 words of storage for permanent
progyems i not unreasonable.

Houtines ¢ Ye stored permsnently might aes well be
held in fized store. %The type of fixed storsge developed
by utcher is both cheaper =zmd faoster than variadle core
gtore snd 1is gimple Yo pre-wire or modify. ¥Frograms are, in
nny case, checked ocut in veriasble store Lefore being wired
inte fixed siore. Uince the Tixed store functions ss the

bigh-address poriion of main store, ite use presents no

98.
difficulties to the programmer. MNost importemt of =11, the
instructions wired inte 1% cannot be mmniilated. Xseh of the
independent progreoms ueing seguepeces of instruetions in
fixed store can vely on the routines being consisiently
aveilable @nré correct.

For fized store routines t¢ be usable in a smlti-
progresm computer, fixed instructions musi he able to refer
to different store addresses or pevipghersl units when used
by different programs. 4 single sequence of fixed
instructions should zleco be available for use simmltanecusly
yet independently by entirely sepsrate progrsus. To meet
this need, & methoed of addressing called "parsmeirie
sdédregsing” has been iniroduced.

The ey Ho the peremetric sdfreaping teehnicue lles
in storing reglater stere addresses as relaitive addresses,
relative that is to the address of the first register used
by the prozrem. Addresses are then converted ¢ zhbeolute
fore during the exiraciion {rom store of coch inatruatian?.
The follawlng exawple illustrates this procedure. Juppuse
that there iz a fixed instruction specifying register
store addirvess 2 as sccumulaitor s=nd address 3 as index

register. When executed, the insiruction will refer to

&*%
The wodificetion adds no time +to the extractiom process
- see Appendix 4 2.

99,

the second and third regisiers of those registers belomging
to_the current program. Before entering the input or cuiput

routine, for exammple, ihe number of words t¢ be transierred,
the sddress of the firel word =zpd the peripheral unit
address are pre-set in speeific repgialer stove loentions.
Touble index register modificsiion ie also posaible o a
limited degree. Sequences of store words may therefore be
addresaed.

The use of persmetric addressing need not be
reotrieted to sequences of instructions in fized store. The
abllity tc shere s scquence of Instractions in veristle
store eszu be particularly vulusble where conscles sre to be
used a8 teaching mmchines. The baéio teseiiing "program”,
whiebh will prekebly be lorge, nesd e stered only onee.
Fach consecle #il) have its owm progrem which will make use
of the basic instruction sequerce tut may slse imclude sub-
roubtines peculiar to the sonmscle. Ianah conpole wenld also
heve ite own working space.

The deecision on whether a given routine should te
stered once and chared betwecn separate programs must be
deterained by #he probebility that esch prograr will require
the routine. Stors space has been saved if two or more
prograwe use the routime. Opuee hine beem wasted If no pro~
gram uses the routine. If, for example, it is hoped thet

three programs can usually be held in store, there will be

100,

a net zaving in spece if those routines required by more
than one progrom im three sre held in lixed stare.

S4nece holding & roviine in fized store saves ihe
time which wovld be neecded %o read it in, it is probadly
rezzanaklec to held routinmes reguived Ly one program ir siX.
The suthor examined = vendom sample of &4 programs and
estimated fromthis eaomple the probasbilities of o number of
routines being reguired by individusl programs (Table €.%.}.
He sugzests that the reutines shown in the table be wired

inte Lixed store.

TABLE 6.1,

ESTIMATES OF THE PROPORTION OF ALL PROGRAMS
WHICH WIill REQUIRE A NUMBER OF COMMONLY USED ROUTINES

~ ROUTINE

¥S%. PROBABILITY OF USE

Cempiler

Binnyy Zszsembler
Input-outpant routine
Sime, vosine subroutine

oid

56
10

+30

separate parts.

Souare root " +2%
Prponeniial ol «22
Togarithn - .16
Are tangent ' 13

») -

Thepe firores were found frorn 2 sample ¢f Jjobs run on on

IBi 1620. +%here one job was run 6Gs a sequence uf separsie
programs, the whole jot wae congidered rather then its

102,

8e3e3s Inter-program Protection.

Jome authors reguyd avoiding interference by one
progrex with snother as fundarentel, Peckman (1961, for
sxample, 1ists “program conirolled memory or address
grotection” undey “"vegevired hardware clements”. Uthere are
less degmatic. Mille (19613) says: “Our ecxperience is that
hardware sterage-viclatiorn protecticr is not worthwhile®.

The problen meeds careful investigation where the
total system cost is tu ke lew. If addrses checking is o
be done with indecendently cpereting hovdware, the coat will
be smbstentisl. The only alternstive is %o use the exigt-
ing registers snd ayithwetic unit, in wihleh case an
aprrecisble amount of $ilze will be lesi.

411 cumputers and computer operstors are follible.
There ig slvweys come chence that suy program will Zail <o
rosen & succeesfnl comelusion. The author feels that the
protection provided within any mulitiprogrenm syeten is
adequate if the chamee of feilure iz not noticeshly increased
by multipregren ¢perstion., Feilures whiech covld be divectly
attributed o multiprogran operation sre those caused by:

£1) CQuerator zction on another program,

{2} »rroegram interference

{a} ¥ith emother proble: program,

or (b} Witk the control program.

103.

The author hng already stated (Seetion 6.1.} that
only one progrem may be operated from eseh CIRFUS console.
The gomtrol prograne to read instrueticne Irom an operator
are constructed in such a way that the operator cen
infivence oniy thet program whiech eriginated Irom hias
ponsole.

Interference between two programs could occur through
pither:

(1) A program Zault,

or {2) Hardware mslifunction.

In CIREUS, instructions are extracted fvom store by
a sequence of mieroprogren (Appendix & 2). An optional
branch ir this segquence umay be taken {Fiz. A 2) to check
the operend sddresa ol each inmstrueticem. An errar exit
occurs if the adidress %& outgide the permissible hounds.
*hin check recuires twoe further store eyecles, but it can be
suppressed on any preLIrul.

The address check is in fact suppressed at present
on 1l Wut machine-code progrems. Ir building the compiler,
care wos teken o emsure that the programs it compiled
would refer o illeznl addresses only in very rore clirecwm-
gtences. Experience sc far in seiusl opersiion justifies
the belief thet these precsntions are adequate. Fuyiher-
more, the sddress cheeling facllity fﬁr'machinemeode

programe and the checke built intoe the compiler have

104.

proved extramely useful diagnostic aids.

The chenge of imlerference through hardware mal-
furnction can never be epiirely clininated. OSome such
pnlfonetions will effect only one program shile others will
amuse all programs in the wmachine to fail. The mest lsvish
srogram proteciion scheme can iniiuence the effects of horde
ware fmilures only by redueing the chence that any given
failure will disrupt more then one program.

Multiprogram operetion can compliieate the task of
fanit=-finding, porticulariy when the fault is transient.
However, on=iine feuli-Tinding in CIRNDY is complicsted far
less by multiprogran operzticsn than it ig by the fact thet
most of ihke¢ processor hardware is gemeral-purposec. {Jec
Appenéix 4). A simgle fsult may, for ezemple, affect any
of = hundred or more machine-~colis operstions. Fortunately,
this factor wane well understeod la the earlicet stages of
deaign and parity cheeking hes been provided to o more
comprehensive degree than would be normel fow a low-cost
maching. Udramsiers Detwecen all‘ataresg regileters and peri~
pheral units are checked and the machine brought o halt on
any failure othey than where the itransfer has invelved a
peripbersl wmit. It has been found in practice that mearly
51l hardware faulte ore detectied by parlty feiluves.

Ver Horm {1964} quotes Frofessor Corbate of M.I.7.

as gaying that the type of program failure resulting from

10%.

interference appeers ¢xmetly like ‘ransient hardware
failure, =nd i3 therefore very difficult tc dliagnose. Van
Horn euncludes that, bdbarring hardesre feiluve, opy progyas
with a consiant set of dste should heve the properiy of
*repestebility®. The aether will now swmmarice hie viewe
on prograom proteeticn for the small multlprogren computer
and follow with some comnents on Ven Horn'e conclnsicn.

Progren protection by hardware is not economically
fensible in o reslly low-cest sysiem. A checking focility
mast certainly be availsble and will no doubt be
isplocented by progrom. LA o resuld, Hime will be lcet when
ckecliing i gsvfermeéa 1% suet be poseible, therefore, to
bypase the chechking snd one must assume $that checkinz will
most commonly be omitted.

Iif » progrem f2ils sndé z hoardware foull is suspected
¥ ¢

the normal procedure in a single progrom computer is to ro-
attempt execution. 1 the failure iz not yepested; a hard-
ware faplt enn Be asumed. In the mnlti rogrew compuier,

one should re-run the gprozvan with cheeling of addvregses
being made on gll mrograne. Admitiedly, there are two \
diffienltien. Flret, conditions during the re-run cannot be %
identical, ever i the scme progroms sre involved. 3awever§!
if en interference fault had occourred, the progrem resnong-

ible and the faulh itsell chould be isclisted. Decond, the

user who decides that address checking shovld he instituted

106

wants ithe check spplied not te his own program but to the
other programs. Whers there are separate siaticns,
poseihly in dliferent sites, o Ieellity to introduce
cheeliing on 211 progreas should be avalilsble on one station
at least. The important point is thet a cheexing Tacility
must be available and it must be possible to imtroduee or
remove the cheek at will.

The action to be taken in the event of mutilstion
of the snltiprogram conirel program must alec be considered.
The problen is smalogous to that of a2 large aysiern where
th: moniter program or its workimg space may be interfered
with. Ir such sasses, the monitor is recelled from the
1ibrary $ape. In a sesll sultigrogram computer, carde or
paper tepe muwet be used unléase the conbrel program is held
in fixed siore - & further srgusent in fasvour of using fixed

atorage. 411 thet is neceseery for CIRKUS is to reset ihe

-

initisl conditions in the working spsce at the head of

209

- L
gtere, a resetiing of only some 128 words .
The smuihor realizes thet his viegws on the degree of
progran protection which is necessary confliet to some

extent with establighed opinions. However, it wmust be

*_ e A
Phe initial setting-up of CIHKDE for maltiprograw operatlion
can be done only from Canasle 0.

107,

gtresced again that cur concern iz not with systems of the
pagrnitude of STREECH., Referring tc STRETCH, ¥osh (1963)

hug sald that, wher an error ceccuvrs, "the operator has quite
& hesdache to sort out whick jobe khod been run and whieh

wore »till weiting on the inpet topes wher the error cocurred

o

e « » with a total time penalty of 28 much as 15 minutes of |

CFU t4me". Fron eack CIERUS stetion, programs are run [

sequentizlly. The restart procedure is thercfore trivial. f

6.3. Multiprogram Control.

The sopece and Sime-agharing procedures im (IRAUE allow
for 1% separste ;rcgramg*. "Progyen” here mesns siuply an
internal progras. To sxeenie & single external problem st
least two internal programe sre reqvired,

The 1% internal programs are divided into two
eatesories. Tight sre relerred to as “pormanent” progrsms
because thelr requirements in storage and perigheral units
sre known and constent. The remaining seven are called
“yarieble"; ectorsge snd peripheral units can be allotted %o |
them iv & quite Tlezible way. In sharing tiwe bheiween pre-
grams, differeniiation between ithe %two categories iz made
only to the extent that an sctive permanent jrogram will

always be given uvriority over amy variable program.

& 5 "
4lthough meny of these are in use ir the present system,
gome are nvellable for exgansion.

108.

Tor each operating station, there is a sepnrate
permanent prozram called the “eperator control" program
whose structere will be descrided in Seetion . This program
reads, interyrets and implements smy of 2 standard set of
aperating instructions. Vhen reguested, it will set up a
soecond, verimble program, which ia teo carry out the work
recuireéd in the exiernsl probhlem.

Thoughk imstrvetions from & partieunlar asperating
station will always be read by the same contrel program,
the veriskle preogren chosen by the control presrem wmay be
eny of the seven wvarisble progrsme. In fset, Iwe or more
veriable progrmus may be sussociated with & zimgle contrel
orozram. The purpoese im not %o allor several exiternal
prograze t¢ be operated irez = sirgle station wut %o allow
the programmer, in suitadle ocsses, (o divide =2 single program
into o master and subkordinnie rouiines whieh would function
concurrently (see Section 10j.

Consideration of %those fscilities which & variable
program will use or is ueing is concentrated st two pointas
fireh, immedietely prior to compllation or program loading
snd second, Pollewing execution. 4 “preliminary sequence”
and an Yend secuence® form vort of the stenderd sofiware
held in fixed store {Sectiom #). These twe sequences and
the compiler amd loader are fixed routines referenced by

varisble prograsms in ruch the same way that these programs

10%.

use "REAT®, “YRITE" or other subroutines. Though the
smstructions Torming all these routines are ptored only

snee, they can be used simnltarneously yet independertly by
any number of varisble programe. The “"parametric adiressing”
tocknique {Sectien 6.2.2.) is the key to this simaltaneous
USE .

Sinee these functions are carrled out as parts of
the varisble program, the permanent progrem alwayp remains
free to implement on the yariable program sny instructions
received from the operator. The relntionship between the
permpnent and yarisble prograve ig shown in Fig. 8.1

1% may be said of CIRRUS that processor tive is
gonpeted for by the prosrams rather %hsen shared between
them. 4 definite priority order sxiste, the contyel programs
of course always having priority over the probler pPrograma.
i program will ccewpy tae grocessor's time wither until it
is forced to helt on requesting s unit which is not avail-
able, or umtil 2 higher priority progrsm whieh was halted
carlier can agsin proceed. CIREUS 1s mieroprogramsed, thal
is, oachk mschine-code snstruction has been built up with a
gecuence of micro-instructions.(see Aillen g% zl. (1964) end
sppendix 4). %o control the shering of processor iime,

ceriain of these microprograms have been extended (Sectiocm Tie

VARIABLE PROGRAM

| PERMANENT 'PROGRAM

'KEY PRESSED, . (BECOMES ACTIVE)

"I READS INSTRUCTION .
('COMPILE" OR"'LOAD")
_ SETS UP VARIABLE: | .
' PROGRAM | :
_ > — —
| PRELIMINARY ',
N | SEQUENCE
N . : S | COMPILATION " |
' | OPERATES ON THE , | OR_LOADING..
: | VARIABLE PROGRAM : .
OTHER REQUESTS ‘ ' :
g - mmm—==cs EXECUTION
A ¥
— " END SEQUENCE"

FIG. 6.1.: THE RELATIONSHIP BETWEEN PERMANENT AND VARIABLE
PROGRAM IN CIRRUS :

‘ot

111,

7. FPERIPHERAL UNIT CONTRCGL ARD TIVE-SHARING.

In a small scientific computer, the tulk of input
and output will, for the resscons set sut in Section 3.7.,
be made through punched ecayd or poper tape uwnite. It has
been stated that peper %ape unite have been chosen for use
ip OIRTUS,. Yor =p eguivalent periormance, a papdy tape unit
ean cost ag 1ittle as ove-Tifth =& wuch as the corresponding
cord unit. Vhere the type of mmltiprogrem cpersiion desired
snpvolves replication of umits, the chelee of peper unite is
almost nandaiory.

Using paper tape may have disadvartagesa, the nost
obvioua bhelng ihe ﬁifﬂiaaiﬁy of making isolsted correciioms.
Since there will be, in 2 sciemtific installation, 2
continued flew of new progreme to be cheoked out, & wrsetiecal
solution must be found to the problem of editing programse
puneied op paper tepc.

spart from lover initiel cost, there are hewever
other importent ressons fox preferring psper tane ecounipvent.
raper tare nnits, since they cen trenefer single chersvclers,
gre simpler than card units in their mode of operation.
Furthermore, the milti-operator computer will almost certainly
nave monitor typewriters and inpud keyboasrds on its sepsrate

gtations. These units, like paper tspe units, receive or

112,

transmit informstior chareeter = by - charscter. If ne
other trpe of unit is used, n very simple procedure csen be
developed e control time-shared operstion of ell wnite in
the system.

In this zection, £ sisple multiprogram time-sharing
procedure will be developed. Thie proeedure is both
efficient and inexpensive to implement. Initimlly, it will
be assumed that only those units mentioned above need be
catered fur. lowever, = unit or anite other than these will
often Ge wanted 1n the system. It #11) be shown that this
basle time-sharing grocedurec can rendlly be adapted to
hordle units of other types.

T.1. Editing of Programs on Faper Teape.

Before paper tspe oan be accested az the primery
pedium fer input end oubpui, it must be shown that = prec-—
#4eal soiution oxists for the problem of prograx aditing.
The Teeilities provided in the CIRRUC compiler by
J.8. Senderson {Senderson, 1663 pts. Z.1.2., 33 1964 pt.
12.2.) have been founi perfeetly satisfactory, and will be
briefly deseribed.

Feeh source progranm must be preceded by z header
tape in whieh correetions can be speeified. For cxample,

& gorrecticn tape with:

0 - 65
<-0.0.-obou-¢-uootco

T EET TR RN R X] o>

66 = 163
6% « 163
..................é}
<: 195 -~ END
direets the compiler to
{1} ecopy the source program following from line 0 to
line 6%,
{2) insert the line or iines hracketed,
(3) copy the source program from line 66 to line 193,
omitting line 164,
(4) replsee line 194 by the line or lines bracketed,

{5) ecopy the scurce program from line 195 %o the end.

An optlon of the cowpiler may be uvmed %o print out lime
numbers of 211 labelled ststements. This opticn would
invarisbly be used on the first compilation rum. Lines
found tc be in error are alsc indiceted. The user will add
o his correction tmpe to remove emch program eyror. ile
may sloo, if the correction itepe becomes unwleldy, use a
further sption of the compiler to punch sut an up-dated

source tape.

%$0we gtatenments, particularly declarations, mny teke meny
linsa.

114.

T.2. Conirel of Faper Tape Unite.

It was stated in ithe intrcdunetion to_tﬁia seetion

that, quite
reascne for

now be made

spart frow lower initisl cest, there were other
feveuring paper tape units. These reasons will

clear.

Let us first define two cuantities of iInformation

trangfer:
{1}
and (2)
One

Either (1)

or (2)

The "wvnit® of transfer, comprising a number of
bits transferred in varallel,

the "hbloek®, thet number of units of informstion
on the inpui-gutput mediuz between successive
points st whieh the periphersl souipment may be

atopped without loss of information.

of w¢ measures must be sdéopteds

Iunffer stornge independernt of the central
proces=¢r ¢sn be provided for a complete block
of information,

Zhe time-shering mechanism can provide for
interruptions from the peripheral; followed by
transfer of a unit or number of vmnits of
infornution withir some maximum permissible

E&@l‘i@& °

In each case, there are chstacles t¢c a low-cost

agolution.

Buffering, whether provided independentiy for each

118,

perivheral op multiﬁlexedlbeﬁwﬂeﬁ & mumber of periphersls,
will Be expeunsive if required in amy (umentity. On the oiher
heand mueh of ithe hapdware of a low-cost compuier will be
general-pursose, ond the particulsr herdware recuired for
any information trauefer could serve several funetioms. It
miphd therefore be Aifiicult to enmsure thut the hordware ean
always be made avallsble at short notice.

¥ith peper tape equipment, the unit and record of
date tramnsferred are identieel, = single 5 to 8 bBit charscter.
If wuffering only for single chorseiers is preoevided, the
obligation to allow interrupiions within eny given period
is eliminated. With sard ecuipment, however, the uvnlt is
either 12 or GO hiﬁa% and the bloek ip s complete card.
Control of a card unit willl cither recuire nmore complex
hardware or & mors claborate time-wmhnving procedure.

For = multiprogram computer o be cwveraied officiently,
much nore informotion must pans beitween the cpereicr and the
mechine thop would he neceserry in a single-program machine.
For this communication, a2n output typewriter with an inpui |
keybourd is o» ideal choice. Jince each of these wnite is |
eszentially s zingle-charseter deviee, thelr mode of
operatiocn ig identieal to thet of puper tape units. Thus,

2 single time~sharing procedure comtrolling paper itape unitse

gan slgse, without modification, cope with Lypewriters and

i . s
beponding on whether cards are read "end-on" or "edse-on®.

116.
keyboerds. The arguments im favour of using paper tape
equipment are therefore augmented.

Witk only eingle-character units, hardware control
for inpnt-ouiput cen be elementary. Fisure T.1. chovs the
eseential festures of the CIRNUZ strueture. A mné ¥ ave
general~pursose vezisteras. For the micro-opersticn causing
the setuzl dete trameafer, A sust kelé the sbooluie address of
the unit, end the trsmsfer is ithen mude betweer ¥ sndé the
relevant buffer through the common bus. It shounld be noted
that the puneh and typewriter on the same comsole share a
sinzle bufferﬂ. An extra Lit is azdded 4o the transmithted
charescter to indleate ite destination. Buffer shaving is
only worthwhbile Zfor the cutpvt unite since they reicase the
. buffer after punching or printing the sharacter. On the other
hand, the reader refills its wuller ne zoon ss a chorsctor
aas beon transmitted to the cumputer.

it iz of course preferable that paper tape units
should not metuszlly abop during itransfers. The efficiency of
a poper tape reader in perticulayr would be nmveh impairved if
the unit were operated en a atop-start basls. Irn practics,
priority can be given to prograws thvovgh periods in whieh
they sctually vse the peripheral vnits (Scetion 11.3). %he
units would ihen be brought tc & halt during transfer omly

rarely. The fmportant geint is thet, by using perinhersl

* i
The CIRTUC keyboard sluo sheres the punch/iypewriter
uffer. Shis sharing introduced some unforeseen complics-~
tiens snd is not recomwended.

_INTERNAL |
"REGISTERS ;

BUFFERS !

FIG.7041.: HARDWARE FOR CONTROL OF SINGLE CHARACTER

MAIN STORE

1 T

(SINGLE.-CHARACTER) l——

A] [M
| .{commoN’
Y " INPUT/OUTPUT .
| BUS,
[. ADDRESS
> LOGIC
ll [L
F-S 2
L i
+Y * 5 v
KEYBOARD || READER | PUNCH “PRINTER
Ko . " Ro - Po P
L : _J
Y
| CONSOLE ©O

PERIPHERAL UNITS

| CONSOLE 1,Ete.

*89LL

117,

equipment of thie type, a comsiraint is removed whick might

on occasion be difficult te Tulfil.

T+3. A Simple Multiprogram Time-sharing System.

In gariier sections, it hns been sugpested that
implementation of muiviprograsm time-ahering is simplified if:

{1) only one~level sterage is veed,

and {2) =211 peripherals are single-charscter units. In

thie section, s very simple but adequate time-sharing
procedure reguiring z miviemuw of specisli-purross hardware or
progrem will be developed., It will be sssumed thst the iwo
conditions otated shove spply. The precedure to be deserided
iz lawgely that which hee been implemented im CIRRUS, Winor
feteils in whieh CINRUS differs, 1f not c¢lear from the text,

will be covered in feotnotes.

Te3ste Time~shering e lLow-goet System,

Por a mwber of reasors, it is necemsary that programs
requiring time be arranged in an order of prierity. The
inpertenee of o priovity oyder will be nmede clear in Section 9,
whieh deals with use of preograms to secept 2nd fwplement

ingtructions from gomputer operators; end in Seetion 11,

118,

which will show the sffect which the priority order can hLave
on efficiency of the system.

spart fron the recuirement for an order of priority,
cther factors influence the way iv which procesaor time
ghould be zhored in a low-~gost syetem. The decisioms as to
whieh programs sre reedy 4o use processcr time, and of these,
which has highest pricrity, will simost certoinly be made by
the processor iteelf. 7o save processor tims, we should
therefore 1imit both the nuwber of 6é@isicns and the time
spent in making each cne.

The time-shaerivrg procedure must therefore be very
different frem thal used in the Homeywell 00, shere single
instructions are cbeyed Irom esch progrow in rotsition. Yo
keep down the mwmber of {ime-shering decisions {he processer
mst werk contiruously on one progrsa for & reasonsbly long
pericd of time. %he reault should be that the program
receiving processor time will zontinue ¢ receive (lme vntil
1t con no lomger itself use tine, or wnill & higher-priority
progren, delayed for some receon, o agein proveed. Though
reducing the number of switches from one progrem to snother
will save processor time, there nre cother fectors mshing
fairly frecuent inter-program switching desirable. The peri-~
sherel vnits sentloned so far will transier information at
rates varying from = character svery seconé or so {(keyhoard)

t0 500 or wore characters per second (paper tape reader).

11¢,

¥hile the highest priority progrsm reads frem paper tape,
there will be ag many as 500 short periods in a seecond during
whieh the progrsm cannot contimue. If these pericds of Hime
sre to be used by other programs, and if buffering teyond
thet needed for single characters is o be avoided, then it
mast be possible to ewiteh between programs very rapidly
indeed.

The time required to switeh the processor from one
progrem 0 snother will depend msinly on the extent to whieh
storage ie iime-shared between progrems. Since, in the type
of time-sharing Yeing diecuseed, the switches are to be made
between complotely independent progrowg, one cannot prodioct
what storage esch might uss. The contenie of 21l tinc~-ahsred

storage muet therefore be ssved and subscouently replsced.

If progrer switches cannct be made rapidly enough, it
would be edvizable to imtroduece wpecisle-purpose programs to
carry out the actunl charscler-by-charascter traznsiers. These
"progreame® wonld in effeet be interrupt evbroutines. Since
the storage needs of interrupt subroutines can be defined, the
switches would reguire imterchsunge of caly & limited smount of
storage. In & multiprogram computer using wwo levels of store,
the whole af the core siore may be tine-chared betwecn
separate progrens, iUse of interrupi subrouiines cem therefore
hardly be avoided. iiowever, zllowing progrems te control

periphersl units directly makes possible & very simple and

1’20-

goncise time-shering procedure, thereby saving that most
valusble commodliy, store-spzce. Une ashould certainly attempt
40 achieve very rspid inter-progzram switebing ir a system
using only core store.

lost computers have a number of “vegleters® %o whieh
the machine~code prograwmmer hag access. If program switches
are to be rapid, there =ust be wither very few registers whose
contente need be stored, or a sufficient number of registers
t¢ 21low each program to have ite owm set of vegisiers. Nest
emall ecomputers do in faet have very Tew vegistere. The
writere of compilera in zarticuler would inveriebly feel that
there were fayr too few,

In at lesat two multiprogram computers, the FP 6000
end CIRNUS, core store loeations perforw the fumetions
normally sesveisted with sceumulator, multiplier snd index
registers. A separate set of “regisiers” car therefore be
alloested to eack program. In the F@ 6000, the Tirst =ight
gtore locsibionsa of the prograsn's work spage are uged. GIREUS,
ov. the other hand, includes a =pall second ecre store of 64
waréa: of which 12 ere usuzlly 21lotted %o each program.

This ztore in called the “reglsier stoye®.

® : . —— . P
& lerger store wculd have been desirnble, hut insuficient
address bits could be wnde avaeliebls.

121.

Using store lceastions rather than statle registers

will of course sluw down some opeyrations. Lose of efficlenay
in CIBKUS, where the register store can operate in paraliel
with $he mein store, sheuld bhe small. The highly desivable
resuli, that each program cam have & very muck grester ihanm
usus! number of registers vniguely to itself, sheuld justify
the coat «f providing the zzcond steve.

CIRRUS has & number of stsitic registers (see
Appendix A 1}, all of which are in fzet time-shared. These
regigters are only addressshle from miero-cede. They are
wmuldi-porpose, that ie, their functions vary with different
macline code ipetrvctions. Hence, in builéing each machine
sode inatruetiorn from uicro~code, any velue 10 be reteined
Led %o be plaeed in core store at the snd of the imstructien
{ses Appemdixz 2 2). This requirement, though not dietated by
the peede of wmlitiprogrameing, 614 zive the result that
progrem chenge2 eould be made at the end of any machine-code
ingtruction withent any glearing of these regiaters.

CIERYUE alse has no sequence counter register. Instead,
a nunker of atore worde carry out the functicns of secuence
ecouvnters Tor the wariows progrsss. Chenging Jrod one pregram
to snother therefare invelves only the seleetlon of the
srogras to whieh the switeh will be made ond subsiitution of
the =zddress of the nevw sequence counier. In any computer

heving & specific sequence counber, interchange of ite

122.

contents would be necessary.

Progran chenges in CIRRGL can be made rapidly emough
t¢ permlt 2 change Yor cach cherseter read, printed ar
punched. Ueege of processor time may be understeod by exab-
ining Flg 7.2., which shows the distribuiion of time during
s cwuehing secuence in the highest-priority progres. Of the
10 ws nocded to punel each charseter, frem .5 %o 1 =e only
is veed by the proecessor to prepare the next character for
punching .

n the following part of this section, ithe facilities
needed %o implement sharing of processor time will be

discuaced.

Telels The Basiec Time-ghaying Procedure.
Te share processor time in the mavmer deseribded in
the preceding pert of ithis sectior, the fellewing feciilties

are required:

{1} sn indiention when the current program cannot
ecntinue,

(2) =n interruption when s delayed program of
hizher priority cen onee agsin proceed,
amé (3} a procedure irx elther ecsse t¢ delermine whieh
program should then be followed and to implement

the sotual gwiteb.

123.

~ |PROGRAM 1, PROGRAM 2
0. _PUNCHING SEQUENCE BEGINS
VNN ////////. — -
B’ 1R7//7// >
| ——
! _ \

. [POSSIBLE SWITCHES
1w . TO LOWER PROGRAMS
S| A=t <

g —> >

B T e
20{ - k
gy . - A ‘—' Ooit—" d——

A Sezzzzat K-
+TIME SCALE, | UZZZ2 CHARACTER CONVERSION
_IMSEC) | =

. |'A": successruL
PUNCH ORDERS, { _

;B4 UNSUCCESSFUL

. USE OF C.P.U. TIME DURING A PUNCHING
TESer et SEQUENCE ON THE HIGHEST PRIORITY PROGRAM.

124.

The availsbility or otherwise of periphers) wnite
should be the cause of nesrly z2ll inter~program switches.
The current program cannot continue Turther when it recuires
from on input uwit a character before it hes been set in the
tuffer, or when it sttenpte o tranenit = character to an
eutput unit before the wuffer hos been cleared.

in CINEUS, there iz s set of "peripheral indiecators®,
each of which irn genersl monitors the state of a aingle
perivheral amitﬁ. The state of each indicator is conirclled
solely by the buffer. The indicsior shows the ®"mn®, or
available, conditicr if a transfer cen be performed, and “off"
otherwise., For sxample, an irpvt wmit indicstor is ®en®
while the unit'e buffer is full and the parity condiition is
gatiafied. The complete 86l of indicators can be exsmined
through the sritbmetie unit es an 12 bit (kelf) word. The
"available” gondition is shown as zero and the ™umavesileble"

&
condition non-zero .

%Ea@h punch/urinter pair, sharing a buffer, has a common
indicator.

'*ﬁﬁﬁ aondition of esch indiecstor is showr by & light on the

avpropriaste console. Since the cperator i working ¢lose to
the unite he uses, he e¢an guickly check smy unit which
remaing "unavallable”. The siwplieity of this method of
indicetor ussge contrests with the use of several "status
bits" to monitor sven simple urmits ip, for exsrmple, the
Control Tate 3200. The itime-sharing system, after =11, needs
to know only whether or not the character itranefer can be
made.

125

o "

The possibility that a program ¢cannet conitinue will
only arise when the prosrsm requesis transfer of & cheracter.
The indieator of the wmit muet be exumined before the
transfer itself ie recuested. If

TABUN) m 0y = « o 50508« (Te1)
where I 18 a word showing the whole set of indicantors, and

Ei{n) {RU: Recuested Unlt) has cne non-zerc bit
shewing the position «Ff the uwnits® indiester,
then the pregran ey proceed. UOtherwise, ithe processor must
swltek to snotheyr progran.

4 record must be kept of those reriphersls requested
but found umavailable. This record UP, (Unsveilable
Peripherals), muet be updated 4if

ia 85(n) £ 0,

i.e. the operation

OFY = UP v RU(M) o o « o« o = s« » o (7:2)
mast be poericrazed. Until & wanted periiherael onee again
becomen avellable, (UPR = I)‘ will remain zerc. The operstiom

WP oI =00 ¢ ooesseeess {(Ted)
san be used %o deteet the change in the status of a wanted

unit. Following ihe change of steiuvs, UF ghould sgsin be

% - R % o
3 Logical exeluvsive UR

126.

updated by the operstion

DP' 2= TP AL ¢ o « o 0o 2 0 s » s (Te4)
4t any %ime, therefore, UP wlll show only those units whieb
have heen recuested and zre 2%11l mmaveilable.

Sinee cach CIREUS mechine-gode instruvction was tuild
up from wiero-instructions, it wee possible to ipcorporate
the indiestor chesoh (T.%) in sach iwpuit or ocniput instruction.
{The sppropriate vaiuve of #{n) ie found by referencing a
tahle held in %ﬁefeﬁjﬁiﬁh% progresmer con therefore use the
instroetion, "Tronsfer a charscter between store leocstion m»
anéd peripheral umnit n%, withovt considering whether the unit
w111 be asvailsble. The cheek {7.3) for = chonge in any urit's
status, s=lee micro-prograumed, is pexformed at the hegirming
of every machine-code imstruction. UF i held in regieter
store. Fortomotely, during the first main store eycle
resuirved o ezecute ench machine-code instruetion, the
register store ig not in use. UF is extracted ivyom register
gtore, arnd the comparicon sgainst I made during the "write™
pshase of the wain store cyele. 4s o vesult, ue iime is ilogt,

In o computer not microprasmed, EU(n} would probably
be generated by the peripheral uvnit itself. UF would
probably be » siwtic register, end the masking operations
(7.1 #nd (7.3) would no doubt be performed by speeisl hard-
Ware.

T+ can be seen thei a sew progyran ruat he sought if

the indiecator check prior to making @ character transfer

127.

finde the unit unavailable. A program switch may or may not
be required when an indientor change is detected in the
routine cheek. In the latter case, a switeh should not take
plags 1f the changed indiecstor corresponds tc a unit belong-
ing to & program whose ;riority is lower than thut of the
program currently in operaticn.

However, for simpiicity mE}mifi system; a standard
progedure should de followed in every case. In CIRAUS, this
procedure is called “program selection". It involvea the
scanning of programs in descending order of priority, until
one is found which ecan proceed. The eriterion determining
that the i°° program can proceed is that

RI(J) A UP = @
where EI(3j) has non-zero bits corresponding to the indicators
of 211 those unite allotted to that particulsyr progrem. The
gueation being asked fer esch program iz, of course: #iif
those peripherale which were requested, found o be unavail-
able, and are still unaveilable, does ome hélong to this
program?®

To hold the values of RI(J) in the current priocrity
order, CIRRUS has a "pricrity ladder" of 16 store words.

Por cach of the 15 programs allowed in the time-sharing
systen, there is a corresponding 3E-bit "priority word® in
the ladder, Half of easch word holds a value for RI{3}; the
other haif holds a "key-ward®, KW{j). Since, to change

126,

progreme in CIBRUS, omly a change of sequence counter address
is recuired, suzch kay-word is merely ithe addrese of ihe
prograns sequence counter. in some other compuber, where .-
the conternts of registers need be swapped, the key=sord
would indicate the store pesitiocns from whiech register
contents say be retrieved.

The mixteenth word on the lsddéer ie a “marker”,
dividing "ective® froa "issetive" programe. A program not
$n woe o temporarily halted by the operator is regarded 28
sipeetive’. 1iz sriority word is pleced below the worker
and not congidered in the program selection procedure. vor
woot of the time, only twe oy three programs geuld in fect
be sctive. Searching down the priority ladder will therefore
be done gquite guiekly. If the marker is reanched during thls
search, @ll "active” prograus must e waiting Tor perlzheral
unite. Repested checking of the indicators %11l then take
place untll @ chenge is detected.

Fige Tel. shows the time-shaving procedure Jiairsme—

) ¥
waticelly. Implementation of the procedure im CIRRUS has

BTTC

&
The siervprosrams at present used in GIRTUC use o further
progy w -~ -
cuantity EI ?Expecteﬁ 5tete of the Indientors) which bas
subseguently Tteen found ummecessary. The regulexr indlecator
check is
I » I = 0%,
{.¢. "Are the peripheral units as we expect them to be?"
rather than

P 1 = OF

POSSISLE INTERRUPTIONS,

: DURING

PROGRAM QPE‘RAHON .

‘AT BEGINNING ;

TOF EACH
INSTRUCTION

v

®

128a.

| PROGRAM SELECTION

| Await indicator|
3 change

- YES |NO
| Indicators as| "7 L~ B
_expected Indicators |\
3 _changed
(CONTINUE)
[AvAABILITY CHECK
LIDATA TRANSFER
| INSTRUCTIONS)
RUln) AINQ7
_ves [N
i Unit Unit not_
i available available; L
!
) v Supp.ess
_ Tronsfer 309. e
character etc, - increment
I UP*=UPv RUIn]
PFIG. Te3as

UP' = UPA]

o
TR

%

RI[jIAUP=02N

YES NO, A
ith program | [jth.program
" ready not ready

A

.Obtain KWI(j}

. incly

Save and reset
registers

. sequence ictr. .

ding

!

Retur to
Rroge
operation,

ram

FLOW DIAGRAM FOR TIME-SHARING PROCEDURE

(For explanation of symbols, see text) -

“last prog

Is_this
o

¥
r

m?
MO

' YES

No program
" ready,

129.

required no special-purpose hardware cther than the peripheral
int¢iceters. About 40 micro—code instruetions were used for
the baaic proecedure, whils = muwber of cther nicro-code
sequences have been irncluded %o manipulate the words ir the
priopity ledder. In 2 computer not micro-pregrammed rather
wore hsrdware woulé he requived. Hince the computer's
meciine-ceode would be rmeh meore powerful them CIRRUSY nicrow
code, much less program should be needed.

Simple though i% is, the proc2dure contains all those
functions necesuzsry to share processor time between progreanms
using omly single-character periphersl units., However, in
CIRWUS provision iz alse nade Tor "external interrnpte”. The
most aslgnifiecent bit of UP ie alweys held se smerc. Hemee,
when sn externsl interrupition iz reguested, UP » I is found
to be negetive. Tresnefer is then wnde o a speelal set of
miero-code cubroutines which caryy ovt the action resnired.
4% present, the extermal interrupt feecility is ueed only to
bring progreme to rezd cpersiing instrvetions from the
innetive to the aetive purt of the priority isdder. The
facility could also e veed 4o tring inte operztion other
programs, Ior axsmple, those whiebh might be used in conjunc-
tiom with equipment beyond the computer system itself.

sdetivating an instruction reading progrsm through an
external intermptiorn is not eszsential. Thie prozram could

in fact be kept permanenily ncitive in the highest prigrity

13C.

positicn, veing selected only shen a charseter was set in
the keybomyd buffer by the operator.

ilthough simple, the procedure iz efficient. Tn
CIRRUS, when 2 peripherel umit is found to beo unavailable,
procezser tize loat in switching to aneother progyswm is
(8% + 9n) ps, = being the pricrity of the new program. Time
wagted in the unsuecessful input or output instruction has
been included in this fMgore, To return to =z high&prri@rity
progrem follewipg an indicstor change, (40 + Sm) ps are A
reguiyred, whers the program selected has pricrity m.

Por any character which csn be trensferred immediately,
only that time zpent in the indiecetor cheek is last. This
time, Y2us, 1s the shoriest perilecd of time-charing overhead
per chareeter (ses feection 4.1.). If the chavscier cammot
be tranasferred immedistely, then

129 + 9 {m + 0} 8
could be spent in overhesnd. If there wers programs from four
stations {the grestegt number considered in Section 4.1.), up

to i84ys could be spent in overhead for ome character.

T.4. MNore Complex Peripheral Units.
A smnll mmltiprogran computer, theugh using poper
tape units au the begic peripheral unite, will quite possibly

have 2t leset one or two wnits of oiher types. The mall

131,

sclentific computer system in particular could include almost
any sert of peripherz] unit used in s large system. Though
any individuel itype of periphersl unit may he recuired, we
can assume 4in thies discussicn that the total number will be
vexy few. If there were to he mary, the computer system would
move out of the low—gcost class, and we could afford t¢ de
more extravegant in our appreseh te previding tiwe-sharing.
gince there will be few, but the aetual unite could be any of
& Ifelrly wide variety, we should not 2llow the characteristies
of smy pertiocular itype to dictate the form of the time~sharing
gystem. ilewever, Lhefore sny proposed time-shering system esn
be accepted for implementation, it sust be shown that the
syatem could be adapted to control time-shared operstion of
other types of periphersl unit.

%e hove defined in Seetlon 7.2. the "unit" and
*wlock® of dats trareferred when uwsing a given periphersl
unit. At the msehine-code level, the progremwer will vevally
expect o be able to recuest trensfer of a complete blegi,
where the bloek would be a charseter from paper tape, =
complete punched cerd, a magnetic tope resord, sné se on.
fYhere Waffering is practiceble o the extent of a full hlock,
the method of indicator usage deseribed in Jeetion 7.3.2. ie
directly appiiesble. & two~dimemsiounanl plotter, for example,

eould be included without modifying the system.

132,

Although econcmisation on btuifering is of course not
the only considerstion, we cerieinly wieh %o avoid the
copplex swd costly peripheral conmirollers commonly used with
large systems. Irp the smnlleyr computer, ithe centrel processor
should telke over o grest proportien of the perdphersl uuld
contrel, Hut & reasonable balance must be Tound. For example,
wheye the data transmission reie is high, the minimum
guantity of data transferred should be one store word. For
megnetic~-tape units at least, consolidation of characters
into complete store words would be essential. Beyond this,
the extent to which bufiering need be provided depends siwmply
o bhe speed et whieh the tlime-shsriug syetem allows the
srocessoy to divert from ome acitivity ¢ anoiher.

A2 & first example of @ cuse where buffering for less
than a complete blook gould be provided, let ua consider a
feiriy slow peripheral, & card resder which accepie csvrds
fendecn®. The unit of dats transferred is z 12-kit character
and the bleek o complete card of B0 such chavecters. If the
maximum operaiing speed is, say, 250 G.pem. (330 chepesas),
the reader wan supply one chsracter every 3 mm. 1f only a
gingle cherscter buffer is used, i% cen be ascumed that, once
a cheyacter has peen seb in the wuffer, a delay oi at lecast
1.5 ma can he tolerated before it rmet be transferred. Ihe
tire-shored regisiers of CIRNUS are free afier cvery machine-

code instruction, that is, after 1 ms at most. Ve could in

133.

fact keep in the highest priority gosition a specisli- purpose
maohine~code program whieh simply transfers a chareeter when
gn indicator on the buifer shows i% $o be f1lled., I
rructice, 8 micro-program buffer transfer routine would slimost
ecoertainly be preferred for gresber eificiency.

This simple approech is net practieable for faster
units. I faster unite are to be wsed, construction of ap
elemendary, general-purpose data chamnel should be wrdertaken,
The data chamnnel must provide a link beiween a partieuvisy
buffer and a designated store leoeaticn. Twe regloiers are
therefore required, Dy %o hold the buifer address, asnd Eg to
hkeld the ptore adfress. There muat slse be 2 general buffer
tranefer routine, almoet cerdeinly in miero-code, %o which
gontrol czn be given at the snd of ihe misyo-~operstion during
which any bulfer request asyises. Control must then he given
$o B subroutine correspanding to the bulfer ivorm which the
request is received. For zach subroutine, & specific store
address can be reserved to hold the addresz o or {row which
the present transfer is to be made. The subroutine, since it
45 conceorned with a unique buffer, cen sel the buffer addrvees
direetly in iy, wnd take from store the cuvrent traunsfor
addrese Tor setting in ﬁga This current zddress cen be
increncnted hefore being reitvrned 4o siore within the come

store ¢ycie. The setwel data trunsfer cen then be performed.

134.

Suppese there are n sueh bHuffers with a definite
priority order. The inequalities

L]
'[é >t + T; (§=1,
i1 -
’L’i>%»z T, + 2, (t1¢ignm
i=1

mst hold, where
’Cﬁ is the delay which may be tolersted before the jo°
buffer ié cleared (if idnput) or refilled (1iF sutpui),

t is the delszy before the buffer transfer routine
gaing auntrol,

@i i3 the time vwecuired to handle esch higher
griari%y request,

%; is the time epent on the 3th requeet before the
huifer ﬁgveleareﬁ or refilled,
_ Vith CIRRUS, ¢ is Ops, the time to execute the longest
smiere~-cueration. The time t¢ reseh the rorrect buffer
transier subroutine would probably be about 4.%:s8, and the
time to handle the buffer recueet st lemet ? store cysle~
times. The ability in CIREUZ to overlap oibher uieyow
gperations with those using the store shewlé make thle the
maximun time needed. However, if we bave magnetice tepe
transfers at 50 ke/s {i.e. one charscter per 20ms), it would

be diffienlt te matisfy the ineauslity for one trsmsfer, and
¥ s

135.

impossible for 2 simultanecus trensfers. This difficulty
can be overcome by providing for cach tspe unit two 18-bit
(G cieracter) buffers whick 1t uses altermately. - 13 is
then that period (80ks) required By the unit to transfer
four charzeters. For each of the twe buffers there would be
a peparate transfer subroutine. However, sach of these sube-
routines thouzh setiing dif!erént *alues in @, would
reference the same store sddress for the value to be set in
ﬁg.

The eimple date chanvel could then handle 2 or 3
simultancous magnetic tape trensfers, snd have time %o spare
for other vnits. ISimultareous operation of 51l units lilkely
%0 be found ir a small system would no doubt be pousible.

If desired, the cspzeity of the chammel coulé he ineressed
by providing stetic rezisters tc hold ihe éurrent atore
addresa for sach buffer, thereby chbvisting the nced for one
of the core store references.

The time-sharing procedure zt the meehinc-code level
develoned iu Section 7.3. need noet be nltered. However; the
method of setiing indicators must b zltered. For example,
when reading frow a single-character unit, cech cheracter,
if avallsble im the bulfer, cer be transferred immediately
and the prograwm csr continue. The machine~code instruetion,

*read a characier from paper tape” comprises:

136.

Begir incimetion«——{Feturn when unit availsble)

Charseter availeble?

'Ysl;w\ Ro

Transfer characber Update UP (See Section T.3.2.)
Continve Change program

When intre~block datas transfers arc necessary, the
progran yequegting the irensfer csmimot continve uniil the
transier is comrleted. An instroetion to read a record from
magnetic tape must therefore comprise:

Initiste transfer {1.e2. Set firet and last store addresses,
Put enit in motion.)

Set unit'z periphersl indicater to "umavaileble”

——
Chavine

progyam
<«——{Return -~ when transfer complieted)
The perinberal indicator for the mammetic tene wnit must be
get to show “"uwmavellabhle® by the "HERAT™ imstruetion itself.
It muet be get to "mvnilable®, net by the btulfer, but by the
bufter trenefer roultine, follewing transfer of the last
charzeter of the bloek.
it ia not necesssry to develop in Turther detail
methods of controlling these more complex impui-guiput vnits.
The selution put forwaré is oriented particuvlarly towards
CIRRUE, The appresch ir other cerves mst ocbviously he

governed by the struciore of the computer in question.

137.

However, the time-sharing procedure developed in Section
Ts3e2+ and the method of ueing indiecators should, with minor
variations, 8till be applicabdle. The essential requivement
is that machine-code instructions always refer to complete
blocks. The method of traneferring dsta within blocks,
whether Yy higher priority machine-code program, by micro-
irogras or ecompletely by hardware, is not importont.

CORCLUSIORS T0 SECTION T:

-1 For a multiprogram cemputer, paper tape rather thar
punch carde should be chosen for the main input-outpus
medius. The grounds for this preference are ss follows:

_ (ﬂPsmtapemumﬁhlminm
initial cousty, making replication of units more economicalj

(11) Being very simple in their mode of operatien,
paper itape units require little hardware for their control,
and :

(411) The mode of operation of paper tape units is
identieal to that of the keyboard and typewriter likely to be
used for mechine-operstor communication. Construction of the
time-sharing wechanion is therefore aimplified.

(2) If the computer asystem uses only paper tape umits,
keyboards and typewriters, a simple yet efficient time-sharing

138. -

systen requiring little hardwasrec or program can be
developed, Extending the sjratem to inelude a few more
complex peripheral units should also be poseible without
incurring substantial additional expense. '

13¢.

8. SPACE=-SHARING PROCEIURES.

Tr this seetion, the term “space” will be used in
ite mosi gemeral sense to mean any set of fec $14ties of
which papt sdght be required more or less continucusly by a
sirgle problen progrem ovey the periocd during which 1% is in
the smohine, Ir developing space-sharing procedurcs,
convenience for the veer is of prime importance. Information
demanded from the progremmer beyond wha® he nust supply to ue
his program on a single-program machine shovld e kept T0 a
pindmnm, Farthermore, only information which can very
eanily he calonlated should be reynired. Vhenm & progran
carnot be scconmodated in the mechine, the reasons must be
indieated. The sperstor shonld then have the sptiom of
rejeciing this progrem im faveour of another.

Shaying of spmce will be isplemented almost aﬂxire&g
by program. In writing space-sharing programs for » machine
hoving cnly one level of sicre, coneisensss 1is easential.

The pature of software nocessary for space-sharin
depends very mueh on such factors as store éanfig&raﬁi@n@
punber smd type of periphexel unite spd zo om. The overall
releverce of these factors has been disceussed in serlier
aeetions. VYe shall bhere econfine curselves more particularly
to the spece-uharing procedures in use with CIRRUS, together

with amy gemeral wvemorks which are appropriate.

140,

Three c¢lasses of “space® are to be shared in CIREUS:
(1) Internal storage in the msin and register stores,
(2} Periphers] units beyond she stardzrd get on easch
consolie,
and (3) Internsl variable programs, of which one or more
will Be requived for the execution of 2 sinsle

exvernel problen.

8.1, An Qutline of Space-shurirg Procedures in CIRRUS.

it was pointed eut in Seetion 6.3. that the operestion
ol a single sxternsl problen progras recuires at least two
prograng withln the CIRWUS time~chering system. The first of
thegs, a pormanent “operator control® prograu, sehs up the
sgeond veriable program which begirs with the “preliminary

sapuenee”.

Fach program tape must be preceded Ly a "hesder tare ”
whieh zete opt the program's reqairem&nts in store space and,
where necessary, iists any periphersis needed bevond the basie
get ory agaln where necessary, recvesits an additional

internal progresm or programs. This tspe is resd during the

s
See Seoevion 10C.

%5
The header tape 2leo includes the current set of corrections
0 be mnde o the souree prosram {See Seetion 7.1.).

141,

preliminary sequence. If the progran's requirements can be
met, the fecilitles will be allotted and the needs of any
aubsecuent program can ithen be considerad.

If the store is wacant, an incoming progrem will take
up the storsge it requires, beginnin: with the lowest address
accessible to variasble grograms. If there is already a
progran or prograns in siore, the progrem will attempt to
take the store spmce it needs immedietely following the luast
progrem in stere., I this spece 1s insufticlert, no stteapd
ie made te Tit the program into any othsr vacani store
gsection. Instesd, provided that the total of all veecant
atorage is suillicient fLor the program, the process of program
reloestion will be initiated, subject o certain conditions
whiekh will be sieted laster. DTuring the process of relocetion,
those programs following the first vacant section of store
will be shifved to camselidate 2ll wvacant spree a2t the end
of ztore. If, on the other hsnd, the total amount of vacent
space is nolt =adequaie, the program will be delayed. In this
case, the operator will be notified.

The tock-keeping functions needed for space—sharing
use a8 bable enlicd the *“pregram catalogue®, This table
oocuplen 47 words rnear the hesd of main store. {unantities
relating to the 7 vsrisble programs are set out in aw array
for sasy reference (Figs. 8.1. and Fable B1). %he “secuence

gounters” for each program sre part of the Tirst row of the

12
' ADDRESS o 1 2 3 4 5 & 7.
SEQUENCE | COUNTERS_

30+ sC, | SC, [sc, | SC, | sc,] s<o | SC,

(75]

— w

L

50+ | =

-

. ‘<

60+ | W

I . Ba

(72]

R

100+

g o a® A A A) A \
BOOK-KEEPING PR S
VATIESEECR P, P, P, P, P P, P

FIG. 8.1.:

. PROGRAM CATALOGUE

(See also Table B.1.)

143.

array. Hence, 2 given guamtity fer any progrem may be
found by adding the secuence counter sddres: to the relative
addrees of the Tiret value irn the row. 4lternatively, %o
examine a given quantity over all progrons, & particuley
row may be searnned.

The time-sharing mechemism treats 211 programs as
if they were indeperdent. (It wes peld carlier thet they
"eompete for time®) However, possidle interzctions betwesn

pregreams must at times be strietly controlled. For example,

while one progrem is refereneiny or medifying the setalogue,
no other program csr be permitted to atierpt the same thing.

It =oe decided that plmeing o general prehibition on inter~
ruptione over these pericds would be undesirable. Twe
specinl instrootiors “loeck*® ang *relesse®, have heon added

W the instruetion code. "Lock® cmables one program to
fefine specific conditions under whiech znother progrear chould
be delayed. The constraints imposed by & "loek” instruction

are reroved by a later “relecase” inmstruetion.

8.2. Tupe Headings.
Frozram tapes used in CIRRUS fall intc two
categorien:
(1) Soures tapes pwepered by e PrOgranner,
{2) Binary objeet program tapes punched out by the

conziler.

144.

The form of the header which mmst precede the program tape
is different in caech csse.

“he stendeyd source %eue can have statemente of two
types: U=code which 1= = sroblem—-criented language; A-code,
a hardwsre-~oriented langusge. The compiler prepared by
J.0. Zenderson (1063), {(19€4), szeeepts either or both
(althovgh in mest progrems C-code aleme would be used). If
both ave used in a single program a declaration must be made
ot sny point of change. The programuer mst provide s hesder
tape in 2 stendard form whieh includes = job idemtification
and sny corrections to be made to ithe sourcee program, &8 well
as informsiion om the spmee veovirements of the program.

we show storsge reguirements, two rumbers are punched,
S ané D. Vher a prosram contaims only (-code, % de the
mpber of statements snd D the number of dats words. These
values need not be exaet. PFrior v compilation, the prelinde
nary secuence sllocates to the program the fairly generous
estinmnte of

Max (75 + D ¢ %G, 2000 + 18S)
worde of storage.
he nusber of i-code statements (1f any) is included in D,
If, in some unususl ease, ihe esiimate proves inadecnnte,
ecompilotion will be germinated, and the programmer must
prepare a new header tape.

The exact wtorsge requirement is knovn when

eompilation is complete. 1P =m ckjeet tape is recuested,

145,

a tepe for use as a header on subsequent re-input of the
ohject program is punched out after the main tspe. Thie

header tare shows the exaet space remmirements.

8.3, The Preliminory and End Secuences
4 reguest from en operator for compilation or
loading of his program causes the contrel program to estab-
1isi: o variable program which begins with the preliminary
sequence. The program s “estshlished"™ by:

(1} selecting a verisble progrzs sejuence counter within
the eatelogue; registering in the catalogue that
the seqpence pounter iz tied to the comsole im
ruestion; and setting in the sequence counter the
address of the first insiruction of the yreliminary
secuence;
(2) alletting to ihe program 24 worde of varisble store
inmedlately Tollowing the lapt prozrsm in siores
(3} wmaising the priorlty word corressonding te the
selected secuence counter %o the active portiom of
the priority ladder.
The progrem is then operationsl. The tape heading
is read, ond the progrenm atienmpis to z=llosate tc itself the
facilities required. If these facilities are immediately

avallable, the nllocstiorn will take a few hundred nilliseconds,

146.

During this period, amy further recuests from the oparator
will be ignored. Lecuests from another operator for
compilation or leading will be delsyed, but will dake effect
1f i% is recessary, relocstior of nrogreme in store will be
carried out nutomatically. Hewever, if relocation is 4o be
done, the operaitor will be notified. In some cirsumstances,
a program alresdy in the machine may have pleced an
inhibition on relocation. Sinece the incoming program would
then be delayed, the cperator must be given warning.

If the necessary facilities are nos immediately
available or canpnot be nade sveilsble througzh relocstion,
the operator will =gsin be notified. He may, if he wivkes,
rejeet the progyam. If he dees not do eo, the program will
remein sicpended unitil spoce conditions within the mechine
change, 3Space conditions will chanse whenever snoiher
progrem completes compllation or exeeution, or is terminated
by its operator. The ineoming progrem will then sutematically
be resumed, and 4t can attempt once more io gain the space
it requires.

“he strueture of ithe preliminsry secuence is shown
in outline in Pig. 8.2., and ip wmore detail in Mge. 72. snd
E3. #Allocsticms of the three types of facility necded -
siore, perisherals snd sdditionsl sequence counters - sye

made separstely. If any elloeation is not possible, the

-
)

PROGRAM
BEGINS

147.

/" stonace / \

() | (b)'
RELOCATION e
WORTHWHILE ?
+ YES +NO
REQUEST NOTIEY_
, RELOCATION OPERATOR
ATTEMPTS TO 1 S il
ALLOCATE:
v
(‘BRANCHES TO :
o) 'IF SUCCESSFUL' PERIPHERALS
(b} IF UNSUCCESSFUL)| ~ LA , —
fal| bl 4
NOTIFY,
OPERATOR
A‘ [
4
_EXTRA
_SEQUENCE
kCOUNTERS .
. ‘ (al | (b)

4 YES INO
"REQUEST NOTIFY.
RELOCATION| | OPERATOR
A T 0

RELOCATION,

WORTHWHILE ?

v
L

FIG.

8.2.¢

PRELIMINARY SEQUENCE

e

|

COMPILATION

OR’ LOADING

(Sce also Vig, B3.)

Point at which rejection by the
operator is permitted.

148,

operator will be told, and he may reject the program if
he wishes.

The quantity of atoraze shown tc be sveileble for
sllocation ig slwaye 24 words fewer, and the wumber of
sequence counters always one fewer, ihern are in fant
aveilable. Reeruse of this, it iz slwesys possidble for a
g@égwam to be set up and te begin ites prelisinary sequence,
provided only itkmt the previous program has suecessfully
conpleted alloeeting to iteell sterage, periphersls and
gsequence counters.

The logicelly final instruoction in =ny program must
be a conirol transfer to the sud eequence (Fig. P4). There
iz, in fact, a special insiruetion, "ind Program", ia the
machire~code to carry out ihis tramefer. During the sndé
peguence, facilities used by the program are retvrrved to the
vool from which asnothor prograe say draw. 4 stetenent on
aveilable olore-spece ie ther made. If the operstor regueats
thet his program be rejscted (not omnly during the preliminary
secuence but zlisc et any other iime) ithe econirel program
resets the secuence countar cof the varisble program so that
the end seqguence will be executed.

Since the progremmer will often use the typewriter
for pevsonal ontput, it is undesirable o have this ocutput
eluttered with unnecessary syetem print-outs. [ertunately,

mesgagee 1o the operztor are generally printed only during

%490

either the preliminary or end seguence. Fig. ©.31. shows
these menseges. in the case 11lustrsted in the figove, the
operator resuesied loedinz of a program Ior which there was
sngufificiert shore-spacc. ie 41¢ vot reject hila program,
but waited until snother progzraw terminaied. Helocation
{posaibly only of hin DPOgYEN, cecupying at that stege 24
wopds of store) wme them performed. Lozding end execution
of the progrsn then rroceeded noreally. In this case, the
operator wea playing penghts and crosses against the
wochine., Tiring sfter one game, the sparator rejected the
@fcgram. Turing the end seQuence, & statement on currently

availeble store opage wWas printed out.

\

8,4, Program Relocation.
gelocaticn of progrems is exlled for in the
preliminsry sequence ifs
{1) +the total emouni of veesnt store space is
adequate for the incoming progrei,
vut (2) there is mot sufficient yoeant opace fellowing

the last program in store.

1¢ a pregram ie te be veloested st a fairly random
time Auring its sxecvilon, then i1t rmet eatiafy certein
£ d
conditions. Since the steuneture of sn objeel urogrem oum=

piled from C-code cen be detecrmined by the compiler, 2ll

15C.

* INSUFFICIENT SPACE
- 1444 REQUIRED .
128 AVAILABLE

* RELOCATION NEEDED

THE GAME IS NOUGHTS AND CROSSES.
O8W1 ON 10 PLAY WITH X
S8W2 ON FOR FIRST MOVE IN THE FIRST GAME
35W3 ON TO ALTERNATE FIRST MOVES
SSW4 ON TO PRINT CURRENT SCORES
YOU MAY CONCEDE DEFEAT BY PUSHING THE FULI. STOP AT ANY OF YOUR TURLS.

SET YOUR SWITCHES
YOUR MOVE
THE POSITION IS.

.O‘
_ X..
YOUR MOVE
" THE POSITION IS
‘Ox
.0,
X..
YOUR MOVE

THAT IS AN ILLEGAL MQVE
THE POSITION IS

.0X
.0.
XX0
YOUR MOVE
THE POSITION IS
X0X
00.
: - XXO
YOUR MOVE

THE GAME IS‘DRAWN
PUSH 1 TO RESET SCORES FOR A NEW PLAYER, E".SE 0
SET YOUR SWITCHES

.**PROGRAM ENDS 3928 LOCATIONS AVAILABLE

-FIG, 8,3,: SAMPLE OF TYPEWRITER OUTPUT.
i

* Printed during Preliminary Seaquence.
#* Printed during End Sequence,

151,

obiect programs are designed to fulfil these conditions.
op the other hend, relocation of programs written in
hardware-criented i-cote canret be permitied. Reloceition
of a pertislly compiled program is also not possibdble.

The eoupiler (which me poinited out, handles both A-
and C-code) inserte inetructions tc prokibit, =mnd, later,
¢ permit relocetion befors and afler any Sequence during
whielh relocation must noit sccur. The relocatimg program
weits unti) all other progrems will permit it o prosesd;
there is no guestion thaet, after relocaticn is requested, &
progrem in “permit" mode will wait for others in "prohibit"
node.

Although A-code programs are rare, one which is
long-runuing eould delsy raloeation for guite some time. It
is cuggesied thet sueh & program be preferably resd inte an
enpty store. Uinee the progres at the head of store will
never reed to be shifted, °“prohidit reloeztion® requests irom
thiec program are glwasys ignored.

ihe instruetions to prehibit or permit relogatiom
are ir faet the "Lock-~out® and “Release” instructions
mentioned im Seetion S5.1. These two instruetions ere to be
discussed in detail in Seetion 2.6,

feloeatior of verdisble progrems is performed by a
special permamnent prograw (srogrem %Gg} made active by any

varisble program recuesting relocaticn. Onece operational,

1%52.

thet is, when no other variable program inkivits 1%, the
relocating wrogram, being of higher priority and having no
input or cutpud, will inbibit all verieble programs until
relocstion is cempleted. (The proeedure takes omly & second
oy 8¢ in the worst possible ease.; Operstion of conirol
prograze is also inhibited over this period.

411 gompiled progrems have the structure shown belows

Upper bound: Xy
Data

Xp
FProgram

Xy, + 20g]

special working space

T.ower bound: IL

The values of X@. XD, X, are hkeld in the program
catalogye. Suppose that this progrom is relocated, and after
peing shifted oscuples addresses Xg o Xé. Those instructions
held in the program spsce which yefer to main siore aﬁdres&em‘

met be modified to refer to the new adiresses. A guantity,

*_ . :
ixeept those addresses in fixed siore.

153,

(Eﬁ - Ei), must therefore be substracted. To distinguish
those insirveticns whieh refer to store addresses from those
referring 4o a peripheral unit or specifying an irverisnt as
operand, one bit of the irnstruction bas been reserved {or a
“poloecation tuz®. This it 15 set duplvng compilation.

A program would not be relocsted correctly if, at the
tiwe of relocation, an imstruction referrizg to a main stere
address were held in the register sitore. The relocating
program could not decide whether quantities held in register
store were irstrvetions or dzta. lHowever, ihe resulis of all
machine~code aritimetlc operations can be placed in either
gtore. Instructionz ave therciore most comveniemily altered
“in situ”, there being nc need Lo tramefer them to registerx
gtore. Ir progrems canpiled from Ce-code, this reguirement is
alwoys fnifilled. On the other hond, the progreumer writing
in hovéware-oriented i-code nmey have definite ressons for
placing imstruetions in register store. It is for this
veason thet relocstion of i-gode progress is probibited.

The program gatslogue playe an importent part in the
oversll srocess., The relative positicne of progrems in the
cataleogue correspond with their positions in the store. A
search ie made through the catalegne to {ind the firet store
section net iwm ume, sud then %o Finé the program {ollowing
this vacant section. It is probeble that the vacant store

section will correspond to a vacant positicn in the csizlogue,

154,

iv which ease the position within the eatalegue is chenged.
The store 14mits shown for the program in the catslogue are
ad justed t¢ correspond with the sitore aves which the program
will nee after relocation. The progran itself is then
shifted in the store. The process is repested until the
lest progrem ir the catsiosue i3 reached. This progrem ie
the elementary program whieck, in ite prelimirsry sequence,
requested relocztion. The reloesting program moves the 24
worde so far irn use by thisg progren fo the addresses
inmedistely following the preceding program iv store.
Beloention of prograsma ner bheing completed, the relocating

progranm terminstes and bhecomes inseilive.

8.5, 4llooation of Peripherasls.

It wae otated in Seotion ©.1. that peripheral units
not reeunired by every program should forz & “peol® of unite
from whieh slloeations tc amy stotion msy be made. Further-
more 1t should be posaible for = progrsmmer %o use unite on
other consoles. A4Although this practice is not generally
encoursged, s progran should be able to ume two paper tape
readers (say) im & special case.

The procedure developed for CIRKUS has the {lexibility

necesssry to meet the following regquirements:

£1)

(2)

{3)

(4)

155.

The allocation must be practicable - since stations
may be in separete rooms; individual uwnite may be
aveileble only to some stetions.

If there is more than one unit to choose from, the
one in the most sultable position should be allotied.
The order of alleccation should be consisteni, o
that the operator can p?@ﬁi&? what unit he will nae
and ¢an, if he wishes, preiomd i%. The actual
alloeation sheuld always be printed ss a2 check.

Ihe procedure must be resdily smendadble. Come
changes will be orly temporary when, for example, &
unit le removed for servicing., Other changes will
be more or less permenent. A new uvnit may be added

or conegtraints on the slloeatior procedure varied.

An example will flliuetrate the procedure. Let ue

suppese that there are 3 consoles, each having one psper

tape reader {(unit mos. 2,%,10), 3 magnetic tape uvite

(Moo Mgy By = unit mos. 16, 17, 20} and a plotter {FL - umit

ne. 21) with the room layout as shown in Fig. 8.4. 4 pro-

gram may wee any o sall tape units, the plotter, or a further

tape remder provided 1t is on an adjacent console. The

pregramuer miel gtste his additional reanirement in the ifape

hesder.

If he wents two tape uvnits and the extra re-der, he

will punek

MO X1 Ri,

followed by a carriage return.

156.

Mg M, M,
(16). {17) (20)

] e R TR,
2] Lo 5| © f19] <2
PL
il

FIG. 8.4,: ROOM LAYOUT
I L

 UPPER HALF LOWER HALF

R | 774 2 [77*
R |1 05]10] 05
Ll 21l 2
M2| 20 | 20| 16
mi| 20 2 |16
mi{ iz] 6|17
Mol 201 201 16
mof 17} 16 | 17
"m0l 16 | 17] 20
MNEMONIC |, Cy C, C,

PERMISSIBLE
ALLOCATIONS
FIG. 8.5.: OAT

(Oxder of allocation table)
#No allocation permitted.

OCAT

FOR THE EXAMPLE OF PERIPHERAL
TON
AWIN o

UPPER HALF LOWER HALF

420 PL
20 . M2
17 M
16 MO
10 TR2
5 TRI
2 TRO

MNEMONIC CURRENT
ALLOCATIONS
{CONSOLE -NCS))

FIG. 8.6.: CAT
(Current allocation table)

157,

Pwo tables in variable store are required
(Pigs. 8.%. and 8.6.). The “order of =21lecation® teble
(0AT) shows, in opder of preference, the allocntions pernis-—
sible 4o any comsole for a partieular urit requested in the
header. The "current allosaticn tshle” {CAT), in order on
unit rupber, shows »t any time those units available for
allocation. The procedure is them as shown in Fize BT
Hote that, in the examplie, a G=er on Conscle 1 would get the
nearer tape reader on Censole 2 as firet preference.

The 1nitisl comdition of the tatles is conteined in
a "primer® tape which seis the computey uwp for multiprogram
pperation. The addition of & umit %o the systex would
reouive zn alteration to this depe. If 2 unit is withdrawn
temporarily from service, sn spatruction from any console
would be used to smet & flsg in the correct gosition im CAZ.

Ir writing his progrsm, the usexr refers to each unit
by the same gmemonie which he punches in the heeder. “hen
en object program is punehed, this mmemonie =must be
sreserved, since the snite used may vary on differenmt rums.
The substitution of the netual wnit nambers is made

immedietely prior to executiow,

8.6. The "lLock* and “Release” Instructions.
The time-ghering vrecedure gonclders 211 programe

o be independent. Ilowever, no progrem 48 entirely

"Search QAT

r*.

Reodl and print
~mnemonic from header

~Search OAT .
_for _mnemonic_

(Delay: Oﬁeruior'f

e

E;omine' CAT_

Unit'available)

‘ NOJ YES

L2

1Set consolei

- number in CAT

(Print | mnemonic
from CAT

FI1G, 84T.3

[allocation
of sequence

counters

E.Lo'_r__ﬁ.g_rth_o_r‘ >, may reject)
_entry —+—
3.
' o End of OAT?
NO | YES (None found) Notify’
4 Operator.

PERIPHERAL UNIT ALLOCATION PROCEDURE

(Part of the Preliminary Sequence - See Fig, 8.1,)

%8,

159.

independent of others. The program catalegve, for example,
is common %o all programs. In some cases TwWe pPrograms may
ve directly related. Exsmples are: the permament control
rrogram and the verisble program which it estsbliishes; the
program requesiing relecstion axnd the reloeating progrem
1teelf. The splitting of a singie external problem inte
main and subordinste progrems (%0 be deseribed in detail in
Seetion 10) results in & set of inteimal programs which are
very muck dependent on ome ancither.

A method of contrelling interaction beitween programs
mast therefore be found. Often, the erder of priority
safiices. Any progrem, wsless delsyed by a deta transler,
will inkdbdt the operation of lower prierlly programs.
Equelly important in CIBRUS iz the use of a met of “lock-out”
flags which enable one program to spacify conditions under
which any other program is to be delsyed.

If a progranm ie to be teaporsrily delayed by the
action cf anobther progrmm, this delsy sust be indicated in a
way whieh distinguishes it from deleys due o other causes.
£1losence nas therefore been made for reglstering "internal
delays™. {Refer baeck to Seetion T.3.2.: One bit of UF is
anlways heid non-zerc. To register an internal delay for the
jth'gﬁﬁgfﬁm, the corresponding bit of BI(]) is set non-zere.
Selecticn of the program will be inkibited wntil this bit is

reset to zerc. oSince the priority word con =2%ill be moved

160,

on the ladder, a requeat by the operator to suspend ithe
progren dees not confliet with the intermal deley.)

Though the loci-out flage cen be interrogated by
conventional mochine code inmstructions, their setting ox
resetting avé the imgeriion or removel of interunal delays
are alwaye garvied ont by two special instructicns added %o
the machine-gode specifically for this purpose. Thess iwe
instructions, "Leck* and "Release”, ave not aveilable to
users and csnnot be used in A-code programs.

The "Loek" imstruction is wsed at the beginning of
any secucnee of operations wmhich might conflict with snothar
program. The instruction specifies those flsogs which mmot
be zero before the program may proceed, If =11 these {lugs
are zerc, they are met nor-zere and the program centinuee.
At the coveluaior of the eritiesl secovence of operations,
the flage vhieh were set are ¢leared with a "Helease®™
instruetion.

(£, on the other hend, the “"Loek® insirvoiion finds
thet eny of the specified flags are alresdy set, it
regietere om internal delay for the eurrent program, and
wullifies the uvsual seonence counter inevemont. Vhen the
interns’? delny i removed, the “Lock®™ instruction will be
reattennted.

imy "Selease” instructiorn not only resets the flags

whiek 1t specifies tut slasc removes zll internal deleys.

161,

If it has reset the particular {lags delaying a glven
program, that progvam will continue. If more than one
program has been delayed by the same flag then the program
of nlsheat priovity »ill take precedence.

Leck-out flage 20 far sllocaled are:

(1) ¢ : Cstalogwe. This fisg is used %o prevent
simulioncous reference to or modificatiorn of the catalogue
by different progrems.

(2} P 3 Preliminsry. Use of this {lag ensures that
only one program at s time will attenpi %o allocete
faclilities to itmell im the preliiminary seguence.

(3) E & tnd. Use of this flag will Bbe illustrated later

by em exemple. It is seb durivg the

. gequence by
apy program whieh must walt until awother program ends. It
is released during the end sequence in another proiram.

{(4) % : Beloecation. This 3lag is set when reloeation is
recuested snd reset when relocation is complete.

(5) my(4=1..3) ¢ Belocation inhibite., For each problem
progran there iz n wepsrste relocation inhibit flag which
the program seta for any period during whieh 1t musd not be
relocated.

(6} Sj(jaﬁ..ﬁ} : Suberdinate program flsgs. The uses of
these flage w1ll be explained in Seetlon 10C.

The ugage of the "Lock" snd “Release” instruetions

4s best uvnderstood by comsidering oxamples. In earlier

162,

discussion, several situations were mentioned where a2
prograz will be delayed and later resumed sutometically.
Let us exanire ome ouch case, in the preliminery sequence,

where & needed fucility is not ifmmediately availsble:

Logk ©
Attempt ellocation-
—(Unsuccesslnl)
{Sucesesful) ~ Tock T
Releasge C Releane C
l Loeek L, C
Releage I

During an attempt to alloeate any facility, ©
(Catalogue) smuet be locked as only one program may refer to
or adjust the estalogue at cne time. If the allocaticr is
unsuecessinl, the program must wait. The sequence of
instruetione:

Loek E

Releaze ©

Loek E,C
will $hen halt the program following “Releesse C¥, "Loeck BV
epreare noewhere but in the preliminary sequence =rnd only
this one progyam cam be inm its wrelimivery sequence. The
first two instructioms arc therefore cheyed, and secess $o
the catelogue ls opem to any obther progvem. However, gince

E bes been locked by the fivrst “Loeck IV, "Logk E,C" samot

i63.

be obeyed. Although remaining in the setive pertion of the
iadder, the pregram will not proeeed while E is still set.
The program must wait until
{1) The operator rejects the program,
or {2} Conditione within the maechine change, making i%
worthwiile to reattenpt the alloeation whiech
wae origzinnlly unsucceseful.
1¢ the contrel progras recelves a “REJECT® reguest,
it resete the segvence counter of Ghe varistle program 80
that the program will hegin the end sequence. The control
srogran ineludes n nuzber of "Relesse” instructions which
remove all internal ﬁeﬁayg/’(hmt reget only these leck-out
flugs which esck instruetior specifies), Although the ¥
fleg ie not in feet reset, the next instruetion which the
progran mugt obey is no longer “Loek ¥,0% tecause ite
gecuence counter has been sltered, It is therefore free %o
proceed through the Ind Sequence, during which ¥ is released.
it iz worthwhile %o reatbenpt the sllocation for the
delayed program if 3
¢ither (1) Ancother program completes compilation and slters
s¢e store limits zhown in the eatalogue,
or (2) Another program cnds.

Ir eseh of these cases, E is relensed.

164,

i.e.

Compilation:
Tock €
Adjust store limits -

Relesse (,F

Leok C
iGjust catalogue

Relesse G E

It follows that if either sequence of instructions
is execonted in any ciher rOIYEE, the firpt program ventioned
con proceed through the "Leek ¥y 0" imstruction.

s a second exsmple, use of “Lock® and "Release®
instruetions before and after reloenticn will be deseribed.
The progrem requesting reloention muet not proceed until
relocation is completes the reloesting program cannot Lagin
pntil 2ll other programs will permit i% $¢ do so. The

instmctions sre used 58 followg:

Progran requestirg rejocxiion keloeating program
vake velecating program sctive

Iock R Loek R

Kelease R Lock By for =11 4.

Garry out relocation.

Release T, By for all i.

165.

Once active, the relocating program will take precedence
over the rrogrsm requesting relecatiorn end will loek E.
The progrem requesting reloeation will be delayed umtil

the R flag is released sfter reloeation.

166.

g, COMPUTER OFERATION

Instructions from the operator of a s ltiprogyan
compvter will almost ecerteinly be transmitied shyough a
keyboenrd, the keyed instructions being read and interpreted
by progrem. Though CIERUS is no gxeeption Yo thise general
rle, it ie perhaps unigue in =t lesst one fmportent respect,
Zpther then having one progysn 4o hapdle all keybhoards,
sepayste programs for caeh keyhosrd have been ﬁie§'¢

The structure of the CIRRUS controel programs and
the plsce of these Programs within the time-sharing system

will now be diseussed.

9,1, Conditiona %o be Tnlfilled.

The procedures chogen te nccept and implement
inatructions from opersfors chould satisfy the following
cenditions ?

(1) It must be imposaible for an instruction from an
operetor to have any ePiect on @ progrem other

thon the one %o whieh he refers.

41lowing only Cne program t0 be operated from each
weyboard (Section G.1.) belps toward satisfying
this conditien.

%&gaing only one sequence of instruections 1= stored and
ghared by the separate gomtrol programs,

(2)

{3}

167,

It is important that the multiprogram computer
be no mere diffieult to operate than a comparable

gingle program nachine,.

Indeed, because of ithe likelikood of greeter
cperator-maciine commwmiecstion, operation muat be
as simple se poessidble. ¥here possible, the mechine
ghould acituslly aesist the operator.

Provision must be made for two classes of message

from the spersior.

These may be defined as "publie® or "privete”
messages. The former ceretitute the standard
repertoire of opereting instructiorns aveilable to
all cperators. The latier would be provided for by
progroumere to be uged in their own programs. Sinece
it is undesirable to have twe separate sets of keys,
the character cerresponding o s periticular key
conld be read pither by & cenitrol jrosyas, or Ly
the problern progrom. TFor exmmple, & decimel digit
wight be part of em address i{r an opersting inmstrue-
¥ion, (e.g. "dump store frem . . "), or part of a
value belng resd as dats by the problem program.

the keyboard rust thereiore be ussble fur
ﬁitherlelasa of message without confusien or exitrs

work or the psrt of the opereior.

(4)

(5)

(6)

168.

The operator should be able %o transmit charscters

without fear that the conirol program might not
ctien rapidly encugh to receive ihem.

The eperator shkould be told if on inmstruction eannot

be carried out.

In praectice, it should be possible te execuie with-
out delay all instructions other than requests for a
program %o be compiled or loaded. The gquestion of
fulfilling this condition hae therefore been covered
in Seetion 8. Un the other hand, netificuticr to
the operator should prefersbly net be given when an
insirvetion is executed unless there could be some
doubt in the operator's mind. Since the operster
#will prebably use the typewriter for some of his owm
output, it would ke foolish t¢ clutter thie cutput
with wvenecessary print-onis.

Reasonable provision should te mrde ngeinst errers..

The nmecidental pressing of a key when there iz ne
corresponding program in the mackine, the pressing
of & "gtart™ key when the progrem is rumning eor of
& "stop” key when the program is stouped, and ¢ om,
should have no worse effect in the multiprogram
than in the single program machine.

169,

(7) it is important to be able to 2dd further instruc-
tions to the repertoire without diffiemity.

Many veeful aspplicetions of a multiprogrem computer
will net he foreseen at the time of ite desizn.
{8) 7o comserve wvaluasble store spece, control programs

met be coneisze.

The use of separate control programs rather than &
single progrem has, irn the author's view, contribu~-
ted sigrificantly towards ssitisfving conditions (1),
(2} ené (8) above, for reasons whieh will be
explained in feotiom ©.2. The fulfilment of
Conditions (2), (B, (6) :mé (7} depends largely on
the sitruneture of the control progrims themselves,
They #ill be deseribed in Seetion “.3. The guestion
of satielying Condition {4) #1111 be discuncsed in

Section 9.4,

9.2, Status of Control Programs irn the Time-sharing
byetem.
Incorporating the time-shared operation of control
prograns within the genersl bime~shsring scheme is simple
enough, Given the procedure deseribed in Section T.3.2.,

a 2ingle control program could be used, retaining the

170.

position of highest priority and being permanently ready to
agcevt & charneter whern any ey is pressed. However,
separste conirol programs for cach keyboerd are used in
CIRmIE,

Eneh of these contrel programs is normally insetive
{i.e. its pricrity word is belew the marker in ithe ladder)
and becomes active only when an ipstruetion is te be read.
The first key pressed ir eny instruction must be whet is
termed an "opevstive” key. #s well as setting the corres-
pending charscter ir the bkeyboard buifer, pressing am
operative key 2lse seis sn "external interrupnt® (Section
TeleZe)e ¥hen the interrupticn is detected, the priority
word of the comitrel program is raised to o position in the
petive poriion of the priority ledder whieh glvee it a
priority higher then all variasble programs. It will there-
fore rend the operstive charaeciey immedistely.

In zeversl cases, the dperative charsoter gives the
whole instruction. After the charseter hag becn read ithe
instruction is executed and the control program terninntes.
Ite priority werd is avtomatieally retrnrned %o the boitom
of the ladder. Vor a longer instiruction, the conirel
program will remain active until all @@ara@ters hnve heen
road.

Since the charascter produced by pressing an operative

key is always read at the beginming of the contrel program

- 111 .

the same character may be used with another but non-
operative key. IThe entire charsecter set could therefore
85111 ve available for use in privaie nesaages.

Use of seperste control progreme rather than a
single program has been found 4o give several advantzses.
Fach program must consider oniy one keyboard and the problem
whiek originated from that kasybosrd. It was thus essier to
fulfil conditions {1), that there he no interference with
other programs, and (8}, that storage for comirel programs
be kept small,

The requirement that privete messages be distin-
guished from public messsges (Comditicn (3)) iz alse
asentisficd. If the contrel program is insctive, sny keyed
charpeters are resd by the preblen pregram -~ provided only
that this progrem i in a peosition te yead them. The
progremmey must include {82 he would 4o in any cther com-
puter) o print-cut to show thet input frem the keybosrd has
been sgeepted. The operater may, il he wishes, interpose
opereting instructions during input of privete mesanges.
Since cach publiec message rust begin with an operantive
charenter, the contrel yrogram will be brought inte
operetion. Fellowing complete transmiesion of the instruc~
tion, the control program becomes inactive. OSubseguent

cherscters will sgelrn be rezd by the problem program.

172,
9,3, Structure of the Contrel FProgreama.

The author has divided operating instructions into
two sategories. In the first esisgory are sigple instruc-
+ions needed in "normal® operstiom. In Bhe seconté zye
instrzotices which mmy be more complex. The oyperator shounld
ve able to begin his progrem, stop it temporarily, resume
it or reject it by pressing only o sdngle key ir esch casc.
Provigion for "Rejeet® as well es "Stop" is esgentisl in a
miltiprogram machine. If the operator decides that his
program can be terminated, he mst reject ity therehy
relesping the facilities which the progrem has been using.
For cnch of these inmstructions, eomly the operasive ey is
needed.

%4th the exception of the “Teject" imstruction, none
of thepe instructions require a print-out %o ve made. After
"Zaject”, the totsl quanmiity of zvnilable storage is stated
{Section 8.3.}.

Yor an inatruction recuiring several charsciers,
each chevaciter is printed ac 1V is keyed. The operator can
therefore check ite correciness.

The styucture of a CIARUS control program is shown
in Mg. 9.%.' Because there is ne fixed correepondence

between control progrsme snd verizble programs, the control

(For more detail, see Fig. B 1)

L

. Control program inactive -}’

¢

I Interruption

7
‘LR’eud operative churucfer—l

N

L
hid

| Search through catalogue for:

{ program _associated_with console

_Program
found

R

Select .
sequence

® s b\l

__Exac.ufo_j J Wait_for

A fr‘u‘frutﬁdh I

{_turther !

-
-]

' choroc_:_!gril

_End of
_search i

or compile?

JOR

Continve

search

I Teri‘niﬁ_ah l

N FIG. 901'=

y YES_L - INo '
1

[Set_ve_initial
_program .

| I

173.

FLOW_ DIAGRAM FOR A CIRRUS CONTROL PROGRAM

174.

program wvust search through the program catalogue for
programs assoclated witk 1t. On finding & wvarisble program,
the control progrem brenches ftc & secuence chosen on the
value of the cperative character which has been read. If
the operative eharacter contains the vhole instruction, the
chosen sequence execubes the instruetion. If the operative
charceter is one which begins en instruction conslsting of
several characters, the sequence walts %c resd the
charzeters before implementing the instruction.

1t was poinited out in Seetion 6.3. thet, in allowing
varieble programsto be allocated to control programs in a
quite flexible way, the intentlor was that the programrer
should be 2ble Hoc divide his problem into o master and sub-
ordinate programs.

When the control program gearches through the
gatalogue, the master progranm ie glwaye found first. Sonme
instructions (for exsmple, "Reject") need be implemented
only on the master program. Uther instructions {"Stop" and
"Resume", for example,) must be applied also to the
subordinate programs. After implementing an instruction of
this second group on the master program, the sesrch i
continued vntil the end of the catslogue ls reached.

In all cases, the control program becomes inactive
after completing execution of the imstruction. Note in

Fig. 9.1. that the whole program constitutes a closed loop.

175.

Yhenever it becomes secitive after an operative key is pressed,
the progrum begins at the same point.

if the contrul pregrar [inds no varisble progrse
agsoginted with it, ihe operative cheraeter iz cheched. If
compilation o lomading hes been requesied, & variable progream
is “esisblished” {see Seetion 8.3.). If any other request
has been made, the contrel program teymirates, that ig, the
request iz iznored.

Tha present divectory allows for 24 operative
chareeters, of which 13 sye now v2ed (see Appendix B 5).
Thie directory could be expanded to sover the whole set of
&4 chereciera. Any operative character counld alse be
followed uy sccondary charsciers to infleste oub—operations.
Expsngion of the instruciion repertoire therefore presents
ne probiems. The only limitetiorn is the guentity of storage
which cawn be spereé for holding programe to execute uriher

ingirmaeticns,.

S.4. Time-sharing Requirement for the Control Programs.

To fulfil Comdition (4} of Seetion 9.7., each
control program must be able to secept @ugéeasive chnyvecters
mers rapidly than any operetor cer transmit them. If; when
a1l eentrol progrems are in uee simultenecusly the program

of lowest priority can fulfil the conditlen, 2ll other

176.

programs can do S50.

Suppose that there are m keyboards and that the
mindsmm posaible time hetween suceessive characters from
one keybcard ie T sec. After sny charscler has been @et in
the duffer, 11 must be remcved within this period T. it
more ther one control pvogram is scidive the program of
lowest priority veceives anly the veaidue of Htime not
required by higher priority programs.

The inequality

(n-f)t » 3 +EST ¢ ¢ o o = o » {9.1)
must therefore be satisfied, where

% §s the maximum amount of %ime any contrel
progrem werld use in anmy period T,

+* is the meximum perioed needed before a
character is remeved from the wuffer,

asnd & representa tims whieh could be lest in
setting up conirel programs, or in imier-program switehing.

We can take .2 sec. as a rensomstle value for T.
£ can therefore be meglected sinee the time Tc set up @
gontrol program is only s few hundred mieroseconds and
progrem awitching %imes are even smaller.

Por the present there is no problem. The enly
instynetions recuiring more than 20 ur 30 msec. to complete
use the typewriter. While typing, 2 [rogram uses only a few
mi1liseconds in any peried of 200 msec. However, the

7.

pesition must be recornsidered for each instruction added.
1f microrrograms are incliuded to @s@%mi "withine
vloek® data tranafers se suggested in Section T.4., their
effeect must also be taken intc account. Sinece th.csn mieyo-
progrems would uese frequent but small quantities of time
(ef the crder of microsecords raither than millismecownda),
thedr effect is most easily considered by assuming that the
vam% of t and $' could be increased by a certain factor.
Suppese that, 41f all posazible data transfers at the micro-
program level were to occur simultameously, a fraction p of
totsl time would be meeded. The inequality (9.1) then

become s

12:1%;:%§431 & By v 5 u s = 1

For exanpley, if m= 3, p = o34 T = .2 see, then
26 » 3 .14
must be satisfied. _

Though public messages can therefore be transmitted
at a maximum keying speed, the same may not always be irue
for privete messsges. Problem programs will certainly
receive priority over the varisble programs while reading
from a keyboard (see Seetion i1.3). Vevertheless, the

srarier is advised to print each charseter in a pr:lnt.

message as it is received.

178.

10. "WIZEIN PROGRAN" TINE-SHARING.

The CIRRUS gystem provides for time~sharing of
processes within a single extermal problem program by ollowe
Ang the problem to be divided into a master and as many as
five subordinate programs, all of which %he time-sharing
procedure itreats as independent programs. These programs
will held separate successive positions in the program
catalogues, the master program occupying the first position.
However, they will be shown in the catalogue as having the
same store spacs. Informetion may therefore be transferred
between them.

The originel intention was t9 provide a faeility
ecuivalent to that given Wy the BUFIIR IN.... and IF UNIT....
statorents availsble ir some verzions of FORTRAN (e.z.
Control Data 3600 PORTRAN (Cemtrol Data, 1964)). However,
the feeility in CIRRUS 43 more flexible, and shoulld be
valuable for a very much wider range of epplicntiens,

& suberdinate program may conmiant of any operations
thought desirsble by the programmer. For example, the user
conld tranamit private messages through the keybosyd in
perellel with other operstion. Alternatively he might use
a subordinate program to read data from the keyboard, tc¢
edit the data and to print on the typewriter while the main
program computes and punches.

179.

A number of operators, esch independently using
separate heyboards, might participmte in a2 single problem.,
Yor each keybosard there would be a sepsrate subordinste
program, each being supervised by the single master program.

A subordinete program should be used only for an
asetivity 4in which there was input er output. Indced, there
is ne pcm' in using one exeept for an sctivity during
which there can be delays. A single sudbordinate program
can contain several branches, the choice of branch being
made asceording %o a value set usually %y the master program
or perhaps by itself or by another subordinate program.
However, il activitics are ¢ ceccour simultaneously, they
must be in separsie programs.

In eerlier sections it was shown how ihe prwl
can :é@cmn additionsl gecuience 20unters for subordinate
progreme in the heeding %o hiz program tape. Their allocte
tior in the preliminsry secguence and thelr release in the
end sequerce have alzc been described. The allowence made
for subordinate mg by the controel programs has been
covered in Seetion 9,

In this seetion, an exampls will be given to show
how the programmer csm eccnirel intersction between the
geparsie progrums. Simee the programs receive progessor
tine indeperdently of each cther, the programmer must be
able %o specify what might be ealled "points of

180,

reconeilistion”., At these points, one program would check
that smother program (or other srogrems) had reached s
gtage enabling it to continve further. If the firet program
were Torced to delay, it must receive no rore time umtil
she required point had been reached in the other progranm.
It mest then be reoumed avitomatieslly. The "Loek"™ and
"Release” instructions desorided in Secticn 8.6. are used
to fulfil this purpose.
Giver a problem with the normal sequence of

cperations:

Input %,

Compute with i‘ to get ?1

Cutput Er?"‘.;

Input X

&

L

Inpat X,

Compute with X, to get In

Outpat ¥,
(where X , ¥, are input, output veetors), the aim o to
makes

Output of ;sfﬁ__%

Computation with X to get ¥,
and TInput of inﬂ.

take ploce sisultaneousiy. Iulfer areas in core must be

81,

provided for the imput snd output vectors. These buffers
will be referred %o hereafter as buffer 4 and buffer B
respoetiveiy. Two subordinate progroms, one %o hiendle
input end one output, and two corresponding lock-put flags,
34 omd S, are required. Overall cortrol is exerted through
the master program which fumetiome a8 shown below. (Initial
and finel conditions are omitted for eimplicity.)

Master program:

(&): (Provided output buffer is emptied)
Transfer §,_4 td output buffer
Stert ouiput progranm

(Prmidod input buffer is filled)
Trensicr in from input buifer
Compute with "ﬁﬂ to get ﬁﬁ
Return to (A)

The master and subecrdinaite programs would be compiled

as below:

i82.
Main Program Subordinate Programs

{ Input) {Output)
ploek 32 . >Lock 34 P&oek‘ﬁz
Iransfer to Input te Output from
buffer B wuffer i buffer ¥
liegume P3 Release 81 felease Eg
Release ﬁﬁ - ' Suspend orepend

Eo | S — | et

Tosk S, (®)

Transfer from
uflfer A

Reoume P,
Release 5, (a)
CUHPITATICR
(U |

Hotes: '
(1) 7The @pefatiana Loek, Felease, Suspend and
Resume are porformed by single instrucitiors elresdy im
the instruction-code. (See Appendix E 4.)
{2} Programs Py snd PB will have priorities shove
Py (see Section 11.3). Xence, after 94 1s released by 7,
at peint (8), the Tock &, instruction in P, will always be
executed before the Lonk 5, instruction at peiﬁ% {b) in Tye
The avtual form of the source langunge statomente to
be umed has not yei been declded. Fecause of the restricted

storage available for holding the compiler, the programmer

1€3. u

may have to delineate hiz buffer areas by specifying
separate variebles, and make the buffer tramsfers with
gtondard srithuoetie statemente. However, compilstion ef
those instructions needed to controel the separate programe
is suite straightforward. The subordinete programe will be
set out se "procedures” {the CIRRUS equivalent “of PORTRAN
subroutines), with some indication to show that they will
function internelly as separate programs. Beyond this
indication, & "WAIT ..eeo” @tatement for the e cber program
and 2 special "RETURN® statement for the subordinate
programs are all that is necessary.

The source program for the earlier example is given
below. Since CIRFUS C-cofie is mot deseribed in thim thesis, .

an equivalient in PORTRAN statements Iz given. |

184.

COMPILES 1O

WAIT WRITE . . - Lock 3,

(Franefer to Buffer 1)

CALL WRITE > {Heaume Py
Release 32

WAIT READ . > Look 8,

{Tronsfer from Buffer A)

CALL READ ' > {%;.esuue P,

elease Sq
{Computation)

60 70 n
LR B O B IR B B O

ERD
SUBROUTIRE (SP1} READ

B S 2SSO OONSENESEOEDSGeE

Release 31
RETURN D> {Sugnend
EKD dump to head of subroutine
SUBRUVUTIRE QSP?} WRITE

(AR N ENEEEE EREEE R BN SN R

Helease Sy
RETURN > 4 Suspend
END Jurip to head ¢f subroutine

¢S SN SE PN SR ESIEDINTS

2% - o o
4 ey
s 0 ﬁy%i

(1) The subroutines to constitute subordinate

prograns are comniled as normal subrovtires, except thats

»* i
It must bve remembered that the initial condltlions were
disregarded. In wmaking the firat CALL to each subroutine,
the %AIT.,. statemernt must be bypasaed.

185.

(a) The sequence coumters chosen are set with
the address of the first instruvetion,
{b} The firet instruction compiled is the
appropriaste “"Leek" instructicn,
{2) Peither the "CALL® mor “"RETURN® statements
| result In a eontrel transfer as would be the
ease for normal subroutines.
(2) Instead of using "WAIT..." statements, the
programmer could use an "IF...." statement to check the
lockwout finga.

1“ -

11. MAXINISING WORK-QUIPUT.

The structure of the CIRRUS multiprogrem system and
the tine~ ard space-sharing technicues used therein have
now been fully deseribed. The primary intention throughout
development was ¢ produce for a reasonable cosi & compuier
wost suited to the enviromment in which it would operate.
Whether the chosen structure allows the most efficient
m%iliﬁatiun of the processor has, so far, largely been

neglected.
Perhsps the moat significent feature of the system —

iz the provision for separate and independent opersting
stations. In seme systems, selection or "schedulinz® ef
jobe in appropriste "mixes” for execution is considered
fundamental for efficient processor utilization. Al fivet
glemes, the independence =f the operating staticns ism CIRRUS
would appear tc prevent any useful schedullng.

Je eimplify the %ime-shering procedure in CIRRUS,
progrome are allowed to comirel ihelr peripheral units
ﬂixé@%ly. It ie generally mecepied thet date transfers
should teke opriority over computstion. Marthermore, some
periphersl wnits fuvetion extremely ireilicierntiy if they
come to a complete atop and ﬁ&vw to be regtarted.

Ubviously, some method ersuring priority to a program

187,

during input or output must be found.
These matters and others affecting the efficiency of
the gsystem will be discussed in thias seetion.

1.1 Principles. ‘

To increase the rate at whieh work is done by the
processcr, there are three generally accepted principles
which may be followed:

(1} The number of separate cetivities availoble for
whe processor to work on should he kept as high as pessible.

(2) %he setivities available for the processor at
any siven time should he¢ as fayr ss possible a balanced
mizturs, some setivities uiilising the processor heavily and
gthers only occasionally. '

{3) ©f the setivities avellsble to 1%, the processor
should giv@ pricyrity to those whose demand for time is
loweat.

The term "setivities™, rather than “prograns®, has’
been used in the above sitatenente ﬁéﬁiharm@ely. From an
examination, loter ir this seetion, ¢f procticsl methods of
improving efficiercy by following one or other of these
prineiples, 4% will be seen that by “setivity” could be mesnt
& progyam, a pard of a program or & sequence of programs pun

ir a parivicular way.

188.

The expressions calculated in Section 4.7 for
limits of the improvement factor I and plotted in Figs. 4.1,
4.2, 4.3, show the importance of principle (1) above.
Unless the value of I’ for the work-load is close to 1, I
mast inerease very significantly for each inerease in n,
For example, where D = .3 and d1 = D for all it
= 1.6, I.=2 if n = 2,

% U
IL = 2.7, IU = 3 ifn= 3,

The number of activities available to time-share a
gystem with only core store depends largely on the store
size and the efficiency of the method by which storage is
shared. The question of selecting programs to make the most
effective use of available storage will be discussed in
Seetion 1.2 .

In ealculating the lower limits for I in the pre-
¢eding paragraph, it was assumed that the values of di were
equal for all i. That is, the very large work load was
agssumed to be divided at random between stations. If steps
are taken to follow the second and third principles stated
above, this assumption can no longer be made.

Let us suppose that, rather than considering the
work-load to e smupplied through n stations, we regard it
as being supplied in n separate streams, B4 o« o B, where

the work making up one stream may originate from different

189,

stations. However, suppose that work in strean 8y always
receives priority over work in atream 84,4+ Stresm g, is
ther, by ﬂ@fini%ian@ eémp@aed of 211 work huving priovity 4.
lLet processor utilization by the work meking up stream s,
again be ﬁiw |

ihe expressions found for I, amd I, in Section 4.1
nye atili valid. The velue for Iﬁ is unchanged by varying
the ﬁi, ey Xg inercases if-ﬁ1w for example, decreases. The
relationship betwesn the @i is n souvlex onc. Considering
only the ease where n = 2, one couid esrsainly divide a very
lerge work-losd into two equel parts,; one intended to
comgtitube siream m,, snd the vther streanm By #0 that

4 (61 + ﬂz)‘w B.

However, the work in stres: s, would be processed more
rapidly then the work in stream 8, Te continue aimml-
taneous preet-aing‘umtil the whole work-load had been
processed, work from the second part would have to be trans—
ferred to the first. One can aesume only thet, if &4, iw
deerensed, anothey &i st increase.

following the third prireiple obviously tends to
reduce d, relative to ﬁgdn@ ﬂg relutive to ﬁB.,..Qﬁ,
and 8o on. Fredicting the efieet v the improvement factor
itself is Aifficuit, partly because of the complexity of the
relationship between the variovs d, but more importantly

beceuse the cxpression in terms of @i represents only a

190.

lower limit and not the improvement faetor iself. Ome can
assume only that any measure whieh eomiributes to an inerease
in I, will probably imercase I. Hence, any measure which
tends to concentrate lower-demand sciivities in higher
priority stresws should be worthahile. Dowever, one must
resort to simulation to @btéin relinble sstinates of the
effeet on the improvement feeotor itself. Results from a ‘
slmulation study of methods for priariﬁy.mdguatmant will be
discussed in Section 11.% .

Following prineiple (2) in conjunetion with prin-
eiple (3) would slso insrease the value of I,. demsider,
for exmmzple, the cege whevre n = 2., Iuprose that, instead
of supplying the work-losd in a compleiely rendom way,
attempie ars made 4o couple low- with high-demand setivities.
Frocessor utilization By the work in the higher-priority
gtreen would deerease, that 1, ﬁi wonlii decrense snd aﬁ
ineyease. Steps which might be t&kﬁm.ta'halanee lowe— and

high-demand asctivities will be discussed in feetion 11.2 .

11.2 Standard Operating Practices.
The firsi and second priveiplee states previously
suggest that some ameleetion should be made of those
problems which are to cccupy the machine together.
Selection or “scheduling” procedures cem be quite elaﬁarate.‘

In STRETCH {Codd, 1960) and the Honeywell-f(Q {Honeywell,

191.

1661}, for example, spece and itime requirements of jobs
waiting to be run are examined and the jobs combined into
appropriate "mixes" for execution.

the indegendence of operating stetions in CIRRUS
elixvinates the poseibility of scheduling in 4his way.
However, it ic doubtful whether what might be termed
"static scheduling® would be of much value for s swall
geientific computer. If scheduling is to be effective, the
storage requirement, execution tlwe ard precessor utilize-
tion of esch program must be hoows fairly secursiely. iHence,
scheduling is of most walue where the work-loed contains a
high progortion of recurving jobe.

The work-load of a emall scientific computer varies
congiderably frem dsy to day. Many programs are run only
onee or iwiee beiore belng dicesrded. Though the storage
resuirenent of each program enn be estimated fairly
accuyately in sdvence or fourd exsetly wher the program is
compiled, the extent to which the processor would be
utilized would be difficult te yredict mccurately amd the
execution time even more diffieult. If the forecast of
execution time for 2 program were in errer by & Ifsctor of
¢ (g2 could guite often happen), a prepared schedule would
become meaningless.

If & schedulinmy procedure is %o.be effective for

this sort of work-~load, it must be “"dynamie®., In other

19?0

words, selection of the eppropriate job should be made
only when another joh is needed, and made according %o the
current conditions. The author fecle that, if certein
stendard opersting practices sre lsid down, moet of the
benefit t¢ be gulned from seheduling caw in faet be gained
without jeopardising the independenee of the operating
stations.

The Adelzide University's IBM 1620 has been operuted

during normal working hours by a trained operaior, and out-
slde those hours by the nser-programers themselves. The
,mmih@r'has uuﬁge@ﬁaﬁ garlier thet one (end cccasicmally
ﬁwo*} of the tmmem'ﬁxﬁﬁﬁs gtations be marnmed by the full-
“ime %gera%er. His tesk would be to msintain a continuous
flow of work to the machine. The remsining conzole or
coreoles would be availsble t0 NSEr-prosrammors.

The main opersior should keep progrems sctive from
his station or stations for =& mueh as 90% of totel time.
The user-programmer would have kis prosram active for
perhaps as 1itile as 10-20% of the time. Hence, there
would be @ natursl bles towsrds the coupling of low- and
high-demand activities.

ﬁSincw one program only con be run from esch station, @
single operator should be able to look after iwe stations
simaltarecusly without confusion.

Ir a number of articles on multiprogram time-
sharing, menticn has been made of a need to schedule "I.(0.=
lixited" and “conmpute ~limited” jobe fbr sxecution togethor.
Using these terms to desoribe whole jobe is, however,
unjustified, fer any progrem {(unless interded purely for
dute conversion) iz comprised @ﬁ successive periods ers?.
whieh it is &1};!53#&1: I.0.~ and pompute-limited. In the
suthor's view, processor utilization by emy single program
is mere likely to be near the median atilim&%i@@.ﬁigﬁrﬂ for
51l programs than to be very high or very low. Furthermore,
predicting the degree of uiilizntion mecurately would be
difficult. Henece, ithe assigning of contrsating fametions—
to different operating etatlone a8 suggested should be very
muek more effective than attempting to sehedule jobe of
1@w~ramﬁ high-{emand .

The task of a full-time operator is herdly onerous.
He im, nevertheless, obliged to be in sttendance almost
contirvouwly snd ear therofore covirituie to efficient
proceseor utilization by selecting on each cecasion the jeb
most suited for the current conditions. His seleotion need
be based solely on the smount of waeant store snd the
storage requirenents of those programs which he himeelf has
waiting t¢ ke run.

To make this sﬁleatiaav the opersior needss

194 .

(1) A statement of the storage required by each
Jobj

(2) when emch job ends, & statement of vacant
gpace and number of programs stlll operating;

{3} +the avility e rejeet a job which, when loading

is attemvted, proves toe larua.'

$#, in the thres-~station sysiem, two programs were
glreedy in the store, the operator would select from hie
staek the program whose storage regquirement was largest but
which would etill £4¢t into the machine. If ome program or
no program were slreedy in the store, he mizght ncelect a
orogras whose recuirement was small. Hie selection should
e influenced by the compesition of kie job stack at the

tinme.

iIt has becr shown earlier thati:

(1) The header tape reguired by the CIKIUS systenm
includes o statenent of storage recuirewent for ithe program.
Thie informetion cen alzo be written on the Job Bequest
supplied to the cperator.

: {2) The cuantity of vacant storamge is printed out
during esch program's end secuence. The rurber of programs
5t111 1in operaticr is not stated at present.

{3) Bejection of jobe is possidle.

195.

ligser-programrers having two or more jobs to run can
algso select the most suitable of those jobs. The result
should be extremely eificlent use of the storaze available.

The procedures suggesied ixn this section, that
differernt stations be ascigned for different types of
aetivity and that operaters base their selection of DYoL rems
solely on storage requirerents, may seem exitremely primitive
coupared to the claborste seheduling mrocedures used in other
systems. Nevertheless, the messures suggested should be
almost as effective as one would expect frem amy very
elaborate procedure - given the noture of the work-load to
e processed. Host dmperiant of all, the independenes of

separate operators is not zffeected.

11.3 Priority adjusinent at the Machinec-code lLevel.

fection .11.2 showed the extent tc whieh the first
and second prircivles stoted 1n Seeticn 11.1 een be adopted
in & swall sclentific computer having independent opersting
stations. Ir this seetiony; we shsll exmmine ways in which
the third priselple -~ that higher priorities should be |
glven %o lower demand sctivities -« cean be satisfied. It
muat first be decided what is to constitute an "setivity"
for the purpose of priority assessment. It might be

suggesied, for exsmple, that, nsince the dewand for

196.

processor time frow some stations will be consistently
less than fremuaﬁharw,luork from these stations should
receive priority.

Suppose thet a sivgle siation has exclusive use of
the processor. _%otal time may them % divided irnto segments,
asch of which f&ll.iﬂ one of the following entegories:

{1} An operator delay, during which the demand for
tive is mere, .

(2} A secuence of computation without input ar'
output, during whieh ithe demand fﬂ: time is continaous, and

{3} A sequence of imput or output with ome —
peripherel unit, during which the demand for time is inter-
uwittent dbut faldrly vegular.

Proceseor wiilisstion during eny of these
“aetivities” iz both consistent snd predicteble. The
activities should therofore econstitute the basiz for
priority assesament.

The suggestion that priority might be given 0 a
station from which the oversll demsnd is low can therefore
be disposed of. Yo give Qwi@fity in & way which minimises
utilization in the highest priority stresn, priority should,
i theory, B¢ givem o amy stetion during an operator delaye
Homever, during such delays, no time is recuired and no

priority adjustment need he made,

197.

The aim has been to develop for CIRRUS a procedure
which would give each progrem higher priority Jduring input
or gutpat, yet would require no specisl information either
frow the programmer or the opersitor. ﬁ&vmﬁﬁﬁg@ hes been
taken of the feet thot almest all progrems would he eompiled
froe problez-oriented 1@n@ﬁm@a'@ For practiesl purposes, an
“input-output sequence” has been defined as those @@axmﬁiun-
resulting from a single READ or WRITE statement in source
langusge, and a "computation sequence” az those operations
betwesn two successive inpul-output sequences.

{and
& probeble reculirement for priority resdjustmers) arises at

A varistion in demend for time %y one progren

the moment of transition frouw one Lype of sequence o the
other. The logleally first and logieslly finmal imstructions
conpiled for sach inmut or cutpul statement are therefove
control tranefers to & priority adjustment subroutize. This
subrentine plsees in the program catslogue a "demand figure®
for the eurrent program (.01 if the statement were to type,
«1 ox beginming to punch, % on begimning %o rend, or 1 on
ending input or ontput,) and then adjusie pricrities
according to the eurrent demand {lgures for =ll programs.
Speelal priorities may also be introduced. For example,
during the Preliminery Sequence deseribed in Seetion 8.3,

* _ . ,
ginee efficiency only is involved, the rare program in
herdware~oriented langussze can be neglected.

198.

& demand fizure of zers would ensure prierity over other
working programs. |

To estublish a standard for comparison a simulation
run (Bun 1 - Appendix C) was made where pricrities between
regrams were determined simply hy the opder of thelr @nﬁxﬁ
into the computer. I% was assumed ithat 3 programs were
alwoye avaliable to time-share, that is, thet there were no
delays due 4o an operator, znd wno siorage limitstions.
vher simmlation wes discontinued the average desand over
all prograsms (or part programs) run was 0.296, tolal proces-
sor utilization was .708 (of a possible ,888) and the
improvesent factor 2.40.

This =i

wialation model was equivalent to the
theoretical model of Seetion 4.1 emespt that pricrity wae
not given to particular sistions, bet Yo programs in the
order in which they begesn. Since priorities were £till
determined without conmsiderirg the demand for time by the
activity, this variation was probebly of little significmnce.
In the theoreticel model,

Iy =3

IE w 2.00
for D= 206, u = 3. In developing the expression !trIL
in Seetion 4.1, econeurrency of useful work not requiring
time with work recudring time wae disregarded unless the
former were of higher syiority. The extent to which the

199.

value of I foend by simmlation exceeded I; was no doubt
almost wholly due te this concurrency

A furiher simmlation (Bun 2) wes made, during which
nriorities were adjusted as indicated esrlier. Rather sur-

prisingly (st first glawce), the improvement was diseppointe
dngs utilizetion wes 714 {from an average demand of .290
indicsting & meximum possible utilismtion of .E70), snd the
lmprovesent fnetor wes 2.465. However, the reason m.uat
hard to find. Fach program was give: lowest prioriiy at the
end of esch sequence of impui or output. Hence, during
every psriticularly long computation sequence, the program
soon obtained highest priority. Themeceforwsrd, the program
wonopolised central processor time, thoroughly defenting the
purpose of the priority sdjustment. Iz the meedm ran,
there hed been only # f=in-3 chance that a program would haﬂ
kighest priority duri
Thiz seaond mm"it raiced the question of what
genersl strategy should be adopted to determine priorities
betweer two or more programs, each engaged in computaiion

ng & long period of computation.

sequences. An examination of the program semple showed that

logieally suecesazive in

put or output gstetements were, in
most cases, ceporated by only a very few other ststements.
In two or three progroms, virtually all computetion was done
in & eingle computation secuverce. The distribuition of the
lengthe of sll computation sequences in the sample is shown
in Plg. 11,1 . It ie likely that the extreme positive

==

2090,

DCCOSANNN

\

/ 7 //////7///; 2% /';f}?/;‘//’i"——-
015 '(-)~20” 0-25

LENGTH OF SEQUENCE (SEC.)

FIG. 11.1.: DISTRIBUTION OF LENGTIS O COMPUTATTION
SEQUENCES IN 'Piils SAMILE SET OF PROGRAMS.

201.

skewness there exhibited would held if all progrsms in
any woprk-iosé could be exmmined. _ |

It ia obviously preferablie that, if thers are two
or more computaiion segquences, it is best Yo choose the
ghorter or shortest. Without any knowledgze of the
programe, such & cholce carmot be made. Attempting to
extrapolste from the past history of the program is also
not precticable, becamse s pavtienlarly long perioed of
computation is quite possibly an 1isclated ove. It was
therefore decided thet a profiisble strategy would be any
one whick reduced the expeeted time for at least one ef
the two or more programs to resch the end ﬁf its compute-
- tion sequence. .

Given the ecase where there are twoe programs A and
Hiew Progren ¥ ig in a computatlion sequence at some
unkmown poini, and Progrem A ic about %o begln a
computatior seccuence, Fothing is known of the relative
lengths of these secuences. It must be sasumwed that thelw
lengzihs are randem, choser from the distribution of all
computation secuence lengths. Therelore, the expeeied
period of the econpuietion sequence in program A is

KEy) = ¥,

where T iz the mean lemgth of 2]l computetion sequences.
Yor the 40CC ofd compuwiation sequences of the program

sample used in simulation,

202,

T = .12 seec.

OUne might expeet that, since some work has
presumabliy been dome on the compubation secuence from
prograu B, the expected length of %he residue would be
lesg than T. Such is nol the case. Although the lengths
of the sequences in both A and B come from the ssme Gige
Srimtion, ihe chance of eny particular event oceurring
(suck as the beginning of e computation sequence on the
other pregram) during any sequence in B inereases with the
mngth of the sequence.

in estinate of the expected length of the residuve
pericd of computation from B wee found in the following
mamner. OUn the IIM 7090, 20 periods of compubetion

.z.! coovni.‘?(}g were seleeted at rendom {rom the mw@wm &%,

and eombined to represent a single dime period © te

aof pregrex B (Pig. 11.2). (Zhe sltermete periods of
input-ontput ecould be ignered hecsuse we were interested
only in an event oveurring during computetion.) A random
velue x from the rectangulay Matmmtim @<x<1‘ wag alsoc
choser, snd with this, & rendom point x. ; T‘ chosen in
the time period under consideration. The position of this
point was then found relative to the time inerements ,.
Then, if

N
J« X.ET; —>] |
' T, l T, T I _______ l T20
0 20
' lz;Tz'
" 1
RTE)
' A H
f<=- x=T; —>l I
LT L1 Tis | Mo | Ty
. . [}
0 29
I=T;
]
FIG. 11.2: EXAMPLE OF TWO SUCCESSIVE EVALUATIONS OF R(Tg)

g 144

204.

the residue length of computation on program B was taken
to be

g+1

o m
_ﬁ.f Tmh

The process was repented for differenmt sets of I,.
After 10° times, the meam of B(T.) had stabilised st:

B(ﬁ%} = .ﬁti) SEC.

Giving priority te program B (parnllelling what was done in
simulation Hun 2) would have meant weiting, on the aversge,
about five timea longer Tor the end of the computation
sequence than if priority had been given to program A.

The simulation study deslt with the ease wheve thers
were threec programe vather then twe. However, the
conclusion 4o be drawn from the srscedins celevlations is
that a progrem sboul to begin a compuiation sequence shenld
have priority over another progrem szt come amknamm‘ﬁ@xﬂ% in
s computation sequence. The simwlation wss repested (Run 13},
but with the differerce thei, or comnleting 2 secuence of
input and oulpus, & program was given priority over other
programs, 1 sny, in computation sequences. The result
ahowed = substantial iﬁpravumeaﬁs wtilization was 0.768
(from an average per program of .300) and the improvement
factor 2.57.

205,

One requirement remained unfulfilled. A program could
81111 on cccasions goin highest priority amd monopolise
the ;rocesscor during very long sericds of computsation. An
independent sxterral interruptiorn, rresumebly from 2 real-
tire clock, is needed to remove a prozrem from the highest
priority position when thaé program is uging all the
trocessor's time.

The frequency with whiek interruptions should be
wade nust now be aonaidefaﬁ. ihe interval hetween succes~
sive interruptions must cortainly he very long relative to
the time needed %o adjust prioritics. The priority adjust-
went would take sbout 500 pa 1w CIRRUS. However,
interrupticns must be frecuent emovgh to prevent any srogram
being held out of operaticn for a period long enough %o be
inconvenient for am sm-line opersctor. in interval of from
.25 to 2 seconds would be satisfactory or both counis.

vne ferther factor must be cowsidercd. It was
suggested that, whem ‘wo or more rrograms were enguged in
computation sccuerces, the strategy should e aimed at
decereseing the expected time for one program, at lesst, 4o
reachi the end of the sequence. Une pight inagire that
alternation bhetween progrems wonld ineresse this expected
time. In faet, the eonverse is truwe, =s will now be shown.

Suspose that am external interruption is o be made

&% intervals of AT see. and that, if at the time of

206.

interruption %wo or more progrems are found %o be in
computation sequences, the one of highest yriority is to be
given loweat priority. Consider again the case where there
are two programe, A and F. Prozyrem © is in a seqguence of
ecomputation, A iv sbout to begin = computation secuence and
iz givern priority over B. The effect of alternating
priorities on the expeeted time, X(%y,), before ome program
completed a computation seguence was celculated in the
following way?

Random values TA‘ and B(BB} were found as described
gorlier for the length of 2 computetion sequence in A and
the recidve length of a comg;«utmien sequence in B, Since
the interrup stione come from zn indevendent source, the Tirst
was taken t¢ ocewur X.AT sce., after the computetion
seouence bogzen oun progrem i. (x a random wvoriaste from the
rectornguler distritution O<x«1). Subsequent interruptions
were then assumed at intervals of AT sec.

fime Tor ome program %o ecomnlete its eomputation

sequence was therefore:

- @g} i f&@ < XoAF
or X«AT # ﬁ(%) if ‘té > %.AT and ﬁ(TEK AT,

10

or, generally:

A
2, * ‘Jt'é + nAT Af 247 ¢ (p-1)AT <1, <x.8T + nal

and ®(T ‘.,) > nAf
or xAT + nAT + R(ﬂﬁ) if 'f?>xdf - na
ong MR <R(TE < (n+1)4T,

207«

The procese was carried out with about 3.1G§ rendom values
oF T‘f, E%(Tg) snd % for a vumber of values of AT. The mean
éalues found for TIB are shosn in Teble 51.? « The results
show that, hw sltermating betwesn twe programs, esch in
conputation secuences, the ezpected time for ome at least
to eomplete its computation seguence Jdecresses.

The underlying remson for this decerease is that the
chance of am incompleie computation sequence being completed
withir some small period AT meiually decreages as the time
gpent in the computation sequences incresses. This faet can
e understocd hy-eeﬁaiﬁering Filg. 11.3 »

ihe above calculations were made only for the case of
two programs. Heaningfiul caleculations for & three-progrem
eage would e S1fflenlt %o make. There would somelimes be
three programs in compuistiorn cequences but nmore often two.
Furtherirore, vwhen two progroms were irn computation sequences,
the proportion of toltel %time available fer them would de
reduced to different extents depending on what wae heing
done on the third, higher prioriiy program. HNevertheless,
one can assume that sltermation of griority hetween those
progrems in computation sequences would have a small,
beneficinl effect.

The simuvlation was repeaied (fun 4) with an inter-
ruption znd, where neecessary, alternation of priority after

each ®hole second. Processor utilization wes found o Le

0, To TotAT Tg#2ATw 0.2,
LENGTH OF COMPUTATION SEQUENCE (SEC.)

FIG. 11.3: ILLUSTRATION SHOWING DECREASE IN PIZOBABILI&‘Y,OF COMPLETING
&y A COMPUTATION SEQUENCE IN SUCCESSIVE PERIODS AT.
A

+ Pr(completion between To+(n-1).’AT and T0+n.AT) = ol

A,
ol

™M

'
il

3¢}

209.

TABLE 11.1 : ESTIMATES OF EXPECTED TINES FOR ONE PROGRAM
T0 GONPLETE A COMPUTATION SEQUENCE, WITH INTERRUFTIONS
AND SUBSEQUERT ALTERNATION OF PRICRITY AT INZERVALS OF A%.

interruption ’.’i.*;a
Pefigg }AT {see.)
10 053

+UB0 053

» 100 53

«5C0 076
1,600 058
2,000 064
10.000 067
50000 092
T5.06G0 118

Fote: i% vas ealeulated to be .12 seec.

- " " .SC% BEGe

210,

.764 {of a possible .879) and the improvement factor
Z2.61, showing a mmall but probebly significent increase.

Fhe results from the simulation rums discussed in
this section are summarised in @ablé 11.2. The chiefl
conclusion t¢ be drawn from these reavlis is thmi it is
not sufiicient merely to give @riority to progrems during
input ox ouhpmt*g fhe grder of priority between programs
not engaged in input or output must #lso be considered.
This fect is relevent for other systews in which programs
do not control itheir peripheral units Jdirectly ond in

which duta tremsfers would automaticslly have priority.

‘If one compares the results from Run 2 anéd Run 9, and them
the results of Run 3 amd Run 1, it would appear %ﬁat
gimply giving priority during input =and ocutput is herdly
woprtiwhile. However, fer Run 1, the reduction in
efficiency due to & peripheral unit stopping completely
during transfer was neglected. :

211,

PABLE 11.2 ¢t SUMMARY OF RESULYS FROM SIMULATION RUNS.

Fxpected tine o complete
Rux conputation seguence I
(estimate)
=, |
2 ’(T‘C) = 460 7 2.46
-
4 E 10 = . 06 Ze ‘51

212.

12. CORCIUSICES.

ihe conclusions to be drawn from arguments put
forvard i» this thesis have been explicitly stated during
the preceding mections. They will therefore not be
restated here in detail.

The aim of this thesis has been to show that multi-
programuing is both desirable snd eeonomically feasible for
the smeller seientific computer. The anthor offers
successful wultiproszram operation ir CINIUZ as proof that
maltiprogranming is feesible inm & low-cost syatem. Apert
from additional storage snd peripheral unite, the hardwere
needed o implement multiprosram operstion hae heen qguite
trivial. %he seftware reouired ~ some 200 micro-instructions
and 38C machine-code instructions ~ hes slso been zuite
smalle A4 complex supervisory pregren is certainly not needed
to produce a multiprogrem asyctem which is efTicient,
reascnably eomprebensive, and which imposes no burdens on
the user.

The desirebility of multipregremming can hardly be
in doubt. For the cost of litile more then the additional
storage and gerdphkersl wnits to provide for three PrOSZTams,

a computer system hos heen Wmilt with the procesging capecity

and gperating

convenience of threce separate computers each
havirz very nearly the capsclity of & single-program CIRRUS

comyuter.

213.

The author concludes that the use of maltiprogram-
ming should be considered during the designing of any

guall-gezle geientific computer system.

APFERYIX A. CIRHEUS: A GENFRAL DESCRIPTION.

A brief description of CIRRUS 1s given here for
reference purpeses. Nore detsdlied degeripiions may be

found ir articles by Allen and Rome {1963), 4llen gt gl.

At. System Structure

The complete system design is shown in Fig. A 1.
Two separate core stores are used, the mairn and register
stores. The basie word lemgth is 36-bits. The instruc’ion=
code formst alleows for addressing 32,768 words in the main
and 64 words ir the rogister store. 0Of the 32,768 words in
the former, 24,576 sre provided with standard 6us oycle-
time coincident current cores, while the remsining &,10¢2
words are reserved for a spceial form of seni~permemnent
wired storage (Butcher, 1964) intended to hold system
programs and subroutines.

The main working scction of the cerntral processor is
made vp of genersl purpese flip-flop vegioters: My, B, W, and
7z of halfeword {186 bit) lenzth end dwe smaller registers A
(7 Bite) and B (10 bite). 4 gereral -purpose "arithmeiic®
wnit is veed to perform arithmetie, logieal or shift
operations en 10 bit half-words.

4 wvariety of interconnections betwecn siores, regis—

ters and arithmetic unit con be made for sny single operstion.

FLAIN

STCRE
CEMI - PEZRMAD
ROUTHIE STCORE
N{>2192) -z 3192 /36 REAL
TIE

n(%3192) , E,0
3

N uNITS
MAIN CCRES

24.567 /36

A,E(564)0,2 ﬁ

VS
ofe '

SEAL TIME BUFFER
E(>6 "_14;?!-53
{ 3 Pt =

REGISTER CORES
64/23

- {_ADP?!,&,A feno 1V, YsmiTe . READ T 4 T urire
SLCH PERIPH 37;7“’_—1_ (.t “Ro.N.1
El:,C,‘A,F._l./ L’.’l' ,l' \l,M,Z
Leo crr s(u;:] [M RIGia ‘ R REGISTER (19) |
I o o,14,04,1,54,1, , QR R, 1, RE, OE,
STCRE r
CONTROL FIXED STORE TIMING ™ TiMING
4095/ 36 CHAIN ATO-LOGIC MNETWCRK
s T REGISTER + ,0,1,6.,6G,
s . s G;
LOGIC > CLOCKS m[{CR) r:za
L ALD
{controL risisTer c(3s) G 4 5)
TANG i
PATTEAN ecare
- - P
COMISHIATIONS a,1,4d,¢
p g et
J -Q
- ‘ - .
Fig. A 1. CIRRUS STRUCTURE

JUMP BUFFERS

1 ¥

In a typical operation, a half-word might be taken from
the mzin store, another half-word from the register stors
or from a static register, and the result of an aeperation
on the two guantities returned to the store within a single
6ns store cycle. If me reference to a store is needed,
gach operation iakes only 1.5us.

The intexrconnections fer a given operation are
determined by the value held in the 36~bit control register
Ce .Pa‘iﬁii“’n‘xﬁ gre read into C frox a econtrel or microprogram
fixed store whose physical comstruction is identieal o
that of the semi-permanent routine siore. The comirol
store is addressed from the (2-bit microprogram sequence
counter S, The patterns wired into this store determins
the behaviour of the machine.

Each machins~code operaztion consists of a sequence
of micro-operatioms. For each machine-code instruction,

a number of patterns have been wired into microprogram store.
The machine-code programmer need not kmow of the iaternal
register sirueture as none of these registers sare referenced
in machine~code. The fumctions normalily associated with
accummulstors and index reglsters are carried ocut by any

of the 64 words of the register store. In any machine-code
operation, the rasulis always appear in one 2r both core
stores and no infomation needed by the rogram is retained
in the static registers.

217,

The microprogram store has a total capacity of 4,006
words, each of 36-bits. Its cycle-time ia8 1pas. ¥hen fully
used, it will contain eight separate platesn, euch holding
512 words. Ho far, only four plates have been installed.
The miero~code secuences making up maehine~qode operations
were tested by simulation on an IBM T090 before ﬁhe plates
were wired. [inor changes or additions to existing mierc-
progrems cen be made in very few minutes.

The type of fixed store used to hold mieroprograms is
inexpensive yet has s large ecapseity. As a result, the
computer hes a comprehensive machine-code inetruction set
containing sbout 200 instructions. The "built-in® arithmetie
funetions, for exemple, inelude operstions on ﬁ&—bit
integers, 316-bit fractions and floating-point numbers.
Several instructions have been provided for use solely by the
multiprogram eontrol programs (Section 8, 9, 10 and
Appendix B). The cost to the University has been between
£20,000-£25,000"

A2. Wachine-code Instructions

The sequence of miero-operations constituting a
machine-code operation can be conaidered as two separate
“rhages". The Tirst or “"routine® phase is common to all

operations.

*onis figure includes the cost of 24,576 words (36-bit) of
varisble store, of peripheral ecuipment and of some
construction work done by private sontractors.

218.

Ite purpose is %o select the microprogram secuence which
will carry out the operation in the seecond or “execute®
phage. The two phases are shown disgremeetieslly in

¥ig. A 2. The routire phase is closely nanalozous to a sten-
dard interpretive procedure in mschire-code. It is, however,
wore efiiclent, since the hardware wang @esigﬁeﬁ for the
pursose. Three store eyecles are reguired snd the routine
ghagse normally takes 21us to complete. Ir the Tirst eycle,
the contents of the current sequenrce counﬁer* are extrscted
from store, incremented smé returned o store. The 36-bit
instruction itself ic then exirocted im two store cycles,
Finally, comirel iz tropaferred t¢ the sporopriste micro-
pregrem secuence for carrying out the requisite operation in
the execute phase.

The specd of the routine phase is assisted in two
ways., sirst, the ¥wo stores con be driven in parallel;
second, nicro-ogerations not referring tc store can overlap
the write vhase of & store cycle. For exemple, during the
first store cyecle of the routine phase, the sequence counter
contents and the expected state of the peripheral indicators
ayre exitracted sinmultsncously. The comparisor of the axpect-
ed and sctual states of the indicatore is made while the

ineremented volue iz being returned to the sequence counter.

" o .
There are 15 separate sequence counters, each = half-word
ir the main atore. The address of the sequence counter
for the current progrem is held in the ¥ register.

“NORMAL" EXECUTION INTERRUPTION SEQUENCES
[OF INSTRUCTION J - v =
'
— >l
A/
Extroct sequence ;Exo‘r‘riine indicators
ROUTINE. counter and increment | for inferrupticns I Interrust; I
- = = = e e e e e e o nterrupticn er3lory
PHASE Extract ., first half :Moke accumuletor index ke b i

{3 Store cycles) -

DIRECTORY

EXECUTE _
PHASE

S

Extract second half |First

of instruction

Jregister addresses absolute;

- = 4
index register
of instruction

modification

Moke progrom

active

Oplioncl

branches

Second index register
modification

N

L Select execute phase]

J—I .

(Input or

Address check

QOutput orders)

b

Select new -

sequence counter

‘ Unit
unavailoble]

=%
\S]

CONTROL STORE

FLOV DIAGRAM FOR MICROPROGRAMS IN.THE

*612

220 -

Accumulstor and index register addresses within each
instruction arc stored as relative addresses {relative, this
is, to the first register store address used by the program).
They are converted to absolute addresses without loss of
time Suring the sccond store cyecle of the routine phuse.

The routine phase algso ineludes an optional branch for @
pogsible double index register modification. Holding reglster
store asddresses in relative form amd providing double index
register modification has proved valuable in several ways.

the parsmebiric addressing tecinigue (Section 6.2 of the text)
in particular depends on this mode of mddygasing.’

The gtandsrd instructior Tormst allows for 9 bits
apecifyirg the operation, thereby providing for up to 512
separate operations. These ¢ bite =mrs transformed direetly
vis & speclial gating link to the miercpyrogram sequence
counter & at the end of the routine phase. The first 512 -
words of the control store econstitute a "directory". The
n' position of the directory usuzlly holds » control
transfer instruction addressing the microprograr sequence
for the operation whese funetion code is n. In come ¢ases,
however, one micro-instruction only is needed to execute
the operation. The directory entry iteelf is then this
instruction.

To simplify programming, the 512 possidble opersiions

have been broken up into 64 basie functions, each having

221.

eight possidble “varients". For exsmple, the function MP
(multiply) hes five wariants: normsl (giving the rounded
product of twoe 36-bit fractions); special (giving the
double-length produect); fleating point; wupper half-word
(giving a 30-bit product from two 18-bit integers); lower
half-word. In symbolic code, these are written N EF;

S WPy P NPy U MNPy L WP

The comprohensive set of 10~bit operations has been
valuable in improving both the speed and space reguirements
of the systems programs. Several speclal-purpose operations
heve slso proved particularly useful. A apecial-purpose
T2~bit imstruetion, for exsmple, givee the complete inerement
and test in a "DO" atatement without making use of index
regia%erg.

The totel exceution time for 10-bit arithmetic snd
logieal operstions is 27pe, thet is, one store cycle only is
needed after the routine phase. TFor similar 3o-bit
operations, a further store cycle 1ifts this time %o 3lks.
However, thc speed of more couplex operations suffers
hecangse intermediate guentities must be returned to core
store. Flosting point additior for example takes 210ua.
Wevertheless, ike execution %times for Iloating poini opere-
tions avre much better than could be obtained with a machine-
code irterpretive process.

The use of microprogram to contrel time-sharing has

222,

becr mentioned in the text. Fig. 4 2 shows the inter-
relationshipy betweer this mieroprogram and that uesed for
the routine and execute pheses. Tor example,; the rezguler
indicstor checit is made during the first store cyeclc of
esch routine phase. The indicator check bheflore a
character transfer ie gart of the execute vhase of the
input or output operation. The regulsr indicator cheek
may show that a controel program iz 1o be made sctive
(Seetion 9). Fither indicator check may show that a new
program should be selected (Section 7).

in opticonal branch from the rouvtine ?ﬂ&&e may be
taken to check esch operand address aguinst the program's
bounds (Seetion £.2.3). If this branch is taken, each
Qpératinn‘i@ alowed by 20us. A bit irn $he E reglster beyond
those hits used to hold the sequence counter address
indieates whether or mot this brameh iz e be taken. Since
chenging from one program to snother reguires ¥ to be
reset, this bit ie slso reset. Aiddress checking can there-
tore be applied or not applied with any given program as

the situstion demsnds.

223.

AFPTERDIX Bs THE CIRRUS HULTIFROGRAM SYSTEM -
A SPECIFICATIOR.

The suthor has, in the text, been mainly concerned
wi%h showing the principles of the CIRRUS multiprogram
gystem and with the reasons behind various decisions which
have been made. A detailed specification is given here
for the software in use at 15/9/64. Three operating
stations are allowed for.

. The srpendix shouwid be read in conjunction with
the Prefatory Statement, Sections 7, 8§ and 9 and Appendix A.
‘The subject matier of the speeification iz dealt with in the
following oxders

(1) Program allocation.

(2) Indicators.

(3) Working space.

(4) lilcro-code sequences.

(5) Machine-code sequences.

Rote that numbering and addressing are given in octal

potation, unless obviously otherwise.

B.1s TIrogram Allocation
The 15 internal programs are used for the following

purposest
Yariable programss

Sequence counter in 31\

1 -

2 "
3 "
4 "
ot “
[@
T "

Fermanent programs:

1C -~ Sequence counter in

11 .
12 -
13 "
14 "
15 .
16 .
17 "

"

32
33
34

35

36/
37

40
41
42

44
45
46
47

224,

41lotted a8 needed
for eurrent problems

Used for elementary
initial wmrograrn (sec
Jeetion ©.3) if al1
lower numbered

programs are in use.

Relocating program

Conpole ©

% Control
Frograms
" Lo
Console ¢
Secondar
- 1) Prograns
» 4
Spare

%The "secondary” progrems are used by the control programs

%0 carry cut such operations as store dumps, thereby

leaving the zontrol programs free for further instructions.
However, if expansion were desired, their functions could

be incorporated into the sontrol programe themselves.

B.2 Indicators

{1) Peripheral indicators, I.

of the 16 peripheral indicators (I of Seetion 7.1.2),

the fellowing have been mllocated:

by {most significant)

Gouwszon for I' (see below)
Kbmﬁeyhearﬂ
R ~Reader

Por To-Punch,
Sypewrliter

Console ©

m1 Console 1

ﬁg Console 2

(2) External imterrupt indicators, I

Interrupt indiecators are consgidered as being in 2

clegsen:

Class (»)

(vp to 18 indicators):

The setting of any

one of these indientorse will esuse execvition of a corresg-

ponding mieroprogram secuence.

Their purpose is primarily

to initiate buffer transfer routines 28 deseribed in

Section T.é.

However, as there are at present

226.

no peripheral unitas beyond those specified above, none of
these indicetors has so far been ailotted.

Class (B) (up te £ indientors)s The setting of any
one ¢f these indicators will esuse a microprogrsm sequence

%0 nake setive one of the 5 permesnent programs (10-17).

S0 far, three indicetors of Clase (k) sre in use:

by (Host significent) Not umed

b, Interyrupticne from Console O

kD o

b? 1L L] 1
" L w

b& 2

Apart from console interrupticne, an indicstor of Cluoss
(b) world be uveed to show & réqumm% Yo meke active any oether
permarent prograr (such as one to perform some on-line
control funetion).
Hote: Wby of I is the result of an *OR' eireuit over all of
X', If any indicator of I ie met (=1), by of I
becomes non-zerc. The change i1xn suny I' is therefore
detected on checking I &t the beginning of the next

routire phase.

B.3 ¥orking space
Adaressese 4~137 (totol 52.,) in main storc are used as
working spece in the current three-station gysten.
(1) Priority ladder - addresses §-213.
15 of the 16 words correspond tc¢ sequence gounters {wardé

61‘;1’&

31-47) while the 1 iz a marker dividing netive programs

227.

from inactive programs.

\
o hid ¢]SM otr. address

Upper half Lower half

Hi: Relevany indicators - imdicators of those
perizheral units in uwas with this program.

Examples
RI Seg.ctr.
4 200000 000041 ¥rogram 11
< *

5 340000 000032 Program 2

6 034000 Program 1

T 000000 400000 Marker

22 020000 ©00042 Program 12

23 010000 O0004% Frogram 15

In the exauzpyle, programs 11, 2 and 1 only are active
and have that oxrder of priority. The order of the worde
below the marker i not significant. In all cases where
an insotive rrogram bocomes active (br Interrupt indicator
sequence or imstruction X IR), ite priority word is placed
at a point immediately aficr the lowest priority program
who:-e number is > 10 (showm by * abaeve), Hence, priority

of programs 10-17 is always presasrved over programs 1-7.

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>