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SUMMARY

Values of the mutual diffusion coefficient,éblz, have
been measured at 300K over the pressure range of 1-9
atmospheres in binary mixtures of helium with neon, argon,

krypton, xenon, nitrogen and carbon dioxide.

Before this study was undertaken, an investigation into
the composition dependence ofjblz for the helium-nitrogen
system was carried out in two groups of diffusion cells.

Only one of the two groups yielded mutually consistent

results, namely the Loschmidt-type cell, which was subsequently
used for the systematic pressure-dependence measurements. It
was also generally found that the best results were
consistently obtained in the helium-rich composition range.
This was believed to be partly due to the reduced occurrence

of convection around the matched pair of thermistors used to
monitor the diffusion process, by virtue of the high thermal
conductivity of helium. The matching of the thermistors in a
helium environment by the manufacturer was also believed to

be a contributing factor.

The results of the pressure dependence study of binary
gas mixtures containing 90% helium were compared with the
dependence predicted by Thorne's extension to the Enskog

theory of transport in dense gases.
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CHAPTER 1

GENERAL INTRODUCTION

1.1 EXPERIMENTAL

In recent years there has been a wealth of data
published on the mutual diffusion of gases in dilute binary
mixtures, the bulk of which has been reviewed and critically
evaluated by Marrero and Masonl. This compilation does not
include the more recent data measured in this laboratory,
in which very precise absolute values of binary diffusion
coefficients .812 have been claimed (see Chapter 3, Refs.
5-13), using pairs of matched thermistors as concentration-

sensing devices.

On the other hand there seems to be very little data
available on the pressure (or density) dependence of
diffusion in mixtures. This scarcity, plus the high precision
attainable with the apparatus in this laboratory, was the

motivation for this project.

In spite of the precision claimed earlier, it was found
that there was still a significant uncertainty in the
absolute value oféblz due to the disagreement between
different cells used in this laboratory. Part of this
project was to investigate this apparent cell-dependence
with the view to eliminating such ambiguity. These

experiments are described in Chapter 4.

Thermistors have been in common use for some years as



sensing devices in gas chromatography. Their recent
application in the monitoring of diffusionz’3 obviates the
necessity of withdrawing samples for analysis. The method
for measuring,ﬁlz in this laboratory using thermistors is
outlined in Chapter 3. A disadvantage of using thermistors
as composition detectors is that their operating temperatures
must be above that of the surrounding gas, hence the problem
of convection arises. This becomes more acute, both as the
density of the gas increases and, if the composition of the
gas is changing, as the thermal conductivity of the gas
decreases. Attempts to determine a composition dependence
of the product 9912 over a range of pressures, p, were
unsuccessful partly for this reason. As will be explained
in Chapter 5, all pressure-dependence measurements were

subsequently confined to mixtures containing 90% helium.

1.2 THEORETICAL

A theory of transport in dense gases was developed by
Enskog as an extension to the Chapman-Enskog theory of

dilute gases4_6

His theory, derived for a hypothetical
gas composed of rigid spheres, was based on a modification
of the Boltzmann equation by the insertion of a factor, Y,
dependent on the rigid sphere diameter and the number
density, n, which accounted for the change in collision
frequency of the molecules on compression of the gas. This
factor is commonly identified with the wvalue of the
equilibrium radial distribution function at the point of
contact of the colliding spheres. As in the dilute gas

theory, it is assumed that only binary collisions occur.

H.H. Thorne5 generalised Enskog's theory to binary mixtures



of hard spheres. His extension, as applied to the density
dependence of binary diffusion in gases, was tested against

the data obtained in this project.

General theories of the density dependence of trans-
port coefficients, in various states of development, have
been comprehensively reviewed by Brush7. In one approach,
a set of equations involving successively higher order
distribution functions (the BBGKY hierarchy, named after
the co-founders of the theory, Bogoliubov, Born, Green,
Kirkwood and Yvon) is derived from the Liouville equation,
and a generalised Boltzmann equation may be obtained from
the first equation in this set8. This approach has been
the starting point for the derivation of density expansions
for the transport coefficients in analogy to the virial
equation of state. Expressions for the first density
corrections to the transport properties in binary mixtures
have been given by Bennett and Curtissg. These expressions,
containing collisional transfer and 3-body contributions,
are functionals of an arbitrary potential function but are
strictly applicable only to repulsive potentials because,
as with the theory developed for single-component gaseslo,
bound states are not considered. For this reason, the best
agreement with experiments is expected at high reduced

temperatures.

Stogryn and Hirschfelder11 and Kim and Ross12 have
developed approximate theories applicable at low reduced
temperatures to account for the interaction between
monomers and dimers in the density dependence of viscosity.

Wakeham13 has carried oVer Stogryn's approach to the



estimation of the effect of these interactions on the
density dependence of self and mutual diffusion. This
theory, however, is difficult to apply to binary systems

unless one component is present in trace amounts.

In the next chapter, some of the background theory of
gaseous diffusion is reviewed in relation to binary mixtures
of real gases. Where numbered subscripts are used on
symbols, the convention used here is that 2 denotes the

heavier component.
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CHAPTER 2

THEORY OF GASEOUS DIFFUSION

2.1 INTRODUCTION

In this chapter a review is made of some of the main
theoretical aspects of gaseous diffusion relevant to this
work. TFirstly, a discussion of the macroscopic process of
diffusion is given, followed by the kinetic theory approach
of Chapman and Enskog to diffusion in dilute gases. The
extension of this theory to moderately dense single
component gases by Enskog and the further extension of the
theory by Thorne to include binary mixtures, is presented

at the end of the chapter.

2.2 PHENOMENOLOGICAL THEORY

Diffusion may be defined as the macroscopic flow of a
chemical species relative to other species in the system,
the flow being produced by some gradient within the system
or by the influence of some external force. In a gaseous
system at constant temperature and pressure and in the
absence of any external forces, diffusion can only take
place if there is a concentration gradient. The flow of
matter takes place in such a direction that the components
of the system become uniformly distributed. Under these
conditions the process is called isothermal diffusion.
This term is strictly a misnomer because in reality the

transport of matter even in an ideal system is associated



3? ey

with the transport of energy. The production of a
temperature gradient in a system in this manner is known ;
as the Dufour1 effect and is the converse phenomenon to é

thermal diffusion2 which is the flow of matter under the

influence of a temperature gradient, resulting in the i
partial segregation of the components of an initially f
uniform mixture. Both effects, being second order in nature, |
cannot be satisfactorily explained by elementary kinetic

theory; on the other hand, these phenomena are predicted

as a consequence of the rigour of the Chapman-Enskog

theory3. In addition to these effects, transport of matter
produces a pressure gradient; however, this is negligible

except in the case of diffusion along a capillaryé.

For a two-component system close to equilibrium, the

flux of each species is directly proportional to the
concentration gradient producing it. This is a statement
of Fick's first law of diffusions. If the fluxes are
measured relative to the local centre-of-volume of the

system, the two fluxes conform to the relationship,
2 v
Y Vii; =0, (2.1)

where jg is the mole flux vector of species i at right
angles to a unit cross section moving at the same velocity
as the local centre-of-volume of the system, and the partial

molar volume, Vi of species 1 is defined as

Vo= Ov/emy) L GFD. (2.2)
N

Fick's 1aw may then be expressed for this system as



sV _ Vv o
-y = D Ve, i=1,2, (2.3)

~1

where Vci is the gradient in concentration of the ith

species at constant temperature and pressure, and Dz is the
proportionality constant. It can easily be shown, using

Eq. (2.1) and the thermodynamic relationship,

m
Y eV, =1 (m components), (2.4)
that

D] = D; =D, (2.5)
where &,, is the binary diffusion coefficient for the
system.

Egs. (2.3) may be generalised to systems containing

more than two components;
v m
-j, = ) D,, Ve i=1,2,...m, (2.6)

where the Dzk are called the multicomponent diffusion
coefficients. These systems will not be considered any

further.

On combining the equation of continuity for a chemically

inert system6,

Vo
de /ot + V.37 = 0, (2.7)

with Eq. (2.3), one obtains a mathematical statement of

Fick's second law of diffusion:

dc, /ot = V.@D1,V¢;),  i=1,2. (2.8)

I1f diffusion is restricted to one dimension, say the

[



7z direction, and it is assumed that &y, is negligibly

dependent upon concentration, Eq. (2.8) becomes: }
(dc, /ot) = &), (3%c, /322). (2.9)

In actual fact ihz is slightly concentration dependent

(of the order of 2.5% over the composition range for helium-
nitrogen) but Ljunggren7 has shown that the measured
diffusion coefficient corresponds to the mean concentration
at the end of the experiment if the concentration varies
linearly during the run. This condition will be met if

the system is not far removed from equilibrium when
measurements are made. Eq. (2.9) is a standard second
order partial differential equation which lends itself
readily to solution by standard methods8 subject to the
appropriate boundary and initial conditions. The solution
is a concentration distribution function which varies with

time at a rate related to the diffusion coefficient.

2.3 DIFFUSION IN REAL GAS MIXTURES

As we have just mentioned, isothermal diffusion is a
misnomer, even in ideal gases. When two unlike real gases
mix there is an additional contribution to the temperature
disturbance due to the heat of mixing effect. The magnitude
of this effect may be estimated from a knowledge of the
equation of state for the mixture, which in moderately
dense gases is adequately represented by the first two

L . 9
terms of the virial expansion’

pV/RT = 1+B! (T)p+ (2.10)

= B

assuming only binary collisions occur. B&(T) is the second
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pressure virial coefficient of the mixture and is related
simply to the virial coefficients of components 1 and 2 and

of the interaction between 1 and 2 by

2 2

B' = x.x,B! . 2.11
. 121 jzl R ( )

where Xi(= 1—xj) is the mole fraction of species 1 1in the
two-component system. V in Eq. (2.10) is the molar volume
of the mixture, p is the total pressure, T is the absolute
temperature and R 1is the gas constant. A knowledge of the
temperature dependence of the second virial coefficient

gives some insight into bimolecular interactionslo.

The heat of mixing of two gases at moderate densities

is given approximately by11

g = g-gtd°2! = _2x,x,RT2p(dE'/dT) (2.12)

where HC is the excess molar enthalpy of mixing (ﬁideal = 0)

and E' is the excess second pressure virial coefficient,

defined by
E' = Bi{,-3(B{1*+Bj>). (2.13)

This effect will obviously be maximised when equal quantities
of the two gases interdiffuse to give a 50/50 mixture. To
minimise the interference from the heat of mixing in
diffusion experiments it is therefore preferable to work at

mole fractions close to zero or unity.

A companion effect to the heat of mixing of two gases
in a closed volume is the pressure of mixing. This results
in the final pressure of the mixture being different from

the average pressure of the separated components. In a
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Loschmidt type diffusion cell12 this effect can be quite
significant especially when two pure unlike gases diffuse
into each other. This can lead to a large uncertainty in
the diffusion coefficient which depends approximately on

the inverse of the pressure. It is not easy to measure the
pressure change precisely; however an estimate can be obtained
by using Eq. (A.7) in Appendix A. This equation predicts
that for the system helium-xenon at 10 atmospheres pressure,
the pressure change amounts to about +1.8% when equal
volumes of pure helium and of pure xenon diffuse into each
other. If, however, a mixture of 80% helium with xenon
interdiffuses with the same volume of pure helium, the
resulting pressure increment is only 0.07%, which is of the
order of experimental uncertainty in the pressure. A
similar magnitude is predicted for the case of pure xenon
and a mixture of 80% xenon and 20% helium. It will be

shown in a later chapter that this is only one of several
reasons for choosing to carry out Loschmidt cell experiments

within the composition range in which helium is in excess.

We shall now consider the other phenomenon which
disturbs the temperature equilibrium during "isothermal"
diffusion, namely the Dufour effect. When a concentration
gradient exists in a mixture of two unlike gases, whether
they be real or ideal, there exists an associated temperature
gradient which acts to retard the mixing process. The
theory of the effect predicts that the lighter gas is
heated and the heavier gas is cooled. Experimental

13,14

observations confirm this , but demonstrate that the

maximum heating and cooling effects are generally unequal.
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This is attributed to the superimposition of the heat of

4

mixing effect'* which we have just discussed.

Both temperature effects have been characterised
mathematically in a single equation derived by Ljunggren7
The two contributions to the initial temperature transient
decay at different rates. Ljunggren has shown that the
Dufour effect decays at approximately the same rate as the
ordinary diffusion process,whereas it has been deduced15
that the heat of mixing effect decays roughly three times

as fast.

2.4 THE CHAPMAN-ENSKOG THEORY OF DILUTE GASES

A classical-mechanical analysis of the time evolution
of a large system of particles ultimately leads to the
problem of solving the Boltzmann integro-differential

equation16:

D, f, = §J(fi,fj) (2.14)

where ﬁi is a differential operator defined by

D, = 3/3t + v ¥ (2.15)

which incorporates the streaming operator Yi-V. J(fi,fj)
is a triple integral related to the dynamics of a
bimolecular collision between species i and j, and fi is
the velocity distribution function of species i which is
defined as the average number of molecules of the ith
species to be found at a particular time t in a unit

volume centred at position r from the origin and moving

within a unit range of velocities about V- At equilibrium,
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the solution to Eg. (2.14) is the Maxwell-Boltzmann

distribution function,

3/2

fio) = n, (m, /27KT) exp(-m, v /2kT) (2.16)

where n, and m, are the number density and molecular
mass respectively of species i,and k is Boltzmann's

constant.

Non-equilibrium solutions to (2.14) may be obtained
by the Chapman-Enskog approach which is applicable to systems
not too far removed from equilibrium. This approach is
essentially a perturbation method which assumes that the
non-equilibrium solution is equal to the Maxwell-Boltzmann
distribution plus a small perturbation term which decays

to zero as the system tends towards equilibrium, that is

o= £80 (14y ) (2.17)

1 1

where vy, is the perturbation function which is directly
proportional to the gradients in the system. The perturba-
tion procedure 1ead§\to an equation similar in form to

Eq. (2.14) with £, replaced by fio) on the left hand side,
and a modified integral containing fio) and the unknown
function, wi on the right hand side. The "linearised"
Boltzmann equation can be solved for wi by a variational
technique17 or by the solution of an infinite set of linear
equations3. Both methods employ Sonine polynomials3 which
appear in the coefficients of the gradients. Having
determined wi and hence the distribution function to the

order of the first perturbation, the transport coefficients

can be calculated by integrating the distribution function
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to obtain the appropriate flux vectors. If the second

method is used, the exact values of the transport coefficients
are obtained in principle from the ratio of two infinite
determinants. Fortunately in practice these may be
approximated adequately by finite determinants. Different
truncation schemes used by Chapman and Cowling3 and by

s converge very rapidly for the diffusion coefficientlg.

Kihara
The first approximation to the diffusion coefficient is
obtained by considering only the first term of the Sonine

expansion. Both methods give

0] | = SCkT/2mn15) /0T 0050 D (T, (2.18)

where [---]m symbolises the mth approximation, u;, is the
reduced molecular mass mm,/(m;+my) of species 1 and 2
and n is the total number density. T#* is a reduced
temperature, equal to kT/e;, where e€;, is the depth of the
potential energy well for the encounter between two unlike
molecules. Q%%’l)* is a universal function of T¥%, which
has been tabulatedlo for various potential energy

functions ¢(r), including the widely used Lennard-Jones

(m,6) function,

o, 5 (r) = e/ (m-6)] (m/6)%/ "0 [(a/r)™ —o/2)°1.  (2.19)

Here, r is the internuclear separation, o is a measure of
molecular size, taken to be the internuclear distance at

which ¢ (r)= 0, and m is a measure of the strength of

L.J.
the repulsive force between the molecules and is commonly

)
Q(l’l) is actually a ratio

(1,1)

assigned the value of 12.

obtained by dividing the collision integral Q a
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functional of ¢(r), by the corresponding integral calculated

on the basis of the rigid elastic spheres model:

¢R.S.(r) = o if rgo, or O if r>o. (2.20)

The collision integrals Q(l’s) are related to the Sonine
expansion coefficients, and in reduced form are useful for
the calculation of intermolecular force parameters from the
transport properties and vice-versa. They also provide a
measure of the departure of the molecular dynamics from
rigid spheres behaviour at a particular temperature. By
Q(Z,s)*

definition for rigid spheres gases is identically

equal to unity.

It is notable that to the first approximation
(Eq. (2.18)) binary diffusion coefficients depend only on
interactions between unlike molecules, thus diffusion
measurements provide a useful tool for studying such inter-
actions. At this level of approximation the theoretical
diffusion coefficient is independent of composition. It
can also be seen from Eq. (2.18) that for a particular
system at constant temperature, the product nlﬂhz]lis

invariant with number density and hence with pressure.

Higher approximations to the diffusion coefficient can
be calculated by using more terms in the Sonine expansion.

The Kihara second approximation (two terms of the expansion)

is given by20

n[éDlz]z = n[$12]l(1+A'). (2.21)
where
A' = 0.1(6C12-5)2(xFP1+x1X,P1,+x3P; )/ (x3Q]+x1%2Q1 2+x3Q3)

(2.22)
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where x, are the mole fractions of the two components.

If Mi are the molecular weights and we define the

quantities
Zy = My /(M+M;) (2.23)
and
- 2,2)% 2 1,1)* 2
F, = ({3 D%yl Dol (2.24)

with similar definitions for Z; and F, by interchange of
subscripts, then the coefficients in Eq. (2.22) are given
by

=
P, = (2Z1M1/Mp)(2Z;)°F,

b
Py, = 15(Z1-Z)2+8Z1Z,A7, (2.25)

s
Ql = (2Z1M,/Mp+6Z,+3.2%Z1AT,)(22) *F;

=1
Qiz = 15(Z1—Z2)2+3221Z2A?2+1.6(Z1Z2) 2F1F2.

P, and Q) are similarly obtained by interchange of subscripts
1 and 2. Afz and C?z are ratios of collision integrals

defined by

* 2,2)% 1,1)%
Ao = ng ) /ng )

(2.26)

N =
“w
)
N’
*

*
and Cjp = Q§ /95%’1)*'

As Mason has shown19 it is rarely necessary to make
calculations beyond the Kihara second approximation unless
high precision warrants it. 1In one such case Yabsley21 has
calculated the Lennard-Jones (12,6) potential parameters €;,/k
and o, by comparing precise binary diffusion data for five

noble gas mixtures with the Chapman-Cowling fourth

approximation to the diffusion coefficients.

We conclude this section by summarising some of the
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main assumptions inherent in the Chapman-Enskog theory of
dilute gasesloz—

(i) The size of the molecules is negligible compared
with the average distance between them. In the collision
term of the Boltzmann equation (2.14) the distribution
functions of the colliding species are evaluated about the
same position T at the moment of contact.

(ii) Only binary collisions occur. It is assumed
that the occurrence of ternary and higher order collisions
is negligible in dilute gases.

(iii) The collisions are elastic, that is the molecules
possess no internal degrees of freedom. Strictly this
requirement limits the theory to spherical molecules;
however, the coefficients of diffusion and viscosity are
not affected greatly if this requirement is relaxed to
include polyatomic molecules, provided they do not deviate
too much from spherical symmetry.

(iv) The mean free path is negligible compared with
the dimensions of the container, thus the gas behaves as
a continuum. The theory does not apply to systems which
are so dilute that a significant percentage of the
collisions takes place between the gas molecules and the
walls of the container. A XKnudsen gas is an extreme case
where gas-wall collisions predominate.

(v) The system is not far removed from equilibrium.
Consequently, the fluxes in the macroscopic properties of
the system are directly proportional to the gradients
producing them. Under such circumstances the system

obeys the Navier-Stokes equations of change. These



18
equations are non-applicable only when extremely large
gradients exist at normal pressures, as in shock waves.

If the system is extremely dilute, deviations from Navier-

Stokes behaviour may occur with much smaller gradients.

(vi) Classical mechanics generally gives an adequate
description of the dynamics of the system; however, at low
temperatures,corrections must be made for the wave nature
of the light molecules, particularly the isotopes of hydro-
gen and helium. The only change to the formulae for the
transport coefficients occurs in the collision integrals
which are evaluated in terms of phase-shifts instead of
angles of deflection. These quantum-corrected collision
integrals have been evaluated for the Lennard-Jones (12,6)

potential30’31.

2.5 EXTENSION TO MODERATELY DENSE GASES

In conflict with experimental observation the
Chapman-Enskog theory predicts that the product n&hz does
not vary with number density, n. Enskog3 modified the
theory to take into account the finite size of the molecules;
however the assumption of binary collisions was retained.

For the sake of simplicity he considered a pure gas
composed of rigid elastic spherical molecules, and
introduced a quantity Y, dependent only on n for that
gas, which represented the factor by which the collision
frequency differed from that of a gas composed of point

particles on compression.

The function Y, related to the equation of state for

rigid spheres gases,
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2

p = nkT(1+3

nmo3Y), (2.27)

is made up of two contributions, the first of which tends
to decrease the collision frequency due to the shielding
effect of the finite-sized molecules and the second, over-
riding the first, increases the collision frequency due to
the closer proximity of the molecules when the gas is

compressed.

The modified Boltzmann equation incorporates in the
collision term the factor Y which is evaluated at the point
of impact of the colliding spheres. The corresponding
distribution functions of the colliding molecules are
distinguished by the finite separation o of the centres of
the molecules upon impact. For self-diffusion the Enskog

rigid spheres density dependence is
nd= (nd),/Y, (2.28)
where Uﬂb)o is the dilute gas value of the product and Y

is given by

Y = 1-+{%nn03+0(n2). (2.29)

Enskog's theory was generalised to binary mixtures by

Thorne3. The density dependence of mutual diffusion is

given by

nd;, = (nu‘blz)OY§§ [14+n7X1X (022-0711)2(0p0+0711)] (2.30)
where

Y1, = 1+(2n7m/3) [x,0315+%,05,(5/4-E)1 +0(n?) (2.31)
and

€ = (011%4052)/(4011%4035)
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The term [1+...] in Eq. (2.30) is the rigid spheres
expression for the non-ideality factor (a1na1/31nx1)T’p22’23
It is derived in Appendix B using Guggenheim's expression
for the absolute activity a; of species i 1in a slightly

imperfect gas mixture24.

Eq. (2.30) may be rearranged to express the density

dependence in the form25

nd,, = (n3)12)0[1+]3r's'n] (2.32)
where

Br.s.

= Tx1Xp(020-011)2(025+011)=(27/3) [x7031E+x,03,(5/4-8)].
(2.33)
Bf-S: may be regarded as a rigid spheres density ''virial
coefficient" for mutual diffusion. Eq. (2.32) is in a
convenient form for comparison of the theoretical and
experimental density dependences of diffusion in binary gas

mixtures at moderate densities.

26,27

It has recently been demonstrated that Thorne's

equations are inconsistent with irreversible thermodynamics,
however the modifications proposed only affect terms which

are second order or higher in number densityzs’zg.
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CHAPTER 3

EXPERIMENTAL DETERMINATION OF
DIFFUSION COEFFICIENTS.

3.1 INTRODUCTION

The diffusion coefficients reported in this work have
been measured at pressures between 1 and 10 atmospheres.
The cells in which the measurements have been made are
described in the next chapter. It is the intention here to
describe the method common to all cells in this laboratory
for the precise determination of diffusion coefficients in
binary gas mixtures, namely the monitoring with time of the
composition of the diffusing system with a matched pair of
thermistors forming part of a Wheatstone bridge circuit.

In all the cells diffusion takes place vertically along the
direction of the axis of a cylindrical channel sealed at
each end by a flat end-plate. The thermistors are mounted
inside the cell at two points symmetrically disposed about
the horizontal plane bisecting the cell. The method is
completely analogous to Harned's for the conductimetric
measurement of restricted diffusion in electrolyte solutionsl.
By Onsager's choice of positions for the two electrodes, the
mathematics of the analysis 1is considerably simplified21;
Gover2 applied the same principle to the determination of
diffusion coefficients in gaseous mixtures using the
relatively crude technique of withdrawing samples

simultaneously from the cell through rubber septa located
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in the corresponding two positions and injecting the

samples into a gas chromatograph for analysis.

The advantage of using thermistors is that gas does
not have to be removed from the system for analysis. They
respond quickly to changes in concentration by virtue of
their sensitivity to the thermal conductivity of their
surroundings. The use of thermistors in monitoring diffusion

3,4

is not new but more recently, workers using improved

techniques have been able to claim a precision inébuzof 0.2%

or better5_13.

Experimental evidence will be given later

in this chapter that difference in resistance of two
thermistors in a cell is essentially proportional to the
difference in composition of the gas mixture at the monitor-
ing positions. It will be shown that the diffusion

coefficient can be calculated from the following equation

by the method of least squares:

F(t)

AR(t)-AR(») = A'exp(-1%4D;,t/L?), (3.1)

where A' is a constant, L is the length of the cell, and
AR(») is the difference in resistance between the two
thermistors at equilibrium. This quantity is non-zero

because the thermistors are not perfectly matched.

Since the diffusion coefficient is sensitive to tempera-
ture and pressure it is essential that the diffusion
apparatus be thermostatted and be impregnable to leaks.

In addition these quantities must be measured accurately
to enable the absolute determination oféDlz. A short
description of the apparatuses for controlling the

temperature and measuring the pressure will be given at the



conclusion of the chapter.

3.2 THFE USE OF THERMISTORS TO MONITOR DIFFUSION

A thermistor is a semiconductor device whose resistance
is very sensitive to temperature. Since the heat generated
by a current passing through a thermistor may be sufficient
to change its resistance markedly, the '"true'" resistance
can only be measured at very low power. Under these
conditions the temperature dependence is governed by the

relation14
RZ . Rlexp [B(l/Tz—l/Tl)] (3.2)

where Ri is the resistance of the thermistor at absolute

temperature Ti’ and B is a constant related to the material
of the thermistor. Eq. (3.1) is the integrated form of the
equation defining the temperature coefficient of resistance,

o for a thermistor:-
o = (1/R)(dR/dT) = -B/T . (3.3)

The thermistor material is a mixture of metallic oxides.
Its temperature coefficient is large and negative, a typical
value of a being about -4% per degree, in contrast to a
small positive value for most metals, for example +0.4% per

degree for platinum.

It is the "self-heating'" effect of thermistors which
makes themhighly suitable for monitoring changes in
environmental conditions. When sufficient current passes
through the thermistor to raise its temperature above the
ambient value, its resistance falls, thereby permitting more

current to pass and heating the thermistor further. Unless
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the current is limited by putting a suitable resistor in
series, the thermistor may be destroyed. The thermistor
eventually assumes a final resistance corresponding to its
steady state temperature. This resistance will depend upon
the rate at which the heat generated in the thermistor is
dissipated. The thermal conductivity of the surrounding
gas will influence this to a large extent. The other
mechanisms for the heat dissipation may be controlled by
suitable design of the thermistor assembly. Convection is
minimised by making the thermistor as small as possible and
conduction by the leads is kept to a minimum by making them
as fine as practicable. Since different gases generally
have different thermal conductivities they can be discrim-
inated in principle by measuring the resistance of the
thermistor in each gas. Where thermistors are used for
analysing the composition of gas mixtures the method works
best when the component gases have widely differing thermal
conductivities. For example the thermal conductivity of
helium is nearly an order of magnitude greater than that

of argon.

In this application the composition of the gas mixture
is not determined directly, but the difference in resistance
between two matched thermistors, mounted at positions L/6
and 5L/6 in a cell of length L, is monitored at known time
intervals using a Wheatstone bridge circuit. Until recently
it had been assumed that the difference in resistance
between the two thermistors was directly proportional to
the difference in composition at the monitoring positionss.

This assumption has since been justified analytically for
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the particular bridge circuit used in conjunction with a
digital voltmeter15’16 but not with the "nulling" circuit
used originallys. An experimental verification of the
proportionality using the helium-argon as a test system is

presented in the next section.

The thermistors used in this work were type G112P,
supplied in matched pairs by Fenwal Electronics, Inc.
(Framingham, Massachusetts). Each unit consisted of a
small bead of "type B" material about 0.36mm in diameter
coated with glass for protection from oxidation. The
leads were made from platinum-iridium wire 0.025 mm in
diameter, and were soldered to a bracket mounted on a glass
hermetic seal. The thermistor material had a B value of
about 3500 K and was selected so that each pair was matched
in helium to within about 0.7% of the nominal value of

8000 ohms at 298.16 K.

3.3 EVIDENCE FOR THE PROPORTIONALITY BETWEEN RESISTANCE

AND COMPOSITION DIFFERENCES

The proportionality assumption mentioned above was
tested by a simple experiment which simulated a normal
diffusion experiment by ''taking snapshots', as it were, of
successive stages in the run. This technique was accomplished
in the separate compartments of a Toschmidt-type ce1117.
The compartments were of equal volume and the contents were
made up to the same pressure with the aid of a Bourdon gauge
(Texas Instruments, Houston). Helium-argon gas mixtures
were prepared iz situ by partial pressures in such a way

that the mole fraction of helium in the top compartment

was always equal to the mole fraction of argon in the bottom

A=
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compartment, the lighter mixture always being in the top.
In this way, the measurement of a series of resistance
differences over a range of mole fraction differences from
1.0 to 0.0, simulated an actual diffusion experiment in
which pure helium diffused into pure argon by the lining

up of the two compartments.

The results are summarised in Table 3.1. All the
mole fractions x refer to argon, with compositions in top
and bottom compartments being distinguished by superscripts

T and B respectively.

TABLE 3.1

Resistance of thermistors versus composition of He/Ar

xT x5 Ax AR(R) AR' (R)
0.0000 1.0000 1.0000 1320.46 1321.59
0.1250 0.8749 0.7499 963.20 964 .33
0.2499 0.7501 0.5002 619.06 620.19
0.3750 0.6250 0.2500 304.77 305.90
0.4200 0.5801 0.1601 191.63 192.76
0.4599 0.5400 0.0799 100.81 101.94
0.5000 0.5000 0.0000 ~1.13 0.00

The quantity AR' was obtained by subtracting the last

AR value in the table from the rest. This particular

value, obtained when the concentrations in the top and bottom

compartments were equal, is analogous to the equilibrium

value, AR(»), obtained in a real experiment (See Eq. (3.1)).

In both cases, the non-perfect matching of the thermistors

3? S L

e
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accounted for small residual valuesof AR.

The variation in AR' versus Ax over the range O0g<Axxgl1

could best be represented by the equation
AR' = 3.;+1160Ax+160(Ax)?2 (3.4)

for which a maximum deviation of 9 ohms could be expected

at the 95% confidence level.

In a real diffusion experiment, only the range 0<Ax<0.1
would normally be measured, corresponding roughly to a
maximum resistance difference of 100 ohms. The variation
of the slope of the curve (3.4) over this range is only
about 2%, thus there is no serious error made in assuming
that the difference in resistance of the two thermistors in
the cell is directly proportional to the difference in gas
composition at the two monitoring positions, that is, if K
is a constant,

AR(t)~AR(®) = KAx. (3.5)

3.4 MEASUREMENT OF AR DURING DIFFUSION

The bridge circuit used for monitoring concentration
changes during diffusion is shown in Fig. 3.1. It consisted
of the pair of matched thermistors with resistances denoted
by R3; (top thermistor) and Rs; (bottom thermistor) and two
mica-card standard resistors Ry3 and Ry, with resistances
specified to be within 0.05% of 5000 ohms. The bridge served
as a divider to a constant voltage supply, V. A digital
voltmeter interfaced to a scanning device measured the
voltages V3, and V,, in rapid succession and these values

were recorded automatically on paper tape by a data-logging

;? Sl

,F




Fig. 3.1:

The Wheatstone bridge circuit used for monitoring
concentration changes due to diffusion.

]
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device (Schlumberger, U.K.). The difference in resistance

between the two thermistors was calculated from

AR = (R31-Ry1) = (Ry2/Vy2)V3oV/(Vy2-V32) (3.6)

where V was the output from the power supply (usually 3.500
volts). The above equation is exact if the resistances Ry

and Ry, are identical.

It is believed that the operation of this bridge is
more correct than that originally used in which AR was equal
to the resistance on a decade box required to '"'null" the
bridgeS. Yabsley and Dunlop15 have shown that it is not
possible to obtain the correct diffusion coefficient with
the original method because the power dissipated by the
thermistors depends not only on the change in composition
of the surrounding gas, but also to a large extent on the

process of '"nulling" the bridge.

Although the two voltages on the present bridge were
not sampled simultaneously (due to the approximate recording
time of 0.32 seconds on the tape punch) this did not present
a significant source of error because the following voltage,

V,,, varied much more slowly than the leading vcoltage, Vg3o.

At the commencement of the diffusion process, sampling
was withheld until V3, had fallen to about 20 millivolts,
corresponding to a AR value of about 100 ohms. From that
point, between 100 and 150 readings were taken at equal
time intervals which had been preset on an electronic timing
device. The intervals were chosen so that an optimum
portion of the resistance-versus-time cufve was sampled. A

further 20 readings were taken after the system had reached
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equilibrium.

3.5 CALCULATION OF THE DIFFUSION COEFFICIENT

In order to calculate the diffusion coefficient,the
way in which the composition of the gas mixture changes with
time must be known. The diffusion process is governed by
Fick's second law, which, for one-dimensional diffusion in a
binary mixture, is approximated by Eq. (2.8). For convenience

it is repeated here:-

(3¢, /3t), 1 p =JDlz(aZci/azz) (3.7)

t,T,P

where ci(z,t) is the concentration of the ith species at
time t, at position =z along the direction of diffusion at

constant temperature and pressure.

To solve Eq. (3.7) uniquely for ci(z,t) under the
experimental conditions, the appropriate boundary and initial
conditions must be specified. Since the diffusion is taking
place inside a closed vessel it is termed restricted
diffusion. The gas cannot diffuse past the end plates,so the

boundary conditions may be stated as:

Bci(O,t)/az = Bci(L,t)/az 0] (3.8)

where L is the length of the cell. We shall let z = 0 at
the top of the cell and z = L at the bottom. Furthermore,
we shall drop the subscript i from ci(z,t) but understand
that the concentration of the heavier component in the
mixture is being referred to. The general solution of

Eq. (3.7) subject to the conditions (3.8) is'®

c(z,t) = By+ ¥ Bkexp(—kzﬂ%ihzt/Lz)cos(kﬂZ/L) (3.9)
k=1
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which,at zero time,reduces to the cosine Fourier series,

c(z,0) = By + ¥ B, cos (kmz/L). (3.10)
k=1

The Fourier coefficients depend on the form of the
initial concentration distribution. 1In this laboratory,the

initial distribution is approximately a step function:

c(z,0) = c(0,0) +u(z-a)c(L,0) (3.11)
0, £<0

where u(g) = | (3.12)
1, £>0

and o (05ggL) is the position of the "jump'" or "boundary"
in the cell. By equating the initial concentration
distribution to the Fourier series (3.10) and evaluating
the coefficients (see Appendix C), the concentration

distribution function is uniquely determined.

The symmetry properties of the solution (3.9) enable
considerable simplification to be madel. If the concentra-
tion is measured at positions z and L-z in the cell, all
terms involving even values of k, including k=0, vanish
when the difference Ac(t) is taken. Furthermore, if =z is
chosen to be L/6, additional terms vanish when Kk is a

multiple of 3. The solution can now be written

Ac(t) = Ajexp(-m2d,t/L2)-Agexp(-256m%D ,t/L?)+... (3.13)

where A, = —/§Bk (B, is defined in Appendix C).

The second term in Eq. (3.13) very rapidly becomes
negligible compared with the first by virtue of the factor
25 in the exponent. In principle, therefore, one can

calculate the diffusion coefficientcﬂlz, by fitting a set
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of measured concentration differences as a function of

time to an equation of the form
y(t) = A exp(-t/T1), (3.14)
where T is the relaxation time of the system given by

T = L2/1%9,,, (3.15)

Now since we have shown that AR(t)-AR(«) is directly
proportional to Ax, and since for gases in a fixed volume,

Ax is proportional to Ac, we may use the equation
AR(t)-AR(®) = A' exp(-t/T) (3.16)

to determineéblz by the method of non-linear least—squares19
SinceJDlz varies approximately inversely with pressure it

is convenient for comparison purposes to calculate the more
slowly-varying product pghz which is numerically equal to
the value ofeﬂlz "corrected" to 1 atmosphere pressure if p

is expressed in atmospheres.

In this work the reliability of the data could be tested
by fitting the set of resistances AR(t) to equation (3.16)
in which AR(~) was an extra parameter to be determined. An
experiment was considered to be ''good" if the experimental
and calculated values of AR(») were in concordance to within
0.02 ohms. To eliminate the possibility of such agreement
being merely fortuitous, successive groups of data points
were left out from the beginning of the set and AR(«) was
recalculated. In this respect a set of self-consistent
values of the calculated AR(») could be considered to be a
stronger criterion for a "good'" run. The uncertainty in

D1, was usually well within 0.1%.
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3.6 MEASUREMENT OF PRESSURE

The introduction of gases into the cell and their
removal was accomplished with the aid of a manifold which
linked the cell to the gas cylinders, the vacuum system and
a Bourdon pressure gauge. The vacuum system consisted of a
large T-shaped manifold providing 'vacuum on tap'" to two
independent diffusion apparatuses. The base of the "T"
was connected through a bypass system to a rotary pump and

a water-cooled silicone o0il diffusion pump.

The pressure transducer in the Bourdon gauge consisted
of a hollow quartz spiral with a small mirror at the end
housed in a capsule with two outlets. One outlet connected
the spiral to the system under test and the other connected
the rest of the capsule to the vacuum system. In this mode
absolute pressures could be determined on the gauge by
measuring the degree of unwinding of the spiral due to the
pressure difference across its walls. The rotation of the
spiral was registered on a decade counter via a photocell
detector linked with a servo motor. This reading could be
converted into units of pressure by interpolating from a
calibration chart supplied by the manufacturer. In this
work a capsule suitable for operation up to 14 atmospheres
was used. A least squares analysis of the calibration data
showed that the pressure p in torr could be calculated to

within +0.02% from the gauge reading, G, using the formula

p = 51.7149 G (0.565, + 0.000025 G). (3.17)

3.7 TEMPERATURE CONTROL

The diffusion cell was completely immersed in a bath
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of deionized water kept constantly stirred with a rotor
powered by a 1/3 h.p. electric motor. In all experiments

the water temperature was maintained to within +0.001 of

300K as measured on a mercury-in-glass thermometer (Dobros,
Australia) which had been calibrated against a platinum
resistance thermometer. Constant temperature was achieved
with a mercury-toluene relayzo connected to a 12 ohm pyrotenax
element mounted in the bath. The heat output of the element
was controlled by a thyratron regulator. For the temperature
control to be effective, the room temperature was kept below
that of the bath so that the water would always be tending

to cool. Since the bath had a large capacity (about 625
litres), the controller alone usually could not compensate
for heat losses. This was partially overcome by using a
base heater consisting of a 35 ohm pyrotenax element through
which the current from a variable A.C. voltage source was
passed. Heat loss through the glass at the front of the

bath was minimised by mounting a moulded polystyrene foam

board against it on the outside.
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CHAPTER 4
THE DIFFUSION CELLS

4,1 INTRODUCTION

Although high precision in the determination ofa@lz
for gas mixtures has been claimed in this 1aboratoryl’2
it has been found that there are some discrepancies when cells
of different types and different sizes are used. In this
study,two types of cell using matched thermistors to monitor
diffusion were compared. Three cells of each type had been
constructed, each differing in some aspect of their geometry.
To facilitate the discussion somewhat, those of the first

type have been labelled Al, A2 and A3, and those of the

second type have been labelled B1l, B2 and B3.

The original form of the first type of cell, type A,
has been described in detail by Carson and co—workersl.

3,4 has

The type B cell, based on the design of Loschnidt
been described by Staker et al.z. A comparison of ali six
cells was made by measuring in each,the composition
dependence of diffusion in the helium-nitrogen system at
300K and a pressure of 1 atmosphere. The results of the
investigation showed that only in category B did the results
for the three cells agree within the estimated experimental
precision of 0.2% over the whole composition range.

Furthermore, results for the argon-nitrogen system in the

type B cells were in complete agreement with experiments
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analysed with a mass spectrometers. In the light of these

findings a more detailed discussion of the comparative
features and operations of the cells is given below. In
particular,a description is given of a new cell which was
used subsequently in the pressure dependence study of
diffusion.

The results for helium-nitrogen are compared with the

predictions of the Chapman-Enskog theory.
4,2 A-TYPE CELLS - DESCRIPTION

Fach cell in this category consisted of a closed
cylindrical vessel with a vertical jet screwed into each
end plate, the outlets being made flush with the inner

surfaces.

The passage of gas through each jet was controlled by
a bellows valve (Nupro Co., Cleveland, Ohio), mounted in
close proximity to each jet on the outside. Various other
types of jets have been tested6, namely those which protrude
into the cell and direct the gas horizontally instead of
vertically into the cell. These jets, however, were not
used in this investigation. An illustrated description of
a representative A-type cell (Al) has been given elsewhere1
The precise internal lengths of the three cells and the

internal diameters are listed in Table 4.1.

TABLE 4.1

Dimensions of the A-type cells

Cell Length (cm.) Internal diam. (cm.)
Al 102.00 4.65
A2 45.019 4,65

A3 44 .999 2.45
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Cells Al and A2 were constructed from type 316 stock
stainless steel tubing (wall thickness 0.16 cm.), whereas

A3 was machined from a block of brass 7.6 cm. in diameter.

4.3 A-TYPE CELLS - EXPERIMENTAL METHOD

With the aid of a manifold and the Bourdon pressure
gauge the first gas was introduced into the cell until its
pressure was between 90 and 95% of the final pressure.
Generally, the first gas was a mixture prepared in situ
by partial pressures. The cell was isolated from the
manifold by closing the bellows valves and the gas inside
was allowed to come to thermal equilibrium and to mix
completely, if applicable. When the difference in resis-
tances of the thermistors had become constant,the second
gas was carefully introduced at the top or the bottom,
depending on its density relative to the first gas, until
the required final pressure was obtained. The cell was

then isnlated before the diffusion process was monitored.

It was assumed in this method that the initial
turbulence that must inevitably have been set up when the
second gas was added, disappeared by the time readings were

taken.

4.4 B-TYPE CELLS - DESCRIPTION

Two of the B-type cells,designed basically after
Loschmidt3 and Strehlow4, consisted of two identical
cylindrical compartments mounted on opposite sides of a
pair of stainless steel circular plates 18 cm. in diameter,
clamped together about a common pivot by a set of coil

springs. The sliding surfaces of the plates were lapped
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optically flat and separated by a thin layer of Apiezon
T-grease to provide the best possible vacuum seal and the
minimum hindrance to rotation. The cell Bl has been

described in more detail elsewherez.

B2 was very similar to Bl but was designed primarily
for diffusion runs above atmospheric pressure. Heavier
duty springs were used to reduce the likelihood of gas
escaping from the cell between the plates. As a further
safeguard, two viton O-rings were inserted between the
plates into two circular grooves concentric with the pivot.
One groove was close to the pivot and the other was close

to the outside edge of the plates.

A third cell B3, which was radically different in
construction to the first two, is shown in Fig. 4.1. It
was machined from a cylindrical brass block 18.73 cm. in
diameter. Two diffusion channels, 180° apart were honed
out parallel to the axis of the block. The block was then
cut exactly in half, perpendicular to the axis, and the
two adjacent surfaces,I,were lapped optically flat. As
with the other B-type cells,the sliding surfaces were
lubricated by a thin layer of T-grease as one block rotated
with respect to the other about a central stainless steel
pivot, R, which was 1.90 cm. in diameter. The two halves
of the brass block were held firmly together by an assembly
of cupped washers,S, which, when compressed a total distance
of 1 mm. by the stainless steel nuts, N, exerted a restoring
force of 27 kN on the ends of the blocks. Forces of this
order of magnitude were necessary to prevent gas from

escaping through the greased interface at high pressures
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(about 10 atmospheres). In this respect ,this cell was an
improvement on B2 which failed to hold pressure satisfactorily
above 3 atmospheres. There were four separate compartments

in the brass Loschmidt cell which, when lined up, formed

two independent diffusion columns which we shall denote by

B3(a) and B3(b).

The lengths and internal diameters of the B-type cells

are summarised in Table 4.2.

TABLE 4.2

Dimensions of the B-type cells

Cell Length (cm.) Internal diam. (cm.)
Bl 117.34 4.65
B2 45.038 4.65
B3(a) 40.049 2.54
B3(b) 40,049 3.81

4,5 B-TYPE CELLS - EXPERIMENTAL METHOD

Isobaric gas mixtures were prepared <n situ in the
separate compartments by the method of partial pressures.
Each compartment was then isolated from the manifold by
closing the bellows valves and the mixtures were allowed
to equilibrate. The usual practice in a B-type cell was
to make up a mixture in one compartment only,and to have
a pure gas in the other compartment. In cell B3, this of
course, could be done in duplicate with the four compart-
ments. At the commencement of a run,the compartments were

brought into alignment, thereby creating an initial
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concentration distribution closely approximating that of
a step function with the "jump" (the boundary) at z = L/2

(c.f. Bqg. (3.11)).

4.6 FEATURES IN COMMON

In all cells the concentration changes were monitored
by a pair of matched thermistors mounted symmetrically at
a distance L/6 from each end and connected by shielded
cables to the opposite arms of a Wheatstone bridge (Fig. 3.1)
to which was applied a constant potential difference of
3.500 volts. Viton O-rings were incorporated in the
thermistor mounting assembly to prevent unwanted leaks at
these points. All other non-moving metal-metal surface
contacts were sealed by lead O-rings, A (Fig. 4.1),
prepared zn situ by moulding lead wire into circular V-shaped
grooves. This particular feature was incorporated in the
construction of the cells except Al and A2 in which Viton

O-rings were used exclusively.

Each cell, when in use, was mounted in the water bath
on an adjustable three-point suspension and was levelled
prior to first usage to ensure that diffusion column was
truly vertical. All operations involving the introduction,
removal and measurement of the pressure of the gases in
the cell were carried out with the aid of a manifold
consisting of a framework of rigid and flexible stainless
steel tubing and a number of bellows valves. The "plumbing"
was made pressure-tight at the joints by using Swagelok
double-ferrule fittings (Crawford Fittings, Cleveland,

Ohio).
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4.7 THE COMPOSITION DEPENDENCE OFJDIZ FOR HELIUM/NITROGEN

In each cell,a series of diffusion experiments at 300K
and a pressure of 1 atmosphere was carried out as a function
of composition in helium-nitrogen mixtures. The results
for each cell are listed in Table 4.4. The quantities in
each column are, respectively, the mole fraction of nitrogen,
x(N,), the pressure p in atmospheres and the product piﬁz,
which is numerically equal to the effective value of the
mutual diffusion coefficient at one atmosphere pressure.

An equation most suitable for representing the concentration

dependence data is7’8,

pdi2 = a+bxy/(1+cxy) (4.1)

where x, is the mole fraction of nitrogen, and a, b and

¢ are constants. The constants could be obtained by fitting
Eq. (4.1) to the composition dependence data by a non-linear
least-squares procedureg. A summary of the least-squares
analysis is given in Table 4.3. The quoted uncertainties

in the coefficients represent the error limits at the 95%

confidence level.

TABLE 4.3

Least-squares results for He/N, using Eq. (4.1)

Cell xax10% b c #Std.dev.x108
Al 0.7048 + 0.0017 0.043 + 0.018  1.37 £ 0.40 8.1
A2 0.7028 £ 0.0013 0.048 +0.014 1.82 + 0.63 3.4
A3 0.6952 + 0.0022 0.062 +0.033 1.9 +1.2 5.8
B1 0.7110 + 0.0038 0.027 £ 0.025 0.56 + 1.3 3.2
B2 0.7091 + 0.0018 0.039 + 0,017 1.25 +0.88 6.2
B3(a) 0.7106 +0.0016 0.033+0.013 1.16+0.77 2.7
B3(b) 0.7099 +0.0014 0.027 £0.010 0.72 + 0.58 2.4
2

*Units are atm.m's




TABLE 4.4

Diffusion data for He/N, at 300K

x(N,,) p/atm. 10°pd, ,/atm. m?s™}
Cell Al
0.0614 1.000,, 0.707,
0.078, 1.0025 0.710)
0.079 0.9994 0.707,
0.080, 1.000, 0.707,
0.1717 1.008¢ 0.709,
0.172¢ 1.009, 0.710,
0.248, 1.003¢ 0.713,
0.362, 1.010, 0.715,
0.453; 1.0104 0.717,
0.6057 1.009 0.719,
0.6664 1.0075 0.720,
0.6694 1.0105 0.719,
0.734, 1.002, 0.720,
0.747, 1.013, 0.7204
0.802, 1.0105 0.721,
0.8794 0.992) 0.721,
0.9194 1.000, 0.7227
0.9374 0.9805 0.7225
0.939, 0.979, 0.721,
0.939, 0.979, 0.722,
Cell A2
0.098, 0.998, 0.707,
0.100, 1.000, 0.706¢
0.1994 0.999, 0.709,
0.299; 0.999, 0.712,
0.3764 0.999; 0.713,
0.377, 1.0005 0.713¢
0.5004 1.000, 0.715,
0.6504 0.999, 0.7164
0.653, 1.000, 0.717,
0.800, 1.000, 0.7184
0.930, 0.9994 0.719,
0.930, 0.999, 0.719;
0.930, 0.999, 0.719,

cont.
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TABLE 4.4 (cont'd.)

x(Nz) p/atm. 104 lz/atm.mzs_
Cell A3
0.100, 1.000, 0.6984
0.1005, 1.0003 0.699,
0.1495 0.9994 0.7005
0.3294 0.999, 0.7045
0.330, 1.000, 0.703,
0.334, 1.000y 0.7034
0.449 0.999; 0.7044
0.6003 1.0887 0.706¢
0.653¢ 1.000, 0.709,
0.7501 1.000g 0.708y
0.8504 1.000, 0.709,
0.8994 1.000, 0.710]
0.900; 0.999, 0.7095
0.929, 0.9994 0.7094
0.930; 1.000, 0.709,
Cell B1
0.150, 0.880¢ 0.7135
0.250, 0.880g 0.716,
0.500, 0.8804 0.7203
0.750, 0.880g 0.7234
0.850, 0.8804 0.725¢
Cell B2
0.062¢ 1.000, 0.711,
0.125, 1.000, 0.7134
0.2494 1.0004 0.7154
0.250, 1.000, 0.717,
0.3744 1.000, 0.718¢
0.500 1.000g 0.7214,
0.500, 1.000; 0.721¢
0.500 1.000, 0.721;
0.500¢ 1.000; 0.720,
0.500, 1.0005 0.720%
0.625 1.000, 0.722¢
0.7494 1.000, 0.725,
0.750, 1.000, 0.724,
0.850, 1.000, 0.7244

cont.



TABLE 4.4 (cont'd.)

x(Nz) p/atm.

104p£)12/a.1:m.mzs_1

Cell B3(a) (diam. = 2.54 cm.)
0.100, 1.000y 0
0.200, 1.000y 0
0.300, 1.000, 0
0.500¢ 1.000, 0
0.6994 1.000, 0
0.7994 1.0004 0
0.899¢ 1.000, 0

Cell B3(b) (diam. = 3.81 cm.)
0.100, 1.000, 0
0.200,4 1.000, 0
0.2999 1.000, 0
0.500, 1.000y 0
0.700 1.000; 0
0.900y 1.000, 0

7137
.715¢
L7174
721,
7231
. 724,
7244

712,
71454
.716¢
. 720,
7225
7244
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The data in Table 4.4 and the curves obtained from

Table 4.3 are plotted in rig. 4.2.

4.8 DISCUSSION {

An examination of Fig. 4.2 readily shows that there is
a considerable variation in the diffusion data between f
different cells. It may be observed however, that the ;
major variation occurs between type A cells, the fixed-
section type. For example, when cells of different lengths
but with the same internal diameter are compared (Al and AZ2)
it is seen that the values of pdl, are in reasonable agreement
at the helium-rich end of the mole fraction scale, but differ
by about 0.4% at the nitrogen-rich end. For the cells with

the same length but with different internal diameters

B e

(A2 and A3) the composition dependences are very similar

but the corresponding values of pzhz differ by about 1.2%!

In marked contrast to the above behaviour, all results
obtained in the Loschmidt (B) type cells are consistent to
about 0.2%, which is of the order of the experimental error.
The curves for cells B3(a) and B3(b) have been omitted from

Fig. 4.2 for clarity.

The apparent geometry dependence of the diffusion
coefficient in the A-type cells seems to be a consequence of
the '"squirt-in'" technique for setting up an initial concentra-
tion distribution. Since this dependence is not exhibited in
thé Loschmidt cells it must be an artefact and therefore
such a technique is the wrong one to use in restricted
diffusion cells. An undesirable feature of the A-type cells

is the small "dead space' between the jet and the seat of
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the Nupro valve. Since the space cannot be isolated in
this type of cell, gas is diffusing through the jet at the
same time as the main diffusion process is taking place.
One might therefore expect that diffusion coefficients in
cell A3 will be affected the most,whereas,in cell Al, which
is 8 times as large, this effect will be least pronounced.

This is consistent with the trend in Fig. 4.2.

Such an effect is absent in the Loschmidt-type cells
because dead spaces are essentially non-existent. It might
be argued that the method of boundary formation in a B-type
cell is superior to that in the former type because the
pressures in the two compartments are the same. Although
experiments in such a cell are always done in this way it
has been observed that deliberately-created pressure
differences of up to 30% between the compartments prior to
diffusion have no effect on the reliability of the run, nor

on the final resultlo.

An asymmetric Loschmidt cell which creates a boundary
close to the bottom end of the cell is being tested at the
present timell. The final mole fraction of the heavier gas
when two pure gases mix is 0.08. The purpose of the cell
is to test the hypothesis that the diffusion coefficients
are independent of the position of the formation of the
boundary. Results to date indicate that for the helium-
nitrogen system at x(N,) = 0.08 the diffusion coefficient
in the new cell is about 0.5% lower than the corresponding
values in the other Loschmidt cells. It is interesting to

note that the results for this system and for helium-argon

are almost identical with measurements made in an A-type
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cell of the same internal diameter, incorporating a special
type of jet18. This jet has a much smaller dead space
associated with it. An important feature of its design is
a thin baffle, which protrudes about 0.8 mm into the cell.
The incoming gas is deflected horizontally by the baffle
ensuring that most of it is initially localised at one end
of the cell. One can envisage that the concentration
profile formed in this fashion bears a closer resemblance
to the idealised step function than the one generated by

the simple jets used in cells Al, A2 and A3 where the incoming

gas is directed vertically into the cell.

Since the problem of a geometry dependence did not
arise in the symmetrical Loschmidt-type cells it was
considered that they were giving accurate and precise
results for the absolute determination of the diffusion
coefficients. It is interesting and indeed encouraging to
note that in the nitrogen-argon system in a 50/50 mixture,
a comparison of mass spectrometry and thermistor bridge
analysis led to identical results in cell Bl which in turn

were identical to those obtained in B3(a) and B3(b)5.

On this basis, the new brass Loschmidt cell B3 was used
in the subsequent systematic pressure dependence study of
binary gas mixtures containing helium, the main subject

matter of Chapter 5.

4.9 THE THEORETICAL COMPOSITION DEPENDENCE FOR HELIUM-
NITROGEN

Having precisely established the composition dependence

of Rihz at 300K and 1 atmosphere for helium-nitrogen in the
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Loschmidt cells it was considered worthwhile to compare

these results with the Chapman-Enskog theory. The theoretical
composition dependence was evaluated at the same temperature
and pressure using the Kihara second approximation12 (Eq.
(2.21)) to the Chapman-Enskog formula for the mutual diffusion

3

coefficient. Quantum-corrected collision integrals1 for the

Lennard-Jones (12,6) potential model were used in the

14

calculation The potential parameters Oij and eij/k and

their sources are listed in Table 4.5.

TABLE 4.5

The Lennard-Jones (12,6) parameters for the

helium-nitrogen system.

oij(nm) eij/k (K) Ref. Method
He-He 0.2576 10.22 15 Viscosity
He-N, 0.3120 36.18 16 Viscosity
N,~-No 0.385 47.6 17 Self-diffusion

The theoretical composition dependence is represented in
Fig. 4.2 as a broken line. On comparing this curve with
the experimental ones it appears that the Chapman-Enskog
theory tends to over-estimate the composition dependence of
the diffusion coefficient for the helium-nitrogen system.
This is borne out by the comparison of the theoretical and
experimental ratios of the diffusion coefficients at the

two composition extremes as summarised in Table 4.6.
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TABLE 4.6

The comparison of the theoretical ratio,
(piﬁz)x2=1/(pzﬁz)x2=o,

with the experimental ratio.

(pihz)x2=1/(piﬁ2)x2=o

Theoretical 1.033
Al 1.026
A2 1.024
A3 1.031
Bl 1.024
B2 1.024
B3(a) 1.022
B3(b) 1.022

The theoretical curve lies below the curves for the
Loschmidt cells by about 1.7%, a difference that cannot be
attributed to experimental error alone, since the estimated
precision was about 0.2%. This disagreement is understandable
considering that nitrogen molecules are non-spherical and
therefore are strictly not suitable for representation by a
Lennard-Jones model. The parameters themselves are subject
to a wide variation due to varying degrees of experimental
precision and different temperature ranges over which the
parameters are averaged for this particular potential

function.
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CHAPTER 5

THE PRESSURE DEPENDENCE OF DIFFUSION

5.1 INTRODUCTION

It was shown in the previous chapter that of all the
restricted diffusion cells constructed in this laboratory,
only the Loschmidt type cell could be used for the precise
absolute determination of the mutual diffusion coefficient
over the whole composition range of helium-nitrogen mixtures
at 1 atmosphere and 300K without the ambiguity of an
apparent geometry dependence. Cell B2 was the prototype
Loschmidt cell for measuring diffusion coefficients at
pressures above 1 atmosphere. The failure of this cell to
hold pressure satisfactorily above 3 atmospheres led to the
design of the brass block diffusion cell, B3. 1In this cell,
there could be no possibility of the surfaces of the inter-
face being distorted by the force of the springs. The
cupped washers, which replaced the coil springs, enabled
much greater forces to be used in preventing the sliding
surfaces from being prised apart by the gases at high pressures.
The new feature of two independent diffusion channels of
different internal diameters (Table 4.2) and with separate
filling ports, enabled duplicate experiments to be carried
out simultaneously, hence providing a valuable check on the

precision of the data.

Before undertaking a systematic pressure dependence
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study in several binary gas mixtures, it was considered
worthwhile to investigate to what limits the thermistors
could be used reliably in diffusion measurements. The
conclusion drawn from this study was that only in mixtures
containing excess helium would one consistently obtain the
most reliable measurements over the pressure range to be
studied. On this basis, diffusion coefficients were measured
in binary mixtures of helium with six other gases over the
pressure range of 1 to 9 atmospheres. In all experiments

helium constituted 90% of the final mixture.

The density dependence was determined from the experi-
mental results and was compared with the Thorne extension to
Enskog's theoretical dependence based on the rigid-sphere
molecular model. The rigid spheres model as such failed to
predict the density dependence satisfactorily for all systems.
However, following Enskog's approach, a modified form of
Thorne's equation, relatable to equation of state data, was

tried and found to give good agreement in most cases.

5.2 INVESTIGATION OF THE COMPOSITION DEPENDENCE ABOVE

ATMOSPHERIC PRESSURE

As in the previous chapter, helium-nitrogen mixtures
were again used as the test system. Having successfully
determined the composition dependence of the diffusion
coefficient of this system at 1 atmosphere and 300K, to
better than 0.2% in both channels of cell B3, a similar
determination was attempted at higher pressures, as had
previously been done in cell A21. This proved to be

unsuccessful at 3 and 5 atmospheres, as can be seen in the
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first graph in Figure 5.1. The solid curve represents the
smoothed composition dependence of the product pzﬁz at 1
atmosphere evaluated from the combined results from both
channels of the brass block diffusion cell, B3, which were
tabulated in Chapter 4. The apparent composition dependence
of piﬁz measured at 3 and 5 atmospheres was extremely
uncertain, especially towards the nitrogen-rich end of the
composition range. This generally coincided with a poor
agreement between the resistance-versus—-time data and Eq.
(3.16). When the pair of thermistors from one diffusion
channel were interchanged with the pair from the other, a
similar deterioration in the reliability of the experiments
at 3 atmospheres was observed as the mole fraction of helium
in the final mixtures decreased, although this time the
agreement between the two channels had improved considerably,
as can be seen in the second graph in Figure 5.1. The latter
position of the thermistors was retained for the remainder of

the project.

It has been suggested1 that a larger proportion of
energy is dissipated from the thermistors by convection as
the density of the gas increases. It therefore appeared that
the best way to study the density dependence of binary
diffusion with the minimum interference from the convective
effect, was to limit the experiments to mixtures in which
helium was in excess. This unfortunately narrowed the scope
of the project, in which a pressure-composition dependence
was aimed for; however, such a restriction seemed justifiable
in view of the fact that each pair of thermistors had only

been matched in a helium environment by the manufacturer.
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It was indeed found in the above experiments that the mis-
matching of the thermistors became steadily worse as the

final mixtures became less rich in helium (sece Fig. 5.2).

5.3 EXPERIMENTAL TECHNIQUES AT ELEVATED PRESSURES

Other factors contributing to the uncertainty in
measurements at higher pressures included (i) the pressure
of mixing due to the non-ideality of the gases, and (ii)
the presence of leaks, predominantly at the interface, which
became worse as the pressure inside the cell increased. The
pressure of mixing could be minimised by confining the study
to helium-rich systems. The estimated pressure increase in
all systems studied amounted to no more than about 0.07% at
9 atmospheres in a final mixture of 90% helium (see the table
in Appendix A). The leaks which caused the most problems were
mainly attributable to the escape of gas between the sliding
surfaces. Unless one was to resort to dismantling the cell
and regrinding the surfaces of the interface, the only
effective way available to reduce this type of leak was to
increase the force keeping the surfaces in close contact.
The original clamping arrangement, consisting of heavy duty
coil springs retained by large stainless steel adjusting nuts,
was eventually replaced by sets of cupped washers capable of
exerting a maximum force of 200 kilonewtons when the adjust-
ing nuts were fully tightened. To test the effectiveness of
the new assembly the whole cell was pressurised with helium
at 7 atmospheres, isolated from the manifold and allowed to
stand undisturbed for 16 hours. It was found that over this

period the pressure fell by only 0.4%. At 7 and 9 atmospheres
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it was sometimes observed that a few small bubbles of gas
escaped through the interface during the process of rotating

the two halves of the cell into alignment, however this

behaviour was intermittent and was assumed to be negligible.

Internal leaks caused problems at higher pressures. In
this situation, gas leaked from one compartment to another
via the interface, because of the existence of a pressure
gradient between the separated compartments. This problem
usually arose during the preparation of the gas mixtures in
situ, but it was always possible to prepare them in such a way
that the pressure difference between the different sections
was kept to a minimum at all stages. It was therefore not
only convenient but also desirable to carry out two experi-
ments simultaneously in the two channels of the cell, so that

there would be no leakage of gas between the compartments.

After the second gas had been added, the mixtures were
allowed to equilibrate until constant resistance difference
readings were observed for both pairs of thermistors. To
ensure that all compartments were at the same pressure prior
to the commencement of the diffusion run, helium was care-
fully bled through the valve outside each compartment until
the required pressure was obtained. The pressure adjustment
in this '"topping-up" procedure was usually very small and
hence did not cause a change in composition in the compart-
ments. This was because the gas displaced into the compart-
ment from the space between the outside valve and the filling
port was of the same composition as that in the compartment.
The change in composition which occurred in these spaces did

not have any effect provided that the cell was rotated as
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soon as possible until each compartment was isolated from

its filling port. If this procedure was carefully carried
out, no composition change was detected unless the pressure
adjustment was large due to a bad leak. In some systems 2
"reverse topping-up" procedure was used. For example, the
pressure of mixing for the helium-sulphur hexafluoride system
at x(He) = 0.8 was so large that the mixture had to be bled
from the compartment to obtain the correct pressure before

commencement of the experiment.

5.4 INITIAL TRANSIENTS

At the commencement of the diffusion run in a Loschmidt
type cell the following effect was often observed. Instead
of the resistance difference between the top and bottom
thermistors starting to decay as soon as the initial concen-
tration distribution relaxed, there was at first no reaction,
but shortly the resistance difference, AR, on the bridge
began to increase until it passed through a maximum and then
decayed normally. The first phase could be attributed to
the finite time that the '"tails" of the concentration gradient
took to reach the thermistors, but the response in the second
phase was seemingly anomalous. The Dufour effect would not
have been responsible because it would have acted in the
opposite direction, that is the top thermistor would have
been heated and the bottom one cooled. This, in fact, would
have enhanced the decay in the resistance difference between

the thermistors.

It would appear then, that the heat of mixing of the

gases was a determining factor. In this case both thermistors
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would have been heated but they would have been affected
differently because they were in different environments.

It had been observed that this phenomenon was particularly
pronounced when the mole fraction of helium in the final
mixture was less than or equal to 0.5. Presumably, at the
beginning of the diffusion process, the heat generated by
mixing was dissipated much more slowly by the heavier gas
surrounding the bottom thermistor, than by the helium-rich
gas around the top one. The bottom thermistor must therefore
have been heated initially to a greater extent than the top
one, thereby causing an initial decrease in the difference

in resistance.

The magnitude of the initial transient was typically
of the order of 0.5% of the bridge signal observed prior to
the commencement of the diffusion process. This effect was
apparently pressure-dependent, as one might anticipate, if
it were caused by the heat of mixing effect (c.f. Eq. (2.12)).
Table 5.1 indicates qualitatively this fact for the case of
pure helium diffusing into pure nitrogen in the brass Losch-

midt cell at 300K.

TABLE 5.1

Effect of pressure on transient signal in an
equimolar mixture of helium and nitrogen at 300K.

p(atm.) Transient (%)
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5.5 THE PRESSURE DEPENDENCE OF DIFFUSION IN SIX BINARY
SYSTEMS
Mutual diffusion coefficients at 300K were measured
over the pressure range of 1-9 atmospheres in mixtures of
helium with four other noble gases, namely neon,argon,
krypton and xenon, and with the polyatomics, nitrogen and
carbon dioxide. All experiments were performed by allowing
pure helium from the top compartment to diffuse into a mixture
containing 80% helium, resulting in a final mixture containing
90% helium. All gases used had a purity of 99.99% except

carbon dioxide, for which the purity was 99.9%.

In most cases, duplicate experiments were carried out
simultaneously in both channels of the brass Loschmidt cell.
The average results from the two channels are listed in
Table 5.2 and a plot of the product paﬁz as a function of
the pressure, p, is given in Fig. 5.3. The data were

adequately represented in linear form by
pd,, = (od ) (1 + fp), (5.1)

from which were obtained the least-squares parameters (pzﬁz)o
and 6, appearing in Table 5.3, along with the estimates of

their standard deviations.

For each system, a set of quantities, n&%z, was
calculated from the corresponding quantities, p&ﬁz, where

the number density, n, was related to the pressure, p, by

n = p/[kT(1-+B$p)]. (5.2)

The second pressure virial coefficient, B%, of the mixture

was evaluated at x(He) = 0.9 wusing Eq. (2.11) and the
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TABLE 5.2

Results for six binary systems of helium at 300K

p(atm.)? 104p£%2(atm. m?s?l)

He-Ne He-Ar He-Kr He-Xe He—N2 He—CO2

1 1.101g 0.740, 0.641; 0.547; 0.711, 0.607;
2 1.1005 0.740, 0.640; 0.5465 0.710; 0.605;
3 1.101¢ 0.739, 0.640g 0.546, 0.710, 0.6054
4 1.100¢ 0.739; 0.640; 0.545¢ 0.7105 0.605;
5 1.102, 0.739; 0.640, 0.545, 0.710¢ 0.604¢
7 1.102, 0.739¢ 0.640, 0.5445 0.7105 0.603g
9 1.1029 0.739, 0.6395 0.543¢ 0.7105 0.603;

8pctual pressures lie within 0.05% of these values

TABLE 5.32°P

Least-squares parameters from Eq. (5.1)

He-Ne He-Ar He-Kr He-Xe He—N2 He—CO2
104(p1h2)0 1.1004 0.7405 0.641; 0.547, 0.7105 0.607,
108 s.p. 4.8 3.0 2.0 2.2 2.0 2.6
10%9 1.71 -0.98 -3.16 -8.49 -0.32 -7.90
4

10" S.D. 0.86 0.79 0.60 0.76 0.54 0.82

qUnits: (9812)0, atm.m?s>1; 8, atm

bS.D. is standard deviation of parameter.
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experimental virial coefficient data(z—s) listed in
Table 5.4.
TABLE 5.42°P
Second pressure virial coefficients
10481 (atmTh) 10%B!_ (atmT1) 10%E" (atm> 1)
ii 12
He 4.67 (2) = -
Ne 4.59 (2) 5.04 (3) 0.41
Ar -6.34 (2) 7.38 (3) 8.22
Kr -20.5 (2) 8.21 (4) 16.12
Xe -52.0 (2) 11.65 (4) 35.32
N, -1.70 (2) 8.63 (3) 7.14
COp, -49.6 (2) 8.53 (5) 31.00

8gubscript i is equal to 1 for He; 2 for all other gases.

bReference appears in brackets.

The quantity E' is the excess second pressure virial coeffic-

ient defined by Eq. (2.13).
An equation of the form

nd, = (nd,) (1 + Byn) (5.3)

was fitted to the ni%z—versus—n data by the method of least

squares. The parameters (neD and By together with their
1 D

2)0
standard deviations are listed for the six binary systems

in Table 5.5.
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TABLE 5.52

Least-squares parameters from Eq. (5.3)

He-Ne He-Ar He-Kr He-Xe He—N2 He—CO2

10721 (nd, ), 2.6925 1.8105 1.569, 1.339; 1.739, 1.4844

0
10-18 s5.D. 1.4 0.8 0.4 0.6 0.8 0.5
102? By ~1.02 -2.68 -3.26 -5.76 -2.48 -5.08
102? s.D. 0.41 0.33 0.22 0.34 0.37 0.27
Q.. . . -1 -1, -3
Units: (nﬂlz)o, m:Te.7; Bg, m ".

5.6 C(COMPARISON OF RESULTS WITH THEORY

The experimentally determined values of Qb in Table 5.5
could be compared directly with the corresponding quantity
B, . 5" calculated from Eq. (2.33), by rearranging Egqs. (2.32)

)
and (5.3) to

(n”1z)/(niﬁz)o (1 + qbr-s'n) (5.42a)

It

and (n&%z)/(nwlz)o (1 + By.n), (5.4b)

and comparing the ratios as a function of number density, n.

Bg's"was evaluated by using the Lennard-Jones (12,6)
parameters o?iJ' as approximations to the hard sphere
diameters, Oiyq- These parameters, and their sources are

listed in Table 5.6.

TABLE 5.6%

Lennard-Jones (12,6) distance parameters

He Ne Ar Kr Xe N CO

2 2
okd (nm) 0.260 0.273 0.336 0.357 0.392 0.385 0.408

ii

Ref. (6) (6) (6) (6) (6) (7) (7)

8Subscript i is equal to 1 for He and 2 for the other
gases.

B oL T
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§¥" T L

By using Lennard-Jones parameters exclusively in the
evaluation of BB'S' in Eq. (2.33), the results in Table 5.7 ;
below were obtained. It was found that these values showed i

negligible variation from one system to another, compared

with the experimental slopes, By, from Table 5.5. {
}

TABLE 5.7 :

Transport virial coefficients from LJ distance parameters

He-Ne He-Ar He-Kr He-Xe He—N2 He—CO2

1029B;°S'(m'3) _2.36 -2.59 -2.64 -2.69 -2.69 -2.70

In general, the agreement between the experimental and
predicted first density corrections 33 and %br's' was very
poor, undoubtedly the result of arbitrarily inserting %E
Lennard-Jones distance parameters into the rigid-spheres

expression (2.33). The rigid-spheres model is so unrealistic
that it fails to predict even the correct sign of the excess

second virial coefficient appropriate to a given mixture.

It is shown in Appendix B that this last quantity, E'(r.s.),

is always negative, whereas the experimental value, E', is

usually found to be positive, as shown in Table 5.8.

TABLE 5.8%

Second pressure virial coefficients:
a comparison of experimental values, E',
with rigid sphere values, E'(r.s.).

He-Ne He-Ar He-Kr He-Xe He—N2 He—CO2

104E' 0.41 8.22 16.12 35.32 7.12 31.00

10%E' (r.s.) -0.02 -0.66 -1.11 -2.18 -1.94 -2.81

8units of E' are atm?l.
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Since real gases do not conform to the rigid spheres
model, the notion of an effective rigid spheres diameter is
introduced in order to make practical use of a formula such
as Eq. (2.33) for correlative or predictive purposes. Enskog7
suggested that the rigid spheres equation of state, Eq. (2.27),
could be extended to real gases by identifying the pressure,

p, with the thermal pressure, T(5p/a3T)=, since the internal
pressure, (Bﬁ/BV)T due to intermolecular forces is necess-
arily equal to zero for rigid spheres, that is

(V/R)(3p/3T)g = 1 + %nn03Y. (5.5)

If p is expanded in virial form (c.f. Eq. (2.10)), it

follows that’
B' + T(dB'/dT) = 2mo3/3kT. (5.6)

Hence, a temperature-dependent effective rigid sphere

diameter, oiif for a real gas, i, can be calculated from

the compressibility data for the gas. The values of oiff
in Table 5.9 were calculated from Eq. (5.6) using the
smoothed experimental virial coefficient data listed in

Dymond and Smith,2 with the exception of carbon dioxide, for

which the data of Dadson et al.8 was chosen.

TABLE 5.92

Effective rigid spheres diameters

He Ne Ar Kr Xe N COo

eff
ii

o (nm) 0.193 0.245 0.344 0.397 0.454 0.353 0.490

aSubscript i is equal to 1 for He and 2 for the other

gases.
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The effective values, Oiif, when substituted into

Eq. (2.33) showed no improvement whatsoever in the general
agreement between the experimental slopes and the resultant

Bsz values, displayed in Table 5.10.

TABLE 5.10

Transport virial coefficients from effective

rigid spheres diameters

He-Ne He-Ar He-Kr He-Xe He—‘\I2 He—CO2

1oz9q;ff(m'3) ~1.06 -1.09 -0.98 -0.74 -1.08 -0.46

The first term of Eq. (2.33) is derived from the
rigid spheres form of the activity factor (E)lnal/alnxl)T’p
This term may be rewritten as -4x1X,E'(r.s)kT (see
Appendix B). As we have already noted, excess virial
coefficients, E'(r.s), calculated from the rigid spheres
model, fail to give even qualitative agreement with
experimental values. One might expect an improved
prediction for the value of Bb by replacing the rigid
spheres quantity, E'(r.s), in the first term, by the
corresponding experimental value. The results of such a
calculation, using the experimental data in Table 5.8,
are shown in Table 5.11.

TABLE 5.11

Transport virial coefficients with

experimental activity contributions.

He-Ne He-Ar He-Kr He-Xe He—N2 He—CO2

29 .e.a.
10 %D (

m3) -1.15 -2.64 -4.05 -7.18 -2.54 -6.77
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A comparison with Table 5.5 shows that this modified

e.a.
Ba ,

overall with the experimental values than in the previous

coefficient, was generally in better agreement
two calculations. The experimental trend is now mirrored

in these values.

A further modification of Eq. (2.33) was tested
following the comparative success of the previous calcula-
tion. The second part of the equation was replaced by an

empirical expression of the same form:-
ond term = Ng'[x;B{1& + %,B},(5/4 - )] (5.7)

where Ny is Avogadro's number, and

f£f. R R ff.
£ o= (oEf 1 4o8Efy (agtE + 4055t (5.8)

This scheme simply involved the replacement of the
expressions for rigid sphere virial coefficients,
ZWO%i/BkT, by the experimental values, B;;. The factor g
was evaluated in terms of the effective rigid spheres
diameters from Table 5.9. The results of this calculation

are shown in Table 5.12.

TABLE 5.12

Transport virial coefficients with empirical formula.

He-Ne He-Ar He-Kr He-Xe He—N2 He—CO2

1029Bemp

5 (m™3) -1.33 -2.31 -3.23 -5.50 -2.26 -4.98

These values, surprisingly enough, agreed excellently

with the experimental values in Table 5.5. The deviations,

Aemp, as shown in Table 5.13 were comparable with the
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standard deviations of the experimental slopes, Bg, for

all systems.

TABLE 5.132°P

Deviations, A, of the various calculated values
of the density correction compared with the

standard deviation, SD, of the experimental slope, Qﬂ‘

IREEE Aeff. T AP SD
He-Ne -1.34 -0.04 -0.13 -0.31 0.41
He-Ar 0.09 1.59 0.04 0.37 0.33
He-Kr 0.62 2.28 -0.79 0.03 0.22
He-Xe 3.07 5.02 -1.42 0.26 0.34
He—N2 -0.21 1.40 -0.06 0.22 0.37
He—002 2.38 4,62 -1.69 0.10 0.27

2Units are m > x 10”27, Pp = cale. - exp.

5.7 DISCUSSION

When attempting to predict the ratio n 12/(m$12)0 as
a function of n, using the Thorne-Enskog theory, the
activity contribution to the density dependence must be

evaluated from experimental compressibility data. As
10

pointed out by Tham and Gubbins, the diffusion coefficient,
D;o, of Thorne in the relation,
-1
nDy,/(nDyp)g = Y7, (5.7)

incorporates an activity factor which tends to unity as
the mole-fraction of one component of the mixture tends
to zero, or as the density of the gas leads to zero. It

is appropriate that if experimental diffusion coefficients
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&D,, are measured, they should be corrected to the
corresponding Thorne diffusion coefficients, D;,, using
experimental activity factors, (1 - 4x1x,E'p), prior to a
comparison with the factor Y,;,. What we havé done in the
third set of calculations was equivalent to this, and we
immediately obtained a set of calculated slopes which in
terms of a trend were gqualitatively similar to the

experimental slopes.

The proposed empirical modification of Y;, as given
in Eq. (5.7) is attractive due to its simplicity and due
to the ready availability of virial coefficients data for
many pure gases.2 The retention of the £ factors makes
the extension compatible with Thorne's expression, while
the use of effective rigid spheres diameters to obtain
these values is a logical application of Enskog's empirical

extension of the rigid sphere theory to real gases.7

Bennett and Curtiss9 have generalised Eq. (2.33) to
a functional of soft potential functions; however, their
theory does not adequately treat bound states. Their
numerical tabulations unfortunately do not include any
values for mixtures, therefore it is not readily possible

to obtain any predictions from their formula.

The effect of bound states on the density dependence
of diffusion in binary mixtures is very difficult to
estimate because of the several different types of species
occurring in the monomer-dimer equilibrium. The problem
is simplified somewhat if one of the components is present

11

only as a trace. However, the pressures attained in



this project were negligible compared with those for

which such effects would be considered significant.
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APPENDIX A

THE PRESSURE OF MIXING IN A B-TYPE CELL

The Loschmidt or B-type cell has been described in
Chapter 4. We shall consider the pressure change which

takes place in a symmetrical cell when real gases mix.

In a typical experiment, the top compartment of the
cell may contain a pure species, 1,while the bottom com-
partment contains a mixture of species 1 and 2, where 2
is the heavier component. We shall label with super-
scripts T and B, quantities belonging to the top and bottom
compartments respectively. Assuming no gas is lost by
leaks when the compartments are aligned we may write a
conservation of matter equation for this particular

experiment

= vy + vo (A.1)

where \ is the number of moles of species 1i. The
partial pressure Py is related to the number of moles
vy by the equation of state:

in = viZiRT (A.2)

where z; is the compressibility of the gas 1i. The

conservation equation in terms of the pressures is
T.,T,_T B.,B, B
piV'/z1 + pV /2" = pV/z, (A.3)

where V is the total volume of the cell and p is the
final pressure. Since the cell is symmetrical,

VA = VB = 3V. Therefore the final pressure is given by

p = (Z/2)(p¥/2¥ + pB/zB)- (A.4)
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The compressibility z, expressed in terms of the virial

pressure expansion, is
z(xy,p) = 1 + B'(X2)p + .... (A.5)

where B'(x,) is the second pressure virial coefficient of
a mixture of composition x,. Since the final pressure p
is also contained in the leading term on the RHS of (A.4)
it may be extracted by iteration, using the average
pressure in the separate compartments as a first

approximation.

Similar expressions to Eq. (A.4) may be written for
the cases (i) when the bottom compartment contains the
pure species 2 and the top compartment contains a mixture

of 1 and 2:

T, T B, B
p = (2/2)(p /2" + p2/22), (A.6)
and (ii) when each compartment contains a pure species;

p = (2/2)(p1/2] + p5/23). (A.7)

The following table lists the percentage pressure
increase for a number of systems as a function of the
initial average pressure. The final mole fraction of

helium in each system is approximately 0.9.



TABLE A.1

Pressure of mixing (%) as a function of pressure

80

(atg.) He-Ne He-Ar He-Kr He-Xe He-N, He-CO,
1 g.2x10°% 1.6x1073 3.2x107% 7.1x107% 1.4x1073 6.2x1073
3 2.4x107% 4.9x1073 9.7x1073 2.1x107% 4.3x107> 1.9x1072
5 4.0x10"% 8.2x1073 1.6x10"2 3.5x107% 7.1x1073 3.1x1072
7 5.6x10"% 1.1x1072 2.3x1072 4.9x107% 9.9x107> 4.4x107 2
o 7.2x10°% 1.5%x1072 2.9x1072 6.4x1072 1.3x1072 5.6x10
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APPENDIX B

DERIVATION OF THE NON-IDEALITY TERM IN EQ. (2.30)

From Ref. 24 in Chapter 2, the absolute activity a;
of species 1 in a slightly imperfect binary gas mixture

is given by

lna; = 1na$ + Inx; + 1n(p/p°) + (B{; + 2x3E')p, (B.1)
where a? is the absolute activity of the pure species 1
at temperature T and standard pressure po. On differen-

tiating with respect to (1lnx;) at constant temperature

and pressure,

(alnal/alnxl)T 5 =1 - 4x1x2E"'p. (B.2)

E' is the excess second pressure virial coefficient

defined in Eq. (2.13).

The rigid-spheres expression for the second pressure

virial coefficient, Bij(r.s.), is
1 = 3 m
Bij(r,s.) 2ﬂoij/3k1 (B.3)

where Oij is the distance between the centres of colliding

species i and j on impact. It follows that
E'(r.s) = (2n/3kT)(03, - 3(oi, + 052)), (B.4)

but since we have for rigid spheres:
012 = 3(o11 * 032), (B.5)

we find that

E'(r.s.) = —(n/4kT) (055 - 071)%(020 + 011, (B.6)



and on substituting into (B.2) we obtain

82

(alnal/alnxl)T,p =1 + nTTX1X2(O'22 . 0’11)2(022 + 011),

since n = p/kT.

(B.7)
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APPENDIX C EVALUATION OF FOURIER COEFFICIENTS IN
EQ. (3.10)

The initial concentration distribution function in
the diffusion cells used in this work is approximated by a
step function given in Egs. (3.11) and (3.12) and this
function is also represented by the Fourier series 1in
Equation (3.10). The coefficients in Eq. (3.10) are
obtained by making use of the orthogonality property of
cosine functions:-

L
(2/L) f cos(kmz/L)cos(lnmz/L)dz = §
0

Kl (C.1)

where sz = 1 (if k=1), or O (k#1).

Thus for k#0:-
L

(2/L) f [c(0,0) + u(z-a)c(L,0)] cos(knz/L)dz
0

jos}
i

a
(2/L) [ f c(0,0)cos(knz/L)dz

0
L

+ [ c(L,0)cos(krz/L)dz]
a

(2/km)sin(kma/L) [¢(0,0) - c(L,0)]

_(2/km)sin(kma/L) Ac(0), (C.2)

and for k=0:-

[os)
I

L
(1/L) f [c(0,0) +u(z-a)c(L,0)] dz
0

I

[2/L1c(0,0) + [(L-a)/Llc(L,0)

c (the mean concentration).





