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Plate 1. “Landsat imagery sample areas on which measurements of linear width, length,
and wavelength were made. Numbers in parentheses refer to the regions listed in table
36. Each sample is an area 50 km by 50 km, or 2,500 km? (1,550 mi?) in a sand sea. A)
Kalahari Desert southern Africa; simple dunes B) Great Sandy Desert, Australia; simple
dunes C) Southwestern Rub’ al Khali, Saudi Arabia; compound dunes D) Southwestern
Sahara; compound dunes E) Namib Desert, South-west Africa; complex dunes F) Western
Rub’ al Khali, Saudi Arabia; complex dunes.” (From BREED and GROW, 1979).



Plate 2. “Red linear dunes extending 600 km (360 mi) across the western Rub’ al Khali
to the foothills of Yemen. Skylab oblique photograph SL4-4643. Dunes in the Qa’amiyat
region have an average crest-to-crest distance of 2.1 km (1.3 mi) and are commonly more
than 100 km (60 mi) long.” (From BREED et al., 1979).
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Plate 8. “Landsat imagery of linear dunes A) in the Erg Bilma. Both simple and
compound linear dunes occur near Bilma in the same regional wind environment. B)
Annual and six monthly sand roses for Bilma, Niger, illustrate a wide unimodal high-
energy wind regime near the dunes. Arrow indicates resultant drift direction. Number in
center circle of rose is reduction factor. DP (drift potential, in vector units) is given for
each rose.” (From FRYBERGER, 1979).



Plate 4. Snaking linear dune of the Negev Desert, Israel. Numbers are reference points
used in TSOAR, 1978. (Original image provided to TSOAR Geological Survey of Israel,
Tel Aviv).



{Poolowanna 1:250,000 photograph, SVY. 2445,

Plate 5. Simpson Desert dunes.
Department of Lands, South Australia).



Plate 6. “Fishinghook” linear dunes of
western China. (From CHINA TAMES HER

DESERTS, 1977).

Plate 7. “Honeycomb” linear dunes of
western China. (From CHINA TAMES HER

DESERTS, 1977).

Plate 8. “Dendritic” linear dunes of
western China. (From CHINA TAMES HER

DESERTS, 1977).
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Plate 9. Simple linear dunes from the Navajo Indian Reservation, northern Arizona,
U.S.A. (From BREED and GROW, 1979).



Plate 10. Linear dunes “with barchan-
like slip faces developed on their western
flanks as a result of gentle eastern win-
ter winds. Central Wahiba Sands, Oman.”
(From GLENNIE, 1970.)

Plate 11. Snow barchans of the Lake
Erie shore linked by the elongation of one of

the horns of the windward barchan. (From
HANNES and HANNES, 1982).

Plate 12. Linear dunes emerging from the
looward side of a transverse debris monnd on
the periphery of a dried lake bed. Many of the
closely spaced dunes combine a short distance
to loeward of the mound, thereby imposing
greater order in the system away from the
mound. This is most apparent on the right-
hand side of the image. Note that in the im-
age the dunes darken rapidly away from the
debris mound. In nature this corresponds to a
relatively abrupt transition in the dune from
white to red sand.



Plate 18. Smoke-marked roll vortices
in a thin chamber in which shear is provided
by the movement of a glass cover. The con-
vection layer is 6 mm thick, the temperature
difference between the top and bottom of the
layer is 91°, and the shear is 2.3 cm /s. (From
CHANDRA, 1938).

Plate 14. Rotation canister set up for
photography. (From HORST, 1970b).



Plate 15. “China-clay record of instability.” The direction of disk rotation was
counterclockwise, the rotation rate was 3200 rev/min and the disk radius was 4.35 in.
(From GREGORY, STUART and WALKER, 1955).



Plate 16. Longitudinal features dev

eloped on the bottom sand bed the rotation canister.
(From HORST, 1970b).

Plate 17. Stationary vortices produced in a rotation tank while

fluid was moved radially
across the bottom. (From FALLER and KAYLOR, 1966).



Plate 18. Isolated rotation tank vortice (see Pl. 17). (From FALLER and KAYLOR,
1966).



Plate 19. Longitudinal features in
bottom sand bed of the rotation canister.
Note that in this instance onmly the fluid
near the fringe of the canister seems to have
succombed to an organized instability. (From
HORST, 1970b).

Plate 20. Notched linear dunes of
northern Africa. Note that secondary ridges
are nearly orthogonal and extend to the left
of the primary linear dunes. (From CLOS-
ARCEDUC, 1968).

Plate 21. Notched linear dune of
central Australia. Here the secondary ridges
extend to the right of the primary dune. I
notched dunes do result from transverse roll
vortices, which are secondary to longitudinal
roll vortices, then it would be expected that
secondary ridges produced would be to the
left of the primary dune in the northern
hemisphere and to the right of the primary
dune in the southern hemisphere. (C. R.
Twidale).



100 m tower instrumented for the observation of turbulant eddies over the

Plate 22. A)
insula, South Australia. Note that the pairs

low canopy of a forest in central Eyre Penn
of short extension arms, mounted with a cup anemometer and a shielded temperature
sensor, are logarithmically spaced. This is configuration is prompted by the logarithmic
vertical variation in wind speed and temperature. B) Long horizontal boom mounted with,
from right to left, wind vane and propellor anemometer, vertical wind component rotor
anemometer, and hygrometer. The encasement for the thermometer mounted on the short
arm, of which a clearer view is afforded in this image, is designed to shield the sensor from
direct solar radiation and wind. (Chen Fa Zu, Chinese Academy of Science).
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Plate 23. “Smoke laid parallel to the
wind by a plane flying horizontally. Note
the vertical development of points A and
B. Elapsed time between (i) and (ii) is 88
seconds.” (Taken from WOODCOCK and
WYMAN, 1947).

Plate 24. “Installation of potential gra-
dient probes on wing of Tripacer aircraft.”
(From VONNEGUT, MOORE and MALLA-
HAN, 1961).
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Plate 25. The instrumented foremast
or noseboom of the de Havilland Buffalo air-
craft N326D of the National Center for At-
mospheric Research (NCAR), Boulder, Col-
orado, U.S. (From LENSCHOW, 1972).
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Plate 26. Landsat image of the area just to the south of Moomba

dune is marked “s”. (Strzelecki 1:250

South Australia).



Plate 27. Eastern flank of the study dune.

Plate 28. The comparativ

ely well vegetated eastern flank of the study dune.



Plate 29. Study dune summits as viewed from the west.

Plate 30. Study dune summits as viewed from the crest looking south.



Plate 32. A point along the western
perimeter of the study dune at which the
wind. transition between the dune and the firm

material of the interdune corridor is abrupt.

Plate 31. Ripples on the study dune
surface as viewed looking south and into the

Plate 34. A point'-along the western
perimeter of the study dune at which exists

Plate 33. A close-up view of the transi-

tion between the dune and the interdune cor-
ridor (See Pl. 32). an intermediate stage of gently sloping, rip-

pled sand between the main body of the dune
and the interdune corridor.



Plate 35. “Clay leave,”erosional struc-
tures just beyond the eastern perimeter of the
study dune.

Plate 36. Interdune corridor area to
the west of the study dune consisting mainly
of low vegetation.

Plate 37. Grassy interdune area to the
east of the study dune.

Plate 38. Sandy interdune corridor
area just to the west of the study site with
a very sparse population of low vegetation.
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Plate 39. Pebbly interdune corridor area to the west of the study dune with some low,
woody debris.

Plate 40. Variable resistance wind vane utilizing a styrofoam tail and a DC 100
microampere meter.



Plate 41.

Electronic wind vane mounted on top of a ~ 2.6 m wooden pole for

measurements.

Plate 42.
monitoring.

Grid of stakes planted over the study site for use in deposition/erosion



Plate 43. Tracking theodolite and balloons before launching close to the western
perimeter of the study dune.

Plate 44. Tracking theodolite ~ 200 m west of the dune.



Plate 45. Meander in the Colorado River, Southern Utah, as seen from an altitude of
~ 3000 m. (From LEOPOLD and LANGBEIN, 1966).




Plate 46. Several examples of dunes that converge but do not coalesce can be found
in this image, most notably the three convergent dunes in the center. (Gason 1:250,000
photograph, SVY. 2473, Department of Lands, South Australia.)



Section

Figure 1. A) Section through a typical longitudinal dune. B) Section through the sharp-crested
longitudinal dunes found in the vicinity of Qinghai, central China.
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[TWIDALE, 1981

Figure 2. The continental system of Australian linear dune fields.
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Figure 4. The Australian continental arc of relict linear dunes and an approximation of
the mean trace of ancient summer anticyclones (surface high pressure systems).

[SPRIGG, 1980]

Pigure B. Prevailing winds of the modern summer anticyclone.



FROME

LAKE

Figure 6. Present prevailing winds, as indicated by the thick arrow, freshly forming longitudinal
Junes on the northeastern shore of Lake Frome. The forming dunes are greatly divergent from the
preexisting ones.
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Figure 7. Longitudinal dune with shifting crest. Arrows are storm wind vectors.




[BAGNOLD, 1941

Figure 8. Transition from barchan to linear dune as a result of bidirectional winds.
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Figure 9. Strips of fine sand deposited during a storm and the hypothetical secondary circulation.
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Figure 11b. Linear dunes that cause downward scouring during lateral migration. Dunes

are not aligned with mean sediment transport.
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Figure 1lc. Linear dunes that neither scour or climb during lateral migration.
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Figure 11d. Linear dunes that climb at a slight angle during lateral migration.
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Figure 1le. Linear dunes that climb at a substantial angle during lateral migration
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Figure 11f. Linear dunes “that accrete vertically without migrating laterally.”. Here
dunes are either aligned with sediment transport, or deposition rate is unusually high.
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Figure 11g. Linear dunes that both accrete vertically and migrate laterally.
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2525

Flgure 13. “Tracing of the northwest corner of McDill's topographic sheet, showing dune trends
typical of the central Simpson desert. Observe the fantastic parallelism of the dunes, and the
systematic opening of the tuning-fork junctures to the SSE. A count on the original map showed 81
out of 83 junctures opening to the south.”
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[MABBUTT and SULIVAN, 1968

Figure 13. “Dune proflles in relation to junctions as shown inset.”
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Figure 14. A) Flow around ships travelling in parallel. B) Pressure field and normal pressure
gradient forces upon ships travelling in parallel.
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[BRUNT, 1951}

Figure 15. “Circulation in the Bénard convection cell.”
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Fignre 16. Smoke chamber for the observation of microscale roll vortices. The convective fluid

layer is between the hot iron plate and the cold glass plate.
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Pigure 17. Wind field over an urban topography simulated ysing Doppler radar data. The
wind is directed orthogonally out of the plane of the paper, towards the viewer. Note that the
wavelength of these roll vortices is approximately twice as large as usual.



[BROWN, 1980}

Figure 18. “Theoretical secondary flow parameters, stream function ¢, and lateral
velocity v for latitude 45°, Ekman depth § = 400 m, U; = 10 m/s, and Re =

U,6/K = 486, where K is the eddy viscosity.”

Hodograph

[BROWN, 1980)

Figure 19. Theoretical secondary flow in the planetary boundary layer.
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Figure 20. “Schematic diagram of the rotating tank and mechanism”
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Figure 21. Schematic diagram of the rotating canister and mechanism.
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o2 |WIPPERMAN, 1969]

Figure 22. Axesof the two mutually orthogonal sets of roll vortices. ; = axes of transverse

roll vortices, and i = axes of longitudinal roll vortices

[IORST, 1970b)

Flgure 28. The formation of spiral sediment bands by roll vortices.
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E=13°11 &, = 13°11

€ =experimental value of the angular difference between longitudinal roll vortices and the mean flow
etn, =theoretical value of the angular difference between longitudinal roll vortices and the mean flow
In = 2= jnp WIPPERMAN.
N v
T =wavenumber of transverse roll vortices

Ly =wavenumber of longitudinal roll vortices

Figure 24. The ratio of the measured to calculated angular divergence of longitudinal roll vortices
from the mean flow as a function of the ratio of longitudinal roll vortices wavelength to transverse
roll vortices wavelength.
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[LEMONE, 1976]

Figure 27. Spectra of velocity components of u, v and w (roll coordinates), temperature T,
and absolute humidity p, from the NCAR Buffalo aircraft flying normal to roll axis at 100-170 m
above undulating terrain, near Haswell, Colo., meteorological tower. Airspeed 70 m/s. Spectra
computed from 5 min of data.
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Figure 28. A) Ideal rectangular circulation in which the flow convergence and divergence zones
experience neither flow decompression or turbulent entrainment. B) Natural elliptical circulation
with apparent flow decompression and therefore apparent violation of mass conservation in flow
convergence and divergence zones. C) Turbulent entrainment of air in the convergence and
divergence zones maintain mass conservation.
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Figure 29. “Variations of the vertical potential gradient during measurement periods of extended
duration and constant height close to the sea east of Eleuthera, Bahamas, on 19 December 1971.”
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Figure 30. “Simultaneous records of the vertical potential gradient (A) and relative humidity
(B) showing correlation. Data were obtained at an altitude of 16 m over the ocean off Eleuthera.”
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Figure 31. A) The relationship between geostrophic wind ‘7‘, and roll vortices. B) The orientation
of potential roll vortices during strong winds and the crossflow direction for observation flights.
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Pigure 32. “Fluctuations of wind components u, v and w (roll coordinates), temperature T, and
absolute humidity p,, as recorded by the NCAR Buffalo aircraft flying normal to well-organized
rolls 175 m above the surface. Airspeed is 70 m/s; Obukhov length L, -100 m; inversion height,
1000 m; Haswell, Colo., 1 October 1970.”
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Figure 33. A) Recommended flight pattern for crosswind observation. B) Recommended flight
pattern for observation parallel to potential roll vortices.
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Pigure 36. Plan-view symbolic representation of study linear dune depicting salient geomorphic
features. Due to insufficient information, the outline of the eastern dune flank in Secton 1 is
incomplete. The peak of summit 8, is ~ 20 m above the base of the dune, and the peak of
summit ag is ~ 30 m above the base. This latter is perhaps the highest point along the dune.
At point py, the dune base slopes up towards the dune at ~ 5°, and at point ps, the dune base
slopes up towards the dune at ~ 4°. Finally, the longitudinal axis of the dune shifts towards the
west by ~ 5° twice, at points ~ 0.1 km and ~ 3.2 km south of the dune head.
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Figure 39. Kite and ribbon configuration believed to indicate a windward side
rotor. Mainstream wind in all frames was from ~ 220° SSW. Mean wind speed
was ~ 13 knots, and gust speed was >15 knots. Time for all frames was around
5:00 PM, December 17, 1982. Exact angular orientation for the ribbon in the plan
frames is unknown. Kite cord length was ~ 50 m. symbols as in Fig. 37



bottom triangular flap

heavy weight tethering cord

nylon tail

Figure 40. Delta wing kite with ~ 50 m tethering cord and 6 - 7 m nylon tail.
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FPigure 41. Kite flight configuration believed to indicate roll vortices centered on the dune
during nearly parallel wind. Wind was shifting slightly between SSE and SSW. Mean wind
was from ~ 164° SSE at ~ 10 knots 4 knots. Time was around 3:00 PM on December
18, 1982. Note that from the viewing perspectives chosen, tethering lines appear to be of
different lengths although they were uniformly ~ 50 m.
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Figure 42. Tethered kites configuration believed to indicate roll vortices around the study
dune. Mean wind was from ~ 14° NNE at ~ 7 knots. The observation was made around
2:30 PM on December 19, 1982. Convergent kite flight lasted for several minutes.
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Figure 43. Array of tethered kites for the observation of roll vortices in a linear dune field.
A large number of kites distributed over a distance encompassing at least two adjacent
dunes is necessary if a complete wavelength of the secondary circulation is to be observed.
The mainstream is directed into the plane of the paper.
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Figure 44. Tethered kites configuration believed to indicate quasi-laminar flow over the
study dune during oblique winds. Mean wind was from ~ 160° SSE and at ~ 13 knots.
The observation was made during the afternoon of Deccember 19, 1982,
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Figure 45. Tethered kites configuration believed to indicate quasi-laminar flow over the
study dune during oblique winds. Mean wind was from ~ 160° SSE and at ~ 12 knots.
The observation was made at about 9:30 AM on December 18, 1982.
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FPigure 46. A peculiar tethered Kkites configuration during oblique flow. Angle
measurements were not taken for this configuration. The figure derives from a field sketch
in which line vertical inclinations and horizontal orientations were purely qualitatively
estimated. Mean wind was from ~ 150° SSE and at ~ 12 knots. The observation was
made during the morning of December 19, 1982.
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Figure 47. Horizontal plane wind directions across the southern perimeter of the study
site. The measurements were made at 8:00 AM on December 11, 1982. At 7:35 AM, the
wind was measured at ~ 2 knots from ~ 120° ESE at a point ~ 40 m west of the dune.
At 8:30 AM, at this same point, the wind was at ~ 7 knots and from ~ 95° ESE. Because
of the similar wind directions at 8:00 and 8:30 at ~ 40 m west of the dune, the wind speed
at 8:00 is thought to be close to 7 knots.
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Figure 49. Relative wind speed measurements across the southern perimeter of the study
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Figure 61. A) Streamline during oblique flow incident upon the broad flank of the
study dune, Maximum upward flow component occurs just to windward of the crest.
B} Streamline during oblique flow incident upon the avalanche flank of the study dune.
Maximum upward flow component occurs just to leeward of the crest.
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Figure 54. Deposition/erosion pattern over the study site for December 24, 1982 (8:30
AM) to February 11, 1983 (6:30 AM). Southeasterly winds believed to have prevailed
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Figure 55. Deposition/crosion pattern over the study site for December 14, 1982 (3:15
PM) to February 11, 1983 (6:30 AM). South southeasterly winds believed to have prevailed
during the observation interval.
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Figure 56. A) Deposition/erosion pattern over the study site for February 11, 1983 (6:30
AM) to April 10, 1983 (12:40 PM). The distinct deposition band oriented more or less
orthogonally with respect to the contours just east of the crest is interpreted to be the
result of flow separation to leeward of the elliptical summit during southerly winds. This
deposition band is thought to be similar to the leeward side deposition arc that may develop
on elliptical mounds during longitudinal flow (B). Flow over an elliptical mound may be
likened to flow over half a sphere. Flow separation and surface flow convergence occur
to leeward (C). Note that ?'s appear beside points where the stakes were lost sometime
during the observation interval.
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Figure 67. Deposition/erosion pattern over the study site for December 14, 1982 (3:15
PM) to April 10, 1983 (12:40 PM). South and southcasterly winds believed to have pre-
vailed during the observation interval.
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near the dune head.
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Figure 60. Firmness of study site surface on January 30, 1983.
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Figure 62. Deposition/erosion pattern over the study site for Decoember 22, 1982 (9:00
AM) to January 30, 1983 {1:55 PM). East to castsoutheasterly winds believed to have
prevailed during the observation interval.
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Figure 63. Lines along which topographic change was monitored (Fig.s 64, 65 and 66).
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Figure 84. Topographic change in the study site northern perimeter between December 8,
1982 and January 29, 1983.
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Figure 65. Topographic change in the study site southern perimeter between December
8, 1982 and January 29, 1983.
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Figure 66. Topographic change in the crestal axis between December 8, 1982 .and J_an-
uary 29, 1983. Note that the crestal topography seems to translate with minor distortion.
In a southward migration of ~ 6 m, the separation between the two summits increased by
only ~ 1 m.
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Figure 67. A) Flow and sediment transport convergence in a zone centered on the

windward perimeter of the grid of stakes resulting in deposition. B) Flow and sediment
transport divergence in a zone centered on the leeward perimeter of the grid of stakes
resulting in erosion. Note that while flow changes linearly, transport changes cubically.
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Figure 68. Stake with vaseline-covered file cards for sand collection during saltation.
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Figure 69. Distribution of colored grain aggregates over the study site on December 186,

1982. Stakes with colored aggregates in the trenches excavated around their bases are

marked “L”. The original colored sand patches were ~ 0.5 m x ~ 3 m x ~ 0.0015+0.005
m.
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Figure 70. Inferior mirage of a mountain,

optical horizon
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Figure 71. A) “Optically deduced profile for Gershoj deduced from two different heights (marked
with x’s) plotted on top of each other to give a single line.” B) “A map of a portion of Roskilde
Fiord in Denmark. The observation point was on the shore at Risg.” The target Gershoj (7220 m)
is shown. ‘



Section

solar rays

Figure 72. The comparative rates of solar radiative heating of a linear dune’s flanks
depend upon the orientation of the incoming solar rays with respect to the slopes of the
dune flanks. This is ultimately determined by the position in the sky of the sun.

——— PARABOLIC CURVE
—— SINE CURVE
—— CIRCULAR CURVE
——— SINE-GENERATED CURVE

Figure 73. “Variation in curvature of a sine-generated curve is less than for any other
regular gecometric curve. This means that when the changes in direction are tabulated
for small distances along several hypothetical meanders, the sums of the squares of the
changes in direction will be less for a sine-generated curve than for any other curve. The
changes in direction were measured in degrees over 10 equally spaced intervals for each
of the four curves depicted here. When the squares of these changes were summed, the
following values were obtained: parabolic curve, 5210; sine curve, 5,200; circular curve,
4,810; sine-gencrated curve, 3,910. The four curves are equal in length, wavelength and
sinuosity.”
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Filgure 74. Above are shown “segments of two typical meandering streams, the Mississippi River
near Greenville, Miss. {a), and Blackrock Creek in Wyoming (b), as well as a segment of an
experimental meander formed in a homogenous medium in the laboratory (c).” Dashed lines trace
the correspondent sine-generated curves.
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Flgure 76. Asymmetry of turning flow and the assoclated turbulence are minimalized in
a channe! bend conforming to a sine-generated curve.



[LEOPOLD and LANGBEIN, 1966]

B

Figure 76. “Idealized flow pattern of a typical meander.” Vertical velocity profiles are
provided for five sections at various points along the first bend (A, B, C, D and E). Note
the counterclockwise rotation of the flow rounding this bend. Flow rotation would be
clockwise around the subsequent bend.”
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[BAGNOLD, 1960]

Figure 77. “Idealized diagram of shearing motion between water filaments in a pipe bend
if transverse flow were prevented.”
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Figure 78. Map of “linear sand banks of the Norfolk Banks arca Isobaths at 18, 36 and
60 ft." Inset shows location of plotted area.
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Pigure 79. Flow and sediment transport deflection in the shallow water over the linear
sand bank.

[HUTHNANCE, 1982a]
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FPigure 80. A) Axes of topography. B) Momentum is conserved over the sand bank. The
“far’ current momentum (pHUI(t)) must equal the fluid column momentum (phu) over
the sand bank. That is, HUI(t) = hu.
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Figure 81. Momentum vector and its components.
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gure 82, The relationship between the parameters h and 5—;} and the bottom topography.
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Figure 83. The relationship between lateral flow speed variation and topography.

[NUTHNANCE, 1982a]

Figure 84. “Contours of growth rate o(«, a) as a multiple of SU3Fn/2(1 - p)gH when
f=0,F=1,A=0005and m=2=n."
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Figure 85. Inflection point vertical velocity profile (A) and vertical profiles of associated
parameters (B - E). “I" indicates the inflection point, and R =vorticity.
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“Curves of neutral stability for a two-dimensional boundary layer with two-
dimensional disturbances (a) ‘non-viscous’ instability; in the case of velocity profiles of
type with point of inflection PI, the curve of neutral stability is of type a (b) ‘viscous’
instability; in the case of velocity profiles of type b without point of inflexion, the curve of

neutral stability is of type b.”

Figure 886.
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“Gketch of the Lake Phillipi area, near the eastern margin of the Simpson
Note the leeside mound some 20 km east-west, standing

related dune ridges.”

Figure 87.
Desert in western Queensland.
some 30 m above the bed of the salina, and the
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“Map of the south-western margin of Lake Lyre near Warriners Arm,

\d associated dune ridges. (Drawn from air photographs)”

Figure 88. A)
gory showing debris mound and

showing leeside debris mound at
B) “Map of part of the northern shore of Lake Gre

associated dunes. (Drawn [rom air photographs)”

Figure 89.
Birdsville, south-west Queens

extending from it.”

[TWIDALE, 1972

“Map drawn from air photographs of the Diamantina flood plain near
land, showing leeside mound and longitudinal sand ridges
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Figure 90. The vertical velocity profile for flow, the resultant stagnation pressure varia-
tion with height and the pressure gradient created over the flowward surface of an obstacle.

Po; =the stagnation pressure vector at arbitrary level §, and VP =the pressure gradient

vector.
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Pigure 91. Pressure gradient generation of vortical flow around an obstacle. Dashed line
s is the flow separation boundary.



Figure 92. A) Roll vortices generated around a narrow obstacle. B) Vortical currents
generated around the ends of a wide obstacle and rotors generated to leeward of the
obstacle’s main body.
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Figure 93. Gortler instability or instability over a concave surface. Note that in gen-
eral, flow over a convex surface is intrinsically stable and flow over a concave surface is
intrinsically unstable.
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Figure 94. A) A bhulge in a sand sheet gives rise to roll vortices. B) A longitudinal
deposition tail is formed to leeward of the original bulge. As this linear mound grows, the
roll vortices it gives rise to intensify. Secondary vorlices are produced, and these initiate

subsidiary surface bulges. C) A set of longitudinal mounds and their associated vortices
pairs begins to form.



Figure 95 . The development of longitudinal dunes from a single debris mound. A)
Original debris mound. B) The amplification of topographic irregularities and the initiation
of longitudinal deposition tails. C) The development of longitudinal dunes.
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Figure 96. lLeeward sccondary flow and the resultant longitudinal deposition in wind
tunnel trials using plasticene obstacles. V= vortices.
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Figure 97. Wind rotor between two converging linear dunes.
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[LEOPOLD and LANGBEIN, 1966)

Figure 98. “Sine-gencrated curve {top) closely approximates the shape of real river
meanders. This means that the angular direction of the channel at any point with respect
to the mean down-valley direction (foward the right) is a sine function of the distance
measured along the channel (graph at boltom). At the axis of each bend (B, D and F)
the channel is directed in the mean down-valley direction and the angle of deflection is
zero, whereas at each point of inflection (A, C, E and G) the angle of deflection reaches a
maximum value.”
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Figure 99. “Vertical variation of the wind distribution (Ekman spiral).”
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Figure 100. For flow over a concave surface, flow speed decreases non-linearly with
distance away from the center of curvature and approaching the surface. Centrifugal
acceleration at any point is equal to the square of the flow speed divided by the distance
from the center of curvature. Therefore, flow centrifugal acceleration decreases non-linearly
faster than does flow speed approaching the surface, and instability results. In the figure,
o =center of curvature, r =radial distance to any point of interest and Ay =centrifugal
acceleration.





