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SUSHARY.

Wiok's equation is the special case of the Bethe-Salpeter equation
in which all the particles are scalar bosons. It simplifies if the meson
carrying the interaction has sero mass. This thesis is principelly
concerned to investigate the solutions of Wick's equation using a suitable

coordinate system in which the equation separates.

In the first two chapters the salient features of previous work
on the subject are discussed. Because of its importance for the rest of
the thesis, Wick's avalysis is given in some detail. In the third chapter
the necessary coordinate system is introduced. It is shown that in fact
the equation is not strictly separable in the usual Minkowski metric but
that after Wick's analytic continuation to the imeginary time exis, when
the metric becomes Euclidean, separation of the variables is straight-
forward. The problem of determining the eigenvaluss of the equation
reduces to the solution of a Heun's differential equation with certain
boundary conditions, The analytic properties of the solutioms in

momentum space are shown to be consistent with those required by Wick.

In the first part of Chapter 4 approximate expressions for the
elgenvalues are obtained in the two limits - the ensrgy of the bound state
very asmall and the binding energy very asmall. It is found that solutions
cen be classified as normal or abnormel eocording &3 the coupling oonstant
does or does not tend to zero when the beinding energy tends to zero. In
the second part of Chapter 4 the results of the numerical calculation of
exact eigenvalues are compared with the approximate eigeuvalues. The

approxinmate eigenvalues for the normal solutions give good results only



in the extrems nonrelativistic region.

In Chapter 5 a detailed comparison is made of these separable
solutione and the solutiens ¢f Wick and Cutkosky., They are shown to be

completely equivalent.

Chapter 6 considers the corresponding equation in the instant-
aneous interaction spproximation. The equation is not solved but an
indication of the eigenvalues is given and it is suggested that the

approximation is good only in the extreme nonrelativistic region.

Iu Chapter 7 a normalisation condition differing frem that
previcusly used is developed by a method like that used for one-particle
wave equations. As the molutions of Wick's equaticn can be normaliged
by the customary method and the new conditien is weaker, 1t cannot be

used to exclude any solutions,

Finally, in Chapter 8 a few additional comments and conclusions

are given.
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Chapter 1.
INTRODUCTION .
Wick'a equation, which will be studied in this thesis, is a
special case of the Bethe-Salpeter equation; hence we begin by consider-

ing this equation.

A erude but very simple derivation of the equation can be given
as follows (12). Just as the probebility amplitude for a particle being
at a space-time point =x is gilven by a wave function ¢Ax) 8o there
will be a probability amplitude Zf(xl ’ 12) for one particle to be at
the point X and another at the point xX,. If the particles (which
may generally be referred to as nucleons) interact via some other

particle referred to as & meson then the processes shown in the following

diagrams will ocecur.

UL —" ete.

Suppose that the probability amplitude for the two particles being at
x, and x, having exchanged n mesons is X (xl i x2). Then clear—

ly

X.,., ‘uu)‘l.] = gL/S ('1,'1!) 5(11.’)‘?—) A (Hu'ljl) Xu-l ('1«."11)‘{‘4. ‘LJI-

according to the ordinary Feynman rules, where S(yl - xl) is the
propagator for the nucleons multiplied by suitable vertex factors,
[L(yl - yz) is the propagator for the mesons, and g is a coupling
[- 4

constent, Then if X(xl R xz) = Z__D X n(11:1 xz) is the total
==



amplitude it will satisfy the equatien

X(n, 1) = Xoltiyt) + ?\-fslq.—n.) §(7,_-zlz) AlY,-y.) X[q.,q,_) 017, zﬁh_
where )(o is the amplitude for no interactions. For a bound state in
which an infinite time iz available for interactions to take place }(G

will be negligible so the homogeneous equation is obtained:

Xn,n,) = 7';/5('1."‘.) Sty.-2) A1Y,-4.) Xl'd»'iz)ﬂ“/:féh (1.1)
An alternative form of this equation is given by noting that

whers Dxl is some differential operator. Hence

DyDy, Xz x) = & Al -x,) X(x x) (1.2)

This is the Bethe-Salpeter equation in the ladder approximation and vas

first given by Nambu (13).

The equations(1l.1) and (1.2) show two characteristic features of
the Bethe-Salpeter equation. Firat it is obviously relativistically
covariant in contrast to previous attempts to deal with bound states.

This assthetic gain is balanced by the practical difficulties of inter-
preting a wave function which depends on two independent times. Secondly,
the equations include the effects due to a large number of grapjhs even

though no graphs with crossed meson lines are vresent.

A derivation of the exact covariant two body equation was given
by Bethe and Salpeter (1) and more rigorously by Gell-Mann and Low. The
two body propagator or Green's function is introduced

K(xp 5 25 %,) = (0, T px)) @ (x) P ixg) @ (x,)52) (1.3)

where qv(xl) and 49(x2) are the Heisenberg operators of the nucleons,



T is the usual time ordering symbol and (2 is the true vacuum. This
propagator is then written in terms of the interaction representation and

the following integral equation found:

K1, 21 3, 4) = 571, 3) 5'(2, &) - Jangaxganaxy $1(1, 5) 5'(2,6)

¢{5, 6; 7, 8) k(7, 8; 3, 4)
(1.4)

wherea S'(1, 3) is the one body propagator

s'(x, 3) = (@, T @(x) ¢ (y)2)
and the kernel &(5, 6; 7, 8) 4includes all the interactions. No closed
expression can be given for @; it is a power eeries in the coupling
constant with lowest order term

@(5, 63 7, B) = 82 A (x5 - x6) 8(15 - x.7) 8(x6 - xa).

corresponding to the ladder approximation.

Now the two body system oonsidered will have a number of states
1Pn corresponding to various velues of the total ensrgy - momentum,
angular momentum, etc. and as these ptates form a complete met, the
propagator can be written
k(1,2 3, 4) = J (DT @ix) @) Wl W, 1T () ¢£(x)2)
=2 X1 2) K6, 4 (1.5)

The X , &re the two-body wave functions for the state ykh and satisfy

the equation

X o1 2) = = [ax; ax, axg axg 5'(1, 3) 5'(2, 4) 605, 4 5, 6) xnis. e;)
1.6

If the nucleons are fermions and the mesons are scalar bosons with acalar
coupling then in the lasdder approximation S°¢(1, 3) must be replaced by

$(1, 3) where i “Cp ()
1 e '
S“)?‘) . ()_ﬂ)"j X’\'M 6[/‘




and  G(3, 41 5, 6) =4me’ Olxymx,) 5(x5m15) §(xym xg)
: e-i&{jl;-xq)
@n¥ th

whers A(x3- x,)
L7~

(Pi is the mass of the nucleons, & that of the bosons, and each has a
small negative imaginary pert; K% is kﬁ - ]52).
On the other hand if all the particles are scalar bosons then the

equation in the ladder approximation becomes

Xalls 2) ==& [axy ax, 2%x 1) 4% 1) (*0x- x,) X G08).

Now u/n is an eigenstate of the displacement operator and there-

fore if X = %(xl+ 12). x =z~ xz,Xn(l. 2) must have the form

e'ingv(x) where P is the total energy-momentum., If ¢ (p) is the
Fourier transform of ¢(x), o that p is the relative energy-momentum,

the equations for the ladder approximation take the simpler form

e -m i EN -m) gy - 5 [ 2O G
for the fermion case and
[be0)= w)[ G-t W) - 2 [ 2

for the scalar case whers in the second equation (-B- i )2 has been

replaced by )\ . It is thie last equation which is known as Wick's
equation, especially if = O, though it was first derived by Hayashi

and Munskata (15).

These equations differ from the ordinary schrodinger equation in

momentum space by the appearance of the relative energy Py- In



practice, it is convenient to replace the four wvector P by
(28, 0, 0, 0) g0 thet the total momentur is zero. The binding energy

is then 21 - 2B.

The Bsthe-Salpeter squetion was first used in calculations of
the deuteron coupling constant by Bethe and Salpeter (1), csloulation of
corrections to the fine structure of hydrogen by Selpeter (16), and
calculation of the hyperfine siructure of positroniun by Karplus and
Klein (17). In all these papers the instantanecus interaction approxim-
ation is adopted, that is, the term (p = k)2 vhich appears in the
denominator of (1.7) and (1.8) is replaced by =(p -'E)2. This implies
that the meson travels with infinite velocity oxr that the motion of the
nucleons while the meson is travelling is neglected, and hence is only

valid in the non relativistic regicn.

A Pirss atteupt at a covariant solution of the B = S equation was
given by Goldstein (2). He assumed that the ladder approximation was en
exact equation and that therefore the coupling constant could have any
value. Since the equation (1.7) for the fermion case appeared to be too
difficult to solve in general, he considered the limiting case E = 0 and
also put 4 equal to zero. As is usual he regerded E as fixed and g2
the eigenvalue to be determined. He was then concerned with the fact
that the kernel of the equation (1.7) is highly singular., This can be
seen roughly by noting that the right hand side of (1.7) is approximately
02 for large p; hence g (p) =~ o4 for large p, which is not
sufficient to ensure convergence of the integral on the right hand side.

This probleu does not arise for (1.8) as in it Y (p) = &

and the
integral does converge. It had been suggested by Hayashi and Hunskata

(15) that the equation (1.7) would have no solutions. Goldstein found



lo
thet in fact this is not the case but that solutionsz exist for all valuea

of sz. He applied a normalization condition which exzeluded values of

2
£ lsas than -zu He then gttempited to further reduce the spsctrum by
16

aar
imposing a cutoff at high momenta but as pointed out by Green (3) the
modified equation has no solution. Mandelstan '(25 ), using & different

2

nermalization condition, found that aeceptable solutions had ﬁ%} < 4,

and conjectured that the eigenvalue spectrum would be discrete,

A3 will be shown presently, Wick's equation (1.8) is readily

golvaed wher E = 0 and the eigenvalues are

% - B(n+l), n = 1’ 2'—-- .
Sugano snd Munakate (22) have considered the intermediate problem in
which one nucleon ig a fermion, the other & scalar boson and again the

interaction is via a scalar massless boson. They elsc have ne difficulty

in solving their equation for E = 0 and find the eigenvalues

%"&n(n‘*l) no=m 23 -~

A different approach to the Bethe-Salpeter equation wes given by
Schwinger (18). He introduced an external source, which was merely a
quantity to be varied and finally set equal to gero. An infinite set of
gcoupled equations was easily obtained for a set of Green's functions such
es (1.3), However in order to solve these equations the set had to be

terminated somewhere and ordinery perturbation methods used.

The approach of Matthews and Salam (19), developed by Zimmermann
(20) and Nishijima (21) was somewhat similar except that they considered
sets of wave functions rather than Green's functions, If the Heisenberg

gtate vector of the two particle system, .., were known then so would



all the properties of the system but of course it is rather inaccessible.
However if ((x) is the Heisenberg field operator of the nuclecns (for
sinplicity, supposed to be the same) and A(x) that of the mescns then
the set of wave functions

k(1) = (2, T ¢o won) W)
Ui y) = (2, T vbw win) Aty W) (1.9)

V0L, MY, Y, )= (0, T Wew) win) Al Alh) Wa) ~Alyte) Win, i)

. ste.
can be regarded as components of the vecter TJh. In the last equation
of (1.9) the second term on the right hand side ie inserted so that
v(xl, X5 ¥po y2) is zero in the interaction free case. This is equiv-
alent to using normal ordering in the firet term, rather than time order-
ing, provided that normsl ordering is suitebly defined, (se0 (19)).,
Obviously u(xl, xz) is to be understood as the probability amplitude
for finding just the two nucleons, Vv (xl. e N y) that for finding two

nucleons and on® meaon, and so on.

Being Heisenberg operators, u(x) and A(x) are related by

the field equations, for example

@My = gu A

(1.10)
OA = Q4™
if (f is a scalar particle with mass M and A is a maseless scalar.
Correspondingly
O,emY) Wl 1) = G v(x, k. X
@, 1 e (1.11)
@Q, -+ M) v s =9 V05 20,) 1§ 00 ubh ;o)

etc.
where E], means the D'Alembertian operator in terms of xl, and the
comrutation relations for q/(x) have beon wsed. These two equations

are sufficient to give the ladder approximation in which the probability

I



of two mesons bheing present simultanecusly is neglected, that 1is,

v(xl, X, %) y) = 0. Eliminating v(xl. X y) we get
(L'Il + Mz)( o, + %%) u (xl, 12) = g2 A(xl - xz) u (xl, }:2) (1.12)

which is just the differential form of Wiock's equation (1.8) in coordinate

a8paos.

The infinite aset of compled equations (1.11) een be replaced by
e set of integral eguations and Zimmermann (20) has shown that they are
squivalent to the Bethe-Salpetsr equetion (1.6). He has also discussed

the renormalization of this set.

We now consider the researches of Wick (10) and, because of their

importance for what followe, glve his results in some detail.

The starting point is the function
u(xl, xa) ={(Q,T ¢(xl) t//(xz) W)

=n
but as the gcentre of mass motlion can be separated out, it iz more

aconvenient to take

P X |
X(x)me B (2, 7 oln) ¢x) U,)

where x 1is the relative coordinate xl -x, and Pn is the total
energy-momentum of the atate 1_.Pn. If the relative time, t, is

positive then Y (x) can bs writter

X(x) = o™, wix) Ru)(u, wlx) &) (1.13)

=
The states (2, which have to be included may contain mesons and nucleon-
antinucleon pairs but the result of adding all the nucleons and subtract-
ing all the antinucleons will be just one nucleon. All such states

satisfy the condition

12



2 = Wl (1.14)

This essentially physical assumption is called by Wick the stability
condition. On the other hand, Ly the hypothesis of a bound state

Pno = 2M-B < 2M

(Pno is the energy component of P and B 4s the binding energy).

Now since Py is en elgenvalue of the displacement operator

(@, Hx) ne) = %0 (a2, ¢(0) 2x)

S0 P X A (P -B X
Xp) = e ; e '(.(2,‘4'(0) 2, )(ﬁ.“,'-}'(o)"fm.)e ‘ ’

=Z et (@, 4(0) a) (20, wO) Wan)
From the preceding conditions on Pno and 1:‘0 we have

P-4 = [P egiomeqs > 0

g0 that, expressing the sum as an integral

Xo = [d} ﬁ:.'.. flt,w@ et B2 o (1.15)

Whe:t'é Wpin = /1‘-’12 + (2 + %1_’)2 - M+ 3B. =0

Thue for t positive % (x) ocontains only positive frequencies.
Similerly if t 18 negetive X (x) contains only negative frequencies.
If t 4is regarded as a complex variable then (1.15) shows that X (x)
can bs continued downwards from the positive real axis of t and upwards
from the negative real axis. Furthermore ¥ (x) > 0 a&as t > > in

eny direction away from the real exis -~ a boundary condition on X (x).

Now if X(x) = X, + X, where ¥y = 0 if t< 0 and

X. = 0 if t > O then the Fourier transform of Xl is

& (r,}.) = ,;‘,;,;f AL (1.16)

w‘b\«g:m w-io -te

2

oo

t3



A
Hence @, (p, po) is an analytiec function in the complex p_ plane with

a cut along the real axis from 4 min to infinity. It can be continued

from the cut in the positive, snticlockwise direction. Similarly

@2(2, po) has & cut along the negative real axis from which it can be
continued in the same direction and & (p) = @, + $, has the two cuts

but can be continued from the upper to the lower half plane through the

gap between the cuts.

The threshold implied in (1.16) seems rather peculiar., It
corresponds to one of the particles having free-particle energy-momentum -
either pi‘ = W or pg = W Equation (1.16) shows (see reference

(30) chapter 4) that near the threshold @&(p) = - fs_g,z_";l_i_rg_ 1og(p0- “uin),

These analytic properties of @(p) which are independent of

the ladder approximation were then used by wiek on the sequation (1.8)

&
(F-26pe -e) (Fehe -cv) B = 2 [ Zr2

where ws have put P = (28, 0, O, 0) and 02 = M2 - Ez. He assumed

that P(kx) = 0 at least like k;2 when k - o= in eny direction
and then rotated the path of integration from the real k o axie to the
imaginary ko axis. Moving the point P, P to the imeginary axis

gives the esquation

v . iE L L . . _ LA JL
(1= 2 Ehe « )P richore) B = A (f-ni»

where now p2 = pﬁ + 22. This equation i solved by writing

{
@) = —&lz)as

-1 (p2+ 2isEp,+ 02)3

(tnds is a special case, the generslizations were given by Cutkoeky (11)

and will be mentioned in Chapter 5). ki is found that g(z ) satisfies



the equation
A
(1 - 52)(92¢E212)

with the boundary conditions g(% 1) = 0. In the limit as B> 1,

() + o) = 0

the binding energy tends to zero., two types of solution were found. It

could happen that the eigenvalue econdition is
As 1‘,2~/1-E2

which is just whet one would expect in the non relativistic limit so this
1s called the normal solution. However, other abnoxmal solutions vere
found for wndech \ 2 4 @8 E > 1. Thus although Wick had clarified
the significence of the rolativc'timo by getting a boundary condition on
the wave function as t -> ©© he had introduced & new problem into the

study of the Bethe-Salpeter equation.
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Chaptexr 2.
RECENT WORK ON WICK'S EQUATION.

Before going on to describe the recent work on Wick's equation
it is convenient to mention briefly some of the questions raised by the
Bethe-Salpeter equation. Wick's equation corresponds to no physical
situation but it doez provide a scluble example of the B-S equation.

1. The ladder approximation is certainly good only for small values
of the coupling constant but there is mo certainty that it is good even
then. For lack of any useful alternative, it has to be assumed that
the expansion of the G(xl. Xy8 X 14) in powers of the coupling
constant is either a convergent or at lsast an asymptotic series.
Possibly the recent dispersion relation methods of field theory, valid
for low energies rather than for weak couplings, may lead to a covariant
equation for bound states in which the binding energy is small, but they

have not done so yet.

Otherwise, some informetion independent of the ladder approximation
can be gained by the study of the analytic properties of the wave function,
based on general principles of field theory. Such a study is obviously
not a eubstitute for solving the equation but, as Wiock found, it is of
great assistance in finding the sclution. Until the ladder approximation
can be circumvented it is necessary to make as much use as possible of
the resulting equation; one may hope that an understanding of its
solutions may point the way to the next step.

2. While relative apece coordinates are a familiar encugh idea, the
appsarance of a relative time is new and its significance obscure.

Bertocchi, Fubini, Stroffolini and Tonin (23) have stressed that the



7

B-S equation is a relativistic counterpart of the atationary, rather than
the time-dependent, Schrodinger equation. Green and Biswas (24) remarked
that assoclated with the relative time an additionsl quantum number will
occur, and hence each non relativietic state might correspond to a whole
set of relativiatic stetes. They suggested that this new quantum number
might be applied to the elassification of elementary particles. Wick
found a boundary condition on the wave function ss the relative time
tends to infinity. He also found the additional quantum number but the
new states it characterizes ars such that one would rather look for reascns
to eliminate them, than to use them, Indeed, the abnormal solutions were
the meat surprising result of Wick's work and it is importent to know if
they ocour in any B.-S. equation or only in Wick's equation.

3« 1t was known that the equation had obviously improper solutions
when the eoupling constant is zero. For example in coordinate space

Wieck's equation becomes

(a+@2s ) Xz) = 0
)42

which can be solved by ¥X(x) = o™ uhere k satisfies the condition
ko = B + A{éTE for example, and B is arbitrary. However such a
solution is eliminated by Wick's boundery condition on X.

4. The equation is mathematically unfemiliar as it is a singular
integral equation. Wick‘s gnalytic continuation pertly overcomes this
but a method giving the solution directly from the integral equation in
the conventional metric would be very interesti%g. Possgibly there would
then be solutions without the correct enalyticity properties. Further,
Goldstein's result suggests that in the more highly singular fermion case
thers may be either no solutions or a continuum of solutions.

5. Finally, to use the solutions for anything more than the calculation
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of the energy eigenvalue they must be normaliged.

Since the work of Wick and Cutkosky some light has been shed on

some of these gquestions. We consider first the normalization problem.

Nishijima (21) pointed out that two associated problems have to be
solved. The first is the normaliszation of the Bethe-Salpster wave functions
and the second is the determination of the expectation values of a given
observable corresponding to a given bound state. He dealt with the second
problem by introducing sets of wave functions as discussed in the previcus
chapter and then showed that the expectation value of en observable could
be expressed in terms of these functions. Since the funections ars not
independent of one another the expectation value could be given in terms
of the simplest one, the ordinary two-nucleon weve functioen. Then by
choosing & particular observable whose expectation values are lmown to be
certain numbers a normalization condition for the wave function is found.
For examplé?if Ji(x) is the charge-current deunsity operator then
(1!;, Ji(x} @yb) is the expectation value of the current at the point x

and the integral of this must be 2 seb (if both nucleons are charged).

Mendelstam (25) uses & similar idea but by taking advautage ui the
fact that propagators become singular for valuea of the snergy--nomentum
corregponding to a bound state his results are simpler. He finds that
in the ladder approximation for two nucleons the charge ourropt density

ia given by
(%, i 01 Wy) = fala. Ta (1) 0] (6 ¥ M) Ky bun)

and the normalisation condition is then

[([Yo, T o) &0 - S(Pa-Pe) S.e
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Klein and Zemach (28), using an equivalent method found the same
result except that they symmetrised it with respect to the two particles
Bince Mandelstam was only looking for ths charge-current density due to
cne particle. They aleo pointed out that the orthogonality part of the
result follows directly from the equation for 2{(:1, 12). For if the
o181+ %) x (

squation for ¢f, (x) = X 12)

is

(Y“)P fM)(((HIMf M) P00 = fKDl,x? Pe ) A’
and that for the adjoint éiE (x) is

Fet) (¥} em)( yOhotM) = jrz'(u'l Kixu) ela’
then multiplying the first equation by ¢/, (x) and the mecond vy @ (x),

integrating over x and subtracting gives for E # E'

E-€) [ B ) [ ¥ (¥ patm) + GOp M) Y | e =0
It is understood here, es in any such integral that both solutions have

been obtainsd for the same coupling constant.

The corresponding orthogonality result, given by Scarf (35) for

the scalar nucleon caee is in momentum space

(E*-€") /d} el (K —:) &) =0

in this integral p4 is the imaginary relative energy so 22 - p2

4
not the length of the relative energy-momentum veetor. As might be

is

expected the normamlization integral found by the method of Nishijica or

iiandelstam is Just the same integral for E = E' set equal to one.

Allcock (26) found a normalisation condition by a different
method, Inatecad of looking for some observable whose expectation value
is known, he analysed the propagator in the vicinity of its singularities

and obteined an expression for the scalar product (%, ¥ ) in terms



of the wave function. However it was shown by Allecock and Hooton (27)

that the resulting condition is the same as that of Mandelstam.

This normalization has been criticised by Green (29). No doubt
the charge-current donsi&y must be conserved but it seems in principle
objectionable to heve to appeal to & particular observable like this to
establish a normalization. On the other hand the derivation of Allecock
while more generally convinoing is not at all intuitively obvious. There
is another, more serious objection. In the derivation of the ladder
approximation it is necessary to consider the possibility of one meson
being present together with the two nuclecns, yet the normaligation in
this approximetion only includes the two nucleon atate. Higher
approximations would allow for mesons but the normalization would always
have one meson less than the number allowed for in setting up the B-S
equation., This has been stressed by Mandelstam. Green therefore
considers first ordinary one particle wave equations such as the Dirac
equation or the Klein-Gordon to define a probability density for the
ecreation of a particle. Then in complete analogy probability densities
are defined for the creation of a two nucleon state or of a two nucleon
plus one meson state. The integrated sum of these must clearly be put
equal to one - a normalization condition which is the same as Allcock's
if only the two nucleon state is considered but differs if both states
are included. The detailed application of this method to Wick's equation

is worked out in Chapter 7.

The llandelstam normalization was made use of by Scarf and
Umezawa (3%) who looked for reasons to exelude the abnormal solutions.
They adapted Wick's equation by using the Sskata-Taketeni formalism

and hence had to consider a wave function @(x) together with its first

20



and second time derivatives. They then find an analytiecal difference
between the normal and the abnormal solutions; in the limit E — 1 the

T

normal solutions have well behaved but the abnormal solutions have

Yy
it tending to infinity. Nevertheless the normalization condition makes
N .
3)_% bounded in both cases. They then turn to the propagator
K(1, 25 3, 4) = 7 x4 (L, 2) (3 4)
L

where X , (1, 2) contains § and its first two derivatives and has
been normalized. The sum is over all mtates with a particular value of
As if )\ > % 4it will include both normal and abnormal states, if

)\ € 4 only normal states, Hence (1, 2; 3, 4) will apparently be
diseontinuous and probably unbounded at )\ = 4. They state that no such
difficulty occurs in the ordinary Wick equation as then the sum is over
the solutions (_P(x), and the normalized abnormal solutions are gerc

at E=1. Scarf and Umezewa finally consider a condition used by
Gell~Mann and Low in deriving the Bethe~Salpeter equation. However it

is not clear that this condition should be applied at )\ =4, when

E =1 for all the abmormal solutions.

Ohnuki, Takao and Umezawa (34) look for other raassons to exclude
the abtnormal solutions of the B-S equation. They first suggest that in
the corresponding scattering problem abnormal solutions will not occur.
They then consider adisbatic variation of A in the vicinity of A =7,
As A decreases through the value 4, the abnormal bound state will
diseppear and there is no scattering state to come into existence. Hence
the abnormal solutions are physicelly meaningless. However the argument

is obscure and not very convincing.

The same authors also introduce the static model, that is, they

consider the Bethe-Salpeter equation for fized nucleons. In this case
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the eigenvalues of the Hamiltonian are known, They find that the B-3
eigenvalus spectrum is just the same as that of Wick's egquaetion - a

normal solution for which A 0 as E —> 1 and a number ¢f abnormal
solutions for all of which ) > + as E - 1. Only the normal solution
has the eigenvalue predicted by the Hamiltonian so that in this case the
abnormal solutions are definitely spurious. In cther words, while all
eigenstates of the Hamiltonian are solutions of the B-S equation, the con-
verse is not true, at least in this example. However, no obvicus
mathematical condition can be applied which would exclude the abnormal
solutions if the eigenvalues of the Schrodinger equation hed not been

kniown.

Mugibayashi (36) has extended the same model in another direction.
The complete B-S squation can be obteined, as the expansion of the kernel
in powsrs of the eoupling constant contains only the ladder approximation
and one more term. It had been hoped that ths abnormal solutions might
be characteristic of the ladder approximation and would disappear in
higher approximations. Nugibayashi seems to find that all solutions now
have A= 0 as E —> 1 so to this extent the hope is justified.
However only one solution has the correct form of the eigenvalue as
predicted by the Schrodingsr equation with the Hsmiltonian and so the

remaining solutions must be spurious.

For the purpose of this thesis an important discovery was that of
Green (4) who found that Wick's equation is separable in a suitable co-
ordinate system and hence that the integral transform used by Wieck and

Cutkosky is unnecessary.

The problem of solutions in the case that the nucleons are fermiona



hes been largely solved by Green and Biswas (24) end Biswas (37). They
impose a condition that the wave function and its first derivatives should
be finite and continuous everywhere and then find that this leads to an
eigenvalue condition. The condition becomes meaningless when B = 0,
explaining why Goldstein got no solutions, but can be applied for any

other value of E, at lsast if E 4is near zero.

Other recent work on Wick's equation may be mentioned briefly.
Okubo and Feldman (38) considered Wick's equation for a nucleon-antinucleon
pair, including an annihilation texrm. It turns out that the extira term
affects only S-states. In order to solve the equation for emall binding
energy, that is, B = 1, they are obliged to make the approximetion
E->02 | yhich seems to make the results open to question. They also
have to deal with integrals like f 5(1 - 5)* s %4z invhich & is

o

¢lose to an integer. However perhaps these integrals could be
circunvented. Despite these features the results are reasonable; the
eigenvalues agree with those for Wick's normal solutions and the method
leaves open the possibility of abnormal sclutions. Watanabe (29) looked
for differences in the analytic properties of the normal and abnormal
solutions which might be used to ahow that the abnormal solutions are not
eigenstates of the Hamiltonian. However, he found no differences. Vosko
(32) used a verlational method to caleoulate eigenvalues of Wick's equation
even when the mass of the meson is non-gero. The method would be
suitable for isolated eigenvslues but excessively laborious for a number
of them. His results suggest that the instantaneous interaction

epproximation is not good, particularly if the meson has mass.

Bertocchi, Fubinil, Stroffolini and Tonin (23) have applied the

spectral method of Martin, used in potential theory, to Wick'z equation.
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They stress that their results are incomplete as they can only coonsider
the space-like region. For this reason they cannot make use of Wick's
boundary condition on the wave funotion which is a causality condition
and requires solutions in the whole of spece time., Nevertheless, they
do find that in the non-relativistic limit with a non=~gero meson masa,

the solution is Juat that of a Schrodinger equation with Yukawa potential.,

We finally mention two recent applications of the Bethe-Salpeter
equation. First Beumann, Freund and Thirring (40) bave looked for the
possibility that pions are nucleon-antinucleon bound states and that
photons are electron-positron bound states. Their equations differ from
any considered previously in that instead of the meson having geroc oxr
small mass 1t 18 much heavier than the nucleens, With the coupling
constant givea Ly tho uriversal Fexrmi interaction the pion-nucleon
coupling constant turns out to have the right order of magnitude.
Secondly, in his fundamental studies on axiomatic field theory, Symansik
is led to a Bethe-sSalpeter equation in the elimination of the one-particle

strueture of Green's functions.
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Chapter 3.
SEPARABLE SOLUTIONS.
As wag shown in the Introduction, Wick's equation describing
two scalar particles interacting via scalar, masssless mesons can be
written

Lef-ueths} di = oy = [ BWL 4%
{U } f(}‘) Pt 4 (3.1)

In this equation 02 = MZ - Ez, p2 - pi - 2? and the limit a=
tends to zero is to be taken. Thus this is the equation in the

Minkowskdi metric.,

The kernel of the integrand in (3.1) is the Feynman causal
function of course, so this integral equation may be converted to a

differential equation by means of the D'Alembertian operator, giving

AWK = 4XPH o)
o2
It was notioed by Green (4) that in bipolar coordinates this

equation is separable, The transformation is as follows:

¢ @inot - ine
Po ™ cosx - cosp ' Pg ™ cosx - cos A (3.3)

Py = Py sin& cosg , Py = Py siné sing , p3 = Py 008 &

Conversely
2cpo °2 2
sinx = , ©0OBK = =P
(0% = ¢®)% + 4c2p2 ] [(pP~c®)?+40° 92]7 (3.4)
ZOPB _(pz + 02)
sinf = cog f =
[(pz - %) 4 4o pzj L [(Pz-cz)z-mczps j%

c4 sinaﬁ sin &

and the Jacoblan of the transformation is 2
(cosx = cos f)
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The renge of valuss will be teken a8 O < < 2T  © £ & <T|
O<B=T | |« | < A vhich differs from Green's choice but seems
from the graph of the transformation to be the appropriate range to give

positive values of Py and all values of pe.

In the new variables the integral equation becomes

Lt (mwe-€")
W (cora- e p)™ ¢

bW = ~+-—————"°;’:Tf‘;"ﬂ ,a,ima'ole’cl:/’fuﬂ,!%ﬁ’
B’ /
"'f _dx b, @

ﬂf(wsx'—  g)" [ wrlet-a)+ L€ (W a-corf)(cord “wp’))

(3.5)

where (O (L = wH pwp’+ MAM;’(@&%&%M:”M ' tp-p))
is the angle between the two four dimensional unit vectors whose polar
coordinates are ( ﬂ,&,ﬁ) and ( ﬂ" o 5 (ﬂl } . The differential
equation becomes

ot ) [ Bl + LG ¥) = adh D

(4

(3.6)
This differential equation, with the relation (3.5) between Y

and @ suggests that Y may be separated in the form:

(T ‘[(*)709) 7o (6 ?) o)

where Y ‘?(9,?) is a spherical harmonic. Then f ( X) and g ( A )

will satiafy the equations

2
d 2 1L1+l)) .

d Sin~ g
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2 A
daf 2 - -
N + (n — 2 2 ) f = 0 (5‘9)

dot M cos%( - I

These differential equations need to be supplemented by boundary
conditions if they are to be completely equivalent to the integral
equation (3.5 ). Despite considerable work, it has not been poasible to
got satisfactory boundary conditions but drawing on later results the
following comments may bs made:

(a) Although there is a separation of variables in the differential
equation, this is not the case in the integral equation where the
o -integration is over the range (-8, A)

(b) The important part of the integral (3.5) is

’ ()
Idﬁmﬂ ?lﬂ}/ (Mren™. d-j;(abﬂ--@("‘"‘%“(w’d'-@/y/

a 2
It will be shown later that near the singularity cosw = *E'—z' , £ (&)

hag the form

/((a) o= A(M‘w;‘u—s‘}éy(m’ - Sk ) +35
Thus £t )/Mzcos%c = E?_ possesses 4 pole at coso = E'/M and in
passing through the singularity f () develops an imeginery part.
(c) It is not clear which of the oL and /& integrations should be
performed first or whether they can be interchanged, but assuming that
they can, part of the integral can be written:

bn6'd’ 9(6) Y& o)g)
Lm«f de’ [ﬂmo ds /4[9”,,,,9_ e ey,

If the (B ~integration were over the range (0 - T7) it would be

possible to apply the theorem of Hecke (5) ,(6)  and then

A;n.L—ﬁ 9(¢) \/,Z”' (6)#)  would be a spherical harmonic on a

hypersphere in four dimensions. Unfortunately it does not seem



4
possible to find an analogue of thie theorem when the integration is
only over a sector of the sphere. Attempts to extend the range of
integration by assuming various properties for g (p,) meet with the
difficulty that so long as |w/[£ B < TT |, cona’'> g’
and hence the coefficient of 1€ is positive. Outeide this range the
coefficient changes sign so the kernmel of the integrai i’ no longer a
function of the four dimensional angle only.
(@) The usual method of obtaining boundary conditions is to substitute
the differentisl equation into the integral equation and then integrate

by parts. If that is done in thie cese one has

PHap Vo) = el / 5/];««9%9 dp’ / ",;/.(/[/.< L 47)

(- B L] gy ) i)

where

(g, p) = i

G L1 - cn(at-ot’) 4 CE (at!-edp’)

Performing the first integration gives
v g d?  — (o df 1 _ (ot d
[« 1) z&/ e [z/x,,,/ If]ﬁ f;{f o3 Jf
“p A

2lsp? S + <ep) 4
A 2L d
it

Substituting the boundary terms back into the integral gives 1i. a.

[4p'[in sy 2 1818) 4L gy "0t



But this integral is not well defined as 27 /p)’lly no longer contains
a term i€ in the denominator. Hence this method is not able to

produce suitable boundary conditions.

The problem of boundary conditions for the equation in the
Minkowski metric can be avoided by using Wick's results to go over to a
Euclidean metric. The rotation from the real to the imaginary axis of
Py putting P, = ip4 » corresponds exactly to a rotation from the real
to the imaginary axis of o( end we shall put e« = ia. But whereas the
linits of =< are -,6 andls , tThe limits ¢f a are —oeandco. The
details of this transformation are given in appendix A to this chapter,

but the final result is the integral equation
PN 7 ’ ™. 1 / ™ . p[ /
Ho,p,0,9) = oo [da’ [apdp’ [aicor oo
—eo ] [}

. (Tdp' H(a\p18]¢)
o@"a"’éa’ww‘a')(wzém-a') —ensz)  (3.10)

where H= —-/‘i‘5 W and again cos J2 is the angle between

two unit vectors whose polar coordinates are (B.% ¢) and [plO! 407

In this equatlon there is no difficulty in writing H as a
product of functiomsof one variable and then getting the differential
equation and boundary conditions satisfied by each function. However

it is simpler to use the theorem of Hecke (6), (7), and write

Hia.p,8,0) = ) S..\ o0 (B5,7) (3.12)

where

- 4 Y4 wm
Ss\-u,!,w (ﬁ;‘% ¢) = A g Cn-(-l (60’)/0} /( [9,90)
is a spherical harmonic of degree n - 1 in four dimensions and

n>4+1.



Then

m L 2T a ToBos
/M‘p’alp’fme'alp’/,/,f’ Se-r,t,m (8.0, F7

end@a-a) - con L2

- Lu. -Sn—l,l,m (/5-'93?)

I '
ith .= 2T dn JTo na 1) b
. L . 0 gla_a') - % wnera

Cln_l(x) is a Gegenbauer polynomial. The denominator may be expanded

a-a' a'-a"
in powers of o or o , whichever is less than cne, and the

orthogonality relation for Gegenbauer polynomials used to give

L, = 2I" g=niv=l

wo

Thug we finaelly get the integral equation for £(a),

(a'-a)
N (Y., fe)e™ ) f/“)ﬂ
fe) = 5. [ Ja’ﬂ"ioﬁ‘a'— £* fb(

nla-a')

-Ee (3.12)

This integral equation is equivalent to the differential equation

2
.Lié‘. - (o2 - > )‘? 5)f = 0 (3.13)
da M~ cogh a =B

together with the boundary conditions

iiﬂ - e ( %ﬁ' - nf (a)) = 0
(3.14)
}},moa o-m(%f; + nf (a)) = (

A gecond form of these equations can be obtained by the

substitution ¢ = tanh a. Then

f) - & [ (ff:'-')%(‘,;?.)"‘

(z 18)



(- @) erle) - 2arr(e) - EHL DL (5
l-~gq ¢+ E q

and the boundary conditions are

-l (1+ 92 ((1-{") £’ (q)-nf(q)) = 0

a (3.17)
- 0® [0-Ar @ent (@)

B
Putting f (g) = (1 - q2) 2 gn(q) gives Cutkosky's integral

and differential equations.

4 third form of the equations is obtained by noting that from
the form of the equations for f(a), it must be either an even or an
odd function. The substitution z = coshaa leads to different integral

equations for the even and odd functions so we put

S(a) = f(a) Af f is even in a,
and ™a) = f(a) if f is odd in a, and
also for convenience we replace A by M%\ and put

e = EZ/MZ’ (3.18)

Then
s - A r' . “ 529 dz’
Fas s 2 rz—.

(z’ e) B Jz'-1
j(r—- }"‘ Sz) a[z. i (I?—/_'—_t)t Sg!)_dlz’

/Z+ [2-1]@"e) /27 J27-) : /Z + lz-1j@z-e)z J27=1
(3.19)
Te)= 2 Trz"-fz‘-’:)“ Te) oz’
an \/z - vz1 [(z-e) (2" -1
r‘} Te) dz’ "‘i‘r;znzzf"s)“ Ti=) dz’
= (ﬁ_ +z-1@-e) iz =-| l(JE*./'z_——! @-e) V= =7-

(3.20)



Both S(z) and T(z) satisfy the equation

2l-)(z-2) S'E)+ Lz-1)(z-e) s'€) +i{z-0)z SE)-W(z-0) Se) ¢ Asg) =0

(3.21)
end the boundary condition
B
v :

lin 5 2 (ns(z)+288 (2)) = 0 (3.22)

g-eo
but in additien S satiasfies

1 []

iﬁ J/a-1 8(z) = 0
while T matisfies (3.23)

T(1) = 0

We now consider the differential equation (3.21) with ita
boundary conditions. In the first place, it is an equation of the
Sturm-Liouville (7) type. For given values of n and e, the boundary
conditions determine an infinite, discrete, increasing set of
eigenvalues for A denoted by Ak. The integer k will be taken to
range from gero upwards and k, n, 1, m constitute a set of four
quantum numbers specifying the state of the system. Corresponding to
each eigenvalue will be an eigenfunction and even values of k will
lead to eigenfunctions Sk(z) while odd values of k will correspond

to Tk(z). Different eigenfunctions will be orthogonal in the sense:

j.(u-o)i/f' /2 -1 3000 58 5wyt (320

where one or both of the S(z) may be replaced by T(z). As e increeses

any given A x must decrease.
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In the second place, (3.21) is an example of Heun's equation,
that is, it is an equation with four regular singularities, the points

z=o0, e, 1, w . In the notation of Erdelyi (8) we have

Gng,ﬂt-goﬁr-i!"i”"‘i"h'a*ba

The function whose various branches are the solutions of the eguation is

partly specified by the Riemarmian schemei

[ ]

P 0 0 0 -% z (3.25)
a
2

The boundary conditions (3.23) show that the required solutions have
the exponent %- at the singularity 2 = « , and at 2 = 1 they have
exponent O in the case of Sk(z) and % in the case of Tk(z). In
general, solutions of Heun's equation which heve a particular exponent
at one singularity will be a mixture of solutions with each exponent at
any other singularity but for particular values of N solutions called
Heun functions may be found with given exponents et two singularities,

as required by our boundary conditions. In this way the eigenvalue

condition arises.

In passing, it may be pointed out that =z ranges from 1 10 «
because of the change from a Minkowski to a Buclidean metric which made
the substitution gz = coshza appropriate. Had the substitution
z = cos%0. been made in the equation (3.9) for f£(¢) in the
Minkowski metrie, precisely the same equation (3.21) would have been
derived, but with 2 ranging from 0 to 1. It seema reasonable to

suppose that boundary conditions at 2= 1 and z =« being given, it

3%



must be possible to find a boundary condition at z = 0. In this
rather roundabout way the boundary conditions appropriate to the
Minkowski metric could be found. Of course, it is likely that a Heun
function with specified exponents at two singularities will contain a
mixture of exponents at a third, so the boundary condition at 2 = 0
will be more complicated than those given in (3.22) and (3.23). Not

enough seems to be known about Heun's equation to settle this question.

To get solutions to the differential equation (3.21) ths

simplest method is to use power series for S(z) and T(z). Putting

~V=2n
s(z) = Lavz 5.26)
v=0
T(z) = (z-1 )%Z‘ bUZ-V-%(nH) (3.27)

into (3.21) gives the recurrence relstions

Moai + Loao =0

Mvav+1 + Lvav + Kvav-1 =0 (3.28)
h
vhere I, =:(v+1)(v+n+1)
_ _ _ n+1
L, = E ev(v+n) (v+—)(v )
K, = e(v+—2—-)(v+-§-1)
and
M bi + L‘.bo = O
N 1 (3.29)
S Mv'bv+,1 + L”L)b + Kv'bv = 0

L), =77J-: - ev(v+n) - (v n+1)(v+—-+1)
&) = e(v50) (v43)
Now these solutions clearly have the correct behaviour at 2 =po.

To investigate the behaviour at 2z = 1, we must consider the convergence

of the two power series and meke use of a theorem of Poincare, (Milne=
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a
Thompson (9) Chapter 17) which states that if t = ],;i_;n,, —%’i
v

then t is equal to one of the zeros of the equation
Mt2+Lt+K = 0

where M = lim M

; Vo etc., provided that the moduli of the zeros be
D oo v

different.

In the present case the equation is
ta-(e+1)t+e-0 80 t=e or 1.
With the help of a further theorem of Perron it is shown in appendix B

to this chapter that in general t = 1 but that if the continued fraction

Lo K%/,l NS, O
M, ":-:1" _ %0, _
' _f;'i = K*“‘/’m
¥ L
M3 > (3.30)

then t = e. In the general case the power series (3.26)
E=
S(z) = Z 2y 3""_2" converges if z 3 1 but the
ST o
behaviour at 2z = 1 requires further consideration. If we refine the

previcus result by putting

LT QP | for large y and using
fy 4
- +
a a‘t&n‘;z
-1 - B8 . BE
&' o-e-1-55-%

we find
2t? - 24 - 2 :
8 m et —— = «’/2 for t=1
Hence & =k V 3% where k is & constant, Thus S(z) is

v



convergent for =z =1 but %% is not aend the boundary condition that

S(z) should have exponent 0 at % = 1 is not satisfied.

In the particular case that (3.30) is satisfied, t =e and

the power series converges for z > e 8o that both S(z) and ‘%E are

bounded at %z = 1 and the boundary condition is satisfied. The
equation (3.30) is a transcendental equation for A, the eigenvalue
condition. The recurrence relation (3.29) may be treated in the same

way and leads to the corresponding eigenvalue condition.

Before going on, in the next chapter, to discuss the numerical
solution of the recurrence relations (3.28) and (3.29) it is of
interest to consider further the analytic properties of S(z) end T(z)
and their implications for the properties of the Bethe-Salpeter wave

function & (p).

In the complex g-plane, S5(z) can only have singularities at

z=0, 1, 6, 2 . In the vicinity of z m e+ we already have

=1

s

5(z) = = (ao +az o+ —)

In the vicinity of = = 1:

. 2
5(z) = e, + ¢y (2 =-1) + e, (2 = 1) + ~—

At z = e the exponent difference is 1 so & logarithmic branch point
occurs:

3 = ——— ' ————— -
5(z) = a_ + a,(z-e) + +[do' + 4, (z-e) + )(z~e) log (z-e)
And at 2 = O

5 = —— ' ' .

S(z) o, + ezt + JE'(eo +e'z+ )

Now 2 = coshza, S(z) = f(a) and

Y =3 YV leg) 4m®'8 Cle, lp) fio)
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In terms of p  with p2 = po2 - psz, ? = NP (1 -e) = W - B
o2 p2 2icp,
cosh a = — ginh a = T
2 2 % 2 2 2]3
[(#P=e%)% + 4c%p 2)* [(6P=c%)% + 4c®p 7
2 2 2ep
-(p° + ¢°) s
cos f8 sing = T
242 2 2 242 2 2%
[(6%=c2)? + ac®p, |2 [(8°=%)% + 4c%p %]
g0 that =z =oo implies (p2 -c%)% s 4<32pe2 =0 or p = ipEj Yo,

z =1 implies P, = 0

gz = Q implies p2-02-0 or pon-_c-_./p52+02
2)2_ 2 2

2
and z-en'L (p -c 4E'.po 80

2
(0% - %)% + 4c2p02

M

2

N
]

e implies po =+ B -:/Mz + pa

{41
n=£¢ =1

in co8f containing only even powers if n-{ -1 is even and only odd

The Gegenbauer polynomial C (cos g ) is a polynomial

powers if n-£ -1 is odd. In either case the highest power is

—-2-
cos” 4 y B0 C£+l (cos p# ) can have singularities only if
n-£ -1
4
cosf =, that is, if P, = *Pg +ic.  The product sin #l C itll -1

A
(cos fp ) will behave like [(pe - 2) + 402 2} K near these points but

f(a) behaves like cosh “a, that is like [(p2 = 72 = 4c2p 2} 2
1/ ie bounded at P, = -_v:pstic. Furthermore, as the later terms of f(a)
2 l+1 .
are smaller by powers of cosh a, and the later terms of C Y differ

by powers of coszp , W(p) cannot have a branch point at P, = +p_ tic.

When z = 1, S(z) has no singularity so 4} (p) will have no
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singularity when p = 0. When 3z = 0, S(z) has a branch point which
is removed by the substitution z = coshza s0 W (p) bas no singularity
at p_ =+ /psz + c2. Finally, at z = e, S(z) has a logarithmic
singularity which implies that 1 (p) has logarithmic singularities at

the four points p = 1E 1./ e + Pa2

and these are the only singularities
possessed by 1 (p) in the complex p -plane. If W(p) 4is permitted
to go round these eingularities it passes to a different branch of the
function S(z), which will not satisfy the boundary conditions, so cuts

are required from P, = E+ /p2 + M2 to P, = -5 + /ps?' + M2 and from

P, = E =V pﬂ2 + M2 to P, = £ -/’paz + M2. If M2 is conaidered to

heve an infinitesimal negative imaginary part the first cut will lie
below the real P, axis and the second sbove it. The Bethe-Salpeter

wave function P(p) is related W(p) by

P(p) = % (s) 5

(p%=c?)? - 4E2p°

a0 ite analytic properties differ from 'Q’(P) only in that at each of

the four branch points it possesses a firast order pole and an unbounded
logarithmic branch point. Thus the function &H(p) is consistent with
Wick's conditions that the wave function should be analytic everywhers
in the po—plane with the exception of cuts from which it may be continued
in en anticlockwise direction. The fact that the cuts here extend for a
finite distance only, instead of to +o0 is probably due to the use of

the ladder approximation.



Chapter 3 - Appendix A.

CHANGE FROM MINKOWSKI 70 BUCLIDEAN METRIC.

We consider the integral
[ 08, 8] £1r,,8) dk, LR
(a3.1)
where 27 ke, k) = [h-4)F+ic

Then as a first step to the traneformation (3.3) we replace k, by
oL + ia by means of the equation

(k2 = ez) sin (& + i) + 2 o cos (ot + da) = 0 (43.2)

which is what one gets if @ is eliminated from equations (3.3). The

range (-°22,°) of k, oorresponds to the range (-7, ) of

with & = 0 and we shall complete the contour in the (« , a) plane
as shown in fig (1), by means of a path from (W, 0) teo (T, ) then
to (0,00 ) eand then to (0, =o=) and so on. The path has to be indented

at the points where ainh a = c/k-

(43
€ D]
fF A
~r Als
o T X

Fls l. F'1 2.

40



This path correeponds to the path

fig (2) end corresponding points have been labelled.

C' D B

in the complex ko plane shown in

The indentation

arises essentially because the transformation from ko to

o + ia 1s singular at the points k = B2 Kk ¥

The equetion (ABS;?) may

be solved for ko aa follows:

o]

-C cose 4+ /ka‘ gin%x  + o
Along O A ko = i

i ccoshas+ iﬁa --]s:a2
Along A C ko = T

iccosha+AcE‘ sfl.nhzn-c2
Along D o = sidh &

ie cu:mha-ﬂr.ﬂ2 ainhzs.--c2
Along B F ko = Y

iccoaha-i/ sinh &
Along F O ko = ainh &

Considering, for brevity,
we have from Wick's results that

CACDETFO.

0= famsdody [“asoh f e

Hence

only the quadrant o= 0, a = 0,

& is analytie inside the contour

A pmtx +c> - € WD
Aot [£7 Gn + v

@ ke, %) Likeo)

avaind § .
J Af?;s m + cw»éa.
a Je'- by amal'a

D (4, ,ueia) £ (R, Tia)

4!
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oo N e
_,é] dao (fetal's - vicwla D (hs,74ia) L'l 5 )
Ly wle Tade o

W:IA‘/LS /—‘_ —rr
-C ‘Aula—-c"-ri.cmla . - X
’ f da. 44."..5[",, [0 ad s - Bhs,ca) £ hs,ia)

[==)

o I’ . -
-4 A audo - cenla ] )
- f', ¥£ﬁ4s Lo [er- 4 AL o Bk ia) L (4 ca)

{-ﬁ.;@ o3)

= b 't t et -rcchroc ] hgadot s ™
[{[ﬁ,o()} b+ 2fgReme ¢ P

T,
- m't 4> .
cwn - J ds +ic

2}, R X

[‘C 1{"5,0().]-' = I‘t-r‘l-/s gs hw + Lo+ c- 22icwrn [ -c'- Az aite

Ront ol

et 2L |-c e Ry puter
e

+ z[-.

How in the third and fourth intograls
. (kﬁ, T+ in)=?f 'ik'ﬂ, ia) ami a8 wo are conpidering the paths
Co snd £ 8, Ple, T +in) is colculsted st the sase point in the
&, vlene &8 @(ka, ia). Honce the ow: of the two intauanic is zero.

L the socond and Fifth intograls we first intarchange tho

order of integpation to give

o f iTa g ccRronde 4 cnla 3 . 5
[:.'to. }[ K dbg ks TS Blhimeia) ity siin)




o‘u/ A‘umcmla_

Dk ca) £(hs,ia)

c gin 8 '
cosh & = cosg@ noting that in order to give

Now put ks =

the desired expression for k o along the path B ¢ we must have

0< A < arcos co:h p while along the path F 0 we must have

arcos po gﬁ Py <A ST . Then the two integrals above give
_Cclfala.[ o(,s @l - a»;)'f D(p,+ia) £(p a)
-ict[ da fﬂ dp —LB B ca) LUk
o Bred> Y (M)ld.- U)F) !

where in both cases

-1 2l " "w:l + ) o “l‘ll
[ttg @) = v pitopne - iplacmn) . tdfecacte

Hoting from fig (2) that in the k, plane the patis B' ¢' and F' O

are adjacent we may regard P(p, ia) as the continuation of

&(B , T + 1a) for g = arcos eole; o and simply demote it by

. ing
@(f, a).  Then putting k = EERT—r in the first integral

of. (A3.3) we finally have

- Lm* g &(4,%)
‘ jdd "a‘l - wnpg)4 {" + hschimpensw 1] ctica - ct{wnt+ w;,s) +£c)
whot~ (e
an’p @(B.a)
S r’l&['l (coda- mﬁ)“{ﬁ* 2hpsegimpanw -2ihoCpud a - & lnla n-b,g))

wlka-wp

43



The integral equation is now

Y = - 22 [aio JDJ;pL?a, /fiz,« Wt;‘:ﬁah/s)’ .

$(8.4)
Flaoda -mvp) ¢2)scaimpdw -1ipoc suda -l et wnp)

and rotating p, to the imaginary exis, that is,

i csinh a' ¢ sinp’

cosh a' = cosp’ ' Fs " cosh a' - cos/’

putting P, = we get

1) =M (g oy (e [T tint_AsBl8)
fslbe) ="~ f““od"l‘/ [_aala -Ld'a W’—'“’A)‘s[mlld-a')-mﬁ)

2 2 2
08 " _u_izim_a-_&_).@

(cosh & - cos/ )2

gl = Adind! [y Ue Mg 2ins ks Wika)
w0 = Ak faico dody [ e [op gl o (calle-s1-a)

or putting H(a, 6 ,& ,p ) = P8 W(E, a)
gin A

Hla', B0, ¢')

A e o O0dy Hia,4.6.9)
'H\EL{&‘[Mﬁ d/!fMB‘(MLmatd'E“)£mt{ﬁ-a'j—C()).Q-)
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Chapter 3 - Appendix B.
THE RECURRENCE RELATION.
We have the recurrence relation (3.28)
Mo a

Lt L, e =0 (B3.1)

M a

v +L,a, +K a = 0 (B3.2)

v+l v-1
The second equation considered by iteelf, 1is a second order difference
equation and in general has two independent solutions. The theorem of

Perron (9) goes beyond that of Yoincare in stating that there exists a

ik
1 &yl
solution a esuch that lim = 1 and there existas a second
v v400 al
v
2
2 Sl
solution a;, such that lim : = o. Now consider the quantity
vace g
vV

2 2
Lyin &v — Byven B

[ 2 - 2 [}
aww a'v—c a—vrv\. v-i

i

X!

Use of (B%.2) shows that

v =
X

Lv Vel
Mv + X‘M."’

“ S,
Ly B Kv“iﬂvu

My Lya, veld
2+ X
vay =k
The fraction may be extended until X°v+n is reached. DBut X :m = Q.
Thus X v - KV/HV
a _‘i _ - I( "“/Mv{'
i L Vel 8 ..
Myt :
vaa- 1



iim . Va4l Sy v
Vo= 2 al - e
&y V¥l
a2
or lim V 4+l 2
Vv +l 1
2 S
Honce 1im *V
Vaoe 1 =Y
&y
2 i .
T Aven A
Um _V in ,_a'_"__,__ﬂ-_'uw_..z = Qv
Thus M-’.sao)‘n W >0 . AY%enm , A.",_.
a - oW &
v-l al V"
R
and in particular for Ve l
2 p i
:_L = ‘s.l/n\“il
2 L K. /1,
s, ill_.__k 2
o (L ‘
But for our solution = = ‘i" fyom (B3.1). Henoe if our solutien
° e
&
umh%..m:amtion,dthm_% = e, wo must have
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CALCULATION OF EIGENVALUES.
In the calculation of eigenvalues the simplest case to consider

is e = 0. The continued fraction (3.30) may in general be rewritten

Ky K
_é—v- — 41J + ”'/M"l
My Lv—l = k"“/m-u Lysy _ KV‘VMNL
MV'I &—1 = K'-a_/ny-z "VQI .
M'-L |‘
3 o (4.1)
L}',‘

Then if e =0, K, =0 and so L, =0, that is

% = (v+ %)(w '“—_‘_1’—') Veo, i, ---

The corresponding relation derived from the second continued fractionm,

uith L'V and I{'V , is

) + nrl =0 .
A= (ve wp)(ve B2) V=
Hence the full met of eigenvalues for e = 0 is

/\ku(k+n) (k+n+1) (4.2)

where k is the quantum number introduced in the last chapter. For

-
values of @ near gero we may put A = Z x ¢" and, expanding
4 o

the continued fractions in (4,1) up to any power of e, x  can be

found for any value of m. For example if KU =¢ J defines

v- 1

JV- 1+ then

x5 =J



MV’ M
= It To3
v".v-]_ I/- l/"l

%4

5

Unfortunately this region of small e 4is not very interesting.
Such enormous values of the aqoupling constant would make nonsense of the
ladder approximetion. The more important values of @ are those close
to one, which correspond to amall binding energy, for if B is the
binding energy, then
B = 2(M-E)
-21(1-8)
= H(lL=0) forg':: 1. (4.3)

It might be thought that ms the differential equation (3.21)
shows & degree of symmetry between the points © and 1, ths limit
e —>1 sahould be equally sasy to deal with as the limit e — 0. For
example, the trausformation s = 1 = x gives the sane differential
equation except that e 418 replaced by 1 - e. However no solution

in power series of N

is possible for the boundary conditions would
have to be applied at X w ec gnd x = 0 and no such power series
could be convergent at both points. There are 24 homographic
substitutions of the typs x = H which lead to a Heun's
squation with singularities at x = 0, 1, o= and a fourth point, but
detailed consideration shows that in every camse, either the two
singularities where the boundary conditiona are applied are not
adjacent to one another, or else the continusd fraction correspending
to (4.1) does not simplify for e > 1. Clearly the boundary condi-

tions destroy ithe apparent symmetry between the pointg O and 1.

Erdelyi (8) has suggested expanding S(m) in terms of
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hypergeometric functions instead of in a power seriea, and thus taking
into account the behaviour at some of the aingularities more directly.

For example a convenient series in our case would be

_-n < vens d ) 1, . o
Sz)=z t;Cv HVWL Fvewnel -y mt; z ') (40)

and the hypergecmetric function can be transformed to give

n ‘b F(Vﬂui) C(wii) l"f‘!’.}
= : - v ~
Sz) = =2 ,%CM’rmquqnmwu

Floened,-v;t;5Y

80 it can be seen immediately that s(z) has the correct behaviour
both at 2= 1 and 2z =00, provided the seriea are convergent at
those points. Substituting (4.4) into the differential equation
leads to e three term recurrence relation, similar to the previous
one, but with more complicated cosfficients, and the convergence
condition leads to another continued fraction. Once again, the limit
e > 0 is easy to deal with and of course leads to the same eigen-
values as before. Also as before, no homographic transformation or
use of hypergeometric functions different from those in (4.4) 1leads

to simple results for the limit e —> 1.

In order to get eigenvalues of A for e near one a method
very similar to Wick's may be used. The differential equation for

s(z) is

| dls' , ds _ bR ~
2(z-1)(z-€) Az 1-(2-;)(2-6) Az % (z-¢) S + ‘—f § =0
If o 2~~~ 1 then for large values ¢f 5 this equation mey be replaced

by

2(2- I)Ld ] +24)(z- I)ds B M'I(Z‘I)S +dg
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which reduces to a hypergeometric equation. The solution with the

correct boundary condition at £ = oo ia

S{(Z) = (z_,)#f{'_P Z-ﬂg-i‘ F(% + %_tp T:fﬂﬁ ' M_f')‘ Z_')

For values of = near gz = 1, first put

g ~e
l-'e't

80 that the differential equation becomes
[£v-e)ee )L (k1) T‘ t L)L (- c) + 2 [z C)-Oﬂ) c[S
“-:-;-f{l-c)s +32s =0

and then neglsct terms containing 1 - e, giving
Z(£- ’)T” +{££C£ t A4S =

The solution to this equation which has the gorrect boundaxy condition

at z =1, that is, et =1, is

Sg = ZF(3+£,2-€;L;50-2)

The continuation formulae for the hypergeometric function show that for

values of 2z near g = 1 (neglecting multiplicative constants)

S & FH)} 2{ (Z—tj"_"*{P
P4 (u-ln tpjr-(afz‘:plp)

=/ 3+rMt2 -
f—( e e ,'H,a,'l-z)

/—(P) (2"){;—‘{P — [ (+IN=-2 P  (-2m-2 D . ,_ * -
r(tumzp)rlsnung) '—( 4 » TSP z.)
— o

which for s - 1 very small implies,

) tp -
 nd S A} iy 421
5‘( o= (2-1) (r(ujgﬁ)r(u:gu) + ‘-(arzm_@) l“(u—%ﬂ;) }

Similerly for large 2



[lp) Zé-éf F(2+

= “lelp - .
55 = -2y ri-z-4p) an/, a*z/’ﬂw,c')

(p] £5+F )
+ rlf 1.4p -ty pre”
FR+ifl [(L*2P) F(E-2p, 42 1P

andsince[:-lz.—:—g--i:i‘+l'=i:: for large £
2 ri-¢) 2~ )P rie) 2. 4
55 =@-1) [r'(;",—ép)l'l't'.’;'.ﬁ) <] T cdu)reyLp) =)

Now we want to be able to join smoothly these two solutions for some

value of 2z such as 2 =14+ /1 ~¢ vhere g - 1 is very small but

2 =9
l-e

is real and 0 < f < % and the dominent part of S, is

is very large. First suppose A <3. Then p= /3~

Se = (g = l)-} - %f gince z = 1 4% small. However

(25) 1s large so the dominant part of S i

s, = (s - 1) + ¥
Thus 5, and S  ocannot join smoothly. This is true for X\ not too
close to zero, but if A is very smsll, then P =% and the tem
(=t +%f) in S, becomes very large. Hence there is reason to think
that )\ = O may be an eigenvalue for e =1 but this method gives

no way of finding the exact relation between A and e.

Next suppose ) > § s#o that p is imaginary, say p=io0-

Then 5, = (z - 1)* cos [ o log (g =1)+ 9]
where
Ft-t“”) . - e Z
rg %) = )
and

Ss-(z-l)*co[-itrlog(z-l)-—%‘;o' 10g(1-—e)+¢}



£2
where
Flia)
rGEr-4+ &)

Hence 5, and S’ can join smoothly provided that

—
m—

{_o’/o?(,.e) = ’MT(+7—9 (4-5)

the same result as was found in Chapter 2.

The function T(z) ocan be treated in exactly the same way.
The part T, (z) for large values of z will be the same as 3, (z)
but the part Ts(z) will have a different form as it satisfies a

different boundary condition. We finally get

rie? (z—;) é/‘+ (-p) = (‘E:_—Cl)'t')o Z

Teie) =gz-nth 2.
rscor =0t | g (54 mta e

If F is real

Ts(m) =~ (g - l)* +if so the functions T  and 1,
cannot join smoothly end in the present case this remains true even if

p= 4
If P- iv- is imeginery, then
T, = (z - l)* cos [é rlog(z - 1) = ¥ o log (1 - @) + W"J

vhere [lea)

v/ e ?
FlE&) ridE) i

and the eigenvalue condition is

‘-‘[_ﬂ—o{()? [1-€) = »m T 47’-5 (4.6)

The case )\ > 0 a8 @ > 1 vremains to be considered. The

simplest procedure seems to be to transform to the equation (3.16) by

means of the relation



1

g = which gives for the differential equation

2
1=-gq
(1 ~q%) e () -24q ¢ (q)-a_i.(sl ___le)__

1"*1 1-o+eq
2)-;;

As pointed out in Chapter 3 if f (q) = (1 -~ g g, (q) then

€, (_q) is Wick's function &, " Hence we can use Wick's procedure of

replacing

1
l-e+eq2

b = 509

This replecement can be justified either by noting that

1 - 1 | - !
l—-c-t--cdl,‘- .l.iﬁ“—"‘c[{é%—dﬂ-‘-& fé_'q +cJi-& }
_ . . .
Y= [rz'-ql + ML S(ﬁﬂ-ftﬁl‘ +ITL$(R-1)) for very small
l-8
_ _T S)
e [i-e
or by noting that the Fourier transform of x 5 is
l-9o+ eq
_[= o
T?% e '(; l'“ which is approximated by /; i = & and

T )
the transform inverted to give /; fl_-_: « Substituting this inte

the integral equation gives

n

)lM,) anEJ'F'e {P’ (———)t according as q =2 0

Putting g = 0 gives

S 8 or

am/fe/l~¢e
y=a/le/1-e (4.7)

g
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It does not seem to be easy to improve this approximation.

This last relation (4.7) ocan be written

Ao~
B= — where B 1is the binding energy and as ia
4n

well known this is just the non-relativistioc Balmer formula for the
energy of a bound state. Solutions which have this property, that
is, that as ) -> 0 the Balmer formula is obtained, are oalled
normal solutions, while those for which A - 4 as e - 1 are
called abnormal solutions and have no analogue in non-relativistic
quantum mechanics, It was pointed out by Wick, and will be verified
presently, that for the normal solutions the quantum number k is

zero, vwhile for the abnormal solutions k > Q.

Numerical Calculations.
In order to verify the limiting cases Jjust considered and to

obtain eigenvalues for intermediate values of e, a series of numerical

calculations were undertaken on an I.B.M. T090 computer. The continued

fraction was not used but instead the equivalent procedure of
successively calculating the coefficlents of the power series by means
of the recurrence relation. Velues of A and e were selected and

some large value of V, then putting a , =1 and a v+ 1

a v l could be found from

1 ,
au-l“-KV (Mvav_‘_l-rlavav).
Given a, and "V— v @ Y- 2 could be found and so on until 8,

and a,6 were determined. If the quantity

Bnl"ioal+Loao
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5T
was zero, , was an eigenvalue. If not either A or e, say A ’
was varied in successive ateps until B changed sign. Finally some

new value of e was selected and the whole process repeated.

The critical point in the process is the choice of the initial
value of ¢ which should be as small as possible in order to reduce
the time required for the calculatione. For zufficiently large values
of v , thers is no doubt that

v+

a
v
and we already kmow that

a
Vi 1 =e (1- %)
a
v
is a better approximation. A methed of further improvement is suggested
by Milne-Thompson (9), Chapter 14, that of expanding a in fectorial

series i.e, put

- = _'L—‘—' L ] + ql
Vo a2 (ve 2 1) bt e (13+2) (Ve +3)

1 13 e
A1) (ve B e3) (va 4 4) (4.8)
Then it can be shown that the coefficients 8, satisfy the recurrence

relation

(1 -e) gl+go(j:*+vk(20-l)) = 0

5(""55 t 9, (3 + sts=4) - l-e) s(zs-,)] +es(32+5-1)(2-5t1)Fs-2 = ©

In its turn g, can be expanded in the form

—.As B

and As can be evaluated to give

A5=E(

oiw
]

JEr€)Z-€) (2] -~ (st -2)(5-4+g)



Thus it would appear thet for amall values of 1 - ¢ the dominant part

of a, is
a,= —C 0o -E)(3+g) |, B-S)E-L)E+E)E+%), .
T (*Elvza) (y+!n) Li-e)  (aEe)(rley) 2 (1-e)

where the bracketed part is a hypergeomeiric series

FI2-€, 2+ ;vedea; . ) . This series could be
rewritten as the sum of two aerlies F( r 3 3 1= o) and hence an
approximation for a, obtained for small values of 1 - e. However,
the term contain Bs camnot be neglected. It is impossible to

svaluate BB exactly but approximately

A
3
B At evmr——
8 |8-1
When (1 -~e) > 1, B, S Ay . More careful

(1 -a)%t (1=-e)®
considerations suggest that the meries (4.8) diverges.

There is & different and more lengthy procedure for getting a

geries of this general type for a v and the reault is

a = [ + 7L l'"]
v wwn) o + &(w“)n— (Blre?) +2) (82 2| +3)

where 0 <& < (1 = e) but it is of little use as no general form

can be found for the 8y°

Thus we shall simply use the previous results that the recurrence

relation has two solutions &, and a}, where

~3
_";'!1'_:1“’/& ov al = A VTR
a' v
v
2
v -
Avat —ey- 3 ov Q% = A e v
at, a
v+l

The assumption that &, ks for some large but finite value of V,

]



implies that a is a linear combination of a:, and a';‘ i.e.
. 2
av = Pa, + qa,
T
, Qv+ b Ave, t @& v
o & = —m— = (Y
all p‘a,y + %a'

Using the above expressions for a, and a: gives
vdl

b= 29 e
Svtfeav-%)

Hence the condition that p should be negligible iz (1 = &)y > 3/2

In practice, values of V were selected so that (1 -e)V > 6.

The first program run was no. 18 for which & flow sheet and the
FORTHAN stetements are given at the end of this thesis. The recurrence
relation (3.28) was modified by introducing d, = e-‘gv in order to
have numbers which would be more nearly constant. Values of e from

0.1 to 0.82 in gteps of 0.06 were selected and the initial value of

v was 100 throughout. TFor each value of e, ,\ was increased in steps

of 0.5 from 0,001 te 18.001 and the quantity

ol s do[%-%(-g;—lz) + ed, (n+1)

calculated. A change of sign of B indicated that an eigenvalue of A\
had been passed so )\ was then reduced by 0.5 to the previous value and
increased in steps of 0.1 in order to find a more accurate eigenvalue.

Only the first recurrence relation, derived from S(z), was used.

The second program, no. 21, extended the rangs of e from
0.82 up to 0.997 and also used the second rscurrence relation derived
from T(m), to get a second set of eigenvalues corresponding to odd

values of the quantum number k.

A third end a fourth program, which are not listed here, were

used to take e from 1.0 = 4 x 1077 up to 1.0 - 4 z 1074, However,



for these small values of 1 - e, the initial value of V had to be
15,000, which implies some 500,000 computations in going from dv
down to do. As the I.B.M. T090 computer operates with about eight
decimal digits and always rounds off numbers in the same direction, it
is not surprising that the eigenvalues appeared teo be in error when

l~8 was less than 10-3.

Hence a fifth program was written - no. 180 for which a flow
sheet and the FUKTRAN statements are given also at the back of this
thesias. Program 180 used the double precision facility of the computer.
As this facility operstes relatively slowly only a few isolated
eigenvalues could be calculated, for velues of 1 - e down to 2.8 x 10-4.
The recurrence relation was further modified by introducing

fV = (v+n) dyv
and the program made as flexible as possible in order to permit

celculations for either rescurrence relation, any velue of n, any

value of e, and any eigenvalue,

The precise numerical values obtained for the eigenveluss are
of no great significance so the results are not tabulated; instead they
are presented in the following graphs. In the first, figure 1, A is
plotted against e over the full range of e for various values of n.
Comparison of this graph with Cutkowsky's (11) figure 1 indicates full
agreement. From this graph it is obvious that if k=0, 1 —> O

as e = 1,

The succeeding graphs show the region e = 1 in more detail and
compare the results obtained in the calculations with the approximate

eigenvalues given earlier in this chapter. For the normal sclutions we

g
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have the approximate solution

An %p"/;_/l—e
or \= % l=8 for e=1

5o in figure 2, )\ is plotted against /I - e. Only the results for
n =1 are given; those for other values of n did not differ
significantly, The line )\ =2/l — e is also shown on the graph and
as can be seen the plotted points approach this line as e — 1.

However if /I - e = 0.05, which ie in the non-relativistic region,

the value of ) given by the approximate formula is sbout 15/ less than
the true value. FProbably, only if /1 - e < 0.01, i.e. e = 0.9999
would the approximate formula give an error of less than 5% and such
values are extremsly non-yslativiatic. Inserting the factor /; into
the approximate formula to glve ,\ = % fg m would make the errors

very slightly greater.

For the abnormal solutions the approximate formulae (4.5) and
(4.6) give, very roughly
*3 TClogl=¢ = nf where a--:,/,_\_:-.;t
80 that for purposes of comparison the numerical results hava been
plotted with )\ and olog (1 -0 ) as ‘eoordinates. The first sbnormal
solution, with quantum number k equal to one, is derived from the
second recurrence relation, corresponding to T(z). Its eigenvalues

are plotted in Figure 3. The eigenvalues of the second and fourth

abnormal solutions, with k=2 and k = 4, derived the first recurrence

relation are shown in Figures 4 and 5. In each case the values n =1

and n =3 have been chosen.

The approximate eigenvalues from the first recurreuce relation,

LY
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for even value of k, are given by (4.5)

3 Tlog(l-e) = nr+g¢p -0
where ¢ and & have been defined earlier. After some manipulation
this expression can be rewritten

-~ glog (l=e) = km +Q
where § = 2artan 2 -20¢ log2+2arg T (nieia )

+ 4 arg r(%+%") -4arg M(1+40)

and - 6log (L ~e ) has been written since log 1 - @ 1is negative.
The fact that the coefficient of T is Jjust Il has been determined by
comparison with the exact results. Similarly, for the odd values of
k, the approximete formula (4.6) is equivalent %o

- T0
- glog{l-e) = kT +Q + 4 arten e i

(In the term @ "° , e is the base of natural logarithms.) These

lines have also been plotted in figures 3, 4 and 5.

~-Na
It may be noticed that Qn—) 0 a8 ¢ > 0 but artan e "

as a2 0. Thus for all values of k, o log (1 - e) tends to &
multiple of 21, contrary to the statement of Cutkosky (11), equation
nao

('B.6). However, even for small values of A, Qn and arten e

are not small.

As can be easily seen from the graphs the approximate formula
gives remarkably good results. For e > 0.99, that is, in the non
relativistic region, there is no apparent error in the formula and even

if e is 0.95 the error is small.

Thugs it may be concluded that the approximate formulae are valid
as e -> 1 and, in particular, there is no reason to doubt that as

e >1, )\> 7 for the abnormal solutions.
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Chapter 5.

THiE RELATTON WITH WICK'S SOLUTIONS.

Cutkosky (11) states that his solutions of Wick's equation form
a complete set. If this is ftrue then thers must be some relation
between his solutions and those found in Chapter 3. Cutkosky's solutions

i

are denoted ¢ (p) and for purposes of finding the relation it is

convenient to introduce z;r'im ( p) defined by

wim () = [P+ AP v 42 85 ] @47 ()

where Wick's analytic continuation hes been used so that p2 = pi + Pz'

and the space is Luclidean. The solutions found in Chepter 5 may here

be denoted by

L 1 2 +1 L+l 5 -
Yia = 5,50 8 g (0G0, (cns )% (2,0)

(4
where sine/!- an—l (cos g ) YI‘; (#,¢) is a four-dimensional

sphericel hermonic. A comparison of the eigenvalues, for example for
E = 0, shows that n is the same quantity in each case and that Wick's

quantum number K is the same as the k used here.

A little consideration shows that required relation is very simpls;

q[,f;: and U/im must be multiples of one another. For the functions

fkn (a) appear to form a complete set and certainly the spherical

£m

4
harmonics do, hence l.fn must be & linear combination of the W krrli'

But the eigenvalues of A are functions of n and k so any linear
combination of the 'li/i:ll is a state without a single definite value for
A. Since Cutkosky's solutions do have definite values for A they

must each correspond to just one solution ‘!fﬁ?



The foregoing argument seems convineing but it is of interest %o
obtain the same result by an analysis of the functiona tpim (p).

Cutkosky begins by introducing functions
4
pf 1, (o.p)

eﬂ‘I(
p, 8) =
#n ’ (p2+21zEp4+M

2 N E2)n+2

Correspondingly we have

Y (e.@) [P+ )P+ 4?p?

P P4

fm
., (pz) =
. (p2+2izEp4+02)n+2

where 02 = M2 - Ez; chenging to the (a, A ) coordinate system gives

M—l—i

Y2 6.0) 8 (0da-wrp) (cwondaisondi]
I‘S 11~ck-f-l (CM& +(E2 Ma)uél

Cutkosky then defines his function ¢f}m (p) as

n-4€-1
€m

Pl = L [ake a0z 42

where the functions gﬁ (z) are to be determined. For the functions

wir,p,2) =

q,fl‘“ this implies
n-£-

o A N Ad)
W) = i’"’) b ) wlews)  Akle)
Ao

where

Al (a) =f’ d2 gk o) (b < e%idn)

‘ 2""" cu-i—e-a (CM& tiEz .{4)ua£f1 (5.2)

Now if these functions qf;m (a,s) are to be solutions of Wick's

equation they must satiefy a certain integral equation, or equivalently,
& certain differential equation together with boundery conditions. The
boundary conditione turn out to be satisfied without further consider—

ation and the differential equation is (see equation (3.€))

W Pl A ¢ =
[’b—n‘+ pr —_a:f,)fs tm ‘L-EF)U“W“’“) -2
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Substituting the expression (5.1) for ¢

into this equation and

slightly rearranging the terms gives
n-£-1

nh-lt [ A PE ) AR 2
*Z-., (wJaL-wa,e) Tt + ﬁT‘ O -(n-4) /}‘EtL
} ,(ﬂf" f-1 =
s 2m-A-8)anda = 2(n-tet)(n-A-) crda AL o

where Ak;1 () = 0 for k= 0. Since the expressions

o
(cosh a - coaf )n aSeSl are linearly independent we have
2 ,0
d” A A
By smend > A;-nz 2= 0 (5.3)
d a M~ cosh a - B

'k, A
da mrwnl'a -e*

~o(n-#-2)(n-B 1) coha AL

a

3 Al
AL — -8yl = —2(n-4-4) aumde ‘fﬁ—{'—"

(5.4)
It may be shown that these eguations are equivalent to Cutkosky's
equations for his functions gﬁ (z) since the Ai (a) are transforms
of the gﬁ (z). The first equation (5.3), determines Ag and the
eigenvalues of A. Since it is identical with (3.13), the equation
for f (a), obviously the eigenvalues will be identical with those
found in Chapter 4. Then the equations (5.4) enable the Aﬁ (a) to be
determined recursively. However, this would be a difficult procedure
and it will now be shown that owing to the particular structure of (544)

it is unnecessary; Ag (a) is the only function needed.
first, set gq=mn -~ < =1; then (5.1) becomes

@
: - 4-* ¢
whn = 1= Ve pnltle ) (oda-wnp)’ T Amia)
k=0
As we are interested in couparing q;ﬁf with the separated solutions
'yyiﬁ , we expand the binomial factor and then use the fact that a power

of cosp can be expressed as a sum of Gegenbauer polynomials:

L3



¢4

where [% j] means the lergest integer less than or equal to % j, 0

is arbitrary, and

pi = minw o)
wm z-i,gn_ (Tt +1-m)

After some rearrangeuent of the series we get

rr)
"U'-rJ) 24

Wi = L VT ) st ZH c Ttp) D) ()

where
. %"
D:,(“) N Z & MJ. a /I' a € )/‘( ‘l Ll-£) ;o ja; azla.}
A=o0

Then, use of the recurrence relation (5.4) for the Aq;j‘k (a) shows
that 1f g ={+1.

‘121):?(11) . ! LTI 3o

e Dq(a) - (n+j-q)2Dq(a) = 0

daz MzooshzaeE

Now this is just the equation (5.3) for Az with n° replaced by (n+j-q)2.
Hence solving this equation would lead to an eigenvalue condition for )

in vhich (n+j-q) will appear. But A has already been determined from
(5.3) by the same condition in which n appears. Thus A will not
satisfy the new condition. Hence the equation for Dg(a) haz no non-
trivial solution unlesse J = ¢, or

Dgao j#q

Therefore we are left with

a-€-1
o ot -0
lp‘m /{ (D f} ﬂMa. ﬁ L!\—E— [‘M.) C

(4) AL (a)

n'ft



vhich is & multiple of Y i:; . It is now clear that Wick's method and

the present method of solving Wick's equation are completely equivalent.
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Chapter 6.

LHE INSTANTANLOUS INTERACTION APPROXIMATION.

We commence with the equation
[(pp‘ - 42, 4E2pozj ®(p) = %/—Q-(—)———kz 4’k
el (k) + 1€

As has been pointed out in the Introduction, the instantaneous inter~
action approximation consists of reﬁlacing the term (p = k)2 by
‘(E - £)2. This approximation has been made in &ll the applications of
the Bethe-Salpeter equation to physical‘situaéions and althouéh it is
undoubtedly valid in the non relativietic limit, the errors which it
introduces are difficult to estimate without an exact solution. It is
therefore of interest to make the same approximation in Wick's equation
and to compare the resulting eigenvalues with the exact eigenvalues
previously calculated. If the errors are small there would be more
reason to hope that the approximation introduces smell errors into the

B.-3. equation for two fermions.

The approximated squation

[P 2P - % ?] @) = / 200 €k (6.1

E 12
" 2=k
tekes on a rather simple form in coordinate space
R —4 il
[+ )+ ae™2p ) wby =~ 50 wen (6.2)
where a-= ‘;?El\- - v . However, the equation (6.1) seems

to be easier to reduce further. Since the right hand side is independent
of Ps the P, dependence of P must be given by the substitution

‘P(H - V(b) (6.2)

1) - wefs




Putting this in (6.1) and integreting over k glves

3
A 'k v (k
v (p) = ‘ —
BT ) (P KB i kf (k- p)?

For the rewainder of this chapter we shall put M = 1, so that

® =l g

(6.3)

and p=|p|. Hecke's theoren (5), (6) can be applied to

(6.3) if we put

v (@ =1 8k) % (6,0 (6.4)
Then 5(p) satisfies a one dimensionsl integral equation

o S (k) dk 2 k2

s(p) = A /(c+k2)/——2 oy (B 2uk (6.5)

vhere Q, 1s a Legendre function of the second kind.

Surprisingly, this equation seeme to be more difficult to solve
than the full Wick's equation. Goldstein (2) has considered a similar

equation, without the factor 024- k2 snd finde )\ = (when 1= 0)

217'
as the single eigenvalue, but his method is dirfficult to generalise. The
following procedure suggested by the techniques of Muskhelishvili (30),
and some work of Heins and MacCamy (31), gives a strong hint that the

eigenvalues are given by %L‘% =n where n 1s an integer.

For simplicity we consider only s - states. Then (6.5) becomes

- f Lk o
52 5 (c2+ k%) /l + K I (6.6)

Now make the transformation p = ,/ %z so that

1 2 2 1=E%x

2
l+p =3, ¢+ p =77 '

|
ol A 50t £ _ t /l=-x + /x /1=%
S(x) = 3 — 108 | e - Jx /it

722
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We define a new funoction w(z) of the complex variable s by

the equation

P
{ =1
S(4) Jt (=) - 1/1=%
w’(z) = _2&‘ / 0217 dt 10{5‘ fl :
_ o (1-8°%) /1% /t ("—z-—)’f +1/1=t  (6.7)

R
The branch of (’Tsl-) ie specified by stating that it is to be real and
positive for & anywhere on the resl axis except the segment (0, 1). If

T e
0 <x<1 ¢snalland g=x+if, then (-'1"3%) -1/’3'::[xundif

,‘ 3 e
if g=x 4, ('L;;) --1./'1'-;;'. Clearly w(z) is regular and

single-valued in the whole plans cut along the real axis from O to 1.
Let w+(£). 'w(x) be the limiting values of w(z) on the upper and
lower sides of the cut respectively. An analysis of the logarithm in

the vicinity of the cut shows thet

wrpy = 2 [' s olt |fizt i - STk | Mc!" ste) ol
S N = e e B PN Y N S

- [ sy db I'"-'cg +JE [ox | e " s At
d é" - _‘—/,. G-e*t)ir-¢ %IJ:_'L'J'-E l-n.’ B : (c-s"l:)._l:—(_-

Hence
) X
wrew ") = -AmL o—(rg_tz)%‘?

-\ J" st elt @lfnmmm ,

ft

wiey —w )

C-=%€) fi-¢ (=6 i - JE Jin |
= -2 S
according to the integral equation for S(x). Therefore
>\ E b8 0(1_ X . t)}
wrog + w0 = | e (w't)-w-l

or

dwre  dw-p — ATe wrpy — w0
e v ae T zu-s’vt)Jt-u( e g ) (6.8)



4

The solution of the integral equation hes been reduced to the problem of
finding a function analytic in the cut plane whose boundary values on the
cut satisfy thie differentisl equation (and a boundary condition that
w'(0) + w(0) = 0). Once this function has been found, S(x) is given
by its discontinuity across the cut

S(z) = «¢ (W(x) - w(x)).

The equation (6.8) can be rewritten

+ : - ‘
i 1-x%§'+ “rz v = - l-x%‘;" +'J-"[? w
2(1-E°x) 2(1-Ex)

Now i/l-x is simply the boundary value of /z=1 on the upper side of
the cut and -i/l=-x is the boundary value of /g=-l1 on the lower side.

Furthermore, we obviously can write

awt  awyt o -1
oy - (dz) while (1-E“x) is regular on and near the

cut for E2 < 1, 8o the above equation becomes

[fz_-T%Ed-—MT w}+ = z-l'g'!-i-—MrT WJ_
2(1~E%z) 2(1-8%2)

Thus the function /z-l UL + AT w has the same value on each side
dz ° 5(1-8%)

of the cut, i.e, it is analytic on the cut. Note, however, that this
equality applies on the cut, the segment (0, 1), but not along the
negative real exis where w(g) is analytic but of course /z-1 hae a cut.

We can therefore write

d m
g-l E%-o—?(-l-;'—-g) = P(z) (6.9)

where ©(z) 1is out along the entire negative real axis. In addition

P(z) must have & pole at 2z = L ~. This differential equation can be

solved end gives " 2
C-E f2-~) ‘J‘:‘- P(?J) (Ci-:_-,".}z'_, \é.'gc.( ’

wz) = (c-tsﬁ-Tl e iz'-y c-gvzi-1d = (6.10)




s

vhere 5, is & constant to be determined from the boundary condition.

The function F(z) is probably not unique but is severely
restricted by the condition that the integral (6.10), when multiplied

(e-b g=1

by cHs /=l

)‘-3" gives a function analytic along the negative real axis.

If e put & = %E'—'; and

(c+r. z—l

glz) = then (6.10) becomes

: 1 f Zp(g") 2z’ .
w(z) " e(z) . z' -1 i
Now at the point z = E-Z, g(z) has in general a branch point and P(z)
has & pols, but w(z) must be regular. Suppose that y is a point

near E2 and let w, be the valus of w at y; then

3 m =l f‘*ﬂf.;_s(.zrl
=
1 giy_j L z' -
2, —.-_C
Let the point y make a circuit round the | T ) -%’ h

point B2,

Then g(y) will become g(yle 2néa

and the new value of w(z) will be

w, = gtrea [ f L Pe) g1zl dz’ / P& ) ,(ZIJ

(4 2z, J2'-
But w(z) is regular in the vicinity of B2 so w, = w,, thatis
J-'s fz) Egzr} izn _ e“":a_ Fcz'j 2(zY Jz' llrtﬂ-f PtzJ _ﬂz«) 0(2
2o 2'-) . J2' -1

The simplest way to satisfy this equation is to let a be an integer.
Certainly these may not be the only possibilities, nor are they

necessarily correct, for there may be no function P(z) which gives



w(z) the ocorrect propertiss. Howsvar, confidence in these eigenvalues
2
A -7 Ecn

is increased by noting that this is just the result obtained in Chapter 4,
and previcusly by Wick, for the non-relativistic limit of the normal
solutions of the full Wick's equation. As was observed there, these
eigenvaluss are a good approximation only in the extreme non relativistic
limit, For example if Ezr = 0.9975 the error is about 15% and if

B2

= 0.99 it reaches 35%, Vosko (32) found that if the meson which
carries the interaotion has non-gero mass then the error in the eigenvalue
obtained from the corresponding Schrodinger equation is even larger for
E? = 0,99, sbout 40%. If the present method could be made to give the
instantaneous interaction eigenvalues with certainty, there would probably
be no difficulty in extending it to the general case of non-gero meson
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Chapter 7.
THE NORMALIZATION CONDITION.
In this chapter a normalization condition for Wick's equation

will be derived along the lines suggested by Green (29).

As was described in the Introduction, a set of wave functions

can be defined

u(xy, %) = (2, T (x) wix) YY)

(7.1)
vz xpy) = (2,1 yix) yis) G V)

etc., corresponding to the presence of two nucleons and no mesons, one
meson, etc. Their complex ooﬁjﬁgatés are

Tz, 5) = (U, T ¢(x) w(x,)2)

: (1.2)
V(xpzpy) = (W, TW(n) #(x) ()LL)

For simplicity, the nucleons are supposed neutral and identicel so that
u and v are even functions under an interchange of x) and x2. For the
ladder approximation, only these two functions are considered, and they

satisfy the equationa

(0,+ %) u(x, x,) = gv (x, 5, x))

5 (7.3)
(O,+ %) v(x, x5 v) = €D (xp-y) ulx, x))
where Dx) = A, Sem dic
@m)” |2 | 4c
Going to centre of mass coordinates, ir(xl + xz) =X I, -x,=x
y=-X=2g these equations becoume
K, uX, z) = gv(X, x; 4x)
(7.4)

K, v(X, x; 8) = gD(ix + 2) u(x, x)

where K, = T Oy + a, + Vy 9y e
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K, = 4 Cys Q+40, = % U =47, ¥+ T, U, + ¥
and similarly

K A0 x) = 6 5w )

K, v(X, x; 8) = gD (3x + )0 (X, x)

Now the general idea of the present method is to regard these
eguations as a met of equations for two classical fields, If this is
legitimete then they result from the variation of a Laegrangien and from
the Lagranglan an expression for a current can be derived. This current
will necessarily be conserved by virtue of the field equations and the
integral of it over a spacelike surface must be a constant. Giving a

value to the constant normalises the wave functions.

The meson propagator D(%z + ) must first be eliminated so the

equations (7.%) become

K, u(X, x) = g v(X, x; %Z)

(7.5)
0, K, v(X, 13 8) = igu(X,x) §(ix +3)

K ax, z) = g ¥(X, x; 4x)

O, K, v(X 35 8) = -igu(X,x) §(=x + &),

Unfortunately the factor 1 occurring in two of these equations
seems to make it impossible to find a Lagrangien which they could have
derived from. This difficulty is overcome by changing to the imsginary
time axis. Wick has shown that u(X,x) can be continued into the complex
t-plane and from the analytic properties of u(X,x) those of v(X,x;z)
can be deduced by using the equations (7.5). It may be noted that the
properties of w(X,x) are independent of the ladder approximetion while

the properties of v(X, x; z) found in this way are not necessarily valid
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9
in general. The rotation to the imaginary time axis is most convenisently
carried out in momentum space. Suppose that U(P, p) and V(P, p, q)
are the Fourier transforms of w &nd v then the first two equations of
(7.5) become

02 - 2= 2= £p) U(pip) = & [ aq VP, 25, p - )

(MZ - -}Pa - p2+ Pp) V(P, ,p_g__q’ p=-4q) = (—;}% U(pfq5¥' k it

Since U(P,q) has outs from the zeros of (M2 - —}Pz - p2 + Pp) to+

(7.6)

the second of these equations shows that V(P, L;_g,' p - Q) has the same

cuts together with two poles at the gero of (p - q)z « it . Hence V
can be continued in the same direection as U. After taking both P, and
9, to the imaginary axis and putting P, ™ ip4, qo = iq4 the equations
(7.6) become

(IVIZ- -}P2+ pa- :Lp4P°+ P.p) U(P, ip,s p)

i( )
=& (e v, —St, B4 gy - @)

and

i(pgtq) p+
(M2 = 2% p%+ iP p, -P.p) V(P, 42 A, : = 2, i(p4- ‘14)' -9

. —ig ; u(p, ip,, p)
(2m) (p ~ 0)?
where p2 = pi + 22.
A similar procedure can be carried out for the second pair of equations
(7.5) but the rotation in the complex P, Plene must be in the opposite
direction so that the subatitutions P, = -ip A 9, = -iq 4 must be made.

We can then make a second Fourier transformation

. iPX
U(P, ip4’ E) = _!.—2. Iu(x4v _x_) el xe ipx dX dx
4T
- 1 - —iPX ipx
U(P,-ip4, p) = 4n 2 _[ u (x,', x)e e dX dx



atc. and finally get

K ux) =1gv(x,3)

(7.7)

Ly v(x, 2) =1 gu(x) 5(z+3)
ote. where the centre of mass coordinate has been suppressed and
Ki=M2+%Ux-i>:—-:'§‘;'V£.V,_¢_ - Ox

= M° + -}ﬂx + iS)X.;(%Q’* ,{%“) + Vé,(vﬂ +27,) ‘[.‘71*5‘7:-)1
Finally, eince wu(x) = u(-x) and v (x, 2z) = v(-x, )

K owx) =igv (x, x)

0,k vz, 8) =1 gu (x) §(z - 4x) (7.8)

K u(x) = -1 g ¥(x, 3x)
0,V (x 8)=-igu(x) §(z-%m)
where K% iz derived from Ké by changing the aign of x 4 and x in

)
K2.

Now this set of equations can be derived from a Lagrangian density

which turns out to be a function of u(x4, x) and ﬁ(—x4, x) and
similarly for v mo thet £ satisfies

£ (‘ 40 ‘_54) = £(14, 84)
a condition obviously related to the fect that =, and =

4 4
implicitly multiplied by a factor i. As £ 1is rather lengthy it will

are

not be given here in detail but the general form for the Lagrangian L is

L= [d¥dn Ly k) + [dz (£ [X,0,2) +05 i) Tl 2,24, 2)

-cg Wi, 3) Vi) | (7.9)
If we then find §L, the change in L due to independent variations of

u, 0, v and Vv and then put Su = -iu, $u = iu, §V = -iv,

Sveiv and SL =0 we get

fo
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o-fu(

whexe

20 ] qulx zﬁ_ — 3l . AR
Jo“l—fiﬂ-(qu(')lq) -ax—o“)—?;u—- -:':u-—— 4_%0('__5(-

)
J‘—V-o‘J
3}{0 o X -J

-0 A Y P} . _
Lfg{a.zlz (q v O, 3, —,_-6 v, 3%, _if-vaz(sau.,’f'. fé,)lf

—r{{ V-Dz-(%u, % 33-204) 1—})
and similarly for g « In each term of this expression it must be under-
stood that the arguments of u are x,, X and of ¥ are -1, x and
similarly those of v are x,, X, Z,, 3 but those of Y are

. 4
"’34! Zy "540 2

Since J 1ie a vector whieh is conserved it corresponds to some
physical quantity and is most readily interpreted as the density and flux
of the bound state as & whole. Since the system must be somewhere the

normaligation eondition is

' f:o P =1 (7.11)

or f %’da; = 1 for a general spacelike surface.

For a particular solution of the field squations

wix, x) = oy (x)

=i PX
' ipx

- 9-—-2— fdp ® 4’(1194. 2)
41

i PX

(2w )*

and v(X, x, & = f ap aq o7 &' S(ip,, 1, p, 9)

the equation (7.11) becomes, in momentum space
-—VL = fd/\ (Efl:}‘a) ¢U‘ll"ut) '-/’(l‘lq )k)
t [df dg (e+chi-£4.) 4F Blibiig, b, ¥) &horiqus b)y)
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vhere V is the integsration volume, PwO and Po-ak.

In the firet integral, the terz containing Py is sexro since
12 umup4, and in the second the functions © and G can be
eliminated by means of the field equations. Then the integration over
P can be performed to give

728 @ (e A1) Tlin, p) ¢ ltpg p) (7.12)
vhere A = ( )2 is the coupling constant used in the previous chapters
and

2 2

Ip) =—3 912 {(‘l i‘+p4) log 1”“*“’4

po= 2°)%s 4] o

pzve o {7.13)
A similar expression can ba obtained for the mormalisation integral in

the Minkowski metric by using the analytic contimuation of ¢ to give
$eat [cu + A1) Ty (p) a0

The function I'(p) is rether complicated and the p o integration must

be over the contour shown.

For application of this g———% ho

normalizetion to the solutions
found in Chapter J, allowance

mast be made for the way the argument has boen introduced. If

P
4
@(p4. p) 4is the Bethe-Salpeter wave functiom in the Euclidean metric
then

P (b p)

Il

q/""‘ij_k)

and ylibat) = 5(‘*"'1‘)



o

2)2‘

(p2+ e + wzpi

then the integral becomes

Y (py0 p) @'(-134, 2)
[(5% )% + wzpilz (7.14)

%aEfdp (1 + )I(p)

If the variables are tranaformed to the (s, £, &, ¢ ) used
earlier and the solutionse of Chapter 3 inserted in (7.14) the final result
is rather complicated. Since the nucleons are assumed identical, only
the solutions whose quantum number k is even are to be included, because
the others do not satisfy the condition YW (p) = YW (-p). From the first

term in (7.14) the essential integral is, if g = oeshza,

J, At A
! N (z - e

2

Since 5(z)=~ 2 ° as 2z 200 and 8(z) 1s & constant as 3z - 1,
this integral is convergent. The second term in (7.14), containing the
factor I(p) cennot be reduced to an integral over a single variable
but it seems clear‘that it improves the convergence. Thua the present

solutions are normalizable according to this normalization condition.

If the ladder approximation were not made the equation (7.12)

would be replaced by
_\;—=Efd} [t+A L, }) *ALI,_(}«) b )¢ e

The normalizaticn could break down if the power series in the coupling
congtant were not convergent or if ome of the later terms were divergent.
Presumebly the first difficulty will only ooccur if the full Bethe-

Salpeter kernel is not oonvergent, and since the first factor Il(p)

§3
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improves the comvergence, it is reasonable to suppose the later terms

will not make it any worse.

The normsliszation given by Nishijima (21) is

1 _ ., bote) B(F) B4)
2 'T'\/JH" ((HE)=1) (-0 <5< )

which, when the integral equation for @ (p) is used leads to
7 =47 [ () [(p -8 - K] B(p) B(2)

Presumably this expression should be symmetrised in P, and it then

becomes

7= 4m [ap (v v ) &(2) 2)
This may not be quite corrsct as no acgount has been taken of the analytio
properties of 4_7(13). However it obviously is quite differsnt from
(7.12) and does not even correspond to the first term of (7.12). Sinoce
Nishijima's condition is more stringent than (7.12) and he finds that the

solutions of Wick's equation are normalisable it is not surprising that

they can also be normalised by the present method.

It is interesting to ses what the noxmaliszation condition gives in
a non relativistie appreximation. As has been shown in a previous
chapter in the instanteaneous interaction approximation, the wave function
®(p) cen be replaced by
v (p)

@(p) E(HP?* 02)24- mzpi

and if this is inserted into the first term of the equation (7.14)

(since )\ must certainly be small if this approximation is wsed) one gets
L mE f d} (R V) (akn™cus
v 16 (M"f’n")'y‘- lb‘*“)’




where now p = lgl. On the other hand various suthors (1), (32) suggest
that the analogue in three dimensions of (D(p) is

@ g) = f #(p) dp,

Hence

™ _‘:(E)

¢(2) ) Z/M +p (p2+ 02)

Thue the normalisation condition is

L = E ?’l D : éﬂl'fcx*;"h
V  &m /"”‘70(-')99[-") [megpe (P4 cv) (7.15)

Although this differs oonsiderably from the usual normalisatien of non-:
relativistic wave mechanics it must be remembered first that f does not
satiefy a Schrodinger equation, On the other hand Nishijima's normal-
ization in this approximation gives
_ 2 2
sl [ & 7 (p) @ () e + p

which is certainly simpler tut equally differs from the usual non-

relativistic normelimatien.



Chapter 8.

CONCLUSIQN.
The work deseribed in the preceding chapters has not led to any

major revieion of accepted ideas on Wick's equation so that few general
conolusions are in order., Some of the principal features of esoh

chapter are sunmariged here and scme additional comments made.

In Chapter 3 it was found that the analytlic properties of the
solutions in the complex Py plane are simpler than those found by
Wick for the general Bethe-Salpeter wave function. The same discovery
wes made by Watanabe (39), and it is difficult to avoid concluding that

it is a consequence of the ladder approximation.

Just because of this analytic structure, it was very difficult
t0o solve the integral equation in the Minkowski metric so the imaginary
relative energy was introduced. Similarly in deriving the normaligzation
condition in Chapter 7 the change to imaginary relative time was essential.
This seems to be only & matter of convenience but might have deeper

significance. At least it may be desirable in all bound state problema.

The normalization of Chapter 7 differs considerably from that
previously proposed by Mandelstam and Allcock. However, as emphasized
by Green (29), the exact normalization may not matter very muchj; since
the total charge is presumably e constent of the motion, Mandelstam's
condition must still be applicable. VWhereas in non relativistic wave
mschanios,'the normalizetion condition is used to determine the eigen-~
values, in the present theory they are given directly since an integral

equation is used. Similarly Green and Biswas (24) found that simple

&b
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regularity conditions were sufficient to produce sigenvalues of the two-
fernlon problem. The ono situation in which the sxact form of the
normalization could be important is in the elimination of unwanted

soluticns.

|
|
The ebnormal solutions remain one of the intractable problems of
Wick's equation. While it must be remembered that the ladder approx-

imation is not to be trusted for )= % it would still be preferable

to find reason to elimipate them. It might be possible to make various
perturbations to the potential 4)(:1 - xz) which would still allow

the separation of variables and lead to a reasonably sinple differential

equation in one varieble. If the perturbation was not too unrealistio

and if all the eigenvalues then tended to sero a part of the problem

would then be removed. However in one sense it would be worse in view

of the studies of Muglbayashi (36) on the static model where it was shown

that the abnormel solutionz do not correspond to eigenstates of the

Hamiltonian. The eingular behaviour of the propagator at )\ = 4} due

to the conflusnce of all the sbnormal sclutions does not seem important

at the present stage; most likely it is a feature of the ladder approx-

imetion and would not occur in higher approximations.
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EROGRAN 18 - FLOW SHEET.
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E=Q.1
EM=100.0

¥
Um0.0}

<

DD=1,00

IFa <3
>3

[imi40:5]

r
A

v
[calculate X |—>— Caloulate Y| IFE >0.82|—<—E=E+0.6]
<0.82
[
| DD=D| [IF C > 18
A < <18
i
DeX+Y Cal=0,5 EM=100
Y A
IF EM =1 | < EdmBM-1.0] [UsU+1.0 CxC+0.5
=()
v A
|calculate B | IF B.BB < 0 [—> [BB=B}—=
>0 - ]
A
A
IF C =0 IFU<0 IF U =6 U=0.0|
<0 >0 =6 =
+ + A
IF U > 000 2 PRINT UI!U+1.0 [ C=C+0.l|
'0-0 U.L’E’C,B
l >
Text Symbols 8 v A a, d Vel
FORTRAN Symbole | A E EM ¢ D DD

B=d

o -

%_%(n+l)] + ed, (n+1)
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DR NV PWN

10

43

44
45
46
47

49
50

51
52

53

18 UNIVERSITY ADELAIDE L H D REEVES
EXEC TIME 4 MIN

EIGENVALUES OF WICKS EQUATION (H=0)
XEQ
CARDS COLUMN
A=0e5
E=0,.1
EM=10060
U=0e0
C=0.001
D=1.0
DD=1,0
X=D#*( (EM+A) ¥ (EM+A+0 5 ) +EMUFE* (EM4D2 q0%A)=0425%*C )/ ( (FM+A=045) % (FM+A~
1.0))
=—E*DD* ( (EM+1e0) ¥ (EM+2e0%A+1e0) )/ ( (EM+A-045) ¥ (EM+A-140))
DD=D
D=X+Y
EMzEM“l .O
IF(EM)14414,49
B=D#*(0425%¥C-A% (A+0e5) ) +EX*DD# (2, 0%A+1.0)
[F(C~0.001)18+18s44
IF(U)19+19,38
RB=8B
C=C+045
EM=100,0
IF(C-1840)7sT7924
E=£+0.06
IF(E-0e82)555434
A=A+0.5
IF(A-340)393+53
PRINTS52s(UsAsE sCeB)
U=U+1.0
IF(U-660)40+40443
CONTINUE
C=C+0.1
GOT022
U=0
GOTO1¢
IF(U)45445,438
IF(B*BB)46s46449
U=sU+1.0
C=C=0e5
GOT022
IF(E~0416)51650451
PRINT52+(UsAsE sCsB)
GOTO19
IF(E~0e76)19+50419
FORMAT(F4007F5019F8.39F8.39E15.6’
FREQUENCY17(091940)918(0s1091)923(409151)933(40s191)
35(69191)339(69191)944(0s2s1)
CALLEXIT

L
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PROGHAM 21 -~  FLOW SHEET

READ INPUT TAPE 2 > {H=0.0 The second half of the
A(J),¢(J) program is very similar
to the first half but
IFH = 0.5 > the different recurrence
|;i=_l_,| e < 0.5 relation is used.
v
(3
[E=0.82 IFJ < 10
> 10 H=H+1.0

EM=200
D=1.0| E=E+0.025
DD=1.0

>Q

L
[BB=8] IF B.BB = O PRINT

<0 . H,4,E,C,B,BB,L
y - T 1
_h___l L C=0.0
IFL = 23 L==100| IF E < 0.94 [ Cal~0.04r—7=
< 23 = 0.94 40(1.0-E)
. 1

v ny P ‘-0.0
(0=C+0,04| [ E=i+0.004]—=— C=0~0,04~F00 0y

Y

IF B < 0,946 |IFE = 0.986 [ ]
> 0,946 < 0,986 [—=—1=0] IFE = 0.998]
¥ Y = 0.998
IFE < 0.986 { Eit=500.0] 1
= 0.986 |—=—{5#=2000.0}— «—[1=0]

The correspondence of symbols is as before.
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53

54
10

55
12

11
13
15
16
56
17

18

ON
19
25

20
22
24

14
23

21 UNIVERSITY ADELAIDE LHD REEVES
EXEC TIME 10 MIN

EIGENVALUES OF WICKS EQUATION

XEQ

CARDS COLUMN

DIMENSIONA(19)+C(19)
READINPUTTAPE2 939 (A(J)sC(J)eJ=14+19)
FORMAT(6(F5414F742))

H=0e0

IF(H-065)29294

J=1

C o
[0 o]
N

N
s OO
<

comrm
Hnxn
n == i
o
.
@]

o
e

X=D¥( (EM+A(I) ) ¥ (EMFA(U)+0 B )+EMAFEX(EM+2 40¥A(J) ) =0,25%C(J))
JUEM+A(J)—0e5) ¥ (EM+A(J) =160} )

Y=—E*¥DD*( (EM+1 0 ) ¥ (EM+2e0%¥A(J)+140))/{ (EM+A(J)=0e5) ¥ (EM+A(J)
-1.01)

DD=D

D=X+Y

EM=EM~1,0

IF(EM=0¢5)9+8,8
B=D*(0e25%¥C{J)=A(J)X(A(J)+0a5) ) +EXDD* (2 0¥A(J)+1e0)
IF(L)Y10s10s11

L=L+1

BB=B

IF(L~-23)12,12,13

C{J)=C{J)+0.,04

IF(E~0e946)7s7s14

IF(B*¥BB)15,15,10

L=100

PRINT16s(HsA(J) sEsC(J)sBsBBsL)
FORMAT(F4e09F5el9F7e3sF9e502E1344914)
IF(E-0e94)17917518
ClJ)=ClU)=0.04~(0,025#(C(J)=0604)/{1.,0=E))
E=E+0.025

GOTO6
ClU)=ClU)=0e04=(0,004%(C(J)=0.04)/(1,0~E))
E=E+0.004

IF(E-0e986)19519+20

L=0

EM=50040

GOTO021

IF(E=06998)22422+23

L=0

EM=2000,0

GOTO21

IF(E~0e986)25425924

J=J+1




58
26

27
28
29
31

2

59
33

34

36

35
38
39
40
41

42
43
44

45
37

30
47

48
49

50

46

IF(J=10)595426
H=H+1e0

GOTO1

E=0405

L=0
IF(E-0e86)29929430
EM=100.0

D=1.0

DD=14.0

X=D¥*( (EM+A(J)+0e5) ¥ (EM+A(J)+1e0)+EREMHE(EMF2,0%A(UJ))~0,25%#C(J))
/UEM+A(J) ~0e5) ¥ (EM+A(J)))

Y==EX*DD¥ (EM+1,0) (EM4+2,0%A(J)+1e0) /((EM+A(J)=0e5)*¥ (EM+A(J)))
DD=D

D=X+Y

EM=EM=1,0

IF(EM~0¢5133+32,32
B=D*(0425%C(J)=(A(J)+1e0) ¥ (A(J)+0e5) ) +EXDD¥ (2 40%¥A(J)+1.0)
IF(L)344+34,35

L=L+1

BB=B

IF(L~23)36+36437

C{J)=ClUY+0.,04

GOT028

IF(B*¥BB)384+38,34
PRINT39s(HsA{J)sEsC(J)sBsBBsL)
FORMAT(F4e0sF 5 eloF7e4oF9e592E1304914)
IF(E=Qe84)4194]1 042
ClJY=ClI)=0e04~(041%(C(J)=0e04)/(1s0-E))
E=E+0e1

GOTO27

IF(E~Q0e94143443444
ClUI=C(J)=0e04=(04025%(C(J)~0a04)/(140-E))
E=E+0.025

GOT027
ClJ)=ClU)~0e04—-(0,0035%(C(J)=0604)/(1.0-~E))
E=E+0.,0035

IF(E=0e996)27+27 46

L=100

GOTO38

IF(E~0e951)4 794748

EM=20060

GOTO31

IF(E~0e986)494549450

EM=500,60

GOTO31

EM=20006,0

GOTO31

J=J+1
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52

NO = O

WUt U n

W N =

IF(J=19)4944+52

CALLEXIT
FREQUENCY1(135091)953(1+09500)54(091+2)355(100s150)»
11(19052)956(395092)957(990+1)920(209001)s14(9s0s1)5
58(1091s0)928(19041)959(190s500)935(1s093)s40(2s04+3)
42(39052)945(259001)930(2905s1)948(10+01)3951(10s150)
END(1+s0s15050)

DATA
0e52 045 533 045 13,70 1.0 leb44 1.0 8406
11412 2.0 4e42 2.0 14455 245 6e46 065 579
40686 160 11657 10 29611 145 19424 145 40469
40429

N O
e de
(@ 2% 1IN

275
1942
28481
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PROGRAM 180 - FLOW SHEET

[FE4D TNPUT TAPE 2 J—>——{PRid DATA}|———{Lel}—>—{C=0]
—.J J-1|

-
—

| Elmxn]

=

X

| Calculate X | =

5

_L_rJ—

F=1.0

FP=1,0-1,0/EM

$ [FF=F ——>—[Calculate ¥|
[

n

IFEM > 0 EN=EM-1.0 [8=0.255 |
=0 A
A

> | Calculate B [cx=c-s]

v ~

{ERINT B}——e——{IFP XM < 25 PRINT

> 25 H,A,S,C,BI,L

Y 4
<7/ IF J=1 IFL>1
-1 = ]

¥ i
J=J+1 IF B.BB < O f——>3—— | PRINT
A =0 Titles

LY
L‘cucafs [BBe=B
- v
| PRINT IF C~CN-5S3 < 0
BI,L,H,A,CN,S,C et >0
A
Text Symbols I in (1) v s % i,
FORTRAN Symbols | A BT B4 C F

Benef +(5-@+nE+n) 1,



X¥ES 18C UNIVERSITY ADELAIDE L H D REEVES
*EB 180 UNIVERSITY ADELAIDE L H D REEVES
* EXEC TIME 5 MIN
* CARDS COLUMN
C DOUBLE PRECIS CHECK
PRINTLs
1 FORMAT(36H DOUBLE PRECIS CHECK (C=0.25%LAMBDA))
PRINT4,
4 FORMAT(56H K H A Bl XM CN S
Tegp =)
2 READINPUTTAPEZ2 33 sKsHsAsBIsXMsCNs S
3 FORMAT(I29F4eloFb4eloE16e73E13e30F9¢602PFT7e4)
PRINTS5sKsHsAsBI s XMsCN»s S
5 FORMAT(I129F4e19F4el9E16e79E13e30FFe692PFT7e495H DATA)
L=1
6 C=CN
J=1
D 7 EM=XM
D F=1e0
D FF=100-100/EM
D 8 ﬁ:(l-O“BI)*(EM*F“(EM+1.0)*FF)+F*((EM+A+H)*(EM+A+H+O.5)-C)/(EM+2.0*
1 )
D FF=F
D Fz(EM+2e 0¥A=1 4 0) %X/ ( (EM+A+H~=D 5 ) ¥ (EM+A+H~160) )
D EM=EM=1,0
IF(EM=0,1)9+9+8
9 Bz2 e O¥A%¥(160-BI)*¥FF+F*(C=(A+H)* (A+H4+0,5))
IF(XM=25,0)22922+23
22 PRINTZ24,4B
24 FORMAT (9H B=9El4.5)
GOTO02
23 IF(J-1)1111510
10 IF(B#BB)16s16412
11 J=Jd+1
12 BB=B
IF(C=CN=540%S5~1e0E=7)139s14414
13 C=C+S
GOTO7
14 PRINT15s{BlolsHesAsCNsSsC)
15 FORMAT(E16e69139F5elsF5619FQe69FF6693H C=9F9ae6)
GOTOZ2
16 IF(L-1)1717519
17 PRINT18,
18 FORMAT(1HO50H H A S C BI L)
19 PRINT20s(HsAsSsCsBIlsl)
20 FORMAT{1XFBelsF5419F9e6sF9e63sE17e6313)
CN=C-5
S=O-25*S
L=L+1

IF(L-K)6s652
END
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